
Model Transformations

Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio

Dipartimento di Informatica
Università degli Studi dell’Aquila

I-67100 L’Aquila, Italy
name.surname@univaq.it

Abstract. In recent years, Model-Driven Engineering has taken a leading role
in advancing a new paradigm shift in software development. Leveraging models
to a first-class status is at the core of this methodology. Shifting the focus of
software development from coding to modeling permits programs to transform
models in order to generate other models which are amenable for a wide range
of purposes, including code generation. This paper introduces a classification of
model transformation approaches and languages, illustrating the characteristics
of the most prominent ones. Moreover, two specific application scenarios are
proposed to highlight bidirectionality and higher-order transformations in the
change propagation and coupled evolution domains, respectively.

1 Introduction

In recent years, Model-Driven Engineering [1] (MDE) has taken a leading role in ad-
vancing a new paradigm shift in software development. Leveraging models to a first-
class status is at the core of this methodology. In particular, MDE proposes to extend
the formal use of modelling languages in several interesting ways by adhering to the
“everything is a model” principle [2]. Domains are analysed and engineered by means
of metamodels, i.e., coherent sets of interrelated concepts. A model is said to conform
to a metamodel, or in other words it is expressed in terms of the concepts formalized
in the metamodel, constraints are expressed at the metalevel, and model transforma-
tions occur to produce target models out of source ones. Summarizing, these constitute
a body of inter-related entities pursuing a common scope as in an ecosystem [3]. In this
respect, model transformations represent the major gluing mechanism of the ecosystem
by bridging different abstraction layers and/or views of a system. To this end, they re-
quire “specialized support in several aspects in order to realize the full potential, for
both the end-user and transformation developer” [4].

In 2002 OMG issued the Query/View/Transformation Request For Proposal [5] in an
attempt to define a standard transformation language. Although a final specification has
been adopted at the end of 2005, the area of model transformation can still be considered
in its infancy and further research is necessary

a) to investigate intrinsic characteristics of model transformation languages, such as
bidirectionality, change propagation, and genericity;

b) to examine and devise transformation semantics, strategies and tools for testing and
automatically verifying transformations; finally

M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.): SFM 2012, LNCS 7320, pp. 91–136, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

92 D. Di Ruscio, R. Eramo, and A. Pierantonio

c) to extend the scope of model transformation by assessing its full potential for new
applications.

Interestingly, while a) and b) are analogous to what has been done in traditional pro-
gramming research, c) is dealing with problems and needs which emerged over the last
years during the adoption and deployment of MDE in industry. Since the beginning,
model transformations have always been conceived as the essential mean to mainly
transform models in order to generate artifacts considered very close to the final system
(e.g., see [6–9] for the Web domain). However, lately specialized languages and tech-
niques have been introduced to address more complex problems such as the coupled
evolution which typically emerges during an MDE ecosystem life-cycle (e.g., [10–12]),
or to manage simulation and fault detection in software systems (e.g., [13]).

In this paper, we summarize a classification of model transformation approaches
and illustrate the main characteristics of prominent languages falling in this classifi-
cation. Then, change propagation and coupled evolution are considered to illustrate
complex application scenarios assessing the potential and significance of model trans-
formations as described in the following.

Change Propagation. Change propagation and bidirectionality are relevant aspects
in model transformations: often it is assumed that during development only the source
model of a transformation undergoes modifications, however in practice it is necessary
for developers to modify both the source and the target models of a transformation and
propagate changes in both directions [14, 15]. There are two main approaches for realiz-
ing bidirectional transformations and supporting change propagation: by programming
forward and backward transformations in any convenient unidirectional language and
manually ensuring they are consistent; or by using a bidirectional transformation lan-
guage where every program describes both a forward and a backward transformation
simultaneously. A major advantage of the latter approach is that the consistency of the
transformations can be guaranteed by construction.

Metamodel/Model Coupled Evolution. Evolution is an inevitable aspect which af-
fects the whole life-cycle of software systems [16]. In general, artefacts can be sub-
ject to many kinds of changes, which range from requirements through architecture
and design, to source code, documentation and test suites. Similarly to other software
artefacts, metamodels can evolve over time too [17]. Accordingly, models need to be
co-adapted1 in order to remain compliant to the metamodel and not become eventually
invalid. When manually operated the adaptation is error-prone and can give place to
inconsistencies between the metamodel and the related artefacts. Such issue becomes
very relevant when dealing with enterprise applications, since in general system mod-
els encompass a large population of instances which need to be appropriately adapted,
hence inconsistencies can possibly lead to irremediable information erosion [18].

Outline. The structure of the paper is as follows. In Section 2 we review the basic
concepts of Model-Driven Engineering, i.e., models, metamodels, and transformations.

1 The terms (co-)adaptation, (co-)evolution, and coupled evolution will be used as synonyms
throughout the paper, although in some approached the term coupled evolution denoted the
parallel and coordinated evolution of two classes of artifacts.

Model Transformations 93

Next section illustrates a number of approaches to model transformations and their
characteristics, also prominent languages are outlined. Section 4 presents the Janus
Transformation Language (JTL), a declarative model transformation language specifi-
cally tailored to support bidirectionality and change propagation. Section 5 proposes an
approach based on higher-order model transformations (HOTs) to model coupled evo-
lution. In particular, HOTs take a difference model formalizing the metamodel modifi-
cations and generate a model transformation able to adapt and recovery the validity of
the compromised models. Section 6 draws some conclusions.

2 Model Driven Engineering

Model-Driven Engineering (MDE) refers to the systematic use of models as first-class
entities throughout the software engineering life cycle. Model-driven approaches shift
development focus from traditional programming language codes to models expressed
in proper domain specific modeling languages. The objective is to increase productivity
and reduce time to market by enabling the development of complex systems by means
of models defined with concepts that are much less bound to the underlying implemen-
tation technology and are much closer to the problem domain. This makes the models
easier to specify, understand, and maintain [19] helping the understanding of complex
problems and their potential solutions through abstractions.

The concept of Model Driven Engineering emerged as a generalization of the Model
Driven Architecture (MDA) proposed by OMG in 2001 [20]. Kent [21] defines MDE on
the base of MDA by adding the notion of software development process and modeling
space for organizing models. Favre [22] proposes a vision of MDE where MDA is just
one possible instance of MDE implemented by means of a set of technologies defined by
OMG (MOF [23], UML [24], XMI [25], etc.) which provided a conceptual framework
and a set of standards to express models, metamodels, and model transformations.

Even though MDA and MDE rely on models that are considered “first class citizens”,
there is no common agreement about what is a model. In [26] a model is defined as “a
set of a statements about a system under study”. Bézivin and Gerbé in [27] define a
model as “a simplification of a system built with an intended goal in mind. The model
should be able to answer questions in place of the actual system”. According to Mel-
lor et al. [28] a model “is a coherent set of formal elements describing something (e.g.
a system, bank, phone, or train) built for some purpose that is amenable to a particu-
lar form of analysis” such as communication of ideas between people and machines,
test case generation, transformation into an implementation etc. The MDA guide [20]
defines a model of a system as “a description or specification of that system and its
environment for some certain purpose. A model is often presented as a combination of
drawings and text. The text may be in a modeling language or in a natural language”.

In MDE models are not considered as merely documentation but precise artifacts
that can be understood by computers and can be automatically manipulated. In this sce-
nario metamodeling plays a key role. It is intended as a common technique for defin-
ing the abstract syntax of models and the interrelationships between model elements.
metamodeling can be seen as the construction of a collection of “concepts” (things,
terms, etc.) within a certain domain. A model is an abstraction of phenomena in the

94 D. Di Ruscio, R. Eramo, and A. Pierantonio

meta-metamodel

Metamodel

model

instance

conformsTo

Level

M2

M3

M1

M0

conformsTo

describedBy

MOF

conformsTo

UML SPEM CWM

conformsTo conformsTo
conformsTo

UML
Model

real
System

describedBy

conformsTo

EBNF

Pascal
grammar

Java
grammar

Java
Program P

conformsTo conformsTo

Execution
of P

describedBy

conformsTo conformsTo

conformsTo

XSD

XSD
Schema S1

XSD
Schema S2

XML
Document

conformsTo

conformsTo conformsTo

conformsTo

Data

describedBy

Fig. 1. The four layer metamodeling architecture

real world, and a metamodel is yet another abstraction, highlighting properties of the
model itself. A model is said to conform to its metamodel like a program conforms to
the grammar of the programming language in which it is written [2]. In this respect,
OMG has introduced the four-level architecture shown in Fig. 1. At the bottom level,
the M0 layer is the real system. A model represents this system at level M1. This model
conforms to its metamodel defined at level M2 and the metamodel itself conforms to the
metametamodel at level M3. The metametamodel conforms to itself. OMG has proposed
MOF [23] as a standard for specifying metamodels. For example, the UML metamodel
is defined in terms of MOF. A supporting standard of MOF is XMI [25], which defines
an XML-based exchange format for models on the M3, M2, or M1 layer. In EMF [29],
Ecore is the provided language for specifying metamodels. This metamodeling archi-
tecture is common to other technological spaces as discussed by Kurtev et al. in [30].
For example, the organization of programming languages and the relationships between
XML documents and XML schemas follows the same principles described above (see
Fig. 1).

In addition to metamodeling, model transformation is also a central operation in
MDE. While technologies such as MOF [23] and EMF [29] are well-established foun-
dations on which to build metamodels, there is as yet no well-established foundation on
which to rely in describing how we take a model and transform it to produce a target
one. In the next section more insights about model transformations are given and after
a brief discussion about the general approaches, the attention focuses on some of the
today’s available languages.

3 Model Transformations

The MDA guide [20] defines a model transformation as “the process of converting one
model to another model of the same system”. Kleppe et al. [31] defines a transformation
as the automatic generation of a target model from a source model, according to a
transformation definition. A transformation definition is a set of transformation rules
that together describe how a model in the source language can be transformed to a
model in the target language. A transformation rule is a description of how one or more

Model Transformations 95

Fig. 2. Basic Concepts of Model Transformation

constructs in the source language can be transformed to one or more constructs in the
target language.

Rephrasing these definitions by considering Fig. 2, a model transformation program
takes as input a model conforming to a given source metamodel and produces as output
another model conforming to a target metamodel. The transformation program, com-
posed of a set of rules, should itself considered as a model. As a consequence, it is based
on a corresponding metamodel, that is an abstract definition of the used transformation
language.

Many languages and tools have been proposed to specify and execute transforma-
tion programs. In 2002 OMG issued the Query/View/Transformation request for pro-
posal [5] to define a standard transformation language. Even though a final specification
has been adopted at the end of 2005, the area of model transformation continues to be a
subject of intense research. Over the last years, in parallel to the OMG process a num-
ber of model transformation approaches have been proposed both from academia and
industry. The paradigms, constructs, modeling approaches, tool support distinguish the
proposals each of them with a certain suitability for a certain set of problems.

In the following, a classification of the today’s model transformation approaches is
briefly reported, then some of the available model transformation languages are sepa-
rately described. The classification is mainly based upon [32] and [33].

3.1 Classification

At top level, model transformation approaches can be distinguished between model-to-
model and model-to-text. The distinction is that, while a model-to-model transformation
creates its target as a model which conforms to the target metamodel, the target of a
model-to-text transformation essentially consists of strings. In the following some clas-
sifications of model-to-model transformation languages discussed in [32] are described.

Direct Manipulation Approach. It offers an internal model representation and some
APIs to manipulate it. It is usually implemented as an object oriented framework, which
may also provide some minimal infrastructure. Users have to implement transformation

96 D. Di Ruscio, R. Eramo, and A. Pierantonio

rules, scheduling, tracing and other facilities, mostly from the beginning in a program-
ming language.

Operational Approach. It is similar to direct manipulation but offers more dedicated
support for model transformations. A typical solution in this category is to extend the
utilized metamodeling formalism with facilities for expressing computations. An ex-
ample would be to extend a query language such as OCL with imperative constructs.
Examples of systems in this category are QVT Operational mappings [34], XMF [35],
MTL [36] and Kermeta [37].

Relational Approach. It groups declarative approaches in which the main concept
is mathematical relations. In general, relational approaches can be seen as a form of
constraint solving. The basic idea is to specify the relations among source and target el-
ement types using constraints that in general are non-executable. However, declarative
constraints can be given executable semantics, such as in logic programming where
predicates can be used to describe the relations. All of the relational approaches are
side-effect free and, in contrast to the imperative direct manipulation approaches, create
target elements implicitly. Relational approaches can naturally support multidirectional
rules. They sometimes also provide backtracking. Most relational approaches require
strict separation between source and target models, that is, they do not allow in-place
update. Example of relational approaches are QVT Relations [34] and those enabling
the specification of weaving models (like AMW [38]), which aim at defining rigorous
and explicit correspondences between the artifacts produced during a system develop-
ment [39]. Moreover, in [40] the application of logic programming has been explored
for the purpose. Finally, in [41] we have investigated the application of the Answer Set
Programming [42] for specifying relational and bidirectional transformations.

