
M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.): SFM 2012, LNCS 7320, pp. 219–262, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Software Performance Modeling

Dorina C. Petriu, Mohammad Alhaj, and Rasha Tawhid

Carleton University, 1125 Colonel By Drive, Ottawa ON Canada, K1S 5B6
{petriu,malhaj}@sce.carleton.ca, rtawhid@connect.carleton.ca

Abstract. Ideally, a software development methodology should include both
the ability to specify non-functional requirements and to analyze them starting
early in the lifecycle; the goal is to verify whether the system under
development would be able to meet such requirements. This chapter considers
quantitative performance analysis of UML software models annotated with
performance attributes according to the standard “UML Profile for Modeling
and Analysis of Real-Time and Embedded Systems” (MARTE). The chapter
describes a model transformation chain named PUMA (Performance by Unified
Model Analysis) that enables the integration of performance analysis in a UML-
based software development process, by automating the derivation of
performance models from UML+MARTE software models, and by facilitating
the interoperability of UML tools and performance tools. PUMA uses an
intermediate model called “Core Scenario Model” (CSM) to bridge the gap
between different kinds of software models accepted as input and different
kinds of performance models generated as output. Transformation principles are
described for transforming two kinds of UML behaviour representation
(sequence and activity diagrams) into two kinds of performance models
(Layered Queueing Networks and stochastic Petri nets). Next, PUMA
extensions are described for two classes of software systems: service-oriented
architecture (SOA) and software product lines (SPL).

1 Introduction

The quality of many software intensive systems, ranging from real-time embedded
systems to web-based applications, is determined to a large extent by their
performance characteristics, such as response time and throughput. The developers of
such systems should be able to assess and understand the performance effects of
various design decisions starting at an early stage and continuing throughout the
software life cycle. Software Performance Engineering (SPE) is an approach
introduced by Smith [37], which proposes to use quantitative methods and
performance models in order to assess the performance effects of different design and
implementation alternatives during the development of a system. SPE promotes the
integration of performance analysis into the software development process from its
earliest lifecycle stages, in order to insure that the system will meet its performance
objectives.

The process of building a system's performance model before the system is
completely implemented and can be measured begins with identifying a small set of
key performance scenarios representative of the way in which the system will be used

220 D.C. Petriu, M. Alhaj, and R. Tawhid

[37]. The performance analysts must understand first the system behaviour for each
scenario, following the execution path from component to component, identifying the
quantitative demands for resources made by each component (such as CPU execution
time and I/O operations), as well as the various reasons for queueing delays (such as
competition for hardware and software resources). The scenario descriptions thus
obtained can be mapped (manually or automatically) to a performance model, which
can be used for By solving the model, the analyst will obtain performance results
such as response times, throughput, utilization of different resources by different
software components, etc. Trouble spots can be identified and alternative solutions for
eliminating them can be assessed in a similar way. Many modeling formalisms have
been developed over the years for software performance evaluation, such as queueing
networks (QN), extended QN, Layered Queueing Networks (LQN) (a type of
extended QN), stochastic Petri nets, stochastic process algebras and stochastic
automata networks, as surveyed in [5][15].

Model-Driven Development (MDD) is an evolutionary step in the software field
that changes the focus of software development from code to models. MDD uses
abstraction to separate the model of the application under construction from
underlying platform models and automation to generate code from models. The
emphasis on models facilitates also the analysis of non-functional properties (NFP),
by deriving analysis models for different NFPs from the software models. Ideally,
analysis models should be generated automatically by model transformations from the
software models used for development, and become part of the model suite which is
maintained with the product. For brevity, we term the software models as Smodels,
and the performance models as Pmodels.

To facilitate the generation of Pmodels, UML Smodels can be extended with
standard performance annotations provided by the “UML Profile for Modeling and
Analysis of Real-Time and Embedded Systems” (MARTE) [30] defined for UML 2.x
or its predecessor, the “UML Profile for Schedulability, Performance and Time”
(SPT) [31] defined for UML1.x. Using UML profiles provides the additional
advantage that the extended models can be processed with standard UML editors,
without any need to change the tools, as profiles are standard mechanisms for
extending UML models.

This chapter addresses the problem of bridging the semantic gap between different
kinds of software models and performance models. We present the PUMA
(Performance by Unified Model Analysis) transformation chain, whose strategy [48]
“unifies” performance evaluation in the sense that it can accept as input different
types of source Smodels (from which the users choose the most suitable for their
project) and it generate different types of Pmodels (also according to the user’s
choice). To permit a user to combine arbitrary Smodel and Pmodel types according to
project needs (an N-by-M problem), PUMA employs an intermediate (or pivot)
language called Core Scenario Model (CSM) [34]. Based around CSM, PUMA has an
open architecture summarized in Figure 1 which shows the transformers (rounded
rectangles) and the flow of artifacts (rectangles) between them. It exploits several
standards: UML and its model-interchange XMI standard, MARTE, performance
model standards [18] [31], and the CSM metamodel [24] [25]. With suitable
translators, PUMA can support other design specification language defining scenarios
and resources, and other performance models.

 Software Performance Modeling 221

Fig. 1. PUMA transformation chain

Related Work. Many kinds of Pmodels (including queueing networks (QNs),
extended QNs, stochastic Petri nets, process algebras and automata networks) can be
used for performance analysis of software systems, as surveyed in [5]. The Pmodels
are often constructed “by hand”, based on the insight of the analysts and their
interactions with the designers. To fit into MDD, the present purpose is to automate
the derivation of Pmodels from the Smodels used for software development. A recent
book [15] covers all the way from the basic concepts for performance analysis of
software systems to describing the most representative methodologies from literature
for annotating and transforming Smodels into Pmodels. For example, UML models
with performance annotations (mostly SPT) containing some structural view and a
certain kind of behavior diagrams have been used to generate different kinds of
Pmodels: from sequence diagrams (SD) to simulation model [6], from SD and
statecharts (SC) to stochastic Petri nets [11][12], from SD to QNs [16], from activity
diagrams (AD) to stochastic process algebra (PEPA) [13], from SD to PEPA [44],
from UML to an intermediate model called Performance Model Context (PCM) to
stochastic Petri nets [20]. Many of these approaches transform from one kind of
UML behaviour diagram plus architectural information to one kind of Pmodel. The
difference of the PUMA strategy is that it unifies performance evaluation by
accepting different types of source Smodels and generating multiple types of Pmodel,
via the intermediate language Core Scenario Model (CSM), as described in more
detail in the next sections.

Another model driven approach for development and evaluation of non-functional
properties such as performance and reliability is based on the Palladio Component
Model (PCM), which allows specifying component-based software architectures in a
parametric way [27]. PCM captures the software architecture with respect to static
structure, behaviour, deployment/allocation, resource environment/execution
environment, and usage profile. Although its metamodel is completely different from
UML, the Palladio Component Model has a UML-like graphical notation representing
component diagrams, deployment and individual service behaviour models (similar to
activity diagrams).

 Software
model with

performance
annotations
(Smodel)

Transform
Smodel to

CSM
(S2C)

Improve
Smodel

Core
Scenario

Model
(CSM)

Transform
CSM to

some Pmodel
(C2P)

Performance
model

(Pmodel)

Explore
solution
space

Performance
results and

design advice

222 D.C. Petriu, M. Alhaj, and R. Tawhid

There are other intermediate models proposed in literature similar to PUMA’s
CSM, which captures only those software aspects that are relevant to performance
models. An example is the pioneering “execution graph” of Smith [37], which is a
kind of scenario model with performance parameters that is transformed into an
extended QN model. Another intermediate language that supports performance and
reliability analysis of component-based systems is KLAPER [26]. It is more oriented
toward representing calls and services rather than scenarios and has a more limited
view of resources (i.e., no basic distinction between hardware/software,
active/passive). It has also been applied as intermediate model for transformation
from different types of Smodels to different types of Pmodels.

The remaining of the paper is organized as follows: Section 2 describes how
PUMA bridges the gap between Smodels and Pmodels through performance
annotations and presents the source, target and intermediate models; Section 3
describes the transformations in the PUMA chain; Section 4 introduces PUMA
extensions for handle service-oriented systems; Section 5 presents PUMA extensions
needed to handle software product lines and Section 6 presents the conclusions and
future work.

2 Source, Intermediate and Target Models

2.1 Bridging the Gap between Smodels and Pmodels

Time-related performance is a runtime property of a software system determined by
how the software behaviour uses the system resources. Contention for resource
creates queueing delays that directly affect the overall performance. System
performance measures are closely connected with the use of the system as described
by a subset of use cases with performance constraints, and more specifically by
selected scenarios realizing such use cases. For instance, response time is usually
defined as the end-to-end delay of a particular scenario, and throughput is the
frequency of execution of a scenario or a set of related scenarios. Scenarios
corresponding to online operations frequently required by customers who are waiting
for the results have high priority for performance analysis, while scenarios doing
housekeeping operations in the background may be less important.

The Smodel and Pmodel share similar concepts of resources and scenarios. In
both, scenarios are composed of units of behaviour (called steps) which are using
resources. Hierarchical definition of steps is possible: a step may represent an
elementary operation or a whole sub-scenario. However an important difference
between Smodel and Pmodel is that the first is function/data-centric, while the second
is resource-centric. In other words, the Smodel scenario steps process data and
implement algorithms, while the Pmodel steps care mostly about what resources are
used, how and for what duration. This creates a semantic gap that needs to be bridged
in the process of deriving a Pmodel from a Smodel by adding performance
annotations to the latter.

Normally a Pmodel is generated from a Smodel subset containing the following:

 Software Performance Modeling 223

• High-level software architecture describing the main system components
instances and their interactions at a level of abstraction that captures certain
characteristics relevant to performance, such as distribution, concurrency,
parallelism, competition for software resources (such as software servers and
critical sections), synchronization, serialization, etc.

• Allocation of high-level software components instances to hardware devices
usually modeled as a deployment diagram.

• A set of key performance scenarios annotated with performance information
(see section 2.3 for a concrete example).

In order to understand what kind of performance annotations need to be added to
UML Smodels, we need to look at the basic concepts contained in the performance
domain model. As already mentioned, performance is determined by how the system
behaviour uses system resources. Scenarios define execution paths with externally
visible end points. Performance requirements (such as response time, throughput,
probability of meeting deadlines, etc.) can be placed on scenarios. In the “UML
Profile for Schedulability, Performance and Time” (SPT), the performance domain
model describes three main types of concepts: resources, scenarios, and workloads
[31]. These concepts are also used in MARTE [30].

The resources used by the software can be active or passive, logical or physical
software or hardware. Some of these resources belong to the software itself (e.g.,
critical section, software server, lock, buffer), others to the underlying platforms (e.g.,
process, thread, processor, disk, communication network).

Each scenario is composed from scenario steps joined by predecessor-successor
relationships, which may include fork/join, branch/merge and loops. A step may
represent an elementary operation or a whole sub-scenario. Quantitative resource
demands for each step must be given in the performance annotations. Each scenario is
executed by a workload, which may be open (i.e., requests arriving in some
predetermined pattern) or closed (a fixed number of users or jobs in the system).

Another source for the gap between Smodels and Pmodels is the fact that
performance is a system characteristic, affected not only by the application under
development represented by the Smodel, but also by the underlying platforms on top
of which the application will be running (such as middleware, operating system,
communication network software, hardware). There are different ways to approach
this problem: one is to add the missing platform information in performance
annotations, as explained in the subsections 2.3 and 2.4. Another way is to take a
MDA-like approach [33], by considering that the application Smodel is a Platform-
Independent Model (PIM) which can be composed with platform models defined as
aspect models; the result of the composition is a Platform Specific Model (PSM).
Such an approach is presented in Section 4.

2.2 MARTE Performance Annotations

In the “UML Profile for Modeling and Analysis of Real-Time and Embedded
Systems” (MARTE) [30], the foundation concepts and non-functional properties

224 D.C. Petriu, M. Alhaj, and R. Tawhid

(NFPs) shared by different quantitative analysis domains are joined in a single
package called Generic Quantitative Analysis Model (GQAM), which is further
specialized by the domain models for schedulability (SAM) and performance (PAM).
Other domains for quantitative analyses, such as reliability, availability, safety, are
currently being defined by specializing GQAM.

Core GQAM concepts describe how the system behavior uses resources over time,
and contains the same three main categories of concepts presented at the beginning of
the section: resources, behaviour and workloads.

GQAM Resource Concepts. A resource is based on the abstract Resource class
defined in the General Resource Model and contains common features such as
scheduling discipline, multiplicity, services. The following types of resources are
important in GQAM: a) ExecutionHost: a processor or other computing device on
which are running processes; b) CommunicationsHost: hardware link between
devices; c) SchedulableResource: a software resource managed by the operating
system, like a process or thread pool; and d) CommunicationChannel: a middleware
or protocol layer that conveys messages.

Services are provided by resources and by subsystems. A subsystem service
associated with an interface operation provided by a component may be identified as a
RequestedService, which is in turn a subtype of Step, and may be refined by a
BehaviorScenario.

