
Model Transformations

in Non-functional Analysis

Steffen Becker

Heinz Nixdorf Institute,
Department of Computer Science, University of Paderborn,

D-33102 Paderborn, Germany
steffen.becker@upb.de

http://www.cs.uni-paderborn.de/en/research-group/

software-engineering/people/steffen-becker.html

Abstract. The quality assessment of software design models in early
development phases can prevent wrong design decisions on the architec-
tural level. As such wrong decisions are usually very cost-intensive to
revert in late testing phases, model-driven quality predictions offer early
quality estimates to prevent such erroneous decisions. By model-driven
quality predictions we refer to analyses which run fully automated based
on model-driven methods and tools. In this paper, we give an overview
on the process of model-driven quality analyses used today with a special
focus on issues that arise in fully automated approaches.

Keywords: Model-driven quality analyses, performance, reliability,
MARTE, Palladio Component Model.

1 Motivation

Dealing with non-functional requirements is still a major challenge in today’s
software development processes. In the industrial state-of-the-art, non-functional
requirements are often not collected in a systematic manner or disregarded dur-
ing the design and implementation phases. However, in testing phases or, even
worse, during final operation on the customer’s side, systems often fail due to
insufficient performance or reliability characteristics.

Only few examples of insufficient quality have been reported in detail as they
are potentially hurtful to the image of the reporting companies. From the avail-
able case studies, we reference one from the area of performance problems. The
migration of SAP R3 to SAP’s ByDesign SOA solution almost failed as the
legacy system architecture was unable to work properly in the new environ-
ment [34]. The consequence was that the performance was unacceptably low
and the system went through a costly redesign process deferring product release
by approximately 3 years.

During the last decade, model-based and model-driven quality analysis meth-
ods have been developed by the scientific community to prevent such issues.
These methods aim at early design time estimates of quality properties like

M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.): SFM 2012, LNCS 7320, pp. 263–289, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



264 S. Becker

performance or reliability. Based on these estimates, system designs which are
unable to fulfil their requirements can be ruled out and thus, costly failures at
the end of the development process are prevented. For performance, most ap-
proaches are based on the initial idea of software performance engineering as
introduced by Smith et al. [44]. Recently these efforts have been consolidated in
the book by Cortellessa et al. [13]. For reliability, Gokhale [20] presents a survey
on the recent trends.

In this article, we are going to present an overview of model-driven quality
analysis approaches. These approaches are specialisations of model-based qual-
ity analysis methods. In model-driven quality analysis approaches, the idea is
that the software model is the first-class entity under development and all other
artefacts should be automatically derived from the model. Hence, activities like
quality analyses should also be fully automated. In most cases, the automation
requirement is realised by model transformations which automatically derive
quality analyses models. This high degree of automation poses much higher re-
quirements on the formalisation of the models involved in the process. Addition-
ally, developers of the necessary transformations have to take difficult decisions
on necessary abstractions both in the model’s structural as well as for stochas-
tic properties. We use the Palladio Component Model throughout this article
as a running example of a model-driven quality analysis approach supporting
multiple quality properties.

This article is structured as follows. The following section gives an overview of
the process implemented in any model-driven quality analysis method discussed
in this article. Subsequent sections then highlight specific aspects of this process.
Section 3 explains the input models software architects have to create for quality
analyses. Section 4 gives a brief overview of commonly used formal analysis mod-
els with a focus on performance and reliability predictions. For a model-driven
quality analysis, automated transformations derive analysis models from input
models as explained in Section 5. Section 6 illustrates how transformations can
be used to automatically include performance overheads into analysis models
as performance completions. The remaining sections address practical aspects in
model-driven quality analyses. Section 7 illustrates how to use model transforma-
tions to bridge the differences between different modelling languages. Section 8
briefly surveys the use of reverse engineering techniques to generate input mod-
els for model-driven quality analyses. Section 9 gives a short introduction to
architecture trade-offs on the basis of different model-driven quality analyses.
To demonstrate the usefulness of model-driven quality analyses, Section 10 gives
an overview on three different case studies. Finally, Section 11 summarises the
topics presented in this article and gives pointers for further reading.

2 Process Overview

This section gives a high-level overview of the process which the software ar-
chitect follows in the system’s design phase to perform model-driven quality
analyses. This process is illustrated in Figure 1. In the following we describe



Model Transformations in Non-functional Analysis 265

each of the steps in the order of execution followed by the software architect. We
assume a classical web- or three tier business information system as system un-
der study in our presentation. However, for other types of systems, the relevance
of different aspects of the system model changes, while in general the process
remains fixed.

Fig. 1. Process for Model-Driven Quality Analyses

Modelling Using UML2/DSLs: In the first step, software architects needs
to create a model of the system under study either using the UML or specific
DSLs for software modelling. For most quality attributes this means to create a
full model of the system’s architecture, i.e., a model that covers a broad range
of viewpoints of the system as explained in the following.

Commonly, software architects start by creating a model of the system’s static
structure, e.g., class or component diagrams. This viewpoint highlights the sys-
tem’s functional blocks and is guided by the functional decomposition of the
system’s requirements into software elements which realise specific parts of these
requirements.

Based on the functional decomposition, software architects specify behavioural
aspects of the system under study. Most processes rely on one of two options
to represent behaviour: either they specify the behaviour of single entities as



266 S. Becker

activities of these entities or they rely on the specification of the interaction
between different entities by highlighting interaction scenarios, e.g., as sequence
diagrams.

Having the system’s software parts and their behaviour in place, software
architects model the system’s deployment. This covers two types of informa-
tion. First, software architects model the system’s hardware environment and
its properties, e.g., number and speed of CPU cores, available network band-
width and latency, disks, memory, etc. Second, architects allocate the entities
from the static structure viewpoint to these hardware nodes. In the UML both
kinds of information are usually contained in deployment diagrams.

Finally, software architects need to model the use cases of the system. They
capture the typical interactions of users with the system. Especially for non-
functional analysis use cases need to be significantly enhanced by annotations
as explained in the following paragraph.

Add Quality Annotations: The models created in the previous step often
contain no or only a limited set of quantitative information which is, however,
needed to perform quantitative analyses. For example, for performance analyses,
we need to know how much load is generated by each operation of the system on
the underlying hardware while serving single requests. Hence, resource demands
per hardware type have to be added as quality annotations to the model. Similar,
for reliability analyses, we need to know failure rates of each software step and
each hardware node.

Also important are probabilities for each use case and the workload they
generate on the system. Notice, that the workload specification consists of two
elements which we need to annotate: the work and the load. The work is char-
acterised by the complexity of each single job or task submitted to the system,
e.g., parameter values or number of elements in collection parameters. The load
reflects the frequency of concurrent users arriving at the system and asking for
service.

To realise quality annotations, modelling languages follow different approaches.
UML2-based approaches rely on profiles. For approximately a decade the SPT
profile was used, however, today it has been superseded by the MARTE profile.
In case of special DSLs for quality analyses, e.g., the Palladio Component Model
(PCM) [7], these languages usually provide build-in mechanisms to specify qual-
ity annotations (in the PCM this is the Stochastic Expression language). We
provide a more detailed discussion of the quality annotation in Section 3.

