Chapter 14
Elements of Representation Theory

Representation theory is one of the most “applied” branches of algebra. It has many
applications in various branches of mathematics and mathematical physics. In this
chapter, we shall be concerned with the problem of finding all finite-dimensional
representations of finite groups. But there is an analogous theory that has been devel-
oped for certain types of infinite groups, which is important in many other branches
of mathematics.

14.1 Basic Concepts of Representation Theory

Let us recall some definitions from the previous chapter that will play a key role
here.

A homomorphism of a group G into a group G’ is a mapping f : G — G’ such
that for every pair of elements g1, g2 € G, we have the relationship

f(g182) = f(g1) f(g2).

An isomorphism of a group G onto a group G’ is a bijective homomorphism f :
G — G’. Groups G and G’ are said to be isomorphic if there exists an isomorphism
f : G — G’ between them. This is denoted by G ~ G'.

Definition 14.1 A representation of a group G is a homomorphism of G into the
group of nonsingular linear transformations of a vector space L. The space L is called
the space of the representation or the representation space, and its dimension, that
is, dimL, is the dimension of the representation.

Thus in order to specify a representation of a group G, it is necessary to associate
with each element ¢ € G a nonsingular linear transformation g : L — L such that
for g1, g2 € G, the condition

"4’8182 = ”A’gl ‘A’gz (14.1)
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is satisfied. Since the group of nonsingular linear transformations of an n-
dimensional vector space is isomorphic to the group of nonsingular square matrices
of order n, to give a representation, it suffices to associate with each element g € G
a nonsingular square matrix A, such that (14.1) is satisfied.

It follows at once from (14.1) that for a representation +, and any number of
elements g1, ..., gk of the group G, we have the relationship

Ag..g =g g (14.2)
Moreover, it is obvious that if e is the identity element of G, then

A =&, (14.3)

1

where & is the identity linear transformation of the space L. And if g7" is the inverse

of the element g, then
Ag1 =g (14.4)
that is, A g is the transformation that is the inverse of .
Example 14.2 Let G = GL,, be the group of nonsingular square matrices of order .
For each matrix g € GL,,, let us set
Ag =gl

Since |g| is a number, which by assumption is different from zero, we have a one-
dimensional representation. It is obvious that for every integer n, the equality

By =lgl"
will also define a one-dimensional representation.
Example 14.3 Let G = S, be the symmetric group of degree n, that is, the group of

permutations of an n-element set M, and let L be a vector space of dimension n, in
which we have chosen a basis ey, ..., e,. For the representation

_<1 2 ... n>
=\ o o )

let us define A, as the linear transformation such that
Agle]) =ej, Ag(er) =ej,, e, Ag(en) =ej,.

Then we obtain an n-dimensional representation of the group S,,.

To avoid having to use a specific numeration of the elements of the set M, let
us associate with the element a € M, the basis vector e,. Then the representation
described above is given by the formula

Ag(eq) = ey if g(a) =0,

for every transformation g : M — M.
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Example 14.4 Let G = S3 be the symmetric group of degree 3, and let L be a two-
dimensional space with basis e, e;. Let us define a vector ez by e3 = —(e] + €2).

For the representation
(1 2 3
8=\ o)

let us define A, as the transformation such that
Agler) =ej,  Agle) =e),.

It is easily verified that in this way, we obtain a two-dimensional representation of
the symmetric group S3.

Example 14.5 Let G = GL, be the group of nonsingular matrices of order 2, and
let L be the space of polynomials in the two variables x and y whose total degree in
both variables does not exceed n. For a nonsingular matrix

_fa b
§=\¢ a)

let us define 4 as the linear transformation of the space L taking polynomials
f(x,y) to f(ax 4+ by, cx 4+ dy), that is,

Ag(f(x,y)) = flax + by, cx +dy).

It is easy to verify that relationship (14.1) is satisfied in this case, that is, we have
a representation of the group of nonsingular matrices of order 2. Its dimension is
equal to the dimension of the space of polynomials in x and y whose dimension (in
both variables combined) does not exceed n; that is, as is easily seen, it is equal to
(n+1(n+2)/2.

Example 14.6 For any group and an n-dimensional space L, the representation de-
fined by the formula A, = &, where & is the identity transformation on the space L,
is called the n-dimensional identity representation.

In the definition of a representation, the space L can also be infinite-dimensional.
In this case, the representation is also said to be infinite-dimensional. For example,
defining a representation just as in Example 14.5, but taking for L the space of all
continuous functions, we obtain an infinite-dimensional representation. In the se-
quel, we shall consider only finite-dimensional representations, and we shall always
consider the space L to be complex.

