
Chapter 4
Linear Transformations of a Vector Space
to Itself

4.1 Eigenvectors and Invariant Subspaces

In the previous chapter we introduced the notion of a linear transformation of a
vector space L into a vector space M. In this and the following chapters, we shall
consider the important special case in which M coincides with L, which in this book
will always be assumed to be finite-dimensional. Then a linear transformation A :
L → L will be called a linear transformation of the space L to itself, or simply a
linear transformation of the space L. This case is of great importance, since it is
encountered frequently in various fields of mathematics, mechanics, and physics.
We now recall some previously introduced facts regarding this case. First of all,
as before, we shall understand the term number or scalar in the broadest possible
sense, namely as a real or complex number or indeed as an element of any field K

(of the reader’s choosing).
As established in the preceding chapter, to represent a transformation A by a

matrix, one has to choose a basis e1, . . . , en of the space L and then to write the
coordinates of the vectors A(e1), . . . ,A(en) in terms of that basis as the columns
of a matrix. The result will be a square matrix A of order n. If the transforma-
tion A of the space L is nonsingular, then the vectors A(e1), . . . ,A(en) themselves
form a basis of the space L, and we may interpret A as a transition matrix from
the basis e1, . . . , en to the basis A(e1), . . . ,A(en). A nonsingular transformation A
obviously has an inverse, A−1, with matrix A−1.

Example 4.1 Let us write down the matrix of the linear transformation A that acts
by rotating the plane in the counterclockwise direction about the origin through the
angle α. To do so, we first choose a basis consisting of two mutually perpendicular
vectors e1 and e2 of unit length in the plane, where the vector e2 is obtained from
e1 by a counterclockwise rotation through a right angle (see Fig. 4.1).

Then it is easy to see that we obtain the relationship

A(e1) = cosαe1 + sinαe2, A(e2) = − sinαe1 + cosαe2,
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Fig. 4.1 Rotation through
the angle α

and it follows from the definition that the matrix of the transformation A in the
given basis is equal to

A =
(

cosα − sinα

sinα cosα

)
. (4.1)

Example 4.2 Consider the linear transformation A of the complex plane that con-
sists in multiplying each number z ∈ C by a given fixed complex number p + iq

(here i is the imaginary unit).
If we consider the complex plane as a vector space L over the field C, then it is

clear that in an arbitrary basis of the space L, such a transformation A has a matrix of
order 1, consisting of a unique element, namely the given complex number p + iq .
Thus in this case, we have dim L = 1, and we need to choose in L a basis consisting
of an arbitrary nonzero vector in L, that is, an arbitrary complex number z �= 0. Thus
we obtain A(z) = (p + iq)z.

Now let us consider the complex plane as a vector space L over the field R. In
this case, dim L = 2, since every complex number z = x + iy is represented by a pair
of real numbers x and y. Let us choose in L the same basis as in Example 4.1. Now
we choose the vector e1 lying on the real axis, and the vector e2 on the imaginary
axis. From the equation

(x + iy)(p + iq) = (px − qy) + i(py + qx)

it follows that

A(e1) = pe1 + qe2, A(e2) = −qe1 + pe2,

from which it follows by definition that the matrix of the transformation A in the
given basis takes the form

A =
(

p −q

q p

)
. (4.2)

In the case |p + iq| = 1, we may put p = cosα and q = sinα for a certain number
0 ≤ α < 2π (such an α is called the argument of the complex number p + iq). Then
the matrix (4.2) coincides with (4.1); that is, multiplication by a complex number
with modulus 1 and argument α is equivalent to the counterclockwise rotation about
the origin of the complex plane through the angle α. We note that every complex
number p + iq can be expressed as the product of a real number r and a complex



4.1 Eigenvectors and Invariant Subspaces 135

number of modulus 1; that is, p + iq = r(p′ + iq ′), where |p′ + iq ′| = 1 and r =
|p + iq|. From this it is clear that multiplication by p + iq is the product of two
linear transformations of the complex plane: a rotation through the angle α and a
dilation (or contraction) by the factor r .

In Sect. 3.4, we established that in the transition from a basis e1, . . . , en of the
space L to some other basis e′

1, . . . , e
′
n, the matrix of the transformation is changed

according to the formula

A′ = C−1AC, (4.3)

where C is the transition matrix from the second basis to the first.

Definition 4.3 Two square matrices A and A′ related by (4.3), where C is any
nonsingular matrix, are said to be similar.

It is not difficult to see that in the set of square matrices of a given order, the sim-
ilarity relation thus defined is an equivalence relation (see the definition on p. xii).

It follows from formula (4.3) that in changing bases, the determinant of the trans-
formation matrix does not change, and therefore it is possible to speak not simply
about the determinant of the transformation matrix, but about the determinant of the
linear transformation A itself, which will be denoted by |A|. A linear transforma-
tion A : L → L is nonsingular if and only if |A| �= 0. If L is a real space, then this
number |A| �= 0 is also real and can be either positive or negative.

Definition 4.4 A nonsingular linear transformation A : L → L of the real space L is
called proper if |A| > 0, and improper if |A| < 0.

One of the basic tasks in the theory of linear transformations, one with which
we shall be occupied in the sequel, is to find, given a linear transformation of a
vector space into itself, a basis for which the matrix of the transformation takes the
simplest possible form. An equivalent formulation of this task is for a given square
matrix to find the simplest matrix that is similar to it. Having such a basis (or similar
matrix) gives us the possibility of surveying a number of important properties of the
initial linear transformation (or matrix). In its most general form, this problem will
be solved in Chap. 5, but at present, we shall examine it for a particular type of
linear transformation that is most frequently encountered.

Definition 4.5 A subspace L′ of a vector space L is called invariant with respect to
the linear transformation A : L → L if for every vector x ∈ L′, we have A(x) ∈ L′.

It is clear that according to this definition, the zero subspace (0) and the entire
space L are invariant with respect to any linear transformation A : L → L. Thus
whenever we enumerate the invariant subspaces of a space L, we shall always mean
the subspaces L′ ⊂ L other than (0) and L.

Example 4.6 Let L be the three-dimensional space studied in courses in analytic
geometry consisting of vectors originating at a given fixed point O , and consider the
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transformation A that reflects each vector with respect to a given plane L′ passing
through the point O . It is then easy to see that A has two invariant subspaces: the
plane L′ itself and the straight line L′′ passing through O and perpendicular to L′.

Example 4.7 Let L be the same space as in the previous example, and now let the
transformation A be a rotation through the angle α, 0 < α < π , about a given axis
L′ passing through O . Then A has two invariant subspaces: the line L′ itself and the
plane L′′ perpendicular to L′ and passing through O .

Example 4.8 Let L be the same as in the previous example, and let A be a homo-
thety, that is, A acts by multiplying each vector by a fixed number α �= 0. Then it
is easy to see that every line and every plane passing through O is an invariant sub-
space with respect to the transformation A. Moreover, it is not difficult to observe
that if A is a homothety on an arbitrary vector space L, then every subspace of L is
invariant.

Example 4.9 Let L be the plane consisting of all vectors originating at some point
O , and let A be the transformation that rotates a vector about O through the angle α,
0 < α < π . Then A has no invariant subspace.

It is evident that the restriction of a linear transformation A to an invariant sub-
space L′ ⊂ L is a linear transformation of L′ into itself. We shall denote this trans-
formation by A′, that is, A′ : L′ → L′ and A′(x) = A(x) for all x ∈ L′.

Let e1, . . . , em be a basis of the subspace L′. Then since it consists of linearly
independent vectors, it is possible to extend it to a basis e1, . . . , en of the entire
space L. Let us examine how the matrix of the linear transformation A appears in
this basis. The vectors A(e1), . . . ,A(em) are expressed as a linear combination of
e1, . . . , em; this is equivalent to saying that e1, . . . , em is the basis of a subspace that
is invariant with respect to the transformation A. We therefore obtain the system of
equations ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A(e1) = a11e1 + a21e2 + · · · + am1em,

A(e2) = a12e1 + a22e2 + · · · + am2em,

...