Transform: The UML2 or domain specific models are transformed in the next
step into analysis models. These models have formal semantics and allow the
analysis of properties of interest. For performance, we use queueing networks,
stochastic process algebras, or queued Petri-Nets in order to analyse response
times, throughput, or utilisations. For reliability analyses, most approaches rely
on discrete-time Markov chains. From them, reliability analyses derive for ex-
ample the probability of failure on demand, i.e., the probability that a certain
request issued returns an incorrect result or fails during request processing. For



Model Transformations in Non-functional Analysis 267

safety analyses, approaches rely on fault-trees or model checking techniques. For
development cost estimates, transformations generate workflow models describ-
ing the necessary development tasks and do an estimate of the human resources
needed.

To summarise, while the type of analysis model depends on the properties of
interest, the overall workflow remains fixed. The software model and its anno-
tations are transformed into formal models which are then solved in the next
step.

Solve: After generating the formal analysis models, usually solving these mod-
els relies on existing solvers. These solvers are typically either analytical or
simulation-based. Analytical methods rely on established mathematical rules
which allow fast and accurate analyses of the models they solve. However, this
comes at the cost of preconditions the models have to fulfil and limitations on
the available result metrics. On the other hand, simulations usually imply no
restrictions on the models to be simulated or the result metrics to be collected.
However, simulating a model up to a certain level of accuracy takes time. As a
rule of thumb, simulations are orders of magnitude slower than analytical meth-
ods to achieve the same level of accuracy.

For example, performance models can be solved efficiently with analytic meth-
ods if the resource demands or arrival rates are exponentially distributed. For
the result metric, they are restricted for example to the mean response time, e.g.,
the average time a request takes to be handled by the system. If the response
time distribution is needed, simulation-based approaches are used.

Interpretation and Feedback: In the last step of the model-driven analysis
of a software system, the results collected from solving the analytical models
need to be fed back into the initial software model. For example, the utilisation
value of a formal representation of a hardware node in the analysis model, e.g.,
as queue in a queuing network, needs to be interpreted as the utilisation of a
hardware node in the initial software model.

Additionally, after feeding the results of the analytical model back into the
software model, a decision support step usually takes place which aims at giving
recommendations on how to further improve the system’s design (or, in case that
the results were not satisfying at all, how to make the system’s design feasible).

3 Input Models

In the following, we present an example of an input model. We intentionally
present an instance of a DSL [18] for non-functional analyses as we assume that
UML models with MARTE annotations have been used and discussed more
often. We show the Palladio Component Model here as it addresses several re-
quirements:

– Support for a distributed software development process based on a rigorous
definition of software components and their functional and non-functional
interfaces



268 S. Becker

– A specifically tailored language known as Stochastic Expression Language
to denote QoS annotations

– Explicit support for Model-Driven Completions [2], i.e., in-place transfor-
mations of PCM models that automatically include platform specific perfor-
mance overheads into PCM models (see Section 6)

3.1 Component-Based Quality Analyses

In component-based software development (and similarly in service-oriented de-
velopment), the development task is split among several independent software
developers which develop components or services. However, in software perfor-
mance engineering, we assume the availability of models of the internal behaviour
of the software including the resource demands caused by it according to the pro-
cess outlined in Section 2. This is a contradiction to the idea that components
are provided as black-boxes, i.e., software architects only have access to the com-
ponent’s binary code and its specification. Hence, in order to enable performance
engineering in component-based software development processes, component de-
velopers have to provide specifications on the performance relevant behaviour of
their components.

In the Palladio Component Model, component developers model components
(either basic or composite), their interfaces, and their behaviour. For the latter,
they use so called ResourceDemanding-ServiceEffectSpecifications (RD-
SEFFs) [7]. RD-SEFFs model the externally observable behaviour of single com-
ponent operations as a kind of activity diagram (cf. Figure 2). These activities
contain so called InternalActions, ExternalActions, acquiring and releasing
resources, and control flow constructs.

InternalActions model the observable resource requests a component is-
sues while running. This includes for example CPU demands as a consequence
of algorithmic computations, I/O demands to hard disks, or network accesses.
ExternalActions model the call of an operation of a component connected to
the required interface of the calling component. Modelling ExternalCalls, how-
ever, requires special attention. As the parameters passed to a called operation
may have significant impact on the execution time of the operation, component
developers also need to specify performance characteristics of the parameter val-
ues. To give an example, if a component operation executes an algorithm on
items of a collection, component developers need to provide a specification of
the number of elements in this collection (cf. Figure 2 and Section 3.2).

Acquire- and ReleaseActions model access to limited resources like
semaphores, database connections or locks, etc. Control flow constructs model
loops, branches, and fork-join blocks.

Most elements may be annotated using the Stochastic Expressions languages
as explained in the following subsection.

3.2 Stochastic Expression Language

Stochastic Expressions [7] are used in the PCM as annotation language. Software
architects use this language to provide quantitative stochastic information in



Model Transformations in Non-functional Analysis 269

«iterate»

<<ExternalCall>>
iterate

things.NUMBER_OF_ELEMENTS=
IntPMF[(0.3,5)(0.4,6)(0.3,7)]

Client

<<InternalActionl>>
process

loopCount=
things.NUMBER_OF_ELEMENTS

iterate(Collection things)

Client Server

void iterate
(Collection<T> things)

Fig. 2. Example of one component’s SEFF calling another component’s SEFF

order to characterise typical executions of the software systems they model. For
example, software architects can annotate the number of loop iterations, resource
demands caused by InternalActions, branch transition probabilities, or aspects
of the data flow, e.g., how the size of collections changes during processing. An
alternative language for a similar task is the value specification language (VSL)
from the MARTE specification [39].

In the following, we discuss two examples of stochastic expressions. In the
first example, we model the fact that a loop iterates in 30% of all cases 5 times,
in 40% of all cases 6 times, and in the remaining 30% it loops 7 times. The
corresponding stochastic expression is

IntPMF[(0.3, 5)(0.4, 6)(0.3, 7)] (1)

IntPMF here indicates that the expression is of type Integer and PMF is an
abbreviation for probability mass function, i.e., the expression characterises the
distribution of a discrete random variable [10].

In the second example, we illustrate the use of stochastic expressions to model
performance relevant aspects of the data flow as introduced by Koziolek in his
PhD thesis [28]. Assume we model the performance of a component’s method
which iterates over a collection of items. The signature of the method is

void iterate(Collection< T > things) (2)



270 S. Becker

As in component-based software development we do not know the end-user of a
component while we are developing it, we cannot make assumptions on the num-
ber of elements in this collection. Hence, the caller of the component’s method
needs to specify this number in the PCM instance. For this, she adds an anno-
tation to the ExternalCall that models the call in our example (cf. Figure 2,
left-hand side). If we want to encapsulate the same loop we modelled in Exam-
ple (1) in a component, the annotation on the caller side would be

things.NUMBER OF ELEMENTS = IntPMF[(0.3, 5)(0.4, 6)(0.3, 7)] (3)

The developer of the component which contains the iterate method can use
this expression, e.g., to specify the loop count (cf. Figure 2, right-hand side)
simply as

things.NUMBER OF ELEMENTS (4)

This mechanism allows to reuse components and their specification in multiple
contexts, i.e., in multiple environments which are determined by the component
instance’s usage, its connected external component instances, and its allocation.
The example above illustrates a flexible usage context. However, the PCM also
supports flexible allocation contexts as well as assembly contexts using a similar
approach [5].

Notice, both examples show the concrete textual syntax of the stochastic ex-
pression, i.e., the format in which software architects specify these annotations.
To foster the use of model-driven technologies, especially the use of standard-
ised model transformation languages like QVT [38], textual annotations like the
stochastic expressions presented here, need to be parsed into an abstract syntax
tree and not just stored as simple string values. In the PCM, this is done by
a parser generated by the ANTLR framework [40]. This parser has been inte-
grated with the PCM manually. However, today, model-driven approaches like
the xText framework [17] are used more frequently to generate concrete textual
syntaxes [21].

