
Lecture Notes in Computer Science 7320
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Marco Bernardo Vittorio Cortellessa
Alfonso Pierantonio (Eds.)

Formal Methods
for Model-Driven
Engineering
12th International School
on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2012
Bertinoro, Italy, June 18-23, 2012
Advanced Lectures

13

Volume Editors

Marco Bernardo
Università di Urbino "Carlo Bo"
Dipartimento di Scienze di Base e Fondamenti
Piazza della Repubblica 13, 61029 Urbino, Italy
E-mail: marco.bernardo@uniurb.it

Vittorio Cortellessa
Università dell’Aquila
Dipartimento di Informatica
Via Vetoio 1, 67010 Coppito - L’Aquila, Italy
E-mail: vittorio.cortellessa@univaq.it

Alfonso Pierantonio
Università dell’Aquila
Dipartimento di Informatica
Via Vetoio 1, 67010 Coppito - L’Aquila, Italy
E-mail: alfonso.pierantonio@univaq.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-30981-6 e-ISBN 978-3-642-30982-3
DOI 10.1007/978-3-642-30982-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012939229

CR Subject Classification (1998): D.2.4, D.2, D.3.1, F.3-4, K.6, C.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume presents a set of papers accompanying the lectures of the 12th
International School on Formal Methods for the Design of Computer, Commu-
nication and Software Systems (SFM).

This series of schools addresses the use of formal methods in computer science
as a prominent approach to the rigorous design of the above-mentioned systems.
The main aim of the SFM series is to offer a good spectrum of current research
in foundations as well as applications of formal methods, which can be of help
for graduate students and young researchers who intend to approach the field.

SFM 2012 was devoted to model-driven engineering and covered several
topics including modeling languages, model transformations, functional and per-
formance modeling and analysis, and model evolution management.

This volume comprises 11 articles. Selic’s paper reviews how UML has changed
over time and what new features it can provide that support not only informal
lightweight sketching in early phases of development, but also full implementa-
tion capability. The paper by Andova, Van Den Brand, Engelen, and Verhoeff
discusses the basic aspects of model-driven engineering in combination with tex-
tual domain-specific languages developed using the language invention pattern.
Cabot and Gogolla present a comprehensive view of OCL and its applications
including the use for expressing model transformations, well-formedness rules,
and code-generation templates. The paper by Di Ruscio, Eramo, and Pieranto-
nio introduces a classification of model-transformation approaches and languages
and illustrates the characteristics of the most prominent ones. Giese, Lambers,
Becker, Hildebrandt, Neumann, Vogel, and Wätzoldt show that graph transfor-
mations can be employed to engineer solutions for model-driven development,
dynamic adaptation, and models at run time. The paper by De Caso, Braber-
man, Garbervetsky, and Uchitel deals with enabledness-preserving abstractions,
which are concise representations of the behavior space for software engineering
artifacts such as source code and specifications. Petriu, Alhaj, and Tawhid con-
sider quantitative performance analysis of UML software models annotated with
performance attributes according to the MARTE profile and describe a model-
transformation chain that enables the integration of performance analysis in a
UML-based software development process. Becker’s paper gives an overview on
the process of model-driven quality analyses with a special focus on issues that
arise in fully automated approaches. The paper by Cortellessa, Di Marco, and
Trubiani addresses the problem of capturing performance problems in the soft-
ware design process by means of software performance antipatterns. Brosch, Kap-
pel, Langer, Seidl, Wieland, and Wimmer offer an introduction to the founda-
tions of model versioning, the underlying technologies for processing models and
their evolution, and the state of the art in the field. Finally, the paper by Valle-
cillo, Gogolla, Burgueño, Wimmer, and Hamann presents model-transformation

VI Preface

specification and testing by discussing and classifying some of the existing ap-
proaches and introducing a generalization of model-transformation contracts.

We believe that this book offers a useful view of what has been done and what
is going on worldwide in the field of formal methods for model-driven engineering.
We wish to thank all the speakers and all the participants for a lively and fruitful
school. We also wish to thank the entire staff of the University Residential Center
of Bertinoro for the organizational and administrative support.

June 2012 Marco Bernardo
Vittorio Cortellessa
Alfonso Pierantonio

Table of Contents

The Less Well Known UML: A Short User Guide . 1
Bran Selic

MDE Basics with a DSL Focus . 21
Suzana Andova, Mark G.J. van den Brand, Luc J.P. Engelen, and
Tom Verhoeff

Object Constraint Language (OCL): A Definitive Guide 58
Jordi Cabot and Martin Gogolla

Model Transformations . 91
Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio

Graph Transformations for MDE, Adaptation, and Models at
Runtime . 137

Holger Giese, Leen Lambers, Basil Becker, Stephan Hildebrandt,
Stefan Neumann, Thomas Vogel, and Sebastian Wätzoldt

Abstractions for Validation in Action . 192
Guido de Caso, Victor Braberman, Diego Garbervetsky, and
Sebastian Uchitel

Software Performance Modeling . 219
Dorina C. Petriu, Mohammad Alhaj, and Rasha Tawhid

Model Transformations in Non-functional Analysis 263
Steffen Becker

Software Performance Antipatterns: Modeling and Analysis 290
Vittorio Cortellessa, Antinisca Di Marco, and Catia Trubiani

An Introduction to Model Versioning . 336
Petra Brosch, Gerti Kappel, Philip Langer, Martina Seidl,
Konrad Wieland, and Manuel Wimmer

Formal Specification and Testing of Model Transformations 399
Antonio Vallecillo, Martin Gogolla, Loli Burgueño,
Manuel Wimmer, and Lars Hamann

Author Index . 439

M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.): SFM 2012, LNCS 7320, pp. 1–20, 2012.
© Springer-Verlag Berlin Heidelberg 2012

The Less Well Known UML

A Short User Guide

Bran Selic

Malina Software Corp., Nepean, Ontario, Canada
selic@acm.org

Abstract. The general perception and opinion of the Unified Modeling Lan-
guage in the minds of many software professionals is colored by its early ver-
sions. However, the language has evolved into a qualitatively different tool: one
that not only supports informal lightweight sketching in early phases of devel-
opment, but also full implementation capability, if desired. Unfortunately, these
powerful new capabilities and features of the language remain little known and
are thus underutilized. In this article, we first review how UML has changed
over time and what new value it can provide to practitioners. Next, we focus on
and explain one particularly important new modeling capability that is often
overlooked or misrepresented and explain briefly what is behind it and how it
can be used to advantage.

Keywords: Unified Modeling Language, model-driven development, computer
language semantics, architectural description languages.

1 Introduction

Available evidence suggests that the Unified Modeling Language (UML) is the most
widely used modeling language in industrial practice [4]. Based on that and the fact
that it is taught in most software engineering and information technology curricula
around the world, it would be reasonable to expect that it is also a very well unders-
tood language, with all its capabilities known and exploited as appropriate. However,
it seems that the reality is different. There is much misunderstanding and misinforma-
tion about the true nature of UML so that some of its more powerful features are un-
known or underexploited.

The reasons behind this are due in large part to the way the language evolved.
When it was first launched and then standardized in the mid 1990’s, UML was (per-
haps rightly) perceived as a mostly commercial initiative rather than a technical con-
tribution. It was promoted as an attempt to consolidate the confusing explosion of
diverse object-oriented analysis and design methods and notations that preceded it.
While many of these notations were supported by computer-based commercial tools,
very few were supported by multiple vendors. This created a problem for practition-
ers, since they not only had to make the difficult decision of choosing a suitable me-
thod and tool, but also had to contend with the potentially risky circumstance of being
inextricably bound to a single tool vendor and a single narrowly-specialized method.

2 B. Selic

Other than its object-oriented base, the original conception of UML was very much
in the tradition of earlier software engineering notations: a graphical notation with
informal semantics intended primarily to assist in early conceptual design of software.
In other words, it originated as a descriptive tool, in contrast to programming lan-
guages, which are formal prescriptive tools. Despite subsequent efforts at tightening
up the language definition in the original standardized version through the use of me-
ta-modeling and the formal Object Constraint Language (OCL) [17], its primarily
descriptive and informal nature remained. Adoption by the Object Management
Group (OMG) in 1996 drew a lot of public attention to UML, resulting in the publica-
tion of a number of popular UML books intended to provide user friendly guides for
practitioners. It is fair to say that these early books and contemporary technical de-
bates reported in various professional publications were formative, leaving lasting
impressions and opinions of the language that have mostly persisted in spite of over
15 years of dramatic changes.

The most significant of these changes occurred with the release of the first major
revision of the language, UML 2, which was adopted by the OMG in 2005. This was
followed by several important standardized increments to the language definition, all
of which were designed to provide a more precise specification of both its syntax and
semantics. The net result is that UML can now even be used as a programming lan-
guage, if desired.

Unfortunately, neither the authors of the original best-selling textbooks1 nor the
broader public have taken sufficient note of these important qualitative differences.
Consequently, the understanding of current UML is inadequate and many of its im-
portant new capabilities remain little known and little used. It is the intent of this ar-
ticle to shed light on some of the lesser known but very useful features and modeling
capabilities of UML.

2 The Progressive Formalization of UML

It is probably true that, despite being the most widely used modeling language, UML
must also qualify among the most heavily criticized computer languages (e.g., [3] and
[6]). As noted above, in its earlier incarnations, UML was intended primarily as an
informal tool, to be used for descriptive purposes, providing support for analysis and
design and for documentation. Consequently, the semantics of the original language
were very weak and highly ambiguous, prompting one recognized language design
expert to comment, alluding to UML, that “…bubbles and arrows, as opposed to
programs, never crash…”[7]. The original conception of the language by its two pri-
mary authors, Grady Booch and Jim Rumbaugh, (joined subsequently by Ivar
Jacobson), was as a kind of power-booster facility already widely represented in the
previous generation of software design methodologies such as structured analysis and
structured design (SASD). These early methodologies typically involved informal

1 More up-to-date UML user textbooks have been published, such as [8], but, unfortunately, the

original outdated books still remain as the most frequently used and cited references.

 The Less Well Known UML 3

graphical (modeling) languages, and were designed to raise the level of abstraction
above that of traditional programming language technology. Their imprecise nature
meant that interpretation of the meaning of models depended on users’ intuitions,
leaving space for much confusion and misinterpretation.

As a result, programmers quickly lost confidence in these informal high-level de-
scriptions of the software, since they often bore little resemblance to what was actual-
ly implemented in the programs. The net result is that modeling has a very negative
reputation among many experienced practitioners, who perceive it as mostly a waste
of time and effort. This view that code is the only trustworthy design artifact, the only
one worth bothering with, is still quite prevalent and is echoed by many adherents of
present-day agile methods, such as “eXtreme Programming” [1]2.

This line of thinking, of course, denies the value of abstraction as a means of cop-
ing with complexity, which is really the essence of what modeling provides. The se-
mantic gap between application domain concepts and programming technology used
to implement those concepts is still quite significant, and, with the exception of trivial
programs, it presents a major hurdle to the design of reliable software. In other words,
we need abstract representations of our solutions, since the complexity and technolo-
gical bias of programs can easily overwhelm us. This holds even for modern object-
oriented languages, which do allow the definition of application-domain concepts
(i.e., via the class construct) but which, unfortunately, still contain an excess of im-
plementation-level detail that gets in the way of comprehension and reasoning.

It is worth noting that there are actually very sound reasons for high degrees of in-
formality in modeling: until an idea is properly understood and validated, it is inap-
propriate to burden designers with bureaucratic niggling about low-level syntactical
details such as missing punctuation marks. The process of design almost invariably
starts with informal and vague notions that are gradually firmed up and made more
precise over time. If a seemingly promising idea turns out to be inappropriate once it
has been elaborated and understood, the effort expended on specifying such detail will
have been wasted. (Alternatively, it may lead to an even worse predicament whereby
a bad design is retained because so much effort was vested in constructing a working
prototype that there may be an understandable reluctance to discard it.)

But, as design firms up it is necessary to eventually transition from informal
sketchy models to fully formal computer implementations. Ideally, to ensure preser-
vation of design intent from inception to implementation, a good computer language
should enable a gradual progression through this continuum, as free of error-inducing
discontinuities as possible. This notion of enabling a smooth transition from descrip-
tive to prescriptive modeling by using a single language throughout the process was
one of the primary motivations for introducing UML 2 and is also the principal cha-
racteristic that distinguishes it from its predecessor.

The progression towards a more precise and more formal language definition
occurred in four major steps:

2 In the author’s view this is a very narrow and somewhat distorted interpretation of agility

and not one necessarily intended by the designers of such methods.

4 B. Selic

1. The first step was the definition of a supplement to the original UML 1 specifica-
tion: the UML Action Semantics specification. The Action Semantics added the
capability to specify fine-grained behavior, such as the sending and receiving of
messages, the reading and writing of classifier features, or the creation and destruc-
tion of objects. As an integral part of the definition of these actions, a much more
precise, albeit still informal, definition of the dynamic semantics of the core of
UML was also defined.

2. The definition and adoption of UML 2 [10], which fully incorporated the Action
Semantics, and which, in addition to a more precise and more modular language speci-
fication, provided a small number of new modeling capabilities3. Perhaps most signifi-
cant was the addition of advanced structural modeling features taken from several
widely used architectural description languages. These little known and often misun-
derstood capabilities are explained in more detail in section 7.2 below.

3. The “Semantics of a Foundational Subset for Executable UML Models” specifica-
tion [11], which included a fully formal definition of a key subset of the UML 2
actions, using a variant of first-order predicate logic. In addition, it included an op-
erational semantics specification of a UML virtual machine for executing those ac-
tions. A more detailed discussion of this specification is provided in section 5.

4. The “Concrete Syntax for a UML Action Language” specification [12], recently
adopted by the OMG, which provides a precise textual surface syntax for UML
actions,

With the last increment above the progression to a fully-fledged implementation quality
language was completed. Note, however, that—in contrast to traditional programming
languages—the degree of formality to be used with UML is at the discretion of the mod-
eler. This means that it is possible to use UML both informally for rapid and lightweight
“sketching” of early design ideas as well as for implementation—a full-cycle language.

In conclusion, UML is very far from being a “notation without semantics”, as it is
often characterized by those who are less familiar with it. In fact, when it comes to a
mathematically formal specification, UML is ahead of most popular programming
languages—at least for its executable subset.

3 UML “versus” Domain-Specific Modeling Languages

Another common criticism directed at UML is that, being a “general-purpose” lan-
guage, it is (a) too big and unwieldy and (b) too blunt an instrument to adequately
cope with the kinds of domain-specific subtleties encountered in highly-specialized
software applications. In such discussions UML is often pitted against so-called “do-
main-specific modeling languages” (DSMLs) [3] [16]. These are typically compact
high-level languages designed specifically to address a relatively narrow application
domain.

3 To be fair, the current version of UML (UML 2.4 at the time of this writing) still suffers from

numerous technical flaws. However, the latest version of the language currently under devel-
opment, UML 2.5, is designed with the sole objective of eliminating as much as possible re-
maining ambiguities and imprecision in the language specification.

 The Less Well Known UML 5

As is argued below, this particular controversy, like many similar ones in the
history of computing, is more a conflict of commercial marketing messages than of
technical visions. That is, it should be fairly obvious that a custom domain-specific
language will, usually, produce more concise and more direct specifications and,
therefore, more effective solutions for problems in its domain than a more general
language. Getting closer to the application domain and its concepts, is precisely what
is meant by “raising the level of abstraction” when modeling languages are discussed.
The real technical issue is to find the most effective method of realizing a DSML.

There are three different ways in which this can be done:

1. A completely new language can be designed from scratch
2. An existing (base) language can be extended with domain-specific concepts
3. The concepts of a general existing (base) language can be refined (specialized) to

represent domain-specific concepts

The latter two methods may seem similar, but they are fundamentally different.
Namely, extending a language involves adding completely new concepts to the lan-
guage—concepts that are unlike any of the concepts in the base language—whereas
refining a language means narrowing the definition of existing base language con-
cepts, so that they match application semantics. In principle, the refinement approach
provides some important advantages over the other two approaches, but, these are
often overlooked in heated theological debates. This is because they are not technical
in nature, although they may actually be more important in practical industrial
settings.

The primary advantage of the refinement approach to DSMLs is the ability to take
advantage of several factors:

1. Reuse of the expertise that went into designing the base language (and, we should
point out that, given the absence of a sound and proven theory, modeling language
design expertise is still quite scarce),

2. Reuse of the tooling for the base language as well as any training materials.
3. If the base language is standardized and widely taught—as is the case with UML—

it should be much easier to find experienced practitioners who are familiar with it
and who will more readily absorb the specialized DSML based on it. This also re-
duces the training cost, which can be a significant for new languages.

Of the above, perhaps the most important is the ability to reuse existing base language
tools. Although modern DSML design tools, such as those offered by itemis AG,4
provide the very useful ability to automatically or semi-automatically generate some
language-specific tooling directly from the language definition (e.g., model editing
tools, code generators), this is usually far from sufficient for more complex applica-
tions. Industrial-scale software development needs a very wide variety of tools such
as debuggers, model validators of different kinds, simulators, test generators, docu-
ment generators, version management tools, and the like. The effort required to de-
velop industrial-strength tools of this type that are scalable, usable, and robust is not

4 http://www.itemis.com/

6 B. Selic

trivial and should never be underestimated (this is why there are commercial devel-
opment tool vendors). Moreover, tool development is rarely a one-time cost, because
tools will typically need to be maintained and upgraded over time. In balance, the
impact of these costs may in some cases exceed any technical benefits of having a
custom language.

From this perspective, refinement-based approaches have an advantage over the
other two, since they offer a lot of opportunity for reuse, particularly for widely-used
languages such as UML, for which there already exists a rich choice of tools.

This is not to say that custom DSMLs have no role to play, but it seems that their
“sweet spot” lies with smaller highly-specialized stand-alone applications (“small
languages for small problems”). The case of complex multi-faceted systems is differ-
ent, however, even when they can be decomposed into multiple specialized sub-
domains. This is because these sub-domains often overlap, so that some parts of the
system may be represented in multiple models that are written in different DSMLs.
These different views then have to be reconciled, which can be difficult if the individ-
ual languages are designed independently of each other (this is sometimes referred to
as the “fragmentation problem” of DSMLs). In such situations, the problem is easier
to manage if the various overlapping languages share a common semantics founda-
tion. Once again, refinement-based approaches hold the advantage here, since the
various DSMLs can all be evolved from the same base language.

But, refinement-based approaches do have one fundamental disadvantage: the do-
main-specific concepts of a DSML must have a corresponding base concept in the
base language. If no suitable base concept can be found, then either an extension-
based or a new language alternative must be used. (The former is usually preferred
since it is more likely to have more potential for reuse in general than a completely
new language.) This is why a concept-rich general-purpose language may be the best
base for DSMLs, paradoxical as this may sound. Moreover, as explained earlier, such
a language can also help us deal with the fragmentation problem, since all the derived
DSMLs would be sharing the same semantic core.

This brings us back to UML and its ability to serve as a source language for defin-
ing refinement-based DSMLs via its profile mechanism. A UML profile comprises a
set of domain-specific refinements of standard UML language constructs and corres-
ponding constraints. Because such refinements are semantically aligned with their
base concepts, existing UML tools may be directly applicable for the DSML defined
by the profile5. This capability has been used extensively to produce numerous UML-
based DSMLs, many of which have been standardized by the OMG as well as other
standardization bodies [9].

Unfortunately, the profile mechanism of UML is far from perfect6. This is due to
the fact that, when the approach was first proposed, there was little practical expe-
rience with it. For example, it is not easy to determine with precision whether or not a

5 Needless to say, it is best if the UML tool itself be sensitized to the added domain-specific

semantics, which is why many current UML tools are designed to be highly customizable.
6 Improvements to the profile mechanism are being considered within the OMG at the present

time.

 The Less Well Known UML 7

particular specialization of a UML concept is semantically aligned with its base con-
cept so that a standard UML tool will treat it correctly. Nevertheless, despite its tech-
nical shortcomings, because it is a refinement-based approach to DSML design, it has
the advantages that come with that approach. It has proven adequate in practice, al-
though, admittedly, not universally so.

In addition to serving as a mechanism for defining DSMLs, the profile mechanism
has one additional and important capability. This is the ability to use profiles as an
annotation mechanism for re-interpreting UML models or profile-based DSML mod-
els. Namely, using stereotypes of a profile, it is possible to attach customized annota-
tions to elements of a UML or DSML model. These annotations are like overlays that
do not affect the underlying model in any way and can, therefore, be dynamically
applied or removed as required. Such annotations are typically used to provide custom
supplementary information not supported in standard UML and which can be ex-
ploited by various model analyzers or model transformers. For example, the standar-
dized MARTE profile [13], provides facilities for adding information that is useful for
certain types of real-time systems, such as timing information (deadlines, durations,
processing times, delays, etc.), which can be used by specialized tools to analyze the
timing characteristics of a design.

In summary, UML and the idea of DSMLs are not mutually exclusive as is often
suggested. In fact, UML may provide the best solution to supporting a DSML in
many practical situations, particularly for more complex systems.

4 The Structure of UML 2

Since it was designed to cover a broad spectrum of application types, UML is, un-
doubtedly, a large computer language. This makes it difficult to master in its full ex-
tent. (Although, it should be noted that the intellectual effort required to master UML
pales in comparison to the effort required to master modern programming languages
such as Java, which, although relatively compact, is only truly useful if it is combined
with numerous standard class libraries and other utilities.) But, is it really “too big” as
its critics often like to repeat?

It is probably fair to say that it is “too big”, if the language is approached without a
particular purpose in mind, meaning that one would need to digest all of it in a single
sweep. Fortunately, in UML 2, the structure of the language has been modularized so
that it is rarely a need master the full language. In fact, UML consists of a set of dis-
tinct sub-languages, each with its own concrete syntax (notation), but which, fortu-
nately, share a common foundation (Fig. 17). With a few exceptions, these languages
are independent of each other and can be used independently or in combination. Thus,
one only needs to learn the sub-languages of direct interest and the sub-languages that
these depend on, while ignoring the rest. For instance, users interested in capturing
event-driven behavior via state machines, need only to know the State Machine lan-
guage, a subset of the Activities language, and the Foundations they both rest on.

7 Note that this diagram depicts a language user’s view of the various sub-languages and their

relationships. The actual internal structure of the UML metamodel is somewhat different.

8 B. Selic

UML 2 consists of the following sub-languages:

• The Foundations module contains a Structural Kernel, which covers basic
structural concepts such as classes, associations, instances, values, etc., and a Be-
havioral Kernel, which in turn depends on the Structural Kernel, and which covers
essential behavioral concepts, such as events, messages, and the like. The Structur-
al Kernel alone is sufficient for certain basic forms of software modeling provided
via class diagrams. The Foundations provide the common core that is shared by all
other sub-languages

• The Structured Classes language was added in UML 2 and supports the modeling
complex classes representing complex architectural entities. It is a distillation of a
number of architectural description languages. It is described in more detail in
section 7.2.

• The Deployment language is used for capturing the allocation of software modules
(e.g., binaries) to underlying hardware or software platforms8.

• The Collaborations language is used to describe complex structural patterns of
collaborating objects. Despite its name, this language is used to specify structure
and not behavior. However, it is often used to define the structural setting for inte-
ractions. It is covered in section 7.1.

• The Interactions language serves to model interactions between multiple collabo-
rating entities and the actions that occur as a result. In UML 2, interactions can be
specified using three different graphical syntactical forms as well as one tabular
one.

• Actions are used for specifying fine-grained behavioral elements comparable to
traditional programming language instructions. UML actions depend on the Activi-
ties language, which provides facilities for combining actions into more complex
behavioral fragments as well as to control their order of execution. Note that, ex-
cept for a generic syntactical form (which does not differentiate between the vari-
ous types of actions), there is no concrete syntax for representing actions. Instead,
behavior at this level can be specified using the ALF language [12], which has a
textual concrete syntax reminiscent of conventional programming languages such
as Java. (The raw UML Actions can be thought of as a kind of UML assembler,
whereas the ALF language is of a higher order.)

• The Activities language is used to model complex control or data flow based beha-
viors, or even combinations of the two. It is inspired by a colored Petri Net formal-
ism and is well-suited to the modeling parallel processes, such as complex business
processes.

• The State Machine language is used for specifying discrete event-driven behaviors,
where the responses to input events are a function of history. In UML 2 a special
variant called protocol state machines was added to support the specification of in-
terface protocols.

8 This language provides a relatively simple model of deployment that is suitable for some

applications. A much more sophisticated deployment modeling capability is provided by the
MARTE profile [14].

 The Less Well Known UML 9

• The Use Case language captures use cases and their relationships, as well as the
actors that participate in those use cases.

• The Information Flow language serves to capture the type and direction of flow of
information between elements of a system at a very abstract level.

• The Profiles language, as already explained, is not used for modeling systems but
for defining DSMLs based on UML.

In addition to the above set that are part of UML proper, two other languages can be
used when modeling with UML:

• The Object Constraint Language (OCL), which is used to write formal logic con-
straints either in user models or in profiles.

• The Action Language for Foundational UML (ALF), a high-level language with a
concrete textual syntax used for specifying detailed behaviors in the context of
UML Activities. The semantics of ALF constructs are expressed in terms of UML
actions and activities and are fully compatible with the dynamic semantics of UML
itself. As noted earlier, the combination of UML and ALF (including its libraries)
is sufficient to make UML an implementation language.

Naturally, all of these languages can be combined as needed. This is facilitated by the
fact that they are all based on the same Foundations, including OCL and ALF.

Fig. 1. The UML 2 sub-languages and their relationships

This new modularized architecture of the UML 2 language provides a lot of flex-
ibility, enabling modelers to select an appropriate subset of the language suited to
their needs. Combined with the profile mechanism, such a subset can be specialized
even further to suit specific application domains.

10 B. Selic

5 The Specification of UML Semantics

As noted above, the definition of UML semantics, originally expressed almost exclu-
sively in natural language, has been significantly tightened with the adoption of the
“Semantics of a Foundational Subset for Executable UML Models” specification [11].
Although it does not cover the full UML language, this specification provides a foun-
dation for the semantic core of UML, upon which the rest of the language rests. The
subset of UML covered is referred to as “foundational UML” or fUML for short. It
covers the following four major groupings of UML concepts from Fig. 1:

• The Structural Kernel of UML (part of the Foundations package).
• The Behavioral Kernel of UML (also part of the Foundations package).
• A major subset of the UML Activities sub-language
• A major subset of the UML Actions

This subset was carefully chosen because it was deemed sufficient for describing the
semantics of the remainder of UML. Note, however, that it is not a minimal set. In-
stead, a tradeoff was made between minimality and expressiveness, providing for a
relatively compact and understandable specification.

The approach taken for defining the semantics of fUML is an operational one; that
is, the dynamic semantics of the various fUML concepts are specified in terms of the
operation of a fUML virtual machine (in effect, an interpreter capable of executing
fUML models). The language used to specify this virtual machine is a subset of
fUML. This subset of the subset is referred to as “base UML”, or bUML. The rela-
tionship between these different flavors of UML is depicted by the Venn diagram in
Fig. 2. Note that bUML is only slightly smaller than fUML.

Fig. 2. Relationship between full UML, fUML, and bUML

Of course, to avoid a fully circular definition of the semantics, it is necessary to de-
scribe the semantics of bUML using some other formalism, preferably one that is well
recognized and well understood. Therefore, a separate formal definition of the seman-
tics of bUML is provided in the fUML specification. This definition uses a declara-
tive approach, using a special formalism for modeling concurrent systems called

 The Less Well Known UML 11

Process Specification Language (PSL), which has been adopted as a standard by
the International Standards Organization (ISO) [5]. PSL is based on first-order
mathematical logic.

The details of the fUML virtual machine and how PSL is used to capture bUML
semantics are outside the scope of this article. However, the following section provides
an informal overview of the semantics of UML, which incorporate the semantics of
fUML.

6 The Dynamic (Run-Time) Semantics of UML

The run-time semantics of UML, as defined in the general standard and as further
refined within fUML, are relatively straightforward. The basic behavioral paradigm is
a discrete event driven model.

The prime movers of all behavior in the system are active objects, which interact
with each other by sending messages through links. The sending and receiving of
messages, result in event occurrences. The reception of an event by an active object
may cause the execution of appropriate behaviors associated with the receiving ob-
ject.

An active object in UML is an object that, once created, will commence executing
its classifier behavior (a specially designated behavior associated with the class of the
object). This behavior will run until it either completes or until the object is termi-
nated. In a given system, the classifier behaviors of multiple active objects can be
running concurrently. It is sometimes said that an active object “runs on its own
thread”, but this formulation can be misleading. One problem is that the concept of a
“thread” is technology specific and has many different realizations and interpretations
in different systems. (It is, of course, preferable if the semantics of UML are defined
precisely and independently of any particular technology.) It is also inappropriate,
since there can be many such “threads” associated with the behavior of an active ob-
ject. For example, the composite states of UML state machines may include multiple
concurrent regions, or, a UML activity may fork its control or data flows into multiple
concurrent flows.

When an active object needs to interact with another active object, it sends a mes-
sage through a link to the object at the opposite end of the link. The message is a car-
rier of information and may represent either a synchronous invocation of an operation
of the target object, or an asynchronous signal corresponding to a reception9. Once the
message arrives at its destination, it is placed in the event pool associated with the
receiving object. The message will remain in the event pool until it is dispatched ac-
cording to a scheduling policy. To allow modeling of different kinds of systems, the
scheduling and dispatching policies are semantic variation points in fUML, although a
default first-come-first-serve policy is supplied.

9 In UML a reception is a behavioural feature similar to an operation, except that it is invoked

(by sending a signal) and executed asynchronously. Only active objects can have receptions.

12 B. Selic

Messages are extracted from the event pool only when the receiving object ex-
ecutes a “receive” action10. Which message is selected and dispatched at that point
depends on the scheduling policy. Once the message is received, it is processed by the
active object according to its classifier behavior.

As part of executing its classifier behavior, an active object may access the features
of passive objects. Passive objects are created by active objects and their operations
and attributes are accessed synchronously. Note that, unless care is taken, it is possi-
ble for conflicts to occur when multiple active objects access the same passive object
concurrently.

7 Advanced Structure Modeling in UML 2

Empirical evidence suggests that of all the diagram types provided by UML, class
diagrams are by far the most widely used in practice [2], [4]. This is generally a posi-
tive outcome, since class diagrams are an excellent example of the power of abstrac-
tion and the benefits that it can bring to the design of complex systems. Nevertheless,
there is much confusion about the precise meaning of these diagrams (undoubtedly
due in part to the imprecise and vague descriptions provided in the standard itself),
leading to frequent misuse.

One common mistake is to treat class models as instance models. A class in UML,
as in most object-oriented languages, is a specification of what is common to all in-
stances of that class (e.g., the number and types of its features), that is, a set of rules
that define what constitutes a valid instance of the class. Using mathematical termi-
nology, we say that a class is an intentional specification. (Corresponding to it is an
extension represented by the set of all possible instances of that class.) Consequent-
ly, a class says nothing about characteristics that are unique to individual instances—
those are abstracted out in class models. This level of modeling is sufficient in some
types of applications, particularly in databases. In fact, class modeling evolved from
standard entity-relationship modeling that originated in database theory.

But, there are many applications where it is necessary to capture instance-specific
information. For example, consider the two distinct systems depicted in the two in-
stance diagrams in Fig. 3(a) and Fig. 3(b). That these are two different systems should
be clear, since they contain a different number of elements. However, note that they
share the same class diagram (Fig. 3(c))11.

Clearly, class diagrams are not suitable for this purpose and we need something
more. In UML, there are two types of structure sub-languages specifically designed to
support instance-based modeling: collaborations and structured classes. In contrast to
simple instance (object) diagrams, which merely represent snapshots of systems at
some point in time, these sub-languages provide a means for specifying rules for what
constitutes valid configurations of instances. In other words, they do for instances
what class modeling does for classes.

10 In case of state machines, this action is implicit and occurs upon the full completion of a

transition when a steady state is reached – hence, the term “run-to-completion”.
11 In fact, the class diagram represents a potentially infinite number of different systems.

 The Less Well Known UML 13

Fig. 3. Class versus instance models

7.1 Collaborations and Collaboration Uses

A common example of an instance-based pattern (configuration of instances) is the
well-known Model-View-Controller architectural pattern shown in Fig. 4 [18]. This is
a general pattern that can take on many concrete forms. In it, we differentiate the in-
dividual participants based their responsibilities, or roles, within the pattern rather
than by their identities [14]. Thus, we need to represent instances in a structural con-
text while abstracting away their identities. For example, the fact that in some realiza-
tions of Model-View-Controller a single object might be filling both the Model and
the Controller roles is irrelevant to the specification of the pattern.

When working with roles, we may not be interested in the type of the object play-
ing a particular role, leaving it undefined. However, in UML, we also have the option
to specify the type of a role, a constraint which signifies that only instances of the
designated type or its compatible subtypes can fill that role.

A role only makes sense in a greater structural context in which interacts with other
roles. In UML, the structural context containing roles is called a collaboration12.
UML.

(Practical tip: Note the use of the rectangle notation for classifiers in Fig. 4, to
represent the collaboration rather than the more widely known dashed oval notation
found in most UML textbooks. The rectangle notation is the default UML notation for
any kind of classifier, including collaborations. This is usually a much more conve-
nient and efficient form than the enclosing oval, since it provides for more effective
use of scarce screen surface area.)

12 This is a rather unfortunate choice of name, since the term “collaboration” has dynamic

connotations, although the UML concept is structural in essence. (In fact, in UML 1, col-
laborations were misclassified as a kind of behavioural modelling.).

14 B. Selic

Fig. 4. Model-View-Controller pattern expressed as a collaboration

The roles of a collaboration may be linked to each other via connectors,
representing communication paths by which the roles interact with each other. Con-
nectors explicitly identify which roles are mutually coupled and which ones are not.
Since deciding on the coupling between components of a system is a critical architec-
tural design decision, the presence of connectors provides a concrete manifestation of
design intent. Since inter-object communications in UML is accomplished via links, a
connector denotes a link instance, in the same way that a role denotes an object in-
stance. Note that it is not necessary to define associations for such implicit links, al-
though it is possible, particularly if all the connected roles are typed.

Standard UML does not define fully the semantics of connectors. Specifically, the
communication properties of such links (i.e., whether they are order preserving, non-
duplicating, and non-lossy) are left as semantic variation points. If a stronger defini-
tion is required, it can be provided through a profile13.

Collaborations are frequently combined with interactions, providing the structural
setting over which message exchange sequences are overlaid. (In fact, it is this com-
bination of two distinct UML sub-languages that gave rise to the term “collabora-
tion”.14) In those cases, the lifelines of an interaction are associated with the roles of
the underlying collaboration. Clearly, messages between two lifelines should only be
permitted if the corresponding roles are connected (although standard UML does not
enforce this constraint).

(Practical tip: In support of this combination of collaborations and structures,
UML provides the communications diagram notation, which shows what appears to
be a collaboration diagram with roles corresponding to the lifelines of the interaction
and messages shown as numbered arrows running parallel to the connectors they
traverse. While this notational form is widely advertised in many UML textbooks,

13 fUML is more constrained and does assume perfect communication properties for links.
14 It is only in UML 2 that these two sub-languages were separated.

 The Less Well Known UML 15

practical experience has shown that it is not particularly useful due to graphical limi-
tations, and is probably best avoided. In practice, message names are often longer
than the space provided between the roles of the graph so that they do not fit in the
diagram. Moreover, for anything but trivial message sequences, it is very difficult to
follow the flows of messages by keeping track of message sequence numbers, espe-
cially when concurrent sequences are involved.)

Collaborations that capture structural patterns, such as Model-View-Controller, can
be treated as a kind of macro definition that can be reused whenever a pattern needs to
be applied in a given model. In UML this can be achieved through a mechanism
called collaboration use. Consider, for example, the case where we would like to
capture a special variant of the Model-View-Controller pattern such that the Model
and the Controller roles are filled by the same object. We can represent this by a new
collaboration, shown by the collaboration diagram in Fig. 5.

Fig. 5. Collaboration use example

The dashed oval in Fig. 5 is the notation for a collaboration use, and it represents a
reference to (i.e., application of) the original ModelViewController pattern. The
dashed lines emanating from it represent the roles of the corresponding collaboration
(ModelViewController). Of course, in this particular case, we could have done this by
simply having a simple collaboration with just two roles, View and ModelController,
avoiding the collaboration use. However, that would have obscured the design intent,
which was to take advantage of the well-known design pattern. The collaboration use
makes that explicit.

Although collaborations have been a part of UML from the very first release of the
standard15, evidence indicates that, in contrast to class diagrams, they are little used by
practitioners [4]. This is surprising at first, since one would normally expect instance

15 Although the technical definition of collaborations has changed somewhat between UML 1

and UML 2, the essence has remained unchanged.

16 B. Selic

based modeling to be the more intuitive form of representing structure to most people.
Class modeling requires an extra inductive reasoning step: abstracting from the par-
ticular to the general. The most likely explanation is that most software developers
trained in object-oriented programming are familiar with the class concept, whereas
the notion of a role is less well known and is not supported explicitly in common
object-oriented programming languages.

This is unfortunate, since there are many cases where collaborations are the most
natural modeling technique. Instead, it often happens that attempts are made to cap-
ture instance-specific structures unsuccessfully using class diagrams. For example,
Fig. 6 illustrates one of the most common mistakes. In attempting to capture the struc-
ture shown in Fig. 6(a) even experienced modelers might define a class diagram like
the one in Fig. 6(b). However, this is incorrect since that particular class model sup-
ports a variety of different instance patterns, including the one shown in Fig. 6(c).

Fig. 6. Inappropriate use of class modeling

7.2 Structured Classes and Components

UML 2 added another form of instance-based modeling via the structured class con-
cept. Structured classes were inspired by various architectural description languages
used to represent the architectural structure of software systems.

Structured classes are distinguished from “simple” classes by virtue of the follow-
ing two features:

 The Less Well Known UML 17

• The possible presence of one or more communication ports on its interface.
• The possible encapsulation of an internal structure consisting of a network of col-

laborating objects.

Ports. Ports are a common feature of most architectural description languages but
they are rarely encountered in programming languages. Ports are analogous to the
pins of a hardware chip: instead of a single interface, it is possible to have a set of
distinct interface points each dedicated to a specific purpose. Ports in UML add two
important modeling capabilities:

1. Like any interface, a port provides an explicit and focused point of interaction be-
tween the object that owns it (i.e., an instance of a structured class) and its envi-
ronment, thereby isolating each from the other. An important characteristic of ports
is that they can be bi-directional. This means that a port has (a) an outward face,
which it presents to its collaborators and which defines the services that the object
provides to its collaborators, and (b) an inward face, which can be accessed by its
internal components and which reflects the services that are expected of the colla-
borators on the outside. Thus, a port represents a full two-way contract, with the
obligations and expectations of each party explicitly spelled out.

2. Since an object can have multiple ports, they allow an object to distinguish be-
tween multiple, possibly concurrent collaborators by virtue of the port (interface)
through which an interaction occurs.

Reflecting the bi-directional nature of ports, in UML a port can be associated with
UML Interfaces16 in two different ways. For its outward face, a port may provide zero
or more Interfaces, which specify its offered services. For its inward face, a port may
require zero or more Interfaces, which define what is expected of the party at the
opposite end of the port.

(Practical tip: It is generally better to associate no more than one provided Inter-
face with a port, to avoid possible conflicts when the definitions of two or more Inter-
faces overlap (e.g., they provide the same service). If different Interfaces are desired,
it is always possible to add a separate port for each Interface.)

Note that it is possible for an object to have multiple ports that provide the same
Interface. This allows an object to distinguish between multiple collaborators even
though they require the same type of service. This capability is particularly useful
when Interfaces have associated protocols, that is, when the interactions between an
Interface user and an Interface provider must conform to a particular order. For ex-
ample, a database class may impose a two-phase commit protocol to be used when
data is being written. This usually means that at any given time, an interface (i.e.,
port) instance may have a state, corresponding to the phase of the protocol that it is in.
With multiple ports supporting Interfaces of the same type with each dedicated to a
separate client, it is possible for individual ports to be in different states, allowing thus
full decoupling of concurrent clients all using the same Interface.

16 To distinguish between the generic notion of “interface” and the specific UML concept with

the same name, the latter is capitalized in the text.

18 B. Selic

The dynamic semantics of UML ports are quite straightforward: whatever messag-
es (operation calls, signals) come from the outside they are simply relayed inwards,
and vice versa. In other words, they are simply relay devices and nothing more.

