
Chapter 13
Groups, Rings, and Modules

13.1 Groups and Homomorphisms

The concept of a group is defined axiomatically, analogously to the notions of vec-
tor, inner product, and affine space. Such an abstract definition is justified by the
wealth of examples of groups throughout all of mathematics.

Definition 13.1 A group is a set G on which is defined an operation that assigns
to each pair of elements of this set some third element; that is, there is defined
a mapping G × G → G. The element associated with the elements g1 and g2 by
this rule is called their product and is denoted by g1 · g2 or simply g1g2. For this
mapping, the following conditions must also be satisfied:

(1) There exists an element e ∈ G such that for every g ∈ G, we have the relation-
ships eg = g and ge = g. This element is called the identity.1

(2) For each element g ∈ G, there exist an element g′ ∈ G such that gg′ = e and an
element g′′ ∈ G such that g′′g = e. The element g′ is called a right inverse, and
the element g′′ is called a left inverse of the element g.

(3) For every triple of elements g1, g2, g3 ∈ G, the following relationship holds:

(g1g2)g3 = g1(g2g3). (13.1)

This last property is called associativity, and it is a property that we have already
met repeatedly, for example in connection with the composition of mappings and
matrix multiplication, and also in the construction of the exterior algebra. We con-
sidered the associative property in its most general form on p. xv, where we proved
that equality (13.1) makes it possible to define the product of an arbitrary number
of factors g1g2 · · ·gk , which then depends only on the order of the factors and not

1The identity element of a group is unique. Indeed, if there existed another identity element e′ ∈ G,
then by definition, we would have the equalities ee′ = e′ and ee′ = e, from which it follows that
e = e′.
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on the arrangement of parentheses in the product. The reasoning given there applies,
obviously, to every group.

The condition of associativity has other important consequences. From it, de-
rives, for example, the fact that if g′ is a right inverse of g, and g′′ is a left inverse,
then

g′′(gg′) = g′′e = g′′, g′′(gg′) = (
g′′g

)
g′ = eg′ = g′,

from which it follows that g′ = g′′. Thus the left and right inverses of any given
element g ∈ G coincide. This unique element g′ = g′′ is called simply the inverse
of g and is denoted by g−1.

Definition 13.2 If the number of elements belonging to a group G is finite, then the
group G is called a finite group, and otherwise, it is called an infinite group. The
number of distinct elements in a finite group G is called its order and is denoted by
|G|.

Let M be an arbitrary set, and let us consider the collection of all bijective map-
pings between M and itself. Such mappings are also called transformations of the
set M . In the introductory section of this book, we defined the operation of com-
position (that is, the sequential application) of arbitrary mappings of arbitrary sets
(p. xiv). It follows from the properties proved there that the collection of all trans-
formations of a set M together with the operation of composition forms a group,
where the inverse of each transformation f : M → M is given by the inverse map-
ping f −1 : M → M , while the identity is obviously given by the identity mapping
on the set M . Such groups are called transformation groups, and it is with these that
the majority of applications of groups are associated.

It is sometimes necessary to consider not all the transformations of a set, but to
limit our consideration to some subset. The situation that thus arises can be formu-
lated conveniently as follows:

Definition 13.3 A subset G′ ⊂ G of elements of a group G is called a subgroup of
G if the following conditions are satisfied:

(a) For every pair of elements g1, g2 ∈ G′, their product g1g2 is again in G′.
(b) G′ contains the identity element e.
(c) For every g ∈ G′, its inverse g−1 is again in G′.

It is obvious that a subgroup G′ is itself a group. Thus from the group of all
transformations, we obtain a set of examples (indeed, the majority of examples of
groups). Let us enumerate some that are met most frequently.

Example 13.4 The following sets are groups under the operation of composition of
mappings.

1. the set of nonsingular linear transformations of a vector space;
2. the set of orthogonal transformations of a Euclidean space;
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3. the set of proper orthogonal transformations of a Euclidean space;
4. the set of Lorentz transformations of a pseudo-Euclidean space;
5. the set of nonsingular affine transformations of an affine space;
6. the set of projective transformations of a projective space;
7. the set of motions of an affine Euclidean space;
8. the set of motions of a hyperbolic space.

All the groups enumerated above are groups of transformations (the set M is
obviously the underlying set of the given space). Let us note that in the case of
vector and affine spaces, there is the crucial requirement of the nonsingularity of the
linear or affine transformations that guarantees the bijectivity of each mapping and
thus the existence of an inverse element for each element of the group.2

However, not all naturally occurring groups are groups of transformations. For
example, with respect to the operation of addition, the set of all integers forms a
group, as do the sets of the rational, real, and complex numbers, and likewise, the
set of all vectors belonging to any arbitrary vector space.

Let us remark that the axioms of motion 1, 2, and 3 introduced in Sect. 12.2
can be expressed together as a single requirement, namely that the motions form a
group.

Example 13.5 Let us consider a finite set M consisting of n elements. A transfor-
mation f : M → M is called a permutation, and the group of all permutations of the
set M is called the symmetric group of degree n and is denoted by Sn. It is obvious
that the group Sn is finite.

We considered permutations earlier, in Sect. 2.6, in connection with the notions
of symmetric and antisymmetric functions, and we saw that for defining a permu-
tation f : M → M , one can introduce a numeration of the elements of the set M ,
that is, one can write the set in the form M = {a1, . . . , an} and designate the im-
ages f (a1), . . . , f (an) of all the elements a1, . . . , an. Namely, let f (a1) = aj1 , . . . ,
f (an) = ajn . Then a permutation is defined by the matrix

A =
(

1 2 · · · n

j1 j2 · · · jn

)
, (13.2)

where in the upper row are written in succession all the natural numbers from 1
to n, and in the lower row, under the number k stands the number jk such that
f (ak) = ajk

. Since a permutation f : M → M is a bijective mapping, it follows that
the lower row contains all the numbers from 1 to n, except that they are written in
some other order. In other words, (j1, . . . , jn) is some permutation of the numbers
(1, . . . , n).

2Unfortunately, there is a certain amount of disagreement over terminology, of which the reader
should be aware: above, we defined a transformation of a set as a bijective mapping into itself, while
at the same time, a linear (or affine) transformation of a vector (or affine) space is not by definition
necessarily bijective, and to have bijectivity here, it is necessary to specify that the transformations
be nonsingular.
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Writing a permutation in the form (13.2) allows us in particular to ascertain eas-
ily that |Sn| = n!. Let us prove this by induction on n. For n = 1, this is obvious: the
group S1 contains the single permutation that is the identity mapping on the set M

consisting of a single element. Let n > 1. Then by enumerating the elements of the
set M in every possible way, we obtain a bijection between Sn and the set of ma-
trices A of the form (13.2), whose first row contains the elements 1, . . . , n, and the
elements j1, . . . , jn of the second row take all possible values from 1 to n. Let A′ be
the matrix obtained from A by deleting its last column, containing the element jn.
Let us fix this element: jn = k. Then the elements j1, . . . , jn−1 of the matrix A′ as-
sume all possible values from the collection of the n − 1 numbers (1, . . . , k̆, . . . , n),
where the symbol ˘ , as before, denotes the omission of the corresponding element.
It is clear that the set of all possible matrices A′ is in bijective correspondence with
Sn−1, and by the induction hypothesis, the number of distinct matrices A′ is equal to
|Sn−1| = (n − 1)!. But since the element jn = k can be equal to any natural number
from 1 to n, the number of distinct matrices A is equal to n(n − 1)! = n!. This gives
us the equality |Sn| = n!.

Let us note that the numeration of the elements of the set M used for writing
down permutations plays the same role as the introduction of coordinates (that is, a
basis) in a vector space. Furthermore, the matrix (13.2) is analogous to the matrix
of a linear transformation of a space, which is defined only after the choice of a
basis and depends on that choice. However, for our further purposes, it will be more
convenient to use concepts that are not connected with such a choice of numeration
of elements.