Hybrid Approach. It combines different techniques from the previous categories, like
ATL [43] and ETL [44] that wrap imperative bodies inside declarative statements.

Graph-Transformation Based Approach. It draws on the theoretical work on graph
tranformations. Describing a model transformation by graph transformation, the source
and target models have to be given as graphs. Performing model transformation by
graph transformation means to take the abstract syntax graph of a model, and to trans-
form it according to certain transformation rules. The result is the syntax graph of the
target model. Being more precise, graph transformation rules have an LHS and an RHS
graph pattern. The LHS pattern is matched in the model being transformed and replaced
by the RHS pattern in place. In particular, LHR represents the pre-condition of the given
rule, while RHS describes the post-conditions. LHR ∩ RHS defines a part which has to
exist to apply the rule, but which is not changed. LHS−LHS∩RHS defines the part which
shall be deleted, and RHS − LHS ∩ RHS defines the part to be created. AGG [45] and
AToM3 [46] are systems directly implementing the theoretical approach to attributed
graphs and transformations on such graphs. They have built-in fixpoint scheduling with
non-deterministic rule selection and concurrent application to all matching locations,
and the rely on implicit scheduling by the user. The transformation rules are unidirec-
tional and in-place. Systems such as VIATRA2 [47] and GReAT [48] extend the basic
functionality of AGG and AToM3 by adding explicit scheduling. VIATRA2 users can

Model Transformations 97

build state machines to schedule transformation rules whereas GReAT relies on data-
flow graphs. Another interesting mean for transforming models is given by triple graph
grammars (TGGs), which have been introduced by Schürr[49]. TGGs are a technique
for defining the correspondence between two different types of models in a declarative
way. The power of TGGs comes from the fact that the relation between the two models
cannot only be defined, but the definition can be made operational so that one model
can be transformed into the other in either direction; even more, TGGs can be used to
synchronize and to maintain the correspondence of the two models, even if both of them
are changed independently of each other; i.e., TGGs work incrementally. The main tool
support for TGGs is Fujaba2, which provided the foundation for MOFLON3.

Rule Based Approach. Rule based approaches allow one to define multiple indepen-
dent rules of the form guard => action. During the execution, rules are activated
according to their guard not, as in more traditional languages, based on direct invo-
cation [4]. When more than one rule is fired, more or less explicit management of
such conflicting situation is provided, for instance in certain language a runtime er-
ror is raised. Besides the advantage of having an implicit matching algorithm, such
approaches permit to encapsulate fragments of transformation logic within the rules
which are self-contained units with crispy boundaries. This form of encapsulation is
preparatory to any form of transformation composition [50].

3.2 Languages

In this section some of the languages referred above are singularly described. The pur-
pose of the description is to provide the reader with an overiew of some existing model
transformation languages.

QVT. In 2002 OMG issued the QVT RFP [5] describing the requirements of a standard
language for the specification of model queries, views, and transformations according
to the following definitions:

– A query is an expression that is evaluated over a model. The result of a query is
one or more instances of types defined in the source model, or defined by the query
language. Object Constraint Language (OCL 2.0) [51] is the query language used
in QVT;

– A view is a model which is completely derived from a base model. A view cannot
be modified separately from the model from which it is derived and changes to the
base model cause corresponding changes to the view. If changes are permitted to
the view then they modify the source model directly. The metamodel of the view is
typically not the same as the metamodel of the source. A query is a restricted kind
of view. Finally, views are generated via transformations;

– A transformation generates a target model from a source one. If the source and
target metamodels are identical the transformation is called endogeneous. If they
are different the transformation is called exogeneous. A model transformation may

2 http://www.fujaba.de
3 http://www.moflon.org

http://www.fujaba.de
http://www.moflon.org

98 D. Di Ruscio, R. Eramo, and A. Pierantonio

Fig. 3. QVT Architecture

also have several source models and several target models. A view is a restricted
kind of transformation in which the target model cannot be modified independently
from the source model. If a view is editable, the corresponding transformation must
be bidirectional in order to reflect the changes back to the source model.

A number of research groups have been involved in the definition of QVT whose final
specification has been reached at the end of November 2005 [34]. The abstract syntax
of QVT is defined in terms of MOF 2.0 metamodel. This metamodel defines three sub-
languages for transforming models. OCL 2.0 is used for querying models. Creation of
views on models is not addressed in the proposal.

The QVT specification has a hybrid declarative/imperative nature, with the declar-
ative that forms the framework for the execution semantics of the imperative part. By
referring to Fig. 3, the layers of the declarative part are the following:

– A user-friendly Relations metamodel which supports the definition of complex ob-
ject pattern matching and object template creation;

– A Core metamodel defined using minimal extensions to EMOF and OCL.

By referring to [34], a relation is a declarative specification of the relationships between
MOF models. The Relations language supports complex object pattern matching, and
implicitly creates trace classes and their instances to record what occurred during a
transformation execution. Relations can assert that other relations also hold between
particular model elements matched by their patterns. Finally, Relations language has a
graphical syntax.

Concerning the Core it is a small model/language which only supports pattern match-
ing over a flat set of variables by evaluating conditions over those variables against a set
of models. It treats all of the model elements of source, target and trace models sym-
metrically. It is equally powerful to the Relations language, and because of its relative
simplicity, its semantics can be defined more simply, although transformation descrip-
tions described using the Core are therefore more verbose. In addition, the trace models
must be explicitly defined, and are not deduced from the transformation description, as
is the case with Relations. The core model may be implemented directly, or simply used
as a reference for the semantics of Relations, which are mapped to the Core, using the
transformation language itself.

To better clarify the conceptual link between Relations and Core languages, an anal-
ogy can be drawn with the Java architecture, where the Core language is like Java
Byte Code and the Core semantics is like the behavior specification for the Java Virtual
Machine. The Relations language plays the role of the Java language, and the standard

Model Transformations 99

transformation from Relations to Core is like the specification of a Java Compiler which
produces Byte Code.

Sometimes it is difficult to provide a complete declarative solution to a given trans-
formation problem. To address this issue QVT proposes two mechanisms for extend-
ing the declarative languages Relations and Core: a third language called Operational
Mappings and a mechanism for invoking transformation functionality implemented in
an arbitrary language (Black Box).

The Operational Mappings language is specified as a standard way of providing
imperative implementations. It provides OCL extensions with side effects that allow
a more procedural style, and a concrete syntax that looks familiar to imperative pro-
grammers. A transformation entirely written using Operation Mappings is called an
“operational transformation”.

The Black Box mechanism makes possible to “plug-in” and execute external code.
This permits to implement complex algorithms in any programming language, and reuse
already available libraries.

AGG. AGG [45] is a development environment for attributed graph transformation
systems supporting an algebraic approach to graph transformation. It aims at specifying
and rapid prototyping applications with complex, graph structured data. AGG supports
typed graph transformations including type inheritance and multiplicities. It may be
used (implicitly in “code”) as a general purpose graph transformation engine in high-
level JAVA applications employing graph transformation methods. The source, target,
and common metamodels are represented by typed graphs. Graphs may additionally be
attributed using Java code. Model transformations are specified by graph rewriting rules
that are applied non-deterministically until none of them can be applied anymore. If an
explicit application order is required, rules can be grouped in ordered layers. AGG fea-
tures rules with negative application conditions to specify patterns that prevent rule ex-
ecutions. Finally, AGG offers validation support that is consistency checking of graphs
and graph transformation systems according to graph constraints, critical pair analysis
to find conflicts between rules (that could lead to a non-deterministic result) and check-
ing of termination criteria for graph transformation systems. An available tool support
provides graphical editors for graphs and rules and an integrated textual editor for Java
expressions. Visual interpretation and validation of transformations are also supported.

ATL. ATL (ATLAS Transformation Language) [43] is a hybrid model transformation
language containing a mixture of declarative and imperative constructs. The former
allows to deal with simple model transformations, while the imperative part helps in
coping with transformation of higher complexity. ATL transformations are unidirec-
tional, operating on read-only source models and producing write-only target models.
During the execution of a transformation source models may be navigated but changes
are not allowed. Target models cannot be navigated.

ATL transformations are specified in terms of modules. A module contains a manda-
tory header section, import section, and a number of helpers and transformation rules.
Header section gives the name of a transformation module and declares the source and
target models (e.g., see lines 1-2 in Fig. 4). The source and target models are typed by
their metamodels. The keyword create indicates the target model, whereas the key-
word from indicates the source model. In the example of Fig. 4 the target model bound

100 D. Di Ruscio, R. Eramo, and A. Pierantonio

1module PetriNet2PNML;
2create OUT : PNML from IN : PetriNet;
3...
4rule Place {
5 from
6 e : PetriNet!Place
7 --(guard)
8 to
9 n : PNML!Place

10 (
11 name <- e.name,
12 id <- e.name,
13 location <- e.location
14),
15 name : PNML!Name
16 (
17 labels <- label
18),
19 label : PNML!Label
20 (
21 text <- e.name
22)
23}

Fig. 4. Fragment of a declarative ATL transformation

to the variable OUT is created from the source model IN. The source and target meta-
models, to which the source and target model conform, are PetriNet and PNML [52],
respectively.

Helpers and transformation rules are the constructs used to specify the transforma-
tion functionality. Declarative ATL rules are called matched rules. They specify rela-
tions between source patterns and target patterns. The name of a rule is given after the
keyword rule. The source pattern of a rule (lines 5-7, Fig. 4) specifies a set of source
types and an optional guard given as a Boolean expression in OCL. A source pattern
is evaluated on a set of matches in the source models. The target pattern (lines 8-22,
Fig. 4) is composed of a set of elements. Each of these elements (e.g., the one at lines
9-14, Fig. 4) specifies a target type from the target metamodel (e.g., the type Place

from the PNML metamodel) and a set of bindings. A binding refers to a feature of the
type (i.e. an attribute, a reference or an association end) and specifies an expression
whose value is used to initialize that feature. In some cases complex transformation
algorithms may be required and it may be difficult to specify them in a pure declarative
way. For this issue ATL provides two imperative constructs: called rules, and action
blocks. A called rule is a rule called by other ones like a procedure. An action block is
a sequence of imperative instructions that can be used in either matched or called rules.
The imperative statements in ATL are the well-known constructs for specifying control
flow such as conditions, loops, assignments, etc.

ETL. Similarly to ATL, ETL [44] (Epsilon Transformation Language) is a hybrid
model transformation language that has been developed atop the infrastructure pro-
vided by the Epsilon model management platform [53]. By building on Epsilon, ETL
achieves syntactic and semantic consistency and enhanced interoperability with a num-
ber of additional languages, also been built atop Epsilon, and which target tasks such as
model-to-text transformation, model comparison, validation, merging and unit testing.

Model Transformations 101

ETL enables the specification of transformations that can transform an arbitrary
number of source models into an arbitrary number of target models. ETL transforma-
tions are given in terms of modules. An ETL module can import a number of other
ETL modules. In this case, the importing ETL module inherits all the rules and pre/post
blocks specified in the modules it imports (recursively).

GReAT. GReAT [48] (Graph Rewriting and Transformation Language) is a graph-
transformation language that supports the high-level specification of complex model
transformation programs. In this language, one describes the transformations as se-
quenced graph rewriting rules that operate on the input models and construct an output
model. The rules specify complex rewriting operations in the form of a matching pat-
tern and a subgraph to be created as the result of the application of the rule. The rules
i) always operate in a context that is a specific subgraph of the input, and ii) are explic-
itly sequenced for efficient execution. The rules are specified visually using a graphical
model builder tool. GReAT can be divided into three distinct parts:

– Pattern specification language. This language is used to express complex patterns
that are matched to select elements in the current graph. The pattern specification
language uses a notion of cardinality on each pattern vertex and each edge;

– Graph transformation language. It is a rewriting language that uses the pattern
language described above. It treats the source model, the target model and tempo-
rary objects as a single graph that conforms to a unified metamodel. Each pattern
object’s type conforms to this metamodel and only transformations that do not vi-
olate the metamodel are allowed. At the end of the transformation, the temporary
objects are removed and the two models conform exactly to their respective meta-
models. Guards to manage the rule applications can be specified as boolean C++
expressions;

– Control flow language. It is a high-level control flow language that can control
the application of the productions and allow users to manage the complexity of
the transformations. In particular, the language supports a number of features: (i)
Sequencing, rules can be sequenced to fire one after another, (ii) Non-Determinism,
rules can be specified to be executed “in parallel”, where the order of firing of
the parallel rules is non deterministic, (iii) Hierarchy, compound rules can contain
other compound rules or primitive rules, (iv) Recursion, a high level rule can call
itself, (v) Test/Case, a conditional branching construct that can be used to choose
between different control flow paths.

