
Chapter 12
Hyperbolic Geometry

The discovery of hyperbolic (or Lobachevskian) geometry had an enormous impact
on the development of mathematics and on how the relationship between mathemat-
ics and the real world was understood. The discussions that swirled around the new
geometry also seem to have influenced the views of many in the humanities, who, in
this regard, unfortunately were too much taken by a literary image: the contrast be-
tween “down-to-earth” Euclidean geometry and the “otherworldly” non-Euclidean
geometry invented by learned mathematicians. It seemed that the difference between
the two geometries was that in the first geometry, as was clear to everyone, parallel
lines did not intersect, while in the second, what to normal intelligence was difficult
of comprehension, they do intersect. However, of course, this is exactly the opposite
of the truth: in the non-Euclidean geometry of Lobachevsky, given a point external
to a given line, it is possible for infinitely many lines to pass through the point with-
out intersecting the line. It is this that distinguishes Lobachevsky’s geometry from
that of Euclid.

Ivan Karamazov, in Dostoevsky’s novel The Brothers Karamazov, likely sowed
confusion among those in the humanities with the following literary image:

At the same time there were and are even now geometers and philosophers, even some of the
most outstanding among them, who doubt that the whole universe, or, even more broadly,
the whole of being, was created purely in accordance with Euclidean geometry; they even
dare to dream that two parallel lines, which according to Euclid cannot possibly meet on
earth, may perhaps meet somewhere in infinity.

Around the time this novel was being written, Friedrich Engels wrote Anti-
Dühring, where an even more vivid image is used:

But in higher mathematics, another contradiction is achieved, that lines that intersect before
our eyes, nevertheless a mere five or six centimeters from their point of intersection are to
be considered parallel, that is, lines that cannot intersect even when extended to infinity.

In this, the author sees the manifestation of some sort of “dialectic.”
And even up to the present, it is possible to encounter, in print, such literary

images that oppose Euclidean and non-Euclidean geometries by saying that in the
former, parallel lines do not intersect, while in the latter, they “intersect somewhere
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or other.” Usually, by non-Euclidean geometry is meant the hyperbolic geometry of
Lobachevsky, which is quite understandable by anyone who has passed a college
course in some technical subject, and there are many such people today. To be sure,
nowadays, this is presented in mathematics departments in more advanced courses
in differential geometry. But hyperbolic geometry is so tightly linked to a first course
in linear algebra, that it would be a pity not to say something about it here.

12.1 Hyperbolic Space*

In this chapter we shall be dealing exclusively with real vector spaces.
We shall define hyperbolic space of dimension n, which we shall hereinafter

denote by Ln or simply L if we do not need to indicate the dimension, as a part of
n-dimensional projective space P(L), where L is a real vector space of dimension
n + 1. We shall denote the dimension of the space L by dimL.

Let us equip L with a pseudo-Euclidean product (x,y); see Sect. 7.7. Let us
recall that there, the quadratic form (x2) has index of inertia n, and in some basis
e1, . . . , en+1 (called orthonormal) for the vector

x = α1e1 + · · · + αnen + αn+1en+1, (12.1)

it takes the form
(
x2) = α2

1 + · · · + α2
n − α2

n+1. (12.2)

In the pseudo-Euclidean space L, let us consider the light cone V defined by the
condition (x2) = 0. We say that a vector a lies inside the cone V if (a2) < 0 (recall
that in Chap. 7, we called such vectors timelike). It is obvious that the same then
holds as well for all vectors on the line 〈a〉, since ((αa)2) = α2(a2) < 0, and we
shall consider this space over the field of real numbers. Such lines are also said to
lie inside the light cone V .

Points of the projective space P(L) corresponding to lines of the space L lying in-
side the light cone V are called points of the space L. Consequently, they correspond
to those lines 〈x〉 of the space L that in the form (12.1) satisfy the inequality

α2
1 + · · · + α2

n < α2
n+1. (12.3)

In view of condition (12.3), the set L ⊂ P(L) is contained in one affine subset
αn+1 �= 0 (see Sect. 9.1). Indeed, in the case αn+1 = 0, we would obtain in (12.3) the
inequality α2

1 +· · ·+α2
n < 0, which is impossible in view of the fact that α1, . . . , αn

are real. As we did previously in Sect. 9.1, we can identify the affine subset αn+1 �= 0
with the affine subspace E : αn+1 = 1 and hence view L as a part of E; see Fig. 12.1.

The space of vectors of the affine space E is the vector subspace E0 ⊂ L defined
by the condition αn+1 = 0. In other words, E0 = 〈e1, . . . , en〉. Let us note that the
space of vectors E0 is not simply a vector space. As a subspace of the pseudo-
Euclidean space L, it would seem that it should also be a pseudo-Euclidean space.
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Fig. 12.1 Model of
hyperbolic space

But in fact, as can be seen from formula (12.2), the inner product (x,y) makes it
a Euclidean space, in which the vectors e1, . . . , en form an orthonormal basis. This
means that E is an affine Euclidean space, and the basis e1, . . . , en+1 of the space L
forms within it a frame of reference with respect to which a point of the hyperbolic
space L ⊂ E with coordinates (y1, . . . , yn) is characterized by the relationship

y2
1 + · · · + y2

n < 1, yi = αi

αn+1
, i = 1, . . . , n. (12.4)

This set is called the interior of the unit sphere in E and will be denoted by U .
Let us now turn our attention to identifying the subspaces of a hyperbolic space.

They correspond to those vector spaces L′ ⊂ L that have a common point with
the interior of the light cone V , that is, they contain a timelike vector a ∈ L′.
The inner product (x,y) defined in L is clearly also defined for all vectors in
the subspace L′ ⊂ L. The space L′ contains the timelike vector a, and therefore,
by Lemma 7.53, it is a pseudo-Euclidean space, and therefore, the associated hy-
perbolic space L

′ ⊂ P(L′) is defined. Since P(L′) ⊂ P(L) is a projective subspace,
it follows that L

′ ⊂ P(L). But hyperbolic space L
′ is defined by the condition

(x2) < 0 both in P(L) and in P(L′), and therefore, L′ ⊂ L. Here by definition,
dimL

′ = dimP(L′) = dim L′ − 1. The hyperbolic space L′ thus constructed is called
a subspace in L.

In particular, if L′ is a hyperplane in L, then dimL
′ = dimL − 1, and then the

subspace L
′ ⊂ L is called a hyperplane in L.

In the sequel we shall require the partition of L into two parts by the hyperplane
L

′ ⊂ L:

L \L′ = L
+ ∪L

−, L
+ ∩L

− =∅, (12.5)

similar to how in Sect. 3.2, the partition of the vector space L into two half-spaces
was accomplished with the help of the hyperplane L′ ⊂ L.

The partition (12.5) of the space L cannot be accomplished by an analogous
partition of the projective space P(L). Indeed, if we use the definition of the subsets
L+ and L− from Sect. 3.2, then we see that for a vector x ∈ L+, the vector αx is in
L− if α < 0, so that the condition x ∈ L+ does not hold for the line 〈x〉. But such a
partition is possible for the affine Euclidean space E; it was constructed in Sect. 8.2
(see p. 299).

Let us recall that the partition of the affine space E by the hyperplane E′ ⊂ E

was defined via the partition of the space of vectors E0 of the affine space E with
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Fig. 12.2 Hyperbolic
half-spaces

the aid of the hyperplane E′
0 ⊂ E0 corresponding to the affine hyperplane E′, that

is, consisting of vectors
−→
AB , where A and B are all possible points of E′. If we

are given a partition E0 \ E′
0 = E+

0 ∪ E−
0 , then we must choose an arbitrary point

O ∈ E′ and define E+ as the collection of all points A ∈ E such that
−→
OA ∈ E+

0 (E−
is defined analogously). The sets E+ and E− thus obtained are called half-spaces,
and they do not depend on the choice of point O ∈ E′. Thus we have partitioned the
set E \ E′ into two half-spaces: E \ E′ = E+ ∪ E−.

Let L′ be a hyperplane in the pseudo-Euclidean space L having nonempty inter-
section with the interior of the light cone V , and let E′ be the associated hyperplane
in the affine space E, that is, E′ = E ∩ P(L′). Then E′ has nonempty intersection
with the interior of the unit sphere U , given by relationship (12.4), and for the set
L ⊂ E, we obtain the partition (12.5), where

L
′ = L∩ E′, L

+ = E+ ∩L, L
− = E− ∩L. (12.6)

The sets L
+ and L

− defined by relationships (12.6) are called half-spaces of the
space L.

To put it more simply, the hyperplane E′ divides the interior of the sphere U ⊂ E

identified with the space L into two parts, U+ and U− (see Fig. 12.2), which corre-
spond to the half-spaces L+ and L

−.
Let us show that both half-spaces L+ and L

− are nonempty, although Fig. 12.2
is sufficiently convincing by itself. We give the proof for L+ (for L−, the proof is
similar).

Let us consider an arbitrary point O ∈ E′ ∩ L. It corresponds to the vector a =
α1e1 + · · · + αnen + en+1 with (a2) < 0 (see the definition of the affine space E on
p. 434). Let c ∈ E+

0 and B ∈ E+ be points such that
−→
OB = c. Let us consider vectors

bt = a + tc ∈ L and points Bt ∈ E for which
−−→
OBt = bt for varying values of t ∈ R.

Let us note that if t > 0, then Bt ∈ E+, and if here (b2
t ) < 0, then Bt ∈ E+ ∩ L =

L
+. As can be seen without difficulty, the scalar square (b2

t ) is a quadratic trinomial
in t :

(
b2

t

) = (
(a + tc)2) = (

a2) + 2t (a, c) + t2(c2) = P(t). (12.7)

By our selection, the vector c �= 0 belongs to the Euclidean space E0, and there-
fore, (c2) > 0. On the other hand, by assumption, we have (a2) < 0. This yields that
the discriminant of the quadratic trinomial P(t) on the right-hand side of relation-
ship (12.7) is positive, and therefore, P(t) has two real roots, t1 and t2, and from the
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condition (a2) < 0 it follows that they have different signs, that is, t1t2 < 0. Then,
as is easy to see, P(t) < 0 for every t between the roots t1 and t2. We will choose a
positive such number t .