We shall use the concept of transposition, which was introduced in Sect. 2.6
(p. 45). The definition given there can be formulated as follows. Let a and b be two
distinct elements of the set M . Then a transposition is a permutation of the set M

that interchanges the places of the elements a and b and leaves all other elements of
the set M fixed. Denoting such a transposition by τa,b , we can express this definition
by the relationships

τa,b(a) = b, τa,b(b) = a, τa,b(x) = x (13.3)

for all x �= a and x �= b.
In this notation, Theorem 2.23 from Sect. 2.6 can be formulated as follows: every

permutation g of a finite set is the product of a finite number of transpositions, that
is,

g = τa1,b1τa2,b2 · · · τak,bk
. (13.4)

As we saw in Sect. 2.6, in relationship (13.4), the number k and the choice of ele-
ments a1, b1, . . . , ak, bk for the given permutation g are not uniquely defined. This
means that for a given permutation g, the representation (13.4) is not unique. How-
ever, as was proved in Sect. 2.6 (Theorem 2.25), the parity of the number k of a
permutation g is uniquely determined. Permutations for which the number k in the
representation (13.4) is even are called even, and those for which the number k is
odd are called odd.
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Example 13.6 The collection of all even permutations of n elements forms a sub-
group of the symmetric group Sn (it obviously satisfies conditions (a), (b), (c) in
the definition of a subgroup). It is called the alternating group of degree n and is
denoted by An.

Definition 13.7 Let g be an element of G. Then for every natural number n, the el-
ement gn = g · · ·g (n-fold product) is defined. For a negative integer m, the element
gm is equal to (g−1)−m, and for zero, we have g0 = e.

It is easily verified that for arbitrary integers m and n, we have the relationship

gmgn = gm+n.

From this, it is clear that the collection of elements of the form gn, where n runs
over the set of integers, forms a subgroup. It is called the cyclic subgroup generated
by the element g and is denoted by {g}.

There are two cases that can occur:

(a) All the elements gn, as n runs through the set of integers, are distinct. In this
case, we say that g is an element of infinite order in the group G.

(b) For some integers m and n, m �= n, we have the equality gm = gn. Then, obvi-
ously, gm−n = e. This means that there exists a natural number k (for instance
|m−n|) such that gk = e. In this case, we say that g is an element of finite order
in the group G.

If g is an element of finite order, then the smallest natural number k such that
gk = e is called the order of the element g. If for some integer n, we have gn = e,
then the number n is an integer multiple of the order k of the element g. Indeed,
if such were not the case, then we could divide the number n by k with nonzero
remainder: n = qk + r , where 0 < r < k. From the equalities gn = e and gk = e, we
could conclude that gr = e, in contradiction to the definition of the order k. If in the
group G there exists an element g such that G = {g}, then the group G is called a
cyclic group. It is obvious that if G = {g} and the element g has finite order k, then
|G| = k. Indeed, in this case, e, g, g2, . . . , gk−1 are all the distinct elements of the
group G.

Now we shall move on to discuss mappings of groups (homomorphisms), which
play a role in group theory analogous to that of linear transformations of vector
spaces in linear algebra. Let G and G′ be any two groups, and let e ∈ G and e′ ∈ G′
be their identity elements.

Definition 13.8 A mapping f : G → G′ is called a homomorphism if for every pair
of elements g1 and g2 of the group G, we have the relationship

f (g1g2) = f (g1)f (g2), (13.5)

where it is obviously implied that on the left- and right-hand sides of equality (13.5),
the juxtaposition of elements indicates the multiplication operation in the respective
group (on the left, in G; on the right, in G′).
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From equality (13.5), it is easy to derive the simplest properties of homomor-
phisms:

1. f (e) = e′;
2. f (g−1) = (f (g))−1 for every g ∈ G;
3. f (gn) = (f (g))n for every g ∈ G and every integer n.

For the proof of the first property, let us set g1 = g2 = e in formula (13.5). Then
taking into account the equality e = ee, which is obvious from the definition of the
identity element, we obtain that

f (e) = f (ee) = f (e)f (e).

It remains only to multiply both sides of the relationship f (e) = f (e)f (e) by the
element (f (e))−1 of the group G′, after which we obtain the required equality e′ =
f (e). The second property follows at once from the first: setting in (13.5) g1 = g

and g2 = g−1, and taking into account the equality e = gg−1, we obtain

e′ = f (e) = f
(
gg−1) = f (g)f

(
g−1),

from which, by the definition of the inverse element, it follows that f (g−1) =
(f (g))−1. Finally, the third property is obtained for positive n by induction from
(13.5), and for negative n, it is also necessary to apply property 2.

Definition 13.9 A mapping f : G → G′ is called an isomorphism if it is a homo-
morphism that is also a bijection. Groups G and G′ are said to be isomorphic is
there exists an isomorphism f : G → G′. This is denoted as follows: G � G′.

Example 13.10 Assigning to each nonsingular linear transformation of a vector
space L of dimension n its matrix (in some fixed basis of the space L), we obtain an
isomorphism between the group of nonsingular linear transformations of this space
and the group of nonsingular square matrices of order n.

The notion of isomorphism plays the same role in group theory as the notion of
isomorphism plays in the theory of vector spaces, and the notion of homomorphism
plays the same role as the notion of arbitrary linear transformation (in vector spaces
of arbitrary dimension). The analogy between these concepts is revealed particularly
in the fact that the answer to the question whether a homomorphism f : G → G′ is
an isomorphism can be formulated in terms of its image and kernel, just as was the
case for linear mappings.

The image of a homomorphism f is the set f (G), that is, simply the image of
f as a mapping of sets G → G′. If follows from relationship (13.5) that f (G) is a
subgroup of G′. The kernel of a homomorphism f is the set of elements g ∈ G such
that f (g) = e′. It is likewise not difficult to conclude from (13.5) that the kernel is a
subgroup of G.

Using the notions of image and kernel, we may say that a homomorphism
f : G → G′ is an isomorphism if and only if its image consists of the entire group
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G′ and its kernel consists of only the identity element e ∈ G. The proof of this
assertion is based on relationship (13.5) and properties 1 and 2: if for two ele-
ments g1 and g2 of a group G, we have the equality f (g1) = f (g2), then through
right multiplying both sides by the element (f (g1))

−1 of the group G′, we obtain
e′ = f (g2)(f (g1))

−1 = f (g2g
−1
1 ), from which it follows that g2g

−1
1 = e, that is,

g1 = g2.
It is important, however, to note that the analogy between isomorphisms of

groups and isomorphisms of vector spaces does not extend all that far: most of the
theorems from Chap. 3 do not have suitable analogues for groups, even for finite
groups. For example, one of the most important results of Chap. 3 (Theorem 3.64)
states that all vector spaces of a given finite dimension are isomorphic to one an-
other. But there exist even finite groups of a given order that are not isomorphic; see
Example 13.24 on p. 484.

Another property of groups is related to whether the product of elements in a
group depends on the order in which they are multiplied. In the definition of a group,
no condition of this sort was imposed, and therefore, we may assume that in general,
g1g2 �= g2g1. Very frequently, such is the case. For example, nonsingular square
matrices of a given order n with the standard operation of matrix multiplication
form a group, and as the example presented in Sect. 2.9 on p. 64 shows, already for
n = 2, it is generally the case that AB �= BA.

Definition 13.11 If in a group G the equality g1g2 = g2g1 holds for every pair of
elements g1, g2 ∈ G, then G is called a commutative group or, more usually, an
abelian group.3

For example, the groups of integers, rational numbers, real numbers, and complex
numbers with the operation of addition are all abelian. Likewise, a vector space is
an abelian group with respect to the operation of vector addition. It is easy to see
that every cyclic group is abelian.

Let us present one result that holds for all finite groups but that is especially easy
to prove (and we shall use it frequently in the sequel) for abelian groups.

Lemma 13.12 For every finite abelian group G, the order of each of its elements
divides the order of the group.

Proof Let us denote by g1, g2, . . . , gn the complete set of elements of G (so we
obviously have n = |G|), and let us right multiply each of them by some element
g ∈ G. The elements thus obtained, g1g,g2g, . . . , gng, will again all be distinct.
Indeed, given the equality gig = gjg, right multiplying both sides by g−1 yields the
equality gi = gj . Since the group G contains n elements altogether, it follows that
the elements g1g,g2g, . . . , gng are the same as the elements g1, g2, . . . , gn, though
perhaps arranged in some other order:

g1g = gi1, g2g = gi2, . . . , gng = gin .