Example 14.7 Representations of the symmetric group S, are of interest in many
problems. All such representations are known, but we shall describe here only the
one-dimensional representations of the group S, . In this case, a nonsingular linear
transformation # is given by a matrix of order 1, that is, a single complex number
(which, of course, is nonzero). We thereby arrive at a function on the group taking
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numeric values. Let us denote this function by ¢(g). Then by definition, it must
satisfy the conditions ¢(g) # 0 and

p(gh) =p(g)p(h) (14.5)

for all elements g and 4 in the group S, .

It is easy to find all possible values ¢(7) if 7 is a transposition. Namely, setting
g = h =t and using the facts that 7> = e (the identity transformation) and that
obviously, ¢(e) = 1, we obtain from relationship (14.5) the equality gz)(r)2 =1, from
which follows ¢(t) = =£1. It is theoretically possible that for some transpositions,
o(t) = 1, while for others, ¢(7) = —1. However, in reality, such is not the case, and
one of the equalities ¢(t) = 1 and ¢(r) = —1 holds for all transpositions t, with
the choice of sign depending only on the one-dimensional representation ¢. Let us
prove this.

Let t = 74 and T’ = 7, 4 be two transpositions, where a, b, ¢, d are elements of
the set M (see formula (13.3)). Obviously, there exists a permutation g of the set M
such that g(c) = a and g(d) = b. Then as is easily verified, based on the definition
of a transposition, we have the equality g’lta,bg = 7.4, that is, T/ = g 'rg. In
view of relationships (14.2), (14.4), and (14.5), we obtain from the last equality that

o(7) =0(®) 'o(me(g) = p(1),

which proves our assertion for all transpositions t and 7’. We shall now make use
of the fact that every element g of the group S, is the product of a finite number
of transpositions; see formula (13.4). Taking the aforesaid into account, it follows
from this that

0(8) = 0(Tay 5P Tar.y) - 9 (Ta 1) = p(OF, (14.6)

where ¢(t) =+1 or —1.

Thus there are two possible cases. The first case is that for all transpositions
T € S, the number ¢(7) is equal to 1. In view of formula (14.6), for every transpo-
sition g € S,,, we have ¢(g) = 1, that is, the function ¢ on S, is identically equal to
1, and therefore, it gives the one-dimensional identity representation of the group S,,.
The second case is that for all transpositions t € S;,, we have ¢(t) = —1. Then, in
view of formula (14.6), for a transposition g € S, we have ¢(g) = (=D, where k
corresponds to the parity of the transposition g. In other words, ¢(g) = 1 if the trans-
position g is even, and ¢(g) = —1 if the transposition g is odd. From relationship
(13.4), it follows at once that such a function ¢ indeed determines a one-dimensional
representation of the group S,, which we denote by £(g).

Thus we have obtained the following result: the symmetric group S, has exactly
two one-dimensional representations: the identity and (g).

One-dimensional representations of the group S, and related groups (such as the
alternating group A,) play a large role in a variety of questions in algebra. For ex-
ample, one of the best-known results in algebra is the derivation of formulas for
the solution of equations of degrees 3 and 4. For a long time, mathematicians were
thwarted in their attempts to find analogous formulas for equations of degree 5 and
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higher. Finally, it was proved that such an attempt was futile, that is, that there exists
no formula that expresses the roots of a polynomial equation of degree 5 or greater
in terms of its coefficients using the usual arithmetic operations and the extraction
of roots of arbitrary degree. A key point in the proof of this assertion was the estab-
lishment of the fact that the alternating group A, for n > 5 has no one-dimensional
representation other than the identity. For n = 3 and 4, such representations of the
group A, exist, and that is what explains the existence of formulas for the solution
of equations of those degrees.
Now let us establish what representations we shall consider to be identical.

Definition 14.8 Two representations g > g and g > Afg of the same group G
with spaces L and L’ of the same dimension are said to be equivalent if there exists
an isomorphism € : L — L of the vector spaces L" and L such that

Ay =C 7 ALC (14.7)

for every element g € G.

Let e}, ..., e, be a basis of the space L’ and let e; = C(e)), ..., e, = C(e;,) be
the corresponding basis of the space L, since the linear transformation € : L' — L
is an isomorphism. Comparing relationship (14.7) with the change-of-matrix for-
mula (3.43), we see that this definition means that the matrix of the transformation
A;, with basis e’l, o, e;l coincides with the matrix of the transformation 4, with
basis e1, ..., e,. Thus the representations -+, and A; are equivalent if and only if
one can choose bases in the spaces L and L such that for each element g € G, the
transformations #, : L — L and # : L’ — L’ have identical matrices.

Let g — A, be a representation of the group G, and let L be its representation
space. A subspace M C L is said to be invariant with respect to the representation g
if it is invariant with respect to all linear transformations 4, : L — L for all g € G.
Let us denote by B, the restriction of +4, to the subspace M. It is obvious that 8B,
is a representation of the group G with representation space M. The representation
8By is said to be the representation induced by the representation 4, with invariant
subspace M. This is also expressed by saying that the representation 8, is contained
in the representation .