Since the hyperbolic space L can be viewed as a part of the affine space E,
then from E we can transfer onto L the notion of line segment, the notion of lying
between for three points on a line segment, and the notion of convexity. An easy
verification (analogous to what we did at the end of Sect. 8.2) shows that the subsets
L

+ and L
− introduced earlier of the set L \ L′ are characterized by the property of

convexity: if two points A,B are in L
+, then all points lying on the segment [A,B]

are also in L
+ (the same clearly holds for the subset L−).

Let us consider linear transformations A of a vector space L that are Lorentz
transformations with respect to a symmetric bilinear form ϕ(x,y) corresponding
to the quadratic form (x2) and the associated projective transformations P(A). The
latter transformations obviously take the set L to itself: given that a transforma-
tion A is a Lorentz transformation and from the condition (x2) < 0, it follows that
(A(x)2) = (x2) < 0. The transformations of the set L that arise in this way are
called motions of the hyperbolic space L.

Thus motions of the space L are projective transformations of the projective
space P(L) containing L and taking the quadratic form (x2) into itself. By what
we have said thus far, the definition of the interior of the light cone V can be written
in homogeneous coordinates in the form

x2
1 + · · · + x2

n − x2
n+1 < 0, (12.8)

and in inhomogeneous coordinates yi = xi/xn+1 in the form

y2
1 + · · · + y2

n < 1. (12.9)

We consider motions of a hyperbolic space as transformations of the set L, that is,
as transformations taking the interior of the unit sphere given by condition (12.9)
into itself.

Let us write down some simple properties of motions:

Property 12.1 The sequential application (composition) of two motions f1 and f2
(as transformations of the set L) is again a motion.

This follows at once from the fact that the composition of nonsingular transfor-
mations A1 and A2 is a nonsingular transformation, and this holds as well for the
corresponding projective transformations P(A1) and P(A2). Moreover, if A1 and
A2 are Lorentz transformations with respect to the bilinear form ϕ(x,y), then the
result of their composition has the same property.

Property 12.2 A motion is a bijection of L to itself.

This assertion follows from the fact that the corresponding transformations A :
L → L and P(A) : P(L) → P(L) are bijections. But by the definition of a hyperbolic
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space, it is also necessary to verify that every line contained in the interior of the light
cone V is the image of a similar such line. If we have the line 〈a〉 with a timelike
vector a, then we know already that there exists a vector b such that A(b) = a.
Since A is a Lorentz transformation of a pseudo-Euclidean space L, we have the
relationship (b2) = (A(b)2) = (a2) < 0, from which it follows that the vector b is
also timelike. Thus the transformation A takes the line 〈b〉 lying inside V into the
line 〈a〉, also inside V .

Property 12.3 Like every bijection, a motion f has an inverse transformation f −1.
It is also a motion.

The verification of this property is trivial.
At first glance, it is not obvious that there are “sufficiently many” motions of a

hyperbolic space. We shall establish this a bit later, but for now, we shall point out
some important types of motions.

A transformation g is of type (a) if g = P(A), where A is a Lorentz transforma-
tion of the space L such that A(en+1) = en+1.

Since the basis e1, . . . , en+1 of the pseudo-Euclidean space L is orthonormal, we
have the decomposition

L = 〈en+1〉 ⊕ 〈en+1〉⊥, 〈en+1〉⊥ = 〈e1, . . . , en〉, (12.10)

and all transformations A : L → L with the indicated property take the subspace
E0 = 〈e1, . . . , en〉 into itself.

Conversely, if we define A : L → L as an orthogonal transformation of the Eu-
clidean subspace E0 and set A(en+1) = en+1, then P(A) will of course be a mo-
tion of the hyperbolic space. In other words, these transformations can be described
as orthogonal transformations of inhomogeneous coordinates. All thus constructed
motions of the space L have the fixed point O corresponding to the line 〈en+1〉
in L, or in other words, the point O = (0, . . . ,0) in the inhomogeneous system of
coordinates (y1, . . . , yn).

From the point of view of hyperbolic space, the constructed motions precisely co-
incide with those motions that leave the point O ∈ L fixed. Indeed, as we have seen,
the point O corresponds to the line 〈en+1〉, and the motion g is equal to P(A), where
A is a Lorentz transformation of the space L. The condition g(O) = O means that
A(〈en+1〉) = 〈en+1〉, that is, A(en+1) = λen+1. From the fact that A is a Lorentz
transformation, it follows that λ = ±1. By multiplying A by ±1, which obviously
does not change the transformation g = P(A), we can obtain that the conditions
A(en+1) = en+1 are satisfied, whence by definition, it follows that g is a transfor-
mation of type (a).

Type (b) is connected with a certain line L1 ⊂ L of a hyperbolic space. By defini-
tion, the line L1 is determined by the plane L′ ⊂ L, dim L′ = 2. Since by assumption,
the plane L′ must contain at least one timelike vector x, it follows by Lemma 7.53
(p. 271) that it is a pseudo-Euclidean space. From formula (6.28) and Theorem 6.17
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(law of inertia), it follows that all such spaces of a given dimension are isomor-
phic. Therefore, we can choose a basis in L′ with any convenient Gram matrix, pro-
vided only that it defines a pseudo-Euclidean plane. We have seen (in Example 7.49,
p. 269) that it is convenient to choose as such a basis the lightlike vectors f 1,f 2,
for which

(
f 2

1

) = (
f 2

2

) = 0, (f 1,f 2) = 1

2
,

and this means that for every vector x = xf 1 + yf 2, its scalar square (x2) is equal
to xy. In Example 7.61 (p. 277), we found explicit formulas for the Lorentz trans-
formations of a pseudo-Euclidean plane in such a basis:

U(f 1) = αf 1, U(f 2) = α−1f 2 (12.11)

or

U(f 1) = αf 2, U(f 2) = α−1f 1, (12.12)

where α is an arbitrary nonzero number. In the sequel we shall need only transfor-
mations given by formula (12.11).

Since L′ is a nondegenerate space, it follows that by Theorem 6.9, we have the
decomposition L = L′ ⊕ (L′)⊥. Let us now define a linear transformation A of the
space L by the condition

A(x + y) = U(x) + y, where x ∈ L′,y ∈ (
L′)⊥

, (12.13)

where U is one of the Lorentz transformations of the pseudo-Euclidean plane L′
defined by formulas (12.11) and (12.12). It is clear that then A is a Lorentz trans-
formation of the space L.

A motion of type (b) of the space L is a transformation P(A) obtained in the
case that in formula (12.13), we take as U the transformation given by relation-
ships (12.11). All motions thus constructed have a fixed line L1 corresponding to
the plane L′.

It is quite obvious that motions of types (a) and (b) do not exhaust all motions of
the hyperbolic plane, even if in the definition of motions of type (b), as U in formula
(12.13) we were to use transformations U given not only by relationships (12.11),
but also by (12.12). For example, they certainly do not include motions associated
with Lorentz transformations that have a three-dimensional cyclic subspace (see
Corollary 7.66 and Example 7.67). However, for our further purposes, it will suffice
to use only motions of these two types.

Example 12.4 In the sequel we are going to require explicit formulas for transfor-
mations of type (b) in the case of the hyperbolic plane (that is, for n = 2). In this
case, L is a three-dimensional pseudo-Euclidean space, and in the orthonormal basis
e1, e2, e3, such that

(
e2

1

) = 1,
(
e2

2

) = 1,
(
e2

3

) = −1,
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the scalar square of the vector x = x1e1 + x2e2 + x3e3 is equal to (x2) = x2
1 +

x2
2 − x2

3 . The points of the hyperbolic plane L are contained in the affine plane
x3 = 1, have inhomogeneous coordinates x = x1/x3 and y = x2/x3, and satisfy the
relationship x2 + y2 < 1.

For writing the transformation A, let us consider the pseudo-Euclidean plane
L′ = 〈e1, e3〉 and let us choose in it a basis consisting of lightlike vectors f 1,f 2
associated with vectors e1, e3 by the relationships

f 1 = e1 + e3

2
, f 2 = e1 − e3

2
, (12.14)

from which we also obtain the inverse formulas e1 = f 1 + f 2 and e3 = f 1 − f 2.
Let us note that the orthogonal complement (L′)⊥ equals 〈e2〉, and by Theo-

rem 6.9, we have the decomposition L = L′ ⊕ 〈e2〉. Then in accord with formula
(12.13), for the vector z = x + y, where x ∈ L′ and y ∈ 〈e2〉, we obtain the value
A(z) = U(x) + y, where U : L′ → L′ is the Lorentz transformation defined in the
basis f 1,f 2 by formula (12.11). From this, taking into account expression (12.14),
we obtain

U(e1) = α + α−1

2
e1 + α − α−1

2
e3, U(e3) = α − α−1

2
e1 + α + α−1

2
e3.

Let us set

a = α + α−1

2
, b = α − α−1

2
. (12.15)

Then a + b = α and a2 − b2 = 1. It is obvious that any numbers a and b satisfying
these relationships can be defined in terms of the number α = a + b by formulas
(12.15). Therefore, we obtain the linear transformation A : L → L, for which

A(e1) = ae1 + be3, A(e2) = e2, A(e3) = be1 + ae3.

It is easy to see that for such a transformation, the vector x = x1e1 + x2e2 + x3e3 is
carried to the vector

A(x) = (ax1 + bx3)e1 + x2e2 + (bx1 + ax3)e3.

In inhomogeneous coordinates, x = x1/x3 and y = x2/x3. This means that a point
with coordinates (x, y) is carried to the point with coordinates (x′, y′), where

x′ = ax + b

bx + a
, y′ = y

bx + a
, a2 − b2 = 1. (12.16)

This particular type of motion yields, however, an important general property:

Theorem 12.5 For every pair of points of a hyperbolic space there exists a motion
taking one point into the other.
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Proof Let the first point correspond to the line 〈a〉, and the second to the line 〈b〉,
where a,b ∈ L. If the vectors a and b are proportional, that is, 〈a〉 = 〈b〉, then our
requirements will be satisfied by the identity transformation of the space L (which
can be obtained in the form P(E), where E is the identity transformation of the
space L).

But if 〈a〉 �= 〈b〉, that is, dim〈a,b〉 = 2, then let us set L′ = 〈a,b〉. Let us consider
the Lorentz transformation U : L′ → L′ of type (b) given by formula (12.11), the
corresponding Lorentz transformation A : L → L defined by formula (12.13), and
the projective transformation P(A) : P(L) → P(L).