3Named in honor of the Norwegian mathematician Niels Henrik Abel (1802–1829).
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On multiplying these equalities, we obtain

(g1g)(g2g) · · · (gng) = gi1gi2 · · ·gin . (13.6)

Since the group G is abelian, we have

(g1g)(g2g) · · · (gng) = g1g2 · · ·gng
n,

and since gi1, gi2, . . . , gin are the same elements g1, g2, . . . , gn, then setting h =
g1g2 · · ·gn, we obtain from (13.6) the equality hgn = h. Left multiplying both sides
of the last equality by h−1, we obtain gn = e. As we saw above, it then follows that
the order of the element g divides the number n = |G|. �

Definition 13.13 Let H1,H2, . . . ,Hr be subgroups of G. The group G is called
the direct product of the subgroups H1,H2, . . . ,Hr if for all elements hi ∈ Hi and
hj ∈ Hj from distinct subgroups, we have the relationship hihj = hjhi , and every
element g ∈ G can be represented in the form

g = h1h2 · · ·hr, hi ∈ Hi, i = 1,2, . . . , r,

and for each element g ∈ G, such a representation is unique. The fact that the group
G is a direct product of subgroups H1,H2, . . . ,Hr is denoted by

G = H1 × H2 × · · · × Hr. (13.7)

In the case of abelian groups, a different terminology is usually used, related to
the majority of examples of interest. Namely, the operation defined on the group
is called addition instead of multiplication, and it is denoted not by g1g2, but by
g1 +g2. In keeping with this notation, the identity element is called the zero element
and is denoted by 0, and not by e. The inverse element is called the negative or
additive inverse and is denoted not by g−1, but by −g, and the exponential notation
gn is replaced by the multiplicative notation ng, which is defined similarly: ng =
g +· · ·+g (n-fold sum) if n > 0, by ng = (−g)+· · ·+ (−g) (n-fold sum) if n < 0,
and by ng = 0 if n = 0. The definition of homomorphism remains exactly the same
in this case, where it is required only to replace in formula (13.5) the symbol for the
group operation:

f (g1 + g2) = f (g1) + f (g2).

Properties 1–3 here take the following form:

1. f (0) = 0′;
2. f (−g) = −f (g) for all g ∈ G;
3. f (ng) = nf (g) for all g ∈ G and for every integer n.

This terminology agrees with the example of the set of integers and, in the termi-
nology we employed earlier, the example of vectors that form an abelian group with
respect to the operation of addition.
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In the case of abelian groups (with the operation of addition), instead of the
direct product of subgroups H1,H2, . . . ,Hr one speaks of their direct sum. Then
the definition of the direct sum reduces to the condition that every element g ∈ G

can be represented in the form

g = h1 + h2 + · · · + hr, hi ∈ Hi, i = 1,2, . . . , r,

and that for each element g ∈ G, the representation is unique. It is obvious that this
last requirement is equivalent to the requirement that the equality h1 + h2 + · · · +
hr = 0 be possible only if h1 = 0, h2 = 0, . . . , hr = 0. That a group G is the direct
sum of subgroups H1,H2, . . . ,Hr is denoted by

G = H1 ⊕ H2 ⊕ · · · ⊕ Hr. (13.8)

It is obvious that in both cases (13.7) and (13.8), the order of the group G is equal
to

|G| = |H1| · |H2| · · · |Hr |.
In perfect analogy to how things were done in Sect. 3.1 for vector spaces, we may

define the direct product (or direct sum) of groups that in general are not originally
the subgroups of any particular group and that even, perhaps, are of completely
different natures from one another.

Example 13.14 If we map every orthogonal transformation U of a Euclidean space
to its determinant |U|, which, as we know, is equal to +1 or −1, we obtain a ho-
momorphism of the group of orthogonal transformations into the symmetric group
S2 of order 2. If we map every Lorentz transformation U of a pseudo-Euclidean
space to the pair of numbers ε(U) = (|U|, ν(U)), defined in Sect. 7.8, we obtain a
homomorphism of the group of Lorentz transformations into the group S2 × S2.

Example 13.15 Let (V ,L) be an affine Euclidean space of dimension n and G the
group of its motions. Then the assertion of Theorem 8.37 can be formulated as the
equality G = Tn ×On, where Tn is the group of translations of the space V , and On

is the group of orthogonal transformations of the space L. Let us note that Tn � L,
where L is understood as a group under the operation of vector addition. Indeed, let
us define the mapping f : Tn → L that to each translation Ta by the vector a assigns
this vector a. Obviously, the mapping f is bijective, and by virtue of the property
TaTb = Ta+b , it is an isomorphism. Thus Theorem 8.37 can be formulated as the
relationship G � L × On.

13.2 Decomposition of Finite Abelian Groups

Later in this chapter we shall restrict our attention to the study of finite groups.
The highest goal in this area of group theory is to find a construction that gives a
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description of all finite groups. But such a goal is far from accessible; at least at
present, we are far from attaining it. However, for finite abelian groups, the answer
to this question turns out to be unexpectedly simple. Moreover, both the answer and
its proof are very similar to Theorem 5.12 on the decomposition of a vector space
as a direct sum of cyclic subspaces. For the proof, we shall require the following
lemmas.

Lemma 13.16 Let B be a subgroup of A, and a an element of the group A of
order k. If there exists a number m ∈N relatively prime to k such that ma ∈ B , then
a is an element of B .

Proof Since the numbers m and k are relatively prime, there exist integers r and s

such that kr + ms = 1. Multiplying ma by s and adding kra to the result (which is
equal to zero, since k is the order of the element a), we obtain a. But sma = s(ma)

belongs to the subgroup B . From this, it follows that a is also an element of B . �

Lemma 13.17 If A = {a} is a cyclic group of order n, and we set b = ma, where
m ∈ N is relatively prime to n, then the cyclic subgroup B = {b} generated by the
element b coincides with A.

Proof Since a ∈ A, we have by Lemma 13.12 that the order k of the element a

divides the order of the group A, which is equal to n, and the relative primality
of the numbers m and n implies the relative primality of the numbers k and m.
From Lemma 13.16, it follows that a ∈ B , which means that A ⊂ B , and since we
obviously have also B ⊂ A, we obtain the required equality B = A. �

Corollary 13.18 Under the assumptions of Lemma 13.17, every element c ∈ A can
be expressed in the form

c = md, d ∈ A,m ∈ Z. (13.9)

Indeed, if in the notation of Lemma 13.17, the group A is the group {b}, then the
element c has the form kb, and since b = ma, we obtain equality (13.9) in which
d = ka.

Definition 13.19 A subgroup B of a group A is said to be maximal if B �= A and B

is contained in no subgroup other than A.

It is obvious that there exist maximal subgroups in every finite group that consists
of more than just a single element. Indeed, beginning with the identity subgroup
(that is, the subgroup consisting of a single element), we can include it, if it is
not itself maximal, in some subgroup B1 different from A. If in B1 we have not
yet obtained a maximal subgroup, then we can include it in some subgroup B2
different from A. Continuing this process, we eventually can go no further, since
all the subgroups B1,B2, . . . are contained in the finite group A. The last subgroup
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obtained when we stop the process will be maximal. We remark that we do not assert
(nor is it true) that the maximal subgroup we have constructed is unique.

Lemma 13.20 For every maximal subgroup B of a finite abelian group A, there
exists an element a ∈ A not belonging to B such that the smallest number m ∈N for
which ma belongs to B is prime, and every element x ∈ A can be represented in the
form

x = ka + b, (13.10)

for k an integer, b ∈ B .

Later, we shall denote the prime number m that appears in Lemma 13.20 by p.

Proof of Lemma 13.20 Let us take as a any element of the group A not belonging
to the subgroup B . The collection of all elements of the form ka + b, where k is
an arbitrary integer and b an arbitrary element of B , obviously forms a subgroup
containing B (it is easy to see that B consists of elements x such that in the repre-
sentation x = ka + b, the number k is equal to 0). It is obvious that this subgroup
does not coincide with B , since it contains the element a (for k = 1 and b = 0), and
this means, in view of the maximality of the subgroup B , that it coincides with A.
From this follows the representation (13.10) for every element x in the group A.

It remains to prove that for some prime number p, the element pa belongs to B .
Since the element a is of finite order, we must have na = 0 for some n > 0. In
particular, na ∈ B . Let us take the smallest m ∈ N for which ma ∈ B and prove that
it is prime.