A(em) = a1me1 + a2me2 + · · · + ammem.

It is clear that the matrix

A′ =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

am1 am2 · · · amm

⎞
⎟⎟⎟⎠ (4.4)

is the matrix of the linear transformation A′ : L′ → L′ in the basis e1, . . . , em. In
general, we can say nothing about the vectors A(ei ) for i > m except that they are
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linear combinations of vectors from the basis e1, . . . , en of the entire space L. How-
ever, we shall represent this by separating out terms that are multiples of e1, . . . , em

(we shall write the associated coefficients as bij ) and those that are multiples of the
vectors em+1, . . . , en (here we shall write the associated coefficients as cij ). As a
result we obtain the matrix

A =
(

A′ B ′
0 C′

)
, (4.5)

where B ′ is a matrix of type (m,n − m), C′ is a square matrix of order n − m, and
0 is a matrix of type (n − m,m) all of whose elements are equal to zero.

If it turns out to be possible to find an invariant subspace L′′ related to the invari-
ant subspace L′ by L = L′ ⊕ L′′, then by joining the bases of L′ and L′′, we obtain
a basis for the space L in which the matrix of our linear transformation A can be
written in the form

A =
(

A′ 0
0 C′

)
,

where A′ is the matrix (4.4) and C′ is the matrix of the linear transformation ob-
tained by restricting the transformation A to the subspace L′′. Analogously, if

L = L1 ⊕ L2 ⊕ · · · ⊕ Lk,

where all the Li are invariant subspaces with respect to the transformation A, then
the matrix of the transformation A can be written in the form

A =

⎛
⎜⎜⎜⎝

A′
1 0 · · · 0

0 A′
2 · · · 0

...
...

. . .
...

0 0 · · · A′
k

⎞
⎟⎟⎟⎠ , (4.6)

where A′
i is the matrix of the linear transformation obtained by restricting A to the

invariant subspace Li . Matrices of the form (4.6) are called block-diagonal.
The simplest case is that of an invariant subspace of dimension 1. This subspace

has a basis consisting of a single vector e �= 0, and its invariance is expressed by the
relationship

A(e) = λe (4.7)

for some number λ.

Definition 4.10 If the relationship (4.7) is satisfied for a vector e �= 0, then e is
called an eigenvector, and the number λ is called an eigenvalue of the transforma-
tion A.

Given an eigenvalue λ, it is easy to verify that the set of all vectors e ∈ L satis-
fying the relationship (4.7), including here also the zero vector, forms an invariant
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subspace of L. It is called the eigensubspace for the eigenvalue λ and is denoted
by Lλ.

Example 4.11 In Example 4.6, the eigenvectors of the transformation A are, first
of all, all the vectors in the plane L′ (in this case the eigenvalue is λ = 1), and
secondly, every vector on the line L′′ (the eigenvalue is λ = −1). In Example 4.7,
the eigenvectors are all vectors lying on the line L′, and to them correspond the
eigenvalue λ = 1. In Example 4.8, every vector in the space is an eigenvector with
eigenvalue λ = α. Of course all the vectors that we are speaking about are nonzero
vectors.

Example 4.12 Let L be the space consisting of all infinitely differentiable functions,
and let the transformation A be differentiation, that is, it maps every function x(t) in
L to its derivative x′(t). Then the eigenvectors of A are the functions x(t), not iden-
tically zero, that are solutions of the differential equation x′(t) = λx(t). One easily
verifies that such solutions are the functions x(t) = ceλt , where c is an arbitrary
constant. It follows that to every number λ there corresponds a one-dimensional in-
variant subspace of the transformation A consisting of all vectors x(t) = ceλt , and
for c �= 0 these are eigenvectors.

There is a convenient method for finding eigenvalues of a transformation A and
the associated subspaces. We must first choose an arbitrary basis e1, . . . , en of the
space L and then search for vectors e that satisfy relation (4.7), in the form of the
linear combination

e = x1e1 + x2e2 + · · · + xnen. (4.8)

Let the matrix of the linear transformation A in the basis e1, . . . , en be A = (aij ).
Then the coordinates of the vector A(e) in the same basis can be expressed by the
equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y1 = a11x1 + a12x2 + · · · + a1nxn,

y2 = a21x1 + a22x2 + · · · + a2nxn,

...

yn = an1x1 + an2x2 + · · · + annxn.

Now we can write down relation (4.7) in the form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1nxn = λx1,

a21x1 + a22x2 + · · · + a2nxn = λx2,

...

an1x1 + an2x2 + · · · + annxn = λxn,
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or equivalently,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a11 − λ)x1 + a12x2 + · · · + a1nxn = 0,

a21x1 + (a22 − λ)x2 + · · · + a2nxn = 0,

...

an1x1 + an2x2 + · · · + (ann − λ)xn = 0.

(4.9)

For the coordinates x1, x2, . . . , xn of the vector (4.8), we obtain a system of n ho-
mogeneous linear equations. By Corollary 2.13, this system will have a nonzero
solution if and only if the determinant of its matrix is equal to zero. We may write
this condition in the form

|A − λE| = 0.

Using the formula for the expansion of the determinant, we see that the determinant
|A − tE| is a polynomial in t of degree n. It is called the characteristic polyno-
mial of the transformation A. The eigenvalues of A are precisely the zeros of this
polynomial.

Let us prove that the characteristic polynomial is independent of the basis in
which we write down the matrix of the transformation. It is only after we have ac-
complished this that we shall have the right to speak of the characteristic polynomial
of the transformation itself and not merely of its matrix in a particular basis.

Indeed, as we have seen (formula (4.3)), in another basis we obtain the matrix
A′ = C−1AC, where |C| �= 0. For this matrix, the characteristic polynomial is

∣∣A′ − tE
∣∣ = ∣∣C−1AC − tE

∣∣ = ∣∣C−1(A − tE)C
∣∣.

Using the formula for the multiplication of determinants and the formula for the
determinant of an inverse matrix, we obtain

∣∣C−1(A − tE)C
∣∣ = ∣∣C−1

∣∣ · |A − tE| · |C| = |A − tE|.
If a space has a basis e1, . . . , en consisting of eigenvectors, then in this basis, we

have A(ei ) = λiei . From this, it follows that the matrix of a transformation A in
this basis has the diagonal form

⎛
⎜⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎞
⎟⎟⎟⎠ .

This is a special case of (4.6) in which the invariant subspaces Li are one-
dimensional, that is, Li = 〈ei〉. Such linear transformations are called diagonaliz-
able.

As the following example shows, not all transformations are diagonalizable.
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Example 4.13 Let A be a linear transformation of the (real or complex) plane that
in some basis e1, e2 has the matrix

A =
(

a b

0 a

)
, b �= 0.

The characteristic polynomial |A − tE| = (t − a)2 of this transformation has a
unique zero t = a, of multiplicity 2, to which corresponds the one-dimensional
eigensubspace 〈e1〉. From this it follows that the transformation A is nondiago-
nalizable.

This can be proved by another method, using the concept of similar matrices.
If the transformation A were diagonalizable, then there would exist a nonsingular
matrix C of order 2 that would satisfy the relation C−1AC = aE, or equivalently,
the equation AC = aC. With respect to the unknown elements of the matrix C =
(cij ), the previous equality gives us two equations, bc21 = 0 and bc22 = 0, whence
by virtue of b �= 0, it follows that c21 = c22 = 0, and the matrix C is thus seen to be
singular.

We have seen that the number of eigenvalues of a linear transformation is finite,
and it cannot exceed the number n (the dimension of the space L), since they are the
zeros of the characteristic polynomial, whose degree is n.

Theorem 4.14 The dimension of the eigensubspace Lλ ⊂ L associated with the
eigenvalue λ is at most the multiplicity of the value λ as a zero of the character-
istic polynomial.