3.3 Completions

In this subsection, we introduce model-driven performance completions [23]. Per-
formance completions have been introduced by Woodside et al. [46] as a mean
to include the performance impact of underlying system layers into performance
analyses, i.e, layers below the application layer itself. Examples of sources for
such kinds of impact are internal database overheads, overheads of middleware
platforms like resources needed to serialise messages, virtual machine layers, etc.

Model-driven performance completions extend the initial idea in situations
where the application code is strictly corresponding to its model, e.g., when it
is generated from the model. In such cases, model-driven completions are auto-
matically added to the model in order to increase its accuracy. Most approaches
use in-place model-transformations to enrich the analysis model automatically.

In this section, we focus on the input models needed for model-driven perfor-
mance completions, while Section 6 explains the details of the technical
realisation of these completions.



Model Transformations in Non-functional Analysis 271

In the modelling phase, software architects need to specify their selection of
layers they use for their implementation. As an example, consider Figure 3.

Client Server

WebService (SOAP)
based RPC call

Fig. 3. Annotated component communication

In our example, we see again the Client and Server component used before.
They are connected via an assembly connector. In the technical realisation of
this architecture, the software architect has to decide how to realise the commu-
nication running over the assembly connector technically. For example, in Java
she could select among an RPC realisation based on Java RMI, REST, or the
SOAP protocol used in the WebService technology stack. Further options arise
if the software architect intended a realisation based on message exchange, e.g.,
using the Java Messaging Standard (JMS).

If we now consider the performance overhead implied by each variant, we
realise that this overhead differs significantly. For example, when we compare
RMI and SOAP, SOAP has a much higher overhead due to the fact, that SOAP
relies on XML technology. Hence, there is additional time required to process
XML documents, send them over the network (as they usually need more bytes to
encode their information), and to de-serialise and interpret them on the receiver’s
side.

For the input models of the quality analysis process, we assume that the
software architect is well aware of such technical alternatives. However, as she
is not an expert for performance or reliability modelling, she does not want to
provide detailed specifications of the quality impact of her choice. Therefore, our
model-driven performance completions require the software architect to annotate
model elements of the application model (e.g., assembly connectors) with the
technical details on their realisation in an abstract way.

In our approach, we selected feature diagrams [14] and their instances (known
as configurations) as a well-known modelling formalism to express different vari-
ants in software product line engineering. To give an example, Figure 4 shows a
feature diagram for the selection of the communication details.

The feature diagram first allows to differentiate between local and remote
procedure calls (with local calls having almost no performance impact). For
remote procedure calls, software architects can select among RMI and SOAP.
Additionally, they can add features which impact the reliability, performance or
security of the connector.



272 S. Becker

AssemblyConnector

Protocol Additional
Processing

RMI SOAP
Encryption Compression Authorisation

RemoteCall
LocalCall

...

Legend
XOR-Relation

Optional Feature

Required Feature

Fig. 4. Feature diagram showing different options to realise an assembly connector [3]

In order to create a valid input model for the model-driven quality analysis,
a software architect needs to select a feature configuration for all connectors in
the model.

4 Analyses Models

In the following we briefly introduce analysis models for performance and relia-
bility. They are the output of the transformations discusses in the next Section.
We can distinguish analysis models according to the quality properties they are
able to analyse.

For performance, a large set of analysis models has been developed in the
past - each of them having its own advantages and disadvantages. In general we
aim for models which can be analytically solved which normally implies efficient
solutions that can be solved quickly. However, if models become too complex,
we have to simulate which is time intensive.

Among the often used models in analytical performance predictions are queu-
ing networks [10]. They are intuitive to understand, and many networks can be
solved analytically with a sufficient degree of accuracy with respect to mean re-
sponse times, utilisation and throughput. However, their disadvantage is while
they provide a good abstraction of shared resources like CPUs, HDDs, or net-
work links, they fail in modelling the layered behaviour of software systems, i.e.,
blocking calls in client/server communications, or acquiring and releasing passive
resources. On the tooling side, there is a variety of tools, for example, the Java
Modelling Tools which both provide analytical and simulation based solvers.

To overcome these limits, Layered Queuing Networks have been introduced
[42]. They allow to model systems in layers, where the behaviour of an upper layer
is allowed to call the behaviour of lower layers. The lowest layers then contain
the hardware resources as in standard queuing networks. LQNs have built-in
support for performance relevant aspects of client/server systems like thread



Model Transformations in Non-functional Analysis 273

pools or clean up procedures on the server side that execute after sending the
request’s response. Heuristic and simulation-based solvers exist that can predict
mean response times, utilisations and throughput of systems efficiently.

For concurrent systems, Queuing Petri nets extend standard stochastic Petri
nets [1]. They introduce a new type of places that model queues, i.e., tokens get
queued when they enter such places and can only leave the place after passing
the queue. They provide an easily understandable modelling language. However,
most Queuing Petri nets cannot be solved analytically but need to be simulated
to derive response time distributions, utilisations of queuing places, and net
throughput. Recent tools like the QPME tool rely on Eclipse technologies for
modelling and analyses.

Finally, there are stochastic process algebras which model systems as a set of
communicating processes. Among them, for example, PEPA [24] is a process al-
gebra which has been applied in different projects successfully. The advantage of
this formalism is that many systems are indeed implemented as a set of commu-
nicating systems. However, process algebras are often difficult to use for systems
where you have to model a large set of identical processes, e.g., the user processes
in business information systems. PEPA is supported by tools implemented on
top of Eclipse technologies.

For reliability analyses, most approaches are built on top of Discrete Time
Markov Chains (DTMCs) [10]. In DTMCs, time passes in discrete steps. The
Markov chain itself is composed from states and probabilistic transitions. On
each time step, the Markov chain proceeds to the next state according to the
transition probabilities of all outgoing transitions of the current state. DTMCs
can be solved efficiently by analytical means. Today, most approaches utilise the
PRISM probabilistic model checker [25] to solve the DTMCs. PRISM reads the
DTMC to be analysed in a textual language defined by the tool. It then can
evaluate for example the steady state probability to reach a failure state from
the DTMC’s start state.

When taking the viewpoint of model-driven performance analyses, we notice,
that most languages and tools discussed above have been developed before current
model-driven methods and tools. Hence, most of them do not provide a MOF [37]
compliant meta-model which is a pre-requisite for the use of most model-driven
tools. The reason is that these tools have to rely on a common modelling founda-
tion and data formats. As a consequence, we cannot simply transform our soft-
ware models to analytical models via model-2-model transformations, but need
an additional model-2-text transformation step that generates the corresponding
performance model in a format readable by the solvers. However, such transfor-
mation and parsing steps incur additional performance overheads for solving the
performance models. They are crucial at least in online methods [13], i.e., when
we use performance predictions at run-time (cf. Section 11).

Second, we notice that transformations from software models to analytical
model may need to make additional abstraction steps in order to keep the ana-
lytical models solvable in reasonable time. This may both include abstractions
in the structure of the model as well as in the complexity of the annotations.



