
M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.): SFM 2012, LNCS 7320, pp. 1–20, 2012.
© Springer-Verlag Berlin Heidelberg 2012

The Less Well Known UML

A Short User Guide

Bran Selic

Malina Software Corp., Nepean, Ontario, Canada
selic@acm.org

Abstract. The general perception and opinion of the Unified Modeling Lan-
guage in the minds of many software professionals is colored by its early ver-
sions. However, the language has evolved into a qualitatively different tool: one
that not only supports informal lightweight sketching in early phases of devel-
opment, but also full implementation capability, if desired. Unfortunately, these
powerful new capabilities and features of the language remain little known and
are thus underutilized. In this article, we first review how UML has changed
over time and what new value it can provide to practitioners. Next, we focus on
and explain one particularly important new modeling capability that is often
overlooked or misrepresented and explain briefly what is behind it and how it
can be used to advantage.

Keywords: Unified Modeling Language, model-driven development, computer
language semantics, architectural description languages.

1 Introduction

Available evidence suggests that the Unified Modeling Language (UML) is the most
widely used modeling language in industrial practice [4]. Based on that and the fact
that it is taught in most software engineering and information technology curricula
around the world, it would be reasonable to expect that it is also a very well unders-
tood language, with all its capabilities known and exploited as appropriate. However,
it seems that the reality is different. There is much misunderstanding and misinforma-
tion about the true nature of UML so that some of its more powerful features are un-
known or underexploited.

The reasons behind this are due in large part to the way the language evolved.
When it was first launched and then standardized in the mid 1990’s, UML was (per-
haps rightly) perceived as a mostly commercial initiative rather than a technical con-
tribution. It was promoted as an attempt to consolidate the confusing explosion of
diverse object-oriented analysis and design methods and notations that preceded it.
While many of these notations were supported by computer-based commercial tools,
very few were supported by multiple vendors. This created a problem for practition-
ers, since they not only had to make the difficult decision of choosing a suitable me-
thod and tool, but also had to contend with the potentially risky circumstance of being
inextricably bound to a single tool vendor and a single narrowly-specialized method.

2 B. Selic

Other than its object-oriented base, the original conception of UML was very much
in the tradition of earlier software engineering notations: a graphical notation with
informal semantics intended primarily to assist in early conceptual design of software.
In other words, it originated as a descriptive tool, in contrast to programming lan-
guages, which are formal prescriptive tools. Despite subsequent efforts at tightening
up the language definition in the original standardized version through the use of me-
ta-modeling and the formal Object Constraint Language (OCL) [17], its primarily
descriptive and informal nature remained. Adoption by the Object Management
Group (OMG) in 1996 drew a lot of public attention to UML, resulting in the publica-
tion of a number of popular UML books intended to provide user friendly guides for
practitioners. It is fair to say that these early books and contemporary technical de-
bates reported in various professional publications were formative, leaving lasting
impressions and opinions of the language that have mostly persisted in spite of over
15 years of dramatic changes.

The most significant of these changes occurred with the release of the first major
revision of the language, UML 2, which was adopted by the OMG in 2005. This was
followed by several important standardized increments to the language definition, all
of which were designed to provide a more precise specification of both its syntax and
semantics. The net result is that UML can now even be used as a programming lan-
guage, if desired.

Unfortunately, neither the authors of the original best-selling textbooks1 nor the
broader public have taken sufficient note of these important qualitative differences.
Consequently, the understanding of current UML is inadequate and many of its im-
portant new capabilities remain little known and little used. It is the intent of this ar-
ticle to shed light on some of the lesser known but very useful features and modeling
capabilities of UML.

2 The Progressive Formalization of UML

It is probably true that, despite being the most widely used modeling language, UML
must also qualify among the most heavily criticized computer languages (e.g., [3] and
[6]). As noted above, in its earlier incarnations, UML was intended primarily as an
informal tool, to be used for descriptive purposes, providing support for analysis and
design and for documentation. Consequently, the semantics of the original language
were very weak and highly ambiguous, prompting one recognized language design
expert to comment, alluding to UML, that “…bubbles and arrows, as opposed to
programs, never crash…”[7]. The original conception of the language by its two pri-
mary authors, Grady Booch and Jim Rumbaugh, (joined subsequently by Ivar
Jacobson), was as a kind of power-booster facility already widely represented in the
previous generation of software design methodologies such as structured analysis and
structured design (SASD). These early methodologies typically involved informal

1 More up-to-date UML user textbooks have been published, such as [8], but, unfortunately, the

original outdated books still remain as the most frequently used and cited references.

 The Less Well Known UML 3

graphical (modeling) languages, and were designed to raise the level of abstraction
above that of traditional programming language technology. Their imprecise nature
meant that interpretation of the meaning of models depended on users’ intuitions,
leaving space for much confusion and misinterpretation.

As a result, programmers quickly lost confidence in these informal high-level de-
scriptions of the software, since they often bore little resemblance to what was actual-
ly implemented in the programs. The net result is that modeling has a very negative
reputation among many experienced practitioners, who perceive it as mostly a waste
of time and effort. This view that code is the only trustworthy design artifact, the only
one worth bothering with, is still quite prevalent and is echoed by many adherents of
present-day agile methods, such as “eXtreme Programming” [1]2.

