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Preface 

A cellular communication system comprises individual base station for each 
cellular (typically hexagonal) partitions/cells. It also consists of a mobile 
switching office and several hundred thousands mobile stations in each cell. The 
mobile switching office establishes communication between two base stations 
located in the respective cells of two users. Call admission control and Dynamic 
Channel Assignments are generally addressed as two distinct problems in a 
cellular (mobile) communication system. The channel assignment problem is 
concerned with allocating specific channels to individual subscriber when he/she 
is connected with his/her peers via the network. The allocation is performed on 
satisfying a set of network constraints involving the network parameters.  The Call 
admission control problem on the other hand deals with admission of new and 
pending calls, and also serves handoffs. Because of limited system resources, all 
the generated/pending calls in a given cell at a given time instance cannot be 
served. The aim of the thesis/book is to handle both the problems jointly.  

Call Admission Control (hereafter, CAC) in mobile/cellular network, deals with 
automatic classification of a call into one of three possible classes: 
serviced/blocked/dropped by the nearest base station of the user. The decision 
about a call is determined by studying several dynamic parameters of the network, 
pertaining to existing network resources and their utilization. Further, the channels 
for the calls selected for being serviced are also assigned by the call admission 
controller. 

Call admission control is one of the most effective methods for optimal 
resource management. Here, when a call is initiated in one cell, it will request its 
home cell for a channel. If home cell cannot provide any free channel, the call 
may shift to the neighbouring cell. If the neighbours too cannot find a suitable 
channel then the call is dropped. Again, if the caller, while a call is in progress, 
moves out of a cell to any of its neighbour, a channel of the neighbouring cell will 
be allocated to the call. This is known as a handoff.  The calls for which no 
channels can be assigned are dropped. 

In Code Division Multiple Access (CDMA) systems, assigning a channel 
means allocating the appropriate power to a requesting mobile station. Due to the 
sharing of spectrum, this induces interference to other users. This kind of situation 
requires that the interference must be below a certain level to maintain the 
appropriate level of communication quality. This fact is elaborated in the next 
paragraph. 

In CDMA systems, capacity is limited only by the total level of interference 
from all connected users.  As a result, CDMA utilizes the effect of statistical 
multiplexing without the complex radio channel allocation or reallocation that is 
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required in frequency-division multiple-access (FDMA) and time-division 
multiple-access (TDMA) systems. However, in systems based on statistical 
multiplexing, there exists a trade-off relationship between the system capacity and 
the level of communication quality. Although the so-called graceful degradation 
based on this trade-off relationship is one of the most essential features of CDMA 
systems, the communication quality must be guaranteed to a certain level on an 
average. The number of simultaneous users occupying a base station (BS) 
therefore must be limited such that an appropriate level of communication quality 
can be maintained. CAC thus plays a very important role in CDMA systems 
because it directly controls the number of users. CAC must be designed to 
guarantee both a grade of service (GoS), i.e., the blocking rate, and a quality of 
service (QoS), i.e., the probability loss for communication quality. 

Call admission control has several issues for consideration. One important issue 
in this regard is handoff. The handoff schemes can be classified according to the 
way the new channel is set up and the method with which the call is handed off 
from the old base station to the new one. At call-level, there are two classes of 
handoff schemes, namely the hard and the soft handoff. 

In hard handoff, the old radio link is broken before the new radio link is 
established and a mobile terminal communicates at most with one base station at a 
time. The mobile terminal changes the communication channel to the new base 
station with the possibility of a short interruption of the call in progress. If the old 
radio link is disconnected before the network completes the transfer, the call is 
forced to terminate. Thus, even if idle channels are available in the new cell, a 
handoff call may fail if the network response time for link transfer is too long. 
Second generation mobile communication systems based on GSM fall in this 
category. 

In soft handoff, a mobile terminal may communicate with the network using 
multiple radio links through different base stations at the same time. The handoff 
process is initiated in the overlapping area between cells for a short duration 
before the actual handoff takes place. When the new channel is successfully 
assigned to the mobile terminal, the old channel is released. Thus, the handoff 
procedure is not sensitive to link transfer time. The second and the third 
generation CDMA-based mobile communication systems fall under this category. 
Soft handoff reduces call dropping at the expense of additional overhead of 
keeping two channels busy for a short time for a single call. Two key issues in 
designing soft handoff schemes are the handoff initiation time and the size of the 
active set of base stations the mobile is communicating with simultaneously. This 
study focuses on cellular networks implementing hard handoff schemes. 

The other issue that plays major role in CAC is the assignment of channels. The 
objective of a channel assignment algorithm is to determine a spectrum efficient 
allocation of channels to the cells while satisfying both the traffic demand and the 
electromagnetic compatibility constraints.  

Existing works in CAC concentrates on specific aspects of the call admission 
control problem. For example, a few of these works presumes a rectangular 
cellular structure with four neighbouring cells only and ignores the entirety of the 
network, thereby restricting the CAC problem in a more localized and narrow 
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sense rather than considering it for a bigger network.  The rest considers only the 
call drop due to insufficient channels. Unfortunately, most of the above works 
consider the mobile stations either static or moving very slowly in the small area 
with very low traffic load. The mobility factor, comprising speed and direction of 
movement, has been ignored in these works. Moreover, the overall network load is 
also ignored and hence the handoff policies used have a partial effect on the 
network. Most of the above schemes are localized to a single cell.  Hence the 
channel reuse is also not done efficiently. 

In this book, we propose a scheme that takes a more wide view of the call 
admission control problem. Here the cells are considered to be hexagonal so as to 
easily track the movement of MS in the neighbourhood cells. Instead of 
considering a single cell scenario a more global approach has been taken up using 
a small network to implement the algorithms to incorporate the intercellular 
communication efficiently. The decision of acceptance or rejection of a call dose 
not only depend on the feasibility and availability of the channel but also on the 
speed at which the MS moves and its direction of movement. Its geographical 
location with respect to the base station also has a significant importance. 
Moreover the traffic density on a cell is also considered to be a determining factor. 
The reuses of the channels also make the approach more effective. The algorithms 
proposed in the book are based on all the factors mentioned above which more 
perfectly handles the real world situation. 

The book includes six chapters. Chapter 1 introduces the concept of mobile 
network and its historical background. Different radio resource allocation 
techniques are discussed. A basic concept of call admission control is introduced 
Different handoff schemes present in CAC are introduced.  Next, it gives a brief 
account of important call admission control schemes. The schemes are partitioned 
depending on the nature of QoS parameter. In this chapter, different CAC using 
different evolutionary computing techniques are also described in brief. 

Chapter 2 provides an overview of various intelligent computing tools and 
techniques. It begins with a review of swarm and evolutionary algorithms with 
special emphasis in Genetic Algorithm, Biogeography based optimization and 
Particle Swarm Optimization. Next it introduces the notion of fuzzy sets and their 
extension in two typical reasoning techniques, popularly known as Mamdani-
based and Takagi-Sugeno reasoning. The principles of uncertainty management in 
fuzzy sets are also briefly outlined. The chapter ends with a discussion on the 
scope of Fuzzy and Evolutionary algorithms in Call admission Control problems. 

The current literature on mobile communication usually considers the channel 
assignment and the call admission control as two independent problems. However, 
in practice these two problems are not fully independent. Chapter 3 attempts to 
solve the complete problem uniquely by two alternative approaches. The first 
approach is concerned with the development of a fuzzy to binary mapping of the 
measurement variables to decision variables. The latter approach deals with fuzzy 
to fuzzy matching, and then employs a fuzzy threshold to transform the fuzzy 
decisions into binary values for execution. The performance of both the call 
management techniques are studied with the standard Philadelphia benchmark and 
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the results outperform reported results on independent call admission and channel 
assignment problems. 

In chapter 4, CAC is represented as an optimization problem, where the number 
of calls to be serviced is maximized and the number of call rejection is to be 
minimized. This optimization is done under three given conditions. First, we 
consider a mobile receiver, which is moving with certain velocity at a certain 
distance from the BS. Then it is considered that all the channel allocations will 
fulfil the soft constraints of channel allocation. The third consideration is the 
network load. In this chapter, we formulated the above as a constrained 
optimization problem, and attempted to solve it by Genetic Algorithm. The 
proposed algorithm is different from the existing ones in various ways. The 
solutions (chromosomes) considered here are 2-dimensional allocation vectors, 
which represent the whole network unlike the single cell considered in the 
previous works. Hence it gives a complete view of the network while providing 
the solution and ensures better QoS.  

Chapter 5 proposes a new approach to call admission control in a mobile 
cellular network using Bio-geography based optimization. Existing algorithms on 
call admission control either ignore both variation in traffic conditions or velocity 
of mobile devices, or at most consider one of them. This chapter overcomes the 
above problems jointly by formulating call admission control as a constrained 
optimization problem, where the primary objective is to minimize the call drop 
under dynamic condition of the mobile stations, satisfying the constraints to 
maximize the channel assignment and minimize the dynamic traffic load in the 
network. The constrained objective function has been minimized using Bio-
geography based optimization. Experimental results and computer simulations 
envisage that the proposed algorithm outperforms most of the existing approaches 
on call admission control, considering either of the two issues addressed above.  
Conclusions arrived out of the book are listed in Chapter 6. Future research 
directions of CAC are also outlined here. 

The first author would like to pay the gratitude to her parents for their mental 
support and forbearance during the tough period of her days when the book was 
written. She would also acknowledge the mental support she received from her 
daughter and husband as she spent a lot many hours to complete the book project, 
leaving them in despair particularly in holidays and weekends.  The second author 
remembers the support he received from his wife and son to complete the book. 
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Chapter 1 
An Overview of Call Admission Control  
in Mobile Cellular Networks 

This chapter provides a thorough overview on call admission control techniques 
commonly employed in mobile cellular networks. It begins with an introduction to 
cellular technology, and gradually explores various methods and techniques for 
call admission control undertaken by different research groups. Strategies of call 
admission control under diversity of network environments have been introduced 
with special reference to priority of calls, predictive nature of the network and 
implicitness of the network, call queuing strategy, and channel borrowing 
schemes.  Application of soft computing techniques, including artificial neural 
nets, genetic algorithm, fuzzy relational approach and particle swarm 
optimization, in call admission control is illustrated.  

1.1   History of Mobile Communication 

The origin of radio communications dates back to the 19th century. In 1864  
James Clerk Maxwell enunciated the well-known Maxwell Equations for 
electromagnetic radiation. In 1876 Alexander Graham Bell invented the telephone. 
In 1887 Heinrich Hertz discovered “hertzian waves” which are now called as radio 
waves. In 1896 Guillermo Marconi carried out the world’s first radio transmission. 
There had been scope of simplex radio communications particularly for radio 
reception for common people, and duplex communication among police and 
investigation departments over the last 50 years. The duplex radio system, 
however, worked for short range communications, and was far fetched to be 
considered for realization in a large and global sense.  

Wireless communications have changed beyond recognition over the last 15 
years. The first widely used cellular mobile phones were analogue and installed 
initially in cars due to the bulky hardware required at the time. Shortly the Bell 
telephone company (US) introduced the first cellular public network AMPS 
(Advanced Mobile Phone Service) in 1978, after hand-held devices weighing 
more than 1 kg became available. The AMPS had an evolution and merging with 
NMT (Nordic Mobile Telephone) of Germany, and appeared later in the UK as 
TACS (Total Access Communication Service).  

The development and deployment of second-generation systems took place 
from the late 1980s to the present day. These were digital rather than analogue 
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providing the end user with supposedly better voice quality, whilst providing  
the operators with considerable improvements to the capacity per unit bandwidth. 
The other advantage of second-generation systems is their roaming ability. The 
pan-European standard GSM (Global System for Mobile Communications) 
allowed international roaming for the first time throughout Europe. Many other 
countries throughout the world have now adopted GSM. The USA adopted an 
evolutionary approach to its AMPS system, developing D-AMPS (Digital AMPS). 
Also, a second standard is also used in the USA (IS-95), which provides an air 
interface based on CDMA (Code Division Multiple Access).  

Wireless standards were also developed for cordless telephone applications, where 
users had a personal ‘base’ in their homes connected to a landline. An early standard in 
the UK and Canada was CT2, with its digital second-generation counterpart DECT 
(Digital Enhanced Cordless Telephone). In the USA, there are at least two cordless 
standards: PACS-UB, and IS-136. PACS-UB is primarily intended for a wireless 
PABX scenario, with multiple ports providing overlapping coverage areas, allowing 
portables to switch connections frequently between ports.  

The Japanese have a similar system called PHS (Personal Handy phone System). 
The third area attracting considerable interest is Fixed Wireless Access (FWA), or 
alternatively known as Wireless in the Local Loop (WLL), which is intended to replace 
the cable from the ‘last mile to the home’. FWA will probably prove most successful is 
in low-density communication scenarios, where cost of cabling is relatively high, and in 
the developing world where cabling infrastructure is not yet in place. 

Third generation systems are currently under research worldwide, and are being 
designed to support full multimedia access. A worldwide standard may be 
achieved, the so-called FPLMTS (Future Public Land Mobile Telecommunication 
Systems). This is currently being worked out in Europe as UMTS (Universal 
Mobile Telephone Standard). The above scheme is known in USA as W-CDMA 
(Wideband CDMA). It runs in a 5 MHz bandwidth. Another 3G standard proposed 
in USA is known as CDMA2000. Since their proposal, there was battle over 
which standard to follow.  

For this, another two standards have emerged. They are EDGE (Enhanced Data 
rates for GSM evolution) and GPRS (General Packet Radio Service). The above 
two standards are called 2.5G standard. These are basically 2G standards with 
some modification. This evolution is still continuing and we have to see where it 
goes now. Fig. 1.1 shows the evolution of standards. 

The basic mechanism of the communication system which will be considered is 
that a set of entities (users) access a common medium which, in this case, is the radio 
channel. This concept is depicted schematically in Fig. 1.2. The frequency spectrum or 
bandwidth that is allocated to a certain system is a limited resource indicated by the 
rectangular frame. In general, there are many co–existing wireless systems.  

In order to avoid interference to and from other systems, a certain level of 
protection is required. This is indicated by the shaded frame. The aim is to 
accommodate as many simultaneous users as possible (capacity) within the limited 
resource. In the example shown in Fig. 1.2, 4 users are considered each of whom 
requires an equivalent fraction of the total radio resource (illustrated by a circle).  

In a digital context, this corresponds to services which require the same 
information bit–rate. In Fig. 1.2, the size of the circles and hence the required radio 
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capacity are constant. In real systems the size may be time variant. Consider, for 
example, a speech service and periods when a speaker is silent, there is no 
requirement to transmit data and thus the size of the circle would shrink to merely a 
single point in the space. An ideal multiple access technique supports the time 
variant request of radio capacity because this means that, at any given time, only 
those resources are allocated which are actually required. Consequently, situations 
are avoided where more capacity is allocated than would actually be required. 

 
    

 

                                             

 

 

 

 
 
 
 
 
 
       
 
 
 
 
 
 
 

Fig. 1.1 Wireless Standards Evolution to 3rd generation 

If the system is not designed carefully, users or mobile stations (MS’s) will 
interfere with each other (gray areas). Therefore each user needs some protection 
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unused radio resources which, considering the immense costs for the radio 
frequency spectrum is inefficient. Therefore, the aim is to accommodate as many 
users as possible (minimizing the black colored areas) while keeping the 
interference at a tolerable level. The separation of users can be done in any 
dimensions as long as it fulfils the interference requirements. In practice the 
following dimensions are used: 
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• Frequency Division Multiple Access (FDMA), 
• Time Division Multiple Access (TDMA), 
• Space Division Multiple Access (SDMA), 
• Code Division Multiple Access (CDMA). 

 
 
 
                
 
 
 

 
 
 
 
 
 
 
 

 
      
 
 
 
 
 
           

Fig. 1.2 The Principle of Multiuser access 

We shall consider the CDMA case elaborately. For certain types of services the 
aim is to achieve full spatial coverage. In conventional wireless systems a mobile 
entity is linked to a base station (BS). BS’s are connected to a radio network 
controller that uses additional interfaces that cater for the access to the public 
switched telephone network (PSTN). The principle structure of a cellular wireless 
system is shown in Fig. 1.3. The signals on the air–interface experience a distance 
dependent attenuation. Since the transmit powers are limited, the coverage area of 
a BS is limited, as well.       

Due to the radial signal propagation, in theory, a single BS covers a circular 
area. The area that is covered by a BS is also referred to as a cell. When modeling 
cellular systems, cells are approximated by hexagons as they can be used to cover 
a plane without overlap and represent a good approximation of circles. 

Since the total available radio resource is limited, the spatial dimension is used 
to allow wide area coverage. This is achieved by splitting the radio resource into 
groups. These groups are then assigned to different contiguous cells. This pattern 
is repeated as often as necessary until the entire area is covered. A single pattern is 
equivalent to a cluster.  
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Therefore, a radio resource which is split into i groups directly corresponds to a 
cell cluster of size i. In this way it is ensured that the same radio resource is only 
used in cells that are separated by a defined minimum distance. This mechanism is 
depicted in Fig. 1.4 (A group of radio resource units is indicated by a certain shade). 
As a consequence the separation distance grows if the cluster size increases. 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

Fig. 1.3 Typical mobile communication systems 

Hence, increasing the cluster size acts in favor of low interference. However, an 
increased cluster size means that the same radio resource is used less often within 
a given area. As a result, fewer users per unit area can be served. Therefore, there 
is a trade–off between cluster size and capacity. In an ideal scenario the total 
available radio resource would be used in every cell whilst the interference was 
kept at a tolerable level. Herein lies a particular advantage of CDMA over all 
other multiple access modes since the same frequency carrier can be re–used in 
every cell [1]. 

It is clear that this results in increased co–channel interference (CCI) which 
gradually reduces cell capacity, but the magnitude of the resulting reduction of 
spectral efficiency is usually less than would be obtained if a fixed frequency re–
use distance was applied. The cell capacity, finally, is dependent on many system 
functions such as power control, handover, etc. which is why capacity in a CDMA 
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system is described as soft–capacity. However, the fact that in a CDMA system 
frequency planning can be avoided may not only result in capacity gains, but it 
eventually makes CDMA a more flexible air interface. Next part gives some basic 
ideas on CDMA systems.  

 
 
 
 
 

           
                       
                                      
 
 
 
 
 
 
 
 
 
 

Fig. 1.4 Cellular Concepts 

1.2   Cellular CDMA Systems 

In CDMA systems, the narrowband message signal is multiplied by a very large 
bandwidth signal called the spreading signal. The spreading signal is a pseudo 
noise code sequence that has a chip rate that is orders of magnitudes greater than 
the data rate of the message. All users in a CDMA system use the same carrier 
frequency and may transmit simultaneously.   

Each user has its own pseudorandom codeword that is approximately 
orthogonal to all other code words. The receiver performs a time correlation 
operation to detect only the specific desired codeword. All other code words 
appear as noise due to de-correlation.  For detection of the message signal, the 
receiver needs to know the codeword used by the transmitter. Each user operates 
independently with no knowledge of the other users. 

In CDMA, the power of multiple users at a receiver determines the noise floor 
after de-correlation.  If the power of each user within a cell is not controlled such 
that they do not appear equal at the base station receiver, then the near-far problem 
occurs. 

The near-far problem occurs when many mobile users share the same channel. 
In general, the strongest received mobile signal will capture the demodulator at a 
base station. In CDMA, stronger  received  signal levels raise the noise floor at the  
base station demodulators for the weaker signals, thereby decreasing the  

Four cell 
cluster  
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probability that the weaker signals will be received. To combat the near-far 
problem, power control is used in most CDMA implementations. Power control is   
provided by each base station in a cellular system and assures that each  mobile 
within  the base station coverage  area  provides the same  signal level to  the base 
station receiver.  

This solves the problem of a nearby subscriber overpowering the base station 
receiver and drowning out the signals of far away subscribers.  Power control is   
implemented at the base station by rapidly sampling the radio signal strength 
indicator (RSSI) levels of each mobile and then sending a power change   
command over the forward radio link. Despite the use of power control within 
each cell, out-of-cell mobiles provide interference which is not under the control 
of the receiving base station.  

Spread spectrum techniques build the foundation for CDMA. Therefore, a brief 
summary of spread spectrum communication is presented in the following. In a 
spread spectrum system, the frequency bandwidth is greater than the minimum 
bandwidth required to transmit the desired information. There are different 
methods as to how the spreading of the spectrum can be accomplished: 

     
Direct sequence (DS) spread spectrum: A signal with a certain information bit 
rate is modulated on a frequency carrier with a much higher bandwidth than would 
be required to transmit the information signal. Each user is assigned a unique code 
sequence which has the property that the individual user’s information can be 
retrieved after dispreading. 

 
Frequency hopping (FH) spread spectrum: The available channel bandwidth is 
subdivided into a large number of contiguous frequency slots. The transmitted 
signal occupies one or more of the available frequency slots which are chosen 
according to a pseudo–random sequence. 

 
Time hopping spread spectrum: A time interval which is much larger than the 
reciprocal of the information bit rate is subdivided into a large number of 
timestamps (TS). The information symbols are transmitted in a pseudo–randomly 
selected TS. 

 
Chirp or pulse–FM modulation system: The frequency carrier is swept over a 
wide band during a given pulse interval. It is common in all spread spectrum 
techniques that the available bandwidth, B, is much greater than the bandwidth 
required transmitting a signal with an information data rate, W. The ratio B/W is 
the bandwidth spreading factor or processing gain, pg. The processing gain results 
in a interference suppression which makes spread spectrum systems highly 
resistant to interference or jamming. This property in particular makes spread 
spectrum techniques interesting for the application to wireless multiple access 
communication where a large number of uncoordinated users in the same 
geographical area access a radio frequency resource of limited bandwidth.  

Using the spread spectrum technique, the number of simultaneously active 
users permitted is proportional to the processing gain [2]. Since the early 1980s, 
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this has led to the development of the CDMA technology which primarily utilizes 
the pseudo noise (PN) DS spread spectrum technique [3]. Apart from the PN 
direct sequencing a second category of CDMA techniques exists. This is described 
as orthogonal DS–CDMA. In this thesis, PN DS–CDMA systems are considered 
because orthogonal CDMA systems would require an ideal channel. In addition, 
CDMA based standards use, at least, a PN code for the final scrambling of the 
transmitted data. 

The wireless communication standards which utilize CDMA techniques, for 
example, IS–95 and UMTS use a combination of orthogonal codes and PN codes 
[4], but this is merely aimed to increase the robustness of the system. Since in this 
thesis PN DS–CDMA techniques are considered, henceforth the expression 
CDMA will be used to describe this particular multiple access method.  

As mentioned above, the capacity calculation of a CDMA system is more 
complex since it is interference limited. Each user contributes to the common 
noise floor which is usually assumed to be Gaussian [5].Thus, interference is a 
most important parameter in a CDMA system and capacity analyses focus on 
calculating interference quantities [5]. Since interference is dependent on many 
factors, for example, power control, adjacent channel leakage and handover 
strategies to name only a few, the capacity figures can vary significantly (soft 
capacity). 

CDMA is used in the 2nd generation mobile communication standard IS–95 
which gained special interest after it had been claimed that CDMA can achieve a 
greater spectral efficiency than conventional FDMA and TDMA methods [5]. For 
example, Viterbi [6] showed that the capacity of a CDMA system can be: 

Capacity (CDMA) ≅ 1 Bit/Sector/Hz/Cell; 

It is assumed that the voice activity of each user to be 50% and the sectorisation 
gain to be 4 – 6 dB. This figure was compared to the capacity of GSM (Global 
System for Mobile communications): 

Capacity (GSM) ≅ 1/10 Bit/Sector/Hz/Cell, 

where, a frequency re–use factor of 1/4, was assumed. Theoretically, when 
considering a single cell and an AWGN (additive white Gaussian noise) channel 
the multiple access schemes CDMA, FDMA and TDMA are equivalent with 
respect to spectral efficiency [7]. 

Therefore, the greater spectral efficiency of CDMA systems primarily results 
from three basic principles: 

 
1. The same channel is used in every cell (channel re–use factor of 10[1]), 
2. Interruptions in transmission, e.g., quiet periods of a speaker, when 

assuming a voice service, are exploited [5]. 
3. Antenna sectorisation is used. 

 
In general, the net improvement in capacity due to all the above features, of 
CDMA over digital FDMA or TDMA is on the order of 4 to 6 and over analog 
FM/FDMA it is nearly a factor of 20 [5 ]. 
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However, it was demonstrated that the advantages of CDMA systems were 
slightly overestimated due to two basic hypotheses that usually cannot be fulfilled 
in a realistic environment [8]: 

 
1. Perfect power control, 
2. All MS’s are allocated to the most favorable BS, i.e., the BS offering the 

lowest path loss. 

1.3   Radio Resource Allocation Techniques 

In a cellular network certain radio resources allocation methods are required to 
mitigate the detrimental impact of interference (Co-Channel Interface i.e. CCI and 
Adjacency Channel Interface i.e. ACI). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.5 Radio spectrum allocation 

Channel Assignment Problem 

The total radio spectrum allocated to a particular service producer can be divided 
into a set of disjoint or non-interfering radio channels (Fig. 1.5). All these 
channels can be used simultaneously. 

The three methods used to divide spectrum into such channels are 
 

i) Frequency Division (FD): Here the spectrum is divided into disjoint 
frequency bands. 

 

ii) Time Division (TD):  Here the usage of the channel is divided into disjoint 
time periods called time slots. 

 

Total Radio Frequency Spectrum  
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iii) Code Division (CD): Here the spectrum division is done using different 
modulation codes. 

Furthermore a combination of all three can be also used to achieve desired result. 
Allocation of the channels among the cells should satisfy traffic demand and the 
electromagnetic compatibility constrains. The Constrains are categorized as soft 
and hard constrains.  The soft constraints are describe as follows  

 
a. The co-channel constraint (CCC): where the same channel cannot be 

assigned to certain pairs of radio cells simultaneously. 
 

b. Adjacent channel constraint (ACC): where channels adjacent in frequency 
spectrum cannot de assigned to adjacent radio cells simultaneously. 

 

c. Co-site Constraint (CSC): where channel assigned in the same radio cell 
must have minimal separation in frequency between each other. 

 

The hard constrains are 
 

a. Selected Channel should have high re-use value. 
 

b. Selected Channel should produce high packing density. 
 

The major constrains that needed to be considering while establishing a channel 
assignment algorithm are the Co-channel constrain and the re-use value of the 
channels. 

Table 1 Classification of CAP 

Classification criteria 
Types /Classes 

Co-channels Separation Fixed Dynamic Hybrid 

CIR measurements Blind Local CIR measurements 

Control Centralized Distributed 

 
Classification of Channel Allocation Scheme 

Channel allocation schemes can be divided into a number of different categories 
depending on the comparison basis.  

Three basic concepts of radio resource allocation are as follows: 

• Static or fixed channel assignment (FCA) techniques 
• Dynamic channel assignment (DCA) techniques 
• Hybrid channel assignment (HCA) techniques 

 

The principles of these methods are described in the following section. 
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1.3.1   Fixed Channel Assignment Techniques 

An FCA method allocates a fixed fraction of all available channels to an 
individual cell of a cellular environment. The same group of channels is only used 
in cells that are separated by a minimum distance D. The channel re–use distance 
D ensures that CCI does not deteriorate the system performance greatly. The 
cluster size basically determines the system capacity, since it specifies the 
maximum number of simultaneously active connections that can be supported at 
any given time. The group size which equals the number of channels per cell, M, 
can be found from the relation  

M= (Available BW) / (channel BW * cluster size). 

It can be seen that M is increasing with a decreasing cluster size K, but this also 
means that the interference is higher which, in turn, reduces the capacity or QoS. 
This means that a system with a greater number of channels per cell is more 
efficient than a system with only a few channels. This effect is well known as the 
trucking gain. Consequently, fixed channel assignment techniques result in poor 
spectral efficiency. Given that CCI varies with the cell load, there might be traffic 
scenarios where a lower channel re–use distance can be tolerated in favor of  
a temporarily higher number of channels available in a single cell (or cluster  
of cells).  

This would require methods which dynamically monitor interference and load 
situations throughout the network and which carry out channel re–configurations 
accordingly. In contrast to DCA strategies, FCA techniques are not designed to 
achieve this flexibility. CDMA systems such as the UTRA–FDD interface  
of UMTS re–use the same channel in every cell which, in theory, makes FCA  
or DCA techniques superfluous, but requires special handover techniques  
(soft–handover). The fixed channel assignment techniques are classified as given 
in Fig. 1.6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.6 Types of  FCA 
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a) Uniform Channel allocation 
The uniform channel allocation is efficient if the traffic distribution of the 
system is also uniform. Here the overall average blocking probability of the 
mobile system is the same as the call blocking probability in a cell. A uniform 
allocation of channels to cells may result in high blocking in some cells and 
poor channel utilization, since traffic in cellular systems can be non-uniform 
with temporal and spatial fluctuations. 
 

b)  Non-uniform Channel allocation 
Here the number of nominal channels allocated to each cell depends on the 
expected traffic in that cell. So heavily loaded cells are assign more channel 
than the channels with comparative fewer loads.  

 

c)  Static Borrowing 
In this scheme, the channels from lightly loaded cells are reassigned to the 
heavily loaded cells. The channels from the lightly loaded ones can be 
reassigned only if the distance is more than the minimum distance for reuse. 
This is known as static borrow since the channels can borrow free channels 
from its neighboring cells (donors) to accommodate new calls. When a channel 
is borrowed the other cells are prohibited from using it. 

1.3.2   Dynamic Channel Assignment Techniques 

In DCA schemes, any base station can use any channel. All channels are kept in a 
central pool and are assigned dynamically to new calls as they arrive in the system. 
After each call is completed, the channel is returned to the central pool. It is fairly 
straightforward to select the most appropriate channel for any call based simply on 
current allocation and current traffic, with the aim of minimizing the interference.  

The advantage with this scheme is that channels can be moved from cells with 
less demand to cells with heavier demand which is time varying. Dynamic channel 
assignment is again of two types: a) Centralized DCA b) Distributed DCA as 
shown in Fig. 1.7. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 1.7 Classification for DCA 
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a) Centralized DCA: The centralized DCA scheme involves a single 
controller selecting a channel for each cell. Theoretically it provides the 
best performance at the expense of high-centralized overhead. It is not 
suitable for high-density micro-cell systems. The disadvantage with this 
type of system is that if the main system goes down because for some 
reason then the whole system fails because of no other alternative. 

 

b) Distributed DCA: The distributed DCA scheme involves a number of 
controllers scattered across the network. Here, the channel assignment 
decision is made by a local instance. Thus, only local information is 
available. Hence, the complexity is reduced considerably when this type 
of DCA algorithm is used. 

c) CIR measurement DCA schemes:  All mobile base station pairs are 
examined in channels in the same order and choose the first available 
with acceptable CIR 

d) One Dimension Systems: In this scheme a mobile is assigned a channel 
that maximizes the minimum of the ClR’s of all mobiles being served by 
the system at that time. A mobile is served only after all mobiles to the 
left of it have had a chance to be served.  This sequential (left to right) 
order of service is chosen because it appears to be the best way for 
reusing the channel. The mobile immediately to the right of a given set of 
mobiles with channels assigned is the one that will cause the most 
interference at the base station servicing the given set of mobiles, and is 
also the one which has the most interference from that set of mobiles. 

1.3.3   Hybrid Channel Assignment Techniques (HCA) 

HCA schemes are the combination of both FCA and DCA techniques. In HCA 
schemes, the total number of channels available for service is divided into fixed 
and dynamic sets. The fixed set contains a number of nominal channels that are 
assigned to cells as in the FCA schemes and, in all cases, are to be preferred for 
use in their respective cells. All users share the dynamic set in the system to 
increase flexibility. 

In a CDMA system, all users share a common channel, they are differentiated 
by using codes. For this, channel allocation problem is transformed to the problem 
of call admission control. Next part gives the idea about call admission problem. 

The classification of HCA techniques are shown in Fig. 1.8. 
 

Flexible Channel Allocation (FICA) 
This scheme divides the available channels into fixed and flexible sets. Each cell 
is assigned a set of fixed channels that typically suffices under a light traffic load. 
The flexible channels are assigned to those cells whose channels have become 
inadequate under increasing traffic loads. 

FICA techniques differ according to the time at which additional channels are 
assigned. The assignment of these channels among the cells is done in either a  
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scheduled or predictive manner. In the predictive strategy, the traffic intensity or 
the blocking probability is constantly measured at every cell site so that the 
reallocation of the flexible channels can be carried at any point in time. 

 
Fixed and Dynamic Channel Allocation 
In this technique the blocking rate depending on traffic intensity. In low traffic 
intensity the DCA scheme is used; in heavy traffic situations the FCA strategy is 
used. The transition from one strategy to the other would be done gradually 
because a sudden transition will cause a lot of blocking. 

 
 
 
 
 
 
 
 

Fig. 1.8 Clasification of HCA 

1.4   Call Admission Control 

Dynamic channel allocation (DCA), has been extensively studied for 
FDMA/TDMA cellular systems as a means of increasing capacity and adapting to 
traffic loading variations.  In DS-CDMA cellular systems, however, it is difficult 
to utilize DCA due to the difficulty of sharing traffic load between cells. Here, the 
problem of channel allocation can be viewed as call admission control. 

Call admission control is one of the most effective methods for optimal 
resource management. When a call is initiated in one cell, it will request a channel 
from its home cell. In CDMA systems, assigning a channel means allocating the 
appropriate power to a requesting mobile. Due to the sharing of spectrum, this 
induces interference to other users. This kind of situation requires that the 
interference must be below a certain level to maintain the appropriate level of 
communication quality. This fact is elaborated in the next paragraph. 

In CDMA systems, capacity is limited only by the total level of interference 
from all connected users.  As a result, CDMA utilizes the effect of statistical 
multiplexing without the complex radio channel allocation or reallocation that is 
required in frequency-division multiple-access (FDMA) and time-division 
multiple-access (TDMA) systems. However, in systems based on statistical 
multiplexing, there exists a tradeoff relationship between the system capacity and 
the level of communication quality.  

Although the so-called graceful degradation based on this tradeoff relationship 
is one of the most essential features of CDMA systems, the communication 
quality must be guaranteed to a certain level on average. The number of 
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simultaneous users occupying a base station (BS) therefore must be limited such 
that an appropriate level of communication quality can be maintained. Call 
admission control (CAC) thus plays a very important role in CDMA systems 
because it directly controls the number of users. CAC must be designed to 
guarantee both a grade of service (GoS), i.e., the blocking rate, and a quality of 
service (QoS), i.e., the loss probability for communication quality. 

1.4.1   Handoff Schemes 

The handoff schemes can be classified according to the way the new channel is set 
up and the method with which the call is handed off from the old base station to 
the new one. At call-level, there are two classes of handoff schemes, namely the 
hard and the soft handoff [9-10]. 

1. Hard handoff: In hard handoff, the old radio link is broken before the new 
radio link is established and a mobile terminal communicates at most with one 
base station at a time. The mobile terminal changes the communication channel 
to the new base station with the possibility of a short interruption of the call in 
progress. If the old radio link is disconnected before the network completes the 
transfer, the call is forced to terminate. Thus, even if idle channels are available 
in the new cell, a handoff call may fail if the network response time for link 
transfer is too long [11]. Second generation mobile communication systems 
based on GSM fall in this category. 

2. Soft handoff: In soft handoff, a mobile terminal may communicate with the 
network using multiple radio links through different base stations at the same 
time. The handoff process is initiated in the overlapping area between cells 
some short time before the actual handoff takes place. When the new channel is 
successfully assigned to the mobile terminal, the old channel is released. Thus, 
the handoff procedure is not sensitive to link transfer time [9], [11]. The second 
and third generation CDMA-based mobile communication systems fall in this 
category. Soft handoff decreases call dropping at the expense of additional 
overhead (two busy channels for a single call) and complexity (transmitting 
through two channels simultaneously) [11].  
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.9 Handoff schemes 
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Two key issues in designing soft handoff schemes are the handoff initiation 
time and the size of the active set of base stations the mobile is communicating 
with simultaneously [10]. This study focuses on cellular networks implementing 
hard handoff schemes (Fig. 1.9). 

 
a. Prioritizing Schemes 

Handoff prioritizing schemes are channel assignment strategies that allocate 
channels to handoff requests more readily than new calls. 

 
b. Guard Charnels Schemes 

In this scheme a number of channels are reserved exclusively for handoff calls 
in a cell. The remaining channels are used among the new and handoff calls.  

 
c. Queuing Schemes 

Here when the power level received by the base station in the current cell 
reaches a certain threshold, namely the handoff threshold, a called is placed in 
the queue from the neighbor cell for providing service.  

The call remains in the queue until either an available channel in the new cell 
is found or the power by the base station in the current cell drops below a 
second threshold, called the receiver threshold. 

 
d. New Call Queuing Schemes 

In this method of guard channels and the queuing of new calls was introduced. 
This method not only minimizes blocking of handoff calls, but also increases 
total carried traffic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.10 Concentric sub cells 

1.4.2   Reused Partitioning  

In reused partitioning method each cell in the system is divided into two or more 
concentric sub cells (zones) as shown in Fig. 1.10. Because the inner zones are 
closer to the base station located at the center of the cell, the power level required 
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to achieve a desired CIR in the inner zones can be much lower compared to the 
outer zones.  The Reused Partitioning scheme can be divided as follows as given 
in Fig. 1.11: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 

Fig. 1.11 Classification for Reused Partitioning 

1.4.2.1   Fixed Reused Partitioning Scheme 

In this scheme, available channels are split among several overlaid cell plans with 
different reuse distances. 

 
1. Simple Reuse Partitioning (SRP) 

Simple RUP can be implemented by dividing the spectrum allocation into two 
or more groups of mutually exclusive channels. Channel assignment within 
the ith group is then determined by the reuse factor Ni for that group. Mobile 
units with the best received signal quality will be assigned to the group of 
channels with the smallest reuse value factor value, while those with the 
poorest received signal quality will be assigned to the group of channels with 
the largest reuse factor value. 

 

2. Simple Sorting Channel Assignment Algorithm (SSCAA) 
Here each cell is divided into a number of concentric zones and assigned a 
number of channels. For each mobile in the cell, the base station measures the 
level of SIR and places the measurements in a descending order. Then it 
assigns channels to the set of at most mobiles with the largest values of SIR, 
where M is the number of available channels in the entire cell. The mobile in 
the set with the smallest value of SIR is assigned a channel from the outer cell 
zone. 
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1.4.2.2   Adaptive Channel Allocation Reuse Partitioning Schemes 

1. Autonomous Reuse Partitioning(ARP) 
In this scheme all the channels are viewed in the same order by all base 
stations, and the first channel that satisfies the threshold condition is allocated 
to the mobile attempting the call. Thus, each channel is reused at a minimum 
distance with respect to the strength of the received desired signal.  

 

2. Flexible Reuse (FRU) 
In this scheme whenever a call requests service, the channel with the smallest 
CIR margin among those available is selected. If there is no available 
channel, the call is blocked. 

 

3. Self-organized Reuse Partitioning Scheme (SORP) 
In this method, each base station has a table in which average power 
measurements for each channel in its cell and the surrounding cells are 
stored. When a call arrives, the base station measures the received power of 
the calling mobile station and selects a channel, which shows the average 
power closest to the measured power. 

 
 

 
 

Fig. 1.12 Principle of the all-channel concentric allocation 

4. All-Channel Concentric Allocation (ACCA) 
All radio channels of a system are allocated nominally in the same manner 
for each cell. Each cell is divided into N concentric regions; each region has 
its own channel allocation. Here, each channel is assigned a mobile 
belonging to the concentric region in which that channel is allocated, and has 

    BS 

Channel   1,  2 .......n
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a specific desired signal level corresponding to the channel location. 
Therefore, each channel has its own reuse distance determined from the 
desired signal level (Fig. 1.12). 

 
5. Distributed Control Channel Allocation (DCCA) 

In this scheme all cells are identical, and channels are viewed in the same 
order, starting with channel number one, by all the base stations in the 
network. It consists of an omni-directional central station connected to six 
symmetrically oriented substations.  

The substations are simple transceivers, and can be switched on and off under the 
control of the main station. When the traffic density of the cell is low, all the 
substations are off and the only operating station is the main station, at the center 
of the cell covering the entire cell area. Gradually, as call traffic increases, forced 
call blocking will occur due to an unacceptable level of co-channel interference o r 
the unavailability of resources. In this case, the main base station switches on the 
nearest substation to the mobile unit demanding access. 

 

Fig. 1.13 DCCA structure 

1.4.3   Performance Criteria 

In this subsection, we identify some commonly used performance criteria for 
comparing CAC schemes. Although others exist, we will focus on the following 
criteria in this survey: 

 
1. Efficiency: Efficiency refers to the achieved utilization level of network 

capacity given a specific set of QoS requirements. Scheme A is more efficient 
than scheme B, if the network resource utilization with scheme A is higher 
than that of scheme B for the same QoS parameters and the network 
configuration. 

2. Complexity: Shows the computational complexity of a CAC scheme for a 
given network configuration, mobility patterns, and traffic parameters. 
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Scheme A is more complex than scheme B, if admission decision making of 
A involves more complex computations than scheme B. 

3. Overhead: Refers to the signaling overhead induced by a CAC scheme on the 
fixed interconnection network among base stations. Some CAC schemes 
require some information exchange with neighboring cells through the fixed 
interconnection network. 

4. Adaptively: Defined as the ability of a CAC scheme to react to changing 
network conditions. Those CAC schemes which are not adaptive lead to poor 
resource utilization.  

5. Stability: Stability is the CAC insensitivity to short term traffic fluctuations. 
If an adaptive CAC reacts too fast to any load change then it may lead to 
unstable control. For example during a period of time all connection requests 
are accepted, until congestion occurs and then all requests are rejected. It is 
desirable that network control and management avoid such a situation. 

1.5   Call Admission Control Schemes 

Call admission control (CAC) is a technique to provide QoS in a network by 
restricting the access to network resources. Simply stated, an admission control 
mechanism accepts a new call request provided there are adequate free resources 
to meet the QoS requirements of the new call request without violating the 
committed QoS of already accepted calls.  

There is a tradeoff between the QoS level perceived by the user (in terms of the 
call dropping probability) and the utilization of scarce wireless resources. In fact, 
CAC can be described as an optimization problem. We assume that available 
bandwidth in each cell is channelized and focus on call-level QoS measures. 
Therefore, the call blocking probability (pb) and the call dropping probability (pd) 
are the relevant QoS parameters in this chapter. Three CAC related problems can 
be identified based on these two QoS parameters [12]: 

 
1. MINO: Minimizing a linear objective function of the two probabilities (pb 

and pd). 
2. MINB: For a given number of channels, minimizing the new call blocking 

probability subject to a hard constraint on the handoff dropping probability. 
3. MINC: Minimizing the number of channels subject to hard constraints on the 

new and handoff calls blocking/dropping probabilities. 

As mentioned before, channels could be frequencies, time slots or codes 
depending on the radio technology used. Each base station is assigned a set of 
channels and this assignment can be static or dynamic. 

 
1. Deterministic CAC: QoS parameters are guaranteed with 100% confidence 

[14], [15]. Typically, these schemes require extensive knowledge of the 
system parameters such as user mobility that is not practical, or sacrifice the 
scarce radio resources to satisfy the deterministic QoS bounds. 
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2. Stochastic CAC: QoS parameters are guaranteed with some probabilistic 
confidence [16], by relaxing QoS guarantees, these schemes can achieve a 
higher utilization than deterministic approaches. Most of the CAC schemes 
that are investigated in this paper fall in the stochastic category. Fig. 1.14 
depicts a classification of stochastic CAC schemes proposed for cellular 
networks. In the rest of this paper, we discuss each category in detail. In some 
cases, we will further expand this basic classification.      

 

MINO tries to minimize penalties associated with blocking new and handoff calls. 
Thus, MINO appeals to the network provider since minimizing penalties results in 
maximizing the net revenue. MINB places a hard constraint on handoff call 
blocking thereby guaranteeing a particular level of service to already admitted 
users while trying to maximize the net revenue. MINC is more of a network 
design problem, where resources need to be allocated a priori based on, for 
example, traffic and mobility characteristics [12]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.14 Stochastic call admission control schemes 

Since dropping a call in progress is more annoying than blocking a new call 
request, handoff calls are typically given higher priority than new calls in access to 
the wireless resources. This preferential treatment of handoffs increases the 
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blocking of new calls and hence degrades the bandwidth utilization [13]. The most 
popular approach to prioritize handoff calls over new calls is by reserving a 
portion of available bandwidth in each cell to be used exclusively for handoffs. 

In general there are two categories of CAC schemes in cellular networks: 

1.5.1   Prioritization Schemes 

In this section we discuss different handoff prioritization schemes, focusing on 
reservation schemes. Channel borrowing, call queuing and reservation are studied 
as the most common techniques. 

 
 
 

 
 
 
 
 
 
 
 
 
 

 

Fig. 1.15 Channel locking Scheme  

1.5.1.1   Channel Borrowing Schemes 

In a channel borrowing scheme, a cell (an acceptor) that has used all its assigned 
channels can borrow free channels from its neighboring cells (donors) to 
accommodate handoffs [17], [18], [19].  

A cell can borrow a channel, if the borrowed channel does not interfere with 
existing calls. When a channel is borrowed, several other cells are prohibited from 
using it. This is called channel locking and has a great impact on the performance 
of channel borrowing schemes [20]. The number of such cells depends on the cell 
layout and the initial channel allocation. For example, for a hexagonal planar 
layout with reuse distance of one cell, a borrowed channel is locked in three 
neighboring cells (see Fig. 1.15). 

The proposed channel borrowing schemes differ in the way a free channel is 
selected from a donor cell to be borrowed by an acceptor cell. A complete survey 
on channel borrowing schemes was provided by Katzela and Naghshinehin [17].  

1.5.1.2   Call Queuing Schemes 

Queuing of handoff requests in absence of channel availability can reduce the 
dropping probability at the expense of higher new call blocking. If the handoff 
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attempt finds all the channels in the target cell occupied, it can be queued. If any 
channel is released it is assigned to the next handoff waiting in the queue.        