Ports must be connected to something on either face; otherwise, whatever comes in
from a connected side will simply be lost. There are two possible ways in which a
port can be connected: (a) to the end of a connector or (b) to the classifier behavior of
the object that owns the port. In the latter case, the port is called a behavior port. It is
only when a message arrives at a behavior port that anything actually happens (see
section 6 above).

Of course, only compatible ports can be connected through a connector. The spe-
cific rules for compatibility are not defined in standard UML (i.e., it is a semantic
variation point). But, generally speaking, two ports are compatible if the services
required by one are provided by the other and vice versa. If protocols are associated
with the ports, compatibility rules are more complex except in the trivial case where
the associated protocols are exact precise complements of each other.

The standard UML notation for ports is shown in Fig. 7. Port Pa is a non-behavior
port, whereas Pb is a behavior port (indicated by the small “roundtangle” attached to
it). Note that ports do not necessarily have to appear on the boundary of the classifier
icon, although that is the usual convention.

Fig. 7. A structured class with parts and ports

Internal Structure. In a sense, as shown in Fig. 7, the internal structure of a struc-
tured class is very much like a collaboration that is contained within the confines of
an object. The only difference is that the parts comprising the internal structure do not
represent roles, but the structural features of the class, such as attributes and ports.
(Naturally, some of these parts may be typed by structured classes with their own
ports and internal parts, as the example in Fig. 7 illustrates.) The extra modeling ca-
pability provided by internal structure is that the parts can be linked via connectors. In
other words, in addition to a set of structural features (e.g., attributes), structured

 The Less Well Known UML 19

classes also own an interconnection topology that shows explicitly how the various
parts interact.

The full run-time semantics of structured classes are not fully specified in standard
UML (nor are structured classes covered by fUML). Are the parts and connectors
automatically created when an instance of the class is created? That would certainly
be quite useful, since: (a) then there would be no need to specify the tedious house-
keeping code for creating the internal objects and connections, and (b) it would result
in more reliable implementations, since the implementation code would be automati-
cally generated from the class definition. Moreover, this would also ensure that only
possible couplings between elements of the system would be those that are explicitly
specified by the modeler. In fact, a number of UML profiles, such as the UML-RT
profile [15], define such semantics.

The addition of concepts such as ports, connectors, and structured classes means
that UML can be used as an architectural description language extending the range of
UML from the highest levels of a system down to very fine-grained detail (e.g., using
ALF).

Components. There a common misconception that in order to take advantage of
UML’s architectural modeling constructs such as ports, connectors, and internal struc-
tures one must use the UML Component construct. As explained above, this is not the
case. In fact, the Component construct in UML 2 is merely a specialization of the
structured class concept, with a few additional features that are included primarily for
backward compatibility with previous versions of UML. Namely, the UML 1 defini-
tion of Component attempted to cover a variety of different interpretations of that
widely used term with a single concept. Consequently, a component was used to de-
note both a unit of software reuse (e.g., the source code and binary modules) residing
in some design repository as well as an instantiable run-time entity similar to a class.
While UML 2 has retained this hybridized concept (to smooth the transition of UML
1legacy models to UML 2), it is probably best to avoid it, using instead structured
classes which have clear and unambiguous semantics.

8 Summary

UML has evolved a long way from its informal early versions, characterized by am-
biguous and imprecise semantics. It has gradually emerged as a full-cycle computer
language, equally capable of being used in a highly informal lightweight design
sketching mode as well as a fully-fledged implementation language. Unfortunately,
this progression from a purely descriptive tool to a prescriptive one, has received little
attention so that there is much misunderstanding of its role and capabilities.

In this article, we have briefly summarized the nature of this dramatic evolution,
pointing out how the tightening of the semantics of UML has been achieved and what
benefits that provides.

In addition, we have focused on an important new capability provided by UML 2,
but one which is little known and often misinterpreted: the mechanisms for capturing

20 B. Selic

and enforcing instance-based structural patterns. This adds an important new dimen-
sion to UML by providing the standard constructs found in architectural description
languages, extending thus the scope of abstractions that can be represented.

References

1. Beck, K.: Extreme Programming Explained. Addison-Wesley, Boston (2000)
2. Dobing, B., Parsons, J.: How UML is Used. Communications of the ACM 49, 109–113

(2006)
3. Greenfield, J., Short, K., et al.: Software Factories. Wiley Publishing, Inc., Indianapolis

(2004)
4. Hutchinson, J.: An Empirical Assessment of Model Driven Development in Industry. PhD

Thesis, School of Computing and Communications, Lancaster University, UK (2011)
5. International Standards Organization (ISO): Industrial automation systems and integration

– Process specification language (Part 1: Overview and basic principles). ISO standard
18629-1:2004 (2004), http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=3543

6. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling. John Wiley & Sons, Hoboken
(2008)

7. Meyer, B.: UML: The Positive Spin (1997), http://archive.eiffel.com/doc/
manuals/technology/bmarticles/uml/page.html

8. Milicev, D.: Model-Driven Development with Executable UML. Wiley Publishing Inc.,
Indianapolis (2009)

9. Object Management Group (OMG): Catalog of UML Profile Specifications,
http://www.omg.org/technology/documents/profile_catalog.htm

10. Object Management Group (OMG): OMG Unified Modeling Language (OMG UML) Su-
perstructure. OMG document no. ptc/10-11-14 (2010), http://www.omg.org/spec/
UML/2.4.1/Superstructure/PDF/

11. Object Management Group (OMG): Semantics of a Foundational Subset for Executable
UML Models (fUML). OMG document no. formal/2011-02-01 (2011),
http://www.omg.org/spec/FUML/1.0/PDF/

12. Object Management Group (OMG): Action Language for Foundational UML. OMG doc-
ument no. ptc/2010-10-05 (2010),
http://www.omg.org/spec/ALF/1.0/Beta2/PDF

13. Object Management Group (OMG): UML Profile for MARTE: Modeling and Analysis of
Real-Time and Embedded Systems. OMG document no. formal/2011-06-02 (2011),
http://www.omg.org/spec/MARTE/1.1/PDF

14. Reenskaug, T., Wold, P., Lehne, A.: Working With Objects. Manning Publications Co.,
Greenwich (1996)

15. Selic, B., Rumbaugh, J.: Using UML for Modeling Complex Real-Time Systems. IBM de-
veloperWorks (1998), http://www.ibm.com/developerworks/rational/
library/content/03July/1000/1155/1155_umlmodeling.pdf

16. Völter, M.: From Programming to Modeling—and Back Again. IEEE Software, 20–25
(November/December 2011)

17. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for
MDA. Addison-Wesley Professional, Reading (2003)

18. Wikipedia, Model-View-Controller, http://en.wikipedia.org/
wiki/Model-view-controller

MDE Basics with a DSL Focus

Suzana Andova, Mark G.J. van den Brand, Luc J.P. Engelen, and Tom Verhoeff

Eindhoven University of Technology, Den Dolech 2, NL-5612 AZ Eindhoven
{s.andova,m.g.j.v.d.brand,l.j.p.engelen,t.verhoeff}@tue.nl

Abstract. Small languages are gaining popularity in the software engi-
neering community. The development of MOF and EMF has given the
Domain Specific Language community a tremendous boost. In this tu-
torial the basic aspects of model driven engineering in combination with
Domain Specific Languages will be discussed. The focus is on textual
Domain Specific Languages developed using the language invention pat-
tern. The notion of abstract syntax will be linked to metamodels as well
as the definition of concrete syntax. Defining static and dynamic seman-
tics will be discussed. A small but non trivial Domain Specific Language
SLCO will be used to illustrate our ideas.

1 Introduction

Our society has become completely dependent on software. We do our bank
transactions via the internet, we book our holiday trips, order books, etc. on line,
and we submit our tax forms electronically. Medical information is exchanged
electronically between doctors. Software is no longer running only on “traditional
computers”, but is incorporated into products that we use in daily life like mobile
phones, personal organizers, game computers, personal care equipment, and even
cars. A modern car contains about 10 million lines of code; a wafer stepper is
run by over 30 million lines of code. Apart from this code explosion, people put
more trust in software. In fact, we have become software dependent, all modern
devices are software based.

The software engineering community is facing two main challenges; how to
produce and maintain this huge amount of software written in a broad variety
of (programming) languages and how to guarantee the correctness of the result-
ing software. Increasing the level of abstraction seems to be a logical solution.
This is in line with the development of programming languages over time, see
Section 1.1. In the last decade (graphical) models have become popular when
developing software and new formalisms such as the Unified Modeling Language
(UML) have been defined, see Section 1.2. These new formalisms have created
a new field within software engineering: model driven (software) engineering
(MDSE) which may be a solution but it may also be the next “no silver bullet”
[24]. The use of high level models offers also the possibility to perform model
analysis and verification of properties. This is beneficial for any sort of systems
but is crucial for safety critical systems.

M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.): SFM 2012, LNCS 7320, pp. 21–57, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

22 S. Andova et al.

1.1 From Low Level to High Level Programming Languages

In the middle of the previous century, computers where introduced to perform
calculations for ballistic missiles. Soon after this, the first commercial software
applications were developed [27]. In 1951, Grace Hopper wrote the first compiler,
A-0, see [94]. She was also involved in the development of the first compiler-
based programming languages, including ARITH-MATIC, MATH-MATIC and
FLOW-MATIC. A compiler is a program that transforms high-level statements
in a programming language into low-level computer instructions. Since the pro-
grammer is working at a higher level of abstraction, more can be expressed
in fewer lines of code. Programming has evolved enormously since then. The
development can be characterized by indeed making programming easier, by
introducing, for instance, high-level language constructs, and by increasing the
level of abstraction, by introducing procedures and classes. The introduction
of high-level control flow constructs, such as, conditionals, loops and exceptions
(which replace low-level constructs like GOTOs, see [31]) has improved the qual-
ity of the software. Increasing the level of abstraction does not only lead to an
improvement in productivity but also to better quality of the code.

Models raise programming to the next level of abstraction. They are in general
used to design both hardware and software. Often the models are manually
translated into other more detailed design documents and/or code. However,
that route offers no guarantee for consistency between model, design and the
resulting code and should be improved.

1.2 From Informal to Formal Modeling

Models have become important when designing software. People used to make
informal drawings of the (structure of the) software when designing software.
However, these informal drawings are not machine processable, and have to be
converted into (source) code manually. One can observe more than once that
developers take pictures of the black board to recreate the models in Visio or
some other modeling tool. These informal models lack any form of semantics, or
the semantics is only in the head of the designer.

Apart from these informal drawings, others advocate the use of formal meth-
ods as much as possible to describe the (behaviour of) software systems. The
advantages of formal methods are their rigorousness and software developed us-
ing these methods is usually free of errors. They have well defined semantics
and can be automatically processed. A number of formal methods allow the in-
terpretation of the models, or even generation of executable code. However, the
learning curve of formal methods is steep, whereas the learning curve for drawing
diagrams on the black board is very low.

1.3 From UML to MOF

Quite a number of modeling languages have been developed over the years, each
dealing with different aspects of software (development). Some of these modeling

MDE Basics with a DSL Focus 23

languages are data oriented, e.g., E/R models; some are structure oriented, e.g.,
class diagrams; some behaviour oriented, e.g., use cases, state machines, sequence
diagrams, activity diagrams, and others are architecture oriented, e.g., package
diagrams, component diagrams.

The Object Management Group (OMG) took the initiative of unifying a num-
ber of these diagrams, among others class diagrams, state machine diagrams, se-
quence diagrams, into UML1.x [65]. This was done by James Rumbaugh, Grady
Booch and Ivar Jacobson (the Three Amigos) [76]. UML combines Rumbaugh’s
Object-Modeling Technique (OMT), for Object-Oriented Analysis (OOA), and
Booch method, for Object-Oriented Design (OOD), with the work of Jacobson,
the Object-Oriented Software Engineering (OOSE) method.

UML, via the UML profiles, offers an extensibility mechanism that can be
used to develop domain specific modeling languages [81]. The lecture on “MDE
Basics with a UML Focus” by Bran Selic discussed this approach in more detail.
The development of UML has also lead to the creation of the Meta Object
Facility (MOF) [46], also by OMG. MOF is used to define the various modeling
formalisms of UML in a uniform way. The Meta Object Facility has a four-layered
architecture:

M3. The Meta-Meta-Model Layer contains the MOF language, which is
used to describe the structure of metadata (and, also, of MOF itself). It
provides a meta-metamodel at the top layer.

M2. The Meta-Model Layer contains definitions for the structure of meta-
data. The M3-model is used to build metamodels on level M2. The most
prominent example is the UML metamodel, the model that describes the
UML itself.

M1. The Model Layer contains definitions of data in the information layer.
The metamodels of level M2 describe the structure of elements of the M1-
layer, for example, models written in UML.

M0. The Model Layer contains objects or data in the information layer.

MOF is an alternative for developing domain specific (modeling) languages.
Although MOF is the official standard, there are only a few implementations
[78], the most popular of which is the Eclipse Modeling Framework (EMF)
[25,83]. EMF has become very popular for developing Domain Specific Lan-
guages (DSLs). An entire range of Eclipse plugins have been developed to deal
with the various aspects of DSL development. In this tutorial, we address the
design of DSLs, and EMF among others is used as the main implementation
medium, although the presentation will be as tool independent as possible.

1.4 Outline of Tutorial

The tutorial uses a small but non-trivial language called “Simple Language of
Communicating Objects” (SLCO) as a running example. All aspects of designing
and implementing a DSL will be demonstrated using this language. In Section 2,
background information on DSLs in general is given. This section gives some

24 S. Andova et al.

definitions of DSLs and a rough classification of DSLs. In Section 3, the notions
of abstract syntax and metamodels are introduced. Section 4 describes the static
and dynamics of a DSL. We provide some background information on static
semantics and what we understand by it. The second half of this section is
devoted to the formalization of the dynamic semantics. Section 5 presents ways
of defining the concrete syntax of a DSL. The focus in this section is mainly on
the context-free syntax and less on the lexical part. We conclude this tutorial,
Section 6, by discussing the way we use SLCO in our research. We will also sketch
a number of research directions for the DSL community.

2 Domain Specific Languages

It is hard to give a very precise definition of Domain Specific Languages or little
languages [29]. In general, a language is a symbolic system for communication.
More formally, a language is a collection of sentences or expressions, constructed
according to certain grammatical rules, where the language elements refer to
real-world entities. In this sense, a DSL is a formal, processable language tar-
geting a specific aspect of an information-processing system or task, for instance
building user interfaces, performing database queries, building web pages, ex-
changing data, generating scanners and parsers. There is no requirement that a
DSL should be Turing complete, in contrast to a general purpose language. Its
semantics, flexibility and notation are designed to support working with these
aspects as efficiently as possible. Yet another definition of DSLs can be found in
the annotated bibliography [30]: “A language that offers, through appropriate
notations and abstractions, expressive power focused on, and usually restricted
to, a particular problem domain”.

2.1 Forms of Domain Specific Languages

Given these definitions we know DSLs are not general purpose languages but
rather languages used to address problems in a restricted domain. The next
question is what do DSLs look like? Mernik et.al. [62] give a detailed description
of the various domain specific design patterns. The classification given in this
tutorial is from a user perspective instead of a developer perspective. DSLs differ
a lot in their external appearance. It all depends on which viewpoint is taken.

In a number of cases, (built-in) libraries that come with an integrated devel-
opment environment or a programming language, such as the Swing library of
Java, can be considered as a DSL. It contains the vocabulary of concepts that
are needed to deal with specific tasks. The programs written to solve these tasks
use these libraries. Adapting the DSL reduces to changing the libraries.

Another approaches is to embed a DSL in an existing language. Hagl [93] is
an example of such an embedding in Haskell [49]. This way of developing DSLs
is very efficient. The embedded language has the flavour of the host language
and reuses the underlying parser and type system, at least in case of Haskell.

MDE Basics with a DSL Focus 25

The difference with the first approach, the library approach, is not very obvious
from a user perspective. Both approach can be considered as internal DSLs.

Yet another way is to add extensions to existing languages to increase the ex-
pressive power of the language. This can be considered as a partly external DSL.
TOM [63] is an example of such a domain specific extension, that adds a pattern
matching facility to the host language. The language constructs of the “exten-
sion” are translated to the host language Java in case of TOM. Such extensions
involve quite a large implementation effort. The grammar of the host language
has to be extended and in many cases a separate static analysis phase has to be
developed along with finally a translator. The benefit is added expressive power,
combined with the general utility of Java.

The last category are DSLs which are not built on top of, or embedded in,
an existing general purpose language, but are independent DSLs. This can be
considered as a fully external DSL. In Mernik et.al. [62], these are called language
invention. This type of DSL is the main focus of this tutorial. The design effort
for this type of language is comparable to that for other forms of DSLs, see
Section 2.3, but the implementation effort is bigger due to the fact that the
language has to be built from scratch.

2.2 Effectiveness of Domain Specific Languages

Before continuing, it is important to summarize the advantages and drawbacks
of DSLs, independent of their category. The effort to design, implement, and
maintain a DSL is huge, even given the fact that they are “little”. Designing a
good DSL involves not only writing a syntax definition, but also the definition
of a proper semantics, tooling and eventually methodology and documentation.
The gain in investing this effort must exceed the costs. Note, however, that not
using a DSL also has its costs, especially in the longer run.

First, we enumerate the drawbacks of DSLs.

– The cost of a DSL implementation and the training of its users may be high.
– It may be difficult to identify the right scope of domain specific concepts and

to find a good balance between these concepts and general-purpose language
constructs. In other words: is the resulting language usable and effective?

– Domain specific languages offer solutions for a limited set of problems. They
are not generally applicable. In a few cases, a DSL evolves into a general
purpose language.

In contrast to these drawbacks, a number of obvious advantages can be identified.

– The possibility of expressing the solution in terms of domain concepts. This
may lead to higher productivity when developing software. Furthermore, the
models developed may offer the opportunity of use in a different setting, for
documentation purposes or verification purposes.

– Besides the gain in productivity, the reliability, maintainability, and porta-
bility may increase. Or, to put it differently, not using a DSL may lead to
software that is hard or impossible to maintain and port.

26 S. Andova et al.

– A DSL captures domain knowledge and thus leads to concise and in many
cases self-documenting specifications.

It is up to the reader to decide whether a DSL is an appropriate solution to his
or her problem.

2.3 Identification of Domain Concepts

As with software development in general [12,14], the first step when designing a
DSL is to capture the domain concepts, since without an understanding of the do-
main concepts it is impossible to design a DSL that will be practical and usable.
The domain concepts have to be captured in appropriate language constructs,
for instance in a mechanism to exchange messages between state machines. The
language constructs should be at the right abstraction level, they should not be
geared towards a specific platform or general purpose programming language.
Furthermore, they should have a proper specified semantics, both statically and
dynamically.

The identification of domain concepts is closely related to the field of require-
ments engineering. So, elicitation techniques used there can also be applied to
design a domain specific language, see traditional software engineering course
books on this topic [92]. However, before starting the elicitation phase, it is
important to identify the problem domain: “A problem domain is defined by
consensus, and its essence is the shared understanding of some community” [8].
In the design of a DSL for financial products [9], the world of financial transac-
tions has to be well defined and understood, for instance what is the notion of
a customer, bank account, interest period? Given the problem domain, the next
step is to identify the problem space, for instance the creation of new interest
products which may take too long or the software developed to implement the
interest products contains too many bugs. The next step is to identify the lan-
guage concepts. This can be done by studying the existing informal description
of the interest products and their implementations. From this it is, for instance,
possible to identify the relevant library components. This information can now
be used to identify and define the relevant DSL concepts [60]. This process is
clearly an iterative and continuing process. It may even be the case that during
the implementation phase of the language some steps have to be redone.

Capturing DSL concepts can be done in multiple ways depending on the
underlying implementation pattern [62]. The concepts can be implemented in a
library, as extension, embedding or as a complete new language. In the latter
case, more general purpose language constructs must be added, such as control
flow, procedural abstraction or modularity, of course depending on the need for
expressiveness.

2.4 Examples of Domain Specific Languages

It is impossible to give an exhaustive list of all domain specific language. In
1966, Landin [57] already predicted an explosion of programming languages.

MDE Basics with a DSL Focus 27

DSLs have contributed to the growth of languages considerably. Nevertheless it
makes sense to mention a few languages which can be seen as DSLs. HyperText
Markup Language (HTML) the language for developing web pages is an example
of a non-executable DSL. In the area of web pages there is whole range of DSLs. A
recent development is WebDSL [40], which is a DSL which captures the concepts
of designing web pages but shields of the underlying implementation details. SQL
is a very well known and popular language for relational database queries which
has evolved into a general purpose language PL/SQL [37]. YACC [47] is a tool,
but the corresponding grammar definition formalism is a non-executable DSL
for creating parsers. LEX [59] is the language for defining regular expressions
for specifying lexers. In this area SDF (Syntax Definition Language) [44] is a
DSL to describe grammars in a declarative and modular way. GraphViz [39] is a
software package used for graph layout and DOT is the corresponding language
to describe the graphs. BOX [23] is a small non-executable language to describe
the formatting of computer programs. LaTeX [56] is a language for formatting
texts.

We shall now study a small DSL in detail.

2.5 Simple Language of Communicating Objects

The Simple Language of Communicating Objects (SLCO) provides constructs for
specifying systems consisting of objects that operate in parallel and communi-
cate with each other. SLCO has been used to describe the software that controls
conveyor belts, even though there are no conveyor belt related concepts or con-
cepts like motors and sensor in the language. Instead, each of these concepts are
simply represented by objects that communicate over channels. In Section 3.2 we
will present the metamodels of SLCO, but in this section we describe the language
and motivate a number of the design decisions.

An SLCO model consists of a number of classes, objects, and channels, see
Listing 1.2. Objects are instances of classes and communicate with each other
via channels, which are either bidirectional or unidirectional, see Figure 9 for
the metamodel of the channels. SLCO offers three types of channels: synchronous
channels, asynchronous lossy channels, and asynchronous lossless channels. An
example of two objects connected by three channels is shown in Figure 1. The
objects p and q, which are instances of classes P and Q, can communicate over
channels p1 q1, q2 p2, and p3 q3. The arrows at the ends of the channels denote
the direction of communication. Synchronous channels are denoted by plain lines
(e.g. p1 q1), asynchronous lossless channels are denoted by dashed lines (e.g.
p3 q3), and asynchronous lossy channels are denoted by dotted lines (e.g. q2 p2).
A channel can only be used to send and receive signals with a certain signature,
indicated by a number of argument types listed between brackets after the name
of the channel. Channel p1 q1, for instance, can only be used to send and receive
signals with a boolean argument, and channel q2 p2 only allows signals without
any arguments.

A class describes the structure and behaviour of its instances, see Figure 6 for
the metamodel of classes. A class has ports and variables that define the structure

28 S. Andova et al.

Fig. 1. Objects, ports and channels in
SLCO

Fig. 2. Two SLCO state machines

of its instances, and state machines that describe their behaviour. Variables may
be initialized. If no initial value is specified, integer variables are initialized to 0,
boolean variables are initialized to true, and string variables are initialized to
the empty string. Ports are used to connect channels to objects. Figure 1 shows
that object p has ports P1 , P2 , and P3 , connecting it to channels p1 q1, q2 p2,
and p3 q3, and that object q has ports Q1 , Q2 , and Q3 , connecting it to the
same channels.

A state machine consists of variables, states, and transitions, see Figure 6
for the metamodel of state machines. SLCO allows for two special types of state:
initial states and final states. Each state machine has exactly one initial state,
and can contain any number of ordinary and final states. Figure 2 shows an
example of an SLCO model consisting of two state machines, whose initial states,
Initial, are indicated by a black dot-and-arrow, and whose final states, Final,
are indicated by an outgoing arrow to a circled black dot. As explained below, the
left state machine specifies the behaviour of object p and the right state machine
specifies the behaviour of object q, both already introduced in Figure 1.

A transition has a source and a target state, and a finite number of state-
ments. There are multiple types of statements. Expressions denote statements
that must evaluate to true to enable the transition from the source to the target
state to be taken. The expression n >= 2 that is part of the transition with the
source State and the final state as the target state in the state machine of p is
an example of such a statement. A transition with a delay statement is enabled
after a specified amount of time has passed since entering its source state. Note
that our running example does not have this type of statement. A transition
with a signal reception statement is enabled if a signal is received via the port
indicated by the statement. When a signal reception statement has a condition,
naturally, the condition must hold for the transition to be enabled. It is allow-
able for the condition to refer to arguments of the signal just being received.
Take for instance the transition in q from State to the final state, with signal
reception receive Stop(m | m < 2) from Q3. It is only taken if the value of the
argument sent with the signal Stop is smaller than 2. Additionally, another form
of conditional signal reception is offered. Expressions given as arguments of a

MDE Basics with a DSL Focus 29

signal reception specify that only signals whose argument values are equal to the
corresponding expressions are accepted. Thus, q in state Initial accepts only
signals whose argument equals true. SLCO also offers statements for assigning
values to variables and for sending signals over channels. The state machines in
Figure 2 specify the following communication between p and q, assuming that the
variable n is initialized to 0. The two objects first communicate synchronously
over channel p1 q1, after which q repeatedly sends signals to p over the lossy
channel q2 p2. As soon as p receives 2 of the signals sent by q, it sends a sig-
nal over channel p3 q3 and terminates. After receiving this signal, q terminates
as well.

Fig. 3. Parts of an SLCO model without syntactic sugar

The example in Figure 2 contains two transitions that both contain two state-
ments, whereas the metamodel in Figure 7 allows at most one statement per
transition. Although multiple statements per transition are not allowed accord-
ing to the metamodel, we consider models containing such transitions valid SLCO

models and regard these models as the syntactically sugared versions of equiva-
lent models that adhere to the stricter metamodel. The leftmost part of Figure 3
shows the unsugared version of one these transitions, that features an auxil-
iary intermediate state. The rightmost part of this figure shows that expressions
given as arguments of signal receptions can also be regarded as a form of syn-
tactic sugar. The conditional signal reception on the transition from Initial

to State in this figure is equivalent to the conditional signal reception on the
corresponding transition in Figure 2, assuming that variable b is an auxiliary
boolean variable.

In addition to the graphical concrete syntax shown above, SLCO has a textual
concrete syntax. Listing 1.1 shows a part of the textual equivalent of the model
described above.

3 Defining the Structure of a Domain Specific Language

In the rest of this tutorial we will concentrate on the design of DSLs based on
the invention pattern. We assume that the first step in the design of a new DSL,
the identification of the domain concepts, has been performed as described in
Section 2.3.

30 S. Andova et al.

����� M {
�������

P {
	�
������ �����
 n
��
�� P1 P2 P3
����� ��������

P {
������� Initial ����� State ����� Final
�
���������

Receive �
�� State �� State {
receive V(| n <= 1) �
�� P2;
n := n + 1 }

...
}

}
...
������� p:P q:Q
�������� p1_q1(Boolean) sync �
�� p.P1 �� q.Q1

...
}

Listing 1.1. Part of a textual SLCO model

The design and implementation of an effective DSL is more than just writing a
context-free grammar in Xtext [32] and a code generator for some back-end, such
as Java. The proper steps are the design of an abstract syntax, semantics and
concrete syntax. One can argue about the order of the steps. Kleppe [52] proposes
to design the concrete syntax after defining the abstract syntax. Whilst defining
the semantics it may turn out that the abstact syntax is not optimal and has to
be adapted. This may lead to a modification of the concrete syntax. However,
having a concrete syntax may facilitate experimentation and interaction with
the users of the language and provide usable feedback. It is obvious these steps
must be performed iteratively and continuously, leading to evolutionary design
of a DSL [4].

In this section we will explain why a proper abstract syntax is needed as the
basis for a DSL. We shall discuss the material on an abstract level and give
examples of metamodels in EMF [83], but this tutorial is not an introduction
into a specific technology or tool.

In Section 3.1 we will start with introducing the basic concepts of defining ab-
stract syntax. In Section 3.2 we will make this concrete in terms of metamodeling
based on EMF.

3.1 Abstract Syntax

The abstract syntax, signature or abstract data type of a language describes
the basic structure (skeleton) of a language. It can serve as the starting point
for defining a concrete syntax (both textual and graphical), semantics (static
and dynamic), and is the basis for tool development. It abstracts from specific
details on the concrete level, such as the keywords, priorities between operators,
associativities of binary operators, etc. In its basic form an abstract syntax def-
inition is a collection of constructors. Starting with the definition of a language

MDE Basics with a DSL Focus 31

in an abstract syntax notation has the advantage of having a concise overview
of the underlying structure of the language.

Unfortunately there is no ISO standard for defining abstract syntax. We will
use a signature-like notation to describe the abstract syntax of a language. A
signature can be defined as follows:

– A collection of constructors which define sorts and operators.
– A sort represents a nonempty set of terms.
– A term is the application of a k-ary operator to k terms of the appropriate

sort.
– A k-ary operator is a constructor function mapping k terms to a term.
– The argument of a k-ary operator may represent zero or more (*) or one or

more (+) terms of the same sort.
– A sort can be considered a nonterminal in the abstract syntax.

Listing 1.2 shows a part the abstract syntax of the SLCO language as a signature.

"Synchronous"() -> ChannelType
"AsynchronousLossless"() -> ChannelType
"AsynchronousLossy"() -> ChannelType

"Integer "() -> PrimitiveType
"Boolean "() -> PrimitiveType
"String "() -> PrimitiveType

"model"(Class*,Object*,Channel *) -> Model
"class"(Name ,Port*,StateMachine*,Variable *) -> Class
"object "(Name ,Class) -> Object
"channel "(Name ,ChannelType ,ArgumentType*) -> Channel
"port"(Name) -> Port
"statemachine"(Name ,Variable *,Vertex*,Transition*) -> StateMachine
"variable "(Name ,PrimitiveType) -> Variable
"argumenttype"(PrimitiveType) -> ArgumentType
"vertex "(Name ,Transition*,Transition*) -> Vertex
"transition"(Name ,Vertex ,Vertex) -> Transition
"transition"(Name ,Vertex ,Vertex,Statement) -> Transition

Listing 1.2. Signature specification of a part of the abstract syntax of SLCO

Given a signature definition it is possible to generate Application Program-
ming Interfaces (APIs). GOM [73] generates an API for accessing the underlying
abstract syntax when developing TOM specifications [63] and ApiGen [50,20]
generates, given a signature definition, a type API to access terms in the ATerm
libary [19].

3.2 Metamodeling

The next step is to represent the abstract syntax as a metamodel. A metamodel
describes the model elements that are available for developing a class of mod-
els as well as their attributes and interrelations. A model describes the elements

32 S. Andova et al.

Fig. 4. Four-layer metamodeling architecture

of a real-world object as well as their attributes and the way they interrelate.
Therefore, a metamodel can be considered as a model of a class of models [80],
or a model of a modeling language [55]. Since a metamodel is itself a model, the
concepts and relations that can be used to define them need to be described as
well. The metamodel used for this purpose is called a meta-metamodel. A meta-
metamodel is typically a reflexive metamodel. This means that it is expressed
using the concepts and relations it defines itself. This four-layer metamodeling
architecture [66] is schematically depicted in Figure 4.

EMF provides a metamodel (also referred to as Ecore) which is a general
model of models from which any model can be defined. It can be used to model
classes, attributes, relationships, data types, etc. Figure 5 (taken from [83]) shows
a simplified Ecore metamodel:

EClass models classes that
– are identified by a name,
– contain zero or more attributes, and
– contain zero or more references.

EAttribute models attributes that
– are identified by a name, and
– have a type.

EDataType represents basic types.
EReference models associations between classes and

– are identified by a name,
– have a type which must be an EClass, and
– a containment attribute indicating whether the EReference is used as

“whole-part” relation.

MDE Basics with a DSL Focus 33

Fig. 5. Simplified Ecore metamodel

In Section 2.5 the SLCO language has been described in great detail, we will now
only present the metamodels. Figure 6 shows the main metaclasses of the Ecore
metamodel of SLCO, which corresponds to the signature presented in Listing 1.2.
Figure 7 gives the details of statements. Figure 8 defines the expressions of SLCO
and Figure 9 shows the details of the channels.

4 Semantics

While syntax is concerned with the form of a valid model or program, semantics
is about its meaning. Kleppe [52] introduces the term mogram in order not
to make the distinction between a program and a model. We will consistently
use the term model, because a program is also a model. We shall consider two
different views on defining the semantics of a DSL. The static semantics of a
language defines the structural properties of valid models (Section 4.1). The
dynamic semantics is concerned with the execution and operation of models
(Section 4.2).

4.1 Static Semantics

Static semantics defines properties of models that can be determined without
considering either input or execution. Because of this there is always a debate
on the status of static semantics. Static semantics can be considered to be part
of syntax analysis, because the models need not be executed. We consider static
semantics to be a separate phase. We shall distinguish three separate aspects:

– identifier resolution;

– scope resolution; and

– type resolution.

In many languages these aspects are intertwined. If the language supports over-
loading, type resolution is needed when performing identifier resolution.

34 S. Andova et al.

Fig. 6. Main concepts of the SLCO metamodel

Fig. 7. Statements in the SLCO metamodel

MDE Basics with a DSL Focus 35

Fig. 8. Expressions in the SLCO metamodel

Fig. 9. Channels in the SLCO metamodel

Identifier Resolution. Identifiers are an important notion in (programming)
languages. They may represent for instance values, variables, functions, etc. In
order to be valid, in many (programming) languages an identifier has to be ex-
plicitly declared. In many cases the declaration of an identifier is accompanied
by a description of its type, for instance for a value or variable. If the identifier
represents a function, procedure or method, the declaration captures the opera-
tional behaviour in the body. Furthermore, the parameters (together with their
types) and the result parameter have to be specified. A declaration establishes
a binding of an identifier I to some entity X. An applied occurrence is an oc-
currence of I where X is made available through I. Note that if the language

36 S. Andova et al.

supports overloading, the same identifier is bound to two or more different bod-
ies where each body has discriminating parameters and/or result types, type
resolution is needed when resolving the binding.

Identifier resolution establishes so-called use-def relations. Every applied oc-
currence should correspond to exactly one binding occurrence. There are a few
(older) programming languages, for instance Basic and Fortran, where identi-
fiers were not explicitly defined, but the first usage of the identifier was actually
the definition. In dynamic languages, such as Python [89], there is no obligation
to define identifiers explicitly. This is makes programs concise and more error
prone.

Scope Resolution. The introduction of language constructs like functions or
modules leads to the notion of blocks. Blocks are syntactic constructs that delimit
the visibility of declarations. This is called scoping. The scope of a declaration is
the part of the model where the declaration is effective. Blocks and their scopes
may overlap.

Although for every applied occurrence there should be exactly one binding
occurrence, it is possible that an identifier may be defined in multiple blocks. In
the case of nested blocks, some outer block may contain a declaration of identifier
I. If the inner block contains a declaration of I, then this declaration hides the
declaration of I in the outer block.

There are a few (older) programming languages, for instance again Basic,
which do not offer blocks and thus have a single scope. This means that (re-
cursive) functions are unsupported language constructs. This leads to a very
restricted way of programming.

When performing identifier resolution we have to take scopes into considera-
tion.

Type Resolution. The main principles of identifier and scope resolution can
be explained in a few paragraphs but for type resolution or type checking this
is impossible. The definition of proper type check rules for a language depends
heavily on the expressive power of the language. If a language contains overload-
ing, polymorphism, inheritance, etc. the definition of a type checker is far from
trivial, see the book on type checking by Pierce [71] for an elaborate discussion
of type checking.

A type system is an important component of the static semantics of a lan-
guage. Language constructs, for instance expressions and functions, may produce
results and some cases these results respresent values. Types represent abstrac-
tions of these results. For instance, the evaluation of an expression may yield
the values true or false, the corresponding type is then boolean. Expressions
use operators to calculate the results and these operators are only valid for a re-
stricted set of types, in many cases only one type. The purpose of a type system
is to prevent illegal operations, like multiplication of strings by booleans, which
should result in a type error, disambiguation in case of (operator or function)
overloading. The process of assigning types is referred to as typing.

MDE Basics with a DSL Focus 37

Until recently not much work has been done on type checking of DSLs de-
veloped using EMF. Xtext offers a primitive mechanism to deal with identifier
resolution and OCL [67] is used to write simple constraints to do a basic form of
type checking. [11] and [22] describe approaches to tackle type checking of DSLs
in a more structured way. [26] uses attribute grammar JastAdd [33] to add the
semantics to metamodels.

Static Semantics of SLCO. A number of static semantic rules can be defined
for the SLCO language. Here are a few of the rules:

– Classes should have a unique name within a model.
– Objects should have a unique name within a model.
– Only classes that have been defined can be instantiated as objects.
– Variables should be declared before they can be used.
– Variables should have a unique name within a class.
– State machines should have a unique name within a class.
– The source and target state of a transition should exist.
– States should have a unique name within a state machine.
– Transitions should have a unique name within a state machine.
– The expressions should be type correct.

Listing 1.3 presents a simplified version for checking the uniques of class names
using a rewriting based specification formalism.

4.2 Dynamic Semantics

Defining a DSL by means of its abstract and concrete syntax allows the rapid
development of languages and some associated tools, such as editors. We have
already seen that static semantics is another important ingredient of a DSL def-
inition. Static semantics defines aspects such as the well-formedness and typing
of concrete models in order to make the DSL more usable and the development
of models more robust. However, none of these aspects of the DSL definition
help to understand the behaviour described by models nor help us to inspect
whether the behaviour specified is exactly as intended nor help us to create a
proper execution model.

Dynamic semantics (also known as execution semantics) covers these language
aspects: it defines the model of computation for the execution behaviour of
models. There are many ways of defining dynamic semantics, natural language
being one of them. In practice, the dynamic semantics of DSLs are implicitly
and informally defined through, either, a software constructor that generates
compilable source code, or by an engine/interpreter that directly processes DSL
models. In these cases, the quality of the design of a system, due to the lack
of a formal definition of the DSL semantics, is usually assessed by manually
studying and exploring the created models, and by testing the software before
actual delivery. Given the increasing complexity of current systems, this has
become an error-prone, time-consuming and costly process, which often results

38 S. Andova et al.

������ SLCO -typecheck

�������
�

"checkModel"(Model) -> {Error ","}*
"checkClasses"(Class*, TNPT) -> {Error ","}* # TNPT
"checkClass"(Name , TNPT) -> {Error ","}* # TNPT

�������
�

Table[[Name ,PrimitiveType]] -> TNPT

	�
������

"vChannel *" -> Channel *
"vClass *" -> Class*
"vError *"[12]* -> {Error ","}*
"vName" -> Name
"vObject *" -> Object*
"vPort*" -> Port*
"vStatemachine*" -> Statemachine*
"vTNPT "[123]* -> TNPT
"vVariable*" -> Variable *

���������

[cMdl1] checkModel(model(vClass*, vObject *, vChannel *)) =
���� vError* # vTNPT := checkClasses(vClass *, new -table)

[Clss1] checkClasses(, vTNPT) = # vTNPT
[Clss2] checkClasses(vClass vClass*, vTNPT1) = vError *1, vError *2 # vTNPT3

���� vError *1 # vTNPT2 := checkClasses(vClass*, vTNPT1),
vError *2 # vTNPT3 := checkCLass(vClass , vTNPT2)

[cCls1] checkCLass(class(vName , vPort*, vStatemachine*, vVariable*), vTNPT)=
error("Class redefined: " ++ vName) # vTNPT
���� lookup(vTNPT , vName) != not -in-table

[cCls2] checkCLass(class(vName , vPort*, vStatemachine*, vVariable*), vTNPT)=
insert(vName , vTNPT)
���� lookup(vTNPT , vName) == not -in-table

Listing 1.3. Part of specification of the static semantics of SLCO in a rewrite rule style

in software design faults being uncovered only after the system is fully developed
and installed.

However, as a result of a significant amount of academic research, different
approaches and techniques used to express dynamic semantics of languages in
a formal manner have been defined. Furthermore, supporting (semi-)automated
tools have been developed for model analysis, which can process models de-
scribed in a particular formal modeling language. The question of making these
formal frameworks available to domain engineers to be used for unambiguous
specification and analysis of domain models has been receiving much attention
in the last decade, from both the industrial and academic community. In order
to make the results useful for industry, it is essential to have precise under-
standing of the DSL semantics. The lack of well-understood DSL semantics may
easily lead to semantic ambiguities or a semantic mismatch between a DSL (the
developed models) and modeling languages of analysis tools.