This line of thinking, of course, denies the value of abstraction as a means of cop-
ing with complexity, which is really the essence of what modeling provides. The se-
mantic gap between application domain concepts and programming technology used
to implement those concepts is still quite significant, and, with the exception of trivial
programs, it presents a major hurdle to the design of reliable software. In other words,
we need abstract representations of our solutions, since the complexity and technolo-
gical bias of programs can easily overwhelm us. This holds even for modern object-
oriented languages, which do allow the definition of application-domain concepts
(i.e., via the class construct) but which, unfortunately, still contain an excess of im-
plementation-level detail that gets in the way of comprehension and reasoning.

It is worth noting that there are actually very sound reasons for high degrees of in-
formality in modeling: until an idea is properly understood and validated, it is inap-
propriate to burden designers with bureaucratic niggling about low-level syntactical
details such as missing punctuation marks. The process of design almost invariably
starts with informal and vague notions that are gradually firmed up and made more
precise over time. If a seemingly promising idea turns out to be inappropriate once it
has been elaborated and understood, the effort expended on specifying such detail will
have been wasted. (Alternatively, it may lead to an even worse predicament whereby
a bad design is retained because so much effort was vested in constructing a working
prototype that there may be an understandable reluctance to discard it.)

But, as design firms up it is necessary to eventually transition from informal
sketchy models to fully formal computer implementations. Ideally, to ensure preser-
vation of design intent from inception to implementation, a good computer language
should enable a gradual progression through this continuum, as free of error-inducing
discontinuities as possible. This notion of enabling a smooth transition from descrip-
tive to prescriptive modeling by using a single language throughout the process was
one of the primary motivations for introducing UML 2 and is also the principal cha-
racteristic that distinguishes it from its predecessor.

The progression towards a more precise and more formal language definition
occurred in four major steps:

2 In the author’s view this is a very narrow and somewhat distorted interpretation of agility

and not one necessarily intended by the designers of such methods.

4 B. Selic

1. The first step was the definition of a supplement to the original UML 1 specifica-
tion: the UML Action Semantics specification. The Action Semantics added the
capability to specify fine-grained behavior, such as the sending and receiving of
messages, the reading and writing of classifier features, or the creation and destruc-
tion of objects. As an integral part of the definition of these actions, a much more
precise, albeit still informal, definition of the dynamic semantics of the core of
UML was also defined.

2. The definition and adoption of UML 2 [10], which fully incorporated the Action
Semantics, and which, in addition to a more precise and more modular language speci-
fication, provided a small number of new modeling capabilities3. Perhaps most signifi-
cant was the addition of advanced structural modeling features taken from several
widely used architectural description languages. These little known and often misun-
derstood capabilities are explained in more detail in section 7.2 below.

3. The “Semantics of a Foundational Subset for Executable UML Models” specifica-
tion [11], which included a fully formal definition of a key subset of the UML 2
actions, using a variant of first-order predicate logic. In addition, it included an op-
erational semantics specification of a UML virtual machine for executing those ac-
tions. A more detailed discussion of this specification is provided in section 5.

4. The “Concrete Syntax for a UML Action Language” specification [12], recently
adopted by the OMG, which provides a precise textual surface syntax for UML
actions,

With the last increment above the progression to a fully-fledged implementation quality
language was completed. Note, however, that—in contrast to traditional programming
languages—the degree of formality to be used with UML is at the discretion of the mod-
eler. This means that it is possible to use UML both informally for rapid and lightweight
“sketching” of early design ideas as well as for implementation—a full-cycle language.

In conclusion, UML is very far from being a “notation without semantics”, as it is
often characterized by those who are less familiar with it. In fact, when it comes to a
mathematically formal specification, UML is ahead of most popular programming
languages—at least for its executable subset.

3 UML “versus” Domain-Specific Modeling Languages

Another common criticism directed at UML is that, being a “general-purpose” lan-
guage, it is (a) too big and unwieldy and (b) too blunt an instrument to adequately
cope with the kinds of domain-specific subtleties encountered in highly-specialized
software applications. In such discussions UML is often pitted against so-called “do-
main-specific modeling languages” (DSMLs) [3] [16]. These are typically compact
high-level languages designed specifically to address a relatively narrow application
domain.

3 To be fair, the current version of UML (UML 2.4 at the time of this writing) still suffers from

numerous technical flaws. However, the latest version of the language currently under devel-
opment, UML 2.5, is designed with the sole objective of eliminating as much as possible re-
maining ambiguities and imprecision in the language specification.

 The Less Well Known UML 5

As is argued below, this particular controversy, like many similar ones in the
history of computing, is more a conflict of commercial marketing messages than of
technical visions. That is, it should be fairly obvious that a custom domain-specific
language will, usually, produce more concise and more direct specifications and,
therefore, more effective solutions for problems in its domain than a more general
language. Getting closer to the application domain and its concepts, is precisely what
is meant by “raising the level of abstraction” when modeling languages are discussed.
The real technical issue is to find the most effective method of realizing a DSML.

There are three different ways in which this can be done:

1. A completely new language can be designed from scratch
2. An existing (base) language can be extended with domain-specific concepts
3. The concepts of a general existing (base) language can be refined (specialized) to

represent domain-specific concepts

The latter two methods may seem similar, but they are fundamentally different.
Namely, extending a language involves adding completely new concepts to the lan-
guage—concepts that are unlike any of the concepts in the base language—whereas
refining a language means narrowing the definition of existing base language con-
cepts, so that they match application semantics. In principle, the refinement approach
provides some important advantages over the other two approaches, but, these are
often overlooked in heated theological debates. This is because they are not technical
in nature, although they may actually be more important in practical industrial
settings.