Queuing can be done for any combination of new and handoff calls. The queue 
itself can be finite [21] or infinite [16]. Although finite queue systems are more 
realistic, systems with infinite queue are more convenient for analysis. Fig. 1.16 
depicts a classification of call queuing schemes.  

 
 
              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.16 Call queuing schemes. 

Hong and Rappaport [16] analyzed the performance of the simple guard 
channel scheme with queuing of handoffs where handoff call attempts can be 
queued for the time duration in which a mobile dwells in the handoff area between 
cells. They used the FIFO queuing strategy and showed that queuing improves the 
performance of the pure guard channel scheme, i.e., probability of call drop (pd) is 
lower for this scheme while there is essentially no difference for probability of call 
block (pb).  

The tolerable waiting time in queues is an important parameter. The 
rearranging of queued new calls due to caller impatience and the dropping of 
queued handoff calls as they move out of the handoff area before the handoff is 
accomplished successfully affect the performance of queuing schemes. 

Chang et al. [21] analyzed a priority-based queuing scheme in which handoff 
calls waiting in queue have priority over new calls waiting in queue to gain access 
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to available channels. They simply assumed that those calls waiting in queue 
cannot handoff to another cell.  

Recently, Li and Chao [22] investigated a general modeling framework that can 
capture call queuing as well. They proved that the steady-state distribution of the 
equivalent queuing model has a product form solution. Queuing schemes have 
been mainly proposed for circuit-switched voice traffic. Their generalization to 
multiple classes of traffic is a challenging problem [23]. Lin and Lin [24] analyzed 
several channel allocation schemes including queuing of new and handoff calls. 
They concluded that the scheme with new and handoff calls queuing has the best 
performance. 

1.5.1.3   Reservation Schemes 

The notion of guard channels was introduced in the mid 80s as a call admission 
control mechanism to give priority to handoff calls over new calls. In this policy, a 
set of channels called the guard channels are permanently reserved for handoff 
calls. Hong and Rappaport [16] showed that this scheme reduces handoff-
dropping probability significantly compared to the non-prioritized case. They 
found that pd decreases by a significantly larger order of magnitude compared to 
the increase of pb when more priority is given to handoff calls by increasing the 
number of handoff channels. 

Consider a cellular network with C channels in a given cell. The guard channel 
scheme (GC) reserves a subset of these channels, say C − T, for handoff calls. 
Whenever the channel occupancy exceeds a certain threshold T, GC rejects new 
calls until the channel occupancy goes below the threshold. Assume that the 
arrival process of new and handoff calls is Poisson with rate λ and ν, respectively. 
The call holding time and cell residency for both types of call is exponentially 
distributed with mean 1/μ and 1/η, respectively. 

Let )/()( ημνλρ ++=  denote the traffic intensity. Further assume that the 

cellular network is homogeneous, thus a single cell in isolation is a representative 
for the network. 

Define the state of a cell by the number of occupied channels in the cell. 
Therefore, a continuous time Markov chain with C states can model the cell 
channel occupancy. The state transition diagram of a cell with C channels and 
C−T guard channels is shown in Fig. 1.8. Given this, it is straightforward to derive 
the steady-state probability Pn, that n channels are busy 
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And then 
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  and      CPfp =                                                        (1.3)                                   

However, Fang and Zhang [25] showed that when the mean cell residency times 
for new calls and handoff calls are significantly different (as is the case for non-
exponential channel holding times), the traditional one-dimensional Markov chain 
model may not be suitable and a two-dimensional Markov model must be applied 
which is more complicated. A critical parameter in this basic scheme is the 
optimal number of guard channels.  

In fact, there is a tradeoff between minimizing pd and minimizing pb. If the 
number of guard channels is conservatively chosen then admission control fails to 
satisfy the specified pd. A static reservation typically results in poor resource 
utilization. To deal with this problem, several dynamic reservation schemes [17], 
[26–29] were proposed in which the optimal number of guard channels is adjusted 
dynamically based on the observed traffic load and dropping rate in a control time 
window. 

 
 
 
 

 
 
 

 
 
 
 
 
 

Fig. 1.17 State transition diagram of the guard channel scheme 

If the observed dropping rate is above the guaranteed pd then the number of 
reserved channels is increased. On the other hand, if the current dropping rate is 
far below the target pd then the number of reserved channels is decreased. The 
next section investigates dynamic reservation schemes. 

A different variation of the basic GC scheme is known as fractional guard channel 
(FGC) [12]. Whenever the channel occupancy exceeds the threshold T, the GC policy 
is to reject new calls until the channel occupancy goes below the threshold. In the 
fractional GC policy, new calls are accepted with a certain probability that depends on 
the current channel occupancy. Thus we have a randomization parameter which 
determines the probability of acceptance of a new call. 

Note that both GC and FGC policies accept handoff calls as long as there are 
some free channels. One advantage of FGC over GC is that it distributes the newly 
accepted calls evenly over time which leads to a more stable control [30] where,   
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It has been shown in [13] that due to advance reservation in reservation 
schemes the efficiency of cellular systems has an upper bound even if no 
constraint is specified on the call blocking probability. This upper bound is related 
to call and mobility characteristics through the mean number of handoffs per call. 
Moreover, the achievable efficiency decreases with decreasing cell size and with 
increasing call-holding time [13] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1.18 State transition diagram of the fractional guard channel scheme  

1.5.1.3.1   Dynamic Reservation Scheme 

There are two approaches in dynamic reservation schemes: local and distributed 
(collaborative) depending on whether they use local information or gather 
information from neighbors to adjust the reservation threshold. In local schemes, 
each cell estimates the state of the network using local information only, while in 
distributed schemes each cell gathers network state information in collaboration 
with its neighboring cells. 

 
Local Schemes 
We categorize local admission control schemes into reactive and predictive 
schemes. By reactive approaches we refer to those admission policies that adjust 
their decision parameters, i.e., threshold and reservation level, as a result of an 
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event such as call arrival, completion or rejection. Predictive approaches refer to 
those policies that predict future events and adjust their parameters in advance to 
prevent undesirable QoS degradations. 

 
1) Reactive Approaches: The well-known guard channel (cell threshold, cut-off 

priority or trunk reservation) scheme (GC) is the first one in this category. GC 
has a reservation threshold and when the number of occupied channels reaches 
this threshold, no new call requests are accepted. One natural extension of this 
basic scheme is to use more than one threshold (e.g. two thresholds [26]) in 
order to have more control of the number of accepted calls. It has been shown 
[31] that the simple guard channel scheme performs remarkably well, often 
better than more complex schemes during periods in which the load does not 
differ from the expected level. For a discussion on different reservation 
strategies refer to [32] by Epstein and Schwartz. 

 
2) Predictive Approaches: Local admission control schemes are very simple but 

they suffer from the lack of global information about the changes in network 
traffic. On the other hand, distributed admission control schemes have access 
to global traffic information at the expense of increased computational 
complexity and signaling overhead induced by information exchange between 
cells.  

To overcome the complexity and overhead associated with distributed 
schemes and benefit from the simplicity of local admission schemes, 
predictive admission control schemes were proposed. These schemes try to 
estimate the global state of the network by using some modeling/prediction 
technique based on information available locally. Two different approaches 
can be distinguished in this category: 

 
Structural (parameter-based) modeling 
The changing traffic parameters such as call arrival and departure rates are locally 
estimated. Assume that the control mechanism periodically measures the arrival 
rate. Our goal is to compute the expected arrival rate from such online 
measurements. Typically, a simple exponentially weighted moving average 

(EWMA) is used for this purpose. Let ( )i
∧
λ and ( )iλ  denote the estimated and 

measured new call arrival rate at the beginning of control period i, respectively. 
Using EWMA technique, we have 

( ) ( ) ( ) ( )iii λελελ −+=+
∧∧

11                              (1.6) 

where ε is the smoothing coefficient which must be properly selected. In general, a 
small value of ε (thus, a large value of 1- ε) can keep track of the changes more 
accurately, but is perhaps too heavily influenced by temporary fluctuations. On the 
other hand, a large value of ε is more stable but could be too slow in adapting to 
real traffic changes. This technique can be used to estimate the mean cell 
residency and call holding times as well.  
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Then based on these parameters, a traffic model that can describe the channel 
occupancy in each cell is derived. Typically, several assumptions are made about 
traffic parameters in this approach which are necessary to have a tractable 
problem. 

 It is clear that the EWMA in [14] is a special case of the so-called auto 
regressive moving average (ARMA) model [33] in time series analysis. There is 
virtually no restriction on using more complicated (and perhaps more accurate) 
estimation techniques. 

 
Black-Box (measurement-based) modeling 
Instead of looking at the individual components of traffic, this approach directly 
looks at the actual traffic. In other words, it tries to model the aggregated traffic 
without relying on the underlying arrival and departure processes. This approach 
has been proposed for multimedia systems where most of the assumptions of 
structural modeling are not valid [34]. The main advantage of this scheme is that it 
does not make any assumption about the distribution of new call arrival, handoff 
arrival, channel holding time and bandwidth requirements. 

One of the key issues in this approach is to predict traffic in the next control 
time interval based on the online measurements of traffic characteristics. The goal 
is to forecast future traffic variations as precisely as possible, based on the 
measured traffic history. Traffic prediction requires accurate traffic models that 
can capture the statistical characteristics of actual traffic. Inaccurate models may 
overestimate or underestimate network traffic. 

Recently, there has been a significant change in the understanding of network 
traffic. It has been found in numerous studies that data traffic in high-speed 
networks exhibits self-similarity [39–41] that cannot be captured by classical 
models, hence self-similar models have been developed. Among these self-similar 
models, fractional ARIMA [35], [36] and fractional Brownian motion [37], [38] 
have been widely used for network traffic modeling and prediction. 

Considering that future wireless networks will offer the same services to mobile 
users as their wire line counterparts, it is highly possible that traffic in these 
networks will also exhibit self-similarity (as reported for wireless data traffic by 
Ziang et al. [34]). Hence, simple modeling and prediction techniques may not be 
accurate. Admission control based on self-similar traffic models has been already 
investigated for wire line networks [42], [43]. Similar approaches may be 
applicable to cellular communications. 

 
1.5.1.3.2   Distributed Schemes 

The fundamental idea behind all distributed schemes [27-30], [44-46] is that every 
mobile terminal with an active wireless connection exerts an influence upon the 
cells in the vicinity of its current location and along its direction of travel [27]. A 
group of cells, which are geographically or logically close together, form a cluster, 
as shown in Fig. 1.19. Either each mobile terminal has its own cluster independent 
of other terminals or all the terminals in a cell share the same cluster.  

Typically, the admission decision for a connection request is made in 
cooperation with other cells of the cluster associated to the mobile terminal asking 
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for admission. In Fig. 1.19(a) a cluster is defined assuming that a terminal affects 
all the cells in the vicinity of its current location and along its trajectory, while in 
Fig. 1.19(b) it is assumed that those cells that form a sector in the direction of  
mobile terminal’s trajectory are most likely to be affected (visited) by the 
terminal. Fig. 1.19(c) shows a static cluster that is fixed regardless of the terminal 
mobility. 

Each user currently in the system may either remain in the cell it is in or move 
to a neighboring cell; hence it can be modeled using a binomial random variable. 
We approximate the joint behavior of binomial distributions with a normal 
distribution and hence, the number of active calls in a cell at any time follows a 
Gaussian distribution. Also, we neglect the possibility of users having moved a 
distance of two or more cells and of a user arriving/completing a call during a time 
interval of length T. 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.19 Three cluster definition. 

Now, consider a hexagonal cellular system similar to those depicted in  
Fig. 1.19. Assume that at time t = t0 a new call has arrived. New calls are admitted 
into the system provided that the predicted handoff failure probability of any user 
in the home and neighboring cells at time t = t0 + T is below the target threshold 
PQoS. Let ni(t) denote the number of active calls in cell i at time t. Assuming that 
handoff failure in each cell can be approximated by the overload probability, it is 
obtained that                  
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f
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Therefore the handoff failure in cell i is given by 
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(a) Shadow cluster (b) Most likely (c) Virtual connection tree 
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where ci is the capacity of cell i and erfc(x) is the complementary error function 
defined as 

                      

dt
x

texerfc 
∞ −=
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)(

π
                                     (1.9) 

And the expected and variance of the number of calls at time t0 + T in cell i is 
given by 
 

( )[ ] 6

1
)0()0(0 

=
+=+

j
tjnhpsptinTtinE

 

(1.10) 

( )[ ]   
6

1
)0()0(0 

=
+=+

j
tjnhvsvtinTtinVar

 

(1.11) 

Where, ps is the probability of staying in the current cell and ph is the probability 
of handing off to another cell during the time period T, which are given by 
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Similarly, vs and vh are, respectively, the variances of binomial processes of stay 
and handoff with parameters ps and ph, which are expressed as 
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Naghshineh and Schwartz originally proposed the idea of distributed admission 
control [17]. They proposed a collaborative admission control known as 
distributed call admission control (DCAC). DCAC periodically gathers some 
information, namely the number of active calls, from the adjacent cells of the local 
cell to make the admission decision in combination with the local information. 
The analysis we presented earlier is slightly different from the original DCAC and 
is based on the work by Epstein and Schwartz [29]. DCAC is very restrictive in 
the sense that it takes into consideration information from direct neighbors only 
and assumes at most one handoff during the control period. 

It has been shown that DCAC is not stable and violates the required dropping 
probability as the load increases [30]. Levin et al. [27] proposed a more 
complicated version of the original DCAC based on the shadow cluster concept, 
which uses dynamic clusters for each user based on its mobility pattern instead of 
restricting itself (as DCAC) to direct neighbors only.  

A practical limitation of the shadow cluster scheme in addition to its 
complexity and overhead is that it requires a precise knowledge of the mobile 
trajectory. The so-called active mobile probabilities and their characterization are 
very crucial to the CAC algorithm. Active mobile probabilities for each user give 
the projected probability of being active in a particular cell at a particular instance 
of time. 
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Wu et al. [30] proposed a dynamic, distributed and stable CAC scheme called 
SDCA which extends the basic DCAC [17] in several ways such as using a 
diffusion equation to describe the evolution of the time-dependent occupancy 
distribution in a cell instead of the widely used Gaussian approximation. SDCA is 
a distributed version of the fractional guard channel in that it computes an 
acceptance ratio ai for each cells i to be used for the current control period. 

Consider the single-call transition probability fik(t) that an ongoing call in cell i 
at the beginning of the control period (t = 0) is located in cell k at time t. This is in 
fact very similar to the active mobile probabilities introduced in [27]. For an 
effective control enforcing dropping probabilities in the order of 10−4 to 10−2, 
essentially all calls handoff successfully. 

Table 2a Cluster Type vs. CAC Performance. 

Cluster type 
 

CAC efficiency CAC complexity 

Static 
 

Moderate Moderate 

Dynamic 
 

High High 

 
Wu et al. showed that for a uniform network with hexagonal cells, the 

probability of having n handoffs by time t, qn(t), takes the simple form  
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Hence fik(t) is obtained by summing over all possible paths between i and k. For 
example fii(t) can be expressed as 
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Similar equations can be easily derived for fik(t) [30]. Using these time-dependent 
transition probabilities Wu et al. computed the time-dependent mean and variance 
of the channel occupancy distribution, Pni(t), in cell i at time t. By using a 
diffusion approximation [47], the authors were able to find the time-dependent 
handoff failure, Pfi(t), for each cell i. Hence, the average handoff failure 
probability over a control period of length T is found as    
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Finally, the acceptance ratio ai can be obtained by numerically solving the 
following equation [49]: 

10      ,
~ ≤≤= iSQf aPP

i                                 (1.17) 



32 1   An Overview of Call Admission Control in Mobile Cellular Networks
 

A. Classification of Distributed Schemes 

Distributed CAC s can be classified according to two factors: 
 

1. Cluster definition 
2. Information exchange and processing 

 
A cluster can be either static or dynamic. In the static approach, the size and shape 
of the cluster is the same regardless of the network situation. In the dynamic 
approach however, shape and/or size of the cluster change according to the 
congestion level and traffic characteristics. The virtual connection tree of [46] is an 
example of a static cluster while the shadow cluster introduced in [27] is a dynamic 
cluster. A shadow cluster is defined for each individual mobile terminal based on 
its mobility information, e.g. trajectory, and changes as the terminal moves.  

Table 2b Comparison of Dynamic CAC Schemes 

CAC scheme Efficiency Overhead Complexity Adaptively 

L
oc

al
 

 

Reactive Low Low Low Moderate 

Predictive Moderate Low Moderate Moderate 

D
is

tr
ib

ut
ed

 
 

Implicit High Very High High High 

Explicit High High Very High High 

 
It has been shown that it is not worth involving several cells in the admission 

control process when the network is not congested [49]. Table1a shows a tradeoff 
between the cluster type and the corresponding CAC performance. Typically, 
dynamic clusters have a better performance at the expense of increased 
complexity. In general, distributed CAC s can be categorized into implicit or 
explicit based on the involvement of cells in the decision making process: 

 
1. Implicit Approach: In this approach, all the necessary information is gathered 

from the neighboring cells, but the processing is local. The virtual connection 
tree concept introduced in [46] is an example of an implicitly distributed 
scheme. In this scheme each connection tree consists of a specific set of base 
stations where each tree has a network controller. The network controller is 
responsible for keeping track of the users and resources. Despite the fact that 
information is gathered from a set of neighboring cells, the final decision is 
made locally in the network controller. 
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2. Explicit Approach: In this approach, not only information is gathered from 
the neighboring cells, but also the neighboring cells are involved in the 
decision making process. The shadow cluster concept introduced in [27] is an 
example of an explicitly distributed scheme. In this scheme a cluster of cells, 
the shadow cluster, is associated with each mobile terminal in a cell. Upon 
admitting a new call, all the cells in the corresponding cluster calculate a 
preliminary response that after processing by the original cell will form the 
final decision. 

 
Although it is theoretically possible to involve all the network cells in the 
admission control process, it is expensive and sometimes useless in practice. To 
consider the effect of all the cells, analytical approaches involve huge matrix 
exponentiations. In [30] and [50] two different approximation techniques have 
been proposed to compute these effects with a lower computational complexity. 

Table 2b shows a comparison of different dynamic CAC schemes. In general, 
there is a tradeoff between the efficiency and the complexity of local and 
distributed schemes. Table 3 compares three major distributed CAC schemes 

In this table, Naghshineh proposed basic distributed and Schwartz [17], 
shadow cluster refers to the work of Levin et al. [27] and stable dynamic is due to 
Wu et al. [30]. 

Table 3 Comparison of Distributed CAC Schemes 

CAC scheme  Efficiency  Complexity  Stability 

Basic distributed  Moderate  Moderate Moderate 

Shadow cluster  High  High  Moderate 

Stable dynamic  Very High  High High 

1.5.2   Non Prioritized Scheme 

There are several schemes which functions without having any priority. The 
schemes are given as follows. 

1.5.2.1   Optimal Control 

Recall that a call admission policy is the set of decisions that indicate when a new 
call will be allocated a channel and when and existing call will be denied  
a handoff from one cell to another. Here we investigate the optimal and near-
optimal admission policies proposed for three admission problems, namely, 
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MINO, MINB and MINC. Although optimal policies are more desirable,  
near-optimal policies are more useful in practice due to the complexity of optimal 
policies that usually leads to an intractable solution. Table IV shows a comparison 
of optimal and near-optimal schemes. 

Decision theoretic approaches based on Markov decision process (MDP) [49] 
have been extensively studied to find the optimal CAC policy using standard 
optimization techniques [51]. 

However, for simple cases such as the one of an isolated cell in a voice system, 
simple Markov chains have been applied successfully [12]. A Markov decision 
process is just like a Markov chain, except that the transition matrix depends on 
the action taken by the decision maker (CAC) at each time step. The CAC 
receives a reward, which depends on the action and the state. 

Table 4 Comparison of Optimal CAC Schemes 

CAC scheme  Efficiency Complexity 

Optimal 
Single service  High High 

Multiple  High Very High 

Near-Optimal 
Single service  Moderate  Low 

Multiple services Moderate Moderate 

 
The goal is to find a policy, which specifies which action to take in each state, 

so as to maximize some function (e.g. the mean or expected sum) of the sequence 
of rewards. A problem formulated as an MDP can be solved iteratively [51]. This 
is called policy iteration, and is guaranteed to converge to the unique optimal 
policy. The best theoretical upper bound on the number of iterations needed by 
policy iteration is exponential in the number of states. However, by formulating 
the problem as a linear programming problem, it can be proved that one can find 
the optimal policy in polynomial time. 

 
A. Optimal CAC Schemes 

1. Single Service Case: Ramjee et al. [12] showed that the well-known GC 
policy is optimal for the MINO problem and a restricted version of the FGC 
policy is optimal for the MINB and MINC problems. In their work, a Markov 
chain similar to the one stated before describes channel occupancy. Although 
admission policies derived from the MDP formulation of the CAC [54], [55] 
are optimal for the MINO problem, it has been shown that a dynamic guard 
channel scheme is more realistic and at the same time approaches the optimal 
solution [55], [56]. 
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2. Multiple Services Case: Introducing multiple services changes the system 
behavior dramatically. In contrast to single service systems, GC is no longer 
optimal for the MINO problem. While the optimal admission policy for single 
service (voice) systems is computationally complex, for multiple services 
(multimedia) systems it is even more complicated and expensive. In this 
situation, a semi-Markov decision process (SMDP) has been applied 
successfully. Optimal policies are reported for multimedia traffic in [52], 
[57]–[60]. In particular, Choi et al. [61] presented a centralized CAC based on 
SMDP, Kwon et al. [57] and Yoon et al. [62] proposed distributed CAC 
schemes based on SMDP, all for non-adaptive multimedia applications. Xiao 
et al. [58] developed an optimal scheme using SMDP for adaptive multimedia 
applications. Adaptive multimedia applications can change their bit-rate to 
adapt to network resource availability. 

1.5.2.2   Near-Optimal CAC Schemes 

As mentioned before, when the state of the system can be modeled as a Markov 
process, there exist methods to calculate the optimal call admission policy using a 
Markov decision process. However, for systems with a large number of states 
(which grows exponentially with the cell capacity and known as the curse of 
dimensionality) this method is impractical since it requires solving large systems 
of linear equations. Therefore, methods, which can calculate a near-optimal 
policy, are proposed in the literature. In particular, near-optimal approaches based 
on Markov decision processes [63], genetic algorithms [64], [65], and 
reinforcement learning [66] have been proposed. 

1.6   Other Admission Control Scheme 

There are other schemes which are also efficient in handle call admission in a 
network system.  

1.6.1   Multiple Services Schemes 

Moving from single service systems to multiple services systems raises new 
challenges. Particularly, wireless resource management and admission control 
become more crucial for efficient use of wireless resources [14], [23], [29], [67], 
[68]. Despite the added complexity to control mechanisms, multiple services 
systems are typically more flexible in terms of resource management. Usually 
there are some low priority services, e.g. best effort service, which can utilize 
unused bandwidth. 

This bandwidth can be released and allocated to higher priority services upon 
request, e.g. when the system is fully loaded and a high priority handoff arrives. 
Fig. 1.20 shows a classification of guard channel based CAC schemes in single 
service and multiple services systems. In the figure, multiple cutoff priority [23] 
and thinning scheme [68] are the multiple services counterparts of GC and FGC 
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schemes in single service systems respectively. In this context, the thinning 
scheme [68] is proposed as a generalization of the basic FGC for multiple classes’ 
prioritized traffic. Assume that the wireless network has call requests of r priority 
levels and each base station has C channels. Let aij (i = 0, . . ., C and j = 1, . . . , r) 
denote the acceptance probabilities of prioritized classes respectively. When the 
number of busy channels at a base station is i, an arriving type-j call will be 
admitted with probability aij. All calls will be blocked when all channels are busy. 

Call arrivals of priority classes are independent of each other and assumed to be 
Poisson with rate λj for class j. Call durations are exponentially distributed with 
parameter μ. A Markov chain in which the state variable is the number of busy 
channels in the cell can characterize this system. Let Pn denote the stationary 

probability at state n, 
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Then the blocking probability for class j is given by 
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Similarly, a natural extension to the basic GC can be achieved by setting different 
reservation thresholds for each class of service. Pavlidou [89] analyzed an 
integrated voice/data cellular system using a two-dimensional Markov chain. 
Haung et al. [87] analyzed the movable boundary scheme with finite data 
buffering. 

In the movable boundary scheme, voice and data traffic each have a dedicated 
set of the available channels. Once dedicated channels are occupied, voice and 
data calls will compete for the shared channels. Wu et al. [67], [70] considered a 
different approach in which voice and data calls first compete for the shared 
channels and then will use dedicated channels, which can be considered as a 
natural extension of GC. Interested readers are referred to [71] for a discussion on 
fixed and movable boundary schemes. A general discussion on bandwidth 
allocation schemes for voice/data integrated systems can be found in [72]. 
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Fig. 1.20 Single service and multiple services guard channel schemes. 

1.6.2   Hierarchical Schemes 

As mentioned earlier, micro-pico-cell systems can improve spectrum efficiency 
better than macro cell systems because they can provide more spectrum resources 
per unit coverage area. However, micro-pico- cell systems are not cost effective in 
areas with low user population (due to base station cost) and areas with high user 
mobility (leading to a large number of handoffs). 

As a consequence, hierarchical architectures [73–76] were proposed to take 
advantage of both macro cell and micro cell systems. Fig. 1.21 shows an example 
of a hierarchical cellular system. In this architecture, overlaid microcells cover 
high-traffic areas to enhance system capacity. Overlaying macro cells cover all of 
the area to provide general service in low-traffic areas and to provide channels for 
calls overflowing from the overlaid microcells. In particular, in a hierarchical 
system with an overflow scheme, it seems more significant to support guard 
channel for handoff protection and buffers for new and handoff calls in overlaying 
macro cells than to provide them in microcells [77]. In overflow schemes, when a 
call is rejected in a micro-cell, it is considered for admission by the macro-cell 
covering the micro-cell area. 
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Fig. 1.21 A hierarchical system of micro/macro cells. 

Recently Marsan et al. [98] have investigated the performance of a hierarchical 
system under general call and channel holding time distributions. They used the 
idea of equivalent flow to break the mixed exponential process into independent 
exponential processes, which can be then solved using classical Markov analysis. 

              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.22 Call admission control schemes. 
 

1.6.3   Complete Knowledge Schemes 

User mobility has an important impact in wireless networks. If the mobility 
pattern is partially [14] or completely [79] known at the admission time then the 
optimal decision can be made rather easily. 
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Many researchers believe that it is not possible in general to have such mobility 
information at admission time. Even for indoor environments complete knowledge 
is not available]. Nevertheless, such an imaginary perfect knowledge scheme is 
helpful for benchmarking purposes [79]. Fig. 1.22 depicts a classification of CAC 
schemes according to their knowledge about user mobility. Partial knowledge 
schemes must reserve resources in several cells [14] to provide deterministic 
guarantees; hence we call them worse case schemes. 

In addition to CAC schemes assuming deterministic mobility information, there 
is a large body of research work addressing the probabilistic estimation and 
prediction of mobility information. Some of them are heuristic-based [28], [45], 
[80], [81], some others are based on geometrical modeling of user movements and 
street layouts [82], and some others are based on artificial intelligence techniques 
[83]. For instance, the distributed CACs introduced before are based on 
probabilistic mobility information. 

1.6.4   Economic Schemes 

Economic models are widely discussed as a means for traffic management and 
congestion control in provider’s networks [84–86]. Through pricing, the network 
can send signals to users to change their behavior. It has been shown that for a 
given wireless network there exists a new call arrival rate, which can maximize 
the total utility of users [86]. Based on this, the admission control mechanism can 
adjust the price dynamically according to the current network load in order to 
prevent congestion inside the network. 

In terms of economics, utility functions describe user’s level of satisfaction 
with the perceived QoS; the higher the utility, the more satisfied the users. It is 
sometimes useful to view the utility functions as of money a user is willing to pay 
for certain QoS. As mentioned earlier, call blocking and dropping probabilities are 
the fundamental call-level QoS parameters in cellular networks. Let us define the 
QoS metric φ as a weighted sum of the call blocking and dropping probabilities as 
follows 

                dpbp βαφ +=                                     (1.21) 

where α and β  are constants that denote the penalty associated with blocking a 
new call or dropping an ongoing call respectively (with α > β  to reflect the costly 
call dropping). Earlier we showed that pb and pd are functions of new call and 
handoff call arrival rates ν and λ. Therefore 

             )( λφ f=                                     (1.22) 

where f is a monotonic and non decreasing function of λ. Let us define U as the 
user utility function in terms of the QoS metric Φ, and let U = g(Φ), 
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where g is a monotonic and non-increasing function of Φ. Therefore, the utility 
function U is maximized at Φ = 0. Let λ* denote the optimal arrival rate for which 
U is maximized. In [86],it has been shown that the sufficient condition for λ* is 
that 

0
*

=
= λλλd

dU
                                  (1.23) 

Using the optimal arrival rate λ* obtained, we can characterize a pricing function 
to achieve the maximum utilization. Let p(t) denote the price charged to users at 
time t. Define H(t) as the percentage of users who will accept the price at time t, 
then 

                 ( ) 1)(0       ),()()()( ≤≤+= tHtHtttin νλλ                    (1.24) 

where λin(t) is the actual new call arrival rate at time t. H(t) must be designed in 
such a way that always   
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As mentioned before, pricing can influence the way the users use resources and is 
usually characterized by demand functions. A simple demand function can be 
characterized as follows [86] 
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where P0 is the normal price. In fact, D(t) denotes the percentage of users that will 
accept the price p(t). In order to realize control function H(t) we should have H(t) 
= D(t). The price that should be set at time t to obtain the desired QoS can be 
expressed as 
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is worth noting that pricing-based control assumes that network users are sensitive 
and responsive to price changes. If this is not true for a particular network, e.g. 
noncommercial networks, then price-based control can not be applied. 
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1.7   Call  Admission Control Sche mes  

1.7   Call Admission Control Schemes Based on Fuzzy Logic and 
Evolutionary Algorithms 

1.7   Call  Admission Control Sche mes  

In this section we describe call admission control schemes using different 
algorithm. 

1.7.1   Call Admission Control Using Fuzzy Logic 

Jun Ye et al [88] proposed a call admission control (CAC) scheme using fuzzy 
logic for the reverse link transmission in wideband code division multiple access 
(CDMA) cellular communications. The fuzzy CAC scheme first estimates the 
effective bandwidths of the call request from a mobile station (MS) and its 
mobility information, and then makes a decision to accept or reject the connection 
request based on the estimation and system resource availability. Numerical 
results are given to demonstrate the effectiveness of the proposed fuzzy CAC 
scheme in terms of new call blocking probability/handoff call dropping 
probability, outage probability, and resource utilization. 

Y. H. Chen et al [89] proposed outage-based fuzzy call admission controller 
with multi-user detection (OFCAC-MUD) is proposed for wideband code division 
multiple access (WCDMA) systems. The OFCAC-MUD determines the new call 
admission based on the uplink signal-to-interference ratios from home and adjacent 
cells and system outage probabilities. The OFCAC-MUD possesses both the 
effective reasoning capability of a fuzzy logic system and the aggressive processing 
ability of MUD. Simulation results reveal that OFCAC-MUD without power 
control (PC) improves the system capacity by 70.5% as compared to an SIR-based 
CAC-RAKE with perfect PC. It also enhances the system capacity by 53.9% as 
compared to an OFCAC-RAKE with perfect PC, by 6.7% as compared to an SIR-
based CAC-MUD without PC and by 12.9% as compared to an OFCAC-MUD 
with perfect PC, given the same outage probability requirements. Moreover, 
OFCAC-MUD can prevent the violation of outage probability requirements in the 
hotspot environment, which is hardly achieved by SIR-based CAC. 

Chung-Ju et al. [90] proposed a neural fuzzy call admission and rate controller 
(NFARC) scheme for WCDMA cellular systems providing multirate services. The 
NFARC scheme can guarantee the quality of service (QoS) requirements and 
improve the utilization of the system. Simulation results show that the NFARC 
scheme achieves low forced termination probability and high system capacity 
even in the bursty traffic conditions. NFARC accepts users more than intelligent 
call admission controller (ICAC) by an amount of 45.35%. 

In the present and next generation wireless networks, cellular system remains 
the major method of telecommunication infrastructure. Since the characteristic of 
the resource constraint, call admission control is required to address the limited 
resource problem in wireless network. The call dropping probability and call 
blocking probability are the major performance metrics for quality of service 
(QoS) in wireless network. Chenn-Jung Huang et al[91] proposed an adaptive call 
admission control and bandwidth reservation scheme using fuzzy logic control 
concept to reduce the forced termination probability of multimedia handoffs. 
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The authors adopt particle swarm optimization (PSO) technique to adjust the 
parameters of the membership functions in the proposed fuzzy logic systems. The 
simulation results show that the proposed scheme can achieve satisfactory 
performance when performance metrics are measured in terms of the forced 
termination probability for the handoffs, the call blocking probability for the new 
connections and bandwidth utilization. 

1.7.2   Call Admission Control Using Genetic Algorithm(GA) 

Shyamalie Thilakawardana and Rahim Tafazolli in [92] anticipated that a wide 
variety of data applications, ranging from WWW browsing to Email, and real time 
services like packetized voice and videoconference will be supported with varying 
levels of QoS. Therefore there is a need for packet and service scheduling schemes 
that effectively provide QoS guarantees and also are simple to implement. This 
paper describes a novel dynamic admission control and scheduling technique 
based on genetic algorithms, focusing on static and dynamic parameters of service 
classes. A performance comparison of this technique on a GPRS system is 
evaluated against data services and also a traffic mix comprising voice and data. 

Sheng-Ling Wang et al [93] introduced an adaptive threshold-based Call 
Admission Control (CAC) scheme used in wireless/mobile network for multiclass 
services is proposed. In the scheme, each class's CAC thresholds are solved 
through establishing a reward penalty model which tries to maximize network's 
revenue in terms of each class's average new call arrival rate and average handoff 
call arrival rate, the reward or penalty when network accepts or rejects one class's 
call etc. To guarantee the real time running of CAC algorithm, an enhanced 
Genetic Algorithm is designed. Analyses show that the CAC thresholds indeed 
change adaptively with the average call arrival rate. The performance comparison 
between the proposed scheme and Mobile IP Reservation (MIR) scheme shows 
that with the increase of average call arrival rate, the average new Call Blocking 
Probability (CBP) and the average Handoff Dropping Probability (HDP) within 
2000 simulation intervals of the proposed scheme are confined to lower levels, 
and they show approximate periodical trends of first rise and then decline. While 
these two performance metrics of MIR always increase. At last, the analysis shows 
the proposed scheme outperforms MIR in terms of network's revenue. 

Shengling Wang et al [94] introduced a dynamic multi-threshold CAC scheme 
is proposed to serve multi-class service in a wireless/mobile network. The 
thresholds are renewed at the beginning of each time interval to react to the 
changing mobility rate and network load. To find suitable thresholds, a reward-
penalty model is designed, which provides different priorities between different 
service classes and call types through different reward/penalty policies according 
to network load and average call arrival rate. To speed up the running time of 
CAC, an Optimized Genetic Algorithm (OGA) is presented whose components 
such as encoding, population initialization, fitness function and mutation etc., are 
all optimized in terms of the traits of the CAC problem. The simulation 
demonstrates that the proposed CAC scheme outperforms the similar schemes, 
which means the optimization is realized. Finally, the simulation shows the 
efficiency of OGA. 
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Bo Rong et al [95] proposed a mobile agent (MA)-based handoff architecture 
for the WMN, where each mesh client has an MA residing on its registered mesh 
router to handle the handoff signaling process. To guarantee quality of service 
(QoS) and achieve differentiated priorities during the handoff, they develop a 
proportional threshold structured optimal effective bandwidth (PTOEB) policy for 
call admission control (CAC) on the mesh router, as well as a genetic algorithm 
(GA)-based approximation approach for the heuristic solution. The simulation 
study shows that the proposed CAC scheme can obtain a satisfying tradeoff 
between differentiated priorities and the statistical effective bandwidth in a WMN 
handoff environment. 

1.7.3   Call Admission Control Using Neural Network (NN) 

Conventional methods for developing CAC algorithms are based on mathematical 
and/or simulation modeling. These methods require making assumptions about the 
traffic processes. QoS prediction is then done using queuing models to reflect the 
buffering and transmission behavior. Since this approach can quickly become 
analytically involved, simplifying assumptions need to be made. For example, it is 
common to assume that traffic sources are Markovian, or stationary, or that cell 
arrival patterns depend upon some parametric models like Markov Modulated 
Poisson Processes (MMPP).  

It has recently become known that high-speed network traffic is more complex, 
and that none of these assumptions is safe. Exact solutions based on analytical 
methods exist only for restricted traffic and system models. QoS estimation 
through analysis can also be inaccurate because declared and actual traffic 
parameters frequently differ. 

Clearly results derived from analyses based on such assumptions have limited 
applicability and will generate inaccurate QoS estimates. To compensate, such 
CAC schemes force themselves to err on the side of being conservative and thus 
typically over allocate resources. This leads to inefficiency. 

The easiest method for CAC is to accept a call if there is enough available 
bandwidth to allocate to the call its peak rate. This is the most inefficient method 
since it entirely ignores statistical multiplexing. The most well known analytical 
result for CAC is the equivalent bandwidth method [100,101]. This method 
provides a simple formula to compute the amount of bandwidth needed to meet a 
call’s loss requirement, given its peak rate, mean rate, and average burst duration. 
The equivalent bandwidth yields a bandwidth that lies between the call’s peak and 
mean rates. This method is exact only asymptotically, as the buffer size 
approaches infinity and the cell loss probability approaches zero. Although far 
superior to a CAC scheme that allocates peak bandwidth, the equivalent 
bandwidth method still over allocates bandwidth in most cases. 

Neural networks are attractive for solving CAC problems because they are a 
class of approximators that are well suited for learning nonlinear functions. A 
neural network represents a multiple-input multiple-output nonlinear mapping. A 
NN can learn this mapping from a set of sample data. Feed-forward neural 
networks can approximate any piecewise-continuous function with arbitrary 
accuracy, given enough hidden neurons [102]. 
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Some advantages of using neural networks for CAC are: 
 

1. Neural networks do not require an accurate mathematical model of either the 
traffic or the system. No assumptions need to be made since the neural network 
is trained on observed data. Not assuming a specific traffic behavior a priori is a 
preferable approach because multimedia traffic is not well understood and 
continuously changing. NNs are also not affected by mistakes in declared traffic 
descriptors. These features allow a NN to yield more accurate QoS estimation 
which leads to greater efficiency and robustness. 

 

2. When NNs are properly trained, they can generalize and extrapolate additional 
details of the function mapping the inputs to outputs. If the training set if 
sufficiently large, a NN will generalize accurately and will produce accurate 
outputs for inputs not in the training set. This also contributes to robustness of 
the CAC scheme. 

 

3. NNs are adaptable since they can be retrained in real-time using the latest 
measurements 

1.7.3.1   Implement CAC with Neural Networks 

Neural networks can be used to solve the CAC problem and all its variants. First 
we describe a model using a NN for the single-buffer-per-link case, with a FIFO 

(first-in first-out) buffer. The NN contains n inputs, denoted  and 
a single output Y = f(u), where f(u) denotes the transfer function from inputs to 
outputs. The output is the QoS estimate. This can be the estimate for the amount 
of bandwidth needed on the link to carry all the calls whose traffic enters the FIFO 
buffer, or the buffer delay, or the buffer’s loss rate. This version of this model, 
with a single output representing a particular QoS estimate, only supports a 
service that makes guarantees on one QoS parameter. For services that provide 
guarantees on m QoS parameters, a version of this model with m outputs, one per 
QoS parameter, could be used. 

In another version of this model, a single output is used that takes on binary 
values that represent accept or reject decision. In this version, particular QoS 
estimates are internal to the NN. Such a NN is called a classifier. With this choice 
for the output, the NN can be used to represent any definition of a feasible stream, 
including definitions that involve multiple QoS constraints (e.g., delay and CLR). 

In the case of a single output representing a QoS estimate, a call is admitted to 
the network if the QoS estimate for the new candidate aggregate stream is below 
the most stringent QoS requirement (i.e., the decision threshold) for all calls in the 
stream. In the case of multiple outputs, each QoS estimate needs to be compared 
the relevant decision threshold, before a call is accepted. In the case of a single 
binary output (e.g., trained to learn 0 for accept and 1 for reject), the output is 
compared to a threshold such as 1/2. The choice of output influences by which 
CAC problem is being modeled. Consider the case in which the output is a queue 
related parameter, such as delay or loss. When FIFO queuing is used, there is only 
a single loss rate or distribution of delay associated with that queue.  
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The NN predicts the QoS of the aggregate stream of superposed traffic sources. 
When many sessions that have different QoS requirements are multiplexed 
together, the switch ensures the most stringent of all the delay and/or loss 
requirements. (Hence, some sessions will experience better QoS that they 
requested.) Thus this model can support multiple traffic classes, but they will all 
receive the same QoS. If a scheduling mechanism (e.g., earliest deadline first) is 
used to prioritize among traffic classes, then multiple loss rates (one for each 
class) could be computed for a single buffer. A NN used for this scenario would 
require multiple outputs, one for each class. 

We now consider a second model for the multiple-buffers-per-link problem. In 
this case, there is at least one QoS estimate per buffer. If there are b buffers, and x 
QoS parameters per buffer, then this NN model could have bx outputs. 
Alternatively, a single binary output (representing an  accept or reject decision for 
a given call) could still be used in this case, since all call types and services share 
a single transmission link. 

A third way of modeling CAC problems is to use a modular design in which 
multiple NN units are organized in a hierarchical fashion. Modularity is a means 
to solve a complex computational task by decomposing it into simpler subtasks 
and then combining the individual solutions. This approach is attractive if the 
functional relationship between the neural network inputs and outputs is very 
complex, and if parts of this function can naturally be separated. Consequently, 
the modules of the network tend to specialize by learning different regions of the 
input space. The decomposition should be structured so as to facilitate this. 

An example, based on the work in [115], is given in Figure 1.23. There is a 
bank of NN units in level 1 of this model. Each NN unit is associated with a single 
traffic class, and its inputs correspond to descriptors for that class. Let’s assume 
that one virtual path is assigned for each traffic class. The output gives the 
bandwidth estimate for all the calls in that class, i.e., for the VP assigned to that 
class. The NN unit at level 2 takes as inputs the bandwidth per class for each VP 
and outputs the link bandwidth needed to support the VPs.  

The attraction of this model is that it naturally separates out the two levels of 
statistical multiplexing that occur in a switch that supports VPs. The NNs in level 
1 determine the amount of multiplexing gain for mixing calls from the same class 
onto a single VP, while the NN in level 2 determines the amount of multiplexing 
gain for mixing VPs onto a link. Another example of a modular NN design can be 
found in [114]. 

Modular networks offer several advantages over a single neural network [102]. 
First, the training is faster, which allows the NN units to be more adaptable. 
Second, the representation of input data developed by a modular network tends to 
be easier to understand than in the case of an ordinary multilayer NN. Third, this 
type of design should lead to more accurate estimates since the input-output 
mapping that each NN unit has to learn is simpler. It has been proven [96] that the 
number of input-output patterns that a NN can deterministically learn is equal to 
twice the number of its weights. Fourth, a useful feature of a modular approach is 
that it also provides a better t to a discontinuous input-output mapping [102]. 
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Fig. 1.23 Sample Modular NN Design for CAC 

 

Architecture: A common architecture for all the models described above is a 3-
layer feed forward neural network, with a layer of inputs, a single hidden layer of 
neurons, and an output layer. We establish the following notation for the neural 
network elements. 

      For a given set of inputs nuu ,.....,1 , the k-th output of the NN is given by 

)(
1

out
kj

J

j
jk

out
k bVWgY += 

=

                                             (1.29) 

where Wjk is the connection weight from the j-th hidden neuron to the k-th output, 
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The wij are the weights from the inputs to the hidden neurons, and b j are the 
biases for the hidden neurons. The functions gout and g(x) are the activation 
functions for the output layer and the hidden neurons, respectively. These 
functions are typically either a linear function or a sigmoid function, such  
as the ))exp(1(function logistic 1 av+= or the hyperbolic tangent function 

))exp(1()2tanh( vv +== . In the case of a single output, k = 1, the subscript k can 

be dropped. 
The key to a good NN design lies in the particular choice of inputs, outputs and 

training technique. Selecting a pair of inputs and outputs for which the desired output 
is not determinable from the input will clearly not yield an effective CAC algorithm. 
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1.7.3.2   NN Inputs 

The NN inputs can be any input that helps the NN to predict the QoS of an 
aggregate traffic stream. The NN inputs typically include either traffic descriptors 
or system state parameters or some combination of both. In this section, we now 
expand the discussion of these types of inputs. The advantage of having the users 
supply traffic descriptors is that the network need not spend any resources or time 
to measure the traffic.  

However the disadvantage comes from the fact that there is usually a difference 
between the declared traffic parameters and the actual traffic parameters since 
most applications today do not understand well the traffic they generate. When the 
number of connections in a network becomes large, the difference between the 
declared and actual traffic parameters can be quite large. The advantages and 
disadvantages of using measurements as NN inputs are exactly the reverse of the 
advantages and disadvantages of the user supplied approach. 

Examples of system state parameters that can be used as inputs include buffer 
level, the number of existing calls for each traffic class, and buffer loss rates. It is 
desirable for the neural network inputs to have the following properties: 

Capture key elements of traffic behavior that influence queuing. Many 
researchers believe that traffic descriptors that capture the correlation and 
burstiness properties of a traffic stream will be successful for CAC. In order to 
avoid over allocating or under-allocating resources, it is necessary estimating QoS 
well, which in turn requires proper traffic and system characterization. 

When the NN input vector is additive, the current input vector can be updated 
efficiently by simply adding the traffic descriptors of the new call to that of the 
aggregate call (the current input vector). This additive property of traffic 
descriptors greatly speeds up the decision process of accepting or rejecting a call. 