GQAM Behaviour/Scenario Concepts. The class BehaviorScenario describes a
behavior triggered by an event, composed of Steps related by predecessor-successor
relationships. A specialized step, CommunicationStep, defines the conveyance of a
message. Resource usage is attached to behaviour in different ways: a) a Step
implicitly uses a SchedulableResource (process, thread or task); b) each primitive
Step executes on a host processor; c) specialized steps, AcquireStep or ReleaseStep,
explicitly acquire or release a Resource; and d) BehaviorScenarios and Steps may use
other kind of resources, so BehaviorScenario inherits from ResourceUsage which
links resources with concrete usage demands.

GQAM Workload Concepts. Different workloads correspond to different operating
modes, such as takeoff, in-flight and landing of an aircraft or peak-load and average-
load of an enterprise application. A workload is represented by a stream of triggering
events, WorkloadEvent, generated in one of the following ways: a) by a timed event
(e.g. a periodic stream with jitter); b) by a given arrival pattern (periodic, aperiodic,
sporadic, burst, irregular, open, closed); c) by a generating mechanism named
WorkloadGenerator; d) from a trace of events stored in a file.

As mentioned above, the Performance Analysis Model (PAM) specializes the
GQAM domain model. It is important to mention that only a few new concepts were
defined in PAM, while most of the concepts are reused from GQAM.

PAM specializes a Step to include more kinds of operation demands during a step.
For instance, it allows for a non-synchronizing parallel operation, which is forked but
never joins (noSync property). In addition to CPU execution, a Step can demand the

 Software Performance Modeling 225

execution of other Scenarios, RequestedServices offered by components at interfaces,
and “external operations” (ExtOp) which are defined outside the Smodel. (ExtOp is
one of the means of introducing platform resources in MARTE annotations). A new
step subtype, PassResource, indicates the passing of a shared resource from one
process to another.

In term of Resources, PAM reuses ExecutionHost for processor, Schedulable
Resources for processes (or threads) and adds a LogicalResource defined by the
software (such as semaphore, lock, buffer pool, critical section). A runtime object
instance (PaRunTInstance) is an alias for a process or thread pool identified in
behavior specifications by other entities (such as lifelines and swimlanes).

A UML model intended for performance analysis should contain a structural view
representing the software architecture at the granularity level of concurrent runtime
components and their allocation to hardware resources, as well as a behavioural view
showing representative scenarios with their respective resource usage and workloads.

2.3 Source Model: UML+MARTE

This section presents an example of a UML+MARTE source model for two CORBA-
based client-server systems selected from a performance case study published in [1]:
one is called the Handle-driven ORB (H-ORB) and the other the Forwarding ORB (F-
ORB). For each case, the authors have implemented a performance prototype based
on a Commercial-Off-The-Shelf (COTS) middleware product and a synthetic
workload running on a network of Sun workstations using Solaris 2.6; the prototypes
were measured for a range of parameters.

We used the system description from [1] to build a UML+MARTE model of each
system, which represents the source model for the PUMA transformation. The results
of the LQN model generated by PUMA are compared with measurement results
presented in [1].The synthetic application implemented in [1] contains two distinct
services A and B; the clients connect to these services through the ORB. Each client
executes a cycle repeatedly, making one request to Server A and one to Server B.
Two copies of A, called A1 and A2, and two copies of B, called B1 and B2, are
provided. The two copies of each server enable the system to handle more load and
allow the investigation of the performance effects of load balancing that is provided
by many commercial ORB products. The client performs a bind operation before
every request. The client request path varies depending on the underlying ORB
architecture. In the H-ORB, the client gets the address of the server from the agent
and communicates with the server directly. In the F-ORB, the agent forwards the
client request to the appropriate server, which returns the results of the computations
directly to the client. When a service is requested form a particular server, the server
process executes a loop and consumes a pre-determined amount of CPU time. The
synthetic application is used because it provides flexibility in experimentation with
various levels of different workload parameters, such as the service time at each
server, and the inter-node delay.

226 D.C. Petriu, M. Alhaj, and R. Tawhid

Fig. 2. The deployment of the H-ORD performance prototype

The synthetic application as considered here is characterized by the following
parameters: number of clients N, service demands SA, SB representing the CPU
execution time for each service, inter-node communication delay D and message
length L. Since the experiments were performed on a local area network, the inter-
node delay that would appear in a wide-area network was simulated by making a
sender process sleeps for D units of time before sending a message. However, in the
case of the H-ORB agent there was no access to the source code, so the inter-node
delay for the handle returning operation was simulated by making the client sleep for
D units of time before receiving the message.

Figure 2 shows the deployment diagram for the H-ORB performance prototype.
The processing nodes are stereotyped as «GaExecHost» and the LAN communication
network nodes as «GaCommHost». Each client, each server and the ORB agent are
allocated on their own processor.

Figure 3 represents the client request scenario in the form of a sequence diagram
(SD), while Figure 4 represents the same scenario as an activity diagram (AD). Both
the SD and the AD are stereotyped with «GaAnalysisContext» that indicate that the
respective scenarios are to be considered for performance analysis. Each lifeline role
stereotyped by «PaRunTInstance» is related to a runtime concurrent component
instance, which is in turn allocated on a processor in the deployment diagram. The
first step of the scenario has a workload stereotype «GWorkloadEventt» with an
attribute pattern indicating that the scenario is used under a closed workload with a
population of $N. ($N indicates a MARTE variable, to be substituted by a concrete
value when the performance model is actually solved. By convention, the name of all
MARTE variables in this work begin with “$” to distinguish them from other names).
A «PaStep» stereotype is applied to each of the steps corresponding to the following
messages: Get-Handle(), A1Work(), A2Work(), B1Work() and B2Work(). All
scenario steps are characterized by a certain hostDemand, which represents the CPU
execution time.

client1

«artifact»
Client-art

«deploy»

«manifest»

«GaCommHost»

:LAN

«GaExecHost»

PC1
«GaExecHost»

PCN
«GaExecHost»

PA

«GaExecHost»

PC2

client2

«artifact»
Client-art

«deploy»

«manifest»

clientN

«artifact»
Client-a

«deploy»

«manifest»

agent

«artifact»
Agent-art

«deploy»

«manifest»

«GaExecHost»

PA1
«GaExecHost»

PB1
«GaExecHost»

PB2

«GaExecHost»

PA2

«deploy» «deploy» «deploy» «deploy»

«artifact»

ServerA-art
«artifact»

ServerA-art
«artifact»

ServerB-art
«artifact»

ServerB-art

«manifest» «manifest» «manifest» «manifest»

ServerA1 ServerA2 ServerB1 ServerB2

 Software Performance Modeling 227

Fig. 3. Client request scenario for H-ORB as a sequence diagram

In the SD from Figure 3, the choice of which server instance to call (A1 or A2; B1
or B2) is modeled as two alt combined fragments respectively, with two operands
each. An operand itself is a «PaStep» with the attribute prob indicating the probability
of being chosen. The call to the Sleep() function in the SD is modeled by an
interaction occurrence ref making reference to another SD not shown here, which

GetHandle() «PaStep» {hostDemand=(4,ms)}

«PaStep» {hostDemand=($SA,ms)}

Client Agent ServerA1 ServerA2 ServerB1 ServerB2

alt

alt

«PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance»

«PaStep»
{prob=0.5}

«PaStep»
{prob=0.5}

«PaStep» {prob=0.5}

«PaStep» {prob=0.5}

«GaWorkloadEvent»
{pattern=(closed(Population= $N))}

GetHandle() «PaStep» {hostDemand=(4,ms)}

«GaAnalysisContext»
sd HORB

ref Sleep

«PaStep» {hostDemand=($SA,ms)}

«PaStep» {hostDemand=($SB,ms)}

«PaStep» {hostDemand=($SB,ms)}

ref Sleep

ref Sleep

ref Sleep

ref Sleep

ref Sleep

ref Sleep

ref Sleep

ref Sleep

ref Sleep

B1Work()

B2Work()

A1Work()

A2Work()

GetHandle() «PaStep» {hostDemand=(4,ms)}

«PaStep» {hostDemand=($SA,ms)}

Client Agent ServerA1 ServerA2 ServerB1 ServerB2

alt

alt

«PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance»

«PaStep»
{prob=0.5}

«PaStep»
{prob=0.5}

«PaStep» {prob=0.5}

«PaStep» {prob=0.5}

«GaWorkloadEvent»
{pattern=(closed(Population= $N))}

GetHandle() «PaStep» {hostDemand=(4,ms)}

«GaAnalysisContext»
sd HORB

«GaAnalysisContext»
sd HORB

ref Sleepref Sleep

«PaStep» {hostDemand=($SA,ms)}

«PaStep» {hostDemand=($SB,ms)}

«PaStep» {hostDemand=($SB,ms)}

ref Sleepref Sleep

ref Sleepref Sleep

ref Sleepref Sleep

ref Sleepref Sleep

ref Sleepref Sleep

ref Sleepref Sleep

ref Sleepref Sleep

ref Sleepref Sleep

ref Sleepref Sleep

B1Work()

B2Work()

A1Work()

A2Work()

228 D.C. Petriu, M. Alhaj, and R. Tawhid

Fig. 4. Client request scenario for H-ORB as an activity diagram

contains a call to a dummy server Sleep that delays the caller by a required time
without consuming the CPU time of the caller.

In the activity diagram, every active concurrent instance is represented by its own
partition (a.k.a. swimlane) and is stereotyped by «PaRunTInstance». The scenario
steps modeled as activities are stereotyped as «PaStep» with the same hostDemand
and prob attributes as in SD. An AD arc crossing the boundary between partitions
represents a message sent from one active instance to another. Sleep is a structured
activity, which contains inside the details of a call to a dummy instance that delays the
caller without consuming its CPU time. Eventually, in the performance model Sleep
will be represented as a dummy server that performs the same roll.

The scenario for the F-ORB case study is not presented here, but it is fairly similar
with the H-ORB. In the F-ORB architecture the client sends the entire service request
to the agent that locates the appropriate server and forwards the request to it. The
server performs the desired service and sends a response back to the client.

After describing the UML source model extended with MARTE annotations, we
will present the target performance model and then the intermediate model used in the
PUMA transformation.

«GaAnalysisContext»
ad HORB

«PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance»

Client Agent ServerA1 ServerA2 ServerB1 ServerB2

Sleep

Sleep

Sleep

Sleep

Sleep

GetHandle

Sleep

A1Work

Sleep

A1Work

Sleep

GetHandle

Sleep

A1Work

Sleep

A1Work

«GaWorkloadEvent»
{pattern=(closed(Population= $N))}

«PaStep»
{hostDemand=(4,ms)}

«PaStep»
{hostDemand=(4,ms)}

«PaStep» {prob=0.5,
hostDemand=($SA,ms)}

«PaStep» {prob=0.5,
hostDemand=($SA,ms)}

«PaStep» {prob=0.5,
hostDemand=($SB,ms)}

«PaStep» {prob=0.5,
hostDemand=($SB,ms)}

«GaAnalysisContext»
ad HORB

«GaAnalysisContext»
ad HORB

«PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance»

Client Agent ServerA1 ServerA2 ServerB1 ServerB2

Sleep

Sleep

Sleep

Sleep

Sleep

GetHandle

Sleep

GetHandle

Sleep

A1Work

Sleep

A1Work

Sleep

A1Work

Sleep

A1Work

Sleep

A1Work

Sleep

GetHandle

Sleep

GetHandle

Sleep

A1Work

Sleep

A1Work

Sleep

A1Work

Sleep

A1Work

Sleep

A1Work

«GaWorkloadEvent»
{pattern=(closed(Population= $N))}

«PaStep»
{hostDemand=(4,ms)}

«PaStep»
{hostDemand=(4,ms)}

«PaStep» {prob=0.5,
hostDemand=($SA,ms)}

«PaStep» {prob=0.5,
hostDemand=($SA,ms)}

«PaStep» {prob=0.5,
hostDemand=($SB,ms)}

«PaStep» {prob=0.5,
hostDemand=($SB,ms)}

 Software Performance Modeling 229

2.4 Target Performance Model: LQN

Many performance modeling formalisms have been developed over time, such as
queueing networks (QN), extended QN, Layered Queueing Networks (LQN),
stochastic Petri nets, stochastic process algebras and stochastic automata networks.
Although PUMA can incorporate model transformations from CSM to nay
performance modeling formalisms, in the paper we will consider one target
performance model, the Layered Queueing Network (LQN) [46][36].

LQN was developed as an extension of the well-known Queueing Network model;
the main difference is that LQN can easily represent nested services: a server may
become in turn a client to other servers from which it requires nested services, while
serving its own clients. The LQN toolset presented in [22][23] includes both
simulation and analytical solvers.

A slightly simplified LQN metamodel is presented in Figure 5. Examples of LQN
models are presented in Figures 5 and 18.

A LQN model is an acyclic graph, with nodes representing software entities and
hardware devices (both known as tasks), and arcs denoting service requests. The
software entities are drawn as rectangles with thick lines, and the hardware devices as
ellipses. The nodes with outgoing but no incoming arcs play the role of clients, the
intermediate nodes with both incoming and outgoing arcs are usually software servers
and the leaf nodes are hardware servers (such as processors, I/O devices,
communication network, etc.) A software or hardware server node can be either a
single-server or a multi-server.