VIATRA2. VIATRA2 [47] is an Eclipse-based general-purpose model transformation
engineering framework intended to support the entire life-cycle for the specification,
design, execution, validation and maintenance of transformations within and between
various modelling languages and domains.

Its rule specification language is a unidirectional transformation language based
mainly on graph transformation techniques that combines the graph transformation and
Abstract State Machines [54] into a single paradigm. Being more precise, in VIATRA2
the basic concept to define model transformations is the (graph) pattern. A pattern is a
collection of model elements arranged into a certain structure fulfilling additional con-
straints (as defined by attribute conditions or other patterns). Patterns can be matched

102 D. Di Ruscio, R. Eramo, and A. Pierantonio

on certain model instances, and upon successful pattern matching, elementary model
manipulation is specified by graph transformation rules. There is no predefined order
of execution of the transformation rules. Graph transformation rules are assembled into
complex model transformations by abstract state machine rules, which provide a set
of commonly used imperative control structures with precise semantics. This permits
to collocate VIATRA2 as a hybrid language since the transformation rule language is
declarative but the rules cannot be executed without an execution strategy specified in
an imperative manner.

Important specification features of VIATRA2 include recursive (graph) patterns,
negative patterns with arbitrary depth of negation, and generic and meta-transformations
(type parameters, rules manipulating other rules) for providing reuse of transforma-
tions [55].

4 Application Scenario 1: Change Propagation with JTL

Bidirectionality and change propagation are relevant aspects in model transformations:
often it is assumed that during development only the source model of a transformation
undergoes modifications, however in practice it is necessary for developers to mod-
ify both the source and the target models of a transformation and propagate changes
in both directions [14, 15]. There are two main approaches for realizing bidirectional
transformations: by programming forward and backward transformations in any con-
venient unidirectional language and manually ensuring they are consistent; or by using
a bidirectional transformation language where every program describes both a forward
and a backward transformation simultaneously. A major advantage of the latter ap-
proach is that the consistency of the transformations can be guaranteed by construction.
Moreover, source and target roles are not fixed since the transformation direction entails
them. Therefore, considerations made about the mapping executed in one direction are
completely equivalent to the opposite one.

The relevance of bidirectionality in model transformations has been acknowledged
already in 2005 by the Object Management Group (OMG) by including a bidirectional
language in their Query View Transformation (QVT) [56]. Unfortunately, as pointed
out by Perdita Stevens in [57] the language definition is affected by several weak-
nesses. Therefore, while MDE requirements demand enough expressiveness to write
non-bijective transformations [58], the QVT standard does not clarify how to deal with
corresponding issues, leaving their resolution to tool implementations. Moreover, a
number of approaches and languages have been proposed due to the intrinsic com-
plexity of bidirectionality. Each language is characterized by a set of specific properties
pertaining to a particular applicative domain [32].

This section outlines the Janus Transformation Language (JTL), a declarative model
transformation language specifically tailored to support bidirectionality and change
propagation. In particular, the distinctive characteristics of JTL are

– non-bijectivity, non-bijective bidirectional transformations are capable of mapping
a model into a set of models, as for instance when a single change in a target model
might semantically correspond to a family of related changes in more than one
source model. JTL provides support to non-bijectivity and its semantics assures

Model Transformations 103

that all the models are computed at once independently whether they represent the
outcome of the backward or forward execution of the bidirectional transformation;

– model approximation, generally transformations are not total which means that tar-
get models can be manually modified in such a way they are not reachable anymore
by any forward transformation, then traceability information are employed to back
propagate the changes from the modified targets by inferring the closest model that
approximates the ideal source one at best.

The language expressiveness and applicability have been validated by implementing
a number of model transformations. In this section we focus on the Collapse/Expand
State Diagrams benchmark which have been defined in the GRACE International Meet-
ing on Bidirectional Transformations [59] to compare and assess different bidirectional
approaches. The JTL semantics is defined in terms of the Answer Set Programming
(ASP) [42], a form of declarative programming oriented towards difficult (primarily
NP-hard) search problems and based on the stable model (answer set) semantics of
logic programming. Bidirectional transformations are translated via semantic anchor-
ing [60] into search problems which are reduced to computing stable models, and the
DLV solver [61] is used to perform search.

4.1 Motivating Scenario

Let us consider the Collapse/Expand State Diagrams benchmark defined in [59]: start-
ing from a hierarchical state diagram (involving some one-level nesting) as the one re-
ported in Fig. 5.a, a flat view has to be provided as in Fig. 5.b. Furthermore, any manual
modifications on the (target) flat view should be back propagated and eventually re-
flected in the (source) hierarchical view. For instance, let us suppose the designer modi-
fies the flat view by changing the name of the initial state from Begin Installation

to Start Install shield (see Δ1 change in Figure 6). Then, in order to persist such
a refinement to new executions of the transformation, the hierarchical state machine has
to be consistently updated by modifying its initial state as illustrated in Fig. 7.

The flattening is a non-injective operation requiring specific support to back prop-
agate modifications operated on the flattened state machine to the nested one. For in-
stance, the flattened view reported in Fig. 5 can be extended by adding the alternative
try again from the state Disk Error to Install software (see Δ2 changes in
Fig. 6). This gives place to an interesting situation: the new transition can be equally
mapped to each one of the nested states within Install Software as well as to
the container state itself. Consequently, more than one source model propagating the
changes exists4. Intuitively, each time hierarchies are flattened there is a loss of informa-
tion which causes ambiguities when trying to map back corresponding target revisions.
Some of these problems can be alleviated by managing traceability information of the
transformation executions which can be exploited later on to trace back the changes: like
this each generated element can be linked with the corresponding source and contribute
to the resolution of some of the ambiguities. Nonetheless, traceability is a necessary

4 It is worth noting that the case study and examples have been kept deliberately simple since
they suffice to show the relevant issues related to non-bijectivity.

104 D. Di Ruscio, R. Eramo, and A. Pierantonio

a) A sample Hierarchical State Machine (HSM).

b) The corresponding Non-Hierarchical State Machine (NHSM).

Fig. 5. Sample models for the Collapse/Expand State Diagrams benchmark

but not sufficient condition to support bidirectionality, since for instance elements dis-
carded by the mapping may not appear in the traces, as well as new elements added on
the target side. For instance, the generated flattened view in Fig. 5.b can be additionally
manipulated through the Δ3 revisions which consist of adding some extra-functional in-
formation for the Install Software state and the transition between from Memory

low and Install Software states. Because of the limited expressive power of the
hierarchical state machine metamodel which does not support extra-functional annota-
tions, the Δ3 revisions do not have counterparts in the state machine in Fig. 7.

Current declarative bidirectional languages, such as QVT relations (QVT-R), are of-
ten ambivalent when discussing non-bijective transformations as already pointed out
in [57]. Other approaches, notably hybrid or graph-based transformation techniques,
even if claiming to support bidirectionality, are able to deal only with (partially) bi-
jective mappings [14]. As a consequence, there is not a clear understanding of what

Model Transformations 105

1

2

2

3

3

Fig. 6. A revision of the generated non-hierarchical state machine

Fig. 7. The source hierarchical state machine synchronised with the target changes

non-bijectivity implies causing language implementors to adopt design decisions which
differ from an implementation to another.

In order to better understand how the different languages deal with non-bijectivity,
we have specified the hierarchical to non-hierarchical state machines transformation
(HSM2NHSM) by means of the Medini5 and MOFLON6 systems. The former is an
implementation of the QVT-R transformation language, whereas the latter is a frame-
work which bases on Triple Graph Grammars (TGGs) [49]: our experience with them
is outlined in the following

Medini. When trying to map the generated target model back to the source without
any modification, a new source model is generated which differs from the original one7.

5 http://projects.ikv.de/qvt/
6 http://www.moflon.org
7 The interested reader can access the full implementation of both the attempts at the following

address http://www.mrtc.mdh.se/˜acicchetti/HSM2NHSM.php

http://projects.ikv.de/qvt/
http://www.moflon.org
http://www.mrtc.mdh.se/~acicchetti/HSM2NHSM.php

106 D. Di Ruscio, R. Eramo, and A. Pierantonio

In particular, incoming (outgoing) transitions to (from) nested states are flattened to the
corresponding parent: when going back such mapping makes the involved nested states
to disappear (as Entry and Install in the Install Software composite in Fig. 5).
Moreover, the same mapping induces the creation of extra composite states for exist-
ing simple states, like Begin Installation and the initial and final states of the
hierarchical state machine. Starting from this status, we made the modifications on the
target model as prescribed by Fig. 6 and re-applied the transformation in the source
direction, i.e. backward. In this case, the Start Install shield state is correctly
mapped back by renaming the existing Begin Installation in the source. In the
same way, the modified transition from Disk Error to the final state is consistently
updated. However, the newly added transition outgoing from Disk Error to Install
software is mapped by default to the composite state, which might not be the pre-
ferred option for the user. Finally, the manipulation of the attributes related to memory
requirements and cost are not mapped back to any source element but are preserved
when new executions of the transformation in the target direction are triggered.

MOFLON. The TGGs implementation offered by MOFLON is capable of generating
Java programs starting from diagrammatic specifications of graph transformations. The
generated code realizes two separate unidirectional transformations which as in other
bidirectional languages should be consistent by construction. However, while the for-
ward transformation implementation can be considered complete with respect to the
transformation specification, the backward program restricts the change propagation to
attribute updates and element deletions. In other words, the backward propagation is
restricted to the contexts where the transformation can exploit trace information.

In the next sections, we firstly motivate a set of requirements a bidirectional transfor-
mation language should meet to fully achieve its potential; then, we introduce the JTL
language, its support to non-bijective bidirectional transformations, and its ASP-based
semantics.

4.2 Requirements for Bidirectionality and Change Propagation

This section refines the definition of bidirectional model transformations as proposed
in [57] by explicitly considering non-bijective cases. Even if some of the existing bidi-
rectional approaches enable the definition of non-bijective mappings [57, 15], their va-
lidity is guaranteed only on bijective sub-portions of the problem. As a consequence, the
forward transformation can be supposed to be an injective function, and the backward
transformation its corresponding inverse; unfortunately, such requirement excludes most
of the cases [62]. In general, a bidirectional transformation R between two classes of
models, say M and N, and M more expressive than N, is characterized by two unidirec-
tional transformations
−→
R : M ×N → N
←−
R : M ×N →M∗

where
−→
R takes a pair of models (m, n) and works out how to modify n so as to en-

force the relation
−→
R . In a similar way,

←−
R propagates changes in the opposite direction:←−

R is a non-bijective function able to map the target model in a set of corresponding

Model Transformations 107

source models conforming to M 8. Furthermore, since transformations are not total in
general, bidirectionality has to be provided even in the case the generated model has
been manually modified in such a way it is not reachable anymore by the considered
transformation. Traceability information is employed to back propagate the changes
from the modified targets by inferring the closest9 model that approximates the ideal
source one at best. More formally the backward transformation

←−
R is a function such

that:

(i) if R(m,n) is a non-bijective consistency relation,
←−
R generates all the resulting mod-

els according to R;
(ii) if R(m,n) is a non-total consistency relation,

←−
R is able to generate a result model

which approximates the ideal one.

This definition alone does not constrain much on the behavior of the reverse transforma-
tion and additional requirements are necessary in order to ensure that the propagation
of changes behaves as expected.

Reachability. In case a generated model has been manually modified (n′), the back-
ward transformation

←−
R generates models (m∗) which are exact, meaning that the orig-

inal target may be reached by each of them via the transformation without additional
side effects. Formally:
←−
R (m,n′) = m∗ ∈M∗

−→
R (m′, n′) = n′ ∈ N for each m′ ∈ m∗

Choice preservation. Let n′ be the target model generated from an arbitrary model
m′ in m∗ as above: when the user selects m′ as the appropriate source pertaining to n′

the backward transformation has to generate exactly m′ from n′ disregarding the other
possible alternatives t ∈ m∗ such that t �= m′. In other words, a valid round-trip process
has to be guaranteed even when multiple sources are available [63]:
←−
R (m′,−→R (m′, n′)) = m′ for each m′ ∈ m∗

Clearly, the above requirement in order to be met demands for adequate traceability
information management.