There are various ways to define the dynamic semantics of a language formally.
The most common techniques are operational, translational, and denotational

MDE Basics with a DSL Focus 39

semantics. Operational semantics specifies the computation a language construct
induces when it is executed, thus describing not only the effect of the compu-
tation, but also how the computation is produced. Another technique to define
the dynamic semantics of a DSL is translational semantics which maps language
constructs from the initial domain to another language with an already defined
formal semantics. Thus, the semantics of the original DSL is defined by the
syntactic mapping. Denotational semantics is given by a mathematical function
which maps the syntax of the language to semantic values – denotations. In that
sense denotational semantics corresponds to translational semantics, where the
target language is a mathematical formalism.

Both, the operational and translational approach, have advantages and draw-
backs. A number of papers report on explicit definitions of the correspond-
ing operational semantics of individual or a family of DSLs and the way
they have been directly expressed in other existing environments (see for in-
stance [28,82,16,36,15,75,77]). In this way DSL models can be executed. How-
ever, operational semantics is not easy to implement in general, and so far there
is no semantic framework that supports an automated and efficient implemen-
tation of the operational language semantics allowing for direct DSL model ex-
ecution. Nevertheless, it is beneficial to have the operational semantics of the
DSL explicitly defined, first of all, because it enables rather easy detection of
possible inconsistencies between or redundancies of (the semantics of) language
constructs. Furthermore, the investment of defining the operational semantics of
a DSL eases the effort of anchoring the DSL to different target languages for dif-
ferent purposes. It allows also (due to its modularity) for low-effort adjustments
of the semantics needed in case of language evolution or language changes.

Translational semantics saves the effort of defining the semantics of the DSL
explicitly. This approach is very appropriate when the initial language and target
language are semantically closely correlated, or when semantic reasoning only for
particular instances of the DSL models is required. However, establishing syn-
tactic mappings between the two languages requires implicit semantic knowledge
of the DSL and an extensive in-depth knowledge of the (semantics of the) target
language. Therefore if, due to a lack of a single sufficiently expressive underlying
target framework, multiple frameworks are needed, this approach is obviously
not appropriate. Furthermore, as the mappings to different target languages and
platforms are defined only at the syntactic level, there is no guarantee that the
final translation models still adhere to the semantics of the original model. For
example, consider a mapping that transforms the source model to executable
code, whereas another mapping translates the source model to a model for for-
mal analysis. It is natural to ask whether the model that has been analysed is
the one that will be actually executed.

As a last technique to define dynamic semantics of languages we mention
Action Semantics [64]. Action semantics is based on operational semantics and
allows a modular way of defining the semantics of language constructs. The
actions defining the semantics of a language can be interpreted and there is an

40 S. Andova et al.

〈Class∗, Object∗, Channel∗, SOSMS, VOS, VOSMS, B〉 l−→OBJECTS 〈S′OSMS, V′OS, V′OSMS, B′〉
〈 model(Class∗ , Object∗, Channel∗), SOSMS, VOS, VOSMS, B 〉

l−→MODEL 〈 model(Class∗, Object∗, Channel∗), S′OSMS, V′OS, V′OSMS, B′ 〉

Fig. 10. Deduction rule for models

execution environment [18] for composing semantic definitions, which makes this
approach one of the exceptions. In [84] action semantics has been applied in the
context of model driven engineering and the semantics of a small DSL is defined.
This work is very preliminary.

Dynamic Semantics of SLCO. The semantics of SLCO has been formalized in
the form of Structural Operational Semantics (SOS) [72]. Using SOS rules, the
behaviour of an SLCO model is described in terms of the behaviour of its parts.
The behaviour of these parts is in turn specified in terms of the behaviour of their
parts, and so on. Figure 10 shows the SOS rule that describes the behaviour of
models. A state of a model is referred to as a configuration. A model configuration
is determined by: the current states of the state machines of the objects (function
SOSMS), the current values of the all local and global variables that appear in
the model (functions VOS and VOSMS), and the current contents of the buffers
associated to the asynchronous channels (function B). In the rule in Figure 10,
one configuration is represented by the functions SOSMS, VOS, VOSMS, and B, and
another by the functions S′OSMS, V

′
OS, V

′
OSMS, and B′ (which essentially represent

corresponding updates of the previous functions). The rule specifies that a model
can take a step labeled l from one configuration to another configuration, if the
list of classes (Class∗), objects (Object∗) and channels (Channel∗) that are part
of the model can take the same step labeled l. In short, the behaviour of a model
is defined in terms of the behaviour of its objects, classes, and channels.

Figure 11 shows that a list of classes, objects and channels can take a step
labeled bvn : = bc if one of the objects, object(oname, cname), is an instance of a
class, class(cname, Port∗, StateMachine∗, Variable∗), that can take the same
step labeled bvn : = bc. This is one of a number of rules that specify the behaviour
of lists of objects, classes, and channels in terms of their parts. The other rules
define communication between objects over the various types of channels.

Class∗ ≡ Class∗1 class(cname, Port∗, StateMachine∗, Variable∗) Class∗2 ,
Object∗ ≡ Object∗1 object(oname, cname) Object∗2 ,

〈 class(cname, Port∗, StateMachine∗ , Variable∗),
SOSMS(oname), VOS(oname), VOSMS(oname) 〉 bvn := bc−−−−−→CLASS 〈 SSMS, VO, VSMS 〉,

S′OSMS = SOSMS[SSMS/oname], V′OS = VOS[VO/oname], V′OSMS = VOSMS [VSMS/oname]

〈 Class∗, Object∗, Channel∗, SOSMS, VOS, VOSMS, B 〉
bvn := bc−−−−−→OBJECTS 〈 S′OSMS, V′OS, V′OSMS , B 〉

Fig. 11. Deduction rule for lists of objects concerning assignments

MDE Basics with a DSL Focus 41

StateMachine∗ ≡ StateMachine∗1 statemachine StateMachine∗2 ,

〈 statemachine, SSMS, VO, VSMS 〉 l−→SM 〈 S′SMS, V′O, V′SMS 〉
〈 class(cname, Port∗, StateMachine∗, Variable∗), SSMS, VO, VSMS 〉 l−→CLASS 〈S′SMS, V′O, V′SMS〉

Fig. 12. Deduction rule for classes

The behaviour of a class is defined in terms of the behaviour of the state
machines of that class. Figure 12 shows that a class can take a step labeled l

if one (statemachine) of the state machines (StateMachine) that are a part of
that class can take that same step.

Transition∗ ≡ Transition∗1 transition Transition∗2 ,

〈transition, SSMS(smname), VO, VSMS(smname)〉 l−→TRANS 〈vertex′, V′O, VSM〉,
S′SMS = SSMS[vertex

′/smname], V′SMS = VSMS[VSM/smname]

〈statemachine(smname, Variable∗, Vertex∗, Transition∗), SSMS, VO, VSMS〉
l−→SM 〈S′SMS, V′O, V′SMS〉

Fig. 13. Deduction rule for state machines

Figure 13 shows the SOS rule that specifies that the behaviour of a state
machine is deduced from the behaviour of the transitions, Transition∗, that
are a part of that state machine. If a transition transition from the list of
transitions can take a step labeled l, then the state machine can also take a step
labeled l.

〈AssignmentStatement, VO, VSM〉 l
=⇒ASSIGN 〈V′O, V′SM〉

〈 transition(tname, vertex, vertex′, AssignmentStatement), vertex, VO, VSM〉
l−→TRANS 〈vertex′, V′O, V′SM〉

Fig. 14. Deduction rule for transitions

Figure 14 shows that a transition from vertex to vertex′ leads to a step la-
beled l if the assignment AssignmentStatement leads to a step labeled l given

valuation functions VO and VSM. (Here 〈AssignmentStatement, VO, VSM〉 l
=⇒ASSIGN

〈V′O, V′SM〉 simply means an update of the valuation functions VO and VSM

42 S. Andova et al.

according to the assignment statement AssignmentStatement, which is also de-
fined by a set of rules.) These valuation functions are part of the configuration
mentioned above, and are deduced from the model valuation functions VOS and
VOSMS as follows. Given an object named on and a variable named vn, VOS(on)(vn)
represents the value of this variable. A valuation function VO that maps the global
variables of a particular object named on to their values is obtained by applying
the function VOS to the name on. The model valuation function VOSMS has a simi-
lar purpose and valuation functions for state machines such as VSM are obtained
similarly.

There are rules for transitions with (conditional) signal receptions, expres-
sions, and send signal statements similar to one described.

Fig. 15. Languages involved in the executable prototype of the semantics of SLCO

To test various alternative semantics for SLCO, we first implemented an ex-
ecutable prototype of the semantics before formally defining the semantics on
paper [7]. The prototype consists of a number of transformations that trans-
form SLCO models to Labeled Transition Systems (LTSs) [72] represented as Dot
graphs [39] via a number of intermediate languages. Figure 15 shows the lan-
guages and transformations that are involved in this prototype. The boxes in
Figure 15 represent (intermediate) languages. The names of existing languages
are shown in italics and the names of newly created languages are shown using
a plain typeface. The arrows in the figure represent transformations. The names
of transformations implemented by existing tools are again shown in italics and
the names of newly created transformations are shown using a plain typeface.
The transformation SLCO2CS transforms an SLCO model into a list of config-
urations and a list of steps, where each step is a pair: configuration and label.
The implementation of this transformation uses conditional rewrite rules, which
closely resemble the SOS rules described above and the notation used to spec-
ify the static semantics. This simplifies the process of formalizing the semantics
after the prototype reached a stable state.

Figure 16 shows the state space of the example model of Section 2.5. It is
obtained by transforming the SLCO model to an LTS represented as a directed

MDE Basics with a DSL Focus 43

sending Stop()

lost V()

lost V()

lost V()

lost V()

lost V()

lost V()

lost V() lost V()

lost V() lost V()

lost V()

sending V()

lost V()

sending Stop()

receiving Stop()

receiving Stop()

receiving V()sending V()Start(true)

sending V()sending V()

receiving V()

sending V() sending V()

Fig. 16. State space of the example model of Section 2.5

graph in Dot format. The behaviour represented by the LTS matches the informal
description of the behaviour in the final paragraph of Section 2.5.

5 Concrete Syntax

Having defined the abstract syntax of a DSL, the next step is the definition of a
concrete representation of the DSL. Although it is possible to define a concrete
graphical representation of a DSL using the Graphical Modeling Framework
(GMF), see for instance Chapter 4 of [41], we will restrict ourselves to the de-
velopment of textual based DSLs.

In Figure 4, the four-layered architecture of the metamodeling world is pre-
sented. For the grammar world, a similar four-layer architecture exists [2,54].

M3. (E)BNF grammar defines structure of the (E)BNF in (E)BNF.
M2. Programming language grammar defines the structure of programming lan-

guage in (E)BNF.
M1. Program describes the manipulation (algorithm) of data in the data layer.
M0. Data layer where the data we wish to manipulate resides.

Although both worlds seem to be far apart, given the development of Xtext,
EMFtext, etc., they are getting closer together [17].

The concrete textual syntax of a (programming or domain specific) language
can be described using regular expressions (for the lexical tokens of the language)
and context-free grammars (for the (tree) structure of the language). Scanning
and parsing have been extensively studied in relation to compilers and inter-
active development environments. Over the years a broad range of algorithms,
see [42], and tools [68] have been developed. The aforementioned tools, like LEX
[59] and YACC [47] are results of this research. The formalisms underlying LEX
and YACC have been considered as the standard for defining lexical and context-
free grammars. In that sense, they are DSLs themselves. Unfortunately there is
no ISO standard for defining context-free grammars; every tool comes with their
own formalism.

We will first present some context-free grammar terminology and discuss re-
cent developments with respect to modular grammar specification formalisms,
which is relevant because of the modularity of metamodels. Then ANTLR and

44 S. Andova et al.

EMF based derivations will be discussed and finally a context-free grammar for
SLCO will be presented.

5.1 (E)BNF

The fact that there is no standard notation for grammars makes it ackward
to present concepts and ideas. Formally, a context-free grammar is a 4-tuple
G = (N,Σ, P, S) where:

– N is the set of nonterminals;
– Σ is the set of terminals (disjoint from N);
– P is a subset of N × (N ∪ Σ)∗, where an element (A,α) ∈ P is called a

production, usually written as A ::= α;
– S ∈ N is the start symbol; and
– sets N , Σ, and P are finite.

A context-free grammar can be considered a simple rewrite system: αAβ ⇒ αγβ
if A ::= γ ∈ P where α, β, γ ∈ (N ∪Σ)∗, A ∈ N .

A full example of a context-free grammar is:

N = {E}
Σ = {+, *, (,), -, a}
S = E

P = {E ::= E + E, E ::= E * E, E ::= (E), E ::= - E, E ::= a}

When writing grammar definitions, the nonterminals and terminals are usually
implicitly defined and only the start symbol and the production rules are defined
explicitly. If the production rules have the form as presented in the example, the
grammar is in Backus Normal Form (BNF). If the grammar definition formalism
offers operators like *, +, and ?, the grammar is in Extended BNF (EBNF).
Xtext [32] and EMFtext use variations of EBNF.

The language L(G) generated/recognized by the context-free grammar G =
(N,Σ, P, S) is defined by L(G) = {w ∈ Σ∗|S ⇒∗ w}. A sentential form α is a
string of terminals and nonterminals which can be derived from S: S ⇒∗ α with
α ∈ (N ∪Σ)∗. A sentence in L(G) is a sentential form in which no nonterminals
occur.

There a number of aspects one has to take care of when writing context-free
grammars:

1. The grammar may be left recursive.
A grammar G is left recursive if one or more of the production rules has
the form A ::= Aα, so called direct left recursion. This means that after
one or more steps in a derivation an occurrence of A reduces again to an
occurrence of A without recognizing anything in the input sentence. Or there
is a collection of production rules, for instance A ::= Bα and B ::= Aβ, such

MDE Basics with a DSL Focus 45

that A ⇒∗ Aγ, so called indirect left recursion. It is relatively easy to remove
(in)direct left recursion from a grammar. However, removing left recursion
introduces new nonterminals and changes the structure of the grammar. In a
conventional top-down parser or recursive descent parser, left recursion leads
to non-termination. However, Frost et.al. [38] have developed a recursive
descent parser using parser combinators, that can deal with left recursion.
The GLL algorithm [79] can also handle it without modifying the grammar.

2. The grammar may be non-left factored.
A grammar G is non-left factored if one or more of the production rules
has at least 2 alternatives that derive strings with the same prefix that is
non-empty, for instance A ::= αβ1|αβ2| This case is relatively easy to
left factor, but again new nonterminals are introduced and the structure of
the grammar is changed. However, A ::= Xβ1|Y β2| . . ., where X ::= ′x′

and Y ::= ′x′, requires a First calculation; see [1] for details. In a top-down
parser or recursive descent parser, arbitrary look ahead may be needed to
decide which of these alternatives to choose.

3. The grammar may contain cycles.
A grammar G is cyclic if in one or more derivation steps A produces A with-
out recognizing any token from the input: A ⇒∗ A. This can be considered
a bug in the grammar specification. Both top-down (LL) and bottom-up
((LA)LR) parsers will have trouble with grammars containing cycles; both
types of parsers will not terminate.

4. The grammar may be ambiguous.
A grammar G is ambigous if a word w ∈ L(G) has two or more derivations.
This may happen if there are production rules of the form E ::= E O E

without an explicit definition of priorities between binary operators or asso-
ciativity of the binary operators. The sentence a + a * a can be recognized
in two different ways. If a language is inherently ambiguous, no refactorings
of production rules will help to solve the problem.

5.2 SDF

The Syntax Definition Formalism (SDF) [44,91] is a modular declarative gram-
mar definition formalism. SDF allows modularization of context-free grammars
in order to enable reuse and clarity. Associativity and priorities of binary opera-
tors can be defined in a declarative way. The definition of lexical and context-free
syntax rules are fully integrated which contributes also to the declarative way of
writing grammar definitions. Restricted classes of context-free grammars, such
as the classes of LL and LR grammars, are not closed under union, only the
largest class of general context-free grammars is closed under union. The un-
derlying implementation of SDF is a generalized LR parsing algorithm (S)GLR
[74,90] which can handle this general class. General context-free grammars may
be ambiguous; SDF offers multiple various mechanisms to deal with ambiguities
[21]. Johnstone et.al. [48] describes the fundamentals of modularity of grammar

46 S. Andova et al.

formalisms. Spoofax/SDF [51] is an Eclipse plugin for developing SDF modular
grammar definitions. Rascal [53] offers also a modular grammar definition for-
malism, it can be considered as a follow up of SDF, Rascal is available as an
Eclipse plugin as well.

5.3 ANTLR, Xtext and EMFtext

Recent developments (over the last 10 years) have resulted in a renewed inter-
ested in parsing technology. ANTLR [69], GLR [86,74], SGLR [90] and GLL [79]
are recent implementations of newly developed algorithms.

ANTLR. ANTLR is the basis of the popular Xtext [32] and EMFtext[88] im-
plementations available for EMF. ANTLR is very popular because of its avail-
ability on multiple platforms. ANTLR is based on LL(*) parsing [70] and this is
in many cases a serious drawback since it prohibits left recursion in the grammar.
ANTLR, in contrast to SDF, does not support grammar modularity.

Xtext. Xtext [32] is popular for defining the concrete syntax of DSLs [34].
It is available as an Eclipse plugin and is well integrated with EMF. Given a
context-free syntax definition, a metamodel can be derived automatically. The
nonterminal in the left hand side of a production rule is transformed into an
object of that type, and nonterminals in the right hand side are transformed into
attributes of this object. You can enforce the creation of a class of a specific type
using the returns action to create of an object of that specific type. In addition,
Xtext offers a mechanism to create cross references. A link can be automatically
established to an earlier created object. Actually, this feature breaks the context-
freeness of Xtext grammars.

A number of common lexemes are predefined, such as ID, INT, STRING, WS,
ML COMMENT, SL COMMENT, and ANY OTHER.

Xtext is based on ANTLR, so it has the same characteristics. Xtext is very
suited to define the concrete syntax of new DSLs, however for the definition of
languages for which an abstract or concrete syntax already exists, Xtext is more
tedious.

Grammar rules for Model and CLass of the Xtext specification of SLCO is given
in Listing 1.4. Both grammar rules show the use of the Xtext +:= operator to
concatenate lists. Listing 1.5 shows the grammar rules for Expression after
removing left recursion. Note, that the binary operators have all become right
associative and have the same priority. This listing shows the use of the Xtext
enum construct when defining Operator. In the grammar rules for
TerminalExpression and BracketExpression, the Xtext returns operator is
used.

EMFtext. EMFtext [88] is tightly integrated with EMF. It enables the def-
inition of a textual concrete syntax for Ecore based metamodels. Similarly to

MDE Basics with a DSL Focus 47

Model :
’model ’ name = ID ’{’

(’classes ’
(classes += Class)*

)?
(’objects ’

(objects += Object)*
)?
(’channels ’

(channels += Channel)*
)?

’}’;

Class :
name = ID ’{’

(’variables ’
(variables += Variable)*

)?
(’ports ’

(ports += Port)*
)?
(’state machines ’

(stateMachines += StateMachine)*
)?

’}’;

Listing 1.4. The Model and Class definition in Xtext

Xtext, it uses ANTLR as its underlying parsing technology. It differs from Xtext
in that it assumes an existing set of metamodels for which a concrete syntax
has to be defined. EMFtext offers some sort of modularity; it offers an import
mechanisms for various metamodels and modularization of the concrete syntax
specifications.

EMFtext offers predefined lexical tokens, as well as the option to define the
lexical syntax yourself.

EMFtext offers a special annotation (@Operator) to define the operator prece-
dence and associativity of unary and binary operators. This annotation can be
used when defining the expression syntax which would otherwise be defined using
left recursive rules.

6 Outlook

6.1 Development and Usage of SLCO

The creation of the SLCO language has been, to some extent, motivated by the
Falcon project [35,43]. The overall challenge of the project was developing a
fully integrated and automated logistics warehouse of the future. One part of
the project activities has been centered on investigating the applicability of
MDE techniques for modeling of composite system components and for their
proper integration with advanced hardware components (like grippers) [6]. The
underlying concept was that:

48 S. Andova et al.

Expression :
TerminalExpression ({ BinaryOperatorExpression.operand1 = current }

operator = Operator operand2 = Expression)?;

TerminalExpression returns Expression :
BooleanConstantExpression |
IntegerConstantExpression |
StringConstantExpression |
VariableExpression |
BracketExpression;

enum Operator :
atLeast = ’>=’ | atMost = ’<=’ | add = ’+’ | and = ’&&’ |
or = ’||’ | equals = ’==’ | differs = ’!=’ | subtract = ’-’;

BooleanConstantExpression :
value = BOOLEAN ;

IntegerConstantExpression :
value = INT;

StringConstantExpression :
value = STRING;

VariableReference :
name = ID;

VariableExpression :
variable =VariableReference;

BracketExpression returns Expression:
"(" Expression ")";

Listing 1.5. The Xtext specification of SLCO Expressions

– Warehouse control software is usually a collection of interacting components,
which have the same (or very similar) functionality.

– All components’ activities are triggered by the reception of messages/signals
from other components.

– All system components have the same interfaces.
– The overall system behaviour is determined by the communication of the

system components.

Having these aspects in mind as the main guidelines and taking a rather ab-
stract and simplified view at the warehouse software control design issue, SLCO
has been developed to describe the software that controls conveyor belts. In or-
der to do simple experiments we have built a simple conveyor belt system using
Lego Mindstorms [58]. By shifting the problem domain towards the communi-
cation between components, we could abstract even further away from conveyor
belt related concepts and concepts like motors and sensors. Besides develop-
ing a language, the driving idea was to develop an environment which, among
other things, allows automated generation of various refined models for different
purposes from a single abstract SLCO model:

– automated generation of models for model (simulation) analysis and
– variants of executable code for different platforms.

MDE Basics with a DSL Focus 49

Before we go in some more detail on the SLCO development process, we stress
once again that these two aspects are very important for a DSL to be prop-
erly used in practice. First, using one single (abstract) DSL source model, from
which various (refined) models are generated, guarantees that the requirements
modeled in the original model and validated by simulation or checked by formal
analysis are also preserved in the code to be executed, under the assumption
of the correctness of the used model transformations. Second, the DSL mod-
eling should be independent from the platform on which the system is going
to be implemented. In the simple case of SLCO and control software for Lego
Mindstorms conveyor belts, an abstract SLCO model capturing communication
between controllers, should not contain details about the number of controllers
in the implemented system. These details are very likely irrelevant also for sim-
ulation or verification of the abstract model, and they can easily increase the
model complexity, and thus make the analysis more difficult. Therefore, such
platform details should be added at some later stage, when the control software
execution code is generated: starting from a single abstract model, various well-
defined model transformations shall generate platform-dependent code for the
various platforms used.

Simultaneously with the development of the SLCO, a number of model
transformations to other formalisms has been defined and implemented: one
for simulation, one for execution, and one for formal verification. These model
transformations were developed consecutively. First, a model transformation was
implemented to enable simulation of the models using POOSL [85]. In this way,
models developed using an intuitive, graphical syntax can be simulated without
the need for modelers to learn the syntax and semantics of a formalism for sim-
ulation. Second, a model transformation was implemented to generate NQC [10]
models for execution on the Lego Mindstorms platform [58]. Executing the code
generated from a model revealed bugs in the model that originated from un-
forseen interleavings of concurrent objects. These bugs were not encountered
during simulation. To detect these kinds of problems, a third model transfor-
mation was implemented to the Promela formalism for formal verification using
the model checker SPIN [45]. All three of the aforementioned formalisms have
semantic properties that are different from the semantic properties of SLCO. To
enable model transformations from SLCO to each of these platforms, several se-
mantic gaps needed to be bridged [5].

Each of these gaps is bridged by one or more endogenous model transforma-
tions that transform a given SLCO model to different but equivalent models, also
specified in SLCO. The resulting model is semantically better aligned with the
target platform. Endogenous model transformations are model transformations
where the input and output model adhere to the same metamodel [61].

To be able to use endogenous transformations for this purpose, we needed
to extend SLCO with constructs to specify systems on a lower level of abstrac-
tion too. In other words, the transformations add implementation details to the
original SLCO model, resulting in a refined SLCO model that is closer to one
of the target formalisms. This approach has as advantage that the exogenous

50 S. Andova et al.

Fig. 17. Sequences of fine-grained model transformations for three target formalisms

transformations to the different platforms are simplified to purely syntactic
transformations. Exogenous model transformations are model transformations
where the input and output model adhere to the different metamodels [61].

Figure 17 depicts a number of composed model transformations that trans-
form an SLCOmodel to the three target formalisms. The arrows inside the dashed
shape depict endogenous model transformations that transform SLCOmodels into
more refined SLCO models. The arrows across the border of the dashed shape de-
pict exogenous model transformations. Because the semantic gaps between SLCO

and the target formalisms are bridged completely by the endogenous model
transformations, these exogenous transformations are straightforward transla-
tions of SLCO constructs into equivalent constructs in the target formalisms.

Using the prototype semantics we have been able to inspect the relation be-
tween original and transformed SLCO models, for a number of model instances.
For each of the endogenous transformations, we conjectured that applying such
a transformation leads to a model with observationally equivalent behaviour.
Although experiments supported the established conjecture for a given num-
ber of input models, a more generic approach has been required to establish a
relation between an arbitrary input and the output models of an SLCO model
transformation.

For this purpose, we needed a general formal framework for the SLCO language
allowing us to reason about and to compare model behaviours. For this purpose,
we used the SOS definition of SLCO semantics. It generates a labeled transition
system (LTS) representation of the dynamics of an SLCO model. In this way,
the relation between SLCO models boils down to establishing an appropriate
(behavioural) equivalence relation between LTSs.

Here, additional benefits of fine-grained transformations (see [3]) are evident,
since they allow for rather straightforward proofs. For the constraints that were
required on the input models for some of the transformations, which we detected
earlier during our experimental work, it can now be formally shown that these are
necessary for the correctness of the transformations as well. Thus, we formally
proved that the sequences of transformations used to generate code are well
composed.

6.2 How to Get Started

One way to develop experience in model driven software engineering is to dive in
and apply it to your own problem domain. Other ways are to explore

MDE Basics with a DSL Focus 51

examples and case studies, such as SLCO, or to do your own case studies on
familiar domains. We briefly describe a few of such domains here. The Eclipse
Modelling Framework can be downloaded for free, and provides all the tools you
need to get started.

Puzzles and games make for interesting case studies, since their domains are
small and well defined, and their semantics are often not trivial but still well
contained. More specifically, the reader can try to model sliding block puzzles,
like Rush Hour [95]. For Rush Hour, the metamodel (abstract syntax) will define
the puzzle elements, in particular, the board, the various types of cars and trucks,
and how they can be positioned on the board, without overlapping. A concrete
syntax provides a language in which one can express specific instances of the
Rush Hour puzzle. The dynamic (behavioural) semantics defines the concept
of a solution, in particular, the allowed moves and the puzzle’s objective, viz.
‘liberating’ the red car. Finally, model transformations can be used to generate
code to visualize and interactively simulate Rush Hour puzzles, or to generate
input for a tool (such as a state space explorer) to solve these puzzles. A bigger
challenge is to generalise the DSL so as to cover a larger range of sliding block
puzzles.

In [60], the domain of traffic light control is used as a case study in DSL
design. The main concepts to be modelled in the abstract syntax are: time,
traffic participants, junctions consisting of multiple, possibly intersecting, traffic
flows, traffic lights, and sensors. The dynamic semantics concerns state changes
in the traffic flows (as detected by sensors) and in the traffic lights, and the
notions of safety and fairness. Of course, one can start with simplified situations
first, e.g., two intersecting traffic flows with a sensor for one flow.

An extensive modelling effort for the railway domain is presented in [13,87].
Again, one can start small, e.g., with railway infrastructure, consisting of rail-
way lines and stations, where railway lines are built from units such as linear
segments, switches, simple crossovers, and switchable crossovers. Later, one can
add light signals and secured railroad crossings. The DSL can describe specific
railway nets. By adding dynamic semantics, one can address the configuration
of routes, by appropriate switch and crossover settings. The models can be used
to generate code for animation, or to generate input for analysis tools.

Finally, elevator control is an accessible domain. The metamodel defines con-
cepts such as passengers, elevator shafts, elevator cages, floors, doors (in the
cage and on the floors), request buttons with controllable lights, and optionally
sensors. The elevator control DSL can describe specific elevator systems. The
dynamic semantics concerns the movement of passengers, doors, and cages, and
the making and handling of passenger requests. The models can be used in ways
similar to those for railway nets.

6.3 Future Developments

Model driven software engineering is a promising development with the potential
to raise software development to a higher level and to disclose formal methods
in disguise to the (embedded) software industry. The formalization of static and

52 S. Andova et al.

dynamic semantics of DSLs is a must, especially if proofs of correctness are
required.

The fact that Eclipse is used as the default implementation platform has led
and will lead to bottom-up standardization of formalisms for defining metamod-
els and model transformations. Xtext and EMFtext are promising tools, but
more powerful and declarative grammar formalisms in the context of EMF are
still needed. Also, metamodel refactoring with model co-evolution and (meta)-
model modularity need better support for large-scale industrial application.
Furthermore, a boost for the development of more standardized formalisms to
describe static and dynamic semantics is still needed. Some (promising) initial
work is done, but more work is needed.

There are some risks; the Eclipse framework may become too heavy and trans-
form into a technological “Tower of Babel”. Metamodels, concrete grammars,
model transformations, etc. have become mature software artifacts that have to
be versioned, maintained and analyzed. Some preliminary work in this area has
been performed and will be presented at SFM-2012, but more research needs
still to be performed.

The development of DSLs may become easier thanks to better tool support,
but the intellectual challenge will remain. The tutorial “DSL Design for Dum-
mies” is still to be written.

Acknowledgment. We would like to thank Arjan van der Meer for proof read-
ing the section on static semantics. We would to thank Adrian Johnstone and
Elizabeth Scott of Royal Holloway University London for reviewing this tutorial
several times. The second author was on sabbatical in their group and wrote
this tutorial during this period and had very fruitful discussions on the various
topics addressed in this tutorial.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: principles, techniques, and tools.
Addison-Wesley Longman Publishing Co., Boston (1986)

2. Alanen, M., Porres, I.: A Relation between Context-Free Grammars and Meta
Object Facility Metamodels. Technical Report 606, TUCS (2004)

3. van Amstel, M.F., van den Brand, M.G.J., Engelen, L.: Using a DSL and Fine-
Grained Model Transformations to Explore the Boundaries of Model Verification.
In: Proc. ICSTW 2011, pp. 63–66. IEEE Computer Society (2011)

4. van Amstel, M.F., van den Brand, M.G.J., Engelen, L.J.P.: An Exercise in Iterative
Domain-Specific Language Design. In: Proceedings of the Joint ERCIM Workshop
on Software Evolution (EVOL) and International Workshop on Principles of Soft-
ware Evolution (IWPSE), Antwerp, Belgium, pp. 48–57. ACM Press (September
2010)

5. van Amstel, M.F., van den Brand, M.G.J., Protić, Z., Verhoeff, T.: Transforming
Process Algebra Models into UML State Machines: Bridging a Semantic Gap? In:
Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
61–75. Springer, Heidelberg (2008)

MDE Basics with a DSL Focus 53

6. van Amstel, M.F., van den Brand, M.G.J., Protić, Z., Verhoeff, T.: Model-driven
software engineering. In: Hamberg, R., Verriet, J. (eds.) Automation in Warehouse
Development, pp. 45–58. Springer, London (2011)

7. Andova, S., van den Brand, M.G.J., Engelen, L.: Prototyping the Semantics of a
DSL using ASF+SDF: Link to Formal Verification of DSL Models. In: Proceed-
ings of the Second International Workshop on Algebraic Methods in Model-based
Software Engineering, AMMSE 2011 (2011)

8. Arango, G.: Domain analysis: from art form to engineering discipline. SIGSOFT
Softw. Eng. Notes 14, 152–159 (1989)

9. Arnold, B.R.T., van Deursen, A., Res, M.: An algebraic specification of a lan-
guage for describing financial products. In: Wirsing, M. (ed.) ICSE-17 Workshop
on Formal Methods Application in Software Engineering, pp. 6–13. IEEE (April
1995)

10. Baum, D.: NQC Programmer’s Guide (2003)
11. Bettini, L.: A DSL for writing type systems for Xtext languages. In: Proceedings

of the 9th International Conference on Principles and Practice of Programming in
Java, PPPJ 2011, pp. 31–40. ACM, New York (2011)

12. Bjørner, D.: Rôle of Domain Engineering in Software Development—Why Current
Requirements Engineering Is Flawed ! In: Pnueli, A., Virbitskaite, I., Voronkov, A.
(eds.) PSI 2009. LNCS, vol. 5947, pp. 2–34. Springer, Heidelberg (2010)

13. Bjørner, D.: Train: The Railway Domain. In: Jacquart, R. (ed.) Building the In-
formation Society. IFIP, vol. 156, pp. 607–611. Springer, Boston (2004)

14. Bjørner, D.: Domain Engineering. In: Boca, P., Bowen, J.P., Siddiqi, J. (eds.) For-
mal Methods: State of the Art and New Directions, pp. 1–41. Springer, London
(2010), doi:10.1007/978-1-84882-736-3 1

15. Bodeveix, J.-P., Filali, M., Lawall, J., Muller, G.: Formal Methods Meet Domain
Specific Languages. In: Romijn, J., Smith, G., van de Pol, J. (eds.) IFM 2005.
LNCS, vol. 3771, pp. 187–206. Springer, Heidelberg (2005)

16. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V., Noll, T., Roveri, M.: Safety,
Dependability and Performance Analysis of Extended AADL Models. Comput.
J. 54(5), 754–775 (2011)

17. van den Brand, M.G.J.: Model-Driven Engineering Meets Generic Language Tech-
nology. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS,
vol. 5452, pp. 8–15. Springer, Heidelberg (2009)

18. van den Brand, M.G.J., Iversen, J., Mosses, P.D.: An Action Environment. Science
of Computer Programming 61(3), 245–264 (2006)

19. van den Brand, M.G.J., de Jong, H.A., Klint, P., Olivier, P.A.: Efficient annotated
terms. Software: Practice & Experience 30(3), 259–291 (2000)

20. van den Brand, M.G.J., Moreau, P.E., Vinju, J.J.: A generator of efficient strongly
typed abstract syntax trees in Java. IEE Proceedings Software 152(2), 70–78 (2005)

21. den van Brand, M.G.J., Scheerder, J., Vinju, J.J., Visser, E.: Disambiguation Fil-
ters for Scannerless Generalized LR Parsers. In: CC 2002. LNCS, vol. 2304, pp.
143–158. Springer, Heidelberg (2002)

22. van den Brand, M.G.J., van der Meer, A.P., Serebrenik, A., Hofkamp, A.T.: For-
mally specified type checkers for domain specific languages: experience report. In:
Proceedings of the Tenth Workshop on Language Descriptions, Tools and Appli-
cations, LDTA 2010, pp. 12:1–12:7. ACM, New York (2010)

23. van den Brand, M.G.J., Visser, E.: Generation of formatters for context-free lan-
guages. ACM Transactions on Software Engineering and Methodology 5(1), 1–41
(1996)

54 S. Andova et al.

24. Brooks Jr., F.P.: No silver bullet essence and accidents of software engineering.
Computer 20, 10–19 (1987)

25. Budinsky, F., Brodsky, S.A., Merks, E.: Eclipse Modeling Framework. Pearson
Education (2003)

26. Bürger, C., Karol, S., Wende, C.: Applying attribute grammars for metamodel se-
mantics. In: Proceedings of the International Workshop on Formalization of Mod-
eling Languages, FML 2010, pp. 1:1–1:5. ACM, New York (2010)

27. Campbell-Kelly, M.: From airline reservations to Sonic the Hedgehog: a history of
the software industry. History of computing. MIT Press (2003)

28. Combemale, B., Crégut, X., Garoche, P.-L., Thirioux, X.: Essay on semantics def-
inition in MDE - an instrumented approach for model verification. JSW 4(9),
943–958 (2009)

29. van Deursen, A., Klint, P.: Little languages: little maintenance. Journal of Software
Maintenance 10, 75–92 (1998)

30. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. SIGPLAN Not. 35, 26–36 (2000)

31. Dijkstra, E.W.: Letters to the editor: go to statement considered harmful. Commun.
ACM 11, 147–148 (1968)

32. Eclipse. Xtext (2012), http://www.eclipse.org/Xtext (accessed February 20,
2012)

33. Ekman, T., Hedin, G.: The JastAdd extensible Java compiler. ACM SIGPLAN
Notices 42(10), 1–18 (2007)

34. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: Proceedings of the ACM International Conference Companion on
Object Oriented Programming Systems Languages and Applications Companion,
SPLASH 2010, pp. 307–309. ACM, New York (2010)

35. FALCON. Falcon project – “System-of-systems” performance and reliability in
logistics (2012),
http://www.esi.nl/research/applied-research/

current-projects/falcon/index.dot (accessed February 21, 2012)
36. Farail, P., Gaufillet, P., Canals, A., Camus, C.L., Sciamma, D., Michel, P., Crégut,

X., Pantel, M.: The TOPCASED project: a Toolkit in OPen source for Critical
Aeronautic SystEms Design. In: Embedded Real Time Software – ERTS 2006,
SIA, SEE, AAAF (2006)

37. Feuerstein, S., Pribyl, B.: Oracle PL/SQL Programming, 4th edn. O’Reilly Media,
Inc. (2005)

38. Frost, R.A., Hafiz, R., Callaghan, P.: Parser Combinators for Ambiguous Left-
Recursive Grammars. In: Hudak, P., Warren, D.S. (eds.) PADL 2008. LNCS,
vol. 4902, pp. 167–181. Springer, Heidelberg (2008)

39. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Software: Practice & Experience 30(11), 1203–1233
(2000)

40. Groenewegen, D.M., Hemel, Z., Kats, L.C.L., Visser, E.: WebDSL: A domain-
specific language for dynamic web applications. In: Mielke, N., Zimmermann, O.
(eds.) Companion to the 23rd ACM SIGPLAN Conference on Object-Oriented
Programing, Systems, Languages, and Applications (OOPSLA 2008), pp. 779–780.
ACM, New York (2008) (poster)

41. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit, 1st edn. Addison-Wesley Professional (2009)

42. Grune, D.: Parsing Techniques: A Practical Guide, 2nd edn. Springer Publishing
Company, Incorporated (2010)

http://www.eclipse.org/Xtext
http://www.esi.nl/research/applied-research/current-projects/falcon/index.dot
http://www.esi.nl/research/applied-research/current-projects/falcon/index.dot

MDE Basics with a DSL Focus 55

43. Hamberg, R., Verriet, J.: Automation in Warehouse Development. Springer (2011)
44. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The Syntax Definition Formal-

ism SDF — reference manual. ACM SIGPLAN Notices 24, 43–75 (1989)
45. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley (2003)
46. ISO. ISO/IEC 19502:2005 information technology – Meta Object Facility (MOF)

(2005)
47. Johnson, S.C.: YACC—yet another compiler-compiler. Technical Report CS-32,

AT & T Bell Laboratories, Murray Hill, N.J. (1975)
48. Johnstone, A., Scott, E., van den Brand, M.G.J.: LDT: a language definition tech-

nique. In: Proceedings of the Eleventh Workshop on Language Descriptions, Tools
and Applications, LDTA 2011, pp. 9:1–9:8. ACM, New York (2011)

49. Jones, S.P. (ed.): Haskell 98 Language and Libraries: The Revised Report (Septem-
ber 2002), http://haskell.org/

50. de Jong, H.A., Olivier, P.A.: Generation of abstract programming interfaces from
syntax definitions. Journal of Logic and Algebraic Programming 59(1-2), 35–61
(2004)

51. Kats, L.C., Visser, E.: The spoofax language workbench: rules for declarative spec-
ification of languages and ides. SIGPLAN Not. 45, 444–463 (2010)

52. Kleppe, A.: Software Language Engineering: Creating Domain-specific Languages
Using Metamodels. Addison-Wesley (2009)

53. Klint, P., van der Storm, T., Vinju, J.: EASY Meta-programming with Rascal. In:
Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS,
vol. 6491, pp. 222–289. Springer, Heidelberg (2011)

54. Kunert, A.: Semi-automatic generation of metamodels and models from grammars
and programs. Electron. Notes Theor. Comput. Sci. 211, 111–119 (2008)

55. Kurtev, I.: Adaptability of Model Transformations. PhD thesis, University of
Twente, Enschede, The Netherlands (2005)