274 S. Becker

To give an example, in the PCM there is an additional transformation step in-
volved (known as Dependency Solver [11,28]) that computes for each component
instance its context and the impact of this context on the component’s per-
formance or reliability. This involves computing the convolution of probability
distributions which is realised via Fourier transforms. They are computational
complex. The same problem arises when having general MARTE annotations
in the software model and generating analytical model with tighter constraints.
For example, MARTE allows the use of generally distributed service time speci-
fications while most analytical performance models are restricted to exponential
distributions to ensure efficient analytical solutions.

5 Transformations

In this section, we give concrete examples for transformations for the perfor-
mance and the reliability domain. We discuss on these examples which require-
ments they have to deal with. We use the transformations implemented in the
Palladio Component Model for the discussion here as typical examples of trans-
formations used in other approaches. For an overview, see Figure 5.

Component
Repository

Component
Assembly

Resources &
Allocation

Resources &
Allocation

Palladio Component
Model Instance

SimuCom
M2T

ProtoCom
M2T

PCM2LQNs
M2M

PCM2QPNs
M2M

Simulation
Code

Prototype
Code

LQN

QPN

PCM2DTMCs
M2M

DTMC

Fig. 5. Overview of PCM transformations

5.1 PCM2SimuCom

SimuCom (Simulation ofComponentArchitectures) is the PCM’s reference solver.
It has been implemented as a simulation to define and evaluate the semantics of
PCMmodels with respect to their performance properties. It relies on an extended



Model Transformations in Non-functional Analysis 275

queuing network simulation, where the PCM’s active resources (CPUs, HDDs,
LANs) are mapped to simulated queues. The behaviour as defined by the RD-
SEFFs of the components is simulated directly. SimuCom also directly interprets
Stochastic Expressions by drawing samples from the simulation framework’s ran-
dom number generator. Figure 6 gives an overview on the layers of a SimuCom
simulation.

Simulated
Resources

Simulated
RD-SEFFs

Simulated
Components

Simulated
Workload

Fig. 6. Conceptual overview on SimuCom [3]

On the top layer, SimuCom simulates users accessing a component-based sys-
tem. For each user, it simulates the user’s behaviour. Each call to the simulated
system then triggers a control flow thread that runs through the components and
triggers their RD-SEFFs. Finally, InternalActions inside of RD-SEFFs cause
resource loads which are then handled by the simulated resource queues.

In the context of this paper, we focus on the model-driven realisation of
SimuCom. SimuCom simulations are generated by a model-driven tool chain
as Java-based simulation code (cf. Figure 7). This tool chain is an instance
of the Architecture Centric Model-Driven Software Development (AC-MDSD)
paradigm introduced by Völter and Stahl [45]. In this paradigm, software is gen-
erated in a single model-2-text transformation step. This steps reads an instance
of a DSL (here a PCM instance) and generates source code of it which makes
use of generic library code (also known as platform code in AC-MDSD).

In SimuCom’s transformation, we generate components as specified in the
PCM instance. For a component, we use a set of implementing Java classes. The
methods of these classes contain the code to simulate the component’s RD-SEFF.
SimuCom’s platform contains generic simulation support code. It encapsulates



276 S. Becker

PCM Instance

M2T-
Templates

Generated
Simulation Code

SimuCom
PlatformM2T Transformation use

Fig. 7. Overview on SimuCom’s transformation [3]

the supported simulation frameworks (Desmo-J [16] and SSJ [32]) and provides
generic high-level functions. The latter include evaluating stochastic expressions,
the simulation logic of queues, and the code to instrument the simulation in order
to collect the metrics of interest. In the PCM’s tool, generated simulations are
compiled and executed on-the-fly.

5.2 ProtoCom

Using the same underlying principles as SimuCom, ProtoCom [4] (Prototyping of
Component Architectures) generates Java source code from PCM instances that
can be used as performance prototypes. Here, the idea is to create artificial load
which represents the load specified in the PCM instance on real hardware. This
has the advantage that a realistic infrastructure environment is present and no
restrictions due to model abstractions apply. Examples of such abstraction used
in today’s performance analyses models are: disregard of memory limitations and
memory bandwidth, abstraction from details of the underlying middleware, re-
alistic operating system scheduling policies, hard-drive characteristics, etc. How-
ever, the major disadvantage of performance prototypes is that it takes a lot of
time to configure and run them on realistic soft- and hardware environments.

Generating prototypes using model-driven techniques relieves developers from
the burden to develop such prototypes by themselves. ProtoCom follows the
same AC-MDSD process as SimuCom, i.e., again there is a single model-2-text
transformation that generates the prototype based on a given PCM instance.
However, the platform code now contains algorithms which can be used to mimic
resource loads on CPUs and HDDs instead of the simulation code.

5.3 PCM2LQNs

PCM2LQN [29] allows the generation of LQN models from PCM instances. The
layers provided by the LQNs are used in this transformation to reflect the lay-
ers implied by PCM models (cf. Figure 6). That is, there is a layer for user
behaviours, for the system, and for each of the component instances. Like in
the queuing network based SimuCom, hardware resources are again mapped to
queues. For full details of the PCM2LQN mappings please consult [29].

From the model-driven perspective, PCM2LQN is a model-2-model transfor-
mation. It is implemented as a two step transformation. In the first step, the



Model Transformations in Non-functional Analysis 277

dependencies are resolved as explained in the beginning of Section 4. In the
second step, the LQN model is created. Both transformations are implemented
in Java and use the Visitor design pattern [19] to structurally [15] traverse the
PCM instance and generate elements in the LQN.

5.4 PCM2QPNs

As a last example from the performance domain, we introduce PCM2QPN [36].
This transformation takes a PCM model and generates a Queuing Petri net. The
central mapping ideas are as follows. User requests are represented as tokens in
the Petri net. These tokens traverse through the network of places and transi-
tions. Places represent single elements of PCM RD-SEFFs. In case of control
flow elements of RD-SEFFs, transitions are aligned according to their RD-SEFF
counterparts. For example, for a loop there is a place which models checking the
loop condition and a network of places and transitions which models the loop’s
body behaviour.

Internal actions are represented by queued places in the QPN. Their schedul-
ing discipline is set according to the scheduling discipline of the active resource
referenced by the internal action.

Investigating the transition again from a model-driven perspective, it is simi-
lar to the PCM2LQN transformation. Again, there are two steps, where the first
transformation step solves the dependencies of single component’s quality anno-
tations. The second step then generates the QPNs using the solved dependencies.
It is implemented as a model-2-model transformation using the imperative QVT
Operations [38] transformation language.

5.5 PCM2DTMCs

In the area of reliability predictions, we present the PCM2DTMC approach [11].
Conceptually, it generates DTMCs from a given PCM instance. In these DTMCs
it takes both, hardware and software failures into account. For the hardware
failures, a matrix is computed which contains the probabilities for all possible
combinations of any hardware device from the PCM model being either in a
working or in a failure state. For example, if we consider two hardware resources,
e.g., two CPUs, we have four possible hardware states. Either both CPUs are
working, both failed, CPU1 failed but CPU2 is working, or CPU1 is working but
CPU2 failed.

For software failures, RD-SEFFs are interpreted as control flow graphs, where
each action in the RD-SEFF can either succeed or fail - the latter either due
to a software failure or due to a hardware failure. In case of hardware failures,
only failures of hardware resources needed for a certain step in the RD-SEFF
are taken into account. For all resources needed in a step, the transformation
sums up the probabilities of all system states in which any needed resource is in
a failure state.