Each kind of service offered by a LQN task is modeled as an entry, drawn as a
rectangle with thin lines attached to the task or other entries of the same task. Every
entry has its own execution times and demands for other services (given as model
parameters). Each software task is running on a processor shown as an ellipse. The
communication network, disk devices and other I/O devices are also shown as
ellipses. The word “layered” in the LQN name does not imply a strict layering of
tasks (for example, tasks in a layer may call each other or skip over layers). The arcs
with a filled arrow represent synchronous requests, where the sender is blocked until
it receives a reply from the provider of service. It is possible to have also
asynchronous request messages (shown as a stick arrow), where the sender does not
block after sending a request and the server does reply back. Another communication
style called forwarding (shown with a dotted line), allows for a client request to be
processed by a chain of servers instead of a single server. The first server in the chain
will forward the request to the second and become free; the second to the third, etc.,
and the last server in the chain will reply to the client. Although not explicitly
illustrated in the LQN notation, every server, be it software or hardware, has an
implicit message queue, where incoming requests are waiting their turn to be served.
Servers with more then one entry have a single input queue where requests for
different entries wait together.

A server entry may be decomposed in two or more sequential phases of service.
Phase 1 is the portion of service during which the client is blocked waiting for a reply

230 D.C. Petriu, M. Alhaj, and R. Tawhid

Fig. 5. LQN metamodel

from the server (it is assumed that the client has made a synchronous request). At the
end of phase 1, the server will reply to the client, which will unblock and continue its
execution. The remaining phases, if any, will be executed in parallel with the client.
An extension to LQN [23] allows for an entry to be further decomposed into activities
if more details are required to describe its execution (see Figure Y). The activities are
connected together to form a directed graph that may branch into parallel threads of
control, or may choose randomly between different branches. Just like phases,
activities have execution time demands, and can make service requests to other tasks.

The parameters of a LQN model are as follows:

─ customer (client) classes and their associated populations or arrival rates;
─ for each phase (activity) of a software task entry: average execution time;
─ for each phase (activity) making a request to a device: average service time at the

device, and average number of visits;
─ for each phase (activity) making a request to another task entry: average number

of visits
─ for each request arc: average communication delay;
─ for each software and hardware server: scheduling discipline.

 package LQNmetamodel

-thinkTime : float = 0.0
-hostDemand : float
-hostDemCV : float = 1.0
-deterministicFlag : Integer = 0
-repetitionsForLoop : float = 1.0
-probForBranch : float = 1.0
-replyFwdFlag : Boolean

Activity

-multiplicity : Integer = 1
-priorityOnHost : Integer = 1
-schedulerType

Task
-meanCount ...

Call

-probForward

Forward

-replyFlag = true
-successor.after = phase2 ...

Phase1

-multiplicity : Integer = 1
-schedulerType

Processor

Entry

-replyFlag = False
-successor = NIL

Phase2

Precedence

Sequence

Branch

Merge

Fork

Join

-actSetForTask

0..*

0..1
-callByActivity

0..*

1

-fwdToEntry
1

-fwdTo
1

-fwdByEntry
0..*

1

-callToEntry
1

-callTo
1

-actSetForEntry

0..*

0..1

-successor
1

1..*

-predecessor
1

-after1..*

0..1

-replyTo 0..*

-firstActivity 1

1

-allocatedTask 0..*

-host 1

-taskOperation 1..*

-schedulableProcess 1

-before

-fwdBy

SyncCall

AsyncCall

 Software Performance Modeling 231

2.5 Intermediate Model: CSM

The Core Scenario Model [34] represents scenarios, which are implicit in many
software specifications; they are useful for communicating partial behaviours among
diverse stakeholders and provide the basis for defining performance characteristics.
The CSM metamodel is similar to the SPT Performance Profile, describing three main
types of concepts: resources, scenarios, and workloads. Each Scenario is a directed
graph with Steps as nodes, and explicit PathConnectors which define Sequence,
Branch, Merge, Fork and Join. A Step is owned by a Component, which may be a
ProcessResource, and which in turn is associated to a HostResource (processor).
Logical resources are acquired and released along the path by special subtypes of Step
called ResourceAcquire and ResourceRelease. External Resource represents a
resource not explicitly represented in the UML model required for executing external
operations that have a performance impact (for example, a disk operation). The CSM
metamodel is described in more detail in [34].

3 PUMA Transformation Chain

In this section we present the principles of the transformation used in PUMA: a) from
source Smodel in UML extended with MARTE to the intermediate CSM; and b) from
CSM to LQN Pmodel. The section also shows a few performance results obtained with
the LQN model generated from the CORBA source model introduced in Section 2.3 and
compares them with measurements.

3.1 Transformation from UML+MARTE to CSM

The general strategy is to identify the scenarios and structural diagrams to be
considered by looking for MARTE stereotypes and then to generate structural CSM
elements (Resources and Components) from the structure diagram (e.g., deployment),

Table 1. Mapping between MARTE stereotypes and CSM Elements

MARTE CSM

«GaWorkloadEvent» Closed/OpenWorkload

«GaScenario» Scenario

«PaStep» Step

«PaCommStep» Step (for the message)

«GaResAcq» ResourceAcquire

«GaResRel» ResourceRelease

«PaResPass» ResourcePass

«GaExecHost» ProcessingResource

«PaCommHost» ProcessingResource

«PaRunTInstance» Component

«PaLogicalResource» LogicalResource

232 D.C. Petriu, M. Alhaj, and R. Tawhid

and behavioural elements (Scenarios, Steps and PathConnectors) from the behaviour
diagrams. The mapping between MARTE stereoptypes and CSM elements is
presented in Table 1.

The transformation algorithm begins with generating the structural elements first.
A UML Node from a deployment diagram stereotyped «GaExecHost» or
«PaCommHost» is converted into a CSM ProcessingResource. A UML run-time
component manifested by an artifact, which is in turn deployed on a node is converted
into a CSM Component.

Scenarios Described by Sequence Diagrams. The transformation continues with the
scenarios described by sequence diagrams stereotyped with «GaAnalysisContext».
For each scenario, a CSM Start PathConnection is generated first, and the workload
information is attached to it. Each Lifeline from a sequence diagram describes the
behaviour of a UML instance (be it active or passive) and corresponds in turn to a
CSM Component. The Lifelines stereotyped as «PaRunTInstance» corresponds to an
active runtime instance. We assume that the artifacts for all active UML instances
are shown on the deployment diagram, so their corresponding CSM Components were
already generated. However, it is possible that the sequence diagram contains lifelines
for passive objects not shown in the deployment diagram. In such a case, the
corresponding CSM Passive Component is generated, and its host is inferred to be the
same as that of the active component in whose context it executes.

The translation follows the message flow of the scenario, generating the
corresponding Steps and PathConnections. A simple Step corresponds to a UML
Execution Occurrence, which is the execution of an operation as an effect of receiving a
message. Complex CSM Steps with a nested scenario correspond to operand regions of
UML Combined Fragments and Interaction Occurrences. A synchronous message will
generate a CSM Sequence PathConnection between the step sending the message and
the step executed as an effect. An asynchronous message spawns a parallel thread, and
thus will generate a Fork PathConnection with two outgoing paths: one follows the
sender's activity, and the other follows the path of the message. The two paths may
rejoin later through a Join PathConnection. Fork/join of parallel paths may be also
generated by a par Combined Fragment. Conditional execution of alternate paths is
generated by alt and opt Combined Fragments.

Scenarios Described by Activity Diagrams. We consider all the scenarios described
by activity diagrams stereotyped as «GaAnalysisContext». For each scenario, the
transformation starts with the Initial ControNode, which is converted into a CSM
Start PathConnection and a Resource Acquire step for acquiring the component for
the respective swimlane. Also, the scenario workload information described by a
«GaWorkloadEvent» stereotype is used to generate a CSM Workload element
attached to the Start PathConnection. (Note that in MARTE, the scenario workload
information is associated by convention with the first step of a scenario, not with its
Initial ControlNode, which cannot be stereotyped as Step). The translation follows
the sequence of the scenario from start to finish, identifying the Steps and
PathConnections (sequence, branch/merge, fork/join) from the context of the
diagram. Each UML ActivityNode that represents a simple activity is converted into a
CSM Step, one that represents an activity further refined by another diagram
generates a CSM Step with a nested Scenario.

 Software Performance Modeling 233

As mentioned before, we assume that each partition (a.k.a. swimlane) is associated
with a Component through the «PaRunTInstance» stereotype. A special treatment is
given to ActivityEdges that cross the partition boundary (named here cross-transition).
A cross-transition represents a message (signal) between the corresponding
components that implies releasing the sender (which is a Component, but also a
Resource) and acquiring the receiver. Therefore, a cross-transition generates in CSM
a ResourceRelease step, a Sequence PathConnection and ResourceAcquire step.

Figure 6 shows the CSM generated for the H-ORD source model from section 2.3.

Fig. 6. CSM for the H-ORB system from Figures 2 and 3

Start:HORB

R_Acquire: client

Step:

R_Acquire: agent

Step: GetHandle()

Step: Sleep()

R_Release: agent

Step: Sleep()

Branch

Merge

R_Acquire: agent

Step: GetHandle()

R_Release: agent

Branch

Step: OpB1 Step: OpB2

Merge

R_Release:client

End

Step: Sleep()

Step: Sleep()

Step: OpA1 Step: OpA2

Start: Sleep

R_Acquire: ServerS

Step: sleep()

R_Release: ServerS

End

Start: OpA1

R_Acquire: ServerA1

Step: A1Work()

R_Release: ServerA1

End

Step: Sleep()

Start: OpB1

R_Acquire: ServerB1

Step: B1Work()

R_Release: ServerB1

End

Step: Sleep()

Start:HORB

R_Acquire: client

Step:

R_Acquire: agent

Step: GetHandle()

Step: Sleep()

R_Release: agent

Step: Sleep()Step: Sleep()

Branch

Merge

R_Acquire: agent

Step: GetHandle()

R_Release: agent

Branch

Step: OpB1 Step: OpB2

Merge

R_Release:client

End

Step: Sleep()Step: Sleep()

Step: Sleep()Step: Sleep()

Step: OpA1 Step: OpA2

Start: Sleep

R_Acquire: ServerS

Step: sleep()

R_Release: ServerS

End

Start: Sleep

R_Acquire: ServerS

Step: sleep()

R_Release: ServerS

End

Start: OpA1

R_Acquire: ServerA1

Step: A1Work()

R_Release: ServerA1

End

Step: Sleep()Step: Sleep()

Start: OpB1

R_Acquire: ServerB1

Step: B1Work()

R_Release: ServerB1

End

Step: Sleep()Step: Sleep()

234 D.C. Petriu, M. Alhaj, and R. Tawhid

The main CSM model represents the main flow of steps from the scenario
represented in Figure 3 as SD and in Figure 4 as AD. Composite steps were generated
for every Interaction Occurrence invoking Sleep() and for each operand of the alt
CombineFragments making a choice of a server. The Composite steps are refined by
CSM sub-scenarios on the right of the figure. (The fragment for the operand invoking
A2 is not shown, being similar with the one invoking A1; the same is true for operand
invoking B2, which is similar to B1).

3.2 Transformation from CSM to LQN

The first stage of the transformation algorithm parses the resources in the CSM and
generates a LQN Processor for each CSM ProcessingResource and an LQN Task for
each CSM Component. The second stage traverses the CSM to determine the
branching structure and the sequencing of Steps within branches, and to discover the
calling interactions between Components.

The traversal creates a new LQN Entry whenever a task receives a call. The entry
internals are described by LQN Activities that represent the sequence of Steps for the
call, using a notation like CSM itself. Another possibility is to generate LQN Phases
when there is only a sequence of Steps (without branching or forking). The traversal
generates an LQN Activity for each CSM Step it encounters and it generates LQN
Branch, Merge, Fork, Join and Sequence connectors corresponding to the same
PathConnectors in the CSM. Whenever an interaction between two CSM
Components is detected, an Activity is created in the Task corresponding to the
requesting Component with a Call to the new LQN Entry which is created in the Task
corresponding to the called Component. This Entry serves the request and its
workload is defined by the ensuing Activities generated from the Steps encountered in
the new Component.

The type of call (synchronous or asynchronous) is detected by its context in the
CSM. More exactly, a message back to a Component that previously sent a request is
considered to be a reply to a synchronous call. Any messages that do not have matching
replies when the end of the scenario is reached are considered to be asynchronous calls.
During the traversal of the CSM, the algorithm creates a stack of unresolved call
messages and removes them as the matching reply messages are detected (other
interaction patterns can also be identified). At Branch and Fork points, the stack of
unresolved messages is duplicated for each outgoing alternate or parallel subpath so that
each ensuing subpath maintains its own message history. All of the duplicate call stacks
except one are discarded at Merge and Join points after every incoming alternate or
parallel branch has been traversed. The ordering of the messages is a direct result of the
traversal of the CSM scenarios and is a partial order for the particular path being
traversed. Parallel or alternate branches each have a partial order of the messages along
their own subpaths, but no global ordering is implied.

A CSM ClosedWorkload is transformed into parameters for a load-generating
Reference Task, and a CSM OpenWorkload into an open stream of requests made to
the first entry. An External Operation by a CSM Step is represented by an activity
which makes a call to a submodel that has to be provided by the analyst.

