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Abstract. Ideally, a software development methodology should include both 
the ability to specify non-functional requirements and to analyze them starting 
early in the lifecycle; the goal is to verify whether the system under 
development would be able to meet such requirements. This chapter considers 
quantitative performance analysis of UML software models annotated with 
performance attributes according to the standard “UML Profile for Modeling 
and Analysis of Real-Time and Embedded Systems” (MARTE). The chapter 
describes a model transformation chain named PUMA (Performance by Unified 
Model Analysis) that enables the integration of performance analysis in a UML-
based software development process, by automating the derivation of 
performance models from UML+MARTE software models, and by facilitating 
the interoperability of UML tools and performance tools. PUMA uses an 
intermediate model called “Core Scenario Model” (CSM) to bridge the gap 
between different kinds of software models accepted as input and different 
kinds of performance models generated as output. Transformation principles are 
described for transforming two kinds of UML behaviour representation 
(sequence and activity diagrams) into two kinds of performance models 
(Layered Queueing Networks and stochastic Petri nets). Next, PUMA 
extensions are described for two classes of software systems: service-oriented 
architecture (SOA) and software product lines (SPL). 

1 Introduction 

The quality of many software intensive systems, ranging from real-time embedded 
systems to web-based applications, is determined to a large extent by their 
performance characteristics, such as response time and throughput. The developers of 
such systems should be able to assess and understand the performance effects of 
various design decisions starting at an early stage and continuing throughout the 
software life cycle. Software Performance Engineering (SPE) is an approach 
introduced by Smith [37], which proposes to use quantitative methods and 
performance models in order to assess the performance effects of different design and 
implementation alternatives during the development of a system.  SPE promotes the 
integration of performance analysis into the software development process from its 
earliest lifecycle stages, in order to insure that the system will meet its performance 
objectives. 

The process of building a system's performance model before the system is 
completely implemented and can be measured begins with identifying a small set of 
key performance scenarios representative of the way in which the system will be used 
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[37]. The performance analysts must understand first the system behaviour for each 
scenario, following the execution path from component to component, identifying the 
quantitative demands for resources made by each component (such as CPU execution 
time and I/O operations), as well as the various reasons for queueing delays (such as 
competition for hardware and software resources). The scenario descriptions thus 
obtained can be mapped (manually or automatically) to a performance model, which 
can be used for  By solving the model, the analyst will obtain performance results 
such as response times, throughput, utilization of different resources by different 
software components, etc. Trouble spots can be identified and alternative solutions for 
eliminating them can be assessed in a similar way. Many modeling formalisms have 
been developed over the years for software performance evaluation, such as queueing 
networks (QN), extended QN, Layered Queueing Networks (LQN) (a type of 
extended QN), stochastic Petri nets, stochastic process algebras and stochastic 
automata networks, as surveyed in [5][15]. 

Model-Driven Development (MDD) is an evolutionary step in the software field 
that changes the focus of software development from code to models. MDD uses 
abstraction to separate the model of the application under construction from 
underlying platform models and automation to generate code from models. The 
emphasis on models facilitates also the analysis of non-functional properties (NFP), 
by deriving analysis models for different NFPs from the software models. Ideally, 
analysis models should be generated automatically by model transformations from the 
software models used for development, and become part of the model suite which is 
maintained with the product. For brevity, we term the software models as Smodels, 
and the performance models as Pmodels. 

To facilitate the generation of Pmodels, UML Smodels can be extended with 
standard performance annotations provided by the “UML Profile for Modeling and 
Analysis of Real-Time and Embedded Systems” (MARTE) [30] defined for UML 2.x 
or its predecessor, the “UML Profile for Schedulability, Performance and Time” 
(SPT) [31] defined for UML1.x. Using UML profiles provides the additional 
advantage that the extended models can be processed with standard UML editors, 
without any need to change the tools, as profiles are standard mechanisms for 
extending UML models.  

This chapter addresses the problem of bridging the semantic gap between different 
kinds of software models and performance models. We present the PUMA 
(Performance by Unified Model Analysis) transformation chain, whose strategy [48] 
“unifies” performance evaluation in the sense that it can accept as input different 
types of source Smodels (from which the users choose the most suitable for their 
project) and it generate different types of Pmodels (also according to the user’s 
choice). To permit a user to combine arbitrary Smodel and Pmodel types according to 
project needs (an N-by-M problem), PUMA employs an intermediate (or pivot) 
language called Core Scenario Model (CSM) [34]. Based around CSM, PUMA has an 
open architecture summarized in Figure 1 which shows the transformers (rounded 
rectangles) and the flow of artifacts (rectangles) between them. It exploits several 
standards: UML and its model-interchange XMI standard, MARTE, performance 
model standards [18] [31], and the CSM metamodel [24] [25]. With suitable 
translators, PUMA can support other design specification language defining scenarios 
and resources, and other performance models. 
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Fig. 1. PUMA transformation chain 

Related Work. Many kinds of Pmodels (including queueing networks (QNs), 
extended QNs, stochastic Petri nets, process algebras and automata networks) can be 
used for performance analysis of software systems, as surveyed in [5]. The Pmodels 
are often constructed “by hand”, based on the insight of the analysts and their 
interactions with the designers. To fit into MDD, the present purpose is to automate 
the derivation of Pmodels from the Smodels used for software development. A recent 
book [15] covers all the way from the basic concepts for performance analysis of 
software systems to describing the most representative methodologies from literature 
for annotating and transforming Smodels into Pmodels. For example, UML models 
with performance annotations (mostly SPT) containing some structural view and a 
certain kind of behavior diagrams have been used to generate different kinds of 
Pmodels: from sequence diagrams (SD) to simulation model [6], from SD and 
statecharts (SC) to stochastic Petri nets [11][12], from SD to QNs [16], from activity 
diagrams (AD) to stochastic process algebra (PEPA) [13], from SD to PEPA [44], 
from UML to an intermediate model called Performance Model Context (PCM) to 
stochastic Petri nets [20].  Many of these approaches transform from one kind of 
UML behaviour diagram plus architectural information to one kind of Pmodel. The 
difference of the PUMA strategy is that it unifies performance evaluation by 
accepting different types of source Smodels and generating multiple types of Pmodel, 
via the intermediate language Core Scenario Model (CSM), as described in more 
detail in the next sections. 

Another model driven approach for development and evaluation of non-functional 
properties such as performance and reliability is based on the Palladio Component 
Model (PCM), which allows specifying component-based software architectures in a 
parametric way [27]. PCM captures the software architecture with respect to static 
structure, behaviour, deployment/allocation, resource environment/execution 
environment, and usage profile. Although its metamodel is completely different from 
UML, the Palladio Component Model has a UML-like graphical notation representing 
component diagrams, deployment and individual service behaviour models (similar to 
activity diagrams). 
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There are other intermediate models proposed in literature similar to PUMA’s 
CSM, which captures only those software aspects that are relevant to performance 
models. An example is the pioneering “execution graph” of Smith [37], which is a 
kind of scenario model with performance parameters that is transformed into an 
extended QN model. Another intermediate language that supports performance and 
reliability analysis of component-based systems is KLAPER [26]. It is more oriented 
toward representing calls and services rather than scenarios and has a more limited 
view of resources (i.e., no basic distinction between hardware/software, 
active/passive). It has also been applied as intermediate model for transformation 
from different types of Smodels to different types of Pmodels. 

The remaining of the paper is organized as follows: Section 2 describes how 
PUMA bridges the gap between Smodels and Pmodels through performance 
annotations and presents the source, target and intermediate models; Section 3 
describes the transformations in the PUMA chain; Section 4 introduces PUMA 
extensions for handle service-oriented systems; Section 5 presents PUMA extensions 
needed to handle software product lines and Section 6 presents the conclusions and 
future work.  

2 Source, Intermediate and Target Models 

2.1 Bridging the Gap between Smodels and Pmodels 

Time-related performance is a runtime property of a software system determined by 
how the software behaviour uses the system resources. Contention for resource 
creates queueing delays that directly affect the overall performance. System 
performance measures are closely connected with the use of the system as described 
by a subset of use cases with performance constraints, and more specifically by 
selected scenarios realizing such use cases. For instance, response time is usually 
defined as the end-to-end delay of a particular scenario, and throughput is the 
frequency of execution of a scenario or a set of related scenarios. Scenarios 
corresponding to online operations frequently required by customers who are waiting 
for the results have high priority for performance analysis, while scenarios doing 
housekeeping operations in the background may be less important.   

The Smodel and Pmodel share similar concepts of resources and scenarios. In 
both, scenarios are composed of units of behaviour (called steps) which are using 
resources. Hierarchical definition of steps is possible: a step may represent an 
elementary operation or a whole sub-scenario. However an important difference 
between Smodel and Pmodel is that the first is function/data-centric, while the second 
is resource-centric. In other words, the Smodel scenario steps process data and 
implement algorithms, while the Pmodel steps care mostly about what resources are 
used, how and for what duration. This creates a semantic gap that needs to be bridged 
in the process of deriving a Pmodel from a Smodel by adding performance 
annotations to the latter.  