56. Lamport, L.: Latex: a document preparation system. Addison-Wesley Longman
Publishing Co., Inc., Boston (1986)

57. Landin, P.J.: The next 700 programming languages. Commun. ACM 9, 157–166
(1966)

58. LEGO. Lego Mindstorms (2012),
http://www.lego.com/eng/education/mindstorms/ (accessed February 21, 2012)

59. Lesk, M.E., Schmidt, E.: Lex–a lexical analyzer generator, pp. 375–387. W.B. Saun-
ders Company, Philadelphia (1990)

60. Mauw, S., Wiersma, W., Willemse, T.: Language-driven system design. Interna-
tional Journal of Software Engineering and Knowledge Engineering 14(6), 625–664
(2002)

61. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electron. Notes
Theor. Comput. Sci. 152, 125–142 (2006)

62. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys 37(4), 316–344 (2005)

63. Moreau, P.-E., Ringeissen, C., Vittek, M.: A Pattern Matching Compiler for Mul-
tiple Target Languages. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 61–76.
Springer, Heidelberg (2003)

64. Mosses, P.D.: Action semantics. Cambridge University Press, New York (1992)
65. OMG. Unified Modeling Language specification, version 1.3 (2001),

http://www.omg.org/spec/UML/1.3/PDF/index.htm (accessed February 21, 2012)
66. OMG. Meta Object Facility specification. Technical Report 2002-04-03, Object

Management Group (2004)

http://haskell.org/
http://www.lego.com/eng/education/mindstorms/
http://www.omg.org/spec/UML/1.3/PDF/index.htm

56 S. Andova et al.

67. OMG. OCL (2012),
http://en.wikipedia.org/wiki/Object_Constraint_Language

(accessed February 22, 2012)

68. Open Directory Project. Links for lexer and parser generators,
http://www.dmoz.org/Computers/Programming/

Compilers/Lexer and Parser Generators/ (accessed on February 22, 2012)

69. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Bookshelf (2007)

70. Parr, T., Fisher, K.: LL(*): the foundation of the ANTLR parser generator. SIG-
PLAN Not. 46, 425–436 (2011)

71. Pierce, B.C.: Types and programming languages. MIT Press, Cambridge (2002)

72. Plotkin, G.: A Structual Approach to Operational Semantics. Journal of Logic and
Algebraic Programming (2004)

73. Reilles, A.: Canonical Abstract Syntax Trees. In: 6th International Workshop on
Rewriting Logic and Applications, WRLA 2006, Vienna, Autriche. Carolyn Talcott
and Grit Denker (2006)

74. Rekers, J.: Parser Generation for Interactive Environments. PhD thesis, University
of Amsterdam, Amsterdam, The Netherlands (January 1992)

75. Rivera, J., Durán, F., Vallecillo, A.: Formal specification and analysis of domain
specific models using Maude. Simulation 85(11-12), 778–792 (2009)

76. Rumbaugh, J., Jacobson, I., Booch, G. (eds.): The Unified Modeling Language
reference manual. Addison-Wesley Longman Ltd., Essex (1999)

77. Rusu, V., Lucanu, D.: A K-Based Formal Framework for Domain-Specific Mod-
elling Languages. In: Proc. of 2nd International Conference on Formal Verification
of Object-Oriented Systems (FoVeOOS 2011), Torino, Italy, pp. 306–323. Springer
(2011)

78. Scheidgen, M.: CMOF-model semantics and language mapping for MOF 2.0 imple-
mentations. In: Proceedings of the Fourth Workshop on Model-Based Development
of Computer-Based Systems and Third International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software, pp. 84–93. IEEE Computer
Society, Washington, DC (2006)

79. Scott, E., Johnstone, A.: GLL Parsing. Electronic Notes in Theoretical Computer
Science 253(7), 177–189 (2010)

80. Seidewitz, E.: What Models Mean. IEEE Software 20(5), 26–32 (2003)

81. Selic, B.: A systematic approach to domain-specific language design using uml. In:
IEEE International Symposium on Object-Oriented Real-Time Distributed Com-
puting, pp. 2–9 (2007)

82. Stappers, F.P.M., Weber, S., Reniers, M.A., Andova, S., Nagy, I.: Formalizing a
Domain Specific Language Using SOS: An Industrial Case Study. In: Aßmann, U.
(ed.) SLE 2011. LNCS, vol. 6940, pp. 223–242. Springer, Heidelberg (2012)

83. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional (2009)

84. Stuurman, G.: Action Semantics applied to Model Driven Engineering. Master’s
thesis, University of Twente, The Netherlands (2010)

85. Theelen, B.D., Florescu, O., Geilen, M.C.W., Huang, J., van der Putten, P.H.A.,
Voeten, J.P.M.: Software/hardware engineering with the parallel object-oriented
specification language. In: Proceedings of the 5th IEEE/ACM International Con-
ference on Formal Methods and Models for Codesign, MEMOCODE 2007, pp.
139–148. IEEE Computer Society, Washington, DC (2007)

http://en.wikipedia.org/wiki/Object_Constraint_Language
http://www.dmoz.org/Computers/Programming/Compilers/Lexer_and_Parser_Generators/
http://www.dmoz.org/Computers/Programming/Compilers/Lexer_and_Parser_Generators/

MDE Basics with a DSL Focus 57

86. Tomita, M.: An efficient context-free parsing algorithm for natural languages. In:
Proceedings of the 9th International Joint Conference on Artificial Intelligence,
vol. 2, pp. 756–764. Morgan Kaufmann Publishers Inc., San Francisco (1985)

87. TRain. Train – The Railway Domain (2012), http://www.railwaydomain.org/

(accessed February 25, 2012)
88. TUDresden. EMFtext (2012), http://www.emftext.org/ (accessed February 20,

2012)
89. van Rossum, G.: An Introduction to Python for Unix/C Programmers. In: Proc.

of the NLUUG Najaarsconferentie. Dutch UNIX users group (1993)
90. Visser, E.: Scannerless Generalized-LR Parsing. Technical Report P9707, Program-

ming Research Group, University of Amsterdam (July 1997)
91. Visser, E.: Syntax Definition for Language Prototyping. PhD thesis, University of

Amsterdam (1997)
92. van Vliet, H.: Software Engineering: Principles and Practice, 3rd edn. Wiley Pub-

lishing (2008)
93. Walkingshaw, E., Erwig, M.: A domain-specific language for experimental game

theory. J. Funct. Program. 19, 645–661 (2009)
94. Wikipedia. Grace hopper — Wikipedia, the free encyclopedia (2012),

http://en.wikipedia.org/wiki/Grace_Hopper (accessed February 18, 2012)
95. Wikipedia. Rush hour — Wikipedia, the free encyclopedia (2012),

http://en.wikipedia.org/wiki/Rush_Hour_board_game

(accessed February 25, 2012)

http://www.railwaydomain.org/
http://www.emftext.org/
http://en.wikipedia.org/wiki/Grace_Hopper
http://en.wikipedia.org/wiki/Rush_Hour_board_game

Object Constraint Language (OCL):

A Definitive Guide

Jordi Cabot1 and Martin Gogolla2

1 INRIA / École des Mines de Nantes, France
jordi.cabot@inria.fr

2 University of Bremen, Germany
gogolla@informatik.uni-bremen.de

Abstract. The Object Constraint Language (OCL) started as a com-
plement of the UML notation with the goal to overcome the limitations of
UML (and in general, any graphical notation) in terms of precisely spec-
ifying detailed aspects of a system design. Since then, OCL has become a
key component of any model-driven engineering (MDE) technique as the
default language for expressing all kinds of (meta)model query, manip-
ulation and specification requirements. Among many other applications,
OCL is frequently used to express model transformations (as part of
the source and target patterns of transformation rules), well-formedness
rules (as part of the definition of new domain-specific languages), or
code-generation templates (as a way to express the generation patterns
and rules).

This chapter pretends to provide a comprehensive view of this lan-
guage, its many applications and available tool support as well as the
latest research developments and open challenges around it.

1 Introduction

The Object Constraint Language (OCL) appeared as an effort to overcome the
limitations of UML when it comes to precisely specifying detailed aspects of a
system design. OCL was first developed in 1995 inside IBM as an evolution of an
expression language in the Syntropy method [26]. The work on OCL was part of
a joint proposal with ObjectTime Limited presented as a response to the RFP
for a standard object-oriented analysis and design language issued by the Object
Management Group (OMG) [26]. That standard came to be what we now know
as UML and OCL became integrated in it in 1997.

Initially, OCL was only used as a constraint language for UML but quickly ex-
panded its scope and now OCL has become a key component of any model-driven
engineering (MDE) technique as the default language for expressing all kinds of
(meta)model query, manipulation and specification requirements. Among many
other applications, OCL is frequently used to express model transformations (as
part of the source and target patterns of transformation rules), well-formedness
rules (as part of the definition of new domain-specific languages, or code genera-
tion templates (as a way to express the generation patterns and rules).

M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.): SFM 2012, LNCS 7320, pp. 58–90, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Object Constraint Language (OCL) 59

To adapt the language to these new applications, several new (sub)versions of
the language have been released. At the moment of writing this chapter, the
current version of the OCL language is version 2.3.1 [20].

This chapter pretends to provide a comprehensive view of this language, its
many applications and available tool support as well as the latest research devel-
opments and open challenges around it. The rest of this chapter is structured as
follows. Section 2 motivates the need for OCL. Section 3 gives a brief overview
of the language, while Section 4 provides a more precise language description.
Then, Section 5 classifies existings OCL tools. Finally, Section 6 outlines a pos-
sible research agenda for OCL and Section 7 provides some final conclusions.

2 Motivation

Graphical modeling languages are the preferred choice for many designers when
it comes to define the structural aspects of a domain (i.e., its main concepts,
their properties and the relationships between them). The most typical example
of a graphical notation is UML [21], specially its class diagram which is by far
the most used UML diagram [13].

Nevertheless, this facility of use comes with a price. In order to keep the
number of notational elements manageable, language designers must limit the
expressiveness of the language. This means that graphical notations can only
express a limited subset of all the relevant information of a domain. This is
where OCL (and in general, any other textual language) comes into play. They
are a necessary complement of the UML (or other graphical languages) notation
in order to be able to precisely specify all detailed aspects of a system design.

As an example, take a look at the class diagram of Figure 1 that will be used
as running example throughout the chapter. This diagram is an excerpt of the
EU-Rent Car Rentals Specification [14], an in-depth specification of the EU-Rent
case study, which is a widely known case study being promoted as a basis for
demonstration of product capabilities. EU-Rent presents a car rental company
with branches in several countries that provides typical rental services. EU-Rent
was originally developed by Model Systems, Ltd.

This excerpt contains information about the rentals of the company (Rental
class), the company branches (Branch class), the rented cars (Car), the category
to which they belong (CarGroup) and the customers (Customer) that at some
point in time may become blacklisted (BlackListed) due to delayed car returns,
unpaid rentals, etc. Each rented car has one or more registered drivers and a
pickup and drop off branch assigned.

This may look like a quite complete definition of the problem but in reality it
is just the tip of the iceberg. Many important details cannot be defined just using
the notation available for UML class diagrams. Just to mention some aspects
that the UML diagram does not answer:

1. Can blacklisted people rent new cars? (common sense may suggest answering
no to this question but in fact this is not specified anywhere in the diagram
so different people may assume different answers)

60 J. Cabot and M. Gogolla

Fig. 1. Running Example - Partial Class Diagram of the EU-Rent company

2. How is the price of a rental calculated?
3. What are the conditions to be able to extend an existing rental?
4. Should the driving license of all drivers be valid throughout the full rental

period? Is there a minimum driving seniority required? Can the same driver
have two active rentals?

5. Can the pickup and drop off branches differ?
6. Can I choose a car already assigned to another rental?

The next section will show how OCL can be used to express all these additional
concerns.

3 OCL in a Nutshell

The goal of this section is to give you an informal short description of the OCL
and show its usefulness by exemplifying how it can be used to solve the open
questions left at the end of the last section.

OCL is a general-purpose (textual) formal1 language adopted as a standard
by the OMG (see the current version of the OCL specification [20]) used to define
several kinds of expressions that complement the information of (UML) models.

OCL is a typed, declarative and side-effect free specification language. Typed
means that each OCL expression evaluates to a type (either one of the predefined
OCL types or a type in the model where the OCL expression is used) and must
conform to the rules and operations of that type. Side-effect free implies that
OCL expressions can query or constrain the state of the system but not modify

1 The degree of formality of OCL is under discussion but we could agree that at least
it can be considered a semi-formal language.

Object Constraint Language (OCL) 61

it. Declarative means that OCL does not include imperative constructs like as-
signments. And finally, specification refers to the fact that the language definition
does not include any implementation details nor implementation guidelines.

Among the many applications of OCL, it can be used to define the following
kinds of expressions2:

– Invariants to state all necessary condition that must be satisfied in each
possible instantiation of the model.

– Initialization of class properties.

– Derivation rules that express how the value of derived model elements must
be computed.

– Query operations

– Operation contracts (i.e., set of operation pre- and postconditions)

In the following we briefly introduce each expression type and explain some basic
OCL constructs along the way. The next section will present the full details of
the language.

3.1 Invariants

Integrity constraints in OCL are represented as invariants defined in the context
of a specific type, named the context type of the constraint. Its body, the boolean
condition to be checked, must be satisfied by all instances of the context type.

Invariants are without a doubt the most common OCL expression since they
allow designers to easily specify all kinds of conditions that the system must
comply with.

Invariants can restrict the value of single objects, like the following Quo-
teOverZero:

context Quote inv QuoteOverZero: self.value > 0

stating that all quotes must have a positive value. Note that the self variable
represents an arbitrary instance of the Quote class and the dot notation is used
to access the properties of the self object (as the value attribute in the example).
As stated above, all instances of Quote (the context type of the constraint in
this case) must evaluate this condition to true.

Nevertheless, many invariants express more complex conditions limiting the
possible relationships between different objects in the system, usually related
through association links. For instance, this NoRentalsBlackListed constraint
forbids BlackListed people of renting cars:

context BlackListed inv NoRentalsBlackListed:

self.rental->forAll(r | r.startDate < self.blackListedDate)

2 For the sake of simplicity, we focus on the kinds of expressions useful for class
diagrams; e.g., OCL can also be used to define guards in state machines.

62 J. Cabot and M. Gogolla

where we first retrieve all rentals linked to a blacklisted person and then we make
sure that all of them were created before the person was blacklisted. This is done
by iterating on all related rentals and evaluating the date condition on each of
them; the forAll iterator returns true iff all elements of the input collection
evaluate the condition to true.

3.2 Initialization Expressions

OCL can be used to specify the initial value that the properties of an object
must take upon the object creation. Obviously, the type of the expression must
conform to the type of the initialized property (this must also take into account
cases where the property to be initialized is a collection).

For instance, the following OCL expression initializes to false the value of
the premium attribute of Customers (we are assuming that customers can only
promote to the premium status after renting several cars).

context Customer::premium: boolean init: false

3.3 Derived Elements

Derived elements are elements whose value/population can be inferred from the
value/population of other model elements as defined in the element’s derivation
rule. OCL is a popular choice for specifying these derivation rules.

OCL derivation rules follow the same structure as init expressions (see above)
although their interpretation is different. An init expression must be true when
the object is created but the restricted property may change its value afterwards
(i.e., customers start as non-premium but may evolve to premium during their
time in the system). Instead, derivation rules constrain the value of a derived
element throughout all its life-span. Note that this does not imply that the value
of a derived element cannot change, it only means that it will always change
according to the evaluation of its derivation rule.

As an example, consider the following rule for the derived element discount in
class Customer, stating that premium members get a 30% discount while non-
premium members get 15% if they have at least rented high category cars five
times while the rest of the customers get no discount at all.

context Customer::discount: integer

derive:

if not self.premium then

if self.rental.car.carGroup->

select(c|c.category=’high’)->size()>=5

then 15

else 0 endif

else 30 endif

Object Constraint Language (OCL) 63

The select iterator in the expression returns the subcollection of elements from
the input collection that satisfy the condition. Then, the size collection oper-
ator returns the cardinality of the output subcollection and this value is com-
pared with the ‘5’ threshold. Note that in this example, the input collection
(self.rental.car.carGroup) is not a set but a bag (i.e., a collection with repeated
elements) since a user may have rented the same car twice in different rentals or
two cars belonging to the same car group.

3.4 Query Operations

As the name indicates, query operations are a wrapped OCL expression that
queries the system data and returns the information to the user.

As an example, the following query operation returns true if the car on which
the operation is executed is the most popular in the rental system.

context Car::mostPopular(): boolean

body: Car::allInstances()->forAll(c1|c1<>self implies

c1.rentalAgreement->size()<=self.rentalAgreement->size())

3.5 Operation Contracts

There are two different approaches for specifying an operation effect: the im-
perative and the declarative approach [27]. In an imperative specification, the
designer explicitly defines the set of structural events (inserts/updates/deletes)
to be applied when executing the operation. Instead, in a declarative specifica-
tion, a contract for each operation must be provided. The contract consists of
a set of pre- and postconditions. A precondition defines a set of conditions on
the operation input and the system state that must hold when the operation
is issued while postconditions state the set of conditions that must be satisfied
by the system state at the end of the operation. OCL is usually the language of
choice to express pre- and postconditions for operation contracts at the modeling
level.

As an example, the following newRental operation describes (part of) the
business logic behind the creation of a new rental in the EU-rent system:

context Rental::newRental(id:Integer, price:Real, startingDate:Date,

endingDate:Date, customer:Customer, carRegNum:String,

pickupBranch: Branch, dropOffBranch: Branch)

pre: customer.licenseExpDate>endingDate

post: Rental.allInstances->one(r |

r.oclIsNew() and r.oclIsTypeOf(Rental) and

r.endingDate=endingDate and r.startingDate=startingDate and

r.driver=customer and r.pickupBranch=pickupBranch and

r.dropOffBranch=dropOffBranch and

r.car=Car.allInstances()->any(c | c.regNum=carRegNum))

64 J. Cabot and M. Gogolla

The precondition checks that the customer has a valid license for the duration
of the rental3 while the postcondition states that by the end of the operation a
new object r of type Rental must have been created and initialized with the set
of values passed as parameters4.

4 Language Description

Figure 2 gives an overview on the OCL type system in form of a feature model.
Using a tree-like description5, feature models allow to describe mandatory and
optional features of a subject, and they allow to specify alternative features
as well as conjunctive features. In particular, the figure pictures the different
kinds of available types. Before explaining the type system in a systematic way,
let us discuss OCL example types which are already known or which can be
deduced from the class diagram of our running example in Fig. 3. Attributes
types, as for example in Car::regNum:String, are predefined basic, atomic
types. Classes which are defined by the class diagram are atomic, user-defined
class types. If we already have an expression cg of type CarGroup, then the
OCL expression cg.car has the type Set(Car) due to the multiplicity 1..*.
The type Set(Car) is a flat, concrete collection type. Set(Car) is a reifica-
tion of the parametrized collection type Set(T) where T denotes an arbitrary
type parameter which can be stubstituted. The type Sequence(Set(Car)) is
a nested collection type being a reification of the parametrized, nested col-
lection type Sequence(Set(T)). If cg:CarGroup is given, then the expres-
sion Tuple{cat:cg.category, cars:cg.car} has type Tuple(cat:String,

cars:Set(Car)) which is a tuple type.

4.1 OCL Types

Let us now consider the types in Fig. 2 in a systematic way. An OCL type is either
an atomic type or a template type. Atomic types are either predefined basic types
or user-defined types. Predefined basic types are Integer, Real, String, and
Boolean. User-defined types are either class types (e.g., Customer) or enumera-
tion types (e.g., BranchKind=#airport, #downtown, #onTheRoad). A template
type is a type which uses at least one of the six predefined type constructors: Set,
Bag, Sequence, OrderedSet, Collection, and Tuple. A parametrized template
type has one or more parameters (e.g., Bag(T) or Tuple(part1:T1, part2:T2))

3 There are several styles when writing preconditions, some people choose to include
in the preconditions the verification of all integrity constraints that may be affected
by the operation while others consider this redundant.

4 Note that postconditions are underspecifications, i.e., they only specify part of the
system state at the end of the execution which leads to the frame problem [4] and
other similar issues; this problem is not OCL-specific and thus it is outside of the
scope of this chapter.

5 The actual structure of the feature model is a dag (directed, acyclic graph).

Object Constraint Language (OCL) 65

Fig. 2. OCL Types as a Feature Model

Fig. 3. Example Class Diagram modeled with the USE tool

66 J. Cabot and M. Gogolla

and can be applied to another type in order to obtain a more complex type. A
template type is either a structured collection type or a structured tuple type.
In OCL there are four parametrized, concrete collection types, namely Set(T),
Bag(T), Sequence(T), and OrderedSet(T). As shown in the left side of Fig. 4,
there is one abstract, parametrized collection type, namely Collection(T)

which is the supertype of each of these four parametrized types and which can-
not be instantiated directly but only through its subtypes. Collection and tuple
types may be flat when they have a nesting level equal to 1 or they may be
nested when they have a nesting level greater than 1. Figure 2 summarizes the
OCL type structure which is formally represented as part of the OCL metamodel
in the OCL standard.

Fig. 4. OCL Type Inheritance Hierarchy

Let us give some more examples. The expression Set{11, 12} has
type Set(Integer), whereas Bag{42, 42} has type Bag(Integer). Both,
Set(Integer) and Bag(Integer), are subtypes of the abstract collection
type Collection(Integer). An example expression where this type occurs is
Sequence{Set{11, 12}, Bag{42, 42}} which is typed by the nested collection
type Sequence(Collection(Integer)). Tuple and collection types may be used
orthogonally. Thus the expression

Set{Tuple{name:’Ada’, emails:Set{’ada@acm.org’,’ada@ieee.org’}},

Tuple{name:’Bob’, emails:Set{’bob@acm.org’}}}

has the type Set(Tuple(name: String, emails: Set(String))).
Apart from the peculiarities for types discussed above, OCL has a type in-

heritance relationship < defining subtypes and supertypes. Type inheritance
occurs in connection with the predefined basic types (Integer < Real), the
defined classes (e.g., BlackListed < Customer), the collection types (e.g.,
Set(Bag(String)) < Collection(Bag(String))) and two special types for
the top and the bottom of the type hierarchy, namely OclAny for the top type
and OclVoid for the bottom type. A general overview is shown in Fig. 4. On
the right side, the subtypes of OclAny being at the same time the supertypes

Object Constraint Language (OCL) 67

of OclVoid are displayed. The subtypes can be categorized into the predefined
basic types, the class types, and the enumeration types. Please note that neither
Collection(T) nor any of its reifications (e.g., Set(String)) is a subtype of
OclAny. However, any type from the right side may be substituted for the type
parameter T in the left side, and any subtyping relationship is carried over from
the right side to the left side, e.g., C2 < C1 induces Bag(C2) < Bag(C1) and
Set(C2) < Collection(C2) < Collection(C1).

Fig. 5. OCL Example Types and Induced Collection Types

For our running example, we obtain Set(Integer) < Collection(Real) or
Bag(BlackListed) < Collection(Customer). Please also be aware of the fact,
that, for example, Set(OclAny) is a valid type and, therefore, the expression
Set{42, true, ’ABBA’, @Car42} including an Integer constant, a Boolean

constant, a String constant, and an object of class Car is a valid OCL expres-
sion of type Set(OclAny). However, a construct like Set{42,Sequence{42}}
is invalid, because the types Integer and Sequence(Integer) do not have
a common supertype. The upper right part of Fig. 5 shows a subset of the
example types and its induced first level collection types where the collec-
tions are applied only once and therefore no nested collection types arise.
We have used the abbreviations Seq[uence], Ord[eredSet], Col[lection],
Cust[omer], B[lack]Listed in the Figure, and we will use the shortcuts of
the collections also further down, if we need it. Please note, that, for example,
Set(BListed) has five supertypes: Set(Cust), Col(BListed), Set(OclAny),
Col(Cust), Col(OclAny). The type relationships would become even richer
when all example types (e.g., Integer and Branch) would have been used. In
principle, there is an infinite number of induced collection types, because the
nesting level may be arbitrarily deep, but the used maximal nesting level is al-
ways finite: every class model and every OCL term will use only a finite fraction
of all possible types.

68 J. Cabot and M. Gogolla

4.2 OCL Values

As you see from the feature model, the OCL type system is involved, but for an
introductory paper, we want to offer to the reader a way through all possible
combinations by means of a clear, manageable number of categories. The OCL
type feature model gives rise to nine different categories of available types. We
label the categories with letters from (A) to (I) and show examples for OCL
expressions representing values in each of the nine categories.

- atomic
– (A) predefined basic
– (B) enumeration
– (C) class

- template
– (D) parametrized
– structured collection

— (E) concrete flat
— (F) concrete nested
— (G) abstract nested
— abstract flat: unpopulated

– structured tuple
— (H) flat
— (I) nested

We will first go through the categories (A) to (I), explain each single category
and show positive examples. Afterwards, we will explain why we consider the
category abstract, flat structured collection as being unpopulated.

The OCL expressions for category (A) are straight forward and need not be
explained. The enumeration values in category (B) show that an enumeration
literal can be introduced by the hash sign as required in early OCL versions
and that they can be written down preceeding their type name and separated
by double colons in later OCL versions. As shown in category (C), a literal for
an object can be any allowed identifier. Often the literal indicates somehow the
class type for the object, but this is not a requirement. For small examples often
well choosen object literals (like ibm,sun:Company) support intuition about the
use of the object. In category (D), the parametrized types always possess at least
one type parameter. Parametrized types can be nested arbitrarily deep, but the
nesting in each type is always finite. The six keywords Set, Bag, Sequence,
OrderedSet, Collection, and Tuple occur in connection with parametrized
types.

(A) 42 : Integer

43.44 : Real

’fortytwo’ : String

false : Boolean

Object Constraint Language (OCL) 69

(B) #airport, #downtown, #onTheRoad : BranchKind

BranchKind::airport : BranchKind

(C) car42, Herbie, OFP857 : Car

branch42, SunsetStrip77 : Branch

(D) Set(T)

Sequence(T)

Tuple(part1:T1,part2:T2)

Sequence(OrderedSet(T))

Sequence(Collection(T))

Category (E) contains values for flat, concrete collections, category (F) displays
nested, concrete collections, and category (G) involves nested, abstract collec-
tions. As the examples point out, values for collection types can be built with
constructor operations denoted by Set, Bag, Sequence and OrderedSet. A type
is considered to be abstract if its type expression involves Collection or an ab-
stract class type from the underlying class diagram. Note that collections may
contain different values which have different least types, but in any case the val-
ues inside a single collection must have a common supertype. For example, the
last expression in category (E) Set{car42,’fortytwo’} involves values of type
Car and String. The example for ordered sets shows that ordered sets are not
neccessarily sorted. Please note that the top-most example set in category (F)
contains three elements which are pairwise distinct. The last example in cate-
gory (G) shows a degree of flexibilty gained through the possibility of having
abstract collections: A collection of email adresses can be a set or a sequence
of strings, depending on whether a priority for email adresses is required to be
stated or not.

(E) Set{42,43} : Set(Integer)

Bag{42,42,43} : Bag(Integer)

Sequence{43,42,44,42} : Sequence(Integer)

OrderedSet{43,42,44} : OrderedSet(Integer)

Sequence{’Steve’,’Jobs’} : Sequence(String)

Bag{backlisted42,blacklisted43} : Bag(BlackListed)

Set{42,43.44} : Set(Real)

Sequence{blacklisted42,customer43} : Sequence(Customer)

Set{car42,’fortytwo’} : Set(OclAny)

(F) Sequence{Bag{42,42},Bag{42,43}} : Sequence(Bag(Integer))

Set{Sequence{Set{7},Set{8}},

Sequence{Set{8},Set{7}},

Sequence{Set{7,8}}} : Set(Sequence(Set(Integer)))

(G) Sequence{Set{7,8},Bag{7,7}} : Sequence(Collection(Integer))

Set{Set{Set{7}},Bag{Bag{7}}} : Set(Collection(Collection(Integer)))

Set{Tuple{name:’Ada’,emails:Set{’ada@acm’,’ada@ibm’}},

Tuple{name:’Bob’,emails:Sequence{’bob@omg’,’bob@sun’}}} :

Set(Tuple(emails:Collection(String),name:String))

70 J. Cabot and M. Gogolla

Categories (H) shows flat tuples and category (I) nested tuples. Tuples can
be constructed with the keyword Tuple and by additionally specifying part
names and part values. In category (H), the first two examples explain that
tuple parts may be assigned by using the colon or alternatively by the equal-
ity symbol. Tuples may contain parts of arbitrary types, e.g., class types and
predefined types as in the third example. The order of tuple parts does not mat-
ter in OCL. Thus we have for example Tuple{first:’Steve’,last:’Jobs’} =

Tuple{last:’Jobs’,first:’Steve’}. The tool employed here (USE) [17] sorts
the tuple parts by their names, and therefore the shown type to the right of
the colon may exhibit a different part order than the input expression. In cat-
egory (I), four tuple values are presented. The first one is a nested tuple with
two parts having a tuple type. The second one is a tuple with two parts having
type String and Set(String), respectively. The third one is an OCL represen-
tation of a simple relational database state in first normal form. The fourth one
represents the same state information in a non-first normal form style in which
the second relation has a set-valued, non-atomic part type.

(H) Tuple{first:’Steve’,last:’Jobs’} : Tuple(first:String,last:String)

Tuple{first=’Steve’,last=’Jobs’} : Tuple(first:String,last:String)

Tuple{carRef:Herbie,year:1963,manufRef:VW} :

Tuple{carRef:Car,manufRef:Company,year:Integer}

(I) Tuple{name:Tuple{first:’Steve’,last:’Jobs’},

adr:Tuple{street:’Infinite Loop’,no:1}} :

Tuple(adr:Tuple(no:Integer,street:String),

name:Tuple(first:String,last:String))

Tuple{name:’Ada’,emails:Set{’ada@acm’,’ada@ibm’}} :

Tuple{emails:Set(String),name:String}

Tuple{Customers:Set{Tuple{name:’Ada’,birth:1962},

Tuple{name:’Bob’,birth:1962}},

Rentals:Set{Tuple{name:’Ada’,start:’2012-01-01’},

Tuple{name:’Ada’,start:’2002-01-01’},

Tuple{name:’Cyd’,start:’2002-01-01’}}} :

Tuple(Customers:Set(Tuple(birth:Integer,name:String)),

Rentals:Set(Tuple(name:String,start:String)))

Customers | name | birth Rentals | name | start

-----------+-------+------- ---------+-------+--------------

| ’Ada’ | 1962 | ’Ada’ | ’2012-01-01’

| ’Bob’ | 1962 | ’Ada’ | ’2002-01-01’

| ’Cyd’ | ’2002-01-01’

Tuple{Customers:Set{Tuple{name:’Ada’,birth:1962},

Tuple{name:’Bob’,birth:1962}},

Rentals:Set{Tuple{name:’Ada’,

starts:Set{’2012-01-01’,’2002-01-01’}},

Tuple{name:’Cyd’,starts:Set{’2002-01-01’}}}} :

Object Constraint Language (OCL) 71

Tuple(Customers:Set(Tuple(birth:Integer,name:String)),

Rentals:Set(Tuple(name:String,starts:Set(String))))

The category abstract, flat structured collection cannot be populated because,
for example, you cannot build a value for Collection(Integer) which is
not also a value for Set(Integer) or Bag(Integer) or Sequence(Integer)

or OrderedSet(Integer). Of course we have: Set{42}: Set(Integer) and
Set{42}: Collection(Integer) because Set(Integer) < Set(Collection).
But there is no proper value in Collection(Integer)which is only in that type
and not also in one its subtypes. The statement can be expressed formally as
follows.

VALUES[Collection(Integer)] - VALUES[Set(Integer)]

- VALUES[Bag(Integer)]

- VALUES[Sequence(Integer)]

- VALUES[OrderedSet(Integer)] = EMPTY

This is different for the combination abstract and nested. For example, we
have Sequence{Set{42},Bag{42}}has type Sequence(Collection(Integer)).
Note however, that all abstract types, which have Collection as its top
type and are arbitrarily nested, but concrete type as its inner type, can-
not be (in the above sense) properly populated. For example, we have
Set{Sequence{42}} has type Set(Sequence(Integer)) and as a conse-
quence Set{Sequence{42}} has type Collection(Sequence(Integer)). And
we have Bag{Sequence{42}} has type Bag(Sequence(Integer)) and as a con-
sequence Bag{Sequence{42}} has type Collection(Sequence(Integer)). But
there are no values in Collection(Sequence(Integer)) which are at the
same time not in Set(Sequence(Integer)) or Bag(Sequence(Integer)) or
Sequence(Sequence(Integer)) or OrderedSet(Sequence(Integer)).

4.3 OCL Collection Properties

OCL denotes equality and inequality with the operations = und <>, respectively.
Let us consider equality and inequality on collection values in more detail. This
will also lead us to an explanation of the similarities and the differences between
the four different collection kinds.6

Set{7,8} = Set{8,7} OrderedSet{7,8} <> OrderedSet{8,7}

\ / \ /

= = = <>

\ / \ /

Set{7,8,7} OrderedSet{7,8,7}

6 Collection kind VS collection type: In our view each collection kind is manifested
by many collection types. For example, the collection kind set is manifested by
Set(String) or Set(Sequence(Integer)).

72 J. Cabot and M. Gogolla

Bag{7,8} = Bag{8,7} Sequence{7,8} <> Sequence{8,7}

\ / \ /

<> <> <> <>

\ / \ /

Bag{7,8,7} Sequence{7,8,7}

Above we have displayed twelve different collection expressions: three sets, three
ordered sets, three bags, and three sequences. There are three element insertion
orders: (A) first 7 and second 8, (B) first 8 and second 7, and (C) first 7, second 8,
third 7. We have also displayed whether the respective collection expressions
are equal or inequal. The four collection kinds can be distinguished by their
equal-inequal pattern: sets show (=,=,=), ordered sets display (<>,=,<>), bags
give (=,<>,<>), and sequences have (<>,<>,<>). Using these examples one
can also check general properties which collections may possess: insensibility to
element insertion order and insensibility to element insertion frequency. The four
collection kinds can be distinguished nicely on the basis of these two criteria.

| insertion order

| insensible | sensible

-------------------------------+------------+------------

insertion frequency insensible | Set | OrderedSet

sensible | Bag | Sequence

Both criteria can formally be defined in an OCL-like style with predicates as
stated below. Here, we already use three operations on collections which will
be explained later. The operation forAll checks whether a boolean expression
evaluates to true on all collection elements. The operation including inserts
an element into a collection and (possibly) constructs a new collection. The
operation includes checks whether an item is part of a collection.

orderInsensible(c:Collection(OclAny),witness:Bag(OclAny)):Boolean=

witness->forAll(e,f |

c->including(e)->including(f)=c->including(f)->including(e))

frequencyInsensible(c:Collection(OclAny),witness:Bag(OclAny)):Boolean=

witness->forAll(e |

c->includes(e) implies c->including(e)=c)

The operation orderInsensible checks whether for a parameter collection the
order in the addition of two further elements does not matter. The operation
frequencyInsensible checks whether the addition of an already present col-
lection element does not matter. Both operations have an additional parameter
determining a collection of test witnesses with which the respective property is
checked. The actual OCL definitions are a bit more complicated because the
operation including does not work on collections, but on the concrete subtypes
only. We do not show them here. Using these two operations we can build the
following OCL evaluations which demonstrate the distinctive features of the four
different OCL collections. The OCL construct let allows us to define a name
for an expression which can be used later.

Object Constraint Language (OCL) 73

? let C=Set{7} in let W=Bag{7,8,9} in

Sequence{orderInsensible(C,W),frequencyInsensible(C,W)}

> Sequence{true,true} : Sequence(Boolean)

? let C=OrderedSet{7} in let W=Bag{7,8,9} in

Sequence{orderInsensible(C,W),frequencyInsensible(C,W)}

> Sequence{false,true} : Sequence(Boolean)

? let C=Bag{7} in let W=Bag{7,8,9} in

Sequence{orderInsensible(C,W),frequencyInsensible(C,W)}

> Sequence{true,false} : Sequence(Boolean)

? let C=Sequence{7} in let W=Bag{7,8,9} in

Sequence{orderInsensible(C,W),frequencyInsensible(C,W)}

> Sequence{false,false} : Sequence(Boolean)

The OCL evaluations emphasize what was presented in the above table: Sets are
order insensible and frequency insensible; bags are order insensible but frequency
sensible; sequences are order sensible and frequency sensible; ordered sets are
order sensible but frequency insensible.

We must mention some further details concerning equality and inequal-
ity on collections. We have seen that equality and inequality can be checked
between two expressions possessing the same collection kind, e.g., we ob-
tain (Set{7,8} = Set{8,7,7}) = true. But equality and inequality can
also be applied between expressions of different collection kinds. For exam-
ple, we obtain (Set{7,8} = Bag{7,8}) = false and (OrderedSet{8,9} <>

Sequence{8,9}) = true. Note that although left and right-hand side of the
collection comparisions contain the same values (even in the same order) the
collections are different because their types are different. In particular, although
bags possess the potential to contain one element twice, they are not forced to do
so. In ordered sets, the first insertion of an element dominates over following in-
sertions, e.g., we obtain (OrderedSet{7,8,8} = OrderedSet{7,8,7}) = true

and (OrderedSet{7,8,8} <> OrderedSet{8,7,8}) = true. And, ordered sets
are not sorted: (OrderedSet{7,9,8} <> OrderedSet{9,7,8}) = true

4.4 OCL null Value

As we have seen before, the OCL type system knows a top type, namely OclAny,
which includes all atomic values (but not the structured values). We have men-
tioned also a bottom type, namely OclVoid. This type is populated by one extra
value denoted by null. As in the database language SQL, this value can be used
to express that some particular information is not available. Because, OclVoid is
a subtype of any other atomic type, the value null is present in all atomic types
and can be used in collections and tuples. The literal null was introduced in a
newer OCL version. Formerly, there was the check oclIsUndefined on OclAny

with which it is still possible to test for this value. Let us consider some uses of
null.

74 J. Cabot and M. Gogolla

ada.discount=null : Boolean

branch42.address=null : Boolean

1/0=null : Boolean

Tuple{name:’Jobs, Steve’,telno:null} : Tuple(name:String,telno:String)

(1/0).oclIsUndefined=true : Boolean

42.oclIsUndefined=false : Boolean

Set{’800-275-2273’,’800-694-7466’,null} : Set(String)

The first two example express that the discount of customer ada and the address
of branch branch42 are currently undefined. In the third example null is used
to express the partiality of a function. The fourth example shows a tuple whose
part telno is undefined. The last example shows the null value in a collection.
As in SQL, the value null is an exceptional value distinct from all ordinary
values. For example, in OCL we have that the following propositions are true:
0<>null, ’’<>null, ’null’<>null, ’NULL’<>null, and ’Null’<>null.

4.5 Navigation in OCL

Given an object diagram, i.e., a system state, OCL allows us to access objects and
their properties, e.g., attributes, and to navigate between them by using opposite
side role names from associations. This navigation is syntactically denoted by
a dot. Consider the object diagram in Fig. 6 which shows a valid system state
where all classes and associations are instantiated through objects and links and
where all association multiplicities are satisfied. Then the following attribute
accesses and navigation possibilities exist.

Fig. 6. Example Object Diagram

Object Constraint Language (OCL) 75

? Car1

> @Car1 : Car

? Car2.regNum

> ’THX 1142’ : String

? Car2.carGroup

> @CarGroup2 : CarGroup

? Car2.carGroup.category

> ’economy high’ : String

? Branch1.carGroup

> Set{@CarGroup1,@CarGroup2} : Set(CarGroup)

? Branch1.carGroup.car

> Bag{@Car1,@Car2} : Bag(Car)

? Rental1.driver

> Set{@BlackListed1,@Customer1} : Set(Customer)

? Rental1.driver.birthday

> Bag{@Date1,@Date1} : Bag(Date)

? CarGroup2.high

> @CarGroup1 : CarGroup

? CarGroup2.high.low

> @CarGroup2 : CarGroup

? CarGroup2.high.high

> null : OclVoid

? Car2.rentalAgreement

> Set{} : Set(Rental)

Navigation from one object with an opposite side role name results either
in a single-valued return type (as in Car2.carGroup : CarGroup) or in a
set-valued return type (as in Branch1.carGroup : Set(CarGroup)) depend-
ing on the multiplicity of the role name (here, 0..1 VS 1..*). The
multiplicities 0..1 and 1 yield single-valued return types whereas other mul-
tiplicities, for example 0..* and 1..*, give set-valued return types. In the
set-valued case, the result is empty (as in Car2.rentalAgreement) if no ob-
ject connection exists, whereas in the single-valued case the result is null (as
in CarGroup2.high.high) if no object connection exists. Further navigation
through a second dot is possible in a single expression and can yield a bag-valued
result (as in Rental1.driver.birthday = Bag{@Date1,@Date1}). In this ex-
ample, the preservation of duplicates with a bag-valued result reflects the fact
that the two different objects in Rental1.driver evaluate identical with respect

76 J. Cabot and M. Gogolla

to the second navigation birthday. A flat bag will also be the result in the case
of two succesive set-valued navigations (as in codeBranch1.carGroup.car).