 Software Performance Modeling 235

Fig. 7. LQN model for the H-ORB system

Figure 7 shows the LQN model generated from the CSM for the H-ORB given in
Figure 6. As mentioned before, the Sleep task running on a dummy server implements
the sleep function. All requests are synchronous calls in this example. The numbers in
parentheses on the arcs represent the average number of calls. The service times (Not
shown in the figure) are represented by the variables $A, $B, $D which are assigned
concrete values doing the experiments.

The LQN model thus generated has been validated against measurements of the
H-ORB and F-ORB performance prototypes that have been published in [1]. As it can
be seen in Figure 8, the accuracy of the analytic model is fairly reasonable.

Fig. 8. Validation of the LQN results against measurements

In this section we have presented the PUMA transformations from a Smodel to the
corresponding intermediate model to the Pmodel. According to the PUMA
architecture from Figure 1, once the Pmodel has been generated, the next step is to
use it for experiments that are exploring the parameter space in order to evaluate
design changes such as execution in parallel, replication, modified concurrency, and
reduced demands and delays. The Pmodel results evaluate the potential of these
changes, which can then be mapped to possible software solutions [49].

In the next two sections we will present extensions to the PUMA transformation to
specialize it for Service-Oriented Architecture and for Software Product lines.

The Response Time of the H-ORB,
 SA=10ms SB=15 ms, D=200 ms, L=4800 bytes

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 8 16 24
Number of Clients (N)

R
es

po
ns

e
T

im
e

R
 [s

] Model

Measured

The Response Time of the F-ORB model
SA=10, SB=15, D=200, L = 4800 bytes.

0

1

2

3

4

0 5 10 15 20 25

Number Of Clients

R
es

po
ns

e
T

im
e

[s
]

Measure

Model

Clientclient_e

Server
B2

B2WorkServer
B1

B1WorkServer
A2

A2WorkServer
A1

A1Work

AgentGet
Handle

Sleepsleep_e

PA

dummy

PC

PA1 PA2 PB1 PB2

(2)

(1)

(4)

(1) (1) (1) (1)

Clientclient_e Clientclient_e

Server
B2

B2Work Server
B2

B2WorkServer
B1

B1Work Server
B1

B1WorkServer
A2

A2Work Server
A2

A2WorkServer
A1

A1Work Server
A1

A1Work

AgentGet
Handle

Sleepsleep_e Sleepsleep_e

PAPA

dummy

PCPC

PA1PA1 PA2PA2 PB1PB1 PB2PB2

(2)

(1)

(4)

(1) (1) (1) (1)

236 D.C. Petriu, M. Alhaj, and R. Tawhid

4 Extension of PUMA to Service-Oriented Architecture(SOA)

SOA is a paradigm for developing and deploying business applications as a set of
reusable services [19]. SOA is used for enterprise systems, web-based applications,
multimedia, healthcare, etc. Model Driven SOA (MDSOA) is an emerging approach
for developing service-oriented applications developing models at multiple levels of
abstraction, which can be used eventually to generate code. MDSOA is also used to
verify the non-functional properties (NFP) by transforming the software models to
different NFP analysis models (including performance). In order to improve modeling
SOA systems, OMG has introduced a new profile called Service Oriented
Architecture Modeling Language (SoaML) [32], which extends UML with the ability
to model the service structure and dependencies, to specify service capabilities and
classification, and to define service consumers and providers.

The emergence of MDD in general and of MDSOA in particular has attracted a lot
of interest in the research community in using software models to evaluate the non
functional properties of service-based systems. A model transformation framework
is proposed in [45] to automatically include the architectural impact and the
performance overhead of the middleware layer in distributed systems. This allows one
to model the application independent of the middleware and then obtain a platform
specific model by composition. Another model-driven approach for development and
evaluation of non-functional properties such as performance and reliability is based
on the Palladio Component Model (PCM), which allows specifying component-based
software architectures in a parametric way [27]. A parametric performance
completion for message-oriented middleware proposed for PCM in [27] allows for the
composition of platform components with application components. Other research on
building performance models for web services takes a two layered user/provider
approach in [18] and [28]: the user is a represented by a set of workflows and the
provider by a set of services deployed on a physical system. Performance information
about service capabilities and invocation mechanisms is given by the means of P-
WSDL (Performance-enabled WSDL) in [18], where a LQN model is generated for
analyzing the system performance. In [28] the queueing network formalism is used to
derive performance bounds.

4.1 PUMA4SOA Transformation Chain

Performance by Unified Model Analysis for SOA (PUMA4SOA) is a modeling
approach proposed first in [2] which extends the PUMA transformation, specializing
it for service-based systems. The difference between the original PUMA and the
extended one for SOA stems from: a) the kind of design models accepted as input,
and b) the separation between Platform Independent Model (PIM) and Platform
Specific Model (PSM) of the application and the use of platform models. Figure 4.1
illustrates the steps of PUMA4SOA; the top leftmost represents the main difference
from PUMA (whose steps are shown in Figure 1). There are three input models to
PUMA4SOA: a) application PIM, b) deployment model which describes the
allocation of the artifacts to a deployment target, and c) platform aspect models.

 Software Performance Modeling 237

Fig. 9. The Steps of PUMA4SOA

The platform independent model of the application contains a UML software
model with three levels of abstractions. The UML model is annotated with
performance information using the standard UML profile MARTE. Each level
represents a part of the system details that will be used together with the other parts to
build the performance model. The three abstraction levels are as follows:

a) Workflow Model which represents a set of business processes. Each workflow
contains a sequence of activities and actions controlled by conditions, iterations,
and concurrency.

b) Service Architecture Model which describes the service capabilities arranged in a
hierarchy showing anticipated usage dependencies. It also depicts the level of
service granularity, which has a substantial effect on the system performance.
Invoking services in heterogeneous and distributed environment produces
message overheads due to marshalling/unmarshalling of the message data at the
service platform. A coarser service granularity reduces the number of service
invocations, which improves the performance, but produces unnecessary
coupling between the components of the SOA system. However, a finer service
granularity increases the number of service invocations, which reduces the
performance but produces a loosely coupled system. Service Architecture
Modeling helps the modeler to manage the tradeoff between the service
granularity and performance.

Transform to
CSM

Feedback

Performance
Results

Explore
Solution space

Performance
model

Transform from CSM
to a Performance

Model

Core Scenario
Model (CSM)

 PSM
SOA system
model with

performance
annotations

Platform
Aspect Models

PIM

Deployment
Diagram of

Primary model

SOA system
model with

performance
annotations

Select Platform
Features

PC Feature
Model

238 D.C. Petriu, M. Alhaj, and R. Tawhid

c) Service Behavior Model which refines the workflow behavior, giving more
details about the services invoked. Each workflow activity may be refined by a
sequence diagram which represents its detailed behavior, including the
invocations of the other services and the interaction between participants.

PUMA4SOA also defines two models: a) Performance Completion Feature model (PC
feature model), and b) Platform aspect models. The concept of “performance
completions” was introduced by Woodside et al. [47] to close the gap between abstract
design models and external platform factors. The PC feature model, introduced in the
work of the Palladio group (see [27]) and also used in [41], defines the variability in
platform choices, execution environments, types of platform realizations, and other
external factors that have an impact on the system’s performance. Since the regular
notation for feature diagrams is not part of UML, we use a UML class diagram extended
with stereotypes to represent the PC feature model, where each feature is represented as
a class element. Four relationships between a feature and its sub features are defined:
Mandatory, Optional, Or, and Alternative. Each feature in the feature model represents a
platform aspect. A platform aspect model describes the structure and the behavior of the
service platform in a generic format. The PC feature model allows the modeler to select
between different platform aspect models that are most appropriate for the application
of interest.

The selected platform aspect models composed with the PIM generate the PSM.
The Aspect Oriented Modeling (AOM) approach is used to generate the platform
specific model (PSM) by weaving the selected platform aspect model behaviors into
different locations of the platform independent model (PIM). The AOM approach
requires two types of models: a) the primary model which describes the core design
decisions, and b) a set of aspect models, each describing a concern that crosscuts the
primary model [21]. PUMA4SOA considers the application PIM as the primary
model. An aspect model can be seen as a template or pattern, independent of any
primary model it may be composed with. For each composition with the primary
model, the template is instantiated and its formal parameters are bound to concrete
values using binding rules, to give a context-specific aspect model. The composed
model is generated by weaving the context-specific aspect models into the primary
model at different locations. In the next section, we will describe the PUMA4SOA
approach with an example from the healthcare domain.

4.2 Platform Independent Model: Case Study

The platform independent model is illustrated with a healthcare case study, the
Eligibility Referral System, which is introduced in [3]. A UML activity diagram is
used to model the workflow in Figure 10. It is the top level model that describes the
process of transferring a patient from one hospital to another. Three organizations are
involved, the transferring and receiving hospitals and the insurance company. The
workflow begins with the transferring hospital filling and processing the initial forms
needed to transfer the patient. The next process is getting the physician and the
payment approvals. The transferring hospital is then sending the forms and waits for

 Software Performance Modeling 239

Fig. 10. Workflow model represented by an activity diagram

an acknowledgement from the receiving hospital. Finally, the transferring hospital
schedules the transferring date and updates the transferring process. The workload of
the system is described by the «GaWorkloadEvent» stereotype, which can be a closed
arrival pattern defining a fixed populations of users or an open arrival pattern which
defining a stream of requests that arrive at a given rate. A swimlane is stereotyped
as «PaRunTInstance» to indicate that the activities are executed by a concurrent
participant. This stereotype has a poolsize attribute to define the number of concurrent
threads. An activity is stereotyped as «PaStep» to indicate a scenario step. It has a
hostDemand attribute for the required execution time, a prob for its probability, and a
rep for the number of repetitions. The communication between participants is
described by «PaCommStep» to indicate the conveyance of a message. It has a
msgSize attribute to indicate the amount of transmitted data.

The Service Architecture model, illustrated in Figure 11, is using a new OMG
profile called the Service Oriented Architecture Modeling Language (SoaML) [32].
SoaML extends UML with the ability to define the service structure and dependencies
to specify service capabilities, and to define service consumers and providers. The
Eligibility Referral System defines five components stereotyped as «participants»:

<<PaStep>>
<<GaWorkloadEvent>>

Process Eligibility
Referral

<<PaStep>>

Initial Patient
Transfer

<<PaStep>>

Perform Payor
Authorization

<<PaStep>>

Scheduling
Transfer

<<PaStep>>

Process Eligibility
Transfer

<<PaStep>>

Selecting
Referral

<<PaStep>>

Confirm
Transfer

<<PaStep>>

Perform Physician
Authorization

<<PaStep>>

Validating
Request

<<PaStep>>

Complete
Transfer

nurse:Nurse
<<PaRunTInstance>>
na:NursingAccount

<<PaRunTInstance>>

pa:PhysicianAccount
<<PaRunTInstance>>

dm:Datamanagement
<<PaRunTInstance>>

es:EstimatorServer
<<PaRunTInstance>>
as:AdmissionServer

240 D.C. Petriu, M. Alhaj, and R. Tawhid

Fig. 11. Service Architecture Model

Fig. 12. Service behavior model for Initial Patient Transfer service

Fig. 13. Deployment of the Eligibility Referral System

<<Participant>>

es:EstimatorServer

<<Participant>>
na:NursingAccount

<<Participant>>
dm:Datamanagement

<<Participant>>
pa:PhysicianAccount

<<Request>>
physicianAuth

<<Participant>>
as:AdmissionServer

<<Request>>
validateTransfer

<<Request>>
confirmTransfer

<<Request>>
payorAuth

<<Request>>
recordTransfer

<<Request>>
scheduleTransfer

<<Request>>
requestReferral <<Service>>

physicianAuth

<<Service>>
recordTransfer

<<Service>>
scheduleTransfer

<<Service>>
requestReferral

<<Service>>
validateTransfer

<<Service>>
confirmTransfer

<<Service>>
payorAuth

 <<GaCommHost>>

WAN
Gateway2

Gateway1

<<GaCommHost>>

LAN2 <<GaCommHost>>

LAN1

<<GaExecHost>>

AdmissionHost <<GaExecHost>>

TransferringHost

<<SchedulableResource>>

AdmissionServer

<<deploy>>

<<deploy>> <<deploy>>

<<deploy>>

Gateway3

<<GaCommHost>>

LAN3

<<GaExecHost>>
InsuranceHost

<<GaExecHost>>

DMHost
<<GaExecHost>>

Disk

<<SchedulableResource>>

Datamanagement

<<SchedulableResource>>

NursingAccount

<<SchedulableResource>>

PhysicianAccount

<<SchedulableResource>>

EstimatorServer

<<SchedulableResource>>

disk

<<deploy>> <<deploy>>

<<SchedulableResource>>

ReferralBusinessProcess

<<deploy>>

 <<PaRunTInstance>>

na:NursingAccount

<<PaRunTInstance>>

dm:Datamanagement
<<PaRunTInstance>>

disk:Disk

<<PaStep>>
RecordReansferForm

<<PaStep>>
ReadData

<<PaStep>>
ReviewData

RecordReansferForm

 Software Performance Modeling 241

NursingAccount, PhysicianAccount, AdmissionServer, EstimatorServer, and Data
management. The model also presents different service contracts; each one of them
defines service consumers (their ports are stereotyped with «Request»), and service
providers (their ports are stereotyped with «Service»). UML sequence diagrams are
used to model the behavior of each activity defined in the workflow model. Figure 12
shows an example of the service behavior model of “Initial Patient Transfer” activity.
In this interaction, the nurse generates the patient transfer form by retrieving patient’s
data from the Database, and then reads and reviews it before sending it back to the
form. Lifelines are stereotyped with «PaRunTInstance» to indicate a concurrent
process, and messages are stereotyped with «PaStep» to indicate an action.

