
Chapter 11
Quadrics

We have encountered a number of types of spaces consisting of points (affine, affine
Euclidean, projective). For all of these spaces, an interesting and important question
has been the study of quadrics contained in such spaces, that is, sets of points with
coordinates (x1, . . . , xn) that in some coordinate system satisfy the single equation

F(x1, . . . , xn) = 0, (11.1)

where F is a second-degree polynomial in the variables x1, . . . , xn. Let us focus our
attention on the fact that by the definition of a polynomial, it is possible in general
for there to be present in equation (11.1) both first- and second-degree monomials
as well as a constant term.

For each of the spaces of the above-mentioned types, a trivial verification shows
that the property of a set of points being a quadric does not depend on the choice of
coordinate system. Or in other words, a nonsingular affine transformation, motion,
or projective transformation (depending on the type of space under consideration)
takes a quadric to a quadric.

11.1 Quadrics in Projective Space

By the definition given above, a quadric Q in the projective space P(L) is given by
equation (11.1) in homogeneous coordinates. However, as we saw in Chap. 9, such
an equation is satisfied by the homogeneous coordinates of a point of the projective
space P(L) only if its left-hand side is homogeneous.

Definition 11.1 A quadric in a projective space P(L) is a set Q consisting of points
defined by equation (11.1), where F is a homogeneous second-degree polynomial,
that is, a quadratic form in the coordinates x0, x1, . . . , xn.
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In Sect. 6.2, it was proved that is some coordinate system (that is, in some basis
of the space L), equation (11.1) is reduced to canonical form

λ0x
2
0 + λ1x

2
1 + · · · + λrx

2
r = 0,

where all the coefficients λi are nonzero. Here the number r ≤ n is equal to the rank
of the quadratic form F , and it is the same for every system of coordinates in which
the form F is reduced to canonical form. In the sequel, we shall assume that the
quadratic form F is nonsingular, that is, that r = n. We shall also call the associated
quadric Q nonsingular. The canonical form of its equation can then be written as
follows:

α0x
2
0 + α1x

2
1 + · · · + αnx

2
n = 0, (11.2)

where all the coefficients αi are nonzero. The general case differs from (11.2) only
in the omission of terms containing xi with i = r + 1, . . . , n. It is therefore easily
reduced to the case of a nonsingular quadric.

We have already encountered the concept of a tangent space to an arbitrary
smooth hypersurface (in Chap. 7) or to a projective algebraic variety (in Chap. 9).
Now we move on to a consideration of the notion of the tangent space to a quadric.

Definition 11.2 If A is a point on the quadric Q given by equation (11.1), then the
tangent space to Q at the point A ∈ Q is defined as the projective space TAQ given
by equation

n∑

i=0

∂F

∂xi

(A)xi = 0. (11.3)

The tangent space is an important general mathematical concept, and we shall
now discuss it in the greatest possible generality. Within the framework of a course
in algebra, it is natural to limit ourselves to the case in which F is a homogeneous
polynomial of arbitrary degree k > 0. Then equation (11.1) defines in the space
P(L) some hypersurface X, and if not all the partial derivatives ∂F

∂xi
(A) are equal to

zero, then equation (11.3) gives the tangent hyperplane to the hypersurface X at the
point A. We see that in equation (11.3), on the left-hand side appears the differential
dAF(x) (see Example 3.86 on p. 130), and since this notion was defined so as to
be invariant with respect to the choice of coordinate system, the notion of tangent
space is also independent of such a choice. The tangent space to the hypersurface X

at the point A is denoted by TAX.
In the sequel, we shall always assume that quadrics are viewed as lying in spaces

over a field K of characteristic different from 2 (for example, for definiteness, we
may assume that the field K is either R or C). If F(x) is a quadratic form, then by
the assumptions we have made, we can write it in the form

F(x) =
n∑

i,j=0

aij xixj , (11.4)
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where the coefficients satisfy aij = aji . In other words, F(x) = ϕ(x,x), where

ϕ(x,y) =
n∑

i,j=0

aij xiyj (11.5)

is a symmetric bilinear form (Theorem 6.6). If the point A corresponds to the vector
a with coordinates (α0, α1, . . . , αn), then

∂F

∂xi

(A) = 2
n∑

j=0

aijαj ,

and therefore, equation (11.3) takes the form

n∑

i,j=0

aijαjxi = 0,

or equivalently, ϕ(a,x) = 0. Thus in this case, the tangent hyperplane at the point
A coincides with the orthogonal complement 〈a〉⊥ to the vector a ∈ L with respect
to the bilinear form ϕ(x,y).

The definition of tangent space (11.3) loses sense if all derivatives ∂F
∂xi

(A) are
equal to zero:

∂F

∂xi

(A) = 0, i = 0,1, . . . , n. (11.6)

A point A of the hypersurface X given by equation (11.1) for which equalities (11.6)
are satisfied is called a singular or critical point. If a hypersurface has no singular
points, then it is said to be smooth. When the hypersurface X is a quadric, that is,
the polynomial F is a quadratic form (11.4), then equations (11.6) assume the form

n∑

j=0

aijαj = 0, i = 0,1, . . . , n.

Since the point A is in P(L), it follows that not all of its coordinates αi are equal to
zero. Thus singular points of a quadric Q are the nonzero solutions of the system of
equations

n∑

j=0

aij xj = 0, i = 0,1, . . . , n. (11.7)

As was shown in Chap. 2, such solutions exist only if the determinant of the matrix
(aij ) is equal to zero, and that is equivalent to saying that the quadric Q is singular.
Thus a nonsingular quadric is the same thing as a smooth quadric.

Let us consider the possible mutual relationships between a quadric Q and a line
l in projective space P(L). First, let us show that either the line l has not more than
two points in common with the quadric Q, or else it lies entirely in Q.
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Indeed, if a line l is not contained entirely in Q, then one can choose a point
A ∈ l, A /∈ Q. Let the line l correspond to some plane L′ ⊂ L, that is, l = P(L′). If
A = 〈a〉, then L′ = 〈a,b〉, where the vector b ∈ L is not collinear with the vector a.
In other words, the plane L′ consists of all vectors of the form xa + yb, where x and
y range over all possible scalars. The points of intersection of the line l and plane
Q are found from the equation F(xa + yb) = 0, that is, from the equation

F(xa + yb) = ϕ(xa + yb, xa + yb)

= F(a)x2 + 2ϕ(a,b)xy + F(b)y2 = 0 (11.8)

in the variables x, y. The vectors xa + yb with y = 0 give us a point A /∈ Q. As-
suming, therefore, that y 	= 0, we obtain t = x/y. Then (11.8) gives us a quadratic
equation in the variable t :

F(xa + yb) = y2(F(a)t2 + 2ϕ(a,b)t + F(b)
) = 0.

The condition A /∈ Q has the form F(a) 	= 0. Consequently, the leading coeffi-
cient of the quadratic trinomial F(a)t2 +2ϕ(a,b)t +F(b) is nonzero, and therefore,
the quadratic trinomial itself is not identically zero and cannot have more than two
roots.

Let us now consider the mutual arrangement of Q and l if the line l passes
through the point A ∈ Q. Then, as in the previous case, l corresponds to the so-
lutions of the quadratic equation (11.8), in which F(a) = 0, since A ∈ Q. Thus we
obtain the equation

F(xa + yb) = 2ϕ(a,b)xy + F(b)y2 = y
(
2ϕ(a,b)x + F(b)y

) = 0. (11.9)

One solution of equation (11.9) is obvious: y = 0. It precisely corresponds to the
point A ∈ Q. This solution is unique if and only if ϕ(a,b) = 0, that is, if b ∈ TAQ.
In the latter case, clearly l ⊂ TAQ, and one says that the line l is tangent to the
quadric Q at the point A.

Thus there are four possible cases of the relationship between a nonsingular
quadric Q and a line l:

(1) The line l has no points in common with the quadric Q.
(2) The line l has precisely two distinct points in common with the quadric Q.
(3) The line l has exactly one point A in common with the quadric Q, which is

possible if and only if l ⊂ TAQ.
(4) The line l lies entirely in Q.

Of course, there also exist smooth hypersurfaces defined by equation (11.1) of ar-
bitrary degree k ≥ 1. For example, such a hypersurface is given by the equation
c0x

k
0 + c1x

k
1 + · · · + cnx

k
n = 0, where all the ci are nonzero. In the sequel, we shall

consider only smooth hypersurfaces. For these, the left-hand side of equation (11.3)
is a nonnull linear form on the vector space L, and this means that it determines a
hyperplane in L and in P(L).
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Let us verify that this hyperplane contains the point A. This means that if the
point A corresponds to the vector a = (α0, α1, . . . , αn), then

n∑

i=0

∂F

∂xi

(A)αi = 0.

If the degree of the homogeneous polynomial F is equal to k, then by Euler’s iden-
tity (3.68), we have the equality

n∑

i=0

∂F

∂xi

(A)αi =
(

n∑

i=0

∂F

∂xi

xi

)
(A) = kF (A).

The value of F(A) is equal to zero, since the point A lies on the hypersurface X

given by the equation F(A) = 0.
Now to switch to a more familiar situation, let us consider an affine subspace of

P(L), given by the condition x0 	= 0, and let us introduce in it the inhomogeneous
coordinates

yi = xi/x0, i = 1, . . . , n. (11.10)

Let us assume that the point A lies in this subset (that is, its coordinate α0 is nonzero)
and let us write equation (11.3) in coordinates yi . To do so, we must move from
the variables x0, x1, . . . , xn to the variables y1, . . . , yn and rewrite equation (11.3)
accordingly. Here we must set

F(x0, x1, . . . , xn) = xk
0f (y1, . . . , yn), (11.11)

where f (y1, . . . , yn) is a polynomial of degree k ≥ 1, already not necessarily ho-
mogeneous (in contrast to F ). In accord with formula (11.10), let us denote by
a1, . . . , an the inhomogeneous coordinates of the point A, that is,

ai = αi/α0, i = 1, . . . , n.

Using general rules for the calculation of partial derivatives, from the represen-
tation (11.11), taking into account (11.10), we obtain the formulas

∂F

∂x0
= kxk−1

0 f + xk
0

n∑

l=1

∂f

∂yl

∂yl

∂x0
= kxk−1

0 f + xk
0

n∑

l=1

∂f

∂yl

(
− yl

x0

)

= kxk−1
0 f − xk−1

0

n∑

l=1

∂f

∂yl

yl

and

∂F

∂xi

= xk
0

n∑

l=1

∂f

∂yl

∂yl

∂xi

= xk
0

n∑

l=1

∂f

∂yl

(
x−1

0
∂xl

∂xi

)
= xk−1

0
∂f

∂yi

, i = 1, . . . , n.
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Now let us find the values of the derivatives calculated above of the function F at
the point A with inhomogeneous coordinates a1, . . . , an. The value of F(A) is zero,
since the point A lies in the hypersurface X and x0 	= 0. By virtue of the represen-
tation (11.11), we obtain from this that f (a1, . . . , an) = 0. For brevity, we shall em-
ploy the notation f (A) = f (a1, . . . , an) and ∂f

∂yi
(A) = ∂f

∂yi
(a1, . . . , an). Thus from

the two previous relationships, we obtain

∂F

∂x0
(A) = −αk−1

0

n∑

i=1

∂f

∂yi

(A)ai,

∂F

∂xi

(A) = αk−1
0

∂f

∂yi

(A), i = 1, . . . , n.

(11.12)

On substituting expression (11.12) into (11.3), and taking into account (11.10), we
obtain the equation

−αk−1
0

n∑

i=1

∂f

∂yi

(A)aix0 +
n∑

i=1

(
αk−1

0
∂f

∂yi

(A)

)
xi

= αk−1
0 x0

n∑

i=1

∂f

∂yi

(A)(yi − ai) = 0.

Canceling the nonzero common factor αk−1
0 x0, we finally obtain

n∑

i=1

∂f

∂yi

(A)(yi − ai) = 0. (11.13)

This is precisely the equation of the tangent hyperplane TAX in inhomogeneous
coordinates. In analysis and geometry, it is written in the form (11.13) for a function
f of a much more general class than that of polynomials.

We may now return to the case in which the hypersurface X = Q is a nonsin-
gular (and therefore smooth) quadric. Then for every point A ∈ Q, equation (11.3)
determines a hyperplane in L, that is, some line in the dual space L∗, and therefore a
point belonging to the space P(L∗), which we shall denote by Φ(A). Thus we define
the mapping

Φ : Q → P
(
L∗). (11.14)

Our first task consists in determining what the set Φ(Q) ⊂ P(L∗) in fact is. For
this, we express the quadratic form F(x) in the form F(x) = ϕ(x,x), where the
symmetric bilinear form ϕ(x,y) has the form (11.5). By Theorem 6.3, we can write
ϕ(x,y) uniquely as ϕ(x,y) = (x,A(y)), where A : L → L∗ is some linear transfor-
mation. From the definitions, it follows that here, the radical of the form ϕ coincides
with the kernel of the linear transformation A. Since in the case of a nonsingular
form F , the radical ϕ is equal to (0), it follows that the kernel of A is also equal to
(0). Since dim L = dim L∗, we have by Theorem 3.68 that the linear transformation
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A is an isomorphism, and there is thereby determined a projective transformation
P(A) : P(L) → P(L∗).

Let us now write down our mapping (11.14) in coordinates. If the quadratic form
F(x) is written in the form (11.4), then

∂F

∂xi

= 2
n∑

j=0

aij xj , i = 0,1, . . . , n.

On the other hand, in some basis e0, e1, . . . , en of the space L, the bilinear form
ϕ(x,y) has the form (11.5), where the vectors x and y are given by x = x0e0 +
· · · + xnen and y = y0e0 + · · · + ynen. From this, it follows that the matrix of the
transformation A : L → L∗ in the basis e0, e1, . . . , en of the space L and in the dual
basis f 0,f 1, . . . ,f n of the space L∗ is equal to (aij ). Therefore, to the quadratic
form F(x) is associated the isomorphism A : L → L∗, and the mapping (11.14)
that we constructed coincides with the restriction of the projective transformation
P(A) : P(L) → P(L∗) to Q, that is, Φ(Q) = P(A)(Q).

From this arises an unexpected consequence: since the transformation P(A) is a
bijection, the transformation (11.14) is also a bijection. In other words, the tangent
hyperplanes to the nonsingular quadric Q at distinct points A,B ∈ Q are distinct.
Thus we obtain the following result.

Lemma 11.3 The same hyperplane cannot coincide with the tangent hyperplanes
to a nonsingular quadric Q at two distinct points.

This means that in writing a hyperplane of the space P(L) in the form TAQ, we
may omit the point A. And in the case of a nonsingular quadric Q, it makes sense
to say that the hyperplane is tangent to the quadric, and moreover, the point of
tangency A ∈ Q is uniquely determined.

Let us now consider more concretely what the set Φ(Q) looks like. We shall
show that it is also a nonsingular quadric, that is, in some (and therefore in any)
basis of the space L∗ determined by the equation q(x) = 0, where q is a nonsingular
quadratic form.