Suppose that such is not the case, and that p is a prime divisor of m. Then m =
pm1 for some integer m1 < m. Let us set a1 = m1a. As we have seen, the collection
of all elements of the form ka1 + b (for arbitrary integer k and b ∈ B) forms a
subgroup of the group A containing B . If the element a1 were contained in B ,
then that would contradict the choice of m as the smallest natural number such that
ma ∈ B . This means that a1 /∈ B , and in view of the maximality of the subgroup B ,
the subgroup that we constructed of elements of the form ka1 + b coincides with A.
In particular, it contains the element a, that is, a = ka1 + b for some k and b. From
this, it follows that pa = kpa1 +pb. But pa1 = pm1a = ma ∈ B , and since pb ∈ B ,
this means that pa ∈ B , which contradicts the minimality of m. This means that the
assumption that m has prime divisors less than m is false, and so m = p is a prime
number. �

Remark 13.21 We chose as a an arbitrary element of the group A not contained
in B . In particular, in place of a, we could as well choose any element a′ = a + b,
where b ∈ B . Indeed, from a = a′ − b and a′ ∈ B it would follow that we would
also have a ∈ B .

We can now state the fundamental theorem of abelian groups.
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Theorem 13.22 Every finite abelian group is the direct sum of cyclic subgroups
whose orders are equal to powers of prime numbers.

Thus, the theorem asserts that every finite abelian group A has the decomposition

A = A1 ⊕ · · · ⊕ Ar, (13.11)

where the subgroups Ai are cyclic, that is, Ai = {ai}, and their orders are powers of
prime numbers, that is, |Ai | = p

mi

i , where pi are prime numbers.

Proof of Theorem 13.22 Our proof is by induction on the order of the group A. For
the group of order 1, the theorem is obvious. Therefore, to prove the theorem for a
group A, we may assume that it has been proved for all subgroups B ⊂ A, B �= A,
since for an arbitrary subset B ⊂ A with B �= A, the number of elements of B is less
than |A|.

In particular, let B be a maximal subgroup of the group A. By the induction
hypothesis, the theorem is valid for this subgroup, and it therefore has the decom-
position

B = C1 ⊕ · · · ⊕ Cr, (13.12)

in which the Ci are cyclic subgroups each of which has order the power of a prime
number:

Ci = {ci}, p
mi

i ci = 0.

Lemma 13.20 holds for the subgroup B; let a ∈ A, a /∈ B , be the element provided
for in the formulation of this lemma. By hypothesis, every element x ∈ B can be
represented in the form

x = k1c1 + · · · + krcr .

In particular, this holds for the element b = pa (in the notation of Lemma 13.20):

pa = k1c1 + · · · + krcr .

Let us select the terms kici in this decomposition that can be written in the form
pdi , where di ∈ Ci . These are first of all, the terms kici for i such that pi �= p.
This follows from Corollary 13.18. Moreover, all elements of the form kici possess
this property if pi = p and ki is divisible by p. Let the chosen elements be kici ,
i = 1, . . . , s −1. Then for the remaining elements kici , i = s, . . . , r , we have pi = p

and ki is not divisible by p. Setting

kici = pdi, di ∈ Ci, i = 1, . . . , s − 1, d1 + · · · + ds−1 = d, (13.13)

we obtain

pa = pd + kscs + · · · + krcr .
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We can now use the freedom in the choice of the element a ∈ A, which was men-
tioned in Remark 13.21, and take instead of a, the element a′ = a − d , since d ∈ B

in view of formula (13.13). We then have

pa′ = kscs + · · · + krcr . (13.14)

There are now two possible cases.

Case 1. The number s − 1 is equal to r , and then equality (13.14) gives

pa′ = 0.

In this case, the group A decomposes as a direct sum of cyclic subgroups as follows:

A = C1 ⊕ · · · ⊕ Cr ⊕ Cr+1,

where Cr+1 = {a′} is a subgroup of order p.
Indeed, Lemma 13.20 asserts that every element x ∈ A can be represented in the

form ka′ + b, and since in view of (13.12), the element b can be represented in the
form

b = k1c1 + · · · + krcr ,

it follows that x has the form

x = k1c1 + · · · + krcr + ka′. (13.15)

This proves the first condition in the definition of a direct sum.
Let us prove the uniqueness of representation (13.15). For this, it suffices to prove

that the equality

k1c1 + · · · + krcr + ka′ = 0 (13.16)

is possible only for k1c1 = · · · = krcr = ka′ = 0. Let us rewrite (13.16) in the form

ka′ = −k1c1 − · · · − krcr . (13.17)

This means that the element ka′ belongs to B . If the number k were not divisible by
p, then k and p would be relatively prime, since the element a′ has order p, and by
Lemma 13.16, we would then obtain that a′ ∈ B . But this contradicts the choice of
the element a and the construction of the element a′. This means that p must divide
k, and since pa′ = 0, it follows that we also have ka′ = 0. Thus equality (13.17) is
reduced to k1c1 + · · · + krcr = 0, and from the fact that the group B is the direct
sum of subgroups C1, . . . ,Cr , we obtain that k1c1 = 0, . . . , krcr = 0.

Case 2. The number s − 1 is less than r . Let us set kscs = ds , . . . , krcr = dr , and
for i = 1, . . . , s − 1, let us set ci = di . By Lemma 13.17, the element di generates
the same cyclic subgroup Ci as ci . For i ≤ s − 1, this assertion is a tautology, and
for i > s − 1, it follows from the fact that the numbers ki are by assumption not
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divisible by p, and pmi ci = 0 for all i ≥ s. Equality (13.14) can then be rewritten as
follows:

pa′ = ds + · · · + dr . (13.18)

Let ms ≤ · · · ≤ mr . Let us denote by C′
r the cyclic group generated by the element

a′, that is, let us set C′
r = {a′}. Let us prove that the order of the element a′, and

therefore the order of the group C′
r , is equal to pmr+1:
∣∣C′

r

∣∣ = pmr+1. (13.19)

Indeed, in view of (13.18), we have

pmr+1a′ = pmr ds + · · · + pmr dr = 0,

since pmidi = 0, mi ≤ mr . On the other hand, in view of relationship (13.18), we
have

pmr a′ = pmr−1ds + · · · + pmr−1dr �= 0,

since pmr−1dr �= 0, and in view of (13.12), the sum of the elements pmr−1di ∈ Ci

cannot equal 0 if at least one term is not equal to 0. This proves (13.19).
Now let us prove that

A = C1 ⊕ · · · ⊕ Cr−1 ⊕ C′
r , (13.20)

that is, that every element x ∈ A can be uniquely represented in the form

x = y1 + · · · + yr−1 + y′
r , y1 ∈ C1, . . . , yr−1 ∈ Cr−1, y

′
r ∈ C′

r . (13.21)

First let us prove the possibility of representation (13.21). Since every element
x ∈ A can be represented in the form ka′ +b, b ∈ B , it suffices to prove that it is pos-
sible to represent separately a′ and an arbitrary element b ∈ B in the form (13.21).
This is obvious for an element a′, since it belongs to the cyclic group C′

r = {a′}. As
for elements of B , each b ∈ B can be represented in the form

b = k1d1 + · · · + krdr ,

according to formula (13.12) and in view of the fact that Ci = {di}. Therefore, it
suffices to prove that each of the elements di can be represented in the form (13.21).
For d1, . . . , dr−1, this is obvious, since

di ∈ Ci = {di}, i = 1, . . . , r − 1.

Finally, in view of (13.18), we have

dr = −ds − · · · − dr−1 + pa′,

and this is the representation of the element dr that we need.
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Let us now prove the uniqueness of representation (13.21). For this, it suffices to
prove that the equality

k1d1 + · · · + kr−1dr−1 + kra
′ = 0 (13.22)

is possible only for k1d1 = · · · = kra
′ = 0. Let us suppose that kr is relatively prime

to p. Then

kra
′ = −k1d1 − · · · − kr−1dr−1,

and in view of the fact that pmr+1a′ = 0, we obtain by Lemma 13.16 that a′ ∈ B .
But the element a ∈ A was chosen as an element not belonging to the subgroup B .
This means that the element a′ also does not belong to B .

Let us now consider the case in which the number kr is divisible by p. Let kr =
pl. Then

pla′ = −k1d1 − · · · − kr−1dr−1.

Let us replace pa′ on the left-hand side of this relationship by the expression ds +
· · · + dr on the basis of equality (13.18). On transferring all terms to the left-hand
side, we obtain

lds + · · · + ldr + k1d1 + · · · + kr−1dr−1 = 0.