The UML Deployment diagram in Figure 12 shows the allocation of software to
hardware. Physical communication nodes, such as WAN, LAN1, LAN2, and LAN3,
are stereotyped with «GaCommHost» to indicate a physical communication link.
Processors, such as AdmissionHost, TransferringHost, InsuranceHost, DMHost, and
Disk, are stereotyped with «GaExecHost» to indicate the processor host. Artifacts,
such as NursingAccount, PhysicainAccount, AdmissionServer, EstimatorServer,
Datamanagement, and disk, are stereotyped with «SchedulableResource» to indicate a
concurrent resource. The ReferralBusinessProcess component represents the
execution engine which runs the business process of the system.

4.3 PC Feature Model

The PC feature model describes the variability in service platform which may affect
the system’s performance. Figure 13 describes the features which may affect the
performance of our example, the Eligibility Referral System. There are three
mandatory feature groups which are required by any service platform: the operation,
message protocol and realization. There are also two optional feature groups:
communication and data compression. The relationship between the feature groups
and their sub-features are alternative with exactly-one-of feature selected. Although
the dependencies between the sub-features are not shown in the model, some features,
such as the operation feature, message protocol feature and realization feature, are
dependent. As an example selecting one of the operation sub-features, such as
invocation, requires selecting one of the message protocol (Http or SOAP) and the
realization (WebService, REST, etc.)

Fig. 14. Platform Completion (PC) Feature Model

 Service Platform

Operation

<< Feature>>
Invocation

<<Feature>>
Publishing

<< Feature>>
Discovery

<< Feature>>
Subscribing

Communication

<<Feature>>
Http

<<Feature>>
Unsecure

Message Protocol

<<Feature>>
SOAP

<<Feature>>
Secure

Realization

<<Feature>>
Web service

<< Feature>>
REST

<<Feature>>
DCOM

<< Feature>>
CORBA

<< Feature>>
SSL Protocol

<< Feature>>
TSL Protocol

Data Compression

<<Feature>>
Uncompressed

<<Feature>>
Compressed

<1-1> <1-1>

<1-1>

<1-1>
<1-1>

<1-1>

242 D.C. Petriu, M. Alhaj, and R. Tawhid

4.4 Aspect Platform Model for Service Invocation

The aspect platform models define the middleware structure and behavior of the
selected aspects from the PC feature model. In our example, we selected a service
invocation aspect realized as a webservice with the message protocol SOAP. Figure 15
describes the generic deployment including the hosts and artifacts involved in the
service invocation aspect model. As a naming convention the vertical bar ‘|’ indicate a
generic role name as in [21]. Two hosts are involved in the service invocation operation,
the |Client which consumes the service, and the |Provider which provides it.

Fig. 15. Generic Invocation aspect: deployment view

Fig. 16. Generic Aspect model for Service Invocation

 |WAN

|GatewayC
|GatewayP

|LANC
|LANP

|ClientHost |ProviderHost

|Client |XMLParserC
|SOAPClient

<<deploy>>
<<deploy>>

<<deploy>> <<deploy>>

<<deploy>>

<<deploy>>

|Provider
|XMLParserP

|SOAPProvider

 |Client |XMLParserC |SOAPClient |SOAPProvider |XMLParserP |Provider

<<PaStep>>
RequestService

<<PaStep>>
Marshalling

Message

<<PaCommStep>>
RequestSOAPMessage

<<PaStep>>

Unmarshalling
Message

<<PaStep>>
ServiceInvocation

<<PaStep>>
Marshalling

Message

<<PaCommStep>>
Reply

<<PaStep>>

Unmarshalling
Message

 Software Performance Modeling 243

The middleware on both sides contains an |XMLParser to marshal/unmarshal the
message, and a |SOAP stub for message communication. Figure 16 describes the
generic service request invocation and response behavior. A request message call is
sent from a |Client to a |Provider. This message call differs from the regular operation
call due to the heterogeneous environment it operates in, which require the message to
be parsed in acceptable format at both |Client, and |Provider sides, before it is being
sent or received.

In the AOM approach, the generic aspect model for the service invocation,
illustrated in Figure 16, may be inserted in the PIM multiple times wherever there is a
service invocation. For each insertion, the generic aspect model is instantiated and its
formal parameters are bound to concrete values using binding rules to produce a
context specific aspect model. Each context specific aspect model is then composed
into the primary model, which in our case is the PIM. More details about AOM
approach can be found in [2][48].

In PUMA4SOA the aspect composition can be performed at three modeling levels:
the UML level, the CSM level or the LQN level. The complexity of the aspect
composition may determine where to perform it. At the UML level, the aspect
composition is more complex because the performance characteristics of the system
are scattered between different views and diagrams, which may require many models
to be used as input to the composition. On the contrary, performing aspect
composition at the CSM or LQN level is simpler because only one view is used for
modeling the system. In our example, we performed aspect composition at the CSM
level which is discussed in the next section (see also [48]).

4.5 From Annotated UML to CSM

In PUMA4SOA, generating the Platform specific model can be delayed to the CSM
level. The UML PIM and platform aspect models are first transformed to CSM
models. The CSM PSM is then generated by composing the CSM platform aspect
models with the CSM PIM. The generated CSM model is separated into two layers,
the business layer representing the workflow model, and the component layer
representing the service behavior model. The workflow model is transformed into the
top level scenario model. The composite activities in the workflow are refined using
multiple service behavior models, which are transformed into multiple sub-scenarios
within the top level scenario. The CSM on the left in Figure 17 is the top level
scenario representing the workflow model. It has a Start, and End elements for
beginning and finishing the scenario. The ResourseAcquire and ResourseRelease
indicate the usage of the resources. A Step element describes an operation or action.
An atomic step is drawn as a box with a single line and a composite step as a box with
double lines on the sides. The scenario on the right of Figure 17 illustrates the
composed model which describes the PSM of the sub-scenario InitialPatientTransfer.
The grayed parts originated from the context-specific aspect model which was
composed with the PIM. Whenever a consumer requests a service in the workflow
model, the generic service invocation aspect is instantiated using binding roles to
generate the context specific service invocation aspect, which is then composed with
the PIM to produce the PSM. Figure 10 shows seven service requests, which means
that seven invocation aspect instances are composed within top level scenario.

244 D.C. Petriu, M. Alhaj, and R. Tawhid

Fig. 17. CSM of the Eligibility Referral System

Step: PerformPayor
Authorization

Start: EligibilityReferral

R_Acquire: nurse

Step:

R_Acquire: na

Step: FillTransferForm

Step: IntialPatientTransfer

Step: ProcessEligibilityTransfer

Fork

Step: PerformPhysician
Authorization

Join

Step: SelectingReferral

Step: ValidatingRequest

Branch

Step: Accept Step: Reject

Merge

R_Release: na

R_Release nurse

End

Start: IntialPatientTransfer

R_Acquire: na

Step:

Step: RecordTransferForm

R_Acquire: xmlParserNA

Step: MarshallingMessage

R_Release: xmlParserNA

R_Acquire: soapDM

Step: RequestedSOAPMessage

R_Acquire: xmlParserDM

Step: UnmarshallingMessage

R_Release: xmlParserDM

R_Acquire: dm

Step: RecordTransferFormInvocation

R_Acquire: disk

Step: ReadData

R_Release disk

Step: ReviewData

R_Release: dm

R_Acquire: xmlParserDM

Step: MarshallingMessage

R_Release: xmlParserDM

R_Acquire: xmlParserNA

Step: UnmarshallingMessage

R_Release: xmlParserNA

R_Release: na

End

 Software Performance Modeling 245

4.6 From CSM to LQN

Model transformation from CSM to LQN is performed by separating the workflow
and service layer, as done in section 3.2. The workflow layer which represents the top
level scenario is transformed into an LQN activity graph associated with a task called
“workflow”, and runs on its own processor. The service layer, which represents CSM
sub-scenario containing services, is transformed into a set of tasks with their owned
entries corresponding to services. Figure 18 shows the LQN performance model for
the Eligibility Referral System. The top level of the LQN represents the workflow
activity graph (in gray), while the underlying services are represented by the lower
level tasks and entries. The middleware tasks are shown in darker gray.

Fig. 18. LQN model

&

user User

dProcessEligibilityReferral

&
dSelectingReferral

+

W
orkflow

dInitialPatientTransfer

dPerformPhysicianAuthorization dPerformPayorAuthorization

dConfirmTransfer

dCompleteTransfer

receive MW-PA

receive MW-ES ConfirmTransfer ValidatingRequest AdmisionServer

FillTransferForm NursingAccount

receive MW-AS

receive MW-DM

delay Net

UserP

ReferralBusi
nessProcess

transferring

dm

insurance

admission Disk

ObtainPayerAuthorization EstimatorServer

send MW-NA

ObtainPhysicianAuthorization PhysicianAccount

ScheduleTransfer RequestReferral Update RecordTransferForm DataManagement

ReadData Disk WriteData

dValidatingRequest

dProcessEligibilityTransfer

dSchedulingTransfer

246 D.C. Petriu, M. Alhaj, and R. Tawhid

4.7 Performance Results

The performance of the Eligibility Referral System has been evaluated based on two
design alternatives: a) with finer service granularity corresponding to service
architecture from Figure 11; and b) with coarser service granularity, where the
invocations of low level services for accessing the database DM are replaced with
regular calls, avoiding the regular service invocation overhead. In the second solution,
the functionality of the lower level services have been integrated within the higher
level services provided by the NursingAccount component. Figure 18 shows the LQN
model generated for the Eligibility Referral System for the first alternative only. The
LQN model of the second alternative is not shown here.

The performance analysis is performed to compare the response time and the
throughput of the system. It aims to find the system’s bottleneck (i.e. software and
hardware components that saturate first and throttle the system). To mitigate the
bottleneck and improve the performance of the overall system, a series of hardware
and/or software modifications are applied after identifying every bottleneck. The
LQN results will show the response time reduction obtained by making fewer
expensive service invocations using SOAP and XML in the same scenario. Figure 19
compares the response time and throughput of the system versus the number of users
ranging from 1 to 100. The results illustrate the difference between the system with
finer and coarser granularity. The compared configurations are similar in the number
of processors, disks, and threads, except that the latter performs fewer service
invocations through the service platform. The improvement is considerable (about
40% for a large number of users).

The results show the importance of service granularity on system performance,
which must be evaluated at an early phases of the system design. The proposed
analysis helps the modeler to decide on the right granularity level, making a tradeoff
between system performance and level of granularity of the deployed services.

Fig. 19. LQN results for response time and throughput comparing different service granularity

e) Finer and Coarser service granularity: Response time
vs, # of Users

0

10

20

30

40

50

60

0 20 40 60 80 100 120

of Users

R
es

p
o
ns

e
 ti

m
e
 (
se

Finer service granularity

Coarser service granularity

f) Finer and Coarser service granularity: Throughput vs.
of Users

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 20 40 60 80 100 120

of Users

Th
ro

u
gh

p
u

Finer service granularity

Coarser service granularity

 Software Performance Modeling 247

5 Extension of PUMA to Software Product Lines (SPL)

A Software Product Line (SPL) is a set of similar software systems built from a
shared set of assets, which are realizing common features satisfying a particular
domain. Experience shows that by adopting a SPL development approach,
organizations achieve increased quality and significant reductions in cost and time to
market [14].

An emerging trend apparent in the recent literature is that the SPL development
moves toward adopting a Model-Driven Development (MDD) paradigm. This means
that models are increasingly used to represent SPL artifacts, which are building blocks
for many different products with all kind of options and alternatives. We propose to
integrate performance analysis in the early phases of the model-driven development
process for Software Product Lines (SPL), with the goal of evaluating the
performance characteristic of different products by generating and analyzing
quantitative performance models [39]. Our starting point is the so-called SPL model,
a multi-view UML model of the core family assets representing the commonality and
variability between different products. We added another dimension to the SPL
model, annotating it with generic performance specifications (i.e., using parameters
instead of actual values) expressed in the standard UML profile MARTE [30]. Such
parameters appear as variables and expression in the MARTE stereotype attributes. A
model transformation realized in the Atlas Transformation Language (ATL) derives
the UML model of a specific product with concrete MARTE performance annotations
from the SPL model. The product derivation process binds the variability expressed in
the SPL to a specific product, and also the generic SPL performance annotations to
concrete values provided by the designer for this product. The proposed model
transformation approach can be applied to any existing SPL model-driven
development process using UML for modeling software.

