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Abstract. The problem of capturing performance problems is critical in
the software design, mostly because the results of performance analysis
(i.e. mean values, variances, and probability distributions) are difficult
to be interpreted for providing feedback to software designers. Support
to the interpretation of performance analysis results that helps to fill the
gap between numbers and design alternatives is still lacking. The aim of
this chapter is to present the work that has been done in the last few
years on filling such gap. The work is centered on software performance
antipatterns, that are recurring solutions to common mistakes (i.e. bad
practices) affecting performance. Such antipatterns can play a key role in
the software performance domain, since they can be used in the investi-
gation of performance problems as well as in the formulation of solutions
in terms of design alternatives.

Keywords: Software Architecture, Performance Evaluation, Antipat-
terns, Feedback Generation, Design Alternatives.

1 Introduction

In the software development domain there is a very high interest in the early
validation of performance requirements because this ability avoids late and ex-
pensive fix to consolidated software artifacts.

Model-based approaches, pioneered under the name of Software Performance
Engineering (SPE) by Smith [1–3], aim at producing performance models early
in the development cycle and using quantitative results from model solutions to
refactor the architecture and design [4] with the purpose of meeting performance
requirements [5]. Advanced Model-Driven Engineering (MDE) techniques have
successfully been used in the last few years to introduce automation in software
performance modeling and analysis [6, 7].

Nevertheless, the problem of interpreting the performance analysis results is
still quite critical. A large gap exists between the representation of performance
analysis results and the feedback expected by software architects. Additionally,
the former usually contains numbers (e.g. mean response time, throughput vari-
ance, etc.), whereas the latter should embed architectural suggestions, i.e. design
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alternatives, useful to overcome performance problems (e.g. split a software com-
ponent in two components and re-deploy one of them).

Such activities are today exclusively based on the analysts’ experience, and
therefore their effectiveness often suffers of lack of automation. MDE techniques
represent very promising means on this scenario to tackle the problem.

Figure 1 schematically represents the typical steps that are executed at the ar-
chitectural phase of the software lifecycle to conduct a model-based performance
analysis process. Rounded boxes in the figure represent operational steps whereas
square boxes represent input/output data. Vertical lines divide the process in
three different phases: in the modeling phase, an (annotated) software architec-
tural model is built; in the performance analysis phase, a performance model is
obtained through model transformation, and such model is solved to obtain the
performance results of interest; in the refactoring phase, the performance results
are interpreted and, if necessary, feedback is generated as refactoring actions on
the original software architectural model.

Fig. 1. Model-based software performance analysis process

The modeling and performance analysis phases (i.e. arrows numbered from 1
through 4) represent the forward path from an (annotated) software architectural
model all the way through the production of performance indices of interest. As
outlined above, while in this path well-founded model-driven approaches have
been introduced for inducing automation in all steps (e.g. [6, 8, 9]), there is
a clear lack of automation in the backward path that shall bring the analysis
results back to the software architecture.

The core step of the backward path is the shaded rounded box of Figure 1.
Here, the performance analysis results have to be interpreted in order to detect,
if any, performance problems. Once performance problems have been detected
(with a certain accuracy) somewhere in the architectural model, solutions have
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to be applied to remove those problems1. A performance problem originates from
a set of unfulfilled requirement(s), such as “the estimated average response time
of a service is higher than the required one”. If all the requirements are satisfied
then the feedback obviously suggests no changes.

In Figure 1 the (annotated) software architectural model (label 5.a) and the
performance results (label 5.b) are both inputs to the core step that searches
problems in the model. The third input of this step represents the most promising
elements that can drive this search, i.e. performance antipatterns (label 5.c).
The rationale of using performance antipatterns is two-fold: on one hand, a
performance antipattern identifies a bad practice in the software architectural
model that negatively affects the performance indices, thus it supports the results
interpretation step; on the other hand, a performance antipattern definition
includes a solution description that lets the software architect devise refactoring
actions, thus it supports the feedback generation step.

The main reference we consider for performance antipatterns is the work done
across the years by Smith and Williams [10] that have ultimately defined four-
teen notation-independent antipatterns2. Some other works present antipatterns
that occur throughout different technologies, but they are not as general as the
ones defined in [10] (more references are discussed in Section 2 as well as other
approaches to the backward path).

Figure 2 details the performance analysis process of Figure 1. In Figure 2,
the core step is split in two steps: (i) detecting antipatterns that provides the
localization of the critical parts of software architectural models, performing the
results interpretation step; (ii) solving antipatterns that suggests the changes
to be applied to the architectural model under analysis, executing the feedback
generation step.

Several iterations can be conducted to find the software architectural model
that best fits the performance requirements, since several antipatterns may be de-
tected in an architectural model, and several refactoring actions may be available
for solving each antipattern. At each iteration, the refactoring actions (labels 6.1
. . . 6.h of Figure 2) aim at building a new software architectural model (namely
Candidate) that replaces the analyzed one. For example, Candidatei−j denotes
the j-th candidate generated at the i-th iteration. Then, the detection and so-
lution approach can be iteratively applied to all newly generated candidates to
further improve the system, when necessary.

1 Note that this task very closely corresponds to the work of a physician: observing a
sick patient (the model), studying the symptoms (some bad values of performance
indices), making a diagnosis (performance problem), prescribing a treatment (per-
formance solution through refactoring).

2 From the original list of fourteen antipatterns [10] two antipatterns are not consid-
ered for the following reason: the Falling Dominoes antipattern refers to reliability
and fault tolerance issues and it is out of interest; the Unnecessary Processing an-
tipattern deals with the semantics of the processing by judging the importance of the
application code that it is an abstraction level not included in software architectural
models. Hence, twelve is the total number of the antipatterns we examine.
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Fig. 2. Software performance analysis process across different iterations

Different termination criteria can be defined in the antipattern-based process:
(i) fulfilment criterion, i.e. all requirements are satisfied and a suitable software
architectural model is found; (ii) no-actions criterion, i.e. antipatterns are not
detected in the software architectural models therefore no refactoring action can
be experimented; (iii) #iterations criterion, i.e. the process can be terminated if
a certain number of iterations have been completed.

It is worth to notice that the solution of one or more antipatterns does not a
priori guarantee performance improvements, because the entire process is based
on heuristic evaluations. However, an antipattern-based refactoring action is usu-
ally a correctness-preserving transformation that improves the quality of the
software. For example, the interaction between two components might be refac-
tored to improve performance by sending fewer messages with more data per
message. This transformation does not alter the semantics of the application,
but it may improve the overall performance.

The remainder of the chapter is organized as follows. Section 2 discusses ex-
isting work in this research area. Sections 3 and 4 present our approach to the
representation, and detection/solution activities, needed to embed antipatterns
in a software performance process. Section 5 describes a model-driven framework
to widen the scope of antipatterns. Finally, Section 6 concludes the chapter by
pointing out the pros and cons of using antipatterns in the software performance
process and illustrating the most challenging research issues in this area.
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2 Related Work

Table 1 summarizes the main existing approaches in literature for the automated
generation of architectural feedback. In particular, four categories of approaches
are outlined: (i) antipattern-based approaches (see Section 2.1); (ii) rule-based
approaches (see Section 2.2); (iii) design space exploration approaches (see Sec-
tion 2.3); (iv) metaheuristic approaches (see Section 2.4).

Each approach is classified on the basis of the category it belongs to. Table
1 compares the different approaches by reporting the (annotated) software ar-
chitectural model and the performance model they are based on, if available.
The last column of Table 1 denotes as framework the set of methodologies the
corresponding approach entails. Note that in some cases the framework has been
implemented and it is available as a tool (e.g. SPE • ED, ArchE, PerOpteryx).

Our approach somehow belongs to two categories, that are: antipattern-based
and rule-based approaches. This is because it makes use of antipatterns for spec-
ifying rules that drive towards the identification of performance flaws. PANDA
(PerformanceAntipatterns aNd FeeDback in SoftwareArchitectures) is a frame-
work that embeds all the techniques we propose in this research work that are
aimed at performing three main activities, i.e. representing, detecting and solv-
ing antipatterns. The implementation of PANDA is still a work in progress and
we aim at developing it in the next future.

2.1 Antipattern-Based Approaches

Williams et al. in [11] introduced the PASA (Performance Assessment of Soft-
ware Architectures) approach. It aims at achieving good performance results
through a deep understanding of the architectural features. This is the approach
that firstly introduces the concept of antipatterns as support to the identifica-
tion of performance problems in software architectural models as well as in the
formulation of architectural alternatives. However, this approach is based on the
interactions between software architects and performance experts, therefore its
level of automation is still low.

Cortellessa et al. in [12] introduced a first proposal of automated genera-
tion of feedback from the software performance analysis, where performance
antipatterns play a key role in the detection of performance flaws. However, this
approach considers a restricted set of antipatterns, and it uses informal inter-
pretation matrices as support. The main limitation of this approach is that the
interpretation of performance results is only demanded to the analysis of Layered
Queue Networks (LQN) [28] performance model. Such knowledge is not enriched
with the features coming from the software architectural models, thus to hide
feasible refactoring actions.