From the fact that by hypothesis, the group B is the direct sum of groups C1, . . . ,Cr ,
it follows that in this equality, ldr = 0. Since the order of the element dr is equal
to pmr , this is possible only if pmr divides l, and this means that pmr+1 divides kr .
But we have seen that the order of the element a′ is equal to pmr+1, and this means
that kra

′ = 0. Then it follows from equality (13.22) that k1d1 + · · · + kr−1dr−1 = 0.
And since by the induction hypothesis, the group B is the direct sum of the groups
C1, . . . ,Cr , it follows that k1d1 = · · · = kr−1dr−1 = 0. This completes the proof of
the theorem. �

13.3 The Uniqueness of the Decomposition

The theorem on the uniqueness of the Jordan normal form has an analogue in the
theory of finite abelian groups.

Theorem 13.23 For different decompositions of the finite abelian group A into a
direct sum of cyclic subgroups whose orders are prime powers, whose existence is
established in Theorem 13.22,

A = A1 ⊕ · · · ⊕ Ar, |Ai | = p
mi

i , (13.23)

the orders p
mi

i of the cyclic subgroups Ai are unique. In other words, if

A = A′
1 ⊕ · · · ⊕ A′

s
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is another such decomposition, then s = r , and the subgroups A′
i can be reordered

in such a way that the equality |A′
i | = |Ai | is satisfied for all i = 1, . . . , r .

Proof We shall show how the orders of the cyclic subgroups in the decomposition
(13.23) are uniquely determined by the group A itself. For any natural number k, let
us denote by kA the collection of elements a of the group A that can be represented
in the form a = kb, where b is some element of this group. It is obvious that the
collection of elements kA forms a subgroup of the group A. Let us prove that the
orders |kA| of these subgroups (for various k) determine the orders of the cyclic
groups |Ai | in the decomposition (13.23).

Let us consider an arbitrary prime number p and analyze the case that k is a
power of a prime number p, that is, k = pi . Let us factor the order |piA| of the
group piA into a product of a power of p and numbers ni relatively prime to p:

∣∣piA
∣∣ = pri ni, (ni,p) = 1. (13.24)

On the other hand, for a prime number p, let us denote by li the number of subgroups
Ai of order pi appearing in the decomposition (13.23). We shall present an explicit
formula that expresses the numbers li in terms of ri . Since these latter numbers are
determined only by the group A, it follows that the numbers li also do not depend
on the decomposition (13.23) (in particular, they are equal to zero if and only if all
prime numbers pi for which |Ai | = p

mi

i differ from p).
First of all, let us calculate the order of the group A in another way. Let us note

that A = p0A, so that this is the case i = 0. The definition of the number li shows
that in the decomposition (13.23), we have l1 groups of order p, l2 groups of order
p2, . . . , and the remaining groups have orders relatively prime to p. Hence it follows
that

|A| = pl1p2l2 · · ·n0, (n0,p) = 1.

Let us set

|A| = pr0n0, (n0,p) = 1.

Then we can write the relationship above in the form

l1 + 2l2 + 3l3 + · · · = r0. (13.25)

Now let us consider the case that k = pi > 1, that is, the number i is greater
than 0. First of all, it is obvious that for every natural number k, it follows from
(13.23) that

kA = kA1 ⊕ kA2 ⊕ · · · ⊕ kAr .

It is obvious that all properties of a direct sum are satisfied.
Now, as in the case examined above, let us calculate the order of the group piA

in another way. It is obvious that |piA| = |piA1| · · · |piAr |. If for some j , we have
|Aj | = p

mj

j and pj �= p, then Lemma 13.17 shows that piAj = Aj , and we have
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|piAj | = |Aj | = p
mj

j , which is relatively prime to p. Thus in the decomposition

|piA| = |piA1| · · · |piAr |, all the factors |piAj |, where |Aj | = p
mj

j and pj �= p,
together give a number that is relatively prime to p, and in formula (13.24), they
make no contribution to the number ri . It remains to consider the case pj = p. Since
Aj is a cyclic group, it follows that Aj = {aj }. It is then clear that piAj = {piaj }.
Let us find the order of the element piaj . Since pmj aj = 0, we have pmj −i (piaj ) =
0 if i ≤ mj , and piaj = 0 if i = mj .

Let us prove that pmj −i is precisely the same as the order of the element piaj .
Let this order be equal to some number s. Then s must divide pmj −i , which means
that it is of the form pt . If t < mj − i, then the equality pt(piaj ) = 0 would show
that pt+iaj = 0, that is, that the element aj had order less than pmj . This means
that |piAj | = pmj −i for i ≤ mj . The fact that piAj = 0 for i ≥ mj (which means
that |piAj | = 1) is obvious.

We can now literally repeat the argument that we used earlier. We see that in the
decomposition

piA = piA1 ⊕ piA2 ⊕ · · · ⊕ piAr,

subgroups of order p occur when mj − i = 1, that is, mj = i +1, and this means that
in our adopted notation, they occur li+1 times. Likewise, the subgroups of order p2

occur when mj = i + 2, that is, li+2 times, and so on. Moreover, certain subgroups
will have order relatively prime to p. This means that

∣∣piA
∣∣ = pli+1p2li+2 · · ·ni, where (ni,p) = 1.

In other words, in accordance with our previous notation, we have

li+1 + 2li+2 + · · · = ri . (13.26)

In particular, formula (13.25) is obtained from (13.26) for i = 0.
If we now subtract from each formula (13.26) the following one, we obtain that

for all i = 1,2, . . . , we have the equalities

li + li+1 + · · · = ri−1 − ri .

Repeating the same process, we obtain

li = ri−1 − 2ri + ri+1.

These relationships prove Theorem 13.23. �

Theorems 13.22 and 13.23 make it easy to give the number of distinct (up to
isomorphism) finite abelian groups of a given order.

Example 13.24 Suppose, for example, that we would like to determine the number
of distinct abelian groups of order p3q2, where p and q are distinct prime numbers.
Theorem 13.22 shows that such a group can be represented in the form

A = C1 ⊕ · · · ⊕ Cs,
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where Ci are cyclic groups whose orders are prime powers. From this decomposi-
tion, it follows that

|A| = |C1| · · · |Cs |.
In other words, among the groups Ci , there is either one cyclic group of order p3, or
one of order p2 and one of order p, or three of order p. And likewise, there is one
of order q2 or two of order q . Combining all these possibilities (three for groups
of order pi and two for groups of order qj ), we obtain six variants. Theorem 13.23
guarantees that of the six groups thus obtained, none is isomorphic to any of the
others.

13.4 Finitely Generated Torsion Modules over a Euclidean Ring*

The proofs of the theorem on finite abelian groups and the theorem on Jordan nor-
mal form (just like the proofs of the corresponding uniqueness theorems) are so
obviously parallel to each other that they surely are special cases of some more
general theorems. This is indeed the case, and the main goal of this chapter is the
proof of these general theorems. For this, we shall need two abstract (that is, defined
axiomatically) notions.

Definition 13.25 A ring is a set R on which are defined two operations (that is, two
mappings R × R → R), one of which is called addition (for which an element that
is the image of two elements a ∈ R and b ∈ R is called their sum and is denoted by
a + b), and the second of which is multiplication (the element that is the image of
a ∈ R and b ∈ R is called their product and is denoted by ab). For these operations
of addition and multiplication, the following conditions must be satisfied:

(1) With respect to the operation of addition, the ring is an abelian group (the iden-
tity element is denoted by 0).

(2) For all a, b, c ∈ R, we have

a(b + c) = ab + ac, (b + c)a = ba + ca.

(3) For all a, b, c ∈ R, the associative property holds:

a(bc) = (ab)c.

In the sequel, we shall denote a ring by the letter R and assume that it has a
multiplicative identity, that is, that it contains an element, which we shall denote by
1, satisfying the condition

a · 1 = 1 · a = a for all a ∈ R.

In this chapter, we shall be considering only commutative rings, that is, it will be
assumed that

ab = ba for all a, b ∈ R.
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We have already encountered the most important special case of a ring, namely
an algebra, in connection with the construction of the exterior algebra of a vector
space, in Chap. 10. Let us recall that an algebra is a ring that is a vector space, where,
of course, consistency of the notions entering into these definitions is assumed. This
means that for every scalar α (in the field over which the vector space in question is
defined) and for all elements a, b of the ring R, we have the equality (αa)b = α(ab).
On the other hand, we are quite familiar with an example of a ring that is not an
algebra in any natural sense, namely the ring of integers Z with the usual arithmetic
operations of addition and multiplication.