Performance is a runtime property of the deployed system and depends on two
types of factors: some are contained in the design model of the product (generated
from the SPL model) while others characterize the underlying platforms and runtime
environment. Performance models need to reflect both types of factors. Woodside et
al. [47] proposed the concept of performance completions to close the gap between
abstract design models and external platform factors. Since our goal is to automate the
derivation of a performance model for a specific product from the SPL model, we
propose to deal with performance completions in the early phases of the SPL
development process by using a Performance Completion feature (PC-feature) model
as described in the previous section. The PC-feature model explicitly captures the
variability in platform choices, execution environments, different types of
communication realizations, and other external factors that have an impact on
performance, such as different protocols for secure communication channels and
represents the dependencies and relationships between them [41]. Therefore, our
approach uses two feature models for a SPL: 1) a regular feature model for expressing
the variability between member products, and 2) a PC-feature model introduced for
performance analysis reasons to capture platform-specific variability.

248 D.C. Petriu, M. Alhaj, and R. Tawhid

Dealing manually with a large number of performance parameters and with their
mapping, by asking the developers to inspect every diagram in the model, to extract
these annotations and to attach them to the corresponding PC-features, is an error-
prone process. A model transformation approach is proposed in [43] to automate the
collection of all the generic parameters that need to be bound to concrete variables
from the annotated product model, presenting them to the user in a user-friendly
format.

The automatic derivation of a specific product model based on a given feature
configuration is enabled through the mapping between features from the feature
model and their realizations in the design model. In this section, an efficient mapping
technique is used, which aims to minimize the amount of explicit feature annotations
in the UML design model of SPL. Implicit feature mapping is inferred during product
derivation from the relationships between annotated and non-annotated model
elements as defined in the UML metamodel [40].

In order to analyze the performance of a specific product running on a given
platform, we need to generate a performance model for that product by model
transformations from the SPL model with generic performance annotations. In our
research, this is done in four big steps: a) instantiating a product platform independent
model (PIM) with generic performance parameters from the SPL model; b) collecting
all the generic parameters that need bounding from the automatically generated
product PIM and presents them to the developer in a user-friendly spreadsheet format;
c) performing the actual binding to concrete values provided by the developer to
obtain a product platform specific model (PSM) and d) generating a performance
model for the product from the model obtained in the previous step.

Related Work. To the best of our knowledge, no work has been done to evaluate and
predict the performance of a given member of a SPL family by generating a formal
performance model. Most of the work aims to model non-functional requirements
(NFRs) in the same way as functional requirements. Some of the works are concerned
with the interactions between selected features and the NFRs and propose different
techniques to represent these interactions and dependencies. In [8], the MARTE
profile is analyzed to identify the variability mechanisms of the profile in order to
model variability in embedded SPL models. Although MARTE was not defined for
product lines, the paper proposes to combine it with existing mechanisms for
representing variability, but it does not explain how this can be achieved. A model
analysis process for embedded SPL is presented in [9] to validate and verify quality
attributes variability. The concept of multilevel and staged feature model is applied by
introducing more than one feature models that represent different information at
different abstraction levels; however, the traceability links between the multilevel
models and the design model are not explained.

In [7], the authors propose an integrated tool-supported approach that considers
both qualitative and quantitative quality attributes without imposing hierarchical
structural constraints. The integration of SPL quality attributes is addressed by
assigning quality attributes to software elements in the solution domain and linking
these elements to features. An aggregation function is used to collect the quality
attributes depending on the selected features for a given product.

 Software Performance Modeling 249

A literature survey on approaches that analyze and design non-functional
requirements in a systematic way for SPL is presented in [29]. The main concepts of
the surveyed approaches are based on the interactions between the functional and
non-functional features.

An approach called Svamp is proposed to model functional and quality variability
at the architectural level of the SPL [35]. The approach integrates several models: a
Kumbang model to represent the functional and structural variability in the
architecture and to define components that are used by other models; a quality
attribute model to specify the quality properties and a quality variability model for
expressing variability within these quality attributes.

Reference [10] extends the feature model with so-called extra-functional features
representing non-functional features. Constraint programming is used to reason on
this extended feature model to answer some questions such as how many potential
products the feature model contains.

The Product Line UML-Based Software Engineering (PLUS) method is extended
in [38] to specify performance requirements by introducing several stereotypes
specific to model performance requirements such as «optional» and «alternative
performance feature».

5.1 Domain Engineering Process

The SPL development process is separated into two major phases: 1) domain
engineering for creating and maintaining a set of reusable artifacts and introducing
variability in these software artifacts, so that the next phase can make a specific
decision according to the product’s requirements; and 2) application engineering for
building family member products from reusable artifacts created in the first phase
instead of starting from scratch.

The domain engineering process is a development cycle for reuse and includes, but
is not limited to, creating the requirement specifications, domain models, architecture,
reusable software components [14]. The SPL assets created by the domain
engineering process which are of interest for our research are represented by a multi-
view UML design model of the family, called the SPL model, which represents a
superimposition of all variant products. The creation of the SPL model employs two
separate UML profiles: a product line profile based on [24] for specifying the
commonality and variability between products, and the MARTE profile for
performance annotations. Another important outcome of the domain engineering
process is the feature model used to represent commonalities and variabilities between
family members in a concise taxonomic form. Additionally, the PC-feature model is
created to represent the variability space of the performance completions.

An e-commerce case study is used to illustrate the construction of the UML model
for SPL that represents the source model of our model transformation approach. The
e-commerce SPL is a web-based product line that can generate a distributed
application that can handle either business-to-business (B2B) or business-to-consumer
(B2C) systems. For instance, in B2B, a business customer can browse and select
items through several catalogs. Each customer has a contract with a supplier for
purchases, as well as bank accounts through which payments can be made. An
operation fund is associated with each contract.

250 D.C. Petriu, M. Alhaj, and R. Tawhid

Fig. 20. Feature model of the e-commerce SPL

Feature Model. The feature models are used in our approach to represent two
different variability spaces. The PC-feature model represents the variability in
platform choices, execution environments, and other external factors that have an
impact on performance as described in the previous section. This sub-section
describes the regular feature model representing functional variabilities between
products. An example of feature model of an e-commerce SPL is represented in
Figure 20 in the extended FODA notation, Cardinality-Based Feature Model (CBFM)
[17]. Since the FODA notation is not part of UML, the feature diagram is represented
in the source model taken as input by our ATL transformation as an extended UML
class diagram, where the features and feature groups are modeled as stereotyped
classes and the dependencies and constraints between features as stereotyped
associations. For instance, the two alternative features Static and Dynamic are
mutually exclusive and so they are grouped into an exactly-one-of feature group
called Catalog, while the three optional features CreditCard, DebitCard, and Check
are grouped into an at-least-one-of feature group called Payment. Thus, an individual
system can provide at least one of these features or any number of them. In the case of
an individual system providing all of these features, the user can choose one of them
during the run-time execution. In addition to functional features, we add to the
diagram another type of features characterizing design decisions that have an impact
on the non-functional requirements or properties. For example, the architectural
decision related to the location of the data storage (centralized or distributed) affects
performance, reliability and security, and is represented in the diagram by two
mutually exclusive quality features. This type of feature related to a design decision is
part of the design model, not just an additional PC-feature required only for
performance analysis. This feature model represents the set of all possible
combinations of features for the products of the family. It describes the way features
can be combined within this SPL. A specific product is configured by selecting a
valid feature combination from the feature model, producing a so-called feature
configuration based on the product’s requirements. To enable the automatic derivation
of a given product model from the SPL model, the mapping between the features

purchaseOrder

catalog

static dynamic

delivery

invoices

on-lineDisplay

printedInvoice

e-commerceKernel

customer

businessCustomer

homeCustomer

payment

customerAttractions

promotions

membershipDiscount

sales

customerInquiries

helpDesk callCenter

shippingType

normal express

packageSlip

internationalSale

dataStorage

electronic

shipping

distributed centralized

creditCard

check

debitCard

switchingMenu

severalLanguage

currencyConversion

tariffsCalculation

I/ELaws

security

<1-1><1-1>

<1-3>

<1-1>

<1-3>
<1-3>

<1-4>

<1-2>

<1-2>

<1-2>

Features composition rules:

• switchingMenu requires debitCard and creditCard

• switchingMenu requires debitCard and check

• switchingMenu requires creditCard and check

•electronic requires on-lineDisplay

• shipping requires printedInvoices

 Software Performance Modeling 251

contained in the feature model and their realizations in a reusable SPL model needs to
be specified, as shown in the next sub-section. Also, each stereotyped class in the
feature model has a tagged value indicating whether it is selected in a given feature
configuration or not.

SPL Model. The SPL model should contain, among other assets, structural and
behavioural views which are essential for the derivation of performance models. It
consists of: 1) structural description of the software showing the high-level classes or
components, especially if they are distributed and/or concurrent; 2) deployment of
software to hardware devices; 3) a set of key performance scenarios defining the main
system functions frequently executed.

The functional requirements of the SPL are modeled as use cases. Use cases
required by all family members are stereotyped as «kernel». The variability
distinguishing the members of a family from each other is explicitly modeled by use
cases stereotyped as «optional» or «alternative». In order to avoid polluting our
model with extra annotations and to ensure the well-formedness of the derived
product model, we propose to annotate explicitly the minimum number of model
elements within each diagram of our SPL model. For instance, in the use case
diagram, only the optional and alternative use cases are annotated with the name of
the features requiring them (given as stereotype attributes); since a kernel use case
represents commonality, it is sufficient to just stereotype it as «kernel». Other model
elements, such as actors, associations, generalizations, properties, are mapped
implicitly to feature through their relationship with the use cases, so there is no need
to clutter the model with their annotations. The evaluation of implicit mapping during
product derivation is explained in the following subsection.

Fig. 21. A fragment of the class diagram of the e-commerce SPL

252 D.C. Petriu, M. Alhaj, and R. Tawhid

Fig. 22. SPL Scenario Browse Catalog

The structural view of the SPL is presented as a class diagram; Figure 21 depicts a
small fragment. The classes that are common to all members of the SPL are
stereotyped as «kernel». The variability that distinguishes the members of a family
from each other is explicitly modeled by classes stereotyped as «optional» or
annotated with the name of the feature(s) requiring them (given as stereotype
attributes). This is an example of mapping between features and the model elements
realizing them. In cases where a class behaves differently in different product (such as
CustomerInterface in B2B and B2C systems) a generalization/specialization hierarchy
is used to model the different behaviours of this class. The two subclasses
B2BInterface and B2CInterface are used by B2B systems and B2C systems,
respectively.

The behavioural SPL view is modeled as sequence diagrams for each scenario of
each use case of interest. Figure 22 illustrates the kernel scenario BrowseCatalog.
Sequence diagram variability that distinguishes between the behaviour of different
features is expressed by extending the alt and opt fragments with the stereotypes
«AltDesignTime» «OptDesignTime», respectively. For example, the alt fragment
stereotyped with «AltDesignTime» {VP=Catalog} gives two choices based on the
value of the Catalog feature (Static or Dynamic); more specifically, each one of its
Interaction Operand has a guard denoting the feature Static or Dynamic. An
alternative feature that is rather complex and is represented as an extending use case,
can be also modeled as an extended alt operator that contains an Interaction Use
referring to an Interaction representing the extending use case. Note that regular alt
and opt fragments that are not stereotyped represent choices to be made at runtime, as
defined in UML.

Since the SPL model is generic, covering many products and containing variation
points with variants, the MARTE annotations need to be generic as well. We use

«kernel»
«PaRunTInstance»

{instance = CatServer,
host=$CatNode}

:Catalog

«kernel-abstract-vp»
«PaRunTInstance»

{instance=CBrowser,
host=$CustNode}

:CustomerInterface

«optional »
«PaRunTInstance»
{instance = CatDB,
host=$DTopNode}

:StaticStorage

«GaAnalysisContext» {contextParams= $N1, $Z1, $ReqT, $FSize, $Blocks}

catalogInfo
«PaCommStep»
{msgSize=($CatI,KB)}

sd Browse Catalog

getList

«GaWorkloadEvent»
{pattern=(closed (population=$N1),
(extDelay=$Z1))}
«PaStep» {hostDemand=($ CatD, ms),
respT=($ReqT,ms),calc)}
«PaCommStep» {msgSize = ($FSize
*0.2,KB), commTxOvh = ($GetLSend,ms),
commRcvOvh = ($GetLRcv, ms)} }}

«optional »
«PaRunTInstance»
{instance = CatDB,
host=$ProDBNode}

:ProductDB

«optional »
«PaRunTInstance»
{instance = CatDB,
host=$ProDisNode}

:ProductDiplay

alt [Static]

[Dynamic]

«AltDesignTime» {VP=Catalog}

returnData
«PaCommStep»
{msgSize=($RetD,KB),
commTxOvh=($RetDSend,ms),
commRcvOvh=($RetDRcv, ms)}

getData
«PaStep»
{hostDemand=($Blocks*0.9,ms)}
«PaCommStep»
{msgSize=($GetD,KB),
commTxOvh=($GetDSend,ms),
commRcvOvh=($GetDRcv, ms)}

disData
«PaStep»
{hostDemand=($PDisD,ms)}
«PaCommStep»
{msgSize=($DisD,KB),
commTxOvh=($DisDSend,ms),
commRcvOvh=($DisDRcv, ms)}

returnCatList
«PaCommStep»
{msgSize=($RCL,KB)}

getCatList
«PaStep»
{hostDemand=($DToptD,ms)}
«PaCommStep»
{msgSize=($GCatL,KB)}

 Software Performance Modeling 253

MARTE variables as a means of parameterizing the SPL performance annotations;
such variables (parameters) will be assigned (bound to) concrete values during the
product derivation process. For instance the message getList is stereotyped as a
communication step (by convention, we use names starting with ‘$’ for all MARTE
variables to distinguish them from other identifiers and names):

«PaCommStep» { msgSize = ($MReq, KB),
commTxOvh = ($GetLSend, ms),

commRcvOvh = ($GetLRcv, ms)}}

where the message size is the variable $GetL in KiloBytes. The overheads for sending
and receiving this particular message are the variables $GetLSend and $GetLRcv,
respectively, in milliseconds. We propose to annotate each communication step
(which corresponds to a logical communication channel) with the CPU overheads for
transferring the respective message: commTxOvh for transmitting (sending) the
message and commRcvOvh for receiving it. Eventually, these overheads will be added
in the performance model to the execution demands of the two execution hosts
involved in the communication (one for sending and the other for receiving the
respective message).