We saw above that there is an isomorphism A : L ∼→ L∗ that bijectively maps Q

to Φ(Q). Therefore, there exists as well an inverse transformation A−1 : L∗ ∼→ L,
which is also an isomorphism. Then the condition y ∈ Φ(Q) is equivalent to
A−1(y) ∈ Q. Let us choose an arbitrary basis

f 0,f 1, . . . ,f n (11.15)

in the space L∗. The isomorphism A−1 : L∗ ∼→ L carries this basis to the basis

A−1(f 0),A
−1(f 1), . . . ,A

−1(f n) (11.16)

of the space L. Here obviously the coordinates of the vector A−1(y) in the basis
(11.16) coincide with the coordinates of the vector y in the basis (11.15). As we
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saw above, the condition A−1(y) ∈ Q is equivalent to the relationship

F(α0, α1, . . . , αn) = 0, (11.17)

where F is a nonsingular quadratic form, and (α0, α1, . . . , αn) are the coordinates
of the vector A−1(y) in some basis of the space L, for instance, in the basis (11.16).
This means that the condition y ∈ Φ(Q) can be expressed by the same relationship
(11.17). Thus we have proved the following statement.

Theorem 11.4 If Q is a nonsingular quadric in the space P(L), then the set of
tangent hyperplanes to it forms a nonsingular quadric in the space P(L∗).

Repeating verbatim the arguments presented in Sect. 9.1, we may extend the
duality principle formulated there. Namely, we can add to it some additional notions
that are dual to each other that can be interchanged so that the general assertion
formulated on p. 326 remains valid:

nonsingular quadric in P(L) nonsingular quadric in P(L∗)

point in a nonsingular quadric hyperplane tangent to a nonsingular quadric

This (seemingly small) extension of the duality principle leads to completely
unexpected results. By way of an example, we shall introduce two famous theorems
that are duals of each other, that is, equivalent on the basis of the duality principle.
Yet the second of them was published 150 years after the first. These theorems relate
to quadrics in two-dimensional projective space, that is, in the projective plane. In
this case, a quadric is called a conic.1

In the sequel, we shall use the following terminology. Let Q be a nonsingular
conic, and let A1, . . . ,A6 be six distinct points of Q. This ordered (that is, their
order is significant) collection of points is called a hexagon inscribed in the conic Q.
For two distinct points A and B of the projective plane, their projective cover (that
is, the line passing through them) is denoted by AB (cf. the definition on p. 325).
The six lines A1A2,A2A3, . . . ,A5A6,A6A1 are called the sides of the hexagon.2

Here the following pairs of sides will be called opposite sides: A1A2 and A4A5,
A2A3 and A5A6, A3A4 and A6A1.

Theorem 11.5 (Pascal’s theorem) Pairs of opposite sides of an arbitrary hexagon
inscribed in a nonsingular cone intersect in three collinear points. See Fig. 11.1.

1A clarification of this term, that is, an explanation of what this has to do with a cone, will be given
somewhat later.
2Here we move away somewhat from the intuition of elementary geometry, where by a side we
mean not the entire line passing through two points, but only the segment connecting them. This
extended notion of a side is necessary if we wish to include the case of an arbitrary field K, for
instance, K =C.
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Fig. 11.1 Hexagon inscribed
in a conic

Before formulating the dual theorem to Pascal’s theorem, let us make a few com-
ments.

With the selection of a homogeneous system of coordinates (x0 : x1 : x2) in the
projective plane, the equation of the conic Q can be written in the form

F(x0 : x1 : x2) = a1x
2
0 + a2x0x1 + a3x0x2 + a4x

2
1 + a5x1x2 + a6x

2
2 = 0.

There are six coefficients on the right-hand side of this equation. If we have k points
A1, . . . ,Ak , then the condition of their belonging to the conic Q reduces to the
relationships

F(Ai) = 0, i = 1, . . . , k, (11.18)

which yield a system consisting of k linear homogeneous equations in the six un-
knowns a1, . . . , a6. We must find a nontrivial solution to this system. If we have
k = 6, then this question falls under Corollary 2.13 as a special case (and this ex-
plains our interest in hexagons inscribed in a conic). By this corollary, we have still
to verify that the determinant of the system (11.18) for k = 6 is equal to zero. It is
Pascal’s theorem that gives a geometric interpretation of this condition.

It is not difficult to show that it gives necessary and sufficient conditions for
six points A1, . . . ,A6 to lie on some conic if we restrict ourselves, first of all, to
nonsingular conics, and secondly, to such collections of six points that no three
of them are collinear (this is proved in any sufficiently rigorous course in analytic
geometry).

Now let us formulate the dual theorem to Pascal’s theorem. Here six distinct
lines L1, . . . ,L6 tangent to a conic Q will be called a hexagon circumscribed about
the conic. Points L1 ∩ L2, L2 ∩ L3, L3 ∩ L4, L4 ∩ L5, L5 ∩ L6, and L6 ∩ L1 are
called the vertices of the hexagon. Here the following pairs of vertices will be called
opposite: L1 ∩ L2 and L4 ∩ L5, L2 ∩ L3 and L5 ∩ L6, L3 ∩ L4 and L6 ∩ L1.

Theorem 11.6 (Brianchon’s theorem) The lines connecting opposite vertices of an
arbitrary hexagon circumscribed about a nonsingular conic intersect at a common
point. See Fig. 11.2.
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Fig. 11.2 Hexagon
circumscribed about a conic

It is obvious that Brianchon’s theorem is obtained from Pascal’s theorem if we
replace in it all the concepts by their duals according to the rules given above. Thus
by virtue of the general duality principle, Brianchon’s theorem follows from Pascal’s
theorem. Pascal’s theorem itself can be proved easily, but we will not present a
proof, since its logic is connected with another area, namely algebraic geometry.3

Here it is of interest to observe only that the duality principle makes it possible to
obtain certain results from others that appear at first glance to be entirely unrelated.
Indeed, Pascal proved his theorem in the seventeenth century (when he was 16 years
old), while Brianchon proved his theorem in the nineteenth century, more than 150
years later. And moreover, Brianchon used entirely different arguments (the general
duality principle was not yet understood at the time).

11.2 Quadrics in Complex Projective Space

Let us now consider the projective space P(L), where L is a complex vector space,
and as before, let us limit ourselves to the case of nonsingular quadrics. As we saw
in Sect. 6.3 (formula (6.27)), a nonsingular quadratic form in a complex space has
the canonical form x2

0 + x2
1 + · · · + x2

n . This means that in some coordinate system,
the equation of a nonsingular quadric can be written as

x2
0 + x2

1 + · · · + x2
n = 0, (11.19)

that is, every nonsingular quadric can be transformed into the quadric (11.19) by
some projective transformation. In other words, in a complex projective space there
exists (defined up to a projective transformation) only one nonsingular quadric
(11.19). It is this quadric that we shall now investigate.

In view of what we have said above, it suffices to consider any one arbitrary
nonsingular quadric on the projective space P(L) of a given dimension. For example,

3Such a proof can be found, for example, in the book Algebraic Curves, by Robert Walker
(Springer, 1978).
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we may choose the quadric given by the equation F(x) = 0, where the matrix of the
quadratic form F(x) has the form

⎛

⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

⎞

⎟⎟⎟⎟⎟⎠
. (11.20)

A simple calculation shows that the determinant of the matrix (11.20) is equal to +1
or −1, that is, it is nonzero.

A fundamental topic that we shall study in this and the following sections is
projective subspaces contained in a quadric. Let the quadric Q be given by the
equation F(x) = 0, where x ∈ L, and let a projective subspace have the form P(L′),
where L′ is a subspace of the vector space L. Then the projective subspace P(L′) is
contained in Q if and only if F(x) = 0 for all vectors x ∈ L′.

Definition 11.7 A subspace L′ ⊂ L is said to be isotropic with respect to a quadratic
form F if F(x) = 0 for all vectors x ∈ L′.

Let ϕ be the symmetric bilinear form associated with the quadratic form F , ac-
cording to Theorem 6.6. Then by virtue of (6.14), we see that ϕ(x,y) = 0 for all
vectors x,y ∈ L′. Therefore, we shall also say that the subspace L′ ⊂ L is isotropic
with respect to the bilinear form ϕ.

We have already encountered the simplest example of isotropic subspaces, in
Sect. 7.7 in our study of pseudo-Euclidean spaces. There we encountered lightlike
(also called isotropic) vectors on which a quadratic form (x2) defining a pseudo-
Euclidean space becomes zero. Every nonnull lightlike vector e clearly determines
a one-dimensional subspace 〈e〉.

The basic technique that will be used in this and the following sections consists in
how to reformulate our questions about subspaces contained in a quadric F(x) = 0
in terms of a vector space L, a symmetric bilinear form ϕ(x,y) defined on L and
corresponding to the quadratic form F(x), and subspaces isotropic with respect to
F and ϕ. Then everything is determined almost trivially on the basis of the simplest
properties of linear and bilinear forms.

Theorem 11.8 The dimension of an arbitrary isotropic subspace L′ ⊂ L relative to
an arbitrary nonsingular quadratic form F does not exceed half of dim L.

Proof Let us consider (L′)⊥, the orthogonal complement of the subspace L′ ⊂ L
with respect to the bilinear form ϕ(u,v) associated with F(x). The quadratic form
F(x) and bilinear form ϕ(u,v) are nonsingular. Therefore, we have relationship
(7.75), from which follows the equality dim(L′)⊥ = dim L − dim L′.
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That the space L′ is isotropic means that L′ ⊂ (L′)⊥. From this we obtain the
inequality

dim L′ ≤ dim
(
L′)⊥ = dim L − dim L′,

from which it follows that dim L′ ≤ 1
2 dim L, as asserted in the theorem. �

In the sequel, we shall limit our study of isotropic subspaces to those of the
greatest possible dimension, namely 1

2 dim L when the number dim L is even and
1
2 (dim L − 1) when it is odd. The general case dim L′ ≤ 1

2 dim L is easily reduced to
this limiting case and is studied completely analogously.

Let us consider some of the simplest cases, known from analytic geometry.

Example 11.9 The simplest case of all is dim L = 2, and therefore, dimP(L) = 1.
In coordinates (x0 : x1), the quadratic form with matrix (11.20) has the form x0x1.
Clearly, the quadric x0x1 = 0 consists of two points (0 : 1) and (1 : 0), corresponding
to the vectors e1 = (0,1) and e2 = (1,0) in the plane L. Each of the two points
determines an isotropic subspace L′

i = 〈ei〉.
Example 11.10 Next in complexity is the case dim L = 3, and correspondingly,
dimP(L) = 2. In this case, we are dealing with quadrics in the projective plane;
their points determine one-dimensional isotropic subspaces in L that therefore form
a continuous family. (If the equation of the quadric is F(x0, x1, x2) = 0, then in the
space L, it determines a quadratic cone whose generatrices are isotropic subspaces.)

Example 11.11 The following case corresponds to dim L = 4 and dimP(L) = 3.
These are quadrics in three-dimensional projective space. For isotropic subspaces
L′ ⊂ L, Theorem 11.8 gives dim L′ ≤ 2. Isotropic subspaces of maximal dimension
are obtained for dim L′ = 2, that is, dimP(L′) = 1. These are projective lines lying
on the quadric. In coordinates (x0 : x1 : y0 : y1), the quadratic form with matrix
(11.20) gives the equation

x0y0 + x1y1 = 0. (11.21)

We must find all two-dimensional isotropic subspaces L′ ⊂ L. Let a basis of
the two-dimensional subspace L′ consist of vectors e = (a0, a1, b0, b1) and e′ =
(a′

0, a
′
1, b

′
0, b

′
1). Then the fact that L′ is isotropic is expressed, in view of formula

(11.21), by the relationship
(
a0u + a′

0v
)(

b0u + b′
0v

) + (
a1u + a′

1v
)(

b1u + b′
1v

) = 0, (11.22)

which is satisfied identically for all u and v. The left-hand side of equation (11.22)
represents a quadratic form in the variables u and v, which can be identically equal
to zero only in the case that all its coefficients are equal to zero. Removing paren-
theses in (11.22), we obtain

a0b0 + a1b1 = 0, a0b
′
0 + a′

0b0 + a1b
′
1 + a′

1b1 = 0,

a′
0b

′
0 + a′

1b
′
1 = 0.

(11.23)
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The first equation from (11.23) means that the rows (a0, a1) and (b1,−b0) are
proportional. Since they cannot both be equal to zero simultaneously (then all coor-
dinates of the basis vector e would be equal to zero, which is impossible), it follows
that one of them is the product of the other and some (uniquely determined) scalar β .
For definiteness, let a0 = βb1, a1 = −βb0 (the case b1 = βa0, b0 = −βa1 is con-
sidered analogously). In just the same way, from the third equation of (11.23), we
obtain that a′

0 = γ b′
1, a′

1 = −γ b′
0 with some scalar γ . Substituting the relationships

a0 = βb1, a1 = −βb0, a′
0 = γ b′

1, a′
1 = −γ b′

0 (11.24)

into the second equation of (11.23), we obtain the equality (β − γ )(b′
0b1 −

b0b
′
1) = 0. Therefore, either b′

0b1 − b0b
′
1 = 0 or γ = β .

In the first case, from the equality b′
0b1 − b0b

′
1 = 0 it follows that the rows

(b0, b
′
0) and (b1, b

′
1) are proportional, and we obtain the relationships b1 = −αb0

and b′
1 = −αb′

0 with some scalar α (the case b0 = −αb1 and b′
0 = −αb1 is consid-

ered similarly). Let us assume that b1 and b′
1 are not both equal to zero. Then α 	= 0,

and taking into account the relationships (11.24), we obtain

a0u + a′
0v = a0u + a′

0v = βb1u + γ b′
1v = −α

(
βb0u + γ b′

0v
) = α

(
a1u + a′

1v
)
,

b0u + b′
0v = −α−1(b1u + b′

1v
)
.

In the second case, let us suppose that a0 and a1 are not both equal to zero. Then
β 	= 0, and taking into account relationship (11.24), we obtain

a0u + a′
0v = a0u + a′

0v = β
(
b1u + b′

1v
)
,

b0u + b′
0v = −β−1(a1u + a′

1v
)
.

Thus with the assumptions made for an arbitrary vector subspace L′ with coordi-
nates (x0, y0, x1, y1), we have either

x0 = αx1, y0 = −α−1y1 (11.25)

or

x0 = βy1, y0 = −β−1x1, (11.26)

where α and β are certain nonzero scalars.
In order to consider the excluded cases, namely α = 0 (b1 = b′

1 = 0) and β = 0
(a0 = a1 = 0), let us introduce points (a : b) ∈ P

1 and (c : d) ∈ P
1, that is, pairs

of numbers that are not simultaneously equal to zero, and let us consider them as
defined up to multiplication by one and the same nonzero scalar. Then as is easily
verified, a homogeneous representation of relationships (11.25) and (11.26) that also
includes both previously excluded cases will have the form

ax0 = bx1, by0 = −ay1 (11.27)
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and

cx0 = dy1, dy0 = −cx1 (11.28)

respectively. Indeed, equality (11.25) is obtained from (11.27) for a = 1 and b = α,
while (11.26) is obtained from (11.28) for c = 1 and d = β .