Enterprise technologies and EJB performance antipatterns are analyzed by
Parsons et al. in [13]: antipatterns are represented as sets of rules loaded into an
engine. A rule-based performance diagnosis tool, named Performance Antipat-
tern Detection (PAD), is presented. However, it deals with Component-Based
Enterprise Systems, targeting only Enterprise Java Bean (EJB) applications.
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Table 1. Summary of the approaches for the generation of architectural feedback

Approach

(Annotated)
Performance

Framework
Software

Model
Architectural
Model

Antipattern-based

Williams et al. [11], 2002 Software exe-
cution model
(Execution
graphs)

System exe-
cution model
(Queueing
Network)

SPE • ED

Cortellessa et al. [12], 2007 Unified
Modeling
Language
(UML)

Layered
Queueing
Network
(LQN)

GARFIELD
(Generator of
Architectural
Feedback
through Per-
formance
Antipatterns
Revealed)

Parsons et al. [13], 2008 JEE systems
from which
component
level end-to-
end run-time
paths are
collected

Reconstructed
run-time de-
sign model

PAD (Per-
formance
Antipattern
Detection)

Our approach [14] [15], 2009-2011 Unified
Modeling
Language
(UML), Pal-
ladio Compo-
nent Model
(PCM)

Queueing
Network,
Simulation
Model

PANDA
(Performance
Antipatterns
aNd
FeeDback
in Software
Architectures)

Rule-based

Barber et al. [16], 2002 Domain
Reference
Architecture
(DRA)

Simulation
Model

RARE and
ARCADE

Dobrzanski et al. [17], 2006 Unified
Modeling
Language
(UML)

- Telelogic
TAU (i.e.
UML CASE
tool)

McGregor et al. [18], 2007 Attribute-
Driven De-
sign (ADD)

Simulation
Model

ArchE

Kavimandan et al. [19], 2009 Real-Time
Component
Middleware

- extension of
the LwCCM
middleware
[20]

Xu [21], 2010 Unified
Modeling
Language
(UML)

Layered
Queueing
Network
(LQN)

PB (Per-
formance
Booster)

Design Exploration

Zheng et al. [22], 2003 Unified
Modeling
Language
(UML)

Simulation
Model

-

Bondarev et al. [23], 2007 Robocop
Component
Model

Simulation
model

DeepCompass
(Design Ex-
ploration and
Evaluation
of Perfor-
mance for
Component
Assemblies)

Ipek et al. [24], 2008 Artificial
Neural Net-
work (ANN)

Simulation
Model

-

Metaheuristic

Canfora et al. [25], 2005 Workflow
Model

Workflow
QoS Model

-

Aleti et al. [26], 2009 Architecture
Analysis and
Description
Language
(AADL)

Markov
Model

ArcheOpterix

Martens et al. [27], 2010 Palladio
Compo-
nent Model
(PCM)

Simulation
Model

PerOpteryx
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From the monitored data of running systems, it extracts the run-time system
design and detects EJB antipatterns by applying the defined rules to it. Hence,
the scope of [13] is restricted to such domain, and performance problems can
neither be detected in other technology contexts nor in the early development
stages.

2.2 Rule-Based Approaches

Barber et al. in [16] introduced heuristic algorithms that in presence of detected
system bottlenecks provide alternative solutions to remove them. The heuris-
tics are based on architectural metrics that help to compare different solutions.
However, it basically identifies and solve only software bottlenecks, more complex
problems are not recognized.

Dobrzanski et al. in [17] tackled the problem of refactoring UML models.
In particular, bad smells are defined as structures that suggest possible prob-
lems in the system in terms of functional and non-functional aspects. Refactor-
ing operations are suggested in the presence of bad smells. However, no spe-
cific performance issue is analyzed, and refactoring is not driven by unfulfilled
requirements.

McGregor et al. in [18] proposed the ArchE framework to support the software
designers in creating architectures that meet quality requirements. It embodies
knowledge of quality attributes and the relation between the achievement of
quality requirements and architectural design. However, the suggestions (or tac-
tics) are not well explained, and it is not clear at which extent the approach can
be applied.

Kavimandan et al. in [19] presented an approach to optimize deployment and
configuration decisions in the context of distributed, real-time, and embedded
component-based systems. Enhanced bin packing algorithms and schedulability
analysis have been used to make fine-grained assignments of components to
different middleware containers, since they are known to impact on the system
performance and resource consumption. However, the scope of this approach is
limited to deployment and configuration features.

Xu in [21] presented an approach to software performance diagnosis that iden-
tifies performance flaws before the software system implementation. It defines
a set of rules detecting patterns of interaction between resources. The software
architectural models are translated in a performance model, i.e. Layered Queue-
ing Networks (LQNs) [28], and then analyzed. The approach limits the detection
to bottlenecks and long execution paths identified and removed at the level of
the LQN performance model. The overall approach applies only to LQN models,
hence its portability to other notations is yet to be proven and it may be quite
complex.

2.3 Design Space Exploration Approaches

Zheng et al. in [22] described an approach to find optimal deployment and
scheduling priorities for tasks in a class of distributed real-time systems. In
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particular, it is intended to evaluate the deployment of such tasks by applying
a heuristic search strategy to LQN models. However, its scope is restricted to
adjust the priorities of tasks competing for a processor, and the only refactoring
action is to change the allocation of tasks to processors.

Bondarev et al. in [23] presented a design space exploration framework for
component-based software systems. It allows an architect to get insight into a
space of possible design alternatives with further evaluation and comparison of
these alternatives. However, it requires a manual definition of design alterna-
tives of software and hardware architectures, and it is meant to only identify
bottlenecks.

Ipek et al. in [24] described an approach to automatically explore the design
space for hardware architectures, such as multiprocessors or memory hierarchies.
The multiple design space points are simulated and the results are used to train
a neural network. Such network can be solved quickly for different architecture
candidates and delivers accurate results with a prediction error of less than 5%.
However, the approach is limited to hardware properties, it is not suitable for
the analysis of software architectural models that usually spread on a wide rage
of features.

2.4 Metaheuristic Approaches

Canfora et al. in [25] used genetic algorithms for Quality of Service (QoS)-aware
service composition, i.e. to determine a set of concrete services to be bound to the
abstract ones in the workflow of a composite service. However, each basic service
is considered as a black-box element, where performance metrics are fixed to
certain units, and the genetic algorithms search the best solutions by evaluating
the composition options. Hence, no real feedback is given to the designer with
the exception of a pre-defined selection of basic services.

Aleti et al. in [26] presented a framework for the optimization of embedded
system architectures. In particular, it uses the AADL (Architecture Analysis and
Description Language) [29] as the underlying architecture description language
and provides plug-in mechanisms to replace the optimization engine, the quality
evaluation algorithms and the constraints checking. Architectural models are
optimized with evolutionary algorithms considering multiple arbitrary quality
criteria. However, the only refactoring action the framework currently allows is
the component re-deployment.

Martens et al. in [27] used meta-heuristic search techniques for improving per-
formance, reliability, and costs of component-based software systems. In partic-
ular, evolutionary algorithms search the architectural design space for optimal
trade-offs by means of Pareto curves. However, this approach is quite time-
consuming, because it uses random changes (spanning on all feasible solutions)
of the architecture, and the optimality is not guaranteed.
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3 Representation of Performance Antipatterns

Performance antipatterns were originally defined in natural language [10]. For
sake of simplification, Table 2 reports some examples (i.e. the Blob, the Con-
current Processing Systems, and the Empty Semi Trucks antipatterns [10]) that
will be used throughout this section as driving examples. In the table, the prob-
lem column identifies the system properties that define the antipattern and are
useful for detecting it3; the solution column suggests the architectural changes
for solving the antipattern.

Table 2. Some examples of Performance Antipatterns [10]

Antipattern Problem Solution

Blob Occurs when a single class or component ei-
ther 1) performs all of the work of an applica-
tion or 2) holds all of the applications data.
Either manifestation results in excessive mes-
sage traffic that can degrade performance.

Refactor the design to distribute intel-
ligence uniformly over the applications
top-level classes, and to keep related
data and behavior together.

Concurrent
Processing
Systems

Occurs when processing cannot make use of
available processors.

Restructure software or change schedul-
ing algorithms to enable concurrent ex-
ecution.

Empty Semi
Trucks

Occurs when an excessive number of requests
is required to perform a task. It may be due
to inefficient use of available bandwidth, an
inefficient interface, or both.

The Batching performance pattern
combines items into messages to make
better use of available bandwidth. The
Coupling performance pattern, Session
Facade design pattern, and Aggregate
Entity design pattern provide more ef-
ficient interfaces.

Starting from their textual description, in the following we provide a graphi-
cal representation of performance antipatterns (Section 3.1) in order to quickly
convey their basic concepts. The graphical representation (here visualized in
a UML-like notation) reflects our interpretation of the textual description of
performance antipatterns [10]. It is conceived to capture one reasonable illustra-
tion of both the antipattern problem and solution, but it does not claim to be
exhaustive. Either the problem or even more the solution description of antipat-
terns gives rise to a set of options that could be considered to refine the current
interpretation.

An antipattern identifies unwanted software and/or hardware properties, thus
an antipattern can be formulated as a (maybe complex) logical predicate on the
software architectural model elements. In fact, from the informal representation
of the problem (as reported in Table 2), a set of basic predicates (BPi) is built,
where each BPi addresses part of the antipattern problem specification. The
basic predicates are first described in a semi-formal natural language and then
formalized by means of first-order logics (Section 3.2).

3 Such properties refer to software and/or hardware architectural characteristics as
well as to the performance indices obtained by the analysis.
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3.1 Graphical Representation of Performance Antipatterns

In this section we present the graphical representation of some performance
antipatterns, i.e. the Blob, the Concurrent Processing Systems, and the Empty
Semi Trucks4 [10].

We organize the software architectural model elements into views, each cap-
turing a different aspect of the system. Similarly to the Three-View Model [31],
we consider three different views representing three sources of information: the
Static View that captures the software elements (e.g. classes, components) and
the static relationships among them; the Dynamic View that represents the in-
teraction (e.g. messages) that occurs between the software entities elements to
provide the system functionalities; and finally the Deployment View that de-
scribes the hardware elements (e.g. processing nodes) and the mapping of the
software entities onto the hardware platforms.

Blob Antipattern

Figures 3 and 4 provide a graphical representation of the Blob antipattern in its
two forms, i.e. Blob-controller and Blob-dataContainer respectively.