Performance Completions. In SPL, different members may vary from each other in
terms of their functional requirements, quality attributes, platform choices, network
connections, physical configurations, and middleware. Many details contained in the
system that are not part of its design model but of the underlying platforms and
environment, do affect the run-time performance and need to be represented in the
performance model. Performance completions, as proposed by Woodside [47] and
explained in the previous section, are a manner to close the gap between the high-
level design model and its different implementations. Performance completions
provide a general concept to include low-level details of execution environment/
platform in performance models

In this approach, we propose to include the performance impact of underlying
platforms into the UML+MARTE model of a product as aggregated platform
overheads, expressed in MARTE annotations attached to existing processing and
communication resources in the generated product model. This will keep the model
simple and still allow us to generate a performance model containing the performance
effects of both the product and the platforms. Every possible PC-feature choice is
mapped to certain MARTE annotations corresponding to UML model elements in the
product model. This mapping is realized by the transformation generating the
parameter spreadsheets, which is providing the user with mapping information in
order to put the annotation parameters needing to be bound to concrete values into
context.

Adding security solutions requires more resources and longer execution times,
which in turn has a significant impact on system performance. The PC-feature group
Communication shown in Figure 13 contains two alternative features secured and
unsecured. The secured feature offers two security protocols, each with different
overheads for sending and receiving secure messages. These overheads are mapped to
the communication overheads through the attributes commRcvOvh and commTxOvh,

254 D.C. Petriu, M. Alhaj, and R. Tawhid

which represent the host demand overheads for receiving and sending messages,
respectively. Since not all the messages exchanged in a product need to have the same
communication overheads, we propose to annotate each individual message
stereotyped as «PaCommStep» with the processing overheads for the respective
message: commTxOvh for transmitting (sending) it and commRcvOvh for receiving it.
In fact, these overheads correspond to the logical communication channel that
conveys the respective message. Eventually, the logical channel will be allocated to a
physical communication channel (e.g., network or bus) and to two execution hosts,
the sender and the receiver. The commTxOvh overhead will be eventually added in the
performance model to the execution demands of the sender host and commRcvOvh to
that of the receiver host.

Each feature from the PC-feature model shown in Figure 13 may affect one or
more performance attributes. For instance, data compression reduces the message size
and at the same time increases the processor communication overhead for
compressing and decompressing the data. Thus, it is mapped to the performance
attributes message size and communication overhead through the MARTE attributes
msgSize, commTxOvh and commRcvOvh, respectively. The mapping here is between a
PC-feature and the performance attribute(s) affected by it, which are represented as
MARTE stereotype attributes associated to different model elements.

5.2 Model Transformation Approach

The derivation of a specific UML product model with concrete performance
annotations from the SPL model with generic annotations requires three model
transformations: a) transforming the SPL model to a product platform independent
model (PIM) with generic performance annotations, b) generating spreadsheets for the
user containing generic parameters and guiding information for the specific product,
c) performing the actual binding by using the concrete values provided by the user to
produce a product platform specific model (PSM). We have implemented these model
transformations in the Atlas Transformation Language (ATL) [1]. We handle two
kind of generic parametric annotations: a) product-specific (due to the variability
expressed in the SPL model) and platform-specific (due to device choices, network
connections, middleware, and runtime environment).

Product PIM Derivation. The derivation process is initiated by specifying a given
product through its feature configuration (i.e., the legal combination of features
characterizing the product). The selected features are checked for consistency against
the feature dependencies and constraints in the feature model, in order to identify any
inconsistencies. An example is checking to ensure that no two mutually exclusive
features are chosen.

The second step in the derivation process is to select the use cases realizing the
chosen features. All kernel use cases are copied to the product use case diagram, since
they represent functionality provided by every member of the SPL. If a chosen feature
is realized through extend or include relationships between use cases, both the base
and the included or extending use cases have to be selected, as well. A use case

 Software Performance Modeling 255

containing in its scenario variation point(s) required to realize the selected feature(s)
has to be chosen, too. The optional and alternative use cases are selected and copied
to the target use case diagram if they are mapped to a feature from the feature
configuration. The implicit mapping of other non-annotated elements is inferred from
their relationships with annotated elements as defined in the UML metamodel and
well-formedness rules. For example, Actor is a non-annotated element associated to
one or more use cases, so its implicit mapping is evaluated through the attribute
memberEnd owned by the Association connected it with a use case. The attribute
memberEnd collects all the properties related to the association and since the type of
the property refers to the end of the association, we can navigate to the use case and
the corresponding actor through this attribute. Whenever, the use case is selected, the
actor and the association are selected as well. Finally, the use case diagram for the
product is developed after all the PL variability stereotypes were eliminated.

The third step is to derive the product class diagram by selecting first all kernel
classes from the SPL class diagram. Optional and variant classes needed for the
desired product are selected next (each is annotated with the feature(s) requiring it).
Moreover, superclasses of the selected optional or variant classes have to be selected
as well. The other non-annotated elements are selected based on their relationships
with annotated elements as defined in the UML metamodel. For example, according
to the UML metamodel, a binary association has to be attached to a classifier at each
end. Therefore, the decision whether a binary association has to be copied or not to
the target is based on the selection of both of its classifiers. If at least one of the
classifiers is not selected, the association will not be created in the target model. In
other words, the binary association is created in the target model if and only if both of
its memberEnd properties have their classifiers already selected and created. At the
same time, if only one of its classifier is selected, the property attached to this
unselected association and owned by the selected classifier should not be created in
the target model.

The final step of the product derivation is to generate the sequence diagrams
corresponding to different scenarios of the chosen use cases. Each such scenario is
modeled as a sequence diagram, which has to be selected from the SPL model and
copied to the product one. The PL variability stereotypes are eliminated after binding
the generic roles associated to the lifelines of each selected sequence diagram to
specific roles corresponding to the chosen features. For instance, the sequence
diagram BrowseCatalog has the generic alternate role CustomerInterface which has to
be bound to a concrete role, either B2BInterface or B2CInterface to realize the
features BusinessCustomer or HomeCustomer, respectively. However, the selection of
the optional roles is based on the corresponding features. For instance, the generic
optional role StaticStorage is selected if the feature Static Catalog is chosen. More
details about the derivation approach and the mapping of functional features to model
elements are presented in our previous work [40] [42].

The outcome of this model transformation is a product model where the variability
related to SPL has been resolved based on the chosen feature configuration. However,
the performance annotations are still generic and need to be bound to concrete values.

256 D.C. Petriu, M. Alhaj, and R. Tawhid

Generating User-Friendly Representation. The generic parameters of a product PIM
derived from the SPL model are related to different kind of information: a) product-
specific resource demands (such as execution times, number of repetitions and
probabilities of different steps); b) software-to-hardware allocation (such as component
instances to processors); and c) platform/environment-specific performance details (also
called performance completions). The user (i.e., performance analyst) needs to provide
concrete values for all generic parameters; this will transform the generic product model
into a platform-specific model describing the run-time behaviour of the product for a
specific run-time environment.

Choosing concrete values to be assigned to the generic performance parameters of
type (a) is not a simple problem. In general, it is difficult to estimate quantitative
resource demands for each step in the design phase, when an implementation does not
exist and cannot be measured yet. Several approaches are used by performance
analysts to come up with reasonable estimates in the early design stages: expert
experience with previous versions or with similar software, understanding of the
algorithm complexity, measurements of reused software, measurements of existing
libraries, or using time budgets. As the project advances, early estimates can be
replaced with measured values for the most critical parts. Therefore, it is helpful for
the user of our approach to keep a clearly organized record for the concrete values
used for binding in different stages of the project. For this reason, we proposed to
automate the collection of the generic parameters from the model on spreadsheets,
which will be provided to the user.

The parameters of type (b) are related to the allocation of software components to
processors available for the application. The user has to decide for a product what the
actual hardware configuration is and how to allocate the software to processing nodes.
The MARTE stereotype «RunTInstance» annotating a lifeline in a sequence diagram
provides an explicit connection between a role in the behaviour model and the
corresponding runtime instance of a component. The attribute host of this stereotype
indicates on which physical node from the deployment diagram the instance is
running. Using parameters for the attribute host enable us to allocate each role (a
software component) to an actual hardware resource. The transformation collects all
these hardware resources and associates their list to each lifeline in the spreadsheets.
The user decides on the actual allocation by choosing a processor from this list.

The performance effects of variations in the platform/environment factors (such as
network connections, middleware, operating system and platform choices) are
included into our model by aggregating the overheads caused by each factor and by
attaching them via MARTE annotations to the affected model elements. As already
mentioned, the variations in platform/environment factors are represented in our
approach through the PC-feature model (as explained in the previous section). A
specific run-time instance of a product is configured by selecting a valid PC-feature
combination from the PC-feature model. We define a PC-feature configuration as a
complete set of choices of PC-features for a specific model element.

It is interesting to note that a PC-feature has impact on a subset of model elements
in the model, but not necessarily on all model elements of the same type. For instance,
the PC-feature Secured affects only certain communication channels in a product

 Software Performance Modeling 257

Fig. 23. Part of the generated Spreadsheet for the scenario Browse Catalog

model, not all of them. Hence, a PC-feature needs to be associated to certain model
element(s), not to the entire product. This mapping is set up through the MARTE
performance specifications annotating the affected model elements.

Dealing manually with a huge number of performance annotations by asking the
developer to inspect every diagram in the generated product model, to extract the
generic parameters and to match them with the PC-features is an error-prone process.
We propose to automate the process of collecting all generic parameters that need to
be bound to concrete values from the product model and to associate each PC-feature
to the model element(s) it may affect, then present the information to the developer in
a user-friendly format. We generate a spreadsheet per diagram, indicating for each
generic parameter some guiding information that helps the user in providing concrete
binding values.

The transformation handles differently the context analysis parameters, which are
usually defined by the modeler to be carried without binding throughout the entire
transformation process, from the SPL model to the performance model for a product.
These parameters can be used to explore the performance analysis space. A list of the
context analysis parameters are provided to the user, who will decide whether to bind
them now to concrete values, or to use them unbound in MARTE expressions.

A part of the generated spreadsheet for the scenario BrowseCatalog is shown in
Figure 23. For instance, the PC-feature DataCompression is mapped to the MARTE
attribute msgSize annotating a model element of type message. As the value of the
attribute msgSize is an expression $FSize*0.2 in function of the context analysis
parameter $FSize, it is the user’s choice to bind it at this level or keep it as a parameter
in the output it produces. The column titled Concrete Value is designated for the user
to enter appropriate concrete value for each generic parameter, while the column
Guideline for Value provides a typical range of values to guide the user. For instance, if
the PC-selection features chosen are “secured” with “TLS”, the concrete value entered
by the user is obtained by evaluating the expression (11.9+0.134*msgsize), assuming

258 D.C. Petriu, M. Alhaj, and R. Tawhid

that the user follows the provided guideline. Assuming that the choice for the PC-
feature DataCompression is “compressed”, the user may decide to increase by 4% the
existing overhead due to compression features. In general, the guidelines can be
adjusted by the performance analyst for a given SPL and a known execution
environment. The generated spreadsheet presents a user-friendly format for the users of
the transformation who have to provide appropriate concrete values for binding the
generic performance annotations. Being automatically generated, they capture all the
parameters that need to be bound and reduce the incidence of errors.

Performing the Actual Binding. After the user selects an actual processor for each
lifeline role provided in the spreadsheets and enters concrete values for all the generic
performance parameters, the next model transformation takes as input these
spreadsheets along with its corresponding product model, and binds all the generic
parameters to the actual values provided by the user. The outcome of the
transformation is a specific product model with concrete performance annotations,
which can be further transformed into a performance model.

In order to automate the actual binding process, the generated spreadsheets with
concrete values are given as a mark model to the binding transformation. The mark
model concept has been introduced in the OMG MDA guide [33] as a means of
providing concrete parameter values to a transformation. This capability of allowing
transformation parameterization through mark model instances makes the
transformation generic and more reusable in different contexts.