Relationships (11.27) give the isotropic plane L′ ⊂ L or the line P(L′) in P(L),
which belongs to the quadric (11.21). It is determined by the point (a : b) ∈ P

1. Thus
we obtain one family of lines. Similarly, relationships (11.28) determine a second
family of lines. Together, they give all the lines contained in our quadric (called a
hyperboloid of one sheet). These lines are called the rectilinear generatrices of the
hyperboloid.

On the basis of the formulas we have written down, it is easy to verify some
properties known from analytic geometry: two distinct lines from one family of
rectilinear generatrices do not intersect, while two lines from different families do
intersect (at a single point). For every point of the hyperboloid, there is a line from
each of the two families that passes through it.

In the following section, we shall consider the general case of projective sub-
spaces of maximum possible dimension on a nonsingular quadric of arbitrary di-
mension in complex projective space.

11.3 Isotropic Subspaces

Let Q be a nonsingular quadric in a complex projective space P(L) given by the
equation F(x) = 0, where F(x) is a nonsingular quadratic form on the space L. In
analogy to what we discussed in the previous section, we shall study m-dimensional
subspaces L′ ⊂ L that are isotropic with respect to F , assuming that dim L = 2m if
dim L is even, and dim L = 2m + 1 if dim L is odd.

The special cases that we studied in the preceding section show that isotropic
subspaces look different for different values of dim L. Thus for dim L = 3, we found
one family of isotropic subspaces, continuously parameterized by the points of the
quadric Q. For dim L = 2 or 4, we found two such families. This leads to the idea
that the number of continuously parameterized families of isotropic subspaces on
a quadric depends on the parity of the number dim L. As we shall now see, such is
indeed the case.

The cases of even and odd dimension will be treated separately.

Case 1. Let us assume that dim L = 2m. Consequently, we are interested in isotropic
subspaces M ⊂ L of dimension m. (This is the most interesting case, since here we
shall see how the families of lines on a hyperbola of one sheet are generalized.)

Theorem 11.12 For every m-dimensional isotropic subspace M ⊂ L, there exists
another m-dimensional isotropic subspace N ⊂ L such that

L = M ⊕ N. (11.29)
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Proof Our proof is by induction on the number m. For m = 0, the statement of the
theorem is vacuously true.

Let us assume now that m > 0, and let us consider an arbitrary nonnull vector
e ∈ M. Let ϕ(x,y) be the symmetric bilinear form associated with the quadratic
form F(x). Since the subspace M is isotropic, it follows that ϕ(e, e) = 0. In view of
the nonsingularity of F(x), the bilinear form ϕ(x,y) is likewise nonsingular, and
therefore, its radical is equal to (0). Then the linear function ϕ(e,x) of a vector
x ∈ L is not identically equal to zero (otherwise, the vector e would be in the radical
of ϕ(x,y), which is equal to (0)).

Let f ∈ L be a vector such that ϕ(e,f ) 	= 0. Clearly, the vectors e,f are linearly
independent. Let us consider the plane W = 〈e,f 〉 and denote by ϕ′ the restriction
of the bilinear form ϕ to W. In the basis e,f , the matrix of the bilinear form ϕ′ has
the form

Φ ′ =
⎛

⎝
0 ϕ(e,f )

ϕ(e,f ) ϕ(f ,f )

⎞

⎠ , ϕ(e,f ) 	= 0.

It is obvious that |Φ ′| = −ϕ(e,f )2 	= 0, and therefore, the bilinear form ϕ′ is non-
singular.

Let us define the vector

g = f − ϕ(f ,f )

2ϕ(e,f )
e.

Then as is easily verified, ϕ(g,g) = 0, ϕ(e,g) = ϕ(e,f ) 	= 0, and the vectors e,g

are linearly independent, that is, W = 〈e,g〉. In the basis e,g, the matrix of the
bilinear form ϕ′ has the form

Φ ′′ =
⎛

⎝
0 ϕ(e,g)

ϕ(e,g) 0

⎞

⎠ .

As a result of the nondegeneracy of the bilinear form ϕ′, we have by Theorem 6.9
the decomposition

L = W ⊕ L1, L1 = W⊥
ϕ , (11.30)

where dim L1 = 2m − 2. Let us set M1 = L1 ∩ M and show that M1 is a subspace of
dimension m − 1 isotropic with respect to the restriction of the bilinear form ϕ to
L1.

By construction, the subspace M1 consists of the vectors x ∈ M such that
ϕ(x, e) = 0 and ϕ(x,g) = 0. But the first equality holds in general for all x ∈ M,
since e ∈ M and M is isotropic with respect to ϕ. Thus in the definition of the sub-
space M1, there remains only the second equality, which means that M1 ⊂ M is
determined by what is sent to zero by the linear function f (x) = ϕ(x,g), which
is not identically equal to zero (since f (e) = ϕ(e,g) 	= 0). Therefore, dim M1 =
dim M − 1 = m − 1.
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Thus M1 is a subspace of L1 of half the dimension of L1, defined by formula
(11.30), and we can apply the induction hypothesis to it to obtain the decomposition

L1 = M1 ⊕ N1, (11.31)

where N1 ⊂ L1 is some other (m − 1)-dimensional isotropic subspace.
Let us note that M = 〈e〉 ⊕ M1 and let us set N = 〈g〉 ⊕ N1. Since the subspace

N1 is isotropic in L1, the subspace N is isotropic in L, and taking into account that
ϕ(g,g) = 0, we have for all vectors x ∈ N1 the equality ϕ(g,x) = 0. Formulas
(11.30) and (11.31) together give the decomposition

L = 〈e〉 ⊕ 〈g〉 ⊕ M1 ⊕ N1 = M ⊕ N,

which is what was to be proved. �

In the terminology of Theorem 11.12, an arbitrary vector z ∈ N determines a
linear function f (x) = ϕ(z,x) on the vector space L, that is, an element of the
dual space L∗. The restriction of this function to the subspace M ⊂ L is obviously a
linear function on M, that is, an element of the space M∗. This defines the mapping
F : N → M∗. A trivial verification shows that F is a linear transformation.

The decomposition (11.29) established by Theorem 11.12 has an interesting con-
sequence.

Lemma 11.13 The linear transformation F : N → M∗ constructed above is an iso-
morphism.

Proof Let us determine the kernel of the transformation F : N → M∗. Let us assume
that F (z0) = 0 for some z0 ∈ N, that is, ϕ(z0,y) = 0 for all vectors y ∈ M. But by
Theorem 11.12, every vector x ∈ L can be represented in the form x = y + z, where
y ∈ M and z ∈ N. Thus

ϕ(z0,x) = ϕ(z0,y) + ϕ(z0,z) = ϕ(z0,z) = 0,

since both vectors z and z0 belong to the isotropic subspace N. From the nonsin-
gularity of the bilinear form ϕ, it then follows that z0 = 0, that is, the kernel of F
consists of only the null vector. Since dim M = dimN , we have by Theorem 3.68
that the linear transformation F is an isomorphism. �

Let e1, . . . , em be some basis in M, and f 1, . . . ,f m the dual basis in M∗. The iso-
morphism F that we constructed creates a correspondence between this dual basis
and a certain basis g1, . . . ,gm in the space N according to the formula F (gi ) = f i .
From decomposition (11.29) established in Theorem 11.12, it follows that vectors
e1, . . . , em,g1, . . . ,gm form a basis in L. In this basis, the bilinear form ϕ has the
simplest possible matrix Φ . Indeed, recalling the definitions of concepts that we
have used, we obtain that

Φ =
(

0 E

E 0

)
, (11.32)
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where E and 0 are the identity and zero matrices of order m. For the corresponding
quadratic form F and vector

x = x1e1 + · · · + xmem + xm+1g1 + · · · + x2mgm,

we obtain

F(x) =
m∑

i=1

xixm+i . (11.33)

Conversely, if in some basis e1, . . . , e2m of the vector space L, the bilinear form ϕ

has matrix (11.32), then the space L can be represented in the form

L = M ⊕ N, M = 〈e1, . . . , em〉,N = 〈em+1, . . . , e2m〉,
in accordance with Theorem 11.12. Let us recall that in our case (in a complex pro-
jective space), all nonsingular bilinear forms are equivalent, and therefore, every
nonsingular bilinear form ϕ has matrix (11.32) in some basis. In particular, we see
that in the 2m-dimensional space L, there exists an m-dimensional isotropic sub-
space M.

In order to generalize known results from analytic geometry for m = 2 to the case
of arbitrary m (see Example 11.11), we shall provide several definitions that natu-
rally generalize some concepts about Euclidean spaces familiar to us from Chap. 7.

Definition 11.14 Let ϕ(x,y) be a nonsingular symmetric bilinear form in the space
L of arbitrary dimension. A linear transformation U : L → L is said to be orthogonal
with respect to ϕ if

ϕ
(
U(x),U(y)

) = ϕ(x,y) (11.34)

for all vectors x,y ∈ L.

This definition generalizes the notion of orthogonal transformation of a Eu-
clidean space and Lorentz transformation of a pseudo-Euclidean space. Similarly,
we shall call a basis e1, . . . , en of a space L orthonormal with respect to a bilinear
form ϕ if ϕ(ei , ei ) = 1 and ϕ(ei , ej ) = 0 for all i 	= j . Every orthogonal trans-
formation takes an orthonormal basis into an orthonormal basis, and for any two
orthonormal bases, there exists a unique orthogonal transformation taking the first
of them to the second. The proofs of these assertions coincide word for word with
the analogous assertions from Section 7.2, since there we nowhere used the positive
definiteness of the bilinear form (x,y), but only its nonsingularity.

The condition (11.34) can be expressed in matrix form. Let the bilinear form
ϕ have matrix Φ in some basis e1, . . . , en of the space L. Then the transformation
U : L → L will be orthogonal with respect to ϕ if and only if its matrix U in this
basis satisfies the relationship

U∗ΦU = Φ. (11.35)
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This is proved just as was the analogous equality (7.18) for orthogonal transforma-
tions of Euclidean spaces, and (7.18) is a special case of formula (11.35) for Φ = E.

It follows from formula (11.35) that |U∗|· |Φ| · |U | = |Φ|, and taking into account
the nonsingularity of the form ϕ (|Φ| 	= 0), that |U∗| · |U | = 1, that is, |U |2 = 1.
From this we finally obtain the equality |U | = ±1, in which |U | can be replaced by
|U|, since the determinant of a linear transformation does not depend on the choice
of basis in the space, and consequently, coincides with the determinant of the matrix
of this transformation.

The equality |U| = ±1 generalizes a well-known property of orthogonal trans-
formations of a Euclidean space and provides justification for an analogous defini-
tion.

Definition 11.15 A linear transformation U : L → L orthogonal with respect to a
symmetric bilinear form ϕ is said to be proper if |U| = 1 and improper if |U| = −1.

It follows at once from Theorem 2.54 on the determinant of the product of ma-
trices that proper and improper transformations multiply just like the numbers +1
and −1. Similarly, the transformation U−1 corresponds to the same type (of proper
or improper orthogonal transformation) as U.

The concepts that we have introduced can be applied to the theory of isotropic
subspaces on the basis of the following result.

Theorem 11.16 For any two m-dimensional isotropic subspaces M and M′ of a 2m-
dimensional space L, there exists an orthogonal transformation U : L → L taking
one of the subspaces to the other.

Proof Since Theorem 11.12 can be applied to each of the subspaces M and M′, there
exist m-dimensional isotropic subspaces N and N′ such that

L = M ⊕ N = M′ ⊕ N′.

As we have noted above, from the decomposition L = M ⊕ N, it follows that in the
space L, there exists a basis e1, . . . , e2m comprising the bases of the subspaces M
and N in which the matrix of the bilinear form ϕ is equal to (11.32). The second
decomposition L = M′ ⊕ N′ gives us a similar basis e′

1, . . . , e
′
2m.

Let us define the transformation U by the action on the vectors of the basis
e1, . . . , e2m according to the formula U(ei ) = e′

i for all i = 1, . . . ,2m. It is obvious
that then the image U(M) is equal to M′. Furthermore, for any two vectors x =
x1e1 + · · · + x2me2m and y = y1e1 + · · · + y2me2m, their images U(x) and U(y)

have, in the basis e′
1, . . . , e

′
2m, decompositions with the same coordinates: U(x) =

x1e
′
1 + · · · + x2me′

2m and U(y) = y1e
′
1 + · · · + y2me′

2m. From this it follows that

ϕ
(
U(x),U(y)

) =
2m∑

i=1

xiym+i = ϕ(x,y),
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showing that U is an orthogonal transformation. �

Let us note that Theorem 11.16 does not assert the uniqueness of such a trans-
formation U. In fact, such is not the case. Let us consider this question in more
detail. Let U1 and U2 be the two orthogonal transformations that were the subject
of Theorem 11.16. Applying to both sides of the equality U1(M) = U2(M) the trans-
formation U−1

1 , we obtain U0(M) = M, where U0 = U−1
1 U2 is also an orthogonal

transformation. Our further considerations are based on the following result.

Lemma 11.17 Let M be an m-dimensional isotropic subspace of a 2m-dimensional
space L, and let U0 : L → L be an orthogonal transformation taking M to itself.
Then the transformation U0 is proper.

Proof By assumption, M is an invariant subspace of the transformation U0. This
means that in an arbitrary basis of the space L whose first m vectors form a basis of
M, the matrix of the transformation U0 has the block form

U0 =
(

A B

0 C

)
, (11.36)

where A, B , C are square matrices of order m.
The orthogonality of the transformation U0 is expressed by the relationship

(11.35), in which, as we have seen, with the selection of a suitable basis, we may
consider that relationship (11.32) is satisfied. Setting in (11.35) in place of U the
matrix (11.36), we obtain

(
A∗ 0
B∗ C∗

)
·
(

0 E

E 0

)
·
(

A B

0 C

)
=

(
0 E

E 0

)
.

Multiplying the matrices on the left-hand side of this equality brings it into the form
(

0 A∗C
C∗A D

)
=

(
0 E

E 0

)
, where D = C∗B + B∗C.

From this, we obtain in particular A∗C = E, and this means that |A∗| · |C| = 1. But
in view of |A∗| = |A|, from (11.36) we have |U0| = |A| · |C| = 1, as asserted. �

From Lemma 11.17 we deduce the following important corollary.

Theorem 11.18 If M and M′ are two m-dimensional isotropic subspaces of a 2m-
dimensional space L, then the orthogonal transformations U : L → L taking one of
these subspaces into the other are either all proper or all improper.

Proof Let U1 and U2 be two orthogonal transformations such that Ui (M) = M′. It
is clear that then U−1

i (M′) = M. Setting U0 = U−1
1 U2, from the equality U1(M) =

U2(M) we obtain that U0(M) = M. By Lemma 11.17, |U0| = 1, and from the rela-
tionship U0 = U−1

1 U2, it follows that |U1| = |U2|. �



404 11 Quadrics

Theorem 11.18 determines in an obvious way a partition of the set of all m-
dimensional isotropic subspaces M of a 2m-dimensional space L into two families
M1 and M2. Namely, M and M′ belong to one family if an orthogonal transfor-
mation U taking one of these subspaces into the other (which always exists, by
Theorem 11.16) is proper (it follows from Theorem 11.18 that this definition does
not depend on the choice of a specific transformation U).