The upper side of Figures 3 and 4 describes the properties of a Software Model
S with a BLOB problem: (a) Static View, a complex software entity instance, i.e.
Sx, is connected to other software instances, e.g. Sy and Sz , through many de-
pendencies (e.g. setData, getData, etc.); (b) Dynamic View, the software instance
Sx generates (see Figure 3) or receives (see Figure 4) excessive message traffic to
elaborate data managed by other software instances such as Sy; (c) Deployment
View, it includes two sub-cases: (c1) the centralized case, i.e. if the communicat-
ing software instances are deployed on the same processing node then a shared
resource will show high utilization value, i.e. $util; (c2) the distributed case,
i.e. if the communicating software instances are deployed on different processing
nodes then the network link will be a critical resource with a high utilization
value, i.e. $utilNet 5. The occurrence of such properties leads to assess that the
software resource Sx originates an instance of the Blob antipattern.

The lower side of Figures 3 and 4 contains the design changes that can be
applied according to the BLOB solution. The refactoring actions are: (a) the
number of dependencies between the software instance Sx and the surrounding
ones, like Sy and Sz, must be decreased by delegating some functionalities to the
surrounding instances; (b) the number of messages sent (see Figure 3) or received
(see Figure 4) by Sx must be decreased by moving the data management from Sx

to the surrounding software instances. As consequence of previous actions: (c1)
if the communicating software instances were deployed on the same hardware
resource then the latter will not be a critical resource anymore, i.e. $util′ �
$util; (c2) if the communicating software instances are deployed on different

4 Readers interested to the graphical representation of other antipatterns can refer to
[30].

5 The characterization of antipattern parameters related to system characteristics (e.g.
many usage dependencies, excessive message traffic) or to performance results (e.g.
high, low utilization) is based on thresholds values (see more details in Section 4).
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Fig. 3. A graphical representation of the Blob-controller Antipattern
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Fig. 4. A graphical representation of the Blob-dataContainer Antipattern
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hardware resources then the network will not be a critical resource anymore, i.e.
$utilNet′ � $utilNet.

Concurrent Processing Systems Antipattern

Figure 5 provides a graphical representation of theConcurrent Processing Systems
antipattern.

Fig. 5. A graphical representation of the Concurrent Processing Systems Antipattern

The upper side of Figure 5 describes the system properties of a Software Model
S with a Concurrent Processing Systems problem: (a) Deployment View, there
are two processing nodes, e.g. PN1 and PN2, with un unbalanced processing,
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i.e. many tasks are assigned to PN1 whereas PN2 is not so heavily used. The
over used processing node will show high queue length value ($ql 1, estimated as
the maximum value overall its hardware devices, i.e. $cpu(i) ql and $disk(j) ql),
and a high utilization value among its hardware entities either for cpus ($cpu 1,
estimated as the maximum value overall its cpu devices, i.e. $cpu(i) util), and
disks ($disk 1, estimated as the maximum value overall its disk devices, i.e.
$disk(j) util). The less used PN2 processing node will show low utilization value
among its hardware entities either for cpus ($cpu 2), and disks ($disk 2). The
occurrence of such properties leads to assess that the processing nodes PN1 and
PN2 originate an instance of the Concurrent Processing Systems antipattern.

The lower side of Figure 5 contains the design changes that can be applied
according to the Concurrent Processing Systems solution. The refactoring actions
are: (a) the software entity instances must be deployed in a better way, according
to the available processing nodes. As consequences of the previous action, if the
software instances are deployed in a balanced way then the processing node PN1

will not be a critical resource anymore, hence $ql 1′, $cpu 1′, $disk 1′ values
improves despite the $cpu 2′, $disk 2′ values.

Empty Semi Trucks Antipattern

Figure 6 provides a graphical representation of the Empty Semi Trucks antipat-
tern.

The upper side of Figure 6 describes the system properties of a Software Model
S with a Empty Semi Trucks problem: (a) Static View, there is a software entity
instance, e.g. Sx, retrieving some information from several instances (Srem1,
. . . , Sremn); (b) Dynamic View, the software instance Sx generates an excessive
message traffic by sending a big amount of messages of low sizes ($msgS), much
lower than the network bandwidth, hence the network link has a low utilization
value ($utilNet); (c) Deployment View, the processing node on which Sx is
deployed, i.e. PN1, reveals a high utilization value ($util). The occurrence of such
properties leads to assess that the software instance Sx originates an instance of
the Empty Semi Trucks antipattern.

The lower side of Figure 6 contains the design changes that can be applied
according to the Empty Semi Trucks solution. The refactoring action is: (a) the
communication between Sx and the remote instances must be restructured, mes-
sages are merged in bigger ones ($msgS′) to reduce the number of messages sent
over the network. As consequences of the previous action, if the information is ex-
changed with a smarter organization of the communication, then the utilization
of the processing node hosting Sx is expected to improve, i.e. $util′ � $util.

3.2 Logic-Based Representation of Performance Antipatterns

Logical predicates for antipatterns are aimed at defining conditions on specific
architectural model elements (e.g. number of interactions among software re-
sources, hardware resources throughput) that we had originally organized in an
XML Schema [30], and we here denote with the typewriter font.
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Fig. 6. A graphical representation of the Empty Semi Trucks Antipattern
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As shown in Section 3.1, the specification of model elements to describe an-
tipatterns is a quite complex task, because such elements can be of different
types: (i) elements of a software architectural model (e.g. software resource,
message, hardware resource); (ii) performance results (e.g. utilization of a net-
work resource); (iii) structured information that can be obtained by processing
the previous ones (e.g. the number of messages sent by a software resource to-
wards another one); (iv) bounds that give guidelines for the interpretation of the
system features (e.g. the upper bound for the network utilization).

These two latter model elements, i.e. structured information and bounds,
can be defined, respectively, by introducing supporting functions that elaborate
certain sets of system elements (represented in the predicates as FfuncName), and
thresholds that need to be compared with (observed) properties of the software
system (represented in the predicates as ThthresholdName).

In this section we present the logic-based representation of the performance
antipatterns graphically introduced in Section 3.1, that are Blob, Concurrent
Processing Systems, and Empty Semi Trucks6 [10].

Blob Antipattern

The Blob (or “god” class/component) antipattern [10] has the following problem
informal definition: “occurs when a single class either 1) performs all of the work
of an application or 2) holds all of the application’s data. Excessive message
traffic that can degrade performance” (see Table 2).

Following the graphical representation of Figures 3 and 4, we formalize this
sentence with four basic predicates: the BP1 predicate whose elements belong to
the Static View; the BP2 predicate whose elements belong to the Dynamic View;
and finally the BP3 and BP4 predicates whose elements belong to Deployment
View.

BP1- Two cases can be identified for the occurrence of the blob antipattern.
In the first case there is at least one SoftwareEntityInstance, e.g. swEx,

such that it “performs all of the work of an application”, while relegating other
instances to minor and supporting roles. Let us define by FnumClientConnects

the function that counts how many times the software entity instance swEx

is in a Relationship with other software entity instances by assuming swEx

as client. The property of performing all the work of an application can be
checked by comparing the output value of the FnumClientConnects function with
the ThmaxConnects threshold:

FnumClientConnects(swEx) ≥ ThmaxConnects (1)

In the second case there is at least one SoftwareEntityInstance, e.g. swEx,
such that it “holds all of the application’s data”. Let us define the function
FnumSupplierConnects that counts how many times the software entity instance
swEx is in a Relationship with other software entity instances by assuming
swEx as supplier. The property of holding all of the application’s data can be

6 Readers interested to the logic-based representation of other antipatterns can refer
to [30].
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checked by comparing the output value of the FnumSupplierConnects function with
the ThmaxConnects threshold:

FnumSupplierConnects(swEx) ≥ ThmaxConnects (2)

BP2 - swEx performs most of the business logics in the system or holds all
the application’s data, thus it generates or receives excessive message traffic.
Let us define by FnumMsgs the function that takes in input a software entity
instance with a senderRole, a software entity instance with a receiverRole,
and a Service S, and returns the multiplicity of the exchanged Messages. The
property of excessive message traffic can be checked by comparing the output
value of the FnumMsgs function with the ThmaxMsgs threshold in both directions:

FnumMsgs(swEx, swEy, S) ≥ ThmaxMsgs (3a)

FnumMsgs(swEy , swEx, S) ≥ ThmaxMsgs (3b)

The performance impact of the excessive message traffic can be captured by
considering two cases. The first case is the centralized one (modeled by the BP3

predicate), i.e. the blob software entity instance and the surrounding ones are
deployed on the same processing node, hence the performance issues due to the
excessive load may come out by evaluating the utilization of such processing
node. The second case is the distributed one (modeled by the BP4 predicate),
i.e. the Blob software entity instance and the surrounding ones are deployed on
different processing nodes, hence the performance issues due to the excessive
message traffic may come out by evaluating the utilization of the network links.