6 Conclusions

In this chapter we presented the open PUMA tool architecture that can accept a
variety of types of Smodels and generate a variety of types of Pmodels. The
practicality of PUMA is demonstrated by different implemented transformations from
UML 1.4 and UML 2.X to CSM for sequence and activity diagrams, and
transformations from CSM to queueing networks, LQN and Petri nets. We are
extending PUMA for SOA and SPL and are working on the final component of
PUMA, to support the systematic use of performance models in order to generate
feedback to the designers. PUMA promises a way out of the maze of possible
evaluation techniques. From the point of view of practical adoption, this is of the
utmost importance, as the software developer is not tied to an evaluation model whose
limitations he or she does not understand. Performance modelers are similarly freed to
generate a wide variety of forms of model, and explore their relative capabilities,
without having to create the (quite difficult) interface to UML. As UML is constantly
changing, this can also make maintenance of model-building easier. While PUMA is
described for performance, CSM may be adapted to other evaluations based on
behaviour.

In general, experience in conducting model-driven performance analysis and other
non-functional properties (NFPs) in the context of model-driven development shows
that the domain is still facing a number of challenges.

 Software Performance Modeling 259

Human qualifications. Software developers are not trained in all the formalisms
used for the analysis of performance and other kind of NFPs, which leads to the idea
of hiding the analysis details from developers. However, the software models have to
be annotated with extra information for each NFP and the analysis results have to be
interpreted in order to improve the designs. A better balance needs to be made
between what to be hidden and what to de exposed.

Abstraction level. The analysis of different NFPs may require source models at
different levels of abstraction/detail. The challenge is to keep all the models
consistent.

Tool interoperability. Experience shows that it is difficult to interface and to
integrate seamlessly different tools, which were created at different times with
different purposes and maybe running on different platforms or platform versions.

Software process. Integrating the analysis of different NFP raises process issues.
For each NFP it is necessary to explore the state space for different design
alternatives, configurations, workload parameters in order to diagnose problems and
decide on improvement solutions. The challenge is how to compare different solution
alternatives that may improve some NFPs and deteriorate others, and how to decide
on trade-offs.

Change propagation through the model chain. Currently, every time the software
design changes, a new analysis model is derived in order to redo the analysis. The
challenge is to develop incremental transformation methods for keeping different
model consistent instead of starting from scratch after every model improvement.

Acknowledgements. This work was partially supported by the Natural Sciences and
Engineering Research Council (NSERC) and industrial and government partners,
through the Healthcare Support through Information Technology Enhancements
(hSITE) Strategic Research Network and through Discovery grants.

References

[1] Abdul Fatah, I., Majumdar, S.: Performance of CORBA-Based Client Server
Architectures. IEEE Transactions on Parallel & Distributed Systems, 111–127 (February
2002)

[2] Alhaj, M., Petriu, D.C.: Approach for generating performance models from UML models
of SOA systems. In: Proceedings of CASCON 2010, Toronto, November 1-4 (2010)

[3] Anyanwu, K., Sheth, A., Cardoso, J., Miller, J., Kochut, K.: Healthcare Enterprise
Process Development and Integration. Journal of Research and Practice in Information
Technology 35(2) (May 2003)

[4] Atlas Transformation Language (ATL), http://www.eclipse.org/m2m/atl
[5] Balsamo, S., DiMarco, A., Inverardi, P., Simeoni, M.: Model-based Performance

Prediction in Software Development. IEEE Transactions on Software Eng. 30(5), 295–
310 (2004)

[6] Balsamo, S., Marzolla, M.: Simulation Modeling of UML Software Architectures. In:
Proc. ESM 2003, Nottingham, UK (June 2003)

260 D.C. Petriu, M. Alhaj, and R. Tawhid

[7] Bartholdt, J., Medak, M., Oberhauser, R.: Integrating Quality Modeling with Feature
Modeling in Software Product Lines. In: Proc. of the 4th Int. Conference on Software
Engineering Advances (ICSEA 2009), pp. 365–370 (2009)

[8] Belategi, L., Sagardui, G., Etxeberria, L.: MARTE Mechanisms to Model Variability
When Analyzing Embedded Software Product Lines. In: Bosch, J., Lee, J. (eds.) SPLC
2010. LNCS, vol. 6287, pp. 466–470. Springer, Heidelberg (2010)

[9] Belategi, L., Sagardui, G., Etxeberria, L.: Model based analysis process for embedded
software product lines. In: Proc. of 2011 Int. Conference on Software and Systems
Process, ICSSP 2011 (2011)

[10] Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature Models.
In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–503.
Springer, Heidelberg (2005)

[11] Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence diagrams and statecharts
to analysable Petri net models. In: Proc. 3rd Int. Workshop on Software and Performance,
Rome, pp. 35–45 (July 2002)

[12] Bernardi, S., Merseguer, J.: Performance evaluation of UML design with Stochastic
Well-formed Nets. Journal of Systems and Software 80(11), 1843–1865 (2007)

[13] Cavenet, C.G., Hillston, J., Kloul, L., Stevens, P.: Analysing UML 2.0 activity diagrams
in the software performance engineering process. In: Proc. 4th Int. Workshop on
Software and Performance, Redwood City, CA, pp. 74–83 (January 2004)

[14] Clements, P.C., Northrop, L.M.: Software Product Lines: Practice and Patterns, p. 608.
Addison-Wesley (2001)

[15] Cortellessa, V., Di Marco, A., Inverardi, P.: Model-Based Software Performance
Analysis. Springer (2011)

[16] Cortellessa, V., Mirandola, R.: Deriving a Queueing Network based Performance Model
from UML Diagrams. In: Proc. Second Int. Workshop on Software and Performance,
Ottawa, September 17-20, pp. 58–70 (2000)

[17] Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature models
and their specialization. Software Process Improvement and Practice, 7–29 (2005)

[18] D’Ambrogio, A., Bocciarelli, P.: A Model-driven Approach to Describe and Predict the
Performance of Composite Services. In: WOSP 2007, Buenos- Aires, Argentina (2007)

[19] Earl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Pearson
Education (2005)

[20] DiStefano, S., Scarpa, M., Puliafito, A.: From UML to Petri Nets: The PCM-Based
Methodology. IEEE Trans. on Software Engineering 37(1), 65–79 (2011)

[21] France, R., Ray, I., Georg, G., Ghosh, S.: An Aspect-Oriented Approach to Early Design
Modeling. In: IEE Proceedings - Software, Special Issue on Early Aspects (2004)

[22] Franks, G., Hubbard, A., Majumdar, S., Petriu, D.C., Rolia, J., Woodside, C.M.: A toolset
for Performance Engineering and Software Design of Client-Server Systems.
Performance Evaluation 24(1-2), 117–135 (1995)

[23] Franks, G.: Performance Analysis of Distributed Server Systems, Report OCIEE-00-01,
Ph.D. Thesis, Carleton University, Ottawa, Canada (2000)

[24] Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-
based Software Architectures. Addison-Wesley Object Technology Series (July 2005)

[25] Gómez-Martínez, E., Merseguer, J.: Impact of SOAP Implementations in the
Performance of a Web Service-Based Application. In: Min, G., Di Martino, B., Yang,
L.T., Guo, M., Rünger, G. (eds.) ISPA Workshops 2006. LNCS, vol. 4331, pp. 884–896.
Springer, Heidelberg (2006)

 Software Performance Modeling 261

[26] Grassi, V., Mirandola, R., Randazzo, E., Sabetta, A.: KLAPER: An Intermediate
Language for Model-Driven Predictive Analysis of Performance and Reliability. In:
Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Component
Modeling Example. LNCS, vol. 5153, pp. 327–356. Springer, Heidelberg (2008)

[27] Happe, J., Becker, S., Rathfelder, C., Friedrich, H., Reussner, R.: Parametric performance
completions for model-driven performance prediction. Performance Evaluation 67(8),
694–716 (2010)

[28] Marzolla, M., Mirandola, R.: Performance Prediction of Web Service Workflows. In:
Overhage, S., Ren, X.-M., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS,
vol. 4880, pp. 127–144. Springer, Heidelberg (2008)

[29] Nguyen, Q.: Non-Functional Requirements Analysis Modeling for Software Product
Lines. In: Proc. of Modeling in Software Engineering (MISE 2009), ICSE Workshop, pp.
56–61 (2009)

[30] Object Management Group, UML Profile for Modeling and Analysis of Real-Time and
Embedded Systems (MARTE), Version 1.1, OMG document formal/2011-06-02 (2011)

[31] Object Management Group, UML Profile for Schedulability, Performance, and Time
Specification, Version 1.1, OMG document formal/05-01-02 (January 2005)

[32] Object Management Group, Service oriented architecture Modeling Language (SoaML),
ptc/2009-04-01 (April 2009)

[33] Object Management Group, MDA Guide Version 1.0.1, omg/03-06-01 (2003)
[34] Petriu, D.B., Woodside, C.M.: An intermediate metamodel with scenarios and resources

for generating performance models from UML designs. Software and Systems
Modeling 6(2), 163–184 (2007)

[35] Raatikainen, M., Niemelä, E., Myllärniemi, V., Männistö, T.: Svamp - An Integrated
Approach for Modeling Functional and Quality Variability. In: 2nd Int Workshop on
Variability Modeling of Software-intensive Systems, VaMoS (2008)

[36] Rolia, J.A., Sevcik, K.C.: The Method of Layers. IEEE Trans. on Software
Engineering 21(8), 689–700 (1995)

[37] Smith, C.U.: Performance Engineering of Software Systems. Addison Wesley (1990)
[38] Street, J., Gomaa, H.: An Approach to Performance Modeling of Software Product Lines.

In: Workshop on Modeling and Analysis of Real-Time and Embedded Systems, Genova,
Italy (October 2006)

[39] Tawhid, R., Petriu, D.C.: Integrating Performance Analysis in the Model Driven
Development of Software Product Lines. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl,
A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 490–504. Springer,
Heidelberg (2008)

[40] Tawhid, R., Petriu, D.C.: Product Model Derivation by Model Transformation in
Software Product Lines. In: Proc. of the 2nd IEEE Workshop on Model-based
Engineering for Real-Time Embedded Systems (MoBE-RTES 2011), Newport Beach,
CA, USA (2011)

[41] Tawhid, R., Petriu, D.C.: Automatic Derivation of a Product Performance Model from a
Software Product Line Model. In: Proc. of the 15th International Conference on Software
Product Line (SPLC 2011), Munich, Germany (2011)

[42] Tawhid, R., Petriu, D.C.: Integrating Performance Analysis in Software Product Line
Development Process. In: Software Product Lines - The Automated Analysis. InTech -
Open Access Publisher (2011)

[43] Tawhid, R., Petriu, D.C.: User-Friendly Approach for Handling Performance Parameters
during Predictive Software Performance Engineering. In: Proc. of the 3rd ACM/SPEC
International Conference on Performance Engineering (ICPE 2012), Boston, USA (2012)

262 D.C. Petriu, M. Alhaj, and R. Tawhid

[44] Tribastone, M., Gilmore, S.: Automatic Translation of UML Sequence Diagrams into
PEPA Models. In: Proc. of 5th Int. Conference on Quantitative Evaluation of SysTems
(QEST 2008), St Malo, France, pp. 205–214 (2008)

[45] Verdickt, T., Dhoedt, B., Gielen, F., Demeester, P.: Automatic Inclusion of Middleware
Performance Attributes into Architectural UML Software Models. IEEE Trans. on
Software Eng. 31(8), 695–711 (2005)

[46] Woodside, C.M., Neilson, J.E., Petriu, D.C., Majumdar, S.: The Stochastic Rendezvous
Network Model for Performance of Synchronous Client-Server-like Distributed Software.
IEEE Transactions on Computers 44(1), 20–34 (1995)

[47] Woodside, C.M., Petriu, D.C., Siddiqui, K.H.: Performance-related Completions for
Software Specifications. In: Proc. of the 22nd Int. Conference on Software Engineering,
ICSE 2002, Orlando, Florida, USA, pp. 22–32 (2002)

[48] Woodside, C.M., Petriu, D.C., Petriu, D.B., Xu, J., Israr, T., Georg, G., France, R.,
Houmb, S.H., Jürjens, J.: Performance Analysis of Security Aspects by Weaving
Scenarios Extracted from UML Models. Journal of Systems and Software 82, 56–74
(2009)

[49] Xu, J.: Rule-based automatic software performance diagnosis and improvement.
Performance Evaluation 67(8), 585–611 (2010)

	Software Performance Modeling
	Introduction
	Source, Intermediate and Target Models
	Bridging the Gap between Smodels and Pmodels
	MARTE Performance Annotations
	Source Model: UML+MARTE
	Target Performance Model: LQN
	Intermediate Model: CSM

	PUMA Transformation Chain
	Transformation from UML+MARTE to CSM
	Transformation from CSM to LQN

	Extension of PUMA to Service-Oriented Architecture(SOA)
	PUMA4SOA Transformation Chain
	Platform Independent Model: Case Study
	PC Feature Model
	Aspect Platform Model for Service Invocation
	From Annotated UML to CSM
	From CSM to LQN
	Performance Results

	Extension of PUMA to Software Product Lines (SPL)
	Domain Engineering Process
	Model Transformation Approach

	Conclusions
	References