Now we can easily prove the following property, which was established in the
previous section for m = 2, for any m.

Theorem 11.19 Two m-dimensional isotropic subspaces M and M′ of a 2m-
dimensional space L belong to one family Mi if and only if the dimension of their
intersection M ∩ M′ has the same parity as m.

Proof Let us recall that natural numbers k and m have the same parity if k + m

is even, or equivalently, if (−1)k+m = 1. Recalling now the definition of the parti-
tion of the set of m-dimensional isotropic subspaces into families M1 and M2 and
setting k = dim(M ∩ M′), we may formulate the assertion of the theorem as follows:

|U| = (−1)k+m, (11.37)

where U is an arbitrary orthogonal transformation taking M to M′, that is, a trans-
formation such that U(M) = M′.

Let us begin the proof of relationship (11.37) with the case k = 0, that is, the case
that M ∩ M′ = (0). Then in view of the equality dim M + dim M′ = dim L, the sum of
subspaces M + M′ = M ⊕ M′ coincides with the entire space L. This means that M′
exhibits all the properties of the isotropic subspace N constructed for the proof of
Theorem 11.12. In particular, there exist bases e1, . . . , em in M and f 1, . . . ,f m in
M′ such that

ϕ(ei ,f i ) = 1 for i = 1, . . . ,m, ϕ(ei ,f j ) = 0 for i 	= j.

We shall determine the transformation U : L → L by the conditions U(ei ) = f i

and U(f i ) = ei for all i = 1, . . . ,m. It is clear that U(M) = M′ and U(M′) = M. It
is equally easy to see that in the basis e1, . . . , em,f 1, . . . ,f m, the matrices of the
transformation U and bilinear form ϕ coincide and have the form (11.32). Substi-
tuting the matrix (11.32) in place of U and Φ into formula (11.35), we see that it is
converted to a true equality, that is, the transformation U is orthogonal.

On the other hand, we have, therefore, the equality |U| = |Φ| = (−1)m. It is
easy to convince oneself that |Φ| = (−1)m by transposing the rows of the matrix
(11.32) with indices i and m + i for all i = 1, . . . ,m. Here we shall carry out m

transpositions and obtain the identity matrix of order 2m with determinant 1. As
a result, we arrive at the equality |U| = (−1)m, that is, at relationship (11.37) for
k = 0.

Now let us examine the case k > 0. Let us define the subspace M1 = M∩M′. Then
k = dim M1. By Theorem 11.12, there exists an m-dimensional isotropic subspace
N ⊂ L such that L = M ⊕ N. Let us choose in the subspace M a basis e1, . . . , em
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such that its first k vectors e1, . . . , ek form a basis in M1. Then clearly, we have the
decomposition

M = M1 ⊕ M2, where M1 = 〈e1, . . . , ek〉,M2 = 〈ek+1, . . . , em〉.
Above (see Lemma 11.13), we constructed the isomorphism F : N ∼→ M∗ and

with its help, defined a basis g1, . . . ,gm in the space N by formula F (gi ) = f i ,
where f 1, . . . ,f m is a basis of the space M∗, the dual basis to e1, . . . , em. We obvi-
ously have the decomposition

N = N1 ⊕ N2, where N1 = 〈g1, . . . ,gk〉,N2 = 〈gk+1, . . . ,gm〉,
where by our construction, F : N1

∼→ M∗
1 and F : N2

∼→ M∗
2.

Let us consider the linear transformation U0 : L → L defined by the formula

U0(ei ) = gi , U0(gi ) = ei for i = 1, . . . , k,

U0(ei ) = ei , U0(gi ) = gi for i = k + 1, . . . ,m.

It is obvious that the transformation U0 is orthogonal, and also U2
0 = E and

U0(M1) = N1, U0(M2) = M2,

U0(N1) = M1, U0(N2) = N2.
(11.38)

In the basis e1, . . . , em,g1, . . . ,gm that we constructed in the space L, the matrix of
the transformation U0 has the block form

U0 =

⎛

⎜⎜⎝

0 0 Ek 0
0 Em−k 0 0
Ek 0 0 0
0 0 0 Em−k

⎞

⎟⎟⎠ ,

where Ek and Em−k are the identity matrices of orders k and m − k. As is evident,
U0 becomes the identity matrix after the transposition of its rows with indices i and
m + i, i = 1, . . . , k. Therefore, |U0| = (−1)k .

Let us prove that U0(M′) ∩ M = (0). Since U2
0 = E , this is equivalent to

M′ ∩ U0(M) = (0). Let us assume that x ∈ M′ ∩ U0(M). From the membership
x ∈ U0(M) and decomposition M = M1 ⊕ M2, taking into account (11.38), it fol-
lows that x ∈ N1 ⊕ M2, that is,

x = z1 + y2, where z1 ∈ N1,y2 ∈ M2. (11.39)

Thus for every vector y1 ∈ M1, we have the equality

ϕ(x,y1) = ϕ(z1,y1) + ϕ(y2,y1). (11.40)

The left-hand side of equality (11.40) equals zero, since x ∈ M′, y1 ∈ M1 ⊂ M′,
and the subspace M′ is isotropic with respect to ϕ. The second term ϕ(y2,y1)
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on the right-hand side is equal to zero, since yi ∈ Mi ⊂ M, i = 1,2, and the sub-
space M is isotropic with respect to ϕ. Thus from relationship (11.40), it follows
that ϕ(z1,y1) = 0 for every vector y1 ∈ M1.

This last conclusion means that for the isomorphism F : N1
∼→ M∗

1, there cor-
responds to the vector z1 ∈ N1, a linear function on M1 that is identically equal to
zero. But that can be the case only if the vector z1 itself is equal to 0. Thus in the
decomposition (11.39), we have z1 = 0, and therefore, the vector x = y2 is con-
tained in the subspace M2. On the other hand, by virtue of the inclusions M2 ⊂ M
and x ∈ M′ ∩U0(M), taking into account the definition of the subspace M1 = M∩M′,
this vector is also contained in M1. As a result, we obtain that x ∈ M1 ∩ M2, while
by virtue of the decomposition M = M1 ⊕ M2, this means that x = 0.

Thus the subspaces U0(M′) and M are included in the case k = 0 already consid-
ered, and relationship (11.37) has been proved for them. By Theorem 11.16, there
exists an orthogonal transformation U1 : L → L such that U1(U0(M′)) = M. Then,
as we have proved, |U1| = (−1)m. The orthogonal transformation U = U1U0 takes
the isotropic subspace M′ to M, and for it we have the relationship

|U| = |U1| · |U0| = (−1)m(−1)k = (−1)k+m,

which completes the proof of the theorem. �

We note two corollaries to Theorem 11.19.

Corollary 11.20 The families M1 and M2 do not have an m-dimensional isotropic
subspace in common.

Proof Let us assume that two such m-dimensional isotropic subspaces M1 ∈ M1

and M2 ∈ M2 are to be found such that M1 = M2. Then we clearly have the equality
dim(M1 ∩ M2) = m, and by Theorem 11.19, M1 and M2 cannot belong to different
families M1 and M2. �

Corollary 11.21 If two m-dimensional isotropic subspaces intersect in a subspace
of dimension m − 1, then they belong to different families M1 and M2.

This follows from the fact that m and m − 1 have opposite parity.

Case 2. Now we may proceed to an examination of the second case, in which the
dimension of the space L is odd. It is considerably easier and can be reduced to the
already considered case of even dimensionality.

In order to retain the previous notation used in the even-dimensional case, let
us denote by L the space of odd dimension 2m + 1 under consideration and let us
embed it as a hyperplane in a space L of dimension 2m + 2. Let us denote by F a
nonsingular quadratic form on L and by F its restriction to L. Our further reasoning
will be based on the following fact.
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Lemma 11.22 For every nonsingular quadratic form F there exists a hyperplane
L ⊂ L such that the quadratic form F is nonsingular.

Proof In a complex projective space, all nonsingular quadratic forms are equivalent.
And therefore, it suffices to prove the required assertion for any one form F . For F ,
let us take the nonsingular form (11.33) that we encountered previously with m

replaced by m + 1. Thus for a vector x ∈ L with coordinates (x1, . . . , x2m+2), we
have

F(x) =
m+1∑

i=1

xixm+1+i . (11.41)

Let us define a hyperplane L ⊂ L by the equation x1 = xm+2. The coordinates in L are
collections (x1, . . . , xm+1, x̆m+2, xm+3, . . . , x2m+2), where the symbol ˘ indicates
the omission of the coordinate underneath it, and the quadratic form F in these
coordinates takes the form

F(x) = x2
1 +

m+1∑

i=2

xixm+1+i . (11.42)

The matrix of the quadratic form (11.42) has the block form
⎛

⎜⎜⎜⎜⎜⎝

1 0 · · · 0
0
...

∣∣∣∣∣ 	

∣∣∣∣∣
0

⎞

⎟⎟⎟⎟⎟⎠
,

where Φ is the matrix from formula (11.32). Since the determinant |Φ| is nonzero,
it follows that the quadratic form (11.42) is nonsingular. �

We shall further investigate the m-dimensional subspaces M ⊂ L, isotropic with
respect to the nonsingular quadratic form F , which is the restriction to the hyper-
plane L of the nonsingular quadratic form F given in the surrounding space L. Since
in the complex projective space L all nonsingular quadratic forms are equivalent, it
follows that all our results will be valid for an arbitrary nonsingular quadratic form
on L.

Let us consider an arbitrary (m+ 1)-dimensional subspace M ⊂ L, isotropic with
respect to F , and let us set M = M ∩ L. It is obvious that the subspace M ⊂ L is
isotropic with respect to F . Since in the space L, the hyperplane L is defined by a
single linear equation, it follows that either M ⊂ L (and then M = M), or dim M =
dim M−1 = m. But the first case is impossible, since dim M ≤ 1

2 dim L = 1
2 (2m+1),

and dim M = m + 1. Thus there remains the second case: dim M = m. Let us show
that such an association with an (m + 1)-dimensional isotropic subspace M ⊂ L of
an m-dimensional isotropic subspace M ⊂ L gives all the subspaces M of interest to
us and in a certain sense, it is unique.
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Theorem 11.23 For every m-dimensional subspace M ⊂ L isotropic with respect to
F , there exists an (m + 1)-dimensional subspace M ⊂ L, isotropic with respect to
F , such that M = M ∩ L. Moreover, in each of the families M1 and M2 of subspaces
isotropic with respect to F , there exists such an M, and it is unique.

Proof Let us consider an arbitrary m-dimensional subspace M ⊂ L, isotropic with

respect to F , and let us denote by M
⊥

its orthogonal complement with respect to the
symmetric bilinear form ϕ associated with the quadratic form F in the surrounding

space L. According to our previous notation, it should have been denoted by M
⊥
ϕ ,

but we shall suppress the subscript, since the bilinear form ϕ will be always one and
the same. From relationship (7.75), which is valid for a nondegenerate (with respect
to the form ϕ) space L and an arbitrary subspace of it (p. 267), it follows that

dim M
⊥ = dim L − dim M = 2m + 2 − m = m + 2.

Let us denote by ϕ̃ the restriction of the bilinear form ϕ to M
⊥

, and by F̃ the

restriction of the quadratic form F to M
⊥

. The forms ϕ̃ and F̃ are singular in general.

By definition (p. 198), the radical of the bilinear form ϕ̃ is equal to M
⊥ ∩ (M

⊥
)⊥ =

M
⊥ ∩ M. But since M is isotropic, it follows that M ⊂ M

⊥
, and therefore, the radical

of the bilinear form ϕ̃ coincides with M. By relationship (6.17) from Sect. 6.2, the
rank of the bilinear form ϕ̃ is equal to

dim M
⊥ − dim

(
M

⊥)⊥ = dim M
⊥ − dim M = (m + 2) − m = 2,

and in the subspace M
⊥

, we may choose a basis e1, . . . , em+2 such that its last m

vectors are contained in M (that is, in the radical ϕ̃), and the restriction of ϕ to
〈e1, e2〉 has matrix

( 0 1
1 0

)
.

Thus we have the decomposition M
⊥ = 〈e1, e2〉 ⊕ M, where the restriction of the

quadratic form F to 〈e1, e2〉 in our basis has the form x1x2, and the restriction of F

to M is identically equal to zero.
Let us set Mi = M ⊕ 〈ei〉, i = 1,2. Then M1 and M2 are (m + 1)-dimensional

subspaces in L. It follows from this construction that the Mi are isotropic with respect
to the bilinear form ϕ. Here Mi ∩ L = M, since on the one hand, from considerations
of dimensionality, Mi 	⊂ L, and on the other hand, M ⊂ Mi and M ⊂ L. We have thus
constructed two isotropic subspaces Mi ⊂ L such that Mi ∩ L = M. That they belong
to different families Mi and that in neither of these families are there any other
subspaces with these properties, follows from Corollary 11.21. �

Thus we have shown that there exists a bijection between the set of m-
dimensional isotropic subspaces M ⊂ L and each of the families Mi of (m + 1)-
dimensional isotropic subspaces M ⊂ L. This fact is expressed by saying that m-
dimensional subspaces M ⊂ L isotropic with respect to a nonsingular quadratic form
F form a single family.
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Of course, our partition of the set of isotropic subspaces into families is a matter
of convention. It is mostly a tribute to tradition originating in the special cases con-
sidered in analytic geometry. However, it is possible to give a more precise meaning
to this partition by describing these subspaces in terms of Plücker coordinates.

In the previous chapter, we showed that k-dimensional subspaces M of an n-
dimensional space L are in one-to-one correspondence with the points of some pro-
jective algebraic variety G(k,n), called the Grassmannian. Suppose we are given
some nonsingular quadratic form F on the space L. Let us denote by I (k, n) the
subset of points of the Grassmannian G(k,n) that correspond to the k-dimensional
isotropic subspaces.

We shall state the following propositions without proof, since they relate not to
linear algebra, but rather to algebraic geometry.4

Proposition 11.24 The set I (k, n) is a projective algebraic variety.

In other words, this proposition asserts that the property of a subspace being
isotropic can be described by certain homogeneous relationships among its Plücker
coordinates.

A projective algebraic variety X is said to be irreducible if it cannot be rep-
resented in the form of a union X = X1 ∪ X2, where Xi are projective algebraic
varieties different from X itself.

Suppose the space L has odd dimension n = 2m + 1.

Proposition 11.25 The set I (m,2m + 1) is an irreducible projective algebraic va-
riety.

Now let the space L have even dimension n = 2m. We shall denote by Ii(m,2m)

the subset of the projective algebraic variety I (m,2m) whose points correspond to
m-dimensional isotropic subspaces of the family Mi . Theorem 11.19 and its corol-
laries show that

I (m,2m) = I1(m,2m) ∪ I2(m,2m), I1(m,2m) ∩ I2(m,2m) = ∅.