4.6 Logic-Related Operations in OCL

Because OCL has the null value and Boolean is a predefined type, the null

value is also a Boolean value. This leads to a three-valued logic. Apart from the
standard Boolean operations and, or, and not, OCL knows a (binary) exclusive
xor and the implication implies. The truth tables for these operation are shown
in the tables below. Of course, all Boolean operations coincide with the standard
two-valued interpretation if one leaves out the null value.

b | not(b)

------+-------

null | null

false | true

true | false

| b2 | b2

b1 or b2 | null false true b1 and b2 | null false true

---------+----------------- ----------+------------------

null | null null true null | null false null

b1 false | null false true b1 false | false false false

true | true true true true | null false true

| b2 | b2

b1 xor b2 | null false true b1 implies b2 | null false true

----------+------------------ --------------+------------------

null | null null null null | null null true

b1 false | null false true b1 false | true true true

true | null true false true | null false true

| b2 | b2

b1 = b2 | null false true b1 <> b2 | null false true

----------+------------------ ---------+------------------

null | true false false null | false true true

b1 false | false true false b1 false | true false true

true | false false true true | true true false

With respect to equality and inequality, the null value is treated like any other
value. Equality and inequality do not return null as a result and operate as
equality and inequality on Set{null, false, true}.

Apart from the usual, above discussed Boolean connectives, OCL has a uni-
versal quantifier forAll and an existial quantifier exists, both in the spirit of
first order logic. However, both quantifiers range over finite collections only and
cannot be used, for example, on all instances of the type Integer or String. We
show examples for using the quantifiers. We here employ the not yet mentioned
OCL feature to define collections of integers with range expressions taking the
form low..high.

Object Constraint Language (OCL) 77

? Set{1,2,3,4,5,6,7,8,9,10,11,12}=Set{1..12}

> true : Boolean

? Set{1..12}->exists(n|n.mod(2)=0 and n.mod(3)=0)

> true : Boolean

? Bag{1..12}->exists(n|n.mod(3)=0 and n.mod(7)=0)

> false : Boolean

? Sequence{1..12}->forAll(n|0<=n*n and n*n<=255)

> true : Boolean

? OrderedSet{1..12}->forAll(n|0<=n*n and n*n<=127)

> false : Boolean

? Set{}->exists(n|n.mod(2)=0 and n.mod(3)=0)

> false : Boolean

? Bag{}->exists(n|n.mod(3)=0 and n.mod(7)=0)

> false : Boolean

? Sequence{}->forAll(n|0<=n*n and n*n<=255)

> true : Boolean

? OrderedSet{}->forAll(n|0<=n*n and n*n<=127)

> true : Boolean

? not(Set{1..12}->forAll(n|not(n.mod(2)=0 and n.mod(3)=0)))

> true : Boolean

? not(OrderedSet{1..12}->exists(n|not(0<=n*n and n*n<=127)))

> false : Boolean

4.7 OCL Collection Operations

The basic OCL operations for collection construction are the already mentioned
constructor operations Set, Bag, Sequence and OrderedSet. In addition, OCL
knows the constructor including which (possibly) adds an element to a col-
lection. The strongly related, but not inverse operation is excluding that re-
moves all occurrences of an element from the collection. Note that a law like
c = c->including(e)->excluding(e) does not hold in OCL for all collections
c and all elements e. We will observe the following evaluations.

? Set{7,8}=Set{}->including(8)->including(7)

> true : Boolean

? Bag{7,8,7}=Bag{8}->including(7)->including(7)

> true : Boolean

78 J. Cabot and M. Gogolla

? Sequence{7,8,7}=Sequence{7,8}->including(7)

> true : Boolean

? OrderedSet{7,8}=OrderedSet{7}->including(8)->including(7)

> true : Boolean

? Set{7,8}->excluding(8)=Set{7}

> true : Boolean

? Bag{7,8,7}->excluding(7)=Bag{8}

> true : Boolean

? Sequence{7,8,7}->excluding(7)=Sequence{8}

> true : Boolean

? OrderedSet{9,6,7,8,6,7}->excluding(6)=OrderedSet{9,7,8}

> true : Boolean

In order to test membership in collections the operations includes and excludes
testing on single elements as well as includesAll and excludesAll for testing
element collections are available. The following examples explain the use of the
operations.

? Set{7,8}->includes(9)

> false : Boolean

? Bag{7,8}->excludes(9)

> true : Boolean

? Sequence{7,9,8,7}->includesAll(Sequence{7,8,8})

> true : Boolean

? OrderedSet{7,9,8,7}->excludesAll(OrderedSet{3,2,4,2})

> true : Boolean

The operations isEmpty, notEmpty and size check for the existence of elements
and determine the number of elements in the collection, respectively.

? Set{7}->excluding(7)->isEmpty()

> true : Boolean

? Bag{7}->excluding(8)->notEmpty()

> true : Boolean

? Set{7,8,7,8,9}->size()

> 3 : Integer

? Bag{7,8,7,8,9}->size()

> 5 : Integer

Object Constraint Language (OCL) 79

? Sequence{7,8,7,9}->size()

> 4 : Integer

? OrderedSet{7,8,7,9}->size()

> 3 : Integer

In order to filter collection elements the operations select and reject apply and
in order to construct new collections from existing ones the operations collect
and collectNested can be employed. Please note that collect applied to a
set has to return a bag, because the functional term inside the collect may map
two different source elements to the same target value. An analogous mechanism
applies to ordered sets when a collect is used, because then the result will be
a sequence. When applying collect, a possibly nested result is automatically
converted into a flat collection. When you want to obtain the nested result you
have to use collectNested. The following examples use a conditional if then

else endif which is available in OCL on all types.

? Set{7,8,9}->select(i|i.mod(2)=1)

> Set{7,9} : Set(Integer)

? Bag{7,8,7,9}->reject(i|i.mod(2)=1)

> Bag{8} : Bag(Integer)

? Sequence{7,8,9}->collect(i|i*i)

> Sequence{49,64,91} : Sequence(Integer)

? Set{-1,0,+1}->collect(i|i*i)

> Bag{0,1,1} : Bag(Integer)

? OrderedSet{-1,0,+1}->collect(i|i*i)

> Sequence{1,0,1} : Sequence(Integer)

? Set{7,8,9}->collect(i|if i.mod(2)=0 then ’Even’ else ’Odd’ endif)

> Bag{’Even’,’Odd’,’Odd’} : Bag(String)

? Set{7,8}->collectNested(i|Sequence{i,i*i})

> Bag{Sequence{7,49},Sequence{8,64}} : Bag(Sequence(Integer))

? Set{7,8,9}->collect(i|Sequence{i,i*i})

> Bag{7,8,9,49,64,81} : Bag(Integer)

Another group of OCL collection operations are the operations one, any,
isUnique, and sortedBy. one is a variation of the exists quantifier which
yields true if exactly one element in the collection meets the specified predicate.
any is a non-deterministic choice from the collection elements which satisfy the
specified predicate. A deterministic use of this operation is when it is applied to
a collection with exactly one value. Such a call realizes a coercion from the col-
lection type Collection(T) to the parameter type T. isUnique checks whether

80 J. Cabot and M. Gogolla

the mapping achieved by applying the functional inner expression to each col-
lection element is a one-to-one mapping. sortedBy converts a collection into
a sequence using the specified collection element properties. union builds the
union of the two specified collections. For sequences and ordered sets, it results
in the concatenation.

? Set{7,8,9}->one(i|i.mod(2)=0)

> true : Boolean

? Set{7,8,9}->one(i|i.mod(2)=1)

> false : Boolean

? Set{7,8,9}->any(true)

> 7 : Integer -- implementor’s decision

> 8 : Integer -- also allowed

> 9 : Integer -- also allowed

? Set{7,8,9}->any(i|i.mod(2)=0)

> 8 : Integer

? let C=Set{7} in if C->size()=1 then C->any(true) else null endif

> 7 : Integer

? let C=Set{7,8,7} in if C->size()=1 then C->any(true) else null endif

> null : OclVoid

? Set{7,8,9}->isUnique(i|i*i)

> true : Boolean

? Set{7,8,9}->isUnique(i|i.mod(2)=0)

> false : Boolean

? Bag{8,7,8,9}->sortedBy(i|i)

> Sequence{7,8,8,9} : Sequence(Integer)

? Set{7,8,9}->sortedBy(i|if i.mod(2)=0 then ’Even’ else ’Odd’ endif)=

> Sequence{8,7,9} : Sequence(Integer)

? Sequence{-8,9,-7}->sortedBy(i|i.abs)

> Sequence{-7,-8,9} : Sequence(Integer)

? Set{7,8}->union(Set{9,8})

> Set{7,8,9} : Set(Integer)

? Bag{7,8}->union(Bag{9,8})

> Bag{7,8,8,9} : Bag(Integer)

? Sequence{7,8}->union(Sequence{9,8})

> Sequence{7,8,9,8} : Sequence(Integer)

Object Constraint Language (OCL) 81

? OrderedSet{7,8}->union(OrderedSet{9,8})

> OrderedSet{7,8,9} : OrderedSet(Integer)

OCL offers the possiblity to convert one collection kind into any of the other
three collection kinds by means of the operations asSet, asBag, asSequence,
and asOrderedSet. Please be aware of the fact that some these conversions
must make an implementation dependent decision, for example, the conversion
that takes sets and returns sequences. In order to flatten a nested collection the
operation flatten can be used to obtain a flat collection having the same ele-
ments as the source nested collection. Thus the operation collect can be seen
as a shortcut for collectNested and a following flatten. flatten returns the
top-most collection kind of the source expression. flatten also must make imple-
mentation dependent decisions. Such decisions must be taken, if the conversion
goes from an order insensible collection kind to an order sensible collection kind.

? Sequence{8,7,7,8}->asSet()

> Set{7,8} : Set(Integer)

? Sequence{8,7,7,8}->asBag()

> Bag{7,7,8,8} : Bag(Integer)

? Set{8,7,7,8}->asSequence()

> Sequence{7,8} : Sequence(Integer) -- implementor’s decision

> Sequence{8,7} : Sequence(Integer) -- also allowed

? Sequence{8,7,7,8}->asOrderedSet()

> OrderedSet{8,7} : OrderedSet(Integer)

? Set{8,7,9}->asSequence()

> Sequence{7,8,9} : Sequence(Integer) -- implementor’s decision

> Sequence{9,8,7} : Sequence(Integer) -- also allowed

> Sequence{7,9,8} : Sequence(Integer) -- also allowed

? Set{7,8}->collectNested(i|Sequence{i,i*i})->flatten()

> Bag{7,8,49,64} : Bag(Integer)

? Sequence{Set{7,8},Set{8,9}}->flatten()

> Sequence{7,8,9,8} : Sequence(Integer) -- implementor’s decision

? Set{Bag{7,8},Bag{8,9}}->flatten()

> Set{7,8,9} : Set(Integer)

? OrderedSet{Bag{7,9},Bag{8,7}}->flatten()

> OrderedSet{7,9,8} : OrderedSet(Integer)

? OrderedSet{Set{7,8,9}}->flatten()

> OrderedSet{7,9,8} : OrderedSet(Integer) -- implementor’s decision

> OrderedSet{9,7,8} : OrderedSet(Integer) -- also allowed

> OrderedSet{7,9,8} : OrderedSet(Integer) -- also allowed

82 J. Cabot and M. Gogolla

Concerning the above decision which the implementor has to take, one might
argue that the order on type Integer is pretty well determined. But please
recall that ordered sets are not sorted sets. And, there is not natural single order
on object collections for user-defined class types: one natural order on objects
is determined by their object identity often being an identifier, and a second
natural order is the order in which the objects are created.

4.8 OCL Collection Operation iterate

The last collection operation iterate is the most complicated one, but also
the most powerful collection operation, because, basically, all other collection
operation are special cases of iterate. The syntax of the basic form of an iterate
expression is represented as follows.

COLEXPR->iterate(ELEMVAR:ELEMTYPE; RESVAR:RESTYPE=INITEXPR | ITEREXPR)

An iterate expression is based on other expressions, on variables and on types:
a collection expression COLEXPR for the argument collection, an element variable
ELEMVAR for an iteration variable, an element type ELEMTYPE, a result variable
RESVAR, a result type RESTYPE, an initialization expression INITEXPR for the
result variable, and an iteration expression ITEREXPR for the result variable.
The iterate expression is applied to an argument collection COLEXPR. Within a
loop, each argument collection element having the type ELEMTYPE is considered
once with the variable ELEMVAR. Thus the number of steps in the loop is equal
to the number of elements in the argument collection. The result of the iterate
expression is of type RESTYPE and fixed by the variable RESVARwhich is initialized
with the expression INITEXPR before the loop is entered. Within the loop, the
expression ITEREXPR is evaluated for each element of the argument collection
once and the intermediate result is again assigned to RESVAR. ITEREXPR may use
ELEMVAR and RESVAR as free variables, but ITEREXPR is not forced to do so. The
overall result of the iterate expression is determined by the last value of RESVAR.

We consider the following examples for iterate. These examples will use the
relational database state which we have expressed above as a nested tuple value.
The OCL examples will use the abbreviations C and R, for all customer and
rental tuples, respectively. For the respective example, we will show also its SQL
counterpart and a formulation without iterate.

(A) Show names in Customers together with names in Rentals. Two iterate

expressions are employed: one over the Customer relation, one over the Renatls
relation. The formulation without iterate employs two collect enpressions.

let dbs=Tuple{Customers:Set{Tuple{name:’Ada’,birth:1962},

Tuple{name:’Bob’,birth:1962}},

Rentals:Set{Tuple{name:’Ada’,start:’2012-01-01’},

Tuple{name:’Ada’,start:’2002-01-01’},

Tuple{name:’Cyd’,start:’2002-01-01’}}} in

let C=dbs.Customers in let R=dbs.Rentals in

C->iterate(c;R1:Bag(String)=Bag{}|R1->including(c.name))->union(

Object Constraint Language (OCL) 83

R->iterate(r;R2:Bag(String)=Bag{}|R2->including(r.name)))

Bag{’Ada’,’Ada’,’Ada’,’Bob’,’Cyd’} : Bag(String)

SELECT name FROM Customers UNION SELECT name FROM Rentals

C->collect(c|c.name)->union(R->collect(r|r.name))

(B) Retrieve the earliest rentals. The formulation with iterate uses two nested
iterate expression with different result types. The outer iterate corresponds
to a select call, the inner iterate to a universal quatification.

R->iterate(r1;R1:Set(Tuple(name:String,start:String))=Set{}|

if R->iterate(r2;R2:Boolean=true|R2 and r1.start<=r2.start)

then R1->including(r1) else R1 endif)

Set{Tuple{name=’Ada’,start=’2002-01-01’},

Tuple{name=’Cyd’,start=’2002-01-01’}} :

Set(Tuple(name:String,start:String))

SELECT * FROM Rentals WHERE start <= ALL (SELECT start FROM RENTALS)

R->select(r1|R->forAll(r2|r1.start<=r2.start))

(C) Show names in Rentals from year 2002. This OCL expression uses the oper-
ation substring which is applied to a String value with two parameters indi-
cating the first and the last position of the substring to be retrieved. Note that
the same effect in the two calls to select and collect in the second formulation
is achieved in the first formulation with a single iterate call.

R->iterate(r;R1:Bag(String)=Bag{}| if r.start.substring(1,4)=’2002’

then R1->including(r.name) else R1 endif)

Bag{’Ada’,’Cyd’} : Bag(String)

SELECT name FROM Rentals WHERE start.substring(1,4)=’2002’

R->select(r|r.start.substring(1,4)=’2002’)->collect(r|r.name)

5 Tool Support

Though still limited, OCL tool support has been considerably growing in the
last years. The goal of this section is to present a sorted (non-exhaustive) list of
tools that can help in your OCL learning process. Other reports of OCL tools
are [10] and [12].

84 J. Cabot and M. Gogolla

5.1 OCL Parsers and IDEs

The two main OCL Parsers available today are MDT/OCL7 and Dresden OCL8.
MDT/OCL is part of the official Model Development tools Eclipse project

whose goal is to provide an implementation of industry standard metamodels and
to provide exemplary tools for developing models based on those metamodels.
MDT/OCL provides a set of APIs for parsing and evaluating OCL constraints
and queries on Ecore or UML models, support for serializing parsed OCL ex-
pressions (avoiding the need for reparsing them every time we load the model),
and a visitor API for the abstract syntaxt tree to allow their transformation.

DresdenOCL provides a set of tools to parse and evaluate OCL constraints on
various types of models thanks to its Pivot Model strategy [18]. The pivot model
decouples the OCL parser and interpreter from a specific metamodel and thus
enables connecting the tool to every meta-model supporting basic object-oriented
concepts. DresdenOCL can be executed as an independent tool or integrated in
the EMF Eclipse framework.

Due to the relevance of OCL in other areas, we can also find OCL parsers
embedded in other kinds of MDE components. This is specially true in the case
of model transformations where each transformation engine (e.g., the ATL9 one)
comes with its own OCL parser. This is not an ideal situation since each differs
on the kind of OCL expressions supported (and even worse, sometimes also on
how they interpret them). In this sense, SimpleOCL10 looks like a step in the
right direction for MDE tools that do not need/want to integrate the full OCL
language. SimpleOCL is intended as an embeddable OCL implementation for
inclusion in transformation languages.

5.2 UML Tools with OCL Support

Unfortunately only a handful of UML modeling tools are equipped with OCL
support. By “OCL support” we mean that the UML tool is able to at least
understand (i.e., parse) the OCL expressions attached to the model and not
treat them just as plain text strings (same as they were just natural language).

Some exceptions are:

– ArgoUML11 provides syntax and type checking of OCL expressions thanks
to the integration of DresdenOCL

– Rational Rose thanks to the OClarity plug-in12 offers syntax,type and some
semantic checkings for OCL Expressions (e.g., detecting that a non-navigable
association is traversed as part of the expression)

– Enterprise Architect13 allows users to add and validate OCL constraints

7 http://www.eclipse.org/modeling/mdt/?project=ocl
8 http://www.dresden-ocl.org/index.php/DresdenOCL
9 http://www.eclipse.org/atl/

10 http://soft.vub.ac.be/soft/research/mdd/simpleocl
11 http://argouml.tigris.org/
12 http://www.empowertec.de/products/rational-rose-ocl/
13 http://www.sparxsystems.com/

http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.dresden-ocl.org/index.php/DresdenOCL
http://www.eclipse.org/atl/
http://soft.vub.ac.be/soft/research/mdd/simpleocl
http://argouml.tigris.org/
http://www.empowertec.de/products/rational-rose-ocl/
http://www.sparxsystems.com/

Object Constraint Language (OCL) 85

– MagicDraw14 includes an OCL execution engine that can be used to write,
validate (models vs metamodels, instances vs models) and execute (e.g.,
querying) OCL expressions

– Borland Together15 offers syntax highlighting and checking of OCL expres-
sions

– Several UML tools in Eclipse like Papyrus16 integrate the MDT/OCL com-
ponent introduced in the previous section.

We believe that the increasing quality and availability of OCL parsers and eval-
uators ready to be embedded in other tools will help to improve this situation
in the near future.

5.3 Verification and Validation Tools for OCL

OCL is a very expressive language that allows designer to write complex con-
straint, derivation rules, pre/postconditions,etc. Therefore, it is easy to make
mistakes while writing OCL expressions. Tools mentioned in the previous sec-
tion take care of the syntactic errors (i.e., they make sure that the expressions
are “grammatically” correct). Nevertheless, syntactic correctness is not enough.
This section introduces some tools to validate and verify OCL expressions. With
these tools designers may check that the expressions are a valid representation of
the domain and that there are no inconsistencies, redundancies, ... among them.

The tool USE (UML-based Specification Environment) [16,19] can be em-
ployed to validate and partly to verify a model. System states (snapshots of a
running system) can be created semi-automatically and manipulated. For each
snapshot the OCL constraints are automatically checked and the results are
given to the designer using graphical or textual views. This simulation of the
system allows designers to identify if the model is overconstrained (i.e., some
valid situations in the domain are not allowed by the specification) or undercon-
strained (some invalid scenarios are evaluated as correct in the specification).
With USE properties like constraint consistency or independency [17] can be
checked. USE supports UML class, object, sequence and statechart diagrams.

Advanced correctness properties may require a more complete reasoning on
the expressions and the system states that each constraint restricts. At least,
we must ensure that the constraints are satisfiable, i.e., there are finite and non-
empty system states that evaluate to true all model constraints at the same
time (obiously, if the model constraints are unsatisfiable, the model is useless
since users will never be able to create valid instantiations of it). Unfortunately,
reasoning on OCL is undecidable in general. Therefore, current verification tools
either require user interaction with the verification procedure (e.g., HOL-OCL
[6], based on the Isabelle theorem prover), restrict the OCL constructs that
can be used when writing OCL expressions (e.g., [23], based on query contain-
ment checking techniques) or follow a bounded verification approach, where the

14 https://www.magicdraw.com/
15 http://www.borland.com/us/products/together/index.aspx
16 http://www.eclipse.org/modeling/mdt/papyrus/Papyrus

https://www.magicdraw.com/
http://www.borland.com/us/products/together/index.aspx
http://www.eclipse.org/modeling/mdt/papyrus/Papyrus

86 J. Cabot and M. Gogolla

search space is finite in order to guarantee termination. The bounds in the veri-
fication are set by limiting the number of instances and restricting the attribute
domains to explore during the verification. Examples of tools in this category
are UML2Alloy [1] (based on a translation of the UML/OCL models into Al-
loy), [24] (OCL constraints reexpressed as a boolean satisfiability problem) and
UMLtoCSP [8] and EMFtoCSP17(UML/OCL and EMF models, respectively,
are reexpressed as a Constraint Satisfaction Problem (CSP)).

Other correctness properties can be defined in terms of this basic satisfiability
property.

5.4 Code Generation from OCL Expressions

Constraints at the model level state conditions that the “data” ot the system
must satisfy at runtime. Therefore, the implementation of a system must guar-
antee that all operations that modify the system state will leave the data in
a consistent state (by consistent we mean a state that evaluates to true all
model invariants). Clearly, the best way to achieve this goal (and to reuse the
effort put by the designers when precisely specifying the models) is by provid-
ing code-generation techniques that take the OCL constraints and produce the
appropriate checking code in the target platform where the system is going to
be executed.

Typically, OCL expressions are translated into code either as database triggers
or as part of the method bodies in the classes corresponding to the constraint
context types. Roughly, in the database strategy each invariant is translated as
a SQL SELECT expression (or a view) that returns a value if the data does
not satisfy that given constraint (usually, this value returned by the SELECT is
the set of rows that are inconsistent). This SELECT expression is called inside
the body of a trigger so that if the SELECT returns a non-empty value then the
trigger raises an exception. Triggers are fired after every change on the data to
make sure that the system is always in a consistent state. When implementing
the constraints as part of an object-oriented language, constraints are usually
embedded in the method bodies of the classes. There are several ways to embed
them. For instance, we could add them as if-then conditions at the beginning of
the method or, if the language offers this possibility, as assertion expressions.

In both scenarios, the efficiency of the integrity checking process can be im-
proved a lot if we follow an incremental checking strategy [11]. The idea is to
minimize the amount of data that must be reevaluated after every update on the
system state by determining at design-time, when and how each constraint must
be checked at runtime to avoid irrelevant verifications. Clearly, the NoRentals-
BlackListed invariant can become violated when adding a rental to a BlackListed
person but not when changing the name of that person, nor when we remove
one of his rentals or change its rental price. Therefore, instead of checking this
constraint after each state change we can just check it (and only for the affected
pieces of data) after assignments of new rentals, a blacklisting of a Customer or

17 http://code.google.com/a/eclipselabs.org/p/emftocsp/

http://code.google.com/a/eclipselabs.org/p/emftocsp/

Object Constraint Language (OCL) 87

changes on the involved dates and forget about it for all the other events. This
“knowledge” can be used to decide which triggers must call the SELECT ex-
pression corresponding to this constraint or on which method bodies the if-then
condition for the constraint must be added.

Despite the usefulness of these code-generation techniques for OCL, most
MDD tools do not include them as part of their code-generation features (in
fact, for this particular aspect the survey in [10] is still valid nowadays). Some
prefer to provide more limited (in terms of expressiveness) DSLs that allow users
to define simple validation rules to be implemented in the interface layer (as part
of form validation conditions).

6 Research Agenda for OCL

This section hints at some research lines we belive are important challenges for
the evolution and continued success of OCL.

6.1 Modularization and Extensibility

OCL is a very expressive language with an extensive standard library. In fact, the
large number of operators in the library and their overlappings (many expressions
can be written using alternative combinations of operators) may be confusing
for users only interested in writing simple expressions.

On the other hand, the library is missing some relevant operators, like basic
statistical functions [9] that make cumbersome using OCL in some domains.

Therefore, we believe there is a clear need of adding modularization constructs
to the language that enable users to select the exact set of OCL modules they
need, including, when necessary, the import of external OCL libraries created
by OCL experts to extend the language.

The need of OCL libraries has also been raised by other researchers [2], [28]
but it is still an open problem with many issues to be solved: how to make
the libraries available?, who validates them?, strategies to solve conflicts when
importing several libraries?, how are the libraries defined?, how to express the
semantic of each individual operation?, etc.

6.2 Language Improvements

Even if OCL is already in its version 2.3 the language itself offers plenty of
opportunities for improvement both at the concrete and abstract syntax levels.

At the concrete level, users still have problems with some notational aspects
like the overlapping of the dot notation and the arrow notation for collections
with a single element. Besides, OCL expressions involving iterators become quite
verbose quickly so a few shortcuts have been proposed18. Moreover, at the ab-
stract syntax level, several issues regarding the OCL type system (e.g., [7]) and
undefinedness semantics [5] have been detected. Not to mention that OCL is still
missing a complete definition of its formal semantics.

18 http://eclipsemde.blogspot.com/2010/05/acceleo-ocl-made-simple.html

http://eclipsemde.blogspot.com/2010/05/acceleo-ocl-made-simple.html

88 J. Cabot and M. Gogolla

6.3 Efficient Reasoning on OCL Expressions

The application of MDE to more complex problems (like model-driven reverse
engineering where very large models are automatically obtained from source
code) requires efficient evaluation and reasoning techniques for OCL. Right now,
OCL analysis techniques exhibit scalability issues when dealing with large models
(e.g., when verifying them or when identifying matching submodels as part of a
model transformation).

Some initial results in the area have focused on the incremental [11,3] or
lazy evaluation of OCL expressions [25]. In the former, we aim to minimize the
number of instances that are accessed every time we evaluate the expression while
in the latter we delay the evaluation of the OCL expressions to the last possible
moment, i.e., only when the user wants to access an element that it is computed
by an OCL expression (e.g., a target element in a model transformation), that
expression is evaluated.

Nevertheless much work needs to be done. One area worth exploring is the use
of a cloud computing environment as an execution infrastructure for OCL-related
analysis services. The model to be evaluated could be sliced and processed in
parallel in a network of virtual nodes in the cloud.

6.4 Establishing an OCL Community

One aspect hindering the adoption (and as a consequence the evolution) of OCL
is the lack of an established community of OCL practitioners that pushes the
language forward.

The OCL and Textual Modeling Languages Workshop19 is the most impor-
tant (and basically the only) annual meeting point for researchers. Even though
the organizers (among them the authors of this chapter) always try to bring
industrial practitioners, the success is limited.

The OMG OCL RTF (Revision Task Force) who maintains the OCL specifica-
tion could lead the creation of a professional community around OCL but given
the closed20 nature of the OMG, its impact is rather limited. For instance, it has
been proven very difficult for researchers to influence the evolution of the OCL
standard (of course, this is not only OMG’s fault but also due to the nature of
the research work; researchers have very limited time and resources to actively
participate in standardization committees).

Some online forums, like the Eclipse OCL community forum21 facilitate a joint
discussion between researchres and practitioners but they focus on specific tools.
The OCL Portal22 was born with the goal of collecting all information about
OCL but unfortunately the activity level is low. OCL is also a topic discussed
in the Modeling Languages portal23.

19 See http://gres.uoc.edu/OCL2011/ for information on its latest edition
20 The results of the task force are public but participation for non-OMG members is

restricted.
21 http://www.eclipse.org/forums/index.php?t=thread&frm_id=26
22 http://st.inf.tu-dresden.de/ocl/
23 http://modeling-languages.com

http://gres.uoc.edu/OCL2011/
http://www.eclipse.org/forums/index.php?t=thread&frm_id=26
http://st.inf.tu-dresden.de/ocl/
http://modeling-languages.com

Object Constraint Language (OCL) 89

We hope that with the increasing adoption of OCL, the number of practi-
tionesr reaches the critical mass needed to create a real community around the
language where researchres and practitioners work and discuss together.

7 Conclusions

This chaper has provided a broad overview of the OCL language including its
main usage scenarios, a precise overview of the language constructs and the
current tool support available to those interested in using OCL in their new
software development projects.

Of course, OCL is far from perfect. We have identified several research chal-
lenges that the community must address in order to facilitate the adoption of
OCL among practitioners. We hope by now you are convinced that, given the im-
portant role of OCL in the model-driven engineering paradigm, these challenges
are worth pursuing.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A Challenging Model
Transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MoD-
ELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

2. Baar, T.: On the need of user-defined libraries in OCL. ECEASST 36 (2010)
3. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös,

A.: Incremental Evaluation of Model Queries over EMF Models. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MoDELS 2010, Part I. LNCS, vol. 6394, pp.
76–90. Springer, Heidelberg (2010)

4. Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure spec-
ifications. IEEE Trans. Software Eng. 21(10), 785–798 (1995)

5. Brucker, A.D., Krieger, M.P., Wolff, B.: Extending OCL with null-references. In:
Ghosh [15], pp. 261–275

6. Brucker, A.D., Wolff, B.: The HOL-OCL book. Technical Report 525, ETH Zurich
(2006)

7. Büttner, F., Gogolla, M., Hamann, L., Kuhlmann, M., Lindow, A.: On better
understanding OCL collections or an OCL ordered set is not an OCL set. In:
Ghosh [15], pp. 276–290

8. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification
of UML/OCL models using constraint programming. In: ASE, pp. 547–548. ACM
(2007)

9. Cabot, J., Mazón, J.-N., Pardillo, J., Trujillo, J.: Specifying aggregation functions
in multidimensional models with OCL. In: Parsons, et al. [22], pp. 419–432

10. Cabot, J., Teniente, E.: Constraint Support in MDA Tools: A Survey. In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 256–267. Springer,
Heidelberg (2006)

11. Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual
schemas. Journal of Systems and Software 82(9), 1459–1478 (2009)

12. Chimiak-Opoka, J.D., Demuth, B., Awenius, A., Chiorean, D., Gabel, S., Hamann,
L., Willink, E.D.: OCL tools report based on the ide4OCL feature model. ECE-
ASST 44 (2011)

90 J. Cabot and M. Gogolla

13. Dobing, B., Parsons, J.: How UML is used. Commun. ACM 49, 109–113 (2006)
14. Frias, L., Queralt, A., Olivé, A.: Eu-rent car rentals specification. Technical Report

LSI Research Report. LSI-03-59-R, UPC (2003)
15. Ghosh, S. (ed.): MoDELS 2009. LNCS, vol. 6002. Springer, Heidelberg (2010)
16. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCLModels in USE by

Automatic Snapshot Generation. Journal on Software and System Modeling 4(4),
386–398 (2005)

17. Gogolla, M., Büttner, F., Richters, M.: Use: A UML-based specification environ-
ment for validating UML and OCL. Sci. Comput. Program. 69(1-3), 27–34 (2007)

18. Heidenreich, F., Wende, C., Demuth, B.: A framework for generating query lan-
guage code from OCL invariants. ECEASST 9 (2008)

19. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive Validation of OCL Models
by Integrating SAT Solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS
2011. LNCS, vol. 6705, pp. 290–306. Springer, Heidelberg (2011)

20. Object Management Group. OCL 2.3.1 Specification (2010)
21. Object Management Group. UML 2.4.1 Superstructure Specification (2011)
22. Parsons, J., Saeki, M., Shoval, P., Woo, C.C., Wand, Y. (eds.): ER 2010. LNCS,

vol. 6412. Springer, Heidelberg (2010)
23. Queralt, A., Rull, G., Teniente, E., Farré, C., Urṕı, T.: Aurus: Automated reasoning

on UML/OCL schemas. In: Parsons, et al. [22], pp. 438–444
24. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying UM-

L/OCL models using boolean satisfiability. In: DATE, pp. 1341–1344. IEEE (2010)
25. Tisi, M., Mart́ınez, S., Jouault, F., Cabot, J.: Lazy Execution of Model-to-Model

Transformations. In: Whittle, J., Clark, T., Kühne, T. (eds.) MoDELS 2011. LNCS,
vol. 6981, pp. 32–46. Springer, Heidelberg (2011)

26. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA. Addison-Wesley (2003)

27. Wieringa, R.: A survey of structured and object-oriented software specification
methods and techniques. ACM Comput. Surv. 30(4), 459–527 (1998)

28. Willink, E.D.: Modeling the OCL standard library. ECEASST 44 (2011)

Model Transformations

Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio

Dipartimento di Informatica
Università degli Studi dell’Aquila

I-67100 L’Aquila, Italy
name.surname@univaq.it

Abstract. In recent years, Model-Driven Engineering has taken a leading role
in advancing a new paradigm shift in software development. Leveraging models
to a first-class status is at the core of this methodology. Shifting the focus of
software development from coding to modeling permits programs to transform
models in order to generate other models which are amenable for a wide range
of purposes, including code generation. This paper introduces a classification of
model transformation approaches and languages, illustrating the characteristics
of the most prominent ones. Moreover, two specific application scenarios are
proposed to highlight bidirectionality and higher-order transformations in the
change propagation and coupled evolution domains, respectively.

1 Introduction

In recent years, Model-Driven Engineering [1] (MDE) has taken a leading role in ad-
vancing a new paradigm shift in software development. Leveraging models to a first-
class status is at the core of this methodology. In particular, MDE proposes to extend
the formal use of modelling languages in several interesting ways by adhering to the
“everything is a model” principle [2]. Domains are analysed and engineered by means
of metamodels, i.e., coherent sets of interrelated concepts. A model is said to conform
to a metamodel, or in other words it is expressed in terms of the concepts formalized
in the metamodel, constraints are expressed at the metalevel, and model transforma-
tions occur to produce target models out of source ones. Summarizing, these constitute
a body of inter-related entities pursuing a common scope as in an ecosystem [3]. In this
respect, model transformations represent the major gluing mechanism of the ecosystem
by bridging different abstraction layers and/or views of a system. To this end, they re-
quire “specialized support in several aspects in order to realize the full potential, for
both the end-user and transformation developer” [4].

In 2002 OMG issued the Query/View/Transformation Request For Proposal [5] in an
attempt to define a standard transformation language. Although a final specification has
been adopted at the end of 2005, the area of model transformation can still be considered
in its infancy and further research is necessary

a) to investigate intrinsic characteristics of model transformation languages, such as
bidirectionality, change propagation, and genericity;

b) to examine and devise transformation semantics, strategies and tools for testing and
automatically verifying transformations; finally

M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.): SFM 2012, LNCS 7320, pp. 91–136, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

92 D. Di Ruscio, R. Eramo, and A. Pierantonio

c) to extend the scope of model transformation by assessing its full potential for new
applications.

Interestingly, while a) and b) are analogous to what has been done in traditional pro-
gramming research, c) is dealing with problems and needs which emerged over the last
years during the adoption and deployment of MDE in industry. Since the beginning,
model transformations have always been conceived as the essential mean to mainly
transform models in order to generate artifacts considered very close to the final system
(e.g., see [6–9] for the Web domain). However, lately specialized languages and tech-
niques have been introduced to address more complex problems such as the coupled
evolution which typically emerges during an MDE ecosystem life-cycle (e.g., [10–12]),
or to manage simulation and fault detection in software systems (e.g., [13]).

In this paper, we summarize a classification of model transformation approaches
and illustrate the main characteristics of prominent languages falling in this classifi-
cation. Then, change propagation and coupled evolution are considered to illustrate
complex application scenarios assessing the potential and significance of model trans-
formations as described in the following.

Change Propagation. Change propagation and bidirectionality are relevant aspects
in model transformations: often it is assumed that during development only the source
model of a transformation undergoes modifications, however in practice it is necessary
for developers to modify both the source and the target models of a transformation and
propagate changes in both directions [14, 15]. There are two main approaches for realiz-
ing bidirectional transformations and supporting change propagation: by programming
forward and backward transformations in any convenient unidirectional language and
manually ensuring they are consistent; or by using a bidirectional transformation lan-
guage where every program describes both a forward and a backward transformation
simultaneously. A major advantage of the latter approach is that the consistency of the
transformations can be guaranteed by construction.

Metamodel/Model Coupled Evolution. Evolution is an inevitable aspect which af-
fects the whole life-cycle of software systems [16]. In general, artefacts can be sub-
ject to many kinds of changes, which range from requirements through architecture
and design, to source code, documentation and test suites. Similarly to other software
artefacts, metamodels can evolve over time too [17]. Accordingly, models need to be
co-adapted1 in order to remain compliant to the metamodel and not become eventually
invalid. When manually operated the adaptation is error-prone and can give place to
inconsistencies between the metamodel and the related artefacts. Such issue becomes
very relevant when dealing with enterprise applications, since in general system mod-
els encompass a large population of instances which need to be appropriately adapted,
hence inconsistencies can possibly lead to irremediable information erosion [18].

Outline. The structure of the paper is as follows. In Section 2 we review the basic
concepts of Model-Driven Engineering, i.e., models, metamodels, and transformations.

1 The terms (co-)adaptation, (co-)evolution, and coupled evolution will be used as synonyms
throughout the paper, although in some approached the term coupled evolution denoted the
parallel and coordinated evolution of two classes of artifacts.

Model Transformations 93

Next section illustrates a number of approaches to model transformations and their
characteristics, also prominent languages are outlined. Section 4 presents the Janus
Transformation Language (JTL), a declarative model transformation language specifi-
cally tailored to support bidirectionality and change propagation. Section 5 proposes an
approach based on higher-order model transformations (HOTs) to model coupled evo-
lution. In particular, HOTs take a difference model formalizing the metamodel modifi-
cations and generate a model transformation able to adapt and recovery the validity of
the compromised models. Section 6 draws some conclusions.

2 Model Driven Engineering

Model-Driven Engineering (MDE) refers to the systematic use of models as first-class
entities throughout the software engineering life cycle. Model-driven approaches shift
development focus from traditional programming language codes to models expressed
in proper domain specific modeling languages. The objective is to increase productivity
and reduce time to market by enabling the development of complex systems by means
of models defined with concepts that are much less bound to the underlying implemen-
tation technology and are much closer to the problem domain. This makes the models
easier to specify, understand, and maintain [19] helping the understanding of complex
problems and their potential solutions through abstractions.

The concept of Model Driven Engineering emerged as a generalization of the Model
Driven Architecture (MDA) proposed by OMG in 2001 [20]. Kent [21] defines MDE on
the base of MDA by adding the notion of software development process and modeling
space for organizing models. Favre [22] proposes a vision of MDE where MDA is just
one possible instance of MDE implemented by means of a set of technologies defined by
OMG (MOF [23], UML [24], XMI [25], etc.) which provided a conceptual framework
and a set of standards to express models, metamodels, and model transformations.

Even though MDA and MDE rely on models that are considered “first class citizens”,
there is no common agreement about what is a model. In [26] a model is defined as “a
set of a statements about a system under study”. Bézivin and Gerbé in [27] define a
model as “a simplification of a system built with an intended goal in mind. The model
should be able to answer questions in place of the actual system”. According to Mel-
lor et al. [28] a model “is a coherent set of formal elements describing something (e.g.
a system, bank, phone, or train) built for some purpose that is amenable to a particu-
lar form of analysis” such as communication of ideas between people and machines,
test case generation, transformation into an implementation etc. The MDA guide [20]
defines a model of a system as “a description or specification of that system and its
environment for some certain purpose. A model is often presented as a combination of
drawings and text. The text may be in a modeling language or in a natural language”.