Let us note a connection among the concepts we have introduced. If all nonzero
elements of a commutative ring form a group with respect to the operation of mul-
tiplication, then such a ring is called a field. We assume that the reader is familiar
with the simplest properties of fields and rings.

The concept that generalizes both the concept of vector space (over some field
K) with a linear transformation given on it and that of an abelian group is that of a
module.

Definition 13.26 An abelian group M (its operation is written as addition) is a
module M over a ring R if there is defined an additional operation of multiplication
of the elements of the ring R by elements of the module M that produces elements
of the module that have the following properties:

a(m + n) = am + an,

(a + b)m = am + bm,

(ab)m = a(bm),

1m = m,

for all elements a, b ∈ R and all elements m,n ∈ M .

For convenience, we shall denote the elements of the ring using ordinary letters
a, b, . . . , and elements of the module using boldface letters: m,n, . . . .

Example 13.27 An example of a module that we have encountered repeatedly is
that of a vector space over an arbitrary field K (here the ring R is the field K). On
the other hand, every abelian group G is a module over the ring of integers Z: the
operation defined on it of integral multiplication kg for k ∈ Z and g ∈ G obviously
possesses all the required properties.

Example 13.28 Let L be a vector space (real, complex, or over an arbitrary field K)
and let A : L → L be a fixed linear transformation. Then we may consider L as a
module over the ring R of polynomials in the single variable x (real, complex, or
over a field K), assuming, as we did earlier, for a polynomial f (x) ∈ R and vector
e ∈ L,

f (x)e = f (A)(e). (13.27)
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It is easily verified that all the properties appearing in the definition of a module are
satisfied.

Our immediate objective will be to find a restriction of the general notion of
module that covers vector spaces and abelian groups and then to prove theorems for
these that generalize Theorems 5.12 and 13.22.

These two examples—the ring of integers Z and the ring of polynomials in a
single complex variable (for simplicity, we shall restrict our attention to the special
case K = C, but many results are valid in the general case)—have many similar
properties, the most important of which is the uniqueness of the decomposition into
irreducible factors, that is, prime numbers in the case of the ring of integers, and
linear polynomials in the case of the ring of polynomials with complex coefficients.
Both of these properties, in turn, derive from a single property: the possibility of
division with remainder, which we shall introduce in the definition of certain rings
for which it is possible to generalize the reasoning from previous sections.

Definition 13.29 A ring R is called a Euclidean ring if

ab �= 0 for all a, b ∈ R,a �= 0 and b �= 0,

and for nonzero elements a of the ring, a function ϕ(a) is defined taking nonnegative
integer values and exhibiting the following properties:

(1) ϕ(ab) ≥ ϕ(a) for all elements a, b ∈ R, a �= 0, b �= 0.
(2) For all elements a, b ∈ R, where a �= 0, there exist q, r ∈ R such that

b = aq + r (13.28)

and either r = 0 or ϕ(r) < ϕ(a).

For the ring of integers, these properties are satisfied for ϕ(a) = |a|, while for
the ring of polynomials, they are satisfied for ϕ(a) equal to the degree of the poly-
nomial a.

Definition 13.30 An element a of a ring R is called a unit or reversible element if
there exists an element b ∈ R such that ab = 1. An element b is called a divisor of
the element a (one also says that a is divisible by b or that b divides a) if there exists
an element c such that a = bc.

Clearly the property of divisibility is unchanged under multiplication of a or b

by a unit. Two elements that differ by a unit are called associates. For example,
in the ring of integers, the units are +1 and −1, and associates are integers that
are either equal or differ by a sign. In the ring of polynomials, the units are the
constant polynomials other than the one that is identically zero, and associates are
polynomials that differ from each other by a constant nonzero multiple.

An element p of a ring is prime if it is not a unit and has no divisors other than
its associates and units.
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The theory of decomposition into prime factors in a Euclidean ring repeats ex-
actly what is known for the ring of integers.

If an element a is not prime, then it has a divisor b such that a = bc, with c not a
unit. This means that a is not a divisor of b, and there exists the representation b =
aq + r with ϕ(r) < ϕ(a). But r = b − aq = b(1 − cq), and therefore ϕ(r) ≥ ϕ(b),
that is, ϕ(b) ≤ ϕ(r) < ϕ(a), which means that ϕ(b) < ϕ(a). Applying the same
reasoning to b, we finally arrive at a prime divisor a, and we shall show that every
element can be represented as the product of primes. The same argument as used in
the case of integers or polynomials shows the uniqueness of this decomposition in
the following precise sense.

Theorem 13.31 If some element a in a Euclidean ring R has two factorizations
into prime factors,

a = p1 · · ·pr, a = q1 · · ·qs,

then r = s, and with a suitable numeration of the factors, pi and qi are associates
for all i.

As in the ring of integers, in every Euclidean ring, each element a �= 0 that is not
a unit can be written in the form

a = up
n1
1 · · ·pnr

r ,

where u is a unit, all the pi are prime elements with no two of them associates, and
ni are natural numbers. Such a representation is unique in a natural sense.

As in the ring of integers or of polynomials in one variable, representation (13.28)
for r �= 0 can be applied to elements b and r and repeated until we arrive at r = 0.
We will thus obtain a greatest common divisor (gcd) of the elements a and b, that
is, a common divisor such that every other common divisor is a divisor of it. The
greatest common divisor of a and b is denoted by d = (a, b) or d = gcd(a, b). This
process, as it is for integers, is called the Euclidean algorithm (whence the name
Euclidean ring). It follows from the Euclidean algorithm that a greatest common
divisor of elements a and b can be written in the form d = ax + by, where x and y

are some elements of the ring R.
Two elements a and b are said to be relatively prime if their only common di-

visors are units. Then we may consider that gcd(a, b) = 1, and as follows from the
Euclidean algorithm, there exist elements x, y ∈ R such that

ax + by = 1. (13.29)

Let us now recall that the theorem on Jordan normal form holds in the case
of finite-dimensional vector spaces, and that the fundamental theorem of abelian
groups holds for finite abelian groups. Let us now derive analogous finiteness con-
ditions for modules.
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Definition 13.32 A module M is said to be finitely generated if it contains a fi-
nite collection of elements m1, . . . ,mr , called generators, such that every element
m ∈ M can be expressed in the form

m = a1m1 + · · · + armr (13.30)

for some elements a1, . . . , ar of the ring R.

For a vector space considered as a module over a certain field, this is the def-
inition of finite dimensionality, and representation (13.30) is a representation of a
vector m in the form of a linear combination of vectors m1, . . . ,mr (let us note that
the system of vectors m1, . . . ,mr will in general not be a basis, since we did not
introduce the concept of linear independence). In the case of a finite abelian group,
we may generally take for m1, . . . ,mr , all the elements of the group.

Let us formulate one additional condition of the same type.

Definition 13.33 An element m of a module M over a ring R is said to be a torsion
element if there exists an element am �= 0 of the ring R such that

amm = 0,

where 0 is the null element of the module M , and the subscript in am is introduced
to show that this element depends on m. A module is called a torsion module if all
of its elements are torsion elements.

In a finitely generated torsion module, there is an element a �= 0 of the ring R

such that am = 0 for all elements m ∈ M . Indeed, it suffices to set a = am1 · · ·amr

for the elements m1, . . . ,mr in representation (13.30). If the ring R is Euclidean,
then we can conclude that a �= 0. For the case of a finite abelian group, we may take
a to be the order of the group.

Example 13.34 Let M be a module determined by a vector space L of dimension
n and by a linear transformation A according to formula (13.27). For an arbitrary
vector e ∈ L, let us consider the vectors

e, A(e), . . . , An(e).

Their number, n + 1, is greater than the dimension n of the space L, and therefore,
these vectors are linearly dependent, which means that there exists a polynomial
f (x), not identically zero, such that f (A)(e) = 0, that is, in our module M , the
element e is a torsion element.

But if, as we did in Example 13.27, we view a vector space as a module over
the field R or C, then not a single nonnull vector will be a torsion element of the
module.