Let us show that the constructed projective transformation P(A) takes a point
corresponding to the line 〈a〉 to a point corresponding to the line 〈b〉, that is, the
linear transformation A : L → L takes the line 〈a〉 to the line 〈b〉. Since vectors a
and b are contained in the plane L′, then by definition, it suffices for us to prove
that for an appropriate choice of number α, the transformation U : L′ → L′ given by
formula (12.11) takes the line 〈a〉 to the line 〈b〉.

This is easily verified by a simple calculation using the basis f 1,f 2, given by
formula (12.14), in the pseudo-Euclidean plane L′. Let us consider the timelike
vectors a = a1f 1 + a2f 2 and b = b1f 1 + b2f 2. Since in the chosen basis, the
scalar square of a vector is equal to the product of its coordinates, it follows that
(a2) = a1a2 < 0 and (b2) = b1b2 < 0. From this, it follows in particular that all
numbers a1, a2, b1, b2 are nonzero.

We obtain from formula (12.11) that U(a) = αa1f 1 + α−1a2f 2, and the condi-
tion 〈U(a)〉 = 〈b〉 means that U(a) = μb for some μ �= 0. This yields the relation-
ships αa1 = μb1 and α−1a2 = μb2, that is,

μ = αa1

b1
, a2 = αμb2 = α2a1b2

b1
, α2 = a2b1

a1b2
= a1a2b1b2

(a1b2)2
.

It is obvious that the latter relationship can be solved for a real number α if
a1a2b1b2 > 0, and this inequality is satisfied, since by assumption, a1a2 < 0 and
b1b2 < 0. �

Let us note that we have thus far not used motions of type (a). We shall need
them to strengthen the theorem we have just proved. To do so, we shall make use of
the notion of a flag, analogous to that introduced in Sect. 3.2 for real vector spaces.

Definition 12.6 A flag in a space L is a sequence of subspaces

L0 ⊂ L1 ⊂ · · · ⊂ Ln = L (12.17)

such that:

(a) dimLi = i for all i = 0,1, . . . , n;
(b) each pair of subspaces (Li+1,Li ) is directed.

A subspace Li is a hyperplane in Li+1, and as we have seen (see formula (12.5)),
it defines a partition Li+1 into two half-spaces: Li+1 \ Li = L

+
i+1 ∪ L

−
i+1. And as
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earlier, the pair (Li+1,Li ) is said to be directed if the order of the half-spaces is
indicated, for example by denoting them by L

+
i+1 and L

−
i+1. Let us note that in a

flag defined by the sequence (12.17), the subspace L0 has dimension 0, that is, it
consists of a single point. We shall call this point the center of the flag (12.17).

Theorem 12.7 For any two flags of a hyperbolic space, there exists a motion taking
the first flag to the second. Such a motion is unique.

Proof In the space L, let us consider two flags Φ and Φ ′ with centers at the points
P ∈ L and P ′ ∈ L, respectively. Let O ∈ L be the point corresponding to the line
〈en+1〉 in L, that is, the point with coordinates y1 = 0, . . . , yn = 0 in relationship
(12.4). By Theorem 12.5, there exist motions f and f ′ taking P to O and P ′ to O .
Then the flags f (Φ) and f ′(Φ ′) have their centers at the point O . Each flag is by
definition a sequence of subspaces (12.17) in L to which correspond the subspaces
of the vector space L. Thus to the flags f (Φ) and f ′(Φ ′) there correspond two
sequences of vector subspaces,

〈en+1〉 = L0 ⊂ L1 ⊂ · · · ⊂ Ln = L and 〈en+1〉 = L′
0 ⊂ L′

1 ⊂ · · · ⊂ L′
n = L,

where dim Li = dim L′
i = i + 1 for all i = 0,1, . . . , n.

Let us recall that the space L is identified with a part of the affine Euclidean space
E, namely with the interior of the unit sphere U ⊂ E given by relationship (12.4). To
investigate L as a part of E (see Fig. 12.1), it will be convenient for us to associate
with each subspace M ⊂ L containing the vector en+1, the affine subspace N ⊂ E

of dimension one less containing the point O . To this end, let us first associate
with each subspace M ⊂ L containing the vector en+1, the vector subspace N ⊂ M
determined by the decomposition M = 〈en+1〉 ⊕ N. Employing notation introduced
earlier, we obtain that

N = (〈en+1〉⊥ ∩ M
) = (〈e1, . . . , en〉 ∩ M

) ⊂ 〈e1, . . . , en〉 = E0,

that is, N is contained in the space of vectors of the affine space E. Consequently,
the vector subspace N ⊂ E0 determines a set of parallel affine subspaces in E that
are characterized by their spaces of vectors coinciding with N. Such affine subspaces
can be mapped to each other by a translation (see p. 296), and to determine one of
them uniquely, it suffices simply to designate a point contained in this subspace.
As such a point, we shall choose O . Then the vector subspace N ⊂ E0 uniquely
determines the affine subspace N ⊂ E, where clearly, dimN = dim N = dim M − 1.

Thus we have established a bijection between k-dimensional vector subspaces
M ⊂ L containing the vector en+1 and (k − 1)-dimensional affine subspaces N ⊂ E

containing the point O . Here clearly, the notions of directedness for the pair M′ ⊂ M
and N ′ ⊂ N coincide. In particular, flags f (Φ) and f ′(Φ ′) of the space L with
center O correspond to two particular flags of the affine Euclidean space E with
center at the point O .
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By Theorem 8.40 (p. 316), in an affine Euclidean space, there exists for every
pair of flags, a motion that takes the first flag to the second. Since in our case, both
flags have a common center O , it follows that this motion has the fixed point O ,
and by Theorem 8.39, it is an orthogonal transformation A of the Euclidean space
E0. Let us consider g = P(A), the motion of type (a) of the space L corresponding
to this orthogonal transformation A. Clearly, it takes the flag f (Φ) to f ′(Φ ′), that
is, gf (Φ) = f ′(Φ ′). From this, we obtain that f ′−1gf (Φ) = Φ ′, as asserted in the
theorem.

It remains to prove the assertion about uniqueness in the statement of the theo-
rem. Let f1 and f2 be two motions taking some flag Φ with center at the point P

to the same flag, that is, such that f1(Φ) = f2(Φ). Then f = f −1
1 f2 is a motion,

and f (Φ) = Φ . If we prove that f is the identity transformation, then the required
equality f1 = f2 will follow.

By Theorem 12.5, there exists a motion g taking the point P to O . Let us set Φ ′ =
g(Φ). Then Φ ′ is a flag with center at the point O . From the equalities f (Φ) = Φ

and g(Φ) = Φ ′ it follows that gfg−1(Φ ′) = Φ ′. Let us denote the motion gfg−1

by h. It clearly takes the flag Φ ′ to itself, and in particular, has the property that
h(O) = O . From what we said on p. 438, it follows that h is a motion of type (a),
that is, h = P(A), where A is a Lorentz transformation of the space L that in turn,
is determined by a certain orthogonal transformation U of the Euclidean space E0.

Let Φ ′′ be the flag in the Euclidean space E0 corresponding to the flag Φ ′ of the
space L. Then from the condition h(Φ ′) = Φ ′, it follows that U(Φ ′′) = Φ ′′, that
is, the transformation U takes the flag Φ ′′ to itself. Consequently (see p. 225), the
transformation U is the identity, which yields that the motion h that it defines is the
identity. From the relationship h = gfg−1, it then follows that gf = g, that is, f is
the identity transformation. �

Thus motions of a hyperbolic space possess the same property as that established
in Sect. 8.4 (p. 317) for motions of affine Euclidean spaces. It is this that explains
the special place of hyperbolic spaces in geometry. The Norwegian mathematician
Sophus Lie called this property “free mobility.” There exists a theorem (which we
shall not only not prove, but not even formulate precisely) showing that other than
the space of Euclid and the hyperbolic space of Lobachevsky, there is only one
space that exhibits this property, called a Riemann space (we shall have a bit to say
about this in Sect. 12.3). This assertion is called the Helmholtz–Lie theorem. For its
formulation, it would be necessary first of all to define just what we mean here by
“space,” but we are not going to delve into this.

The property that we have deduced (Theorem 12.7) suffices for discussing the
axiomatic foundations of hyperbolic geometry.

12.2 The Axioms of Plane Geometry*

Hyperbolic geometry arose historically as a result of the analysis of the axiomatic
systems of Euclidean geometry. The viewpoint toward geometry as based on a small
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number of postulates from which all the remaining results are derived by way of
formal proof arose in ancient Greece approximately in the sixth century B.C.E. Tra-
dition connects this viewpoint with the name Pythagoras. An account of geometry
with this point of view is contained in Euclid’s Elements (third century B.C.E.). This
point of view was accepted during the development of science in the modern era,
and for a long time, geometry was taught directly from Euclid’s books, and then
later, there appeared simplified accounts. Moreover, this same point of view came
to permeate all of mathematics and physics. In this spirit were written, for example,
Newton’s The Mathematical Principles of Natural Philosophy, known as the Prin-
cipia. In physics and generally in the natural sciences, “laws of nature” played the
role of axioms.

In mathematics, this direction of thought led to a more thorough working out of
the axiom system of Euclidean geometry. Euclid divides the assertions on which his
exposition is based into three types. One he calls “definitions”; another, “axioms”;
and the third, “postulates” (the principle separating the last two of these is unclear
to modern researchers). Many of his “definitions” also seem questionable. For ex-
ample, the following: “A line is a length without width” (definitions of “length”
and “width” are not given). Some “axioms” and “postulates” (we shall call all of
these axioms) are simple corollaries of others, so that they could as well have been
discarded. But what attracted the most attention was the “fifth postulate,” which in
Euclid is formulated thus:

That if a straight line falling on two straight lines makes the interior angles on the same side
less than two right angles, the two straight lines, if produced indefinitely, meet on that side
on which are the angles less than the two right angles.