Proof Suppose the dimension of the eigensubspace Lλ is m. Let us choose a basis
e1, . . . , em of this subspace and extend it to a basis e1, . . . , en of the entire space
L, in which the matrix of the transformation A has the form (4.5). Since by the
definition of an eigensubspace, A(ei ) = λei for all i = 1, . . . ,m, it follows that in
(4.5), the matrix A′ is equal to λEm, where Em is the identity matrix of order m.
Then

A − tE =
(

A′ − tEm B ′
0 C′ − tEn−m

)
=

(
(λ − t)Em B ′

0 C′ − tEn−m

)
,

where En−m is the identity matrix of order n − m. Therefore,

|A − tE| = (λ − t)m
∣∣C′ − tEn−m

∣∣.
On the other hand, if L = Lλ ⊕ L′′, then Lλ ∩ L′′ = (0), which means that the re-
striction of the transformation A to L′′ has no eigenvectors with eigenvalue λ. This
means that |C′ − λEn−m| �= 0, that is, the number λ is not a zero of the polynomial
|C′ − tEn−m|, which is what we had to show. �

In the previous chapter we were introduced to the operations of addition and
multiplication (composition) of linear transformations, which are clearly defined
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for the special case of a transformation of a space L into itself. Therefore, for any
integer n > 0 we may define the nth power of a linear transformation. By definition,
An for n > 0 is the result of multiplying A by itself n times, and for n = 0, A0 is the
identity transformation E . This enables us to introduce the concept of a polynomial
in a linear transformation, which will play an important role in what follows.

Let A be a linear transformation of the vector space L (real, complex, or over an
arbitrary field K) and define

f (x) = α0 + α1x + · · · + αkx
k,

a polynomial with scalar coefficients (respectively real, complex, or from the
field K).

Definition 4.15 A polynomial f in the linear transformation A is a linear mapping

f (A) = α0E + α1A + · · · + αkA
k, (4.10)

where E is the identity linear transformation.

We observe that this definition does not make use of coordinates, that is, the
choice of a specific basis in the space L. If such a basis e1, . . . , en is chosen, then to
the linear transformation A there corresponds a unique square matrix A. In Sect. 2.9
we introduced the notion of a polynomial in a square matrix, which allows us to give
another definition: f (A) is the linear transformation with matrix

f (A) = α0E + α1A + · · · + αkA
k (4.11)

in the basis e1, . . . , en.
It is not difficult to be convinced of the equivalence of these definitions if we

recall that the actions of linear transformations are expressed through the actions
of their matrices (see Sect. 3.3). It is thus necessary to show that in a change of
basis from e1, . . . , en, the matrix f (A) also changes according to formula (4.3)
with transition matrix C the same as for matrix A. Indeed, let us consider a change of
coordinates (that is, switching to another basis of the space L) with matrix C. Then in
the new basis, the matrix of the transformation A is given by A′ = C−1AC. By the
associativity of matrix multiplication, we also obtain a relationship A′n = C−1AnC

for every integer n ≥ 0. If we substitute A′ for A in formula (4.11), then considering
what we have said, we obtain

f
(
A′) = α0E + α1A

′ + · · · + αkA
′k

= C−1(α0E + α1A + · · · + αkA
k
)
C = C−1f (A)C,

which proves our assertion.
It should be clear that the statements that we proved in Sect. 2.9 for polynomials

in a matrix (p. 69) also apply to polynomials in a linear transformation.
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Lemma 4.16 If f (x) + g(x) = u(x) and f (x)g(x) = v(x), then for an arbitrary
linear transformation A, we have

f (A) + g(A) = u(A), (4.12)

f (A)g(A) = v(A). (4.13)

Corollary 4.17 Polynomials f (A) and g(A) in the same linear transformation A
commute: f (A)g(A) = g(A)f (A).

4.2 Complex and Real Vector Spaces

We shall now investigate in greater detail the concepts introduced in the previous
section applied to transformations of complex and real vector spaces (that is, we
shall assume that the field K is respectively C or R). Our fundamental result applies
specifically to complex spaces.

Theorem 4.18 Every linear transformation of a complex vector space has an eigen-
vector.

This follows immediately from the fact that the characteristic polynomial of a
linear transformation, and in general an arbitrary polynomial of positive degree, has
a complex root. Nevertheless, as Example 4.13 of the previous section shows, even
in a complex space, not every linear transformation is diagonalizable.

Let us consider the question of diagonalizability in greater detail, always assum-
ing that we are working with complex spaces. We shall prove the diagonalizability
of a commonly occurring type of transformation. To this end, we require the follow-
ing lemma.

Lemma 4.19 Eigenvectors associated with distinct eigenvalues are linearly inde-
pendent.

Proof Suppose the eigenvectors e1, . . . , em are associated with distinct eigenvalues
λ1, . . . , λm,

A(ei ) = λiei , i = 1, . . . ,m.

We shall prove the lemma by induction on the number m of vectors. For the case
m = 1, the result follows from the definition of an eigenvector, namely that e1 �= 0.

Let us assume that there exists a linear dependence

α1e1 + α2e2 + · · · + αmem = 0. (4.14)

Applying the transformation A to both sides of the equation, we obtain

λ1α1e1 + λ2α2e2 + · · · + λmαmem = 0. (4.15)
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Subtracting (4.14) multiplied by λm from (4.15), we obtain

α1(λ1 − λm)e1 + α2(λ2 − λm)e2 + · · · + αm−1(λm−1 − λm)em−1 = 0.

By our induction hypothesis, we may consider that the lemma has been proved
for m − 1 vectors e1, . . . , em−1. Thus we obtain that α1(λ1 − λm) = 0, . . . ,
αm−1(λm−1 − λm) = 0, and since by the condition in the lemma, λ1 �= λm, . . . ,
λm−1 �= λm, it follows that α1 = · · · = αm−1 = 0. Substituting this into (4.14), we
arrive at the relationship αmem = 0, that is (by the definition of an eigenvector),
αm = 0. Therefore, in (4.14), all the αi are equal to zero, which demonstrates the
linear independence of e1, . . . , em. �

By Lemma 4.19, we have the following result.

Theorem 4.20 A linear transformation on a complex vector space is diagonalizable
if its characteristic polynomial has no multiple roots.

As is well known, in this case, the characteristic polynomial has n distinct roots
(we recall once again that we are speaking about polynomials over the field of com-
plex numbers).

Proof of Theorem 4.20 Let λ1, . . . , λn be the distinct roots of the characteristic poly-
nomial of the transformation A and let e1, . . . , en be the corresponding eigenvec-
tors. It suffices to show that these vectors form a basis of the entire space. Since
their number is equal to the dimension of the space, this is equivalent to showing
their linear independence, which follows from Lemma 4.19. �

If A is the matrix of the transformation A in some basis, then the condition of
Theorem 4.20 is satisfied if and only if the so-called discriminant of the character-
istic polynomial is nonzero.1 For example, if the order of a matrix A is 2, and

A =
(

a b

c d

)
,

then

|A − tE| =
∣∣∣∣a − t b

c d − t

∣∣∣∣ = (a − t)(d − t) − bc = t2 − (a + d)t + ad − bc.

The condition that this quadratic trinomial have two distinct roots is that (a + d)2 −
4(ad − bc) �= 0. This can be rewritten in the form

(a − d)2 + 4bc �= 0. (4.16)

1For the general notion of the discriminant of a polynomial, see, for instance, Polynomials, by
Victor V. Prasolov, Springer 2004.
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Similarly, for complex vector spaces of arbitrary dimension, linear transforma-
tions not satisfying the conditions of Theorem 4.20 have a matrix that regardless
of the basis, has elements that satisfy a special algebraic relationship. In this sense,
only exceptional transformations do not meet the conditions of Theorem 4.20.

Analogous considerations give necessary and sufficient conditions for a linear
transformation to be diagonalizable.

Theorem 4.21 A linear transformation of a complex vector space is diagonaliz-
able if and only if for each of its eigenvalues λ, the dimension of the corresponding
eigenspace Lλ is equal to the multiplicity of λ as a root of the characteristic polyno-
mial.

In other words, the bound on the dimension of the subspace Lλ obtained in The-
orem 4.14 is attained.

Proof of Theorem 4.21 Let the transformation A be diagonalizable, that is, in some
basis e1, . . . , en it has the matrix

A =

⎛
⎜⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎞
⎟⎟⎟⎠ .