BP3- The ProcesNode Pxy on which the software entity instances swEx and
swEy are deployed shows heavy computation. That is, the utilization of a
hardware entity of the ProcesNodePxy exceeds a certain ThmaxHwUtil threshold.
For the formalization of this characteristic, we use the FmaxHwUtil function that
has two input parameters: the processing node, and the type of HardwareEn-

tity, i.e. ’cpu’, ’disk’, or ’all’ to denote no distinction between them. In this
case the FmaxHwUtil function is used to determine the maximum Utilization

among ’all’ the hardware entities of the processing node. We compare such value
with the ThmaxHwUtil threshold:

FmaxHwUtil(Pxy, all) ≥ ThmaxHwUtil (4)

BP4- The ProcesNode PswEx on which the software entity instance swEx is
deployed, shows a high utilization of the network connection towards the Proces
Node PswEy on which the software entity instance swEy is deployed. Let us
define by FmaxNetUtil the function that provides the maximum value of the
usedBandwidth overall the network links joining the processing nodes PswEx and
PswEy . We must check if such value is higher than the ThmaxNetUtil threshold:

FmaxNetUtil(PswEx , PswEy ) ≥ ThmaxNetUtil (5)

Summarizing, the Blob (or “god” class/component) antipattern occurs when the
following composed predicate is true:
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∃swEx, swEy ∈ swE, S ∈ S | ((1) ∨ (2)) ∧ ((3a) ∨ (3b)) ∧ ((4) ∨ (5))

where swE represents the SoftwareEntityInstances, and S represents the Ser-
vices in the software system. Each (swEx, swEy , S) instance satisfying the
predicate must be pointed out to the designer for a deeper analysis, because it
represents a Blob antipattern.

Concurrent Processing Systems Antipattern

The Concurrent Processing Systems antipattern [10] has the following problem
informal definition: “occurs when processing cannot make use of available pro-
cessors” (see Table 2).

Following the graphical representation of Figure 5, we formalize this sentence
with three basic predicates: the BP1, BP2, BP3 predicates whose elements be-
long to the Deployment View. In the following, we denote with P the set of the
ProcesNode instances in the system.

BP1 - There is at least one ProcesNode in P, e.g. Px, having a large Queue-
Length. Let us define by FmaxQL the function providing the maximum Queue-

Length among all the hardware entities of the processing node. The first
condition for the antipattern occurrence is that the value obtained from FmaxQL

is greater than the ThmaxQL threshold:

FmaxQL(Px) ≥ ThmaxQL (6)

BP2 - Px has a heavy computation. This means that the utilizations of some
hardware entities in Px (i.e. cpu, disk) exceed predefined limits. We use the
already defined FmaxHwUtil to identify the highest utilization of cpu(s) and
disk(s) in Px, and then we compare such utilizations to the ThmaxCpuUtil and
ThmaxDiskUtil thresholds:

FmaxHwUtil(Px, cpu) ≥ ThmaxCpuUtil (7a)

FmaxHwUtil(Px, disk) ≥ ThmaxDiskUtil (7b)

BP3- The processing nodes are not used in a well-balanced way, as there is
at least another instance of ProcesNode in P, e.g. Py, whose Utilization of
the hardware entities, differentiated according to their type (i.e. cpu, disk), is
smaller than the one in Px. In particular two new thresholds, i.e. ThminCpuUtil

and ThminDiskUtil , are introduced:

FmaxHwUtil(Py , cpu) < ThminCpuUtil (8a)

FmaxHwUtil(Py, disk) < ThminDiskUtil (8b)

Summarizing, the Concurrent Processing Systems antipattern occurs when the
following composed predicate is true:

∃Px, Py ∈ P | (6) ∧ [((7a) ∧ (8a)) ∨ ((7b) ∧ ((8b)))]
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where P represents the set of all the ProcesNodes in the software system. Each
(Px, Py) instance satisfying the predicate must be pointed out to the designer
for a deeper analysis, because it represents a Concurrent Processing Systems
antipattern.

Empty Semi Trucks Antipattern

The Empty Semi Trucks antipattern [10] has the following problem informal
definition: “occurs when an excessive number of requests is required to perform
a task. It may be due to inefficient use of available bandwidth, an inefficient
interface, or both” (see Table 2).

Following the graphical representation of Figure 6, we formalize this sen-
tence with three basic predicates: the BP1 predicate whose elements belong to
the Dynamic View; the BP2 and BP3 predicates whose elements belong to the
Deployment View.

BP1 - There is at least one SoftwareEntityInstance swEx that exchanges
an excessive number of Messages with remote software entities. Let us define by
FnumRemMsgs the function that calculates the number of remote messages sent
by swEx in a Service S. The antipattern can occur when this function returns
a value higher or equal than the ThmaxRemMsgs threshold:

FnumRemMsgs(swEx, S) ≥ ThmaxRemMsgs (9)

BP2- The inefficient use of available bandwidth means that the SoftwareEn-

tityInstance swEx sends a high number of messages without optimizing the
network capacity. Hence, the ProcesNode PswEx , on which the software entity
instance swEx is deployed, reveals an utilization of the network lower than the
ThminNetUtil threshold. We focus on the NetworkLink(s) that connect PswEx

to the whole system, i.e. the ones having PswEx as their EndNode. Since we are
interested to the network links on which the software instance swEx generates
traffic, we restrict the whole set of network links to the ones on which the inter-
actions of the software instance swEx with other communicating entities take
place:

FmaxNetUtil(PswEx , swEx) < ThminNetUtil (10)

BP3- The inefficient use of interface means that the software instance swEx

communicates with a certain number of remote instances, all deployed on the
same remote processing node. Let us define by FnumRemInst the function that
provides the maximum number of remote instances with which swEx communi-
cates in the service S. The antipattern can occur when this function returns a
value higher or equal than the ThmaxRemInst threshold:

FnumRemInst(swEx, S) ≥ ThmaxRemInst (11)

Summarizing, the Empty Semi Trucks antipattern occurs when the following
composed predicate is true:

∃swEx ∈ swE, S ∈ S | (9) ∧ ((10) ∨ (11))
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where swE represents the SoftwareEntityInstances, and S represents the Ser-
vices in the software system. Each (swEx, S) instance satisfying the predicate
must be pointed out to the designer for a deeper analysis, because it represents
an Empty Semi Trucks antipattern.

Finally, Table 3 lists the logic-based representation of all the performance an-
tipatterns we consider. Each row represents a specific antipattern that is charac-
terized by two attributes: antipattern name, and its formula, i.e. the first order
logics predicate modeling the corresponding antipattern problem.

The list of performance antipatterns has been here enriched with an addi-
tional attribute. As shown in the leftmost part of Table 3, we have partitioned
antipatterns in two different categories: antipatterns detectable by single values
of performance indices (such as mean, max or min values), named as Single-value
Performance Antipatterns, and antipatterns requiring the trend (or evolution) of
the performance indices during the time to capture the performance problems in
the software system, named as Multiple-values Performance Antipatterns. The
mean, max or min values are not sufficient to define the latter category of an-
tipatterns, unless these values refer to several observation time frames. Due to
these characteristics, the performance indices needed to detect such antipatterns
must be obtained via simulation or monitoring.

Note that the formalization of antipatterns is the result of multiple formula-
tions and checks. This is a first attempt to formally define antipatterns and it
may be subject to some refinements. However, the logic-based formalization was
meant to demonstrate the potential for a machine-processable management of
performance antipatterns.

4 Detection and Solution of Performance Antipatterns

In this section we apply the antipattern-based approach to an Electronic Com-
merce System (ECS) case study, modeled with the Unified Modeling Language
(UML) [32]. Figure 7 customizes the approach of Figure 1 to the specific method-
ologies adopted for this case study.

ECS has been modeled with UML annotated with the MARTE profile7 [33]
that provides all the information we need for reasoning on performance issues.
The transformation from the software architectural model to the performance
model is performed with PRIMA-UML, i.e. a methodology that generates Queue-
ing Network models from UML models [34]. Once the Queueing Network (QN)
model is derived, classical QN solution techniques based on well-known method-
ologies [35], such as Mean Value Analysis (MVA), can be applied to solve it. The
performance model is analyzed to obtain the performance indices of interest (i.e.
response time, utilization, throughput, etc.).

The UML model and the performance indices are joined in an XML repre-
sentation8 of the ECS, parsed by a detection engine that provides the critical

7 MARTE provides stereotypes and tags to annotate UML models with information
required to perform performance analysis.

8 The XML representation of the ECS can be viewed in
http://www.di.univaq.it/catia.trubiani/phDthesis/ECS.xml

http://www.di.univaq.it/catia.trubiani/phDthesis/ECS.xml
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Table 3. A logic-based representation of Performance Antipatterns

Antipattern Formula

Blob (or god class/component) ∃swEx, swEy ∈ swE, S ∈ S | (FnumClientConnects(swEx) ≥
ThmaxConnects ∨ FnumSupplierConnects(swEx) ≥
ThmaxConnects) ∧ (FnumMsgs(swEx, swEy, S) ≥
ThmaxMsgs ∨ FnumMsgs(swEy, swEx, S) ≥ ThmaxMsgs)
∧ (FmaxHwUtil(Pxy, all) ≥ ThmaxHwUtil ∨
FmaxNetUtil(PswEx , PswEy ) ≥ ThmaxNetUtil)

Concurrent
Processing
Systems

∃Px, Py ∈ P | FmaxQL(Px) ≥ ThmaxQL ∧
[(FmaxHwUtil(Px, cpu) ≥ ThmaxCpuUtil ∧
FmaxHwUtil(Py , cpu) < ThminCpuUtil) ∨
(FmaxHwUtil(Px, disk) ≥ ThmaxDiskUtil ∧
(FmaxHwUtil(Py , disk) < ThminDiskUtil))]

S
in
g
le
-v
a
lu
e

Unbalanced
Processing

“Pipe and
Filter” Ar-
chitectures

∃OpI ∈ O, S ∈ S | ∀i : FresDemand(Op)[i] ≥
ThresDemand[i] ∧ FprobExec(S,OpI) = 1 ∧
(FmaxHwUtil(PswEx , all) ≥ ThmaxHwUtil ∨ FT (S) <
ThSthReq)

Extensive
Processing

∃OpI1, OpI2 ∈ O, S ∈ S | ∀i : FresDemand(Op1)[i] ≥
ThmaxOpResDemand[i] ∧ ∀i : FresDemand(Op2)[i] <
ThminOpResDemand[i] ∧ FprobExec(S,OpI1) +
FprobExec(S,OpI2) = 1 ∧ (FmaxHwUtil(PswEx , all) ≥
ThmaxHwUtil ∨ FRT (S) > ThSrtReq)