Example 14.9 Let us consider the n-dimensional representation of the group S,
described in Example 14.3. As is easily verified, the collection of all vectors of the
form ), 5 @a€q, Where o is an arbitrary scalar satisfying ), o = 0, forms
a subspace L' C L of dimension n — 1, invariant with respect to this representation.
The representation thus induced in L’ is an (n — 1)-dimensional representation of
the group S,,. In the case n = 3, it is equivalent to the representation of the group S3
described in Example 14.4.

Example 14.10 In Example 14.5, let us denote by My (k =0, ..., n) the subspace
consisting of polynomials of degree at most k in the variables x and y. Each of M
is an invariant subspace of every M; with index [ > k.
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Definition 14.11 A representation is said to be reducible if its representation space
L has an invariant subspace different from (0) and from all of L. Otherwise, it is said
to be irreducible.

Examples 14.3 and 14.5 give reducible representations. Clearly, the n-dimen-
sional identity representation is reducible if n > 1: every subspace of the represen-
tation space is invariant. Every one-dimensional representation is irreducible.

Let us prove that the representation in Example 14.4 is irreducible. Indeed, any
invariant subspace different from (0) and L must be one-dimensional. Let u be a
basis vector of such a subspace. The condition of invariance means that

Ag (1) = Agu

for every g € S3, where A, is some scalar depending on the element g, that is, u
is a common eigenvector for all transformations ;. It is easy to verify that this is

impossible: the eigenvectors of the transformation ., with g = (; % ;) have the

form «(e1 +e2) and B(e| — e2), and the eigenvectors of the transformation #A,, with

o= (; % ?) have the form ye, and §(2e; + e5), and these clearly cannot coincide.

Definition 14.12 A representation +4, is said to be the direct sum of the r represen-
tations

) (r)
Ay, Ay
if its representation space L is the direct sum of the r invariant subspaces

L=L& &L, (14.8)

and 4 induces in every L; a representation equivalent to Ag), i=1,.

.., T,
Example 14.13 The n-dimensional identity representation is the direct sum of n
one-dimensional identity representations. To convince oneself of this, it suffices to
decompose the space of this representation in some way into a direct sum of one-
dimensional subspaces.

Example 14.14 1In the situation of Example 14.9, let us denote by L; an invariant
subspace L’ of dimension n — 1, and let us denote by L; the one-dimensional sub-
space spanned by the vector )" ;, €,. Clearly, L is also an invariant subspace
of this representation, and we have the decomposition L =L; & L;. In particular,
the representation introduced in Example 14.3, for n = 3, is the direct sum of the
representation of Example 14.4 and the one-dimensional identity representation.

It can happen that the representation space L has an invariant subspace L1, yet it
is impossible to find a complementary invariant subspace L such that L =L & L,.
In other words, the representation is reducible, but it is not the direct sum of two
other representations.

Example 14.15 Let G = {g} be an infinite cyclic group, and let L be a two-
dimensional space with basis e, e>. Let us denote by #, the transformation having
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in this basis the matrix (rll (1)) It is obvious that A, A, = A,+n. From this, it fol-
lows that on setting Agn = +,, we obtain a representation of the group G. The line
L; = (e) is an invariant subspace: 4, (e2) = e>. However, there are no other invari-
ant subspaces. Thus, for instance, the transformation 4 has no eigenvectors other
than e,. Therefore, our representation is reducible, but it is not a direct sum.

Let us note that in Example 14.15, the group G was infinite. It turns out that for
finite groups, such a phenomenon cannot occur. Namely, in the following section,
it will be proved that if a representation 4 of a finite group is reducible, that is,
the vector space L of this representation contains an invariant subspace L, then
L is the direct sum of L; and another invariant subspace L. Hence it follows that
every representation of a finite group is the direct sum of irreducible representations.
As regards irreducible representations, it will be proved in Sect. 14.3 that (up to
equivalence) there is only of finite number of them.

From this point on, to the end of this book, we shall always assume that a group
G is finite, with the sole exception of Example 14.36.

14.2 Representations of Finite Groups

The proof of the fundamental property of representations of finite groups formulated
at the end of the preceding section uses several properties of complex vector spaces.

Let us consider a representation of a finite group G. Let L be its representation
space. Let us define on L some Hermitian form ¢(x, y) for which the correspond-
ing quadratic-Hermitian form v (x) = ¢(x, x) is positive definite, and thus it takes
positive values for all x # 0. For example, if L = C", then for vectors x and y with
coordinates (x1, ..., x,) and (y1, ..., Yn), let us set

n
P, y) =Y X
i=1
In the sequel, we shall denote ¢(x, y) by (x, y) and call it a scalar product in the
space L. The concepts and simple results that we proved in Chap. 7 for Euclidean
spaces can be transferred to this case verbatim. Let us list those of them that we are
now going to use:

1. The orthogonal complement of a subspace L’ C L is the collection of all vec-
tors y € L for which (x, y) =0 for all x € L. The orthogonal complement of
a subspace L’ is itself a subspace of L and is denoted by (L')=. We have the
decomposition L = L' @ (L')*.