Let M be a module over a ring R. A subgroup M ′ of the group M is called a
submodule if for all elements a ∈ R and m′ ∈ M ′, we have am′ ∈ M ′.
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Example 13.35 It is obvious that every subgroup of an abelian group viewed as a
module over the ring of integers is a submodule. Analogously, for a vector space
viewed as a module over a ring coinciding with a suitable field, every subspace is a
submodule. If M is a module defined by a vector space L and a linear transformation
A of L according to formula (13.27), then as is easily verified, every submodule of
M is a vector subspace that is invariant with respect to the transformation A.

If M ′ ⊂ M is a submodule, and m is any element of the module M , then it is
easily verified that the collection of all elements of the form am + m′, where a is
an arbitrary element of the ring R, and m′ is an arbitrary element of the submodule
M ′, is a submodule. We shall denote it by (m,M ′).

Since we are assuming that the ring R is Euclidean, it follows that for every
torsion element m ∈ M , there exists an element a ∈ R that exhibits the property
am = 0 and is such that ϕ(a) is the smallest value among all elements with this
property. Then every element c for which cm = 0 is divisible by a. Indeed, if such
were not the case, we would have the relationship

c = aq + r, ϕ(r) < ϕ(a),

and clearly rm = 0, which contradicts the definition of a. In particular, two such
elements a and a′ divide each other; that is, they are associates. The element a ∈ R

is called the order of the element m ∈ M . One must keep in mind that this expression
is not quite precise, since order is defined only up to associates.

Example 13.36 If, as in Example 13.28, a module is a vector space L viewed as a
module over the polynomial ring f (x) with the aid of formula (13.27), then every
element e ∈ L is a torsion element, and its order is the same as the minimal polyno-
mial of the vector e (see the definition on p. 146), and the indicated property (every
element c for which cm = 0 is divisible by the order of the element m) coincides
with Theorem 4.23.

Definition 13.37 A submodule M ′ of a module M is said to be cyclic if it contains
an element m′ such that all the elements of the module M ′ can be represented in the
form am′ with some a ∈ R. This is written M ′ = {m′}.

Definition 13.38 A module M is called the direct sum of its submodules M1, . . . ,

Mr if every element m ∈ M can be written as a sum

m = m1 + · · · + mr , mi ∈ Mi,

and such a representation is unique. It is obvious that to establish the uniqueness of
this decomposition, it suffices to prove that if m1 + · · · + mr = 0, mi ∈ Mi , then
mi = 0 for all i. This can be written as the equality

M = M1 ⊕ · · · ⊕ Mr.
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The fundamental theorem that we shall prove, which contains Theorem 5.12 on
the Jordan normal form and Theorem 13.22 on finite abelian groups as special cases,
is the following.

Theorem 13.39 Every finitely generated torsion module M over a Euclidean ring
R is the direct sum of cyclic submodules

M = C1 ⊕ · · · ⊕ Cr, Ci = {mi}, (13.31)

such that the order of each element mi is a power of a prime element of the ring R.

Example 13.40 If M is a finite abelian group viewed as a module over the ring
of integers, then this theorem reduces directly to the fundamental theorem of finite
abelian groups (Theorem 13.22).

Let the module M be determined by the finite-dimensional complex vector space
L and the linear transformation A of L according to formula (13.27). Then the Ci

are vector subspaces invariant with respect to A, and in each of these, there exists a
vector mi such that all the remaining vectors can be written in the form f (A)(mi ).
The prime elements in the ring of complex polynomials are the polynomials of the
form x − λ. By assumption, for each vector mi , there exist some λi and a natural
number ni such that

(A − λiE)ni (mi ) = 0.

If we take the smallest possible value ni , then as proved in Sect. 5.1, the vectors

mi , (A − λiE)(mi ), . . . , (A − λiE)ni−1(mi )

will form a basis of this subspace, that is, Ci is a cyclic subspace corresponding to
the principal vector mi . We obtain the fundamental theorem on Jordan form (Theo-
rem 5.12).

Let us recall that we proved Theorem 5.12 by induction on the dimension of the
space. More precisely, for a linear transformation A on the space L, we constructed
a subspace L′ invariant with respect to A of dimension 1 less and proved the theorem
for L on the assumption that it had been proved already for L′. In fact, this meant
that we constructed a sequence of nested subspaces

L = L0 ⊃ L1 ⊃ L2 ⊃ · · · ⊃ Ln ⊃ Ln+1 = (0), (13.32)

invariant with respect to A and such that dim Li+1 = dim Li − 1. Then we reduced
the proof of Theorem 5.12 for L to the proof of the theorem for L1, then for L2,
and so on. Now our first goal will be to construct in every finitely generated torsion
module a sequence of submodules analogous to the sequence of subspaces (13.32).

Lemma 13.41 In every finitely generated torsion module M over a Euclidean ring
R, there exists a sequence of submodules

M = M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Mn ⊃ Mn+1 = {0} (13.33)
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such that Mi �= Mi+1, Mi = (mi ,Mi+1), where mi are elements of the module M ,
and for each of these, there exists a prime element pi of the ring R such that pimi ∈
Mi+1.

Proof By the definition of a finitely generated module, there exists a finite number
of generators m1, . . . ,mr ∈ M such that the elements a1m1 +· · ·+armr exhaust all
the elements of the module M as a1, . . . , ar run through all elements of the ring R.
The collection of elements of the form akmk + · · · + armr , where ak, . . . , ar are all
possible elements of the ring R, obviously forms a submodule of the module M . Let
us denote it by Mk . It is obvious that Mk ⊃ Mk+1 and Mk = (mk,Mk+1). Without
loss of generality, we may assume that mk /∈ Mk+1, since otherwise, the element
mk can be excluded from among the generators. The constructed chain of submod-
ules Mk is still not the chain of submodules Mi that figures in Lemma 13.16. We
obtain that chain from the chain of submodules Mk by putting several intermediate
submodules between the modules Mk and Mk+1.

Since mk ∈ M is a torsion element, there exists an element a ∈ R for which
amk = 0 and in particular, amk ∈ Mk+1. Let a be an element of the ring R for
which amk ∈ Mk+1 and ϕ(a) assumes the smallest value among elements with this
property. If the element a is prime, then we set pi = a, and then it is unnecessary to
place a submodule between Mk and Mk+1. But if a is not prime, then let p1 be one
of its prime divisors and a = p1b. Let us set mk,1 = bmk and Mk,1 = (mk,1,Mk+1).
Then clearly, p1mk,1 ∈ Mk,1 and bmk ∈ Mk,1. As we have seen, ϕ(b) < ϕ(a) (strict
inequality). Therefore, repeating this process a finite number of times, we will place
a finite number of submodules (13.33) with the required properties between Mk and
Mk+1. �

Remark 13.42 It is possible to show that the length of every chain of the form
(13.33) satisfying the conditions of Lemma 13.16 is the same number n. Moreover,
every chain of submodules

M = M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Mm

in which Mi �= Mi+1 has length m ≤ n, and this holds with much milder restrictions
on the ring R and module M than we have assumed in this chapter. What is of
essence here is only that between any two neighboring submodules Mi and Mi+1,
there does not exist an “intermediate” submodule M ′

i different from Mi and Mi+1

such that Mi ⊃ M ′
i ⊃ Mi+1.

For example, let us consider an n-dimensional vector space L over a field K as
a module over the ring R = K. Let a1, . . . ,an be some basis. Then the subspaces
Li = 〈ai , . . . ,an〉, i = 1, . . . , n, have the indicated property. Using this, we could
give a definition of the dimension of a vector space without appealing to the notion
of linear dependence. Thus the length n of all chains of the form (13.33) satisfying
the conditions of Lemma 13.16 is the “correct” generalization of dimension of a
space to finitely generated torsion modules.
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The following lemma is analogous to the one we used in the proof of Theo-
rems 5.12 and 13.22.

Lemma 13.43 If the order of an element m of a module M is the power of a prime
element, pnm = 0, and an element x of the cyclic submodule {m} is not divisible by
p (that is, not representable in the form x = py, where y ∈ M), then {m} = {x}.

Proof It is obvious that {x} ⊂ {m}. Thus it remains to show that {m} ⊂ {x}, and
for this, it suffices to ascertain that m ∈ {x}. By assumption, x = am, where a is
some element of the ring R. If a is divisible by p, then clearly, x is also divisible
by p. Indeed, if a = pb with some b ∈ R, then from the equality x = am, we obtain
x = py, where y = bm, contradicting the assumption that x is not divisible by p.