This axiom differs from the others in that its formulation is notably more com-
plex. Therefore, the following question arose (probably already in antiquity): can
this assertion be proved as a theorem derived from the other axioms? An enormous
number of “proofs of the fifth postulate” appeared, in which, however, there was
always found a logical error. These investigations nevertheless helped in clarifying
the situation. For example, it was proved that in the context of the other axioms,
the fifth postulate is equivalent to the following assertion about parallel lines that is
now usually presented as this postulate: through every point A not lying on a line
a, it is possible to construct exactly one line b parallel to a (lines a and b are said
to be parallel if they do not intersect). Here the existence of a line b parallel to a

and passing through the point A can easily be proved. The entire content of the fifth
postulate is reduced to the assertion about its uniqueness.

Finally, at the beginning of the nineteenth century, a number of researchers, one
of whom was Nikolai Ivanovich Lobachevsky (1792–1856), came up with the idea
that a proof of the fifth postulate is impossible, and so its negation leads to a new
geometry, logically no less perfect than the geometry of Euclid, even though it con-
tains in some respects some unusual propositions and relationships.

The question could be posed more precisely as a result of the development of the
axiomatic method. This was done by Moritz Pasch (1843–1930), Giuseppe Peano
(1858–1932), and David Hilbert (1862–1943) at the end of the nineteenth century.
In his work on the foundations of geometry, Hilbert formulated in particular the
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principles on which an axiomatic system is constructed. Today, such an approach
has become commonplace; we used it to define vectors and Euclidean spaces. The
general principle consists in fixing a certain set of objects, which remain undefined
(for example, in the case of the definition of a vector space, these were scalars and
vectors), and also in fixing certain relations that are to exist among these objects,
which are likewise undefined (in the case of the definition of a vector space, these
were addition of vectors and multiplication of a vector by a scalar). Finally, axioms
are introduced that establish the specific properties of the introduced concepts (in the
case of the definition of a vector space, these were enumerated in Sect. 3.1). With
such a formulation, there remains only the question of consistency of the theory,
that is, whether it is possible from the given axioms to derive simultaneously some
statement as well as its negation. In the sequel, we shall introduce an axiom system
for hyperbolic geometry (restriction to the case of dimension 2) and discuss the
question of its consistency.

Let us begin with a discussion of axioms. The lists of axioms that Hilbert and
his predecessors introduced in their early work turned out to possess certain logi-
cal defects. For example, in deduction, it turned out to be necessary to use certain
assertions that were not contained among the axioms. Hilbert then supplemented
his system of axioms. Later, this system of axioms was simplified for the sake of
clarity. We shall use the axiom system proposed by the German geometer Friedrich
Schur (1856–1932).1 Here we shall restrict our attention (exclusively for the sake of
brevity) to the axiomatics of the plane.

A plane is a certain set Π , whose elements A,B , and so on, are called points.
Certain bijective mappings f : Π → Π are called motions. These are the fundamen-
tal objects. The relationships among them are expressed as follows:

(A) Certain distinguished subsets l, l′, and so on, of the set Π are called lines. That
an element A ∈ Π belongs to the subset l is expressed by saying that “the point
A lies on the line l” or “the line l passes through the point A.”

(B) For three given points A,B,C lying on a given line l, it is specified when the
point C is considered to lie between the points A and B . This must be specified
for every line l and for every three points lying on it.

These objects and relations satisfy the conditions called axioms, which it is con-
venient to collect into several groups:

I. Axioms of relationship
1. For every two points, there exists a line passing through them.
2. If these points are distinct, then such a line is unique.
3. On every line there lie at least two points.
4. For every line, there exists a point not lying on it.

II. Axioms of order
1. If on some line l, the point C lies between points A and B , then it is distinct

from them and also lies between points B and A.

1Here we shall follow the ideas of Boris Nikolaevich Delaunay, or Delone (1890–1980), in his
pamphlet Elementary Proof of the Consistency of Hyperbolic Geometry, 1956.
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Fig. 12.3 Intersection of the
sides of a triangle by a line

2. If A and C are two distinct points on some line, then on this line there is at
least one point B such that C lies between points A and B .

3. Among three points A, B , and C lying on a given line, not more than one of
the points lies between the two others.

Before formulating the last axiom of this group, let us give some new definitions.
The set of all points C on a given line l passing through the points A and B that
lie between them (including the points A and B themselves) is called a segment
with endpoints A and B , and is denoted by [A,B]. Axiom 2 of group II can be
reformulated thus: [A,C] �= l \ (A ∪ C), with the inequality here being understood
as an inequality of sets. That a segment [A,B] contains points other than A and B

is proved on the basis of the axioms of group I and the last axiom of group II, to
the formulation of which we now turn. Three points A,B,C not all lying on any
one line are called a triangle, and this relationship is denoted by [A,B,C]. The
segments [A,B], [B,C], and [C,A] are called the sides of the triangle [A,B,C].
4. Pasch’s axiom. If points A,B,C do not all lie on the same line, none of them

belong to the line l, and the line l intersects one side of the triangle [A,B,C],
then it also intersects another side of the triangle.

In other words, if a line l has a point D in common with the line l′ passing
through points A and B , with D lying between A and B on l′, then the line l either
has a common point E with the line l1 passing through B and C, with E lying
between them on l1, or has a common point F with the line l2 passing through A

and C, with F lying between them on l2. The two cases discussed in this last axiom
are depicted in Fig. 12.3.

III. Axioms of motion
1. For every motion f , the inverse mapping f −1 (which exists by the definition

of a motion as a bijective mapping of the set Π ) is also a motion.
2. The composition of two motions is a motion.
3. A motion preserves the order of points. That is, a motion f takes a line l to

a line f (l), and if the point C on the line l lies between points A and B on
this line, then the point f (C) of the line f (l) lies between points f (A) and
f (B).
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The formulation of the fourth axiom of motion requires certain results that can be
obtained as corollaries of the axioms of relationship and order. We shall not prove
these here, but let us give only the formulations.2

Let us begin with properties of lines. Let us choose a point O on a line l. Points
A and B on this same line, both of them different from O , are said to line on one
side of O if O does not lie between A and B . If we select some point A different
from O , then points B different from O and lying together with A on one side of O

form a subset of the set of points of the line l called a half-line and denoted by l+.
It can be proved that if we choose in this subset another point A′, then the half-line
formed with it will be the same as before. Here what is important is only the choice
of the point O . If we choose a point A1 such that O lies between A and A1, then
the point A1 determines another half-line, denoted by l−. The half-lines l+ and l−
determined by the points A and A1 do not intersect, and their union is l \ O , that is,
l+ ∩ l− = ∅ and l+ ∪ l− = l \ O .

One can verify analogous properties for a line l in the plane Π . Let us consider
two points A and B that do not belong to the line l. One says that they lie on one
side of l if either the line l′ passing through them does not intersect the line l, or the
lines l and l′ intersect in a point C that does not lie between points A and B of the
line l′. The set of points not lying on the line l and lying on the same side of l as the
point A is called a half-plane. Again, it is possible to prove that with the choice of
another point A′ instead of A in this half-plane, we define the same set. There exist
two points A and A′ that do not belong to the same half-plane. However we select
these points (given a fixed line l), we will always obtain two subsets Π+ and Π−
of the plane Π such that Π+ ∩ Π− = ∅ and Π+ ∪ Π− = Π \ l.

Suppose we are given a point O and a line l passing through it. If in the partition
of l \ O into two half-lines, one of them is distinguished, and in the partition Π \ l

into two half-planes, one of them is distinguished (for example, let us denote them
by l+ and Π+, respectively), then the pair (O, l) is called a flag and is denoted
by Φ . As follows from what was discussed in Sect. 12.1, this is a special case (for
n = 2) of the notion of a flag introduced earlier.

Every motion takes a flag to a flag, that is, if f is a motion and Φ is the flag
(O, l), then the sets f (l)+ and f (l)−, whose union is f (l) \ f (O), coincide with
f (l+) and f (l−), where l+ and l− are the half-lines on the line l determined by
the point O . Here their order can change. Analogously, a pair of half-planes f (Π)+
and f (Π)− defined by the line f (l) coincide with the pair f (Π+) and f (Π−),
where Π+ and Π− are the half-planes determined by the line l. Their order also
can change.

We can now formulate the last (fourth) axiom of motion:

4. Axiom of free mobility. For any two flags Φ and Φ ′, there exists a motion f

taking the first flag to the second, that is, f (Φ) = Φ ′. Such a motion is unique,
and it is uniquely determined by the flags Φ and Φ ′.

2Some of these are proved in first courses in geometry, and in any case, elementary proofs of all of
these results can be found in Chap. 2 of the book Higher Geometry, by N.V. Efimov (Mir, 1953).
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IV. Axiom of continuity
1. Let a set of points of some line l be represented arbitrarily as the union of

two sets M1 and M2, where no point of the set M1 lies between two points
of the set M2, and conversely. Then there exists a point O on the line l such
that M1 and M2 coincide with the half-lines of l determined by the point O ,
to either of which the point O can be joined.

This axiom is also called Dedekind’s axiom.
Axioms I–IV that we have presented are called axioms of “absolute geometry.”

They hold for both Euclidean and hyperbolic geometry. These two geometries are
distinguished by the addition of one axiom that deals with parallel lines. Let us
recall that parallel lines are lines having no points in common. Thus in both cases,
one more axiom is added:

V. Axiom of parallel lines

1. In Euclidean geometry: For every line l and every point A not lying on it,
there exists at most one line l′ passing through the point A and parallel to l.

1′. In hyperbolic geometry: For every line l and every point A not lying on it,
there exist at least two distinct lines l′ and l′′ parallel to l.

The justified interest in precisely these two axioms is due to the fact that already
in absolute geometry (that is, with only the axioms from groups I–IV), it is possible
to prove that for every line l and every point A not on l, there exists at least one line
l′ passing through A and parallel to l.

It is now possible to formulate more precisely the goal that mathematics set for
itself in the attempt to “prove the fifth postulate,” that is, to derive assertion 1 in
group V of axioms from axioms in groups I–IV. But Lobachevsky (and other re-
searchers of the same epoch) came to the conclusion that this was impossible, and
this meant that the system comprising groups I–IV and axiom 1′ was consistent.