2. A unitary transformation (the analogue of orthogonal transformation for the case
of a complex space) is a linear transformation U : L — L such that for all vectors
x, y €L, we have the relationship

(U@), Uy) = (x, y).
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3. The complex analogue of Theorem 7.24 is this: if a subspace L’ C L is invariant
with respect to a unitary transformation U, then its orthogonal complement (L')*
is also invariant with respect to U.

Definition 14.16 A representation U, of a group G is said to be unitarizable if it
is possible to introduce a scalar product on its representation space L such that all
transformations U, become unitary.

The property of a representation being unitarizable obviously remains true under
a change to an equivalent representation.

Indeed, let g — U, be a unitarizable representation of some group G with space
L and Hermitian form ¢(x, y). Let us consider an arbitrary isomorphism C : L' — L.
As we know, it determines an equivalent representation g +— u/g of the same group
with space L'. Let us show that the representation g > ‘u;, is also unitarizable. As
the scalar product in L’ let us choose the form defined by the relationship

Y, v) =¢(Cu), C(v)) (14.9)

for vectors u, v € L. It is obvious that ¥ (u, v) is a Hermitian form on L’ and that
¥ (u, u) > 0 for every nonnull vector u € L'. Let us verify that the scalar product
¥ (u, v) indeed establishes the unitarizability of the representation g +— ‘u/g. Substi-
tuting the vectors u;, (u) and U;(v) into equality (14.9), taking into account (14.7)
and the unitarizability of the representation g — U, we obtain the relationship

¥ (U ), Uy (0)) =¥ (C™' U Cw), €7 ULC(D))
=9(UgC), U C(v)) =9(Cw), C(v)) = ¥ (u, v),

which means that the representation g +— ‘u;, is unitarizable.

Lemma 14.17 If a space L of a unitarizable representation U, of a group G con-
tains an invariant subspace L, then it also contains a second invariant subspace L
such thatL=L" @ L".

Proof Let us take as L” the orthogonal complement (L')*. Then the space L” is
invariant with respect to all transformations U, and we have the decomposition
L=LU@L". O

The application of this lemma to representations of finite groups is based on the
following fundamental fact.

Theorem 14.18 Every representation g of a finite group G is unitarizable.
Proof Let us introduce a scalar product on the representation space L in such a way

that all linear transformations +, become unitary. For this, let us take an arbitrary
scalar product [x, y] in the space L, defined by an arbitrary Hermitian form ¢ (x, y),
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such that the associated quadratic form ¢(x, x) is positive definite: ¢(x, x) > 0 for
every x # 0. Let us now set

(x,y) = Z[ef\»g(x), Ag(N], (14.10)

geG

where the sum is taken over all elements g of the group G. We shall prove that
(x, y) is also a scalar product and that with respect to it, all transformations -4, are
unitary.

The required properties of a scalar product for (x, y) derive from the analogous
properties of [x, y] and from the fact that -, is a linear transformation:

L(rx) =) [Ag(3), Ag()] =D [Ag(x), Ag(»)] = (x, y),

geG geG
2. 0x, y) =) [Ag0x), Ag(0)] =D A[Ag(x), A (1] =1 (x, y),
geG geG
B.(x1+x2.9)= ) [Ag(x1+x2). Ag ()]
geG
=Y [Agxn) + Ag(x2), A ()] = (x1,3) + (x2, 3),
geG
4.(x.x) =Y [Ag(x), Ag(x)] >0, ifx #0.
geG

For the proof of the last property, it is necessary to observe that in this sum, all
terms [+Ag (x), g (x)] are positive. This follows from the analogous property of the
scalar product [x, y], that is, from the fact that [x,x] > O for all x # 0. Since the
linear transformation +A, : L — L is nonsingular, it takes every nonnull vector x to a
nonnull vector A, (x).