This means that a and p are relatively prime, and consequently, in view of the
uniqueness of the decomposition into prime elements of the ring R, a is also rela-
tively prime to pn. Then on the basis of the Euclidean algorithm, we can find ele-
ments u and v in R such that au + pnv = 1. Multiplying both sides of this equality
by m, we obtain that m = ux, which means that m ∈ {x}. �

Lemma 13.44 Let M1 be a submodule of the module M over a Euclidean ring
R such that M = (m,M1) and M �= M1. Then if for some a,p ∈ R, we have the
inclusions am ∈ M1 and pm ∈ M1, where the element p is prime, then a is divisible
by p.

Proof Let us assume that a is not divisible by p. Since the element p is prime,
we have (a,p) = 1, and from the Euclidean algorithm in the ring R, it follows that
there exist two elements u,v ∈ R for which au + pv = 1. Multiplying both sides
of this equality by m, taking into account the inclusions am ∈ M1 and pm ∈ M1,
we obtain that m ∈ M1. By definition, (m,M1) consists of elements bm+m′ for all
possible b ∈ R and m′ ∈ M1. Therefore, M = (m,M1) = M1, which contradicts the
assumption of the lemma. �

Proof of Theorem 13.39 The proof is an almost verbatim repetition of the proof
of Theorems 5.12 and 13.22. We may use induction on the length n of the chain
(13.33), that is, we may assume the theorem to be true for the module M1. Let

M1 = C1 ⊕ · · · ⊕ Cr, (13.34)

where Ci = {ci} are cyclic submodules, and the order of each element ci is the
power of a prime element. By Lemma 13.16, M = (m,M1) and pm ∈ M1, where p

is a prime element. Then based on the decomposition (13.34), we have

pm = z1 + · · · + zr , zi ∈ Ci. (13.35)

We shall select those elements zi that are divisible by p. By a change in numeration,
we may assume that these are the first s − 1 terms. Let us set zi = pz′

i for i =
1, . . . , s − 1. We must now consider two cases.
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Case 1: The number s − 1 is equal to r . Then pm = pm′, where m′ = z′
1 +· · ·+ z′

r .
Let us set m − m′ = m. It is obvious that pm = 0. We shall prove that the module
M can be written in the form

M = {m} ⊕ C1 ⊕ · · · ⊕ Cr.

Indeed, by assumption, every element x ∈ M can be represented in the form x =
am + y, where a ∈ R and y ∈ M1, which means also in the form x = am + y′,
where y′ = am′ + y ∈ M1.

Let us prove that for two such representations

x = am + y, x = a′m + y′, (13.36)

we have the equalities am = a′m and y = y′. From this it will follow that

M = {m} ⊕ M1 = {m} ⊕ C1 ⊕ · · · ⊕ Cr,

which in our case, is relationship (13.31).
We obtain from equalities (13.36) that am = y, where a = a − a′, y = y′ − y,

and by assumption, y ∈ M1. By Lemma 13.16, there exists a prime element p of the
ring R such that pm ∈ M1, and this means that pm ∈ M1. By Lemma 13.20, from
the inclusions am ∈ M1 and pm ∈ M1, it follows that the element a is divisible
by p, that is, a = bp for some b ∈ R. From this, we obviously obtain that am =
b(pm) = 0. Consequently, am = a′m and y = y′.

Case 2: The number s − 1 is less than r . If an element ci has order p
ni

i and pi is
not an associate of p, then p

ni

i is not divisible by p, and therefore, every element of
the module Ci = {ci} is divisible p, by Lemma 13.17. Therefore, among the chosen
s −1 submodules Ci are all those such that the order of the element ci is p

ni

i , and pi

is not an associate of p. Since the order of an element is in general defined only up
to replacing it by an associate, we may consider that in the remaining submodules
Cs = {cs}, . . . , Cr = {cr}, the order of the element ci is a power of p.

By construction, in the decomposition (13.35), we have zi = pz′
i , z′

i ∈ Ci , for all
i = 1, . . . , s −1. Setting z′

1 +· · ·+z′
s−1 = z′ and m−z′ = m, we obtain the equality

pm = zs + · · · + zr . (13.37)

Since the order of the element ci for i = s, . . . , r is a power of p, the order of an
arbitrary element zi in the decomposition (13.37) is also a power of p. Let us denote
it by pni . Obviously, we may choose the numeration of the terms in formula (13.37)
in such a way that the numbers ni do not decrease: 1 ≤ ns ≤ ns+1 ≤ · · · ≤ nr . Let us
prove that the order of the element m is equal to pnr+1 and that we have the equality

M = {m} ⊕ C1 ⊕ · · · ⊕ Cs−1 ⊕ · · · ⊕ Cr−1,

that is, in the decomposition, all submodules Ci occur other than Cr . With this,
relationship (13.31) will be proved in the second case as well; that is, the proof of
Theorem 13.39 will be complete.
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Multiplying both sides of equality (13.37) by pnr and using the fact that pnr zi =
0 for all i = s, . . . , r , we obtain that pnr+1m = 0. If the order a of an element m
is not an associate of pnr+1, then it divides it, and is equal, up to an associate, to
pk for some k < nr + 1. Multiplying relationship (13.37) by pk−1 and using the
fact that the submodules C1, . . . ,Cr form a direct sum, we obtain that pk−1zi = 0
for all i = s, . . . , r . In particular, pk−1zr = 0, and this contradicts the assumption
k < nr + 1 and that the order of the element zr is equal to pnr . Thus the order of the
element m is equal to pnr+1.

Let us note that by construction, in the decomposition (13.37), the element zr is
not divisible by p.

From what we have proved, on the basis of Lemma 13.17, it follows that {zr} =
{cr} = Cr . From this it follows that every element m ∈ M can be represented as a
sum of elements of the modules

{m},C1, . . . ,Cs−1, . . . ,Cr−1. (13.38)

Indeed, an analogous assertion holds for the modules

{m},C1, . . . ,Cs−1, . . . ,Cr , (13.39)

since by our construction, m = m − z′ and z′ = z′
1 + · · · + z′

s−1, where z′
i ∈ Ci .

Consequently, m = m + z′
1 + · · ·+ z′

s−1, which means that every element m ∈ M is
a sum of elements of the modules (13.39).

We now must verify that every element of the submodule Cr can be represented
as a sum of elements of the submodules (13.38). Since Cr = {zr}, it suffices to verify
this for a single element zr . But relationship (13.37) gives us precisely the required
representation:

zr = pm − zs − · · · − zr−1.

It remains to verify the second condition entering into the definition of a direct sum:
that such a representation is unique. To this end, it suffices to prove that in the
relationship

am + f 1 + · · · + f s−1 + · · · + f r−1 = 0, f i ∈ Ci, (13.40)

all the terms must equal 0.
Indeed, from relationship (13.40), taking into account (13.34), it follows that

am ∈ M1. But by the construction of the element m, we then also have am ∈ M1.
By Lemma 13.20, from the inclusions am ∈ M1 and pm ∈ M1, we have that the
element a is divisible by p, that is, a = bp for some b ∈ R. Furthermore, we know
that

pm = zs + · · · + zr ,

and moreover, the order of the element zr is pnr , while the order of the element m is
pnr+1. On substituting all these relationships into decomposition (13.40), we obtain

b(zs + · · · + zr ) + f 1 + · · · + f s−1 + · · · + f r−1 = 0.
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Then it follows from formula (13.34) that bzr = 0, and since the order of the element
zr is equal to pnr , we have that pnr divides b. This means that the element a is
divisible by pnr+1, and am = 0. But then from equality (13.40), it follows that
f 1 + · · · + f r−1 = 0. Using again the induction hypothesis (13.34), we obtain that
f 1 = 0, . . . , f r−1 = 0. This completes the proof of Theorem 13.39. �

For Theorem 13.39, we have the same uniqueness theorem as in the case of
Theorem 5.12 and Theorem 13.22. Namely, if

M = C1 ⊕ · · · ⊕ Cr, Ci = {mi}, M = D1 ⊕ · · · ⊕ Ds, Dj = {nj }
are two decompositions of finitely generated torsion modules M in which the orders
of elements mi and nj are prime powers, that is, p

ri
i mi = 0 and q

sj
j nj = 0, where

pi and qj are prime elements, then with a suitable numeration of the terms Ci and
Dj , elements pi and qi are associates, and ri = si . However, a natural proof of this
theorem would require some new concepts, and we shall not pursue this here.
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