Support a large number of traffic classes. This will make the algorithm robust. 
Keep the number of inputs reasonably small. This will make the algorithm 
practical since the forward calculation speed is proportional to the number of 
weights. We now give examples of NN inputs that have been proposed in recent 
research efforts. 

1.7.3.3   Number of Calls per Traffic Class 

In this case, the NN input is a vector s = (s k) whose kth component gives the 
number of calls in the stream that belong to the kth traffic class. This input has 
been used by [105, 106, 114]. In [110], they use this input coupled with the link 
load level. We refer to this particular input as the call vector in subsequent 
sections of this chapter. The advantage of this approach is that the user need not 
supply any traffic descriptors at all, and the decision boundary is determinable 
from this input. The disadvantage of this approach is that it does not scale well in 
the number of traffic classes. There could be a very large number of traffic classes 
in any network. It has been suggested [106, 114] that a practical number of classes 
is less than 100. 
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1.7.3.4   Counts of Arrivals 

In [115] they used on-line traffic measurements for the NN inputs. In each interval 
q, the number of cell arrivals, N S(q), is counted for each stream S. If one keeps 
track of the arrival process over consecutive intervals, and also provides this data 
to the NN, then the NN can be trained to capture the correlations that exist among 
cell arrivals. This approach requires a careful choice of the measurement interval. 
The advantages of this input are that this information entirely characterizes the 
input stream and that the user need not supply any traffic descriptors. The 
disadvantage of this choice for NN inputs is that is does not scale in the number of 
calls supported simultaneously. This choice of inputs is not considered very 
practical since the measurement intervals typically need to be very large. 

1.7.3.5   Variance of Counts 

In [111], we used the variance of counts (VOCs) as NN inputs. To calculate or 
measure VOCs, time is divided into intervals of equal length. As above, N S(q) 
denotes the number of cells or packets arriving in interval q for stream S. Let Ns 
(q; h) denote the number of cells arriving in the interval consisting of intervals q 
through h. Let S denote the mean of Ns(q). The variance of counts for an interval 
of length m is defined by 
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where q is an arbitrary time slot. For a given stream S, the NN inputs are scaled 
versions of S and VOCS(m) for m = 1; 2; 4; :::; 2 M , where M + 1 is the number 
of VOCs used. To limit the number of NN inputs while considering a 
representative set of VOCs, we used VOCs over intervals of exponentially 
increasing length. 

The VOC traffic descriptor is an not normalized IDC as described in [103], that 
is, VOC S(m) = IDC S(m) S. Not normalized IDCs are preferable because then the 
VOCs are additive, i.e., if S is the sum of statistically independent streams S i , 
then VOC S(m) is the sum of VOC Si(m) over the Si . 

The advantages of these NN inputs include: (i) VOCs characterize all second-
order statistics of the stream, (ii) they are additive, (iii) moments of interval counts 
have been shown to accurately predict queuing delay for some models [103], and 
(iv) this method is independent of the number of traffic classes. 

It is known [103] that IDC S(m) converges to var(X) = E2(X), the squared 
coefficient of variation of the inter-arrival time X, and so VOC S(m) also 
converges to a constant if the inter-arrival time has finite variance. One can thus 
choose the number M + 1 of VOCs to be large enough so that VOCS(2M) is close 
to the limit for most streams. This limits the number of NN inputs to M + 2, which 
is typically much smaller than the number of traffic classes as used in 

These NN inputs can be measured by either the user or the network. They could 
be calculated by the user when the user’s traffic is a bursty on-off process. VOCs 
can be prior computed for a set of traffic classes and stored in a table, in which 
case a user only needs to indicate a traffic class in the call request. 
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1.7.3.6   Power Spectral Density Parameters 

Another type of input that can capture correlation and burstiness properties of 
traffic streams is the power-spectral-density (PSD) function in the frequency 
domain. Using the PSD as inputs was first proposed in [87]. All of the above 
inputs discussed focus on the time-domain. The PSD is the Fourier transform of 
the autocorrelation function of the input process. A traffic source can be 
characterized by a PSD can be described by three parameters (u;v;w): the DC 
component (u), the half-power bandwidth (v), and the average power (w). As u 
increases, the traffic loads increases; as v decreases, the input power in the low 
frequency band increases; and as w increases, the variance of the input rate 
increases. 

There are two advantages to this approach. First, it has been shown in [107] 
that the low frequency band of the input PSD has a dominant impact on the 
queuing performance while the high frequency band can usually be neglected. 
This is because the low frequency component of the PSD contains the correlation 
component. Larger the low frequency component becomes, the burstier the traffic 
source. Second, since the PSD has the additive property, so do these three 
parameters. 

In [97], the CAC controller is designed so that the user can input three simple 
parameters: its peak rate, mean rate and peak cell rate duration. The controller 
applies the Fast Fourier Transform (FFT) to these inputs and outputs the three 
PSD parameters (u; v; w) which are in turn fed as inputs to a NN. 

1.7.3.7   Entropy 

Entropy has been proposed as a tra c descriptor in [99, 112]. The entropy of traffic 
streams is attractive as a descriptor because it can capture the behaviour of 
correlations over many time scales. The entropy has been used as an input for 
CAC in [99, 112] but it has not yet been tried in a CAC algorithm based on neural 
networks. 

1.7.3.8   NN Outputs 

A NN output variable can represent any of the following: 
 

1. Accept/Reject Decision. With this output, the NN has to learn the boundary 
between the feasible and infeasible performance regions for a given input space. 

2. Loss Rate. In this case, the NN predicts the average buffer overflow rate. Since 
the loss rate can have an exponentially wide range, from 10-1 to 10-9 it is 
common to use log(loss) instead. 

3. Delay. In this case, the NN predict the average buffer delay, or average buffer 
occupancy. 

4. Jitter. In this case, the NN predicts the variation of the buffer delay. 5. 
Bandwidth. In this case, the NN predicts the amount of bandwidth needed to 
achieve a specific QoS level for the given input stream. 
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5. Pth percentile delay. In this case, the NN predicts the value D such that the 
probability that a cell or packet experiences a delay less than or equal to D is 
p%. The percentile is typically chosen to be around 90%. In this approach, all 
the calls need to have the same percentile requirement. 

6. Probability distribution of delay. In this case, the NN output represents the 
probability that the delay experienced will be less than the requested delay 
(which can be one of the NN inputs), conditioned on the buffer status 
(represented by the other NN inputs). This method, proposed in [113], works 
well when the probability is conditioned with respect to the number of active 
connections. This method allows calls to have different delay requirements. 

1.7.3.9   Compression of Neural Network Inputs 

In Section 1.7.3.5, we discussed the mapping of the call vector to a vector of 
parameters related to second order statistics of the aggregate traffic process (based 
on VOCs or the PSD). Such a mapping can be considered a compression of the 
call vector (whose dimension is the number of traffic classes, which can be in the 
hundreds) to a smaller vector whose dimension is independent of the number of 
traffic classes. One benefit of reducing the number of NN inputs is that the NN 
output can be computed in less time, thus allowing more calls to be processed per 
second. The best compression is one that maps the call vector to the fewest 
parameters without reducing performance significantly. 

In this section, we present a method for finding a linear compression of the call 
vector to I parameters (where I is any positive integer) that is optimal in the sense 
of minimizing the output error function. Linear compression is chosen so that the 
compressed parameters are additive. A similar method was presented in [111] to 
compress vectors of VOCs, where it was shown that compression to three 
parameters did not result in a significant reduction of performance. An advantage 
of compressing call vectors instead of VOCs is that the statistics of calls need not 
be known or measured. 

Although we focus on the call vector in this section, the method can be applied 
to any choice of NN inputs that are additive. The compression method involves 
adding a new hidden layer to the NN, between the input layer and the current 
hidden layer, as shown in Fig. 1.24. The neurons in the new hidden layer have 
linear activation functions, and there is one such neuron for each compressed 
parameter. 

For this design, the previous equation described in architecture is replaced by 
the following two equations 
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The outputs iv  of the hidden linear neurons form the compressed vector 

corresponding to the call vector s, and the weights li from the lth input to the first 
hidden layer form the compressed vector corresponding to the lth traffic class. 
Above equation can be expressed in vector form as 
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where v is the compressed vector for call vector s and l is the compressed vector 
for a single call of traffic class 1. 

 

Fig. 1.24 NN with Additional Hidden Layer for Compressing Input 

This method was motivated by the well-known technique of using a hidden 
layer of linear neurons for image or data compression [102, 104, 108]. Assuming 
that NN weights (including the li) are found that minimize the output error 
function, the compressed parameters v i are optimal by definition. Once this NN is 
trained and thus the matrix {αli} is obtained, the original input layer is no longer 
required. The first hidden layer becomes the new input layer; i.e., the compressed 
parameters vi are now used as the NN inputs. 

Since the compressed parameters are additive, when a new call of class l 
arrives, the compressed vector for the new call vector is updated simply by adding 
the compressed vector l for the new call. To perform this operation quickly, the 
compressed vector l corresponding to each traffic class l can be stored in a look-up 
table. 

Consider the special case in which only a single compressed parameter is used. 
Thus, a single parameter αl is computed for each traffic class l, and the 
compressed parameter for a given call vector is equal to the sum of αl over all calls 



52 1   An Overview of Call Admission Control in Mobile Cellular Networks
 

represented by the call vector. Moreover, it is possible to scale the αl so that a 
given call vector falls into the call acceptance region (learned by the neural 
network) if and only if this sum is less than the link bandwidth. Therefore, 
compression to a single parameter corresponds to learning the equivalent 
bandwidth for each traffic class. 

1.7.3.10   Design of CAC Controller 

Fig. 1.25 depicts a method of incorporating a NN into the design of a CAC 
algorithm. 

 

 

Fig. 1.25 Design of CAC Controller using a Neural Network 

This figure is general in that it illustrates potential CAC inputs, and not 
required inputs. The CAC inputs can come from the user, the system state or 
measurements, or some combination thereof. A traffic table can be used to convert 
user supplied traffic descriptors into VOCs or PSDs, if needed. If both the system 
state and the user’s traffic descriptors (or the mapped version of the user’s 
descriptors) are used, we assume they have the additive property (indicated by the 
adder in Fig. 1.25). The system state is updated each time new connections are 
established or torn down. The pattern table and trainer are only present when the 
system is designed for on-line training. 

 

Existing 
Calls 

New 
Calls 
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1.7.3.11   Off-Line Training 

The feed forward NNs described above can be trained using standard back 
propagation algorithms and their variations. In this section we brie y discuss 
methods for generating the training set (the set of input-output patterns) used for 
back propagation and present a non-standard error function that helps to achieve 
the asymmetric goal of the CAC problem. Methods for the more difficult problem 
of online training are presented in the next section. When a NN is trained offline 
for CAC, the training set consists of a large number (typically 1000 or more) of 

input-output patterns ),( k
k yu that are usually generated by simulating the traffic 

and queuing processes. The traffic can be modeled as an on-o Markov chain, a 
Markov-modulated Poisson process, or a self-similar traffic process. More 
complex traffic models or traces of traffic from actual network can also be used. A 
fixed number of traffic classes can be defined by specifying the parameters for 
each class, or an infinite number of classes can be obtained by allowing any 
choice of parameters within some range. 

Aggregate traffic streams must be generated that cover all regions of the space 
of input patterns uk. If the number of traffic classes and the maximum number of 
calls per class are small, it may be possible to use a training set that includes every 
possible call state. Otherwise, one way to generate an aggregate stream is to rst 
randomly select the number of calls in the stream (between 1 and the maximum 
possible number of calls), and then randomly select the traffic class for each call. 
If the input pattern u k is the call state, then it is known immediately. If some other 
choice is used for uk (e.g., VOCs), then uk must be obtained using analysis or 
simulation. For each aggregate stream, a simulation can be run to determine the 
resulting performance measure yk. Each simulation should be run long enough to 
obtain an accurate estimate of the performance measure. For example, 108 packets 
would need to be observed to accurately estimate a loss rate of 10-6. If such long 
simulations are not feasible, the virtual output buffer method discussed in the next 
section can be used to improve the estimate through extrapolation. 

Once the training set is generated, the NN can be trained using a version of 
back propagation. A commonly used error function for training is 
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where, usually N = 2 (equivalent to the mean squared error). 
Recall that the CAC objective is asymmetric: to accept as many feasible input 

patterns as possible while rejecting all infeasible input patterns. After the NN is 
trained, the decision threshold can be adjusted so that all infeasible input patterns 
in the training set are rejected. That is, assuming that a NN output greater than the 
decision threshold corresponds to a reject decision, the threshold is chosen so that 
it is slightly less than the smallest NN output for an infeasible input pattern in the 
training set. 

In order to accept as many feasible streams as possible, the maximum error 
over all infeasible training patterns u should be minimized, so that the decision 

(1.35) 
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threshold can be chosen as large as possible without accepting any infeasible 
patterns. One way to achieve this objective is to use the following asymmetric 
error function 
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where N > 2. For large N, minimizing the second sum will tend to minimize the 

maximum error k
k yuf −)( over all infeasible patterns. 

1.7.3.12   Online Training 

In online training, the NN is trained continuously or frequently, based on actual 
measurements obtained while the NN is being used for CAC. Online training is 
useful if the CAC needs to adapt to changing network characteristics or new 
traffic classes or to fine tune an offline-trained NN using more accurate 
measurements. 

Online training is more difficult than offline training in part because the call 
state changes frequently. Thus, the performance measurement (NN output) 
obtained for a given training pattern is based on fewer packets (or cells) and is 
therefore subject to more statistical variability (i.e., noise). In online training, 
unlike offline training, one cannot x the call state and observe the performance of 
a large number of packets in order to obtain a good estimate of the resulting loss 
rate or average delay. This difficulty can be reduced by exploiting the ability of 
NNs to learn the average of several different measurements associated with the 
same call state, as explained below. 

However, online training can be slow because a large number of packets must 
be observed before a small loss rate can be estimated with any accuracy. For 
example, more than a billion packets must be observed to accurately estimate a 
loss rate on the order of 107. In this case, a packet loss can be considered a rare 
event. The online training can be made faster by using the ability of a neural 
network to extrapolate from estimates of measures that are based on more 
common events. For example, in the virtual output buffer method, discussed 
below, the NN learns the loss rate that would occur if the packets were fed into 
imaginary queues with smaller service rates than the actual queue, and 
extrapolates that knowledge to improve the estimate of the actual loss rate. 

For a NN CAC to be adaptive, old measurements for a given input pattern must 
eventually be “forgotten" and replaced by new measurements for similar input 
patterns. There is a tradeoff between adaptability and accuracy: If the NN is 
trained using past measurements made over a large time window, it can achieve 
good accuracy but will not adapt quickly to network changes. If a small time 
window is used (so that the NN quickly forgets past measurements), faster 
adaptation is achieved at the cost of less accuracy. 

Another reason online training is more difficult than offline training is that 
input patterns that are marginally unacceptable occur rarely or never, assuming the 
CAC is performing well. If the NN remembers that these patterns are 

1.36 
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unacceptable, it may not be able to adapt to changing network conditions that 
cause these patterns to become acceptable. If the NN eventually “forgets" these 
patterns, it will start to accept infeasible call vectors and thus perform poorly for 
some period of time while it is relearning the decision boundary. Such behavior 
should be avoided, since it is more important to reject a given infeasible call 
vector than to accept a given feasible call vector, i.e., the NN should achieve 
“safe-side" control. One way to help achieve this goal to start with a NN CAC that 
has been trained offline to perform a conservative version of CAC, such as one 
based on peak rate or equivalent bandwidth, and then use online training with a 
slow learning rate so that the CAC gradually learns to accept more calls. The 
virtual buffer method also helps to achieve safe-side control by learning more 
quickly that the call vector is approaching the decision boundary. 

Other problems that will be addressed in this section include how to decide 
which patterns to store, given a bounded storage capacity, and summarizing 
different measurements for the same input pattern, in order to reduce the training 
set and thus reduce the time required to train the NN. In the following subsections, 
we assume that the NN input is the call vector and that the NN has a single output. 
However, the methods are applicable to other choices for the NN input and can 
easily be extended to multiple NN outputs. 

1.7.3.13   Procedures for Online Training 

In online training, we cannot assume that the queuing system reaches equilibrium 
between changes in the call vector. Therefore, the neural network can only learn, 
for each possible state of the call vector, the average performance of packets that 
are admitted when the call vector is in that state. A training pattern will therefore 

consist of a pair ),( k
k ys  and a size km  where ky  is a measurement of the 

average performance of km  packets that were admitted when the call vector 

was ks . Since the call vector can change at arbitrary times, the intervals over 
which these measurements are performed need not have equal length. In an 
extreme case, each measurement can correspond to a single packet. 

The simplest method for online training is to perform one step of gradient 
descent (back-propagation) per measurement, in the same order that the 
measurements are observed. However, this method does not provide the benefit of 
storing a large window of past measurements, including measurements for call 
vectors that rarely occur, and using each pattern repeatedly for training, so that 
better convergence is achieved and past measurements are not quickly forgotten. 

Therefore, training patterns (each consisting of a call state and a corresponding 
measurement) should be stored in a pattern table. (See Fig 1.25) The time window 
over which past measurements are stored can be selected depending on the desired 
degree of adaptability. If the network characteristics are not expected to change 
and good estimation accuracy is desired, then a very large time window can be 
used. In addition, the total number of patterns that are stored should be limited, 
either because of storage limitations or to limit the time required to train the NN. 
To achieve this, a circular buffer can be used, so that the newest pattern replaces 
the oldest pattern. 
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1.8   Conclusion 

Due to the unique characteristics of mobile cellular networks, mainly mobility and 
limited resources, the wireless resource management problem has received 
tremendous attention. As a result, a large body of work has been done extending 
earlier work in fixed networks as well as introducing new techniques. A large 
portion of this research has been in the area of call admission control. In this 
paper, we have provided a survey of the major call admission control approaches 
and related issues for designing efficient schemes. A broad and detailed 
categorization of the existing CAC schemes was presented. For each category, we 
explained the main idea and described the proposed approaches for realizing it and 
identified their distinguishing features. 

We have compared the various schemes based on some of the most important 
criteria including efficiency, complexity, overhead, adaptively and stability. We 
believe that this article, which is the first comprehensive survey on this subject, 
can help other researchers in identifying challenges and new research directions in 
the area of call admission control for cellular networks. 

References  

1. Viterbi, A.: Principles of Spread Spectrum Communication. Addison–Wesley (1995) 
2. TIA/EIA/IS–95, Mobile Station–Base Station Compatibility Standard for Dual–

Mode Wideband Spread Spectrum Cellular System. Telecommunication Industry 
Association (May 1995) 

3. Cooper, G.R., Nettleton, R.W.: A Spread–Spectrum Technique for High–Capacity 
Mobile Communications. IEEE Transactions on Vehicular Technology VT–27, 264–
275 (1978) 

4. Rappaport, T.S.: Wireless communications. Prentice Hall (1996) 
5. Gilhousen, K.S., Jacobs, I.M., Padovani, R., Viterbi, A.J., Weaver Jr., L.A., Wheatly 

III, C.E.: On the capacity of a cellular CDMA system. IEEE Transactions on 
Vehicular Technology 40, 303–312 (1991) 

6. Viterbi, A.J.: Wireless Digital Communication: A View Based on Three Lessons 
Learned. IEEE Communications Magazine 29, 33–36 (1991) 

7. Jung, P., Baier, P.W., Steil, A.: Advantages of CDMA and Spread Spectrum 
Techniques over FDMA and TDMA in Cellular Mobile Applications. IEEE 
Transactions on Vehicular Technology 42, 357–364 (1993) 

8. Corazza, G.E., De Maio, G., Vatalaro, F.: CDMA Cellular Systems Performance 
with Fading, Shadowing, and Imperfect Power Control. IEEE Transactions on 
Vehicular Technology 47, 450–459 (1998) 

9. Wong, D., Lim, T.J.: Soft handoffs in CDMA mobile systems. IEEE Personal 
Communications Magazine 4(6), 6–17 (1997) 

10. Prakash, R., Veeravalli, V.V.: Locally optimal soft handoff algorithms. IEEE 
Transactions on Vehicular Technology 52(2), 231–260 (2003) 

11. Lin, Y.-B., Pang, A.-C.: Comparing soft and hard handoffs. IEEE Transactions on 
Vehicular Technology 49(3), 792–798 (2000) 

12. Ramjee, R., Towsley, D., Nagarajan, R.: On optimal call admission control in 
cellular networks. Wireless Networks 3(1), 29–41 (1997) 



References 57
 

13. Valko, A.G., Campbell, A.T.: An efficiency limit of cellular mobile systems. 
Computer Communications Journal 23(5-6), 441–451 (2000) 

14. Talukdar, A.K., Badrinath, B., Acharya, A.: Integrated services packet networks with 
mobile hosts: Architecture and performance. Wireless Networks 5(2), 111–124 
(1999) 

15. Lu, S., Bharghavan, V.: Adaptive resource management algorithms for indoor 
mobile computing environments. In: Proc. ACM SIGCOMM 1996, Palo Alto, USA, 
pp. 231–242 (August 1996) 

16. Hong, D., Rappaport, S.S.: Traffic model and performance analysis for cellular 
mobile radio telephone systems with prioritized and nonprioritized handoff 
procedures. IEEE Transactions on Vehicular Technology 35(3), 77–92 (1999) 

17. Katzela, I., Naghshineh, M.: Channel assignment schemes for cellular mobile 
telecommunication systems: A comprehensive survey. IEEE Personal 
Communications Magazine 3(3), 10–31 (1996) 

18. Chang, C.-J., Huang, P.-C., Su, T.-T.: A channel borrowing scheme in a cellular 
radio system with guard channels and finite queues. In: Proc. IEEE ICC 1996, 
Dallas, USA, vol. 2, pp. 1168–1172 (June 1996) 

19. Wu, X., Yeung, K.L.: Efficient channel borrowing strategy for multimedia wireless 
networks. In: Proc. IEEE GLOBECOM 1998, Sydney, Australia, vol. 1, pp. 126–131 
(November 1998) 

20. Chu, T.-P., Rappaport, S.S.: Generalized fixed channel assignment in microcellular 
communication systems. IEEE Transactions on Vehicular Technology 43(3), 713–
721 (1994) 

21. Chang, C.-J., Su, T.-T., Chiang, Y.-Y.: Analysis of a cutoff priority cellular radio 
system with finite queueing and reneging/dropping. IEEE/ACM Transactions on 
Networking 2(2), 166–175 (1994) 

22. Li, W., Chao, X.: Modeling and performance evaluation of a cellular mobile 
network. IEEE/ACM Transactions on Networking 12(1), 131–145 (2004) 

23. Li, B., Chanson, S., Lin, C.: Analysis of a hybrid cutoff priority scheme for multiple 
classes of traffic in multimedia wireless networks. Wireless Networks 4(4), 279–290 
(1998) 

24. Lin, P., Lin, Y.-B.: Channel allocation for GPRS. IEEE Transactions on Vehicular 
Technology 50(2), 375–384 (2001) 

25. Fang, Y., Zhang, Y.: Call admission control schemes and performance analysis in 
wireless mobile networks. IEEE Transactions on Vehicular Technology 51(2), 371–
382 (2002) 

26. Moorman, J.R., Lockwood, J.W.: Wireless call admission control using threshold 
access sharing. In: Proc. IEEE GLOBECOM 2001, San Antonio, USA, vol. 6,  
pp. 3698–3703 (November 2001) 

27. Levine, D., Akyildiz, I., Naghshineh, M.: A resource estimation and call admission 
algorithm for wireless multimedia networks using the shadow cluster concept. 
IEEE/ACM Transactions on Networking 5(1), 1–12 (1997) 

28. Choi, S., Shin, K.G.: Predictive and adaptive bandwidth reservation for handoffs in 
QoS-sensitive cellular networks. In: Proc. ACM SIGCOMM 1998, Vancouver, 
Canada, vol. 27, pp. 155–166 (October 1998) 

29. Epstein, B.M., Schwartz, M.: Predictive QoS-based admission control for multiclass 
traffic in cellular wirelessnetworks. IEEE Journal on Selected Areas in 
Communications 18(3), 523–534 (2000) 



58 1   An Overview of Call Admission Control in Mobile Cellular Networks
 

30. Wu, S., Wong, K.Y.M., Li, B.: A dynamic call admission policy with precision QoS 
guarantee using stochastic control for mobile wireless networks. IEEE/ACM 
Transactions on Networking 10(2), 257–271 (2002) 

31. Peha, J.M., Sutivong, A.: Admission control algorithms for cellular systems. 
Wireless Networks 7(2), 117–125 (2001) 

32. Epstein, B., Schwartz, M.: Reservation strategies for multi-media traffic in a wireless 
environment. In: Proc. IEEE VTC 1995, Chicago, USA, vol. 1, pp. 165–169 (July 
1995) 

33. Box, G.E., Jenkins, G.M.: Time Series Analysis: Forecasting and Control, 2nd edn. 
Holden-Day (1976) 

34. Zhang, T., Berg, E., Chennikara, J., Agrawal, P., Chen, J.C., Kodama, T.: Local 
predictive resource reservation for handoff in multimedia wireless IP networks. IEEE 
Journal on Selected Areas in Communications 19(10), 1931–1941 (2001) 

35. Hosking, J.R.M.: Fractional differencing. Biometrika 83(1), 165–176 (1981) 
36. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer 

(1991) 
37. Gripenberg, G., Norros, I.: On the prediction of fractional brownian motion. Journal 

of Applied Probability 33, 400–410 (1996) 
38. Norros, I.: On the use of fractional brownian motion in the theory of connectionless 

networks. IEEE Journal on Selected Areas in Communications 13(6), 953–962 
(1995) 

39. Leland, W.E., Taque, M., Willinger, W., Wilson, D.: On the self-similar nature of 
Ethernet traffic (extended version). IEEE/ACM Transactions on Networking 2(1), 1–
15 (1994) 

40. Crovella, M.E., Bestavros, A.: Self-similarity in world wide web traffic: Evidence 
and possible causes. IEEE/ACM Transactions on Networking 5(6), 835–846 (1997) 

41. Beran, J., et al.: Long-range dependence in variable-bit-rate video traffic. IEEE 
Transactions on Communications 43(2), 1566–1579 (1995) 

42. Shu, Y., Jin, Z., Wang, J., Yang, O.W.: Prediction-based admission control using 
FARIMA models. In: Proc. IEEE ICC 2000, New Orleans, USA, vol. 3, pp. 1325–
1329 (June 2000) 

43. Shu, Y., et al.: Traffic prediction using FARIMA models. In: Proc. IEEE ICC 1999, 
Vancouver, Canada, vol. 2, pp. 891–895 (June 1999) 

44. Oliveira, C., Kim, J.B., Suda, T.: An adaptive bandwidth reservation scheme for 
high-speed multimedia wireless networks. IEEE Journal on Selected Areas in 
Communications 16(6), 858–874 (1998) 

45. Aljadhai, A., Znati, T.F.: Predictive mobility support for QoS provisioning in mobile 
wireless networks. IEEE Journal on Selected Areas in Communications 19(10), 
1915–1930 (2001) 

46. Acampora, A., Naghshineh, M.: An architecture and methodology for mobile-
executed handoff in cellular ATM networks. IEEE Journal on Selected Areas in 
Communications 12(8), 1365–1375 (1994) 

47. Ross, S.M.: Stochastic Process, 2nd edn. American Mathematical Society (1997) 
48. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 

in C: The Art of Scientific Computing. Cambridge University Press (1992) 
49. Iraqi, Y., Boutaba, R.: When is it worth involving several cells in the call admission 

control process for multimedia cellular networks? In: Proc. IEEE ICC 2001, 
Helsinki, Finland, vol. 2, pp. 336–340 (June 2001) 



References 59
 

50. Mitchell, K., Sohraby, K.: An analysis of the effects of mobility on bandwidth 
allocation strategies in multi-class cellular wireless networks. In: Proc. IEEE 
INFOCOM 2001, Anchorage, USA, vol. 2, pp. 1005–1011 (April 2001) 

51. Puterman, M.L.: Markov decision processes: Discrete stochastic dynamic 
programming. John Wiley & Sons (1994) 

52. Haas, Z., Halpern, J.Y., Li, L., Wicker, S.B.: A decision-theoretic approach to 
resource allocation in wireless multimedia networks. In: Proc. ACM 4th Workshop 
Discrete Alg. Mobile Comput. Commun., Boston, USA, pp. 86–95 (August 2000) 

53. Tijms, H.C.: Stochastic Modeling and Analysis: A Computational Approach. John 
Wiley & Sons (1989) 

54. Saquib, M., Yates, R.: Optimal call admission to a mobile cellular network. In: Proc. 
IEEE VTC 1995, Chicago, USA, vol. 1, pp. 190–194 (July 1995) 

55. Chen, D., Hee, S.B., Trivedi, K.S.: Optimal call admission control policy for 
wireless communication networks. In: Proc. International Conference on 
Information, Communication and Signal Processing, ICICS 2001, Singapore 
(December 2001) 

56. Gao, Q., Acampora, A.: Performance comparisons of admission control strategies for 
future wireless networks. In: Proc. IEEE WCNC 2002, Orlando, USA, vol. 1, pp. 
317–321 (March 2002) 

57. Kwon, T., Choi, Y., Naghshineh, M.: Optimal distributed call admission control for 
multimedia services in mobile cellular networks. In: Proc. Mobile Multimedia 
Ccommunication, MoMuC 1998, Berlin, Germany (October 1998) 

58. Xiao, Y., Chen, C.L.P., Wang, Y.: An optimal distributed call admission control for 
adaptive multimedia in wireless/mobile networks. In: Proc. IEEE MASCOTS 2000, 
San Francisco, USA, pp. 477–482 (August 2000) 

59. Kwon, T., Choi, Y., Naghshineh, M.: Call admission control for adaptive multimedia 
in wireless/mobile networks. In: Proc. ACM WOWMOM 1998, Dallas, USA, pp. 
111–116 (October 1998) 

60. Kwon, T., Park, I., Choi, Y., Das, S.: Bandwidth adaptation algorithms with multi-
objectives for adaptive multimedia services in wireless/mobile networks. In: Proc. 
ACM WOWMOM 1999, Seattle, USA, pp. 51–59 (August 1999) 

61. Choi, J., Kwon, T., Choi, Y., Naghshineh, M.: Call admission control for multimedia 
service in mobile cellular networks: A markov decision approach. In: Proc. IEEE 
ISCC 2000, Antibes, France, pp. 594–599 (July 2000) 

62. Yoon, I.-S., Lee, B.G.: A distributed dynamic call admission control that supports 
mobility of wireless multimedia users. In: Proc. IEEE ICC 1999, Vancouver, 
Canada, pp. 1442–1446 (June 1999) 

63. Kwon, T., Choi, J., Choi, Y., Das, S.: Near optimal bandwidth adaptation algorithm 
for adaptive multimedia services in wireless/mobile networks. In: Proc. IEEE VTC 
1999, Amsterdam, Netherlands, vol. 2, pp. 874–878 (September 1999) 

64. Yener, A., Rose, C.: Near optimal call admission policies for cellular networks using 
genetic algorithms. In: Proc. IEEE Wireless 1994, Calgary, Canada, pp. 398–410 
(July 1994) 

65. Xiao, Y., Chen, C.L.P., Wang, Y.: A near optimal call admission control with 
genetic algorithm for multimedia services in wireless/mobile networks. In: Proc. 
IEEE NAECON 2000, Dayton, USA, pp. 787–792 (October 2000) 

66. El-Alfy, E.-S., Yao, Y.-D., Heffes, H.: A learning approach for call admission 
control with prioritized handoff in mobile multimedia networks. In: Proc. IEEE VTC 
2001, Rhodes, Greece, vol. 2, pp. 972–976 (May 2001) 



60 1   An Overview of Call Admission Control in Mobile Cellular Networks
 

67. Li, B., Li, L., Li, B., Cao, X.-R.: On handoff performance for an integrated 
voice/data cellular system. Wireless Networks 9(4), 393–402 (2003) 

68. Fang, Y.: Thinning schemes for call admission control in wireless networks. IEEE 
Transactions on Computers 52(5), 686–688 (2003) 

69. Pavlidou, F.-N.: Two-dimensional traffic models for cellular mobile systems. IEEE 
Transactions on Communications 42(2/3/4), 1505–1511 (1994) 

70. Wu, H., Li, L., Li, B., Yin, L., Chlamtac, I., Li, B.: On handoff performance for an 
integrated voice/data cellular system. In: Proc. IEEE PIMRC 2002, Lisboa, Portugal, 
vol. 5, pp. 2180–2184 (September 2002) 

71. Wieselthier, J.E., Ephremides, A.: Fixed- and movable-boundary channel-access 
schemes for integrated voice/data wireless networks. IEEE Transactions on 
Communications 43(1), 64–74 (1995) 

72. Young, M.C., Haung, Y.-R.: Bandwidth assignment paradigms for broadband 
integrated voice/data networks. Computer Communications Journal 21(3), 243–253 
(1998) 

73. Chih-Lin, I., Greenstein, L.J., Gitlin, R.D.: A microcell/macrocell architecture for 
low and high mobility wireless users. IEEE Journal on Selected Areas in 
Communications 11(6), 885–891 (1993) 

74. Rappaport, S.S., Hu, L.-R.: Microcellular communication systems with hierarchical 
macrocell overlays: Traffic performance models and analysis. Proc. of the IEEE 82, 
1383–1397 (1994) 

75. Hu, L.-R., Rappaport, S.S.: Personal communication systems using multiple 
hierarchical cellular overlays. IEEE Journal on Selected Areas in 
Communications 13(2), 406–415 (1995) 

76. Yeung, K.L., Nanda, S.: Channel management in microcell/macrocell cellular radio 
systems. IEEE Transactions on Vehicular Technology 45(4), 601–612 (1996) 

77. Chang, C., Chang, C.J., Lo, K.-R.: Analysis of a hierarchical cellular system with 
reneging and dropping for waiting new and handoff calls. IEEE Transactions on 
Vehicular Technology 48(4), 1080–1091 (1999) 

78. Marsan, M.A., Ginella, G., Maglione, R., Meo, M.: Performance analysis of 
hierarchical cellular networks with generally distributed times and dwell times. IEEE 
Transactions on Wireless Communications 3(1), 248–257 (2004) 

79. Jain, R., Knightly, E.W.: A framework for design and evaluation of admission 
control algorithms in multi-service mobile networks. In: Proc. IEEE INFOCOM 
1999, New York, USA, vol. 3, pp. 1027–1035 (March 1999) 

80. Yu, F., Leung, V.C.: Mobility-based predictive call admission control and bandwidth 
reservation in wireless cellular networks. In: Proc. IEEE INFOCOM 2001, 
Anchorage, USA, vol. 1, pp. 518–526 (April 2001) 

81. Lim, S., Cao, G., Das, C.: An admission control scheme for QoS-sensitive cellular 
networks. In: Proc. IEEE WCNC 2002, Orlando, USA, vol. 1, pp. 296–300 (March 
2002) 

82. Soh, W.-S., Kim, H.S.: Qos provisioning in cellular networks based on mobility 
prediction techniques. IEEE Communications Magazine 41(1), 86–92 (2003) 

83. Shen, X., Mark, J.W., Ye, J.: User mobility profile prediction: An adaptive fuzzy 
inference approach. Wireless Networks 6(5), 363–374 (2000) 

84. Evci, C., Fino, B.: Spectrum management, pricing, and efficiency control in 
broadband wireless communications. Proc. of the IEEE 89, 105–115 (2001) 

85. Heikkinen, T.: Congestion based pricing in a dynamic wireless network. In: Proc. 
IEEE VTC 2001, Rhodes, Greece, vol. 2, pp. 1073–1076 (May 2001) 



References 61
 

86. Hou, J., Yang, J., Papavassiliou, S.: Integration of pricing with call admission control 
for wireless networks. In: Proc. IEEE VTC 2001, Atlantic City, USA, vol. 3, pp. 
1344–1348 (October 2001) 

87. Haung, Y.-R., Lin, Y.-B., Ho, J.-M.: Performance analysis for voice/data integration 
on a finite-buffer mobile system. IEEE Transactions on Vehicular Technology 49(2), 
367–378 (2000) 

88. Ye, J., Shen, X., Mark, J.W.: Call Admission Control in Wideband CDMA Cellular 
Networks by Using Fuzzy Logic. IEEE Transactions on Mobile Computing 4(2) 
(March/April 2005) 

89. Chen, Y.H., Chang, C.J., Shen, S.: Outage-based fuzzy call admission controller with 
multi-user detection for WCDMA systems. IEE Proc. Commun. 152(5) (October 
2005) 

90. Chung-Ju, Chang, L.-C., Kuo, Y.-S., Chen, S.S.: Neural Fuzzy Call Admission and 
Rate Controller for WCDMA Cellular Systems Providing Multirate Services. In: 
IWCMC 2006, Vancouver, British Columbia, Canada, July 3-6 (2006) 

91. Huang, C.-J., Chuang, Y.-T., Yang, D.-X.: Implementation of call admission control 
scheme in next generation mobile communication networks using particle swarm 
optimization and fuzzy logic systems. Expert Systems with Applications 35(3), 
1246–1251 (2008) 

92. Thilakawardana, S., Tafazolli, R.: Efficient Call Admission Control and 
SchedulingTechnique for GPRS Using Genetic Algorithms. Mobile Communications 
Research Group, Centre for Communications Systems Research, CCSR (2004) 

93. Wang, S.-L., Hou, Y.-B., Huang, J.-H., Huang, Z.-Q.: Adaptive Call Admission 
Control Based on Enhanced Genetic Algorithm in Wireless/Mobile Network. In: 
Proceedings of the 18th IEEE International Conference on Tools with Artificial 
Intelligence (2006) 

94. Wang, S., Cui, Y., Koodli, R., Hou, Y., Huang, Z.: Dynamic Multiple-Threshold 
Call Admission Control Based on Optimized Genetic Algorithm in Wireless/Mobile 
Networks. IEICE Transactions on Fundamentals of Electronics, Communications 
and Computer Sciences E91-A(7), 1597–1608 (2008) 

95. Rong, B., Qian, Y., Lu, K., Hu, R.Q., Kadoch, M.: Mobile-Agent-Based Handoff in 
Wireless Mesh Networks: Architecture and Call Admission Control. IEEE 
Transactions on Vehicular Technology 58(8), 4565–4575 

96. Bernard, W.: 30 Years of Adaptive Neural Networks: Perception, Madalines and 
Back Propagation. Proceedings of the IEEE 78(9) (September 1990) 

97. Chang, C.J., Lin, S.Y., Cheng, R.G., Shiue, Y.R.: PSD-based Neural-net Connection 
Admission Control. In: Proceedings of IEEE Infocom (April 1997) 

98. Diaz-Estrella, A., Jurado, A., Sandoval, F.: New Training Pattern Selection Method 
for ATM Call Admission Neural Control. Electronic Letters 330 (March 1994) 

99. Dueld, N.G., Lewis, J.T., O’Connell, N., Russell, R., Toomey, F.: Entropy of ATM 
Traffic Streams: A Tool for Estimating QoS Parameters. IEEE Journal on Selected 
Areas in Communications (August 1995) 

100. Elwalid, A., Mitra, D.: Effective Bandwidth of General Markovian Traffic Sources 
and Admission Control of High Speed Networks. In: Proceedings of IEEE Infocom 
(June 1994) 

101. Guerin, R., Ahmadi, H., Naghshineh, M.: Equivalent Capacity and Its Application to 
Bandwith Allocation in High-Speed Networks. IEEE Journal on Selected Areas in 
Communications (September 1991) 



62 1   An Overview of Call Admission Control in Mobile Cellular Networks
 

102. Haykin, S.: Neural Networks, A Comprehensive Foundation. Macmillan Publishing 
Company (1994) 

103. Hees, H., Lucantoni, D.: A Markov Modulated Characterization of Packetized Voice 
and Data Traffic and Related Statistical Multiplexer Performance. IEEE Journal on 
Selected Areas in Communications (September 1986) 

104. Hertz, J., Krogh, A., Palmer, R.: Introduction to the Theory of Neural Computation. 
Addison-Wesley Publishing Company (1991) 

105. Hiramatsu, A.: ATM Call Admission Control Using a Neural Network Trained with 
Virtual Output Buffer Method. In: IEEE International Conference on Neural 
Networks, vol. 6 (1994) 

106. Hiramatsu, A.: Training Techniques for Neural Network Applications in ATM. IEEE 
Communications Magazine (October 1995) 

107. Li, S.Q., Hwang, C.L.: Queue Response to Input Correlation Functions: Discrete 
Spectral Analysis. IEEE/ACT Transactions on Networking (October 1993) 

108. Masters, T.: Practical Neural Network Recipes in C++. Academic Press (1993) 
109. Morris, R., Samadi, B.: Neural Network Control of Communications Systems. IEEE 

Transactions on Neural Networks (1994) 
110. Nordstrom, E., Carlstrom, J., Gallmo, O., Asplund, L.: Neural Networks for 

Adaptive Traffic Control in ATM Networks. IEEE Communications Magazine 
(October 1995) 

111. Ogier, R., Plotkin, N.T., Khan, I.: Neural Network Methods with Traffic Descriptor 
Compression for Call Admission Control. In: Proceedings of IEEE Infocom (March 
1996) 

112. Plotkin, N.T., Roche, C.: The Entropy of Cells Streams as a Traffic Descriptor in 
ATM Networks. IFIP Performance of Communications Systems (October 1995) 

113. Sarajedini, A., Chau, P.M.: Quality of Service Prediction Using Neural Networks. In: 
Proceedings of MILCOM, vol. 2 (1996) 

114. Tham, C.-K., Soh, W.-S.: Multi-service Connection Admission Control using 
Modular Neural Networks. In: Proceedings of IEEE Infocom (March 1998) 

115. Youssef, S., Habib, I., Saadawi, T.: A Neurocomputing Controller for Bandwdith 
Allocation in ATM Networks. IEEE Journal on Selected Areas in Communications 
(February 1997) 



S. Ghosh and A. Konar: CAC in a Mobile Cellular Network, SCI 437, pp. 63–94. 
springerlink.com                                   © Springer-Verlag Berlin Heidelberg 2013 

Chapter 2 
An Overview of Computational Intelligence 
Algorithms 

This chapter provides an overview of selected computational intelligence 
algorithms, which will be required to understand the rest of the book. It begins 
with a review of fuzzy sets and logic, and would gradually explore swarm and 
evolutionary algorithms, and neural nets. The coverage on swarm and 
evolutionary algorithms include Genetic Algorithm, Particle Swarm Optimization 
Bio-geography Based Optimization and Differential Evolution algorithm. 
Supervised, unsupervised and reinforcement learning algorithms will be outlined 
under neural nets. The chapter ends with scope of applications of computational 
intelligence algorithms in call admission. 

2.1   Introduction 

The chapter introduces the foundations of computational intelligence techniques in 
a nutshell. Computational intelligence is a vast family of knowledge comprising of 
several models and techniques, including the logic of fuzzy sets, neurocomputing, 
and swarm and evolutionary computation.  The logic of fuzzy sets provides a 
frame work for uncertainty management in complex reasoning systems. Neural 
nets offer automatic techniques of machine learning and pattern recognition. 
Evolutionary algorithms are widely being used for intelligent search, optimization 
and machine learning. Swarm algorithms are nature-inspired techniques capable of 
imitating nature by judiciously selecting their power of natural optimization in 
identifying food sources. Researchers are taking keen interest to develop newer 
bio-inspired optimization algorithms by imitating the behavior of lower level 
creatures such as ants, bees and swaps.  

The chapter begins with logic of fuzzy sets. It introduces membership functions and 
fuzzy relations with special reference to implication relations. It also reviews fuzzy 
reasoning. Principles of machine learning are introduced through artificial neural 
networks. The chapter provides the basis of learning in biological nervous system, and 
its electrical equivalent model, that too stems from its biological counterpart.  It also 
briefly overviews supervised and unsupervised learning, the basic two learning 
policies that humans normally employ in their natural learning process. The later part 
of the chapter overviews a few swarm and evolutionary algorithms, covering Particle 
Swarm Optimization (PSO), Biogeography Based Optimization (BBO) and Genetic 
Algorithm and Differential Evolution algorithm (DE). 
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2.2   A Review of Fuzzy Sets and Logic 

In a conventional set, the condition defining the set boundaries is very rigid. For 
example, consider a universal set AGE, OLD, VERY OLD, YOUNG, CHILD and 
BABY are subsets of the universal set AGE.  The conventional approach to define 
these sets is illustrated below: 

            
        
  
 
 
 
 
 
 

 
 

In the above definitions age is a variable that may presume any value in the range 
[0, 120] years. It is clear from the definition that the boundary of each set is 
distinct. Thus an age=11 months 29 days is a member of the set BABY, but once it 
is 1 year it falls in the set CHILD. Thus there is a sharp demarcation in the 
boundary definition of the sets BABY and CHILD at age=1 year. Measurements 
in a real world system being highly imprecise, such a sharp demarcation of 2 set 
boundaries may cause a wrong allocation of the members to a given set. 

Another characteristic of a conventional set includes assignment of a grade of 
membership 1 to all its members and 0 to all its non-members. The following 
connotation is used to describe that the membership of an element x in a set A is 1, 
and the membership of a non-element y in the set A is 0. 