Normally a Pmodel is generated from a Smodel subset containing the following: 
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• High-level software architecture describing the main system components 
instances and their interactions at a level of abstraction that captures certain 
characteristics relevant to performance, such as distribution, concurrency, 
parallelism, competition for software resources (such as software servers and 
critical sections), synchronization, serialization, etc.   

• Allocation of high-level software components instances to hardware devices 
usually modeled as a deployment diagram. 

• A set of key performance scenarios annotated with performance information 
(see section 2.3 for a concrete example).  

In order to understand what kind of performance annotations need to be added to 
UML Smodels, we need to look at the basic concepts contained in the performance 
domain model. As already mentioned, performance is determined by how the system 
behaviour uses system resources. Scenarios define execution paths with externally 
visible end points. Performance requirements (such as response time, throughput, 
probability of meeting deadlines, etc.) can be placed on scenarios. In the “UML 
Profile for Schedulability, Performance and Time” (SPT), the performance domain 
model describes three main types of concepts: resources, scenarios, and workloads 
[31]. These concepts are also used in MARTE [30]. 

The resources used by the software can be active or passive, logical or physical 
software or hardware. Some of these resources belong to the software itself (e.g., 
critical section, software server, lock, buffer), others to the underlying platforms (e.g., 
process, thread, processor, disk, communication network). 

Each scenario is composed from scenario steps joined by predecessor-successor 
relationships, which may include fork/join, branch/merge and loops. A step may 
represent an elementary operation or a whole sub-scenario. Quantitative resource 
demands for each step must be given in the performance annotations. Each scenario is 
executed by a workload, which may be open (i.e., requests arriving in some 
predetermined pattern) or closed (a fixed number of users or jobs in the system). 

Another source for the gap between Smodels and Pmodels is the fact that 
performance is a system characteristic, affected not only by the application under 
development represented by the Smodel, but also by the underlying platforms on top 
of which the application will be running (such as middleware, operating system, 
communication network software, hardware).  There are different ways to approach 
this problem: one is to add the missing platform information in performance 
annotations, as explained in the subsections 2.3 and 2.4. Another way is to take a 
MDA-like approach [33], by considering that the application Smodel is a Platform-
Independent Model (PIM) which can be composed with platform models defined as 
aspect models; the result of the composition is a Platform Specific Model (PSM). 
Such an approach is presented in Section 4. 

2.2 MARTE Performance Annotations 

In the “UML Profile for Modeling and Analysis of Real-Time and Embedded 
Systems” (MARTE) [30], the foundation concepts and non-functional properties 
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(NFPs) shared by different quantitative analysis domains are joined in a single 
package called Generic Quantitative Analysis Model (GQAM), which is further 
specialized by the domain models for schedulability (SAM) and performance (PAM). 
Other domains for quantitative analyses, such as reliability, availability, safety, are 
currently being defined by specializing GQAM.  

Core GQAM concepts describe how the system behavior uses resources over time, 
and contains the same three main categories of concepts presented at the beginning of 
the section: resources, behaviour and workloads. 

GQAM Resource Concepts. A resource is based on the abstract Resource class 
defined in the General Resource Model and contains common features such as 
scheduling discipline, multiplicity, services. The following types of resources are 
important in GQAM: a) ExecutionHost: a processor or other computing device on 
which are running processes; b) CommunicationsHost: hardware link between 
devices; c) SchedulableResource: a software resource managed by the operating 
system, like a process or thread pool; and d) CommunicationChannel: a middleware 
or protocol layer that conveys messages.  

Services are provided by resources and by subsystems. A subsystem service 
associated with an interface operation provided by a component may be identified as a 
RequestedService, which is in turn a subtype of Step, and may be refined by a 
BehaviorScenario. 

GQAM Behaviour/Scenario Concepts. The class BehaviorScenario describes a 
behavior triggered by an event, composed of Steps related by predecessor-successor 
relationships. A specialized step, CommunicationStep, defines the conveyance of a 
message. Resource usage is attached to behaviour in different ways: a) a Step 
implicitly uses a SchedulableResource (process, thread or task); b) each primitive 
Step executes on a host processor; c) specialized steps, AcquireStep or ReleaseStep, 
explicitly acquire or release a Resource; and d) BehaviorScenarios and Steps may use 
other kind of resources, so BehaviorScenario inherits from ResourceUsage which 
links resources with concrete usage demands. 

GQAM Workload Concepts. Different workloads correspond to different operating 
modes, such as takeoff, in-flight and landing of an aircraft or peak-load and average-
load of an enterprise application. A workload is represented by a stream of triggering 
events, WorkloadEvent, generated in one of the following ways: a) by a timed event 
(e.g. a periodic stream with jitter); b) by a given arrival pattern (periodic, aperiodic, 
sporadic, burst, irregular, open, closed); c) by a generating mechanism named 
WorkloadGenerator; d) from a trace of events stored in a file.  

As mentioned above, the Performance Analysis Model (PAM) specializes the 
GQAM domain model. It is important to mention that only a few new concepts were 
defined in PAM, while most of the concepts are reused from GQAM. 

PAM specializes a Step to include more kinds of operation demands during a step. 
For instance, it allows for a non-synchronizing parallel operation, which is forked but 
never joins (noSync property). In addition to CPU execution, a Step can demand the 
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execution of other Scenarios, RequestedServices offered by components at interfaces, 
and “external operations” (ExtOp) which are defined outside the Smodel. (ExtOp is 
one of the means of introducing platform resources in MARTE annotations). A new 
step subtype, PassResource, indicates the passing of a shared resource from one 
process to another. 

In term of Resources, PAM reuses ExecutionHost for processor, Schedulable 
Resources for processes (or threads) and adds a LogicalResource defined by the 
software (such as semaphore, lock, buffer pool, critical section). A runtime object 
instance (PaRunTInstance) is an alias for a process or thread pool identified in 
behavior specifications by other entities (such as lifelines and swimlanes). 

A UML model intended for performance analysis should contain a structural view 
representing the software architecture at the granularity level of concurrent runtime 
components and their allocation to hardware resources, as well as a behavioural view 
showing representative scenarios with their respective resource usage and workloads. 

2.3 Source Model: UML+MARTE 

This section presents an example of a UML+MARTE source model for two CORBA-
based client-server systems selected from a performance case study published in [1]: 
one is called the Handle-driven ORB (H-ORB) and the other the Forwarding ORB (F-
ORB). For each case, the authors have implemented a performance prototype based 
on a Commercial-Off-The-Shelf (COTS) middleware product and a synthetic 
workload running on a network of Sun workstations using Solaris 2.6; the prototypes 
were measured for a range of parameters.  

We used the system description from [1] to build a UML+MARTE model of each 
system, which represents the source model for the PUMA transformation. The results 
of the LQN model generated by PUMA are compared with measurement results 
presented in [1].The synthetic application implemented in [1] contains two distinct 
services A and B; the clients connect to these services through the ORB. Each client 
executes a cycle repeatedly, making one request to Server A and one to Server B. 
Two copies of A, called A1 and A2, and two copies of B, called B1 and B2, are 
provided. The two copies of each server enable the system to handle more load and 
allow the investigation of the performance effects of load balancing that is provided 
by many commercial ORB products. The client performs a bind operation before 
every request. The client request path varies depending on the underlying ORB 
architecture. In the H-ORB, the client gets the address of the server from the agent 
and communicates with the server directly. In the F-ORB, the agent forwards the 
client request to the appropriate server, which returns the results of the computations 
directly to the client. When a service is requested form a particular server, the server 
process executes a loop and consumes a pre-determined amount of CPU time. The 
synthetic application is used because it provides flexibility in experimentation with 
various levels of different workload parameters, such as the service time at each 
server, and the inter-node delay. 
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Fig. 2. The deployment of the H-ORD performance prototype 

The synthetic application as considered here is characterized by the following 
parameters: number of clients N, service demands SA, SB representing the CPU 
execution time for each service, inter-node communication delay D and message 
length L. Since the experiments were performed on a local area network, the inter-
node delay that would appear in a wide-area network was simulated by making a 
sender process sleeps for D units of time before sending a message. However, in the 
case of the H-ORB agent there was no access to the source code, so the inter-node 
delay for the handle returning operation was simulated by making the client sleep for 
D units of time before receiving the message. 

Figure 2 shows the deployment diagram for the H-ORB performance prototype. 
The processing nodes are stereotyped as «GaExecHost» and the LAN communication 
network nodes as «GaCommHost». Each client, each server and the ORB agent are 
allocated on their own processor. 

Figure 3 represents the client request scenario in the form of a sequence diagram 
(SD), while Figure 4 represents the same scenario as an activity diagram (AD). Both 
the SD and the AD are stereotyped with «GaAnalysisContext» that indicate that the 
respective scenarios are to be considered for performance analysis. Each lifeline role 
stereotyped by «PaRunTInstance» is related to a runtime concurrent component 
instance, which is in turn allocated on a processor in the deployment diagram. The 
first step of the scenario has a workload stereotype «GWorkloadEventt» with an 
attribute pattern indicating that the scenario is used under a closed workload with a 
population of $N. ($N indicates a MARTE variable, to be substituted by a concrete 
value when the performance model is actually solved. By convention, the name of all 
MARTE variables in this work begin with “$” to distinguish them from other names). 
A «PaStep» stereotype is applied to each of the steps corresponding to the following 
messages: Get-Handle(), A1Work(), A2Work(), B1Work() and B2Work(). All 
scenario steps are characterized by a certain hostDemand, which represents the CPU 
execution time. 
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Fig. 3. Client request scenario for H-ORB as a sequence diagram 

In the SD from Figure 3, the choice of which server instance to call (A1 or A2; B1 
or B2) is modeled as two alt combined fragments respectively, with two operands 
each. An operand itself is a «PaStep» with the attribute prob indicating the probability 
of being chosen. The call to the Sleep() function in the SD is modeled by an 
interaction occurrence ref making reference to another SD not shown here, which 
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Fig. 4. Client request scenario for H-ORB as an activity diagram 

contains a call to a dummy server Sleep that delays the caller by a required time 
without consuming the CPU time of the caller.  