Inside the DTMC, the control flow graph given by the RD-SEFFs is trans-
lated into a Markov chain where each state in the Markov chain models the fact,



278 S. Becker

that the corresponding RD-SEFF is processing the corresponding action. Then
for each of these states in the Markov chain, there is an additional transition to
a single failure state. This transition has the combined probability of a software
or hardware failure which would lead to a failure in the processing of this action.
Figure 8 gives a simplified example of a RD-SEFF with failure probability anno-
tations for software failures on the left hand side. The right hand side illustrates
the resulting DTMC showing the two absorbing states for failure and success and
the two transient states which represent the two RD-SEFF’s InternalActions.

Failure

Success

Action1

Action2

failureRate=
0.01

failureRate=
0.03

0.01

0.99

0.03

0.97

Fig. 8. Illustrating example of an RD-SEFF and its corresponding DTMC

PCM2DTMC generates a DTMC for each possible hardware state from the
matrix of all hardware states. For each DTMC it computes the probability of
failure on demand (PROFOD).

From the perspective of model transformations, the PCM2DTMC approach
uses again a two step transformation approach. In the first step, component
dependencies are solved and the hardware failure matrix is computed. In the
second step for each hardware system state a DTMC is generated and solved.
The transformation is a structural transformation written in Java.

6 Model-Driven Completions

As introduced in Section 3.3, model-driven completions enhance performance
models with details which model performance overheads of underlying infras-
tructure services. In the following, we focus on connector completions and we
restrict the discussion to performance as quality attribute.

Types of Completion Transformations: In principle, there is a general
choice in designing model-driven completions. First, we can use a transformation
to alter the software model in-place and then use standard transformations to
create the analysis models from the extended software model. Second, we can
enhance the transformation from the software model to the analysis model and
create an extended analysis model. The advantage of the first alternative is that



Model Transformations in Non-functional Analysis 279

we can reuse all features of the software modelling language, e.g., the introduced
stochastic expressions from the Palladio Component Model. Furthermore, the
completion transformation often does not become too complex, as it can be split
into a part that adds completions and a reused part that generates the analysis
model. The advantage of the second alternative is that we have direct access
to all features provided by the analysis model, i.e., we can utilise special mod-
elling features like modelling resource demands which happen after sending the
response in LQNs (cf. Section 4).

In the PCM, we use the first alternative as its advantages outweigh its disad-
vantages in our context. Especially the fact that PCM supports multiple anal-
ysis transformations which we all could reuse in the first approach is a strong
argument.

Connector Completions in the PCM: In the following, we illustrate how the
PCM’s completion transformations include technical details of RPC connectors
as an example. As input we expect PCM models which have been annotated
by the software architect as illustrated in Figure 3 in Section 3.3. The aim
is to include PCM components that model the performance overhead of the
middleware platform which realises the annotated connectors.

To design the completion, we first need to understand the reasons for the
performance overhead of RPC communication. First, the method call and all its
parameters are sent to the server. For this, they are processed by a pipe-and-
filter architecture [12], that takes the high level method call and generates its
serialised form as byte stream. It first marshals the method call and all param-
eters which causes respective computational performance overheads. Depending
on additional setting for the connector, subsequent filters in the pipe-and-filter
chain encrypt the message, sign it, validate it, etc. Depending on the message
size, this causes again a performance overhead. When the communication layer
has produced the byte stream, it is send over the network which delays the pro-
cessing according to network throughput and latency. Notice, that the size of
the network package depends on the underlying RPC protocol and all applied
processing steps. For example, SOAP messages are usually larger than RMI mes-
sages, causing an additional networking overhead. On the server side the whole
process is executed in the other direction, i.e., the byte stream is converted back
into a method call. Finally, after processing the method call, the whole RCP
stack is used again to send back the server’s response.

We now present the in-place transformation [15] we have created to model this
processing chain as performance completion. In the first step, we remove the an-
notated connector and replace it with components which model the marshalling
and demarshalling steps. The result is shown in Figure 9.

Figure 9 shows the connector completion component (as indicated by the
component’s stereotype) which now replaces the connector in Figure 3. It has
the same provides and requires interface as the connector it replaces (IA in
our example). This is needed to fit our completion in the place of the original
connector and still create a valid PCM instance. The second aspect to notice
are the interfaces starting with IMiddleware. They have been introduced to



280 S. Becker

<<ConnectorCompletion>>
Con1

Marshal Demarshal

IMiddleware-Sender IMiddleware-Receiver

IA IA
IA IA’IA’ Con1'

Fig. 9. First transformation step to include a connector completion [3]

make the completion more flexible. The underlying idea is that the Marshal

and Demarshal components do not issue resource demands directly, but rather
delegate their internal processing steps to the IMiddleware interfaces. These
interfaces then are connected to a specific instance of a middleware component,
e.g., a Sun Glassfish JavaEE server component. By exchanging this middleware
component, we can model the different performance overheads of different server
implementations. For example, exchanging the Glassfish component by a JBoss
component we can include the performance overhead of this particular JavaEE
server into our model. Also notice, that there are a client and a server variant
of the middleware interface. Hence, we can also include different overheads on
each communication side, depending on the real deployment setup.

In order to include the performance overhead of further processing steps, the
transformation now executes further steps depending on the selected features in
the connector’s annotation. For example, assume the software architect in addi-
tion to the communication protocol also selected an encrypted communication
channel. Then an additional step, as illustrated in Figure 10, includes the addi-
tional overhead into the completion component by adding another completion
component, i.e., by applying the transformation idea illustrated in the previous
paragraph again.

In Figure 10 we can again see the same structure we discussed before. However,
notice that the interface has changed from IA to IA’. This was needed as the
IA’ interface now deals with the byte stream which represents the method call
on the network instead of the method call itself. The interface IA’ takes track of
the size of the message stream as this size is important for the network overhead
later (as stated in the description of the RPC protocol above). However, as the
full details of the structure of the interface IA’ would go into too much detail,
we refer the reader to [3] where the full mechanics of the transformation are
documented.

Figure 11 shows the resulting model after the execution of the completion
transformation.

In Figure 11 we can see that the transformation has added a component realis-
ing the middleware on both, the client’s and the server’s, side. Which middleware



Model Transformations in Non-functional Analysis 281

<<ConnectorCompletion>>
Con1

Marshal Demarshal

IMiddleware-Sender IMiddleware-Receiver

IA IAIA IA’

<<ConnectorCompletion>>
Con1'

Encrypt Decrypt

IMiddleware-Sender IMiddleware-Receiver

IA’ IA’
IA’ IA’Con1'’

<<Connector
Completion>>

Con1'

IA’

Fig. 10. Second transformation step to include a connector completion [3]

component gets added on which side is configurable in the system’s deployment
model. However, providers of middleware server’s ideally need to provide a li-
brary of components which model their server’s performance overhead. Today
such libraries are not available. As an alternative, we used an automated bench-
mark for our experiments in [23] which created performance models of mid-
dleware servers. Our completion transformation then included these generated
models. Additionally, we can see in Figure 11 that the completion transformation
automatically deployed the created components to either the client’s deployment
node or the server’s node.

To summarise, we have demonstrated in this section how a completion trans-
formation transforms specially annotated software models to include middleware

Client Marshal
IA

Encrypt
IA’ IA’

Decrypt Demarshal
IA’

Server
IAIA’

NetComp
IA’ IA’

<<ConnectorCompletion>>

ClientRC ServerRC

Net

Client
Middleware

Server
Middleware

Fig. 11. PCM instance with connector completion [3]



282 S. Becker

details. Besides this special use case, the general principle on how to design a
completion transformation is invariant of both the type of completion as well as
the quality attribute under study.