Let us now verify that with respect to the scalar product (x, y), every transfor-
mation 4y, h € G, is unitary. In view of (14.10), we have

(An (), An(3)) = D [Ag (An (X)), g (An(1)]

geG

= Z[Ago“bh(x)» AgAn()]. (14.11)
geG

Let us set gh = u. In view of property (14.1), we have A, A, = Agp = A,. There-
fore, we may rewrite equality (14.11) in the form

(An (), AR () = D [Aux), Au(p)]. (14.12)

u=gh

Let us now observe that as g runs through all elements of the group G while A
is fixed, the element u = gh also runs through all elements of the group G. This
follows from the fact that for every element u € G, the element g = uh~! satisfies
the relationship gh = u, and that for distinct g; and g», we thereby obtain distinct
elements u1 and us.
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Thus in equality (14.12), the element u runs through the entire group G, and we
can rewrite this equality in the form

(An (), AR () =D [Ag (), Ag(1)],

geG

whence in view of definition (14.10), it follows that (A (x), Ax(y)) = (x, y), that
is, the transformation <A, is unitary with respect to the scalar product (x, y). 0

Corollary 14.19 If the space L of a representation of a finite group contains an
invariant subspace L', then it contains another invariant subspace L” such that L =
L/ @ L//.

This follows directly from Lemma 14.17 and from Theorem 14.18.

Corollary 14.20 Every representation of a finite group is a direct sum of irreducible
representations.

Proof If the space L of our representation 4, does not have an invariant subspace
different from (0) and all of L, then this representation itself is irreducible, and our
assertion is true (although trivially so). But if the space L has an invariant subspace
L', then by Corollary 14.19, there exists an invariant subspace L” such that L =
L'l

Let us apply the same argument to each of the spaces L’ and L”. Continuing this
process, we will eventually come to a halt, since the dimensions of the obtained
subspaces are continually decreasing. As a result, we arrive at such a decomposi-
tion (14.8) with some number r > 2 such that the invariant subspaces L; contain
no invariant subspaces other than (0) and all of L;. This means precisely that the

representations Ag), e Ag) induced in the subspaces L, ..., L, by our represen-
tation A, are irreducible, and the representation 4, decomposes as a direct sum
ALY LAY, O

Theorem 14.21 If a representation A, decomposes into a direct sum of irreducible
representations Aél), el Aér), then every irreducible representation 8B, contained

in g is equivalent to one of the Ag).

Proof Let L=L; & --- & L, be a decomposition of the space L of the represen-
tation #, into a direct sum of invariant subspaces such that 4, induces in L; the
representation A and let M be the invariant subspace L in which #, induces the
representation By.

Then in particular, for every vector x € M, we have the decomposition

xX=x1+---+x, Xx;€L;. (14.13)

It determines a linear transformation #; : M — L; that is the projection of the sub-
space M onto L; paralleltoL; @ --- @ Li—1 ®Li+1 ®--- ®L,; see Example 3.51 on
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p- 103. In other words, the transformations &; : M — L; are defined by the condi-
tions

Pix)=x;, i=1,...,r (14.14)
The proof of the theorem is based on the relationships
AgPi(x) =PiAg(x), i=1,...,r, (14.15)

which are valid for every vector x € M. For the proof of relationships (14.15), let us
apply the transformation 4 to both sides of equality (14.13). We then obtain

Ag(x) = Ag(x1) + - + Ag(x,). (14.16)

Since Ag(x) € Mand A, (x;) €L;, i =1,...,r,it follows that relationship (14.16)
is decomposition (14.13) for the vector g (x), whence follows equality (14.15).
From the irreducibility of the representations Ag), e, Ag) and By, it follows
that the projection #; defined by formula (14.14) is either identically zero or an
isomorphism of the spaces M and L;. Indeed, let the vector x € M be contained in
the kernel of the transformation &, that is, &;(x) = 0. Then clearly, A;P; (x) =
0, and in view of relationship (14.15), we obtain that &; 4z (x) = 0, that is, the
vector g (x) is also contained in the kernel of &;. From the irreducibility of the

representations Ag), it now follows that the kernel either is equal to (0) or coincides
with the entire space M (in the latter case, the projection J; will obviously be the null
transformation). In exactly the same way, from equality (14.15), it follows that the
image of the transformation J#; either equals (0) or coincides with the subspace L;.

However, there is certainly at least one such index i among the numbers 1, ..., r
for which the transformation &; is not identically zero. For this, we must take an
arbitrary nonnull vector x € M one of whose components x; in the decomposition
(14.13) is not equal to zero, and therefore, &; (x) # 0. Taking into account the pre-
vious arguments, this shows that the corresponding transformation #; is an isomor-
phism of the vector spaces M and L;, and relationship (14.15) shows the equivalence
of the corresponding representations 8, and Ag). U

Corollary 14.22 In a given representation are contained only finitely many
distinct—in the sense of equivalence—irreducible representations.

Indeed, all irreducible representations contained in the given one are equivalent
to one of those encountered in an arbitrary decomposition of this representation as
a direct sum of irreducible representations.