In the activity diagram, every active concurrent instance is represented by its own 
partition (a.k.a. swimlane) and is stereotyped by «PaRunTInstance». The scenario 
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and prob attributes as in SD. An AD arc crossing the boundary between partitions 
represents a message sent from one active instance to another.  Sleep is a structured 
activity, which contains inside the details of a call to a dummy instance that delays the 
caller without consuming its CPU time. Eventually, in the performance model Sleep 
will be represented as a dummy server that performs the same roll. 

The scenario for the F-ORB case study is not presented here, but it is fairly similar 
with the H-ORB. In the F-ORB architecture the client sends the entire service request 
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2.4 Target Performance Model: LQN 

Many performance modeling formalisms have been developed over time, such as 
queueing networks (QN), extended QN, Layered Queueing Networks (LQN), 
stochastic Petri nets, stochastic process algebras and stochastic automata networks. 
Although PUMA can incorporate model transformations from CSM to nay 
performance modeling formalisms, in the paper we will consider one target 
performance model, the Layered Queueing Network (LQN) [46][36]. 

LQN was developed as an extension of the well-known Queueing Network model; 
the main difference is that LQN can easily represent nested services: a server may 
become in turn a client to other servers from which it requires nested services, while 
serving its own clients. The LQN toolset presented in [22][23] includes both 
simulation and analytical solvers.  

A slightly simplified LQN metamodel is presented in Figure 5. Examples of LQN 
models are presented in Figures 5 and 18.  

A LQN model is an acyclic graph, with nodes representing software entities and 
hardware devices (both known as tasks), and arcs denoting service requests. The 
software entities are drawn as rectangles with thick lines, and the hardware devices as 
ellipses. The nodes with outgoing but no incoming arcs play the role of clients, the 
intermediate nodes with both incoming and outgoing arcs are usually software servers 
and the leaf nodes are hardware servers (such as processors, I/O devices, 
communication network, etc.) A software or hardware server node can be either a 
single-server or a multi-server.  

Each kind of service offered by a LQN task is modeled as an entry, drawn as a 
rectangle with thin lines attached to the task or other entries of the same task. Every 
entry has its own execution times and demands for other services (given as model 
parameters). Each software task is running on a processor shown as an ellipse. The 
communication network, disk devices and other I/O devices are also shown as 
ellipses. The word “layered” in the LQN name does not imply a strict layering of 
tasks (for example, tasks in a layer may call each other or skip over layers). The arcs 
with a filled arrow represent synchronous requests, where the sender is blocked until 
it receives a reply from the provider of service. It is possible to have also 
asynchronous request messages (shown as a stick arrow), where the sender does not 
block after sending a request and the server does reply back. Another communication 
style called forwarding (shown with a dotted line), allows for a client request to be 
processed by a chain of servers instead of a single server. The first server in the chain 
will forward the request to the second and become free; the second to the third, etc., 
and the last server in the chain will reply to the client. Although not explicitly 
illustrated in the LQN notation, every server, be it software or hardware, has an 
implicit message queue, where incoming requests are waiting their turn to be served. 
Servers with more then one entry have a single input queue where requests for 
different entries wait together. 

A server entry may be decomposed in two or more sequential phases of service. 
Phase 1 is the portion of service during which the client is blocked waiting for a reply 
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Fig. 5. LQN metamodel 

from the server (it is assumed that the client has made a synchronous request). At the 
end of phase 1, the server will reply to the client, which will unblock and continue its 
execution. The remaining phases, if any, will be executed in parallel with the client. 
An extension to LQN [23] allows for an entry to be further decomposed into activities 
if more details are required to describe its execution (see Figure Y). The activities are 
connected together to form a directed graph that may branch into parallel threads of 
control, or may choose randomly between different branches. Just like phases, 
activities have execution time demands, and can make service requests to other tasks. 

The parameters of a LQN model are as follows: 

─  customer (client) classes and their associated populations or arrival rates; 
─  for each phase (activity) of a software task entry: average execution time; 
─  for each phase (activity) making a request to a device: average service time at the 

device, and average number of visits; 
─  for each phase (activity) making a request to another task entry: average number 

of visits 
─  for each request arc: average communication delay; 
─  for each software and hardware server: scheduling discipline. 
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2.5 Intermediate Model: CSM 

The Core Scenario Model [34] represents scenarios, which are implicit in many 
software specifications; they are useful for communicating partial behaviours among 
diverse stakeholders and provide the basis for defining performance characteristics. 
The CSM metamodel is similar to the SPT Performance Profile, describing three main 
types of concepts: resources, scenarios, and workloads. Each Scenario is a directed 
graph with Steps as nodes, and explicit PathConnectors which define Sequence, 
Branch, Merge, Fork and Join. A Step is owned by a Component, which may be a 
ProcessResource, and which in turn is associated to a HostResource (processor). 
Logical resources are acquired and released along the path by special subtypes of Step 
called ResourceAcquire and ResourceRelease. External Resource represents a 
resource not explicitly represented in the UML model required for executing external 
operations that have a performance impact (for example, a disk operation). The CSM 
metamodel is described in more detail in [34]. 

3 PUMA Transformation Chain 

In this section we present the principles of the transformation used in PUMA: a) from 
source Smodel in UML extended with MARTE to the intermediate CSM; and b) from 
CSM to LQN Pmodel. The section also shows a few performance results obtained with 
the LQN model generated from the CORBA source model introduced in Section 2.3 and 
compares them with measurements. 

3.1 Transformation from UML+MARTE to CSM   

The general strategy is to identify the scenarios and structural diagrams to be 
considered by looking for MARTE stereotypes and then to generate structural CSM 
elements (Resources and Components) from the structure diagram (e.g., deployment), 
 

Table 1. Mapping between MARTE stereotypes and CSM Elements 

MARTE CSM 

«GaWorkloadEvent» Closed/OpenWorkload 

«GaScenario» Scenario 

«PaStep» Step 

«PaCommStep» Step (for the message) 

«GaResAcq» ResourceAcquire 

«GaResRel» ResourceRelease 

«PaResPass» ResourcePass 

«GaExecHost» ProcessingResource 

«PaCommHost» ProcessingResource 

«PaRunTInstance» Component 

«PaLogicalResource» LogicalResource 
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and behavioural elements (Scenarios, Steps and PathConnectors) from the behaviour 
diagrams. The mapping between MARTE stereoptypes and CSM elements is 
presented in Table 1. 

The transformation algorithm begins with generating the structural elements first. 
A UML Node from a deployment diagram stereotyped «GaExecHost» or 
«PaCommHost» is converted into a CSM ProcessingResource. A UML run-time 
component manifested by an artifact, which is in turn deployed on a node is converted 
into a CSM Component.  

Scenarios Described by Sequence Diagrams. The transformation continues with the 
scenarios described by sequence diagrams stereotyped with «GaAnalysisContext». 
For each scenario, a CSM Start PathConnection is generated first, and the workload 
information is attached to it. Each Lifeline from a sequence diagram describes the 
behaviour of a UML instance (be it active or passive) and corresponds in turn to a 
CSM Component. The Lifelines stereotyped as «PaRunTInstance» corresponds to an 
active runtime instance.  We assume that the artifacts for all active UML instances 
are shown on the deployment diagram, so their corresponding CSM Components were 
already generated. However, it is possible that the sequence diagram contains lifelines 
for passive objects not shown in the deployment diagram. In such a case, the 
corresponding CSM Passive Component is generated, and its host is inferred to be the 
same as that of the active component in whose context it executes. 

The translation follows the message flow of the scenario, generating the 
corresponding Steps and PathConnections. A simple Step corresponds to a UML 
Execution Occurrence, which is the execution of an operation as an effect of receiving a 
message. Complex CSM Steps with a nested scenario correspond to operand regions of 
UML Combined Fragments and Interaction Occurrences. A synchronous message will 
generate a CSM Sequence PathConnection between the step sending the message and 
the step executed as an effect. An asynchronous message spawns a parallel thread, and 
thus will generate a Fork PathConnection with two outgoing paths:  one follows the 
sender's activity, and the other follows the path of the message. The two paths may 
rejoin later through a Join PathConnection. Fork/join of parallel paths may be also 
generated by a par Combined Fragment. Conditional execution of alternate paths is 
generated by alt and opt Combined Fragments. 

