
Chapter 10
The Exterior Product and Exterior Algebras

10.1 Plücker Coordinates of a Subspace

The fundamental idea of analytic geometry, which goes back to Fermat and
Descartes, consists in the fact that every point of the two-dimensional plane or
three-dimensional space is defined by its coordinates (two or three, respectively).
Of course, there must also be present a particular choice of coordinate system. In
this course, we have seen that this very principle is applicable to many spaces of
more general types: vector spaces of arbitrary dimension, as well as Euclidean,
affine, and projective spaces. In this chapter, we shall show that it can be applied
to the study of vector subspaces M of fixed dimension m in a given vector space
L of dimension n ≥ m. Since there is a bijection between the m-dimensional sub-
spaces M ⊂ L and (m − 1)-dimensional projective subspaces P(M) ⊂ P(L), we shall
therefore also obtain a description of the projective subspaces of fixed dimension
of a projective space with the aid of “coordinates” (certain collections of num-
bers).

The case of points of a projective space (subspaces of dimension 0) was already
analyzed in the previous chapter: they are given by homogeneous coordinates. The
same holds in the case of hyperplanes of a projective space P(L): they correspond
to the points of the dual space P(L∗). The simplest case in which the problem is
not reduced to these two cases given above is the set of projective lines in three-
dimensional projective space. Here a solution was proposed by Plücker. And there-
fore, in the most general case, the “coordinates” corresponding to the subspace
are called Plücker coordinates. Following the course of history, we shall begin in
Sects. 10.1 and 10.2 by describing these using some coordinate system, and then
investigate the construction we have introduced in an invariant way, in order to de-
termine which of its elements depend on the choice of coordinate system and which
do not.

Therefore, we now assume that some basis has been chosen in the vector space L.
Since dim L = n, every vector a ∈ L has in this basis n coordinates. Let us consider
a subspace M ⊂ L of dimension m ≤ n. Let us choose an arbitrary basis a1, . . . ,am

of the subspace M. Then M = 〈a1, . . . ,am〉, and the vectors a1, . . . ,am are linearly
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independent. The vector ai has, in the chosen basis of the space L, coordinates
ai1, . . . , ain (i = 1, . . . ,m), which we can arrange in the form of a matrix M of type
(m,n), writing them in row form:

M =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎞
⎟⎟⎟⎠ . (10.1)

The condition that the vectors a1, . . . ,am are linearly independent means that the
rank of the matrix M is equal to m, that is, one of its minors of order m is nonzero.
Since the number of rows of the matrix M is equal to m, a minor of order m is
uniquely defined by the indices of its columns. Let us denote by Mi1,...,im the minor
consisting of columns with indices i1, . . . , im, which assume the various values from
1 to n.

We know that not all of the minors Mi1,...,im can be equal to zero at the same
time. Let us examine how they depend on the choice of basis a1, . . . ,am in M. If
b1, . . . ,bm is some other basis of this subspace, then

bi = bi1a1 + · · · + bimam, i = 1, . . . ,m.

Since the vectors b1, . . . ,bm are linearly independent, the determinant |(bij )| is
nonzero. Let us set c = |(bij )|. If M ′

i1,...,im
is a minor of the matrix M ′, constructed

analogously to M using the vectors b1, . . . ,bm, then by formula (3.35) and Theo-
rem 2.54 on the determinant of a product of matrices, we have the relationship

M ′
i1,...,im

= cMi1,...,im . (10.2)

The numbers Mi1,...,im that we have determined are not independent. Namely, if
the unordered collection of numbers j1, . . . , jm coincides with i1, . . . , im (that is,
comprises the same numbers, perhaps arranged in a different order), then as we saw
in Sect. 2.6, we have the relationship

Mj1,...,jm = ±Mi1,...,im, (10.3)

where the sign + or − appears depending on whether the number of transpositions
necessary to effect the passage from the collection (i1, . . . , im) to (j1, . . . , jm) is
even or odd. In other words, the function Mi1,...,im of m arguments i1, . . . , im as-
suming the values 1, . . . , n is antisymmetric.

In particular, we may take as the collection (j1, . . . , jm) the arrangement of
the numbers i1, . . . , im such that i1 < i2 < · · · < im, and the corresponding minor
Mj1,...,jm will coincide with either Mi1,...,im or −Mi1,...,im . In view of this, in the
original notation, we shall assume that i1 < i2 < · · · < im, and we shall set

pi1,...,im = Mi1,...,im (10.4)
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for all collections i1 < i2 < · · · < im of the numbers 1, . . . , n. Thus we assign to the
subspace M as many of the numbers pi1,...,im as there are combinations of n things
taken m at a time, that is, ν = Cm

n . From formula (10.3) and the condition that the
rank of the matrix M is equal to m, it follows that these numbers pi1,...,im cannot
all become zero simultaneously. On the other hand, formula (10.2) shows that in
replacing the basis a1, . . . ,am of the subspace M by some other basis b1, . . . ,bm

of this subspace, all these numbers are simultaneously multiplied by some number
c 
= 0. Thus the numbers pi1,...,im for i1 < i2 < · · · < im can be taken as the homoge-
neous coordinates of a point of the projective space P

ν−1 = P(N), where dim N = ν

and dimP(N) = ν − 1.

Definition 10.1 The totality of numbers pi1,...,im in (10.4) for all collections i1 <

i2 < · · · < im taking the values 1, . . . , n is called the Plücker coordinates of the
m-dimensional subspace M ⊂ L.

As we have seen, Plücker coordinates are defined only up to a common nonzero
factor; the collection of them must be understood as a point in the projective space
P

ν−1.
The simplest special case m = 1 returns us to the definition of projective space,

whose points correspond to one-dimensional subspaces 〈a〉 of some vector space L.
The numbers pi1,...,im in this case become the homogeneous coordinates of a point.
It is therefore not surprising that all of these depend on the choice of a coordinate
system (that is, a basis) of the space L. Following tradition, in the sequel we shall
allow for a certain imprecision and call “Plücker coordinates” of the subspace M
both a point of the projective space P

ν−1 and the collection of numbers pi1,...,im

specified in this definition.

Theorem 10.2 The Plücker coordinates of a subspace M ⊂ L uniquely determine
the subspace.

Proof Let us choose an arbitrary basis a1, . . . ,am of the subspace M. It uniquely
determines (and not up to a common factor) the minors Mi1,...,im , without regard
to the order of the indices i1, . . . , im. The minors are uniquely determined by the
Plücker coordinates (10.4), according to formula (10.3).

A vector x ∈ L belongs to the subspace M = 〈a1, . . . ,am〉 if and only if the rank
of the matrix

M =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

...
...

. . .
...

am1 am2 · · · amn

x1 x2 · · · xn

⎞
⎟⎟⎟⎠ ,

consisting of the coordinates of the vectors a1, . . . ,am,x in some (arbitrary) basis
of the space L, is equal to m, that is, if all the minors of order m+ 1 of the matrix M

are equal to zero. Let us consider the minor that comprises the columns with indices
forming the subset X = {k1, . . . , km+1} of the set Nn = {1, . . . , n}, where we may
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assume that k1 < k2 < · · · < km+1. Expanding it along the last row, we obtain the
equality

∑
α∈X

xαAα = 0, (10.5)

where Aα is the cofactor of the element xα in the minor under consideration. But by
definition, the minor corresponding to Aα is obtained from the matrix M by deleting
the last row and the column with index α. Therefore, it coincides with one of the
minors of the matrix M , and the indices of its columns are obtained by deleting the
element α from the set X. For writing the sets thus obtained, one frequently uses the
convenient notation

{k1, . . . , k̆α, . . . , km+1},
where the notation ˘ signifies the omission of the element so indicated. Thus rela-
tionship (10.5) can be written in the form

m+1∑
j=1

(−1)j xkj
M

k1,...,k̆j ,...,km+1
= 0. (10.6)

Since the minors Mi1,...,im of the matrix M are expressed in Plücker coordinates
by formula (10.4), relationships (10.6), obtained from all possible subsets X =
{k1, . . . , km+1} of the set Nn, also give expressions in terms of Plücker coordinates
of the condition x ∈ M, which completes the proof of the theorem. �

By Theorem 10.2, Plücker coordinates uniquely define the subspace M, but as a
rule, they cannot assume arbitrary values. It is true that for m = 1, the homogeneous
coordinates of a point of projective space can be chosen with arbitrary numbers
(of course, with the exception of the one collection consisting of all zeros). Another
equally simple case is m = n−1, in which subspaces are hyperplanes corresponding
to points of P(L∗). Hyperplanes are defined by their coordinates in this projective
space, which also can be chosen as arbitrary collections of numbers (again with
the exclusion of the collection consisting of all zeros). It is not difficult to verify
that these homogeneous coordinates can differ from Plücker coordinates only by
their signs, that is, by the factor ±1. However, as we shall now see, for an arbitrary
number m < n, the Plücker coordinates are connected to one another by certain
specific relationships.

Example 10.3 Let us consider the next case in order of complexity: n = 4, m = 2.
If we pass to projective spaces corresponding to L and M, then this will give us a
description of the totality of projective lines in three-dimensional projective space
(the case considered by Plücker).

Since n = 4, m = 2, we have ν = C2
4 = 6, and consequently, each plane M ⊂ L

has six Plücker coordinates:
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p12,p13,p14,p23,p24,p34. (10.7)

It is easy to see that for an arbitrary basis of the space L, we may always choose
a basis a,b in the subspace M in such a way that the matrix M given by formula
(10.1) will have the form

M =
(

1 0 α β

0 1 γ δ

)
.

From this follow easily the values of the Plücker coordinates (10.7):

p12 = 1, p13 = γ, p14 = δ, p23 = −α, p24 = −β,

p34 = αδ − βγ,

which yields the relationship p34 − p13p24 + p14p23 = 0. In order to make this
homogeneous, we will use the fact that p12 = 1, and write it in the form

p12p34 − p13p24 + p14p23 = 0. (10.8)

The relationship (10.8) is already homogeneous, and therefore, it is preserved under
multiplication of all the Plücker coordinates (10.7) by an arbitrary nonzero factor c.
Thus relationship (10.8) remains valid for an arbitrary choice of Plücker coordinates,
and this means that it defines a point in some projective algebraic variety in 5-
dimensional projective space.1 In the following section, we shall study an analogous
question in the general case, for arbitrary dimension m < n.

10.2 The Plücker Relations and the Grassmannian

We shall now describe the relationships satisfied by Plücker coordinates of an m-
dimensional subspace M of an n-dimensional space L for arbitrary n and m. Here
we shall use the following notation and conventions. Although in the definition
of Plücker coordinates pi1,...,im it was assumed that i1 < i2 < · · · < im, now we
shall consider numbers pi1,...,im also with other collections of indices. Namely, if
(j1, . . . , jm) is an arbitrary collection of m indices taking the values 1, . . . , n, then
we set

pj1,...,jm = 0 (10.9)

if some two of the numbers j1, . . . , jm are equal, while if all the numbers j1, . . . , jm

are distinct and (i1, . . . , im) is their arrangement in ascending order, then we set

pj1,...,jm = ±pi1,...,im, (10.10)

1This variety is called a quadric.
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where the sign + or − depends on whether the permutation that takes (j1, . . . , jm)

to (i1, . . . , im) is even or odd (that is, whether the number of transpositions is even
or odd), according to Theorem 2.25.