Remark 14.23 From Theorem 14.21 there follows a certain property of uniqueness
of the decompositions of a representation into irreducible representations. Namely,
however we decompose a representation, we shall encounter in the decomposition
the same (up to equivalence) irreducible representations. Indeed, let us select a cer-
tain decomposition of our representation into irreducible representations. An irre-
ducible representation encountered in any other decomposition appears in our rep-
resentation, which means that by Theorem 14.21, it is equivalent to one of the terms
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of the chosen decomposition. A stronger property of uniqueness consists in the fact
that if in one decomposition there appear k terms equivalent to a given irreducible
representation, then the same number of such terms will appear as well in every
other decomposition. We shall not require this assertion in the sequel, and we shall
therefore not prove it.

14.3 Irreducible Representations

In this section, we shall prove that a finite group has only a finite number of distinct
(up to equivalence) irreducible representations. We shall accomplish this as follows:
We shall construct one particularly important representation called a regular rep-
resentation, for which we then shall prove that every irreducible representation is
contained within it. The finiteness of the number of such representations will then
result from Corollary 14.22. The space of a regular representation consists of all
possible functions on the group. This is a special case of the general notion of the
space of functions on an arbitrary set (see Example 3.36, p. 94).

For an arbitrary finite group G, let us consider the vector space M(G) of functions
on this group. Since the group G is finite, the space M(G) has finite dimension:
dimM(G) = |G]|.

Definition 14.24 The regular representation of a group G is the representation R
whose representation space is the space M(G) of functions on the group G, and in
which the element g € G is associated with the linear transformation R, that takes
the function f(h) € M(G) to the function ¢ (h) = f(hg):

(R () (h) = f(hg). (14.17)

Formula (14.17) means that the result of applying the linear transformation R,
to the function f is a “translated” function f, in the sense that the value R, (f) on
the element 4 € G is equal to f(hg). We shall omit the obvious verification of the
fact that the transformation of the space M(G) thus obtained is linear. Let us verify
that R, is a representation, that is, that it satisfies the requirements (14.1).

Let us set Rg, 4, (f) = ¢. By formula (14.17), we have

@(h) = f(hgig2).
Let Rg, (f) = . Then
Y(u) = f(ug2).

Finally, if Rg, Rg, (f) = @1, then ¢ = R, (¥) and @1 (u) = ¥ (ug1). Substituting
u = hg into the previous formula, we obtain that ¢ (1) = ¥ (ug1) = f(ug1g2) for
every element u € G. This means that ¢ = @1 and Rg 4, = Rg, Ry, .

Example 14.25 Let G be a group of order two, consisting of elements e and g,
where g2 = e. A particular instance of this group is S», the symmetric group of
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degree 2. The space M(G) is two-dimensional, and every function f € M(G) is
defined by two numbers, @ = f(e) and 8 = f(g), that is, it can be identified with
the vector (c, 8). As with any representation, R, is the identity transformation. Let
us determine what R, is. By formula (14.17), we have

(Re())(e) = f(g) =B, (Re(N))(@) = f(&%) = fle)=a.

This means that the linear transformation R takes the vector (o, B) to the vector
(B, o), that is, it represents a reflection with respect to the line o = .

Theorem 14.26 Every irreducible representation of a finite group G is contained
in its regular representation R.

Proof Let #, be an irreducible representation with space L. Let us denote by / an
arbitrary nonnull linear function on the space L and let us associate with each vector
x € L the function f(h) =I(A,(x)) € M(G) obtained when the vector x is fixed
and the element £ runs through all possible values of the group G. It is obvious that
in this way, we obtain a linear transformation C : L — M’ defined by the relationship

C(x) =1(An(x)), (14.18)

where M’ is some subspace of the vector space M(G). Here by construction, C(L) =
M’, that is, M’ is the image of the transformation C.
We shall prove the following properties:

(1) For all elements g € G and vectors x € L, we have the relationship
(Cog)(x) = (RgC)(x). (14.19)

(2) The subspace M’ is invariant with respect to the representation R.
(3) The transformation € is an isomorphism of the spaces L and M’.

Comparing formulas (14.19) and (14.7), taking into account the remaining two
properties, we conclude that the irreducible representation # is equivalent to the
representation induced by the regular representation R, in the invariant subspace
M’ C M(G). By virtue of the definitions given above, this means that .4, is contained
in Ry, as asserted in the statement of the theorem.

Proof of property (1). Let us set C(x) = f € M(G). Then by definition, f(h) =
I(Ap(x)) for every element i € G. Applying formula (14.17), we obtain the rela-
tionship

(RgC)(x) = Re(f) =0, (14.20)

where ¢ is the function on the group G defined by the relationship ¢(h) =
l ('A’hg (x)).

On the other hand, substituting the vector A, (x) for x in formula (14.18), we
obtain the equality

C(Ag(x)) = (Cog)(x) = g1 (), (14.21)



510 14 Elements of Representation Theory

where the function ¢ (k) is defined by the relationship
p1(h) =1(ApAg(x)) =1(Apg(x)),

and clearly, it coincides with ¢ (k). Taking into account that ¢ (h) = ¢1(h), we see
that equalities (14.20) and (14.21) yield that (CAg)(x) = (RgC)(x).