Circuitous Treasure Hunt ∃swEx, swEy ∈ swE, S ∈ S | swEy.isDB =
true ∧ FnumDBmsgs(swEx, swEy, S) ≥ ThmaxDBmsgs ∧
FmaxHwUtil(PswEy , all) ≥ ThmaxHwUtil ∧
FmaxHwUtil(PswEy , disk) > FmaxHwUtil(PswEy , cpu)

Empty Semi Trucks ∃swEx ∈ swE, S ∈ S | FnumRemMsgs(swEx, S) ≥
ThmaxRemMsgs ∧ FmaxNetUtil(PswEx , swEx) <
ThminNetUtil ∨ FnumRemInst(swEx, S) ≥ ThmaxRemInst)

Tower of Babel ∃swEx ∈ swE, S ∈ S | FnumExF (swEx, S) ≥ ThmaxExF ∧
FmaxHwUtil(PswEx , all) ≥ ThmaxHwUtil

One-Lane Bridge ∃swEx ∈ swE, S ∈ S | FnumSynchCalls(swEx, S) 

FpoolSize(swEx) ∧ FserviceTime(PswEx ) �
FwaitingT ime(PswEx ) ∧ FRT (S) > ThSrtReq

Excessive Dynamic Allocation ∃S ∈ S | (FnumCreatedObj (S) ≥ ThmaxCrObj ∨
FnumDestroyedObj (S) ≥ ThmaxDeObj ) ∧ FRT (S) >
ThSrtReq

Traffic Jam ∃OpI ∈ O |
∑

1≤t≤k|(FRT (OpI,t)−FRT (OpI,t−1))|
k−1 <

ThOpRtV ar∧FRT (OpI, k)−FRT (OpI, k−1) > ThOpRtV ar∧
∑

k≤t≤n|(FRT (OpI,t)−FRT (OpI,t−1))|
n−k < ThOpRtV ar

The Ramp
∃Op ∈ O |

∑
1≤t≤n|(FRT (OpI,t)−FRT (OpI,t−1))|

n >

ThOpRtV ar ∧
∑

1≤t≤n|(FT (OpI,t)−FT (OpI,t−1))|
n >

ThOpThV ar

M
u
lt
ip
le
-v
a
lu
e
s

More is Less ∃Px ∈ P | ∀i : Fpar(Px)[i] �
∑

1≤t≤N (FRTpar(Px,t)[i]−FRTpar(Px,t−1)[i])

N
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Fig. 7. ECS case study: customized software performance process

elements in architectural models representing the source of performance prob-
lems as well as a set of refactoring actions to overcome such issues.

The rest of this section is organized as follows. Section 4.1 describes the
UML model of the system under analysis. Then, the stepwise application of
our antipattern-based process is performed, i.e. the detection of antipatterns
(see Section 4.2) and their solution (see Section 4.3). Finally, in Section 4.4 we
briefly discuss a technique to optimize the antipatterns solution process.

4.1 Electronic Commerce System

Figure 8 shows an overview of the ECS software system. It is a web-based sys-
tem that manages business data: customers browse catalogs and make selections
of items that need to be purchased; at the same time, suppliers can upload
their catalogs, change the prices and the availability of products, etc. The ser-
vices we analyze here are browseCatalog and makePurchase. The former can be
perfomance-critical because it is required by a large number of (registered and
not registered) customers, whereas the latter can be perfomance-critical because
it requires several database accesses that can drop the system performance.

In Figures 9 and 10 we report an excerpt of the ECS annotated software archi-
tectural model. We use UML 2.0 [32] as modeling language and MARTE [33] to
annotate additional information for performance analysis (such as workload to
the system, service demands, hardware characteristics). In particular, the UML
Component Diagram in Figure 9 describes the software components and their
interconnections, whereas the UML Deployment Diagram of Figure 10 shows
the deployment of the software components on the hardware platform. The de-
ployment is annotated with the characteristics of the hardware nodes to specify
CPU attributes (speedFactor and schedPolicy) and network delay (blockT ).

Performance requirements are defined for the ECS system on the response
time of the main services of the system (i.e. browseCatalog and makePurchase)
under a closed workload with a population of 200 requests/second, and thinking
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system services
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Fig. 8. ECS case study: UML Use Case Diagram

time of 0.01 seconds. The requirements are defined as follows: the browseCata-
log service must be performed in 1.2 seconds, whereas the makePurchase in 2
seconds. These values represent the upper bound for the services they refer to.

The Prima-UML methodology requires the modeling of: (i) system require-
ments with a UML Use Case Diagram, (ii) the software dynamics with UML
Sequence Diagrams, and (iii) the software-to-hardware mapping with a UML
Deployment Diagram. The Use Case Diagram must be annotated with the oper-
ational profile, the Sequence Diagram with service demands and message size of
each operation, and the Deployment Diagram with the characteristics of hard-
ware nodes (see more details in [34]).

Figure 11 shows the Queueing Network model produced for ECS. It includes:
(i) a set of queueing centers (e.g. webServerNode, libraryNode, etc.) representing
the hardware resources of the system, a set of delay centers (e.g. wan1, wan2,
etc.) representing the network communication delays; (ii) two classes of jobs,
i.e. browseCatalog (class A, denoted with a star symbol in Figure 11) is invoked
with a probability of 99%, and makePurchase (class B, denoted with a bullet
point in Figure 11) is invoked with a probability of 1%.

The parametrization of the Queueing Network model for the ECS case study
is summarized in Table 4. In particular the input parameters of the QN are
reported: the first column contains the service center names, the second column
shows their corresponding service rates for each class of job (i.e. class A and
class B).

Table 5 summarizes the performance analysis results of the ECS Queueing
Network model: the first column contains the names of requirements; the second
column reports their required values; the third column shows their predicted
values, as obtained from the QN solution. As it can be noticed both services
have a response time that does not fulfill the required ones: the browseCatalog
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Fig. 9. ECS case study: UML Component Diagram
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Fig. 10. ECS case study: UML Deployment Diagram

Fig. 11. ECS - Queueing Network model
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Table 4. Input parameters for the queueing network model in the ECS system

Input parameters
Service Center ECS

classA classB
lan 44 msec 44 msec

wan 208 msec 208 msec

webServerNode 2 msec 4 msec

libraryNode 7 msec 16 msec

controlNode 3 msec 3 msec

db cpu 15 msec 30 msec

db disk 30 msec 60 msec

Table 5. Response time requirements for the ECS software architectural model

Required Predicted Value
Requirement Value ECS

RT(browseCatalog) 1.2 sec 1.5 sec

RT(makePurchase) 2 sec 2.77 sec

service has been predicted as 1.5 sec, whereas the makePurchase service has
been predicted as 2.77 sec. Hence we apply our approach to detect performance
antipatterns.

As said in Section 3.2, basic predicates contain boundaries that need to be
actualized on each specific software architectural model. Table 6 reports the

Table 6. ECS- antipatterns boundaries binding

antipattern parameter value

Blob ThmaxConnect 4
ThmaxMsgs 18
ThmaxHwUtil 0.75
ThmaxNetUtil 0.85

CPS ThmaxQueue 40
ThcpuMaxUtil 0.8
ThdiskMaxUtil 0.7
ThcpuMinUtil 0.3
ThdiskMinUtil 0.4

EST ThremMsgs 12
ThremInst 5
ThminNetUtil 0.3

. . . . . . . . .
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binding of the performance antipatterns boundaries for the ECS system9. Such
values allow to set the basic predicates, thus to proceed with the actual detection.

4.2 Detecting Antipatterns

The detection of antipatterns is performed by running a detection engine on the
XML representation of the ECS software architectural model. This leaded to
detect three antipatterns occurrences in the model, that are: Blob, Concurrent
Processing Systems, and Empty Semi Trucks.

Fig. 12. ECS- the Blob antipattern occurrence

In Figure 12 we illustrate an excerpt of the ECS software architectural model
where we highlight, in the shaded boxes, the parts of the model that give ev-
idence to the Blob antipattern occurrence. Such antipattern is detected since
the instance lc1 of the component libraryController satisfies all the Blob logi-
cal predicates. In particular (see Table 6 and Figure 12): (a) it has more than

9 Readers interested to the heuristics used to set antipatterns boundaries can refer to
[30].
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Fig. 13. ECS- the Concurrent Processing Systems antipattern occurrence

4 usage dependencies towards the instance bl1 of the component bookLibrary;
(b) it sends more than 18 messages (not shown in Figure 12 for sake of space);
(c) the component instances (i.e. lc1 and bl1 ) are deployed on different nodes,
and the LAN communication host has an utilization (i.e. 0.92), higher than the
threshold value (0.85 ).

In Figure 13 we illustrate an excerpt of the ECS software architectural model
where we highlight, in the shaded boxes, the parts of the model that give evidence
to the CPS antipattern occurrence. Such antipattern is detected the instances
libraryNode and webServerNode satisfy all the CPS logical predeicates. In par-
ticular (see Table 6 and Figure 13): (a) the queue size of libraryNode (i.e. 50)
is higher than the threshold value of 40 ; (b) an unbalanced load among CPUs
does not occur, because the maximum utilization of CPUs in libraryNode (i.e.
0.82 in the lbNodeproc1 instance) is higher than 0.8 threshold value, but the
maximum utilization of CPUs in webServerNode (i.e. 0.42 in the wsNodeproc1
instance) is not lower than 0.3 threshold value; (c) an unbalanced load among
disks occurs, in fact the maximum utilization of disks in libraryNode (i.e. 0.78
in the lbNodemem1 instance), is higher than the threshold value of 0.7, and the
maximum utilization of disks in webServerNode (i.e. 0.35 in the wsNodemem1

instance), is lower than the threshold value of 0.4.
In Figure 14 we illustrate an excerpt of the ECS software architectural model

where we highlight, in the shaded boxes, the parts of the model that give evidence
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Fig. 14. ECS- the Empty Semi Trucks antipattern occurrence
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to the EST antipattern occurrence. Such antipattern occurs since the instance
uc1 of the userController component satisfies all the EST logical predicates. In
particular (see Table 6 and Figure 14): (a) it sends more than 12 remote messages
(not shown in Figure 14 for sake of space); (b) the component instances are
deployed on different nodes, and the communication host utilization (i.e. 0.25 in
the wan instance) is lower than the 0.3 threshold value; (c) it communicates with
more than 5 remote instances (ce1, . . . , ce8 ) of the catalogEngine component.