In other words, in view of equality (10.3), let us set

pj1,...,jm = Mj1,...,jm, (10.11)

where (j1, . . . , jm) is an arbitrary collection of indices assuming the values 1, . . . , n.

Theorem 10.4 For every m-dimensional subspace M of an n-dimensional space L
and for any two sets (j1, . . . , jm−1) and (k1, . . . , km+1) of indices taking the values
1, . . . , n, the following relationships hold:

m+1∑
r=1

(−1)rpj1,...,jm−1,kr · p
k1,...,k̆r ,...,km+1

= 0. (10.12)

These are called the Plücker relations.

The notation k1, . . . , k̆r , . . . , km+1 means that we omit kr in the sequence
k1, . . . , kr , . . . , km+1.

Let us note that the indices among the numbers pα1,...,αm entering relationship
(10.12) are not necessarily in ascending order, so they are not Plücker coordinates.
But with the aid of relationships (10.9) and (10.10), we can easily express them in
terms of Plücker coordinates. Therefore, relationship (10.12) may also be viewed as
a relationship among Plücker coordinates.

Proof of Theorem 10.4 Returning to the definition of Plücker coordinates in terms of
the minors of the matrix (10.1) and using relationship (10.11), we see that equality
(10.12) can be rewritten in the form

m+1∑
r=1

(−1)rMj1,...,jm−1,kr · M
k1,...,k̆r ,...,km+1

= 0. (10.13)

Let us show that relationship (10.13) holds for the minors of an arbitrary matrix of
type (m,n). To this end, let us expand the determinant Mj1,...,jm−1kr along the last
column. Let us denote the cofactor of the element alkr of the last column of this
determinant by Al , l = 1, . . . ,m. Thus the cofactor Al corresponds to the minor
located in the rows and columns with indices (1, . . . , l̆, . . . ,m) and (j1, . . . , jm−1)

respectively. Then

Mj1,...,jm−1,kr =
m∑

l=1

alkr Al.
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On substituting this expression into the left-hand side of relationship (10.13), we
arrive at the equality

m+1∑
r=1

(−1)rMj1,...,jm−1,kr · M
k1,...,k̆r ,...,km+1

=
m+1∑
r=1

(−1)r

(
m∑

l=1

alkr Al

)
M

k1,...,k̆r ,...,km+1
.

Changing the order of summation, we obtain

m+1∑
r=1

(−1)rMj1,...,jm−1,kr · M
k1,...,k̆r ,...,km+1

=
m∑

l=1

(
m+1∑
r=1

(−1)ralkr Mk1,...,k̆r ,...,km+1

)
Al.

But the sum in parentheses is equal to the result of the expansion along the first row
of the determinant of the square matrix of order m + 1 consisting of the columns
of the matrix (10.1) numbered k1, . . . , km+1 and rows numbered l,1, . . . ,m. This
determinant is equal to

∣∣∣∣∣∣∣∣∣∣∣

alk1 alk2 · · · alkm+1

a1k1 a1k2 · · · a1km+1

a2k1 a2k2 · · · a2km+1
...

...
. . .

...

amk1 amk2 · · · amkm+1

∣∣∣∣∣∣∣∣∣∣∣

= 0.

Indeed, for arbitrary l = 1, . . . ,m, two of its rows (numbered 1 and l + 1) coincide,
and this means that the determinant is equal to zero. �

Example 10.5 Let us return once more to the case n = 4, m = 2 considered in
the previous section. Relationships (10.12) are here determined by subsets (k) and
(l,m,n) of the set {1,2,3,4}. If, for example, k = 1 and l = 2, m = 3, n = 4, then
we obtain relationship (10.8) introduced earlier. It is easily verified that if all the
numbers k, l,m,n are distinct, then we obtain the same relationship (10.8), while
if among them there are two that are equal, then relationship (10.12) is an identity
(for the proof of this, we can use the antisymmetry of pij with respect to i and
j ). Therefore, in the general case, too (for arbitrary m and n), relationships (10.12)
among the Plücker coordinates are called the Plücker relations.

We have seen that to each subspace M of given dimension m of the space L of
dimension n, there correspond its Plücker coordinates

pi1,...,im, i1 < i2 < · · · < im, (10.14)
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satisfying the relationships (10.12). Thus an m-dimensional subspace M ⊂ L is de-
termined by its Plücker coordinates (10.14), completely analogously to how points
of a projective space are determined by their homogeneous coordinates (this is in
fact a special case of Plücker coordinates for m = 1). However, for m > 1, the co-
ordinates of the subspace M cannot be assigned arbitrarily: it is necessary that they
satisfy relationships (10.12). Below, we shall prove that these relationships are also
sufficient for the collection of numbers (10.14) to be Plücker coordinates of some
m-dimensional subspace M ⊂ L. For this, we shall find the following geometric in-
terpretation of Plücker coordinates useful.

Relationships (10.12) are homogeneous (of degree 2) with respect to the num-
bers pi1,...,im . After substitution on the basis of formulas (10.9) and (10.10), each of
these relationships remains homogeneous, and thus they define a certain projective
algebraic variety in the projective space Pν−1, called a Grassmann variety or simply
Grassmannian and denoted by G(m,n).

We shall now investigate the Grassmannian G(m,n) in greater detail.
As we have seen, G(m,n) is contained in the projective space P

ν−1, where
ν = Cm

n (see p. 351), and the homogeneous coordinates are written as the numbers
(10.14) with all possible increasing collections of indices taking the values 1, . . . , n.
The space P

ν−1 is the union of affine subsets Ui1,...,im , each of which is defined by
the condition pi1,...,im 
= 0 for some choice of indices i1, . . . , im. From this we obtain

G(m,n) =
⋃

i1,...,im

(
G(m,n) ∩ Ui1,...,im

)
.

We shall investigate separately one of these subsets G(m,n) ∩ Ui1,...,im , for exam-
ple, for simplicity, the subset with indices (i1, . . . , im) = (1, . . . ,m). The general
case is considered completely analogously and differs only in the numeration of the
coordinates in the space P

ν−1. We may assume that for points of our affine subset
U1,...,m, the number p1,...,m is equal to 1.

Relationships (10.12) give the possibility to choose Plücker coordinates (10.14)
of the subspace M (or equivalently, the minors Mi1,...,im of the matrix (10.1)) in the
form of polynomials in coordinates pi1,...,im , such that among the indices i1 < i2 <

· · · < im, not more than one exceeds m. Any such collection of indices obviously
has the form (1, . . . , r̆, . . . ,m, l), where r ≤ m and l > m. Let us denote the Plücker
coordinate corresponding to this collection by prl , that is, we set prl = p1,...,r̆,...,m,l .

Let us consider an arbitrary ordered collection j1 < j2 < · · · < jm of numbers
between 1 and n. If the indices jk are less than or equal to m for all k = 1, . . . ,m,
then the collection (j1, j2, . . . , jm) coincides with the collection (1,2, . . . ,m), and
since the Plücker coordinate p1,...,m is equal to 1, there is nothing to prove. Thus we
have only to consider the remaining case.

Let jk > m be one of the numbers j1 < j2 < · · · < jm. Let us use relationship
(10.12), corresponding to the collection (j1, . . . , j̆k, . . . , jm) of m − 1 numbers and
the collection (1, . . . ,m, jk) of m + 1 numbers. In this case, relationship (10.12)
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assumes the form

m∑
r=1

(−1)rp
j1,...,j̆k ,...,jm,r

· p1,2,...,r̆,...,m,jk
+ (−1)m+1p

j1,...,j̆k ,...,jm,jk
= 0,

since p1,...,m = 1. In view of the antisymmetry of the expression pj1,...,jm , it follows
that pj1,...,jm = p

j1,...,j̆k ,...,jm,jk
is equal to the sum (with alternating signs) of the

products p
j1,...,j̆k ,...,jmr

prl . If among the numbers j1, . . . , jm there were s numbers
exceeding m, then among the numbers j1, . . . , j̆k, . . . , jm, there would be already
s − 1 of them.

Repeating this process as many times as necessary, we will obtain as a result an
expression of the chosen Plücker coordinate pj1,...,jm in terms of the coordinates
prl , r ≤ m, l > m. We have thereby obtained the following important result.

Theorem 10.6 For each point in the set G(m,n) ∩ U1,...,m, all the Plücker coordi-
nates (10.14) are polynomials in the coordinates prl = p1,...,r̆,...,m,l , r ≤ m, l > m.

Since the numbers r and l satisfy 1 ≤ r ≤ m and m < l ≤ n, it follows that all
possible collections of coordinates prl form an affine subspace V of dimension
m(n − m). By Theorem 10.6, all the remaining Plücker coordinates pi1,...,im are
polynomials in prl , and therefore the coordinates prl uniquely define a point of the
set G(m,n) ∩ U1,...,m. Thus is obtained a natural bijection (given by these polyno-
mials) between points of the set G(m,n) ∩ U1,...,m and points of the affine space V

of dimension m(n − m). Of course, the same is true as well for points of any other
set G(m,n) ∩ Ui1,...,im . In algebraic geometry, this fact is expressed by saying that
the Grassmannian G(m,n) is covered by the affine space of dimension m(n − m).

Theorem 10.7 Every point of the Grassmannian G(m,n) corresponds to some m-
dimensional subspace M ⊂ L as described in the previous section.

Proof Since the Grassmannian G(m,n) is the union of sets G(m,n) ∩ Ui1,...,im , it
suffices to prove the theorem for each set separately. We shall carry out the proof
for the set G(m,n) ∩ U1,...,m, since the rest differ from it only in the numeration of
coordinates.

Let us choose an m-dimensional subspace M ⊂ L and basis a1, . . . ,am in it so
that in the associated matrix M given by formula (10.1), the elements residing in its
first m columns take the form of the identity matrix E of order m. Then the matrix
M has the form

M =

⎛
⎜⎜⎜⎝

1 0 · · · 0 a1m+1 · · · a1n

0 1 · · · 0 a2m+1 · · · a2n

...
...

. . .
...

...
. . .

...

0 0 · · · 1 amm+1 · · · amn

⎞
⎟⎟⎟⎠ . (10.15)

By Theorem 10.6, the Plücker coordinates (10.14) are polynomials in prl =
p1,...,r̆,...,m,l . Moreover, by the definition of Plücker coordinates (10.4), we have



358 10 The Exterior Product and Exterior Algebras

p1,...,r̆,...,m,l = M1,...,r̆,...,m,l . Here, in the r th row of the minor M1,...,r̆,...,m,l of the
matrix (10.15), all elements are equal to zero, except for the element in the last (lth)
column, which is equal to arl . Expanding the minor M1,...,r̆,...,m,l along the r th row,
we see that it is equal to (−1)r+larl . In other words, prl = (−1)r+larl .