Proof of property (2). We must prove that for every element g € G, the image of the
linear transformation &R, (M’) is contained in M’. Let f € M’, that is, by the definition
of the image, f = C(x) for some x € L. Then taking into account formula (14.19)
proved above, we have the equality

R () = (R C)(x) = (CAg) (x) = C(y),

where the vector y = #,(x) is in L, and by our construction, this means that
Rg(f) € M. This proves the required inclusion Rg(M") C M'.

Proof of property (3). Since by construction, the space M’ is the image of the trans-
formation € : L — M/, it remains only to show that the transformation C is bijective,
that is, that its kernel is equal to (0). This means that we must prove that the equality
x = 0 follows from the equality C(x) = 0" (where 0’ denotes the function identically
equal to zero on the group G). Let us denote the kernel of the transformation C by
L’. As we know, it is a subspace of L. Let us show that L’ is invariant with respect to
the representation .

Indeed, let us suppose that C(x) = 0’ for some vector x € L, and let us set
Yy = g (x). On applying the transformation C to the vector y, taking into account
formula (14.19), we obtain

C(y) = (CAy (X)) = (R, C)(x) = R, (C(x)) = R, (0) =0

But from the irreducibility of the representation 4., it now follows that either L’ =L
or L’ = (0). The former would mean that (A (x)) =0 forall h € G and x € L. But
then even for & = e, we would have the equality /(4. (x)) =1(E(x)) =I(x) =0 for
all x € L, which is impossible, since in the definition of the transformation C, the
function [ was chosen to be not identically zero. This means that the subspace L’ is
equal to (0), which is what was to be proved. d

Corollary 14.27 A finite group has only a finite number of distinct (up to equiva-
lence) irreducible representations.

Example 14.28 Let #, be the one-dimensional identity representation of the
group G. Then the space L is one-dimensional. Let e be a basis of L. Let us de-
fine the function / by the condition /(«e) = «. Formula (14.18) gives for the vector
x = «e, the value

C(xe) = f, where f(h)=1(An(xe)) =I(ae)=a.

Thus to the vector we is associated the function f, which takes for all & € G the
same value «. Obviously, such constant functions indeed form an invariant subspace
with respect to the regular representation, and the representation induced in it is the
identity, as asserted by Theorem 14.26.
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14.4 Representations of Abelian Groups

Let us first of all recall that we are assuming throughout that the space L of a repre-
sentation is complex.

Theorem 14.29 An irreducible representation of an abelian group is one-dimen-
sional.

Proof Let g be a fixed element of the group G. Its associated linear transformation
Ag : L — L has at least one eigenvalue A. Let M C L be the eigensubspace corre-
sponding to the eigenvalue A, that is, the collection of all vectors x € L such that

Ag(x) = Ax. (14.22)

By construction, M # (0). We shall now prove that M is an invariant subspace of our
representation. It will then follow from the irreducibility of the representation that
M =L, and then equality (14.22) will hold for every vector x € L. In other words,
Ag = A&, and the matrix of the transformation 4 is equal to AE. A matrix of this
type is called a scalar matrix. This reasoning holds for every g € G; we have only
to note that the eigenvalue A in formula (14.22) depends on the element g, and the
remainder of the argument does not depend on it. Thus we may conclude that the
matrices of all transformations A, are scalar matrices, and if dimL > 1, then every
subspace of the space L is invariant. Consequently, if a representation is irreducible,
it is one-dimensional.

It remains to prove the invariance of the subspace M. It is here that we shall
specifically use the commutativity of the group G. Let x € M, h € G. We shall
prove that Ay (x) € M. Indeed, if A, (x) =y, then

Ag () = g (An(x)) = Agh(x) = shng (x) = Ap (Ag (X)) = Ay (Ax)
=LAp(x) =Ly,

that is, the vector y belongs to M. 0

In view of Theorem 14.29, every irreducible representation of an abelian group
can be represented in the form A, = x(g), where x(g) is a number. Condition
(14.1) can then be written in the following form:

x(g182) = x(g1) x(g2). (14.23)

Definition 14.30 A function x(g) on an abelian group G taking complex values
and satisfying relationship (14.23) is called a character.

By Theorem 14.29, every irreducible representation of a finite abelian group is
a character y (g). On the other hand, it follows from Theorem 14.26 that this rep-
resentation is contained in the regular representation. In other words, in the space
M(G) of functions on the group G, there exists an invariant subspace M’ in which
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the regular representation induces a representation equivalent to ours. Since our rep-
resentation is one-dimensional, the subspace M’ is also one-dimensional. Let some
function f € M(G) be a basis in M’. Then since the representation induced by the
regular representation in M’ has matrix x (g), and R ¢(f)(h) = f(hg), we must have
the relationship

fhg) = x(&) fh).