The primary advantage of the refinement approach to DSMLs is the ability to take
advantage of several factors:

1. Reuse of the expertise that went into designing the base language (and, we should
point out that, given the absence of a sound and proven theory, modeling language
design expertise is still quite scarce),

2. Reuse of the tooling for the base language as well as any training materials.
3. If the base language is standardized and widely taught—as is the case with UML—

it should be much easier to find experienced practitioners who are familiar with it
and who will more readily absorb the specialized DSML based on it. This also re-
duces the training cost, which can be a significant for new languages.

Of the above, perhaps the most important is the ability to reuse existing base language
tools. Although modern DSML design tools, such as those offered by itemis AG,4
provide the very useful ability to automatically or semi-automatically generate some
language-specific tooling directly from the language definition (e.g., model editing
tools, code generators), this is usually far from sufficient for more complex applica-
tions. Industrial-scale software development needs a very wide variety of tools such
as debuggers, model validators of different kinds, simulators, test generators, docu-
ment generators, version management tools, and the like. The effort required to de-
velop industrial-strength tools of this type that are scalable, usable, and robust is not

4 http://www.itemis.com/

6 B. Selic

trivial and should never be underestimated (this is why there are commercial devel-
opment tool vendors). Moreover, tool development is rarely a one-time cost, because
tools will typically need to be maintained and upgraded over time. In balance, the
impact of these costs may in some cases exceed any technical benefits of having a
custom language.

From this perspective, refinement-based approaches have an advantage over the
other two, since they offer a lot of opportunity for reuse, particularly for widely-used
languages such as UML, for which there already exists a rich choice of tools.

This is not to say that custom DSMLs have no role to play, but it seems that their
“sweet spot” lies with smaller highly-specialized stand-alone applications (“small
languages for small problems”). The case of complex multi-faceted systems is differ-
ent, however, even when they can be decomposed into multiple specialized sub-
domains. This is because these sub-domains often overlap, so that some parts of the
system may be represented in multiple models that are written in different DSMLs.
These different views then have to be reconciled, which can be difficult if the individ-
ual languages are designed independently of each other (this is sometimes referred to
as the “fragmentation problem” of DSMLs). In such situations, the problem is easier
to manage if the various overlapping languages share a common semantics founda-
tion. Once again, refinement-based approaches hold the advantage here, since the
various DSMLs can all be evolved from the same base language.

But, refinement-based approaches do have one fundamental disadvantage: the do-
main-specific concepts of a DSML must have a corresponding base concept in the
base language. If no suitable base concept can be found, then either an extension-
based or a new language alternative must be used. (The former is usually preferred
since it is more likely to have more potential for reuse in general than a completely
new language.) This is why a concept-rich general-purpose language may be the best
base for DSMLs, paradoxical as this may sound. Moreover, as explained earlier, such
a language can also help us deal with the fragmentation problem, since all the derived
DSMLs would be sharing the same semantic core.

This brings us back to UML and its ability to serve as a source language for defin-
ing refinement-based DSMLs via its profile mechanism. A UML profile comprises a
set of domain-specific refinements of standard UML language constructs and corres-
ponding constraints. Because such refinements are semantically aligned with their
base concepts, existing UML tools may be directly applicable for the DSML defined
by the profile5. This capability has been used extensively to produce numerous UML-
based DSMLs, many of which have been standardized by the OMG as well as other
standardization bodies [9].

Unfortunately, the profile mechanism of UML is far from perfect6. This is due to
the fact that, when the approach was first proposed, there was little practical expe-
rience with it. For example, it is not easy to determine with precision whether or not a

5 Needless to say, it is best if the UML tool itself be sensitized to the added domain-specific

semantics, which is why many current UML tools are designed to be highly customizable.
6 Improvements to the profile mechanism are being considered within the OMG at the present

time.

 The Less Well Known UML 7

particular specialization of a UML concept is semantically aligned with its base con-
cept so that a standard UML tool will treat it correctly. Nevertheless, despite its tech-
nical shortcomings, because it is a refinement-based approach to DSML design, it has
the advantages that come with that approach. It has proven adequate in practice, al-
though, admittedly, not universally so.

In addition to serving as a mechanism for defining DSMLs, the profile mechanism
has one additional and important capability. This is the ability to use profiles as an
annotation mechanism for re-interpreting UML models or profile-based DSML mod-
els. Namely, using stereotypes of a profile, it is possible to attach customized annota-
tions to elements of a UML or DSML model. These annotations are like overlays that
do not affect the underlying model in any way and can, therefore, be dynamically
applied or removed as required. Such annotations are typically used to provide custom
supplementary information not supported in standard UML and which can be ex-
ploited by various model analyzers or model transformers. For example, the standar-
dized MARTE profile [13], provides facilities for adding information that is useful for
certain types of real-time systems, such as timing information (deadlines, durations,
processing times, delays, etc.), which can be used by specialized tools to analyze the
timing characteristics of a design.

In summary, UML and the idea of DSMLs are not mutually exclusive as is often
suggested. In fact, UML may provide the best solution to supporting a DSML in
many practical situations, particularly for more complex systems.

4 The Structure of UML 2

Since it was designed to cover a broad spectrum of application types, UML is, un-
doubtedly, a large computer language. This makes it difficult to master in its full ex-
tent. (Although, it should be noted that the intellectual effort required to master UML
pales in comparison to the effort required to master modern programming languages
such as Java, which, although relatively compact, is only truly useful if it is combined
with numerous standard class libraries and other utilities.) But, is it really “too big” as
its critics often like to repeat?