This suggests the idea that the projective algebraic variety I (m,2m) is reducible.

Proposition 11.26 The sets Ii(m,2m), i = 1,2, are irreducible projective algebraic
varieties.

Finally, we have the following assertion, which relates to the isotropism of a
subspace whose dimension is less than maximal.

Proposition 11.27 For all k < n/2, the projective algebraic variety I (k, n) is irre-
ducible.

4The reader can find them, for example, in the book Methods of Algebraic Geometry, by Hodge
and Pedoe (Cambridge University Press, 1994).
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11.4 Quadrics in a Real Projective Space

Let us consider a projective space P(L), where L is a real vector space. As before, we
shall restrict our attention to the case of nonsingular quadrics. As we saw in Sect. 6.3
(formula (6.28)), a nonsingular quadratic form in a real space has the canonical form

x2
0 + x2

1 + · · · + x2
s − x2

s+1 − · · · − x2
n = 0. (11.43)

Here the index of inertia r = s + 1 will be the same in every coordinate system in
which the quadric is given by the canonical equation.

If we multiply equation (11.43) by −1, we obviously do not change the quadric
that it defines, and therefore, we may assume that s + 1 ≥ n − s, that is, s ≥
(n − 1)/2. Moreover, s ≤ n, but in the case s = n, from equation (11.43) we ob-
tain x0 = 0, x1 = 0, . . . , xn = 0, and there is no such point in projective space.

Thus, in contrast to a complex projective space, in a real projective space of given
dimension n, there exists (up to a projective transformation) not one, but several
nonsingular quadrics. However, there is only a finite number of them; they corre-
spond to various values s, where we may assume that

n − 1

2
≤ s ≤ n − 1. (11.44)

To be sure, it is still necessary to prove that the quadrics corresponding to the various
values of s are not projectively equivalent. But we shall consider this question (in
an even more complex situation) in the next section.

Thus the number of projectively inequivalent nonsingular quadrics in a real pro-
jective space of dimension n is equal to the number of integers s satisfying inequal-
ity (11.44). If n is odd, n = 2m + 1, then inequality (11.44) gives m ≤ s ≤ 2m, and
the number of projectively inequivalent quadrics is equal to m+ 1. And if n is even,
n = 2m, then there are m of them. In particular, for n = 2, all nonsingular quadrics
in the projective plane are projectively equivalent. The most typical example is the
circle x2 +y2 = 1, which is contained entirely in the affine part of x2 	= 0 if the equa-
tion is written as x2

0 + x2
1 − x2

2 = 0 in homogeneous coordinates (x0 : x1 : x2) (here
inhomogeneous coordinates are expressed by the formulas x = x0/x2, y = x1/x2).

In three-dimensional projective space, there exist two types of projectively in-
equivalent quadrics. In homogeneous coordinates (x0 : x1 : x2 : x3), one of them is
given by the equation x2

0 + x2
1 + x2

2 − x2
3 = 0. Here we always have x3 	= 0, the

quadric lies in the affine part, and it is given in inhomogeneous coordinates (x, y, z)

by the equation x2 + y2 + z2 = 1, where x = x0/x3, y = x1/x3, z = x2/x3. This
quadric is a sphere. The second type is given by the equation x2

0 +x2
1 −x2

2 −x2
3 = 0.

This is a hyperboloid of one sheet.
Their projective inequivalence can be seen at the very least from the fact that

not a single real line lies on the first of them (the sphere), while on the second
(hyperboloid of one sheet), there are two families each consisting of an infinite
number of lines, called the rectilinear generatrices.

Of course, we can embed a real space L into a complex space LC, and similarly,
embed P(L) into P(LC). Therefore, everything that was said in Sect. 11.3 about
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isotropic subspaces is applicable in our case. However, although our quadric is real,
the isotropic subspaces obtained in this way can turn out to be complex. The single
exception is the case in which if the number n is odd, then s = (n − 1)/2, or if n is
even, then s = n/2.

In the first instance, we may combine the coordinates into pairs (xi, xs+1+i ) and
set ui = xi + xs+1+i and vi = xi − xs+1+i . Then taking into account the equalities

x2
i − x2

s+1+i = (xi + xs+1+i )(xi − xs+1+i ),

equation (11.43) can be written in the form

u0v0 + u1v1 + · · · + usvs = 0. (11.45)

But this is the case of the quadric (11.33), which we considered in the previous
section. It is easy to see that the reasoning used in Sect. 11.3 gives us a description
of the real subspaces of a quadric.

The case s = n/2 for even n also does not remove us from the realm of real sub-
spaces and also leads to the case considered in the previous section. Moreover, if the
equation of a quadric has the form (11.45) over an arbitrary field K of characteristic
different from 2, then the reasoning from the previous section remains in force.

In the general case, it is still possible to determine the dimensions of the spaces
contained in a quadric. For this, we may make use of considerations already used in
the proof of the law of inertia (Theorem 6.17 from Sect. 6.3). There we observed that
the index of inertia (in the given case, the index of inertia of the quadratic form from
(11.43), equal to s+1) coincides with the maximal dimension of the subspaces L′ on
which the restriction of the form is positive definite. (Let us note that this condition
gives a geometric characteristic of the index of inertia, that is, it depends only on
the set of solutions of the equation F(x) = 0, and not on the form F that defines it.)

Indeed, let the quadric Q be given by the equation F(x) = 0. If the restric-
tion F ′ of the form F to the subspace L′ is positive definite, then it is clear
that Q ∩ P(L′) =∅. Thus if we are dealing with a projective space P(L), where
dim L = n + 1, then in L there exists a subspace L of dimension s + 1 such that the
restriction of the form F to it is positive definite. This means that Q ∩ P(L) = ∅

(however, such a subspace L is also easily determined explicitly on the basis of
equation (11.43)). If L′ ⊂ L is a subspace such that P(L′) ⊂ Q, then L′ ∩ L = (0).
Hence by Corollary 3.42, we obtain the inequality dim L + dim L′ ≤ dim L = n + 1.
Consequently, dim L′ + s + 1 ≤ n + 1, and this means that dim L′ ≤ n − s. Thus
for the space P(L′) belonging to the quadric given by equation (11.43), we obtain
dim L′ ≤ n − s and therefore dimP(L′) ≤ n − s − 1.

On the other hand, it is easy to produce a subspace of dimension n−s−1 actually
belonging to the quadric (11.43). To this end, let us combine in pairs the unknowns
appearing in equation (11.43) with different signs and let us equate the unknowns
in one pair, for example x0 = xs+1, and so on. Since we have assumed that s + 1 ≥
n− s, we may form n− s such pairs, and therefore, we obtain n− s linear equations.
How many unknowns remain? Since we have combined 2(n − s) unknowns into
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pairs, and in all there were n + 1 of them, there remain n + 1 − 2(n − s) unknowns
(it is possible that this number will be equal to zero). Thus we obtain

(n − s) + n + 1 − 2(n − s) = n + 1 − (n − s)

linear equations in coordinates in the space L. Since different unknowns occur in
all these equations, these equations are linearly independent and determine in L a
subspace L′ of dimension n − s. Then dimP(L′) = n − s − 1. Of course, since L′ is
contained in Q, an arbitrary subspace P(L′′) ⊂ P(L′) for L′′ ⊂ L′ is also contained
in Q. Thus in the quadric Q are contained subspaces of all dimensions r ≤ n−s −1.

We have therefore proved the following result.

Theorem 11.28 If a nonsingular quadric Q in a real projective space of dimension
n is given by the equation F(x0, . . . , xn) = 0 and the index of inertia of the quadratic
form F is equal to s + 1, then in Q are contained projective subspaces only of
dimension r ≤ n − s − 1, and for each such number r there can be found in Q a
projective subspace of dimension r (when s + 1 ≥ n − r , which is always possible
to attain without changing the quadric Q, but changing only the quadratic form F

that determines it to −F ).

We have already considered an example of a quadric in real three-dimensional
projective space (n = 3). Let us note that in this space there are only two nonempty
quadrics: for s = 1 and s = 2.

For s = 2, equation (11.43) can be written in the form

x2
0 + x2

1 + x2
2 = x2

3 . (11.46)

As we have already said, for points of a real quadric, we have x3 	= 0. This means
that our quadric is entirely contained in this affine subset. Setting x = x0/x3, y =
x1/x3, z = x2/x3, we shall write its equation in the form

x2 + y2 + z2 = 1.

This is the familiar two-dimensional sphere S2 in three-dimensional Euclidean
space. Let us discover what lines lie on it. Of course, no real line can lie on a sphere,
since every line has points that are arbitrarily distant from the center of the sphere,
while for all points of the sphere, their distance from the center of the sphere is equal
to 1. Therefore, we can be talking only about complex lines of the space P(LC). If
in equation (11.46) we make the substitution x2 = iy, where i is the imaginary unit,
we obtain the equation x2

0 + x2
1 − y2 − x2

3 = 0, which in the new coordinates

u0 = x0 + y, v0 = x0 − y, u1 = x1 + x3, v1 = x1 − x3

takes the form

u0v0 + u1v1 = 0. (11.47)
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Fig. 11.3 Hyperboloid of
one sheet

We studied such an equation in Sect. 11.2 (see Example 11.11). As an example
of a line lying in the given quadric, we may take the line given by equations (11.25):
u0 = λu1, v0 = −λ−1v1 with arbitrary complex number λ 	= 0 and arbitrary u1, v1.
In general, such a line contains not a single real point of our quadric (that is, points
corresponding to real values of the coordinates x0, . . . , x3). Indeed, if the number λ

is not real, then the equality u0 = λu1 contradicts the fact that u0 and u1 are real.
The case u0 = u1 = 0 would correspond to a point with coordinates x1 = x3 = 0,
for which x2

0 + x2
2 = 0, that is, all xi are equal to zero.

Thus on the sphere lies a set of complex lines containing not a single real point.
If desired, all of them could be described by formulas (11.27) and (11.28) after
changes in coordinates that we described earlier. However, of greater interest are
the complex lines lying on the sphere and containing at least one real point. For
each such line l containing a real point of the sphere P , the complex conjugate line
l (that is, consisting of points Q, where Q takes values on the line l) also lies on
the sphere and contains the point P . But by Theorem 11.19, through every point
P pass exactly two lines (even if complex). We see that through every point of the
sphere there pass exactly two complex lines, which are the complex conjugates of
each other.

Finally, the case s = 1 leads to the equation

x2
0 + x2

1 − x2
2 − x2

3 = 0, (11.48)

which after a change of coordinates

u0 = x0 + x1, v0 = x0 − x1, u1 = x2 + x3, v1 = x2 − x3,

also assumes the form (11.47). For this equation, we have described all the lines con-
tained in a quadric by formulas (11.27) and (11.28), where clearly, real values must
be assigned to the parameters a, b, c, d in these formulas. In this case, the obtained
quadric is a hyperboloid of one sheet, and the lines are its rectilinear generatrices.
See Fig. 11.3.

Let us visualize what this surface looks like; that is, let us find a more familiar
set that is homeomorphic to this surface. To this end, let us choose one line in each
family of rectilinear generatrices: in the first, l0; in the second, l1. As we saw in
Sect. 9.4, every projective line is homeomorphic to the circle S1. On the other hand,
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Fig. 11.4 A torus

every line in the second family of generatrices is uniquely determined by its point of
intersection with the line l0, and similarly, every line of the first family is determined
by its point of intersection with the line l1. Finally, through every point of the surface
pass exactly two lines: one from the first family of generatrices, and the other from
the second.

Thus is established a bijection between the points of a quadric given by equation
(11.48) and pairs of points (x,y), where x ∈ l0, y ∈ l1, that is, the set S1 × S1.
It is easily ascertained that this bijection is a homeomorphism. The set S1 × S1 is
called a torus. It is most simply represented as the surface obtained by rotating a
circle about an axis lying in the same plane as the circle but not intersecting it. See
Fig. 11.4. Such a surface looks like the surface of a bagel. As a result, we obtain that
the quadric given by equation (11.48) in three-dimensional real projective space is
homeomorphic to a torus. See Fig. 11.4.

11.5 Quadrics in a Real Affine Space

Now we proceed to the study of quadrics in a real affine space (V ,L). Let us choose
in this space a frame of reference (O; e1, . . . , en). Then every point A ∈ V is given
by its coordinates (x1, . . . , xn). A quadric is the set of all points A ∈ V such that

F(x1, . . . , xn) = 0, (11.49)

where F is some second-degree polynomial. There is now no reason to consider the
polynomial F to be homogeneous (as was the case in a projective space).

Collecting in F(x) terms of the second, first, and zeroth degrees, we shall write
them in the form

F(x) = ψ(x) + f (x) + c, (11.50)

where ψ(x) is a quadratic form, f (x) is a linear form, and c is a scalar. The quadrics
F(x) = 0 thus obtained for n = 2 and 3 represent the curves and surfaces of order
two studied in courses in analytic geometry.

Let us note that according to our definition of a quadric as a set of points satisfy-
ing relationship (11.49), we obtain even in the simplest cases, n = 2 and 3, sets that
generally do not belong to curves or surfaces of degree two. The same “strange”
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examples show that dissimilar-looking second-degree polynomials can define one
and the same quadric, that is, the solution set of equation (11.49).

For example, in real three-dimensional space with coordinates x, y, z, the equa-
tion x2 + y2 + z2 + c = 0 has no solution in x, y, z if c > 0, and therefore for any
c > 0, it defines the empty set. Another example is the equation x2 + y2 = 0, which
is satisfied only with x = y = 0 but for all z, that is, this equation defines a line,
namely the z-axis. But the same line (z-axis) is defined, for example, by the equa-
tion ax2 + by2 = 0 with any numbers a and b of the same sign.

Let us prove that if we exclude such “pathological” cases, then every quadric is
defined by an equation that is unique up to a nonzero constant factor. Here it will be
convenient to consider the empty set a special case of an affine subspace.

Theorem 11.29 If a quadric Q does not coincide with a set of points of any affine
subspace and can be given by two different equations F1(x) = 0 and F2(x) = 0,
where the Fi are second-degree polynomials, then F2 = λF1, where λ is some
nonzero real number.

Proof Since by the given condition, the quadric Q is not empty, it must contain
some point A. By Theorem 8.14, there exists another point B ∈ Q such that the line
l passing through A and B does not lie entirely in Q.

Let us select in the affine space V , a frame of reference (O; e1, . . . , en) in which
the point O is equal to A and the vector e1 is equal to

−→
AB . The line passing through

the points A and B consists of points with coordinates (x1,0, . . . ,0) for all possible
real values x1. Let us write down the equation Fi(x) = 0, i = 1,2, defining our
quadric after arranging terms in order of the degree of x1. As a result, we obtain the
equations

Fi(x1, . . . , xn) = aix
2
1 + fi(x2, . . . , xn)x1 + ψi(x2, . . . , xn) = 0, i = 1,2,

where fi(x2, . . . , xn) and ψi(x2, . . . , xn) are inhomogeneous polynomials of first
and second degree in the variables x2, . . . , xn. After defining fi(0, . . . ,0) = fi(O)

and ψi(0, . . . ,0) = ψi(O), we may say that the relationship

aix
2
1 + fi(O)x1 + ψi(O) = 0 (11.51)

holds for x1 = 0 (point A) and for x1 = 1 (point B), but does not hold identically
for all real values x1. From this it follows that ψi(O) = 0 and ai + fi(O) = 0. This
means that ai 	= 0, for otherwise, we would obtain that relationship (11.51) was
satisfied for all x1. By multiplying the polynomial Fi by a−1

i , we may assume that
ai = 1.