In MDE models are not considered as merely documentation but precise artifacts
that can be understood by computers and can be automatically manipulated. In this sce-
nario metamodeling plays a key role. It is intended as a common technique for defin-
ing the abstract syntax of models and the interrelationships between model elements.
metamodeling can be seen as the construction of a collection of “concepts” (things,
terms, etc.) within a certain domain. A model is an abstraction of phenomena in the

94 D. Di Ruscio, R. Eramo, and A. Pierantonio

meta-metamodel

Metamodel

model

instance

conformsTo

Level

M2

M3

M1

M0

conformsTo

describedBy

MOF

conformsTo

UML SPEM CWM

conformsTo conformsTo
conformsTo

UML
Model

real
System

describedBy

conformsTo

EBNF

Pascal
grammar

Java
grammar

Java
Program P

conformsTo conformsTo

Execution
of P

describedBy

conformsTo conformsTo

conformsTo

XSD

XSD
Schema S1

XSD
Schema S2

XML
Document

conformsTo

conformsTo conformsTo

conformsTo

Data

describedBy

Fig. 1. The four layer metamodeling architecture

real world, and a metamodel is yet another abstraction, highlighting properties of the
model itself. A model is said to conform to its metamodel like a program conforms to
the grammar of the programming language in which it is written [2]. In this respect,
OMG has introduced the four-level architecture shown in Fig. 1. At the bottom level,
the M0 layer is the real system. A model represents this system at level M1. This model
conforms to its metamodel defined at level M2 and the metamodel itself conforms to the
metametamodel at level M3. The metametamodel conforms to itself. OMG has proposed
MOF [23] as a standard for specifying metamodels. For example, the UML metamodel
is defined in terms of MOF. A supporting standard of MOF is XMI [25], which defines
an XML-based exchange format for models on the M3, M2, or M1 layer. In EMF [29],
Ecore is the provided language for specifying metamodels. This metamodeling archi-
tecture is common to other technological spaces as discussed by Kurtev et al. in [30].
For example, the organization of programming languages and the relationships between
XML documents and XML schemas follows the same principles described above (see
Fig. 1).

In addition to metamodeling, model transformation is also a central operation in
MDE. While technologies such as MOF [23] and EMF [29] are well-established foun-
dations on which to build metamodels, there is as yet no well-established foundation on
which to rely in describing how we take a model and transform it to produce a target
one. In the next section more insights about model transformations are given and after
a brief discussion about the general approaches, the attention focuses on some of the
today’s available languages.

3 Model Transformations

The MDA guide [20] defines a model transformation as “the process of converting one
model to another model of the same system”. Kleppe et al. [31] defines a transformation
as the automatic generation of a target model from a source model, according to a
transformation definition. A transformation definition is a set of transformation rules
that together describe how a model in the source language can be transformed to a
model in the target language. A transformation rule is a description of how one or more

Model Transformations 95

Fig. 2. Basic Concepts of Model Transformation

constructs in the source language can be transformed to one or more constructs in the
target language.

Rephrasing these definitions by considering Fig. 2, a model transformation program
takes as input a model conforming to a given source metamodel and produces as output
another model conforming to a target metamodel. The transformation program, com-
posed of a set of rules, should itself considered as a model. As a consequence, it is based
on a corresponding metamodel, that is an abstract definition of the used transformation
language.

Many languages and tools have been proposed to specify and execute transforma-
tion programs. In 2002 OMG issued the Query/View/Transformation request for pro-
posal [5] to define a standard transformation language. Even though a final specification
has been adopted at the end of 2005, the area of model transformation continues to be a
subject of intense research. Over the last years, in parallel to the OMG process a num-
ber of model transformation approaches have been proposed both from academia and
industry. The paradigms, constructs, modeling approaches, tool support distinguish the
proposals each of them with a certain suitability for a certain set of problems.

In the following, a classification of the today’s model transformation approaches is
briefly reported, then some of the available model transformation languages are sepa-
rately described. The classification is mainly based upon [32] and [33].

3.1 Classification

At top level, model transformation approaches can be distinguished between model-to-
model and model-to-text. The distinction is that, while a model-to-model transformation
creates its target as a model which conforms to the target metamodel, the target of a
model-to-text transformation essentially consists of strings. In the following some clas-
sifications of model-to-model transformation languages discussed in [32] are described.

Direct Manipulation Approach. It offers an internal model representation and some
APIs to manipulate it. It is usually implemented as an object oriented framework, which
may also provide some minimal infrastructure. Users have to implement transformation

96 D. Di Ruscio, R. Eramo, and A. Pierantonio

rules, scheduling, tracing and other facilities, mostly from the beginning in a program-
ming language.

Operational Approach. It is similar to direct manipulation but offers more dedicated
support for model transformations. A typical solution in this category is to extend the
utilized metamodeling formalism with facilities for expressing computations. An ex-
ample would be to extend a query language such as OCL with imperative constructs.
Examples of systems in this category are QVT Operational mappings [34], XMF [35],
MTL [36] and Kermeta [37].

Relational Approach. It groups declarative approaches in which the main concept
is mathematical relations. In general, relational approaches can be seen as a form of
constraint solving. The basic idea is to specify the relations among source and target el-
ement types using constraints that in general are non-executable. However, declarative
constraints can be given executable semantics, such as in logic programming where
predicates can be used to describe the relations. All of the relational approaches are
side-effect free and, in contrast to the imperative direct manipulation approaches, create
target elements implicitly. Relational approaches can naturally support multidirectional
rules. They sometimes also provide backtracking. Most relational approaches require
strict separation between source and target models, that is, they do not allow in-place
update. Example of relational approaches are QVT Relations [34] and those enabling
the specification of weaving models (like AMW [38]), which aim at defining rigorous
and explicit correspondences between the artifacts produced during a system develop-
ment [39]. Moreover, in [40] the application of logic programming has been explored
for the purpose. Finally, in [41] we have investigated the application of the Answer Set
Programming [42] for specifying relational and bidirectional transformations.

Hybrid Approach. It combines different techniques from the previous categories, like
ATL [43] and ETL [44] that wrap imperative bodies inside declarative statements.

Graph-Transformation Based Approach. It draws on the theoretical work on graph
tranformations. Describing a model transformation by graph transformation, the source
and target models have to be given as graphs. Performing model transformation by
graph transformation means to take the abstract syntax graph of a model, and to trans-
form it according to certain transformation rules. The result is the syntax graph of the
target model. Being more precise, graph transformation rules have an LHS and an RHS
graph pattern. The LHS pattern is matched in the model being transformed and replaced
by the RHS pattern in place. In particular, LHR represents the pre-condition of the given
rule, while RHS describes the post-conditions. LHR ∩ RHS defines a part which has to
exist to apply the rule, but which is not changed. LHS−LHS∩RHS defines the part which
shall be deleted, and RHS − LHS ∩ RHS defines the part to be created. AGG [45] and
AToM3 [46] are systems directly implementing the theoretical approach to attributed
graphs and transformations on such graphs. They have built-in fixpoint scheduling with
non-deterministic rule selection and concurrent application to all matching locations,
and the rely on implicit scheduling by the user. The transformation rules are unidirec-
tional and in-place. Systems such as VIATRA2 [47] and GReAT [48] extend the basic
functionality of AGG and AToM3 by adding explicit scheduling. VIATRA2 users can

Model Transformations 97

build state machines to schedule transformation rules whereas GReAT relies on data-
flow graphs. Another interesting mean for transforming models is given by triple graph
grammars (TGGs), which have been introduced by Schürr[49]. TGGs are a technique
for defining the correspondence between two different types of models in a declarative
way. The power of TGGs comes from the fact that the relation between the two models
cannot only be defined, but the definition can be made operational so that one model
can be transformed into the other in either direction; even more, TGGs can be used to
synchronize and to maintain the correspondence of the two models, even if both of them
are changed independently of each other; i.e., TGGs work incrementally. The main tool
support for TGGs is Fujaba2, which provided the foundation for MOFLON3.

Rule Based Approach. Rule based approaches allow one to define multiple indepen-
dent rules of the form guard => action. During the execution, rules are activated
according to their guard not, as in more traditional languages, based on direct invo-
cation [4]. When more than one rule is fired, more or less explicit management of
such conflicting situation is provided, for instance in certain language a runtime er-
ror is raised. Besides the advantage of having an implicit matching algorithm, such
approaches permit to encapsulate fragments of transformation logic within the rules
which are self-contained units with crispy boundaries. This form of encapsulation is
preparatory to any form of transformation composition [50].

3.2 Languages

In this section some of the languages referred above are singularly described. The pur-
pose of the description is to provide the reader with an overiew of some existing model
transformation languages.

QVT. In 2002 OMG issued the QVT RFP [5] describing the requirements of a standard
language for the specification of model queries, views, and transformations according
to the following definitions:

– A query is an expression that is evaluated over a model. The result of a query is
one or more instances of types defined in the source model, or defined by the query
language. Object Constraint Language (OCL 2.0) [51] is the query language used
in QVT;

– A view is a model which is completely derived from a base model. A view cannot
be modified separately from the model from which it is derived and changes to the
base model cause corresponding changes to the view. If changes are permitted to
the view then they modify the source model directly. The metamodel of the view is
typically not the same as the metamodel of the source. A query is a restricted kind
of view. Finally, views are generated via transformations;

– A transformation generates a target model from a source one. If the source and
target metamodels are identical the transformation is called endogeneous. If they
are different the transformation is called exogeneous. A model transformation may

2 http://www.fujaba.de
3 http://www.moflon.org

http://www.fujaba.de
http://www.moflon.org

98 D. Di Ruscio, R. Eramo, and A. Pierantonio

Fig. 3. QVT Architecture

also have several source models and several target models. A view is a restricted
kind of transformation in which the target model cannot be modified independently
from the source model. If a view is editable, the corresponding transformation must
be bidirectional in order to reflect the changes back to the source model.

A number of research groups have been involved in the definition of QVT whose final
specification has been reached at the end of November 2005 [34]. The abstract syntax
of QVT is defined in terms of MOF 2.0 metamodel. This metamodel defines three sub-
languages for transforming models. OCL 2.0 is used for querying models. Creation of
views on models is not addressed in the proposal.

The QVT specification has a hybrid declarative/imperative nature, with the declar-
ative that forms the framework for the execution semantics of the imperative part. By
referring to Fig. 3, the layers of the declarative part are the following:

– A user-friendly Relations metamodel which supports the definition of complex ob-
ject pattern matching and object template creation;

– A Core metamodel defined using minimal extensions to EMOF and OCL.

By referring to [34], a relation is a declarative specification of the relationships between
MOF models. The Relations language supports complex object pattern matching, and
implicitly creates trace classes and their instances to record what occurred during a
transformation execution. Relations can assert that other relations also hold between
particular model elements matched by their patterns. Finally, Relations language has a
graphical syntax.

Concerning the Core it is a small model/language which only supports pattern match-
ing over a flat set of variables by evaluating conditions over those variables against a set
of models. It treats all of the model elements of source, target and trace models sym-
metrically. It is equally powerful to the Relations language, and because of its relative
simplicity, its semantics can be defined more simply, although transformation descrip-
tions described using the Core are therefore more verbose. In addition, the trace models
must be explicitly defined, and are not deduced from the transformation description, as
is the case with Relations. The core model may be implemented directly, or simply used
as a reference for the semantics of Relations, which are mapped to the Core, using the
transformation language itself.

To better clarify the conceptual link between Relations and Core languages, an anal-
ogy can be drawn with the Java architecture, where the Core language is like Java
Byte Code and the Core semantics is like the behavior specification for the Java Virtual
Machine. The Relations language plays the role of the Java language, and the standard

Model Transformations 99

transformation from Relations to Core is like the specification of a Java Compiler which
produces Byte Code.

Sometimes it is difficult to provide a complete declarative solution to a given trans-
formation problem. To address this issue QVT proposes two mechanisms for extend-
ing the declarative languages Relations and Core: a third language called Operational
Mappings and a mechanism for invoking transformation functionality implemented in
an arbitrary language (Black Box).

The Operational Mappings language is specified as a standard way of providing
imperative implementations. It provides OCL extensions with side effects that allow
a more procedural style, and a concrete syntax that looks familiar to imperative pro-
grammers. A transformation entirely written using Operation Mappings is called an
“operational transformation”.

The Black Box mechanism makes possible to “plug-in” and execute external code.
This permits to implement complex algorithms in any programming language, and reuse
already available libraries.

AGG. AGG [45] is a development environment for attributed graph transformation
systems supporting an algebraic approach to graph transformation. It aims at specifying
and rapid prototyping applications with complex, graph structured data. AGG supports
typed graph transformations including type inheritance and multiplicities. It may be
used (implicitly in “code”) as a general purpose graph transformation engine in high-
level JAVA applications employing graph transformation methods. The source, target,
and common metamodels are represented by typed graphs. Graphs may additionally be
attributed using Java code. Model transformations are specified by graph rewriting rules
that are applied non-deterministically until none of them can be applied anymore. If an
explicit application order is required, rules can be grouped in ordered layers. AGG fea-
tures rules with negative application conditions to specify patterns that prevent rule ex-
ecutions. Finally, AGG offers validation support that is consistency checking of graphs
and graph transformation systems according to graph constraints, critical pair analysis
to find conflicts between rules (that could lead to a non-deterministic result) and check-
ing of termination criteria for graph transformation systems. An available tool support
provides graphical editors for graphs and rules and an integrated textual editor for Java
expressions. Visual interpretation and validation of transformations are also supported.

ATL. ATL (ATLAS Transformation Language) [43] is a hybrid model transformation
language containing a mixture of declarative and imperative constructs. The former
allows to deal with simple model transformations, while the imperative part helps in
coping with transformation of higher complexity. ATL transformations are unidirec-
tional, operating on read-only source models and producing write-only target models.
During the execution of a transformation source models may be navigated but changes
are not allowed. Target models cannot be navigated.

ATL transformations are specified in terms of modules. A module contains a manda-
tory header section, import section, and a number of helpers and transformation rules.
Header section gives the name of a transformation module and declares the source and
target models (e.g., see lines 1-2 in Fig. 4). The source and target models are typed by
their metamodels. The keyword create indicates the target model, whereas the key-
word from indicates the source model. In the example of Fig. 4 the target model bound

100 D. Di Ruscio, R. Eramo, and A. Pierantonio

1module PetriNet2PNML;
2create OUT : PNML from IN : PetriNet;
3...
4rule Place {
5 from
6 e : PetriNet!Place
7 --(guard)
8 to
9 n : PNML!Place

10 (
11 name <- e.name,
12 id <- e.name,
13 location <- e.location
14),
15 name : PNML!Name
16 (
17 labels <- label
18),
19 label : PNML!Label
20 (
21 text <- e.name
22)
23}

Fig. 4. Fragment of a declarative ATL transformation

to the variable OUT is created from the source model IN. The source and target meta-
models, to which the source and target model conform, are PetriNet and PNML [52],
respectively.

Helpers and transformation rules are the constructs used to specify the transforma-
tion functionality. Declarative ATL rules are called matched rules. They specify rela-
tions between source patterns and target patterns. The name of a rule is given after the
keyword rule. The source pattern of a rule (lines 5-7, Fig. 4) specifies a set of source
types and an optional guard given as a Boolean expression in OCL. A source pattern
is evaluated on a set of matches in the source models. The target pattern (lines 8-22,
Fig. 4) is composed of a set of elements. Each of these elements (e.g., the one at lines
9-14, Fig. 4) specifies a target type from the target metamodel (e.g., the type Place

from the PNML metamodel) and a set of bindings. A binding refers to a feature of the
type (i.e. an attribute, a reference or an association end) and specifies an expression
whose value is used to initialize that feature. In some cases complex transformation
algorithms may be required and it may be difficult to specify them in a pure declarative
way. For this issue ATL provides two imperative constructs: called rules, and action
blocks. A called rule is a rule called by other ones like a procedure. An action block is
a sequence of imperative instructions that can be used in either matched or called rules.
The imperative statements in ATL are the well-known constructs for specifying control
flow such as conditions, loops, assignments, etc.

ETL. Similarly to ATL, ETL [44] (Epsilon Transformation Language) is a hybrid
model transformation language that has been developed atop the infrastructure pro-
vided by the Epsilon model management platform [53]. By building on Epsilon, ETL
achieves syntactic and semantic consistency and enhanced interoperability with a num-
ber of additional languages, also been built atop Epsilon, and which target tasks such as
model-to-text transformation, model comparison, validation, merging and unit testing.

Model Transformations 101

ETL enables the specification of transformations that can transform an arbitrary
number of source models into an arbitrary number of target models. ETL transforma-
tions are given in terms of modules. An ETL module can import a number of other
ETL modules. In this case, the importing ETL module inherits all the rules and pre/post
blocks specified in the modules it imports (recursively).

GReAT. GReAT [48] (Graph Rewriting and Transformation Language) is a graph-
transformation language that supports the high-level specification of complex model
transformation programs. In this language, one describes the transformations as se-
quenced graph rewriting rules that operate on the input models and construct an output
model. The rules specify complex rewriting operations in the form of a matching pat-
tern and a subgraph to be created as the result of the application of the rule. The rules
i) always operate in a context that is a specific subgraph of the input, and ii) are explic-
itly sequenced for efficient execution. The rules are specified visually using a graphical
model builder tool. GReAT can be divided into three distinct parts:

– Pattern specification language. This language is used to express complex patterns
that are matched to select elements in the current graph. The pattern specification
language uses a notion of cardinality on each pattern vertex and each edge;

– Graph transformation language. It is a rewriting language that uses the pattern
language described above. It treats the source model, the target model and tempo-
rary objects as a single graph that conforms to a unified metamodel. Each pattern
object’s type conforms to this metamodel and only transformations that do not vi-
olate the metamodel are allowed. At the end of the transformation, the temporary
objects are removed and the two models conform exactly to their respective meta-
models. Guards to manage the rule applications can be specified as boolean C++
expressions;

– Control flow language. It is a high-level control flow language that can control
the application of the productions and allow users to manage the complexity of
the transformations. In particular, the language supports a number of features: (i)
Sequencing, rules can be sequenced to fire one after another, (ii) Non-Determinism,
rules can be specified to be executed “in parallel”, where the order of firing of
the parallel rules is non deterministic, (iii) Hierarchy, compound rules can contain
other compound rules or primitive rules, (iv) Recursion, a high level rule can call
itself, (v) Test/Case, a conditional branching construct that can be used to choose
between different control flow paths.

VIATRA2. VIATRA2 [47] is an Eclipse-based general-purpose model transformation
engineering framework intended to support the entire life-cycle for the specification,
design, execution, validation and maintenance of transformations within and between
various modelling languages and domains.

Its rule specification language is a unidirectional transformation language based
mainly on graph transformation techniques that combines the graph transformation and
Abstract State Machines [54] into a single paradigm. Being more precise, in VIATRA2
the basic concept to define model transformations is the (graph) pattern. A pattern is a
collection of model elements arranged into a certain structure fulfilling additional con-
straints (as defined by attribute conditions or other patterns). Patterns can be matched

102 D. Di Ruscio, R. Eramo, and A. Pierantonio

on certain model instances, and upon successful pattern matching, elementary model
manipulation is specified by graph transformation rules. There is no predefined order
of execution of the transformation rules. Graph transformation rules are assembled into
complex model transformations by abstract state machine rules, which provide a set
of commonly used imperative control structures with precise semantics. This permits
to collocate VIATRA2 as a hybrid language since the transformation rule language is
declarative but the rules cannot be executed without an execution strategy specified in
an imperative manner.

Important specification features of VIATRA2 include recursive (graph) patterns,
negative patterns with arbitrary depth of negation, and generic and meta-transformations
(type parameters, rules manipulating other rules) for providing reuse of transforma-
tions [55].

4 Application Scenario 1: Change Propagation with JTL

Bidirectionality and change propagation are relevant aspects in model transformations:
often it is assumed that during development only the source model of a transformation
undergoes modifications, however in practice it is necessary for developers to mod-
ify both the source and the target models of a transformation and propagate changes
in both directions [14, 15]. There are two main approaches for realizing bidirectional
transformations: by programming forward and backward transformations in any con-
venient unidirectional language and manually ensuring they are consistent; or by using
a bidirectional transformation language where every program describes both a forward
and a backward transformation simultaneously. A major advantage of the latter ap-
proach is that the consistency of the transformations can be guaranteed by construction.
Moreover, source and target roles are not fixed since the transformation direction entails
them. Therefore, considerations made about the mapping executed in one direction are
completely equivalent to the opposite one.

The relevance of bidirectionality in model transformations has been acknowledged
already in 2005 by the Object Management Group (OMG) by including a bidirectional
language in their Query View Transformation (QVT) [56]. Unfortunately, as pointed
out by Perdita Stevens in [57] the language definition is affected by several weak-
nesses. Therefore, while MDE requirements demand enough expressiveness to write
non-bijective transformations [58], the QVT standard does not clarify how to deal with
corresponding issues, leaving their resolution to tool implementations. Moreover, a
number of approaches and languages have been proposed due to the intrinsic com-
plexity of bidirectionality. Each language is characterized by a set of specific properties
pertaining to a particular applicative domain [32].

This section outlines the Janus Transformation Language (JTL), a declarative model
transformation language specifically tailored to support bidirectionality and change
propagation. In particular, the distinctive characteristics of JTL are

– non-bijectivity, non-bijective bidirectional transformations are capable of mapping
a model into a set of models, as for instance when a single change in a target model
might semantically correspond to a family of related changes in more than one
source model. JTL provides support to non-bijectivity and its semantics assures

Model Transformations 103

that all the models are computed at once independently whether they represent the
outcome of the backward or forward execution of the bidirectional transformation;

– model approximation, generally transformations are not total which means that tar-
get models can be manually modified in such a way they are not reachable anymore
by any forward transformation, then traceability information are employed to back
propagate the changes from the modified targets by inferring the closest model that
approximates the ideal source one at best.

The language expressiveness and applicability have been validated by implementing
a number of model transformations. In this section we focus on the Collapse/Expand
State Diagrams benchmark which have been defined in the GRACE International Meet-
ing on Bidirectional Transformations [59] to compare and assess different bidirectional
approaches. The JTL semantics is defined in terms of the Answer Set Programming
(ASP) [42], a form of declarative programming oriented towards difficult (primarily
NP-hard) search problems and based on the stable model (answer set) semantics of
logic programming. Bidirectional transformations are translated via semantic anchor-
ing [60] into search problems which are reduced to computing stable models, and the
DLV solver [61] is used to perform search.

4.1 Motivating Scenario

Let us consider the Collapse/Expand State Diagrams benchmark defined in [59]: start-
ing from a hierarchical state diagram (involving some one-level nesting) as the one re-
ported in Fig. 5.a, a flat view has to be provided as in Fig. 5.b. Furthermore, any manual
modifications on the (target) flat view should be back propagated and eventually re-
flected in the (source) hierarchical view. For instance, let us suppose the designer modi-
fies the flat view by changing the name of the initial state from Begin Installation

to Start Install shield (see Δ1 change in Figure 6). Then, in order to persist such
a refinement to new executions of the transformation, the hierarchical state machine has
to be consistently updated by modifying its initial state as illustrated in Fig. 7.

The flattening is a non-injective operation requiring specific support to back prop-
agate modifications operated on the flattened state machine to the nested one. For in-
stance, the flattened view reported in Fig. 5 can be extended by adding the alternative
try again from the state Disk Error to Install software (see Δ2 changes in
Fig. 6). This gives place to an interesting situation: the new transition can be equally
mapped to each one of the nested states within Install Software as well as to
the container state itself. Consequently, more than one source model propagating the
changes exists4. Intuitively, each time hierarchies are flattened there is a loss of informa-
tion which causes ambiguities when trying to map back corresponding target revisions.
Some of these problems can be alleviated by managing traceability information of the
transformation executions which can be exploited later on to trace back the changes: like
this each generated element can be linked with the corresponding source and contribute
to the resolution of some of the ambiguities. Nonetheless, traceability is a necessary

4 It is worth noting that the case study and examples have been kept deliberately simple since
they suffice to show the relevant issues related to non-bijectivity.

104 D. Di Ruscio, R. Eramo, and A. Pierantonio

a) A sample Hierarchical State Machine (HSM).

b) The corresponding Non-Hierarchical State Machine (NHSM).

Fig. 5. Sample models for the Collapse/Expand State Diagrams benchmark

but not sufficient condition to support bidirectionality, since for instance elements dis-
carded by the mapping may not appear in the traces, as well as new elements added on
the target side. For instance, the generated flattened view in Fig. 5.b can be additionally
manipulated through the Δ3 revisions which consist of adding some extra-functional in-
formation for the Install Software state and the transition between from Memory

low and Install Software states. Because of the limited expressive power of the
hierarchical state machine metamodel which does not support extra-functional annota-
tions, the Δ3 revisions do not have counterparts in the state machine in Fig. 7.

Current declarative bidirectional languages, such as QVT relations (QVT-R), are of-
ten ambivalent when discussing non-bijective transformations as already pointed out
in [57]. Other approaches, notably hybrid or graph-based transformation techniques,
even if claiming to support bidirectionality, are able to deal only with (partially) bi-
jective mappings [14]. As a consequence, there is not a clear understanding of what

Model Transformations 105

1

2

2

3

3

Fig. 6. A revision of the generated non-hierarchical state machine

Fig. 7. The source hierarchical state machine synchronised with the target changes

non-bijectivity implies causing language implementors to adopt design decisions which
differ from an implementation to another.

In order to better understand how the different languages deal with non-bijectivity,
we have specified the hierarchical to non-hierarchical state machines transformation
(HSM2NHSM) by means of the Medini5 and MOFLON6 systems. The former is an
implementation of the QVT-R transformation language, whereas the latter is a frame-
work which bases on Triple Graph Grammars (TGGs) [49]: our experience with them
is outlined in the following

Medini. When trying to map the generated target model back to the source without
any modification, a new source model is generated which differs from the original one7.

5 http://projects.ikv.de/qvt/
6 http://www.moflon.org
7 The interested reader can access the full implementation of both the attempts at the following

address http://www.mrtc.mdh.se/˜acicchetti/HSM2NHSM.php

http://projects.ikv.de/qvt/
http://www.moflon.org
http://www.mrtc.mdh.se/~acicchetti/HSM2NHSM.php

106 D. Di Ruscio, R. Eramo, and A. Pierantonio

In particular, incoming (outgoing) transitions to (from) nested states are flattened to the
corresponding parent: when going back such mapping makes the involved nested states
to disappear (as Entry and Install in the Install Software composite in Fig. 5).
Moreover, the same mapping induces the creation of extra composite states for exist-
ing simple states, like Begin Installation and the initial and final states of the
hierarchical state machine. Starting from this status, we made the modifications on the
target model as prescribed by Fig. 6 and re-applied the transformation in the source
direction, i.e. backward. In this case, the Start Install shield state is correctly
mapped back by renaming the existing Begin Installation in the source. In the
same way, the modified transition from Disk Error to the final state is consistently
updated. However, the newly added transition outgoing from Disk Error to Install
software is mapped by default to the composite state, which might not be the pre-
ferred option for the user. Finally, the manipulation of the attributes related to memory
requirements and cost are not mapped back to any source element but are preserved
when new executions of the transformation in the target direction are triggered.

MOFLON. The TGGs implementation offered by MOFLON is capable of generating
Java programs starting from diagrammatic specifications of graph transformations. The
generated code realizes two separate unidirectional transformations which as in other
bidirectional languages should be consistent by construction. However, while the for-
ward transformation implementation can be considered complete with respect to the
transformation specification, the backward program restricts the change propagation to
attribute updates and element deletions. In other words, the backward propagation is
restricted to the contexts where the transformation can exploit trace information.

In the next sections, we firstly motivate a set of requirements a bidirectional transfor-
mation language should meet to fully achieve its potential; then, we introduce the JTL
language, its support to non-bijective bidirectional transformations, and its ASP-based
semantics.

4.2 Requirements for Bidirectionality and Change Propagation

This section refines the definition of bidirectional model transformations as proposed
in [57] by explicitly considering non-bijective cases. Even if some of the existing bidi-
rectional approaches enable the definition of non-bijective mappings [57, 15], their va-
lidity is guaranteed only on bijective sub-portions of the problem. As a consequence, the
forward transformation can be supposed to be an injective function, and the backward
transformation its corresponding inverse; unfortunately, such requirement excludes most
of the cases [62]. In general, a bidirectional transformation R between two classes of
models, say M and N, and M more expressive than N, is characterized by two unidirec-
tional transformations

−→
R : M ×N → N
←−
R : M ×N → M∗

where
−→
R takes a pair of models (m, n) and works out how to modify n so as to en-

force the relation
−→
R . In a similar way,

←−
R propagates changes in the opposite direction:←−

R is a non-bijective function able to map the target model in a set of corresponding

Model Transformations 107

source models conforming to M 8. Furthermore, since transformations are not total in
general, bidirectionality has to be provided even in the case the generated model has
been manually modified in such a way it is not reachable anymore by the considered
transformation. Traceability information is employed to back propagate the changes
from the modified targets by inferring the closest9 model that approximates the ideal
source one at best. More formally the backward transformation

←−
R is a function such

that:

(i) if R(m,n) is a non-bijective consistency relation,
←−
R generates all the resulting mod-

els according to R;
(ii) if R(m,n) is a non-total consistency relation,

←−
R is able to generate a result model

which approximates the ideal one.

This definition alone does not constrain much on the behavior of the reverse transforma-
tion and additional requirements are necessary in order to ensure that the propagation
of changes behaves as expected.

Reachability. In case a generated model has been manually modified (n′), the back-
ward transformation

←−
R generates models (m∗) which are exact, meaning that the orig-

inal target may be reached by each of them via the transformation without additional
side effects. Formally:

←−
R (m,n′) = m∗ ∈ M∗

−→
R (m′, n′) = n′ ∈ N for each m′ ∈ m∗

Choice preservation. Let n′ be the target model generated from an arbitrary model
m′ in m∗ as above: when the user selects m′ as the appropriate source pertaining to n′

the backward transformation has to generate exactly m′ from n′ disregarding the other
possible alternatives t ∈ m∗ such that t
= m′. In other words, a valid round-trip process
has to be guaranteed even when multiple sources are available [63]:

←−
R (m′,−→R (m′, n′)) = m′ for each m′ ∈ m∗

Clearly, the above requirement in order to be met demands for adequate traceability
information management.

In the rest of the paper, the proposed language is introduced and shown to satisfy the
above requirements. The details of the language and its supporting development envi-
ronment are presented in Section 4.3, whereas in Section 4.4 the usage of the language
is demonstrated by means of the benchmark case.

8 For the sake of readability, we consider a non-bijective backward transformation assuming
that only M contains elements not represented in N . However, the reasoning is completely
analogous for the forward transformation and can be done by exchanging the roles of M and
N .

9 This concept is clarified in Sect. 4.3, where the transformation engine and its derivation mech-
anism are discussed.

108 D. Di Ruscio, R. Eramo, and A. Pierantonio

Fig. 8. Architecture overview of the JTL environment

4.3 The Janus Transformation Language

The Janus Transformation Language (JTL) is a declarative model transformation lan-
guage specifically tailored to support bidirectionality and change propagation. The im-
plementation of the language relies on the Answer Set Programming (ASP) [42]. This
is a form of declarative programming oriented towards difficult (primarily NP-hard)
search problems and based on the stable model (answer set) semantics of logic pro-
gramming. Being more precise model transformations specified in JTL are transformed
into ASP programs (search problems), then an ASP solver is executed to find all the
possible stable models that are sets of atoms which are consistent with the rules of the
considered program and supported by a deductive process.

The overall architecture of the environment supporting the execution of JTL trans-
formations is reported in Fig. 8. The JTL engine is written in the ASP language and
makes use of the DLV solver [61] to execute transformations in both forward and back-
ward directions. The engine executes JTL transformations which have been written in
a QVT-like syntax, and then automatically transformed into ASP programs. Such a se-
mantic anchoring has been implemented in terms of an ATL [43] transformation defined
on the JTL and ASP metamodels. Also the source and target metamodels of the con-
sidered transformation (MMsource, MMtarget) are automatically encoded in ASP and
managed by the engine during the execution of the considered transformation and to
generate the output models.

The overall architecture has been implemented as a set of plug-ins of the Eclipse
framework and mainly exploits the Eclipse Modelling Framework (EMF) [29] and the

Model Transformations 109

ATLAS Model Management Architecture (AMMA) [64]. Moreover, the DLV solver
has been wrapped and integrated in the overall environment. In the rest of the section
all the components of the architecture previously outlined are presented in detail.

The Janus Transformation Engine. As previously said the Janus transformation
engine is based on a relational and declarative approach implemented using the ASP
language to specify bidirectional transformations. The approach exploits the benefits of
logic programming that enables the specification of relations between source and target
types by means of predicates, and intrinsically supports bidirectionality [32] in terms of
unification-based matching, searching, and backtracking facilities.

Starting from the encoding of the involved metamodels and the source model (see the
serialize arrows in the Fig. 8), the representation of the target one is generated according
to the JTL specification. The computational process is performed by the JTL engine (as
depicted in Figure 8) which is based on an ASP bidirectional transformation program
executed by means of an ASP solver called DLV [61].

Encoding of Models and Metamodels. In the proposed approach, models and meta-
models are defined in a declarative manner by means of a set of logic assertions. In
particular, they are considered as graphs composed of nodes, edges and properties that
qualify them. The metamodel encoding is based on a set of terms each characterized by
the predicate symbols metanode, metaedge, and metaprop, respectively. A fragment
of the hierarchical state machine metamodel considered in Section 4.1 is encoded in
Listing 1.1. For instance, the metanode(HSM,state) in line 1 encodes the metaclass
state belonging to the metamodel HSM. The metaprop(HSM,name,state) in line 3
encodes the attribute named name of the metaclass state belonging to the metamodel
HSM. Finally, the metaedge(HSM,association,source,transition,state) in
line 6 encodes the association between the metaclasses transition and state, typed
association, named source and belonging to the metamodel HSM. The terms in-
duced by a certain metamodel are exploited for encoding models conforming to it. In
particular, models are sets of entities (represented through the predicate symbol node),
each characterized by properties (specified by means of prop) and related together
by relations (represented by edge). For instance, the state machine model in Fig. 5
is encoded in the Listing 1.2. In particular, the node(HSM,"s1",state) in line 1

encodes the instance identified with "s1" of the class state belonging to the meta-
model HSM. The prop(HSM,"s1",name,"start") in line 4 encodes the attribute

1metanode(HSM, state).
2metanode(HSM, transition).
3metaprop(HSM, name, state).
4metaprop(HSM, trigger, transition).
5metaprop(HSM, effect, transition).
6metaedge(HSM, association, source, transition, state).
7metaedge(HSM, association, target, transition, state).
8[...]

Listing 1.1. Fragment of the State Machine metamodel

110 D. Di Ruscio, R. Eramo, and A. Pierantonio

1node(HSM, "s1", state).
2node(HSM, "s2", state).
3node(HSM, "t1", transition).
4prop(HSM,"s1.1","s1",name,"begin installation").
5prop(HSM,"s2.1","s2",name,"install software").
6prop(HSM,"t1.1","t1",trigger,"install software").
7prop(HSM,"t1.2","t1",effect,"start install").
8edge(HSM,"tr1",association,source, "s1","t1").
9edge(HSM,"tr1",association,target, "s2","t1").

10[...]

Listing 1.2. Fragment of the State Machine model in Figure 5

name of the class "s1" with value "start" belonging to the metamodel HSM. Fi-
nally, the edge(HSM,"tr1",association,source,"s1","t1") in line 7 encodes
the instance "tr1" of the association between the state "s1" and the transition "t1"

belonging to the metamodel HSM.

Model Transformation Execution. After the encoding phase, the deduction of the tar-
get model is performed according to the rules defined in the ASP program. The trans-
formation engine is composed of i) relations which describe correspondences among
element types of the source and target metamodels, ii) constraints which specify re-
strictions on the given relations that must be satisfied in order to execute the corre-
sponding mappings, and an iii) execution engine (described in the rest of the section)
consisting of bidirectional rules implementing the specified relations as executable map-
pings. Relations and constraints are obtained from the given JTL specification, whereas
the execution engine is always the same and represents the bidirectional engine able
to interpret the correspondences among elements and execute the transformation. The
transformation process logically consists of the following steps:

(i) given the input (meta)models, the execution engine induces all the possible solution
candidates according to the specified relations;

(ii) the set of candidates is refined by means of constraints.

Listing 1.3 contains a fragment of the ASP code implementing relations and constraints
of the HSM2NHSM transformation discussed in Section 4.1. In particular, the terms
in lines 1-2 define the relation called "r1" between the metaclass State machine

belonging to the HSM metamodel and the metaclass State machine belonging to the
NHSM metamodel. An ASP constraint expresses an invalid condition: for example, the
constraints in line 3-4 impose that each time a state machine occurs in the source model
it has to be generated also in the target model. In fact, if each atoms in its body is true
then the correspondent solution candidate is eliminated. Similarly, the relation between
the metaclasses State of the involved metamodels is encoded in line 6-7. In this case,
constraints in line 8-11 impose that each time a state occurs in the HSM model, the
correspondent one in the NHSM model is generated only if the source element is not a
sub-state, vice versa, each state in the NHSM model is mapped into the HSM model. Fi-
nally, the relation between the metaclasses Composite state and State is encoded

Model Transformations 111

1relation ("r1", HSM, stateMachine).
2relation ("r1", NHSM, stateMachine).
3:- node(HSM, "sm1", stateMachine), not node’(HSM, "sm1", stateMachine).
4:- node(NHSM, "sm1", stateMachine), not node’(NHSM, "sm1", stateMachine).
5
6relation ("r2", HSM, state).
7relation ("r2", NHSM, state).
8:- node(HSM, "s1", state), not edge(HSM, "ow1", owningCompositeState, "s1", "cs1

"), not node’(NHSM, "s1", state).
9:- node(HSM, "s1", state), edge(HSM, "ow1", owningCompositeState, "s1", "cs1"),

node(HSM, "cs1", compositeState), node’(NHSM, "s1", state).
10:- node(NHSM, "s1", state), not trace_node(HSM, "s1", compositeState), not node

’(HSM, "s1", state).
11:- node(NHSM, "s1", state), trace_node(HSM, "s1", compositeState), node’(HSM, "

s1", state).
12
13relation ("r3", HSM, compositeState).
14relation ("r3", NHSM, state).
15:- node(HSM, "s1", compositeState), not node’(NHSM, "s1", state).
16:- node(NHSM, "s1", state), trace_node(HSM, "s1", compositeState), not node’(HSM

, "s1", compositeState).
17[...]

Listing 1.3. Fragment of the HSM2NHSM transformation

in line 13-14. Constraints in line 15-16 impose that each time a composite state oc-
curs in the HSM model a correspondent state in the NHSM model is generated, and
vice versa. Missing sub-states in a NHSM model can be generated again in the HSM
model by means of trace information (see line 10-11 and 16). Trace elements are au-
tomatically generated each time a model element is discarded by the mapping and need
to be stored in order to be regenerated during the backward transformation.

Note that the specification order of the relations is not relevant as their execution is
bottom-up; i.e., the final answer set is always deduced starting from the more nested
facts.

Execution Engine. The specified transformations are executed by a generic engine
which is (partially) reported in Listing 1.4. The main goal of the transformation ex-
ecution is the generation of target elements as the node’ elements in line 11 of List-
ing 1.4. As previously said transformation rules may produce more than one target
models, which are all the possible combinations of elements that the program is able
to create. In particular, by referring to Listing 1.4 target node elements with the form
node′(MM,ID,MC) are created if the following conditions are satisfied:

- the considered element is declared in the input source model. The lines 1-2 con-
tain the rules for the source conformance checking related to node terms. In partic-
ular, the term is source metamodel conform(MM,ID,MC) is true if the terms
node(MM,ID,MC) and metanode(MM,MC) exist. Therefore, the term bad source

is true if the corresponding is source metamodel con- form(MM,ID,MC) is
valued to false with respect to the node(MM,ID,MC)source element;

- at least a relation exists between a source element and the candidate target element.
In particular, the term mapping(MM,ID,MC) in line 3 is true if there exists a rela-
tion which involves elements referring to MC and MC2 metaclasses and an element
node(MM2,ID,MC2). In other words, a mapping can be executed each time it is

112 D. Di Ruscio, R. Eramo, and A. Pierantonio

1is_source_metamodel_conform(MM,ID,MC) :- node(MM,ID,MC), metanode(MM,MC).
2bad_source :- node(MM,ID,MC), not is_source_metamodel_conform(MM,ID,MC).
3mapping(MM,ID,MC) :- relation(R,MM,MC), relation(R,MM2,MC2), node(MM2,ID,MC2),

MM!=MM2.
4is_target_metamodel_conform(MM,MC) :- metanode(MM,MC).
5{is_generable(MM,ID,MC)} :- not bad_source, mapping(MM,ID,MC),

is_target_metamodel_conform(MM,MC), MM=mmt.