It is probably fair to say that it is “too big”, if the language is approached without a
particular purpose in mind, meaning that one would need to digest all of it in a single
sweep. Fortunately, in UML 2, the structure of the language has been modularized so
that it is rarely a need master the full language. In fact, UML consists of a set of dis-
tinct sub-languages, each with its own concrete syntax (notation), but which, fortu-
nately, share a common foundation (Fig. 17). With a few exceptions, these languages
are independent of each other and can be used independently or in combination. Thus,
one only needs to learn the sub-languages of direct interest and the sub-languages that
these depend on, while ignoring the rest. For instance, users interested in capturing
event-driven behavior via state machines, need only to know the State Machine lan-
guage, a subset of the Activities language, and the Foundations they both rest on.

7 Note that this diagram depicts a language user’s view of the various sub-languages and their

relationships. The actual internal structure of the UML metamodel is somewhat different.

8 B. Selic

UML 2 consists of the following sub-languages:

• The Foundations module contains a Structural Kernel, which covers basic
structural concepts such as classes, associations, instances, values, etc., and a Be-
havioral Kernel, which in turn depends on the Structural Kernel, and which covers
essential behavioral concepts, such as events, messages, and the like. The Structur-
al Kernel alone is sufficient for certain basic forms of software modeling provided
via class diagrams. The Foundations provide the common core that is shared by all
other sub-languages

• The Structured Classes language was added in UML 2 and supports the modeling
complex classes representing complex architectural entities. It is a distillation of a
number of architectural description languages. It is described in more detail in
section 7.2.

• The Deployment language is used for capturing the allocation of software modules
(e.g., binaries) to underlying hardware or software platforms8.

• The Collaborations language is used to describe complex structural patterns of
collaborating objects. Despite its name, this language is used to specify structure
and not behavior. However, it is often used to define the structural setting for inte-
ractions. It is covered in section 7.1.

• The Interactions language serves to model interactions between multiple collabo-
rating entities and the actions that occur as a result. In UML 2, interactions can be
specified using three different graphical syntactical forms as well as one tabular
one.

• Actions are used for specifying fine-grained behavioral elements comparable to
traditional programming language instructions. UML actions depend on the Activi-
ties language, which provides facilities for combining actions into more complex
behavioral fragments as well as to control their order of execution. Note that, ex-
cept for a generic syntactical form (which does not differentiate between the vari-
ous types of actions), there is no concrete syntax for representing actions. Instead,
behavior at this level can be specified using the ALF language [12], which has a
textual concrete syntax reminiscent of conventional programming languages such
as Java. (The raw UML Actions can be thought of as a kind of UML assembler,
whereas the ALF language is of a higher order.)

• The Activities language is used to model complex control or data flow based beha-
viors, or even combinations of the two. It is inspired by a colored Petri Net formal-
ism and is well-suited to the modeling parallel processes, such as complex business
processes.

• The State Machine language is used for specifying discrete event-driven behaviors,
where the responses to input events are a function of history. In UML 2 a special
variant called protocol state machines was added to support the specification of in-
terface protocols.

8 This language provides a relatively simple model of deployment that is suitable for some

applications. A much more sophisticated deployment modeling capability is provided by the
MARTE profile [14].

 The Less Well Known UML 9

• The Use Case language captures use cases and their relationships, as well as the
actors that participate in those use cases.

• The Information Flow language serves to capture the type and direction of flow of
information between elements of a system at a very abstract level.

• The Profiles language, as already explained, is not used for modeling systems but
for defining DSMLs based on UML.

In addition to the above set that are part of UML proper, two other languages can be
used when modeling with UML:

• The Object Constraint Language (OCL), which is used to write formal logic con-
straints either in user models or in profiles.

• The Action Language for Foundational UML (ALF), a high-level language with a
concrete textual syntax used for specifying detailed behaviors in the context of
UML Activities. The semantics of ALF constructs are expressed in terms of UML
actions and activities and are fully compatible with the dynamic semantics of UML
itself. As noted earlier, the combination of UML and ALF (including its libraries)
is sufficient to make UML an implementation language.

Naturally, all of these languages can be combined as needed. This is facilitated by the
fact that they are all based on the same Foundations, including OCL and ALF.

Fig. 1. The UML 2 sub-languages and their relationships

This new modularized architecture of the UML 2 language provides a lot of flex-
ibility, enabling modelers to select an appropriate subset of the language suited to
their needs. Combined with the profile mechanism, such a subset can be specialized
even further to suit specific application domains.

10 B. Selic

5 The Specification of UML Semantics

As noted above, the definition of UML semantics, originally expressed almost exclu-
sively in natural language, has been significantly tightened with the adoption of the
“Semantics of a Foundational Subset for Executable UML Models” specification [11].
Although it does not cover the full UML language, this specification provides a foun-
dation for the semantic core of UML, upon which the rest of the language rests. The
subset of UML covered is referred to as “foundational UML” or fUML for short. It
covers the following four major groupings of UML concepts from Fig. 1:

• The Structural Kernel of UML (part of the Foundations package).
• The Behavioral Kernel of UML (also part of the Foundations package).
• A major subset of the UML Activities sub-language
• A major subset of the UML Actions

This subset was carefully chosen because it was deemed sufficient for describing the
semantics of the remainder of UML. Note, however, that it is not a minimal set. In-
stead, a tradeoff was made between minimality and expressiveness, providing for a
relatively compact and understandable specification.