By our construction, all elements arl of the matrix (10.15) can assume arbitrary
values by the choice of a suitable subspace M ⊂ L and basis a1, . . . ,am in it. Thus
the Plücker coordinates prl also assume arbitrary values. It remains to observe that
by Theorem 10.6, all remaining Plücker coordinates are polynomials in prl , and
consequently, for the constructed subspace M, they determine the given point of the
set G(m,n) ∩ U1,...,m. �

10.3 The Exterior Product

Now we shall attempt to understand the sense in which the subspace M ⊂ L is related
to its Plücker coordinates, after separating out those parts of the construction that
depend on the choice of bases e1, . . . , en in L and a1, . . . ,am in M from those that
do not depend on the choice of basis.

Our definition of Plücker coordinates was connected with the minors of the ma-
trix M given by formula (10.1), and since minors (like all determinants) are multilin-
ear and antisymmetric functions of the rows (and columns), let us begin by recalling
the appropriate definitions from Sect. 2.6 (especially because now we shall need
them in a somewhat changed form). Namely, while in Chap. 2, we considered only
functions of rows, now we shall consider functions of vectors belonging to an arbi-
trary vector space L. We shall assume that the space L is finite-dimensional. Then
by Theorem 3.64, it is isomorphic to the space of rows of length n = dim L, and so
we might have used the definitions from Sect. 2.6. But such an isomorphism itself
depends on the choice of basis in the space L, and our goal is precisely to study the
dependence of our construction on the choice of basis.

Definition 10.8 A function F(x1, . . . ,xm) in m vectors of the space L taking nu-
meric values is said to be multilinear if for every index i in the range 1 to m and
arbitrary fixed vectors a1, . . . , ăi , . . . ,am,

F(a1, . . . ,ai−1,xi ,ai+1, . . . ,am)

is a linear function of the vector xi .

For m = 1, we arrive at the notion of linear function introduced in Sect. 3.7, and
for m = 2, this is the notion of bilinear form, introduced in Sect. 6.1.

The definition of antisymmetric function given in Sect. 2.6 was valid for every
set, and in particular, we may apply it to the set of all vectors of the space L. Ac-
cording to this definition, for every pair of distinct indices r and s in the range 1 to
m, the relationship

F(x1, . . . ,xr , . . . ,xs , . . . ,xm) = −F(x1, . . . ,xs , . . . ,xr , . . . ,xm) (10.16)
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must be satisfied for every collection of vectors x1, . . . ,xm ∈ L. As proved in
Sect. 2.6, it suffices to prove property (10.16) for s = r + 1, that is, a transposi-
tion of two neighboring vectors from the collection x1, . . . ,xm is performed. Then
property (10.16) will also be satisfied for arbitrary indices r and s. In view of this,
we shall often formulate the condition of antisymmetry only for “neighboring” in-
dices and use the fact that it then holds for two arbitrary indices r and s.

If these numbers are elements of a field of characteristic different from 2, then it
follows that F(x1, . . . ,xm) = 0 if any two vectors x1, . . . ,xm coincide.

Let us denote by Πm(L) the collection of all multilinear functions of m vectors of
the space L, and by Ωm(L) the collection of all antisymmetric functions in Πm(L).
The sets Πm(L) and Ωm(L) become vector spaces if for all F,G ∈ Πm(L) we define
their sum H = F + G ∈ Πm(L) by the formula

H(x1, . . . ,xm) = F(x1, . . . ,xm) + G(x1, . . . ,xm)

and define for every function F ∈ Πm(L) the product by the scalar α as the function
H = αF ∈ Πm(L) according to the formula

H(x1, . . . ,xm) = αF(x1, . . . ,xm).

It directly follows from these definitions that Πm(L) is thereby converted to a vector
space, and Ωm(L) ⊂ Πm(L) is a subspace of Πm(L).

Let dim L = n, and let e1, . . . , en be some basis of the space L. It follows from
the definition that the multilinear function F(x1, . . . ,xm) is defined for all collec-
tions of vectors (x1, . . . ,xm) if it is defined for those collections whose vectors xi

belong to our basis. Indeed, repeating the arguments from Sect. 2.7 verbatim that we
used in the proof of Theorem 2.29, we obtain for F(x1, . . . ,xm) the same formu-
las (2.40) and (2.43). Thus for the chosen basis e1, . . . , en, the multilinear function
F(x1, . . . ,xm) is determined by its values F(ei1, . . . , eim), where i1, . . . , im are all
possible collections of numbers from the set Nn = {1, . . . , n}.

The previous line of reasoning shows that the space Πm(L) is isomorphic to
the space of functions on the set Nm

n = Nn × · · · × Nn (m-fold product). It follows
that the dimension of the space Πm(L) is finite and coincides with the number of
elements of the set Nm

n . It is easy to verify that this number is equal to nm, and so
dimΠm(L) = nm.

As we observed in Example 3.36 (p. 94), in a space of functions f on a finite
set Nm

n , there exists a basis consisting of δ-functions assuming the value 1 on one
element of Nm

n and the value 0 on all the other elements (p. 94). In our case, we shall
introduce a special notation for such a basis. Let I = (i1, . . . , im) be an arbitrary
element of the set Nm

n . Then we denote by f I the function taking the value 1 at the
element I and the value 0 on all remaining elements of the set Nm

n .
We now move on to an examination of the subspace of antisymmetric multilinear

functions Ωm(L), assuming as previously that there has been chosen in L some basis
e1, . . . , en. To verify that a multilinear function F is antisymmetric, it is necessary
and sufficient that property (10.16) be satisfied for the vectors ei of the basis. In



360 10 The Exterior Product and Exterior Algebras

other words, this reduces to the relationships

F(ei1, . . . , eir , . . . , eis , . . . , eim) = −F(ei1, . . . , eis , . . . , eir , . . . , eim)

for all collections of vectors ei1, . . . , eim in the chosen basis e1, . . . , en of the
space L. Therefore, for every function F ∈ Ωm(L) and every collection (j1, . . . ,

jm) ∈N
m
n , we have the equality

F(ej1, . . . , ejm) = ±F(ei1, . . . , eim), (10.17)

where the numbers i1, . . . , im are the same as j1, . . . , jm, but arranged in ascending
order i1 < i2 < · · · < im, while the sign + or − in (10.17) depends on whether the
number of transpositions necessary for passing from the collection (i1, . . . , im) to
the collection (j1, . . . , jm) is even or odd (we note that if any two of the numbers
j1, . . . , jm are equal, then both sides of equality (10.17) become equal to zero).

Reasoning just as in the case of the space Πm(L), we conclude that the space

Ωm(L) is isomorphic to the space of functions on the set
−→
N

m
n ⊂ N

m
n , which consists

of all increasing sets I = (i1, . . . , im), that is, those for which i1 < i2 < · · · < im.
From this it follows in particular that Ωm(L) = (0) if m > n. It is easy to see that
the number of such increasing sets I is equal to Cm

n , and therefore,

dimΩm(L) = Cm
n . (10.18)

We shall denote by FI the δ-function of the space Ωm(L), taking the value 1 on the

set I ∈ −→
N

m
n and the value 0 on all the remaining sets in

−→
N

m
n .

The vectors a1, . . . ,am ∈ L determine on the space Ωm(L) a linear function ϕ
given by the relationship

ϕ(F ) = F(a1, . . . ,am) (10.19)

for an arbitrary element F ∈ Ωm(L). Thus ϕ is a linear function on Ωm(L), that is,
an element of the dual space Ωm(L)∗.

Definition 10.9 The dual space Λm(L) = Ωm(L)∗ is called the space of m-vectors
or the mth exterior power of the space L, and its elements are called m-vectors.
A vector ϕ ∈ Λm(L) constructed with the help of relationship (10.19) involving the
vectors a1, . . . ,am is called the exterior product (or wedge product) of a1, . . . ,am

and is denoted by

ϕ = a1 ∧ a2 ∧ · · · ∧ am.

Now let us explore the connection between the exterior product and Plücker co-
ordinates of the subspace M ⊂ L. To this end, it is necessary to choose some basis
e1, . . . , en in L and some basis a1, . . . ,am in M. The Plücker coordinates of the sub-
space M take the form (10.4), where Mi1,...,im is the minor of the matrix (10.1) that
resides in columns i1, . . . , im and is an antisymmetric function of its columns. Let
us introduce for the Plücker coordinates and associated minors the notation

pI = pi1,...,im, MI = Mi1,...,im, where I = (i1, . . . , im) ∈ −→
N

m
n .
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To the basis of the space Ωm(L) consisting of δ-functions FI , there corresponds
the dual basis, of the dual space Λm(L), whose vectors we shall denote by ϕI . Using
the notation that we introduced in Sect. 3.7, we may say that the dual basis is defined
by the condition

(FI ,ϕI ) = 1 for all I ∈ −→
N

m
n , (FI ,ϕJ ) = 0 for all I 
= J . (10.20)

In particular, the vector ϕ = a1 ∧a2 ∧· · ·∧am of the space Λm(L) can be expressed
as a linear combination of vectors in this basis:

ϕ =
∑

I∈−→
N m

n

λIϕI (10.21)

with certain coefficients λI . Using formulas (10.19) and (10.20), we obtain the fol-
lowing equality:

λI = ϕ(FI ) = FI (a1, . . . ,am).

For determining the values FI (a1, . . . ,am), we may make use of Theorem 2.29;
see formulas (2.40) and (2.43). Since FI (ej1, . . . , ejm) = 0 when the indices of
ej1 , . . . , ejm form the collection J 
= I , then from formula (2.43), it follows that
the values FI (a1, . . . ,am) depend only on the elements appearing in the minor
MI . The minor MI is a linear and antisymmetric function of its rows. In view of
the fact that by definition, FI (ei1, . . . , eim) = 1, we obtain from Theorem 2.15 that
FI (a1, . . . ,am) = MI = pI . In other words, we have the equality

ϕ = a1 ∧ a2 ∧ · · · ∧ am =
∑

I∈−→
N m

n

MIϕI =
∑

I∈−→
N m

n

pIϕI . (10.22)

Thus any collection of m vectors a1, . . . ,am uniquely determines the vector
a1 ∧ · · · ∧ am in the space Λm(L), where the Plücker coordinates of the subspace
〈a1, . . . ,am〉 are the coordinates of this vector a1 ∧· · ·∧am with respect to the basis

ϕI , I ∈ −→
N

m
n , of the space Λm(L). Like all coordinates, they depend on this basis,

which itself is constructed as the dual basis to some basis of the space Ωm(L).

Definition 10.10 A vector x ∈ Λm(L) is said to be decomposable if it can be repre-
sented as an exterior product

x = a1 ∧ a2 ∧ · · · ∧ am (10.23)

with some a1, . . . ,am ∈ L.