Strictly speaking, we could have posed such questions even earlier, in connection
with any of the theories that we encountered based on some system of axioms,
such as the theory of vector spaces or that of Euclidean spaces. The question of the
consistency of the concepts of vector spaces or Euclidean spaces is easily answered:
it suffices to show (in the case of real spaces) examples of vector spaces over Rn of
any finite dimension or Euclidean spaces with inner product (x,y) = x1y1 + · · · +
xnyn. Of course, this assumes the construction and proof of the consistency of the
theory of the real numbers, but that lies outside the scope of our investigation, and
we shall not consider it here. However, assuming as given that the properties of real
numbers are defined and do not raise any doubts, we may, for example, say that if
the system of axioms of a real vector space given in Sect. 3.1 were inconsistent, then
we would be able to derive two mutually contradictory assertions about the space
R

n. However, any assertion about the space R
n can be reduced by definition to an

assertion about the real numbers, and then we would obtain a contradiction in the
domain of real numbers.

The same question could be posed in relationship to Euclidean geometry, that
is, with respect to the system of axioms consisting of axioms of groups I–IV and
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axiom 1 of group V. Here the answer is in fact already known, since we have con-
structed the theory of affine Euclidean spaces (even in arbitrary dimension n). It is
easily ascertained that for n = 2, all the axioms of Euclidean geometry that we in-
troduced are satisfied. Some refinements are perhaps necessary only in connection
with the axioms of order.

These axioms do not require an inner product on the space and are formulated
for an arbitrary real affine space V in Sect. 8.2. All the assertions constituting the
axioms of order now follow directly from the properties of order of the real num-
bers, except only Pasch’s axiom. Its idea is that if a line “enters” a triangle, then it
must “exit” from it. Intuitively, this is quite convincing, but with our approach, we
must derive this assertion from the properties of affine spaces. It is a very simple
argument, whose details we leave to the reader.

Specifically, by what is given, points A and B (we shall use the same notation
as in the formulation of the axioms) lie in different half-planes into which the line
l divides the plane Π . Everything depends on the half-plane to which the point C

belongs: to the same one as A, or to the same one as B . In the first case, the line l

has a common point with the line l2, which lies on it between B and C, while in the
second case, the common point is with the line l1, which lies between A and C; see
Fig. 12.3. In each of these two cases, the assertion of Pasch’s axiom is easy to verify
if we recall the definitions.

We in fact checked in one form or another that the remaining axioms are satisfied
even as assertions that relate to arbitrary dimension.

We shall now turn to the axioms of hyperbolic geometry, that is, the axioms of
groups I–IV and axiom 1′ of group V. We shall prove that they are consistent, based
on the consistency of the usual properties (which likewise are easily reduced to
certain axioms) of the set of real numbers R and based on the theory of Euclidean
spaces of dimension 2 and 3 constructed on this basis. On this foundation, we shall
prove the following result.

Theorem 12.8 The system of axioms of hyperbolic geometry is consistent.

Proof We shall consider in the Euclidean plane L the open disk K (given, for exam-
ple, in some coordinate system by the condition x2 + y2 < 1). We shall call the set
of its points a “plane” (denoted by Π ), and we shall call “points” only the points of
this disk. The intersection of every line l of the plane L with the disk K that has at
least one point in common with this disk is the interior of some segment (this was
proved in the previous section). We shall call such nonempty intersections l ∩ K

“lines,” denoted by l, l
′
, and so on. Finally, we shall call a projective transformation

of the plane L taking the disk K into itself a “motion.”
Since the definition of projective transformation assumes a study of the projec-

tive plane, and a projective space of dimension n and its projective transformations
were defined in Chap. 9 in terms of a vector space of dimension n + 1, it follows
that for the analysis of the hyperbolic plane, we must use here a notion connected
with a three-dimensional vector space. However, it would not be difficult to give a
formulation appealing only to properties of the Euclidean plane.
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Fig. 12.4 “Lines” and
“points” of the hyperbolic
plane

Now let us define the fundamental relationships between “lines” and “points.”
That a “line” l passes through a “point” A ∈ Π will be understood to mean the
condition that the line l passes through the point A. Thus an arbitrary “line” l is the
set of “points” that lie on it. Let “points” A,B,C lie on the “line” l. We shall say
that a “point” C lies between “points” A and B if such is the case for A, B , and C as
points on the Euclidean line l that contains l (this makes sense, since l is contained
in Euclidean space).

It remains to verify that the notions and relationships presented satisfy the axioms
of hyperbolic geometry, that is, the axioms of groups I–IV and axiom 1′ of group V.
The verification of this for the axioms of groups I, II, and IV is trivial, since the
corresponding objects and relationships are defined exactly as in the surrounding
Euclidean plane. For the axioms of group III (axioms of motion), the required prop-
erties were proved in the previous section (indeed, for the case of a space of arbitrary
dimension n). It remains only to consider axiom 1′ of group V.

Let l be the “line” associated with the line l in the Euclidean plane L. Then the
line l intersects the boundary S of the disk K in two different points: P ′ and P ′′.
Let A be a “point” of the “plane” Π (that is, a point of the disk K) not lying on
the line l. By the axioms of Euclidean geometry, through the points A and P ′ in
the plane L, there passes some line l′. It determines the “line” l

′ = l′ ∩ K of the
“plane” Π . Similarly, the point P ′′ determines the “line” l

′′ = l′′ ∩K ; see Fig. 12.4.
The lines l′ and l′′ are distinct, since they pass through different points P ′ and

P ′′ of the plane L. Therefore, by the axioms of Euclidean geometry, they have no
common points other than A. But the “lines” l

′
and l

′′
, as nonempty segments of

Euclidean lines excluding the endpoints, contain infinitely many points and in par-
ticular, the “points” B ′ ∈ l

′
and B ′′ ∈ l

′′
, with B ′ �= B ′′. This means that the “lines”

l
′
and l

′′
are distinct. On the other hand, in the sense of our definitions, both of them

are parallel to the “line” l, that is, they have no common “points” with it (points
of the disk K). For example, the line l′ has with l the common point P ′ in the Eu-
clidean plane L, which means that by the axioms of Euclidean geometry, they have
no other common points, and in particular, no common points in the disk K .

We see that assertion 1′ holds for every “line” l ⊂ Π and every “point” A /∈ l.
Let us now assume that from the axioms of hyperbolic geometry there could be
derived an inconsistency (that is, some assertion and its negation). Then we could
apply the same reasoning to the notions that earlier, with the proof of Theorem 12.8,
we wrote in quotation marks: “point,” “plane,” “line,” and “motion.” Since they,
as we have seen, satisfy all the axioms of hyperbolic geometry, we would again
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arrive at a contradiction. But the notions “plane,” “line,” and “motion,” and also
the relationship “lies between” for three points on a line were defined in terms of
Euclidean geometry. Thus we would arrive at a contradiction to Euclidean geometry
itself. �

Let us focus attention on this fine logical construction: we construct objects in
some domain that satisfy a certain system of axioms, and thus we prove the con-
sistency of this system if the consistency of the domain from which the necessary
objects are taken has been accepted. Today, one says that a model of this axiom
system has thereby been constructed in another domain. In particular, we earlier
constructed a model of hyperbolic geometry in the theory of vector spaces. Only by
constructing such a model was the question of the provability of the “fifth postulate”
decided in mathematics.

In conclusion, it is of interest to dwell a bit on the history of this question. In-
dependent of Lobachevsky, a number of researchers came to the conclusion that a
negation of the “fifth postulate” leads to a meaningful and consistent branch of math-
ematics, a “new geometry,” eventually given the designation “non-Euclidean geom-
etry.” There is no question here of priority. All the researchers clearly worked inde-
pendently of one another (Gauss’s correspondence from the 1820s, Lobachevsky’s
publication of 1829, and János Bolyai’s of 1832). Most of these who became known
later were amateurs, not professional mathematicians. But there were some excep-
tions: outside of Lobachevsky, there was the greatest mathematician of that epoch—
Gauss. The majority of such researchers known to us who clearly arrived at the
same conclusions independently became known precisely because of their corre-
spondence with Gauss, which was published along with other of Gauss’s papers
after his death. It is clear from these publications that in his youth, Gauss had at-
tempted to prove the fifth postulate, but later concluded that there existed a meaning-
ful and consistent geometry that did not include this postulate. In his letters, Gauss
discussed the similar views of his correspondents with great interest.

He clearly received the work of Lobachevsky with sympathetic understand-
ing when it began to appear in translation, and on Gauss’s recommendation,
Lobachevsky was elected a member of the Göttingen Academy of Sciences.

In one of Gauss’s diaries can be seen the name Nikolai Ivanovich Lobachevsky,
written in Cyrillic letters:

N I K O L A � I V A N O V I Q L O B A Q E V S K I �

But it is surprising that Gauss himself, throughout his entire life, published not a
line on this subject. Why was that? The usual explanation is that Gauss was afraid
of not being understood. Indeed, in one letter in which he touched on the question
of the “fifth postulate” and non-Euclidean geometry, he wrote, “since I fear the
clamor of the Boeotians.” But it seems that this cannot be the full explanation of
his mysterious silence. In his other works, Gauss did not fear being misunderstood
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by his readers.3 It is possible, however, that there is another explanation for Gauss’s
silence. He was one of the few who realized that however many interesting theorems
of non-Euclidean geometry might be deduced, this would prove nothing definitively;
there would always remain the theoretical possibility that future derivations would
yield a contradictory assertion. And perhaps Gauss understood (or sensed) that at
the time (first half of the nineteenth century), the mathematical concepts had not yet
been developed to pose and solve this question rigorously.

Apparently, Lobachevsky was among the small number of mathematicians in
addition to Gauss who understood this. For him, as with Gauss, there stood the
question of “incomprehensibility.” First of all, for Lobachevsky, there was the lack
of comprehension among Russian mathematicians, especially analysts, who totally
failed to accept his work. In any case, he constantly attempted to find a consistent
foundation for his geometry. For example, he discovered its striking parallel with
spherical geometry and expressed the idea that it was the “geometry of the sphere
with imaginary radius.” His geometry could indeed have been realized in the form
of some other model if the very notion of model had been sufficiently developed at
that time.

Beyond this (as noted by the French mathematician André Weil (1906–1998)),
here we have the simplest case of duality between compact and noncompact sym-
metric spaces, discovered in the twentieth century by Élie Cartan.