Let us set & = e in this equality and let us also set f(¢) = «. We obtain that f(g) =
ay(g), that is, we may take as a basis of the subspace M’ the character y itself
(indeed, it is a function on G, and this means that y € M(G)). As we have seen,
we then have M(G) = M’ @ M”, where M” is also an invariant subspace. Applying
analogous arguments to M” and to all invariant subspaces of dimension greater than
1 that we obtain along the way, we finally arrive at a decomposition of the subspace
M(G) as a direct sum of one-dimensional invariant subspaces. We have thereby
proved the following result.

Theorem 14.31 The space M(G) of functions on a finite abelian group G can be
decomposed as a direct sum of one-dimensional subspaces that are invariant with
respect to the regular representation. In each such subspace, one can take as a basis
vector some character x(g). Then the matrix of the representation that is induced
in this subspace coincides with this same character x (g).

It is obvious that we thereby establish a bijective relationship between the char-
acters of the group G and one-dimensional invariant subspaces of the space M(G)
of functions on this group. Indeed, two distinct characters x; and x» cannot be basis
vectors of one and the same representation: that would mean that

x1(g) =ax2(g) forallgeG.

Setting here g = e, we obtain @ = 1, since x; and x> are homomorphisms of the
group G into C, and therefore, x1(e) = x2(e) = 1.

Since by Corollary 14.19, a regular representation can be decomposed into a
direct sum of irreducible representations, we obtain the following results for every
finite abelian group G.

Corollary 14.32 The characters form a basis of the space M(G) of functions on the
group G.

This assertion can be reformulated as follows.

Corollary 14.33 The number of distinct characters of a group G is equal to its
order.

This follows from Corollary 14.32 and the fact that the dimension of the space
M(G) is equal to the order of the group G.
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Corollary 14.34 Every function on the group G is a linear combination of charac-
ters.

Example 14.35 Let G = {g} be a cyclic group of finite order n, g" = e. Let us
denote by &y, ..., &,—1 the distinct nth roots of 1, and let us set

xi(g) =g k=01,....n—1.

i
It is easily verified that x; is a character of the group G and that the characters y;
corresponding to §&;, the distinct nth roots of 1, are themselves distinct. Since their
number is equal to |G|, they must be all the characters of the group G. By Corol-
lary 14.32, they form a basis of the space M(G). In other words, in an n-dimensional
space, the vectors 1,&;, ..., 51.”_1 corresponding to the nth roots of 1 form a basis.
This can also be verified directly by calculating the determinant consisting of the
coordinates of these vectors as a Vandermonde determinant (p. 41).

Example 14.36 Let us denote by S the group of rotations of the circle in the plane.
The elements of the group S correspond to points of the circle: if we associate with
a real number ¢ the point of the circle with argument ¢, then with any one point
of the circle will be associated numbers that differ from one another by an integer
multiple of 2. Therefore, this group S is frequently called the circle group.

After choosing a certain integer m, let us associate with the point ¢ of the circle S
having argument ¢ the number cosme + i sinmg, where i is the imaginary unit. It
is obvious that adding an integer multiple of 2 to ¢ does not change this number,
which means that it is uniquely defined by the point # € S. Let us set

Xm () =cosme +isinme, m=0,+1,£2,.... (14.24)

It is not difficult to verify that the function y,,(¢) is a character of the group S. For
an infinite group such as S, it is natural to introduce into the definition of a character
in addition to the requirement (14.23), the requirement that the function y,, () be
continuous. The reason for such a requirement for the group S is as follows: it
is necessary that the real and complex parts of the functions y,, (¢) be continuous
functions.

It is possible to prove that the characters x,,(¢) defined by formula (14.24) are
continuous and that they comprise all the continuous characters of the circle. This
explains to a large degree the role of the trigonometric functions cos m¢ and sinmg
in mathematics: they are the real and imaginary parts of the continuous characters
of the circle.

Corollary 14.34 asserts that every function on a finite abelian group can be rep-
resented as a linear combination of characters. In the case of an infinite group such
as S, some analytic restrictions, which we shall not specify here, are naturally im-
posed on such a function. We shall only mention the significance of functions on
the group S. Such a function f(¢) can be represented as a function F(¢) of the
argument ¢ of the point ¢ € S. It must not, however, depend on the choice of the ar-
gument ¢ of the point ¢, that is, it must not change on the addition to ¢ of an integer
multiple of 2. In other words, F(¢) must be a periodic function with period 2.
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The analogue of Corollary 14.34 for the group S asserts that such a function can be
represented as a linear combination (in the given case, infinite) of functions ¥, (¢),
m=0,=£1,+£2,.... In other words, this is a theorem about the fact that a periodic
function (with certain analytic restrictions) can be decomposed into a Fourier series.
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