Let the m-vector x have coordinates xi1,...,im in some basis ϕI , I ∈ −→
N

m
n , of the

space Λm(L). As in the case of an arbitrary vector space, the coordinates xi1,...,im

can assume arbitrary values in the associated field. In order for an m-vector x to
be decomposable, that is, that it satisfy the relationship (10.23) with some vectors
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a1, . . . ,am ∈ L, it is necessary and sufficient that its coordinates xi1,...,im coincide
with the Plücker coordinates pi1,...,im of the subspace M = 〈a1, . . . ,am〉 in L. But
as we established in the previous section, the collection of Plücker coordinates of
a subspace M ⊂ L cannot be an arbitrary collection of ν numbers, but only one
that satisfies the Plücker relations (10.12). Consequently, the Plücker relations give
necessary and sufficient conditions for an m-vector x to be decomposable.

Thus for the specification of m-dimensional subspaces M ⊂ L, we need only
the decomposable m-vectors (the indecomposable m-vectors correspond to no m-
dimensional subspace). However, generally speaking, the decomposable vectors do
not form a vector space (the sum of two decomposable vectors might be an inde-
composable vector), and also, as is easily verified, the set of decomposable vectors
is not contained in any subspace of the space Λm(L) other than Λm(L) itself. In
many problems, it is more natural to deal with vector spaces, and this is the reason
for introducing the notion of a space Λm(L) that contains all m-vectors, including
those that are indecomposable.

Let us note that the basis vectors ϕI themselves are decomposable: they are de-
termined by the conditions (10.20), which, as is easily verified, taking into account
equality (FJ ,ϕI ) = FJ (ei1, . . . , eim), means that for a vector x = ϕI , we have the
representation (10.23) for a1 = ei1, . . . ,am = eim , that is,

ϕI = ei1 ∧ ei2 ∧ · · · ∧ eim, I = (i1, . . . , im).

If e1, . . . , en is a basis of the space L, then the vectors ei1 ∧ · · · ∧ eim for all
possible increasing collections of indices (i1, . . . , im) form a basis of the subspace
Λm(L), dual to the basis FI of the space Ωm(L) that we considered above. Thus
every m-vector is a linear combination of decomposable vectors.

The exterior product a1 ∧· · ·∧am is a function of m vectors ai ∈ L with values in
the space Λm(L). Let us now establish some of its properties. The first two of these
are an analogue of multilinearity, and the third is an analogue of antisymmetry, but
taking into account that the exterior product is not a number, but a vector of the
space Λm(L).

Property 10.11 For every i ∈ {1, . . . ,m} and all vectors ai ,b, c ∈ L the following
relationship is satisfied:

a1 ∧ · · · ∧ ai−1 ∧ (b + c) ∧ ai+1 ∧ · · · ∧ am

= a1 ∧ · · · ∧ ai−1 ∧ b ∧ ai+1 ∧ · · · ∧ am

+ a1 ∧ · · · ∧ ai−1 ∧ c ∧ ai+1 ∧ · · · ∧ am. (10.24)

Indeed, by definition, the exterior product

a1 ∧ · · · ∧ ai−1 ∧ (b + c) ∧ ai+1 ∧ · · · ∧ am

is a linear function on the space Ωm(L) associating with each function F ∈ Ωm(L),
the number F(a1, . . . ,ai−1,b + c,ai+1, . . . ,am). Since the function F is multilin-
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ear, it follows that

F(a1, . . . ,ai−1,b + c,ai+1, . . . ,am)

= F(a1, . . . ,ai−1,b,ai+1, . . . ,am) + F(a1, . . . ,ai−1, c,ai+1, . . . ,am),

which proves equality (10.24).
The following two properties are just as easily verified.

Property 10.12 For every number α and all vectors ai ∈ L, the following relation-
ship holds:

a1 ∧ · · · ∧ ai−1 ∧ (αai ) ∧ ai+1 ∧ · · · ∧ am

= α(a1 ∧ · · · ∧ ai−1 ∧ ai ∧ ai+1 ∧ · · · ∧ am). (10.25)

Property 10.13 For all pairs of indices r, s ∈ {1, . . . ,m} and all vectors ai ∈ L, the
following relationship holds:

a1 ∧ · · · ∧ as−1 ∧ as ∧ as+1 ∧ · · · ∧ ar−1 ∧ ar ∧ ar+1 ∧ · · · ∧ am

= −a1 ∧ · · · ∧ as−1 ∧ ar ∧ as+1 ∧ · · ·
∧ ar−1 ∧ as ∧ ar+1 ∧ · · · ∧ am, (10.26)

that is, if any two vectors from among a1, . . . ,am change places, the exterior prod-
uct changes sign.

If (as we assume) the numbers are elements of a field of characteristic different
from 2 (for example, R or C), then Property 10.13 yields the following corollary.

Corollary 10.14 If any two of the vectors a1, . . . ,am are equal, then a1 ∧ · · · ∧
am = 0.

Generalizing the definition given above, we may express Properties 10.11, 10.12,
and 10.13 by saying that the exterior product a1 ∧ · · · ∧ am is a multilinear antisym-
metric function of the vectors a1, . . . ,am ∈ L taking values in the space Λm(L).

Property 10.15 Vectors a1, . . . ,am are linearly dependent if and only if

a1 ∧ · · · ∧ am = 0. (10.27)

Proof Let us assume that the vectors a1, . . . ,am are linearly dependent. Then one
of them is a linear combination of the rest. Let it be the vector am (the other cases
are reduced to this one by a change in numeration). Then

am = α1a1 + · · · + αm−1am−1,
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and on the basis of Properties 10.11 and 10.12, we obtain that

a1 ∧ · · · ∧ am−1 ∧ am

= α1(a1 ∧ · · · ∧ am−1 ∧ a1) + · · · + αm−1(a1 ∧ · · · ∧ am−1 ∧ am−1).

In view of Corollary 10.14, each term on the right-hand side of this equality is equal
to zero, and consequently, we have a1 ∧ · · · ∧ am = 0.

Let us assume now that the vectors a1, . . . ,am are linearly independent. We
must prove that a1 ∧ · · · ∧ am 
= 0. Equality (10.27) would mean that the function
a1 ∧ · · · ∧ am (as an element of the space Λm(L)) assigns to an arbitrary function
F ∈ Ωm(L), the value F(a1, . . . ,am) = 0. However, in contradiction to this, it is
possible to produce a function F ∈ Ωm(L) for which F(a1, . . . ,am) 
= 0. Indeed,
let us represent the space L as a direct sum

L = 〈a1, . . . ,am〉 ⊕ L′,

where L′ ⊂ L is some subspace of dimension n − m, and for every vector z ∈ L, let
us consider the corresponding decomposition z = x + y, where x ∈ 〈a1, . . . ,am〉
and y ∈ L′. Finally, for vectors

zi = αi1a1 + · · · + αimam + yi , yi ∈ L′, i = 1, . . . ,m,

let us define a function F by the condition F(z1, . . . ,zm) = |(αij )|. As we saw
in Sect. 2.6, the determinant is a multilinear antisymmetric function of its rows.
Moreover, F(a1, . . . ,am) = |E| = 1, which proves our assertion. �

Let L and M be arbitrary vector spaces, and let A : L → M be a linear transforma-
tion. It defines the transformation

Ωp(A) : Ωp(M) → Ωp(L), (10.28)

which assigns to each antisymmetric function F(y1, . . . ,yp) in the space Ωp(M),
an antisymmetric function G(x1, . . . ,xp) in the space Ωp(L) by the formula

G(x1, . . . ,xp) = F
(
A(x1), . . . ,A(xp)

)
, x1, . . . ,xp ∈ L. (10.29)

A simple verification shows that this transformation is linear. Let us note that we
have already met with such a transformation in the case m = 1, namely the dual
transformation A∗ : M∗ → L∗ (see Sect. 3.7). In the general case, passing to the dual
spaces Λp(L) = Ωp(L)∗ and Λp(M) = Ωp(M)∗, we define the linear transformation

Λp(A) : Λp(L) → Λp(M), (10.30)

dual to the transformation (10.28).
Let us note the most important properties of the transformation (10.30).
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Lemma 10.16 Let A : L → M and B : M → N be linear transformations of arbi-
trary vector spaces L,M,N. Then

Λp(BA) = Λp(B)Λp(A).

Proof In view of the definition (10.30) and the properties of dual transformations
(formula (3.61)) established in Sect. 3.7, it suffices to ascertain that

Ωp(BA) = Ωp(A)Ωp(B). (10.31)

But equality (10.31) follows directly from the definition. Indeed, the transforma-
tion Ωp(A) maps the function F(y1, . . . ,yp) in the space Ωp(M) to the func-
tion G(x1, . . . ,xp) in Ωp(L) by formula (10.29). In just the same way, the trans-
formation Ωp(B) maps the function H(z1, . . . ,zp) in Ωp(N) to the function
F(y1, . . . ,yp) in Ωp(M) by the analogous formula

F(y1, . . . ,yp) = H
(
B(y1), . . . ,B(yp)

)
, y1, . . . ,yp ∈ M. (10.32)

Finally, the transformation BA : L → N takes the function H(z1, . . . ,zp) in the
space Ωp(N) to the function G(x1, . . . ,xp) in the space Ωp(L) by the formula

G(x1, . . . ,xp) = H
(
BA(x1), . . . ,BA(xp)

)
, x1, . . . ,xp ∈ L. (10.33)

Substituting into (10.33) the vector yi = A(xi ) and comparing the relationship thus
obtained with (10.32), we obtain the required equality (10.31). �

Lemma 10.17 For all vectors x1, . . . ,xp ∈ L, we have the equality

Λp(A)(x1 ∧ · · · ∧ xp) = A(x1) ∧ · · · ∧ A(xp). (10.34)

Proof Both sides of equality (10.34) are elements of the space Λp(M) = Ωp(M)∗,
that is, they are linear functions on Ωp(M). It suffices to verify that their applica-
tion to any function F(y1, . . . ,yp) in the space Ωp(M) gives one and the same
result. But as follows from the definition, in both cases, this result is equal to
F(A(x1), . . . ,A(xp)). �

Finally, we shall prove a property of the exterior product that is sometimes called
universality.

Property 10.18 Any mapping that carries a vector [a1, . . . ,am] of some space M
satisfying Properties 10.11, 10.12, 10.13 (p. 362) to m vectors a1, . . . ,am of the
space L can be obtained from the exterior product a1 ∧ · · · ∧ am by applying some
uniquely defined linear transformation A : Λm(L) → M.

In other words, there exists a linear transformation A : Λm(L) → M such that for
every collection a1, . . . ,am of vectors of the space L, we have the equality

[a1, . . . ,am] = A(a1 ∧ · · · ∧ am), (10.35)
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which can be represented by the following diagram:

Lm

[··· ]

Λm M

Λm(L)

A

(10.36)

In this diagram, [a1, . . . ,am] = A(a1 ∧ · · · ∧ am).
Let us note that although Lm = L × · · · × L (m-fold product) is clearly a vector

space, we by no means assert that the mapping

a1, . . . ,am �→ [a1, . . . ,am]
discussed in Property 10.18 is a linear transformation Lm → M. In general, such is
not the case. For example, the exterior product a1 ∧ · · · ∧ am : Lm → Λm(L) itself
is not a linear transformation in the case that dim L > m + 1 and m > 1. Indeed, the
image of the exterior product is the set of decomposable vectors described by their
Plücker relations, which is not a vector subspace of Λm(L).