In the rest of the paper, the proposed language is introduced and shown to satisfy the
above requirements. The details of the language and its supporting development envi-
ronment are presented in Section 4.3, whereas in Section 4.4 the usage of the language
is demonstrated by means of the benchmark case.

8 For the sake of readability, we consider a non-bijective backward transformation assuming
that only M contains elements not represented in N . However, the reasoning is completely
analogous for the forward transformation and can be done by exchanging the roles of M and
N .

9 This concept is clarified in Sect. 4.3, where the transformation engine and its derivation mech-
anism are discussed.

108 D. Di Ruscio, R. Eramo, and A. Pierantonio

Fig. 8. Architecture overview of the JTL environment

4.3 The Janus Transformation Language

The Janus Transformation Language (JTL) is a declarative model transformation lan-
guage specifically tailored to support bidirectionality and change propagation. The im-
plementation of the language relies on the Answer Set Programming (ASP) [42]. This
is a form of declarative programming oriented towards difficult (primarily NP-hard)
search problems and based on the stable model (answer set) semantics of logic pro-
gramming. Being more precise model transformations specified in JTL are transformed
into ASP programs (search problems), then an ASP solver is executed to find all the
possible stable models that are sets of atoms which are consistent with the rules of the
considered program and supported by a deductive process.

The overall architecture of the environment supporting the execution of JTL trans-
formations is reported in Fig. 8. The JTL engine is written in the ASP language and
makes use of the DLV solver [61] to execute transformations in both forward and back-
ward directions. The engine executes JTL transformations which have been written in
a QVT-like syntax, and then automatically transformed into ASP programs. Such a se-
mantic anchoring has been implemented in terms of an ATL [43] transformation defined
on the JTL and ASP metamodels. Also the source and target metamodels of the con-
sidered transformation (MMsource, MMtarget) are automatically encoded in ASP and
managed by the engine during the execution of the considered transformation and to
generate the output models.

The overall architecture has been implemented as a set of plug-ins of the Eclipse
framework and mainly exploits the Eclipse Modelling Framework (EMF) [29] and the

Model Transformations 109

ATLAS Model Management Architecture (AMMA) [64]. Moreover, the DLV solver
has been wrapped and integrated in the overall environment. In the rest of the section
all the components of the architecture previously outlined are presented in detail.

The Janus Transformation Engine. As previously said the Janus transformation
engine is based on a relational and declarative approach implemented using the ASP
language to specify bidirectional transformations. The approach exploits the benefits of
logic programming that enables the specification of relations between source and target
types by means of predicates, and intrinsically supports bidirectionality [32] in terms of
unification-based matching, searching, and backtracking facilities.

Starting from the encoding of the involved metamodels and the source model (see the
serialize arrows in the Fig. 8), the representation of the target one is generated according
to the JTL specification. The computational process is performed by the JTL engine (as
depicted in Figure 8) which is based on an ASP bidirectional transformation program
executed by means of an ASP solver called DLV [61].

Encoding of Models and Metamodels. In the proposed approach, models and meta-
models are defined in a declarative manner by means of a set of logic assertions. In
particular, they are considered as graphs composed of nodes, edges and properties that
qualify them. The metamodel encoding is based on a set of terms each characterized by
the predicate symbols metanode, metaedge, and metaprop, respectively. A fragment
of the hierarchical state machine metamodel considered in Section 4.1 is encoded in
Listing 1.1. For instance, the metanode(HSM,state) in line 1 encodes the metaclass
state belonging to the metamodel HSM. The metaprop(HSM,name,state) in line 3
encodes the attribute named name of the metaclass state belonging to the metamodel
HSM. Finally, the metaedge(HSM,association,source,transition,state) in
line 6 encodes the association between the metaclasses transition and state, typed
association, named source and belonging to the metamodel HSM. The terms in-
duced by a certain metamodel are exploited for encoding models conforming to it. In
particular, models are sets of entities (represented through the predicate symbol node),
each characterized by properties (specified by means of prop) and related together
by relations (represented by edge). For instance, the state machine model in Fig. 5
is encoded in the Listing 1.2. In particular, the node(HSM,"s1",state) in line 1

encodes the instance identified with "s1" of the class state belonging to the meta-
model HSM. The prop(HSM,"s1",name,"start") in line 4 encodes the attribute

1metanode(HSM, state).
2metanode(HSM, transition).
3metaprop(HSM, name, state).
4metaprop(HSM, trigger, transition).
5metaprop(HSM, effect, transition).
6metaedge(HSM, association, source, transition, state).
7metaedge(HSM, association, target, transition, state).
8[...]

Listing 1.1. Fragment of the State Machine metamodel

110 D. Di Ruscio, R. Eramo, and A. Pierantonio

1node(HSM, "s1", state).
2node(HSM, "s2", state).
3node(HSM, "t1", transition).
4prop(HSM,"s1.1","s1",name,"begin installation").
5prop(HSM,"s2.1","s2",name,"install software").
6prop(HSM,"t1.1","t1",trigger,"install software").
7prop(HSM,"t1.2","t1",effect,"start install").
8edge(HSM,"tr1",association,source, "s1","t1").
9edge(HSM,"tr1",association,target, "s2","t1").

10[...]

Listing 1.2. Fragment of the State Machine model in Figure 5

name of the class "s1" with value "start" belonging to the metamodel HSM. Fi-
nally, the edge(HSM,"tr1",association,source,"s1","t1") in line 7 encodes
the instance "tr1" of the association between the state "s1" and the transition "t1"

belonging to the metamodel HSM.

Model Transformation Execution. After the encoding phase, the deduction of the tar-
get model is performed according to the rules defined in the ASP program. The trans-
formation engine is composed of i) relations which describe correspondences among
element types of the source and target metamodels, ii) constraints which specify re-
strictions on the given relations that must be satisfied in order to execute the corre-
sponding mappings, and an iii) execution engine (described in the rest of the section)
consisting of bidirectional rules implementing the specified relations as executable map-
pings. Relations and constraints are obtained from the given JTL specification, whereas
the execution engine is always the same and represents the bidirectional engine able
to interpret the correspondences among elements and execute the transformation. The
transformation process logically consists of the following steps:

(i) given the input (meta)models, the execution engine induces all the possible solution
candidates according to the specified relations;

(ii) the set of candidates is refined by means of constraints.

Listing 1.3 contains a fragment of the ASP code implementing relations and constraints
of the HSM2NHSM transformation discussed in Section 4.1. In particular, the terms
in lines 1-2 define the relation called "r1" between the metaclass State machine

belonging to the HSM metamodel and the metaclass State machine belonging to the
NHSM metamodel. An ASP constraint expresses an invalid condition: for example, the
constraints in line 3-4 impose that each time a state machine occurs in the source model
it has to be generated also in the target model. In fact, if each atoms in its body is true
then the correspondent solution candidate is eliminated. Similarly, the relation between
the metaclasses State of the involved metamodels is encoded in line 6-7. In this case,
constraints in line 8-11 impose that each time a state occurs in the HSM model, the
correspondent one in the NHSM model is generated only if the source element is not a
sub-state, vice versa, each state in the NHSM model is mapped into the HSM model. Fi-
nally, the relation between the metaclasses Composite state and State is encoded

Model Transformations 111

1relation ("r1", HSM, stateMachine).
2relation ("r1", NHSM, stateMachine).
3:- node(HSM, "sm1", stateMachine), not node’(HSM, "sm1", stateMachine).
4:- node(NHSM, "sm1", stateMachine), not node’(NHSM, "sm1", stateMachine).
5
6relation ("r2", HSM, state).
7relation ("r2", NHSM, state).
8:- node(HSM, "s1", state), not edge(HSM, "ow1", owningCompositeState, "s1", "cs1

"), not node’(NHSM, "s1", state).
9:- node(HSM, "s1", state), edge(HSM, "ow1", owningCompositeState, "s1", "cs1"),

node(HSM, "cs1", compositeState), node’(NHSM, "s1", state).
10:- node(NHSM, "s1", state), not trace_node(HSM, "s1", compositeState), not node

’(HSM, "s1", state).
11:- node(NHSM, "s1", state), trace_node(HSM, "s1", compositeState), node’(HSM, "

s1", state).
12
13relation ("r3", HSM, compositeState).
14relation ("r3", NHSM, state).
15:- node(HSM, "s1", compositeState), not node’(NHSM, "s1", state).
16:- node(NHSM, "s1", state), trace_node(HSM, "s1", compositeState), not node’(HSM

, "s1", compositeState).
17[...]

Listing 1.3. Fragment of the HSM2NHSM transformation

in line 13-14. Constraints in line 15-16 impose that each time a composite state oc-
curs in the HSM model a correspondent state in the NHSM model is generated, and
vice versa. Missing sub-states in a NHSM model can be generated again in the HSM
model by means of trace information (see line 10-11 and 16). Trace elements are au-
tomatically generated each time a model element is discarded by the mapping and need
to be stored in order to be regenerated during the backward transformation.

Note that the specification order of the relations is not relevant as their execution is
bottom-up; i.e., the final answer set is always deduced starting from the more nested
facts.

Execution Engine. The specified transformations are executed by a generic engine
which is (partially) reported in Listing 1.4. The main goal of the transformation ex-
ecution is the generation of target elements as the node’ elements in line 11 of List-
ing 1.4. As previously said transformation rules may produce more than one target
models, which are all the possible combinations of elements that the program is able
to create. In particular, by referring to Listing 1.4 target node elements with the form
node′(MM,ID,MC) are created if the following conditions are satisfied:

- the considered element is declared in the input source model. The lines 1-2 con-
tain the rules for the source conformance checking related to node terms. In partic-
ular, the term is source metamodel conform(MM,ID,MC) is true if the terms
node(MM,ID,MC) and metanode(MM,MC) exist. Therefore, the term bad source

is true if the corresponding is source metamodel con- form(MM,ID,MC) is
valued to false with respect to the node(MM,ID,MC)source element;

- at least a relation exists between a source element and the candidate target element.
In particular, the term mapping(MM,ID,MC) in line 3 is true if there exists a rela-
tion which involves elements referring to MC and MC2 metaclasses and an element
node(MM2,ID,MC2). In other words, a mapping can be executed each time it is

112 D. Di Ruscio, R. Eramo, and A. Pierantonio

1is_source_metamodel_conform(MM,ID,MC) :- node(MM,ID,MC), metanode(MM,MC).
2bad_source :- node(MM,ID,MC), not is_source_metamodel_conform(MM,ID,MC).
3mapping(MM,ID,MC) :- relation(R,MM,MC), relation(R,MM2,MC2), node(MM2,ID,MC2),

MM!=MM2.
4is_target_metamodel_conform(MM,MC) :- metanode(MM,MC).
5{is_generable(MM,ID,MC)} :- not bad_source, mapping(MM,ID,MC),

is_target_metamodel_conform(MM,MC), MM=mmt.

6node′(MM,ID,MC) :- is_generable(MM,ID,MC), mapping(MM,ID,MC), MM=mmt.

Listing 1.4. Fragment of the Execution engine

specified between a source and a target, and there exists the appropriate source to
compute the target;

- the candidate target element conforms to the target metamodel. In particular, the
term is target metamodel conform(MM,MC) in line 6 is true if the MC meta-
class exists in the MM metamodel (i.e. the target metamodel);

- finally, any constraint defined in the relations in Listing 1.3 is valued to false.

The invertibility of transformations is obtained by means of trace information that con-
nect source and target elements; in this way, during the transformation process, the
relationships between models that are created by the transformation executions can be
stored to preserve mapping information in a permanent way. Furthermore, all the source
elements lost during the forward transformation execution (for example, due to the dif-
ferent expressive power of the metamodels) are stored in order to be generated again in
the backward transformation execution.

Specifying Model Transformation with Janus. Due to the reduced usability of the
ASP language, we have decided to provide support for specifying transformations by
means of a more human readable syntax inspired by QVT-R. In Listing 1.5 we re-
port a fragment of the HSM2NHSM transformation specified in JTL and it transforms
hierarchical state machines into flat state machines and the other way round. The for-
ward transformation is clearly non-injective as many different hierarchical machines
can be flattened to the same model and consequently transforming back a modified flat
machine can give place to more than one hierarchical machine. Such a transformation
consists of several relations like StateMachine2StateMachine, State2State and Compos-
iteState2State which are specified in Listing 1.5. They define correspondences between
a) state machines in the two different metamodels b) atomic states in the two different
metamodels and c) composite states in hierarchical machines and atomic states in flat
machines. The relation in lines 11-20 of Listing 1.5 is constrained by means of the when
clause such that only atomic states are considered. Similarly to QVT, the checkonly and
enforce constructs are also provided: the former is used to check if the domain where it
is applied exists in the considered model; the latter induces the modifications of those
models which do not contain the domain specified as enforce. A JTL relation is con-
sidered bidirectional when both the contained domains are specified with the construct
enforce.