  1)( =xAμ                                                        (2.1) 

                 1)( =yAμ                                                         (2.2) 

A fuzzy set extends the binary membership: {0,1} of a conventional set to a 
spectrum in the interval of [0, 1]. Further, unlike a conventional set, all elements 
of the universal set U are members of a given set A. Thus for each element x∈U, 

            1)(A0 ≤≤ xμ .                                       (2.3) 

It needs mention here that as all elements of a universal set U are members of a 
given fuzzy set A, therefore, 2 fuzzy sets A and B may have an overlap in the 
boundary definitions. For example, in contrast to the respective conventional sets: 
BABY, CHILD, YOUNG, OLD and VERY OLD, the corresponding fuzzy sets 
allow any age in the interval [0, 120] years as a member of each of the above sets 
but with different memberships in [0, 1]. As a specific instance, the age 22 is a 
member of all the fuzzy sets but the membership of age (=22) to belong to the sets 
BABY, CHILD, YOUNG, OLD and VERY OLD respectively are 0.001, 
0.01,1.00, 0.60 and 0.20. The above example makes sense in the line of reasoning 

            BABY= {age ∈AGE: 0 year ≤ age <1year}, 

            CHILD= {age ∈AGE: 1 year ≤ age ≤10years}, 

            YOUNG= {age ∈AGE: 19 years ≤ age ≤ 40years}, 

            OLD= {age ∈AGE: 60 years ≤ age < 80years}, 

   and   VERY OLD= {age ∈AGE: 80 years ≤ age < 120 years}. 
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that an age of 22 corresponds to a young person, so the membership of age (=22) 
to be young is high (1.00). The relative grading of the other memberships thus can 
be easily understood from the usual meaning of the terms BABY, CHILD, OLD 
and VERY OLD.  A fuzzy set thus can be formally defined as follows. 

 
Definition 2.1: A fuzzy set A is a set of ordered pairs, give 

{ }XxxxA A ∈= :)(   , μ                                          (2.4) 

where X is a universal set of objects (also called the universe of discourse) and  
μA(x) is the grade of membership of the object x in A. Usually, μA (x) lies in the 
closed interval of [0,1]. 

It may be added here that some authors [1] relax the range of membership from 
[0, 1] to [0, Rmax] where Rmax is a positive finite real number. One can easily 
convert [0, Rmax] to [0, 1] by dividing the membership values in the range [0, 
Rmax] by Rmax. 

There are other notations of fuzzy sets as well. For instance, the ordered pair (x, 
μA (x)) in the definition of fuzzy set is also written as Axx A /or    )(/ Aμμ   as well. 

Let the elements of set X be nxxx ,........., 21 . Then the fuzzy set XA ⊆  is denoted 

by any of the following nomenclature. 
 

            ( ){ })(,.....()),.......(,()),(, 2211 nAnAA xxxxxxA μμμ=  

 Or      { })(/),........(/),(/ 2211 nAnAA xxxxxxA μμμ=  

 Or      { })(/........)(/)(/ 2211 nAnAA xxxxxxA μμμ +++=     

 Or      { }nnAAA xxxxxxA /)(......../)(/)( 2211 μμμ +++=  

 Or      { }nnAAA xxxxxxA /)(,......../)(,/)( 2211 μμμ=  

 
In this book we used the last option. The details of membership function μA(x) is 
formalized below. 

2.2.1   Membership Functions 

The grade of membership )(xAμ maps the object or its attribute x to positive real 

numbers in the interval [0, 1]. Because of its mapping characteristics like a 
function, it is called membership function. A formal definition of the membership 
function is given below for the convenience of the readers. 

 
Definition 2.2: A membership function )(xAμ is characterized by the following 

mapping: 
   [ ] XxxA ∈→         ,1,0:μ                                        (2.5) 

where x is a real number describing an object or its attribute and X is the universe 
of discourse and A is a subset of X. 
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A question that naturally arises is: how to construct a membership function? 
The following examples provide a thorough insight to the selection of the 
membership functions. 

 
Example 2.1: Consider the problem of defining BABY, CHILD, YOUNG, OLD 
and VERY OLD by membership functions. The closer the age of a person to 0, the 
higher is his/her membership to be a BABY. So, if x is the age of the person, we 
can define BABY as follows: 

{ } )exp()(           )(, xxwherexxBABY BABYBABY −== μμ     (2.6) 

 
  
 
 
 
 
 
 
   
 
 
   
 
 
 

Fig. 2.1 Membership curves for the fuzzy sets: BABY, CHILD, YOUNG, OLD and VERY 
OLD. The x-axis denotes the age in years and the y-axis denotes the memberships of the given 
fuzzy sets at different ages. 

Thus as 1)(    ,0 →→ xx BABYμ . Further, as x increases, )(xBABYμ  decreases 

exponentially. The membership function )(xBABYμ  can also be designed to have a 

controlled decrease with increasing x by including a factor α to x in exp(-x). Thus, 

     0     )exp()( >−= ααμ forxxBABY                          (2.7)                     

Larger the value of α, the higher is the falling rate of )(xBABYμ over x. In a similar 

manner we can define the membership functions for CHILD, YOUNG, OLD and 
VERY OLD fuzzy sets. But before representing them mathematically let us take a 
look at them. 

The membership curves for the fuzzy sets: BABY, CHILD, YOUNG, OLD and 
VERY OLD are shown in Fig. 2.1. The curve for CHILD fuzzy set has the peak at 
some age slightly greater than 0 and has a sharp fall off around the peak. The 
logical interpretation of this directly follows from the meaning of the word child. 
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The membership curve for the fuzzy set YOUNG has a peak at age x=25 and falls 
off very slowly on both sides around the peak. 

As youth is the most charming period of the human beings, we prefer to call 
people YOUNG even if they are away from 25 on either side. If the readers' 
view is different they can allow a sharp falloff of the curve around the age x=25. 
One interesting point to note about the OLD and VERY OLD membership 
curves is that OLD curve throughout has a higher membership than the VERY 
OLD curve until both saturate at age x = 120 years. This is meaningful because 
if someone is called VERY OLD then he must be OLD, but the converse may 
not be true. 

There are many ways to represent the membership functions shown in Fig. 2.1 
by mathematical functions. One such representation is given below: 

 
  0c,b,a          ),xcbx1(ax)x( 22

CHILD  (2.8) 

         0         ],2)25x(exp[)x( 22
YOUNG (2.9) 

         0d                            )dxexp(1)x( 2
OLD  (2.10) 

         0d          ),dx(exp1)x(and VERYOLD  
(2.11) 

The parameters a, b, c and d in the above membership functions are selected 
intuitively by the experts based on their subjective judgement in the respective 
domains. Tuning of these parameters is needed to control the curvature and sharp 
changes on the curves around some selected x-values.                

2.2.2   Continuous and Discrete Membership Functions 

The universe of discourse (or simply the universe) of a fuzzy set may exist for both 
discrete and continuous spectrum. For example, the roll number of students in a 
class is a discrete universe. On the other hand the height of persons is a continuous 
universe as height may take up any values between 4' to 8'. It may be mentioned 
here that a continuous universe is sometimes sampled at regular or irregular intervals 
for using it as a discrete universe.  The membership curve of YOUNG in Fig. 2.1 
may be, for instance, discretized at age x= 18, 22, 24, 28. This is an example of non-
uniform/ irregular sampling as the intervals of sampling 18-22, 22-24, 24-28 are 
unequal. The membership curve of YOUNG may alternatively be sampled at a 
regular interval of age x=18, 20, 22, 24, say. This is an example of uniform/ regular 
sampling. Fig. 2.2(a) and (b) describe the instances of the non-uniform and uniform 
sampling of the YOUNG membership curve. 

2.2.3   Fuzzy Implication Rules 

Reasoning informally refers to generation of inferences from a given set of facts 
and rules. The subject logic is concerned with the formalization of methodology  
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and principles of reasoning. Production rules are synonymously called implication 
rules in traditional logic. Implication rules of traditional logic are extended with 
fuzzy linguistic variables. In this section, the implication rules in the classical 
(propositional/ predicate) logic and their extension in fuzzy domain are introduced. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.2 (a) Non-uniform and (b) uniform sampling of the YOUNG membership curve. 
 
 
Let us try to formalize the rule: IF x is a banana and x is yellow THEN x is ripe 

in predicate logic. For this formalization, we define 3 predicates Banana(x), 
Yellow(x) and Ripe(x), where each of these predicates has only 2 possible truth 
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 values: true or false. Using a IF-THEN (implication) operator, the above rule  
can be written as: 

                                       Banana(x), Yellow(x)→Ripe(x). 

where the comma in the left side of the implication sign (→) denotes logical 
conjunction (AND) of the antecedent predicates.  

In order to allow instantiation of the antecedent predicates with the contents of the 
WM, we consider 6 fuzzy sets: YELLOW, VERY-YELLOW, MORE-OR-LESS-
YELLOW, RIPE, VERY-RIPE and MORE-OR-LESS-RIPE. Fuzzy extensions of the 
last rule then may be re-stated as follows: 

   
 Rule 1: IF a banana is YELLOW  
              THEN it is RIPE. 
 Rule 2: IF a banana is VERY-YELLOW 
              THEN it is VERY-RIPE. 
 Rule 3: IF a banana is MORE-OR-LESS-YELLOW 
                   THEN it is MORE-OR-LESS-RIPE. 
         

It may be added here that unlike production systems, the logic of fuzzy sets allows 
firing of these 3 rules concurrently in presence of a data element concerning color 
of a banana in the WM. Thus conflict resolution is not employed in fuzzy logic. 

Formally, let x be a linguistic variable in a universe X, and A1, A2 and A3 are 
three fuzzy sets under the universe X. Also assume that y be another linguistic 
variable in a universe Y and B1 , B2  and B3  are 3 fuzzy sets under Y.  Then the 
implication rules between variable x and y may be described as 

 
         Rule1: IF x is A1 THEN y is B1. 
         Rule2: IF x is A2 THEN y is B2. 
         Rule 3: IF x is A3 THEN y is B3. 
 

Suppose the WM contains x is A', where A' is semantically close to A1, A2 and 
A3 respectively. In the subsequent sections, we demonstrate the evaluation 
procedure of y is B' from the known membership distributions of x is A1, y is B1, x 
is A2, y is B2, x is A3, y is B3 and x is A' 

2.2.4   Fuzzy Implication Relations 

A fuzzy implication relation [2] for a given rule: IF x is Ai THEN y is Bi is 
formally denoted by  

    { }),/(),(),( yxyxyxR
iRi μ=                                     (2.12) 

where the membership function ),( yx
iRμ  is constructed intuitively by many 

alternative ways. One typical implication relations is presented below.  
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Mamdani Implication: Mamdani proposed the following two implication 
functions [7, 12]. 

      )](),([),( yxMinyx
iii BAR μμμ =                                 (2.13) 

OR  )()((),( yxxyx
iiii BAAR μμμμ =                                  (2.14) 

Mamdani implication functions are most widely used implications in fuzzy 
systems and fuzzy control engineering. This implication relation is constructed 
based on the assumption that fuzzy IF-THEN rules are local. For example, 
consider the implication rule: IF height is TALL THEN speed is HIGH. By 
Mamdani's implication function, we do not want to mean: IF height is SHORT 
THEN speed is SLOW. The second rule is rather an example of a non-local rule. 
The knowledge engineer thus has to decide whether he prefers local or non-local 
rules. If he prefers local rules then Mamdani's implication relation should be used. 

2.2.5   Fuzzy Logic  

The logic of fuzzy sets, also called fuzzy logic, is an extension of the classical 
propositional logic from 2 perspectives. First, instead of binary valuation space 
(truth/falsehood) of the propositional logic, fuzzy logic provides a multi-valued 
truth-space in [0, 1]. Secondly, propositional logic generates inferences based on 
the complete matching of the antecedent clauses with the available data, whereas 
fuzzy logic is capable of generating inferences even when a partial matching of 
the antecedent clauses against data elements in WM exists. In this section, we 
present 3 typical propositional inference rules and describe their possible 
extensions in fuzzy logic. 

2.2.6   Typical Propositional Inference Rules  

Let p, q and r be 3 propositions. The following 3 propositional inference rules are 
commonly used for logical inferencing.  

 Modus Ponens: Given a proposition p and a propositional implication 
rule p→q, we can derive the inference q. Symbolically, 

          qqpp →∧ )(                                               (2.15) 

where  denotes a logical provability operator. This above inference rule    
is well known as modus ponens. 

 Modus Tollens: Given a proposition ¬q, and the implication rule p→q, 
we can derive the inference ¬p. symbolically, 

pqpq ¬→∧¬ )(                                         (2.16) 

The above inference rule is known as modus tollens. 
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 Hypothetical Syllogism: Given 2 implication rules p→q and q→r, then 
we can easily derive a implication p→r. Symbolically, 

    rprqqp →→∧→ )()(                              (2.17) 

The above inference rule is popularly known as hypothetical syllogism or 
chain rule. 

2.2.7   Fuzzy Extension of the Inference Rules 

The logic of fuzzy set provides a general framework for the extension of the  
above 3 propositional inference rules. Fuzzy extension of modus ponens, modus 
tollens and hypothetical syllogisms are called generalized modus ponens, 
generalized modus tollens and generalized hypothetical syllogism respectively. 

 
Generalized Modus Ponens (GMP): Consider a fuzzy production rule: IF x is A 
then y is B, and a fuzzy fact: x is A/.  The GMP inference rule then infers y is B/. 
Here A, B, A/ and B/ are fuzzy sets such that A/ is close to A, and B/ is close to B. 
The inference rule also states that the closer the A/ to A, the closer the B/ to B. 
Symbolically, the GMP can be stated as follows: 

 
      Given:      IF x is A THEN y is B. 
      Given:      x is A/ 

     Inferred:    y is B/ 

Generalized Modus Tollens (GMT):  Given a fuzzy production rule: IF x is A 
THEN y is B, and a fuzzy fact y is B/, the GMT then infers x is A/, where the more 
is the difference between B/ and B, the more is the difference between A/ and A. 
Symbolically, the GMT is stated as follows: 

 
      Given:       IF x is A THEN y is B. 
      Given:        y is B/ 

         Inferred:     x is A/. 

Generalized Hypothetical Syllogism (GHS): Given 2 fuzzy production rules: IF 
x is A THEN y is B, and IF y is B/ THEN z is C/, where A, B and C are 3 fuzzy 
sets, and B/ is close to B.  Then the GHS infers : If x is in A then z is in C'.  The 
closer the B/ to B, the closer the C/ to C. Symbolically, we can state this rule as 
follows: 

 
     Given:  IF x is A THEN y is B. 
     Given:  IF y is B/ THEN z is C 

      Inferred: If x is in A then z is in C/. 
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In the above definition of the inference rules, we just mentioned that A/ is close to 
A, B/ is close to B and the like. But we did not mention what we exactly mean  
by "close to". In fact "close to" can take any of the following forms: VERY, 
VERY-VERY, MORE-OR-LESS, NOT, ABOUT-TO, AROUND and other fuzzy 
hedges that mean a fuzzy set A/ are approximately similar to A.  

2.2.8   The Compositional Rule of Inference 

In this section we present the methodology for the evaluation of fuzzy inferences 
for GMP, GMT and GHS. This, however, calls for formalization of a fuzzy rule 
called the compositional rule of inference. The compositional rule of inference is 
usually applied to 2 fuzzy membership distribution, one of which usually have a 
smaller number of linguistic variables. The rule extends the latter membership 
distribution cylindrically, so as to increase its number of linguistic variables to  
the former distribution. The intersection of the former and the resulting 
distribution is then projected to desired axes. The whole process is referred to as 
the compositional rule of inference. How exactly the compositional rule of 
inference is applied to determine the fuzzy inferences in GMP, GMT and GHS is 
presented below. 

2.2.9   Computing Fuzzy Inferences Using GMP 

Given a fuzzy production rule: IF x is A THEN y is B, and a fact y is B/, we by 
GMT infer x is A/. In this section we present the principle of determining the 
membership distribution of x is A/, μA/(x), from the membership distribution of y 
is B/, μB

/(y), and the membership μR(x, y) of the fuzzy relation between the 
antecedent and consequent part of the given rule. The computation involves 
cylindrical extension of μB

/(y) to μB
/ CYL (x, y), then intersection of μB

/ CYL (x, y) 
with μR(x, y) and finally projection of the resulting relation ox X-axis. Thus, 
following the same steps as in the case of GMP, it can  easily be shown that 

{ }[ ]. ),(),(max)( yxytx RB
Yy

A μμμ ′
∈

′ =                              (2.18) 

When μB
/(y) and μR(x, y) are discrete relations represented by a row vector and a 

matrix respectively, we can represent the above result by the following max-min 
composition operation: 

[ ]TRBA yxyx ),()()( μμμ ′′ =                                            (2.19) 

where T denotes the transposition operator over the given relation. 
 

Example 2.2: This example illustrates the computation of GMP using max-min 
composition operator. 
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We take the same μR(x, y) as in Example 2.1, and the μB/(y) we obtained as the 
result in that example, and plan to determine μA/(x) by the compositional rule of 
inference. Thus, 

[ ] [ ]

[ ]7.0    9.0   8.0                                                 

5.06.07.0

9.05.06.0

5.06.08.0

9.0   6.0  8.0),()()(

=
















== ′′

T

T
RBA yxyx  μμμ  

It may be noted that μA
/(x) thus obtained is not same as that presumed in  

Example 2.2.                                                                                              

2.3   Neural Nets 

This section provides an introduction to biological neural networks and their 
mathematical models called artificial neural networks. Neural networks have 
proved them successful in pattern recognition, system identification, function 
approximation and many others. 

2.3.1   Biological Neural Networks 

The human nervous system consists of small unicellular structures called neurons. 
Neurons thus are fundamental units or building blocks of a biological nervous 
system.  A neuron comprises of 5 elements: dendrite, Dendron, cell body, synapse 
and axon (Fig. 2.3). The dendrites receive signals from other neurons, muscles or 
sensory organs and carry them to a relatively thick fiber called Dendron. The 
Dendron carry the signals to the cell body, which in turn generates a composite 
signal based on the strength of the signals received from the dendrites. The 
composite signal is transmitted to the synapse through the axon (Fig. 2.3).  

The synapse is like a potential barrier that controls the flow of signal from the 
axon of one neuron to the dendrites of other neurons. The transmission of signals 
from one neuron to another at a synapse is a complex chemical process. Generally, 
a specific chemical called neuro-transmitter is released from the transmitting end of 
the synapse. The transmitters lower or raise the potential barrier of the synapse. On 
lowering the potential barrier, the signal from the transmitting end can easily reach 
the other end of the synapse. On raising the barrier, a signal loss takes place and 
only a small component of the signal can reach the other end of the synapse. Flow 
of signal from one neuron to the others thus can be controlled by the synapse. 
When the influence of the synapse tends to activate the post-synaptic neuron, the 
synapse is called excitatory. On the other hand, when the synapse prohibits the 
passage of signal flow to the post-synaptic neuron, the synapse is called inhibitory. 
The synaptic ending of an axon thus is of excitatory or inhibitory nature. 

How the neurons participate in the learning process of the human beings 
remained a mystery till this date. However, it is evident that the process of 
learning has a correspondence with the type and amount of neuro-transmitters 
released at the pre-synaptic end of the neurons. Thus for similar sensory/control/ 
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motor actions a neuron releases the same type and amount of neuro-transmitters. 
How exactly the neurons perform the above task is an interesting topic of research 
for the biologists and medical researchers. 

   

 Dendrites 

Axon 

Synapse 

Nucleus 

Cell body 

Dendron 

 

Fig. 2.3 A Biological Neural Net comprising of two neurons, where the dendrites of the 
second neuron receive signal from the synapse of the first neuron. 

2.3.2   Artificial Neural Networks 

Artificial neural networks are electrical analogue of the biological nervous system. 
A typical artificial neuron is mathematically represented by two modules: i) a linear 
activation/ inhibition module and ii) a non-linearity that limits the signal levels 
within a finite band. Fig. 2.4 presents the typical organization of an artificial neuron. 

The summer in Fig. 2.4 takes the role of the cell body and the inputs of the 
summer may be treated like dendrites. The synapse is modeled by a non-linear 
function and the connection from the summer to the non-linear unit is like the 
axon. Here, Net is a linear combiner of the inputs x1, x2, …, xn. Mathematically, 

                             
=

=
n

i
ii xwNet

1

                                               (2.20)                                         

where some of the inputs are excitatory (positive) and the rest are inhibitory 
(negative). ‘Out’ in the present context can take different mathematical forms. 
Some of the common forms are presented below. 

)( thNetuOut −=                                  (2.21) 

)(NetSgnOut =                                                       (2.22) 
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                     [ ])exp(1/1 NetOut −+=                                       (2.23) 

     )2/tanh(NetOut =                                             (2.24) 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.4 A Typical Artificial Neuron 

The mathematical form of Out can be smooth functions like sigmoid vide 
expression (2.23) or tanh vide expression (2.24) and sharp changing functions like 
step vide expression (2.21) or signum function (vide expression (2.22)) 
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Fig. 2.5 A Feed-Forward Neural Net of 3 Layers 

The unit step function u in expression (2.21) is formally defined as follows: 

                


 >

=−
otherwise

thNet
thnetu

    ,0

      ,1
)(                                      (2.25)  

 iixw

1w  

2w  

3w  

1x

2x  

3x  

Non-linearity 
Out Net



76 2   An Overview of Computational Intelligence Algorithms
 

The signum function Sgn in expression (2.22) is formally defined as 

   




−
>+

=
otherwise

Net
NetSgn

       ,1

0          ,1
)(                              (2.26) 

The definitions of sigmoid and tanh are very standard and thus need no further 
explanation. Neurons in an artificial neural net are connected in different 
topological configurations. Two most common type of configurations are i)feed-
forward and ii) feedback topology. Usually, a feed-forward network contains a 
number of layers, each layer consisting of a number of neurons (Fig. 2.4). Signal 
propagation in such networks usually take place in the forward direction only, i.e., 
signals from the i-th layer can be propagated to any layer following the ith layer, 
for i≥1. In a recurrent neural network, there exists feedback from one or more 
neurons to others. Fig. 2.6 describes a recurrent network. 

The most important aspect of an artificial neural net is its capability of learning. 
In the next section, we introduce the concepts of learning on artificial neural nets. 

 

Fig. 2.6 A Typical Recurrent Neural Net 

2.3.3   Principles of Learning in a Neural Net 

Informally “encoding” or “learning” refers to adaptation of weights in a neural 
net. Thus until the weights converge to a steady state value, the process of 
encoding is continued. Adaptation of weights can be accomplished in a neural net 
by 4 different ways; they are supervised learning, unsupervised learning, 
reinforcement learning and competitive learning. A brief outline to the learning 
schemes is presented below.              

♦Supervised Learning: Supervised learning generally employs a trainer, who 
provides the input-output training instances of a given neural net. As an 
example, let us consider a pattern recognition problem, where we need to 
recognize an object from its feature- space. Here, the set of features such as size 
of the object and its shape described by its boundary descriptors, for instance, 
may be considered as input, while the type of the object such as books, pencils 
etc. may be treated as output of the neural net. Thus for n distinct objects, we 
require n-outputs of the neural net, each corresponding to one object. 
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When one of n-outputs has the maximum value, the object is regarded to fall 
within the particular class. Further for a large n, we can denote the output class by 
an encoded number, such as binary string. Thus for a given input feature vector, if 
a binary string 0011 appears at the output, we consider the object to belong to 
class 3.  

Fig. 2.7 describes a scheme for supervised learning. Here, given a input vector I 
and a target vector T, we need to fix the weights in the network, such that T is 
produced at the output of the network when excited with the input I. How can we 
achieve this? First, we initialize the weights randomly. Then for the given input 
vector I, suppose the network generates the vector O at its output. An error vector 
E = T – O is then generated, and a supervised learning algorithm is used to adjust 
the Network parameters based on the error vector.                               

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
                       
 
 
 
               
 
 
 
 

Fig. 2.7 A Simple Supervised Learning Scheme. 

2.4   Swarm and Evolutionary Algorithms 

Problems which involve global optimization over continuous spaces are 
ubiquitous throughout the scientific community. In general, the task is to optimize 
certain properties of a system by pertinently choosing the system parameters.  
For convenience, a system's parameters are usually represented as a vector.  

Input vector I 

Feed-Forward Neural Net

Output Vector O

Target/ Desired Vector T

+

-

Supervised learning 
algorithm 

Adjustment of 
network 
parameters 
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The standard approach to an optimization problem begins by designing an 
objective function that can model the problem's objectives while incorporating any 
constraints. In a complex real life search problem, the search space may be a 
rough landscape, riddled with multiple local maxima/minima.  

The objective function is very often non differentiable and/or discontinuous at  
a number of points. As for example consider the following functions shown in  
Fig. 2.8. Since the derivative based methods are of no help, other methods, 
combining mathematical analysis and random search came up for them. Imagine 
you scatter small robots in a Mountainous landscape. Those robots can follow the 
steepest path they found. When a robot reaches a peak, it claims that it has found 
the optimum. This method of hill climbing is very efficient, but there's no proof 
that the optimum has been found, each robot can be blocked in a local optimum. 
This type of method only works with reduced search spaces. 

To tackle this kind of numerical optimization tasks over continuous search 
spaces, in 1995, two different algorithms were developed. First of them is the 
Particle Swarm Optimization (PSO) [3] while the second one goes by the name 
Differential Evolution (DE) [4]. Both of these algorithms do not require any 
gradient information of the function to be optimized, uses only primitive 
mathematical operators and is conceptually very simple. Unlike the conventional 
Genetic Algorithms (GA) [5] they can be implemented in any computer language 
very easily and requires minimal parameter tuning. 

 
 

 
 

Fig. 2.8 Functions with Huge Number of Local Minima and Maxima 

Their performance does not deteriorate severely with the growth of the search 
space dimensions as well. These issues perhaps have a great role in the popularity 
of the algorithms within the domain of machine intelligence and cybernetics.  
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2.4.1   Classical PSO 

The concept of function-optimization by means of a particle swarm was 
introduced by James Kennedy and Russel C. Eberhart in an IEEE neural network 
conference paper from 1995 [3]. Suppose the global optimum of an n-dimensional 
function is to be located. The function may be mathematically represented as  

)(),...,,,( 321 Xfxxxxf n


=   where X


 is called the parameter vector which 

actually represents the set of independent variables. The task is to find out such 

a X


, that the function value )(Xf


 is either a minimum or a maximum denoted by 

f* in the search range. If the components of X


 assume real values then the task is 
to locate a particular point in the n dimensional hyperspace which is a continuum 
of such points.  

 
Example 2.3 Consider the simplest two dimensional sphere function given by, 

2

2

2

121 )(),( xxXfxxf +==


 

If  x1 and x2 can assume real values only then by inspection it is pretty clear that 
the global minima of this function is at x1=0, x2=0 i.e. at the origin (0, 0) of the 
search space and the minimum value is f(0, 0) = f* = 0. No other point can be 
found in the x1-x2 plane at which value of the function is lower than f* = 0. Now 
the case of finding the optima is not so easy for functions like this one: 

1)14sin(2)24sin(1)2,1( ++−= πππ xxxxxxf ; 

  

Fig. 2.9 Surface plot of the above-mentioned function 

This function has multiple peaks and valleys and a rough fitness landscape. A 
surface plot of the function is shown in Fig. 2.9. To locate the global optima 
quickly on such a rough surface calls for parallel search techniques. Here many 
agents start from different initial locations and go on exploring the search space 
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until some (if not all) of the agents reach the global optimal position. The agents 
may communicate among themselves and share the fitness function values found 
by them. 

PSO is in principle such a multi-agent parallel search technique. Particles are 
conceptual entities which fly through the multi-dimensional search space. At any 
particular instant each particle has a position and a velocity. The position vector of 
a particle with respect to the origin of the search space represents a trial solution 
of the each problem.       

At the beginning a population of particles is initialized with random positions 

marked by vectors iX


and random velocities iV


. Initial distribution of particles on 

a two dimensional search space may be illustrated in Fig. 2.10. 

  

 
Fig. 2.10 Initial orientation of the swarm on a two dimensional fitness landscape 

The population of such particles is called a ‘swarm’ S. A neighborhood relation 
N is defined in the swarm. N determines for any two particles Pi and Pj whether 
they are neighbors or not.  Thus for any particle P, a neighborhood can be 
assigned as N(P), containing all the neighbors of that particle. Each particle P has 
two state variables:  

Velocity 
Direction of a 
Particle 
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 Its current position )(tx


 

  Its current velocity )(tv


.  

And also a small memory comprising, 

 Its previous best position )(tp


i.e. personal best experience. 

 The best )(tp


of all )(PNP ∈ : )(tg


i.e. the best position found so far in 

the neighborhood of the particle. 

The best )(tp


of all )(PNP ∈ : )(tg


i.e. the best position found so far in the 

neighborhood of the particle. The PSO scheme has the following algorithmic 
parameters: 

 maxV  or maximum velocity which restricts )(tVi


within the 

interval ],[ max masvv− . 

 An inertial weight factor ω [6]. 
 Two uniformly distributed random numbers φ1 and φ2 which respectively 

determine the influence of )(tp


and )(tg


 on the velocity update formula. 

 Two constant multiplier terms C1 and C2 known as “self confidence” and 
“swarm confidence” respectively. 

Initially the settings for )(tp


and )(tg


 are )0()0()0( xgp


==   for all particles. 

Once the particles are initialized, the iterative optimization process begins where 
the positions and velocities of all the particles are altered by the following 
recursive equations. The equations are presented for the dth dimension of the 
position and velocity of the i-th particle. 

 

  ))()(())()(()()1( 2211 tXtgCtXtPCtVtV iddiddidid −+−+=+ ϕϕω                 (2.27)  

   )1()()1( ++=+ tVtXtX ididid         

                              
The first term in the velocity updating formula represents the inertial velocity of 

the particle. The second term  )(tP


 involving represents the personal experience 

of each particle and is referred to as “cognitive part”. 
The last term of the same relation is interpreted as the “social term” which 

represents how an individual particle is influenced by the other members of its 
society.  The velocity updating scheme has been presented in Fig. 2.11, using a 
humanoid agent in place of a particle on the spherical functional surface. After 
having calculated the velocities and position for the next time step t+1, the first 
iteration of the algorithm is completed.  

Typically, this process is iterated for a certain number of time steps, or until 
some acceptable solution has been found by the algorithm or until an upper limit 
of CPU usage has been reached. Once the iterations are terminated, most of the 
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particles are expected to converge to a small radius surrounding the global optima 
of the search space. The ideal distribution of the particles after the algorithm is 
stopped has been shown in Fig. 2.12. 

 
 
 
The algorithm can be summarized in the following pseudo code: 
 
Procedure Particle_swarm_optimization 
set t = 0; 
Initialize φ1, φ2 , Vmax and define N; 
 
While (termination_condition = FALSE) 
{ 
   :Sp ∈∀ calculate )1( +tv


and )1( +tx


using equations (1);   :Sp ∈∀ update 

)1( +tp


with )1( +tx


if ))1(( +txf


is better than ))(( txf


 

     :Sp ∈∀ update )1( +tg


with the best )1( +tp


in N(p); 

} 
 

 

Vi(t) 

Current Position 

φ2.(Pgb-Xi(t))  
 

Best Position found  
By the agent so far (Plb) 

Resultant 
Velocity 
Vi(t+1) 

φ1.(Plb-Xi(t)) 

Globally Best 
Position  

Fig. 2.11 Illustrating the velocity updating scheme of basic PSO 
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Fig. 2.12 Ideal distribution of the particles on a two dimensional fitness landscape after the 
algorithm is terminated 

2.4.2   Differential Evolution 

In 1995 Storn and Price made an attempt to replace the classical crossover and 
mutation operators in GA by alternative operators [4], and found a suitable vector 
differential operator to handle the problem. They proposed a new algorithm based 
on this operator, and called it Differential Evolution (DE). DE searches for a 
global optimum in a D-dimensional hyperspace. It begins with a randomly 
initialized population of D-dimensional real-valued parameter vectors. Each 
vector, also known as a ‘genome’ or ‘chromosome’, forms a candidate solution to 
the multi- dimensional optimization problem. 

The initial population (at time t = 0) is chosen randomly and should be 
representative of as much of the search space as possible. Subsequent generations 
in DE can be represented by discrete time steps: t = 1, 2, ..., n etc. Since the 
parameter vectors are likely to be changed over different generations the following 
notation has been adopted here for representing the i-th vector of the population at 
the current generation (at time t):       

)]().....(),(),([)( ,3,2,1, txtxtxtxtX Diiiii =


 

For each parameter of the problem, there may be a certain range within which the 
value of the parameter must lie. At the beginning of a DE run, problem parameters 
or independent variables are initialized somewhere in their feasible numerical 

The best Particle  
Conquering the Peak 

Most of the 
particles land in a 
close vicinity of 
the global optima 
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range. So, if the j-th parameter of the given problem has its lower and upper bound 

as  
L
i

x and 
U
i

x respectively, then the j-th component of the i-th population 

member may be initialized as 

          )xx).(1,0(randx)0(x L
j

U
j

L
jj,i −+=                             (2.28) 

where rand(0,1) is a uniformly distributed random number lying between 0 and 1.                                 
For each individual vector Xk(t) belonging to current population, DE randomly 

samples three other individuals Xi(t), Xj(t) and Xm(t) from the same generation 
(for distinct k, i, j and m), calculates the difference of the components 
(chromosomes) of Xi(t) and Xj(t), scales it by a scalar R (є [0,1]) and creates a trial 
offspring vector by adding the result to the chromosomes of Xm(t). Thus for the n-
th component of each parameter vector, we have  
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,,,
,              (2.29) 

where CR (є[0,1]) is the crossover constant. This scheme is illustrated in Fig. 2.13. 
To keep the population size constant over subsequent generations, the next step 

of the algorithm calls for ‘selection’ to determine which one between the parent 
and child will survive in the next generation (i.e. at time t+1). DE uses the 
Darwinian principle of “survival of the fittest” in its selection process which may 
be expressed as 

  

                  






>+=

<++=+

))(())1((           )(              

))(())1((      )1()1(

tXftUfiftX

tXftUfiftUtX

iii

iiii                         (2.30) 

 
where f(.) is the function to be minimized.  If the new offspring yields a better 
value of the fitness function, it replaces its parent in the next generation; otherwise 
the parent is retained in the population. Hence the population either gets better 
(with respect to the fitness values) or remains the same but never deteriorates.  

The DE algorithm is outlined below: 

Procedure Differential-evolution 
Begin 
     Initialize population; 
     Evaluate fitness; 
     For i=0 to max-iteration do  
     Begin  
      Create Difference-Offspring; 
      Evaluate fitness; 
       If an offspring is better than its parent  
      Then replace the parent by offspring in the next generation; 
      End If; 
    End For; 
End. 
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Fig. 2.13 Illustrating DE in 2-D parameter space 

In the above algorithm, population is at first initialized to random values and 
fitness of each vector is judged according to some predefined cost function. The 
algorithm is then continued to generate population by invoking differential 
evolution and replacing parents by more fit offspring. The algorithm terminates 
when the fitness of the best genome is greater than a predefined value or 
maximum number of iterations has been attained. 

2.4.2.1   Variants of Classical Differential Evolution 

Generally in population-based search and optimization methods, considerably 
high diversity is necessary during the early part of the search to utilize the full 
range of the search space. On the other hand during the latter part of the search, 
when the algorithm is converging to the optimal solution, fine-tuning is important 
to locate the global optimum efficiently. Considering these issues, two new 
strategies [7] were proposed to improve the performance of the DE. 

2.4.2.2   DERANDSF (DE with Random Scale Factor) 

In the original DE [2] the difference vector ))()(( 32 tXtX rr


−  is scaled by a 

constant factor ‘R’. The usual choice for this control parameter is a number 
between 0.4 and 1. We propose to vary this scale factor in a random manner in the 
range (0.5, 1) by using the relation 

  rand(0,1))(1*0.5R +=                                       (2.31) 

where rand (0, 1) is a uniformly distributed random number within the range [0, 
1]. We call this scheme DERANDSF (Differential Evolution with Random Scale 
Factor). 
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The mean value of the scale factor is 0.75. This allows for stochastic variations 
in the amplification of the difference vector and thus helps retain population 
diversity as the search progresses. Even when the tips of most of the population 
vectors point to locations clustered near a local optimum due to the randomly 
scaled difference vector, a new trial vector has fair chances of pointing at an even 
better location on the multimodal functional surface. Therefore the fitness of the 
best vector in a population is much less likely to get stagnant until a truly global 
optimum is reached.   

 

Fig. 2.14 Illustrating DETVSF scheme on two dimensional cost contours OF Ackley 
function 

2.4.2.3   DETVSF (DE with Time Varying Scale Factor) 

In most population-based optimization methods (except perhaps some hybrid 
global-local methods) it is generally believed to be a good idea to encourage the 
individuals (here, the tips of the trial vectors) to sample diverse zones of the 
search space during the early stages of the search. During the later stages it is 
important to adjust the movements of trial solutions finely so that they can explore 
the interior of a relatively small space in which the suspected global optimum lies. 
To meet this objective we reduce the value of the scale factor linearly with time 
from a (predetermined) maximum to a (predetermined) minimum value: 

MAXITiterMAXITRRR /)()( minmax −∗−=                           (2.32) 
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where Fmax and Fmin are the maximum and minimum values of scale factor F, iter 
is the current iteration number and MAXIT is the maximum number of allowable 
iterations. The locus of the tip of the best vector in the population under this 
scheme may be illustrated as in Fig. 2.14. 

2.5   Biogeography-Based Optimization (BBO) 

Biogeography is the study of the distribution of biodiversity over space and time. 
It aims to analyze where organisms live, and in what abundance. Biogeography 
theory grew out of the work of Alfred Wallace [8] and Charles Darwin [9]. This 
gives rise to an interest in the distribution of organisms. The development of 
biogeography allowed scientists to test theories about the origin and dispersal of 
populations, which spurred its application in the field of the engineering. Just as 
what has happened in the past few years with the areas of computer intelligence 
[10, 11, 12], including genetic algorithms (GAs) [13, 14, 15], ant colony 
optimization (ACO) [16, 17, 18, 19], particle swarm optimization (PSO) [20, 21, 
22], biogeography-based optimization (BBO) as a new type of evolutionary 
algorithm (EA) was recently proposed. This newest EA was introduced by Simon 
[23] in 2008 and demonstrated good optimization performance on various 
benchmark functions. In the original BBO paper, it was already proven that it is 
competitive with other famous EAs. If its highest potential is developed and 
applied to more practical problems, it could become a popular EA. 

When a habitat is highly populated, it has many species and thus is likely to 
emigrate many species to nearby habitats, while few species immigrate into it, 
simply by virtue of the lack of room for immigrating species. In the same way, 
when a habitat is sparsely populated, it has few species and thus is likely to 
receive many immigrants, while only a few species emigrate because of their 
sparse populations.  

The issue of whether or not those immigrants can survive after migration is 
another question, but the immigration of new species can raise the biological 
diversity of a habitat and thereby improve the habitat’s suitability for other 
species. At least to this point, biogeography is a positive feedback phenomenon, 
and we regard this phenomenon of biogeography as an optimization process. This 
view of the environment as an optimizing system was suggested as early as 1990s 
[24]. In particular, some people maintain the view that “biogeography based on 
optimizing environmental conditions for biotic activity seems more appropriate 
than a definition based on homeostasis” [25]. In fact, there are many examples of 
the optimality of biogeographical processes to support this view, such as the 
Amazon rainforest [25] and the Krakatoa island phenomenon [26].  

In another view, biogeography has often been considered as a process that 
enforces equilibrium in habitats. Over time, the countervailing forces of 
immigration and emigration result in an equilibrium level of species richness in a 
habitat with a large number of species. Namely, equilibrium can be seen as the 
point where the immigration and emigration curves intersect. The equilibrium 
viewpoint of biogeography was first popularized in the 1960s. Since then the 
equilibrium perspective has been increasingly questioned by scientists.  
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In a word, although the natural phenomenon of biogeographical as an 
optimization process has been challenged, adequate literature and ideas have been 
put forth to explain these challenges. It must be emphasized that optimality and 
equilibrium are only two different perspectives on the same phenomenon in 
biogeography, but this debate opens up many areas of further research for 
engineers.  

As its name implies, BBO as a novel optimization method is based on the 
science of biogeography. The details of the BBO approach will be presented in the 
next section. Just as the mathematics of biology spurred the development of other 
biology-based optimization methods, we can incorporate certain behaviors of 
biogeography into BBO to improve its optimization performance. Some of these 
behaviors include the effect of geographical proximity on migration rates, 
nonlinear migration curves to better match nature, species populations, 
predator/prey relationships, the effect of varying species mobility on migration 
rates, directional momentum during migration, the effect of habitat area and 
isolation on migration rates, and many others. 

  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.15 Species model of a single habitat 

The model of species abundance in a single habitat is shown in Fig. 2.15. The 
immigration rate λ and the emigration rate µ are functions of the number of 
species in the habitat. For the immigration curve, the maximum possible 
immigration rate to the habitat is I, which occurs when there are zero species in 
the habitat. As the number of species increases, the habitat becomes more 
crowded, fewer species are able to successfully survive immigration to the habitat, 
and the immigration rate decreases. The largest possible number of species that 
the habitat can support is Smax, at which point the immigration rate becomes zero. 
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For the emigration curve if there are no species in the habitat then the 
emigration rate must be zero. As the number of species increases, the habitat 
becomes more crowded; more species are able to leave the habitat to explore other 
possible residences, and the emigration rate increases. The maximum emigration 
rate is E, which occurs when the habitat contains the largest number of species 
that it can support. 

The equilibrium number of species is So, at which point the immigration and 
emigration rates are equal. However, there may be occasional excursions from due 
to temporal effects. Positive excursions could be due to a sudden spurt of 
immigration (caused, perhaps, by an unusually large piece of flotsam arriving 
from a neighboring habitat), or a sudden burst of speciation (like a miniature 
Cambrian explosion). Negative excursions from could be due to disease, the 
introduction of an especially ravenous predator, or some other natural catastrophe. 
It can take a long time in nature for species counts to reach equilibrium after a 
major perturbation. 

The immigration and emigration curves in shown in Fig. 2.16 as straight lines 
but, in general, they might be more complicated curves. Now, the probability Ps is 
the habitat contains exactly S species. Ps changes from time t to time ( t + Δ t ) as 
follows 

tPtPtttPttP ssssssss Δ+Δ+Δ−Δ−=Δ+ ++−−  )1( )()( 1 111 μλμλ             (2.33) 

where λs and µs are the immigration and emigration rates when there are S species 
in the habitat. This equation holds because in order to have S species at 

)( tt Δ+ time , one of the following conditions must hold: 

• There were S species at time t, and no immigration or emigration 
occurred between t and  )( tt Δ+ ; 

• There were (S - 1) species at time t, and one species immigrated; 
• There were (S + 1 ) species at time , and one species emigrated. 

 

It is assumed that Δ t is small enough so that the probability of more than one 
immigration or emigration can be ignored. 

Taking the limit of (1) as Δ t → 0 gives equation (2) shown as follows:  
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Say, maxSn =  and [ ]T
nPPPPP .........210=   

Now, we can arrange the equations of equation (2) into the single matrix 
equation 

APP
o

=                                                        (2.35)  

where the matrix A is given in the following equation: 
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For the straight-line curves shown in Fig. 1, we have 

          ( )
n

k
k

n

Ek
k

I −=

=

1λ

μ
                                                    (2.37) 

Now for special case E= I , then 

Ekk =+ μλ                                                    (2.38) 

According to the simplified form stated in equation (6), the species model will be 
the following type. 

2.5.1   Migration 

Suppose that we have a problem and a population of candidate solutions that can 
be represented as vectors of integers. Each integer in the solution vector is 
considered to be an SIV. The assessment for the goodness of the solutions has to 
be done. The solutions that are good are considered to be habitats with a high 
Habitat Suitability Index (HIS), and those that are poor are considered to be 
habitats with a low HSI. HSI is analogous to “fitness” in other population-based 
optimization algorithms (GAs, for example). 

High HSI solutions represent habitats with many species, and low HSI 
solutions represent habitats with few species. The identical species curve (E = I ) 
is considered for simplicity but the S value represented by the solution depends on 
its HSI. S1 in Fig. 2.16 represents a low HSI solution, while S2 represents a high 
HSI solution. S1 in Fig.2.16 represents a habitat with only a few species, while S2 

represents a habitat with many species.  
The immigration rate λ1 for S1 will be higher than the immigration rate λ2 for S2. 

The emigration rate µ1 for S1 will be lower than the emigration rate µ2 for S2. 
The emigration and immigration rates of each solution probabilistically share 

information between habitats. With probability Pmod, each solution is modified 
based on other solutions. If a given solution is selected to be modified, then the 
immigration rate λ to probabilistically decide whether or not to modify each 
suitability index variable (SIV) in that solution. 
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Fig. 2.16 S1 is relatively a poor solution and S2 relatively a good solution 

If a given SIV in a given solution Si selected to be modified, then the 
emigration rates µ of the other solutions to probabilistically decide which of the 
solutions should migrate a randomly selected SIV to solution Si. 

The BBO migration strategy is similar to the global recombination approach of 
the breeder GA and evolutionary strategies in which many parents can contribute 
to a single offspring, but it differs in at least one important aspect. In evolutionary 
strategies, global recombination is used to create new solutions, while BBO 
migration is used to change existing solutions. Global recombination in 
evolutionary strategy is a reproductive process, while migration in BBO is an 
adaptive process; it is used to modify existing islands. 

To retain the best solutions in the population, some sort of elitism is 
incorporated. This prevents the best solutions from being corrupted by 
immigration. 

2.5.2   Migration Algorithm 

Habitat modification can loosely be described as follows:  
Select Hi with probability proportional to λi 
           If Hi  is selected 
               For j=1 to n 
                     Select Hj with probability proportional to µj 
                                If  Hj is selected 
                                     Randomly select an SIV from Hj 
                                     Replace a random SIV in with 
                end 
         end 
end 
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2.5.3   Mutation  

A habitat’s HSI can change suddenly due to apparently random events (unusually 
large flotsam arriving from a neighboring habitat, disease, natural catastrophes, 
etc.) The model of BBO as SIV mutation, and species count probabilities is used 
to determine mutation rates. 

The probabilities of each species count will be governed by the differential 
equation given in 2.39. By looking at the equilibrium point on the species curve of 
Fig. 2.16, it is observed that low species counts and high species counts both have 
relatively low probabilities and medium species counts have high probabilities 
because they are near the equilibrium point. 