Proof of Property 10.18 We can construct a linear transformation Ψ : M∗ → Ωm(L)

such that it maps every linear function f ∈ M∗ to the function Ψ (f ) ∈ Ωm(L) de-
fined by the relationship

Ψ (f ) = f
([a1, . . . ,am]). (10.37)

By Properties 10.11–10.13, which, by assumption, are satisfied by [a1, . . . ,am],
the mapping Ψ (f ) thus constructed is a multilinear and antisymmetric function of
a1, . . . ,am. Therefore, Ψ : M∗ → Ωm(L) is a linear transformation. Let us define A
as the dual mapping

A = Ψ ∗ : Λm(L) = Ωm(L)
∗ −→ M = M∗∗.

By definition of the dual transformation (formula (3.58)), for every linear func-
tion F on the space Ωm(L), its image A(F ) is a linear function on the space M∗
such that A(F )(f ) = F(Ψ (f )) for all f ∈ M∗. Applying formula (10.37) to the
right-hand side of the last equality, we obtain the equality

A(F )(f ) = F
(
Ψ (f )

) = F
(
f

([a1, . . . ,am])). (10.38)

Setting in (10.38) the function F(Ψ ) = Ψ (a1, . . . ,am), that is, F = a1 ∧ · · · ∧ am,
we arrive at the relationship

A(a1 ∧ · · · ∧ am)(f ) = f
([a1, . . . ,am]), (10.39)
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whose left-hand side is an element of the space M∗∗, which is isomorphic to M.
Let us recall that the identification (isomorphism) of the spaces M∗∗ and M can

be obtained by mapping each vector ψ(f ) ∈ M∗∗ to the vector x ∈ M for which the
equality f (x) = ψ(f ) is satisfied for every linear function f ∈ M∗. Then formula
(10.39) gives the relationship

f
(
A(a1 ∧ · · · ∧ am)

) = f
([a1, . . . ,am]),

which is valid for every function f ∈ M∗. Consequently, from this we obtain the
required relationship

A(a1 ∧ · · · ∧ am) = [a1, . . . ,am]. (10.40)

Equality (10.40) defines a linear transformation A for all decomposable vec-
tors x ∈ Λm(L). But above, we saw that every m-vector is a linear combina-
tion of decomposable vectors. The transformation A is linear, and therefore, it is
uniquely defined for all m-vectors. Thus we obtain the required linear transforma-
tion A : Λm(L) → M. �

10.4 Exterior Algebras*

In many branches of mathematics, an important role is played by the expression

a1 ∧ · · · ∧ am,

understood not so much as a function of m vectors a1, . . . ,am of the space L with
values in Λm(L), but more as the result of repeated (m-fold) application of the op-
eration consisting in mapping two vectors x ∈ Λp(L) and y ∈ Λq(L) to the vector
x ∧ y ∈ Λp+q(L). For example, the expression a ∧ b ∧ c can then be calculated
“by parts.” That is, it can be represented in the form a ∧ b ∧ c = (a ∧ b) ∧ c and
computed by first calculating a ∧ b, and then (a ∧ b) ∧ c.

To accomplish this, we have first to define the function mapping two vectors x ∈
Λp(L) and y ∈ Λq(L) to the vector x ∧y ∈ Λp+q(L). As a first step, such a function
x ∧ y will be defined for the case that the vector y ∈ Λq(L) is decomposable, that
is, representable in the form

y = a1 ∧ a2 ∧ · · · ∧ aq, ai ∈ L. (10.41)

Let us consider the mapping that assigns to p vectors b1, . . . ,bp of the space L
the vector

[b1, . . . ,bp] = b1 ∧ · · · ∧ bp ∧ a1 ∧ · · · ∧ aq,
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and let us apply to it Property 10.18 (universality) from the previous section. We
thereby obtain the diagram

Lp

[b1,...,bp]

Λp Λp+q(L)

Λp(L)

A

(10.42)

In this diagram,

A(b1 ∧ · · · ∧ bp) = [b1, . . . ,bp].

Definition 10.19 Let y be a decomposable vector, that is, it can be written in the
form (10.41). Then for every vector x ∈ Λp(L), its image A(x) for the transforma-
tion A : Λp(L) → Λp+q(L) constructed above is denoted by x ∧y = x ∧ (a1 ∧· · ·∧
aq) and is called the exterior product of vectors x and y.

Thus as a first step, we defined x ∧ y in the case that the vector y is de-
composable. In order to define x ∧ y for an arbitrary vector y ∈ Λq(L), it suf-
fices simply to repeat the same argument. Indeed, let us consider the mapping
[a1, . . . ,aq ] : Λq(L) → Λp+q(L) defined by the formula

[a1, . . . ,aq ] = x ∧ (a1 ∧ · · · ∧ aq).

We again obtain, on the basis of Property 10.18, the same diagram:

Lq

[a1,...,aq ]

Λq Λp+q(L)

Λq(L)

A

(10.43)

where the transformation A : Λq(L) → Λp+q(L) is defined by the formula

A(a1 ∧ · · · ∧ aq) = [a1, . . . ,aq ].

Definition 10.20 For any vectors x ∈ Λp(L) and y ∈ Λq(L), the exterior product
x ∧ y is the vector A(y) ∈ Λp+q(L) in diagram (10.43) constructed above.
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Let us note some properties of the exterior product that follow from this defini-
tion.

Property 10.21 For any vectors x1,x2 ∈ Λp(L) and y ∈ Λq(L), we have the rela-
tionship

(x1 + x2) ∧ y = x1 ∧ y + x2 ∧ y.

Similarly, for any vectors x ∈ Λp(L) and y ∈ Λq(L) and any scalar α, we have the
relationship

(αx) ∧ y = α(x ∧ y).

Both equalities follow immediately from the definitions and the linearity of the
transformation A in diagram (10.43).

Property 10.22 For any vectors x ∈ Λp(L) and y1,y2 ∈ Λq(L), we have the rela-
tionship

x ∧ (y1 + y2) = x ∧ y1 + x ∧ y2.

Similarly, for any vectors x ∈ Λp(L) and y ∈ Λq(L) and any scalar α, we have the
relationship

x ∧ (αy) = α(x ∧ y).

Both equalities follow immediately from the definitions and the linearity of the
transformations A in diagrams (10.42) and (10.43).

Property 10.23 For decomposable vectors x = a1 ∧ · · · ∧ ap and y = b1 ∧ · · · ∧ bq ,
we have the relationship

x ∧ y = a1 ∧ · · · ∧ ap ∧ b1 ∧ · · · ∧ bq .

This follows at once from the definition.

Let us note that we have actually defined the exterior product in such a way
that Properties 10.21–10.23 are satisfied. Indeed, Property 10.23 defines the exterior
product of decomposable vectors. And since every vector is a linear combination of
decomposable vectors, it follows that Properties 10.21 and 10.22 define it in the gen-
eral case. The property of universality of the exterior product has been necessary for
verifying that the result x ∧ y does not depend on the choice of linear combinations
of decomposable vectors that we use to represent the vectors x and y.

Finally, let us make note of the following equally simple property.

Property 10.24 For any vectors x ∈ Λp(L) and y ∈ Λq(L), we have the relationship

x ∧ y = (−1)pqy ∧ x. (10.44)
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Both vectors on the right- and left-hand sides of equality (10.44) belong to the space
Λp+q(L), that is, by definition, they are linear functions on Ωp+q(L). Since every
vector is a linear combination of decomposable vectors, it suffices that we verify
equality (10.44) for decomposable vectors.

Let x = a1 ∧ · · · ∧ ap , y = b1 ∧ · · · ∧ bq , and let F be any vector of the space
Ωp+q(L), that is, F is an antisymmetric function of the vectors x1, . . . ,xp+q in L.
Then equality (10.44) means that

F(a1, . . . ,ap,b1, . . . ,bq) = (−1)pqF (b1, . . . ,bq,a1, . . . ,ap). (10.45)

But equality (10.45) is an obvious consequence of the antisymmetry of the func-
tion F . Indeed, in order to place the vector b1 in the first position on the left-hand
side of (10.45), we must change the position of b1 with each vector a1, . . . ,ap

in turn. One such transposition reverses the sign, and altogether, the transpositions
multiply F by (−1)p . Similarly, in order to place the vector b2 in the second posi-
tion on the left-hand side of (10.45), we also must execute p transpositions, and the
value of F is again multiplied by (−1)p . And in order to place all vectors b1, . . . ,bq

at the beginning, it is necessary to multiply F by (−1)p a total of q times, and this
ends up as (10.45).

Our next step consists in uniting all the sets Λp(L) into a single set Λ(L) and
defining the exterior product for its elements. Here we encounter a special case of a
very important algebraic notion, that of an algebra.2

Definition 10.25 An algebra (over some field K, which we shall consider to consist
of numbers) is a vector space A on which, besides the operations of addition of
vectors and multiplication of a vector by a scalar, is also defined the operation A ×
A → A, called the product, assigning to every pair of elements a,b ∈ A the element
ab ∈ A and satisfying the following conditions:

(1) the distributive property: for all a,b, c ∈ A, we have the relationship

(a + b)c = ac + bc, c(a + b) = ca + cb; (10.46)

(2) for all a,b ∈ A and every scalar α ∈ K, we have the relationship

(αa)b = a(αb) = α(ab); (10.47)

(3) there exists an element e ∈ A, called the identity, such that for every a ∈ A, we
have ea = a and ae = a.

Let us note that there can be only one identity element in an algebra. Indeed,
if there existed another identity element e′, then by definition, we would have the
equalities ee′ = e′ and ee′ = e, from which it follows that e = e′.

2This is not a very felicitous term, since it coincides with the name of a branch of mathematics, the
one we are currently studying. But the term has taken root, and we are stuck with it.
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As in any vector space, in an algebra we have, for every a ∈ A, the equality
0 · a = 0 (here the 0 on the left denotes the scalar zero in the field K, while the 0 on
the right denotes the null element of the vector space A that is an algebra).

If an algebra A is finite-dimensional as a vector space and e1, . . . , en is a basis of
A, then the elements e1, . . . , en are said to form a basis of the algebra A, where the
number n is called its dimension and is denoted by dim A = n. For an algebra A of
finite dimension n, the product of two of its basis elements can be represented in the
form

eiej =
n∑

k=1

αk
ijek, i, j = 1, . . . , n, (10.48)

where αk
ij ∈K are certain scalars.