Model Transformations 113

1transformation hsm2nhsm(source : HSM, target : NHSM) {
2
3 top relation StateMachine2StateMachine {
4
5 enforce domain source sSM : HSM::StateMachine;
6 enforce domain target tSM : NHSM::StateMachine;
7
8 }
9

10 top relation State2State {
11
12 enforce domain source sourceState : HSM::State;
13 enforce domain target targetState : NHSM::State;
14
15 when {
16 sourceState.owningCompositeState.oclIsUndefined();
17 }
18
19 }
20
21 top relation CompositeState2State {
22
23 enforce domain source sourceState : HSM::CompositeState;
24 enforce domain target targetState : NHSM::State;
25
26 }
27}

Listing 1.5. A non-injective JTL program

The JTL transformations specified in the QVT-like syntax are mapped to the corre-
spondent ASP program by means of a semantic anchoring operation as described in the
next section.

ASP Semantic Anchoring. According to the proposed approach, the designer task
is limited to specifying relational model transformations in JTL syntax and to applying
them on models and metamodels defined as EMF entities within the Eclipse framework.

Designers can take advantage of ASP and of the transformation properties previ-
ously discussed in a transparent manner since only the JTL syntax is used. In fact,
ASP programs are automatically obtained from JTL specifications by means of an ATL
transformations as depicted in the upper part of Fig. 8. Such a transformation is able
to generate ASP predicates for each relation specified with JTL. For instance, the re-
lation State2State in Listing 1.5 gives place to the relation predicates in lines 6-7 in
Listing 1.3.

The JTL when clause is also managed and it induces the generation of further ASP
constraints. For instance, the JTL clause in line 16 of Listing 1.5 gives place to a couple
of ASP constraints defined on the owningCompositeState feature of the state machine
metamodels (see lines 8-9 in Listing 1.3). Such constraints are able to filter the states
and consider only those which are not nested.

To support the backward application of the specified transformation, for each JTL
relation additional ASP constraints are generated in order to support the management of
trace links. For instance, the State2State relation in Listing 1.5 induces the generation
of the constraints in lines 10-11 of Listing 1.3 to deal with the non-bijectivity of the
transformation. In particular, when the transformation is backward applied on a State
element of the target model, trace links are considered to check if such a state has

114 D. Di Ruscio, R. Eramo, and A. Pierantonio

been previously generated from a source CompositeState or State element. If such trace
information is missing all the possible alternatives are generated.

4.4 JTL in Practice

In this section we show the application of the proposed approach to the Collapse/Ex-
pand State Diagrams case study presented in Section 4.1. The objective is to illustrate
the use of JTL in practice by exploiting the developed environment, and in particular
to show how the approach is able to propagate changes dealing with non-bijective and
non-total scenarios.

Modelling State Machines. According to the scenario described in Section 4.1, we
assume that in the software development lifecycle, the designer is interested to have a
behavioral description of the system by means of hierarchical state machine, whereas a
test expert produces non-hierarchical state machine models. The hierarchical and non-
hierarchical state machine matamodels (respectively HSM and NHSM) are given by
means of their Ecore representation within the EMF framework. Then a hierarchical
state machine model conforming to the HSM metamodel can be specified as the model
reported in the left-hand side of Fig. 9. Models can be specified with graphical and/or
concrete syntaxes depending on the tool availability for the considered modeling lan-
guage. In our case, the adopted syntaxes for specifying models do not affect the overall
transformation approach since models are manipulated by considering their abstract
syntaxes.

Specifying and Applying the HSM2NHSM Model Transformation. Starting from
the definition of the involved metamodels, the JTL transformation is specified according
to the QVT-like syntax described in Section 4.3 (see Listing 1.5). By referring to Fig. 8,
the JTL program, the source and target metamodels and the source model have been
created and need to be translated in their ASP encoding in order to be executed from the
transformation engine. The corresponding ASP encodings are automatically produced
by the mechanism illustrated in Section 4.3. In particular, the ASP encoding of both
source model and source and target metamodels is generated according to the Listing
1.2 and 1.1, while the JTL program is translated to the corresponding ASP program (see
Listing 1.3).

After this phase, the application of the HSM2NHSM transformation on sampleHSM
generates the corresponding sampleNHSM model as depicted in the right part of Fig. 8.
Note that, by re-applying the transformation in the backward direction it is possible to
obtain again the sampleHSM source model. The missing sub-states and the transitions
involving them are restored by means of trace information.

Propagating Changes. Suppose that in a refinement step the designer needs to manu-
ally modify the generated target by the changes described in Section 4.1 (see Δ changes
depicted in Fig. 6), that is:

1. renaming the initial state from Begin Installation to Start Install

shield;

Model Transformations 115

Fig. 9. HSM source model and the correspondent NHSM target model

2. adding the alternative try again to the state Disk Error to come back to
Install software;

3. changing the attributes related to memory requirements (m=500) in the state
Install software and cost (c=200) of the transition from Memory low to
Install software.

The target model including such changes (sampleNHSM’) is shown in the left part of
the Fig. 10. If the transformation HSM2NHSM is applied on it, we expect changes
to be propagated back to the source model. However, due to the different expressive
power of the involved metamodels, target changes may be propagated in a number of
different ways, thus making the application of the reverse transformation to propose
more solutions. The generated sources, namely sampleHSM’ 1/2/3/4 can be inspected
through Figure 10: the change (1) has been propagated renaming the state to Start

Install shield; the change (2) gives place to a non-bijective mapping and for this
reason more than one model is generated. As previously said, the new transition can be
equally targeted to each one of the nested states within Install Software as well
as to the super state itself (see the properties sampleHSM’ 1/2/3/4 in Figure 10). For
example, as visible in the property of the transition, sampleHSM’ 1 represents the case
in which the transition is targeted to the composite state Install Software; finally,
the change (3) is out of the domain of the transformation. In this case, the new values
for memory and cost are not propagated on the generated source models.

116 D. Di Ruscio, R. Eramo, and A. Pierantonio

Fig. 10. The modified NHSM target model and the correspondent HSM source models

Even in this case, if the transformation is applied on one of the derived sampleHSM’
models, the appropriate sampleNHSM’ models including all the changes are generated.
However, this time the target will preserve information about the chosen sampleHSM’
source model, thus causing future applications of the backward transformation to gen-
erate only sampleHSM’.

With regard to the performances of our approach, we performed no formal study on
its complexity yet, since that goes beyond the scope of this work; however, our obser-
vations showed that the time required to execute each transformation in the illustrated
case study is more than acceptable since it always took less than one second. In the
general case, when there are a lot of target alternative models the overall performance
of the approach may degrade.

5 Application Scenario 2: Metamodel/Model Coupled Evolution

Metamodels can be considered one of the constituting concepts of MDE, since they
are the formal definition of well-formed models, or in other words they constitute the

Model Transformations 117

languages by which a given reality can be described in some abstract sense [2]. Meta-
models are expected to evolve during their life-cycle, thus causing possible problems
to existing models which conform to the old version of the metamodel and do not con-
form to the new version anymore. The problem is due to the incompatibility between the
metamodel revisions and a possible solution is the adoption of mechanisms of model co-
evolution, i.e. models need to be migrated in new instances according to the changes of
the corresponding metamodel. Unfortunately, model co-evolution is not always simple
and presents intrinsic difficulties which are related to the kind of evolution the meta-
model has been subject to. Going into more details, metamodels may evolve in differ-
ent ways: some changes may be additive and independent from the other elements, thus
requiring no or little instance revision. In other cases metamodel manipulations intro-
duce incompatibilities and inconsistencies which can not be easily (and automatically)
resolved.

This section proposes an approach based on higher-order model transformations
(HOTs) to model coupled evolution [65]. In particular, HOTs take a difference model
formalizing the metamodel modifications and generate a model transformation able to
adapt and recovery the validity of the compromised models. The approach has been
applied successfully in different application domains, e.g., to manage the evolution of
Web applications [66].

5.1 Metamodel Differences

In Fig. 11 it is depicted an example of the evolution of a (simplified) Petri Net
metamodel, which takes inspiration from the work in [18]. The initial Petri Net (MM0)
consists of Places and Transitions; moreover, places can have source and/or des-
tination transitions, whereas transitions must link source and destination places (src
and dst association roles, respectively). In the new metamodel MM1, each Net has at
least one Place and one Transition. Besides, arcs between places and transitions are
made explicit by extracting PTArc and TPArc metaclasses. This refinement permits to
add further properties to relationships between places and transitions. For example, the
Petri Net formalism can be extended by annotating arcs with weights. As PTArc and
TPArc both represent arcs, they can be generalized by a superclass, and a new integer
metaproperty can be added in it. Therefore, an abstract class Arc encompassing the in-
teger metaproperty weight has been added in MM2 revision of the metamodel. Finally,
Net has been renamed into PetriNet. The metamodels in Fig. 11 will be exploited as
the running example throughout this section. They have been kept deliberately simple
because of space limitations, even though they are suitable to present all the insights of
the co-adaptation mechanisms as already demonstrated in [18].

The revisions illustrated so far can invalidate existing instances; therefore, each ver-
sion needs to be analysed to comprehend the various kind of updates it has been subject
to and, eventually, to elicit the necessary adaptations of corresponding models. Meta-
model manipulations can be classified by their corrupting or non-corrupting effects on
existing instances [67]:

118 D. Di Ruscio, R. Eramo, and A. Pierantonio

Fig. 11. Petri Net metamodel evolution

– non-breaking changes: changes which do not break the conformance of models to
the corresponding metamodel;

– breaking and resolvable changes: changes which break the conformance of models
even though they can be automatically co-adapted;

– breaking and unresolvable changes: changes which break the conformance of mod-
els which can not automatically co-evolved and user intervention is required.

In other words, non-breaking changes consist of additions of new elements in a meta-
model MM leading to MM′ without compromising models which conform to MM and thus,
in turn, conform to MM′. For instance, in the metamodel MM2 illustrated in Fig. 11 the
abstract metaclass Arc has been added as a generalization of the PTArc and TPArc

metaclasses (without considering the new attribute weight). After such a modifica-
tion, models conforming to MM1 still conform to MM2 and co-evolution is not necessary.
Unfortunately, this is not always the case since in general changes may break models
even though sometimes automatic resolution can be performed, i.e. when facing break-
ing and resolvable changes. For instance, the Petri Net metamodel MM1 in Fig. 11 is
enriched with the new PTArc and TPArc metaclasses. Such a modification breaks the
models that conform to MM0 since according to the new metamodel MM1, Place and

Model Transformations 119

Transition instances can not be directly related, but PTArc and TPArc elements are
required. However, models can be automatically migrated by adding for each couple of
Place and Transition entities two additional PTArc and TPArc instances between
them.

Often manual interventions are needed to solve breaking changes like, for instance,
the addition of the new attribute weight to the class Arc of MM2 in Fig. 11 which
were not specified in MM1. The models conforming to MM1 can not be automatically
co-evolved since only a human intervention can introduce the missing information re-
lated to the weight of the arc being specified, or otherwise default values have to be
considered. We refer to such situations as breaking and unresolvable changes.

All the scenarios of model co-adaptations can be managed with respect to the possi-
ble metamodel modifications which can be distinguished into additive, subtractive, and
updative. In particular, with additive changes we refer to metamodel element additions
which in turn can be further distinguished as follows:

– Add metaclass: introducing new metaclasses is a common practice in metamodel
evolution which gives place to metamodel extensions. Adding new metaclasses
raises co-evolution issues only if the new elements are mandatory with respect to
the specified cardinality. In this case, new instances of the added metaclass have to
be accordingly introduced in the existing models;

– Add metaproperty: this is similar to the previous case since a new metaproperty may
be or not obligatory with respect to the specified cardinality. The existing models
maintain the conformance to the considered metamodel if the addition occurs in
abstract metaclasses without subclasses; in other cases, human intervention is re-
quired to specify the value of the added property in all the involved model elements;

– Generalize metaproperty: a metaproperty is generalized when its multiplicity or
type are relaxed. For instance, if the cardinality 3..n of a sample metaclass MC
is modified in 0..n, no co-evolution actions are required on the corresponding
models since the existing instances of MC still conform to the new version of the
metaclass;

– Pull metaproperty: a metaproperty p is pulled in a superclass A and the old one
is removed from a subclass B. As a consequence, the instances of the metaclass A
have to be modified by inheriting the value of p from the instances of the metaclass
B;

– Extract superclass: a superclass is extracted in a hierarchy and a set of properties is
pulled on. If the superclass is abstract model instances are preserved, otherwise the
effects are referable to metaproperty pulls.