The approach taken for defining the semantics of fUML is an operational one; that
is, the dynamic semantics of the various fUML concepts are specified in terms of the
operation of a fUML virtual machine (in effect, an interpreter capable of executing
fUML models). The language used to specify this virtual machine is a subset of
fUML. This subset of the subset is referred to as “base UML”, or bUML. The rela-
tionship between these different flavors of UML is depicted by the Venn diagram in
Fig. 2. Note that bUML is only slightly smaller than fUML.

Fig. 2. Relationship between full UML, fUML, and bUML

Of course, to avoid a fully circular definition of the semantics, it is necessary to de-
scribe the semantics of bUML using some other formalism, preferably one that is well
recognized and well understood. Therefore, a separate formal definition of the seman-
tics of bUML is provided in the fUML specification. This definition uses a declara-
tive approach, using a special formalism for modeling concurrent systems called

 The Less Well Known UML 11

Process Specification Language (PSL), which has been adopted as a standard by
the International Standards Organization (ISO) [5]. PSL is based on first-order
mathematical logic.

The details of the fUML virtual machine and how PSL is used to capture bUML
semantics are outside the scope of this article. However, the following section provides
an informal overview of the semantics of UML, which incorporate the semantics of
fUML.

6 The Dynamic (Run-Time) Semantics of UML

The run-time semantics of UML, as defined in the general standard and as further
refined within fUML, are relatively straightforward. The basic behavioral paradigm is
a discrete event driven model.

The prime movers of all behavior in the system are active objects, which interact
with each other by sending messages through links. The sending and receiving of
messages, result in event occurrences. The reception of an event by an active object
may cause the execution of appropriate behaviors associated with the receiving ob-
ject.

An active object in UML is an object that, once created, will commence executing
its classifier behavior (a specially designated behavior associated with the class of the
object). This behavior will run until it either completes or until the object is termi-
nated. In a given system, the classifier behaviors of multiple active objects can be
running concurrently. It is sometimes said that an active object “runs on its own
thread”, but this formulation can be misleading. One problem is that the concept of a
“thread” is technology specific and has many different realizations and interpretations
in different systems. (It is, of course, preferable if the semantics of UML are defined
precisely and independently of any particular technology.) It is also inappropriate,
since there can be many such “threads” associated with the behavior of an active ob-
ject. For example, the composite states of UML state machines may include multiple
concurrent regions, or, a UML activity may fork its control or data flows into multiple
concurrent flows.

When an active object needs to interact with another active object, it sends a mes-
sage through a link to the object at the opposite end of the link. The message is a car-
rier of information and may represent either a synchronous invocation of an operation
of the target object, or an asynchronous signal corresponding to a reception9. Once the
message arrives at its destination, it is placed in the event pool associated with the
receiving object. The message will remain in the event pool until it is dispatched ac-
cording to a scheduling policy. To allow modeling of different kinds of systems, the
scheduling and dispatching policies are semantic variation points in fUML, although a
default first-come-first-serve policy is supplied.

9 In UML a reception is a behavioural feature similar to an operation, except that it is invoked

(by sending a signal) and executed asynchronously. Only active objects can have receptions.

12 B. Selic

Messages are extracted from the event pool only when the receiving object ex-
ecutes a “receive” action10. Which message is selected and dispatched at that point
depends on the scheduling policy. Once the message is received, it is processed by the
active object according to its classifier behavior.

As part of executing its classifier behavior, an active object may access the features
of passive objects. Passive objects are created by active objects and their operations
and attributes are accessed synchronously. Note that, unless care is taken, it is possi-
ble for conflicts to occur when multiple active objects access the same passive object
concurrently.

7 Advanced Structure Modeling in UML 2

Empirical evidence suggests that of all the diagram types provided by UML, class
diagrams are by far the most widely used in practice [2], [4]. This is generally a posi-
tive outcome, since class diagrams are an excellent example of the power of abstrac-
tion and the benefits that it can bring to the design of complex systems. Nevertheless,
there is much confusion about the precise meaning of these diagrams (undoubtedly
due in part to the imprecise and vague descriptions provided in the standard itself),
leading to frequent misuse.

One common mistake is to treat class models as instance models. A class in UML,
as in most object-oriented languages, is a specification of what is common to all in-
stances of that class (e.g., the number and types of its features), that is, a set of rules
that define what constitutes a valid instance of the class. Using mathematical termi-
nology, we say that a class is an intentional specification. (Corresponding to it is an
extension represented by the set of all possible instances of that class.) Consequent-
ly, a class says nothing about characteristics that are unique to individual instances—
those are abstracted out in class models. This level of modeling is sufficient in some
types of applications, particularly in databases. In fact, class modeling evolved from
standard entity-relationship modeling that originated in database theory.

But, there are many applications where it is necessary to capture instance-specific
information. For example, consider the two distinct systems depicted in the two in-
stance diagrams in Fig. 3(a) and Fig. 3(b). That these are two different systems should
be clear, since they contain a different number of elements. However, note that they
share the same class diagram (Fig. 3(c))11.

Clearly, class diagrams are not suitable for this purpose and we need something
more. In UML, there are two types of structure sub-languages specifically designed to
support instance-based modeling: collaborations and structured classes. In contrast to
simple instance (object) diagrams, which merely represent snapshots of systems at
some point in time, these sub-languages provide a means for specifying rules for what
constitutes valid configurations of instances. In other words, they do for instances
what class modeling does for classes.