Each population member has an associated probability, which indicates the 
likelihood that it was expected a priori to exist as a solution to the given problem. 
Very high HSI solutions and very low HSI solutions are equally improbable. 
Medium HIS solutions are relatively probable. If a given solution S has a low 
probability Ps , then it is surprising that it exists as a solution. It is, therefore, likely 
to mutate to some other solution. Conversely, a solution with a high probability is 
less likely to mutate to a different solution. The mutation rate that is inversely 
proportional to the solution probability,  

                  







−=

max
max 1

P

P
mm i

i                                        (2.39) 

where,  

                 mmax is a user-defined parameter,  
and            Pmax = argmax Pi , i = 1,...NP . 

          
This mutation scheme tends to increase diversity among the population. Without 
this modification, the highly probable solutions will tend to be more dominant in 
the population. This mutation approach makes low HSI solutions likely to mutate, 
which gives them a chance of improving. It also makes high HSI solutions likely 
to mutate, which gives them a chance of improving even more than they already 
have. Note that we use an elitism approach to save the features of the habitat that 
has the best solution in the BBO process, so even if mutation ruins its HSI, we 
have saved it and can revert back to it if needed. So, we use mutation (a high risk 
process) on both poor solutions and good solutions. Those solutions that are 
average are hopefully improving already, and so we avoid mutating them 
(although there is still some mutation probability, except for the most probable 
solution).  

 
Mutation Algorithm: Mutation can be described as follows:  
For j=1 to m 
      Use λi  and µi to compute the probability Pi 
             Select SIV Hi ( j ) with probability proportional to Pi 
                        If  Hi ( j )  is selected 



2.6   Summary 93
 

                             Replace Hi ( j )  with a randomly generated SIV 
                          END 
END 

2.6   Summary 

The chapter introduced fundamental techniques of computational intelligence with 
special reference to fuzzy sets, neuro-computing and evolutionary algorithms. 
Special emphasis has been given to swarm and evolutionary algorithms, in 
particular Biogeography Based Optimization, Particle Swarm Optimization and 
Differential Evolution algorithms. A brief overview is given to neural learning, 
particularly supervised learning. It also includes an overview on fuzzy reasoning, 
starting from the first principles.  
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Chapter 3 
Call Management in a Cellular Mobile Network 
Using Fuzzy Comparators 

The current literature on mobile communication usually considers the channel 
assignment and the call admission control as two independent problems. 
However, in practice these two problems are not fully independent. This chapter 
attempts to solve the complete problem by employing a fuzzy comparator, which 
compares the membership of two fuzzy measurement variables to take decisions 
about call admission, satisfying the necessary constrains of channel assignment. 
Two alternative approaches to handle the problem are addressed. The first 
approach is concerned with the development of a fuzzy to binary mapping of the 
measurement variables to decision variables. The latter approach deals with fuzzy 
to fuzzy mapping, and then employs a fuzzy threshold to transform the fuzzy 
decisions into binary values for execution. A performance of both the call 
management techniques are studied with the standard Philadelphia benchmark 
and the results outperform reported results on independent call admission and 
channel assignment problems. The results further envisage that the latter 
approach is better than the former with respect to resource utilization, 
adaptability to the network conditions and insensitivity to load variations.  

3.1  Introduction 

With the rapid increase in the utilization of mobile cellular network, the call 
management has become an important problem. Existing techniques for call 
management cannot fully support the necessary user-services, such as 
minimization of network congestion, minimization of call drop and hard handoff. 
This chapter however attempts to solve the above problem with an objective to 
minimize hard handoff [1] and call blocking and increase the call-service. The 
problem addressed here is unique and new as it attempts to solve two basic 
problems of call management, including call admission control and channel 
assignment as a single (and interrelated) problem. It is apparent that the two 
problems coexist in mobile system, but has been solved independently to 
minimize the complexity of the overall problem [2-17]. 

Informally speaking, the call admission control (CAC) is concerned with the 
allocation of calls waiting for service. In a wireless network, the whole service 
coverage is partitioned into several continuous areas, each of which is called a 
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cell. In each cell, a Base Station (BS) performs the central role to coordinate and 
relay all communications. A Mobile Station (MS) may initialize a connection 
request (new call) to the BS (Fig. 3.1). The CAC takes necessary decisions to 
accept or block the request. In case of successful initial access, the MS will roam 
freely with the active connection. When the MS reaches the boundary of the cell 
with an ongoing call, it issues the handoff request to a neighbouring cell to avoid 
call drop. This connection request is well known as handoff call. 

The CAC module is also responsible for acceptance or rejection of the handoff 
call connection request. Since it is more undesirable to terminate a call in progress 
than to block a new call connection request, higher priority is normally given to 
handoff call in CAC strategy. 

The common bottleneck to the call management is due to the high call 
congestion, which causes high call blocking and channel interference. One 
standard approach to solve the problem of congestion is to enhance reuse of the 
channels, which, however, in turn increases channel interference and decreases the 
quality of service (QoS). The chapter, therefore, considers channel assignment 
problem to resolve the call management problem. 

First mobile radio system was introduced by American police department in 
1921, which used the bands just above the present AM radio bands. The first 
commercial mobile telephone service was introduced by AT&T and South-
western Bell in 1947, which had the cellular concept to increase the reuse 
frequency of channels though the then technology, could not cope up with the 
concept. In mid 1960s bell system introduced Improved Mobile Telephone 
Services (IMTS) which improved the frequency reuse. Their cellular network was 
divided into a number of circular or hexagonal cells and each had a centrally 
located base station and a number of radio channels. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3.1 Cell structure of wireless network 

The radio channels can be a frequency, a time slot or a code sequence. The 
mobile devices communicates to each other with the help of a radio frequency 
through the base station and the base stations communicate through the Mobile 
Switching Centre (MSC), while MSCs communicate each through the Public 
Switched Telephone Networks (PSTN) shown in Fig. 3.2. 
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When a user starts or receives a call, he may move around in the cells of a 
network with the unfinished call and the network may have to handoff or transfer 
the call from cell to cell without the knowledge of the user. Historically, the 
evolution of mobile technology can be divided into 4 generations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
 
 

Fig. 3.2 A Typical Cellular Network 

 1G—the analog systems with major service provided was the voice 
transmission. 

 2G—switching to digital technology for transmission of voice and some 
limited data in low cost and higher capacity system. 

 3G—introduced multimedia transmission and global roaming in 
homogeneous network system 

 4G—extended global roaming in heterogeneous systems  
 

Due to the increase in use and complication in technology in mobile networks, the 
QoS became an issue of utmost important. The Call Admission Control (CAC) 
mechanism is essentially needed to ensure the QoS provision by restricting the 
resource of the network to prevent the congestion as well as the degradation of 
channels currently in use. The basis concepts involved are given as follows. 

1. Channel assignment scheme:  How the calls and channels are managed by 
each cell using different reuse constraints [38]-[49]. 

2. Handoff scheme: How the calls are transferred from one cell to the other.  
 

There are two types of handoff, hard and soft [23], [27]-[37]. 

a. Hard handoff: The old link breaks and the call drops before the new link 
are generated.  
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b. Soft handoff: When the new channel is obtained, the call is transferred 
from the old channel to the new thereby causing no break in link. 

 
3. Call block and drop: [23]-[26] 

a. Call block: When due to the circumstances a new call cannot be assigned  
to a channel. 

b. Call drop: When due to the hard handoff an ongoing call gets 
disconnected. 

 

Common performance measuring criteria used to solve the CAC problem 
includes: 
 

1. Efficiency: higher network resource utilization 
2. Complexity: computational complexity of CAC 
3. Overhead: exchange of information with neighbour cells 
4. Adaptability: effect of changing network condition 
5. Stability: insensitivity to short term increase in traffic. 

3.1.1  Review  

There has been a considerable work done in the field of call admission control in 
recent few years. In 2005, Jue proposed a CAC in wideband CDMA network 
using fuzzy logic [2]. In this paper, the model proposed was a mapping from fuzzy 
to crisp. The fuzzy estimator for bandwidth introduced by this scheme calculates 
the intra-cell bandwidth, inter-cell bandwidth and the residual bandwidth for both 
home and neighbour cells.  

First, it [6] assumes that velocity has only two values, which, however, is not 
realistic. Second, it considers that the acceptance or rejection of calls solely 
depends on the bandwidth. Third, reuse of the already used channels is not taken 
care of in turn compromising the efficiency. Further, computing the bandwidths of 
all cells over the iterations and exchanging the information among neighbouring 
cells is time-consuming. Finally, the effect of change in network condition is not 
considered and the changing traffic load is ignored. 

In 2005, another Outage-based fuzzy call admission controller with multi-user 
detection for WCDMA systems was proposed by [7]. Here the main concern of 
the fuzzy model was to estimate the signal to noise ratio. The system dose not 
takes care of channel reuse. Each time computing the probability makes the 
system computationally complex. The effect of changing load is also not handled.  
The mobility condition of the mobile device is also not considered. 

In 2006, a Neural Fuzzy Call Admission and Rate Controller for WCDMA 
Cellular Systems providing Multirate Services were proposed in [8]. Here, an 
adaptive network based fuzzy controller system is proposed using type1 and type2 
probabilities. The system doses not consider soft handoff and dose not guarantee 
QoS under heavy traffic. The mobility condition of the mobile device is also not 
considered.   

In 2006, another performance analysis of call admission control in WCDMA 
System with Adaptive Multi Class Traffic based on Fuzzy Logic was proposed 
[9]. Here the quality of service and interference is not taken care of properly. 



3.1  Introduction 99
 

3.1.2  Significance of the Work 

The call admission control problem, addressed here, is realized by two alternative 
schemes shown in Fig. 3.3. Both the schemes include a fuzzy logic module for 
decision making about the call rejection/acceptance and also consider the channel 
allocation for the accepted call. The call admission decision is undertaken by 
considering the present dynamic scenario of the allocation matrix defined as  

                           ][ i,jf A =                             

where, fij = 1, if the j-th channel in i-th cell is assigned to a call, 
          = 0, otherwise. 

The feasibility of channels for allocation is determined by an additional channel 
allocation module with the consideration of compatibility matrix defined as 











==

                                 k          and j channelbetween  ceinterferan no   0, 

             channelsk  and jbetween  constraint channel-co satisfying   2,  

      channelsk  and jbetween  constraint channeladjacent  satisfying   3,  

   cell camein   channelk   and jbetween  constraint cosite satisfying   4, 

 C C kj,  

Additional input parameters of the call admission control include hotness (degree 
of congestion) velocity of the mobile and its distance from the base station. It is 
noteworthy that in conventional call management, the feedback module through 
channel assignment is not considered. 

The first approach undertaken to solve the problem considers a modelling from 
fuzzy measurements to binary decisions about call admission. The second 
approach is concerned with a mapping of fuzzy measurement to fuzzy control 
decisions [51] about call admission using Takagi-Sugano (T-S) fuzzy logic [18]. 

A study with the standard Philadelphia benchmark with 21 cells confirms that 
the proposed method outperforms most, if not all, techniques for call management 
and channel assignment uniquely. Summarizing, the main features of the work are 
listed below: 

1. Minimization of call block or existing call drop, ensuring the fidelity of 
the network. 

2. Usage of efficient channel assignment strategy for minimization of 
interference and ensuring quality of service. 

3. Considering and solving the real world situation, where the mobile 
stations are moving and hence creating ambiguity in their location. 

4. Reduction in the level of congestion. 
5. Creating an effective MS to BS as well as global environment for better 

mutual understanding between the cells and enhancement of overall 
performance. 

6. The proposed scheme utilizes both cell occupancy and mobility, and 
hence is expected to be more efficient. 

7. The schemes are uniform cell based, and hence simple in nature. 
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Decision time is proactive and fast, based on a priory and feedback parameters. 

 
 
 
 
 
 
 
  
 
 
 
  
 
     
 
 
 
 

Fig. 3.3 The proposed call management 

3.2  Rule Based Call Management 

The chapter employs two distinct kind of fuzzy rules for decision making in 
automated call management in cellular network. The first set of rules maps fuzzy 
measurements into binary decisions about call management. The procedure 
applied for fuzzy decision making is different from the classical fuzzy logic. It is 
needless to mention here that classical Mamdani based fuzzy reasoning, maps 
fuzzy measurements onto fuzzy conclusions using fuzzy relations. In the present 
context, however, the decisions are derived based on condition checking of fuzzy 
linguistic variables as stated in the antecedent part of the fuzzy logic [18-20]. 

The second category of rules, however, is similar to classical Takagi- Sugano 
type, which includes an evaluation of the blocking, assignment, dropping or soft 
handoff membership of a call in a given cell. A fuzzy threshold is then used to 
transform the fuzzy decisions into binary decisions. Typically, in our experiment  
we presume the threshold to be 0.5; consequently when the membership obtained 
by firing the rules exceeds 0.5, the decision is given in favour of the fuzzy 
linguistic decision variable. If the consequent parts of the rule include blocking of 
a call, and the membership of call blocking exceeds 0.5, the call is blocked. The 
extension of classical fuzzy logic to derive binary decisions using thresholds is 
referred to as fuzzy threshold logic in this chapter. 
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3.2.1  Fuzzy to Binary Decision Rule Based Call Management  

In this section, we briefly outline the principle of fuzzy to binary mapping using a 
set of rules with fuzzy propositions in the antecedent clause, and binary decision 
variable in the consequent part. Such policy of adoption is needed to improve 
system performance without increasing complexity of the reasoning algorithm. 

Let nxxx ,......., 21  and nyyy ,......., 21  be fuzzy linguistic variable, and )( jA
x

j

μ  

and )( jB
y

j

μ  be the membership of the variable ix  and iy  to lie in the set 

iA  and iB  respectively. Let kd  be a decision variable, which can hold two 

values: true or false. It is needless to mention that )( jA
x

j

μ  and )( jB
y

j

μ  lie in [0, 

1]. The general form of the fuzzy rule we used are given below. 
 

Type 1 rule: 

                
 is true.THEN  d

) AND ....(yμ)(y) AND μ(xμ)(xIF μ

k

kBkAiBiA kkii
<<

      

Type 2 rule: 

         
. is  falseTHEN d

))(yμ)(y)) AND (μ(x(μ)(x) OR(μ(xIF((μ

k

jBjAkAjAiA jjkji
>>

       

The inequality (<) in type 1 rule could be reversed (>). The OR in type 2 rule 
means the maximum of the membership. For example, )( jA

x
j

μ OR )( jB y
j

μ is 

same as Max[ )( jA
x

j

μ , )( jB y
j

μ ]. The decision kd  should be true or false. The 

parameters defined below will be used in the rest of the chapter.  
  

Definition 1:  Hotness is defined here as the number of calls waiting to be 
serviced at a given time instance. If total no. of incoming calls in celli is Ni, and Ti 
is the total time of calls in celli being serviced, then hotness of celli, denoted by 
hoti, is measured by 

                             
i

i
i T

N
hot = . 

Definition 2:  Availability is defined here as number of free channels in a cell i. 
Given 1, =jif , if the jth channel in cell i is free. Then the availability of cell i 

denoted as iavl , is measured by 

=
j

i,ji favl . 

Definition 3: Feasibility is a parameter used to check the viability of channel 
assignment to a incoming call in a given cell. To test the feasibility of assignment 
of channel j to an incoming call in cell i, when the channel k of cell i is already in 
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service, ∀ k, we define a measure of feasibility by jfeas , using the soft 

constraints for channel assignment indicated in [42], where 

     |)f|f(Cfeas i,ki,j
k

j,k
j −−= .     

If  0feas j >  then the j-th channel is assigned to an incoming call in cell i. 

Otherwise, the assignment is abandoned.  
  

Definition 4: Velocity is defined as the velocity with which a MS is moving while 
in service and is denoted as vel. 

 

Definition 5: Distance is defined as the distance of the moving MS from the BS 
and is hereafter referred to as dist. 

3.2.2  Fuzzy Membership Evaluation 

In call management, the parameters like availability, hotness, velocity of the 
mobile device and distance from the base station are always dynamically 
fluctuating with time. Construction of rules for all possible values of the 
parameters becomes tedious, and also not suggestive as matching of the if-part of 
the rules with measured value of parameters for a large no of rules takes excessive 
time, and thus not amenable for execution in real time.  One approach to reduce 
the matching time is to partition the parametric space into intervals, and check the 
existence of a measured parameter in intervals. Such crisp partitioning is 
permissible as long as a particular value of a parameter in the if-part of a rule is 
independent (with respect to decision) over the other parameters in the if-part of 
the same rule. Fortunately, this is taken care of in fuzzy sets, as it allows 
overlapping among the partitions in individual parametric space. The parameters: 
hotness, availability, velocity, and distance here are encoded (fuzzified) in three 
scales HIGH (hereafter HI), LOW (hereafter LO) and MEDIUM (hereafter MED), 
while feasibility is encoded into two fuzzy scales: HIGH and LOW. Fig. 3.4 
shows the fuzzy membership curve of all the parameters stated above. 

3.2.2.1   Fuzzy Rules for Call Admission 

The rules used in the present context are given here with justifications below.  

 
1. IF 

  
  THEN assign new call to jth channel. 

2. IF 

    

THEN block the cell.  

))(feasμ)(feas) AND  (μ(avlμ))(avl) OR μ(avl(μ j
LO

j
HIiLOiMEDiHI >>

       avl  avlavl AND hot

hothotfeasfeas

avlavl  avl

NMIDNLONHIN

NN
j

LO
j

HI

iHIiMIDiLO

))(OR)( )(())( OR
 )()(( AND))()( (

 AND ) )()(OR)((

MED

LOHI

μμμμ
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μμμ

>
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Fig. 3.4 Fuzzy membership of all the variables 
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In rule 2, N denotes the neighborhood of cell i 

 
1.  

 
 
    
 
THEN search new neighbor N and do Soft Handoff 
 

2. IF 
 
 
THEN drop the call 
 

3. IF 
       
       
 
 
   
  THEN do SHO 
 

4. IF    
 
 

   THEN the call carries on with existing channel. 
 

Rule 1 asserts that if a cell has good number of available channels and any of the 
channels has a high feasibility to accept the call then assigns the call to that channel. 

 
Rule 2 states that though the cell has good number of free channels but the 
feasibility of assigning the call to them is low then search for such channels in the 
neighboring cells N. If no such cell exists then block the call. 
Rule 3 states that if in a cell good numbers of free channels are available but none 
fits the feasibility criteria then search the neighboring cells’ channels. If any of the 
cell has such channel do SHO to that channel. 

 
Rule 4 states that in a situation where the receiver is moving very fast and is at the 
boundary of the cell drop such call. 

 
Rule 5 states that if velocity is high to medium and distance is medium from base 
station and there is neighboring cell with feasible channel then SHO to that 
channel 

 
Rule 6 states that if the speed is very slow and is very near to the base station, do 
not change the channel. 

       ))(avlμ OR )(avlμ )(avl(μ AND ))(hotμ OR    
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>
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3.2.3   Fuzzy to Fuzzy Mapping for CAC  

At the time of assigning a channel to a call, the most important factor to be taken 
care of is to ensure the QoS, satisfying the feasibility criteria. In case the channels 
satisfy the feasibility criteria, they are fit for new assignment. In fuzzy to binary 
mapping, only the fittest channel in a cell is used for new assignment. 
Determination of the fittest channel there has been performed by selecting the 
channel with the highest grade of fuzzy membership of High-feasibility set. But in 
case of fuzzy to fuzzy mapping, the decision variable is fuzzy and is connected 
with the measurement variables: feas, avl, hot, vel and dis through fuzzy relations.  

In order to arrive at a binary decision from the estimated fuzzy decision 
variable, a threshold is considered, exceeding which the decision is considered 
true, and else it is regarded false. So a channel with lesser feasibility than the 
highest is also favoured, if the membership of the decision variable exceeds the 
threshold. As a result, more channels are in use at a time than in the previous 
mapping scheme. But choice of suitable threshold ensures that the soft constraints 
are not violated ensuring QoS. 

The fuzzy rules in the present context are Tkagi-Sugeno type, but the reasoning 
mechanism we introduced here is considerably different from classical Takagi-
Sugeno model [3], [4]. 

The general form of rules used includes 
 
Type 1: 
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where Ai, Aj,  Ak, Bj , Bk and C are fuzzy sets in respective universe discourses. 
The “*” denotes product of the arguments on both side of it. 
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where Ai, Aj, Ak , Bi, Bj , Bk, Cj, Ck, and D are fuzzy sets in respective universes. 
The conjunctive antecedent clauses’ contribution to decision variable is realized 
using product (*), while the contribution of to disjunctive clauses is realized in 
decision variable by summation (+) operation. 

The fuzzy implication rules given below use a decision variable for un-serviced 
call (hereafter abbreviated as uc) in five fuzzy sets ASSIGNMENT (hereafter 
ASSIGN), BLOCK, SOFT-HANDOFF (abbreviated as SHO), DROP, and 
CONTINUE (abbreviated as CONT). 

3.2.4   Fuzzy Rules Used and Justification 

 
1. IF 

        
 

Then assign new call to jth channel with membership 

)}(feas{μmax)}*(avl),μ(avlmax{μ(uc)μ j
HI

j
iMIDiHIASIGN = . 

Membership of assignment is expressed in terms of availability and feasibility, 
and if the membership value exceeds a threshold of 0.5 then the channel j of cell i 
is assigned to the call, and rejected otherwise. 

2. IF   

 

 THEN block the cell with membership of block as 

)}](hot{μ                             

)}(feas {μ)* (avl,μ[(uc)μ

NLO
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j
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j
iLOBLOCK

max

max1min +=
. 

It is clear from the above expression that membership of call blocking is a 
function of memberships of low availability and low feasibility or low hotness, 
and the call is blocked if the membership of call blocking exceeds a threshold  
= 0.5.  
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THEN search new neighbor N and do Soft Handoff with membership given by      

.)}(avl{μmax*)(hotμmax                       

)}(feas{μmax*)(avl),μ(avlμ1, maxmin(uc)μ

NHI
N

NLO
N

j
LO

j
iLOiMIDSHO

]}{

}{[ +=
  

 
Membership of SHO is expressed in terms of inadequate availability of feasible 
channels in the cell and the hotness of the neighbors and  availability of feasible 
channels in such neighbors and  is accomplished if the membership value exceeds 
threshold=0.5 

 
4. IF  

              
    
 
THEN drop the call with membership as 
    )}(),(max{*)()( disdisveluc MEDFARHIDROP μμμμ = . 

 
Membership of drop is expressed in terms of high velocity and the distance away 
from the BS and the call is dropped when membership value exceeds a 
threshold=0.5. 

 
5. IF 

 
 
 
    
 
THEN do SHO with membership 
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jN

HI
j
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The membership of SHO is expressed in terms of higher range of velocity with 
medium distance of MS from BS and availability of feasible channels in near 
neighbor and is done if membership value exceeds the threshold =0.5. 

 
6. IF    

 
 
 

THEN carry on with existing channel with membership 

)(*)()( disveluc NEARLOCONT μμμ = . 

 
The membership CONT is expressed in terms of low velocity and nearing distance 
of MS from BS and is accomplished if membership value exceeds threshold=0.5. 
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3.3  Computer Simulation 

Here we have considered two different decision schemes for assignment or 
rejection of a call in a channel. Though the decisions are estimated differently, the 
antecedents are same in both the cases.   Hence the same call management 
strategy is used in both the case which is described below. 

3.3.1  Principles of Call Management Strategy 

In a network every cell contains channels, some of which are busy in servicing 
calls, while the rest are free. When a new call arrives in a cell, it is to be assigned to 
the free channels of the cell, satisfying the soft constraints of channel assignment. If 
the cell does not have such free channels, the neighboring cells are searched for 
free channels, and once found they are assigned to the calls. If no such channels are 
available in near neighbors (adjacent six cells) then the call is rejected.  

This, however, is valid as long as the MS are static. But in case the MS starts 
moving during a call service, it may move out of the cell. To avoid call drop, a 
new channel from the current cell needs to be allocated when the MS moves out of 
the cell. If no such channel is found, the call is dropped. The time of search is 
considered and if the MS is moving out of the cell very fast the call is dropped. If 
it is moving slowly and is well within the range of the BS then the channel in use 
continues the service.  

In the time of call assignment the calls generated due to SHO are given higher 
priority over new ones, to maintain the QoS of on-going calls. The calls which are 
occupying the channels for long time are forcefully dropped to free the channels 
for reuse. The call management strategy is proposed based on the above 
considerations. 

3.3.2  Call Management Strategy    

1. A new call arrives in the cell. 
2. If it is a new call, set SHO flag to 0 else (if it is due to handoff) set to 1. 
3. Check if the call is moving or static; if moving repeat from step 10.   
4. Drop all the calls with call time more than T, and set all the free channels due 

to call drop and hang-ups available; and refresh the dynamic allocation table 
and hotness table. 

5. Check the availability of the channels in the cell and list all the available 
channels with the membership of avl. 

6. Check the feasibility of the available channels and find the membership of 
feas. 

7. If membership of avl and feas both are high, then assign the call to that 
channel of the cell, and start counting call time (so as to measure call duration 
to drop long calls by strategy 4) and go to step 1. 

8. If feas is not high, search the highest feasible channel in the near neighbour with 
highest avl, and if found do SHO; start counting call time and go to step 1. 
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9. If no such cell found satisfying step 6, block the call and go to step 1. 
10. Find the membership of vel and dis. 
11. If vel and dis both are low, the channel used for call service is retained in the 

cell, and go to step 1. 
12. if vel is med or high and dist is med, then  find the membership of avl  for 

the neighbours, and go to step 7. 
13. If both vel and dist are respectively high and far, then drop the call and go to 

step 1. 

The membership curves of the variables are given in Fig 2.4. 

3.3.3  Sample Runs for Fuzzy to Binary 

The strategy of call admission has two modules (Fig. 3.5). One describes the call 
admission when the MS are static the other describes the same when the MS are 
moving. Three specific cells are taken to demonstrate the rules are described in 
Table. 3.1. 

Table 3.1 Measurement of System Features Following the Above Definitions 

No of cell vel dist avl hot feas 
7 5 1 5 55 1,2,4,5 
21 55 .4 6 60 1,2,4,5,6,7 
9 55 1.6 5 103 1,2,4,5,7 

 
The first module is described in Fig. 3.6a. Here at a particular instance of time 

when a call arrives in the cell the membership of hotness is calculated using 
hotness curves. Then the membership or availability of channels in the cell as well 
as the membership of feasibility of the channels are calculated. Then rules are 
fired on the basis of membership values, and a binary decision is obtained. 

 
 
 
 
 
 
 
 
 
 
 

Fig.3.5 Block diagram for fuzzy to binary strategy 
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Fig. 3.6a Module describing static call service 
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RULE5:  
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The module in Fig. 3.6b is the second part of the scheme proposed by us. Here the 
situation is considered when the MS starts moving inside the cell or may move out 
of the cell as well. In such case the membership value of velocity of MS as well as 
the membership of distance from base station is also important to arrive at a 
decision, and hence they are also considered together.  

In addition, the availability of channels in the neighbouring cell as well as 
feasibility of using such channels are equally important in decision making. 
Depending on all such membership values the rules are fired to get a binary 
decision for the course of action to be followed. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.6b Module describing call service when MS in in motion 
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3.3.4  Numerical Examples 

Let us find out how the system works in a situation where three cells say, the 9th, 
11th and 5th are having static calls at an instant 0tt = . By calculating the 

membership value, we find the following facts which are shown in Fig. 3.7a. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 3.7 When a new call is generated in cell 9 

Example 1: Let us consider the network in a situation given in Fig. 3.7 
From the Fig 3.7 we can see that the membership value and the curves of 

availability is given in Fig. 3.7a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 3.7a Membership curve for avl 
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From Fig. 3.7a, it is evident that (avl))(avl)ORμ(μ(avl)μ LOMEDHI >  

The fuzzy membership calculation of hotness is given in Fig. 3.7b. 

From Fig.3.7b it follows that (hot))LO(hot)ORμMED(μ(hot)HIμ >  

Then the feasibility of the free channels are considered. Fig. 3.7c below 
demonstrates the feasibility of all the free channels mentioned in Fig.3.2a 

 
 

    
 
 
 
 
 
 
 
 
   

                         
                         
 

Fig. 3.7b Membership curve for hot in cell 9 

From Fig. 3.7c we can conclude )
j

(feasHIμ)
j

(feasLOμ > ∀j∈{1,2,4,5,7}  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
Channel 
μ 

1 2 4 5 7 

LO 0.714 0.8568 0.8568 0.8568 0.8568 
HI 0.2856 0.1428 0.1428 0.1428 0.1428 

Fig. 3.7c Membership curve for feasibility of all available channels 
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So in the given condition stated above when a new call is generated in cell 9 
then all the conditions trigger Rule 2 and the call is blocked. All the tables 
hereafter are refreshed. 

Now consider cell 11 given in Fig. 3.7d 
 

 

 

 

 

 

 

Fig. 3.7d When a new call is generated in cell 11 

It is evident from Fig. 3.7e  that ))()(()( avlORavlavl LOHIMED μμμ >  

The hotness satisfies the condition  ))()(()( hotORhothot LOMEDHI μμμ >  

shown in Fig. 3.7f. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.7e Membership curve avl of channels in cell 11 
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Fig. 3.7f Membership for hotness =120 

The feasibility as shown in the Fig. 3.7g shows that 

)()( 66 feasfeas LOHI μμ >  and for other j  )()( j
HI

j
LO feasfeas μμ > . 

So when a new call arrives in cell 11 the 6th channel satisfies all the conditions 
of rule. Hence the new call is assigned to the 6th channel of cell 11. 
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Fig. 3.7g Membership curve for feasibility of all available channels in cell 11 
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3.4  Fuzzy to Fuzzy Model 

In the fuzzy to fuzzy scheme, the 1st module given in Fig. 3.6a, 2.6b is almost the 
same as the module given in Fig. 3.8. The notable change incorporated here is the 
output which is fuzzy instead of binary. Hence depending on the input values, the 
rules are fired and the membership values for un-serviced calls are generated. 
Depending on the membership values for assign, SHO and reject the call 
admission decision is taken. A thresholding is done to arrive to the decision. 

 
No of cell vel dist avl hot feas
7 5 1 5 55 1,2,4,5
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Fig. 3.7h Membership for cell 7 

 

Example2: Let us consider a caller starts moving in the 7th cell as shown in 
Fig.3.7h 

1) In 7th cell the following conditions are satisfied  

a) ))()(()( hot OR hothot LOMEDHI μμμ >  

b) ))(μOR )(()( avl avlavl LOHIMED μμ >  

c) )()( j
HI

j
LO feasfeas μμ >  ∀ j ∈{1,2,4,5,6} 

d) ))()(()( vel OR velvel HIMEDLO μμμ >  

e) ))( )(()( distOR distdist NEARFARMED μμμ >  

Hence rule 6 is fired and all the tables are refreshed. 

2) In 21st cell the following conditions are satisfied  

a) ))()(()( vel OR velvel LOMEDHI μμμ >  

b) ))( )(()( distOR distdist NEARFARMED μμμ >  

c) ))()(()( NLONMEDNHI avl OR avlavl μμμ >  for N=17,20 

d) )()( 66 feasfeas LOHI μμ >  in N=17 

Hence rule 5 is fired and 6th channel of neighbour 17 is assigned with the call. All 
the tables hereafter are refreshed. 
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3) In 9th cell the following conditions are satisfied  

a) ))()(()( vel OR velvel LOMEDHI μμμ >  

b) ))( )(()( distOR distdist NEARMEDFAR μμμ >  

Hence rule 4 is fired and call is dropped. 
The Table 3.2 Shows all the membership values of all variable in the three 

given cells. 
 

Table 3.2 Membership Value for all the variables when MS is moving 

Cell No 7 21 9 

Hot 
μLO=0 
μMED=.425 
μHI=.575 

μLO=0 
μMED=.425 
μHI=.575 

μLO=0 
μMED=.425 
μHI=.575 

Avl 
μLO=0 
μMED=.5 
μHI=.333 

μLO=0 
μMED=0 
μHI=1 

μLO=0 
μMED=.5 
μHI=.333 

Vel 
μLO=1 
μMED=0 
μHI=0 

μLO=0 
μMED=.25 
μHI=0.75 

μLO=0 
μMED=.25 
μHI=.7 

Dist 
μLO=0 
μMID=1 
μFAR=0 

μLO=.2 
μMID=0 
μFAR=0 

μLO=0 
μMID=0 
μFAR=.2 

feas 

μ1
LO=.714 

μ1
HI=.2856 

μ2
LO=.8568 

μ2
HI=.1428 

μ4
LO=.8568 

μ4
HI=.1428 

μ5
LO=.714 

μ5
HI=.2856 

μ1
LO=.714 

μ1
HI=.2856 

μ2
LO=.8568 

μ2
HI=.1428 

μ4
LO=.8568 

μ4
HI=.1428 

μ5
LO=.714 

μ5
HI=.2856 

μ6
LO=.4284 

μ6
HI=.5712 

μ7
LO=.5712 

μ7
HI=.4284 

μ1
LO=.714 

μ1
HI=.2856 

μ2
LO=.8568 

μ2
HI=.1428 

μ4
LO=.8568 

μ4
HI=.1428 

μ5
LO=.8568 

μ5
HI=.1428 

μ7
LO=.8568 

μ7
HI=.1428 

μ1
LO=.714 

μ1
HI=.2856 
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Fig. 3.8 Module describing call service for fuzzy to fuzzy model 

3.5  Experiments and Simulation 

For simulation we have considered a situation where 

1. No. of cells = 21 
2. no of channels in each cell= 7 
3. Minimum reuse distance in a cell(cosite) Ci,i=4 
4. Co channel constraint Ci,m=2 
5. Adjacent Channel constraint Ci,m=3 
6. minimum call arrival in a system= 21 
7. maximum call arrival in a system = 150 
8. base station separation= 2 km 
9. minimum call hang-up in a cell =1 
10. maximum time before call drop in a hot cell= 1 hr 
11. maximum velocity= 70 km/hr( city traffic)  

Feature Extraction 
Hot, Feas, Avl ,Vel, Dis 
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Fuzzy Knowledge 
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At 0tt = , 27 calls were serviced and 4 calls were rejected. But the change of 

hotness may be different due to the hang up of calls by the users. Fig. 3.9b. shows 
a sample run and how the hotness changes and calls getting serviced in the 
processes. It is seen that the number of calls serviced increases steadily over the 
time.  

3.6  Results and Interpretation 

We define call assignment and call rejection probability to measure the 
performance of our proposed system of call management.  

Let 

    Na be the number of calls assigned in a cell,  
    Ns be the number of incoming calls waiting to be serviced and  
    Nr be the number of calls rejected.  

Then we define call assignment probability and call rejection probability by the 
following expression     

         PA= P (call assign) =
s

a

N

N
  ,       PR=P (call rejection) = 

s

r

N

N
  

We first study the performance of the fuzzy to binary and fuzzy to fuzzy algorithm 
separately.  

3.6.1  Performance of Fuzzy to Binary Strategy 

In Fig. 3.9 we present a graphical representation of the no. of serviced calls and 
rejected calls against the total incoming calls. It is apparent from Fig. 3.9 that the 
system starts with a very few incoming calls, i.e. Ns is low. Naturally, plenty of 
channels remain free for further call assignment in the cells.  Consequently, the 
call assignment continues to the free channels, and resulting in a significant rise in 
the number of call assigned (serviced) Na rises with Ns, when Nr remains constant.  

But as Ns increases and the channels get allocated to the calls, free and 
assignable channels gradually decrease. This happens when Ns exceeds 
50(approx) (Fig. 3.9). Then the system experiences congestion and Nr gradually 
starts increasing whereas Na gets flatten. Under such situation, the call 
management scheme starts executing a call drop strategy, where the channels in 
service for more than a given amount of time are set free. The channels for the 
normal hang-up (terminated) calls are also set free for subsequent reuse.  And the 
call allocation matrix is refreshed.  This dropping and reuse job is repeated in 
regular intervals. And here after Na goes on increasing with Ns and Nr flattens. 

Table 3.3 provides a situation of network after running Fuzzy to Fuzzy CAC 
Algorithm   
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Table 3.3 Call Management in a Network 

 
CELL NO. 

Call Blocked 
And 

Dropped 

Soft Handoff Call Serviced 

1  1  
2  1  
3 1   
4  1  
5 1   
6 1   
7  1  
8  1  
9  1  

10   1 
11   1 
12   1 
13  1  
14  1  
15  1  
16   1 
17  1  
18 1   
19   1 
20   1 
21   1 

Total  4 10 7 

 
Fig. 3.10 provides a graphical representation of the probability of call 

assignment PA and probability of call rejection PR with increasing number of calls 
waiting for being serviced Ns. Initially the PA grows and PR falls sharply since 
there are plenty of free channels in the system. Then as Ns increases, the 
congestion grows and calls start dropping. So PA starts dropping, and PR starts 
growing up. At that point the call management strategy starts dropping long calls 
repetitively after certain interval of time and reuses the free channels.  

Hence, PA moves up and stays up since the dropping and reuse of channels are 
repeated in regular intervals. But the slope of PA flattens up when Ns goes beyond 
a certain stage (approx 110). This signifies that with limited no. of channels, the 
configuration indicated in Fig. 3.1, has no more free channels, and thus cannot 
serve the excessive demand. One way to meet this demand, is to have adequate 
channels for a given system configuration, so that channels are free even when the 
call demand is height. 

Table 3.4 shows the run of Fuzzy to Fuzzy system in a regular interval. 
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Table 3.4 Performance of the scheme after certain interval of time 

HOTNESS CALL 
SERVI
CED 

CALL 
REJEC
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Fig. 3.9 Total number of call dropped and serviced over the time 

 

Fig. 3.10 The call- drop probability and call assign probability 

3.6.2   Performance of Fuzzy to Fuzzy Strategy  

To study the performance of fuzzy to fuzzy decision making in call management 
strategy, we again have plotted Na and Nr against Ns in Fig. 3.11. We also plot the 
PA and PR against Ns in Fig. 3.12.  

In Fig. 3.11 we see that the congestion is reached much before (around 45) that 
it was in fuzzy to binary scheme. This is because the fuzzy to fuzzy scheme takes 
more channels as available for allocating calls.  
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Fig. 3.11 Total number of call dropped and serviced over the time 
 
Fig. 3.12 shows that PA always stays higher than PR. This is due to the fact that 

unlike fuzzy to binary, fuzzy to fuzzy considers more channels as available, using 
the threshold. Again PR has a sharp rise, since fuzzy to fuzzy strategy assigns 
channels faster. The fuzzy to fuzzy strategy takes decision better and hence can 
handle congestion of higher level.  

 

 

Fig. 3.12 The call drop probability and call assign probability 

3.6.3   Comparison between the Methods  

Fig. 3.13 shows a comparison between the fuzzy to binary and fuzzy to fuzzy 
methods in terms of call service.  It is observed from this figure that no. of calls 
assigned (Na) in fuzzy to fuzzy is always higher than that of fuzzy to binary 
scheme irrespective of the no. of waiting calls (Ns). Further, the slope of the fuzzy 
to fuzzy curve is also higher than that of fuzzy to binary.  
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Lastly, the saturation in the fuzzy to fuzzy system starts at Ns=134, while that in 

fuzzy to binary takes place at Ns= 120. Finally, the fall-off slope in fuzzy to binary 
scheme is higher than the fuzzy to fuzzy scheme, indicating that with a little 
increase in Ns the Na will have a drastic fall-off in fuzzy to binary mapping 
scheme in comparison to that in fuzzy to fuzzy mapping scheme.   

3.6.4   Call Rejection Threshold for Fuzzy to Fuzzy Module 

The experimental shape of the curve for call rejection probability in fuzzy to fuzzy 
scheme is already explained in Fig. 3.12. In Fig. 3.14, we study the effect of 
variation of threshold in the fuzzy production rules deciding SHO. An apparent 
look into Fig. 3.14 reveals that the curves with threshold =0.75 and 0.5 are more 
or less parallel.  

The increase in call rejection probability for increased threshold makes sense 
following rules1 to 6. The phenomena for threshold =0.25 however is apparently 
counter-intuitive as it lies between the two other curves, one with less, and the 
other with more threshold.  

 
Fig.3.13 Call service in fuzzy to binary and fuzzy to fuzzy methods 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.14 Call rejection probability in fuzzy to fuzzy system with thresholds (0.5, 0.25, 
0.75) 
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A detailed look into the call assignment strategy envisages that for threshold= 
0.25 the feasibility condition, i.e. soft constraints, for channel assignment failed to 
be satisfied, giving rise to this phenomenon. A threshold of 0.5 seems to be an 
optimum choice as manages to satisfy the feasibility condition in one end and 
reduces the call rejection probability in the other end.  

To compare the performance of our system with classical FCA [50] and DCA, 
we consider the call rejection probability of these two schemes in [2]. 
Reconstructing the same, and merging them with our results, we obtain Fig. 3.15. 
It is clear from Fig. 3.15 that both DCA and FCA have a high call rejection 
probability when no. of calls waiting for serviced (Ns) is very low. But it may be 
noted that the same cellular configuration can manage to handle almost double 
waiting calls, even with a significantly low call rejection probability.  Thus our 
proposed scheme shows far better ability in reducing call block.  

 
Fig. 3.15 Comparison of call drop probability in channel assignment problem  

3.7   Conclusions 

The proposed scheme is unique in its approach in combining Channel assignment 
with Call admission control, which is considered as two different areas of study. 
By implementing such concept we are able to minimize the interference in terms 
of co-channel, adjacency channel and co-site constraints, and could be able to 
ensure quality of service (QoS). Also the scheme implements reuse of channel 
strategy combined with forceful dropping of long calls, which improves the 
condition of a heavy traffic network and helps in avoiding congestion 
considerably. Not only the static calls, but the calls where the MS’s are in a move, 
are also considered and are provided with proper service to minimize the drop of 
an ongoing call while moving. It has also taken care of the changeable conditions, 
including availability, feasibility, and hotness of a dynamic network. With all 
these aspects it gives a better result in managing calls than most of the existing 
systems. 
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Chapter 4 
An Evolutionary Approach to Velocity  
and Traffic Sensitive Call Admission Control 

The chapter proposes a new approach to call admission control in a mobile 
cellular network using an evolutionary algorithm. Existing algorithms on call 
admission control either ignore both variation in traffic conditions or velocity of 
mobile devices, or at most consider one of them. This chapter overcomes the 
above problems jointly by formulating call admission control as a constrained 
optimization problem, where the primary objective is to minimize the call drop 
under dynamic condition of the mobile stations, satisfying the constraints to 
maximize the channel assignment and minimize the dynamic traffic load in the 
network. The constrained objective function has been minimized using an 
evolutionary algorithm. Experimental results and computer simulations envisage 
that the proposed algorithm outperforms most of the existing approaches on call 
admission control, considering either of the two issues addressed above.   

4.1  Introduction 

Call Admission Control (CAC) refers to an interesting decision-making problem 
of efficient call management in a mobile cellular network. The primary objective 
of this problem is to serve as many calls as possible, and prevent dropping of calls 
in progress [1-3]. Additionally, an efficient call management system also aims to 
assign appropriate channels to the incoming/handoff calls, so that the necessary 
soft constraints for channel assignment are maintained [1-8].  

Typically, soft constraints include co-channel, co-site, and adjacent channel 
constraints, all of which need to be satisfied to serve the secondary objective. In 
the current literature, Quality of Service (QoS) is often used to measure the quality 
of CAC with an attempt to maximize call assignment and soft handoff, satisfying 
the soft constraints. The higher the QoS, the better the CAC.  

This chapter provides a novel approach to formulate the CAC as a complex 
decision-making problem with an objective to optimize service of calls in a 
dynamic environment under the fluctuation of load and motion of the mobile 
station. The formulation involves construction of an objective function with 
constraints, and has been solved using an evolutionary algorithm. Experiments 
have extensively been undertaken to minimize call drops. 
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4.1.1  Review 

Limited works on CAC employing genetic algorithm (GA) has appeared in the 
existing literature. One of the initial works utilises a local policy, where the cells 
are square (and not hexagonal) in shape and the call arrival rate follows Poisson 
distribution in a Markov model [1]. The performance of the system depends only 
on the linear combination of call dropping and the call blocking probability. The 
policy is said to be local since a base station only gets the information of its four 
neighbours. Here a two parent two offspring GA is used. Clique packing technique 
is used to take care of the channel assignment problem implicitly [1]. The process 
is terminated when the policy improvement appears to stagnate. 

In the year 2000 [7, 8] the authors proposed a scheme, where the system is 
defined in terms of m classes of users in each cell. A user in class i would require 

bi amount of bandwidth. The goal was to maximize  ibix  for candidate 

solutions ix , where the handoff and blocking probability have a given upper 

bound. Both semi Markov decision process and GA are used. Here also the 
process is local one considering the call acceptance of a single cell. 

In 2004 one more CAC scheme was proposed for General packet radio service 
(GPRS) using GA [6]. Here the GPRS architecture was of given special emphasis. 
The CAC module is almost the same as the one described in [7]. But the fitness 
function is different as it is the product of QoS factor and length of the queue of 
the class and inverse of the square root of frequency. The advantage of this 
method over the previous one described in is the usage of GPRS technology and 
its architecture [6].  

4.1.2  The Problem 

CAC systems are mainly used to take decisions whether a call should be serviced, 
blocked or dropped by a Base Station (BS), and if serviced, it identifies the 
channel to be assigned to that call. At the time of taking such decision, the 
interference is considered the only factor in most of the current literature [1 - 48].  

Existing literatures presented above, concentrates on specific aspects of the call 
admission control problem. A few of these considers rectangular cells and the near 
neighbour and hence ignores the entirety of the network, while the rest considers 
only the hand off and call drop due to insufficient channels. Unfortunately, most 
of the above literatures consider the mobile stations either static or moving very 
slowly in the small area with very low traffic load. The mobility factor comprising 
speed and direction of movement has been ignored in these works. The overall 
network load is also ignored and hence the handoff policies used have a partial 
effect on the network. Most of the above schemes are localized to a single cell.  
Hence the channel reuse is also not done efficiently. 