4.3 Solving Antipatterns

In Table 7 we have tailored the textual descriptions (see Table 2) on antipattern
instances detected on ECS.

Table 7. ECS Performance Antipatterns: problem and solution

Antipattern Problem Solution

Blob libraryController performs most of
the work, it generates excessive
message traffic.

Refactor the design to keep related
data and behavior together. Dele-
gate some work from libraryCon-
troller to bookLibrary.

Concurrent
Processing
Systems

Processing cannot make use of the
processor webServerNode.

Restructure software or change
scheduling algorithms between
processors libraryNode and web-
ServerNode.

Empty Semi
Trucks

An excessive number of requests
is performed for the makePurchase
service.

Combine items into messages to
make better use of available band-
width.

According to Table 7, we have refactored the ECS (annotated) software ar-
chitectural model obtaining three new software architectural models, namely
ECS� {blob}, ECS� {cps}, and ECS� {est}, where the Blob, the Concurrent
Processing Systems and the Empty Semi Trucks antipatterns have been solved,
respectively.

Figure 15 shows the software model ECS � {blob} where the Blob antipat-
tern is solved by modifying the inner behavior of the libraryController software
component, thus it delegates some work to the bookLibrary component and the
logical predicates are not valid anymore. The Concurrent Processing Systems an-
tipattern is solved by re-deploying the software component userController from
libraryNode to webServerNode. The Empty Semi Trucks antipattern is solved by
modifying the inner behavior of the userController component in the communi-
cation with the catalogEngine component for the makePurchase service.

ECS� {blob}, ECS� {cps}, and ECS� {est} systems have been separately
analyzed. Input parameters are reported in Table 8 where bold numbers repre-
sent the changes induced from the solution of the corresponding antipatterns.
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Fig. 15. ECS � {blob}- the Blob antipattern refactoring

For example, in the column ECS � {cps} we can notice that the service
centers webServerNode and libraryNode have different input values, since the re-
deployment of the software component userController implies to move the load
from libraryNode to webServerNode.

In case of class A, the load is estimated of 2 msec, in fact in libraryNode the
initial value of 2 msec in ECS (see Table 4) is increased by 2 msec, thus to become
4 msec in ECS � {cps} (see Table 8), whereas in webServerNode the initial value
of 7 msec in ECS (see Table 4) is decreased by 2 msec, thus to become 5 msec in
ECS � {cps} (see Table 8). In case of class B, the load is estimated of 8 msec, in
fact in libraryNode the initial value of 4 msec in ECS (see Table 4) is increased
by 8 msec, thus to become 12 msec in ECS � {cps} (see Table 8), whereas in
webServerNode the initial value of 16 msec in ECS (see Table 4) is decreased by
8 msec, thus to become 8 msec in ECS � {cps} (see Table 8).

Table 9 summarizes the performance analysis results obtained by solving the
QN models of the new ECS systems (i.e. ECS � {blob}, ECS � {cps}, and
ECS � {est} columns), and by comparing them with the results obtained from
the analysis of the initial system (i.e. ECS column). The response time of the
browseCatalog service is 1.14, 1.15, and 1.5 seconds, whereas the response time
of the makePurchase service is 2.18, 1.6, and 2.24 seconds, across the different
reconfigurations of the ECS architectural model.
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Table 8. Input parameters for the queueing network model across different software
architectural models

Input parameters
Service Center ECS � {cps} ECS � {est} ECS � {blob}

classA classB classA classB classA classB
lan 44 msec 44 msec 44 msec 44 msec 44 msec 44 msec

wan 208 msec 208 msec 208 msec 208 msec 208 msec 208 msec

webServerNode 4 msec 12 msec 2 msec 4 msec 2 msec 4 msec

libraryNode 5 msec 8 msec 7 msec 12 msec 5 msec 14 msec

controlNode 3 msec 3 msec 3 msec 3 msec 3 msec 3 msec

db cpu 15 msec 30 msec 15 msec 30 msec 15 msec 30 msec

db disk 30 msec 60 msec 30 msec 60 msec 30 msec 60 msec

Table 9. Response time required and observed

Required Predicted Value
Requirement Value ECS ECS � {blob} ECS � {cps} ECS � {est}

RT(browseCatalog) 1.2 sec 1.5 sec 1.14 sec 1.15 sec 1.5 sec

RT(makePurchase) 2 sec 2.77 sec 2.18 sec 1.6 sec 2.24 sec

The solution of the Blob antipattern satisfies the first requirement, but not the
second one. The solution of the Concurrent Processing System leads to satisfy
both requirements. Finally, the Empty Semi Trucks solution was useless for the
first requirement as no improvement was carried out, but it was quite beneficial
for the second one, even if both of them were not fulfilled.

We can conclude that the software architectural model candidate that best
fits with user needs is obtained by applying the following refactoring action:
the userController software component is re-deployed from libraryNode to web-
ServerNode, i.e. the solution of the Concurrent Processing Systems antipattern.
In fact, as shown in Table 9 both requirements have been fulfilled by its solution,
i.e. the fulfilment termination criterion (see Section 1). The experimental results
are promising, and other decisions can be taken by looking at these results, as
opposite to the common practice where software architects use to blindly act
without this type of information.

4.4 A Step Ahead in the Antipatterns Solution

In this section the problem of identifying, among a set of detected performance
antipattern instances, the ones that are the real causes of problems (i.e. the
“guilty” ones) is tackled. In particular, it is introduced a process to elaborate
the performance analysis results and to score performance requirements, model
entities and performance antipattern instances. The cross observation of such
scores allows to classify the level of guiltiness of each antipattern.
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Figure 16 reports the process that we propose: the goal is to modify a soft-
ware architectural model in order to produce a model candidate where the per-
formance problems of the former have been removed. Shaded boxes of Figure 16
represent the ranking step that is object of this section.

Fig. 16. A process to improve the performance analysis interpretation

The typical inputs of the detection engine are: the software architectural
model, the performance results, and the performance antipatterns representa-
tion (see Figure 1). We here also report performance requirements (label 5.d)
because they will be used in the ranking step. We obtain two types of outputs
from the detection step: (i) a list of violated requirements as resulting from the
analysis, and (ii) a complete antipatterns list. If no requirement is violated by
the current software architectural model then the process terminates.

Then we compare the complete antipatterns list with the violated require-
ments and examine relationships between detected antipattern instances and
each violated requirement through the system entities involved in them. We ob-
tain a filtered antipatterns list, where instances that do not affect any violated
requirement have been filtered out.

On the basis of relationships observed before, we estimate how guilty an an-
tipattern instance is with respect to a violated requirement by calculating a
guiltiness score. As a result, we obtain a ranked antipatterns list for each violated
requirement. Finally, candidates software architectural model can be obtained
by applying the solutions of one or more high-ranked antipattern instances to
the current software architectural model for each violated requirement10.

10 For sake of space we do not detail this approach here, but interested readers can
refer to [36].
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5 Plugging Antipatterns in a Model-Driven Framework

In this section we discuss the problem of interpreting the performance analysis
results and generating architectural feedback by means of a model-driven frame-
work that supports the antipatterns management. The aim is to make use of all
basic and advanced model-driven techniques.

We recall that the main activities performed within such framework are: (i) rep-
resenting antipatterns (see Section 5.1), to define in a well-formed way the prop-
erties that lead the software system to reveal a bad practice, as well as the changes
that provide a solution; (i) detecting and solving antipatterns (see Section 5.2), to
actually locate and remove antipatterns in software models. Finally, Section 5.3
provides some afterthoughts about the model-driven framework.

5.1 Model-Driven Representation of Antipatterns

The activity of representing antipatterns is performed on this framework by in-
troducing a metamodel (i.e. a neutral and a coherent set of interrelated concepts)
to collect the system elements that occur in the definition of antipatterns (e.g.
software entity, network resource utilization, etc.), which is meant to be the basis
for a machine-processable definition of antipatterns.

This section briefly presents the metamodel, named Performance Antipattern
Modeling Language (PAML), that collects all the system elements identified by
analyzing the antipatterns definition in literature [10].

The PAML structure is shown in Figure 17. It is constituted of two main
parts as delimited by the horizontal dashed line: (i) the Antipattern Specifica-
tion collects the high-level features, such as the views of the system (i.e. static,
dynamic, deployment) and their boolean relationships; (ii) the Model Elements
Specification collects the concepts of the software architectural models and the
performance results.

All the architectural model elements and the performance indices occurring in
antipatterns’ specifications are grouped in a metamodel called SML+
(see Figure 17). SML+ shares many concepts with existing Software Modeling
Languages. However, it is not meant to be another modeling language, rather it
is oriented to specify the basic elements of performance antipatterns11.