It is possible to arrange the eigenvalues λ1, . . . , λn so that those that are equal are
next to each other, so that altogether, they have the form

λ1, . . . , λ1︸ ︷︷ ︸
m1 times

, λ2, . . . , λ2︸ ︷︷ ︸
m2 times

, . . . . . . . . . , λk, . . . , λk︸ ︷︷ ︸
mk times

,

where all the numbers λ1, . . . , λk are distinct. In other words, we can write the
matrix A in the block-diagonal form

A =

⎛
⎜⎜⎜⎝

λ1Em1 0 · · · 0
0 λ2Em2 · · · 0
...

...
. . .

...

0 0 · · · λkEmk

⎞
⎟⎟⎟⎠ , (4.17)

where Emi
is the identity matrix of order mi . Then

|A − tE| = (λ1 − t)m1(λ2 − t)m2 · · · (λk − t)mk ,

that is, the number λi is a root of multiplicity mi of the characteristic equation.
On the other hand, the equality A(x) = λix for vectors x = α1e1 + · · · + αnen

gives the relationship λsαj = λiαj for all j = 1, . . . , n and s = 1, . . . , k, that is,
either αj = 0 or λs = λi . In other words, the vector x is a linear combination only
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of those eigenvectors ej that correspond to the eigenvalue λi . This means that the
subspace Lλi

consists of all linear combinations of such vectors, and consequently,
dim Lλi

= mi .
Conversely, for distinct eigenvalues λ1, . . . , λk , let the dimension of the eigen-

subspace Lλi
be equal to the multiplicity mi of the number λi as a root of the char-

acteristic polynomial. Then from known properties of polynomials, it follows that
m1 + · · · + mk = n, which means that

dim Lλ1 + · · · + dim Lλk
= dim L. (4.18)

We shall show that the sum Lλ1 + · · · + Lλk
is a direct sum of its eigensubspaces

Lλi
. To do so, it suffices to show that for all vectors x1 ∈ Lλ1 , . . . , xk ∈ Lλk

, the
equality x1 + · · · + xk = 0 is possible only in the case that x1 = · · · = xk = 0. But
since x1, . . . ,xk are eigenvectors of the transformation A corresponding to distinct
eigenvalues λ1, . . . , λk , the required assertion follows by Lemma 4.19. Therefore,
by equality (4.18), we have the decomposition

L = Lλ1 ⊕ · · · ⊕ Lλk
.

Having chosen from each eigensubspace Lλi
, i = 1, . . . , k, a basis (consisting of mi

vectors), and having ordered them in such a way that the vectors entering into a
particular subspace Lλi

are adjacent, we obtain a basis of the space L in which the
matrix A of the transformation A has the form (4.17). This means that the transfor-
mation A is diagonalizable. �

The case of real vector spaces is more frequently encountered in applications.
Their study proceeds in almost the same way as with complex vector spaces, except
that the results are somewhat more complicated. We shall introduce here a proof of
the real analogue of Theorem 4.18.

Theorem 4.22 Every linear transformation of a real vector space of dimension
n > 2 has either a one-dimensional or two-dimensional invariant subspace.

Proof Let A be a linear transformation of a real vector space L of dimension
n > 2, and let x ∈ L be some nonnull vector. Since the collection x,A(x),A2(x),

. . . ,An(x) consists of n+1 > dim L vectors, then by the definition of the dimension
of a vector space, these vectors must be linearly dependent. This means that there
exist real numbers α0, α1, . . . , αn, not all zero, such that

α0x + α1FF(x) + α2A
2(x) + · · · + αnA

n(x) = 0. (4.19)

Consider the polynomial P(t) = α0 +α1t +· · ·+αnt
n and substitute for the variable

t , the transformation A, as was done in Sect. 4.1 (formula (4.10)). Then the equality
(4.19) can be written in the form

P(A)(x) = 0. (4.20)
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A polynomial P(t) satisfying equality (4.20) is called an annihilator polynomial of
the vector x (where it is implied that it is relative to the given transformation A).

Let us assume that the annihilator polynomial P(t) of some vector x �= 0 is the
product of two polynomials of lower degree: P(t) = Q1(t)Q2(t). Then by definition
(4.20) and formula (4.13) from the previous section, we have Q1(A)Q2(A)(x) = 0.
Then either Q2(A)(x) = 0, and hence the vector x is annihilated by an anni-
hilator polynomial Q2(t) of lower degree, or else Q2(A)(x) �= 0. If we assume
y = Q2(A)(x), we obtain the equality Q1(A)(y) = 0, which means that the non-
null vector y is annihilated by the annihilator polynomial Q1(t) of lower degree. As
is well known, an arbitrary polynomial with real coefficients is a product of polyno-
mials of first and second degree. Applying to P(t) as many times as necessary the
process described above, we finally arrive at a polynomial Q(t) of first or second
degree and a nonnull vector z such that Q(A)(z) = 0. This is the real analogue of
Theorem 4.18.

Factoring out the coefficient of the high-order term of Q(t), we may assume that
this coefficient is equal to 1. If the degree of Q(t) is equal to 1, then Q(t) = t −λ for
some λ, and the equality Q(A)(z) = 0 yields (A−λE)(z) = 0. This means that λ is
an eigenvalue of z, which is an eigenvector of the transformation A, and therefore,
〈z〉 is a one-dimensional invariant subspace of the transformation A.

If the degree of Q(t) is equal to 2, then Q(t) = t2 + pt + q and (A2 + pA +
qE)(z) = 0. In this case, the subspace L′ = 〈z,A(z)〉 is two-dimensional and is in-
variant with respect to A. Indeed, the vectors z and A(z) are linearly independent,
since otherwise, we would have the case of an eigenvector z considered above. This
means that dim L′ = 2. We shall show that L′ is an invariant subspace of the trans-
formation A. Let x = αz +βA(z). To show that A(x) ∈ L′, it suffices to verify that
vectors A(z) and A(A(z)) belong to L′. This holds for the former by the definition
of L′. It holds for the latter by the fact that A(A(z)) = A2(z) and by the condition
of the theorem, A2(z) + pA(z) + qz = 0, that is, A2(z) = −qz − pA(z). �

Let us discuss the concept of the annihilator polynomial that we encountered in
the proof of Theorem 4.22. An annihilator polynomial of a vector x �= 0 having
minimal degree is called a minimal polynomial of the vector x.

Theorem 4.23 Every annihilator polynomial is divisible by a minimal polynomial.

Proof Let P(t) be an annihilator polynomial of the vector x �= 0, and Q(t) a mini-
mal polynomial. Let us suppose that P is not divisible by Q. We divide P by Q with
remainder. This gives the equality P = UQ + R, where U and R are polynomials
in t , and moreover, R is not identically zero, and the degree of R is less than that
of Q. If we substitute into this equality the transformation A for the variable t , then
by formulas (4.12) and (4.13), we obtain that

P(A)(x) = U(A)Q(A)(x) + R(A)(x), (4.21)
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and since P and Q are annihilator polynomials of the vector x, it follows that
R(A)(x) = 0. Since the degree of R is less than that of Q, this contradicts the
minimality of the polynomial Q. �

Corollary 4.24 The minimal polynomial of a vector x �= 0 is uniquely defined up to
a constant factor.

Let us note that for the annihilator polynomial, Theorem 4.23 and its converse
hold: any multiple of any annihilator polynomial is also an annihilator polynomial
(of course, of the same vector x). This follows from the fact that in this case, in
equality (4.21), we have R = 0. From this follows the assertion that there exists a
single polynomial that is an annihilator for all vectors of the space L. Indeed, let
e1, . . . , en be some basis of the space L, and let P1, . . . ,Pn be annihilator polyno-
mials for these vectors. Let us denote by Q the least common multiple of these
polynomials. Then from what we have said above, it follows that Q is an annihi-
lator polynomial for each of the vectors e1, . . . , en; that is, Q(A)(ei ) = 0 for all
i = 1, . . . , n. We shall prove that Q is an annihilator polynomial for every vec-
tor x ∈ L. By definition, x is a linear combination of vectors of a basis, that is,
x = α1e1 + α2e2 + · · · + αnen. Then

Q(A)(x) = Q(A)(α1e1 + · · · + αnen)

= α1Q(A)(e1) + · · · + αnQ(A)(en)

= 0.