6node′(MM,ID,MC) :- is_generable(MM,ID,MC), mapping(MM,ID,MC), MM=mmt.

Listing 1.4. Fragment of the Execution engine

specified between a source and a target, and there exists the appropriate source to
compute the target;

- the candidate target element conforms to the target metamodel. In particular, the
term is target metamodel conform(MM,MC) in line 6 is true if the MC meta-
class exists in the MM metamodel (i.e. the target metamodel);

- finally, any constraint defined in the relations in Listing 1.3 is valued to false.

The invertibility of transformations is obtained by means of trace information that con-
nect source and target elements; in this way, during the transformation process, the
relationships between models that are created by the transformation executions can be
stored to preserve mapping information in a permanent way. Furthermore, all the source
elements lost during the forward transformation execution (for example, due to the dif-
ferent expressive power of the metamodels) are stored in order to be generated again in
the backward transformation execution.

Specifying Model Transformation with Janus. Due to the reduced usability of the
ASP language, we have decided to provide support for specifying transformations by
means of a more human readable syntax inspired by QVT-R. In Listing 1.5 we re-
port a fragment of the HSM2NHSM transformation specified in JTL and it transforms
hierarchical state machines into flat state machines and the other way round. The for-
ward transformation is clearly non-injective as many different hierarchical machines
can be flattened to the same model and consequently transforming back a modified flat
machine can give place to more than one hierarchical machine. Such a transformation
consists of several relations like StateMachine2StateMachine, State2State and Compos-
iteState2State which are specified in Listing 1.5. They define correspondences between
a) state machines in the two different metamodels b) atomic states in the two different
metamodels and c) composite states in hierarchical machines and atomic states in flat
machines. The relation in lines 11-20 of Listing 1.5 is constrained by means of the when
clause such that only atomic states are considered. Similarly to QVT, the checkonly and
enforce constructs are also provided: the former is used to check if the domain where it
is applied exists in the considered model; the latter induces the modifications of those
models which do not contain the domain specified as enforce. A JTL relation is con-
sidered bidirectional when both the contained domains are specified with the construct
enforce.

Model Transformations 113

1transformation hsm2nhsm(source : HSM, target : NHSM) {
2
3 top relation StateMachine2StateMachine {
4
5 enforce domain source sSM : HSM::StateMachine;
6 enforce domain target tSM : NHSM::StateMachine;
7
8 }
9

10 top relation State2State {
11
12 enforce domain source sourceState : HSM::State;
13 enforce domain target targetState : NHSM::State;
14
15 when {
16 sourceState.owningCompositeState.oclIsUndefined();
17 }
18
19 }
20
21 top relation CompositeState2State {
22
23 enforce domain source sourceState : HSM::CompositeState;
24 enforce domain target targetState : NHSM::State;
25
26 }
27}

Listing 1.5. A non-injective JTL program

The JTL transformations specified in the QVT-like syntax are mapped to the corre-
spondent ASP program by means of a semantic anchoring operation as described in the
next section.

ASP Semantic Anchoring. According to the proposed approach, the designer task
is limited to specifying relational model transformations in JTL syntax and to applying
them on models and metamodels defined as EMF entities within the Eclipse framework.

Designers can take advantage of ASP and of the transformation properties previ-
ously discussed in a transparent manner since only the JTL syntax is used. In fact,
ASP programs are automatically obtained from JTL specifications by means of an ATL
transformations as depicted in the upper part of Fig. 8. Such a transformation is able
to generate ASP predicates for each relation specified with JTL. For instance, the re-
lation State2State in Listing 1.5 gives place to the relation predicates in lines 6-7 in
Listing 1.3.

The JTL when clause is also managed and it induces the generation of further ASP
constraints. For instance, the JTL clause in line 16 of Listing 1.5 gives place to a couple
of ASP constraints defined on the owningCompositeState feature of the state machine
metamodels (see lines 8-9 in Listing 1.3). Such constraints are able to filter the states
and consider only those which are not nested.

To support the backward application of the specified transformation, for each JTL
relation additional ASP constraints are generated in order to support the management of
trace links. For instance, the State2State relation in Listing 1.5 induces the generation
of the constraints in lines 10-11 of Listing 1.3 to deal with the non-bijectivity of the
transformation. In particular, when the transformation is backward applied on a State
element of the target model, trace links are considered to check if such a state has

114 D. Di Ruscio, R. Eramo, and A. Pierantonio

been previously generated from a source CompositeState or State element. If such trace
information is missing all the possible alternatives are generated.

4.4 JTL in Practice

In this section we show the application of the proposed approach to the Collapse/Ex-
pand State Diagrams case study presented in Section 4.1. The objective is to illustrate
the use of JTL in practice by exploiting the developed environment, and in particular
to show how the approach is able to propagate changes dealing with non-bijective and
non-total scenarios.

Modelling State Machines. According to the scenario described in Section 4.1, we
assume that in the software development lifecycle, the designer is interested to have a
behavioral description of the system by means of hierarchical state machine, whereas a
test expert produces non-hierarchical state machine models. The hierarchical and non-
hierarchical state machine matamodels (respectively HSM and NHSM) are given by
means of their Ecore representation within the EMF framework. Then a hierarchical
state machine model conforming to the HSM metamodel can be specified as the model
reported in the left-hand side of Fig. 9. Models can be specified with graphical and/or
concrete syntaxes depending on the tool availability for the considered modeling lan-
guage. In our case, the adopted syntaxes for specifying models do not affect the overall
transformation approach since models are manipulated by considering their abstract
syntaxes.

Specifying and Applying the HSM2NHSM Model Transformation. Starting from
the definition of the involved metamodels, the JTL transformation is specified according
to the QVT-like syntax described in Section 4.3 (see Listing 1.5). By referring to Fig. 8,
the JTL program, the source and target metamodels and the source model have been
created and need to be translated in their ASP encoding in order to be executed from the
transformation engine. The corresponding ASP encodings are automatically produced
by the mechanism illustrated in Section 4.3. In particular, the ASP encoding of both
source model and source and target metamodels is generated according to the Listing
1.2 and 1.1, while the JTL program is translated to the corresponding ASP program (see
Listing 1.3).

After this phase, the application of the HSM2NHSM transformation on sampleHSM
generates the corresponding sampleNHSM model as depicted in the right part of Fig. 8.
Note that, by re-applying the transformation in the backward direction it is possible to
obtain again the sampleHSM source model. The missing sub-states and the transitions
involving them are restored by means of trace information.

Propagating Changes. Suppose that in a refinement step the designer needs to manu-
ally modify the generated target by the changes described in Section 4.1 (see Δ changes
depicted in Fig. 6), that is:

1. renaming the initial state from Begin Installation to Start Install

shield;

Model Transformations 115

Fig. 9. HSM source model and the correspondent NHSM target model

2. adding the alternative try again to the state Disk Error to come back to
Install software;

3. changing the attributes related to memory requirements (m=500) in the state
Install software and cost (c=200) of the transition from Memory low to
Install software.

The target model including such changes (sampleNHSM’) is shown in the left part of
the Fig. 10. If the transformation HSM2NHSM is applied on it, we expect changes
to be propagated back to the source model. However, due to the different expressive
power of the involved metamodels, target changes may be propagated in a number of
different ways, thus making the application of the reverse transformation to propose
more solutions. The generated sources, namely sampleHSM’ 1/2/3/4 can be inspected
through Figure 10: the change (1) has been propagated renaming the state to Start

Install shield; the change (2) gives place to a non-bijective mapping and for this
reason more than one model is generated. As previously said, the new transition can be
equally targeted to each one of the nested states within Install Software as well
as to the super state itself (see the properties sampleHSM’ 1/2/3/4 in Figure 10). For
example, as visible in the property of the transition, sampleHSM’ 1 represents the case
in which the transition is targeted to the composite state Install Software; finally,
the change (3) is out of the domain of the transformation. In this case, the new values
for memory and cost are not propagated on the generated source models.

116 D. Di Ruscio, R. Eramo, and A. Pierantonio

Fig. 10. The modified NHSM target model and the correspondent HSM source models

Even in this case, if the transformation is applied on one of the derived sampleHSM’
models, the appropriate sampleNHSM’ models including all the changes are generated.
However, this time the target will preserve information about the chosen sampleHSM’
source model, thus causing future applications of the backward transformation to gen-
erate only sampleHSM’.

With regard to the performances of our approach, we performed no formal study on
its complexity yet, since that goes beyond the scope of this work; however, our obser-
vations showed that the time required to execute each transformation in the illustrated
case study is more than acceptable since it always took less than one second. In the
general case, when there are a lot of target alternative models the overall performance
of the approach may degrade.

5 Application Scenario 2: Metamodel/Model Coupled Evolution

Metamodels can be considered one of the constituting concepts of MDE, since they
are the formal definition of well-formed models, or in other words they constitute the

Model Transformations 117

languages by which a given reality can be described in some abstract sense [2]. Meta-
models are expected to evolve during their life-cycle, thus causing possible problems
to existing models which conform to the old version of the metamodel and do not con-
form to the new version anymore. The problem is due to the incompatibility between the
metamodel revisions and a possible solution is the adoption of mechanisms of model co-
evolution, i.e. models need to be migrated in new instances according to the changes of
the corresponding metamodel. Unfortunately, model co-evolution is not always simple
and presents intrinsic difficulties which are related to the kind of evolution the meta-
model has been subject to. Going into more details, metamodels may evolve in differ-
ent ways: some changes may be additive and independent from the other elements, thus
requiring no or little instance revision. In other cases metamodel manipulations intro-
duce incompatibilities and inconsistencies which can not be easily (and automatically)
resolved.

This section proposes an approach based on higher-order model transformations
(HOTs) to model coupled evolution [65]. In particular, HOTs take a difference model
formalizing the metamodel modifications and generate a model transformation able to
adapt and recovery the validity of the compromised models. The approach has been
applied successfully in different application domains, e.g., to manage the evolution of
Web applications [66].

5.1 Metamodel Differences

In Fig. 11 it is depicted an example of the evolution of a (simplified) Petri Net
metamodel, which takes inspiration from the work in [18]. The initial Petri Net (MM0)
consists of Places and Transitions; moreover, places can have source and/or des-
tination transitions, whereas transitions must link source and destination places (src
and dst association roles, respectively). In the new metamodel MM1, each Net has at
least one Place and one Transition. Besides, arcs between places and transitions are
made explicit by extracting PTArc and TPArc metaclasses. This refinement permits to
add further properties to relationships between places and transitions. For example, the
Petri Net formalism can be extended by annotating arcs with weights. As PTArc and
TPArc both represent arcs, they can be generalized by a superclass, and a new integer
metaproperty can be added in it. Therefore, an abstract class Arc encompassing the in-
teger metaproperty weight has been added in MM2 revision of the metamodel. Finally,
Net has been renamed into PetriNet. The metamodels in Fig. 11 will be exploited as
the running example throughout this section. They have been kept deliberately simple
because of space limitations, even though they are suitable to present all the insights of
the co-adaptation mechanisms as already demonstrated in [18].

The revisions illustrated so far can invalidate existing instances; therefore, each ver-
sion needs to be analysed to comprehend the various kind of updates it has been subject
to and, eventually, to elicit the necessary adaptations of corresponding models. Meta-
model manipulations can be classified by their corrupting or non-corrupting effects on
existing instances [67]:

118 D. Di Ruscio, R. Eramo, and A. Pierantonio

Fig. 11. Petri Net metamodel evolution

– non-breaking changes: changes which do not break the conformance of models to
the corresponding metamodel;

– breaking and resolvable changes: changes which break the conformance of models
even though they can be automatically co-adapted;

– breaking and unresolvable changes: changes which break the conformance of mod-
els which can not automatically co-evolved and user intervention is required.

In other words, non-breaking changes consist of additions of new elements in a meta-
model MM leading to MM′ without compromising models which conform to MM and thus,
in turn, conform to MM′. For instance, in the metamodel MM2 illustrated in Fig. 11 the
abstract metaclass Arc has been added as a generalization of the PTArc and TPArc

metaclasses (without considering the new attribute weight). After such a modifica-
tion, models conforming to MM1 still conform to MM2 and co-evolution is not necessary.
Unfortunately, this is not always the case since in general changes may break models
even though sometimes automatic resolution can be performed, i.e. when facing break-
ing and resolvable changes. For instance, the Petri Net metamodel MM1 in Fig. 11 is
enriched with the new PTArc and TPArc metaclasses. Such a modification breaks the
models that conform to MM0 since according to the new metamodel MM1, Place and

Model Transformations 119

Transition instances can not be directly related, but PTArc and TPArc elements are
required. However, models can be automatically migrated by adding for each couple of
Place and Transition entities two additional PTArc and TPArc instances between
them.

Often manual interventions are needed to solve breaking changes like, for instance,
the addition of the new attribute weight to the class Arc of MM2 in Fig. 11 which
were not specified in MM1. The models conforming to MM1 can not be automatically
co-evolved since only a human intervention can introduce the missing information re-
lated to the weight of the arc being specified, or otherwise default values have to be
considered. We refer to such situations as breaking and unresolvable changes.

All the scenarios of model co-adaptations can be managed with respect to the possi-
ble metamodel modifications which can be distinguished into additive, subtractive, and
updative. In particular, with additive changes we refer to metamodel element additions
which in turn can be further distinguished as follows:

– Add metaclass: introducing new metaclasses is a common practice in metamodel
evolution which gives place to metamodel extensions. Adding new metaclasses
raises co-evolution issues only if the new elements are mandatory with respect to
the specified cardinality. In this case, new instances of the added metaclass have to
be accordingly introduced in the existing models;

– Add metaproperty: this is similar to the previous case since a new metaproperty may
be or not obligatory with respect to the specified cardinality. The existing models
maintain the conformance to the considered metamodel if the addition occurs in
abstract metaclasses without subclasses; in other cases, human intervention is re-
quired to specify the value of the added property in all the involved model elements;

– Generalize metaproperty: a metaproperty is generalized when its multiplicity or
type are relaxed. For instance, if the cardinality 3..n of a sample metaclass MC
is modified in 0..n, no co-evolution actions are required on the corresponding
models since the existing instances of MC still conform to the new version of the
metaclass;

– Pull metaproperty: a metaproperty p is pulled in a superclass A and the old one
is removed from a subclass B. As a consequence, the instances of the metaclass A
have to be modified by inheriting the value of p from the instances of the metaclass
B;

– Extract superclass: a superclass is extracted in a hierarchy and a set of properties is
pulled on. If the superclass is abstract model instances are preserved, otherwise the
effects are referable to metaproperty pulls.

Subtractive changes consist of the deletions of some of the existing metamodel elements
as described in the following:

– Eliminate metaclass: a metaclass is deleted by giving place to a sub metamodel of
the initial one. In general, such a change induces in the corresponding models the
deletions of all the metaclass instances. Moreover, if the involved metaclass has
subclasses or it is referred by other metaclasses, the elimitation causes side effects
also to the related entities;

120 D. Di Ruscio, R. Eramo, and A. Pierantonio

Table 1. Changes classification

Change type Change
Non-breaking changes Generalize metaproperty

Add (non-obligatory) metaclass
Add (non-obligatory) metaproperty

Breaking and Extract (abstract) superclass
resolvable changes Eliminate metaclass

Eliminate metaproperty
Push metaproperty
Flatten hierarchy
Rename metaelement
Move metaproperty
Extract/inline metaclass

Breaking and Add obligatory metaclass
unresolvable changes Add obligatory metaproperty

Pull metaproperty
Restrict metaproperty
Extract (non-abstract) superclass

– Eliminate metaproperty: a property is eliminated from a metaclass, it has the same
effect of the previous modification;

– Push metaproperty: pushing a property in subclasses means that it is deleted from
an initial superclass A and then cloned in all the subclasses C of A. If A is abstract
then such a metamodel modification does not require any model co-adaptation,
otherwise all the instances of A and its subclasses need to be accordingly modified;

– Flatten hierarchy: to flatten a hierarchy means eliminating a superclass and in-
troducing all its properties into the subclasses. This scenario can be referred to
metaproperty pushes;

– Restrict metaproperty: a metaproperty is restricted when its multiplicity or type are
enforced. It is a complex case where instances need to be co-adapted or restricted.
Restricting the upper bound of the multiplicity requires a selection of certain values
to be deleted. Increasing the lower bound requires new values to be added for the
involved element which usually are manually provided. Restricting the type of a
property requires type conversion for each value.

Finally, a new version of the model can consist of some updates of already existing
elements leading to updative modifications which can be grouped as follows:

– Rename metaelement: renaming is a simple case in which the change needs to be
propagated to existing instances and can be performed in an automatic way;

– Move metaproperty: it consists of moving a property p from a metaclass A to a
metaclass B. This is a resolvable change and the existing models can be easily co-
evolved by moving the property p from all the instances of the metaclass A to the
instances of B;

Model Transformations 121

Fig. 12. KM3 metamodel

– Extract/inline metaclass: extracting a metaclass means to create a new class and
move the relevant fields from the old class into the new one. Vice versa, to inline
a metaclass means to move all its features into another class and delete the former.
Both metamodel refactorings induce automated model co-evolutions.

The classification illustrated so far is summarized in Tab. 1 and makes evident the funda-
mental role of evolution representation. At a first glance it seems that the classification
does not encompass references that are associations amongst metaclasses. However,
references can be considered properties of metaclasses at the same level of attributes.

Metamodel evolutions can be precisely categorized by understanding the kind of
modifications a metamodel undergone. Moreover, starting from the classification it is
possible to adopt adequate countermeasures to co-evolve existing instances. Nonethe-
less, it is worth noting that the classification summarized in Tab. 1 is based on a clear
distinction between the metamodel evolution categories. Unfortunately, in real world
experiences the evolution of a metamodel can not be reduced to a sequence of atomic
changes, generally several types of changes are operated as affecting multiple elements
with different impacts on the co-adaptation. Furthermore, the entities involved in the
evolution can be related one another. Therefore, since co-adaptation mechanisms are
based on the described change classification, a metamodel adaptation will need to be
decomposed in terms of the induced co-evolution categories. The possibility to have
a set of dependences among the several parts of the evolution makes the updates not
always distinguishable as single atomic steps of the metamodel revision, but requires a
further refinement of the classification as introduced in the next section and discussed
in details in Sect. 5.3.

122 D. Di Ruscio, R. Eramo, and A. Pierantonio

5.2 Formalizing Metamodel Differences

The problem of model differences is intrinsically complex and requires specialized
algorithms and notations to match the abstraction level of models [68]. Recently, in
[69, 70] two similar techniques have been introduced to represent differences as mod-
els, hereafter called difference models; interestingly these proposals combine the ad-
vantages of declarative difference representations and enable the reconstruction of the
final model by means of automated transformations which are inherently defined in the
approaches. In the rest of the section, we recall the difference representation approach
defined in [69] in order to provide the reader with the technical details which underpin
the solution proposed in Sect. 5.3.

Despite the work in [69] has been introduced to deal with model revisions, it is
easily adaptable to metamodel evolutions too. In fact, a metamodel is a model itself,
which conforms to a metamodel referred to as the meta metamodel [2]. For presentation
purposes, the KM3 language in Fig. 12 is considered throughout the paper, even though
the solution can be generalized to any metamodeling language like OMG/MOF [23] or
EMF/Ecore [29].

The overall structure of the change representation mechanism is depicted in Fig. 13:
given two base metamodels MM1 and MM2 which conform to an arbitrary base meta
metamodel (KM3 in our case), their difference conforms to a difference metamodel MMD
derived from KM3 by means of an automated transformation MM2MMD. The base meta
metamodel, extended as prescribed by such a transformation, consists of new constructs
able to represent the possible modifications that can occur on metamodels and which
can be grouped as follows:

– additions: new elements are added in the initial metamodel; with respect to the
classification given in Sect. 5.1, Add metaclass and Extract superclass involve this
kind of change;

– deletions: some of the existing elements are deleted as a whole. Eliminate metaclass
and Flatten hierarchy fall in this category of manipulations;

– changes: a new version of the metamodel being considered can consist of up-
dates of already existing elements. For instance, Rename metaelement and Restrict
metaproperty require this type of modification. Also the addition and deletion of
metaproperty (i.e. Add metaproperty and Eliminate metaproperty, respectively) are
modelled through this construct. In fact, when a metaelement is included in a con-
tainer the manipulation is represented as a change of the container itself.

In order to represent the differences between the Petri Net metamodel revisions, the ex-
tended KM3 meta metamodel depicted in Fig. 14 is generated by applying the MM2MMD
transformation in Fig. 13 previously mentioned. For each metaclass MC of the KM3
metamodel, the additional metaclasses AddedMC, DeletedMC, and ChangedMC are
generated. For instance, the metaclass Class in Fig. 12 induces the generation of the
metaclasses AddedClass, DeletedClass, and ChangedClass as depicted in Fig. 14.
In the same way, Reference metaclass induces the generation of the metaclasses
AddedReference, DeletedReference, and ChangedReference.

Model Transformations 123

Fig. 13. Overall structure of the model difference representation approach

The generated difference metamodel is able to represent all the differences amongst
metamodels which conform to KM3. For instance, the model in Fig. 15 conforms to
the generated metamodel in Fig. 14 and represents the differences between the Petri
Net metamodels specified in Fig. 11. The differences depicted in such a model can be
summarized as follows:

1) the addition of the new class PTArc in the MM1 revision of the Petri Net metamodel
is represented by means of an AddedClass instance, as illustrated by model dif-
ference Δ0,1 in Fig. 15. Moreover, the reference between Place and Transition
named dst has been updated to link PTArc with name out. Analogously, the re-
verse reference named src has been manipulated to point PTArc and named as in.
Two new references have been added through the correspondingAddedReference
instances to realize the reverse links from PTArc to Place and Transition, re-
spectively. Finally, the composition relationship between Net and Place has been
updated by prescribing the existence of at least one Place through the lower

property which has been updated from 0 to 1. The same enforcement has been
done to the composition between Net and Transition;

2) the addition of the new abstract class Arc in MM2 together with its attribute weight
is represented through an instance of the AddedClass and the AddedAttribute
metaclasses in the Δ1,2 delta of Fig. 15. In the meanwhile, PTArc and TPArc

classes are made specializations of Arc. Finally, Net entity is renamed as
PetriNet.

Difference models like the one in Fig. 15 can be obtained by using today’s available
tools like EMFCompare [71] and SiDiff [72].

The representation mechanism used so far allows to identify changes which occurred
in a metamodel revision and satisfies a number of properties, as illustrated in [69]. One
of them is the compositionality, i.e. the possibility to combine difference models in in-
teresting constructions like the sequential and the parallel compositions, which in turn
result in valid difference models themselves. For the sake of simplicity, let us con-
sider only two modifications over the initial model: the sequential composition of such

124 D. Di Ruscio, R. Eramo, and A. Pierantonio

Fig. 14. Generated difference KM3 metamodel

manipulations corresponds to merging the modifications conveyed by the first docu-
ment and then, in turn, by the second one in a resulting difference model containing a
minimal difference set, i.e., only those modifications which have not been overridden
by subsequent manipulations. Whereas, parallel compositions are exploited to com-
bine modifications operated from the same ancestor in a concurrent way. In case both
manipulations are not affecting the same elements they are said parallel independent
and their composition is obtained by merging the difference models by interleaving the
single changes and assimilating it to the sequential composition. Otherwise, they are
referred to as parallel dependent and conflict issues can arise which need to be detected
and resolved [73].

Finally, difference documentation can be exploited to re-apply changes to arbitrary
input models (see [69] for further details) and for managing model co-evolution in-
duced by metamodel manipulations. In the latter case, once differences between meta-
model versions have been detected and represented, they have to be partitioned in
resolvable and non resolvable scenarios in order to adopt the corresponding resolution
strategy. However, this distinction is not always feasible because of parallel dependent
changes, i.e. situations where multiple changes are mixed and interdependent one an-
other, like when a resolvable change is in some way related with a non-resolvable one,
for instance. In those cases, deltas have to be decomposed in order to isolate the non-
resolvable portion from the resolvable one, as illustrated in the next section.

Model Transformations 125

Fig. 15. Subsequent Petri Net metamodel adaptations

126 D. Di Ruscio, R. Eramo, and A. Pierantonio

5.3 Transformational Adaptation of Models

This section proposes a transformational approach able to consistently adapt exist-
ing models with respect to the modifications occurred in the corresponding metamod-
els. The proposal is based on model transformation and the difference representation
techniques presented in the previous section. In particular, given two versions MM1 and
MM2 of the same metamodel (see Fig. 16.a), their differences are recorded in a difference
model Δ, whose metamodel KM3Diff is automatically derived from KM3 as described
in Sect. 5.2. In realistic cases, the modifications consist of an arbitrary combination
of the atomic changes summarized in Tab. 1. Hence, a difference model formalizes all
kind of modifications, i.e. non-breaking, breaking resolvable and unresolvable ones.
This poses additional difficulties since current approaches (e.g. [18, 67]) do not provide
any support to co-adaptation when the modifications are given without explicitly distin-
guishing among breaking resolvable and unresolvable changes. Our approach consists
of the following steps:

i) automatic decomposition of Δ in two disjoint (sub) models, ΔR and Δ¬R, which
denote breaking resolvable and unresolvable changes;

ii) if ΔR and Δ¬R are parallel independent (see previous section) then we separately
generate the corresponding co-evolutions;

iii) if ΔR and Δ¬R are parallel dependent, they are further refined to identify and
isolate the interdependencies causing the interferences.

The distinction between ii) and iii) is due to fact that when two modifications are not
independent their effects depend on the order the changes occur leading to non confluent
situations. The confluence can still be obtained by removing those modifications which
caused the conflicts as described in Sect. 5.3.

The general approach is outlined in Figure 16 where dotted and solid arrows repre-
sent conformance and transformation relations, respectively, and square boxes are any
kind of models, i.e. models, difference models, metamodels, and even transformations.
In particular, the decomposition of Δ is given by two model transformations, TR and
T¬R (right-hand side of Fig. 16.a). Co-evolution actions are directly obtained as model
transformations from metamodel changes by means of higher-order transformations, i.e.
transformations which produce other transformations [2]. More specifically, the higher-
order transformations HR and H¬R (see Fig. 16.b and 16.c) take ΔR and Δ¬R and
produce the (co-evolving) model transformations CTR and CT¬R, respectively. Since
ΔR and Δ¬R are parallel independent CTR and CT¬R can be applied in any order
because they operate to disjoint sets of model elements, or in other words

(CT¬R · CTR)(M1) = (CTR · CT¬R)(M1) = M2

with M1 and M2 models conforming to the metamodel MM1 and MM2, respectively (see
Fig. 16.d).

In the rest of the section we illustrate the approach and its implementation. In
particular, we describe the decomposition of Δ and the generation of the co-evolving
model transformations for the case of parallel independent breaking resolvable and

Model Transformations 127

Fig. 16. Overall approach

unresolvable changes. Finally, we outline how to remove interdependencies from par-
allel dependent changes in order to generalize the solution provided in Sect. 5.3.

Parallel Independent Changes. The generation of the co-evolving model transforma-
tions is described in the rest of the section by means of the evolutions the PetriNet
metamodel has been subject to in Fig. 11. The differences between the subsequent meta-
model versions are given in Fig. 15 and have, in turn, to be decomposed to distinguish
breaking resolvable and unresolvable modifications.

128 D. Di Ruscio, R. Eramo, and A. Pierantonio

In particular, the difference Δ(0,1) from MM0 to MM1 consists of two atomic modifi-
cations, i.e. an Extract metaclass and a Restrict metaproperty change (according to the
classification in Tab. 1), which are referring to different sets of model elements. The
approach is able to detect parallel independence by verifying that the eventual decom-
posed differences have an empty intersection. Since a) the previous atomic changes
are breaking resolvable and unresolvable, and b) they do not share any model ele-
ment, then Δ(0,1) is decomposed by TR and T¬R into the parallel independent ΔR(0,1)

and Δ¬R(0,1), respectively. In fact, the former contains the extract metaclass action
which affects the elements Place and Transition, whereas the latter holds the re-
strict metaproperty changes consisting of the reference modifications in the metaclass
Net. Analogously, the same decomposition can be operated on Δ(1,2) (denoting the
evolution from MM1 to MM2) to obtain ΔR(1,2) and Δ¬R(1,2) since the denoted modifica-
tions do not conflict one another. In fact, the Rename metaelement change (represented
by cc1 and c1 in Fig. 15.b) is applied to Net, whereas the Add obligatory metaproperty
operation involves the new metaclass Arc which is supertype of the PTArc and TPArc

metaclasses.
As previously said, once the Δ is decomposed the higher-order transformations HR

and H¬R detect the occurred metamodel changes and accordingly generate the co-
evolution to adapt the corresponding models. In the current implementation, model
transformations are given in ATL, a QVT compliant language part of the AMMA plat-
form [64] which contains a mixture of declarative and imperative constructs. In the
Listing 1.6 a fragment of the HR transformation is reported: it consists of a module
specification containing a header section (lines 1-2), transformation rules (lines 4-41)
and a number of helpers which are used to navigate models and to define complex cal-
culations on them. In particular, the header specifies the source models, the correspond-
ing metamodels, and the target ones. Since the HR transformation is higher-order, the
target model conforms to the ATL metamodel which essentially specifies the abstract
syntax of the transformation language. Moreover, HR takes as input the model which
represents the metamodel differences conforming to KM3Diff.

The helpers and the rules are the constructs used to specify the transformation be-
haviour. The source pattern of the rules (e.g. lines 15-20) consists of a source type and
a OCL [51] guard stating the elements to be matched. Each rule specifies a target pat-
tern (e.g. lines 21-25) which is composed of a set of elements, each of them (as the
one at lines 22-25) specifies a target type from the target metamodel (for instance, the
type MatchedRule from the ATL metamodel) and a set of bindings. A binding refers
to a feature of the type, i.e. an attribute, a reference or an association end, and spec-
ifies an expression whose value initializes the feature. HR consists of a set of rules
each of them devoted to the management of one of the resolvable metamodel changes
reported in Tab. 1. For instance, the Listing 1.6 contains the rules for generating the co-
evolution actions corresponding to the Rename metaelement and the Extract metaclass
changes.

Model Transformations 129

1module H_R;
2create OUT : ATL from Delta : KM3Diff;
3...
4rule atlModule {
5 from
6 s: KM3Diff!Metamodel
7 to
8 t : ATL!Module (
9 name <- ’CTR’,

10 outModels <- Sequence {tm},
11 inModels <- Sequence {sm},...
12),...
13}
14rule CreateRenaming {
15 from
16 input : KM3Diff!Class,
17 delta : KM3Diff!ChangedClass
18 ...
19 (not input.isAbstract
20 and input.name <> delta.updatedElement.name...)
21 to
22 matchedRule : ATL!MatchedRule (
23 name<-input.name + ’2’ + delta.updatedElement.name,
24 ...
25),...
26}
27rule CreateExtractMetaClass {
28 from
29 cr1: KM3Diff!ChangedReference, cr2: KM3Diff!ChangedReference, r1 : KM3Diff!

Reference, r2 : KM3Diff!Reference, c1 : KM3Diff!Class,
30 c2 : KM3Diff!Class,...
31 (cr1.updatedElement = r2 and cr1.owner = c2
32 and cr1.type = c1 and ...)
33 to
34 -- MatchedRule generation
35 matchedRule_i_c2 : ATL!MatchedRule (
36 name<-i_c2.name + ’2’ + i_c2.name,
37 inPattern <- ip_i_c2,
38 outPattern <- op_i_c2,
39 ...
40),...
41}
42...

Listing 1.6. Fragment of the HOTR transformation

The application of HR to the metamodel MM0 in Fig. 11 and the difference model
ΔR(0,1) in Fig. 15 generates the model transformation reported in the Listing 1.7. In
fact, the source pattern of the CreateExtractMetaClass rule (lines 28-32 in the List-
ing 1.6) matches with the two Extract metaclass changes represented in ΔR(0,1). They
consist of the additions of the PTArc and TPArc metaclasses instead of the direct refer-
ences between the existing elements Place and Transition. Consequently, according
to the structural features of the involved elements, the CreateExtractMetaClass

rule generates the transformation CTR(0,1) which is able to co-evolve all the models
conforming to MM0 by adapting them with respect to the new metamodel MM1 (see line
1-2 of the Listing 1.7). In particular, each element of type Place has to be modified
by changing all the references to elements of type Transition with references to new
elements of type PTArc (see lines 4-23 in the Listing 1.7). The same modification has
to be performed for all the elements of type Transition by creating new elements of
type TPArc which have to be added instead of direct references between Transition

and Place instances (see lines 24-42).

130 D. Di Ruscio, R. Eramo, and A. Pierantonio

1module CTR;
2create OUT : MM1 from IN : MM0;
3...
4rule Place2Place {
5 from
6 s : MM1!Place
7 ...
8 to
9 t : MM2!Place (

10 name <- s.name,
11 net <- s.net,
12 out <- s.dst->collect(e |
13 thisModule.createPTArc(e, t)
14)
15)
16}
17rule createPTArc(s : OclAny, n : OclAny) {
18 to
19 t : MM2!PTArc (
20 src <- s,
21 dst <- n
22), ...
23}
24rule Transition2Transition {
25 from
26 s : MM1!Transition
27 ...
28 to
29 t : MM2!Transition (
30 net <- s.net,
31 in <- s.dst->collect(e |
32 thisModule.createTPArc(e, t)
33)
34)
35}
36rule createTPArc(s : OclAny, n : OclAny) {
37 to
38 t : MM2!PTArc (
39 dst <- s,
40 src <- n
41), ...
42}
43...

Listing 1.7. Fragment of the generated CTR(0,1) transformation

The management of the breaking and unresolvable modifications is based on the
same techniques presented so far for the breaking resolvable case. However, as men-
tioned in Sect. 5.1, the involved transformations can not automatically co-adapt the
models but are limited to default actions which have to be refined by the designer.

Parallel Dependent Changes. As mentioned above, the automatic co-adaptation of
models relies on the parallel independence of breaking resolvable and unresolvable
modifications, or more formally

ΔR|Δ¬R = ΔR;Δ¬R +Δ¬R;ΔR (1)

where + denotes the non-deterministic choice. In essence, their application is not af-
fected by the adopted order since they do not present any interdependencies. In case the
modifications in Tab. 1 refer to the same elements then the order in which such modifi-
cations take place matters and does not allow the decomposition of a difference model

Model Transformations 131

as, for instance, when evolving MM0 directly to MM2 (although the sub steps MM0 − MM1
and MM1 − MM2 are directly manageable as described in the previous section).

A possible approach, which is only sketched in the following, consists in isolating
the interdependencies whenever (1) does not hold. The intention is to define an iterative
process consisting in diminishing the modifications between two metamodels until the
corresponding breaking resolvable and unresolvable differences are parallel indepen-
dent. In particular, let Δ be a difference between two metamodels, then we denote by
P(Δ) the difference powermodel, that is the (partially ordered) set of all possible valid
sub models of Δ (i.e. fragments of the difference model which are still conforming to
the difference metamodel)

P(Δ) = {δ0 = φ, · · · , δi, δi+1, · · · , δn = Δ}

Then, the solution is the smallest k in {0, · · · , n} such that

Δ(k); δk = Δ

where Δ(k) is the difference model between Δ and δk, and

Δ(k) = Δ
(k)
R |Δ(k)

¬R

with Δ
(k)
R and Δ

(k)
¬R parallel independent. Hence, the problem of parallel dependence is

reduced to the following

Δ = (Δ
(k)
R |Δ(k)

¬R); δk

by applying the higher-order transformation introduced in the previous section. For in-
stance, if we consider (MM2−MM0) the solution consists in iteratively finding a difference
model which maps MM0 to the intermediate metamodel corresponding to MM2 without
the attribute weight of the Arc metaclass. Therefore, the remaining δk in this example
is a non resolvable change, while in general it may demand for further iterations of the
decomposition process.

The problem of finding the correct scheduling of the adaptation steps has been solved
in [74] which proposes a dependency analysis which underpins a resolution strategy for
their correct application. In particular, all the metamodel change dependencies have
been considered and for each of them a resolution schema is proposed enabling the
complete automation of the adaptation. Interestingly, the technique is independent from
the metamodel and its underlying semantics, since it relies only on the definition of the
metamodeling language.

6 Conclusions

In this paper, model transformation approaches have been illustrated. They have been
grouped according to (macro) characteristics which distinguished their intrinsic fea-
tures. A number of languages which are prominent in their specificity have been briefly
discussed. Finally, two different application scenarios have been presented in order to

132 D. Di Ruscio, R. Eramo, and A. Pierantonio

illustrate complex situations where model transformations have been successfully ap-
plied. In the first case, the JTL language has been presented and particularly its capa-
bility in dealing with non-bijective transformations which present interesting difficul-
ties when modifications operated on a target model must be back propagated to source
models. The second case illustrated an application of higher-order transformations to
the problem of the coupled evolution of metamodels and models. In partcicular, the
evolution of a metamodel is specified in a difference model that once entered in a given
HOT produces other transformations capable of adapting those models which have been
invalidated by the metamodel changes.

Model transformations are considered among the most distinguished element of
MDE as their constitute the main gluing and composing mechanism within any MDE
ecosystem. However, the maturity of this field is still to be assessed as many aspects still
need to be further investigated. In general, very important aspects such as bidirection-
ality and change propagation have been already object of intense debate, as witnessed
by the work in [57], while genericity [75] and model typing [76] has been only more
recently considered. Other aspects, like transformation semantics, strategies and tools
for testing and verifying transformations, are addressed in another course [77] of the
SFM-12: MDE Summer School10 [78].

Acknowledgments. We would like to thank Antonio Cicchetti and Ludovico Iovino
for the never ending discussions we had over the last few years about the topics covered
by this paper (and mountaineering). Also, we are grateful to many colleagues, including
Jean Bézivin, Jeff Gray, Richard Paige, Laurie Tratt, and Antonio Vallecillo, who shared
their opinions and visions with us.