10 In case of state machines, this action is implicit and occurs upon the full completion of a

transition when a steady state is reached – hence, the term “run-to-completion”.
11 In fact, the class diagram represents a potentially infinite number of different systems.

 The Less Well Known UML 13

Fig. 3. Class versus instance models

7.1 Collaborations and Collaboration Uses

A common example of an instance-based pattern (configuration of instances) is the
well-known Model-View-Controller architectural pattern shown in Fig. 4 [18]. This is
a general pattern that can take on many concrete forms. In it, we differentiate the in-
dividual participants based their responsibilities, or roles, within the pattern rather
than by their identities [14]. Thus, we need to represent instances in a structural con-
text while abstracting away their identities. For example, the fact that in some realiza-
tions of Model-View-Controller a single object might be filling both the Model and
the Controller roles is irrelevant to the specification of the pattern.

When working with roles, we may not be interested in the type of the object play-
ing a particular role, leaving it undefined. However, in UML, we also have the option
to specify the type of a role, a constraint which signifies that only instances of the
designated type or its compatible subtypes can fill that role.

A role only makes sense in a greater structural context in which interacts with other
roles. In UML, the structural context containing roles is called a collaboration12.
UML.

(Practical tip: Note the use of the rectangle notation for classifiers in Fig. 4, to
represent the collaboration rather than the more widely known dashed oval notation
found in most UML textbooks. The rectangle notation is the default UML notation for
any kind of classifier, including collaborations. This is usually a much more conve-
nient and efficient form than the enclosing oval, since it provides for more effective
use of scarce screen surface area.)

12 This is a rather unfortunate choice of name, since the term “collaboration” has dynamic

connotations, although the UML concept is structural in essence. (In fact, in UML 1, col-
laborations were misclassified as a kind of behavioural modelling.).

14 B. Selic

Fig. 4. Model-View-Controller pattern expressed as a collaboration

The roles of a collaboration may be linked to each other via connectors,
representing communication paths by which the roles interact with each other. Con-
nectors explicitly identify which roles are mutually coupled and which ones are not.
Since deciding on the coupling between components of a system is a critical architec-
tural design decision, the presence of connectors provides a concrete manifestation of
design intent. Since inter-object communications in UML is accomplished via links, a
connector denotes a link instance, in the same way that a role denotes an object in-
stance. Note that it is not necessary to define associations for such implicit links, al-
though it is possible, particularly if all the connected roles are typed.

Standard UML does not define fully the semantics of connectors. Specifically, the
communication properties of such links (i.e., whether they are order preserving, non-
duplicating, and non-lossy) are left as semantic variation points. If a stronger defini-
tion is required, it can be provided through a profile13.

Collaborations are frequently combined with interactions, providing the structural
setting over which message exchange sequences are overlaid. (In fact, it is this com-
bination of two distinct UML sub-languages that gave rise to the term “collabora-
tion”.14) In those cases, the lifelines of an interaction are associated with the roles of
the underlying collaboration. Clearly, messages between two lifelines should only be
permitted if the corresponding roles are connected (although standard UML does not
enforce this constraint).

(Practical tip: In support of this combination of collaborations and structures,
UML provides the communications diagram notation, which shows what appears to
be a collaboration diagram with roles corresponding to the lifelines of the interaction
and messages shown as numbered arrows running parallel to the connectors they
traverse. While this notational form is widely advertised in many UML textbooks,

13 fUML is more constrained and does assume perfect communication properties for links.
14 It is only in UML 2 that these two sub-languages were separated.

 The Less Well Known UML 15

practical experience has shown that it is not particularly useful due to graphical limi-
tations, and is probably best avoided. In practice, message names are often longer
than the space provided between the roles of the graph so that they do not fit in the
diagram. Moreover, for anything but trivial message sequences, it is very difficult to
follow the flows of messages by keeping track of message sequence numbers, espe-
cially when concurrent sequences are involved.)

Collaborations that capture structural patterns, such as Model-View-Controller, can
be treated as a kind of macro definition that can be reused whenever a pattern needs to
be applied in a given model. In UML this can be achieved through a mechanism
called collaboration use. Consider, for example, the case where we would like to
capture a special variant of the Model-View-Controller pattern such that the Model
and the Controller roles are filled by the same object. We can represent this by a new
collaboration, shown by the collaboration diagram in Fig. 5.

Fig. 5. Collaboration use example

The dashed oval in Fig. 5 is the notation for a collaboration use, and it represents a
reference to (i.e., application of) the original ModelViewController pattern. The
dashed lines emanating from it represent the roles of the corresponding collaboration
(ModelViewController). Of course, in this particular case, we could have done this by
simply having a simple collaboration with just two roles, View and ModelController,
avoiding the collaboration use. However, that would have obscured the design intent,
which was to take advantage of the well-known design pattern. The collaboration use
makes that explicit.

Although collaborations have been a part of UML from the very first release of the
standard15, evidence indicates that, in contrast to class diagrams, they are little used by
practitioners [4]. This is surprising at first, since one would normally expect instance

15 Although the technical definition of collaborations has changed somewhat between UML 1

and UML 2, the essence has remained unchanged.