Scenarios Described by Activity Diagrams. We consider all the scenarios described 
by activity diagrams stereotyped as «GaAnalysisContext». For each scenario, the 
transformation starts with the Initial ControNode, which is converted into a CSM 
Start PathConnection and a Resource Acquire step for acquiring the component for 
the respective swimlane. Also, the scenario workload information described by a 
«GaWorkloadEvent» stereotype is used to generate a CSM Workload element 
attached to the Start PathConnection. (Note that in MARTE, the scenario workload 
information is associated by convention with the first step of a scenario, not with its 
Initial ControlNode, which cannot be stereotyped as Step).  The translation follows 
the sequence of the scenario from start to finish, identifying the Steps and 
PathConnections (sequence, branch/merge, fork/join) from the context of the 
diagram. Each UML ActivityNode that represents a simple activity is converted into a 
CSM Step, one that represents an activity further refined by another diagram 
generates a CSM Step with a nested Scenario. 
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As mentioned before, we assume that each partition (a.k.a. swimlane) is associated 
with a Component through the «PaRunTInstance» stereotype. A special treatment is 
given to ActivityEdges that cross the partition boundary (named here cross-transition). 
A cross-transition represents a message (signal) between the corresponding 
components that implies releasing the sender (which is a Component, but also a 
Resource) and acquiring the receiver. Therefore, a cross-transition generates in CSM 
a ResourceRelease step, a Sequence PathConnection and ResourceAcquire step. 

Figure 6 shows the CSM generated for the H-ORD source model from section 2.3. 
 

Fig. 6. CSM for the H-ORB system from Figures 2 and 3 
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The main CSM model represents the main flow of steps from the scenario 
represented in Figure 3 as SD and in Figure 4 as AD. Composite steps were generated 
for every Interaction Occurrence invoking Sleep() and for each operand of the alt 
CombineFragments  making a choice of a server. The Composite steps are refined by 
CSM sub-scenarios on the right of the figure. (The fragment for the operand invoking 
A2 is not shown, being similar with the one invoking A1; the same is true for operand 
invoking B2, which is similar to B1). 

3.2 Transformation from CSM to LQN 

The first stage of the transformation algorithm parses the resources in the CSM and 
generates a LQN Processor for each CSM ProcessingResource and an LQN Task for 
each CSM Component. The second stage traverses the CSM to determine the 
branching structure and the sequencing of Steps within branches, and to discover the 
calling interactions between Components.  

The traversal creates a new LQN Entry whenever a task receives a call. The entry 
internals are described by LQN Activities that represent the sequence of Steps for the 
call, using a notation like CSM itself. Another possibility is to generate LQN Phases 
when there is only a sequence of Steps (without branching or forking). The traversal 
generates an LQN Activity for each CSM Step it encounters and it generates LQN 
Branch, Merge, Fork, Join and Sequence connectors corresponding to the same 
PathConnectors in the CSM. Whenever an interaction between two CSM 
Components is detected, an Activity is created in the Task corresponding to the 
requesting Component with a Call to the new LQN Entry which is created in the Task 
corresponding to the called Component. This Entry serves the request and its 
workload is defined by the ensuing Activities generated from the Steps encountered in 
the new Component.  

The type of call (synchronous or asynchronous) is detected by its context in the 
CSM. More exactly, a message back to a Component that previously sent a request is 
considered to be a reply to a synchronous call. Any messages that do not have matching 
replies when the end of the scenario is reached are considered to be asynchronous calls. 
During the traversal of the CSM, the algorithm creates a stack of unresolved call 
messages and removes them as the matching reply messages are detected (other 
interaction patterns can also be identified). At Branch and Fork points, the stack of 
unresolved messages is duplicated for each outgoing alternate or parallel subpath so that 
each ensuing subpath maintains its own message history. All of the duplicate call stacks 
except one are discarded at Merge and Join points after every incoming alternate or 
parallel branch has been traversed. The ordering of the messages is a direct result of the 
traversal of the CSM scenarios and is a partial order for the particular path being 
traversed. Parallel or alternate branches each have a partial order of the messages along 
their own subpaths, but no global ordering is implied. 

A CSM ClosedWorkload is transformed into parameters for a load-generating 
Reference Task, and a CSM OpenWorkload into an open stream of requests made to 
the first entry. An External Operation by a CSM Step is represented by an activity 
which makes a call to a submodel that has to be provided by the analyst. 
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Fig. 7. LQN model for the H-ORB system 

Figure 7 shows the LQN model generated from the CSM for the H-ORB given in 
Figure 6. As mentioned before, the Sleep task running on a dummy server implements 
the sleep function. All requests are synchronous calls in this example. The numbers in 
parentheses on the arcs represent the average number of calls. The service times (Not 
shown in the figure) are represented by the variables $A, $B, $D which are assigned 
concrete values doing the experiments. 

The LQN model thus generated has been validated against measurements of the  
H-ORB and F-ORB performance prototypes that have been published in [1]. As it can 
be seen in Figure 8, the accuracy of the analytic model is fairly reasonable. 

 

Fig. 8. Validation of the LQN results against measurements 

In this section we have presented the PUMA transformations from a Smodel to the 
corresponding intermediate model to the Pmodel. According to the PUMA 
architecture from Figure 1, once the Pmodel has been generated, the next step is to 
use it for experiments that are exploring the parameter space in order to evaluate 
design changes such as execution in parallel, replication, modified concurrency, and 
reduced demands and delays. The Pmodel results evaluate the potential of these 
changes, which can then be mapped to possible software solutions [49]. 

In the next two sections we will present extensions to the PUMA transformation to 
specialize it for Service-Oriented Architecture and for Software Product lines.  
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4 Extension of PUMA to Service-Oriented Architecture(SOA) 

SOA is a paradigm for developing and deploying business applications as a set of 
reusable services [19]. SOA is used for enterprise systems, web-based applications, 
multimedia, healthcare, etc. Model Driven SOA (MDSOA) is an emerging approach 
for developing service-oriented applications developing models at multiple levels of 
abstraction, which can be used eventually to generate code. MDSOA is also used to 
verify the non-functional properties (NFP) by transforming the software models to 
different NFP analysis models (including performance). In order to improve modeling 
SOA systems, OMG has introduced a new profile called Service Oriented 
Architecture Modeling Language (SoaML) [32], which extends UML with the ability 
to model the service structure and dependencies, to specify service capabilities and 
classification, and to define service consumers and providers.  

The emergence of MDD in general and of MDSOA in particular has attracted a lot 
of interest in the research community in using software models to evaluate the non 
functional properties of service-based systems.  A model transformation framework 
is proposed in [45] to automatically include the architectural impact and the 
performance overhead of the middleware layer in distributed systems. This allows one 
to model the application independent of the middleware and then obtain a platform 
specific model by composition. Another model-driven approach for development and 
evaluation of non-functional properties such as performance and reliability is based 
on the Palladio Component Model (PCM), which allows specifying component-based 
software architectures in a parametric way [27]. A parametric performance 
completion for message-oriented middleware proposed for PCM in [27] allows for the 
composition of platform components with application components. Other research on 
building performance models for web services takes a two layered user/provider 
approach in [18] and [28]: the user is a represented by a set of workflows and the 
provider by a set of services deployed on a physical system. Performance information 
about service capabilities and invocation mechanisms is given by the means of P-
WSDL (Performance-enabled WSDL) in [18], where a LQN model is generated for 
analyzing the system performance. In [28] the queueing network formalism is used to 
derive performance bounds. 

4.1 PUMA4SOA Transformation Chain 

Performance by Unified Model Analysis for SOA (PUMA4SOA) is a modeling 
approach proposed first in [2] which extends the PUMA transformation, specializing 
it for service-based systems. The difference between the original PUMA and the 
extended one for SOA stems from: a) the kind of design models accepted as input, 
and b) the separation between Platform Independent Model (PIM) and Platform 
Specific Model (PSM) of the application and the use of platform models. Figure 4.1 
illustrates the steps of PUMA4SOA; the top leftmost represents the main difference 
from PUMA (whose steps are shown in Figure 1). There are three input models to 
PUMA4SOA: a) application PIM, b) deployment model which describes the 
allocation of the artifacts to a deployment target, and c) platform aspect models. 
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Fig. 9. The Steps of PUMA4SOA 

The platform independent model of the application contains a UML software 
model with three levels of abstractions. The UML model is annotated with 
performance information using the standard UML profile MARTE. Each level 
represents a part of the system details that will be used together with the other parts to 
build the performance model. The three abstraction levels are as follows: 

a) Workflow Model which represents a set of business processes. Each workflow 
contains a sequence of activities and actions controlled by conditions, iterations, 
and concurrency. 

b) Service Architecture Model which describes the service capabilities arranged in a 
hierarchy showing anticipated usage dependencies. It also depicts the level of 
service granularity, which has a substantial effect on the system performance. 
Invoking services in heterogeneous and distributed environment produces 
message overheads due to marshalling/unmarshalling of the message data at the 
service platform. A coarser service granularity reduces the number of service 
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coupling between the components of the SOA system. However, a finer service 
granularity increases the number of service invocations, which reduces the 
performance but produces a loosely coupled system. Service Architecture 
Modeling helps the modeler to manage the tradeoff between the service 
granularity and performance. 
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c) Service Behavior Model which refines the workflow behavior, giving more 
details about the services invoked. Each workflow activity may be refined by a 
sequence diagram which represents its detailed behavior, including the 
invocations of the other services and the interaction between participants. 