Subtractive changes consist of the deletions of some of the existing metamodel elements
as described in the following:

– Eliminate metaclass: a metaclass is deleted by giving place to a sub metamodel of
the initial one. In general, such a change induces in the corresponding models the
deletions of all the metaclass instances. Moreover, if the involved metaclass has
subclasses or it is referred by other metaclasses, the elimitation causes side effects
also to the related entities;

120 D. Di Ruscio, R. Eramo, and A. Pierantonio

Table 1. Changes classification

Change type Change
Non-breaking changes Generalize metaproperty

Add (non-obligatory) metaclass
Add (non-obligatory) metaproperty

Breaking and Extract (abstract) superclass
resolvable changes Eliminate metaclass

Eliminate metaproperty
Push metaproperty
Flatten hierarchy
Rename metaelement
Move metaproperty
Extract/inline metaclass

Breaking and Add obligatory metaclass
unresolvable changes Add obligatory metaproperty

Pull metaproperty
Restrict metaproperty
Extract (non-abstract) superclass

– Eliminate metaproperty: a property is eliminated from a metaclass, it has the same
effect of the previous modification;

– Push metaproperty: pushing a property in subclasses means that it is deleted from
an initial superclass A and then cloned in all the subclasses C of A. If A is abstract
then such a metamodel modification does not require any model co-adaptation,
otherwise all the instances of A and its subclasses need to be accordingly modified;

– Flatten hierarchy: to flatten a hierarchy means eliminating a superclass and in-
troducing all its properties into the subclasses. This scenario can be referred to
metaproperty pushes;

– Restrict metaproperty: a metaproperty is restricted when its multiplicity or type are
enforced. It is a complex case where instances need to be co-adapted or restricted.
Restricting the upper bound of the multiplicity requires a selection of certain values
to be deleted. Increasing the lower bound requires new values to be added for the
involved element which usually are manually provided. Restricting the type of a
property requires type conversion for each value.

Finally, a new version of the model can consist of some updates of already existing
elements leading to updative modifications which can be grouped as follows:

– Rename metaelement: renaming is a simple case in which the change needs to be
propagated to existing instances and can be performed in an automatic way;

– Move metaproperty: it consists of moving a property p from a metaclass A to a
metaclass B. This is a resolvable change and the existing models can be easily co-
evolved by moving the property p from all the instances of the metaclass A to the
instances of B;

Model Transformations 121

Fig. 12. KM3 metamodel

– Extract/inline metaclass: extracting a metaclass means to create a new class and
move the relevant fields from the old class into the new one. Vice versa, to inline
a metaclass means to move all its features into another class and delete the former.
Both metamodel refactorings induce automated model co-evolutions.

The classification illustrated so far is summarized in Tab. 1 and makes evident the funda-
mental role of evolution representation. At a first glance it seems that the classification
does not encompass references that are associations amongst metaclasses. However,
references can be considered properties of metaclasses at the same level of attributes.

Metamodel evolutions can be precisely categorized by understanding the kind of
modifications a metamodel undergone. Moreover, starting from the classification it is
possible to adopt adequate countermeasures to co-evolve existing instances. Nonethe-
less, it is worth noting that the classification summarized in Tab. 1 is based on a clear
distinction between the metamodel evolution categories. Unfortunately, in real world
experiences the evolution of a metamodel can not be reduced to a sequence of atomic
changes, generally several types of changes are operated as affecting multiple elements
with different impacts on the co-adaptation. Furthermore, the entities involved in the
evolution can be related one another. Therefore, since co-adaptation mechanisms are
based on the described change classification, a metamodel adaptation will need to be
decomposed in terms of the induced co-evolution categories. The possibility to have
a set of dependences among the several parts of the evolution makes the updates not
always distinguishable as single atomic steps of the metamodel revision, but requires a
further refinement of the classification as introduced in the next section and discussed
in details in Sect. 5.3.

122 D. Di Ruscio, R. Eramo, and A. Pierantonio

5.2 Formalizing Metamodel Differences

The problem of model differences is intrinsically complex and requires specialized
algorithms and notations to match the abstraction level of models [68]. Recently, in
[69, 70] two similar techniques have been introduced to represent differences as mod-
els, hereafter called difference models; interestingly these proposals combine the ad-
vantages of declarative difference representations and enable the reconstruction of the
final model by means of automated transformations which are inherently defined in the
approaches. In the rest of the section, we recall the difference representation approach
defined in [69] in order to provide the reader with the technical details which underpin
the solution proposed in Sect. 5.3.

Despite the work in [69] has been introduced to deal with model revisions, it is
easily adaptable to metamodel evolutions too. In fact, a metamodel is a model itself,
which conforms to a metamodel referred to as the meta metamodel [2]. For presentation
purposes, the KM3 language in Fig. 12 is considered throughout the paper, even though
the solution can be generalized to any metamodeling language like OMG/MOF [23] or
EMF/Ecore [29].

The overall structure of the change representation mechanism is depicted in Fig. 13:
given two base metamodels MM1 and MM2 which conform to an arbitrary base meta
metamodel (KM3 in our case), their difference conforms to a difference metamodel MMD
derived from KM3 by means of an automated transformation MM2MMD. The base meta
metamodel, extended as prescribed by such a transformation, consists of new constructs
able to represent the possible modifications that can occur on metamodels and which
can be grouped as follows:

– additions: new elements are added in the initial metamodel; with respect to the
classification given in Sect. 5.1, Add metaclass and Extract superclass involve this
kind of change;

– deletions: some of the existing elements are deleted as a whole. Eliminate metaclass
and Flatten hierarchy fall in this category of manipulations;

– changes: a new version of the metamodel being considered can consist of up-
dates of already existing elements. For instance, Rename metaelement and Restrict
metaproperty require this type of modification. Also the addition and deletion of
metaproperty (i.e. Add metaproperty and Eliminate metaproperty, respectively) are
modelled through this construct. In fact, when a metaelement is included in a con-
tainer the manipulation is represented as a change of the container itself.

In order to represent the differences between the Petri Net metamodel revisions, the ex-
tended KM3 meta metamodel depicted in Fig. 14 is generated by applying the MM2MMD
transformation in Fig. 13 previously mentioned. For each metaclass MC of the KM3
metamodel, the additional metaclasses AddedMC, DeletedMC, and ChangedMC are
generated. For instance, the metaclass Class in Fig. 12 induces the generation of the
metaclasses AddedClass, DeletedClass, and ChangedClass as depicted in Fig. 14.
In the same way, Reference metaclass induces the generation of the metaclasses
AddedReference, DeletedReference, and ChangedReference.

Model Transformations 123

Fig. 13. Overall structure of the model difference representation approach

The generated difference metamodel is able to represent all the differences amongst
metamodels which conform to KM3. For instance, the model in Fig. 15 conforms to
the generated metamodel in Fig. 14 and represents the differences between the Petri
Net metamodels specified in Fig. 11. The differences depicted in such a model can be
summarized as follows:

1) the addition of the new class PTArc in the MM1 revision of the Petri Net metamodel
is represented by means of an AddedClass instance, as illustrated by model dif-
ference Δ0,1 in Fig. 15. Moreover, the reference between Place and Transition
named dst has been updated to link PTArc with name out. Analogously, the re-
verse reference named src has been manipulated to point PTArc and named as in.
Two new references have been added through the correspondingAddedReference
instances to realize the reverse links from PTArc to Place and Transition, re-
spectively. Finally, the composition relationship between Net and Place has been
updated by prescribing the existence of at least one Place through the lower

property which has been updated from 0 to 1. The same enforcement has been
done to the composition between Net and Transition;

2) the addition of the new abstract class Arc in MM2 together with its attribute weight
is represented through an instance of the AddedClass and the AddedAttribute
metaclasses in the Δ1,2 delta of Fig. 15. In the meanwhile, PTArc and TPArc

classes are made specializations of Arc. Finally, Net entity is renamed as
PetriNet.

Difference models like the one in Fig. 15 can be obtained by using today’s available
tools like EMFCompare [71] and SiDiff [72].

The representation mechanism used so far allows to identify changes which occurred
in a metamodel revision and satisfies a number of properties, as illustrated in [69]. One
of them is the compositionality, i.e. the possibility to combine difference models in in-
teresting constructions like the sequential and the parallel compositions, which in turn
result in valid difference models themselves. For the sake of simplicity, let us con-
sider only two modifications over the initial model: the sequential composition of such

124 D. Di Ruscio, R. Eramo, and A. Pierantonio

Fig. 14. Generated difference KM3 metamodel

manipulations corresponds to merging the modifications conveyed by the first docu-
ment and then, in turn, by the second one in a resulting difference model containing a
minimal difference set, i.e., only those modifications which have not been overridden
by subsequent manipulations. Whereas, parallel compositions are exploited to com-
bine modifications operated from the same ancestor in a concurrent way. In case both
manipulations are not affecting the same elements they are said parallel independent
and their composition is obtained by merging the difference models by interleaving the
single changes and assimilating it to the sequential composition. Otherwise, they are
referred to as parallel dependent and conflict issues can arise which need to be detected
and resolved [73].

Finally, difference documentation can be exploited to re-apply changes to arbitrary
input models (see [69] for further details) and for managing model co-evolution in-
duced by metamodel manipulations. In the latter case, once differences between meta-
model versions have been detected and represented, they have to be partitioned in
resolvable and non resolvable scenarios in order to adopt the corresponding resolution
strategy. However, this distinction is not always feasible because of parallel dependent
changes, i.e. situations where multiple changes are mixed and interdependent one an-
other, like when a resolvable change is in some way related with a non-resolvable one,
for instance. In those cases, deltas have to be decomposed in order to isolate the non-
resolvable portion from the resolvable one, as illustrated in the next section.

Model Transformations 125

Fig. 15. Subsequent Petri Net metamodel adaptations

126 D. Di Ruscio, R. Eramo, and A. Pierantonio

5.3 Transformational Adaptation of Models

This section proposes a transformational approach able to consistently adapt exist-
ing models with respect to the modifications occurred in the corresponding metamod-
els. The proposal is based on model transformation and the difference representation
techniques presented in the previous section. In particular, given two versions MM1 and
MM2 of the same metamodel (see Fig. 16.a), their differences are recorded in a difference
model Δ, whose metamodel KM3Diff is automatically derived from KM3 as described
in Sect. 5.2. In realistic cases, the modifications consist of an arbitrary combination
of the atomic changes summarized in Tab. 1. Hence, a difference model formalizes all
kind of modifications, i.e. non-breaking, breaking resolvable and unresolvable ones.
This poses additional difficulties since current approaches (e.g. [18, 67]) do not provide
any support to co-adaptation when the modifications are given without explicitly distin-
guishing among breaking resolvable and unresolvable changes. Our approach consists
of the following steps:

i) automatic decomposition of Δ in two disjoint (sub) models, ΔR and Δ¬R, which
denote breaking resolvable and unresolvable changes;

ii) if ΔR and Δ¬R are parallel independent (see previous section) then we separately
generate the corresponding co-evolutions;

iii) if ΔR and Δ¬R are parallel dependent, they are further refined to identify and
isolate the interdependencies causing the interferences.

The distinction between ii) and iii) is due to fact that when two modifications are not
independent their effects depend on the order the changes occur leading to non confluent
situations. The confluence can still be obtained by removing those modifications which
caused the conflicts as described in Sect. 5.3.

The general approach is outlined in Figure 16 where dotted and solid arrows repre-
sent conformance and transformation relations, respectively, and square boxes are any
kind of models, i.e. models, difference models, metamodels, and even transformations.
In particular, the decomposition of Δ is given by two model transformations, TR and
T¬R (right-hand side of Fig. 16.a). Co-evolution actions are directly obtained as model
transformations from metamodel changes by means of higher-order transformations, i.e.
transformations which produce other transformations [2]. More specifically, the higher-
order transformations HR and H¬R (see Fig. 16.b and 16.c) take ΔR and Δ¬R and
produce the (co-evolving) model transformations CTR and CT¬R, respectively. Since
ΔR and Δ¬R are parallel independent CTR and CT¬R can be applied in any order
because they operate to disjoint sets of model elements, or in other words

(CT¬R · CTR)(M1) = (CTR · CT¬R)(M1) = M2

with M1 and M2 models conforming to the metamodel MM1 and MM2, respectively (see
Fig. 16.d).

In the rest of the section we illustrate the approach and its implementation. In
particular, we describe the decomposition of Δ and the generation of the co-evolving
model transformations for the case of parallel independent breaking resolvable and

Model Transformations 127

Fig. 16. Overall approach

unresolvable changes. Finally, we outline how to remove interdependencies from par-
allel dependent changes in order to generalize the solution provided in Sect. 5.3.