Let us denote by x the projection of the vector x onto the subspace 〈e2, . . . , en〉
parallel to the subspace 〈e1〉, that is, x = (x2, . . . , xn). Then we may say that the
two equations

x2
1 + f1(x)x1 + ψ1(x) = 0 and x2

1 + f2(x)x1 + ψ2(x) = 0, (11.52)
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where fi(x) are first-degree polynomials and ψi(x) are second-degree polynomi-
als of the vector x, have identical solutions. Furthermore, we know that they both
have two solutions, x1 = 0 and x1 = 1, for x = 0, that is, the discriminant of each
quadratic trinomial

pi(x1) = x2
1 + fi(x)x1 + ψi(x), i = 1,2,

with coefficients depending on the vector x, for x = 0, is positive.
The coefficients of the trinomial pi(x1) can be viewed as polynomials in the

variables x2, . . . , xn, that is, the coordinates of the vector x. Consequently, the dis-
criminant of the trinomial pi(x1) is also a polynomial in the variables x2, . . . , xn,
and therefore, it depends on them continuously. From the definition of continuity,
it follows that there exists a number ε > 0 such that the discriminant of each tri-
nomial pi(x1) is positive for all x such that |x2| < ε, . . . , |xn| < ε. This condition
can be written compactly in the form of the single inequality |x| < ε, assuming that
the space of vectors x is somehow converted into a Euclidean space in which is
defined the length of a vector |x|. For example, it can be defined by the relationship
|x|2 = x2

2 + · · · + x2
n .

Thus the quadratic trinomials pi(x1) with leading coefficient 1 and coefficients
fi(x) and ψi(x), depending continuously on x, each have two roots for all |x| < ε.
But as is known from elementary algebra, such trinomials coincide. Therefore,
f1(x) = f2(x) and ψ1(x) = ψ2(x) for all |x| < ε. Hence on the basis of the fol-
lowing lemma, we obtain that these equalities are satisfied not only for |x| < ε, but
in general for all vectors x. �

Lemma 11.30 If for some number ε > 0, the polynomials f (x) and g(x) coincide
for all x such that |x| < ε, then they coincide identically for all x.

Proof Let us represent each of the polynomials f (x) and g(x) as a sum of homo-
geneous terms:

f (x) =
N∑

k=0

fk(x), g(x) =
N∑

k=0

gk(x). (11.53)

Let us set x = αy, where |y| < ε and the number α is in [0,1]. Then the condition
|x| < ε is clearly satisfied, and this means that f (x) = g(x). Setting x = αy in
equality (11.53), we obtain

N∑

k=0

αkfk(y) =
N∑

k=0

αkgk(y). (11.54)

On the one hand, equality (11.54) holds for all α ∈ [0,1], of which there are in-
finitely many. On the other hand, (11.54) represents an equality between two poly-
nomials in the variable α. As is well known, polynomials of a single variable taking
the same values for an infinite number of values of the variable coincide identi-
cally, that is, they have the same coefficients. Therefore, we obtain the equalities



11.5 Quadrics in a Real Affine Space 417

fk(y) = gk(y) for all k = 0, . . . ,N and all y for which |y| < ε. But since the poly-
nomials fk and gk are homogeneous, it follows that these equalities hold in general
for all y.

Indeed, every vector y can be represented in the form y = αz with some scalar
α and vector z for which |z| < ε. For example, it suffices to set α = (2/ε)|y|.
Consequently, we obtain fk(z) = gk(z). But if we multiply both sides of this
equality by αk and invoke the homogeneity of fk and gk , we obtain the equality
fk(αz) = gk(αz), that is, fk(y) = gk(y), which is what was to be proved. �

Let us note that we might have posed this same question about the uniqueness
of the correspondence between quadrics and their defining equations with regard
to quadrics in projective space. But in projective space, the polynomial defining a
quadric is homogeneous, and this question can be resolved even more easily. So that
we wouldn’t have to repeat ourselves, we have considered the question in the more
complex situation.

Let us now investigate a question that is considered already in a course in analytic
geometry for spaces of dimension 2 and 3: into what simplest form can equation
(11.49) be brought by a suitable choice of frame of reference in an affine space
of arbitrary dimension n? This question is equivalent to the following: under what
conditions can two quadrics be transformed into each other by a nonsingular affine
transformation?

We shall consider quadrics in an affine space (V ,L) of dimension n, assuming
that for smaller values of n, this problem has already been solved. In this regard, we
shall not consider quadrics that are cylinders, that is, having the form

Q = h−1(Q′),

where (h,A) is an affine transformation of the space (V ,L) into the affine space
(V ′,L′) of dimension m < n, and Q′ is some subset of V ′. Let us ascertain that in
this case, Q′ is a quadric in V ′.

Let the quadric Q in a coordinate system associated with some frame of reference
of the affine space V be defined by the second-degree equation F(x1, . . . , xn) = 0.
Let us choose in the m-dimensional affine space V ′ some frame of reference
(O ′; e′

1, . . . , e
′
m). Then e′

1, . . . , e
′
m is a basis in the vector space L′. In the defini-

tion of a cylinder, one has the condition A(L) = L′. Let us denote by e1, . . . , em

vectors ei ∈ L such that A(ei ) = e′
i , i = 1, . . . ,m, and let us consider the subspace

M = 〈e1, . . . , em〉 that they span. By Corollary 3.31, there exists a subspace N ⊂ L
such that L = M ⊕ N. Let O ∈ V be an arbitrary point such that h(O) = O ′. Then
in the coordinate system associated with the frame of reference (O ′; e′

1, . . . , e
′
m),

the projection of the space L onto M parallel to the subspace N and the associated
projection h of the affine space V onto V ′ are defined by the condition

h(x1, . . . , xn) = (
x′

1, . . . , x
′
m

)
,

where x′
i are the coordinates of (O ′; e′

1, . . . , e
′
m), the associated frame of refer-

ence. Then the fact that Q is a quadric means that its second-degree equation
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F(x1, . . . , xn) = 0 is satisfied irrespective of the values that we have substituted
for the variables xm+1, . . . , xn if the point with coordinates (x1, . . . , xm) belongs
to the set Q′. For example, we may set xm+1 = 0, . . . , xn = 0. Then the equation
F(x′

1, . . . , x
′
n,0, . . . ,0) = 0 will be precisely the equation of the quadric Q′.

The same reasoning shows that if a polynomial F depends on fewer than n un-
knowns, then the quadric Q defined by the equation F(x) = 0 is a cylinder. There-
fore, in the sequel we shall consider only quadrics that are not cylinders. Our goal
will be the classification of these quadrics using nonsingular affine transformations.
Two quadrics that can be mapped one into the other by such a transformation are
said to be affinely equivalent.

First of all, let us consider the effect of a translation on the equation of a quadric.
Let the equation of the quadric Q in coordinates associated with some frame of
reference (O; e1, . . . , en) have the form

F(x) = ψ(x) + f (x) + c = 0, (11.55)

where ψ(x) is a quadratic form, f (x) is a linear form, and c is a number. If Ta is a
translation by the vector a ∈ L, then the quadric Ta(Q) is given by the equation

ψ(x + a) + f (x + a) + c = 0.

Let us consider how the equation of a quadric is transformed under these conditions.
Let ϕ(x,y) be the symmetric bilinear form associated with the quadratic form ψ(x),
that is, ψ(x) = ϕ(x,x). Then

ψ(x + a) = ϕ(x + a,x + a) = ϕ(x,x) + 2ϕ(x,a) + ϕ(a,a)

= ψ(x) + 2ϕ(x,a) + ψ(a).

As a result, we obtain that after a translation Ta :

(a) The quadratic part ψ(x) does not change.
(b) The linear part f (x) is substituted by f (x) + 2ϕ(x,a).
(c) The constant term c is substituted by c + f (a) + ψ(a).

Using statement (b), then with the aid of a translation Ta , it is sometimes possible
to eliminate the first-degree terms in the equation of a quadric. More precisely, this
is possible if there exists a vector a ∈ L such that

f (x) = −2ϕ(x,a) (11.56)

for an arbitrary x ∈ L. By Theorem 6.3, any bilinear form ϕ(x,y) can be repre-
sented in the form ϕ(x,y) = (x,A(y)) via some linear transformation A : L → L∗.
Then condition (11.56) can be written in the form (x,f ) = −2(x,A(a)) for all
x ∈ L, that is, in the form f = −2A(a) = A(−2a). This means that the condition
(11.56) amounts to the linear function f ∈ L∗ being contained in the image of the
transformation A.
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First of all, let us investigate those quadrics for which condition (11.56) is satis-
fied. In this case, there exists a frame of reference of the affine space in which the
quadric can be represented by the equation

F(x) = ψ(x) + c = 0. (11.57)

This equation exhibits a remarkable symmetry: it is invariant under a change of the
vector x into −x. Let us investigate this further.

Definition 11.31 Let V be an affine space and A a point of V . A central symmetry
with respect to a point A is a mapping V → V that maps each point B ∈ V to the

point B ′ ∈ V such that
−−→
AB ′ = −−→

AB .

It is obvious that by this condition, the point B ′, and therefore the mapping,
is uniquely determined. A trivial verification shows that this mapping is an affine
transformation and its linear part is equal to −E .

Definition 11.32 A set Q ⊂ V is said to be centrally symmetric with respect to a
point A ∈ V if it is invariant under a central symmetry with respect to the point A,
which in this case is called the center of the set Q.

It follows from the definition that a point A on a quadric is a center if and only
if the quadric is transformed into itself by the linear transformation −E , that is,
x �→ −x, where x = −→

AX for every point X of this quadric.

Theorem 11.33 If a quadric does not coincide with an affine space, is not a cylin-
der, and has a center, then the center is unique.

Proof Let A and B be two distinct centers of the quadric Q. This means, by defini-
tion, that for every point X ∈ Q, there exists a point X′ ∈ Q such that

−→
AX = −−−→

AX′, (11.58)

and for every point Y ∈ Q, there exists a point Y ′ ∈ Q such that

−→
BY = −−−→

BY ′. (11.59)

Let us apply relationship (11.58) to an arbitrary point X ∈ Q, and relationship
(11.59) to the associated point X′ = Y . Let us denote the point Y ′ obtained as a
result of these actions by X′′. It is obvious that

−−→
XX′′ = −→

XA + −→
AB + −−→

BX′′, (11.60)

and from relationships (11.58) and (11.59), it follows that
−→
XA = −−→

AX′ and
−−→
BX′′ =−−→

X′B . Substituting the last expressions into (11.60), we obtain that
−−→
XX′′ = 2

−→
AB . In

other words, this means that if the vector e is equal to 2
−→
AB , then the quadric Q is
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Fig. 11.5 Similar triangles

invariant under the translation Te; see Fig. 11.5. This assertion also follows from an
examination of the similar triangles ABX′ and XX′′X′ in Fig. 11.5.

Since A 	= B , the vector e is nonnull. Let us choose an arbitrary frame of ref-
erence (O; e1, . . . , en), where e1 = e. Let us set L′ = 〈e2, . . . , en〉 and consider
the affine space V ′ = (L′,L′) and mapping h : V → V ′, defined by the follow-
ing conditions: h(O) = O , h(A) = O if

−→
OA = λe, and h(Ai) = ei if

−−→
OAi = ei

(i = 2, . . . , n). It is obvious that the mapping h is a projection and that the set Q is a
cylinder. Since by our assumption, the quadric Q is not a cylinder, we have obtained
a contradiction. �

Thus we obtain that by choosing a system of coordinates with the origin at the
center of the quadric, one can define an arbitrary quadric satisfying the conditions
of Theorem 11.33 by the equation

ψ(x1, . . . , xn) = c, (11.61)

where ψ is a nonsingular quadratic form (in the case of a singular form ψ , the
quadric would be a cylinder).

If c 	= 0, then we may assume that c = 1 by multiplying both sides of equality
(11.61) by c−1. Finally, we may execute a linear transformation that preserves the
origin and brings the quadratic form ψ into canonical form (6.22). As a result, the
equation of the quadric takes the form

x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

n = c, (11.62)

where c = 0 or 1, and the number r is the index of inertia of the quadratic form ψ .
If c = 0 and r = 0 or r = n, then it follows that x1 = 0, . . . , xn = 0, that is,

the quadric consists of a single point, the origin, which contradicts the assumption
made above that it does not coincide with some affine subspace. Likewise, for c =
1 and r = 0, we obtain that −x2

1 − · · · − x2
n = 1, and this is impossible for real

x1, . . . , xn, so that the quadric consists of the empty set, which again contradicts our
assumption.

We have thus proved the following assertion.

Theorem 11.34 If a quadric does not coincide with an affine subspace, is not a
cylinder, and has a center, then in some coordinate system, it is defined by equation
(11.62). Moreover, 0 < r ≤ n, and if c = 0, then r < n.

In the case c = 0, it is possible, by multiplying the equation of a quadric by −1,
to obtain that in (11.62), the number of positive terms is not less than the number of
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negative terms, that is, r ≥ n − r , or equivalently, r ≥ n/2. In the sequel, we shall
always assume that in the case c = 0, this condition is satisfied.

Theorem 11.34 asserts that every quadric that is not an affine subspace or a cylin-
der and that has a center can be transformed with the help of a suitable nonsingular
affine transformation into a quadric given by equation (11.62). For c = 0 (and only
in this case), the quadric (11.62) is a cone (with its vertex at the origin), that is, for
every one of its points x, it also contains the entire line 〈x〉. It is possible to indicate
another characteristic property of a quadric given by equation (11.62) for c = 0: it
is not smooth, while in the case c = 1, the quadric is smooth. This follows at once
from the definition of singular points (the equalities F = 0 and ∂F

∂xi
= 0).

Let us now consider quadrics without a center. Such a quadric Q is defined by
the equation

F(x) = ψ(x) + f (x) + c = 0, (11.63)

where ψ(x) is a quadratic form, f (x) a linear form, c a scalar. As earlier, we shall
write a symmetric bilinear form ϕ(x,y) corresponding to a quadratic form ψ(x)

as ϕ(x,y) = (x,A(y)), where A : L → L∗ is a linear transformation. We have seen
that for a quadric Q not to have a center is equivalent to the condition f /∈ A(L).