7 Model-Driven Integration

In software quality analyses, model transformations are not only used to trans-
form software design models into analysis models, but also to bridge different
levels of abstraction more easily or to integrate different software architecture
description models.

UML Model

BPMN Model

WS-* Model

Performance
Model

Reliability
Model

Intermediate
Model

...

...

Fig. 12. Basic idea of intermediate models

Intermediate Models: There are approaches like KLAPER [22] or the Core
Scenario Model (CSM) [41] which promote the use of intermediate models. These
models aim at alleviating the creation of transformations into the analysis do-
main. To reach this goal, they favour a two-step transformation from the soft-
ware model to the analysis model. First, a software model is transformed into
the intermediate model which then is transformed into the analysis model.

Figure 12 outlines the idea of intermediate models. Their advantage is that
they allow to transform n different software models into m different analysis
models by just n+m different transformations (in contrast to m∗n transforma-
tions if each software model is transformed into each analysis model directly).
However, the disadvantage is that intermediate models may become quite com-
plex in order to support all features available in all software modelling languages.
For example, none of the cited approaches in this article is able to deal with the
full complexity of UML, they just allow the use of a subset of it.

Integration of Software Models. There are also some approaches for us-
ing model transformations to integrate different types of software modelling



Model Transformations in Non-functional Analysis 283

languages. The DUALLy tool developed by Malavolta et al. [33] focuses on
bridging different software architecture modelling languages. In the EU project
Q-ImPrESS [6] we focused on bridging different component-based software mod-
elling languages via a core model that takes quality aspects into account.
Figure 13 provides an overview on the approach taken by Q-ImPrESS.

LQN EQN-Sim...

(T3.3)

QN Model
Checker...

(T3.3)

LQN Markov
Chain...

(T3.3)

Automata Markov
Chain...

(T3.3)

Common Service Architecture Meta-Model

Static Behaviour

QoS 
Annotations

Resources &
Environment

Usage Model

Allocation

(T3.2) (T3.2)

Legend

Prediction Formalism

Prediction Model

M2M-Transformation

New Meta-Model
Code Code

Java C/C++

R
ev

er
se

E
ng

in
ee

rin
g

(T2.2 & T2.3) Static Reverse Engineering
(T2.4) Dynamic Reverse Engineering

C
onsistency(T5.1)

T2M-Transformation
Check Transformation

(generated)
Model Editors

(T4.1)

(T2.1)

Analyses
Results

<<annotate>>(T5.2)

<<System Architect>>

ProgressCM SOFAPalladioCM
KLAPER

(T3.1)

Fig. 13. Overview on Transformations in Q-ImPrESS [8]

There are different software architecture modelling languages on top of
Figure 13. Each of these approaches has its own dedicated meta-model and sup-
port different types of analyses. To reuse as many of these analysis approaches,
Q-ImPrESS promotes the use of a core meta-model, the Service Architecture
Meta-Model (SAMM). Transformations exist from the SAMM into each of the
software architecture models. This allows to perform different analyses with re-
spect to different types of quality properties. This is useful for architecture trade-
off analysis, i.e., finding the right trade-off among different quality attributes (see
Section 9) for details.

On the bottom of Figure 13, it is also indicated that Q-ImPrESS also supports
reverse engineering of source code to create initial instances of the SAMM. This
step is discussed in the following Section.

8 Reverse Engineering of Models

In model-driven quality analyses, the most important step is to get to the models
of the software under study. Hence, researches have proposed approaches in the



284 S. Becker

past to create initial models from source code or execution traces. However,
only a few of them support reverse engineering of models which can be used for
quality analyses.

For Q-ImPrESS and the PCM, there is support via the SoMoX tool chain [30].
SoMoX creates instances of the SAMM from object-oriented source codes written
in Java, C++ or Delphi. It analyses the source code and clusters its classes into
components. This is done according to a well-defined set of software metrics
specifically tailored to identify components. For components detected in this
way SoMoX automatically creates RD-SEFFs (as introduced in Section 3). These
RD-SEFFs are limited to ExternalCalls and control flow elements.

One step further goes Beagle which builds on top of SoMoX [31]. It exe-
cutes the software components in typical use cases, e.g., test cases, and counts
the byte code instructions the Java VM executes while running the compo-
nent. Based on these counts, Beagle approximates stochastic expressions using
a genetic programming heuristic. This heuristic fits observed byte counts to es-
timated stochastic expressions and tries to find the best fit.

9 Architecture Trade-Offs

With model-driven quality analyses in place, software architects are able to anal-
yse a particular software system’s model for multiple quality attributes like per-
formance, reliability, or costs. Consequently, the question arises how to decide
among two different software architectures, i.e., how to trade-off the different
quality properties.

Here, two types of approaches exist in literature. First, manual approaches
where software architects interpret the analyses results and try to identify the un-
derlying trade-offs in discussions among the stakeholders. Especially, SAMM [27]
and ATAM promoted by the SEI contain structured processes for this. Second,
quantitative methods which are semi-automated and supported by tools try
to quantify the preferences of the software architect for different quality prop-
erties and compute a ranking of alternative software designs according to these
preferences. In the latter, the AHP method invented by Saaty has been used [43].
We describe this approach in the following.

In the AHP process, the decision problem is split into hierarchical sub-
decisions. For example, we could subdivide the overall quality goal into exter-
nal quality goals (e.g., performance, reliability) on the same level as the goals
for internal quality attributes (e.g., maintainability, understandability). For each
hierarchy level, the AHP method determines weights that capture the decision
makers preferences for all sub-goals. For example, if the decision maker states
that internal and external quality goals are equally important, the weights would
be 0.5 (50%) for each of the sub-goals. Finally, different software architecture
alternatives are evaluated with respect to the leafs of the decision tree and AHP
computes from this an overall ranking of the alternatives.



Model Transformations in Non-functional Analysis 285

10 Case Studies

In this section, we report on case studies of model-driven quality analyses in prac-
tice. All case studies are based onQ-ImPrESS or PCM. The reason for this may be
in the fact that Q-ImPrESS and PCM have mature tooling which allows their use
in industry projects. Most other model-driven quality analysis approaches found
in literature stay, in contrast, on the conceptual or prototype level.

We can evaluate model-driven approaches with two different evaluation goals.
First, we can empirically evaluate whether software architects are able to create
the necessary input model with sufficient degree of accuracy. Second, we can
evaluate how prediction results help in realistic projects in making decisions.

10.1 Empirical Evaluation

We have performed a series of empirical experiments in which we evaluated the
applicability of model-driven performance analysis with the PCM [35]. In one
of the experiments we conducted, we compared modelling with PCM against
modelling with the software performance engineering tool SPE [44].

In the experiment setup two sets of students performed performance analyses
of two different systems in a cross-over experiment, i.e., the first group of students
used PCM to model the first system and the second group used SPE. For the
second system we switched the roles of the groups.

In the experiment, we evaluated both, the time it took the students to model
the systems and make performance predictions as well as the correctness of their
solution. It turned out that both approaches supported performance predictions
to an extend in which the students were able to produce meaningful results. Mod-
elling and analysing with the PCM revealed more issues related to tooling, e.g.,
issues with the model editors, while modelling with SPE revealed more problems
on the conceptual level, especially with non-automated stochastic computations.

10.2 Industrial Case Studies

From the industrial case studies, we report here on a case study performed at
IBM and another case study at ABB. We briefly characterise the analysis goal,
the analysed system and the main findings. For additional details, please refer
to the literature reference of each study. For smaller case studies visit the PCM
homepage1.