In this chapter, we propose a scheme that takes a more wide view of the call 
admission control problem. We consider our cells to be hexagonal so as to easily 
track the movement of Mobile Stations (MS) in the neighbourhood cells. Instead 
of considering a single cell scenario we have taken a small network to implement 
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the algorithm to incorporate the intercellular communication efficiently. The 
decision of acceptance or rejection of a call dose not only depend on the feasibility 
and availability of the channel but also on the speed at which the MS moves and 
its direction of movement. Its geographical location with respect to the base 
station also has a significant importance. Moreover the traffic density on a cell is 
also considered to be a determining factor.  

The reuses of the channels also make the approach more effective. The 
algorithm proposed in the chapter is based on all the factors mentioned above 
which more perfectly handles the real world situation. 

There are certain parameters to measure the efficiency of such a system. One 
important parameter is the number of call drop that shows the number of 
unwanted call disconnection in the system and should be as low as possible. The 
other one would be the call block where the new call attempts are rejected by the 
network due to the insufficiency of the free channels. The number of assignable 
channels that helps in increasing the efficiency of the system is another important 
parameter considered here. 

In this chapter, we propose a scheme, which takes into account the motion 
aspect of the mobile station as well, besides considering all the necessary 
objectives of CAC. We here use three parameters:  i) speed, ii) direction, and iii) 
distance of the MS from the nearest base station to model the motion of the mobile 
station. The above three parameters play an important role at the time of soft 
handoff of a call from one cell to other. The importance can be explained with the 
help of Fig. 4.1, where the central cell has six neighbours.  

The MS in such a cell while in service may move in various directions with 
different speed. If it moves toward cell 5 or 6 directly then the channel for handoff 
will be searched in those cells. When it moves slowly along the common boundary 
of cell 5 and 6, the cell with base station nearer to the current location of MS is 
considered. Again, if the above movement takes place with a very high speed, then 
the call may be dropped due to high interference. Suppose it moves towards cell 2 
very slowly, then there may not be a requirement for a soft handoff at all since it 
may never cross the existing cell boundary.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.1 Illustrating the need to consider speed in a given mobile cellular network. 
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Hence, we aim at developing an optimal set of assignment, which will address 
of the quality of service, and the velocity aspect of the scheme. 

4.1.3  The Approach 

The problem of call admission can be reconstructed as an optimization problem 
with given constraints. As such a fuzzy approach would not be appropriate in that 
case. Graph colouring problem and others are not suitable since there are some 
resources that are shared by all the cells and hence using a unique colour to 
represent a cell is difficult. Hence the natural option was to take a GA approach.  

Assigning a call to a channel is done using the electromagnetic compatibility 
constraints. In general, there are three types of constraints [3]: 

 

• Co-channel Constraint (CCC): The same channel cannot be simultaneously 
allocated to a pair of cells unless there is a minimum geographical separation 
between them. 

• Adjacent Channel Constraint (ACC): Adjacent channels cannot be assigned 
to a pair of cells unless there is a minimum distance between them. 

• Co-site Constraint (CSC): A pair of channels can be employed in the same 
cell only if there is a minimum separation in frequency between them. 

 

These constrain are said to be the soft constrains of channel assignment and are 
used as the feasibility constrain for call admission control. Call admission control 
involves decision-making regarding assignment of channels to incoming calls or 
dropping calls in service, besides serving handoff calls, if feasible.  To arrive at 
such decision, certain factors should be taken into consideration.  

When a new call arrives, the feasibility condition for call assignment is checked 
using the soft constraints and the decision about call assignment/blocking is taken.  

When a MS starts moving with a call in service the scenario changes. Then the 
feasibility condition only is not adequate to prevent call dropping. The speed and 
direction of movement of MS along with the distance of MS from the 
neighbouring BS play a major role in granting call services to soft-handoff since 
the crossover of cells triggers a soft-handoff.  

The previous works remained silent on the mobility aspect of the MS and its 
location from the nearest base station. Traffic change in cells because of variation 
in incoming calls is a common phenomenon, but unnoticed in most of the literature 
while addressing the call admission control problem.  Traffic change, however is 
not only influenced by the arrival of new calls, but is pronounced also by the 
mobility of the existing calls. Special emphasis is thus given on traffic changes and 
mobility aspect to address the call admission control problem in this chapter. 

Most of the works on CAC using GA concentrates on the decision-making 
about the calls in a single cell. The traffic loads in most of the cases are considered 
to be static in nature. But all the cells with all the channels are going through the 
same process and hence the network is changing dynamically. Considering only 
one cell and its neighbours with the consideration that conditions of those 
neighbours are static also makes the system limited in effect. If the whole network 
is considered, then the solution becomes more applicable and robust. 
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In this chapter we have considered the case of dynamically changing cells of the 
entire network. We have considered dynamically changing demand of the channels 
as well as random movement of each MS with varying speed. In this context we see 
that the call drop due is minimized considerably and soft handoff is achieved 
effectively. The call service is almost consistent with the change in demand. 

The proposed system thus is more sensitive to the continuously changing 
demands of the real world and the changing location of the MS. With this the QoS 
is also taken care of using the soft constraints for interference. This approach is a 
holistic one as all the cells of the network is considered. Hence it is a new way of 
looking into the CAC problem, which caters better in a real world situation.  

4.2  Formulation 

Here we have attempted to handle the calls with their mobility factor. A caller 
may be in motion when a call is generated or while being serviced. Depending on 
the speed of the MS and the direction in which they are moving, there may be a 
need to reassign the call to a different channel of a different cell. To explain such 
situation we start with defining the primitives. 

4.2.1  Definitions 

We consider a system of M hexagonal cells present in the network and each of 
them has N number of frequency channels. In CAC we need to find out the best 
allocation of calls in different cells. So we need to know about the current status of 
allocation, which is usually represented by an allocation matrix. In this chapter, 
we plan to select the appropriate allocation matrix online, so as to satisfy given 
objective function and systems constraints to be introduced later. The formal 
definition of allocation matrix is given here for convenience.  

 

Definition 1: Let [fm, i], ,, NmMi ∈∈∀  be a binary matrix describing 

allocation of channels in given cells, where  

 
                         free. is cell  thi the in channel thm the if    

     cell thi the in call a  serveto allocated is channel thm if   
imfF

,0

,1
],[



==  

Example 4.2.1: An example of a 4x3 allocation matrix where there are 4 cells and 
3 channels is given as 
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

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


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→
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     Cell

channel

 

This implies that the 2nd channel of the 1st cell is serving a call and rest of the 
channels are free. 
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The knowledge of calls assigned to channels in any cell is a very important to 
measure the feasibility of assigning the new calls satisfying the soft constraints. 

 

Definition 2: Let assignment matrix A= ,,],
,

[ NmMi
im

a ∈∈∀  be a matrix 

describing the assignment of calls to the channels of a cell, where   

i cell in callthm the to assigned channel of number the is p e      wherpima ,, =  

 

Example 4.2.2:  Let there be 10 calls in the network with 4 cells and 3 channels. 
Then  



















↓

→

0003001000

0030100020

0200000100

3000020001

     Cell

 calls

 

 
We can see that the 1st call is served by the 1st channel of the 1st cell, the 2nd call 
by the 2nd channel of 3rd cell, 3rd call by the 1st channel of 2nd cell and so on. 

While allocating the calls to the channels we should maintain the QoS in terms 
soft constraints. The soft constrains ensure that the new call assignment do not 
have any interference with the existing calls assignment in the neighbouring cells 
or in the same cell. In this chapter, we measure the QoS as a function of three 
important network attributes: feasibility, hotness (the measure of load) and motion 
of the MS. The feasibility of channel assignment is often expressed as linear 
combination of allocation and compatibility matrices. A formal definition of 
compatibility matrix is given here. 

 
Definition 3: The compatibility matrix C  gives a measure of satisfaction of the 
soft constraints, attempted to minimize co-channel, co-site and the adjacency-
channel interference, whose non-diagonal and diagonal elements are expressed by 

andll kgned in cecalls assithere are 

 j when cell in assignment call a for required n seperatiochannel minimum 

,              

kj,C =

 cell.n the sameassigned i channels  are otherwhen there   cell i           

in gn a call ed to assiion requirel seperatimum chann iiC  min, =
 

 

Speed of the MS is a very important aspect of the CAC since it affects the soft 
handoff and the call drop process. 
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Example 4.2.3:  A compatibility matrix in a four cell network is given as 
    

                   



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
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



4320
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   { }  
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0 to 3 i,jCand     

4 i,i C  where

∈

=
 

   

Definition 4: Speed ],[ ipvV =  in the present context refer to rate of position 

changing of a MS busy with a call utilizing a channel p in cell i. 
  

Example 3.2.4: 
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city the inside   when          ipv
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60,
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>
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=

  

 

Distance of a MS from the BS is also an important aspect as it takes part in the 
soft handoff process. 

 

Definition 5: Distance of MS j from the BS i ∀i ∈M is denoted as 
]i,j[distDis =  

Example 3.2.5: di,jdist = (Fig. 4.2) 
 

                                                                 .     
 
 
  
 
         

  
Fig. 4.2 Measurement of d 

Hotness is another major factor while deciding about a call assignment to a 
channel. It is named hotness since it shows how many calls are coming to a 
particulate cell i.e. how hot and happening the cell is. If the number of incoming 
calls becomes very high the limited resource of the system will not be able to 
handle the incoming calls and thus subsequent new calls will be blocked.  

  
Definition 6: Hotness of a cell i is defined as the number of incoming calls per 

unit time and is denoted as ]i[hH =  

d 
BS 

MS 
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Example 3.2.6: Hotness in a 4-cell scenario where maximum number of incoming 
calls is 10 can be given as  

       [ ]58102][ == ihH              

The angle of motion of MS with respect to the BS shows the direction in which 
the MS is moving and hence the search for cells with free channels becomes 
easier. Hence it is also an important factor in CAC. 

 
Definition 7: Angle of motion is the angle made by the direction of motion of a 

MS p with respect to the BS i and is denoted by ]ip[Delt ,δ= , and is illustrated 

in Fig.4.3. 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4.3 Angle of Motion 

Call duration is useful for finding out the calls going for a very long time. At 
the time of high congestion, these calls are dropped to free the channels for reuse. 

4.2.2  Formulation 

Let the time taken by each call in a given channel p, of each cell i is denoted by 

Tp,i. If ipv ,  be the speed with which an MS is moving in any direction, then, its 

velocity along that direction is ipipv ,cos, δ . Again if jpdist ,  be the distance 

traversed by the MS in time ipT ,Δ then average probability of capturing that MS 

is denoted as PCMS and is given by 
 

 
( )


Δ

=
p jp

ipipip

dist

T v

,

,,,
CMS

cos
P

δ

                     
      (4.1)  

An increase in the value of the above expression is created by a high range of 
velocity, which gives very little time to search a new channel and to go for a soft 
hand off  (SHO). Hence it should be minimized.  

MS p 
BS i 

δ  p, i 
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The difference between the two calls in the two different channels should be at 

a minimum distance to avoid the interference described as soft constrains above. 
The feasibility of assignment of calls in a cell i can be checked by satisfying 
inequality (4.2a) [1], [3]. In (4.2a) the left hand side of the inequality suggest the 
distance between two channels of which one assign mth call in ith cell and the other 
assign nth call in jth cell. The right hand side of the inequality gives the minimum 
channel separation required to assign calls in both the cells i and j. The condition 
demands that the channel separation should satisfy the bare minimum value 
obtained from compatibility matrix and is said to be feasibility condition and 
denoted by Feas.  

 

 
i i,j C))

m n i
|n,jam,i(|a(     <  − (4.2a) 

 0 ))i,jC
m n i

|n,jam,i(|a(jFeas <−  −=
 

(4.2b) 

 
It follows from the last inequality that smaller the value of the left hand side, 
lesser is the interference and thus better is the quality of service of the call 
assigned to the channel. 

The traffic load in a cell is an important issue to determine the possible 
admission of incoming calls in a given cell. Traffic load in the cell i may be 
expressed as the ratio of incoming calls and the total free channels of the cell.  
We define a metric to measure the traffic load in a given cell i, denoted as Load 
and is given by 

           
 −

=

m imf

ih
Load

),1(
                             (4.3) 

Hence the traffic load is the more if the number of incoming calls exceeds 
considerably than the free cells in the system and starts affecting the overall 
system performance. Hence this is also to be minimized. 

We now construct an objective function, the minimization of which yields a 
possible solution to the call admission problem. Since expressions (4.1), (4.2b) 
and (4.3) all need to be minimized, a minimization of their linear combination 
offers an objective that jointly satisfies all the three basic objectives. The overall 
objective function is given by  
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(4.4) 

           

The lower the value of the function better is the performance of CAC system. 
Here we also define the difference of fitness ΔZ as 

 

parentoffspring ZZZ −=Δ                              (4.5)  
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4.3  Proposed Algorithm 

We have used the traditional concept of GA for the call admission control system. 
Here we have considered the call assignment in the network as the parent 
population and used crossover and mutation to generate the offspring population. 
Since it is considered on the total network the chromosomes are two dimensional 
in nature with rows representing cells and columns representing columns. With the 
generation of offspring we calculate the cost of both parents and offspring and 
retain the fittest.  The algorithm is described below with the abbreviations.  

 
M, N     Total number of channel and cell; 
ITE Total number of iteration; 
L          Long call interval; 
ε Very small number; 
s Size of population; 
V          Speed as given in definition 4 
H Hotness as given in definition 6 
A Assignment matrix as given in definition 2 
C Compatibility matrix as given in definition 3 
Delt      Angle of motion as given in definition 7 
Dist        Distance as given in definition 5. 
P {pj} = Initial population. 
C-Pool Parent Pool. 
O-Pool Offspring Pool 
Z fitness for a candidate 

 
Algorithm: 

 

CALL_Adm(A,C;Z ) 
      BEGIN 
FOR (j=0 ; j<s; j++) 
   Initial (A, C; p j) ;  
     END FOR. 
 P={p j}; 
 FOR (i =0;i<ITE; i++) 
      Do  

               Selection (A, C, P; C-Pool); 
       Crossover (C-Pool; O-Pool); 
Mutation (O-Pool; O-Pool); 
FOR (j=0; j<s; j++) 
            Fit (A, C, Dist, Delt , V, H, C-Pool ; Z Pool ) ; 
                Fit (A, C, Dist, Delt , V, H, O-Pool ; Z Pool) ; 
        IF (ΔZ f 

j > 0) 

Update C- Pool as ;jj fp =   

                     END IF. 
                END FOR. 
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(T x, i ,j   )++; 

                         IF ( )Lji  xT >,,  

          Drop_call (x, i, j ,O-Pool; O-Pool); 
                 END IF; 
                         IF (Δ Z f 

j <ε)  
          BREAK; 
                      END IF; 
              WHILE (CONDITION 2a) 
 END FOR; 
    END.   

 
Initialization: 

In this chapter, we consider the solutions as the assignment of calls to channels of 
all the cells in the network. Hence we have each solution as a M x N vector F 
(assignment) such that 

{ }








==   ,                                       e         0 otherwis

n service cell is ithn i channel ith1  when m
imfF  ,  

where F satisfy the soft constraints.  
We have considered a pool of p such vectors of assignment as a parent 

population all of which satisfies the soft constraints.  

 
Initial (A, C; p j):  
         BEGIN. 

  FOR ( )++<= iNii ;;0   

FOR ( )++<= mMmm ;;0  

   IF ( )jiCjnaima ,|,,| <−  

        








=   ,                                       e         0 otherwis

n service cell is ithn i channel ith1  when m
imf , 

   END IF. 
  END FOR. 
  END FOR. 

  Construct [ ]imfF
j

p ,==   

   Return p j. 
          END. 
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Example 3.3.1: We consider a network with 3 cells and 4 channels. Then the 
parent matrix, obeying the compatibility constraints, may look like the following 

j
p  where a ‘1’ represents a channel in a cell is assigned to a call and a ‘0’ 

represents a free channel. 
 

 [ ]


















===

000

100

000

010

,imfF
j

p  where, M=3 and N=4.  . 

 

Selection:  

A roulette wheel with slots sized according to feasibility is used for selection 
process. We construct such a roulette wheel as follows 

 

• First we calculate the feasibility value for a parent p j using condition (2b) 
denoted as feas j.

 

• Then we calculate the total feasibility of all parents 
−

=

1

0

s

j

j
feas . 

• Now we calculate the probability of selection of a parent pj 

as


−

=

= 1

0

Pr s

j

j
feas

j
feas

jp
ob . 

• Now we calculate the cumulative probability 
=

=
i

j jp
obiCP

0
Pr .    

• The selection process is based on spinning the roulette wheel s times; each 
time we select a single chromosome for a new population in the following way: 

o Generate a random (floating) number r in the range [0; 1], 
o If r < CP1 then select the 1st chromosome (p1); 
o Otherwise select the ith chromosome pi   (2< i < s) 

if iPROBriPROB <<−1 . 

This way we can choose the parents who have higher feasibility of getting new 
calls in the population. The pseudo code for selection is given below. 

 
Selection (A, C, P; C-Pool ):  

Let x be an integer.  
BEGIN. 

  )),|,,(|( jiC
m n i jnaima

j
Feas −  −=  

   Fsum= 0; 
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FOR (j=0 ; j< s ; j++) 
      Fsum = Fsum + Feas j; 
END FOR;  


−

=

= 1

0

Pr s

j

j
feas

j
feas

jp
ob  

CP i =0. 
FOR ( j = 0 ; j< i ;  j++) 

         
=

=
i

j jp
obiCP

0
Pr  

  END FOR. 
r = Random (float in [0, 1]). 

IF( r < CP0 ) then x=0; 

 ELSE  

     FOR (i=1; i < s ; i ++) 

    IF ( iPROBriPROB <<−1 ) 

        x= i; 
             Pool = Pool U {p x};  
             BREAK; 
   END IF. 
    END FOR. 
END IF. 
 Return C-Pool; 
END. 

 
Crossover: 

  

We use the C-Pool generated by the selection procedure for crossover. We 
consider two random chromosomes from the C-Pool to crossover.  We consider a 
one-point crossover and generate a random position (r, c) at which the crossover 
takes place to produce two offspring.  

Let x
lmp , and 

y
lmp , be two parents taking part in crossover. After crossover the 

offspring are kept in O-Pull.   
The pseudo code of crossover is given as: 

 
Crossover (C-Pool; O-Pool):      
BEGIN. 
   FOR(ps=0; ps < SizeOf ( C-Pool) ; ps ++) 
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    // Taking chromosomes for cross over 
x = Random (number < SizeOf ( C-Pool)); 
y = Random (number < SizeOf ( C-Pool) &&  ≠ x); 
// Deciding position of cross over 
r = Random (number < m); 
c= Random (number < l); 
FOR( i= 0; i < r; i++) 
FOR (j =0; j < c; j++)            

y
j,ip

y
j,if

 x
j,ipx

j,if

=

=
                                                     

END FOR. 
    END FOR. 
FOR ( i= r ; i < m; i++) 
         FOR (j =c; j < l; j++)                          

x
ijp

y
ijf

 
y

ijpx
ijf

,,

,,

=

=
    

 END FOR. 
 END FOR. 
         Update O-Pool; 
 END FOR. 
END. 

 
Example 3.3.2: Let the parents have 3 cells and 4 channels and the crossover point 
is randomly chosen as 3rd row 3rd column.  

 
i.e  r max   = 4 and c max  = 3 and 
 

100

001

000

010

1 =p                     

010

000

100

001

2 =p  

 
Then after crossover at r = 3 and c =3 the offspring become  

010

000

100

010

1 =f       and        

100

001

000

001

2 =f  
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Mutation: 
 

We consider the random call hang-up in the system and express this phenomenon 
as mutation. Suppose in a given cell r, a call served with channel c is disconnected 
by the caller. Then following the definition of allocation matrix F, we understand 
that the element fml = 0 for m= r and l=c, after disconnection of the call. 

i.e. cl r,m      where0,  lmf ===,  

We have considered minimum two such hang-ups in the network. Accordingly 
random positions are generated where mutation is done as described above. 

  
Mutation (O-Pool; O-Pool):    

 
BEGIN. 
FOR (i=0; i < Size Of (O-Pool); i++) 

  r = Random (number < m); 
  c= Random (number < l); 

      0,  f cr =,   

   END FOR 
  Update O-Pool; 

END. 
 

Example 3.3.3: Let there be mutation at the positions (1,2) and (4,3) for the 
parents with 4 cells and 3 channels 

i.e, r max   = 4 and cmax  = 3 and 

100

001

000

010

=f           

Now, r1= 1, c1=2, and r2 = 4, c2 = 3. Hence after mutation the offspring will 
become 

                           

000

001

000

000

=f      

Fitness check : 

This is the part where we calculate the fitness of the new offspring and there 
parents using the equation (4) where all the other values are known. 

  
Fit (A, C, Dist, Delt , V, H, Pool,; Z pool) : 
BEGIN. 
WHILE( ! EOF(O-Pool) 
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FOR (p=0 ; p <N; p++) 


Δ

=
p ipdist

ipTi pipvi
CMSP

,

,),cos,( δ . 

      END FOR. 
    FOR (m=0 ; m <N; m++) 
FOR (n=0 ; n <N && m ≠ n ; n++) 
 FOR (j=0 ; j <M; j++) 

         )),|,,(|( − −=
m n jiC

j jnaimaiFeas   

  END FOR 
END FOR. 
                   END FOR. 
                  FOR (m=0 ; m <N; m++) 

     
 −
m imf

ihiLoad
),1(

 

            END FOR. 
iLoadiFeasCMS

iP
i

 PoolZ ++=  

RETURN(ZPool). 
        END WHILE 
END.  

 
Call Drop: this is where the call is forcefully terminated due to the time 
constraint. 

 
Drop_call (x, i, O-Pool; O-Pool) 
 BEGIN 

  ;0
,

=x
ji

f  

 END 

4.4  Experiments and Simulation 

In this experiment we have considered the following assumptions: 

• The network has 21 hexagonal cells and 7 channels(Fig 4.4) 
• The value of  

o Co-channel distance is 2 
o Adjacency channel distance is 3 
o Co-site distance is 

• The number of incoming calls lays in the range 0 to 150 and changes 
dynamically. 
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• Initial population size was taken as 20. 
• The velocity change was from 0 to 120 km/hr. 
• The distance between two base stations is 2 km and remains unchanged. 
• The calls are considered long if they go on more than 30 minutes. 
• The direction of the MS, its distance from the base station and velocity 

changes dynamically. 

The algorithm stated above is executed using the given fitness function. The initial 
conditions and necessary changes of the dynamic network are enforced obeying 
the above stated assumptions. The results obtained are shown an explained below. 
Fig.4.5 depicts the fitness values with respect to the increasing demand. In the 
initial stage when the demand is low the fitness starts with a low value and further 
goes down. Hence more and more channel start getting assigned. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.4 Network of 21 cells 

Initially the fitness starts decreasing as channels starts getting assigned to the 
calls. The fitness goes down after shooting up to a highest peak. This is due to a 
strong congestion in the system due to the insufficiency of the free channels in the 
network. This situation is resolved by dropping calls which are in service for long 
intervals. Again the fitness goes down and calls get assigned to channels. The in-
between fluctuations in fitness values are due to the change in velocity as well as 
the distance of MS from BS. But as traffic load increases, the system is not able to 
handle the situation due to in sufficient free channels. 
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Fig. 4.5 Changing Fitness vs. Demand 

Fig. 4.6 shows both the change in demand and assignment versus generation of 
the evolutionary process. It is evident from the figures that assignment of calls 
goes up when demand is medium to low but goes down when demand goes up. 

 

 
Fig. 4.6 Call Assignment with changing demand over generations 
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Again after a bulk of call assignment the number of available channels decrease 

and then new calls get blocked. This happens due to the high level of congestion 
and insufficient channels. After a while some calls end naturally and the channels 
are again free. So call assignment rate again increases.  

 

Fig. 4.7 Change in fitness due to change in the parameters 

Fig. 4.7 shows the change in different parameters of the dynamic network with 
respect to increasing demand. We have here a randomly changing velocity and 
directions of calls in each channel. We calculate the fitness of assignment in such 
changing system with an increasing demand.   
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It is seen that whenever the velocity as well as the angle changes sharply the 
fitness function increases sharply even though the demand is not very high. Again 
when the angle changes sharply again there is a rise of fitness value. Again it is 
evident from Fig. 4.7 that fitness value goes down for slower speed and smaller 
change in direction. But if the congestion level is very high i.e. incoming calls is 
plenty in number then fitness value rises and stays flat.   

This happens due to the insufficiency of free channels even though the long 
calls are terminated and some calls end naturally by releasing some channels free 
in the network. A flood of in coming calls can create congestion, which cannot be 
handled as long as resources are not increased. 

In the present context of call admission control, the measure of efficiency 
(MOE) is defined as the ratio between the number of calls serviced and the 
number of incoming calls in the network. Fig. 4.8 provides the effect of increasing 
call demand on the efficiency.  

Fig. 4.8 indicates that the call management system performs well in terms of 
assigning calls to free channels, even when call demand is increasing. The initial 
part of the graph is decreasing in nature. This is due to the fact that initially, after a 
certain number of call assignments, most of the channels become occupied.  

At that point new calls are rejected. Then after a while, as proposed by our 
algorithm long time calls are retrieved and this procedure recurs after a fixed 
interval of time. Hence after this period call drop are minimized. And hence the 
MOE becomes more of less smooth. 

At the end when the number of incoming calls increases excessively that the 
system cannot cope up with the given resources, the measure of MOE drops down.   
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Fig. 4.8 Measure of Efficiency 
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4.5  Conclusion  

In this chapter various aspects of call admission control is considered to obtain a 
more realistic solution. Here the call admission control problem is divided into 
three parts. The first we represent the probability of capturing a specific MS in a 
given network. This probability depends on the velocity and direction of the 
mobile station as well as its distance from the BS. 

Next we represent the feasibility of acceptance of a call by a channel. Here we 
take care of the interference that may occur in the network. Finally we represent 
the traffic load that is responsible for optimising load in a system. All three 
modules combined together the system for the call admission control problem 
introduced above. Most of the works in this field do not consider all the aspects 
mentioned above together in a single system but have worked on any one of the 
aspects at a time. 

The methodology of CAC presented here performs better in networks with 
dynamic parameter settings, such as hotness and feasibility and the load as well. 
Further, the proposed scheme considers direction and speed of the MS, and the 
distance of the MS from the BS. The performance of the proposed scheme is 
compared with existing results on CAC with varying load, and the results are 
appealing. It is evident from the experimental results that the proposed technique 
is capable of serving more calls than the other methods, and it can reuse more 
number of channels than the same by other methods.   

The system realised above is a centralized system, where all the calculation and 
decision making is done by the centralized call admission system and is then 
broadcasted to all the cells in the network. It is better to use a distributed system, 
which may perform faster. In such system some of the information should be 
shared by broadcasting them. The main hurdles in using a fully distributed system 
are the communication bottleneck. This can, however, be relieved by considering 
a partly central and partly distributed realization. The trade-off in this case is 
important to determine which part should remain centralized, and which one to be 
realized in a distributed manner, so that communication among the system 
modules is minimized.  
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Chapter 5 
Call Admission Control Using Bio-geography  
Based Optimization 

The chapter proposes a new approach to call admission control in a mobile 
cellular network using Bio-geography based optimization. Existing algorithms on 
call admission control either ignore both variation in traffic conditions or velocity 
of mobile devices, or at most consider one of them. This chapter overcomes the 
above problems jointly by formulating call admission control as a constrained 
optimization problem, where the primary objective is to minimize the call drop 
under dynamic condition of the mobile stations, satisfying the constraints to 
maximize the channel assignment and minimize the dynamic traffic load in the 
network. The constrained objective function has been minimized using Bio-
geography based optimization. Experimental results and computer simulations 
envisage that the proposed algorithm outperforms most of the existing approaches 
on call admission control, considering either of the two issues addressed above.   

5.1   Introduction 

Call Admission Control (CAC) refers to the problem of efficient call management 
in a mobile cellular network. The primary objective of CAC is to serve as many 
calls as possible, and prevent dropping of calls in progress [1-3]. Besides this, an 
efficient call management also aims at satisfying additional (secondary) objective 
to assign appropriate channels to the incoming/handoff calls, so that the necessary 
soft constraints for channel assignment are maintained [1-8].  Typically, soft 
constraints include co-channel, co-site, and adjacent channel constraints, all of 
which need to be satisfied to serve the secondary objective. In the current 
literature, Quality of Service (QoS) is often used to measure the quality of CAC 
with an attempt to maximize call assignment and soft handoff, satisfying the soft 
constraints. The better the QoS, the better is the CAC. 

The concept of biogeography can be traced to the work of nineteenth century 
naturalists such as Alfred Wallace and Charles Darwin. Robert Macarthur and 
Edward Wilson began working together on mathematical models of biogeography 
in 1960.The primary objective was on the distribution of species among 
neighboring islands. The mathematical models were developed for the extinction 
and migration of species.  The application of biogeography to engineering is 
similar to what has occurred in the past few decades with genetic algorithms (GA), 
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neural networks, fuzzy logic, particle swarm optimization (PSO), and other areas 
of computational intelligence. 

Biogeography-based optimization (BBO) rests on the migration strategy of 
animals to solve the problem of global optimization. In general, Biogeography is 
the study of the geographical distribution of biological organisms. Mathematical 
equations that govern the distribution of organisms were first discovered and 
developed during the 1960s. The researchers can learn from nature and it 
motivates the application of biogeography to optimization problems. This chapter 
considers the mathematics of biogeography as the basis for the development of a 
new field for admission of calls in a mobile network using the biogeography-based 
optimization (BBO). 

The BBO migration strategy is similar to the global recombination approach of 
evolutionary strategies (ES) (Black, 1996), (Black et al., 1997), in which many 
parents can contribute to a single offspring. Global recombination has also been 
adapted to GA (Eiben, 2003), (Eiben, 2000), but BBO differs from GAs in one 
important aspect. In GA recombination is used to create new solutions, while in 
BBO migration is used to change existing solutions.  

Global recombination in ES is a reproductive process, which creates new 
solutions, while BBO migration is an adaptive process that modifies existing 
solutions. A quantitative comparison between BBO and other Evolutionary 
Algorithms is included in Simon (2008), where 14 benchmark functions, each 
with 20 dimensions, were studied. It was shown that BBO and the stud GA (so 
named for its selection of the best individual in the population as one of the 
parents for every crossover operation) performed the best out of eight EA.    

5.1.1   The Problem 

CAC systems are mainly used to take decisions, whether a call should be serviced, 
blocked or dropped by a Base Station (BS), and if serviced, it identifies the 
channel to be assigned to that call. At the time of taking such decision, the 
interference is considered the only factor in most of the current literature [1 - 48].  

Existing works presented above, concentrates on specific aspects of the call 
admission control problem. A few of these considers rectangular cells and the near 
neighbor and hence ignores the entirety of the network, while the rest considers 
only the hand off and call drop due to insufficient channels. Unfortunately, most 
of the above works consider the mobile stations either static or moving very 
slowly in the small area with very low traffic load.  

The mobility factor comprising speed and direction of movement has been 
ignored in these works. Moreover, the overall network load is also ignored and 
hence the handoff policies used have a partial effect on the network. Most of the 
above schemes are localized to a single cell.  Hence the channel reuse is also not 
done efficiently. 

In this chapter, we propose a scheme that takes a more wide view of the call 
admission control problem. We consider our cells to be hexagonal so as to easily 
track the movement of MS in the neighborhood cells. Instead of considering a 
single cell scenario, we have taken a small network to implement the algorithm to 
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incorporate the intercellular communication efficiently. The decision of 
acceptance or rejection of a call dose not only depend on the feasibility and 
availability of the channel but also on the speed at which the MS moves and its 
direction of movement. Its geographical location with respect to the base station 
also has a significant importance. Moreover the traffic density on a cell is also 
considered to be a determining factor. The reuses of the channels also make the 
approach more effective. The algorithm proposed in the chapter is based on all the 
factors mentioned above which more perfectly handles the real world situation. 

There are certain parameters to measure the efficiency of such a system. One 
important parameter is the number of call drop that shows the number of 
unwanted call disconnection in the system and should be as low as possible. The 
other one would be the call block, where the new call attempts are rejected by the 
network due to the insufficiency of the free channels. The number of assignable 
channels that helps in increasing the efficiency of the system is another important 
parameter considered here. 

In this chapter, we propose a scheme, which takes into account the motion 
aspect of the mobile station (MS) as well, besides considering all the necessary 
objectives of CAC. We here use three parameters:  i) speed, ii) direction, and iii) 
distance of the MS from the nearest base station to model the motion of the mobile 
station. The above three parameters play an important role at the time of soft 
handoff of a call from one cell to other. The importance can be explained with the 
help of Fig.5.1, where the central cell has six neighbours.  

The MS in such a cell while in service may move in various directions with 
different speed. If it moves toward cell 5 or 6 directly then the channel for handoff 
will be searched in those cells. When it moves slowly along the common boundary 
of cell 5 and 6, the cell with base station nearer to the current location of MS is 
considered. Again, if the above movement takes place with a very high speed, then 
the call may be dropped due to high interference. Suppose, it moves towards cell 2 
very slowly, then there may not be a requirement for a soft handoff at all since it 
may never cross the existing cell boundary.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.1 Illustrating the movement of MS in a mobile cellular network 

Hence, we aim at searching an optimal set of assignment, which will take care 
of the quality of service, and the velocity aspect of the scheme. 

BS 
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5.2   The BBO Approach 

Mathematical models of biogeography explain the migration of species from one 
island to another and their evolution and extinction [49-52]. The term “island” is 
used descriptively rather than literally. An island is any habitat that is 
geographically isolated from other habitats. The more generic term “habitat” will 
be used (rather than “island”). Geographical areas that are well suited as 
residences for biological species are said to have a high suitability index variables 
(SIV). Features that correlate with HSI include such factors as rainfall, diversity of 
vegetation, diversity of topographic features, land area, and temperature. The 
variables that characterize habitability are called suitability index variables (SIV). 
SIV can be considered the independent variables of the habitat, and HSI can be 
considered the dependent variable.  

Habitats with a high HSI tend to have a large number of species, while those 
with a low HSI have a small number of species. Habitats with a high HSI have 
many species that emigrate to nearby habitats, simply by virtue of the large 
number of species that they host. Habitats with a high HSI have a low species 
immigration rate because they are already nearly saturated with species. 
Therefore, high HSI habitats are more static in their species distribution than low 
HSI habitats. The high HSI habitats have a high emigration rate; the large number 
of species on high HSI islands has many opportunities to emigrate to neighboring 
habitats.  

This does not mean that an emigrating species completely disappears from its 
home habitat; only a few representatives emigrate, so an emigrating species 
remains extant in its home habitat, while at the same time migrating to a 
neighboring habitat.) Habitats with a low HSI have a high species immigration 
rate because of their sparse populations. 

This immigration of new species to low HSI habitats may raise the HSI of the 
habitat, because the suitability of a habitat is proportional to its biological 
diversity. However, if a habitat’s HSI remains low, then the species that reside 
there will tend to go extinct, which will further open the way for additional 
immigration. Due to this, low HSI habitats are more dynamic in their species 
distribution than high HSI habitats. 

A good solution is analogous to an island with a high HSI, and a poor solution 
represents an island with a low HSI. High HSI solutions resist change more than 
low HSI solutions. The high HSI solutions tend to share their features with low 
HSI solutions. This does not mean that the features disappear from the high HSI 
solution; the shared features remain in the high HSI solutions, while at the same 
time appearing as new features in the low HSI solutions. This is similar to 
representatives of a species migrating to a habitat, while other representatives 
remain in their original habitat. Poor solutions accept a lot of new features from 
good solutions. This addition of new features to low HSI solutions may raise the 
quality of those solutions.  
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Fig. 5.2 Species model of a single habitat based on biogeography 

The model of species abundance in a single habitat is shown in Fig. 5.2. The 
immigration rate λ and the emigration rate µ are functions of the number of 
species in the habitat. 

For the immigration curve, the maximum possible immigration rate to the 
habitat is I, which occurs when there are zero species in the habitat. As the number 
of species increases, the habitat becomes more crowded, fewer species are able to 
successfully survive immigration to the habitat, and the immigration rate 
decreases. The largest possible number of species that the habitat can support is 
Smax, at which point the immigration rate becomes zero. 

For the emigration curve if there are no species in the habitat then the 
emigration rate must be zero. As the number of species increases, the habitat 
becomes more crowded; more species are able to leave the habitat to explore other 
possible residences, and the emigration rate increases. The maximum emigration 
rate is E, which occurs when the habitat contains the largest number of species 
that it can support. 

The equilibrium number of species is So, at which point the immigration and 
emigration rates are equal. However, there may be occasional excursions from due 
to temporal effects. Positive excursions could be due to a sudden spurt of 
immigration (caused, perhaps, by an unusually large piece of flotsam arriving 
from a neighboring habitat), or a sudden burst of speciation (like a miniature 
Cambrian explosion). Negative excursions from could be due to disease, the 
introduction of an especially ravenous predator, or some other natural catastrophe. 
It can take a long time in nature for species counts to reach equilibrium after a 
major perturbation. 

The immigration and emigration curves in shown in Fig. 5.2 as straight lines 
but, in general, they might be more complicated curves.  

Now, the probability Ps is the habitat contains exactly S species. Ps changes 
from time t to time ( t + Δ t ) as follows: 
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E 
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Number of species 
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where λs and µs are the immigration and emigration rates when there are S species 
in the habitat. This equation holds because in order to have S species at 

)( tt Δ+ time, one of the following conditions must hold: 

 
• There were S species at time t, and no immigration or emigration 

occurred between t and  )( tt Δ+  ; 

• There were (S - 1) species at time t, and one species immigrated; 
• There were (S + 1 ) species at time , and one species emigrated. 

 
It is assumed that Δ t is small enough so that the probability of more than one 
immigration or emigration can be ignored. Taking the limit of 5.1 as Δ t → 0 gives 
equation 5.2 shown as follows:  
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Now, we can arrange the equations of equation 5.2 into the single matrix 
equation 
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Where the matrix A is given in the following equation: 
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For the straight-line curves shown in Fig.5.3 we have 
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Now for special case E= I , then 
 

             
Ekk =+ μλ                                                    (5.6) 

 
According to the simplified form stated in equation 5.6, the species model will be 
the following type. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 5.3 S1 is relatively a poor solution and S2 relatively a good solution 

5.2.1   Migration in BBO 

Suppose that we have a problem and a population of candidate solutions that can 
be represented as vectors of integers. Each integer in the solution vector is 
considered to be an SIV. The assessment for the goodness of the solutions has to 
be done. The solutions that are good are considered to be habitats with a high HSI, 
and those that are poor are considered to be habitats with a low HSI. HSI is 
analogous to “fitness” in other population-based optimization algorithms (GAs, 
for example). High HSI solutions represent habitats with many species, and low 
HSI solutions represent habitats with few species. The identical species curve (E = 
I) is considered for simplicity but the S value represented by the solution depends 
on its HSI. 

S1 in Fig.5.3 represents a low HSI solution, while S2 represents a high HSI 
solution. S1 in Fig.5.3 represents a habitat with only a few species, while S2 

represents a habitat with many species. The immigration rate λ1 for S1 will be 
higher than the immigration rate λ2 for S2 .  The emigration rate µ1 for S1 will be 
lower than the emigration rate µ2 for S2. The emigration and immigration  
rates of each solution probabilistically share information between habitats. With 
probability Pmod, each solution is modified based on other solutions.  

If a given solution is selected to be modified, then the immigration rate λ to 
probabilistically decide whether or not to modify each suitability index variable 
(SIV) in that solution. If a given SIV in a given solution Si selected to be 
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modified, then the emigration rates µ of the other solutions to probabilistically 
decide which of the solutions should migrate a randomly selected SIV to  
solution Si. 

The BBO migration strategy is similar to the global recombination approach of 
the breeder GA and evolutionary strategies in which many parents can contribute 
to a single offspring, but it differs in at least one important aspect. In evolutionary 
strategies, global recombination is used to create new solutions, while BBO 
migration is used to change existing solutions. Global recombination in 
evolutionary strategy is a reproductive process, while migration in BBO is an 
adaptive process; it is used to modify existing islands. To retain the best solutions 
in the population, some sort of elitism is incorporated. This prevents the best 
solutions from being corrupted by immigration. 

5.2.1.1   Migration Algorithm 

Habitat modification can loosely be described as follows:  
 

Select Hi with probability proportional to λi 
           If Hi  is selected 
               For j=1 to n 
                     Select Hj with probability proportional to µj 
                                If  Hj is selected 
                                     Randomly select an SIV from Hj 
                                     Replace a random SIV in with 
                end 
         end 
end 

5.2.2   Mutation in BBO  

A habitat’s HSI can change suddenly due to apparently random events (unusually 
large flotsam arriving from a neighboring habitat, disease, natural catastrophes, 
etc.) The model of BBO as SIV mutation, and species count probabilities is used 
to determine mutation rates. 

The probabilities of each species count will be governed by the differential 
equation given in 5.2. By looking at the equilibrium point on the species curve of 
Fig.5.2, it is observed that low species counts and high species counts both have 
relatively low probabilities and medium species counts have high probabilities 
because they are near the equilibrium point. 

Each population member has an associated probability, which indicates the 
likelihood that it was expected a priori to exist as a solution to the given problem. 
Very high HSI solutions and very low HSI solutions are equally improbable. 
Medium HIS solutions are relatively probable. If a given solution S has a low 
probability Ps, then it is surprising that it exists as a solution. It is, therefore, likely 
to mutate to some other solution. Conversely, a solution with a high probability is 
less likely to mutate to a different solution. The mutation rate that is inversely 
proportional to the solution probability,  
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Where   
              mmax is a user-defined parameter,  

and            Pmax = argmax Pi , i = 1,...NP . 
 

This mutation scheme tends to increase diversity among the population. Without 
this modification, the highly probable solutions will tend to be more dominant in 
the population. This mutation approach makes low HSI solutions likely to mutate, 
which gives them a chance of improving. It also makes high HSI solutions likely 
to mutate, which gives them a chance of improving even more than they already 
have. Note that we use an elitism approach to save the features of the habitat that 
has the best solution in the BBO process, so even if mutation ruins its HSI, we 
have saved it and can revert back to it if needed. So, we use mutation (a high risk 
process) on both poor solutions and good solutions. Those solutions that are 
average are hopefully improving already, and so we avoid mutating them 
(although there is still some mutation probability, except for the most probable 
solution).  

 
Mutation Algorithm: Mutation can be described as follows:  
For j=1 to m 
      Use λi  and µi to compute the probability Pi 
             Select SIV Hi ( j ) with probability proportional to Pi 
                        If  Hi ( j )  is selected 
                             Replace Hi ( j )  with a randomly generated SIV 
                           end 
end 

5.3   Formulation 

Here we have attempted to handle the calls with their mobility factor too. A caller 
may be in a move when a call is generated and while serviced. But depending on 
the speed of the MS and the direction in which they are moving, there may be a 
need to reassign the call to a different channel of a different cell. To explain such 
situation we start with defining the primitives. 

5.3.1   Definitions 

We consider a system of M hexagonal cells present in the network and each of 
them has N number of frequency channels. In CAC we need to find out the best 
allocation of calls in different cells. So we need to know about the current status of 
allocation, which is usually represented by an allocation matrix. In this chapter, 
we plan to select the appropriate allocation matrix online, so as to satisfy given 
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objective function and systems constraints to be introduced later. The formal 
definition of allocation matrix is given here for convenience.  

 
Definition 1: Let [fm, i], ,, NmMi ∈∈∀  be a binary matrix describing allocation 
of channels in given cells, where  
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Example5.1: An example of a 4x3 allocation matrix where there are 4 cells and 3 
channels is given as 
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This implies that the 2nd channel of the 1st cell is serving a call and rest of the 
channels are free. The knowledge of calls assigned to channels in any cell is a very 
important to measure the feasibility of assigning the new calls satisfying the soft 
constraints. 

 

Definition 2: Let assignment matrix A= ,,],,[ NmMiima ∈∈∀  be a matrix 

describing the assignment of calls to the channels of a cell, where 
 

i cell in callthm the to assigned channel of number the is p e      wherpima ,, =  
 

Example5.2:  Let there be 10 calls in the network with 4 cells and 3 channels. 
Then  
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We can see that the 1st call is served by the 1st channel of the 1st cell, the 2nd call 
by the 2nd channel of 3rd cell, 3rd call by the 1st channel of 2nd cell and so on. 

While allocating the calls to the channels we should maintain the QoS in terms 
soft constraints. The soft constrains ensure that the new call assignment do not 
have any interference with the existing calls assignment in the neighbouring cells 
or in the same cell. In this chapter, we measure the QoS as a function of three 
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important network attributes: feasibility, hotness and motion of the MS. The 
feasibility of channel assignment is often expressed as linear combination of 
allocation and compatibility matrices. A formal definition of compatibility matrix 
is given here. 

 
Definition 3: The compatibility matrix C  gives a measure of satisfaction of the 
soft constraints, attempted to minimize co-channel, co-site and the adjacency-
channel interference, whose non-diagonal and diagonal elements are expressed by  
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Speed of the MS is a very important aspect of the CAC since it affects the soft 
handoff and the call drop process. 

 
Example5.3:  A compatibility matrix in a 4 cell network is given as 
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Definition 4: Speed V=[v p, i ] in the present context refer to rate of position 
changing of a MS busy with a call utilizing a channel p in cell i. 

 
Example5.4: 
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Distance of a MS from the BS is also an important aspect as it takes part in the 
soft handoff process. 

 
Definition 5: Distance of MS j from the BS i ∀i ∈M is denoted as 

  Dis = [dist i, j]. 

Example5.5: d=ji,dist  where d is the distance of the MS from BS as in Fig 5.4 
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Fig. 5.4 Distance between BS and MS 

Hotness is another major factor while deciding about a call assignment to a 
channel. If the number of incoming calls becomes very high the limited resource 
of the system will not be able to handle the incoming calls and thus subsequent 
new calls will be blocked.  

  
Definition 6: Hotness of a cell is defined as the number of incoming calls per unit 
time and is denoted as H= [hi]. 