The totality of all scalars αk
ij for all i, j, k = 1, . . . , n is called the multiplication

table of the algebra A, and it uniquely determines the product for all the elements
of the algebra. Indeed, if x = λ1e1 + · · · + λnen and y = μ1e1 + · · · + μnen, then
repeatedly applying the rules (10.46) and (10.47) and taking into account (10.48),
we obtain

xy =
n∑

i,j,k=1

λiμjα
k
ijek, (10.49)

that is, the product xy is uniquely determined by the coordinates of the vectors x,y

and the multiplication table of the algebra A. And conversely, it is obvious that for
any given multiplication table, formula (10.49) defines in an n-dimensional vector
space an operation of multiplication satisfying all the requirements entering into the
definition of an algebra, except, perhaps, property 3, which requires further consid-
eration; that is, it converts this vector space into an algebra of the same dimension n.

Definition 10.26 An algebra A is said to be associative if for every collection of
three elements a, b, and c, we have the relationship

(ab)c = a(bc). (10.50)

The associative property makes it possible to calculate the product of any num-
ber of elements a1, . . . ,am of an algebra A without indicating the arrangement of
parentheses among them; see the discussion on p. xv. Clearly, it suffices to verify
the associative property of a finite-dimensional algebra for elements of some basis.

We have already encountered some examples of algebras.

Example 10.27 The algebra of all square matrices of order n. It has the finite di-
mension n2, and as we saw in Sect. 2.9, it is associative.

Example 10.28 The algebra of all polynomials in n > 0 variables with numeric
coefficients. This algebra is also associative, but its dimension is infinite.
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Now we shall define for a vector space L of finite dimension n its exterior algebra
Λ(L). This algebra has many different applications (some of them will be discussed
in the following section); its introduction is one more reason why in Sect. 10.3, we
did not limit our consideration to decomposable vectors only, which were sufficient
for describing vector subspaces.

Let us define the exterior algebra Λ(L) as a direct sum of spaces Λp(L), p ≥ 0,
which consist of more than just the one null vector, where Λ0(L) is by definition
equal to K. Since as a result of the antisymmetry of the exterior product we have
Λp(L) = (0) for all p > n, we obtain the following definition of an exterior algebra:

Λ(L) = Λ0(L) ⊕ Λ1(L) ⊕ · · · ⊕ Λn(L). (10.51)

Thus every element u of the constructed vector space Λ(L) can be represented in
the form u = u0 + u1 + · · · + un, where ui ∈ Λi(L).

Our present goal is the definition of the exterior product in Λ(L), which we de-
note by u ∧ v for arbitrary vectors u,v ∈ Λ(L). We shall define the exterior product
u ∧ v of vectors

u = u0 + u1 + · · · + un, v = v0 + v1 + · · · + vn, ui ,vi ∈ Λi(L),

as the element

u ∧ v =
n∑

i,j=0

ui ∧ vj ,

where we use the fact that the exterior product ui ∧ vj is already defined as an
element of the space Λi+j (L). Thus

u ∧ v = w0 + w1 + · · · + wn, where wk =
∑

i+j=k

ui ∧ vj ,wk ∈ Λk(L).

A simple verification shows that for the exterior product thus defined, all the con-
ditions for the definition of an algebra are satisfied. This follows at once from the
properties of the exterior product x ∧ y of vectors x ∈ Λi(L) and y ∈ Λj(L) proved
earlier. By definition, Λ0(L) = K, and the number 1 (the identity in the field K) is
the identity in the exterior algebra Λ(L).

Definition 10.29 A finite-dimensional algebra A is called a graded algebra if there
is given a decomposition of the vector space A into a direct sum of subspaces Ai ⊂ A,

A = A0 ⊕ A1 ⊕ · · · ⊕ Ak, (10.52)

and the following conditions are satisfied: for all vectors x ∈ Ai and y ∈ Aj , the
product xy is in Ai+j if i + j ≤ k, and xy = 0 if i + j > k. Here the decomposition
(10.52) is called a grading.
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In this case, dim A = dim A0 + · · · + dim Ak , and taking the union of the bases of
the subspaces Ai , we obtain a basis of the space A. The decomposition (10.51) and
the definition of the exterior product show that the exterior algebra Λ(L) is graded if
the space L has finite dimension n. Since Λp(L) = (0) for all p > n, it follows that

dimΛ(L) =
n∑

p=0

dimΛp(L) =
n∑

p=0

Cp
n = 2n.

In an arbitrary graded algebra A with grading (10.52), the elements of the subspace
Ai are called homogeneous elements of degree i, and for every u ∈ Ai , we write
i = degu. One often encounters graded algebras of infinite dimension, and in this
case, the grading (10.52) contains, in general, not a finite, but an infinite number
of terms. For example, in the algebra of polynomials (Example 10.28), a grading is
defined by the decomposition of a polynomial into homogeneous components.

Property (10.44) of the exterior product that we have proved shows that in an ex-
terior algebra Λ(L), we have for all homogeneous elements u and v the relationship

u ∧ v = (−1)dv ∧ u, where d = degudegv. (10.53)

Let us prove that for every finite-dimensional vector space L, the exterior algebra
Λ(L) is associative. As we noted above, it suffices to prove the associative property
for some basis of the algebra. Such a basis can constructed out of homogeneous
elements, and we may even choose them to be decomposable. Thus we may suppose
that the elements a,b, c ∈ Λ(L) are equal to

a = a1 ∧ · · · ∧ ap, b = b1 ∧ · · · ∧ bq, c = c1 ∧ · · · ∧ cr ,

and in this case, using the properties proved above, we obtain

a ∧ (b ∧ c) = a1 ∧ · · · ∧ ap ∧ b1 ∧ · · · ∧ bq ∧ c1 ∧ · · · ∧ cr = (a ∧ b) ∧ c.

An associative graded algebra that satisfies relationship (10.53) for all pairs of
homogeneous elements is called a superalgebra. Thus an exterior algebra Λ(L) of
an arbitrary finite-dimensional vector space L is a superalgebra, and it is the most
important example of this concept.

Let us now return to the exterior algebra Λ(L) of the finite-dimensional vector
space L. Let us choose in it a convenient basis and determine its multiplication table.

Let us fix in the space L an arbitrary basis e1, . . . , en. Since the elements

ϕI = ei1 ∧ · · · ∧ eim for all possible collections I = (i1, . . . , im) in
−→
N

m
n form a

basis of the space Λm(L), m > 0, it follows from decomposition (10.51) that a
basis in Λ(L) is obtained as the union of the bases of the subspaces Λm(L) for
all m = 1, . . . , n and the basis of the subspace Λ0(L) = K, consisting of a sin-

gle nonnull scalar, for example 1. This means that all such elements ϕI , I ∈ −→
N

m
n ,

m = 1, . . . , n, together with 1 form a basis of the exterior algebra Λ(L). Since the



374 10 The Exterior Product and Exterior Algebras

exterior product with 1 is trivial, it follows that in order to compose a multiplica-
tion table in the constructed basis, we must find the exterior product ϕI ∧ ϕJ for all

possible collections of indices I ∈ −→
N

p
n and J ∈ −→

N
q
n for all 1 ≤ p,q ≤ n.

In view of Property 10.23 on page 369, the exterior product ϕI ∧ ϕJ is equal to

ϕI ∧ ϕJ = ei1 ∧ · · · ∧ eip ∧ ej1 ∧ · · · ∧ ejq . (10.54)

Here there are two possibilities. If the collections I and J contain at least one
index in common, then by Corollary 10.14 (p. 363), the product (10.54) is equal to
zero.

If, on the other hand, I ∩ J = ∅, then we shall denote by K the collection in
N

p+q
n comprising the indices belonging to the set I ∪ J , that is, in other words, K

is obtained by arranging the collection (i1, . . . , ip, j1, . . . , jq) in ascending order.
Then, as is easily verified, the exterior product (10.54) differs from the element

ϕK , K ∈ −→
N

p+q
n , belonging to the basis of the exterior algebra Λ(L) constructed

above in that the indices of the collection I ∪ J are not necessarily arranged in

ascending order. In order to obtain from (10.54) the element ϕK , K ∈ −→
N

p+q
n , it is

necessary to interchange the indices (i1, . . . , ip, j1, . . . , jq) in such a way that the
resulting collection is increasing. Then by Theorems 2.23 and 2.25 from Sect. 2.6
and Property 10.13, according to which the exterior product changes sign under the
transposition of any two vectors, we obtain that

ϕI ∧ ϕJ = ε(I ,J )ϕK , K ∈ −→
N

p+q
n ,

where the number ε(I ,J ) is equal to +1 or −1 depending on whether the number
of transpositions necessary for passing from (i1, . . . , ip, j1, . . . , jq) to the collection

K ∈ −→
N

p+q
n is even or odd.

As a result, we see that in the constructed basis of the exterior algebra Λ(L), the
multiplication table assumes the following form:

ϕI ∧ ϕJ =
{

0, if I ∩ J 
=∅,

ε(I ,J )ϕK , if I ∩ J =∅.
(10.55)

10.5 Appendix*

The exterior product x ∧ y of vectors x ∈ Λp(L) and y ∈ Λq(L) defined in the
previous section makes it possible in many cases to give simple proofs of assertions
that we encountered earlier.

Example 10.30 Let us consider the case p = n, using the notation and results of the
previous section. As we have seen, dimΛp(L) = Cp

n , and therefore, the space Λn(L)

is one-dimensional, and each of its nonzero vectors constitutes a basis. If e is such
a vector, then an arbitrary vector of the space Λn(L) can be written in the form αe
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with a suitable scalar α. Thus for any n vectors x1, . . . ,xn of the space L, we obtain
the relationship

x1 ∧ · · · ∧ xn = α(x1, . . . ,xn)e, (10.56)

where α(x1, . . . ,xn) is some function of n vectors taking numeric values from the
field K. By Properties 10.11, 10.12, and 10.13, this function is multilinear and anti-
symmetric.

Let us choose in the space L some basis e1, . . . , en and set

xi = xi1e1 + · · · + xinen, i = 1, . . . , n.

The choice of a basis defines an isomorphism of the space L and the space K
n of

rows of length n, in which the vector xi corresponds to the row (xi1, . . . , xin). Thus
α becomes a multilinear and antisymmetric function of n rows taking numeric val-
ues. By Theorem 2.15, the function α(x1, . . . ,xn) coincides up to a scalar multiple
k(e) with the determinant of the square matrix of order n consisting of the coordi-
nates xij of the vectors x1, . . . ,xn:

α(x1, . . . ,xn) = k(e) ·

∣∣∣∣∣∣∣

x11 · · · x1n

...
. . .

...

xn1 · · · xnn

∣∣∣∣∣∣∣
. (10.57)

The arbitrariness of the choice of coefficient k(e) in formula (10.57) corresponds to
the arbitrariness of the choice of basis e in the one-dimensional space Λn(L) (let us
recall that the basis e1, . . . , en of the space L is fixed).