Parallel Independent Changes. The generation of the co-evolving model transforma-
tions is described in the rest of the section by means of the evolutions the PetriNet
metamodel has been subject to in Fig. 11. The differences between the subsequent meta-
model versions are given in Fig. 15 and have, in turn, to be decomposed to distinguish
breaking resolvable and unresolvable modifications.

128 D. Di Ruscio, R. Eramo, and A. Pierantonio

In particular, the difference Δ(0,1) from MM0 to MM1 consists of two atomic modifi-
cations, i.e. an Extract metaclass and a Restrict metaproperty change (according to the
classification in Tab. 1), which are referring to different sets of model elements. The
approach is able to detect parallel independence by verifying that the eventual decom-
posed differences have an empty intersection. Since a) the previous atomic changes
are breaking resolvable and unresolvable, and b) they do not share any model ele-
ment, then Δ(0,1) is decomposed by TR and T¬R into the parallel independent ΔR(0,1)

and Δ¬R(0,1), respectively. In fact, the former contains the extract metaclass action
which affects the elements Place and Transition, whereas the latter holds the re-
strict metaproperty changes consisting of the reference modifications in the metaclass
Net. Analogously, the same decomposition can be operated on Δ(1,2) (denoting the
evolution from MM1 to MM2) to obtain ΔR(1,2) and Δ¬R(1,2) since the denoted modifica-
tions do not conflict one another. In fact, the Rename metaelement change (represented
by cc1 and c1 in Fig. 15.b) is applied to Net, whereas the Add obligatory metaproperty
operation involves the new metaclass Arc which is supertype of the PTArc and TPArc

metaclasses.
As previously said, once the Δ is decomposed the higher-order transformationsHR

and H¬R detect the occurred metamodel changes and accordingly generate the co-
evolution to adapt the corresponding models. In the current implementation, model
transformations are given in ATL, a QVT compliant language part of the AMMA plat-
form [64] which contains a mixture of declarative and imperative constructs. In the
Listing 1.6 a fragment of the HR transformation is reported: it consists of a module
specification containing a header section (lines 1-2), transformation rules (lines 4-41)
and a number of helpers which are used to navigate models and to define complex cal-
culations on them. In particular, the header specifies the source models, the correspond-
ing metamodels, and the target ones. Since the HR transformation is higher-order, the
target model conforms to the ATL metamodel which essentially specifies the abstract
syntax of the transformation language. Moreover, HR takes as input the model which
represents the metamodel differences conforming to KM3Diff.

The helpers and the rules are the constructs used to specify the transformation be-
haviour. The source pattern of the rules (e.g. lines 15-20) consists of a source type and
a OCL [51] guard stating the elements to be matched. Each rule specifies a target pat-
tern (e.g. lines 21-25) which is composed of a set of elements, each of them (as the
one at lines 22-25) specifies a target type from the target metamodel (for instance, the
type MatchedRule from the ATL metamodel) and a set of bindings. A binding refers
to a feature of the type, i.e. an attribute, a reference or an association end, and spec-
ifies an expression whose value initializes the feature. HR consists of a set of rules
each of them devoted to the management of one of the resolvable metamodel changes
reported in Tab. 1. For instance, the Listing 1.6 contains the rules for generating the co-
evolution actions corresponding to the Rename metaelement and the Extract metaclass
changes.

Model Transformations 129

1module H_R;
2create OUT : ATL from Delta : KM3Diff;
3...
4rule atlModule {
5 from
6 s: KM3Diff!Metamodel
7 to
8 t : ATL!Module (
9 name <- ’CTR’,

10 outModels <- Sequence {tm},
11 inModels <- Sequence {sm},...
12),...
13}
14rule CreateRenaming {
15 from
16 input : KM3Diff!Class,
17 delta : KM3Diff!ChangedClass
18 ...
19 (not input.isAbstract
20 and input.name <> delta.updatedElement.name...)
21 to
22 matchedRule : ATL!MatchedRule (
23 name<-input.name + ’2’ + delta.updatedElement.name,
24 ...
25),...
26}
27rule CreateExtractMetaClass {
28 from
29 cr1: KM3Diff!ChangedReference, cr2: KM3Diff!ChangedReference, r1 : KM3Diff!

Reference, r2 : KM3Diff!Reference, c1 : KM3Diff!Class,
30 c2 : KM3Diff!Class,...
31 (cr1.updatedElement = r2 and cr1.owner = c2
32 and cr1.type = c1 and ...)
33 to
34 -- MatchedRule generation
35 matchedRule_i_c2 : ATL!MatchedRule (
36 name<-i_c2.name + ’2’ + i_c2.name,
37 inPattern <- ip_i_c2,
38 outPattern <- op_i_c2,
39 ...
40),...
41}
42...

Listing 1.6. Fragment of the HOTR transformation

The application of HR to the metamodel MM0 in Fig. 11 and the difference model
ΔR(0,1) in Fig. 15 generates the model transformation reported in the Listing 1.7. In
fact, the source pattern of the CreateExtractMetaClass rule (lines 28-32 in the List-
ing 1.6) matches with the two Extract metaclass changes represented in ΔR(0,1). They
consist of the additions of the PTArc and TPArc metaclasses instead of the direct refer-
ences between the existing elements Place and Transition. Consequently, according
to the structural features of the involved elements, the CreateExtractMetaClass

rule generates the transformation CTR(0,1) which is able to co-evolve all the models
conforming to MM0 by adapting them with respect to the new metamodel MM1 (see line
1-2 of the Listing 1.7). In particular, each element of type Place has to be modified
by changing all the references to elements of type Transition with references to new
elements of type PTArc (see lines 4-23 in the Listing 1.7). The same modification has
to be performed for all the elements of type Transition by creating new elements of
type TPArc which have to be added instead of direct references between Transition

and Place instances (see lines 24-42).

130 D. Di Ruscio, R. Eramo, and A. Pierantonio

1module CTR;
2create OUT : MM1 from IN : MM0;
3...
4rule Place2Place {
5 from
6 s : MM1!Place
7 ...
8 to
9 t : MM2!Place (

10 name <- s.name,
11 net <- s.net,
12 out <- s.dst->collect(e |
13 thisModule.createPTArc(e, t)
14)
15)
16}
17rule createPTArc(s : OclAny, n : OclAny) {
18 to
19 t : MM2!PTArc (
20 src <- s,
21 dst <- n
22), ...
23}
24rule Transition2Transition {
25 from
26 s : MM1!Transition
27 ...
28 to
29 t : MM2!Transition (
30 net <- s.net,
31 in <- s.dst->collect(e |
32 thisModule.createTPArc(e, t)
33)
34)
35}
36rule createTPArc(s : OclAny, n : OclAny) {
37 to
38 t : MM2!PTArc (
39 dst <- s,
40 src <- n
41), ...
42}
43...

Listing 1.7. Fragment of the generated CTR(0,1) transformation

The management of the breaking and unresolvable modifications is based on the
same techniques presented so far for the breaking resolvable case. However, as men-
tioned in Sect. 5.1, the involved transformations can not automatically co-adapt the
models but are limited to default actions which have to be refined by the designer.

Parallel Dependent Changes. As mentioned above, the automatic co-adaptation of
models relies on the parallel independence of breaking resolvable and unresolvable
modifications, or more formally

ΔR|Δ¬R = ΔR;Δ¬R +Δ¬R;ΔR (1)

where + denotes the non-deterministic choice. In essence, their application is not af-
fected by the adopted order since they do not present any interdependencies. In case the
modifications in Tab. 1 refer to the same elements then the order in which such modifi-
cations take place matters and does not allow the decomposition of a difference model

Model Transformations 131

as, for instance, when evolving MM0 directly to MM2 (although the sub steps MM0 − MM1
and MM1 − MM2 are directly manageable as described in the previous section).

A possible approach, which is only sketched in the following, consists in isolating
the interdependencies whenever (1) does not hold. The intention is to define an iterative
process consisting in diminishing the modifications between two metamodels until the
corresponding breaking resolvable and unresolvable differences are parallel indepen-
dent. In particular, let Δ be a difference between two metamodels, then we denote by
P(Δ) the difference powermodel, that is the (partially ordered) set of all possible valid
sub models of Δ (i.e. fragments of the difference model which are still conforming to
the difference metamodel)

P(Δ) = {δ0 = φ, · · · , δi, δi+1, · · · , δn = Δ}

Then, the solution is the smallest k in {0, · · · , n} such that

Δ(k); δk = Δ

where Δ(k) is the difference model between Δ and δk, and

Δ(k) = Δ
(k)
R |Δ(k)

¬R

with Δ
(k)
R and Δ

(k)
¬R parallel independent. Hence, the problem of parallel dependence is

reduced to the following

Δ = (Δ
(k)
R |Δ(k)

¬R); δk

by applying the higher-order transformation introduced in the previous section. For in-
stance, if we consider (MM2−MM0) the solution consists in iteratively finding a difference
model which maps MM0 to the intermediate metamodel corresponding to MM2 without
the attribute weight of the Arc metaclass. Therefore, the remaining δk in this example
is a non resolvable change, while in general it may demand for further iterations of the
decomposition process.

The problem of finding the correct scheduling of the adaptation steps has been solved
in [74] which proposes a dependency analysis which underpins a resolution strategy for
their correct application. In particular, all the metamodel change dependencies have
been considered and for each of them a resolution schema is proposed enabling the
complete automation of the adaptation. Interestingly, the technique is independent from
the metamodel and its underlying semantics, since it relies only on the definition of the
metamodeling language.

6 Conclusions

In this paper, model transformation approaches have been illustrated. They have been
grouped according to (macro) characteristics which distinguished their intrinsic fea-
tures. A number of languages which are prominent in their specificity have been briefly
discussed. Finally, two different application scenarios have been presented in order to

132 D. Di Ruscio, R. Eramo, and A. Pierantonio

illustrate complex situations where model transformations have been successfully ap-
plied. In the first case, the JTL language has been presented and particularly its capa-
bility in dealing with non-bijective transformations which present interesting difficul-
ties when modifications operated on a target model must be back propagated to source
models. The second case illustrated an application of higher-order transformations to
the problem of the coupled evolution of metamodels and models. In partcicular, the
evolution of a metamodel is specified in a difference model that once entered in a given
HOT produces other transformations capable of adapting those models which have been
invalidated by the metamodel changes.

Model transformations are considered among the most distinguished element of
MDE as their constitute the main gluing and composing mechanism within any MDE
ecosystem. However, the maturity of this field is still to be assessed as many aspects still
need to be further investigated. In general, very important aspects such as bidirection-
ality and change propagation have been already object of intense debate, as witnessed
by the work in [57], while genericity [75] and model typing [76] has been only more
recently considered. Other aspects, like transformation semantics, strategies and tools
for testing and verifying transformations, are addressed in another course [77] of the
SFM-12: MDE Summer School10 [78].

Acknowledgments. We would like to thank Antonio Cicchetti and Ludovico Iovino
for the never ending discussions we had over the last few years about the topics covered
by this paper (and mountaineering). Also, we are grateful to many colleagues, including
Jean Bézivin, Jeff Gray, Richard Paige, Laurie Tratt, and Antonio Vallecillo, who shared
their opinions and visions with us.