PUMA4SOA also defines two models: a) Performance Completion Feature model (PC 
feature model), and b) Platform aspect models. The concept of “performance 
completions” was introduced by Woodside et al. [47] to close the gap between abstract 
design models and external platform factors. The PC feature model, introduced in the 
work of the Palladio group (see [27]) and also used in [41], defines the variability in 
platform choices, execution environments, types of platform realizations, and other 
external factors that have an impact on the system’s performance. Since the regular 
notation for feature diagrams is not part of UML, we use a UML class diagram extended 
with stereotypes to represent the PC feature model, where each feature is represented as 
a class element. Four relationships between a feature and its sub features are defined: 
Mandatory, Optional, Or, and Alternative. Each feature in the feature model represents a 
platform aspect. A platform aspect model describes the structure and the behavior of the 
service platform in a generic format. The PC feature model allows the modeler to select 
between different platform aspect models that are most appropriate for the application 
of interest.  

The selected platform aspect models composed with the PIM generate the PSM. 
The Aspect Oriented Modeling (AOM) approach is used to generate the platform 
specific model (PSM) by weaving the selected platform aspect model behaviors into 
different locations of the platform independent model (PIM). The AOM approach 
requires two types of models: a) the primary model which describes the core design 
decisions, and b) a set of aspect models, each describing a concern that crosscuts the 
primary model [21]. PUMA4SOA considers the application PIM as the primary 
model. An aspect model can be seen as a template or pattern, independent of any 
primary model it may be composed with. For each composition with the primary 
model, the template is instantiated and its formal parameters are bound to concrete 
values using binding rules, to give a context-specific aspect model. The composed 
model is generated by weaving the context-specific aspect models into the primary 
model at different locations. In the next section, we will describe the PUMA4SOA 
approach with an example from the healthcare domain. 

4.2 Platform Independent Model: Case Study 

The platform independent model is illustrated with a healthcare case study, the 
Eligibility Referral System, which is introduced in [3]. A UML activity diagram is 
used to model the workflow in Figure 10. It is the top level model that describes the 
process of transferring a patient from one hospital to another. Three organizations are 
involved, the transferring and receiving hospitals and the insurance company. The 
workflow begins with the transferring hospital filling and processing the initial forms 
needed to transfer the patient. The next process is getting the physician and the 
payment approvals. The transferring hospital is then sending the forms and waits for 
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Fig. 10. Workflow model represented by an activity diagram 

an acknowledgement from the receiving hospital. Finally, the transferring hospital 
schedules the transferring date and updates the transferring process. The workload of 
the system is described by the «GaWorkloadEvent» stereotype, which can be a closed 
arrival pattern defining a fixed populations of users or an open arrival pattern which 
defining a stream of requests that arrive at a given rate.  A swimlane  is stereotyped 
as «PaRunTInstance» to indicate that the activities are executed by a concurrent 
participant. This stereotype has a poolsize attribute to define the number of concurrent 
threads. An activity is stereotyped as «PaStep» to indicate a scenario step. It has a 
hostDemand attribute for the required execution time, a prob for its probability, and a 
rep for the number of repetitions. The communication between participants is 
described by «PaCommStep» to indicate the conveyance of a message. It has a 
msgSize attribute to indicate the amount of transmitted data. 

The Service Architecture model, illustrated in Figure 11, is using a new OMG 
profile called the Service Oriented Architecture Modeling Language (SoaML) [32]. 
SoaML extends UML with the ability to define the service structure and dependencies 
to specify service capabilities, and to define service consumers and providers. The 
Eligibility Referral System defines five components stereotyped as «participants»:  
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Fig. 11. Service Architecture Model 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. Service behavior model for Initial Patient Transfer service 

 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Deployment of the Eligibility Referral System 
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NursingAccount, PhysicianAccount, AdmissionServer, EstimatorServer, and Data  
management. The model also presents different service contracts; each one of them 
defines service consumers (their ports are stereotyped with «Request»), and service 
providers (their ports are stereotyped with «Service»). UML sequence diagrams are 
used to model the behavior of each activity defined in the workflow model. Figure 12 
shows an example of the service behavior model of “Initial Patient Transfer” activity. 
In this interaction, the nurse generates the patient transfer form by retrieving patient’s 
data from the Database, and then reads and reviews it before sending it back to the 
form. Lifelines are stereotyped with «PaRunTInstance» to indicate a concurrent 
process, and messages are stereotyped with «PaStep» to indicate an action. 

The UML Deployment diagram in Figure 12 shows the allocation of software to 
hardware. Physical communication nodes, such as WAN, LAN1, LAN2, and LAN3, 
are stereotyped with «GaCommHost» to indicate a physical communication link. 
Processors, such as AdmissionHost, TransferringHost, InsuranceHost, DMHost, and 
Disk, are stereotyped with «GaExecHost» to indicate the processor host. Artifacts, 
such as NursingAccount, PhysicainAccount, AdmissionServer, EstimatorServer, 
Datamanagement, and disk, are stereotyped with «SchedulableResource» to indicate a 
concurrent resource. The ReferralBusinessProcess component represents the 
execution engine which runs the business process of the system. 

4.3 PC Feature Model 

The PC feature model describes the variability in service platform which may affect 
the system’s performance. Figure 13 describes the features which may affect the 
performance of our example, the Eligibility Referral System. There are three 
mandatory feature groups which are required by any service platform: the operation, 
message protocol and realization. There are also two optional feature groups: 
communication and data compression. The relationship between the feature groups 
and their sub-features are alternative with exactly-one-of feature selected. Although 
the dependencies between the sub-features are not shown in the model, some features, 
such as the operation feature, message protocol feature and realization feature, are 
dependent. As an example selecting one of the operation sub-features, such as 
invocation, requires selecting one of the message protocol (Http or SOAP) and the 
realization (WebService, REST, etc.) 

Fig. 14. Platform Completion (PC) Feature Model 
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4.4 Aspect Platform Model for Service Invocation 

The aspect platform models define the middleware structure and behavior of the 
selected aspects from the PC feature model. In our example, we selected a service 
invocation aspect realized as a webservice with the message protocol SOAP. Figure 15 
describes the generic deployment including the hosts and artifacts involved in the 
service invocation aspect model. As a naming convention the vertical bar ‘|’ indicate a 
generic role name as in [21]. Two hosts are involved in the service invocation operation, 
the |Client which consumes the service, and the |Provider which provides it.  

 
 

 
 
 
 
 
 
 

 

Fig. 15. Generic Invocation aspect: deployment view 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16. Generic Aspect model for Service Invocation 
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The middleware on both sides contains an |XMLParser to marshal/unmarshal the 
message, and a |SOAP stub for message communication. Figure 16 describes the 
generic service request invocation and response behavior. A request message call is 
sent from a |Client to a |Provider. This message call differs from the regular operation 
call due to the heterogeneous environment it operates in, which require the message to 
be parsed in acceptable format at both |Client, and |Provider sides, before it is being 
sent or received. 

In the AOM approach, the generic aspect model for the service invocation, 
illustrated in Figure 16, may be inserted in the PIM multiple times wherever there is a 
service invocation. For each insertion, the generic aspect model is instantiated and its 
formal parameters are bound to concrete values using binding rules to produce a 
context specific aspect model. Each context specific aspect model is then composed 
into the primary model, which in our case is the PIM. More details about AOM 
approach can be found in [2][48].  

In PUMA4SOA the aspect composition can be performed at three modeling levels: 
the UML level, the CSM level or the LQN level. The complexity of the aspect 
composition may determine where to perform it.  At the UML level, the aspect 
composition is more complex because the performance characteristics of the system 
are scattered between different views and diagrams, which may require many models 
to be used as input to the composition.  On the contrary, performing aspect 
composition at the CSM or LQN level is simpler because only one view is used for 
modeling the system. In our example, we performed aspect composition at the CSM 
level which is discussed in the next section (see also [48]). 