In particular, let us choose as basis of the space Λn(L) the vector

e = e1 ∧ · · · ∧ en. (10.58)

Vectors e1, . . . , en are linearly independent. Therefore, by Property 10.15 (p. 363),
the vector e is nonnull. We therefore obviously obtain that k(e) = 1. Indeed, since
the coefficient k(e) in formula (10.57) is one and the same for all collections of vec-
tors x1, . . . ,xn, we can calculate it by setting xi = ei , i = 1, . . . , n. Comparing in
this case formulas (10.56) and (10.58), we see that α(e1, . . . , en) = 1. Substituting
this value into relationship (10.57) for xi = ei , i = 1, . . . , n, and noting that the de-
terminant on the right-hand side of (10.57) is the determinant of the identity matrix,
that is, equal to 1, we conclude that k(e) = 1.

Using definitions given earlier, we may associate the linear transformation
Λn(A) : Λn(L) → Λn(L) with the linear transformation A : L → L. The transfor-
mation A can be defined by indicating to which vectors x1, . . . ,xn it takes the basis
e1, . . . , en of the space L, that is, by specifying vectors xi = A(ei ), i = 1, . . . , n. By
Lemma 10.17 (p. 365), we have the equality

Λn(A)(e1 ∧ · · · ∧ en) = A(e1) ∧ · · · ∧ A(en)

= x1 ∧ · · · ∧ xn = α(x1, . . . ,xn)e. (10.59)
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On the other hand, as we know, all linear transformations of a one-dimensional
space have the form x �→ αx, where α is some scalar equal to the determinant of
the given transformation and independent of the choice of basis e in Λn(L). Thus
we obtain that (Λn(A))(x) = αx, where the scalar α is equal to the determinant
|(Λn(A))| and clearly depends only on the transformation A itself, that is, it is
determined by the collection of vectors xi = A(ei ), i = 1, . . . , n. It is not difficult
to see that this scalar α coincides with the function α(x1, . . . ,xn) defined above.
Indeed, let us choose in the space Λn(L) a basis e = e1 ∧ · · ·∧ en. Then the required
equality follows directly from formula (10.59).

Further, substituting into (10.59) expression (10.57) for α(x1, . . . ,xn), taking
into account that k(e) = 1 and that the determinant on the right-hand side of (10.57)
coincides with the determinant of the transformation A, we obtain the following
result:

A(e1) ∧ · · · ∧ A(en) = |A|(e1 ∧ · · · ∧ en). (10.60)

This relationship gives the most invariant definition of the determinant of a linear
transformation among all those that we have encountered.

We obtained relationship (10.60) for an arbitrary basis e1, . . . , en of the space L,
that is, for any n linearly independent vectors of the space. But it is also true for any
n linearly dependent vectors a1, . . . ,an of this space. Indeed, in this case, the vec-
tors A(a1), . . . ,A(an) are clearly also linearly dependent, and by Property 10.15,
both exterior products a1 ∧· · ·∧an and A(a1)∧· · ·∧A(an) are equal to zero. Thus
for any n vectors a1, . . . ,an of the space L and any linear transformation A : L → L,
we have the relationship

A(a1) ∧ · · · ∧ A(an) = |A|(a1 ∧ · · · ∧ an). (10.61)

In particular, if B : L → L is some other linear transformation, then formula
(10.60) for the transformation BA : L → L gives the analogous equality

(
BA(e1) ∧ · · · ∧ BA(en)

) = |BA|(e1 ∧ · · · ∧ en).

On the other hand, from the same formula we obtain that
(
B

(
A(e1)

) ∧ · · · ∧ B
(
A(en)

)) = |B|(A(e1) ∧ · · · ∧ A(en)
)

= |B||A|(e1 ∧ · · · ∧ en).

Hence it follows that |BA| = |B| · |A|. This is almost a “tautological” proof of
Theorem 2.54 on the determinant of the product of square matrices.

The arguments that we have presented acquire a more concrete character if L is
an oriented Euclidean space. Then as the basis e1, . . . , en in L we may choose an
orthonormal and positively oriented basis. In this case, the basis (10.58) in Λn(L)

is uniquely defined, that is, it does not depend on the choice of basis e1, . . . , en.
Indeed, if e′

1, . . . , e
′
n is another such basis in L, then as we know, there exists a linear

transformation A : L → L such that e′
i = A(ei ), i = 1, . . . , n, and furthermore, the

transformation A is orthogonal and proper. But then |A| = 1, and formula (10.60)
shows that e′

1 ∧ · · · ∧ e′
n = e1 ∧ · · · ∧ en.
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Example 10.31 Let us show how from the given considerations, we obtain a proof
of the Cauchy–Binet formula, which was stated but not proved in Sect. 2.9.

Let us recall that in that section, we considered the product of two matrices B

and A, the first of type (m,n), and the second of type (n,m), so that BA is a square
matrix of order m. We are required to obtain an expression for the determinant |BA|
in terms of the associated minors of the matrices B and A. Minors of the matrices B

and A are said to be associated if they are of the same order, namely the minimum
of n and m, and are located in the columns (of matrix B) and rows (of matrix A)
of identical indices. The Cauchy–Binet formula asserts that the determinant |BA| is
equal to 0 if n < m, and that |BA| is equal to the sum of the pairwise products over
all the associated minors of order m if n ≥ m.

Since every matrix is the matrix of some linear transformation of vector spaces of
suitable dimensions, we may formulate this problem as a question of the determinant
of the product of linear transformations A : M → L and B : L → M, where dim L = n

and dim M = m. Here it is assumed that we have chosen a basis e1, . . . , em in the
space M and a basis f 1, . . . ,f n in the space L such that the transformations A and
B have matrices A and B respectively in these bases. Then BA will be a linear
transformation of the space M into itself with determinant |BA| = |BA|.

Let us first prove that |BA| = 0 if n < m. Since the image of the transformation,
BA(M), is a subset of B(L) and dimB(L) ≤ dim L, it follows that in the case under
consideration, we have the inequality

dim
(
BA(M)

) ≤ dimB(L) ≤ dim L = n < m = dim M,

from which it follows that the image of the transformation BA : M → M is not
equal to the entire space M, that is, the transformation BA is singular. This means
that |BA| = 0, that is, |BA| = 0.

Now let us consider the case n ≥ m. Using Lemmas 10.16 and 10.17 from
Sect. 10.3 with p = m, we obtain for the vectors of the basis e1, . . . , em of the
space M the relationship

Λm(BA)(e1 ∧ · · · ∧ em) = Λm(B)Λm(A)(e1 ∧ · · · ∧ em)

= Λm(B)
(
A(e1) ∧ · · · ∧ A(em)

)
. (10.62)

The vectors A(e1), . . . ,A(em) are contained in the space L of dimension n, and
their coordinates in the basis f 1, . . . ,f n, being written in column form, form the
matrix A of the transformation A : M → L. Let us now write the coordinates of
the vectors A(e1), . . . ,A(em) in row form. We thereby obtain the transpose matrix
A∗ of type (m,n). Applying formula (10.22) to the vectors A(e1), . . . ,A(em), we
obtain the equality

A(e1) ∧ · · · ∧ A(em) =
∑

I⊂−→
N m

n

MIϕI (10.63)

with the functions ϕI defined by formula (10.20). In the expression (10.63), ac-
cording to our definition, MI is the minor of the matrix A∗ occupying columns
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i1, . . . , im. It is obvious that such a minor MI of the matrix A∗ coincides with the mi-
nor of the matrix A occupying rows with the same indices i1, . . . , im. Thus we may
assume that in the sum on the right-hand side of (10.63), MI are the minors of order
m of the matrix A corresponding to all possible ordered collections I = (i1, . . . , im)

of indices of its rows.
Relationships (10.62) and (10.63) together give the equality

Λm(BA)(e1 ∧ · · · ∧ em) = Λm(B)

( ∑

I⊂−→
N m

n

MIϕI

)
. (10.64)

Let us denote by MI and NI the associated minors of the matrices A and B .
This means that the minor MI occupies the rows of the matrix A with indices I =
(i1, . . . , im), and the minor NI occupies the columns of the matrix B with the same
indices. Let us consider the restriction of the linear transformation B : L → M to the
subspace 〈f i1

, . . . ,f im
〉. By the definition of the functions ϕI , we obtain that

Λm(B)(ϕI ) = B(f i1
) ∧ · · · ∧ B(f im

) = NI (e1 ∧ · · · ∧ em).

From this, taking into account formula (10.64), follows the relationship

Λm(BA)(e1 ∧ · · · ∧ em) = Λm(B)

( ∑

I⊂−→
N m

n

MIϕI

)

=
∑

I⊂−→
N m

n

MIΛm(B)(ϕI )

=
( ∑

I⊂−→
N m

n

MINI

)
(e1 ∧ · · · ∧ em).

On the other hand, by Lemma 10.17 and formula (10.60), we have

Λm(BA)(e1 ∧ · · · ∧ em) = BA(e1) ∧ · · · ∧ BA(em) = |BA|(e1 ∧ · · · ∧ em).

The last two equalities give us the relationship

|BA| =
∑

I⊂−→
N m

n

MINI ,

which, taking into account the equality |BA| = |BA|, coincides with the Cauchy–
Binet formula for the case n ≥ m.

Example 10.32 Let us derive the formula for the determinant of a square matrix A

that generalizes the well-known formula for the expansion of the determinant along
the j th column:

|A| = a1jA1j + a2jA2j + · · · + anjAnj , (10.65)
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where Aij is the cofactor of the element aij , that is, the number (−1)i+jMij , and
Mij is the minor obtained by deleting this element from the matrix A along with
the entire row and column at whose intersection it is located. The generalization
consists in the fact that now we shall write down an analogous expansion of the
determinant not along a single column, but along several, thereby generalizing in a
suitable way the notion of the cofactor.

Let us consider a certain collection I ∈ −→
N

m
n , where m is a natural number in

the range 1 to n − 1. Let us denote by I the collection obtained from (1, . . . , n)

by discarding all indices entering into I . Clearly, I ∈ −→
N

n−m
n . Let us denote by

|I | the sum of all indices entering into the collection I , that is, we shall set |I | =
i1 + · · · + im.

Let A be an arbitrary square matrix of order n, and let I = (i1, . . . , im) and J =
(j1, . . . , jm) be two collections of indices in

−→
N

m
n . For the minor MIJ occupying

the rows with indices i1, . . . , im and columns with indices j1, . . . , jm, let us call the
number

AIJ = (−1)|I |+|J |MIJ (10.66)

the cofactor. It is easy to see that the given definition is indeed a generalization of
that given in Chap. 2 of the cofactor of a single element aij for which m = 1 and the
collections I = (i), J = (j) each consist of a single index.

Theorem 10.33 (Laplace’s theorem) The determinant of a matrix A is equal to the
sum of the products of all minors occupying any m given columns (or rows) by their
cofactors:

|A| =
∑

J∈−→
N m

n

MIJ AIJ =
∑

I∈−→
N m

n

MIJ AIJ ,

where the number m can be arbitrarily chosen in the range 1 to n − 1.

Remark 10.34 For m = 1 and m = n − 1, Laplace’s theorem gives formula (10.65)
for the expansion of the determinant along a column and the analogous formula for
expansion along a row. However, only in the general case is it possible to focus our
attention on the symmetry between the minors of order m and those of order n − m.