Definition 4.25 A polynomial the annihilates every vector of a space L is called an
annihilator polynomial of this space (keeping in mind that we mean for the given
linear transformation A : L → L).

In conclusion, let us compare the arguments used in the proofs of Theorems 4.18
and 4.22. In the first case, we relied on the existence of a root (that is, a factor of
degree 1) of the characteristic polynomial, while in the latter case, we required the
existence of a simplest factor (of degree 1 or 2) for the annihilator polynomial. The
connection between these polynomials relies on a result that is important in and of
itself. It is called the Cayley–Hamilton theorem.

Theorem 4.26 The characteristic polynomial is an annihilator polynomial for its
associated vector space.

The proof of this theorem is based on arguments analogous to those used in the
proof of Lemma 4.19, but relating to a much more general situation. We shall now
consider polynomials in the variable t whose coefficients are not numbers, but linear
transformations of the vector space L into itself or (which is the same thing if some
fixed basis has been chosen in L) square matrices Pi :
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P(t) = P0 + P1t + · · · + Pkt
k.

One can work with these as with ordinary polynomials if one assumes that the vari-
able t commutes with the coefficients. It is also possible to substitute for t the matrix
A of a linear transformation. We shall denote the result of this substitution by P(A),
that is,

P(A) = P0 + P1A + · · · + PkA
k.

It is important here that t and A are written to the right of the coefficients Pi . Further,
we shall consider the situation in which Pi and A are square matrices of one and the
same order. In view of what we have said above, all assertions will be true as well
for the case that in the last formula, instead of the matrices Pi and A we have the
linear transformations Pi and A of some vector space L into itself:

P (A) = P0 + P1A + · · · + PkA
k.

However, in this case, the analogue of formula (4.13) from Sect. 4.1 does not
hold, that is, if the polynomial R(t) is equal to P(t)Q(t) and A is the matrix of
an arbitrary linear transformation of the vector space L. Then generally speaking,
R(A) �= P(A)Q(A). For example, if we have polynomials P = P1t and Q = Q0,
then P1tQ0 = P1Q0t , but it is not true that P1AQ0 = P1Q0A for an arbitrary matrix
A, since matrices A and Q0 do not necessarily commute. However, there is one
important special case in which formula (4.13) holds.

Lemma 4.27 Let

P(t) = P0 + P1t + · · · + Pkt
k, Q(t) = Q0 + Q1t + · · · + Qlt

l,

and suppose that the polynomial R(t) equals P(t)Q(t). Then R(A) = P(A)Q(A)

if the matrix A commutes with every coefficient of the polynomial Q(t), that is,
AQi = QiA for all i = 1, . . . , l.

Proof It is not difficult to see that the polynomial R(t) = P(t)Q(t) can be rep-
resented in the form R(t) = R0 + R1t + · · · + Rk+l t

k+l with coefficients Rs =∑s
i=0 PiQs−i , where Pi = 0 if i > k, and Qi = 0 if i > l. Similarly, the polyno-

mial R(A) = P(A)Q(A) can be expressed in the form

R(A) =
k+l∑
s=0

(
s∑

i=0

PiA
iQs−iA

s−i

)

with the same conditions: Pi = 0 if i > k, and Qi = 0 if i > l. By the condition of
the lemma, AQj = QjA, whence by induction, we easily obtain that AiQj = QjA

i

for every choice of i and j . Thus our expression takes the form

R(A) =
k+l∑
s=0

(
s∑

i=0

PiQs−iA
s

)
= P(A)Q(A).

�
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Of course, the analogous assertion holds for all polynomials for which the vari-
able t stands to the left of the coefficients (then the matrix A must commute with
every coefficient of the polynomial P , and not Q).

Using Lemma 4.27, we can prove the Cayley–Hamilton theorem.

Proof of Theorem 4.26 Let us consider the matrix tE−A and denote its determinant
by ϕ(t) = |tE − A|. The coefficients of the polynomial ϕ(t) are numbers, and as is
easily seen, it is equal to the characteristic polynomial matrix A multiplied by (−1)n

(in order to make the coefficient of tn equal to 1). Let us denote by B(t) the adjugate
matrix to tE − A (see the definition on p. 73). It is clear that B(t) will contain as
its elements certain polynomials in t of degree at most n − 1, and consequently, we
may write it in the form B(t) = B0 +B1t +· · ·+Bn−1t

n−1, where the Bi are certain
matrices. Formula (2.70) for the adjugate matrix yields

B(t)(tE − A) = ϕ(t)E. (4.22)

Let us substitute into formula (4.22) in place of the variable t the matrix A of the
linear transformation A with respect to some basis of the vector space L. Since the
matrix A commutes with the identity matrix E and with itself, then by Lemma 4.27,
we obtain the matrix equality B(A)(AE −A) = ϕ(A)E, the left-hand side of which
is equal to the null matrix. It is clear that in an arbitrary basis, the null matrix is the
matrix of the null transformation O : L → L, and consequently, ϕ(A) = O. And this
is the assertion of Theorem 4.26. �

In particular, it is now clear that by the proof of Theorem 4.22, we may take as
the annihilator polynomial the characteristic polynomial of the transformation A.

4.3 Complexification

In view of the fact that real vector spaces are encountered especially frequently in
applications, we present here another method of determining the properties of linear
transformations of such spaces, proceeding from already proved properties of linear
transformations of complex spaces.

Let L be a finite-dimensional real vector space. In order to apply our previously
worked-out arguments, it will be necessary to embed it in some complex space LC.
For this, we shall use the fact that, as we saw in Sect. 3.5, L is isomorphic to the
space of rows of length n (where n = dim L), which we denote by R

n.
In view of the usual set inclusion R⊂C, we may consider Rn a subset of Cn. In

this case, it is not, of course, a subspace of Cn as a vector space over the field C.
For example, multiplication by the complex scalar i does not take R

n into itself. On
the contrary, as is easily seen, we have the decomposition

C
n =R

n ⊕ iRn
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(let us recall that in C
n, multiplication by i is defined for all vectors, and in particular

for vectors in the subset Rn). We shall now denote Rn by L, while Cn will be denoted
by LC. The previous relationship is now written thus:

LC = L ⊕ iL. (4.23)

An arbitrary linear transformation A on a vector space L (as a space over the field
R) can then be extended to all of LC (as a space over the field C). Namely, as follows
from the decomposition (4.23), every vector x ∈ LC can be uniquely represented in
the form x = u + iv, where u,v ∈ L, and we set

AC(x) = A(u) + iA(v). (4.24)

We omit the obvious verification that the mapping AC defined by the relationship
(4.24) is a linear transformation of the space LC (over the field C). Moreover, it is
not difficult to prove that AC is the only linear transformation of the space LC whose
restriction to L coincides with A, that is, for which the equality AC(x) = A(x) is
satisfied for all x in L.

The construction presented here may seem somewhat inelegant, since it uses
an isomorphism of the spaces L and R

n, for whose construction it is necessary to
choose some basis of L. Although in the majority of applications such a basis exists,
we shall give a construction that does not depend on the choice of basis. For this,
we recall that the space L can be reconstructed from its dual space L∗ via the iso-
morphism L � L∗∗, which we constructed in Sect. 3.7. In other words, L � L(L∗,R),
where as before, L(L,M) denotes the space of linear mappings L → M (here either
all spaces are considered complex or else they are all considered real).

We now consider C as a two-dimensional vector space over the field R and set

LC = L
(
L∗,C

)
, (4.25)

where in L(L∗,C), both spaces L∗ and C are considered real. Thus the relation-
ship (4.25) carries LC into a vector space over the field R. But we can convert
it into a space over the field C after defining multiplication of vectors in LC by
complex scalars. Namely, if ϕ ∈ L(L∗,C) and z ∈ C, then we set zϕ = ψ , where
ψ ∈ L(L∗,C) is defined by the condition

ψ(f ) = z · ϕ(f ) for all f ∈ L∗.