16 B. Selic

based modeling to be the more intuitive form of representing structure to most people.
Class modeling requires an extra inductive reasoning step: abstracting from the par-
ticular to the general. The most likely explanation is that most software developers
trained in object-oriented programming are familiar with the class concept, whereas
the notion of a role is less well known and is not supported explicitly in common
object-oriented programming languages.

This is unfortunate, since there are many cases where collaborations are the most
natural modeling technique. Instead, it often happens that attempts are made to cap-
ture instance-specific structures unsuccessfully using class diagrams. For example,
Fig. 6 illustrates one of the most common mistakes. In attempting to capture the struc-
ture shown in Fig. 6(a) even experienced modelers might define a class diagram like
the one in Fig. 6(b). However, this is incorrect since that particular class model sup-
ports a variety of different instance patterns, including the one shown in Fig. 6(c).

Fig. 6. Inappropriate use of class modeling

7.2 Structured Classes and Components

UML 2 added another form of instance-based modeling via the structured class con-
cept. Structured classes were inspired by various architectural description languages
used to represent the architectural structure of software systems.

Structured classes are distinguished from “simple” classes by virtue of the follow-
ing two features:

 The Less Well Known UML 17

• The possible presence of one or more communication ports on its interface.
• The possible encapsulation of an internal structure consisting of a network of col-

laborating objects.

Ports. Ports are a common feature of most architectural description languages but
they are rarely encountered in programming languages. Ports are analogous to the
pins of a hardware chip: instead of a single interface, it is possible to have a set of
distinct interface points each dedicated to a specific purpose. Ports in UML add two
important modeling capabilities:

1. Like any interface, a port provides an explicit and focused point of interaction be-
tween the object that owns it (i.e., an instance of a structured class) and its envi-
ronment, thereby isolating each from the other. An important characteristic of ports
is that they can be bi-directional. This means that a port has (a) an outward face,
which it presents to its collaborators and which defines the services that the object
provides to its collaborators, and (b) an inward face, which can be accessed by its
internal components and which reflects the services that are expected of the colla-
borators on the outside. Thus, a port represents a full two-way contract, with the
obligations and expectations of each party explicitly spelled out.

2. Since an object can have multiple ports, they allow an object to distinguish be-
tween multiple, possibly concurrent collaborators by virtue of the port (interface)
through which an interaction occurs.

Reflecting the bi-directional nature of ports, in UML a port can be associated with
UML Interfaces16 in two different ways. For its outward face, a port may provide zero
or more Interfaces, which specify its offered services. For its inward face, a port may
require zero or more Interfaces, which define what is expected of the party at the
opposite end of the port.

(Practical tip: It is generally better to associate no more than one provided Inter-
face with a port, to avoid possible conflicts when the definitions of two or more Inter-
faces overlap (e.g., they provide the same service). If different Interfaces are desired,
it is always possible to add a separate port for each Interface.)

Note that it is possible for an object to have multiple ports that provide the same
Interface. This allows an object to distinguish between multiple collaborators even
though they require the same type of service. This capability is particularly useful
when Interfaces have associated protocols, that is, when the interactions between an
Interface user and an Interface provider must conform to a particular order. For ex-
ample, a database class may impose a two-phase commit protocol to be used when
data is being written. This usually means that at any given time, an interface (i.e.,
port) instance may have a state, corresponding to the phase of the protocol that it is in.
With multiple ports supporting Interfaces of the same type with each dedicated to a
separate client, it is possible for individual ports to be in different states, allowing thus
full decoupling of concurrent clients all using the same Interface.

16 To distinguish between the generic notion of “interface” and the specific UML concept with

the same name, the latter is capitalized in the text.

18 B. Selic

The dynamic semantics of UML ports are quite straightforward: whatever messag-
es (operation calls, signals) come from the outside they are simply relayed inwards,
and vice versa. In other words, they are simply relay devices and nothing more.

Ports must be connected to something on either face; otherwise, whatever comes in
from a connected side will simply be lost. There are two possible ways in which a
port can be connected: (a) to the end of a connector or (b) to the classifier behavior of
the object that owns the port. In the latter case, the port is called a behavior port. It is
only when a message arrives at a behavior port that anything actually happens (see
section 6 above).

Of course, only compatible ports can be connected through a connector. The spe-
cific rules for compatibility are not defined in standard UML (i.e., it is a semantic
variation point). But, generally speaking, two ports are compatible if the services
required by one are provided by the other and vice versa. If protocols are associated
with the ports, compatibility rules are more complex except in the trivial case where
the associated protocols are exact precise complements of each other.

The standard UML notation for ports is shown in Fig. 7. Port Pa is a non-behavior
port, whereas Pb is a behavior port (indicated by the small “roundtangle” attached to
it). Note that ports do not necessarily have to appear on the boundary of the classifier
icon, although that is the usual convention.

Fig. 7. A structured class with parts and ports

Internal Structure. In a sense, as shown in Fig. 7, the internal structure of a struc-
tured class is very much like a collaboration that is contained within the confines of
an object. The only difference is that the parts comprising the internal structure do not
represent roles, but the structural features of the class, such as attributes and ports.
(Naturally, some of these parts may be typed by structured classes with their own
ports and internal parts, as the example in Fig. 7 illustrates.) The extra modeling ca-
pability provided by internal structure is that the parts can be linked via connectors. In
other words, in addition to a set of structural features (e.g., attributes), structured

 The Less Well Known UML 19

classes also own an interconnection topology that shows explicitly how the various
parts interact.