Proof of Theorem 10.33 Let us first of all note that since for the transpose matrix,
its rows are converted into columns while the determinant is unchanged, it suffices
to provide a proof for only one of the given equalities. For definiteness, let us prove
the first—the formula for the expansion of the determinant |A| along m columns.

Let us consider a vector space L of dimension n and an arbitrary basis e1, . . . , en

of L. Let A : L → L be a linear transformation having in this basis the matrix A. Let
us apply to the vectors of this basis a permutation such that the first m positions are
occupied by the vectors ei1, . . . , eim , the remaining n − m positions by the vectors
eim+1 , . . . , ein . In the basis thus obtained, the determinant of the transformation A
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will again be equal to |A|, since the determinant of the matrix of a transformation
A does not depend on the choice of basis. Using formula (10.60), we obtain

A(ei1) ∧ · · · ∧ A(eim) ∧ A(eim+1) ∧ · · · ∧ A(ein )

= |A|(ei1 ∧ · · · ∧ eim ∧ eim+1 ∧ · · · ∧ ein ) = |A|(ϕI ∧ ϕI ). (10.67)

Let us calculate the left-hand side of relationship (10.67), applying formula
(10.22) to the two different groups of vectors.

First, let us set a1 = A(ei1), . . . , am = A(eim). Then from (10.22), we obtain

A(ei1) ∧ · · · ∧ A(eim) =
∑

J∈−→
N m

n

MIJ ϕJ , (10.68)

where I = (i1, . . . , im), and J runs through all collections from the set
−→
N

m
n .

Now let replace the number m by n − m in (10.22) and apply the formula thus
obtained to the vectors a1 = A(eim+1), . . . , an−m = A(ein ). As a result, we obtain
the equality

A(eim+1) ∧ · · · ∧ A(ein ) =
∑

J ′∈−→
N

n−m
n

MIJ ′ϕJ ′ , (10.69)

where I = (im+1, . . . , in), and J ′ runs through all collections in the set
−→
N

n−m
n .

Substituting the expressions (10.68) and (10.69) into the left-hand side of (10.67),
we obtain the equality

∑

J∈−→
N m

n

∑

J ′∈−→
N

n−m
n

MIJ MIJ ′ϕJ ∧ ϕJ ′ = |A|(ϕI ∧ ϕI ). (10.70)

Let us calculate the exterior product ϕI ∧ ϕI for p = m and q = n − m, mak-
ing use of the multiplication table (10.55) that was obtained at the end of the
previous section. In this case, it is obvious that the collection K obtained by the
union of I and I is equal to (1, . . . , n), and we have only to calculate the number
ε(I , I ) = ±1, which depends on whether the number of transpositions to get from
(i1, . . . , im, im+1, . . . , in) to K = (1, . . . , n) is even or odd. It is not difficult to see
(using, for example, the same reasoning as in Sect. 2.6) that ε(I , I ) is equal to the
number of pairs (i, ı), where i ∈ I and ı ∈ I , for which the indices i and ı are in
reverse order (form an inversion), that is, i > ı. By definition, all indices less than i1
appear in I , and consequently, they form an inversion with i1. This gives us i1 − 1
pairs. Further, all numbers less than i2 and belonging to I form an inversion with
index i2, that is, all numbers less than i2 with the exception of i1, which belongs to
I and not I . This gives i2 − 2 pairs.

Continuing in this way to the end, we obtain that the number of pairs (i, ı) form-
ing an inversion is equal to (i1 − 1) + (i2 − 2) + · · · + (im − m), that is, equal to
|I | − μ, where μ = 1 + · · · + m = 1

2m(m + 1). Consequently, we finally obtain the
formula ϕI ∧ ϕI = (−1)|I |−μϕK , where K = (1, . . . , n).
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The exterior product ϕJ ∧ ϕJ ′ is equal to zero for all J and J ′, with the excep-
tion only of the case that J ′ = J , that is, the collections J and J ′ are disjoint and
complement each other. By what we have said above, ϕJ ∧ ϕJ = (−1)|J |−μϕK .
Thus from (10.70) we obtain the equality

∑

J∈−→
N m

n

MIJ MIJ (−1)|J |−μϕK = |A|(−1)|I |−μϕK . (10.71)

Multiplying both sides of equality (10.71) by the number (−1)|I |+μ, taking into
account the obvious identity (−1)2|I | = 1, we finally obtain

∑

J∈−→
N m

n

MIJ MIJ (−1)|I |+|J | = |A|,

which, taking into account definition (10.66), gives us the required equality. �

Example 10.35 We began this section with Example 10.30, in which we investigated
in detail the space Λp(L) for p = n. Let us now consider the case p = n − 1. As a
result of the general relationship dimΛp(L) = Cp

n , we obtain that dimΛn−1(L) = n.
Having chosen an arbitrary basis e1, . . . , en in the space L, we assign to every

vector z ∈ Λn−1(L) the linear function f (x) on L defined by the condition

z ∧ x = f (x)(e1 ∧ · · · ∧ en), x ∈ L.

For this, it is necessary to recall that z ∧ x belongs to the one-dimensional space
Λn(L), and the vector e1 ∧ · · · ∧ en constitutes there a basis. The linearity of the
function f (x) follows from the properties of the exterior product proved above. Let
us verify that the linear transformation

F : Λn−1(L) → L∗

thus constructed is an isomorphism. Since dimΛn−1(L) = dim L∗ = n, to show this,
it suffices to verify that the kernel of the transformation F is equal to (0). As we
know, it is possible to select as the basis of the space Λn−1(L) the vectors

ei1 ∧ ei2 ∧ · · · ∧ ein−1 , ik ∈ {1, . . . , n},
uniquely up to a permutation of the collection (i1, . . . , in−1); these are all the num-
bers (1, . . . , n) except for one. This means that as the basis Λn−1(L) one can choose
the vectors

ui = e1 ∧ · · · ∧ ei−1 ∧ ĕi ∧ ei+1 · · · ∧ en, i = 1, . . . , n. (10.72)

It is clear that ui ∧ ej = 0 if i 
= j , and ui ∧ ei = ±e1 ∧ · · · ∧ en for all i = 1, . . . , n.
Let us assume that z ∈ Λn−1(L) is a nonnull vector such that its associated linear

function f (x) is equal to zero for every x ∈ L. Let us set z = z1u1 + · · · + znun.
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Then from our assumption, it follows that z ∧ x = 0 for all x ∈ L, and in particular,
for the vectors e1, . . . , en. It is easy to see that from this follow the equalities z1 = 0,
. . . , zn = 0 and hence z = 0.

The constructed isomorphism F : Λn−1(L) → L∗ is a refinement of the following
fact that we encountered earlier: the Plücker coordinates of a hyperplane can be
arbitrary numbers; in this dimension, the Plücker relations do not yet appear.

Let us now assume that the space L is an oriented Euclidean space. On the one
hand, this determines a fixed basis (10.58) in Λn(L) if e1, . . . , en is an arbitrary
positively oriented orthonormal basis of L, so that the isomorphism F : Λn−1(L) →
L∗ constructed above is uniquely determined. On the other hand, for a Euclidean
space, there is defined the standard isomorphism L∗ ∼→ L, which does not require the
selection of any basis at all in L (see p. 214). Combining these two isomorphisms,
we obtain the isomorphism

G : Λn−1(L) ∼→ L,

which assigns to the element z ∈ Λn−1(L) the vector x ∈ L such that

z ∧ y = (x,y)(e1 ∧ · · · ∧ en) (10.73)

for every vector y ∈ L and for the positively oriented orthonormal basis e1, . . . , en,
where (x,y) denotes the inner product in the space L.

Let us consider this isomorphism in greater detail. We saw earlier that the vectors
ui determined by formula (10.72) form a basis of the space Λn−1(L). To describe the
constructed isomorphism, it suffices to determine which vector b ∈ L corresponds
to the vector a1 ∧ · · · ∧ an−1, ai ∈ L. We may suppose that the vectors a1, . . . ,an−1
are linearly independent, since otherwise, the vector a1 ∧ · · · ∧ an−1 would equal 0,
and therefore to it would correspond the vector b = 0. Taking into account formula
(10.73), this correspondence implies the equality

(b,y)(e1 ∧ · · · ∧ en) = a1 ∧ · · · ∧ an−1 ∧ y, (10.74)

satisfied by all y ∈ L. Since the vector on the right-hand side of (10.74) is the
null vector if y belongs to the subspace L1 = 〈a1, . . . ,an−1〉, we may assume that
b ∈ L⊥

1 .
Now we must recall that we have an orientation and consider L and L1 to be ori-

ented (it is easy to ascertain that the orientation of the space L does not determine
a natural orientation of the subspace L1, and so we must choose and fix the orienta-
tion of L1 separately). Then we may choose the basis e1, . . . , en in such a way that
it is orthonormal and positively oriented and also such that the first n − 1 vectors
e1, . . . , en−1 belong to the subspace L1, and also define in it an orthonormal and
positively oriented basis (it is always possible to attain this, possibly after replacing
the vector en with its opposite).

Since the vector b is contained in the one-dimensional subspace L⊥
1 = 〈en〉, it

follows that b = βen. Using the previous arguments, we obtain that

a1 ∧ · · · ∧ an−1 = v(a1, . . . ,an−1)en,
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where v(a1, . . . ,an−1) is the oriented volume of the parallelepiped spanned by the
vectors a1, . . . ,an−1 (see the definition on p. 221). This observation determines the
number β .

Indeed, substituting the vector y = en into (10.74) and taking into account the
fact that the basis e1, . . . , en was chosen to be orthonormal and positively oriented
(from which follows, in particular, the equality v(e1 ∧ · · · ∧ en) = 1), we obtain the
relationship

βv = v(a1, . . . ,an−1, en) = v(a1, . . . ,an−1).

Thus the isomorphism G constructed above assigns to the vector a1 ∧ · · · ∧ an−1
the vector b = v(a1, . . . ,an−1)en, where en is the unit vector on the line L⊥

1 , chosen
with the sign making the basis e1, . . . , en of the space L orthonormal and positively
oriented. As is easily verified, this is equivalent to the requirement that the basis
a1, . . . ,an−1, en be positively oriented.

The final result is contained in the following theorem.

Theorem 10.36 For every oriented Euclidean space L, the isomorphism

G : Λn−1(L) ∼→ L

assigns to the vector a1 ∧ · · · ∧ an−1 the vector b ∈ L, which is orthogonal to
the vectors a1, . . . ,an−1 and whose length is equal to the unoriented volume
V (a1, . . . ,an−1), or more precisely,

b = V (a1, . . . ,an−1)e, (10.75)

where e ∈ L is a vector of unit length orthogonal to the vectors a1, . . . ,an−1 and
chosen in such a way that the basis a1, . . . ,an−1, e is positively oriented.

The vector b determined by the relationship (10.75) is called the vector product
of the vectors a1, . . . ,an−1 and is denoted by [a1, . . . ,an−1]. In the case n = 3, this
definition gives us the vector product of two vectors [a1,a2] familiar from analytic
geometry.
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