It is easily verified that LC thus defined is a vector space over the field C, and passage
from L to LC will be the same as described above, for an arbitrary choice of basis L
(that is, choice of the isomorphism L �R

n).
If A is a linear transformation of the space L, then we shall define a corresponding

linear transformation AC of the space LC, after assigning to each vector ψ ∈ LC the
value AC(ψ) ∈ LC using the relation

(
AC(ψ)

)
(f ) = ψ

(
A∗(f )

)
for all f ∈ L∗,
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where A∗ : L∗ → L∗ is the dual transformation to A (see p. 125). It is clear that
AC is indeed a linear transformation of the space LC, and its restriction to L coin-
cides with the transformation A, that is, for every ψ ∈ L, AC(ψ)(f ) = A(ψ)(f ) is
satisfied for all f ∈ L∗.

Definition 4.28 The complex vector space LC is called the complexification of the
real vector space L, while the transformation AC : LC → LC is the complexification
of the transformation A : L → L.

Remark 4.29 The construction presented above is applicable as well to a more gen-
eral situation: using it, it is possible to assign to any vector space L over an arbitrary
field K the space LK

′
over the bigger field K

′ ⊃ K, and to the linear transformation
A of the field L, the linear transformation AK

′
of the field LK

′
.

In the space LC that we constructed, it will be useful to introduce the operation of
complex conjugation, which assigns to a vector x ∈ LC the vector x ∈ LC, or inter-
preting LC as Cn (with which we began this section), taking the complex conjugate
for each number in the row x, or (equivalently) using (4.23), setting x = u − iv for
x = u + iv. It is clear that

x + y = x + y, (αx) = αx

hold for all vectors x,y ∈ LC and arbitrary complex scalar α.
The transformation AC obtained according to the rule (4.24) from a certain trans-

formation A of a real vector space L will be called real. For a real transformation
AC, we have the relationship

AC(x) = AC(x), (4.26)

which follows from the definition (4.24) of a transformation AC. Indeed, if we have
x = u + iv, then

AC(x) = A(u) + iA(v), AC(x) = A(u) − iA(v).

On the other hand, x = u − iv, from which follows AC(x) = A(u) − iA(v) and
therefore (4.26).

Consider the linear transformation A of the real vector space L. To it there corre-
sponds, as shown above, the linear transformation AC of the complex vector space
LC. By Theorem 4.18, the transformation AC has an eigenvector x ∈ LC for which,
therefore, one has the equality

AC(x) = λx, (4.27)

where λ is a root of the characteristic polynomial of the transformation A and,
generally speaking, is a certain complex number. We must distinguish two cases: λ

real and λ complex.
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Case 1: λ is a real number. In this case, the characteristic polynomial of the trans-
formation A has a real root, and therefore A has an eigenvector in the field L; that
is, L has a one-dimensional invariant subspace.

Case 2: λ is a complex number. Let λ = a + ib, where a and b are real numbers,
b �= 0. The eigenvector x can also be written in the form x = u + iv, where the
vectors u,v are in L. By assumption, AC(x) = A(u)+ iA(v), and then relationship
(4.27), in view of the decomposition (4.23), gives

A(v) = av + bu, A(u) = −bv + au. (4.28)

This means that the subspace L′ = 〈v,u〉 of the space L is invariant with respect to
the transformation A. The dimension of the subspace L′ is equal to 2, and vectors
v,u form a basis of it. Indeed, it suffices to verify their linear independence. The lin-
ear dependence of v and u would imply that v = ξu (or else that u = ξv) for some
real ξ . But by v = ξu, the second equality of (4.28) would yield the relationship
A(u) = (a − bξ)u, and that would imply that u is a real eigenvector of the transfor-
mation A, with the real eigenvalue a − bξ ; that is, we are dealing with case 1. The
case u = ξv is similar.

Uniting cases 1 and 2, we obtain another proof of Theorem 4.22. We observe
that in fact, we have now proved even more than what is asserted in that theorem.
Namely, we have shown that in the two-dimensional invariant subspace L′ there
exists a basis v,u in which the transformation A gives the formula (4.28), that is, it
has a matrix of the form (

a −b

b a

)
, b �= 0.

Definition 4.30 A linear transformation A of a real vector space L is said to be
block-diagonalizable if in some basis, its matrix has the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 0 · · · · · · · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . . αr 0

. . .
...

...
. . . 0 B1

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · · · · 0 Bs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.29)

where α1, . . . , αr are real matrices of order 1 (that is, real numbers), and B1, . . . ,Bs

are real matrices of order 2 of the form

Bj =
(

aj −bj

bj aj

)
, bj �= 0. (4.30)



4.3 Complexification 153

Block-diagonalizable linear transformations are the real analogue of diagonaliz-
able transformations of complex vector spaces. The connection between these two
concepts is established in the following theorem.

Theorem 4.31 A linear transformation A of a vector space L is block-
diagonalizable if and only if its complexification AC is a diagonalizable trans-
formation of the space LC.

Proof Suppose the linear transformation A : L → L is block-diagonalizable. This
means that in some basis of the space L, its matrix has the form (4.29), which is
equivalent to the decomposition

L = L1 ⊕ · · · ⊕ Lr ⊕ M1 ⊕ · · · ⊕ Ms , (4.31)

where Li and Mj are subspaces that are invariant with respect to the transforma-
tion A. In our case, dim Li = 1, so that Li = 〈ei〉 and A(ei ) = αiei , and dim Mj = 2,
where in some basis of the subspace Mj , the restriction of the transformation A to
Mj has matrix of the form (4.30). Using formula (4.30), one is easily convinced that
the restriction AC to the two-dimensional subspace Mj has two distinct complex-
conjugate eigenvalues: λj and λj . If f j and f ′

j are the corresponding eigenvectors,

then in LC there is a basis e1, . . . , er ,f 1,f
′
1, . . . ,f s ,f

′
s , in which the matrix of the

transformation AC assumes the form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 0 · · · · · · · · · · · · 0 0

0
. . .

. . .
. . .

. . .
. . .

. . . 0
...

. . . αr 0
. . .

. . .
. . .

...
...

. . . 0 λ1
. . .

. . .
. . .

...
...

. . .
. . .

. . . λ1
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . . λs 0

0 0 · · · · · · · · · · · · 0 λs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.32)

This means that the transformation AC is diagonalizable.
Now suppose, conversely, that AC is diagonalizable, that is, in some basis of the

space LC, the transformation AC has the diagonal matrix
⎛
⎜⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎞
⎟⎟⎟⎠ . (4.33)

Among the numbers λ1, . . . , λn may be found some that are real and some that are
complex. All the numbers λi are roots of the characteristic polynomial of the trans-
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formation AC. But clearly (by the definition of LC), any basis of the real vector
space L is a basis of the complex space LC, and in such a basis, the matrices of the
transformations A and AC coincide. That is, the matrix of the transformation AC

is real in some basis. This means that its characteristic polynomial has real coeffi-
cients. It then follows from well-known properties of real polynomials that if among
the numbers λ1, . . . , λn some are complex, then they come in conjugate pairs λj and
λj , and moreover, λj and λj occur the same number of times. We may assume that
in the matrix of (4.33), the first r numbers are real: λi = αi ∈R (i ≤ r), while the re-
mainder are complex, and moreover, λj and λj (j > r) are adjacent to each other. In
this case, the matrix of the transformation assumes the form (4.32). Along with each
eigenvector e of the transformation AC, the space LC contains a vector e. Moreover,
if e has the eigenvalue λ, then e has the eigenvalue λ. This follows easily from the
fact that A is a real transformation and from the relationship (LC)λ = (LC)λ, which
can be easily verified. Therefore, we may write down the basis in which the trans-
formation AC has the form (4.32) in the form e1, . . . , er ,f 1,f 1, . . . ,f s ,f s , where
all ei are in L.