The full run-time semantics of structured classes are not fully specified in standard
UML (nor are structured classes covered by fUML). Are the parts and connectors
automatically created when an instance of the class is created? That would certainly
be quite useful, since: (a) then there would be no need to specify the tedious house-
keeping code for creating the internal objects and connections, and (b) it would result
in more reliable implementations, since the implementation code would be automati-
cally generated from the class definition. Moreover, this would also ensure that only
possible couplings between elements of the system would be those that are explicitly
specified by the modeler. In fact, a number of UML profiles, such as the UML-RT
profile [15], define such semantics.

The addition of concepts such as ports, connectors, and structured classes means
that UML can be used as an architectural description language extending the range of
UML from the highest levels of a system down to very fine-grained detail (e.g., using
ALF).

Components. There a common misconception that in order to take advantage of
UML’s architectural modeling constructs such as ports, connectors, and internal struc-
tures one must use the UML Component construct. As explained above, this is not the
case. In fact, the Component construct in UML 2 is merely a specialization of the
structured class concept, with a few additional features that are included primarily for
backward compatibility with previous versions of UML. Namely, the UML 1 defini-
tion of Component attempted to cover a variety of different interpretations of that
widely used term with a single concept. Consequently, a component was used to de-
note both a unit of software reuse (e.g., the source code and binary modules) residing
in some design repository as well as an instantiable run-time entity similar to a class.
While UML 2 has retained this hybridized concept (to smooth the transition of UML
1legacy models to UML 2), it is probably best to avoid it, using instead structured
classes which have clear and unambiguous semantics.

8 Summary

UML has evolved a long way from its informal early versions, characterized by am-
biguous and imprecise semantics. It has gradually emerged as a full-cycle computer
language, equally capable of being used in a highly informal lightweight design
sketching mode as well as a fully-fledged implementation language. Unfortunately,
this progression from a purely descriptive tool to a prescriptive one, has received little
attention so that there is much misunderstanding of its role and capabilities.

In this article, we have briefly summarized the nature of this dramatic evolution,
pointing out how the tightening of the semantics of UML has been achieved and what
benefits that provides.

In addition, we have focused on an important new capability provided by UML 2,
but one which is little known and often misinterpreted: the mechanisms for capturing

20 B. Selic

and enforcing instance-based structural patterns. This adds an important new dimen-
sion to UML by providing the standard constructs found in architectural description
languages, extending thus the scope of abstractions that can be represented.

References

1. Beck, K.: Extreme Programming Explained. Addison-Wesley, Boston (2000)
2. Dobing, B., Parsons, J.: How UML is Used. Communications of the ACM 49, 109–113

(2006)
3. Greenfield, J., Short, K., et al.: Software Factories. Wiley Publishing, Inc., Indianapolis

(2004)
4. Hutchinson, J.: An Empirical Assessment of Model Driven Development in Industry. PhD

Thesis, School of Computing and Communications, Lancaster University, UK (2011)
5. International Standards Organization (ISO): Industrial automation systems and integration

– Process specification language (Part 1: Overview and basic principles). ISO standard
18629-1:2004 (2004), http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=3543

6. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling. John Wiley & Sons, Hoboken
(2008)

7. Meyer, B.: UML: The Positive Spin (1997), http://archive.eiffel.com/doc/
manuals/technology/bmarticles/uml/page.html

8. Milicev, D.: Model-Driven Development with Executable UML. Wiley Publishing Inc.,
Indianapolis (2009)

9. Object Management Group (OMG): Catalog of UML Profile Specifications,
http://www.omg.org/technology/documents/profile_catalog.htm

10. Object Management Group (OMG): OMG Unified Modeling Language (OMG UML) Su-
perstructure. OMG document no. ptc/10-11-14 (2010), http://www.omg.org/spec/
UML/2.4.1/Superstructure/PDF/

11. Object Management Group (OMG): Semantics of a Foundational Subset for Executable
UML Models (fUML). OMG document no. formal/2011-02-01 (2011),
http://www.omg.org/spec/FUML/1.0/PDF/

12. Object Management Group (OMG): Action Language for Foundational UML. OMG doc-
ument no. ptc/2010-10-05 (2010),
http://www.omg.org/spec/ALF/1.0/Beta2/PDF

13. Object Management Group (OMG): UML Profile for MARTE: Modeling and Analysis of
Real-Time and Embedded Systems. OMG document no. formal/2011-06-02 (2011),
http://www.omg.org/spec/MARTE/1.1/PDF

14. Reenskaug, T., Wold, P., Lehne, A.: Working With Objects. Manning Publications Co.,
Greenwich (1996)

15. Selic, B., Rumbaugh, J.: Using UML for Modeling Complex Real-Time Systems. IBM de-
veloperWorks (1998), http://www.ibm.com/developerworks/rational/
library/content/03July/1000/1155/1155_umlmodeling.pdf

16. Völter, M.: From Programming to Modeling—and Back Again. IEEE Software, 20–25
(November/December 2011)

17. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for
MDA. Addison-Wesley Professional, Reading (2003)

18. Wikipedia, Model-View-Controller, http://en.wikipedia.org/
wiki/Model-view-controller

	The Less Well Known UML
	Introduction
	The Progressive Formalization of UML
	UML “versus” Domain-Specific Modeling Languages
	The Structure of UML 2
	The Specification of UML Semantics
	The Dynamic (Run-Time) Semantics of UML
	Advanced Structure Modeling in UML 2
	Collaborations and Collaboration Uses
	Structured Classes and Components

	Summary
	References