IBM Storage Modelling. In our case study performed with IBMGermany [26],
we supported the design decision whether to implement the I/O layer of an
IBM server system in a synchronous or asynchronous communication style. This
layer’s main responsibility is to communicate with the hard disks array of the
server. Due to external requirements, this layer has to guarantee high through-
put. While modelling the system in the PCM showed several obstacles in mod-
elling the system with sufficient degree of accuracy, the results showed that from

1 http://www.palladio-simulator.com

http://www.palladio-simulator.com


286 S. Becker

a performance perspective this decision did not have a significant impact. Both
alternatives were comparable in their performance.

ABB Process Control System. In the course of the Q-ImPrESS project we
evaluated a process control system at ABB with respect to performance and
reliability [30]. The case study revealed good prediction results for performance
as well as reliability. However, it also showed that collecting the required input
data for the model-driven quality analyses is a non-trivial task and should be
better supported in the future. Especially collecting failure rates for reliability
models turned out to be a difficult task. Additionally, we also tried to use reverse
engineering of models of the ABB PCS system. However, this failed to produce
useful models due to the complexity and size of the system’s code base.

11 Conclusions and Further Reading

In this article, we give an overview on model-driven analyses methods of non-
functional properties. We illustrate a process which consists of the steps mod-
elling the system, annotating the model, transforming the model, solving it,
and interpreting the results. For each of the steps, this article gives details of
the actions performed by the software architect. Furthermore, we presented brief
discussions on practical aspects related to model-driven quality analyses, namely
model-driven integration, reverse engineering of the input models from existing
systems, and architecture trade-off analyses among several different quality at-
tributes. Case studies show the practicability of the presented approaches in
industrial settings.

Software architects use the presented methods to analyse the quality of their
systems in various dimensions. They can make dedicated design decisions by
taking their quality impacts into account. Also the evolution of existing systems
under quality constraints is supported by quality analyses.

In the future, model-driven quality analyses have to deal with systems which
are much more dynamic than the systems we modeled in the past. For example,
cloud computing results in dynamic allocations where the amount of available
hardware changes at run-time. Here, quality analyses at run-time can guide
adaptation decisions in order to resolve quality problems of running systems [13].
For this, these approaces use quality models@run-time [9].

References

1. Bause, F.: Queueing petri nets-a formalism for the combined qualitative and quan-
titative analysis of systems. In: Proceedings of 5th International Workshop on Petri
Nets and Performance Models, pp. 14–23 (October 1993)

2. Becker, S.: Coupled Model Transformations. In: WOSP 2008: Proceedings of the
7th International Workshop on Software and Performance, pp. 103–114. ACM, New
York (2008)

3. Becker, S.: Coupled Model Transformations for QoS Enabled Component-Based
Software Design. Karlsruhe Series on Software Quality, vol. 1. Universitätsverlag
Karlsruhe (2008)



Model Transformations in Non-functional Analysis 287

4. Becker, S., Dencker, T., Happe, J.: Model-Driven Generation of Performance Pro-
totypes. In: Kounev, S., Gorton, I., Sachs, K. (eds.) SIPEW 2008. LNCS, vol. 5119,
pp. 79–98. Springer, Heidelberg (2008),
http://www.springerlink.com/content/62t1277642tt8676/fulltext.pdf

5. Becker, S., Happe, J., Koziolek, H.: Putting Components into Context: Support-
ing QoS-Predictions with an explicit Context Model. In: Reussner, R., Szyperski,
C., Weck, W. (eds.) Proc. 11th International Workshop on Component Oriented
Programming (WCOP 2006), pp. 1–6 (July 2006),
http://research.microsoft.com/ cszypers/events/

WCOP2006/WCOP06-Becer.pdf
6. Becker, S., Hauck, M., Trifu, M., Krogmann, K., Kofron, J.: Reverse Engineering

Component Models for Quality Predictions. In: Proceedings of the 14th European
Conference on Software Maintenance and Reengineering, European Projects Track,
pp. 199–202. IEEE (2010),
http://sdqweb.ipd.kit.edu/publications/pdfs/becker2010a.pdf

7. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. Journal of Systems and Software 82, 3–22 (2009),
http://dx.doi.org/10.1016/j.jss.2008.03.066

8. Becker, S., Trifu, M., Reussner, R.: Towards Supporting Evolution of Service Ori-
ented Architectures through Quality Impact Prediction. In: 1st International Work-
shop on Automated Engineering of Autonomous and Run-time Evolving Systems
(ARAMIS 2008) (September 2008)

9. Blair, G., Bencomo, N., France, R.: Models@ run.time. Computer 42(10), 22–27
(2009)

10. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains. John Wiley & Sons Inc. (1998)

11. Brosch, F., Koziolek, H., Buhnova, B., Reussner, R.: Parameterized Reliability Pre-
diction for Component-Based Software Architectures. In: Heineman, G.T., Kofron,
J., Plasil, F. (eds.) QoSA 2010. LNCS, vol. 6093, pp. 36–51. Springer, Heidelberg
(2010)

12. Clements, P.C., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord,
R., Stafford, J.: Documenting Software Architectures. SEI Series in Software En-
gineering. Addison-Wesley (2003)

13. Cortellessa, V., Marco, A.D., Inverardi, P.: Model-Based Software Performance
Analysis. Springer, Berlin (2011)

14. Czarnecki, K., Eisenecker, U.W.: Generative Programming. Addison-Wesley, Read-
ing (2000)

15. Czarnecki, K., Helsen, S.: Classification of Model Transformation
Approaches. In: OOPSLA 2003 Workshop on Generative Tech-
niques in the Context of Model Driven Architecture (October 2003),
http://www.softmetaware.com/oopsla2003/czarnecki.pdf

(last retrieved January 6, 2008)
16. The DESMO-J Homepage (2007),

http://asi-www.informatik.uni-hamburg.de/desmoj/ (last retrieved January 6,
2008)

17. Eclipse Foundation: xText website, http://www.xtext.org (last visited February
22, 2012)

18. Fowler, M., Parsons, R.: Domain Specific Languages. Addison-Wesley, Reading
(2010)

19. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

http://www.springerlink.com/content/62t1277642tt8676/fulltext.pdf
http://research.microsoft.com/~cszypers/events/WCOP2006/WCOP06-Becer.pdf
http://research.microsoft.com/~cszypers/events/WCOP2006/WCOP06-Becer.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/becker2010a.pdf
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://www.softmetaware.com/oopsla2003/czarnecki.pdf
http://asi-www.informatik.uni-hamburg.de/desmoj/
http://www.xtext.org


288 S. Becker

20. Gokhale, S.S.: Architecture-based software reliability analysis: Overview and limi-
tations. IEEE Trans. on Dependable and Secure Computing 4(1), 32–40 (2007)

21. Goldschmidt, T., Becker, S., Uhl, A.: Classification of Concrete Textual
Syntax Mapping Approaches. In: Schieferdecker, I., Hartman, A. (eds.)
ECMDA-FA 2008. LNCS, vol. 5095, pp. 169–184. Springer, Heidelberg (2008),
http://sdqweb.ipd.uka.de/publications/pdfs/goldschmidt2008b.pdf

22. Grassi, V., Mirandola, R., Sabetta, A.: From Design to Analysis Models: a Kernel
Language for Performance and Reliability Analysis of Component-based Systems.
In: WOSP 2005: Proceedings of the 5th International Workshop on Software and
Performance, pp. 25–36. ACM Press, New York (2005)