Let us set f j = uj + ivj , where uj ,vj ∈ L, and let us consider the subspace
Nj = 〈uj ,vj 〉. It is clear that Nj is invariant with respect to A, and by formula
(4.28), the restriction of A to the subspace Nj gives a transformation that in the
basis uj ,vj has matrix of the form (4.30). We therefore see that

LC = 〈e1〉 ⊕ · · · ⊕ 〈er 〉 ⊕ i〈e1〉 ⊕ · · · ⊕ i〈er 〉 ⊕ N1 ⊕ iN1 ⊕ · · · ⊕ Ns ⊕ iNs ,

from which follows the decomposition

L = 〈e1〉 ⊕ · · · ⊕ 〈er 〉 ⊕ N1 ⊕ · · · ⊕ Ns ,

analogous to (4.31). This shows that the transformation A : L → L is block-
diagonalizable. �

Similarly, using the notion of complexification, it is possible to prove a real ana-
logue of Theorems 4.14, 4.18, and 4.21.

4.4 Orientation of a Real Vector Space

The real line has two directions: to the left and to the right (from an arbitrarily cho-
sen point, taken as the origin). Analogously, in real three-dimensional space, there
are two directions for traveling around a point: clockwise and counterclockwise. We
shall consider analogous concepts in an arbitrary real vector space (of finite dimen-
sion).

Let e1, . . . , en and e′
1, . . . , e

′
n be two bases of a real vector space L. Then there

exists a linear transformation A : L → L such that

A(ei ) = e′
i , i = 1, . . . , n. (4.34)



4.4 Orientation of a Real Vector Space 155

It is clear that for the given pair of bases, there exists only one such linear transfor-
mation A, and moreover, it is not singular: (|A| �= 0).

Definition 4.32 Two bases e1, . . . , en and e′
1, . . . , e

′
n are said to have the same ori-

entation if the transformation A satisfying the condition (4.34) is proper (|A| > 0;
recall Definition 4.4), and to be oppositely oriented if A is improper (|A| < 0).

Theorem 4.33 The property of having the same orientation induces an equivalence
relation on the set of all bases of the vector space L.

Proof The definition of equivalence relation (on an arbitrary set) was given on
page xii, and to prove the theorem, we have only to verify symmetry and transitivity,
since reflexivity is completely obvious (for the mapping A, take the identity trans-
formation E ). Since the transformation A is nonsingular, it follows that relationship
(4.34) can be written in the form A−1(e′

i ) = ei , i = 1, . . . , n, from which follows
the symmetry property of bases having the same orientation: the transformation A
is replaced by A−1, where here |A−1| = |A|−1, and the sign of the determinant
remains the same.

Let bases e1, . . . , en and e′
1, . . . , e

′
n have the same orientation, and suppose bases

e′
1, . . . , e

′
n and e′′

1, . . . , e
′′
n also have the same orientation. By definition, this means

that the transformations A, from (4.34), and B, defined by

B
(
e′
i

) = e′′
i , i = 1, . . . , n, (4.35)

are proper. Replacing in (4.35) the expressions for the vectors e′
i from (4.34), we

obtain

BA(ei ) = e′′
i , i = 1, . . . , n,

and since |BA| = |B| · |A|, the transformation BA is also proper, that is, the bases
e1, . . . , en and e′′

1, . . . , e
′′
n have the same orientation, which completes the proof of

transitivity. �

We shall denote the set of all bases of the space L by E. Theorem 4.33 then
tells us that the property of having the same orientation decomposes the set E into
two equivalence classes, that is, we have the decomposition E = E1 ∪ E2, where
E1 ∩E2 =∅. To obtain this decomposition in practice, we may proceed as follows:
Choose in L an arbitrary basis e1, . . . , en and denote by E1 the collection of all bases
that have the same orientation as the chosen basis, and let E2 denote the collection
of bases with the opposite orientation. Theorem 4.33 tells us that this decomposi-
tion of E does not depend on which basis e1, . . . , en we choose. We can assert that
any two bases appearing together in one of the two subsets E1 and E2 have the
same orientation, and if they belong to different subsets, then they have opposite
orientations.

Definition 4.34 The choice of one of the subsets E1 and E2 is called an orientation
of the vector space L. Once an orientation has been chosen, the bases lying in the
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chosen subset are said to be positively oriented, while those in the other subset are
called negatively oriented.

As can be seen from this definition, the selection of an orientation of a vector
space depends on an arbitrary choice: it would have been equally possible to have
called the positively oriented bases negatively oriented, and vice versa. It is no ac-
cident that in practical applications, the actual choice of orientation is frequently
based on an appeal such as to the structure of the human body (left–right) or to the
motion of the Sun in the heavens (clockwise or counterclockwise).

The crucial part of the theory presented in this section is that there is a connection
between orientation and certain topological concepts (such as those presented in the
introduction to this book; see p. xvii).

To pursue this idea, we must first of all define convergence for sequences of
elements of the set E. We shall do so by introducing on the set E a metric, that
is, by converting it into a metric space. This means that we must define a function
r(x, y) for all x, y ∈ E taking real values and satisfying properties 1–3 introduced
on p. xvii. We begin by defining a metric r(A,B) on the set A of square matrices of
a given order n with real entries.

For a matrix A = (aij ) in A, we let the number μ(A) equal the maximum abso-
lute value of its entries:

μ(A) = max
i,j=1,...,n

|aij |. (4.36)

Lemma 4.35 The function μ(A) defined by relationship (4.36) exhibits the follow-
ing properties:

(a) μ(A) > 0 for A �= O and μ(A) = 0 for A = O .
(b) μ(A + B) ≤ μ(A) + μ(B) for all A,B ∈A.
(c) μ(AB) ≤ nμ(A)μ(B) for all A,B ∈A.

Proof Property (a) obviously follows from the definition (4.36), while property (b)
follows from an analogous inequality for numbers: |aij + bij | ≤ |aij | + |bij |. It re-
mains to prove property (c). Let A = (aij ), B = (bij ), and C = AB = (cij ). Then
cij = ∑n

k=1 aikbkj , and so

|cij | ≤
n∑

k=1

|aik||bkj | ≤
n∑

k=1

μ(A)μ(B) = nμ(A)μ(B).

From this it follows that μ(C) ≤ nμ(A)μ(B). �

We can now convert the set A into a metric space by setting for every pair of
matrices A and B in A,

r(A,B) = μ(A − B). (4.37)

Properties 1–3 introduced in the definition of a metric follow from the definitions in
(4.36) and (4.37) and properties (a) and (b) proved in Lemma 4.35.
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A metric on A enables us to introduce a metric on the set E of bases of a vector
space L. Let us fix a distinguished basis e1, . . . , en and define the number r(x, y)

for two arbitrary bases x and y in the set E as follows. Suppose the bases x and y

consist of vectors x1, . . . ,xn and y1, . . . ,yn, respectively. Then there exist linear
transformations A and B of the space L such that

A(ei ) = xi , B(ei ) = yi , i = 1, . . . , n. (4.38)

The transformations A and B are nonsingular, and by condition (4.38), they are
uniquely determined. Let us denote by A and B the matrices of the transformations
A and B in the basis e1, . . . , en, and set

r(x, y) = r(A,B), (4.39)

where r(A,B) is as defined above by relationship (4.37). Properties 1–3 in the defi-
nition of a metric hold for r(x, y) from analogous properties of the metric r(A,B).

However, here a difficulty arises: The definition of the metric r(x, y) by rela-
tionship (4.39) depends on the choice of some basis e1, . . . , en of the space L. Let
us choose another basis e′

1, . . . , e
′
n and let us see how the metric r ′(x, y) that re-

sults differs from r(x, y). To this end, we use the familiar fact that for two bases
e1, . . . , en and e′

1, . . . , e
′
n there exists a unique linear (and in addition, nonsingular)

transformation C : L → L taking the first basis into the second:

e′
i = C(ei ), i = 1, . . . , n. (4.40)

Formulas (4.38) and (4.40) show that for linear transformations A = AC−1 and
B = BC−1, one has the equality

A
(
e′
i

) = xi , B
(
e′
i

) = yi , i = 1, . . . , n. (4.41)

Let us denote by A′ and B ′ the matrices of the transformations A and B in the basis
e′

1, . . . , e
′
n, and by A and B , the matrices of the transformations A and B in this

basis. Let C be the matrix of the transformation C, that is, by (4.40), the transition
matrix from the basis e′

1, . . . , e
′
n to the basis e1, . . . , en. Then matrices A′,A and

B ′,B are related by A = A′C−1 and B = B ′C−1. Furthermore, we observe that A

and A′ are matrices of the same transformation A in two different bases (e1, . . . , en

and e′
1, . . . , e

′
n), and similarly, B and B ′ are matrices of the single transformation B.