Moreover, Lobachevsky proved that in three-dimensional hyperbolic space, there
is a surface (called today a horosphere) such that if we consider only the set of its
points and take as lines the curves of a specific type lying on it (called today horo-
cycles), then all the axioms of Euclidean geometry are satisfied. From this it follows
that if hyperbolic geometry is consistent, then Euclidean geometry is also consistent.
Even if we accept the hypothesis that the “fifth postulate” does not hold, Euclidean
geometry is still realized on the horosphere. Thus in principle, Lobachevsky came
very close to the concept of a model. But he did not succeed in constructing a model
of hyperbolic geometry in the framework of Euclidean geometry. Such a construc-
tion was not easily granted to mathematicians.

The following paragraph offers only a hint, and not a precise formulation, of the
corresponding assertions.

First, in 1868, Eugenio Beltrami (1835–1899) constructed in three-dimensional
Euclidean space a certain surface called a pseudosphere or Beltrami surface, whose
Gaussian curvature (see the definition on p. 265) at every point is the same nega-
tive number. Hyperbolic geometry can be realized on the pseudosphere, where the
role of lines is played by so-called geodesic lines.4 However, here we are talking
about only a piece of the pseudosphere and a piece of the hyperbolic plane. Here the
posing of the question must be radically changed, since the majority of the axioms
that we have given assume (as in, for example, Euclidean geometry) the possibility

3For example, his first published book, Disquisitiones Arithmeticae, was considered for a long time
to be quite inaccessible.
4More about this can be found, for example, in the book A Course of Differential Geometry and
Topology, by A. Mishchenko and A. Fomenko (Mir, 1988).
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of continuing lines to infinity. The coincidence of two bounded pieces is under-
stood in the sense of the coincidence of the measures of lengths and angles, about
which, in the case of hyperbolic geometry, more will be said in the following sec-
tion. Moreover, Hilbert later proved that the hyperbolic plane cannot in this sense
be completely identified with any surface in three-dimensional space (much later it
was proved that it is possible for some surface in five-dimensional space).

The model of hyperbolic geometry that we gave for the proof of Theorem 12.8
was constructed by Felix Klein (1849–1925) in 1870. The history of its appearance
was also astounding. Formally speaking, this model was constructed in 1859 by the
English mathematician Arthur Cayley (1821–1895). But he considered it only as a
certain construction in projective geometry and apparently did not notice the con-
nection with non-Euclidean geometry. In 1869, the young (twenty-year-old) Klein
became acquainted with his work. He recalled that in 1870, he gave a talk on the
work of Cayley at the seminar of the famous mathematician Weierstrass, and, as he
writes, “I finished with a question whether there might exist a connection between
the ideas of Cayley and Lobachevsky. I was given the answer that these two sys-
tems were conceptually widely separated.” As Klein puts it, “I allowed myself to
be convinced by these objections and put aside this already mature idea.” However,
in 1871, he returned to this idea, formulated it mathematically, and published it.
But then his work was not understood by many. In particular, Cayley himself was
convinced as long as he lived that there was some logical error involved. Only after
several years were these ideas fully understood by mathematicians.

Of course, one can ask not only about the existence of Euclidean and hyperbolic
geometries, but also about a number of different (in a certain sense) geometries.
Here we shall formulate only the results that are relevant to the current discussion.5

First of all, we must give a precise sense to what we mean by “different” or
“identical” geometries. This can be done with the help of the notion of isomorphism
of geometries, which is analogous to the notion of isomorphism of vector spaces
introduced earlier. Within the framework of a system of axioms used in this section,
this can be done as follows. Let Π and Π ′ be two planes satisfying the axioms of
groups I–IV, and let G and G′ be sets of motions of the respective planes. Mappings
ϕ : Π → Π ′ and ψ : G → G′ define an isomorphism (ϕ,ψ) of these geometries if
the following conditions are satisfied:

(1) Both mappings ϕ and ψ are bijections.
(2) The mapping ϕ takes every line l in the plane Π to some line ϕ(l) in the

plane Π ′.
(3) The mapping ϕ preserves the relationship “lies between.” This means that if

points A, B , and C lie on the line l, with C lying between A and B , then the
point ϕ(C) lies between ϕ(A) and ϕ(B) on the line ϕ(l).

(4) The mappings ϕ and ψ agree in the following sense: for every motion f ∈ G,
its image ψ(f ) is equal to ϕf ϕ−1. This means that for every point A ∈ Π , the
equality (ψ(f ))(ϕ(A)) = ϕ(f (A)) holds.

5Their proofs are given in every course in higher geometry, for example, in the book Higher Ge-
ometry, by N.V. Efimov, mentioned earlier.
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(5) For every motion f ∈ G, the equality ψ(f −1) = ψ(f )−1 holds, and for every
pair of motions f1, f2 ∈ G, we have ψ(f1f2) = ψ(f1)ψ(f2).

Let us note that some of these conditions can be derived from the others, but for
brevity, we shall not do this.

We shall consider geometries up to isomorphism as just described, that is, we
shall consider two geometries the same if there exists an isomorphism between
them. In particular, geometries with respective axioms 1 and 1′ in group V are
clearly not isomorphic to each other, that is, they are two different geometries. From
this point of view, geometries (in the plane) satisfying axioms 1 and 1′ are funda-
mentally different from each other. Namely, it has been proved that all geometries
satisfying axiom 1 in group V are isomorphic.6 But geometries that satisfy axiom
1′ in group V are characterized up to isomorphism by a certain real number c called
their curvature. This number is usually assumed to be negative, and then it can take
on any value c < 0.

Klein suggested that Euclidean geometry can be viewed as the limiting case of
hyperbolic geometry as the curvature c approaches zero.7 As Klein further observed,
if axiom 1 (of Euclid) is satisfied in our world, then we shall never know it. Since
every physical measurement is taken with a certain degree of error, to establish the
precise equality c = 0 is impossible, for there always remains the possibility that the
number c is less than zero, but it is so small in absolute value that it lies beyond the
limits of our measurements.

12.3 Some Formulas of Hyperbolic Geometry*

First of all, we shall define the distance between points in the hyperbolic plane using
its definition as the set of points of the projective plane P(L) corresponding to the
lines of the three-dimensional pseudo-Euclidean space L lying within the light cone
and its interpretation as the set of points on the unit circle U in the affine Euclidean
plane E; see Sect. 12.1.

The meaning of the notion of distance is that it should be preserved under mo-
tions of the hyperbolic plane. But we have defined a motion as a certain special
projective transformation P(A) of the projective plane P(L). Theorem 9.16 shows
that in general, it is impossible to associate a number that does not change under
an arbitrary projective transformation not only with two points, but even with three
points of the projective line. But we shall use the fact that motions of the hyperbolic
plane are not arbitrary projective transformations P(L), but only those that take the
light cone in the space L into itself.

Namely, to two arbitrary points A and B correspond the lines 〈a〉 and 〈b〉, lying
inside the light cone. We shall show that they determine two additional points, P

6Of course, here we are assuming that they all satisfy the axioms of groups I–IV.
7Felix Klein. Nicht-Euklidische Geometrie, Göttingen, 1893. Reprinted by AMS Chelsea, 2000.
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Fig. 12.5 The segment [PQ]

and Q, that correspond to lines lying on the light cone. But four points of a projec-
tive space lying on a line already determine a number that does not change under
arbitrary projective transformations, namely their cross ratio (defined in Sect. 9.3).
We shall use this number for defining the distance between points A and B . This
definition has the special feature that it uses points corresponding to lines lying on
the light cone (P and Q), which are thus not points of the hyperbolic plane.

We shall assume that the points A and B are distinct (if they coincide, then the
distance between them is zero by definition). This means that the vectors a and b are
linearly independent. It is obvious that then a unique projective line l passes through
these points; it corresponds to the plane L′ = 〈a,b〉. The line l determines a line l′
in the affine Euclidean space E, depicted in Figs. 12.1 and 12.2. Since the line l′
contains the points A and B , which lie inside the circle U , it intersects its boundary
in two points, which we shall take as P and Q. This was in fact already proved in
Sect. 12.1, but we shall now repeat the corresponding argument.

The points of l are the lines 〈x〉 consisting of all vectors proportional to the
vectors x = −→

OA + t
−→
AB , where t is an arbitrary real number. Here the vector

−→
OA

equals a, and the vector
−→
AB = c belongs to the subspace E0 if we assume that the

points A,B and the line l lie in the affine space E. This means that x = a + tc,
where the vector c can be taken as fixed, and the number t as variable. Points x at
the intersection of the line l′ with the light cone V ⊂ L are given by the condition
(x2) = 0, that is,

(
(a + tc)2) = (

a2) + 2(a, c)t + (
c2)t2 = 0. (12.18)

We know that (a2) < 0, and the vector c belongs to E0. Since E0 is a Euclidean
space and the points A and B are distinct, it follows that (c2) > 0. From this it
follows that the quadratic equation (12.18) in the unknown t has two real roots t1
and t2 of opposite signs. Suppose for the sake of definiteness that t1 < t2. Then
for t1 < t < t2, the value of ((a + tc)2) is negative, and all points of the line l′
corresponding to the values t in this interval belong to L. We see that the line l

intersects the light cone V in two points corresponding to the values t = t1 and
t = t2, while the values t1 < t < t2 are associated with the points of the line L1

(that is, one-dimensional hyperbolic space) passing through A and B . Thus the line
L1 coincides with the line segment l ⊂ E whose endpoints are P and Q, which
correspond to the values t = t1 and t = t2; see Fig. 12.5.

It is clear that point A is contained in the interval (P,Q). Applying the same
argument to the point B , we obtain that the point B is also in the interval (P,Q).

Let us label the points P and Q in such a way that P will denote the endpoint of
the interval (P,Q) that is closer (in the sense of Euclidean distance) to the point A,
and by Q the endpoint that is closer to B , as depicted in Fig. 12.5.
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Now it is possible to give a definition of the distance between points A and B ,
which we shall denote by r(A,B):

r(A,B) = log DV(A,B,Q,P ), (12.19)

where DV(A,B,Q,P ) is the cross ratio (see p. 337). Let us note that in the defi-
nition (12.19), we have not indicated the base of the logarithm. We could take any
base greater than 1, since a change in base results simply in multiplying all distances
by some fixed positive constant. But in any case, the length of a segment AB can be
defined only up to a multiplicative factor that corresponds to the arbitrariness in the
selection of a unit length on a line.

We shall explain a bit later why the logarithm appears in definition (12.19). The
reason for using the cross ratio is explained by the following theorem.