4.5 From Annotated UML to CSM 

In PUMA4SOA, generating the Platform specific model can be delayed to the CSM 
level. The UML PIM and platform aspect models are first transformed to CSM 
models. The CSM PSM is then generated by composing the CSM platform aspect 
models with the CSM PIM. The generated CSM model is separated into two layers, 
the business layer representing the workflow model, and the component layer 
representing the service behavior model. The workflow model is transformed into the 
top level scenario model. The composite activities in the workflow are refined using 
multiple service behavior models, which are transformed into multiple sub-scenarios 
within the top level scenario. The CSM on the left in Figure 17 is the top level 
scenario representing the workflow model. It has a Start, and End elements for 
beginning and finishing the scenario. The ResourseAcquire and ResourseRelease 
indicate the usage of the resources. A Step element describes an operation or action. 
An atomic step is drawn as a box with a single line and a composite step as a box with 
double lines on the sides. The scenario on the right of Figure 17 illustrates the 
composed model which describes the PSM of the sub-scenario InitialPatientTransfer. 
The grayed parts originated from the context-specific aspect model which was 
composed with the PIM. Whenever a consumer requests a service in the workflow 
model, the generic service invocation aspect is instantiated using binding roles to 
generate the context specific service invocation aspect, which is then composed with 
the PIM to produce the PSM. Figure 10 shows seven service requests, which means 
that seven invocation aspect instances are composed within top level scenario. 
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Fig. 17. CSM of the Eligibility Referral System 
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4.6 From CSM to LQN 

Model transformation from CSM to LQN is performed by separating the workflow 
and service layer, as done in section 3.2. The workflow layer which represents the top 
level scenario is transformed into an LQN activity graph associated with a task called 
“workflow”, and runs on its own processor. The service layer, which represents CSM 
sub-scenario containing services, is transformed into a set of tasks with their owned 
entries corresponding to services. Figure 18 shows the LQN performance model for 
the Eligibility Referral System. The top level of the LQN represents the workflow 
activity graph (in gray), while the underlying services are represented by the lower 
level tasks and entries. The middleware tasks are shown in darker gray. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18. LQN model  
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4.7 Performance Results 

The performance of the Eligibility Referral System has been evaluated based on two 
design alternatives: a) with finer service granularity corresponding to service 
architecture from Figure 11; and b) with coarser service granularity, where the 
invocations of low level services for accessing the database DM are replaced with 
regular calls, avoiding the regular service invocation overhead. In the second solution, 
the functionality of the lower level services have been integrated within the higher 
level services provided by the NursingAccount component. Figure 18 shows the LQN 
model generated for the Eligibility Referral System for the first alternative only. The 
LQN model of the second alternative is not shown here.  

The performance analysis is performed to compare the response time and the 
throughput of the system. It aims to find the system’s bottleneck (i.e. software and 
hardware components that saturate first and throttle the system). To mitigate the 
bottleneck and improve the performance of the overall system, a series of hardware 
and/or software modifications are applied after identifying every bottleneck. The 
LQN results will show the response time reduction obtained by making fewer 
expensive service invocations using SOAP and XML in the same scenario. Figure 19 
compares the response time and throughput of the system versus the number of users 
ranging from 1 to 100. The results illustrate the difference between the system with 
finer and coarser granularity. The compared configurations are similar in the number 
of processors, disks, and threads, except that the latter performs fewer service 
invocations through the service platform. The improvement is considerable (about 
40% for a large number of users). 

The results show the importance of service granularity on system performance, 
which must be evaluated at an early phases of the system design. The proposed 
analysis helps the modeler to decide on the right granularity level, making a tradeoff 
between system performance and level of granularity of the deployed services. 

 
 

 
Fig. 19. LQN results for response time and throughput comparing different service granularity 
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5 Extension of PUMA to Software Product Lines (SPL) 

A Software Product Line (SPL) is a set of similar software systems built from a 
shared set of assets, which are realizing common features satisfying a particular 
domain. Experience shows that by adopting a SPL development approach, 
organizations achieve increased quality and significant reductions in cost and time to 
market [14].  

An emerging trend apparent in the recent literature is that the SPL development 
moves toward adopting a Model-Driven Development (MDD) paradigm. This means 
that models are increasingly used to represent SPL artifacts, which are building blocks 
for many different products with all kind of options and alternatives. We propose to 
integrate performance analysis in the early phases of the model-driven development 
process for Software Product Lines (SPL), with the goal of evaluating the 
performance characteristic of different products by generating and analyzing 
quantitative performance models [39]. Our starting point is the so-called SPL model, 
a multi-view UML model of the core family assets representing the commonality and 
variability between different products. We added another dimension to the SPL 
model, annotating it with generic performance specifications (i.e., using parameters 
instead of actual values) expressed in the standard UML profile MARTE [30]. Such 
parameters appear as variables and expression in the MARTE stereotype attributes. A 
model transformation realized in the Atlas Transformation Language (ATL) derives 
the UML model of a specific product with concrete MARTE performance annotations 
from the SPL model. The product derivation process binds the variability expressed in 
the SPL to a specific product, and also the generic SPL performance annotations to 
concrete values provided by the designer for this product. The proposed model 
transformation approach can be applied to any existing SPL model-driven 
development process using UML for modeling software. 

Performance is a runtime property of the deployed system and depends on two 
types of factors: some are contained in the design model of the product (generated 
from the SPL model) while others characterize the underlying platforms and runtime 
environment. Performance models need to reflect both types of factors. Woodside et 
al. [47] proposed the concept of performance completions to close the gap between 
abstract design models and external platform factors. Since our goal is to automate the 
derivation of a performance model for a specific product from the SPL model, we 
propose to deal with performance completions in the early phases of the SPL 
development process by using a Performance Completion feature (PC-feature) model 
as described in the previous section. The PC-feature model explicitly captures the 
variability in platform choices, execution environments, different types of 
communication realizations, and other external factors that have an impact on 
performance, such as different protocols for secure communication channels and 
represents the dependencies and relationships between them [41]. Therefore, our 
approach uses two feature models for a SPL: 1) a regular feature model for expressing 
the variability between member products, and 2) a PC-feature model introduced for 
performance analysis reasons to capture platform-specific variability. 
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Dealing manually with a large number of performance parameters and with their 
mapping, by asking the developers to inspect every diagram in the model, to extract 
these annotations and to attach them to the corresponding PC-features, is an error-
prone process. A model transformation approach is proposed in [43] to automate the 
collection of all the generic parameters that need to be bound to concrete variables 
from the annotated product model, presenting them to the user in a user-friendly 
format. 

The automatic derivation of a specific product model based on a given feature 
configuration is enabled through the mapping between features from the feature 
model and their realizations in the design model. In this section, an efficient mapping 
technique is used, which aims to minimize the amount of explicit feature annotations 
in the UML design model of SPL. Implicit feature mapping is inferred during product 
derivation from the relationships between annotated and non-annotated model 
elements as defined in the UML metamodel [40].  

In order to analyze the performance of a specific product running on a given 
platform, we need to generate a performance model for that product by model 
transformations from the SPL model with generic performance annotations. In our 
research, this is done in four big steps: a) instantiating a product platform independent 
model (PIM) with generic performance parameters from the SPL model; b) collecting 
all the generic parameters that need bounding from the automatically generated 
product PIM and presents them to the developer in a user-friendly spreadsheet format; 
c) performing the actual binding to concrete values provided by the developer to 
obtain a product platform specific model (PSM) and d) generating a performance 
model for the product from the model obtained in the previous step. 

Related Work. To the best of our knowledge, no work has been done to evaluate and 
predict the performance of a given member of a SPL family by generating a formal 
performance model. Most of the work aims to model non-functional requirements 
(NFRs) in the same way as functional requirements. Some of the works are concerned 
with the interactions between selected features and the NFRs and propose different 
techniques to represent these interactions and dependencies. In [8], the MARTE 
profile is analyzed to identify the variability mechanisms of the profile in order to 
model variability in embedded SPL models. Although MARTE was not defined for 
product lines, the paper proposes to combine it with existing mechanisms for 
representing variability, but it does not explain how this can be achieved. A model 
analysis process for embedded SPL is presented in [9] to validate and verify quality 
attributes variability. The concept of multilevel and staged feature model is applied by 
introducing more than one feature models that represent different information at 
different abstraction levels; however, the traceability links between the multilevel 
models and the design model are not explained.  

In [7], the authors propose an integrated tool-supported approach that considers 
both qualitative and quantitative quality attributes without imposing hierarchical 
structural constraints. The integration of SPL quality attributes is addressed by 
assigning quality attributes to software elements in the solution domain and linking 
these elements to features. An aggregation function is used to collect the quality 
attributes depending on the selected features for a given product. 
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A literature survey on approaches that analyze and design non-functional 
requirements in a systematic way for SPL is presented in [29]. The main concepts of 
the surveyed approaches are based on the interactions between the functional and 
non-functional features. 

An approach called Svamp is proposed to model functional and quality variability 
at the architectural level of the SPL [35]. The approach integrates several models: a 
Kumbang model to represent the functional and structural variability in the 
architecture and to define components that are used by other models; a quality 
attribute model to specify the quality properties and a quality variability model for 
expressing variability within these quality attributes. 

Reference [10] extends the feature model with so-called extra-functional features 
representing non-functional features. Constraint programming is used to reason on 
this extended feature model to answer some questions such as how many potential 
products the feature model contains. 

The Product Line UML-Based Software Engineering (PLUS) method is extended 
in [38] to specify performance requirements by introducing several stereotypes 
specific to model performance requirements such as «optional» and «alternative 
performance feature». 

5.1 Domain Engineering Process 

The SPL development process is separated into two major phases: 1) domain 
engineering for creating and maintaining a set of reusable artifacts and introducing 
variability in these software artifacts, so that the next phase can make a specific 
decision according to the product’s requirements; and 2) application engineering for 
building family member products from reusable artifacts created in the first phase 
instead of starting from scratch. 

The domain engineering process is a development cycle for reuse and includes, but 
is not limited to, creating the requirement specifications, domain models, architecture, 
reusable software components [14]. The SPL assets created by the domain 
engineering process which are of interest for our research are represented by a multi-
view UML design model of the family, called the SPL model, which represents a 
superimposition of all variant products. The creation of the SPL model employs two 
separate UML profiles: a product line profile based on [24] for specifying the 
commonality and variability between products, and the MARTE profile for 
performance annotations. Another important outcome of the domain engineering  
process is the feature model used to represent commonalities and variabilities between 
family members in a concise taxonomic form. Additionally, the PC-feature model is 
created to represent the variability space of the performance completions. 