23. Happe, J., Becker, S., Rathfelder, C., Friedrich, H., Reussner, R.H.: Parametric
Performance Completions for Model-Driven Performance Prediction. Performance
Evaluation 67(8), 694–716 (2010),
http://sdqweb.ipd.uka.de/publications/pdfs/happe2009a.pdf

24. Hermanns, H., Herzog, U., Katoen, J.P.: Process algebra for performance evalua-
tion. Theoretical Computer Science 274(1-2), 43–87 (2002),
http://www.sciencedirect.com/science/article/B6V1G-4561J4H-3/

2/21516ce76bb2e6adab1ffed4dbe0d24c

25. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A Tool for Auto-
matic Verification of Probabilistic Systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

26. Huber, N., Becker, S., Rathfelder, C., Schweflinghaus, J., Reussner, R.: Per-
formance Modeling in Industry: A Case Study on Storage Virtualization. In:
ACM/IEEE 32nd International Conference on Software Engineering, Software En-
gineering in Practice Track, Capetown, South Africa, pp. 1–10. ACM, New York
(2010), http://sdqweb.ipd.uka.de/publications/pdfs/hubern2010.pdf

27. Kazman, R., Bass, L., Abowd, G., Webb, M.: SAAM: A method for analyzing
the properties of software architectures. In: Fadini, B. (ed.) Proceedings of the
16th International Conference on Software Engineering, pp. 81–90. IEEE Computer
Society Press, Sorrento (1994)

28. Koziolek, H.: Parameter Dependencies for Reusable Performance Specifications of
Software Components. The Karlsruhe Series on Software Design and Quality, vol. 2.
Universitätsverlag Karlsruhe (2008)

29. Koziolek, H., Reussner, R.: A Model Transformation from the Palladio Compo-
nent Model to Layered Queueing Networks. In: Kounev, S., Gorton, I., Sachs,
K. (eds.) SIPEW 2008. LNCS, vol. 5119, pp. 58–78. Springer, Heidelberg (2008),
http://www.springerlink.com/content/w14m0g520u675x10/fulltext.pdf

30. Koziolek, H., Schlich, B., Bilich, C., Weiss, R., Becker, S., Krogmann, K.,
Trifu, M., Mirandola, R., Koziolek, A.: An industrial case study on qual-
ity impact prediction for evolving service-oriented software. In: Proceeding of
the 33rd International Conference on Software Engineering, Software Engi-
neering in Practice Track, ICSE 2011, pp. 776–785. ACM, New York (2011),
http://doi.acm.org/10.1145/1985793.1985902

31. Krogmann, K., Kuperberg, M., Reussner, R.: Using Genetic Search for Reverse
Engineering of Parametric Behaviour Models for Performance Prediction. IEEE
Transactions on Software Engineering 36(6), 865–877 (2010),
http://sdqweb.ipd.kit.edu/publications/pdfs/krogmann2009c.pdf

32. L’Ecuyer, P., Buist, E.: Simulation in Java with SSJ. In: WSC 2005: Proceedings
of the 37th Conference on Winter Simulation, Winter Simulation Conference, pp.
611–620 (2005)

http://sdqweb.ipd.uka.de/publications/pdfs/goldschmidt2008b.pdf
http://sdqweb.ipd.uka.de/publications/pdfs/happe2009a.pdf
http://www.sciencedirect.com/science/article/B6V1G-4561J4H-3/2/21516ce76bb2e6adab1ffed4dbe0d24c
http://www.sciencedirect.com/science/article/B6V1G-4561J4H-3/2/21516ce76bb2e6adab1ffed4dbe0d24c
http://sdqweb.ipd.uka.de/publications/pdfs/hubern2010.pdf
http://www.springerlink.com/content/w14m0g520u675x10/fulltext.pdf
http://doi.acm.org/10.1145/1985793.1985902
http://sdqweb.ipd.kit.edu/publications/pdfs/krogmann2009c.pdf


Model Transformations in Non-functional Analysis 289

33. Malavolta, I., Muccini, H., Pelliccione, P., Tamburri, D.A.: Providing architectural
languages and tools interoperability through model transformation technologies.
IEEE Transactions of Software Engineering 36(1), 119–140 (2010)

34. Marshall, R.: SAP gives update on Business ByDesign plans (2009),
http://www.v3.co.uk/v3-uk/news/1970547/

sap-update-business-bydesign-plans (last visited November 22, 2009)
35. Martens, A., Koziolek, H., Prechelt, L., Reussner, R.: From monolithic to

component-based performance evaluation of software architectures. Empirical Soft-
ware Engineering 16(5), 587–622 (2011),
http://dx.doi.org/10.1007/s10664-010-9142-8

36. Meier, P., Kounev, S., Koziolek, H.: Automated Transformation of Palladio Com-
ponent Models to Queueing Petri Nets. In: 19th IEEE/ACM International Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS 2011), Singapore, July 25-27 (2011)

37. Object Management Group (OMG): MOF 2.0 Core Specification (formal/2006-01-
01) (2006), http://www.omg.org/cgi-bin/doc?formal/2006-01-01

38. Object Management Group (OMG): Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification – Version 1.1 Beta 2 (December 2009),
http://www.omg.org/spec/QVT/1.1/Beta2/

39. Object Management Group (OMG): UML Profile for MARTE: Model-
ing and Analysis of Real-Time Embedded Systems, version 1.0 (2009),
http://www.omg.org/spec/MARTE/1.0/PDF

40. Parr, T.: The Definitive ANTLR Reference Guide: Building Domain-specific Lan-
guages (Pragmatic Programmers). Pragmatic Programmer (2007)

41. Petriu, D.B., Woodside, M.: An intermediate metamodel with scenarios and re-
sources for generating performance models from UML designs. Software and Sys-
tems Modeling 6(2), 163–184 (2007)

42. Rolia, J.A., Sevcik, K.C.: The Method of Layers. IEEE Transactions on Software
Engineering 21(8), 689–700 (1995)

43. Saaty, T.L.: The Analytic Hierarchy Process, Planning, Piority Setting, Resource
Allocation. McGraw-Hill, New York (1980)

44. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison-Wesley (2002)

45. Völter, M., Stahl, T.: Model-Driven Software Development. Wiley & Sons, New
York (2006)

46. Woodside, M., Petriu, D.C., Siddiqui, K.H.: Performance-related Completions for
Software Specifications. In: Proceedings of the 22nd International Conference on
Software Engineering, ICSE 2002, Orlando, Florida, USA, May 19-25, pp. 22–32.
ACM (2002)

http://www.v3.co.uk/v3-uk/news/1970547/sap-update-business-bydesign-plans
http://www.v3.co.uk/v3-uk/news/1970547/sap-update-business-bydesign-plans
http://dx.doi.org/10.1007/s10664-010-9142-8
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/spec/QVT/1.1/Beta2/
http://www.omg.org/spec/MARTE/1.0/PDF

	Model Transformations in Non-functional Analysis
	Motivation
	Process Overview
	Input Models
	Component-Based Quality Analyses
	Stochastic Expression Language
	Completions

	Analyses Models
	Transformations
	PCM2SimuCom
	ProtoCom
	PCM2LQNs
	PCM2QPNs
	PCM2DTMCs

	Model-Driven Completions
	Model-Driven Integration
	Reverse Engineering of Models
	Architecture Trade-Offs
	Case Studies
	Empirical Evaluation
	Industrial Case Studies

	Conclusions and Further Reading
	References