Let us choose an arbitrary basis e1, . . . , en−1 in the hyperplane L′ = 〈f 〉a defined
in the space L by the linear homogeneous equation f (x) = 0, and let us extend this
basis to a basis of the entire space L by means of a vector en ⊥ L′ such that f (en) = 1
(here, of course, orthogonality is understood in the sense of being with respect to the
bilinear form ϕ(x,y)). In the obtained frame of reference (O; e1, . . . , en), equation
(11.63) can be written in the form

F(x) = ψ ′(x1, . . . , xn−1) + αx2
n + xn + c = 0, (11.64)

where ψ ′ is the restriction of the quadratic form ψ to the hyperplane L′.
Let us now choose in L′ a new basis e′

1, . . . , e
′
n−1, in which the quadratic form

ψ ′ has the canonical form

ψ ′(x1, . . . , xn−1) = x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

n−1. (11.65)

It is obvious that in this case, the coordinate origin O and the vector en remain
unchanged. If as a result, the quadratic form ψ ′ turned out to depend on fewer than
n − 1 variables, then the polynomial F in equation (11.63) would depend on fewer
than n variables, and that, as we have seen, means that the quadric Q is a cylinder.

Let us show that in formula (11.64), the number α is equal to 0. If α 	= 0, then by
virtue of the obvious relationship αx2

n +xn +c = α(xn +β)2 +c′, where β = 1/(2α)

and c′ = c − β/2, we obtain that via the translation Ta by the vector a = −βen,
equation (11.64) is transformed into

F(x) = ψ ′(x1, . . . , xn−1) + αx2
n + c′ = 0,

where ψ ′ has the form (11.65). But such an equation, as is easily seen, gives a
quadric with a center.

Thus assuming that the quadric Q is not a cylinder and does not have a center,
we obtain that its equation has the form
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x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

n−1 + xn + c = 0.

Now let us perform a translation Ta by the vector a = −cen. As a result, the co-
ordinates x1, . . . , xn−1 are unchanged, while xn is changed to xn − c. In the new
coordinates, the equation of the quadric assumes the form

x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

n−1 + xn = 0. (11.66)

By multiplying the equation of the quadric by −1 and changing the coordinate xn

to −xn, we can obtain that the number of positive squares in equation (11.66) is
not less than the number of negative squares, that is, r ≥ n − r − 1, or equivalently,
r ≥ (n − 1)/2.

We have thereby obtained the following result.

Theorem 11.35 Every quadric that is not an affine subspace or a cylinder and does
not have a center can be given in some coordinate system by equation (11.66), where
r is a number satisfying the condition (n − 1)/2 ≤ r ≤ n − 1.

Thus by combining Theorems 11.34 and 11.35, we obtain the following result:
Every quadric that is not an affine subspace or a cylinder can be given in some
coordinate system by equation (11.62) if it doesn’t have a center and by equation
(11.66) if it does have a center. We call these equations canonical.

Theorems 11.34 and 11.35 do more than give the simplest form into which the
equation of a quadric can be transformed through a suitable choice of coordinate
system. Beyond that, it follows from these theorems that quadrics having a canonical
form (11.62) or (11.66) can be affinely equivalent (that is, transformable into each
other by a nonsingular affine transformation) only if their equations coincide.

On the way to proving this assertion, we shall first establish that quadrics defined
by equation (11.66) never have a center. Indeed, writing the equation of a quadric
in the form (11.50), we may say that it has a center only if f ∈ A(L). But a simple
verification shows that this condition is not satisfied for quadrics defined by equation
(11.66). Indeed, if in some basis e1, . . . , en of the space L, the quadratic form ψ(x)

is given as

x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

n−1,

then on choosing the dual basis f 1, . . . ,f n, of the dual space L∗, we obtain
that the linear transformation A : L → L∗ associated with ψ by the relationship
ϕ(x,y) = (x,A(y)), in which ϕ(x,y) is a symmetric bilinear form determined by
the quadratic form ψ , has the form A(ei ) = f i for i = 1, . . . , r , A(ei ) = −f i for
i = r +1, . . . , n−1, and A(en) = 0, and the linear form xn coincides with f n. Thus
A(L) = 〈f 1, . . . ,f n−1〉 and f = f n /∈ A(L).

We may now formulate the fundamental theorem on the classification of quadrics
with respect to nonsingular affine transformations.

Theorem 11.36 Any quadric that is not an affine subspace or cylinder can be rep-
resented in some coordinate system by the canonical equation (11.62) or (11.66),
where the number r satisfies the conditions indicated in Theorems 11.34 and 11.35
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respectively. And conversely, every pair of quadrics having the canonical equation
(11.62) or (11.66) in some coordinate systems can be transformed into each other
by a nonsingular affine transformation only if their canonical equations coincide.

Proof Only the second part of the theorem remains to be proved. We have already
seen that quadrics given by equations (11.62) and (11.66) cannot be mapped into
each other by nonsingular affine transformations, since in the first case, the quadric
has a center, while in the second case, it does not. Therefore, we may consider each
case separately.

Let us begin with the first case. Let there be given two quadrics Q1 and Q2,
given by different canonical equations of the form (11.62) (we note that the canon-
ical equations in this case differ by the value c = 0 or 1 and index r), and where
Q2 = g(Q1), with (g,A) a nonsingular affine transformation. By assumption, each
quadric has a unique center, which in its chosen coordinate system coincides with
the point O = (0, . . . ,0).

Let us write down the transformation g in the form (8.19): g = Tag0, where
g0(O) = O . By assumption, Q2 = g(Q1), and this means that g(O) = O , that is,
the vector a is equal to 0. In the equations of the quadrics, which we may write in
the form Fi(x) = ψi(x) + ci = 0, i = 1 and 2, it is clear that Fi(0) = ci , and this
means that the constants ci coincide (in the sequel, we shall denote them by c). Thus
the equations of the quadrics Q1 and Q2 differ only in the quadratic part ψi(x).

By Theorem 11.29, the transformation g takes the polynomial F1(x) − c into
λ(F2(x) − c), where λ is some nonzero real number. Consequently, the quadratic
form ψ1(x) is transformed into λψ2(x) by the linear transformation A. If we de-
note the indices of inertia of the quadratic forms ψi(x) by ri , then from the law of
inertia, it follows that either r2 = r1 (for λ > 0) or r2 = n − r1 (for λ < 0). In the
case c = 0, we may assume that ri ≥ n/2, and the equality r2 = n − r1 is possible
only for r2 = r1. In the case c = 1, this same result follows from the fact that the
transformation A takes the polynomial ψ1(x) − 1 into λ(ψ1(x) − 1). Comparing
the constant terms, we obtain λ = 1.

In the case that the quadric has no center, we may repeat the same arguments. We
again obtain that the quadratic form ψ1(x) is carried into λψ2(x) by a nonsingular
linear transformation. Since each form ψi(x) contains by assumption the term x2

1 ,
it follows that λ = 1, and from the law of inertia, it follows that r2 = r1 (for λ > 0),
or r2 = n − 1 − r1 (for λ < 0). Since by assumption, ri ≥ (n − 1)/2, the equality
r2 = n − 1 − r1 is possible only for r2 = r1. �

Thus we see that in a real affine space of dimension n, there exists only a finite
number of affinely inequivalent quadrics that are not affine subspaces or cylinders.
Each of them is equivalent to a quadric that can be represented in the form of equa-
tion (11.62) or equation (11.66).

It is possible to compute the number of types of affinely inequivalent quadrics.
Equation (11.62) for c = 1 gives n possibilities. The remaining cases depend on the
parity of the number n. If n = 2m, then equation (11.62) for c = 0 gives m different
types, and the same number is given by equation (11.66). Altogether, we obtain
n + 2m = 2n different types in the case of even n. If n = 2m + 1, then equation
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(11.62) for c = 0 gives m different types, and the same number is given by equation
(11.66). Altogether in this case we obtain n+2m−1 = 2n−2 different types. Thus
in a real affine space of dimension n, the number of types of affinely inequivalent
quadrics that are not affine subspaces or cylinders is equal to 2n if n is even, and to
2n − 2 if n is odd.

Remark 11.37 It is easy to see that the content of this section is reduced to the clas-
sification of second-degree polynomials F(x1, . . . , xn) up to a nonsingular affine
transformation of the variables and multiplication by a nonzero scalar coefficient.
The connection with the geometric object—the quadric—is established by Theo-
rem 11.29. That we excluded from consideration the case of affine subspaces is
related to the fact that we wished to emphasize the differences among the geometric
objects that arise.

The assumption that the quadric was not a cylinder was made exclusively to
emphasize the inductive nature of the classification. The limitations that we intro-
duced could have been done without. By repeating precisely the same arguments,
we obtain that an arbitrary set in n-dimensional affine space given by equating a
second-degree polynomial in n variables—the coordinates of a point—to zero is
affinely equivalent to one of the sets defined by the following equations:

x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

m = 1, 0 ≤ r ≤ m ≤ n, (11.67)

x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

m = 0, r ≥ m

2
,m ≤ n, (11.68)

x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

m−1 + xm = 0, r ≥ m − 1

2
,m < n. (11.69)

After this, it is easy to see that in the case of (11.67) for r = 0, the empty set is ob-
tained, while in the case (11.68) for r = 0 or r = m, the result is an affine subspace.
In the remaining cases, it is easy to find a line that intersects the given set in two
distinct points and is not entirely contained in it. By virtue of Theorem 8.14, this
means that such a set is not an affine subspace.

In conclusion, let us say a bit about the topological properties of affine quadrics.
If in equation (11.62), we have c = 1 and the index of inertia r is equal to 1, then

this equation can be rewritten in the form x2
1 = 1 + x2

2 + · · · + x2
n , from which it

follows that x2
1 ≥ 1, that is, x1 ≥ 1 or x1 ≤ −1. Clearly, it is impossible for a point

of the quadric whose coordinate x1 is greater than 1 to be continuously deformed
into a point whose coordinate x1 is less than or equal to −1 while remaining on the
quadric (see the definition on p. xx). Therefore, a quadric in this case consists of two
components, that is, it consists of two subsets such that no two points lying one in
each of these subsets can be continuously deformed into each other while remaining
on the quadric. It can be shown that each of these components is path connected (see
the definition on p. xx), just as is every quadric given by equation (11.66).

The simplest example of a quadric consisting of two path-connected components
is a hyperbola in the plane; see Fig. 11.6.
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Fig. 11.6 A hyperbola

The topological property that we described above has a generalization to quadrics
defined by equation (11.62) for c = 1 with smaller values of the index r , but still
assuming that r ≥ 1. Here we shall say a few words about them, without giving a
rigorous formulation and also omitting proofs.

For r = 1 we can find two points, (1,0, . . . ,0) and (−1,0, . . . ,0), that cannot be
transformed into each other by a continuous motion along the quadric (they could
be given as the sphere x2

1 = 1 in one-dimensional space). For an arbitrary value of
r , the quadric contains the sphere

x2
1 + · · · + x2

r = 1, xr+1 = 0, . . . , xn = 0.

One can prove that this sphere cannot be contracted to a single point by continu-
ous motion along the surface of the quadric. But for every m < r and continuous
mapping f of the sphere Sm−1 : y2

1 + · · · + y2
m = 1 into the quadric, the image of

the sphere f (Sm−1) can be contracted to a point by continuous motion along the
quadric (it should be clear to the reader what is meant by continuous motion of a set
along a quadric, something that we have already encountered in the case r = 1).

11.6 Quadrics in an Affine Euclidean Space

It remains to us to consider nonsingular quadrics in an affine Euclidean space V .
We shall, as before, exclude the cases in which the quadrics are affine subspaces
or cylinders. The classification of such quadrics up to metric equivalence uses pre-
cisely the same arguments as those used in Sect. 11.5. To some extent, the results
of that section can be applied in our case, since motions are affine transformations.
Therefore, we shall only cursorily recall the line of reasoning.

Generalizing the statement of the problem, which goes back to analytic geometry
(where cases dimV = 2 and 3 are considered), we shall say that two quadrics are
metrically equivalent if they can be transformed into each other by some motion
of the space V . This definition is a special case of metric equivalence of arbitrary
metric spaces (see p. xxi), to which belong, as is easily verified, all quadrics in an
affine Euclidean space.

First of all, let us consider quadrics given by equations whose linear part can be
annihilated by a translation. These are quadrics that have a center (which, as we
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have seen, is unique). Choosing a coordinate origin (that is, a point O of the frame
of reference (O; e1, . . . , en)) in the center of the quadric, we bring its equation into
the form

ψ(x1, . . . , xn) = c,

where ψ(x1, . . . , xn) is a nonsingular quadratic form, c a number. If c 	= 0, then by
multiplying the equation by c−1, we may assume that c = 1. For c = 0, the quadric
is a cone.

Using an orthogonal transformation, the quadratic form ψ can be brought into
canonical form

ψ(x1, . . . , xn) = λ1x
2
1 + λ2x

2
2 + · · · + λnx

2
n,

where all the numbers λ1, . . . , λn are nonzero, since by assumption, our quadric
is nonsingular and is neither an affine subspace nor a cylinder, which means that
the quadratic form ψ is nonsingular. Let us separate the positive numbers from the
negative: suppose λ1, . . . , λk > 0 and λk+1, . . . , λn < 0. By tradition going back
to analytic geometry, we shall set λi = a−2

i for i = 1, . . . , k and λj = −a−2
j for

j = k + 1, . . . , n, where all numbers a1, . . . , an are positive.
Thus every quadric having a center is metrically equivalent to a quadric with

equation

(
x1

a1

)2

+ · · · +
(

xk

ak

)2

−
(

xk+1

ak+1

)2

− · · · −
(

xn

an

)2

= c, (11.70)

where c = 0 or 1. For c = 0, multiplying equation (11.70) by −1, we may, as in the
affine case, assume that k ≥ n/2.

Now let us consider the case that the quadric

ψ(x1, . . . , xn) + f (x1, . . . , xn) + c = 0

does not have a center, that is, f /∈ A(L), where A : L → L∗ is the linear transforma-
tion associated with the quadratic form ψ by the relationship ϕ(x,y) = (x,A(y)),
in which ϕ(x,y) is the symmetric bilinear form that gives the quadratic form ψ . In
this case, it is easy to verify that as in Sect. 11.5, we can find an orthonormal basis
e1, . . . , en of the space L such that

f (e1) = 0, . . . , f (en−1) = 0, f (en) = 1,

and in the coordinate system determined by the frame of reference (O; e1, . . . , en),
the quadric is given by the equation

λ1x
2
1 + λ2x

2
2 + · · · + λn−1x

2
n−1 + xn + c = 0.

Through a translation by the vector −cen, this equation can be brought into the form

λ1x
2
1 + λ2x

2
2 + · · · + λn−1x

2
n−1 + xn = 0,
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in which all the coefficients λi are nonzero, since the quadric is nonsingular and is
not a cylinder.