An e-commerce case study is used to illustrate the construction of the UML model 
for SPL that represents the source model of our model transformation approach. The 
e-commerce SPL is a web-based product line that can generate a distributed 
application that can handle either business-to-business (B2B) or business-to-consumer 
(B2C) systems. For instance, in B2B, a business customer can browse and select 
items through several catalogs. Each customer has a contract with a supplier for 
purchases, as well as bank accounts through which payments can be made. An 
operation fund is associated with each contract. 
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Fig. 20. Feature model of the e-commerce SPL 
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contained in the feature model and their realizations in a reusable SPL model needs to 
be specified, as shown in the next sub-section. Also, each stereotyped class in the 
feature model has a tagged value indicating whether it is selected in a given feature 
configuration or not.  

SPL Model. The SPL model should contain, among other assets, structural and 
behavioural views which are essential for the derivation of performance models. It 
consists of: 1) structural description of the software showing the high-level classes or 
components, especially if they are distributed and/or concurrent; 2) deployment of 
software to hardware devices; 3) a set of key performance scenarios defining the main 
system functions frequently executed. 

The functional requirements of the SPL are modeled as use cases. Use cases 
required by all family members are stereotyped as «kernel». The variability 
distinguishing the members of a family from each other is explicitly modeled by use 
cases stereotyped as «optional» or «alternative». In order to avoid polluting our 
model with extra annotations and to ensure the well-formedness of the derived 
product model, we propose to annotate explicitly the minimum number of model 
elements within each diagram of our SPL model. For instance, in the use case 
diagram, only the optional and alternative use cases are annotated with the name of 
the features requiring them (given as stereotype attributes); since a kernel use case 
represents commonality, it is sufficient to just stereotype it as «kernel». Other model 
elements, such as actors, associations, generalizations, properties, are mapped 
implicitly to feature through their relationship with the use cases, so there is no need 
to clutter the model with their annotations. The evaluation of implicit mapping during 
product derivation is explained in the following subsection. 

Fig. 21. A fragment of the class diagram of the e-commerce SPL 
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Fig. 22. SPL Scenario Browse Catalog 
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{msgSize=($GetD,KB), 
commTxOvh=($GetDSend,ms),
commRcvOvh=($GetDRcv, ms)}

disData
«PaStep»
{hostDemand=($PDisD,ms)}
«PaCommStep»
{msgSize=($DisD,KB), 
commTxOvh=($DisDSend,ms),
commRcvOvh=($DisDRcv, ms)}

returnCatList
«PaCommStep»
{msgSize=($RCL,KB)}

getCatList
«PaStep»
{hostDemand=($DToptD,ms)}
«PaCommStep»
{msgSize=($GCatL,KB)}
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MARTE variables as a means of parameterizing the SPL performance annotations; 
such variables (parameters) will be assigned (bound to) concrete values during the 
product derivation process. For instance the message getList is stereotyped as a 
communication step (by convention, we use names starting with ‘$’ for all MARTE 
variables to distinguish them from other identifiers and names): 

«PaCommStep» { msgSize = ($MReq, KB), 
commTxOvh = ($GetLSend, ms), 

commRcvOvh = ($GetLRcv, ms)}} 

where the message size is the variable $GetL in KiloBytes. The overheads for sending 
and receiving this particular message are the variables $GetLSend and $GetLRcv, 
respectively, in milliseconds. We propose to annotate each communication step 
(which corresponds to a logical communication channel) with the CPU overheads for 
transferring the respective message: commTxOvh for transmitting (sending) the 
message and commRcvOvh for receiving it. Eventually, these overheads will be added 
in the performance model to the execution demands of the two execution hosts 
involved in the communication (one for sending and the other for receiving the 
respective message). 

Performance Completions. In SPL, different members may vary from each other in 
terms of their functional requirements, quality attributes, platform choices, network 
connections, physical configurations, and middleware. Many details contained in the 
system that are not part of its design model but of the underlying platforms and 
environment, do affect the run-time performance and need to be represented in the 
performance model. Performance completions, as proposed by Woodside [47] and 
explained in the previous section, are a manner to close the gap between the high-
level design model and its different implementations. Performance completions 
provide a general concept to include low-level details of execution environment/ 
platform in performance models 

In this approach, we propose to include the performance impact of underlying 
platforms into the UML+MARTE model of a product as aggregated platform 
overheads, expressed in MARTE annotations attached to existing processing and 
communication resources in the generated product model. This will keep the model 
simple and still allow us to generate a performance model containing the performance 
effects of both the product and the platforms. Every possible PC-feature choice is 
mapped to certain MARTE annotations corresponding to UML model elements in the 
product model. This mapping is realized by the transformation generating the 
parameter spreadsheets, which is providing the user with mapping information in 
order to put the annotation parameters needing to be bound to concrete values into 
context.  

Adding security solutions requires more resources and longer execution times, 
which in turn has a significant impact on system performance. The PC-feature group 
Communication shown in Figure 13 contains two alternative features secured and 
unsecured. The secured feature offers two security protocols, each with different 
overheads for sending and receiving secure messages. These overheads are mapped to 
the communication overheads through the attributes commRcvOvh and commTxOvh, 
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which represent the host demand overheads for receiving and sending messages, 
respectively. Since not all the messages exchanged in a product need to have the same 
communication overheads, we propose to annotate each individual message 
stereotyped as «PaCommStep» with the processing overheads for the respective 
message: commTxOvh for transmitting (sending) it and commRcvOvh for receiving it. 
In fact, these overheads correspond to the logical communication channel that 
conveys the respective message. Eventually, the logical channel will be allocated to a 
physical communication channel (e.g., network or bus) and to two execution hosts, 
the sender and the receiver. The commTxOvh overhead will be eventually added in the 
performance model to the execution demands of the sender host and commRcvOvh to 
that of the receiver host. 

Each feature from the PC-feature model shown in Figure 13 may affect one or 
more performance attributes. For instance, data compression reduces the message size 
and at the same time increases the processor communication overhead for 
compressing and decompressing the data. Thus, it is mapped to the performance 
attributes message size and communication overhead through the MARTE attributes 
msgSize, commTxOvh and commRcvOvh, respectively. The mapping here is between a 
PC-feature and the performance attribute(s) affected by it, which are represented as 
MARTE stereotype attributes associated to different model elements.  

5.2 Model Transformation Approach 

The derivation of a specific UML product model with concrete performance 
annotations from the SPL model with generic annotations requires three model 
transformations: a) transforming the SPL model to a product platform independent 
model (PIM) with generic performance annotations, b) generating spreadsheets for the 
user containing generic parameters and guiding information for the specific product, 
c) performing the actual binding by using the concrete values provided by the user to 
produce a product platform specific model (PSM). We have implemented these model 
transformations in the Atlas Transformation Language (ATL) [1]. We handle two 
kind of generic parametric annotations: a) product-specific (due to the variability 
expressed in the SPL model) and platform-specific (due to device choices, network 
connections, middleware, and runtime environment). 

Product PIM Derivation. The derivation process is initiated by specifying a given 
product through its feature configuration (i.e., the legal combination of features 
characterizing the product). The selected features are checked for consistency against 
the feature dependencies and constraints in the feature model, in order to identify any 
inconsistencies. An example is checking to ensure that no two mutually exclusive 
features are chosen.  

The second step in the derivation process is to select the use cases realizing the 
chosen features. All kernel use cases are copied to the product use case diagram, since 
they represent functionality provided by every member of the SPL. If a chosen feature 
is realized through extend or include relationships between use cases, both the base 
and the included or extending use cases have to be selected, as well. A use case 
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containing in its scenario variation point(s) required to realize the selected feature(s) 
has to be chosen, too. The optional and alternative use cases are selected and copied 
to the target use case diagram if they are mapped to a feature from the feature 
configuration. The implicit mapping of other non-annotated elements is inferred from 
their relationships with annotated elements as defined in the UML metamodel and 
well-formedness rules. For example, Actor is a non-annotated element associated to 
one or more use cases, so its implicit mapping is evaluated through the attribute 
memberEnd owned by the Association connected it with a use case. The attribute 
memberEnd collects all the properties related to the association and since the type of 
the property refers to the end of the association, we can navigate to the use case and 
the corresponding actor through this attribute. Whenever, the use case is selected, the 
actor and the association are selected as well. Finally, the use case diagram for the 
product is developed after all the PL variability stereotypes were eliminated.  

The third step is to derive the product class diagram by selecting first all kernel 
classes from the SPL class diagram. Optional and variant classes needed for the 
desired product are selected next (each is annotated with the feature(s) requiring it). 
Moreover, superclasses of the selected optional or variant classes have to be selected 
as well. The other non-annotated elements are selected based on their relationships 
with annotated elements as defined in the UML metamodel. For example, according 
to the UML metamodel, a binary association has to be attached to a classifier at each 
end. Therefore, the decision whether a binary association has to be copied or not to 
the target is based on the selection of both of its classifiers. If at least one of the 
classifiers is not selected, the association will not be created in the target model. In 
other words, the binary association is created in the target model if and only if both of 
its memberEnd properties have their classifiers already selected and created. At the 
same time, if only one of its classifier is selected, the property attached to this 
unselected association and owned by the selected classifier should not be created in 
the target model. 