An antipattern can be specified as a PAML-based model that is intended
to formalize its textual description (similarly to what we have done with the
logic-based representation of Section 3.2). For example, following the graphical
representation of the Blob antipattern (see Figure 3), the corresponding PAML-
based model will be constituted by an AntipatternSpecification with three
AntipatternViews: (a) the StaticView, (b) the DynamicView, (c) the Deploy-
mentView for which two AntipatternSubViews are defined, i.e. (c1) the central-
ized one and (c2) the distributed one. A BooleanRestriction can be defined

11 For sake of space we do not detail SML+ here. However, a restricted set of model
elements, such as software entity, processing node, etc., are shown in Figure 18, and
readers interested to the whole language can refer to [30].
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Fig. 17. The Performance Antipattern Modeling Language (PAML) structure

between these sub-views, and the type is set by the BooleanOperator equal to
the OR value. Each subview will contain a set of ModelElements.

5.2 Model-Driven Detection and Solution of Antipatterns

The activities of detecting and solving antipatterns are performed on this frame-
work by translating the antipatterns representation into concrete modeling
notations. In fact, the modeling language used for the target system, i.e. the
(annotated) software architectural model of Figure 1, is of crucial relevance,
since the antipatterns neutral concepts must be translated into the actual con-
crete modeling language, if possible12.

Our model-driven framework is currently considering two concrete notations:
UML [32] plus MARTE profile [33]; and the Palladio Component Model (PCM)
[37]. Note that the subset of target modeling languages is being enlarged (e.g.
with an Architecture Description Language like Æmilia [38]) as far as the con-
cepts for representing antipatterns are available.

Figure 18 shows how the neutral specification of performance antipatterns in
PAML can be translated into concrete modeling languages. In fact, antipatterns
are built on a set of model elements belonging to SML+, i.e. the infrastructure
upon which constructing the semantic relations among different notations.

The semantic relations between a concrete modeling language and SML+
depend on the expressiveness of the target modeling language. For example, in

12 It depends on the expressiveness of the target modeling language.
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Fig. 18. Translating antipatterns into concrete modeling languages

Fig. 19. Metamodel instantiation via weaving models

Figure 18 we can notice that a SoftwareEntity is respectively translated in a UML
Component, a PCM Basic Component, and an Æmilia ARCHI ELEM TYPE.
On the contrary, the ProcesNode translation is only possible to a UML Node and
a PCM Resource Container, whereas in Æmilia this concept remains uncovered.

We can therefore assert that in a concrete modeling language there are an-
tipatterns that can be automatically detected (i.e. when the entire set of SML+
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model elements can be translated in the concrete modeling language) and other
ones that are not detectable (i.e. when a restricted set of model elements is
translated).

Weaving models [39] can be defined by mapping the concepts of SML+ into
the corresponding concepts of a concrete modeling language (as done in [40]
for different purposes, though). Weaving models represent useful instruments
in software modeling, as they can be used for setting fine-grained relationships
between models or metamodels and for executing operations based on the link
semantics.

Figure 19 depicts how weaving models define the correspondences among two
metamodels, hence the concepts in SML+ can be mapped on those of a concrete
notation (e.g. UML and MARTE profile).

The benefit of weaving models is that they can be used in automated trans-
formations to generate other artifacts. In fact it is possible to define high-
order transformations that, starting from the weaving models, can generate
metamodel-specific transformations that allow to embed the antipatterns in an
actual concrete modeling language.

Figure 20 shows how to automatically generate antipatterns models in con-
crete modeling languages with the usage of weaving models. The metamodel we
propose for antipatterns is PAML containing SML+ (box PAML[SML+]MM).
Performance antipatterns are defined as models conform to the PAML meta-
model (box PAML[SML+]M). Antipatterns models in concrete modeling lan-
guages can be automatically generated by using the high-order transformation T
that takes as input the weaving model WM specifying correspondences between
SML+ and a concrete notation (e.g. UML+MARTE) metamodel. Hence, perfor-
mance antipatterns in UML+MARTE are defined as models (box PAML[UML+
MARTE]M) conform to the PAML metamodel containing UML+MARTE (box
PAML[UML+MARTE]MM ).

A first experimentation in this setting has been conducted in UML+MARTE
where antipatterns can be naturally expressed by means of OCL [41] expressions,
i.e. model queries with diagrammatic notations that correspond to first-order
predicates.

Fig. 20. Weaving model over different software modeling languages
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Figure 21 shows the process that gives to each antipattern model an OCL-
based semantics, in a similar way to [42], and OCL detection code can be
automatically generated from the antipattern specification. The leftmost part
of the Figure 21 reports again the PAML metamodel (box PAML[UML +
MARTE]MM ) and antipatterns models (box PAML[UML+MARTE]M ) de-
fined in the UML+MARTE concrete modeling notation. Firstly, antipatterns
models are translated into intermediate models (box OCLM ) conforming to the
OCL metamodel (box OCLMM ) with a model-to-model transformation. The
OCL code is generated by using a model-to-text transformation, and it is used
to check software model elements, thus to actually perform the antipattern de-
tection. Note that the PAML metamodel provides semantics in terms of OCL: a
semantic anchoring [43] is realized by means of automated transformations that
map each antipattern model to an OCL expression.

Fig. 21. Tranforming PAML-based models in OCL code

5.3 Afterthoughts

The benefits of introducing a metamodel for representing antipatterns are mani-
fold: (i) expressiveness, as it currently contains all the concepts needed to specify
performance antipatterns introduced in [10]; (ii) usability, as it allows a user-
friendly representation of (existing and upcoming) performance antipatterns;
(iii) extensibility, i.e., if new antipatterns are based on additional concepts the
metamodel can be extended to introduce such concepts.

Note that the set of the antipatterns can be enlarged as far as the concepts
for representing new ones are available. Technology-specific antipatterns, such as
EJB and J2EE antipatterns [44] [45], can be also suited to check if the current
metamodel is reusable in domain-specific fields. For example, we retain that
the EJB Bloated Session Bean Antipattern [44] can be currently specified as a
PAML-based model, since it describes a situation in EJB systems where a session
bean has become too bulky, thus it is very similar to the Blob antipattern in the
Smith-Williams’ classification.

Currently PAML only formalizes the performance problems captured by an-
tipatterns. As future work we plan to complete PAML with a Refactoring Mod-
eling Language (RML) for formalizing the solutions in terms of refactorings,
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i.e. changes of the original software architectural model. Such formalization may
be supported by high order transformations (similarly to what done for prob-
lems) that express the refactoring in concrete modeling languages.

The problem of refactoring architectural models is intrinsically complex and
requires specialized algorithms and notations to match the abstraction level of
models [46]. Recently, in [47, 48] two similar techniques have been introduced to
represent refactorings as difference models. Interestingly these proposals com-
bine the advantages of declarative difference representations and enable the re-
construction of the final model by means of automated transformations which
are inherently defined in the approaches.

6 Discussion and Conclusions

In this chapter we dealt with the automated generation of performance feedback
in software architectures. We devised a methodology to keep track of the perfor-
mance knowledge that usually tends to be fragmented and quickly lost, with the
purpose of interpreting the performance analysis results and suggesting the most
suitable architectural refactoring. Such knowledge base is aimed at integrating
different forms of data (e.g. architectural model elements, performance indices),
in order to support relationships between them and to manage the data over
time, while the development advances.

The performance knowledge that we have organized for reasoning on perfor-
mance analysis results can be considered as an application of data mining to the
software performance domain. It has been grouped around design choices and
analysis results concepts, thus to act as a data repository available to reason
on the performance of a software system. Performance antipatterns have been
of crucial relevance in this context since they represent the source of the con-
cepts to identify performance flaws as well as to provide refactorings in terms of
architectural alternatives.

6.1 Summary of Contributions

A list of the main scientific contributions is given in the following.

Specifying Performance Antipatterns. The activity of specifying antipat-
terns has been addressed in [15]: a structured description of the system elements
that occur in the definition of antipatterns has been provided, and performance
antipatterns have been modeled as logical predicates. Additionally, in [15] the
operational counterpart of the antipattern declarative definitions as logical pred-
icates has been implemented with a java rule-engine application. Such engine was
able to detect performance antipatterns in an XML representation of the soft-
ware system that grouped the software architectural model and the performance
results data.

A Model-Driven Approach for Antipatterns. A Performance Antipattern
Modeling Language (PAML), i.e. a metamodel specifically tailored to describe
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antipatterns, has been introduced in [14]. Antipatterns are represented as PAML-
based models allows to manipulate their (neutral) specification. In fact in [14,
49] it has been also discussed a vision on how model-driven techniques (e.g.
weaving models [39], difference models [47]) can be used to build a notation-
independent approach that addresses the problem of embedding antipatterns
knowledge across different modeling notations.

Detecting and Solving Antipatterns in UML and PCM. The activities
of detecting and solving antipatterns have been currently implemented by defin-
ing the antipattern rules and actions into two modeling languages: (i) the UML
and MARTE profile notation in [50]; (ii) the PCM notation in [51]. In [50] per-
formance antipatterns have been automatically detected in UML models using
OCL [41] queries, but we have not yet automated their solution. In [51] a lim-
ited set of antipatterns has been automatically detected and solved in PCM
models through a benchmark tool. These experiences led us to investigate the
expressiveness of UML and PCM modeling languages by classifying the antipat-
terns in three categories: (i) detectable and solvable; (ii) semi-solvable (i.e. the
antipattern solution is only achieved with refactoring actions to be manually
performed); (iii) neither detectable nor solvable.

A Step Ahead in the Antipatterns Solution. Instead of blindly moving
among the antipattern solutions without eventually achieving the desired results,
a technique to rank the antipatterns on the basis of their guiltiness for violated
requirements has been defined in [52] [36], thus to decide how many antipatterns
to solve, which ones and in what order. Experimental results demonstrated the
benefits of introducing ranking techniques to support the activity of solving
antipatterns.

6.2 Open Issues and Future Work

There are several open issues in the current version of the framework and many
directions can be identified for future work.