Theorem 12.9 The distance r(A,B) does not change under any motion f of the
hyperbolic plane, that is, r(f (A),f (B)) = r(A,B).

Proof The assertion of the theorem follows at once from the fact that a motion f of
the hyperbolic plane is determined by a certain projective transformation P(A). This
transformation P(A) carries the line l′ passing through points A and B to the line
passing through the points P(A)(A) and P(A)(B). This means that the transforma-
tion takes the points P and Q, the intersection of the line l′ with the boundary of the
disk U , to the points P ′ and Q′, the intersection of the line P(A)(l′) with this bound-
ary. That is, P ′ = P(A)(P ) and Q′ = P(A)(Q), or conversely, Q′ = P(A)(P ) and
P ′ = P(A)(Q). Moreover, the transformation P(A) preserves the cross ratio of four
points on a line (Theorem 9.17). �

To explain the role of the cross ratio, we jumped a bit ahead and skipped the
verification that the argument of the logarithm in formula (12.19) was a number
greater than 1 and also that in the definition of r(A,B), all the conditions entering
into the definition of a distance (p. xvii) were satisfied. We now return to this.

Let us assume that the points P,A,B,Q are arranged in the order shown in
Fig. 12.5. For the cross product, we may use formula (9.28),

DV(A,B,Q,P ) = |AQ| · |PB|
|BQ| · |PA| > 1, (12.20)

since clearly, |AQ| > |BQ| and |PB| > |PA|. Therefore, the argument of the loga-
rithm in formula (12.19) is a number greater than 1, and so the logarithm is a positive
real number. Therefore, r(A,B) > 0 for all pairs of distinct points A and B .

Let us note that it would be possible to make do without the order of the points P

and Q that we chose. For this, it would be sufficient to verify (this follows directly
from the definition of the cross ratio) that under a transposition of the points P and
Q, the cross ratio d is converted into 1/d . Thus the logarithm (12.19) that gives the
distance is defined up to sign, and we can define the distance as the absolute value.
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If we interchange the positions of A and B , then the points P and Q defined in
the agreed-upon way also exchange places. It is easy to verify that the cross ratio
determines a distance according to formula (12.19) that will not change. In other
words, we have the equality

r(B,A) = r(A,B). (12.21)

For any third point C collinear with A and B and lying between them, the con-
dition

r(A,B) = r(A,C) + r(C,B) (12.22)

is satisfied. It follows from the fact that (in the notation we have adopted)

DV(A,B,Q,P ) = |AQ| · |BP |
|BQ| · |AP | = DV(A,C,Q,P ) · DV(C,B,Q,P ), (12.23)

since

DV(A,C,Q,P ) = |AQ| · |CP |
|CQ| · |AP | , DV(C,B,Q,P ) = |CQ| · |BP |

|BQ| · |CP | . (12.24)

For the verification, it remains only to substitute the expressions (12.24) into for-
mula (12.23).

In any sufficiently complete course in geometry, it is proved without using the
parallel postulate (that is, in the framework of “absolute geometry”) that there exists
a function r(A,B) of a pair of points A and B that satisfies the following condi-
tions:

1. r(A,B) > 0 if A �= B , and r(A,B) = 0 if A = B;
2. r(B,A) = r(A,B) for all points A and B;
3. r(A,B) = r(A,C)+ r(C,B) for every point C collinear with A and B and lying

between them;

and most importantly,

4. the function r(A,B) is invariant under motions.

Using the definitions given at the beginning of this book, we may say in short that
r(A,B) is a metric on the set of points in the plane under consideration and motions
are isometries of this metric space.

Such a function is unique if we fix two distinct points A0 and B0 for which
r(A0,B0) = 1 (“unit of measurement”). This means that these assertions also hold
in hyperbolic geometry, and formula (12.19) defines this distance (and the base of
the logarithm in (12.19) is chosen in correspondence with the chosen “unit of mea-
surement”).

Every triple of points A,B,C satisfies the condition

r(A,B) ≤ r(A,C) + r(B,C). (12.25)



458 12 Hyperbolic Geometry

Fig. 12.6 The triangle
inequality

This is the familiar triangle inequality, and in many courses in geometry, it is derived
without use of the parallel postulate, that is, as a theorem of “absolute geometry.”
Thus inequality (12.25) holds as well in hyperbolic geometry. But we shall now give
a direct (that is, resting directly on formula (12.19)) proof of this due to Hilbert.

Let us recall that in the model that we have considered, the points of the hyper-
bolic plane are points of the disk K in the Euclidean plane L, and the lines of the
hyperbolic plane are the line segments of the plane L that lie inside the disk K .

Let us consider three points A,B,C in the disk K . We shall denote the points
of intersection of a line passing through A and B with the boundary of the disk K

by P and Q, and the analogous points for the line passing through A and C will be
denoted by U and V , and for the line passing through B and C, by S and T . See
Fig. 12.6.

Let us denote the point of intersection of the line AB and the line SU by X, and
the point of intersection of the line AB and the line T V by Y . Then we have the
inequality

DV(A,B,Y,X) ≥ DV(A,B,Q,P ). (12.26)

Indeed, the left-hand side of (12.26) is equal by definition to

DV(A,B,Y,X) = |AY | · |BX|
|BY | · |AX| , (12.27)

and its right-hand side is given by the relationship (12.20). Therefore, inequality
(12.26) follows from the fact that

|AY |
|BY | >

|AQ|
|BQ| and

|BX|
|AX| >

|BP |
|AP | . (12.28)

Let us prove the first of inequalities (12.28). Let us define a = |AB|, t1 = |BQ|,
and t2 = |BY |. Then we obviously obtain the expressions |AQ|/|BQ| = (a + t1)/t1
and |AY |/|BY | = (a + t2)/t2. For a > 0, the function (a + t)/t in the variable t

decreases monotonically with increasing t , and therefore, from the fact that t2 < t1
(which is obvious from Fig. 12.6) follows the first of inequalities (12.28). Defining
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a = |AB|, t1 = |AX|, and t2 = |AP |, using completely analogous arguments, we
may prove the second inequality of (12.28).

Let us denote the intersection of the lines SU and T V by W , let us connect this
line with the point C, and let us denote the point of intersection of the line thus ob-
tained with the line AB by D. Then the points X,A,D,Y and points U,A,C,V are
obtained from each other by a perspective mapping just as was done for the points
Y,B,D,X and T ,B,C,S. Then in view of Theorem 9.19, we have the relationships

|AY | · |DX|
|DY | · |AX| = |AV | · |CU |

|CV | · |AU | ,
|BX| · |DY |
|DX| · |AY | = |BS| · |CT |

|CS| · |BT | .

Multiplying these equalities, we have

|AY | · |BX|
|BY | · |AX| = |AV | · |CU |

|CV | · |AU | · |BS| · |CT |
|CS| · |BT | .

Taking the logarithm of the last equality, and taking into account (12.27) for
DV(A,B,Y,X), the analogous expression for DV(A,C,U,V ) and that for DV(B,

C,S,T ), and definition (12.19), we obtain the relationship

log DV(A,B,Y,X) = r(A,C) + r(B,C),

from which, taking into account (12.26), we obtain the required inequality (12.25).
Let us note that if the point B approaches Q along the segment PQ (see

Fig. 12.6), then |BQ| approaches zero, and consequently, r(A,B) approaches in-
finity. This means that despite that fact that the line passing through the points A

and B is represented in our figure by a segment of finite length, its length in the
hyperbolic plane in infinite.

The measurement of angles is similar to that of line segments. As we know, an
arbitrary point O on a line l partitions it into two half-lines. One half-line together
with the point O is called a ray h with center O . Two rays h and k with common
center O are called an angle; we shall assume that the ray h is obtained from k by a
counterclockwise rotation. This angle is denoted by ∠(h, k).

In “absolute geometry,” it is proved that for each angle with vertex at the point
O , there is a unique real number �(h, k) satisfying the following four conditions:

1. �(h, k) > 0 for all h �= k;
2. �(k,h) =�(h, k);
3. if f is a motion and f (h) = h′, f (k) = k′, and O ′ = f (O) is the vertex of the

angle ∠(h′, k′), then �(h′, k′) =�(h, k).

To formulate the fourth property, we must introduce some additional concepts.
Let the rays h and k forming the angle ∠(h, k) lie on lines l1 and l2. The points in
the plane lying on the same side of the line l1 as the points of the half-line k and on
the same side of the line l2 as the points of the half-line h are called interior points
of the angle ∠(h, k). A ray l with the same center O as the rays h and k is said to
be an interior ray of the angle ∠(h, k) if it consists of interior points of this angle.

We can now formulate the last property:
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4. If l is an interior ray of the angle ∠(h, k), then �(h, l) +�(l, k) = �(h, k).

As in the case of distance between points, the measure of an angle is defined
uniquely if we choose a “unit measurement,” that is, if we take a particular angle
∠(h0, k0) as the “unit angle measure.”

We shall point out an explicit method of defining the measure of angles in hyper-
bolic geometry that is realized in the disk K given by the relationship x2 + y2 < 1
in the Euclidean plane L with coordinates x, y.

Let ∠(h′, k′) be the angle with center at the point O ′, and let f be an arbitrary
motion taking the point O ′ to the center O of the disk K . From the definitions, it is
obvious that f takes the half-lines h′ and k′ to some half-lines h and k with center at
the point O . Let us set the measure of �(h′, k′) equal to the Euclidean angle between
the half-lines h and k. The main difficulty in this definition is that it uses a motion
f , and therefore, we must prove that the measure of the angle thus obtained does not
depend on the choice of the motion f (of course, with the condition f (O ′) = O).

Let g be another motion with the same property that g(O ′) = O . Then g−1(O) =
O ′, and this means that fg−1(O) = O , that is, the motion fg−1 leaves the point O

fixed. As we saw in Sect. 12.1 (p. 438), a motion possessing such a property is
of type (a), which means that fg−1 corresponds to an orthogonal transformation
of the Euclidean plane L; that is, the angle ∠(h, k) is taken to the angle ∠(h, k)

via the orthogonal transformation fg−1, which preserves the inner product in L
and therefore does not change the measure of angles. This proves the correctness
of the definition of angle measure that we have introduced. Equally easy are the
verifications of properties 1–3.