The final step of the product derivation is to generate the sequence diagrams 
corresponding to different scenarios of the chosen use cases. Each such scenario is 
modeled as a sequence diagram, which has to be selected from the SPL model and 
copied to the product one. The PL variability stereotypes are eliminated after binding 
the generic roles associated to the lifelines of each selected sequence diagram to 
specific roles corresponding to the chosen features. For instance, the sequence 
diagram BrowseCatalog has the generic alternate role CustomerInterface which has to 
be bound to a concrete role, either B2BInterface or B2CInterface to realize the 
features BusinessCustomer or HomeCustomer, respectively. However, the selection of 
the optional roles is based on the corresponding features. For instance, the generic 
optional role StaticStorage is selected if the feature Static Catalog is chosen. More 
details about the derivation approach and the mapping of functional features to model 
elements are presented in our previous work [40] [42]. 

The outcome of this model transformation is a product model where the variability 
related to SPL has been resolved based on the chosen feature configuration. However, 
the performance annotations are still generic and need to be bound to concrete values. 
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Generating User-Friendly Representation. The generic parameters of a product PIM 
derived from the SPL model are related to different kind of information: a) product-
specific resource demands (such as execution times, number of repetitions and 
probabilities of different steps); b) software-to-hardware allocation (such as component 
instances to processors); and c) platform/environment-specific performance details (also 
called performance completions). The user (i.e., performance analyst) needs to provide 
concrete values for all generic parameters; this will transform the generic product model 
into a platform-specific model describing the run-time behaviour of the product for a 
specific run-time environment. 

Choosing concrete values to be assigned to the generic performance parameters of 
type (a) is not a simple problem. In general, it is difficult to estimate quantitative 
resource demands for each step in the design phase, when an implementation does not 
exist and cannot be measured yet. Several approaches are used by performance 
analysts to come up with reasonable estimates in the early design stages: expert 
experience with previous versions or with similar software, understanding of the 
algorithm complexity, measurements of reused software, measurements of existing 
libraries, or using time budgets. As the project advances, early estimates can be 
replaced with measured values for the most critical parts. Therefore, it is helpful for 
the user of our approach to keep a clearly organized record for the concrete values 
used for binding in different stages of the project. For this reason, we proposed to 
automate the collection of the generic parameters from the model on spreadsheets, 
which will be provided to the user. 

The parameters of type (b) are related to the allocation of software components to 
processors available for the application. The user has to decide for a product what the 
actual hardware configuration is and how to allocate the software to processing nodes. 
The MARTE stereotype «RunTInstance» annotating a lifeline in a sequence diagram 
provides an explicit connection between a role in the behaviour model and the 
corresponding runtime instance of a component. The attribute host of this stereotype 
indicates on which physical node from the deployment diagram the instance is 
running. Using parameters for the attribute host enable us to allocate each role (a 
software component) to an actual hardware resource. The transformation collects all 
these hardware resources and associates their list to each lifeline in the spreadsheets. 
The user decides on the actual allocation by choosing a processor from this list.  

The performance effects of variations in the platform/environment factors (such as 
network connections, middleware, operating system and platform choices) are 
included into our model by aggregating the overheads caused by each factor and by 
attaching them via MARTE annotations to the affected model elements. As already 
mentioned, the variations in platform/environment factors are represented in our 
approach through the PC-feature model (as explained in the previous section). A 
specific run-time instance of a product is configured by selecting a valid PC-feature 
combination from the PC-feature model. We define a PC-feature configuration as a 
complete set of choices of PC-features for a specific model element. 

It is interesting to note that a PC-feature has impact on a subset of model elements 
in the model, but not necessarily on all model elements of the same type. For instance, 
the PC-feature Secured affects only certain communication channels in a product 
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Fig. 23. Part of the generated Spreadsheet for the scenario Browse Catalog 

model, not all of them. Hence, a PC-feature needs to be associated to certain model 
element(s), not to the entire product. This mapping is set up through the MARTE 
performance specifications annotating the affected model elements. 

Dealing manually with a huge number of performance annotations by asking the 
developer to inspect every diagram in the generated product model, to extract the 
generic parameters and to match them with the PC-features is an error-prone process. 
We propose to automate the process of collecting all generic parameters that need to 
be bound to concrete values from the product model and to associate each PC-feature 
to the model element(s) it may affect, then present the information to the developer in 
a user-friendly format. We generate a spreadsheet per diagram, indicating for each 
generic parameter some guiding information that helps the user in providing concrete 
binding values.  

The transformation handles differently the context analysis parameters, which are 
usually defined by the modeler to be carried without binding throughout the entire 
transformation process, from the SPL model to the performance model for a product. 
These parameters can be used to explore the performance analysis space. A list of the 
context analysis parameters are provided to the user, who will decide whether to bind 
them now to concrete values, or to use them unbound in MARTE expressions. 

A part of the generated spreadsheet for the scenario BrowseCatalog is shown in 
Figure 23. For instance, the PC-feature DataCompression is mapped to the MARTE 
attribute msgSize annotating a model element of type message. As the value of the 
attribute msgSize is an expression $FSize*0.2 in function of the context analysis 
parameter $FSize, it is the user’s choice to bind it at this level or keep it as a parameter 
in the output it produces.  The column titled Concrete Value is designated for the user 
to enter appropriate concrete value for each generic parameter, while the column 
Guideline for Value provides a typical range of values to guide the user. For instance, if 
the PC-selection features chosen are “secured” with “TLS”, the concrete value entered 
by the user is obtained by evaluating the expression (11.9+0.134*msgsize), assuming 
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that the user follows the provided guideline. Assuming that the choice for the PC-
feature DataCompression is “compressed”, the user may decide to increase by 4% the 
existing overhead due to compression features. In general, the guidelines can be 
adjusted by the performance analyst for a given SPL and a known execution 
environment. The generated spreadsheet presents a user-friendly format for the users of 
the transformation who have to provide appropriate concrete values for binding the 
generic performance annotations. Being automatically generated, they capture all the 
parameters that need to be bound and reduce the incidence of errors. 

Performing the Actual Binding. After the user selects an actual processor for each 
lifeline role provided in the spreadsheets and enters concrete values for all the generic 
performance parameters, the next model transformation takes as input these 
spreadsheets along with its corresponding product model, and binds all the generic 
parameters to the actual values provided by the user. The outcome of the 
transformation is a specific product model with concrete performance annotations, 
which can be further transformed into a performance model.  

In order to automate the actual binding process, the generated spreadsheets with 
concrete values are given as a mark model to the binding transformation. The mark 
model concept has been introduced in the OMG MDA guide [33] as a means of 
providing concrete parameter values to a transformation. This capability of allowing 
transformation parameterization through mark model instances makes the 
transformation generic and more reusable in different contexts.  

6 Conclusions 

In this chapter we presented the open PUMA tool architecture that can accept a 
variety of types of Smodels and generate a variety of types of Pmodels. The 
practicality of PUMA is demonstrated by different implemented transformations from 
UML 1.4 and UML 2.X to CSM for sequence and activity diagrams, and 
transformations from CSM to queueing networks, LQN and Petri nets.  We are 
extending PUMA for SOA and SPL and are working on the final component of 
PUMA, to support the systematic use of performance models in order to generate 
feedback to the designers. PUMA promises a way out of the maze of possible 
evaluation techniques. From the point of view of practical adoption, this is of the 
utmost importance, as the software developer is not tied to an evaluation model whose 
limitations he or she does not understand. Performance modelers are similarly freed to 
generate a wide variety of forms of model, and explore their relative capabilities, 
without having to create the (quite difficult) interface to UML. As UML is constantly 
changing, this can also make maintenance of model-building easier. While PUMA is 
described for performance, CSM may be adapted to other evaluations based on 
behaviour. 

In general, experience in conducting model-driven performance analysis and other 
non-functional properties (NFPs) in the context of model-driven development shows 
that the domain is still facing a number of challenges. 
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Human qualifications. Software developers are not trained in all the formalisms 
used for the analysis of performance and other kind of NFPs, which leads to the idea 
of hiding the analysis details from developers. However, the software models have to 
be annotated with extra information for each NFP and the analysis results have to be 
interpreted in order to improve the designs. A better balance needs to be made 
between what to be hidden and what to de exposed. 

Abstraction level. The analysis of different NFPs may require source models at 
different levels of abstraction/detail. The challenge is to keep all the models 
consistent.  

Tool interoperability. Experience shows that it is difficult to interface and to 
integrate seamlessly different tools, which were created at different times with 
different purposes and maybe running on different platforms or platform versions.  

Software process. Integrating the analysis of different NFP raises process issues. 
For each NFP it is necessary to explore the state space for different design 
alternatives, configurations, workload parameters in order to diagnose problems and 
decide on improvement solutions. The challenge is how to compare different solution 
alternatives that may improve some NFPs and deteriorate others, and how to decide 
on trade-offs. 

Change propagation through the model chain. Currently, every time the software 
design changes, a new analysis model is derived in order to redo the analysis. The 
challenge is to develop incremental transformation methods for keeping different 
model consistent instead of starting from scratch after every model improvement.  
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