6.2.1 Short/Medium Term Issues

Further Validation. The approach has to be more extensively validated in
order to determine the extent to which it can offer support to user activities.
The validation of the approach includes two dimensions: (i) it has to be exposed
to a set of target users, such as graduate students in a software engineering
course, model-driven developers, more or less experienced software architects, in
order to analyze its scope and usability; (ii) it has to be applied to complex case
studies by involving industry partners, in order to analyze its scalability. Such
experimentation is of worth interest because the final purpose is to integrate the
framework in the daily practices of the software development process.

Both the detection and the solution of antipatterns generate some pending
issues that give rise to short term goals.
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The detection of antipatterns presents the following open issues:

Accuracy of Antipatterns Instances. The detection process may introduce
false positive/negative instances of antipatterns. We outlined some sources to
suitably tune the values of antipatterns boundaries, such as: (i) the system re-
quirements; (ii) the domain expert’s knowledge; (iii) the evaluation of the system
under analysis. However, threshold values inevitably introduce a degree of un-
certainty and extensive experimentation must be done in this direction. Some
fuzziness can be introduced for the evaluation of the threshold values [53]. It
might be useful to make antipattern detection rules more flexible, and to detect
the performance flaws with higher/lower accuracy.

Some metrics are usually used to estimate the efficiency of design patterns
detection, such as precision (i.e. measuring what fraction of detected pattern
occurrences are real) and recall (i.e. measuring what fraction of real occurrences
are detected). Such metrics do not apply for antipatterns because usually neg-
ative patterns are not explicitly documented in projects’ specifications, due to
their nature of revealing bad practices. A confidence value can be associated to an
antipattern to quantify the probability that the formula occurrence corresponds
to the antipattern presence.

Relationship between Antipatterns Instances. The detected instances
might be related to each other, e.g. one instance can be the generalization or
the specialization of another instance. A dependence value can be associated to
an antipattern to quantify the probability that its occurrence is dependent from
other antipatterns presence.

The solution of antipatterns presents the following open issues:

No Guarantee of Performance Improvements. The solution of one or more
antipatterns does not guarantee performance improvements in advance: the en-
tire process is based on heuristics evaluations. Applying a refactoring action re-
sults in a new software architectural model, i.e. a candidate whose performance
analysis will reveal if the action has been actually beneficial for the system under
study. However, an antipattern-based refactoring action is usually a correctness-
preserving transformation that does not alter the semantics of the application,
but it may improve the overall performance.

Dependencies of Performance Requirements. The application of antipat-
tern solutions leads the system to (probably) satisfy the performance require-
ments covered by such solutions. However, it may happen that a certain number
of other requirements get worse. Hence, the new candidate architectural model
must take into account at each stage of the process all the requirements, also
the previously satisfied ones.

Conflict between Antipattern Solutions. The solution of a certain number
of antipatterns cannot be unambiguously applied due to incoherencies among
their solutions. It may happen that the solution of one antipattern suggests to
split a component into three finer grain components, while another antipattern
at the same time suggests to merge the original component with another one.
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These two actions obviously contradict each other, although no pre-existing re-
quirement limits their application. Even in cases of no explicit conflict between
antipattern solutions, coherency problems can be raised from the order of ap-
plication of solutions. In fact the result of the sequential application of two (or
more) antipattern solutions is not guaranteed to be invariant with respect to
the application order. Criteria must be introduced to drive the application or-
der of solutions in these cases. An interesting possibility may be represented
by the critical pairs analysis [54] that provides a mean to avoid conflicting and
divergent refactorings.

6.2.2 Long Term Issues

Lack of Model Parameters. The application of the antipattern-based ap-
proach is not limited (in principle) along the software lifecycle, but it is obvious
that an early usage is subject to lack of information because the system knowl-
edge improves while the development process progresses. Both the architectural
and the performance models may lack of parameters needed to apply the process.
For example, internal indices of subsystems that are not yet designed in details
cannot be collected. Lack of information, or even uncertainty, about model pa-
rameter values can be tackled by analyzing the model piecewise, starting from
sub-models, thus to bring insight on the missing parameters.

Influence of Domain Features. Different cross-cutting concerns such as the
workload, the operational profile, etc. usually give rise to different performance
analysis results that, in turn, may result in different antipatterns identified in
the system. This is a critical issue and, as usually in performance analysis exper-
iments, the choice of the workload(s) and operational profile(s) must be carefully
conducted.

Influence of Other Software Layers. We assume that the performance model
only takes into account the (annotated) software architectural model that usu-
ally contains information on the software application and hardware platform.
Between these two layers there are other components, such as different middle-
wares and operating systems, that can embed performance antipatterns. The
approach shall be extended to these layers for a more accurate analysis of the
system. An option can be to integrate benchmarks or models suitable for these
layers in our framework.

Limitations from Requirements. The application of antipattern solutions
can be restricted by functional or non-functional requirements. Example of func-
tional requirements may be legacy components that cannot be split and re-
deployed whereas the antipattern solution consists of these actions. Example
of non-functional requirements may be budget limitations that do not allow to
adopt an antipattern solution due to its extremely high cost. Many other exam-
ples can be provided of requirements that (implicitly or explicitly) may affect the
antipattern solution activity. For sake of automation such requirements should
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be pre-defined so that the whole process can take into account them and pre-
ventively excluding infeasible solutions.

Consolidated Formalization of Performance Antipatterns. The Perfor-
mance Antipatterns Modeling Language (PAML) currently only formalizes the
performance problems captured by antipatterns. As future work we plan to com-
plete PAML with a Refactoring Modeling Language (RML) for formalizing the
solutions in terms of refactorings, i.e. changes of the original software architec-
tural model.

Note that the formalization of antipatterns reflects our interpretation of the
informal literature. Different formalizations of antipatterns can be originated by
laying on different interpretations. This unavoidable gap is an open issue in this
domain, and certainly requires a wider investigation to consolidate the formal
definition of antipatterns. Logical predicates of antipatterns can be further re-
fined by looking at probabilistic model checking techniques, as experimented in
[55].

Architectural Description Languages. The framework is currently consid-
ering two modeling notations: UML and PCM. In general, the subset of target
modeling languages can be enlarged as far as the concepts for representing an-
tipatterns are available; for example, architectural description languages such
as AADL [56] can be also suited to validate the approach. A first investigation
has been already conducted on how to specify, detect, and solve performance
antipatterns in the Æmilia architectural language [38], however it still requires
a deep experimentation.

Multi-objective Goals. The framework currently considers only the perfor-
mance goals of software systems. It can be extended to other quantitative quality
criteria of software architectures such as reliability, security, etc., thus to support
trade-off decisions between multiple quality criteria.
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project (ERC-240555).
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39. Bézivin, J.: On the unification power of models. Software and System Modeling 4,
171–188 (2005)

40. Malavolta, I., Muccini, H., Pelliccione, P., Tamburri, D.A.: Providing Architectural
Languages and Tools Interoperability through Model Transformation Technologies.
IEEE Trans. Software Eng. 36, 119–140 (2010)

41. Object Management Group (OMG): OCL 2.0 Specification. OMG Document
formal/2006-05-01 (2006)



Software Performance Antipatterns: Modeling and Analysis 335

42. Stein, D., Hanenberg, S., Unland, R.: A Graphical Notation to Specify Model
Queries for MDA Transformations on UML Models. In: Aßmann, U., Aksit, M.,
Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp. 77–92. Springer, Heidelberg
(2005)

43. Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic Anchoring with
Model Transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005.
LNCS, vol. 3748, pp. 115–129. Springer, Heidelberg (2005)

44. Dudney, B., Asbury, S., Krozak, J.K., Wittkopf, K.: J2EE Antipatterns (2003)
45. Tate, B., Clark, M., Lee, B., Linskey, P.: Bitter EJB (2003)
46. Lin, Y., Zhang, J., Gray, J.: Model Comparison: A Key Challenge for Transfor-

mation Testing and Version Control in Model Driven Software Development. In:
OOPSLA Workshop on Best Practices for Model-Driven Software Development
(2004)

47. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A Metamodel Independent Approach
to Difference Representation. Journal of Object Technology 6, 165–185 (2007)

48. Rivera, J.E., Vallecillo, A.: Representing and Operating with Model Differences.
In: International Conference on TOOLS, pp. 141–160 (2008)

49. Trubiani, C.: A Model-Based Framework for Software Performance Feedback. In:
Dingel, J., Solberg, A. (eds.) MODELS 2010 Workshops. LNCS, vol. 6627, pp.
19–34. Springer, Heidelberg (2011)

50. Cortellessa, V., Di Marco, A., Eramo, R., Pierantonio, A., Trubiani, C.: Digging
into UML models to remove performance antipatterns. In: ICSE Workshop Quo-
vadis, pp. 9–16 (2010)

51. Trubiani, C., Koziolek, A.: Detection and solution of software performance antipat-
terns in palladio architectural models. In: International Conference on Performance
Engineering (ICPE), pp. 19–30 (2011)

52. Cortellessa, V., Martens, A., Reussner, R., Trubiani, C.: Towards the identification
of “Guilty” performance antipatterns. In: WOSP/SIPEW International Conference
on Performance Engineering, pp. 245–246 (2010)

53. So, S.S., Cha, S.D., Kwon, Y.R.: Empirical evaluation of a fuzzy logic-based soft-
ware quality prediction model. Fuzzy Sets and Systems 127, 199–208 (2002)

54. Mens, T., Taentzer, G., Runge, O.: Detecting Structural Refactoring Conflicts
Using Critical Pair Analysis. Electr. Notes Theor. Comput. Sci. 127, 113–128 (2005)

55. Grunske, L.: Specification patterns for probabilistic quality properties. In: Schäfer,
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