The best-known property of angles in hyperbolic geometry is the following.

Theorem 12.10 In hyperbolic geometry, the sum of the angles of a triangle is less
than two right angles, that is, less than π .

Since we are talking about a triangle, we can restrict our attention to the plane
in which this triangle lies and assume that we are working in the hyperbolic plane.
The key result is related to the fact that an angle ∠(h, k) in hyperbolic geometry
also determines a Euclidean angle, and we may then compare the measures of these
angles. We shall denote the measure of the angle ∠(h, k) in hyperbolic geometry, as
before, by �(h, k), and its Euclidean measure by �E(h, k).

Lemma 12.11 If one ray of the angle ∠(h, k) (for example, h) passes through the
center O of the disk K , then the measure of this angle in the sense of hyperbolic
geometry is less than the Euclidean measure, that is,

�(h, k) < �E(h, k). (12.29)

First, we shall show how easily Theorem 12.10 follows from the lemma, and then
we shall prove the lemma itself.

Proof of Theorem 12.10 Let us denote the vertices of the triangle in question by
A,B,C. Since the measure of an angle is invariant under a motion, it follows by
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Fig. 12.7 A triangle in the
hyperbolic plane

Theorem 12.5 that we can choose a motion taking one of the vertices of the triangle
(for example, A) to the center O of the disk K . Let the vertices B and C be taken
to B ′ and C′. See Fig. 12.7.

It suffices to prove the theorem for the triangle OB ′C′. But for the angle
∠B ′OC′, we have by definition the equality

�B ′OC′ = �EB ′OC′,

and for the two remaining angles, we have by the lemma, the inequalities

�OB ′C′ < �EOB ′C′, �OC′B ′ < �EOC′B ′.

Adding, we obtain for the sum of the angles of triangle OB ′C′ the inequality

�B ′OC′ +�OB ′C′ +�OC′B ′ < �EB ′OC′ +�EOB ′C′ +�EOC′B ′.

By a familiar theorem of Euclidean geometry, the sum on the right-hand side is
equal to π , and this proves Theorem 12.10. �

Proof of Lemma 12.11 We shall have to use the explicit form of the definition of the
measure of an angle. Let the ray h of the angle ∠(h, k) pass through the point O .
To describe the disk K , we shall introduce a Euclidean rectangular system of co-
ordinates (x, y) and assume that the vertex of angle ∠(h, k) is located at the point
O ′ with coordinates (λ,0), where λ �= 0. For this, it is necessary to execute a ro-
tation about the center of the disk in such a way that the point O ′ passes through
some point of the line y = 0 and use the fact that angles are invariant under such a
rotation.

Now we must write down explicitly a motion f of the hyperbolic plane taking the
point O to O ′. We already constructed such a motion in Sect. 12.1; see Example 12.4
on p. 439. There, we proved that there exists a motion of the hyperbolic plane that
takes the point with coordinates (x, y) to the point with coordinates (x′, y′), given
by the relationships

x′ = ax + b

bx + a
, y′ = y

bx + a
, a2 − b2 = 1. (12.30)
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Fig. 12.8 Angles in the
hyperbolic plane

If we want the point O ′ = (λ,0) to be sent to the origin O = (0,0), then we
should set aλ + b = 0, or equivalently, λ = −b/a. It is not difficult to verify that it
is possible to represent any number λ in this form. Thus the mapping (12.30) has
the form

x′ = x − λ

1 − λx
, y′ = y

a(1 − λx)
. (12.31)

Let the ray k intersect the y-axis at the point A with coordinates (0,μ); see Fig. 12.8.
(We note that this point is not required to be in the disk K .)

From formula (12.31), it is clear that our transformation takes a vertical line x = c

to a vertical line x = c′. The point O is taken to the point O = (−λ,0), the point
A = (0,μ) to the point A = (−λ,μ/a), and the vertical line OA to the vertical line
OA. By the definition of an angle in hyperbolic geometry, �OO ′A = �EOOA.
The tangents of the Euclidean angles are known to us:

tan
(
�EOO ′A

) = μ

λ
, tan(�EOOA) = OA

λ
= μ

λa
;

see Fig. 12.8. Since a2 = 1+b2, we have a > 1, and we see that in Euclidean geom-
etry, we have the inequality tan(�EOOA) < tan(�EOO ′A). The tangent is a strictly
increasing function, and therefore we have the inequality �EOOA < �EOO ′A for
angles that are Euclidean. But �OO ′A = �EOOA, and this means that �OO ′A <

�EOO ′A. �

It is of interest to compare Theorem 12.10 with the analogous result for spheri-
cal geometry. We have not yet encountered spherical geometry in this course, even
though it was developed in detail much earlier than hyperbolic geometry, indeed
in antiquity. In spherical geometry, the role of lines in played by great circles on
the sphere, that is, sections of the sphere obtained by all possible planes passing
through its center. The analogy between great circles on the sphere and lines in the
plane consists in the fact that the arc of the great circle joining points A and B has
length no greater than that of any other curve on the sphere with endpoints A and B .
This arc length of a great circle (which, of course, depends also on the radius R of
the sphere) is called the distance on the sphere from point A to point B .
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Fig. 12.9 A triangle on the
sphere

The measurement of lengths and angles on the sphere can generally be defined
in exactly the same way as in Euclidean or hyperbolic geometry. Here the angle
between two “lines” (that is, great circles) is equal to the value of the dihedral angle
formed by the planes passing through these great circles. We have the following
result.

Theorem 12.12 The sum of the angles of a triangle on the sphere is greater than
two right angles, that is, greater than π .

Proof Let there be given a triangle with vertices A,B,C on a sphere of radius R.
Let us draw all the great circles whose arcs are the sides AB , AC, and BC of triangle
ABC. See Fig. 12.9.

Let us denote by ΣA the part of the sphere enclosed between the great circle
passing through the points A,B and the great circle passing through A,C. We in-
troduce the analogous notation ΣB and ΣC . Let us denote by Â the measure of the
dihedral angle B̂AC and similarly for B̂ and Ĉ. Then the assertion of the theorem
is equivalent to asserting that Â + B̂ + Ĉ > π .

But it is easy to see that the area of ΣA is the same fraction of the area of the
sphere as 2Â is of 2π . Since the area of the sphere is equal to 4πR2, it follows that
the area of ΣA is equal to

4πR2 · 2Â

2π
= 4R2Â.

Similarly, we obtain expressions for the areas ΣB and ΣC ; they are equal to 4R2B̂

and 4R2Ĉ respectively. Let us now observe that the regions ΣA, ΣB , and ΣC to-
gether cover the entire sphere. Here each point of the sphere not part of triangle
ABC or of triangle A′B ′C′ symmetric to it on the sphere belongs to only one of
the regions ΣA, ΣB , and ΣC , and every point in triangle ABC or the symmetric
triangle A′B ′C′ is contained in all three regions. We therefore have

4R2(Â + B̂ + Ĉ) = 4πR2 + 2S�ABC + 2S�A′B ′C′ = 4πR2 + 4S�ABC.
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From this we obtain the relationship

Â + B̂ + Ĉ = π + S�ABC

R2
, (12.32)

from which it follows that Â + B̂ + Ĉ > π . �

Formula (12.32) gives an example of a series of relationships systematically de-
veloped by Lobachevsky: if we were to assume that R2 < 0 (that is, R is a purely
imaginary number), then clearly, we would obtain from (12.32) the inequality

Â + B̂ + Ĉ < π,

which is Theorem 12.10 of hyperbolic geometry. This is why Lobachevsky con-
sidered that his geometry is realized “on a sphere of imaginary radius.” However,
the analogy between theorems obtained on the basis of the negation of the “fifth
postulate” and formulas obtained from those of spherical geometry by replacing R2

with a negative number had been already noted by many mathematicians working
on these questions (some even as early as the eighteenth century).

The reader should be warned that spherical geometry is entirely inconsistent with
the system of axioms that we considered in Sect. 12.2. That system does not in-
clude one of the fundamental axioms of relationship: several different lines can pass
through two distinct points. Indeed, infinitely many great circles pass through any
two antipodal points on the sphere. In connection with this, Riemann proposed an-
other geometry less radically different from Euclidean geometry. We shall describe
it in the two-dimensional case.

For this, we shall use a description of the projective plane Π as the collection of
all lines in three-dimensional space passing through some point O . Let us consider
the sphere S with center at O . Every point P ∈ S together with the center O of
the sphere determines a line l, that is, some point Q of the projective plane Π . The
association P → Q defines a mapping of the sphere S to the projective plane Π

whereby great circles on the sphere are taken precisely to lines of Π . Clearly, exactly
two points of the sphere are mapped to a single point Q ∈ Π : together with the point
P , there is also the second point of the intersection of the line l with the sphere, that
is, the antipodal point P ′. But Euclidean motions taking the sphere S into itself (we
might call them motions of spherical geometry) give certain transformations defined
on the projective plane Π and satisfying the axioms of motion. It is possible as well
to transfer the measures of lengths and angles from the sphere S to the projective
plane Π . Then we have the analogue of Theorem 12.12 from spherical geometry.

This branch of geometry is called elliptic geometry.8 In elliptic geometry, every
pair of lines intersect, since such is the case in the projective plane. Thus there are no
parallel lines. However, in “absolute geometry,” it is proved that there exists at least

8Elliptic geometry is sometimes called Riemannian geometry, but that term is usually reserved for
the branch of differential geometry that studies Riemannian manifolds.
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Fig. 12.10 Elliptic geometry

one line passing through any given point A not lying on a given line l that is parallel
to l. This means that in elliptic geometry, not all the axioms of “absolute geometry”
are satisfied. The reason for this is easily ascertained: in elliptic geometry, there
in no natural concept of “lying between.” Indeed, a great circle of the sphere S is
mapped to a line l of the projective plane Π , where two antipodal points of the
sphere (A and A′, B and B ′, C and C′, and so on) are taken to one point of the
plane Π . See Fig. 12.10. It is clear from the figure that in elliptic geometry, we may
assume equally well that the point C does or does not lie between A and B .

Nevertheless, elliptic geometry possesses the property of “free mobility.” More-
over, one can prove (Helmholtz–Lie theorem) that among all geometries (assuming
some rigorous definition of this term), only three of them—Euclidean, hyperbolic,
and elliptic—possess this property.
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