 
Example5.6: Hotness in a 4-cell scenario where maximum number of incoming 
calls is 10 can be given as 

     [ ]58102][ == ihH              

Angle of motion of MS with respect to the BS shows the direction in which the 
MS is moving and hence the search for cells with free channels becomes easier. 
Hence it is also an important factor in CAC. 

 

Definition 7: Angle of motion is the angle made by the direction of motion of a 
MS p with respect to the BS i and is denoted by Delt = [δp, i], and is illustrated in 
Fig.5.5. 

 
 
 
 
 
 
 
 
 
 

 
Fig. 5.5 Angle of Motion 

Time taken by each call is useful for finding out the calls going for a very long 
time. At the time of high congestion, these calls are dropped to free the channels 
for reuse. 

d 
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δ  p, i 
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5.3.2   Formulation 

Let the time taken by each call in a given channel p, of each cell i is denoted by 

Tp,i. If ipv ,  be the speed with which an MS is moving in any direction, then, its 

velocity along that direction is ipipv ,cos, δ . Again if jpdist ,  be the distance 

traversed by the MS in time ipT ,Δ then average probability of capturing that MS 

is denoted as PCMS and is given by 
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An increase in the value of the above expression is created by a high range of 
velocity, which gives very little time to search a new channel and to go for a soft 
hand off (SHO). Hence it should be minimized. 

The difference between the two calls in the two different channels should be at 
a minimum distance to avoid the interference described as soft constrains above. 
The feasibility of assignment of calls in a cell i can be checked by satisfying 
inequality (1)[1],[3].The condition demands that the channel separation should 
satisfy the bare minimum value obtained from compatibility matrix and is denoted 
by Feas. 
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(5.8b) 

 

It follows from the last inequality that smaller the value of the left hand side, 
lesser is the interference and thus better is the quality of service of the call 
assigned to the channel. 

The traffic load in a cell is an important issue to determine the possible 
admission of incoming calls in a given cell. Traffic load in the cell i may be 
expressed as the ratio of incoming calls and the total free channels of the cell.  We 
define a metric to measure the traffic load in a given cell i, denoted as Load and is 
given by 
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Hence the traffic load is the more if the number of incoming calls exceeds 
considerably than the free cells in the system and starts affecting the overall 
system performance. Hence this is also to be minimized. 

We now construct an objective function, the minimization of which yields a 
possible solution to the call admission problem. Since expressions (5.7), (5.8b) 
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and (5.9) all need to be minimized, a minimization of their linear combination 
offers an objective that jointly satisfies all the three basic objectives. The overall 
objective function is given by  
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The lower the value of the function better is the performance of CAC system. 
Here we also define the difference of fitness ΔZ as 
 

parentoffspring ZZZ −=Δ                                        (5.11) 

5.4   CAC Realized with BBO 

In the above formulated problem we consider the networks as habitats with 
suitability index variables (SIV) as the velocity, distance , angle, the hotness of 
each cell and the feasibility of assignment of the channels. The suitability index 

variables (SIV) of each habitat is given by habitatZ  . Here the calls waiting for 

service are said to be the species of the habitat. the maximum possible 
immigration rate to the habitat I is the maximum number of free channels and the 
maximum emigration rate  E in this problem is the number of channels in service 
respectively.   

 
Let      M, N  Total number of channel and cell;  
           ITE  Total number of iteration;  
            L  Long call interval; 
            ε  Very small number; 
      s  Size of population; 
      V Speed as given in definition 4 
      H Hotness as given in definition 6 
      A Assignment matrix as given in definition 2 
       C  Compatibility matrix as given in definition 3. 
         Delt  Angle of motion as given in definition 7 
         Dis  Distance as given in definition 5. 
       P ={pj}  Initial population. 
      C-Pool     Parent Pool. 
       O-Pool  Offspring Pool 
                Z  fitness for a candidate  

 
Here, we propose a CAC algorithm which ensures minimization of call drop and 
noise. We use BBO to ensure the optimization. We first consider a pool of 
solutions of represented as assignment matrix. We make sure all of the initial 
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solutions are unique. Then following the BBO steps, we select a pair of solutions 
by a roulette wheel. We use the pair of solutions as an input to the BBO migration. 

The migration process has two parts a) rearrange b) change. In ‘rearrange’ we 
identify a random point common to both the solution and perform exchange in the 
two. This causes the generation of a new set of solution from the existing one. In 
change, we consider the random hang-up of calls and change the rearranged 
solution and the parent solutions accordingly. 

After this we go for a fitness check to see whether the new solutions are viable 
or not.  Depending on the measured fitness we accept or reject the new solutions. 

At the end to avoid the congestion in the network, we drop some calls 
forcefully by defining a concept call long call. If the call connection exceeds 
certain duration, we consider them as long calls. The whole process is repeated  
as long as the fitness difference between the parent and the offspring is 
considerably low. 

The algorithm is formally given below. 
 

Algorithm: 
CALL_Adm(A,C;Z ) 
         BEGIN 

      FOR (j=0 ; j<s; j++) 
    Initial (A, C; p j) ; 
    END FOR. 
       FOR (j=0 ; j<s; j++) 
    R_Dup(p j; p j) ;  
 END FOR 
 P={p j}; 
       Initialize Smax, E, I. 
FOR (i =0; i<ITE; i++)  
           Do  

            Selection (A, C, P; C-Pool); 
  Migration (C-Pool; O-Pool); 

FOR (j=0; j<s; j++) 
      Fit (A, C, Dist, Delt , V, H, C-Pool ; Z Pool ) ; 
      Fit (A, C, Dist, Delt , V, H, O-Pool ; Z Pool) ; 
    Accept (C-Pool, O-Pool, O-Pool), 

             END FOR.  
   (T x, i ,j   )++; 

                 IF ),,( Lji  xT >  

           Drop_call (x, i, j ,O-Pool; O-Pool);                               END IF; 
                  IF (Δ Z f 

j <ε)  
             BREAK; 
          END IF; 
     WHILE (CONDITION 8a) 
    END FOR; 
END.   
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Initialization:  

 

In this chapter, we consider the habitats as the assignment of calls to channels of 
all the cells in the network. Hence we have each solution as a M x N vector F 
(assignment) such that 

 

{ }








==   ,                                       e         0 otherwis

n service cell is ithn i channel ith1  when m
imfF  , 

 

where F satisfy the soft constraints. We have considered a pool of p such vectors 
of assignment as a parent population all of which satisfies the soft constraints.  

 
Initial (A, C; p j) 
Step1. Loop i (0, N-1), 1. 
Step2. Loop m (0, M-1), 1. 
Step3. Check condition stated in (8a) 

Step4. If true make 0 ,1, else      imf =   

Step5. Goto step 1. 

Step6.  Construct ],[ imfF
j

p ==   

Step7. End. 
  

Example5.7:  We consider a network with 3 cells and 4 channels. Then the parent 

matrix, obeying the compatibility constraints, may look like the following jp  

where a ‘1’ represents a channel in a cell is assigned to a call and a ‘0’  represents 
a free channel. 

 [ ]


















===

000

100

000

010

,imfF
j

p  where, M=3 and N=4.  . 

Remove / Replace Duplicates 

This step is done by comparing the habitats and replacing the duplicates so that no 
species is used against itself. 

 
Fitness Evaluation  

This is the part where we calculate the fitness of habitats using the equation (5.4) 
where all the other values are known. 

  
Fit (A, C, Dist, Delt , V, H, Pool,; Z pool) : 
For all the habitats of the pool we first find out the individual  
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
Δ

=
p ipdist

ipTi pipvi
CMSP

,

,),cos,( δ
 

Then we calculate the feasibility of a species using  
 


Δ

=
p ipdist

ipTi pipvi
CMSP

,

,),cos,( δ
 

At the end we calculate lode for all the habitat using 
 −

=

m imf

ihiLoad
),1(

 

Together  ++
i

iLoadiFeasCMS
iP  the total fitness is calculated. 

 

Selection 

A roulette wheel with slots sized according to feasibility is used for selection 
process. We construct such a roulette wheel as follows 

 
• First we calculate the feasibility value for a parent p j using condition 

(5.8b) denoted as feas j.
 

• Then we calculate the total feasibility of all parents 
−

=

1

0

s

j

j
feas . 

• Now we calculate the probability of selection of a parent p j as 


−

=

= 1

0

Pr s

j

j
feas

j
feas

jp
ob . 

• Now we calculate the cumulative probability 
=

=
i

j jp
obiCP

0
Pr .  

     
• The selection process is based on spinning the roulette wheel s times; 

each time we select a single chromosome for a new population in the 
following way: 

o Generate a random (floating) number r in the range [0; 1], 
o If  r < CP1 then select the 1st chromosome (p1); 
o Otherwise select the ith chromosome pi   (2< i  < s) if 

iPROBriPROB <<−1 . 

This way we can choose the parents who have higher feasibility of getting new 
calls in the population. 
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Migration 

The migration algorithm is given as  
 

Migration (A, C, P, C-Pool, O-Pool) 
FOR (i =0;i<ITE; i++) 
  Do  

          Rearrange (C-Pool; O-Pool); 
                             Change (O-Pool; O-Pool); 

        END FOR 
 

Where the functions are given as follows: 
 

Rearrange 

We use the C-Pool generated by the selection procedure for rearrange. We 
consider two random chromosomes from the C-Pool to rearrange.  We consider a 
one-point rearrange and generate a random position (r, c) at which the rearrange 
takes place to produce two offspring.  

Let x
lmp , and 

y
lmp , be two parents taking part in rearrange. After rearrange the 

offspring are kept in  O-Pull.   
                                 

Example5.8: Let the parents have 3 cells and 4 channels and the rearrange point is 
randomly chosen as 3rd row 3rd column.  

i.e  r max   = 4 and c max  = 3  

 

100

001

000

010

1 =p                     

010

000

100

001

2 =p  

 
Then after rearrange at r = 3 and c =3 the offspring become  

 

010

000

000

010

1 =f    and  

100

001

100

001

2 =f  

 

Change: 

We consider the random call hang-up in the system and express this phenomenon 
as Change. Suppose in a given cell r, a call served with channel c is disconnected 
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by the caller. Then following the definition of allocation matrix F, we understand 
that the element fml = 0 for m= r and l=c, after disconnection of the call. 

i.e.  cl r,m      where0,  lmf ===,  

We have considered minimum two such hang-ups in the network. Accordingly 
random positions are generated where Change is done as described above. 

 
Example5.9: Let there be Change at the positions (1, 2) and (4, 3) for the parents 
with 4 cells and 3 channels 

i.e., r max   = 4 and c max = 3 and 
 

100

001

000

010

=f  

 

Now, r1= 1, c1=2, and r2 = 4, c2 = 3. Hence after Change the offspring will 
become 

 

000

001

000

000

=f  

 
Call Drop: this is where the call is forcefully terminated due to the time 
constraint. 

 
Drop_call (x, i, O-Pool; O-Pool) 
  BEGIN 

  ;0
,

=x
ji

f  

 END. 
 

Accept:  

Here we combine both the C-Pool, O-Pool together and then decide which habitat 
are to be retained and who are discarded. Depending on the SVI we sort the 
habitats and retain the habitats having SVI greater than a given value of SVI 
remaining we discard.    

 
Accept(C-Pool, O-Pool, O-Pool) 
  BEGIN 
  FOR ( j=0; j<2 Smax , j++) 
   Zj = Sort (ZO-Pool, ZC-Pool), 
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            IF(j>Smax) 
   Keep pj   // immigrate   
                      END FOR 
           END. 

5.5   Experiments and Simulation 

In this section we discuss the experimental results taking a benchmark database 
described in Fig. 5.6. 

5.5.1   Basic Assumptions  

In this experiment we have considered the following assumptions 
 

• The network has 21 hexagonal cells and 7 channels. 
•  The value of  

o Co-channel distance is 2 
o Adjacency channel distance is 3 
o Co-site distance is 4 

• The number of incoming calls lies in the range 0 to 150 and changes 
dynamically. 

• Initial population size was taken as 20. 
• The velocity change was from 0 to 120 km/hr. 
• The distance between two base stations is 2 km and remains unchanged. 
• The calls are considered long if they go on more than 30 minutes. 
• The direction of the MS, its distance from the base station and velocity 

changes dynamically. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 5.6 Network of 21 cells 
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The algorithm stated above is executed using the given SVI. The initial 
conditions and necessary changes of the dynamic network are enforced  
obeying the above stated assumptions. The results obtained are shown an 
explained below. 

5.5.2   Results  

This is clear from Fig 5.7a , Fig 5.7b and Fig 5.7c that the problem of call 
admission control is optimized using BBO  for the different ranges of velocities. It 
is seen that in low to moderate high velocity the algorithm using BBO works  
very well. 

The graphical representation of the fitness values dependent on various hotness 
value range are given in the following figures Fig.5.8a, Fig 5.8b and Fig 5.8c. here 
we start with the assumption that the network is already in work and see that in all 
the cases the BBO algorithm is giving a very commendable result. 

 

 

Fig. 5.7a Plot of average fitness values in  velocity range of 0-40 
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Fig. 5.7b Plot of average fitness values in velocity range of 40-80 

 

Fig. 5.7c Plot of average fitness values invelocity range of 80-120 
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Fig. 5.8a Plot of average fitness values in hotness range of 0-50 

 

Fig. 5.8b Plot of average fitness values in hotness range of 50-100 
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Fig. 5.8c Plot of average fitness values in hotness range of 100-150 

5.5.3   Comparison with PSO 

 

Fig. 5.9a Comparison using BBO and PSO in low hotness and velocity 
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Fig 5.9b Comparison using BBO and PSO in moderate velocity and hotness 

 

Fig. 5.9c Comparison using BBO and PSO in high velocity and hotness 

It is evident from figure 5.9a, 5.9b and 5.9c that BBO works better than PSO. 
BBO may not reach the optimal solution faster but it gives a better result at the 
end. 
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5.6   Conclusion 

The chapter considered several issues in designing the objective function for the 
Call Admission Control problem.  First, it considers the probability of capturing a 
specific MS while in motion in a given network. This probability depends on the 
velocity and direction of the mobile station as well as its distance from the BS. 
Second, it considers the feasibility of acceptance of a call by a channel in a given 
cell with an aim to minimize the possible interference in the network. Lastly, the 
objective function considers the traffic load. Unfortunately, we could trace of any 
chapter, considering all the issues referred to above. Naturally, the resulting 
solutions are more useful as it models the dynamic nature of the network.   

The performance of the proposed scheme is compared with existing results on 
CAC with varying load, and the results are appealing. It is evident from the 
experimental results that the proposed technique is capable of serving more calls 
than the other methods, and it can reuse more number of channels than the same 
by other methods.   

 The CAC scheme using BBO technique has been compared with a similar 
scheme using PSO. The results show that when BBO scheme is considered, a 
better optimum is obtained in comparison to the scheme using PSO irrespective of 
the load value or the velocity of the MS.   

The system realized above is meant for a centralized system, where all the 
calculation and decision making are performed by the centralized call admission 
system and is then broadcasted to all the cells in the network. It is better to use a 
distributed system, which may perform faster. In such systems, some of the 
information should be shared by broadcasting them. The main hurdles in using a 
fully distributed system are the communication bottleneck. This can, however, be 
relieved by considering a partly central and partly distributed realization. The 
trade-off in this case is important to determine which part should remain 
centralized, and which one in distributed manner, so that communication among 
the system modules is minimized.  
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Chapter 6  
Conclusions and Future Directions 

6.1   Conclusions 

The thesis examined different approaches for call admission in a mobile cellular 
network. Existing models on call admission control usually ignores movement of 
the mobile station, and thus in most circumstances the allocation is done in a 
relatively ad hoc manner. The problem becomes more prominent particularly, 
when the mobile station crosses cell boundaries. In the present scenario, the 
direction of motion of the mobile station is predicted, and consequently the 
decisions about channel allocation for the new current call in progress can be 
taken up ahead of time.  

The merit of the thesis lies in handling the call admission and dynamic channel 
assignment problem in a composite sense, which has not been taken up in any 
previous literature. Furthermore, the strategies used for call admission, including 
feasibility, hotness and availability criteria, together are different with respect to 
classical approaches adopted for the same problem.  

The thesis proposed three different techniques for call admission control. The 
first approach deals with fuzzy condition sensitive rule firing to derive fuzzy 
inferences. A list of three parameters including feasibility, hotness and 
availability, distance from the base station, and speed of the mobile station is 
employed to test the firing conditions of the rules in order to derive fuzzy 
inferences. Computer simulation reveals that the proposed scheme reduces call 
drop as the assignment satisfies both the pre-conditions for feasibility and 
availability.    

While the first approach refers to cell-wise call admission, the latter approaches 
consider the problem for the entire network compositely. This is realized by 
formulating call admission control as an optimization problem. The objective 
function used here attempts to minimize the call drops by jointly improving 
feasibility and probability of capture of mobile stations and reducing network 
loads. Two popular optimization techniques have been employed here to minimize 
the call drops. The techniques used are popularly known as Genetic Algorithm 
(GA) and Biogeography Based optimization (BBO). The results are compared 
with other well known techniques, including Differential Evolution and Particle 
Swarm Optimization. Experimental results indicate that BBO outperforms other 
techniques with respect to better accuracy in call assignment and soft handoff.  
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6.2   Possible Direction of Future Research 

The CAC problem addressed in the thesis has been solved by three interesting 
techniques of computational intelligence. However, there exist several hundreds 
techniques, falling within and outside the domain of computational intelligence, 
which can directly or indirectly with some modifications be applied to handle the 
CAC problems. The whole study of the CAC problem and its solution by all 
possible techniques, and comparison of their relative merits/demerits still remains 
an unsolved problem. Further, the thesis considers only fewer problems associated 
with the CAC problem. For example, the classical approaches to CAC problem 
ignore movement of the mobile stations, which has been taken care in this thesis.  
However, there are many other issues too, which could not be taken up in the 
present formulation of the CAC problem. Some of these issues, which are of 
practical importance in connection with the CAC problem are power optimization, 
consideration of call assignment delay, and call transfer time required during soft 
handoff. 

Besides the above issue, we here considered a central administration system for 
call assignment. The central system usually has a manager which takes care of call 
allocation in the entire network irrespective of call demands in individual cells. 
The central system is relatively slower as it has plenty of input calls and thus 
optimization in call management takes a lot of time for the inherent complexity of 
the problem. To alleviate the drawbacks of the central systems, distributed 
systems are currently gaining importance, where instead of having a central 
manager; each cell has its own manager to take care of call admission in a cell. 
Although managers of the cells can function almost independently, they need to 
take care of call transfers from other cells to itself and vice-versa. Besides the 
above, the call assignment undertaken by a cell needs to be communicated to the 
nearest neighbours, so that these neighbours do not assign adjacent channels to 
pending/incoming calls in those cells.  

In recent times, researchers are taking interest to consider hybridization of the 
above two call assignment policies to derive benefit from both of these without 
sacrificing merits of individual approaches. In a hybrid CAC system, inter-cell 
communication is accomplished through central CAC system, whereas the 
decisions about call admission are undertaken by the cell itself. The decision about 
soft handoff is taken by the central management system, while decision about 
assignment of new calls and pending calls are undertaken by the local call 
admission controllers. 

 
 
 
 
 
 
 
 
 



Appendix A: Program Realization of CAC  
Using Fuzzy Threshold Logic 

Here the program for Call Admission Control in Mobile network is presented in 
detail. The program has been written in C with standard  header files for input 
output and library functions. Data stored in files and are used as input given as  

 
c.txt This file is used for saving the compatibility matrix. 
h.txt This file is saving the number of incoming call at any 

instance. 
nb.txt In this file the cell organization of the network is stored 
f.txt Here the initial channel allocation matrix is stored 
stat.txt  The final matrix of allocation is stored 
  

 
FUZZY TO BINARY CAC 

The program starts with a main function whose return type is void. All the input 
files are opened in “w+” mode for both reading and updating. 

 
Step 1. 
In this part of the program, the network is defined with every cell position with 
respect to its neighbor. 

 
for(i=0;i<21;i++){ 
 printf("Neighbour of cell %d are : ",i+1); 
 for(j=0;j<6;j++){ 
  fscanf(nf,"%d",&nb[i][j]); 
  printf(" %d ",nb[i][j]); 
  }    printf("\n");} 
  printf("\n\n"); 

 
Step 2. 
In this part the compatibility matrix is loaded for further use in feasibility 
checking. 

 
printf("Compatibility matrix fir 21 cels with 7 channel is given by :\n\n"); 
for(i=0;i<21;i++){ 
 for(j=0;j<21;j++){ 
  fscanf(cf,"%d",&c[i][j]); 
  printf("%d ",c[i][j]); 
  }    printf("\n");} 
 
  printf("\n\n\n\n"); 
for(i=0;i<21;i++){ 
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Step 3. 
In this section, the availability matrix is constructed using current allocation 
matrix 

 
printf("free channel in cell  %d are: ",i+1); 
 for(j=0;j<7;j++){ 
  fscanf(ff,"%d",&f[i][j]); 
  avl[i][j]=1-f[i][j]; 
  printf("%d ",avl[i][j]); 
  }  printf("\n");} 
   printf("\n\n"); 

 
Step 4.  
This this step the demand matrix is lodaded for further use. 

printf("demand in all 21 cells are: \n\n"); 
for(i=0;i<21;i++){ 
 fscanf(hf,"%d",&h[i]); 
 printf("%d ",h[i]); 
  } 

 
Step 5. 
In this part the velocity of MS and the angle of their direction is loaded . 

randomize(); 
vel=random(100); 
th=random(3); 
printf("\n\n\nvel=%d, thresh= %d",vel,th); 

 
Step 6.  
From here fuzzy to binary decision making starts. The iterative loop starts for 
calculating the feasibility of a call to be assigned to a channel in a cell.   

 
Ita=0; 
for(y=0;y<50;y++){ if(ita==200) exit(status-'0'); 
 for(r=0;h[r]>0;r++,ita++){ 
 dir=random(6); 
 printf("\n\n\n dir=%d",dir+1); 
 l=large(); 
 printf("\n%d th cell have largest dimand\n" ,l+1); 
 printf("%d",l); 
 printf("\n neigbour of this cell are: "); 
 for(j=0;j<6;j++){ 
  n[j]=nb[l][j]; 
   printf("%d ",n[j]);} 
  k=n[dir]; 
  if(k==0)continue; 
  printf("\n in %d th nbd the available channels are : ",k); 
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  for(i=0;i<7;i++){     
  if(avl[k-1][i]==1) 
  printf("%d ",i+1);     } 
  printf("\n"); 
  printf("\nvalue of compatibility matrix is %d\n",c[k][l]); 

 
Step 7.  
Decision making process starts. 

switch(c[k][l]){ 
 

Step 8: DECISION FOR 2nd  NEAR NEIGHBOUR 
Here we take decision about the channels who are engaged in  2nd nearest 
neighbour*/ 

 
case(3): {for(x=0;x<7;x++){ 
 if(avl[k-1][x]==0) 
  p=x; 
  printf("\n1st busy channel is %d \n",x); 
  break;} 
  for(x=0;x<7;x++){ 
 f(avl[k-1][x]==0) 
 a[x]=-1; 
 else a[x]=x+1 ; 
  printf("\n avl=%d ,a[%d]= %d \n",avl[k-1][x],x,x+1); } 
  for(x=0;x<7;x++){ 
  cdiv=a[x]-p; printf("\ncdiv= %d \n",cdiv); 
  if(cdiv>=3){ 
  avl[k-1][x]=0; 
  break;} 
  } break;} 

 
Step9: DECISION FOR NEXT NEIGHBOUR 
Here we take decision about the channels who are engaged in  next nearest 
neighbour*/ 

 
  case(2):{for(x=0;x<7;x++){ 
 if(avl[k-1][x]==0) 
  p=x;printf("\n1st busy channel is %d \n",x); 
   break;} 
  for(x=0;x<7;x++){ 
  if(avl[k-1][x]==0) 
  a[x]=-1; 
  else a[x]=x+1; 
  printf("\n avl=%d ,a[%d]= %d \n",avl[k-1][x],x,x+1); } 
  for(x=0;x<7;x++){ 
   cdiv=a[x]-p; printf("\ncdiv= %d \n",cdiv); 
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   if(cdiv>=2){ 
   avl[k-1][x]=0; 
   break;} 
   }break; } 

 
Step10:  DECISION TAKEN INSIDE THE CELL 
Here we take decision about the channels who are engaged inside the cell */ 

 
  case(0): {for(x=0;x<7;x++){ 
  if(avl[k-1][x]==1) 
   avl[k-1][x]=0;break;}break;} 

 
Step 11:  DECISION FOR NO INTERFERENCE 
Here we take decision about the channels who are engaged beyond 2nd nearest 
neighbour. In those case it is considered that there is no interference */ 

  
case(5):{for(x=0;x<7;x++){ 
  if(avl[l][x]==0) 
  p=x+1;printf("\n1st assign channel is %d \n",p); 
  break;} 
  for(x=0;x<7;x++){ 
  if(avl[l][x]==0) 
  a[x]=-1; 
  else a[x]=x+1; 
   printf("\n avl=%d ,a[%d]= %d \n",avl[k-1][x],x,x+1); } 
  for(x=0;x<7;x++){ 
   cdiv=a[x]-p; printf("\ncdiv= %d \n",cdiv); 
   if(cdiv>=5){ 
   avl[l][x]=0; 
   break;} 
   }break; } } 

 
Step 12: ASSIGNMENT OF CHANNEL 
Here the calls are assigned to channels*/ 

 
if(avl[k-1][x]==1)dr++; 
  else asn++; 
    h[l]--; 
  randomize(); 
   hup=random(21); 
   hfreq=random(7); 
   nucal=random(21); 
   avl[hup][hfreq]=1; 
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Step 13: REFRESHING HOTNESS TABLE 
  

 h[nucal]=h[nucal]+1; 
   printf("\nnew call %d hangup: %d ",nucal,avl[hup][hfreq]); 
   printf("\n new dimand %d",h[nucal] ); 
   printf("\nnew demand in all 21 cells are: \n\n"); 
for(i=0;i<21;i++){ 
  printf("%d ",h[i]); 
   } 
   fflush(stdin); 
 printf(" \n press any key for next ..................."); 
 ch=getchar(); 
    for(i=0;i<21;i++){ 
 

Step14: REFRESHING ALLOCATION TABLE 

printf("free channel in cell  %d are: ",i+1); 
 for(j=0;j<7;j++){ 
  printf("%d ",avl[i][j]); 
  }  printf("\n");} 
      printf(" \nno of itaration = %d \nno of drop= %d no of 
asign=%d",ita+1,dr,asn); 
  fprintf(fstat, " %d, %d,  %d\n", ita+1,dr,asn); 
   printf("\n\n"); 
   } } 
int large(void){ 
 int i,j=0; 
 for(i=1;i<21;i++) 
{ 
 if(h[i]>h[j]) 
  j=i; 
} 
  return(j); 
 } 
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FUZZY TO FUZZY CALL ADMISSION CONTROL 
 

In this program same input files are required . 
 

/* FIXING THE NETWORK 
In this part of the program the network is defined with every cell position with 
respect to its neighbour.*/ 

 
for(i=0;i<21;i++){ 
 printf("Neighbour of cell %d are : ",i+1); 
 for(j=0;j<6;j++){ 
  fscanf(nf,"%d",&nb[i][j]); 
  printf(" %d ",nb[i][j]); 
  }    printf("\n");} 
  printf("\n\n"); 
 
ita=0; 

 
/* TAKING THE COMPATIBILITY MATRIX 
In this part the compatibility matrix is loaded */ 

 
printf("Compatibility matrix fir 21 cels with 7 channel is given by :\n\n"); 
for(i=0;i<21;i++){ 
 for(j=0;j<21;j++){ 
  fscanf(cf,"%d",&c[i][j]); 
  printf("%d ",c[i][j]); 
  }    printf("\n");} 
 
  printf("\n\n\n\n"); 
for(i=0;i<21;i++){ 

 
/* GENERATING THE AVAILABILITY MATRIX 
In this section the availability matrix is constructed using current allocation 
matrix*/ 

 
printf("free channel in cell  %d are: ",i+1); 
 for(j=0;j<7;j++){ 
  fscanf(ff,"%d",&f[i][j]); 
  avl[i][j]=1-f[i][j]; 
  printf("%d ",avl[i][j]); 
  }  printf("\n");} 
   printf("\n\n"); 

 
/* TAKING THE DEMAND  
Demand is lodaded */ 
printf("demand in all 21 cells are: \n\n"); 
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for(i=0;i<21;i++){ 
 fscanf(hf,"%d",&h[i]); 
 printf("%d ",h[i]); 
  } 

 
/ GETTING VELOCITY AND ANGLE FOR MS 
In tjis part the velocity of MS and the angle of their direction is loaded*/ 

 
 randomize(); 
 vel=random(100); 
 th=random(3); 
 printf("\n\n\nvel=%d, thresh= %d",vel,th); 
 
/* START THE FUZZY BINARY DECISION MAKING 
From here fuzzy to binary decision making starts */ 
 
for(y=0;y<50;y++){ if(ita==200) exit(status-'0'); 
 for(r=0;h[r]>0;r++,ita++){ 
 dir=random(6); 
 printf("\n\n\n dir=%d",dir+1); 
 l=large(); 
 printf("\n%d th cell have largest dimand\n" ,l+1); 
 printf("%d",l); 
 printf("\n neigbour of this cell are: "); 
 for(j=0;j<6;j++){ 
  n[j]=nb[l][j]; 
   printf("%d ",n[j]);} 
  k=n[dir]; 
  if(k==0)continue; 
  printf("\n in %d th nbd the available channels are : ",k); 
  for(i=0;i<7;i++){     
  if(avl[k-1][i]==1) 
  printf("%d ",i+1);     } 
  printf("\n"); 
  printf("\nvalue of compatibility matrix is %d\n",c[k][l]); 
 
// DECISION MAKING 
switch(c[k][l]){ 
 
/ *DECISION FOR 2nd NEAREST NEIGHBOUR 
Here we take decision about the channels who are engaged in  2nd nearest 
neighbour*/ 
 
case(3): {for(x=0;x<7;x++){ 
 if(avl[k-1][x]==0) 
  p=x; 



192 Appendix A: Program Realization of CAC Using Fuzzy Threshold Logic
 

  printf("\n1st busy channel is %d \n",x); 
  break;} 
  for(x=0;x<7;x++){ 
 f(avl[k-1][x]==0) 
 a[x]=-1; 
 else a[x]=x+1 ; 
  printf("\n avl=%d ,a[%d]= %d \n",avl[k-1][x],x,x+1); } 
  for(x=0;x<7;x++){ 
  cdiv=a[x]-p; printf("\ncdiv= %d \n",cdiv); 
  if(cdiv>=3){ 
  avl[k-1][x]=0; 
  break;} 
  } break;} 
 
/* DECISION FOR NEXT NEIGHBOUR 
Here we take decision about the channels who are engaged in  next nearest 
neighbour*/ 
 
  case(2):{for(x=0;x<7;x++){ 
 if(avl[k-1][x]==0) 
   p=x;printf("\n1st busy channel is %d \n",x); 
    break;} 
  for(x=0;x<7;x++){ 
  if(avl[k-1][x]==0) 
  a[x]=-1; 
  else a[x]=x+1; 
  printf("\n avl=%d ,a[%d]= %d \n",avl[k-1][x],x,x+1); } 
  for(x=0;x<7;x++){ 
   cdiv=a[x]-p; printf("\ncdiv= %d \n",cdiv); 
   if(cdiv>=2){ 
   avl[k-1][x]=0; 
   break;} 
   }break; } 

/* DECISION TAKEN INSIDE THE CELL 
Here we take decision about the channels who are engaged inside the cell */ 

 
  case(0): {for(x=0;x<7;x++){ 

.)}(avl{μmax*)(hotμmax                       

)}(feas{μmax*)(avl),μ(avlμ1, maxmin(uc)μ

NHI
N

NLO
N

j
LO

j
iLOiMIDSHO

]}{

}{[ +=
 

} 
εμ <SHOIF     

   avl[k-1][x]=0;break;}break;} 
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/* DECISION FOR NO INTERFERENCE 
Here we take decision about the channels who are engaged beyond 2nd nearest 
neighbour. In those case it is considered that there is no interference */ 

  
case(5):{for(x=0;x<7;x++){ 
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  p=x+1;  break;} 
  for(x=0;x<7;x++){ 
  if(avl[l][x]==0) 
  a[x]=-1; 
  else a[x]=x+1; 
   printf("\n avl=%d ,a[%d]= %d \n",avl[k-1][x],x,x+1); } 
   for(x=0;x<7;x++){ 
     cdiv=a[x]-p; printf("\ncdiv= %d \n",cdiv); 
     if(cdiv>=5){ 
     avl[l][x]=0; 
     break;} 
     }break; } } 
 

/* ASSIGNMENT OF CHANNEL 
Here the calls are assigned to channels*/ 

 
 if(avl[k-1][x]==1)dr++; 
  else asn++; 
    h[l]--; 
  randomize(); 
   hup=random(21); 
   hfreq=random(7); 
   nucal=random(21); 
   avl[hup][hfreq]=1; 

 
// REFRESHING HOTNESS TABLE 

  
h[nucal]=h[nucal]+1; 

  printf("\nnew call %d hangup: %d ",nucal,avl[hup][hfreq]); 
  printf("\n new dimand %d",h[nucal] ); 
  printf("\nnew demand in all 21 cells are: \n\n"); 

for(i=0;i<21;i++){ 
  printf("%d ",h[i]); 
   } 



194 Appendix A: Program Realization of CAC Using Fuzzy Threshold Logic
 

   fflush(stdin); 
 printf(" \n press any key for next ..................."); 
 ch=getchar(); 
    for(i=0;i<21;i++){ 

 
// REFRESHING ALLOCATION TABLE 
printf("free channel in cell  %d are: ",i+1); 
 for(j=0;j<7;j++){ 
  printf("%d ",avl[i][j]); 
  }  printf("\n");} 
      printf(" \nno of itaration = %d \nno of drop= %d no of 
asign=%d",ita+1,dr,asn); 
  fprintf(fstat, " %d, %d,  %d\n", ita+1,dr,asn); 
   printf("\n\n"); 
   } } 
int large(void){ 
 int i,j=0; 
 for(i=1;i<21;i++) 
{ 
 if(h[i]>h[j]) 
  j=i; 
} 
  return(j); 
 } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix B: Program Realization of CAC Using 
Genetic Algorithm 

 
#include<stdio.h> 
#include<stdlib.h> 
#include<time.h> 
#include<math.h> 
#define PI 3.14159 
 
int vel[21][7],c[21][21],h[21],nb[21][6],avl[21][7],sum; 
int P[20][21][7],par1[21][7],par2[21][7],Cn1[21][7],Cn2[21][7],hn[21]; 
float dis[21][7],Feas[20],T[21][7]; 
 char ch; 
void main(){ 
 
   int i,j,k,a,b,Ite,row,col,x1,y1,x2,y2; 
   float fitp1,fitp2,fitc1,fitc2,temp; 
  float fit(int a); 
  FILE *cf,*ff,*hf, *nf,*fr,*of,*s,*h1,*f1,*f2; 
  cf=fopen("c.txt","r");     
  ff=fopen("per.txt","w+") 
  hf=fopen("h.txt","a+");               
  nf=fopen("nb.txt","r"); 
  fr=fopen("TV.txt","w+");     
  of=fopen("newjen.txt","w+");  
  s=fopen("s.txt","w+");     
  h1=fopen("h1.txt","w+");     
  f1=fopen("fit1.txt","w+"); 
  f2=fopen("fit2.txt","w+"); 
  printf("The 6 neighbour of each cell are as follows :\n\n"); 
  for(i=0;i<21;i++){ 
   printf("Neighbour of cell %d are : ",i+1); 
   for(j=0;j<6;j++){ 
     fscanf(nf,"%d",&nb[i][j]); 
      printf(" %d ",nb[i][j]); 
    }printf("\n"); 
    } 
     printf("\n\n"); 
/* LOADING THE COMPATIBILITY MATRIX 

 
 printf("Compatibility matrix fir 21 cels with 7 channel is given by :\n\n"); 
  for(i=0;i<21;i++){ 
   for(j=0;j<21;j++){ 
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     fscanf(cf,"%d",&c[i][j]); 
     printf("%d ",c[i][j]); 
   }printf("\n"); 
     printf("\n\n\n\n"); 

    
/*LOADING THE HOTNESS, DEMAND, VELOCITY & ANGLE*/ 
 
printf("demand in all 21 cells are: \n\n"); 
   for(i=0;i<21;i++){ 
       fscanf(hf,"%d",&h[i]); 
       printf("%d ",h[i]); } 
    fputs("\n Velocity-\n ",fr); 
    printf("\n\n velocity of the calls in MS: \n"); 
    randomize(); 
    for(j=0;j<21;j++){ 
     for(k=0;k<7;k++){ 
      vel[j][k] = random(120); 
       printf("%d     ",vel[j][k]); 
      fprintf(fr,"%d ",vel[j][k]); 
fputs("\n ",fr); 
        } fputs("\n ",fr); 
       printf("\n"); 
        } 
     printf("\n\n angle of the calls in MS: \n"); 
     fputs("\n Angle:\n ",fr); 
     randomize(); 
    for(j=0;j<21;j++){ 
    for(k=0;k<7;k++){ 
     T[j][k] = random(360)/ PI; 
     fprintf(fr,"%f    ",T[j][k]); 
     printf("%f  ",T[j][k]); fputs("\n ",fr); 
      } fputs("\n ",fr); 
    printf("\n"); 
        } 
     printf("\n\n Dis of the  MS from BS: \n"); 
     randomize(); 
    for(j=0;j<21;j++){ 
    for(k=0;k<7;k++){ 
     dis[j][k] = rand()/20000.00; 
     printf("%f ",dis[j][k]); 
        } 
     printf("\n"); 
          
} 
    fflush(stdin); 
    printf("\n end of input press any key ..............\n"); 



Call Admission Control in a Mobile Cellular Network 197
 

    ch=getchar(); 
    printf("\n\n Random generation of parents\n"); 
    randomize(); 
    for(i=0;i<20;i++){ 
printf(" the %d th parent \n:",i); 
fprintf(ff,"parent %d :\n\n",i); 
  for(j=0;j<21;j++){ 
  for(k=0;k<7;k++){ 
  P[i][j][k]= random(2); 
  printf("%d  ",P[i][j][k]); 
  fprintf(ff,"%d",P[i][j][k]); 
   } 
 fputs("\n ",ff); 
         
printf("\n"); 
         
  }fputs("\n ",ff);} 
 
         
  /* START ITERATION    */ 
 
 fflush(stdin); 
 printf("\n starting itaration press any key ..............\n"); 
 ch=getchar(); 
 randomize(); 
 for(Ite=0;Ite<100;Ite++){ 
 printf("demand in all 21 cells are: \n\n"); 
 for(i=0;i<21;i++){      
   hn[i]=random(150);        
fprintf(h1,"%d \n",hn[i]);} 
 
/* Random parent Generation */ 
 
for(a=0;a<20;a++){ 
b=random(20); 
if(a==b){ 
printf("\n Both are same;"); 
continue;} 
printf("\nthe 1st parent chosen is=%d and the second is=%d",a,b); 
row=random(21); 
col=random(7); 
sum=0; 
printf("\n The first parent:\n"); 
for (j=0;j<21;j++) { 
for(k=0;k<7;k++){ 
par1[j][k]= P[a][j][k]; 
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printf("%d ",par1[j][k]); 
fprintf(of,"%d ",P[a][j][k]); 
sum=sum+P[a][j][k];          } 
fputs("\n",of); 
printf(s,"%d \t",sum); 
fputs("\n ",s); 
fitp1= fit(sum); 
 printf("\nfitness of 1st parent=%f \n",fitp1); 
 printf("\n"); } 
sum=0; 
printf("\n The second parent:\n"); 
for (j=0;j<21;j++) { 
for(k=0;k<7;k++){ 
par2[j][k]=  P[b][j][k]; 
printf("%d ",par1[j][k]); 
printf(of,"%d ",P[b][j][k]); 
sum=sum+P[b][j][k];          } 
fputs("\n",of); 
fprintf(s,"%d \t",sum); 
fputs("\n ",s); 
fitp2= fit(sum); 
printf("\nfitness of 1st parent=%f \n",fitp2);  
printf("\n"); } 
 fprintf(of,"%d th generation\n",Ite); 
         
 /*CROSS OVER*/ 
 
for(j=0;j<row;j++)       
  for(k=0;k<7;k++){ 
  Cn1[0][k]=par2[j][k]; 
  Cn2[0][k]=par1[j][k]; 
   } 
for(j=row;j<21;j++){ 
 for(k=0;k<col;k++){ 
 Cn1[j][0]=par2[j][k]; 
 Cn2[j][0]=par1[j][k];} 
 for(k=col;k<7;k++){ 
 Cn1[j][k]=par2[j][k]; 
 Cn2[j][k]=par1[j][k]; 
 }   } 
printf("\n The first child:\n") 
sum=0; 
for (j=0;j<21;j++) { 
for(k=0;k<7;k++){ 
printf("%d ",Cn1[j][k]); 
fprintf(of,"%d ",Cn1[j][k]); 
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sum=sum+Cn1[j][k];          } 
fputs("\n",of); 
fprintf(s,"%d \t",sum); 
fputs("\n ",s); 
fitc1= fit(sum); 
printf("\nfitness of 1st parent=%f \n",fitc1); 
printf("\n"); } 
 
 
  printf("\n The second child:\n"); 
  sum=0; 
  for (j=0;j<21;j++) { 
 for(k=0;k<7;k++){ 
 printf("%d ",Cn2[j][k]); 
 fprintf(of,"%d ",Cn2[j][k]); 
 sum=sum+Cn2[j][k];          } 
 fputs("\n",of); 
 fprintf(s,"%d \t",sum); 
 fputs("\n ",s); 
 fitc2= fit(sum); 
 printf("fitness of 2nd child=%f",fitc2) ; 
 printf("\n"); } 
 if(fitp1>fitc1){ 
 fprintf(f1,"%f \n  ",fitc1); 
 for(j=0,k=0;j<21,k<7;j++,k++) 
  P[a][j][k]=Cn1[j][k]; 
   } 
    if(fitp2>fitc2){ 
     fprintf(f2,"%f \n",fitc2); 
     for(j=0,k=0;j<21,k<7;j++,k++) 
      P[b][j][k]=Cn2[j][k]; 
         } 
 
 
  * MUTATION*/ 
   
randomize(); 
for(j=0;j<21;j++){ 
 x1=random(21); 
 y1=random(7); 
 P[a][x1][y1]=0; 
 x2=random(21); 
 y2=random(7); 
 P[b][x2][y2]=0; } 
 printf("x1=%d,y1=%d,x1=%d,y2=%d",x1,y1,x2,y2); 
  temp=sqrt( pow(fitp1-fitc1,2)+pow(fitp2-fitc2,2)  ); 
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 printf("\ntemp= %f\n",temp); 
 if(temp<.00001) 
 break; 
}} 
} 
 
 
 
 float fit(int p){ 
 int  ECS,EAC,E,j,k,m,n,a[21][7],ht,i; 
 float tp[21],tf,f,lod; 
 
 ECS=0; EAC=0; 
 
/* FITNESS CALCULATION*/ 
 
/*/ fflush(stdin); 
 printf(" for G press any key ..............\n"); 
 ch=getchar(); */ 
 switch(p){ 
 case (0):{ 
 for(j=0;j<20;j++) 
 for(k=0;k<7;k++) 
 a[j][k]=par1[j][k]; 
 break;} 
 case (1):{ 
 for(j=0;j<20;j++) 
 for(k=0;k<7;k++) 
 a[j][k]=par2[j][k]; 
 break;} 
 case (2):{ 
 for(j=0;j<20;j++) 
 for(k=0;k<7;k++) 
 a[j][k]=Cn1[j][k]; 
 break;} 
 case (3):{ 
 for(j=0;j<20;j++) 
 for(k=0;k<7;k++) 
 a[j][k]=Cn2[j][k]; 
 break;} 
 } 
 
 for(j=0;j<20;j++){ 
 for(k=0;k<7;k++) 
 { if(abs(a[j][k]-a[j][k+1])<c[j][j]) 
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 ECS=ECS ++ ; } 
 printf("\n"); 
 
} 
for(j=0;j<21;j++) 
 for(k=0;k<7;k++) 
 for(m=0;m<21;m++) 
 for(n=0;n<7;n++) { 
 if(abs(a[j][k]-a[m][n])<c[j][m]) 
  EAC=EAC++;} 
  E= ECS+EAC; 
for(j=0;j<21;j++)tp[j]=0.0;tf=0.0; 
 for(j=0;j<21;j++){ 
 for(k=0;k<7;k++){ 
  tp[j]=tp[j]+(vel[j][k]); 
  // * cos(T[j][k]))*/ 
 } tf=tf + tp[j]/h[j]; 
   } 
   ht=0; 
 for(i=0;i<21;i++) 
   ht=ht+hn[i] ; 
   lod=p/ht ; 
  f=(E+ tf - lod); 
 
 /* printf("\nESC=%d,EAC=%d, E=%d,tf=%f, t=%f\n",ECS,EAC,E,tf,f);   */ 
  return(f); 
 
 } 
 

 



 

 

Appendix C: Program Realization of CAC  
Using BBO 

 
>> ACO 
This command would run ACO on the Step function (which is codified in Step.m).  
 
function [MinCost] = ACO(ProblemFunction, DisplayFlag) 
 
% Ant colony optimization algorithm for optimizing a general function. 
 