References

1. Schmidt, D.: Guest Editor’s Introduction: Model-Driven Engineering. Computer 39(2),
25–31 (2006)

2. Bézivin, J.: On the Unification Power of Models. Jour. on Software and Systems Modeling
(SoSyM) 4(2), 171–188 (2005)

3. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of the 13th
International Software Product Line Conference, SPLC 2009, pp. 111–119. Carnegie Mellon
University, Pittsburgh (2009)

4. Tratt, L.: Model transformations and tool integration. Jour. on Software and Systems Mod-
eling (SoSyM) 4(2), 112–122 (2005)

5. Object Management Group (OMG): MOF 2.0 Query/Views/Transformations RFP, OMG
document ad/02-04-10 (2002)

6. Visser, E.: WebDSL: A Case Study in Domain-Specific Language Engineering. In: Lämmel,
R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 291–373. Springer, Hei-
delberg (2008)

7. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a Modeling Lan-
guage for Designing Web sites. Computer Networks 33(1-6), 137–157 (2000)

8. Di Ruscio, D., Muccini, H., Pierantonio, A.: A Data Modeling Approach to Web Application
Synthesis. Int. Jour. of Web Engineering and Technology 1(3), 320–337 (2004)

10 http://www.sti.uniurb.it/events/sfm12mde/

http://www.sti.uniurb.it/events/sfm12mde/

Model Transformations 133

9. Cicchetti, A., Di Ruscio, D., Eramo, R., Maccarrone, F., Pierantonio, A.: beContent: A
Model-Driven Platform for Designing and Maintaining Web Applications. In: Gaedke, M.,
Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009. LNCS, vol. 5648, pp. 518–522. Springer,
Heidelberg (2009)

10. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Model Differences for Supporting
Model Co-evolution. In: Procs. MoDSE, 2nd Workshop on Model-Driven Software Evolu-
tion (2008)

11. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model Migration with Epsilon Flock.
In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 184–198. Springer, Hei-
delberg (2010)

12. Herrmannsdoerfer, M., Benz, S., Juergens, E.: Cope - automating coupled evolution of meta-
models and models, pp. 52–76 (2009)

13. Di Cosmo, R., Di Ruscio, D., Pelliccione, P., Pierantonio, A., Zacchiroli, S.: Supporting soft-
ware evolution in component-based foss systems. Technical Report TRCS 003/2010, Com-
puter Science Department, University of L’Aquila (2010)

14. Stevens, P.: A Landscape of Bidirectional Model Transformations. In: Lämmel, R., Visser, J.,
Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 408–424. Springer, Heidelberg (2008)

15. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Supporting Parallel Updates with Bidirectional
Model Transformations. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 213–228.
Springer, Heidelberg (2009)

16. Lehman, M.M., Belady, L.A. (eds.): Program evolution: processes of software change. Aca-
demic Press Professional, Inc., San Diego (1985)

17. Favre, J.M.: Meta-Model and Model Co-evolution within the 3D Software Space. In: Procs.
of the Int. Workshop on Evolution of Large-scale Industrial Software Applications (ELISA)
at ICSM 2003, Amsterdam (September 2003)

18. Wachsmuth, G.: Metamodel Adaptation and Model Co-adaptation. In: Bateni, M. (ed.)
ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)

19. Selic, B.: The Pragmatics of Model-driven Development. IEEE Software 20(5), 19–25
(2003)

20. Object Management Group (OMG): MDA Guide version 1.0.1, OMG Document: omg/2003-
06-01 (2003)

21. Kent, S.: Model Driven Engineering. In: Butler, M.J., Petre, L., Sere, K. (eds.) IFM 2002.
LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002)

22. Favre, J.M.: Towards a Basic Theory to Model Model Driven Engineering. In: Procs. of the
3rd Int. Workshop in Software Model Engineering (WiSME 2004) (2004)

23. Object Management Group (OMG): Meta Object Facility (MOF) 2.0 Core Specification,
OMG Document ptc/03-10-04 (2003),
http://www.omg.org/docs/ptc/03-10-04.pdf

24. Object Management Group (OMG): Unified Modelling Language (UML) V1.4 (2001)
25. Object Management Group (OMG): XMI Specification, v1.2, OMG Document formal/02-

01-01 (2002)
26. Seidewitz, E.: What Models Mean. IEEE Software 20(5), 26–32 (2003)
27. Bézivin, J., Gerbé, O.: Towards a Precise Definition of the OMG/MDA Framework. In: Auto-

mated Software Engineering (ASE 2001), pp. 273–282. IEEE Computer Society, Los Alami-
tos (2001)

28. Mellor, S.J., Clark, A.N., Futagami, T.: Guest Editors’ Introduction: Model-Driven Develop-
ment. IEEE Software 20(5), 14–18 (2003)

29. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: Eclipse Modeling Frame-
work. Addison Wesley (2003)

30. Aksit, M., Kurtev, I., Bézivin, J.: Technological Spaces: an Initial Appraisal. In: International
Federated Conf. (DOA, ODBASE, CoopIS), Industrial Track, Los Angeles (2002)

http://www.omg.org/docs/ptc/03-10-04.pdf

134 D. Di Ruscio, R. Eramo, and A. Pierantonio

31. Kleppe, A., Warmer, J.: MDA Explained. The Model Driven Architecture: Practice and
Promise. Addison-Wesley (2003)

32. Czarnecki, K., Helsen, S.: Feature-based Survey of Model Transformation Approaches. IBM
Systems J. 45(3) (June 2006)

33. Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky, T., Prange, U.,
Varró, D., Varró-Gyapay, S.: Model Transformation by Graph Transformation: A Compara-
tive Study. In: ACM/IEEE 8th International Conference on Model Driven Engineering Lan-
guages and Systems, Montego Bay, Jamaica (October 2005)

34. OMG: MOF QVT Final Adopted Specification, OMG Adopted Specification ptc/05-11-01
(2005)

35. Xactium: Xmf-mosaic, http://xactium.com
36. Vojtisek, D., Jézéquel, J.M.: MTL and Umlaut NG: Engine and Framework for Model Trans-

formation, http://www.ercim.org/publication/
Ercim News/enw58/vojtisek.html

37. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving Executability into Object-Oriented Meta-
languages. In: ACM/IEEE 8th International Conference on Model Driven Engineering Lan-
guages and Systems, Montego Bay, pp. 264–278 (2005)

38. Didonet Del Fabro, M., Bezivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: A generic
Model Weaver. In: Int. Conf. on Software Engineering Research and Practice (SERP 2005)
(2005)

39. Cicchetti, A., Di Ruscio, D.: Decoupling Web Application Concerns through Weaving Op-
erations. Science of Computer Programming 70(1), 62–86 (2008)

40. Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A.: Transformation: The Missing
Link of MDA. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT
2002. LNCS, vol. 2505, pp. 90–105. Springer, Heidelberg (2002)

41. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: A Bidirectional and Change
Propagating Transformation Language. In: Malloy, B., Staab, S., van den Brand, M. (eds.)
SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer, Heidelberg (2011)

42. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Kowal-
ski, R.A., Bowen, K. (eds.) Proceedings of the Fifth Int. Conf. on Logic Programming, pp.
1070–1080. The MIT Press, Cambridge (1988)

43. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS 2005.
LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

44. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Transformation Language. In: Valle-
cillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 46–60. Springer,
Heidelberg (2008)

45. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Validation of
Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp.
446–453. Springer, Heidelberg (2004)

46. de Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-formalism and Meta-modelling. In:
Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 174–188. Springer, Hei-
delberg (2002), http://link.springer.de/link/
service/series/0558/bibs/2306/23060174.htm

47. Varró, D., Varró, G., Pataricza, A.: Designing the automatic transformation of visual lan-
guages. Science of Computer Programming 44(2), 205–227 (2002)

48. Agrawal, A., Karsai, G., Kalmar, Z., Neema, S., Shi, F., Vizhanyo, A.: The Design of a
Language for Model Transformations. Journal of Software and System Modeling (2005)

49. Konigs, A., Schurr, A.: Tool Integration with Triple Graph Grammars - A Survey. Electronic
Notes in Theoretical Computer Science 148, 113–150 (2006)

http://xactium.com
http://www.ercim.org/publication/Ercim_News/enw58/vojtisek.html
http://www.ercim.org/publication/Ercim_News/enw58/vojtisek.html
http://link.springer.de/link/service/series/0558/bibs/2306/23060174.htm
http://link.springer.de/link/service/series/0558/bibs/2306/23060174.htm

Model Transformations 135

50. Wagelaar, D., Tisi, M., Cabot, J., Jouault, F.: Towards a General Composition Semantics
for Rule-Based Model Transformation. In: Whittle, J., Clark, T., Kühne, T. (eds.) MoDELS
2011. LNCS, vol. 6981, pp. 623–637. Springer, Heidelberg (2011)

51. Object Management Group (OMG): OCL 2.0 Specification, OMG Document formal/2006-
05-01 (2006)

52. Billington, J., Christensen, S., van Hee, K.M., Kindler, E., Kummer, O., Petrucci, L., Post, R.,
Stehno, C., Weber, M.: The Petri Net Markup Language: Concepts, Technology, and Tools.
In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 483–505.
Springer, Heidelberg (2003)

53. Extensible Platform for Specification of Integrated Languages for mOdel maNagement (Ep-
silon), http://www.eclipse.org/gmt/epsilon

54. Börger, E., Stärk, R.: Abstract State Machines - A Method for High-Level System Design
and Analysis. Springer (2003)

55. Varró, D., Pataricza, A.: Generic and Meta-Transformations for Model Transformation En-
gineering. In: International Conference on the Unified Modeling Language, pp. 290–304
(2004)

56. Object Management Group (OMG): MOF 2.0 QVT Final Adoptet Specification v1.1, OMG
Adopted Specification formal/2011-01-01 (2011)

57. Stevens, P.: Bidirectional model transformations in QVT: semantic issues and open ques-
tions. Software and Systems Modeling 8 (2009)

58. Steven Witkop: MDA users’ requirements for QVT transformations, OMG document 05-02-
04 (2005)

59. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidirectional
Transformations: A Cross-Discipline Perspective—GRACE Meeting Notes, State of the Art,
and Outlook. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 260–283. Springer,
Heidelberg (2009)

60. Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic Anchoring with Model
Transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748,
pp. 115–129. Springer, Heidelberg (2005)

61. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning (2004)

62. Tratt, L.: A change propagating model transformation language. Journal of Object Technol-
ogy 7(3), 107–126 (2008)

63. Hettel, T., Lawley, M., Raymond, K.: Model Synchronisation: Definitions for Round-Trip
Engineering. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063,
pp. 31–45. Springer, Heidelberg (2008)

64. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the Large and Modeling in
the Small. In: Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599,
pp. 33–46. Springer, Heidelberg (2005)

65. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing Model Conflicts in Distributed De-
velopment. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MoDELS
2008. LNCS, vol. 5301, pp. 311–325. Springer, Heidelberg (2008)

66. Cicchetti, A., Di Ruscio, D., Iovino, L., Pierantonio, A.: Managing the evolution of data-
intensive web applications by model-driven techniques. Software and Systems Modeling
(2011)

67. Gruschko, B., Kolovos, D., Paige, R.: Towards Synchronizing Models with Evolving Meta-
models. In: Proceedings of the Workshop on Model-Driven Software Evolution, MODSE
2007 (2007)

68. Lin, Y., Zhang, J., Gray, J.: Model Comparison: A Key Challenge for Transformation Testing
and Version Control in Model Driven Software Development. In: OOPSLA Workshop on
Best Practices for Model-Driven Software Development (2004)

http://www.eclipse.org/gmt/epsilon

136 D. Di Ruscio, R. Eramo, and A. Pierantonio

69. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A Metamodel Independent Approach to Dif-
ference Representation. Journal of Object Technology 6(9), 165–185 (2007)

70. Rivera, J., Vallecillo, A.: Representing and Operating with Model Differences. In: Ob-
jects, Components, Models and Patterns. LNBIP, vol. 11, pp. 141–160. Springer, Heidelberg
(2008)

71. Brun, C., Pierantonio, A.: Model Differences in the Eclipse Modeling Framework. Upgrade,
Special Issue on Model-Driven Software Development (April-May 2008)

72. Treude, C., Berlik, S., Wenzel, S., Kelter, U.: Difference computation of large models. In:
ESEC-FSE 2007: Proceedings of the the 6th Joint Meeting of the European Software En-
gineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 295–304. ACM, New York (2007)

73. Cicchetti, A.: Difference Representation and Conflict Management in Model-Driven Engi-
neering. PhD thesis, University of L’Aquila, Computer Science Dept. (2008)

74. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing Dependent Changes in Coupled Evo-
lution. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 35–51. Springer, Heidelberg
(2009)

75. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Generic Model Transformations: Write Once,
Reuse Everywhere. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 62–77.
Springer, Heidelberg (2011)

76. Steel, J., Jézéquel, J.M.: On model typing. Software and System Modeling 6(4), 401–413
(2007)

77. Vallecillo, A., Gogolla, M., Burgueño, L., Wimmer, M., Hamann, L.: Formal Specification
and Testing of Model Transformations. In: Bernardo, M., Cortellessa, V., Pierantonio, A.
(eds.) SFM 2012. LNCS, vol. 7320, pp. 399–437. Springer, Heidelberg (2012)

78. Bernardo, M., Cortellessa, V., Pierantonio, A. (eds.): SFM 2011. LNCS, vol. 7320. Springer,
Heidelberg (2012)

	Model Transformations
	Introduction
	Model Driven Engineering
	Model Transformations
	Classification
	Languages

	Application Scenario 1: Change Propagation with JTL
	Motivating Scenario
	Requirements for Bidirectionality and Change Propagation
	The Janus Transformation Language
	JTL in Practice

	Application Scenario 2: Metamodel/Model Coupled Evolution
	Metamodel Differences
	Formalizing Metamodel Differences
	Transformational Adaptation of Models

	Conclusions
	References