If λ1, . . . , λk > 0 and λk+1, . . . , λn−1 < 0, then by multiplying the equation of
the quadric and the coordinate xn by −1 if necessary, we may assume that k ≥
(n − 1)/2. Setting, as previously, λi = a−2

i for i = 1, . . . , k and λj = −a−2
j for

j = k + 1, k + 2, . . . , n − 1, where a1, . . . , an > 0, we bring the previous equation
into the form

(
x1

a1

)2

+ · · · +
(

xk

ak

)2

−
(

xk+1

ak+1

)2

− · · · −
(

xn−1

an−1

)2

+ xn = 0. (11.71)

Thus every quadric in an affine Euclidean space is metrically equivalent to a
quadric given by equation (11.70) (type I) or (11.71) (type II). Let us verify (under
the given conditions and restriction on r) that two quadrics of the form (11.70) or
of the form (11.71) are metrically equivalent only if all the numbers a1, . . . , an (for
type I) and a1, . . . , an−1 (for type II) in their equations are the same. Here we may
consider separately quadrics of type I and of type II, since they differ even from the
viewpoint of affine equivalence.

By Theorem 8.39, every motion of an affine Euclidean space is the composi-
tion of a translation and an orthogonal transformation. As we saw in Sect. 11.5, a
translation does not alter the quadratic part of the equation of a quadric. By Theo-
rem 11.29, two quadrics are affinely equivalent only if the polynomials appearing in
their equations differ by a constant factor. But for quadrics of type I for c = 1, this
factor must be equal to 1. In the case of a quadric of type I for c = 0, multiplication
by μ > 0 means that all the numbers ai are multiplied by μ−1/2. For a quadric of
type II, this factor must also be equal to 1 in order to preserve the coefficient 1 in
the linear term xn.

Thus we see that if we exclude quadrics of type I with constant term c = 0
(a cone), then the quadratic parts of the equations must be quadratic forms equiva-
lent with respect to orthogonal transformations. But the numbers λi are defined as
the eigenvalues of the associated linearly symmetric transformation, and therefore,
this also determines the numbers ai . In the case of a cone (quadric of type I for
c = 0), all the numbers λi can be multiplied by a common factor that is a positive
number (because of the assumptions made about r). This means that the numbers ai

can be multiplied by an arbitrary positive common factor.
Let us note that although our line of reasoning was precisely the same as in the

case of affine equivalence, the result that we obtained was different. We obtained
relative to affine equivalence only a finite number of different types of inequivalent
quadrics, while with respect to metric equivalence, the number is infinite: they are
determined not only by a finite number of values of the index r , but also by arbi-
trary numbers ai (which in the case of a cone are defined up to multiplication by a
common positive factor). This fact is presented in a course in analytic geometry; for
example, an ellipse with equation

(
x

a

)2

+
(

y

b

)2

= 1
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is defined by its semiaxes a and b, and if for two ellipses these are different, then
the ellipses cannot be transformed into each other by a motion of the plane.

For arbitrary n, quadrics having a canonical equation (11.70) with k = n and
c = 1 are called ellipsoids. The equation of an ellipsoid can be rewritten in the form

n∑

k=1

(
xi

ai

)2

= 1, (11.72)

from which it follows that |xi/ai | ≤ 1 and hence |xi | ≤ ai . If the largest of these
numbers a1, . . . , an is denoted by a, then we obtain that |xi | ≤ a. This property is
expressed by saying that the ellipsoid is a bounded set. The interested reader can
easily prove that among all quadrics, only ellipsoids have this property.

If we renumber the coordinates in such a way that in the equation of the ellipsoid
(11.72), the coefficients are a1 ≥ a2 ≥ · · · ≥ an, then we obtain

(
xi

a1

)2

≤
(

xi

ai

)2

≤
(

xi

an

)2

,

whence for every point x = (x1, . . . , xn) lying on the ellipsoid, we have the inequal-
ity an ≤ |x| ≤ a1. This means that the distance from the center O of the ellipsoid
to the point x is not greater than to the point A = (a1,0, . . . ,0) and not less than to
the point B = (0, . . . ,0, an). These two points, or more precisely, the segments OA

and OB , are called the semimajor and semiminor axes of the ellipsoid.

11.7 Quadrics in the Real Plane*

In this section, we shall not be proving any new facts. Rather, our goal is to estab-
lish a connection between results obtained earlier with facts familiar from analytic
geometry, in particular, the interpretation of quadrics in the real plane as conic sec-
tions, which was known already to the ancient Greeks.

Let us begin by considering the simplest example, in which it is possible to see
the difference between the affine and projective classifications of quadrics, that is,
quadrics in the real affine and real projective planes. But for this, we must first refine
(or recall) the statement of the problem.

By the definition from Sect. 9.1, we may represent a projective space of arbitrary
dimension n in the form P(L), where L is a vector space of dimension n + 1. An
affine space of the same dimension n can be considered the affine part of P(L),
determined by the condition ϕ 	= 0, where ϕ is some nonnull linear function on L. It
can also be identified with the set Wϕ , defined by the condition ϕ(x) = 1. This set is
an affine subspace of L (we may view L as its own space of vectors). In the sequel,
we shall make use of precisely this construction of an affine space.

A quadric Q in a projective space P(L) is given by an equation F(x) = 0, where
F is a homogeneous second-degree polynomial. In the space L, the collection of all
vectors for which F(x) = 0 forms a cone K . Let us recall that a cone is a set K
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such that for every vector x ∈ K , the entire line 〈x〉 containing x is also contained
in K . A cone associated with a quadric is called a quadratic cone. From this point
of view, the projective classification of quadrics coincides with the classification of
quadratic cones with respect to nonsingular linear transformations.

Thus an affine quadric Q can be represented in the form Wϕ ∩ K using the
previously given notation Wϕ and K . Quadrics Q1 ⊂ Wϕ1 and Q2 ⊂ Wϕ2 are
by definition affinely equivalent if there exists a nonsingular affine transformation
Wϕ1 → Wϕ2 mapping Q1 to Q2. This means that we have a nonsingular linear trans-
formation A of the vector space L for which

A(Wϕ1) = Wϕ2 and A(Wϕ1 ∩ K1) = Wϕ2 ∩ K2,

where K1 and K2 are quadratic cones associated with the quadrics Q1 and Q2.
First of all, let us examine how the mapping A acts on the set Wϕ . To this end,

let us recall that in the space L∗ of linear functions on L there are defined dual
transformations A∗ for which

A∗(ϕ)(x) = ϕ
(
A(x)

)

for all vectors x ∈ L and ϕ ∈ L∗. In other words, this means that if A∗(ϕ) = ψ ,
then the linear function ψ(x) is equal to ϕ(A(x)). Since the transformation A is
nonsingular, the dual transformation A∗ is also nonsingular, and therefore, there
exists an inverse transformation (A∗)−1. By definition, (A∗)−1(ϕ)(A(x)) = 1 if
ϕ(x) = 1, that is, A takes Wϕ into the set W(A∗)−1(ϕ).

Since in previous sections, we considered only nonsingular projective quadrics, it
is natural to set corresponding restrictions in the affine case as well. To this end, we
shall use, as earlier, the representation of affine quadrics in the form Q = Wϕ ∩ K .
A quadratic cone K determines some projection to the quadric Q. It is easy to ex-
press this correspondence in coordinates. If we choose in L a system of coordinates
(x0, x1, . . . , xn), then in Wx0 are defined inhomogeneous coordinates y1, . . . , yn by
the formula yi = xi/x0. If the quadric Q is given by the second-degree equation

f (y1, . . . , yn) = 0,

then the quadric Q (and cone K) is given by the equation

F(x0, x1, . . . , xn) = 0, where F = x2
0f

(
x1

x0
, . . . ,

xn

x0

)
.

Thus the projective quadric Q is uniquely defined by the affine quadric Q.

Definition 11.38 An affine quadric Q is said to be nonsingular if the associated
projective quadric Q is nonsingular.

In a space of arbitrary dimension n, all quadrics with canonical equations
(11.67)–(11.69) for m < n are singular. Furthermore, a quadric of type (11.68) is
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singular as well for m = n. Both these assertions can be verified directly from the
definitions; we have only to designate the coordinates x1, . . . , xn by y1, . . . , yn, in-
troduce homogeneous coordinates x0 : x1 : · · · : xn, setting yi = xi/x0, and multiply
all the equations by x2

0 . It is very easy to write down the matrix of a quadratic form
F(x0, x1, . . . , xn).

In particular, for n = 2, we obtain three equations:

y2
1 + y2

2 = 1, y2
1 − y2

2 = 1, y2
1 + y2 = 0. (11.73)

From the results of Sect. 11.5, it follows that for n = 2, every nonsingular affine
quadric is affinely equivalent to a quadric of one (and only one) of these three types.
The corresponding quadrics are called ellipses, hyperbolas, and parabolas.

On the other hand, in Sect. 11.4, we saw that all nonsingular projective quadrics
are projectively equivalent. This result can serve as a graphic representation of affine
quadrics. As we have seen, every affine quadric can be represented in the form
Q = Wϕ ∩K , where K is some quadratic cone. It is affinely equivalent to the quadric

A(Wϕ ∩ K) = W(A∗)−1(ϕ) ∩ A(K),

where A is an arbitrary nonsingular linear transformation of the space L.
Here arises the specific nature of the case n = 2 (dim L = 3). By what has been

proved earlier, every cone K associated with a nonsingular quadric can be mapped
to every other such cone by a nonsingular transformation A. In particular, we may
assume that A(K) = K0, where the cone K0 is given in some coordinate system
x0, x1, x2 of the space L by the equation x2

1 + x2
2 = x2

0 . This cone is obtained by
the rotation of one of its generatrices, that is, a line lying entirely on the cone (for
example, the line x1 = x0, x2 = 0) about the axis x0 (that is, the line x1 = x2 = 0). In
the cone K0 that we have chosen, the angle between the generatrix and the axis x0
is equal to π/4. In other words, this means that each pole of the cone K0 is obtained
by a rotation of the sides of an isosceles right triangle around its bisector.

Setting (A∗)−1(ϕ) = ψ , we obtain that an arbitrary nonsingular affine quadric
is affinely equivalent to the quadric Wψ ∩ K0. Here Wψ is an arbitrary plane in the
space L not passing through the vertex of the cone K0, that is, through the point
O = (0,0,0). Thus every nonsingular affine quadric is affinely equivalent to a pla-
nar section of a right circular cone. This explains the terminology conic used for
quadrics in the plane.

It is well known from analytic geometry how the three conics that we have found
(ellipses, hyperbolas, and parabolas) are obtained from a single (from the point of
view of projective classification) curve. If we begin with equations (11.73), then the
difference in the three types is revealed by writing these equations in homogeneous
coordinates. Setting y1 = x1/x0 and y2 = x2/x0, we obtain the equations

x2
1 + x2

2 = x2
0 , x2

1 − x2
2 = x2

0 , x2
1 − x0x2 = 0. (11.74)

The differences among these equations can be found in the different natures of the
sets of intersection with the infinite line l∞ given by the equation x0 = 0. For an
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Fig. 11.7 Intersection of a conic with an infinite line

ellipse, this set is empty; for a hyperbola, it consists of two points, (0 : 1 : 1) and
(0 : 1 : −1), and for a parabola, it consists of the single point (0 : 0 : 1) (substitution
into equation (11.73) shows that the line l∞ is tangent to the parabola at the point of
intersection); see Fig. 11.7.

We saw in Sect. 9.2 that an affine transformation coincides with a projective
transformation that preserves the line l∞. Therefore, the type of set Q ∩ l∞ (empty
set, two points, one point) should be the same for affinely equivalent quadrics Q. In
our case, the actual content of what we proved in Sect. 11.4 is that the type of set
Q ∩ l∞ determines the quadric Q up to affine equivalence.

But if we begin with the representation of a conic as the intersection of the cone
K0 with the plane Wψ , then different types appear due to a different disposition of
the plane Wψ with respect to the cone K0. Let us recall that the vertex O of the cone
K0 partitions it into two poles. If the equation of the cone has the form x2

1 +x2
2 = x2

0 ,
then each pole is determined by the sign of x0.

Let us denote by Lψ the plane parallel to Wψ and passing through the point O .
This plane is given by the equation ψ = 0. If Lψ has no points of intersection with
the cone K0 other than O , then Wψ intersects one of its poles (for example, the one
within which lie the point of intersection Wψ and the axis x0). In this case, the conic
Wψ ∩ K0 lies within one pole and is an ellipse.

For example, in the special case in which the plane Wψ is orthogonal to the axis
x0, we obtain a circle. If we move the plane Wψ (for example, decrease its angle with
the axis x0), then in its intersection with the cone K0, an ellipse is obtained whose
eccentricity increases as the angle is decreased; see Fig. 11.8(a). The limiting posi-
tion is reached when the plane Lψ is tangent to the cone K0 on a generatrix. Then
Wψ again intersects in one pole (the one that contains the intersection with the axis
x0). This intersection is a parabola; see Fig. 11.8(b). And if the plane Lψ intersects
K0 in two different generatrices, then Wψ intersects both of its poles (on the side of
the plane Lψ on which is located the plane Wψ parallel to it). This intersection is a
hyperbola; see Fig. 11.8(c).

The connection between planar quadrics and conic sections is revealed particu-
larly clearly by the metric classification of such quadrics, which forms part of any
sufficiently rigorous course in analytic geometry. Let us recall only the main results.

As was done in Sect. 11.5, we must exclude from consideration those conics that
are cylinders and those that are unions of vector subspaces (that is, in our case, lines
or points). Then the results obtained in Sect. 11.5 give us (in coordinates x, y) the
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Fig. 11.8 Conic sections

following three types of conic:

x2

a2
+ y2

b2
= 1,

x2

a2
− y2

b2
= 1, x2 + a2y = 0, (11.75)

where a > 0 and b > 0. From the point of view of affine classification presented
above, curves of the first type are ellipses, those of the second type are hyperbolas,
and those of the third type are parabolas.

Let us recall that in a course in analytic geometry, these curves are defined as
geometric loci of points of the plane satisfying certain conditions. Namely, an ellipse
is the geometric locus of points the sum of whose distances from two given points
in the plane is constant. A hyperbola is defined analogously with sum replaced by
difference. A parabola is the geometric locus of points equidistant from a given point
and a given line that does not pass through the given point.

There is an elegant and elementary proof of the fact that all ellipses, hyperbolas,
and parabolas are not only affinely, but also metrically, that is, as geometric loci of
points, equivalent to planar sections of a right circular cone. Let us recall that by
right circular cone we mean a cone K in three-dimensional space obtained as the
result of a rotation of a line about some other line, called the axis of the cone. The
lines forming the cone are called its generatrices; they intersect the axis of the cone
in one common point, called its vertex.

In other words, this result means that the section of a right circular cone with a
plane not passing through the vertex of the cone is either an ellipse, a hyperbola, or a
parabola, and every ellipse, hyperbola, and parabola coincides with the intersection
of a right circular cone with a suitable plane.5

5The proof of this fact is due to the Franco-Belgian mathematician Germinal Pierre Dandelin. It
can be found, for example, in A.P. Veselov and E.V. Troitsky, Lectures in Analytic Geometry (in
Russian); B.N. Delone and D.A. Raikov, Analytic Geometry (in Russian); P. Dandelin, Mémoire
sur l’hyperboloïde de révolution, et sur les hexagones de Pascal et de M. Brianchon; D. Hilbert
and S. Cohn-Vossen, Geometry and the Imagination.
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