% INPUTS: ProblemFunction is the handle of the function that returns  
%         the handles of the initialization, cost, and feasibility functions. 
%         DisplayFlag says whether or not to display information during 
iterations and plot results. 
 
if ~exist('DisplayFlag', 'var') 
    DisplayFlag = true; 
end 
 
[OPTIONS, MinCost, AvgCost, InitFunction, CostFunction, FeasibleFunction, ... 
    MaxParValue, MinParValue, Population] = Init(DisplayFlag, 
ProblemFunction); 
 
Keep = 2; % elitism parameter: how many of the best individuals to keep from one 
generation to the next 
 
% ACO parameter initialization 
tau0 = 1e-6; % initial pheromone value, between 0 and 0.5 
Q = 20; % pheromonone update constant, between 0 and 100 
q0 = 1; % exploration constant, between 0 and 1 
rhog = 0.9; % global pheromone decay rate, between 0 and 1 
rhol = 0.5; % local pheromone decay rate, between 0 and 1 
alpha = 1; % pheromone sensitivity, between 1 and 5 
beta = 5; % visibility sensitivity, between 0 and 15 
tau = tau0 * ones(MaxParValue-MinParValue+1, 1); % initial pheromone values 
p = zeros(size(tau)); % allocate array for probabilities 
 
% Begin the optimization loop 
for GenIndex = 1 : OPTIONS.Maxgen 
    % pheromone decay 
    tau = (1 - rhog) * tau; 
    % Use each solution to update the pheromone for each parameter value 
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    for k = 1 : OPTIONS.popsize 
      Cost = Population(k).cost; 
      Chrom = Population(k).chrom; 
      for i = 1 : length(Chrom) 
          j = Chrom(i); 
          if (Cost == 0) 
              tau(j-MinParValue+1) = max(tau); 
          else 
              tau(j-MinParValue+1) = tau(j-MinParValue+1) + Q / Cost; 
          end 
      end     
  end 
  % Use the probabilities to generate new solutions 
  for k = Keep+1 : OPTIONS.popsize 
      for j = 1 : OPTIONS.numVar 
          % Generate probabilities based on pheromone amounts 
          p = tau .^ alpha; 
          p = p / sum(p); 
          [Maxp, Maxpindex] = max(p); 
          if rand < q0 
              Select_index = Maxpindex; 
          else 
              SelectProb = p(1); 
              Select_index = 1; 
              RandomNumber = rand; 
              while SelectProb < RandomNumber 
                  Select_index = Select_index + 1; 
                  if Select_index >= MaxParValue - MinParValue + 1 
                      break; 
                  end 
                  SelectProb = SelectProb + p(Select_index); 
              end 
          end 
          Population(k).chrom(j) = MinParValue + Select_index - 1; 
          % local pheromone update 
          tau(Select_index) = (1 - rhol) * tau(Select_index) + rhol * tau0;      
      end 
  end 
  % Make sure the population does not have duplicates.  
  Population = ClearDups(Population, MaxParValue, MinParValue); 
  % Make sure each individual is legal. 
  Population = FeasibleFunction(OPTIONS, Population); 
  % Calculate cost 
  Population = CostFunction(OPTIONS, Population); 
  % Sort from best to worst 
  Population = PopSort(Population); 
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  % Compute the average cost of the valid individuals 
  [AverageCost, nLegal] = ComputeAveCost(Population); 
  % Display info to screen 
  MinCost = [MinCost Population(1).cost]; 
  AvgCost = [AvgCost AverageCost]; 
  if DisplayFlag 
      disp(['The best and mean of Generation # ', num2str(GenIndex), ' are ',... 
          num2str(MinCost(end)), ' and ', num2str(AvgCost(end))]); 
  end 
end 
Conclude(DisplayFlag, OPTIONS, Population, nLegal, MinCost); 
return; 

 
Init - This contains various initialization settings for the optimization methods. 
You can edit this file to change the population size, the generation count limit, the 
problem dimension, and the mutation probability of any of the optimization 
methods that you want to run. 

 
function [OPTIONS, MinCost, AvgCost, InitFunction, CostFunction, 
FeasibleFunction, ... 

MaxParValue, MinParValue, Population] = Init(DisplayFlag, ProblemFunction, 
RandSeed) 

 
% Initialize population-based optimization software. 
 
% WARNING: some of the optimization routines will not work if population size 
is odd. 
OPTIONS.popsize = 50; % total population size 
OPTIONS.Maxgen = 50; % generation count limit 
OPTIONS.numVar = 20; % number of genes in each population member 
OPTIONS.pmutate = 0; % mutation probability 
 
if ~exist('RandSeed', 'var') 
    RandSeed = round(sum(100*clock)); 
end 
rand('state', RandSeed); % initialize random number generator 
if DisplayFlag 
  disp(['random # seed = ', num2str(RandSeed)]); 
end 
 
% Get the addresses of the initialization, cost, and feasibility functions. 
[InitFunction, CostFunction, FeasibleFunction] = ProblemFunction(); 
% Initialize the population. 
[MaxParValue, MinParValue, Population, OPTIONS] = InitFunction(OPTIONS); 
% Make sure the population does not have duplicates.  
Population = ClearDups(Population, MaxParValue, MinParValue); 
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% Compute cost of each individual   
Population = CostFunction(OPTIONS, Population); 
% Sort the population from most fit to least fit 
Population = PopSort(Population); 
% Compute the average cost 
AverageCost = ComputeAveCost(Population); 
% Display info to screen 
MinCost = [Population(1).cost]; 
AvgCost = [AverageCost]; 
if DisplayFlag 
  disp(['The best and mean of Generation # 0 are ', num2str(MinCost(end)), ' and ', 
num2str(AvgCost(end))]); 
end 
 
return; 
 
ClearDups - This is used by each optimization method to get rid of duplicate 
population members and replace them with randomly generated individuals. 
 
function [Population] = ClearDups(Population, MaxParValue, MinParValue) 
 
% Make sure there are no duplicate individuals in the population. 
% This logic does not make 100% sure that no duplicates exist, but any duplicates 
that are found are 
% randomly mutated, so there should be a good chance that there are no duplicates 
after this procedure. 
for i = 1 : length(Population) 
   Chrom1 = sort(Population(i).chrom); 
   for j = i+1 : length(Population) 
      Chrom2 = sort(Population(j).chrom); 
       if isequal(Chrom1, Chrom2) 
         parnum = ceil(length(Population(j).chrom) * rand); 
         Population(j).chrom(parnum) = floor(MinParValue + (MaxParValue - 
MinParValue + 1) * rand); 
     end 
  end 
end 
return; 
 
ComputeAveCost - This is used by each optimization method to compute the 
average cost of the population and to count the number of legal (feasible) 
individuals. 
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function [AveCost, nLegal] = ComputeAveCost(Population) 
 

% Compute the average cost of all legal individuals in the population. 
% OUTPUTS: AveCost = average cost 
%      nLegal = number of legal individuals in population 
 
% Save valid population member fitnesses in temporary array 
Cost = []; 
nLegal = 0; 
for i = 1 : length(Population) 
   if Population(i).cost < inf 
        Cost = [Cost Population(i).cost]; 
        nLegal = nLegal + 1; 
    end 
end 
% Compute average cost. 
AveCost = mean(Cost); 
return; 
 
PopSort - This is used by each optimization method to sort population members 
from most fit to least fit. 
 
function [Population, indices] = PopSort(Population) 
 
% Sort the population members from best to worst 
popsize = length(Population); 
Cost = zeros(1, popsize); 
indices = zeros(1, popsize); 
for i = 1 : popsize 
  Cost(i) = Population(i).cost; 
end 
[Cost, indices] = sort(Cost, 2, 'ascend'); 
Chroms = zeros(popsize, length(Population(1).chrom)); 
for i = 1 : popsize 
  Chroms(i, :) = Population(indices(i)).chrom; 
end 
for i = 1 : popsize 
  Population(i).chrom = Chroms(i, :); 
  Population(i).cost = Cost(i); 
end 
 
Conclude - This is concludes the processing of each optimization method. It does 
common processing like outputting results. 
 
function Conclude(DisplayFlag, OPTIONS, Population, nLegal, MinCost) 
 
% Output results of population-based optimization algorithm. 
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if DisplayFlag 
  % Count the number of duplicates 
  NumDups = 0; 
  for i = 1 : OPTIONS.popsize 
    Chrom1 = sort(Population(i).chrom); 
    for j = i+1 : OPTIONS.popsize 
       Chrom2 = sort(Population(j).chrom); 
       if isequal(Chrom1, Chrom2) 
         NumDups = NumDups + 1; 
       end 
     end 
    end   
    disp([num2str(NumDups), ' duplicates in final population.']); 
    disp([num2str(nLegal), ' legal individuals in final population.']); 
    % Display the best solution 
    Chrom = sort(Population(1).chrom); 
    disp(['Best chromosome = ', num2str(Chrom)]);  
    % Plot some results 
    close all; 
    plot([0:OPTIONS.Maxgen], MinCost, 'r'); 
    xlabel('Generation'); 
    ylabel('Minimum Cost'); 
end 
return; 
 
MAPSS - This is the sensor selection initialization and fitness evaluation function. 
It requires the Control System Toolbox. You can use any of the optimization 
algorithms to find an optimal sensor set by typing, for example, the following at 
the Matlab prompt: 
>> PSO(@MAPSS); 
function [InitFunction, CostFunction, FeasibleFunction] = MAPSS 
 
% The following was found by exhaustive search to be the best 20/4 MAPSS 
sensor set. 
% However, this is computer-dependent because of numerical issues in Matlab's 
DARE routine. 
% [1 2 2 2 2 3 3 6 7 7 7 7 8 9 9 9 9 10 10 10] 
 
InitFunction = @MAPSSInit; 
CostFunction = @MAPSSCost; 
FeasibleFunction = @MAPSSFeasible; 
return; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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function [MaxParValue, MinParValue, Population, OPTIONS] = 
MAPSSInit(OPTIONS) 
 

global MaxParValue MinParValue NumDups A C Q R P0 alpha 
NumDups = 4; % number of duplicates of each sensor that are allowed 
alpha = 1; % relative importance of financial cost to estimation error 
% Get MAPSS linearized system matrices A, C, Q, and R 
load matrices.mat;  
A = Aaug; C = Caug; 
% Compute the reference steady state estimation error covariance 
P0 = dare(A', C', Q, R, zeros(size(C')), eye(size(A))); 
% Initialize population 
for popindex = 1 : OPTIONS.popsize 
   chrom = randperm(11 * NumDups); 
   chrom = chrom(1 : OPTIONS.numVar); 
   chrom = mod(chrom, 11); 
   chrom(chrom==0) = 11; 
   Population(popindex).chrom = chrom; 
end 
% Chromosome parameter can be any integer between 1 and 11 (sensor numbers) 
MinParValue = 1; 
MaxParValue = 11; 
OPTIONS.OrderDependent = false; 
return; 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [Population] = MAPSSCost(OPTIONS, Population) 
 

% Compute the sensor selection cost function of each member in Population 
% Cost = sum(sqrt(P(i,i) / Pref(i,i))) + alpha * FinCost / RefFinCost 
% There are 11 unique sensors that can be used in each sensor set. 
 
global MaxParValue MinParValue NumDups A C Q R P0 alpha 
popsize = OPTIONS.popsize; 
DollarCost = 1000 * ones(11, 1); % dollar cost for initial use of each sensor 
AdditionalCost = 750 * ones(11, 1); % dollar cost for duplicate sensors beyond the 
first of each type 
ReferenceCost = sum(DollarCost); % dollar cost if 11 unique sensors are used 
for popindex = 1 : popsize 
   New_Sensor_Set = Population(popindex).chrom; 
   New_Sensor_Set = mod(New_Sensor_Set, 11); 
   New_Sensor_Set(New_Sensor_Set==0) = 11; 
   New_Sensor_Set = sort(New_Sensor_Set); 
   %MANIPULATING C AND R MATRICES BASED ON RANDOMLY 
GENERATED SENSOR 
  %COMBINATION AND MAKING THE REMAINING ROWS ZEROS 
  FIN_COST = 0; 
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  for i = 1 : 11 
     SENSOR(i).COUNT = 0; 
  end 
  for i = 1 : 11 
    SENSOR(i).COUNT = length(find(New_Sensor_Set == i)); 
    if  SENSOR(i).COUNT > 0  
       FIN_COST = FIN_COST + DollarCost(i); % initial sensor cost is defined 
in DollarCost array 
       FIN_COST = FIN_COST + (SENSOR(i).COUNT - 1) *  
AdditionalCost(i); 
    end 
  end 
  C_NEW = []; 
  R_NEW = [];  
  for i = 1 : length(New_Sensor_Set) 
     SENSOR_NUM = New_Sensor_Set(i); 
     C_NEW(i, :) = C(SENSOR_NUM, :); 
      R_NEW(i, :) = R(SENSOR_NUM, SENSOR_NUM); 
    end   
    R_NEW = diag(R_NEW); 
    % Compute the steady state estimation error covariance based on the sensors 
that are used 
  lastwarn(''); 
  warning('off', 'control:InaccurateSolution'); 
  [P_ss, L, G, REPORT] = dare(A', C_NEW', Q, R_NEW, zeros(size(C_NEW')), 
eye(size(A)), 'report'); 
  % If a steady state ARE solution does not exist, set the cost to a large number 
  if ~isempty(lastwarn) | REPORT == -1 | REPORT == -2 
    Population(popindex).cost = 10e10; 
    continue; 
  end 
  % Compute the cost of the sensor set: estimation error variance plus financial 
cost 
  New_cost = 0; 
  for i = 4 : 11 % health parameters are indices 4-11 in the augmented state vector 
     New_cost = New_cost + sqrt(P_ss(i,i) / P0(i,i)); 
  end 
  New_cost = New_cost + alpha * FIN_COST / ReferenceCost; 
  Population(popindex).cost = New_cost; 
  if (New_cost <= 0) | ~isreal(New_cost) | (New_cost >= 100) 
    New_cost = inf; 
   end 
   Population(popindex).cost = New_cost; 
end 
return 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
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function [Population] = MAPSSFeasible(OPTIONS, Population) 
 
% Make sure each sensor set does not contain more than the allowable number of 
copies of each sensor. 
 
global MaxParValue MinParValue NumDups A C Q R P0 alpha 
% Make sure none of the chromosomes has more than the allowable number of 
sensors 
i = 0; 
while i < OPTIONS.popsize 
    i = i + 1; 
    Chrom = Population(i).chrom; 
    for j = 1 : 11 
       indices = find(Chrom == j); 
       if length(indices) > NumDups 
         % The individual has too many copies of a single sensor, so  
         % replace the individual with a random sensor set. 
         Chrom = randperm(11 * NumDups); 
         Chrom = Chrom(1 : OPTIONS.numVar); 
         Population(i).chrom = Chrom; 
         i = i - 1; % decrement i so that this new individual can be checked again 
         break; 
        end 
    end 
end     
% Make sure each chromosome is an integer between the allowable values 
for i = 1 : OPTIONS.popsize 
   Chrom = round(Population(i).chrom); 
   Chrom = mod(Chrom, 11); 
   Chrom(Chrom==0) = 11; 
   Chrom = max(Chrom, MinParValue); 
   Chrom = min(Chrom, MaxParValue); 
   Population(i).chrom = Chrom; 
end 
return; 
 
matrices - This is used by MAPSS.m and contains linearized system matrices for 
fitness function evaluation. 
 
Monte - This can be used to obtain Monte Carlo simulation results. The first 
executable line specifies the number of simulations to run. This is the highest-
level program in this archive, and is the one that I ran to create the results in the 
paper that I wrote. 
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function [MeanMin, MeanMinNorm, BestMin, BestMinNorm, MeanCPU] = 
Monte 
 
% Monte Carlo execution of population-based optimization software 
% OUTPUT MeanMin is the mean of the best solution found. It is a 
% nFunction x nBench array, where nFunction is the number of optimization 
% functions that are used, and nBench is the number of benchmarks that 
% are optimized. 
% OUTPUT MeanMinNorm is MeanMin normalized to a minimum of 1 for each 
benchmark. 
% OUTPUT BestMin is the best solution found by each optimization function 
% for each benchmark. 
% OUTPUT BestMinNorm is BestMin normalized to a minimum of 1 for each 
benchmark. 
% OUTPUT MeanCPU is the mean CPU time required for each optimization 
function 
% normalized to 1. 
 
nMonte = 100; % number of Monte Carlo runs 
 
% Optimization methods 
OptFunction = [ 
'ACO   '; % ant colony optimization 
'BBO   '; % biogeography-based optimization 
'DE    '; % differential evolution 
'ES    '; % evolutionary strategy 
'GA    '; % genetic algorithm 
'PBIL  '; % probability based incremental learning 
'PSO   '; % particle swarm optimization 
'StudGA']; % stud genetic algorithm 
 
% Benchmark functions 
 Bench = [     %     multimodal? separable?  regular? 
 'Ackley    '; %     y           n           y 
 'Fletcher  '; %     y           n           n 
 'Griewank  '; %     y           n           y 
 'Penalty1  '; %     y           n           y 
 'Penalty2  '; %     y           n           y 
 'Quartic   '; %     n           y           y 
 'Rastrigin '; %     y           y           y 
 'Rosenbrock'; %     n           n           y 
 'Schwefel  '; %     y           y           n 
 'Schwefel2 '; %     n           n           y 
 'Schwefel3 '; %     y           n           n 
 'Schwefel4 '; %     n           n           n 
 'Sphere    '; %     n           y           y 
 'Step      ']; %    n           y           n 
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%Bench = ['MAPSS']; 
 
nFunction = size(OptFunction, 1); 
nBench = size(Bench, 1); 
MeanMin = zeros(nFunction, nBench); 
BestMin = inf(nFunction, nBench); 
MeanCPU = zeros(nFunction, nBench); 
for i = 1 : nFunction 
    for j = 1 : nBench 
        disp(['Optimization method ', num2str(i), '/', num2str(nFunction), ... 
            ', Benchmark function ', num2str(j), '/', num2str(nBench)]); 
        for k = 1 : nMonte 
           tic; 
           [Cost] = eval([OptFunction(i,:), '(@', Bench(j,:), ', false);']); 
           MeanCPU(i,j) = ((k - 1) * MeanCPU(i,j) + toc) / k;             
           MeanMin(i,j) = ((k - 1) * MeanMin(i,j) + Cost(end)) / k; 
           BestMin(i,j) = min(BestMin(i,j), Cost(end)); 
       end 
   end 
end 
% Normalize the results 
if min(MeanMin) == 0 
  MeanMinNorm = []; 
else 
    MeanMinNorm = MeanMin * diag(1./min(MeanMin)); 
end 
if min(BestMin) == 0 
    BestMinNorm = []; 
else 
  BestMinNorm = BestMin * diag(1./min(BestMin)); 
end 
MeanCPU = min(MeanCPU'); 
MeanCPU = MeanCPU / min(MeanCPU); 
 
Finaly the BBO Algorithm 
 
function [MinCost, Hamming] = BBO(ProblemFunction, DisplayFlag, ProbFlag, 
RandSeed) 
 
% Biogeography-based optimization (BBO) software for minimizing a general 
function 
 
% INPUTS: ProblemFunction is the handle of the function that returns  
%      the handles of the initialization, cost, and feasibility functions. 
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%       DisplayFlag = true or false, whether or not to display and plot results. 
%       ProbFlag = true or false, whether or not to use probabilities to update 
emigration rates. 
%       RandSeed = random number seed 
% OUTPUTS: MinCost = array of best solution, one element for each generation 
%      Hamming = final Hamming distance between solutions 
% CAVEAT: The "ClearDups" function that is called below replaces duplicates 
with randomly-generated 
%     individuals, but it does not then recalculate the cost of the replaced 
individuals.  
  
if ~exist('DisplayFlag', 'var') 
   DisplayFlag = true; 
end 
if ~exist('ProbFlag', 'var') 
   ProbFlag = false; 
end 
if ~exist('RandSeed', 'var') 
   RandSeed = round(sum(100*clock)); 
end 
 
[OPTIONS, MinCost, AvgCost, InitFunction, CostFunction, FeasibleFunction, ... 
  MaxParValue, MinParValue, Population] = Init(DisplayFlag, ProblemFunction, 
RandSeed); 
 
Population = CostFunction(OPTIONS, Population); 
 
OPTIONS.pmodify = 1; % habitat modification probability 
OPTIONS.pmutate = 0.005; % initial mutation probability 
 
Keep = 2; % elitism parameter: how many of the best habitats to keep from one 
generation to the next 
lambdaLower = 0.0; % lower bound for immigration probabilty per gene 
lambdaUpper = 1; % upper bound for immigration probabilty per gene 
dt = 1; % step size used for numerical integration of probabilities 
I = 1; % max immigration rate for each island 
E = 1; % max emigration rate, for each island 
P = OPTIONS.popsize; % max species count, for each island 
 
% Initialize the species count probability of each habitat 
% Later we might want to initialize probabilities based on cost 
for j = 1 : length(Population) 
   Prob(j) = 1 / length(Population);  
end 
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% Begin the optimization loop 
for GenIndex = 1 : OPTIONS.Maxgen 
   % Save the best habitats in a temporary array. 
   for j = 1 : Keep 
      chromKeep(j,:) = Population(j).chrom; 
      costKeep(j) = Population(j).cost; 
   end 
   % Map cost values to species counts. 
   [Population] = GetSpeciesCounts(Population, P); 
   % Compute immigration rate and emigration rate for each species count. 
   % lambda(i) is the immigration rate for habitat i. 
   % mu(i) is the emigration rate for habitat i. 
   [lambda, mu] = GetLambdaMu(Population, I, E, P); 
   if ProbFlag 
     % Compute the time derivative of Prob(i) for each habitat i. 
      for j = 1 : length(Population) 
         % Compute lambda for one less than the species count of habitat i. 
          lambdaMinus = I * (1 - (Population(j).SpeciesCount - 1) / P); 
          % Compute mu for one more than the species count of habitat i. 
          muPlus = E * (Population(j).SpeciesCount + 1) / P; 
          % Compute Prob for one less than and one more than the species count of 
habitat i. 
          % Note that species counts are arranged in an order opposite to that 
presented in 
       % MacArthur and Wilson's book - that is, the most fit 
       % habitat has index 1, which has the highest species count. 
        if j < length(Population) 
          ProbMinus = Prob(j+1); 
         else 
           ProbMinus = 0; 
          end 
          if j > 1 
            ProbPlus = Prob(j-1); 
            else 
              ProbPlus = 0; 
            end 
            ProbDot(j) = -(lambda(j) + mu(j)) * Prob(j) + lambdaMinus * ProbMinus + 
muPlus * ProbPlus; 
       end 
       % Compute the new probabilities for each species count. 
        Prob = Prob + ProbDot * dt; 
        Prob = max(Prob, 0); 
        Prob = Prob / sum(Prob);  
  end 
  % Now use lambda and mu to decide how much information to share between 
habitats. 
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   lambdaMin = min(lambda); 
   lambdaMax = max(lambda); 
   for k = 1 : length(Population) 
      if rand > OPTIONS.pmodify 
        continue; 
      end 
       % Normalize the immigration rate. 
       lambdaScale = lambdaLower + (lambdaUpper - lambdaLower) * (lambda(k)  
- lambdaMin) / (lambdaMax - lambdaMin); 
     % Probabilistically input new information into habitat i 
     for j = 1 : OPTIONS.numVar 
        if rand < lambdaScale 
          % Pick a habitat from which to obtain a feature 
           RandomNum = rand * sum(mu); 
           Select = mu(1); 
           SelectIndex = 1; 
           while (RandomNum > Select) & (SelectIndex < OPTIONS.popsize) 
              SelectIndex = SelectIndex + 1; 
              Select = Select + mu(SelectIndex); 
            end 
            Island(k,j) = Population(SelectIndex).chrom(j); 
            else 
             Island(k,j) = Population(k).chrom(j); 
          end 
       end 
    end 
    if ProbFlag 
        % Mutation 
        Pmax = max(Prob); 
        MutationRate = OPTIONS.pmutate * (1 - Prob / Pmax); 
        % Mutate only the worst half of the solutions 
        Population = PopSort(Population); 
        for k = round(length(Population)/2) : length(Population) 
            for parnum = 1 : OPTIONS.numVar 
                if MutationRate(k) > rand 
                    Island(k,parnum) = floor(MinParValue + (MaxParValue - 
MinParValue + 1) * rand); 
           end 
        end 
     end 
  end 
  % Replace the habitats with their new versions. 
  for k = 1 : length(Population) 
     Population(k).chrom = Island(k,:); 
  end 
  % Make sure each individual is legal. 
  Population = FeasibleFunction(OPTIONS, Population); 
  % Calculate cost 
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  Population = CostFunction(OPTIONS, Population); 
  % Sort from best to worst 
  Population = PopSort(Population); 
  % Replace the worst with the previous generation's elites. 
  n = length(Population); 
  for k = 1 : Keep 
     Population(n-k+1).chrom = chromKeep(k,:); 
     Population(n-k+1).cost = costKeep(k); 
  end 
   % Make sure the population does not have duplicates.  
   Population = ClearDups(Population, MaxParValue, MinParValue); 
   % Sort from best to worst 
   Population = PopSort(Population); 
    % Compute the average cost 
    [AverageCost, nLegal] = ComputeAveCost(Population); 
    % Display info to screen 
    MinCost = [MinCost Population(1).cost]; 
    AvgCost = [AvgCost AverageCost]; 
    if DisplayFlag 
      disp(['The best and mean of Generation # ', num2str(GenIndex), ' are ',... 
        num2str(MinCost(end)), ' and ', num2str(AvgCost(end))]); 
    end 
end 
Conclude(DisplayFlag, OPTIONS, Population, nLegal, MinCost); 
% Obtain a measure of population diversity 
for k = 1 : length(Population) 
   Chrom = Population(k).chrom; 
   for j = MinParValue : MaxParValue 
     indices = find(Chrom == j); 
     CountArr(k,j) = length(indices); % array containing gene counts of each 
habitat 
  end 
end 
Hamming = 0; 
for m = 1 : length(Population) 
   for j = m+1 : length(Population) 
     for k = MinParValue : MaxParValue 
        Hamming = Hamming + abs(CountArr(m,k) - CountArr(j,k)); 
     end 
    end 
end   
if DisplayFlag 
  disp(['Diversity measure = ', num2str(Hamming)]); 
end 
return; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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function [Population] = GetSpeciesCounts(Population, P) 
 
% Map cost values to species counts. 
 
% This loop assumes the population is already sorted from most fit to least fit. 
for i = 1 : length(Population) 
   if Population(i).cost < inf 
     Population(i).SpeciesCount = P - i; 
   else 
    Population(i).SpeciesCount = 0; 
   end 
end 
return; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [lambda, mu] = GetLambdaMu(Population, I, E, P) 
 
% Compute immigration rate and extinction rate for each species count. 
% lambda(i) is the immigration rate for individual i. 
% mu(i) is the extinction rate for individual i. 
 
for i = 1 : length(Population) 
   lambda(i) = I * (1 - Population(i).SpeciesCount / P); 
   mu(i) = E * Population(i).SpeciesCount / P; 
end 
return; 
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The sample files are given in this section. 

 
1. The Compatibility matrix of 21 cells is given as follows. Here the cell value is   

‘5’ when compatibility is checked amongst the channels in the same cell, the 
value is ‘3’ when compared among the channels in 2nd nearest neighbor and ‘2’ 
when compared in next neighboring cell. It is ‘0’ when the cell is beyond 2nd 
next.  

 

5 3 2 0 0 2 3 3 2 0 0 0 0 2 2 2 0 0 0 0 0 

3 5 3 2 0 0 2 3 3 2 0 0 0 0 2 2 2 0 0 0 0 

2 3 5 3 2 0 0 2 3 3 3 0 0 0 0 2 2 2 0 0 0 

0 2 3 5 3 0 0 0 2 3 3 2 0 0 0 0 2 2 0 0 0 

0 0 2 3 5 0 0 0 0 2 3 3 0 0 0 0 0 2 0 0 0 

2 0 0 0 0 5 3 2 0 0 0 0 3 3 2 0 0 0 0 0 0 

3 2 0 0 0 3 5 3 2 0 0 0 2 3 3 2 0 0 2 0 0 

3 3 2 0 0 2 3 5 3 2 0 0 0 2 0 0 2 0 2 2 0 

2 3 3 2 0 0 2 3 5 3 2 0 0 0 2 3 3 2 2 2 2 

0 2 3 3 2 0 0 2 0 5 3 2 0 0 0 2 3 3 0 2 2 

0 0 2 3 2 0 0 0 2 3 5 3 0 0 0 0 2 3 0 0 2 

0 0 0 2 3 0 0 0 0 2 3 5 0 0 0 0 0 2 0 0 0 

0 0 0 0 0 3 2 0 0 0 0 0 5 3 2 0 0 0 0 0 0 

2 0 0 0 0 3 3 2 0 0 0 0 3 5 3 2 0 0 2 0 0 

2 2 0 0 0 2 3 3 2 0 0 0 2 3 5 3 2 0 3 2 0 

2 2 2 0 0 0 2 3 3 2 0 0 0 2 3 5 3 2 3 3 2 

0 2 2 2 0 0 0 2 3 3 2 0 0 0 2 3 5 3 2 3 3 

0 0 2 2 2 0 0 0 2 3 3 2 0 0 0 2 3 5 0 2 3 

0 0 0 0 0 0 2 2 2 0 0 0 0 2 3 3 2 0 5 3 2 

0 0 0 0 0 0 0 2 2 2 0 0 0 0 2 3 3 2 3 5 3 

0 0 0 0 0 0 0 0 2 2 2 0 0 0 0 2 3 3 2 3 5 
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Fig. A1 Compatibility values in different cells  

The following tables represent a sample of the hotness matrix and ots changes. 
 

28  23  24  35  40  42  39  5  8  7  15  29  27  22  39  45  32  23  14  11  7 
 

This is the hotness of 21 cells in a given time t= t0 
The subsequent changes of with respect to time is given as  

 
66  43  65  97  82  77  75  89  130  145  0  146  44  95  25  49  103  
133  135  5  46  

145   60 69 148 30 39 13 33 98 95 80 136 30 38 116 149 112 139 57 95 72  

58 29 36 148 1 31 148 25 51 5 15 86 143 124 93 51 74 134 117 24 78  

3 132 81 3 101 105 130 9 5 40 55 96 22 37 83 11 20 76 45 0 92  

36 12 62 61 43 79 101 103 134 119 11 82 89 149 114 33 75 14 96 132 98  

81 21 52 104 18 50 70 84 21 55 99 58 88 107 46 69 44 21 72 37 111  

143 108 61 84 62 46 132 62 122 122 123 26 28 48 91 36 25 13 88 122 126  

13 128 146 31 27 111 71 19 50 29 140 36 105 129 76 125 131 148 89 20 34  

146 111 146 95 99 39 52 62 30 109 106 127 93 136 98 28 137 25 120 49 113  

18 63 25 95 57 115 133 94 30 83 11 69 146 91 134 31 45 8 57 24 87  

27 139 46 123 31 6 136 114 30 86 89 122 56 48 87 2 130 52 37 83 67  

121 118 136 13 109 34 41 134 71 60 50 55 50 30 143 66 146 120 138 45 32  

4 45 60 138 104 78 105 41 144 117 87 65 93 126 50 118 58 129 127 106 149  

37 42 16 37 46 49 112 125 89 145 65 7 99 30 34 20 43 112 109 82 115  

19 73 117 56 26 116 148 79 50 91 25 128 128 50 5 101 38 99 63 2 146  

65 43 113 132 8 31 149 56 121 63 31 102 5 35 55 49 62 149 78 22 38  

 
C=3 

 
C=2 

 
C=2 

 
C=0 

 
C=0 

 
C=3 

 
C=2 

 
C=0  

Cell 
C=5 
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48 144 137 16 124 91 149 81 15 103 0 68 5 34 143 110 58 89 129 94 100  

82 34 99 19 147 66 67 5 132 78 37 149 101 30 86 80 71 113 114 88 61  

96 115 36 73 51 21 44 48 61 51 5 5 24 75 111 95 6 101 56 61 10  

108 134 55 52 135 106 60 18 29 113 36 57 101 76 112 55 99 107 106 15 21  

135 103 42 30 79 8 88 136 143 105 123 51 132 105 135 42 88 45 17 42 92  

83 94 76 16 147 115 36 87 80 143 34 48 47 121 144 12 34 63 149 54 20  

32 45 144 92 49 143 7 130 20 144 53 145 103 95 142 144 101 49 148 134 129 

 
The following table represents the neighbour information of the cells. The rows 
represent 21 cells and column value gives its six neighbors. The 1st row gives 
describe the 1st cell that has no cell in 1st 2nd side. Its 3rd side has 7th cell 4th has 
8th cell  and 5th has 2nd cell. Again 6th side has no neighbour. 

 
 

0 0 7 8 2 0 

0 1 8 9 3 0 

0 2 9 10 4 0 

0 3 10 11 5 0 

0 4 11 12 0 0 

0 0 13 14 7 0 

0 6 14 15 8 1 

1 7 15 16 9 2 

2 8 16 17 10 3 

3 9 17 18 11 4 

4 10 18 0 12 5 

5 11 0 0 0 0 

0 0 0 0 14 6 

6 13 0 0 15 7 

7 14 0 19 16 8 

8 15 19 20 17 9 

9 16 20 21 18 10 

10 17 21 0 0 11 

15 0 0 0 20 16 

16 19 0 0 21 17 

17 20 0 0 0 18 
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Next we take the data for the velocity of the mobile stations in each cells. We 
assume all the MS are moving and generate randomly a velocity value in the 
interval(0,140). This is chosen keeping in mind the city traffic. 

 
 

23 80 77 55 9 9 25 23 97 33 1 1 54 82 103 27 104 52 14 35 104 

24 100 104 74 110 110 66 92 92 90 10 70 55 4 98 83 21 6 54 37 22 

66 92 13 96 56 79 33 51 30 24 30 104 41 14 91 27 73 15 65 79 66 

60 25 79 39 27 112 23 38 12 95 12 53 43 75 22 29 56 98 114 15 41 

88 61 113 40 1 79 11 69 7 108 25 63 67 58 90 61 73 2 17 23 22 

95 41 15 81 73 27 69 64 92 37 39 48 98 69 58 66 102 97 51 98 82 

61 9 17 57 41 79 47 104 29 16 25 36 43 57 50 24 73 24 67 55 103 
 

Here the column represents all 21 cells and rows are MS assigned in each channel 
in the cell. 

 
The 1st 15 parrents are taken as 

 
parent 0 : 
 
0001010 
 1011110 
 0110010 
 1000000 
 1011101 
 0000011 
 1101111 
 0010011 
 1000110 
 1111000 
 0110001 
 1000000 
 0010100 
 1100111 
 1010110 
 1000110 
 1111011 
 0101100 
 1111110 
 0100011 
 0101001 
 

parent 1 : 
 
0110100 
 0100111 
 1110001 
 0110111 
 0001000 
 1100100 
 0011111 
 0001100 
 1001011 
 0101111 
 0101010 
 1010110 
 1011000 
 0010000 
 1101000 
 0100100 
 0101101 
 0101100 
 1110101 
 1101000 
 0010011 
 

parent 2 : 
 
0000110 
 1011011 
 1010100 
 1011011 
 1001101 
 0010001 
 0010001 
 0100110 
 0011010 
 0110110 
 0011011 
 1011110 
 0000111 
 0001101 
 1000101 
 1001011 
 0001000 
 1000110 
 1111001 
 0110000 
 0010011 
 

parent 3 : 
 
1110101 
 0011001 
 0001110 
 0101101 
 0000011 
 1000101 
 0011101 
 0000111 
 1110110 
 0101010 
 1111000 
 0000111 
 1111001 
 1111100 
 1110110 
 0011010 
 1000100 
 0010100 
 0110011 
 0011001 
 0111100 
 

parent 4 : 
 
0101001 
 1110010 
 0101100 
 1110101 
 0111001 
 0110001 
 0000100 
 1111110 
 0101000 
 1100111 
 1001110 
 1011100 
 0100111 
 0000010 
 0101001 
 1101011 
 0000011 
 0001001 
 1111110 
 0101101 
 0100001 
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parent 5 : 
 
0100010 
 0010001 
 1101111 
 0110010 
 1001101 
 1001001 
 1111101 
 1111000 
 1100100 
 1110010 
 1011111 
 0011110 
 0001111 
 0100101 
 0101101 
 1011011 
 0001001 
 1001100 
 1000101 
 1001000 
 1011110 
 

 parent 6 : 
 
0101111 
 1001110 
 0010001 
 1100011 
 0110010 
 1110001 
 1011101 
 0111000 
 0000010 
 1001110 
 0010111 
 1110011 
 0101111 
 1001001 
 0000100 
 1001010 
 0111111 
 1101110 
 0001010 
 0000111 
 0010000 
 

parent 7 : 
 
0000101 
 0001011 
 1000011 
 1000101 
 1000001 
 0100001 
 1110000 
 0001011 
 0110111 
 0010000 
 0001011 
 0111011 
 1010010 
 0111011 
 1010101 
 0011100 
 0110010 
 0100011 
 0100001 
 1100110 
 1011111 
 

parent 8 : 
 
1111011 
 0100101 
 0000111 
 1100111 
 1111111 
 1000111 
 1011000 
 1001010 
 0010011 
 1000111 
 1100110 
 1001100 
 1111000 
 0110010 
 0000000 
 0000000 
 1011101 
 0001101 
 0111000 
 0010011 
 1000010 
 

parent 9 : 
 
0101100 
 1001011 
 0100000 
 1110000 
 1011111 
 0101100 
 1111111 
 1001110 
 0111000 
 0110010 
 1001101 
 0111110 
 0110001 
 0001100 
 0001011 
 0111011 
 1101011 
 1101111 
 0011100 
 1000101 
 0101001 
 

parent 10 : 
 
0010001 
 0010100 
 0001010 
 0010100 
 1101011 
 1101011 
 0010000 
 1100100 
 0001110 
 1010111 
 0111111 
 0101001 
 0000111 
 0100101 
 1011011 
 0001100 
 1011010 
 0010100 
 1011111 
 0111110 
 0010011 

 parent 11 : 
 
1110011 
 1101010 
 0011110 
 0110100 
 0111111 
 0000110 
 1111001 
 1111100 
 1000011 
 1101100 
 1101011 
 0100001 
 1101101 
 1010011 
 1001011 
 1001011 
 1000110 
 0010011 
 1001001 
 1010000 
 0110100 

parent 12 : 
 
1100001 
 0011111 
 0010011 
 0001110 
 1111001 
 0101000 
 0010011 
 0100000 
 1000011 
 0010111 
 1010011 
 1010101 
 1011011 
 0011110 
 0001111 
 0000110 
 1011100 
 1110001 
 0111011 
 0000001 
 1000001 

parent 13 : 
 
1100010 
 0110101 
 0001001 
 0000100 
 0000000 
 1100101 
 1110000 
 0111001 
 0101110 
 0001110 
 0100000 
 0000001 
 0001100 
 0000111 
 0110010 
 0001011 
 0010111 
 0000100 
 0111111 
 1000011 
 0111101 
 

parent 14 : 
 
1010101 
 1101011 
 1111001 
 0101010 
 1101111 
 0101011 
 0011100 
 0100001 
 1111110 
 0001101 
 0010111 
 1100101 
 1111000 
 1100010 
 1101001 
 1101111 
 1010110 
 0000000 
 1011010 
 1011011 
 0110100 
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The angles in which the MS are moving w.r.t. BS are generated randomly. They 
are given as 

 

Cell 1 Cell 5 Cell 10 Cell 15 Cell 20 

22.600 76.394 73.529 52.521 9.2309 

23.554 95.493 99.949 70.983 105.67 

63.343 88.490 12.732 91.673 53.794 

57.932 23.873 75.439 37.242 26.101 

84.033 58.887 108.54 38.833 1.5915 

90.718 39.788 14.642 77.667 70.346 

58.250  8.5943 16.552 54.749 39.4704 
 

The Offspring generated Using Genetic Algorithm technique are given below at 
any time t=t0 

 

 

t0 th offspring 
 
0 0 0 1 0 1 0  
1 0 1 1 1 1 0  
0 1 1 0 0 1 0  
1 0 0 0 0 0 0  
1 0 1 1 0 0 1  
0 0 0 0 0 1 0  
1 1 0 1 0 1 0  
0 0 1 0 0 1 1  
1 0 0 0 1 1 0  
1 1 0 1 0 0 0  
0 1 0 0 0 0 1  
1 0 0 0 0 0 0  
0 0 1 0 1 0 0  
1 1 0 0 1 1 1  
1 0 1 0 1 1 0  
1 0 0 0 1 1 0  
1 0 1 1 0 1 1  
0 1 0 1 1 0 0  
1 1 1 0 1 1 0  
0 0 0 0 0 1 1  
0 0 0 1 0 0 1 

t1 th offspring 
 
0 1 1 0 1 0 0  
0 1 0 0 1 1 1  
1 1 1 0 0 0 1  
0 1 1 0 1 1 1  
0 0 0 1 0 0 0  
1 1 0 0 1 0 0  
0 0 1 1 1 1 1  
0 0 0 1 1 0 0  
1 0 0 1 0 1 1  
0 1 0 1 1 1 1  
0 1 0 1 0 1 0  
1 0 1 0 1 1 0  
1 0 1 1 0 0 0  
0 0 1 0 0 0 0  
1 1 0 1 0 0 0  
0 1 0 0 1 0 0  
0 1 0 1 1 0 1  
0 1 0 1 1 0 0  
1 1 1 0 1 0 1  
1 1 0 1 0 0 0  
0 0 1 0 0 1 1 

t2 th offspring 
 
0 0 0 0 1 1 0  
1 0 1 1 0 1 1  
1 0 1 0 1 0 0  
1 0 1 1 0 1 1  
1 0 0 1 1 0 1  
0 0 1 0 0 0 1  
0 0 1 0 0 0 1  
0 1 0 0 1 1 0  
0 0 1 1 0 1 0  
0 1 1 0 1 1 0  
0 0 1 1 0 1 1  
1 0 1 1 1 1 0  
0 0 0 0 1 1 1  
0 0 0 1 1 0 1  
1 0 0 0 1 0 1  
1 0 0 1 0 1 1  
0 0 0 1 0 0 0  
1 0 0 0 1 1 0  
1 1 1 1 0 0 1  
0 1 1 0 0 0 0  
0 0 1 0 0 1 1 

t3 th offspring 
 
1 1 1 0 1 0 1  
0 0 1 1 0 0 1  
0 0 0 1 1 1 0  
0 1 0 1 1 0 1  
0 0 0 0 0 1 1  
1 0 0 0 1 0 1  
0 0 1 1 1 0 1  
0 0 0 0 1 1 1  
1 1 1 0 1 1 0  
0 1 0 1 0 1 0  
1 1 1 1 0 0 0  
0 0 0 0 1 1 1  
1 1 1 1 0 0 1  
1 1 1 1 1 0 0  
1 1 1 0 1 1 0  
0 0 1 1 0 1 0  
1 0 0 0 1 0 0  
0 0 1 0 1 0 0  
0 1 1 0 0 1 1  
0 0 1 1 0 0 1  
0 1 1 1 1 0 0 
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The Offspring generated Using Biogeography Based Optimization technique are 
given below at any time t=t0 

 

 

0 th offspring 
 
0 0 0 1 0 1 0  
1 0 1 1 1 1 0  
0 1 1 0 0 1 0  
1 0 0 0 0 0 0  
1 0 1 1 0 0 1  
0 0 0 0 0 1 0  
1 1 0 1 0 1 0  
0 0 1 0 0 1 1  
1 0 0 0 1 1 0  
1 1 0 1 0 0 0  
0 1 0 0 0 0 1  
1 0 0 0 0 0 0  
0 0 1 0 1 0 0  
1 1 0 0 1 1 1  
1 0 1 0 1 1 0  
1 0 0 0 1 1 0  
1 0 1 1 0 1 1  
0 1 0 1 1 0 0  
1 1 1 0 1 1 0  
0 0 0 0 0 1 1  
0 0 0 1 0 0 1 

1 th offspring 
 
0 1 1 0 1 0 0  
0 1 0 0 1 1 1  
1 1 1 0 0 0 1  
0 1 1 0 1 1 1  
0 0 0 1 0 0 0  
1 1 0 0 1 0 0  
0 0 1 1 1 1 1  
0 0 0 1 1 0 0  
1 0 0 1 0 1 1  
0 1 0 1 1 1 1  
0 1 0 1 0 1 0  
1 0 1 0 1 1 0  
1 0 1 1 0 0 0  
0 0 1 0 0 0 0  
1 1 0 1 0 0 0  
0 1 0 0 1 0 0  
0 1 0 1 1 0 1  
0 1 0 1 1 0 0  
1 1 1 0 1 0 1  
1 1 0 1 0 0 0  
0 0 1 0 0 1 1 

2 th offspring 
 
0 0 0 0 1 1 0  
1 0 1 1 0 1 1  
1 0 1 0 1 0 0  
1 0 1 1 0 1 1  
1 0 0 1 1 0 1  
0 0 1 0 0 0 1  
0 0 1 0 0 0 1  
0 1 0 0 1 1 0  
0 0 1 1 0 1 0  
0 1 1 0 1 1 0  
0 0 1 1 0 1 1  
1 0 1 1 1 1 0  
0 0 0 0 1 1 1  
0 0 0 1 1 0 1  
1 0 0 0 1 0 1  
1 0 0 1 0 1 1  
0 0 0 1 0 0 0  
1 0 0 0 1 1 0  
1 1 1 1 0 0 1  
0 1 1 0 0 0 0  
0 0 1 0 0 1 1 

3 th offspring 
 
1 1 1 0 1 0 1  
0 0 1 1 0 0 1  
0 0 0 1 1 1 0  
0 1 0 1 1 0 1  
0 0 0 0 0 1 1  
1 0 0 0 1 0 1  
0 0 1 1 1 0 1  
0 0 0 0 1 1 1  
1 1 1 0 1 1 0  
0 1 0 1 0 1 0  
1 1 1 1 0 0 0  
0 0 0 0 1 1 1  
1 1 1 1 0 0 1  
1 1 1 1 1 0 0  
1 1 1 0 1 1 0  
0 0 1 1 0 1 0  
1 0 0 0 1 0 0  
0 0 1 0 1 0 0  
0 1 1 0 0 1 1  
0 0 1 1 0 0 1  
0 1 1 1 1 0 0 
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