Therefore, by the formula for changing coordinates, we have A′ = C−1AC and
B ′ = C−1BC, and so as a result, we obtain the relationship

A = A′C−1 = C−1A, B = B ′C−1 = C−1B. (4.42)

Returning to the definition (4.39) of a metric on A, we see that r ′(x, y) = r(A,B).
Substituting in the last relationship the expression (4.42) for matrices A and B , and
taking into account definition (4.37) and property (c) from Lemma 4.35, we obtain
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r ′(x, y) = r(A,B) = r
(
C−1A,C−1B

)
= μ

(
C−1(A − B)

) ≤ nμ
(
C−1)μ(A − B) = αr(x, y),

where the number α = nμ(C−1) does not depend on the bases x and y, but only
on e1, . . . , en and e′

1, . . . , e
′
n. Since the last two bases play a symmetric role in our

construction, we may obtain analogously a second equality r(x, y) ≤ βr ′(x, y) with
a certain positive constant β . The relationship

r ′(x, y) ≤ αr(x, y), r(x, y) ≤ βr ′(x, y),α, β > 0, (4.43)

shows that although the metrics r(x, y) and r ′(x, y) defined in terms of different
bases e1, . . . , en and e′

1, . . . , e
′
n are different, nevertheless, on the set A, the notion

of convergence is the same for both bases. To put this more formally, having chosen
in E two different bases and having with the help of these bases defined metrics
r(x, y) and r ′(x, y) on E, we have thereby defined two different metric spaces E′
and E′′ with one and the same underlying set E but with different metrics r and r ′
defined on it. Here the identity mapping of the space E onto itself is not an isometry
of E′ and E′′, but by relationship (4.43), it is a homeomorphism. We may therefore
speak about continuous mappings, paths in E, and its connected components without
specifying precisely which metric we are using.

Let us move on to the question whether two bases of the set E can be continuously
deformed into each other (see the general definition on p. xx). This question reduces
to whether there is a continuous deformation between the nonsingular matrices A

and B corresponding to these bases under the selection of some auxiliary basis
e1, . . . , en (just as with other topological concepts, continuous deformability does
not depend on the choice of the auxiliary basis). We wish to emphasize that the
condition of nonsingularity of the matrices A and B plays here an essential role.

We shall formulate the notion of continuous deformability for matrices in a cer-
tain set A (which in our case will be the set of nonsingular matrices).

Definition 4.36 A matrix A is said to be continuously deformable into a matrix B

if there exists a family of matrices A(t) in A whose elements depend continuously
on a parameter t ∈ [0,1] such that A(0) = A and A(1) = B .

It is obvious that this property of matrices being continuously deformable into
each other defines an equivalence relation on the set A. By definition, we need to
verify that the properties of reflexivity, symmetry, and transitivity are satisfied. The
verification of all these properties is simple and given on p. xx.

Let us note one additional property of continuous deformability in the case that
the set A has another property: for two arbitrary matrices belonging to A, their
product also belongs to A. It is clear that this property is satisfied if A is the set of
nonsingular matrices (in subsequent chapters, we shall meet other examples of such
sets).
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Lemma 4.37 If a matrix A is continuously deformable into B , and C ∈ A is an
arbitrary matrix, then AC is continuously deformable into BC, and CA is continu-
ously deformable into CB .

Proof By the condition of the theorem, we have a family A(t) of matrices in A,
where t ∈ [0,1], effecting a continuous deformation of A into B . To prove the first
assertion, we take the family A(t)C, and for the second, the family CA(t). This
family produces the deformations that we require. �

Theorem 4.38 Two nonsingular square matrices of the same order with real ele-
ments are continuously deformable into each other if and only if the signs of their
determinants are the same.

Proof Let A and B be the matrices described in the statement of the theorem. The
necessary condition that the determinants |A| and |B| be of the same sign is obvious.
Indeed, in view of the formula for the expansion of the determinant (Sect. 2.7) or else
by its inductive definition (Sect. 2.2), it is clear that the determinant is a polynomial
in the elements of the matrix, and consequently, |A(t)| is a continuous function of t .
But a continuous function taking values with opposite signs at the endpoints of an
interval must take the value zero at some point within the interval, while at the same
time, the condition |A(t)| �= 0 must be satisfied for all t ∈ [0,1].

Let us prove the sufficiency of the condition, at first for determinants for which
|A| > 0. We shall show that A is continuously deformable into the identity matrix E.
By Theorem 2.62, the matrix A can be represented as a product of matrices Uij (c),
Sk , and a diagonal matrix. The matrix Uij (c) is continuously deformable into the
identity: as the family A(t), we may take the matrices Uij (ct). Since the Sk are
themselves diagonal matrices, we see that (in view of Lemma 4.37) the matrix A

is continuously deformable into the diagonal matrix D, and from the assumption
|A| > 0 and the part of the theorem already proved, it follows that |D| > 0.

Let

D =

⎛
⎜⎜⎜⎜⎜⎝

d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

. . .
. . .

. . .
...

0 0 0 · · · dn

⎞
⎟⎟⎟⎟⎟⎠

.

Every element di can be represented in the form εipi , where εi = 1 or −1, while
pi > 0. The matrix (pi) of order 1 for pi > 0 can be continuously deformed into
(1). For this, it suffices to set A(t) = (a(t)), where a(t) = t + (1− t)pi for t ∈ [0,1].
Therefore, the matrix D is continuously deformable into the matrix D′, in which all
di = εipi are replaced by εi . As we have seen, from this it follows that |D′| > 0,
that is, the number of −1’s on the main diagonal is even. Let us combine them in
pairs. If there is −1 in the ith and j th places, then we recall that the matrix(−1 0

0 −1

)
(4.44)
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defines in the plane the central symmetry transformation with respect to the origin,
that is, a rotation through the angle π . If we set

A(t) =
(

cosπt − sinπt

sinπt cosπt

)
, (4.45)

then we obtain the matrix of rotation through the angle πt , which as t changes from
0 to 1, effects a continuous deformation of the matrix (4.44) into the identity. It is
clear that we thus obtain a continuous deformation of the matrix D′ into E.

Denoting continuous deformability by ∼, we can write down three relationships:
A ∼ D, D ∼ D′, D′ ∼ E, from which follows by transitivity that A ∼ E. From
this follows as well the assertion of Theorem 4.38 for two matrices A and B with
|A| > 0 and |B| > 0.

In order to take care of matrices A with |A| < 0, we introduce the function
ε(A) = +1 if |A| > 0 and ε(A) = −1 if |A| < 0. It is clear that ε(AB) = ε(A)ε(B).
If ε(A) = ε(B) = −1, then let us set A−1B = C. Then ε(C) = 1, and by what was
proved previously, C ∼ E. By Lemma 4.37, it follows that B ∼ A, and by symmetry,
we have A ∼ B . �

Taking into account the results of Sect. 3.4 and Lemma 4.37, from Theorem 4.38,
we obtain the following result.

Theorem 4.39 Two nonsingular linear transformations of a real vector space are
continuously deformable into each other if and only if the signs of their determinants
are the same.

Theorem 4.40 Two bases of a real vector space are continuously deformable into
each other if and only if they have the same orientation.

Recalling the topological notions introduced earlier of path-connectedness and
path-connected component (p. xx), we see that the results we have obtained can be
formulated as follows. The set A of nonsingular matrices of a given order (or linear
transformations of the space L into itself) can be represented as the union of two
path-connected components corresponding to positive and negative determinants.
Similarly, the set E of all bases of a space L can be represented as the union of two
path-connected components consisting of positively and negatively oriented bases.
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