References

1. Schmidt, D.: Guest Editor’s Introduction: Model-Driven Engineering. Computer 39(2),
25–31 (2006)

2. Bézivin, J.: On the Unification Power of Models. Jour. on Software and Systems Modeling
(SoSyM) 4(2), 171–188 (2005)

3. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of the 13th
International Software Product Line Conference, SPLC 2009, pp. 111–119. Carnegie Mellon
University, Pittsburgh (2009)

4. Tratt, L.: Model transformations and tool integration. Jour. on Software and Systems Mod-
eling (SoSyM) 4(2), 112–122 (2005)

5. Object Management Group (OMG): MOF 2.0 Query/Views/Transformations RFP, OMG
document ad/02-04-10 (2002)

6. Visser, E.: WebDSL: A Case Study in Domain-Specific Language Engineering. In: Lämmel,
R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 291–373. Springer, Hei-
delberg (2008)

7. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a Modeling Lan-
guage for Designing Web sites. Computer Networks 33(1-6), 137–157 (2000)

8. Di Ruscio, D., Muccini, H., Pierantonio, A.: A Data Modeling Approach to Web Application
Synthesis. Int. Jour. of Web Engineering and Technology 1(3), 320–337 (2004)

10 http://www.sti.uniurb.it/events/sfm12mde/

http://www.sti.uniurb.it/events/sfm12mde/

Model Transformations 133

9. Cicchetti, A., Di Ruscio, D., Eramo, R., Maccarrone, F., Pierantonio, A.: beContent: A
Model-Driven Platform for Designing and Maintaining Web Applications. In: Gaedke, M.,
Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009. LNCS, vol. 5648, pp. 518–522. Springer,
Heidelberg (2009)

10. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Model Differences for Supporting
Model Co-evolution. In: Procs. MoDSE, 2nd Workshop on Model-Driven Software Evolu-
tion (2008)

11. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model Migration with Epsilon Flock.
In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 184–198. Springer, Hei-
delberg (2010)

12. Herrmannsdoerfer, M., Benz, S., Juergens, E.: Cope - automating coupled evolution of meta-
models and models, pp. 52–76 (2009)

13. Di Cosmo, R., Di Ruscio, D., Pelliccione, P., Pierantonio, A., Zacchiroli, S.: Supporting soft-
ware evolution in component-based foss systems. Technical Report TRCS 003/2010, Com-
puter Science Department, University of L’Aquila (2010)

14. Stevens, P.: A Landscape of Bidirectional Model Transformations. In: Lämmel, R., Visser, J.,
Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 408–424. Springer, Heidelberg (2008)

15. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Supporting Parallel Updates with Bidirectional
Model Transformations. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 213–228.
Springer, Heidelberg (2009)

16. Lehman, M.M., Belady, L.A. (eds.): Program evolution: processes of software change. Aca-
demic Press Professional, Inc., San Diego (1985)

17. Favre, J.M.: Meta-Model and Model Co-evolution within the 3D Software Space. In: Procs.
of the Int. Workshop on Evolution of Large-scale Industrial Software Applications (ELISA)
at ICSM 2003, Amsterdam (September 2003)

18. Wachsmuth, G.: Metamodel Adaptation and Model Co-adaptation. In: Bateni, M. (ed.)
ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)

19. Selic, B.: The Pragmatics of Model-driven Development. IEEE Software 20(5), 19–25
(2003)

20. Object Management Group (OMG): MDA Guide version 1.0.1, OMG Document: omg/2003-
06-01 (2003)

21. Kent, S.: Model Driven Engineering. In: Butler, M.J., Petre, L., Sere, K. (eds.) IFM 2002.
LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002)

22. Favre, J.M.: Towards a Basic Theory to Model Model Driven Engineering. In: Procs. of the
3rd Int. Workshop in Software Model Engineering (WiSME 2004) (2004)

23. Object Management Group (OMG): Meta Object Facility (MOF) 2.0 Core Specification,
OMG Document ptc/03-10-04 (2003),
http://www.omg.org/docs/ptc/03-10-04.pdf

24. Object Management Group (OMG): Unified Modelling Language (UML) V1.4 (2001)
25. Object Management Group (OMG): XMI Specification, v1.2, OMG Document formal/02-

01-01 (2002)
26. Seidewitz, E.: What Models Mean. IEEE Software 20(5), 26–32 (2003)
27. Bézivin, J., Gerbé, O.: Towards a Precise Definition of the OMG/MDA Framework. In: Auto-

mated Software Engineering (ASE 2001), pp. 273–282. IEEE Computer Society, Los Alami-
tos (2001)

28. Mellor, S.J., Clark, A.N., Futagami, T.: Guest Editors’ Introduction: Model-Driven Develop-
ment. IEEE Software 20(5), 14–18 (2003)

29. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: Eclipse Modeling Frame-
work. Addison Wesley (2003)

30. Aksit, M., Kurtev, I., Bézivin, J.: Technological Spaces: an Initial Appraisal. In: International
Federated Conf. (DOA, ODBASE, CoopIS), Industrial Track, Los Angeles (2002)

http://www.omg.org/docs/ptc/03-10-04.pdf

134 D. Di Ruscio, R. Eramo, and A. Pierantonio

31. Kleppe, A., Warmer, J.: MDA Explained. The Model Driven Architecture: Practice and
Promise. Addison-Wesley (2003)

32. Czarnecki, K., Helsen, S.: Feature-based Survey of Model Transformation Approaches. IBM
Systems J. 45(3) (June 2006)

33. Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky, T., Prange, U.,
Varró, D., Varró-Gyapay, S.: Model Transformation by Graph Transformation: A Compara-
tive Study. In: ACM/IEEE 8th International Conference on Model Driven Engineering Lan-
guages and Systems, Montego Bay, Jamaica (October 2005)

34. OMG: MOF QVT Final Adopted Specification, OMG Adopted Specification ptc/05-11-01
(2005)

35. Xactium: Xmf-mosaic, http://xactium.com
36. Vojtisek, D., Jézéquel, J.M.: MTL and Umlaut NG: Engine and Framework for Model Trans-

formation, http://www.ercim.org/publication/
Ercim News/enw58/vojtisek.html

37. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving Executability into Object-Oriented Meta-
languages. In: ACM/IEEE 8th International Conference on Model Driven Engineering Lan-
guages and Systems, Montego Bay, pp. 264–278 (2005)

38. Didonet Del Fabro, M., Bezivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: A generic
Model Weaver. In: Int. Conf. on Software Engineering Research and Practice (SERP 2005)
(2005)

39. Cicchetti, A., Di Ruscio, D.: Decoupling Web Application Concerns through Weaving Op-
erations. Science of Computer Programming 70(1), 62–86 (2008)

40. Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A.: Transformation: The Missing
Link of MDA. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT
2002. LNCS, vol. 2505, pp. 90–105. Springer, Heidelberg (2002)

41. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: A Bidirectional and Change
Propagating Transformation Language. In: Malloy, B., Staab, S., van den Brand, M. (eds.)
SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer, Heidelberg (2011)

42. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Kowal-
ski, R.A., Bowen, K. (eds.) Proceedings of the Fifth Int. Conf. on Logic Programming, pp.
1070–1080. The MIT Press, Cambridge (1988)

43. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS 2005.
LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

44. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Transformation Language. In: Valle-
cillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 46–60. Springer,
Heidelberg (2008)

45. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Validation of
Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp.
446–453. Springer, Heidelberg (2004)

46. de Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-formalism and Meta-modelling. In:
Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 174–188. Springer, Hei-
delberg (2002), http://link.springer.de/link/
service/series/0558/bibs/2306/23060174.htm

47. Varró, D., Varró, G., Pataricza, A.: Designing the automatic transformation of visual lan-
guages. Science of Computer Programming 44(2), 205–227 (2002)

48. Agrawal, A., Karsai, G., Kalmar, Z., Neema, S., Shi, F., Vizhanyo, A.: The Design of a
Language for Model Transformations. Journal of Software and System Modeling (2005)

49. Konigs, A., Schurr, A.: Tool Integration with Triple Graph Grammars - A Survey. Electronic
Notes in Theoretical Computer Science 148, 113–150 (2006)

http://xactium.com
http://www.ercim.org/publication/Ercim_News/enw58/vojtisek.html
http://www.ercim.org/publication/Ercim_News/enw58/vojtisek.html
http://link.springer.de/link/service/series/0558/bibs/2306/23060174.htm
http://link.springer.de/link/service/series/0558/bibs/2306/23060174.htm

Model Transformations 135

50. Wagelaar, D., Tisi, M., Cabot, J., Jouault, F.: Towards a General Composition Semantics
for Rule-Based Model Transformation. In: Whittle, J., Clark, T., Kühne, T. (eds.) MoDELS
2011. LNCS, vol. 6981, pp. 623–637. Springer, Heidelberg (2011)

51. Object Management Group (OMG): OCL 2.0 Specification, OMG Document formal/2006-
05-01 (2006)

52. Billington, J., Christensen, S., van Hee, K.M., Kindler, E., Kummer, O., Petrucci, L., Post, R.,
Stehno, C., Weber, M.: The Petri Net Markup Language: Concepts, Technology, and Tools.
In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 483–505.
Springer, Heidelberg (2003)

53. Extensible Platform for Specification of Integrated Languages for mOdel maNagement (Ep-
silon), http://www.eclipse.org/gmt/epsilon

54. Börger, E., Stärk, R.: Abstract State Machines - A Method for High-Level System Design
and Analysis. Springer (2003)

55. Varró, D., Pataricza, A.: Generic and Meta-Transformations for Model Transformation En-
gineering. In: International Conference on the Unified Modeling Language, pp. 290–304
(2004)

56. Object Management Group (OMG): MOF 2.0 QVT Final Adoptet Specification v1.1, OMG
Adopted Specification formal/2011-01-01 (2011)

57. Stevens, P.: Bidirectional model transformations in QVT: semantic issues and open ques-
tions. Software and Systems Modeling 8 (2009)

58. Steven Witkop: MDA users’ requirements for QVT transformations, OMG document 05-02-
04 (2005)

59. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidirectional
Transformations: A Cross-Discipline Perspective—GRACE Meeting Notes, State of the Art,
and Outlook. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 260–283. Springer,
Heidelberg (2009)

60. Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic Anchoring with Model
Transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748,
pp. 115–129. Springer, Heidelberg (2005)

61. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning (2004)

62. Tratt, L.: A change propagating model transformation language. Journal of Object Technol-
ogy 7(3), 107–126 (2008)

63. Hettel, T., Lawley, M., Raymond, K.: Model Synchronisation: Definitions for Round-Trip
Engineering. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063,
pp. 31–45. Springer, Heidelberg (2008)

64. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the Large and Modeling in
the Small. In: Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599,
pp. 33–46. Springer, Heidelberg (2005)

65. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing Model Conflicts in Distributed De-
velopment. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MoDELS
2008. LNCS, vol. 5301, pp. 311–325. Springer, Heidelberg (2008)

66. Cicchetti, A., Di Ruscio, D., Iovino, L., Pierantonio, A.: Managing the evolution of data-
intensive web applications by model-driven techniques. Software and Systems Modeling
(2011)

67. Gruschko, B., Kolovos, D., Paige, R.: Towards Synchronizing Models with Evolving Meta-
models. In: Proceedings of the Workshop on Model-Driven Software Evolution, MODSE
2007 (2007)

68. Lin, Y., Zhang, J., Gray, J.: Model Comparison: A Key Challenge for Transformation Testing
and Version Control in Model Driven Software Development. In: OOPSLA Workshop on
Best Practices for Model-Driven Software Development (2004)

http://www.eclipse.org/gmt/epsilon

136 D. Di Ruscio, R. Eramo, and A. Pierantonio

69. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A Metamodel Independent Approach to Dif-
ference Representation. Journal of Object Technology 6(9), 165–185 (2007)

70. Rivera, J., Vallecillo, A.: Representing and Operating with Model Differences. In: Ob-
jects, Components, Models and Patterns. LNBIP, vol. 11, pp. 141–160. Springer, Heidelberg
(2008)

71. Brun, C., Pierantonio, A.: Model Differences in the Eclipse Modeling Framework. Upgrade,
Special Issue on Model-Driven Software Development (April-May 2008)

72. Treude, C., Berlik, S., Wenzel, S., Kelter, U.: Difference computation of large models. In:
ESEC-FSE 2007: Proceedings of the the 6th Joint Meeting of the European Software En-
gineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 295–304. ACM, New York (2007)

73. Cicchetti, A.: Difference Representation and Conflict Management in Model-Driven Engi-
neering. PhD thesis, University of L’Aquila, Computer Science Dept. (2008)

74. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing Dependent Changes in Coupled Evo-
lution. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 35–51. Springer, Heidelberg
(2009)

75. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Generic Model Transformations: Write Once,
Reuse Everywhere. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 62–77.
Springer, Heidelberg (2011)

76. Steel, J., Jézéquel, J.M.: On model typing. Software and System Modeling 6(4), 401–413
(2007)

77. Vallecillo, A., Gogolla, M., Burgueño, L., Wimmer, M., Hamann, L.: Formal Specification
and Testing of Model Transformations. In: Bernardo, M., Cortellessa, V., Pierantonio, A.
(eds.) SFM 2012. LNCS, vol. 7320, pp. 399–437. Springer, Heidelberg (2012)

78. Bernardo, M., Cortellessa, V., Pierantonio, A. (eds.): SFM 2011. LNCS, vol. 7320. Springer,
Heidelberg (2012)

Graph Transformations

for MDE, Adaptation, and Models at Runtime

Holger Giese, Leen Lambers, Basil Becker, Stephan Hildebrandt,
Stefan Neumann, Thomas Vogel, and Sebastian Wätzoldt

System Analysis and Modeling Group,
Hasso Plattner Institute at the University of Potsdam, Germany

prename.surname@hpi.uni-potsdam.de

Abstract. Software evolution and the resulting need to continuously
adapt the software is one of the main challenges for software engineering.
The model-driven development movement therefore aims at improving
the longevity of software by keeping the development artifacts more con-
sistent and better changeable by employing models and to a certain de-
gree automated model operations. Another trend are systems that tackle
the challenge at runtime by being able to adapt their structure and be-
havior to be more flexible and operate in more dynamic environments
(e.g., context-aware software, autonomic computing, self-adaptive soft-
ware). Finally, models at runtime, where the benefits of model-driven
development are employed at runtime to support adaptation capabili-
ties, today lead towards a unification of both ideas.

In this paper, we present graph transformations and show that they
can be employed to engineer solutions for all three outlined cases. Fur-
thermore, we will even be able to demonstrate that graph transformation
based technology has the potential to also unify all three cases in a sin-
gle scenario where models at runtime and runtime adaptation is linked
with classical MDE. Therefore, we at first provide an introduction in
graph transformations, then present the related techniques of Story Pat-
tern and Triple Graph Grammars, and demonstrate how with the help
of both techniques model transformations, adaptation behavior and run-
time model framework work. In addition, we show that due to the formal
underpinning analysis becomes possible and report about a number of
successful examples.

1 Introduction

Software code does in principle not decay as hardware does and thus, it could be
employed forever when the underlying hardware is timely replaced on a regular
basis. However, Lehman [1,2] observed and documented in his laws of software
evolution that unless continuously being adapted, the typical software becomes
less and less useful over time. Parnas [3] referred to this phenomena as software
aging and identified two sources of the problem. (1) lack of movement when a
software is not changed according to changing needs and (2) ignorant surgery
which is caused by improper changes that are made to the software. Therefore,

M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.): SFM 2012, LNCS 7320, pp. 137–191, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

138 H. Giese et al.

a steady deterioration of the value and quality of the software can be observed
unless special action is taken and nowadays software is continuously adapted,
which is referred to as software evolution [4].

Today, the majority of the costs for software are resulting from adaptation
steps1 that happen after the software has been first shipped. In the related
maintenance [5] effort, versions of the shipped software are adapted in a con-
struction environment in parallel to deploying the software in potentially many
runtime environments. In addition to standard maintenance activities, often-
times reengineering including reverse engineering [6] to recover necessary higher
level information and redesign to improve the inner structure of the software
(a popular approach for that is refactoring [7]) are employed to counteract the
aging. A today often highly automated distribution activity then transports the
adaptation developed and tested in the construction environment to the different
runtime environments.

In addition to the code, software systems today also include configuration
data and require a dedicated deployment capturing the mapping of the software
components on the available hardware and software platforms in the runtime en-
vironment. Here, an even stronger demand for continuous adaptation has been
observed. As the required adaptation steps have to be handled by the adminis-
trators of each individual runtime environment, it does not seem economically
feasible in the long run to realize all the required adaptation steps manually
and the autonomic computing initiative therefore advocates their automation
(cf. [8]).

Furthermore, for an increasingly important class of software holds that the
required adaptation steps have to happen for each runtime environment and ac-
cording to the individual context that is only known at runtime. Therefore, the
required adaptation steps have to be done in the runtime environment and can
only be at most pre-planned in the construction environment (cf. context-aware
computing [9]). In addition, today’s software has to operate in more dynamic
organizations and contexts and is often expected to be more versatile, flexible,
and resilient. Also it is often envisioned that the software is dependable, robust,
continuously available, energy-efficient, recoverable, customizable, self-healing,
configurable, or self-optimizing by adapting itself in response to changing re-
quirements and contexts. In all these cases, adaptation steps have to be sup-
ported for the runtime environment and have to be initiated by the software
itself.

Besides this trend towards context-aware and more versatile software, also
the integration of beforehand isolated software islands into extremely complex
systems-of-systems, so-called ultra-large scale systems [10], leads to a situa-
tion where due to their size and complexity such systems are no longer man-
aged by a single central authority. Moreover, for such systems, the structure
resp. architecture is subject to changes at runtime and they have to be highly

1 We use adaptation here in the broad sense such that it also includes corrective
changes such as fixing faults and adding new or modifying existing features and not
only making changes in existing software to accommodate it to a changing platform.

Graph Transformations for MDE, Adaptation, and M@RT 139

context-aware and to adjust themselves accordingly. Furthermore, the adapta-
tion steps that are necessary for such systems can hardly be developed in the
construction environment manually upfront but they have to be derived auto-
matically at runtime.

To address this need for support of adaptation steps in the runtime environ-
ment, several approaches where the software itself takes care of the adaptation
steps [11,12,13,14,15] have been proposed, which all can be united under the
term self-adaptive software [16,17,18]. In general, self-adaptive software can be
built by following the internal approach or the external approach [18]. The inter-
nal approach realizes self-adaptation capabilities by intertwining the adaptation
logic and the application logic at the level of programming languages. There-
fore, often programming languages features, like reflection [19], are employed.
In contrast, the external approach separates the adaptation logic from the ap-
plication logic by having a dedicated adaptation engine that controls the core
function within the application. Most approaches for software engineering of
self-adaptive systems today support the external approach (cf. survey [18]) and
operate with a separation at the architectural level with well-defined interfaces
between the adaptation engine and the core function. We refer to adaptation due
to development or maintenance activities as classical adaptation in the following
in order to clearly distinguish it form self-adaptation or in general adaptation.

As also emphasized in autonomic computing [8], not only the self-adaptation
steps within the software but the complete feedback loops determining such self-
adaptation steps in the form of monitor, analyze, plan and execute steps that
happen within the runtime environment have to be taken into account when
engineering self-adaptive software [20]. Studying the feedback is easier in case of
the external approach. However, oftentimes today the feedback loops are not very
visible in the architectures, but rather hidden (cf. [20]). Moreover, self-adaptive
software often supports more than a single feedback loop. As an example, the
reference architecture suggested in [21] distinguishes a component layer where
the core functionality resides, a change management layer on top of that which
manages the changes of the component layer, and a goal management layer that
is responsible for the long term self-adaptation. Each of the two upper layers
employs a feedback loop that steers the directly underlying layer.

Any solution that explicitly captures and analyzes the software and its con-
text at a certain level of abstraction has to use runtime representations of them
and thus uses runtime models. Otherwise, it can only consist of a simple case by
case treatment in form of adaptation rules that immediately react to observed
sensor inputs. While several approaches, like [22,23], employ runtime represen-
tations based on architecture description languages, a next step is to leverage
the benefits of MDE for such runtime representations by means of models at
runtime (M@RT) that are built on MDE principles as argued in [24].

Thus,we can conclude that in order to address the evolution challenge, a solution
is required that supports adaptation steps initiated both in the construction envi-
ronment (classical adaptation) aswell as in the runtime environment (e.g., context-
aware software, autonomic computing, self-adaptive software). As pointed out in

140 H. Giese et al.

[25] the clear boundary between both cases already starts to disappear. Further-
more, as we pointed out already earlier in [26], a solution is required where adapta-
tion steps in the construction environment and in the runtime environment happen
in an integrated manner.

To address the adaptation challenge thus an approach is required that is able
to cover model-driven engineering (MDE) that supports adaptation steps in the
construction environment but also has to lay the foundation for later adaptation
steps in the runtime environment, modeling structural dynamics that is the
foundation for advanced adaptation steps in the runtime environment that goes
beyond parameter adaptation, and models at runtime that support advanced
adaptation steps in the runtime environment by providing a means to represent
and handle complex information about the context as well as the system itself
as a basis for adaptation decisions.

In this paper, we present graph transformations. We show that they can be
employed to engineer the required class of systems with adaptation in the con-
struction environment and runtime environment. We will be able to demonstrate
that graph transformation based technology has the potential to also cover all
three areas with a single formalism such that models at runtime and runtime
adaptation can be linked straight forward with classical MDE. Furthermore, we
show that due to the formal foundation of graph transformation sound analysis
techniques such as conflict detection, invariant checking, and model checking can
be applied.

In contrast to [27] introducing graph transformation from a more general
software engineering perspective and in contrast to [28] that emphasizes the
general benefits of graph transformations compared to other formalisms, we focus
in this paper on the particular needs when approaching evolution by supporting
MDE, modeling structural dynamics, and models at runtime.

Besides graph transformations, we will in particular present the related tech-
niques of Story Patterns and Triple Graph Grammars, and how with the help
of both model transformations, adaptation behavior and runtime model frame-
work work. In addition, we show that due to the formal underpinning analysis
becomes possible and report about a number of successful examples.

To exemplify the benefits of graph transformations for MDE and modeling
adaptation, we will use the following two running examples.

Example 1 (RailCab). RailCab is a research project at the University of Paderborn,
Germany addressing autonomously driving shuttles on regular railway tracks. The shut-
tles operate like cabs on request and not according to timetables. An important feature
is the creation of convoys where the shuttles are not mechanically coupled but drive only
with a short distance to each other. This reduces drag and thus permits to saves energy
(cf. [29]). Networking and software should further ensure the safe operation and high
system efficiency. A small test track has been setup to show the existing prototypes.2

Example 2 (SDL). The Specification and Description Language (SDL) [30] is a spec-
ification language targeted the specification and description of reactive and distributed
systems. We restrict our attention here to a simplified version for the block diagrams

2 http://nbp-www.upb.de

http://nbp-www.upb.de

Graph Transformations for MDE, Adaptation, and M@RT 141

of SDL covering mostly structure and communication. A system consists of a number
of blocks. Blocks communicate with each other using channels. A block further consists
of processes that are the carrier of behavior. The later in this context considered model
transformation is a simplified version of a transformation used in the industrial case
study on flexible production control systems [31] from SDL block diagrams to UML class
diagrams.

The paper explores how graph transformation fulfills the needs of engineering
MDE solutions, engineering solutions with adaptation and even engineering so-
lutions that combine both in form of solutions that adapt with the help of models
at runtime as follows: At first we introduce graph transformation in Section 2.
This introduction intuitively defines how the different forms of graph transforma-
tion such as graph transformation systems and graph grammars work together
with a definition of their semantics based on set theory. Then, we introduce the
concrete graph transformation based languages of Story Patterns, Triple Graph
Grammars and a Runtime Model Framework in Section 3. Besides defining their
syntax and semantics of the languages based on the beforehand introduced graph
transformations, this also includes detailed examples. However, the introduced
graph transformations are not only a means for specification and execution. As
outlined in Section 4, we can take benefit of available analysis techniques. Fi-
nally, we discuss the state-of-the-art for MDE solutions, engineering solutions
with adaptation and even engineering solutions that combine both in form of
solutions that adapt with the help of models and the benefits graph transforma-
tion based techniques offer in Section 5. Afterwards, the paper closes with some
final conclusions.

2 Graph Transformations

There are plenty examples where annotated graphs are a natural representation
of the states of a system. Let us for instance consider the RailCab system of
Example 1.

Example 3 (RailCab - Topology). A core element of the RailCab system is its track
topology which resides in a 2-dimensional space but is most appropriately represented
as a graph that abstracts from the geometric details. Also the shuttles are distributed
over a 2-dimensional space, but what again matters is how their position is relative to
the track topology. When shuttle build convoys they build new structures which again
are best represented at an abstract level using graphs. Fig. 1 summarizes this analogy
between a complex RailCab system and graphs and graph transformation systems. As
depicted in Fig. 2 we can also further equip the graphs with attributes to store additional
information about the available energy in the batteries of the shuttles.

We will see in the following that this analogy does not only hold for the state, but
that also the behavior can accordingly be captured using graph transformations
that describe which changes to the state represented as a graph will or can
happen.

142 H. Giese et al.

s1:Shuttle
berlin:
Track

t 1:T
rac

k

t5 :Track

t4:Track

t3:Track

bremen:
Track

magdeburg:
Track t2:Track

s4:Shuttle
s3:Shuttle

s2:Shuttle

t 12
:Trac

k

t11:Track t10:Track

t 9:T
rac

k

t8:T
rack

t 7:T
rac

k

t6 :Track

cottbus:
Track

leipzig:
Track

erfurt:
Track

t13:Track

Berlin

Brandenburg

Lower Saxony

Saxony-
Anhalt

Thuringia
Saxony

Hesse

Fig. 1. A simple graph capturing a RailCab topol-
ogy and the distribution of the shuttles on a map

t2:Trackt1:Track n1:next

t5:Track

t6:Track
n5:next

t4:Track

t3:Track

n3:next

n6:next n2:next

n4:next

o2:on1

o1:on2

s2:CargoShuttle
energy = 20

s1:RailCab
energy = 10

Fig. 2. An attributed graph for
the RailCab topology and shuttles

Graphs, Type Graphs, and Graph Morphisms. As outlined graphs can
be used to represent a particular state of a system in a formal way. Also the
abstract syntax of (visual) models can be captured by graphs. Thereby, graphs
occur at two levels: the type level and the instance level. A fixed type graph
TG serves as a representation of the combination of node types and edge types
that may occur in graphs at the instance level. In particular, instance graphs
of a type graph are equipped with a structure-preserving mapping (i.e. a graph
morphism) to the type graph. First, we introduce graphs and graph morphisms
with different useful properties in a formal way. Then, we introduce the notion
of typed graphs formally.

Definition 1 (graph and graph morphism). A graph G = (GV , GE , s, t)
consists of a set GV of vertices, a set GE of edges and two total mappings
s, t : GE → GV , assigning to each edge e ∈ GE a source s(e) ∈ GV and tar-
get t(e) ∈ GV . A graph morphism f : G1 → G2 between two graphs Gi =
(Gi,V , Gi,E , si, ti), (i = 1, 2) is a pair f = (fV : GV,1 → GV,2, fE : GE,1 → GE,2)
of total mappings, such that fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE.

Graph morphisms may satisfy different useful properties. A graph morphism that
does not map two nodes or two edges to the same node or edge, respectively,
satisfies the so-called injectivity property. A graph morphism defining a preimage
for each node and edge of the target graph satisfies the surjectivity property. Two
graph morphisms having the same target graph defining for each node and edge
of the target graph a preimage in at least one of both source graphs are called
jointly surjective. In this case, we also say that the target graph is an overlapping
of both source graphs. A graph morphism being both injective and surjective is
also called a graph isomorphism. It uniquely maps all nodes and edges of source
and target graphs to each other. Consequently, trivially speaking, isomorphic
graphs are copies of each other, whereas an injective graph morphism finds a
copy of the source graph somewhere in the target graph.

Graph Transformations for MDE, Adaptation, and M@RT 143

Definition 2 (injective, (jointly) surjective morphisms, graph isomor-
phism). A graph morphism m : G1 → G2 is injective (resp. surjective) if mV

and mE are injective (resp. surjective) mappings. Two graph morphisms m1 :
L1 → G and m2 : L2 → G are jointly surjective if m1,V (L1,V) ∪m2,V (L2,V) =
GV and m1,E(L1,E)∪m2,E(L2,E) = GE . A pair of jointly surjective morphisms
(m1,m2) is also called an overlapping of L1 and L2. A graph morphism m which
is injective and surjective is called a graph isomorphism. Two graphs G1 and G2

are isomorphic if there exists a graph isomorphism m : G1 → G2.

Definition 3 (typed graph). A type graph is a distinguished graph TG =
(VTG, ETG, sTG, tTG). VTG and ETG are called the vertex and the edge type
alphabets, respectively. A tuple (G, type) of a graph G together with a graph
morphism type : G → TG is a graph typed over TG or instance graph of TG.

Example 4 (RailCab - Typed Graph). Fig. 3 depicts a graph G typed over the type
graph TG via the typing morphism type : G → TG. G consists of a set of nodes GV =
{s1, t1, t2, t3} and a set of edges GE = {o1, n1, n2}. The source and target mappings
sG and tG map these edges to the respective source and target nodes as depicted. For
example, sG(n1) = t1 and tG(n1) = t2. The typing morphism type : G → TG is
visualized using dashed arrows. Analogously, TG consists of a set of nodes TGV =
{Shuttle,Track} and a set of edges TGE = {on, next} where sTG and tTG map these
edges to the respective source and target nodes as depicted. In particular, type is a
graph morphism since it is structure-preserving. This means, for example, for edge o1
that sTG(typeE(o1)) = Shuttle = typeV (sG(o1)). Note that this typing morphism type
is surjective, since each node and edge in TG has a preimage in G. However type is
not injective, since, for example, the nodes t1, t2 and t3 are mapped to the same node
Track. Fig. 4 depicts a short-hand notation for a typed graph that we will use in the
rest of the paper. The typing morphism between graph and type graph is not explicitly
depicted anymore. Instead, each node and edge name is followed by ”:” and then the
type name of the node type or edge type, the typing morphism assigns the node or edge
to.

s1 Shuttle

t3t2t1 Track

on

next

o1

n1 n2

G TG

Fig. 3. Typed Graph

s1:Shuttle

t3:Trackt2:Trackt1:Track

o1:on
n1:next n2:next

G

Fig. 4. Typed Graph (shorthand notation)

Typed graph morphisms formalize the concept of structure-preserving mappings
compatible with typing. Therefore, they are a formal means to ensure type cor-
rectness later on when performing graph transformations.

Definition 4 (typed graph morphism). Consider typed graphs GT
1 = (G1,

type1) and GT
2 = (G2, type2), a typed graph morphism f : GT

1 → GT
2 is a graph

morphism f : G1 → G2 such that type2 ◦ f = type1.

144 H. Giese et al.

1

21

1

1

2

543

2

2 3

1 2

Fig. 5. The example graph morphism f

1

1

2

2 3

1 2

Fig. 6. Type-compatibility of f

G2 f ��

type1
��

�

���
��

G2

type2
��
�

�����

TG

Example 5 (RailCab - Typed Graph Morphism). Fig. 5 depicts an injective typed
graph morphism f from (G1, type1) to (G2, type2). The pointed edges visualize f . Note
that the graph morphism f is indeed type-compatible because each node or edge of a
specific type is mapped to a node or edge of the same type, respectively. Fig. 6 depicts
an extract of the same morphism f and an extract of the typing morphisms type1 and
type2 illustrating more formally that according to Def. 4 type2 ◦ f = type1.

Assumption: For the rest of this paper we work with typed graphs and mor-
phisms, although not always explicitly mentioned. This means also that we de-
note a typed graph (G, type) also simply as G. Moreover, if the edge mapping of
graph morphisms is clear from the respective source and target node mappings,
then we do not always visualize them completely in the corresponding figures.

Graph Patterns and Graph Properties. Graph patterns describe sample
graphs for which matches may exist for given instance graphs. We present a
simple pattern concept, which is used and supported in most of our graph trans-
formation tools. It consists of a graph P and a set of graphs Ni containing P
(with identical typing). We say that a match for this pattern in graph G exists
if a copy of P can be found in G, but at the same time no copy for any of the
graphs Ni can be found in G.

Definition 5 (graph pattern). A graph pattern Π = (P, {Ni, i ∈ I}) consists
of a graph P and a finite set of graphs Ni containing P as a subgraph. As short-
hand notation for the graph pattern (P, ∅) we simply write P .

Definition 6 (match). Given a graph pattern Π = (P, {Ni, i ∈ I}) and a graph
G, then each injective morphism m : P → G such that there does not exist an
injective morphism q : Ni → G with q being identical to m on P , is called a
match of the graph pattern Π in G.

To visualize Ni we use crossed out dashed boxes and edges. We draw a dashed
box around all nodes of Ni \ P . Also all edges which source and target nodes

Graph Transformations for MDE, Adaptation, and M@RT 145

s1:Shuttle

t2:Trackt1:Track

o1:on
n1:next

s1:Shuttle

t2:Trackt1:Track

o1:on
n1:next

s2:Shuttle

o2:on

G1

Fig. 7. Pattern Π matches G1

s1:Shuttle

t2:Trackt1:Track

o1:on
n1:next

s1:Shuttle

t2:Trackt1:Track

o1:on
n1:next

s2:Shuttle

o2:on

s2:Shuttle
o2:on

G2

Fig. 8. Pattern Π does not match G2

are in Ni \ P are contained in the box. All edges connecting P and N \ P are
not contained in the box and in addition crossed out. In the special case that Ni

equals a single edge, it is also only crossed out.

Example 6 (RailCab - Graph Pattern). Fig. 7 depicts the pattern Π = (P, {N}).
The graph P consists of the nodes s1, t1, t2 and edges o1, n1. The graph N consists of
P together with the crossed out node s2 and edge o2. There exists a match m for Π
in G1, since an injective graph morphism (visualized by pointed lines) exists between
P and G1 and no injective graph morphism exists between N and G1, since a second
node of type Shuttle is not available.

Fig. 8 depicts the same pattern Π = (P, {N}), but a different graph G2 such that no
match exists for Π in G2. There exists one injective graph morphism from P to G2,
but this graph morphism can be completed to an injective graph morphism from N to
G2, which is not allowed according to Def. 6.

We use graph patterns as basic constructs to define graph properties (also called
graph constraints or graph conditions [32,33]). As explained in [32] graph prop-
erties may reach the expressiveness of first-order logic, which is not the case here,
since we have a more restricted property language.

Definition 7 (graph property, forbidden and required pattern). A graph
pattern Π = (P, {Ni, i ∈ I}) is a graph property, any combination of two graph
properties p and q of the form p ∧ q, p ∨ q , and ¬q is also a graph property.
We define satisfaction of graph properties p by a graph G (written G |= p),
recursively, as follows:

– If p = Π with Π = (P, {Ni, i ∈ I}) a graph pattern, then p is satisfied if
there exists a match for the graph pattern Π in G,

– if p = p1 ∧ p2, then p is satisfied if G |= p1 and G |= p2,
– if p = p1 ∨ p2, then p is satisfied if G |= p1 or G |= p2,
– if p = ¬p1, then p is satisfied if G
|= p1.

Given a graph property p = Π = (P, {Ni, i ∈ I}) we say that Π occurs as a
required graph pattern. For a graph property p = ¬Π = ¬(P, {Ni, i ∈ I}) we
further say that Π occurs as a forbidden graph pattern.

Example 7 (RailCab - Graph Properties). Given the property p = Π = (P, {N})
with Π the pattern depicted in Fig. 7, then this pattern occurs as a required graph
pattern. G1 |= p since there exists a match for the required graph pattern Π in G. In
Fig. 8, a graph G2 is depicted which does not satisfy p since a match for the required
graph pattern Π does not exist.

146 H. Giese et al.

Given the property p′ = ¬Π, then Π occurs as a forbidden pattern and G1 �|= p′

since G1 |= p and G2 |= p′ since G2 �|= p. Consequently, G1 and G2 both satisfy p ∨ p′,
but not p ∧ p′.

Graph Transformation Rules. We can model the modification of graphs
by introducing the graph transformation approach. It is a rule-based approach,
meaning that the way in which a graph can potentially be modified is described
by a set of graph transformation rules. By applying these rules to a particular
graph, this graph can be transformed. We present a compact, set-theoretical
description of graph transformation here and refer to [34,35] for a more compre-
hensive description with category-theoretical background.

We start with defining the notion of graph transformation rules. A rule r :
〈ΠLHS , ΠRHS〉 consists of a left-hand side (LHS) pattern ΠLHS describing the
pre-condition, and a right-hand side (RHS) pattern ΠRHS describing the post-
condition of the rule. In simple rules, the patterns ΠLHS and ΠRHS are just
graphs, L and R, denoting required patterns before and after rule application,
respectively. As a consequence, before applying the rule to a graph G, at least
L should be present in G, which is replaced by R via the rule’s application.
In particular, the graph part L \ (L ∩ R) is to be deleted, and the graph part
R\(L∩R) is to be created when applying the rule. Finally, L∩R describes which
part is to be preserved, when applying the rule. Note that the graph intersection
L ∩ R should form a well-defined typed graph again. To this extent the source
and target mappings in L and R must be identical on edges belonging to L ∩R
such that source and target mappings for L∩R can be inherited from L and R.
Moreover, the type mappings for L and R must be identical on nodes and edges
in L∩R such that the type mapping in L∩R can be inherited from L and R. The
LHS pattern of a rule ΠLHS can be also a pattern of the form (L, {Ni, i ∈ I})
instead of the simple pattern L. Thus the pattern (L, {Ni, i ∈ I}) instead of L is
required before rule application. In this context, we say that Ni are the negative
application conditions (NACs) of the rule r, since the rule can only be applied
if a copy of L, but no copies of Ni can be found before rule application.

Definition 8 (rule). A graph transformation rule r : 〈ΠLHS , ΠRHS〉 consists
of a rule name r and two patterns ΠLHS = (L, {Ni, i ∈ I}) and ΠRHS = R with
L and R graphs such that the intersection L∩R of L and R is well-defined. The
patterns ΠLHS and ΠRHS are called the left-hand side (LHS), and the right-
hand side (RHS) of r, respectively. We say that del(r) = L \ (L∩R) is the graph
part to be deleted and cre(r) = R \ (L∩R) is the graph part to be created by the
rule r.

There are two main different ways to define rule application of a rule r to a
graph G as soon as a match for the LHS pattern of r in G has been found. One of
both rule application approaches can be chosen to perform graph transformation
depending on if implicit side-effects are desired or not.

The first main approach accepts implicit side-effects such as the deletion of
dangling edges. It deletes dangling edges during rule application although this

Graph Transformations for MDE, Adaptation, and M@RT 147

is not explicitly specified within the rule. This approach has been called the
single-pushout (SPO) approach for historical reasons. In particular, a rule ap-
plication (also called direct graph transformation or graph transformation step)
can be formalized in a categorical way by a so-called pushout – a categorical
concept generalizing the idea of graph gluing constructions – in the category of
graphs with partial graph morphisms [34]. Here we reintroduce this rule appli-
cation approach in a constructive, set-theoretical way and propose to call it the
dangling-edge-collecting approach.

The second main approach does not put up with implicit side-effects. It simply
does not apply a rule – even if a match has been found – if it is not possible to
apply the rule without the implicit side-effects that dangling edges are removed.
This is ensured by the fact that a match in this approach needs to satisfy in
addition the so-called dangling edge condition – expressing that nodes marked
for deletion by the rule are matched in such a way that all incident edges are
marked for deletion by the rule as well. Like this no dangling edges arise dur-
ing rule application. This more conservative approach to rule application has
been called the double-pushout (DPO) approach for historical reasons. In par-
ticular, a rule application can be described formally in a categorical way by
a construction consisting of two pushouts in the category of graphs with total
graph morphisms [35].3 Here we reintroduce this rule application approach in a
constructive, set-theoretical way and propose to call it the conservative approach
since no implicit side-effect during rule application is allowed.4

Definition 9 (dangling edges, dangling edge condition). Given a rule
r : 〈ΠLHS , ΠRHS〉 and match g : L → G for the pattern ΠLHS = (L, {Ni, i ∈ I})
in G, then dan(g, r) = {e|e ∈ GE , s(e)∨t(e) ∈ g(del(r)), e /∈ g(del(r))} is the set
of dangling edges in G for match g and rule r. The match g fulfills the dangling
edge condition for rule r if dan(g, r) is empty.

Definition 10 (rule applicability). A rule r : 〈ΠLHS , ΠRHS〉 with ΠLHS =
(L, {Ni, i ∈ I}) and ΠRHS = R is applicable to a graph G in the conservative
approach if there exists a match g : L → G for (L, {Ni, i ∈ I}) in G fulfilling
the dangling edge condition.

A rule r : 〈ΠLHS , ΠRHS〉 with ΠLHS = (L, {Ni, i ∈ I}) and ΠRHS = R is
applicable to a graph G in the dangling-edge-collecting approach if there exists
a match g : L → G for (L, {Ni, i ∈ I}) in G.

After having found a match g for the LHS rule pattern of rule r in graph G
making the rule applicable, we can define a rule application via rule r to G by

3 The left pushout of a rule application describes the deletion of graph parts, and
the right pushout describes the addition of graph parts, marked accordingly by the
corresponding rule.

4 Note that a match of a LHS rule pattern does not have to be, in general, an injective
graph morphism. In some application fields, it makes sense to allow non-injective
graph morphisms as matches. In this case however, rule application becomes more
difficult because a conflict arises when a match maps two graph elements in L, one
marked for deletion and the other one marked for creation by the rule, to the same
element in G.

148 H. Giese et al.

a two-step construction such that in the application result the RHS rule pat-
tern is fulfilled: First, the elements in del(r) are deleted from G together with
the implicit deletion of possible dangling edges dan(g, r) obtaining an interme-
diate result D. Secondly, a copy of the RHS pattern graph R is unified with
D such that exactly the elements in cre(r) are indeed created. Thereby nodes
and edges in L ∩ R to be preserved are glued with the already corresponding
elements in D matched via g. Therefore this construction is often also called
gluing construction.

Definition 11 (rule application). A rule application G
r,g⇒ H from G to H

via an applicable rule r : 〈ΠLHS , ΠRHS〉 with ΠLHS = (L, {Ni, i ∈ I}) and
ΠRHS = R and match g : L → G is constructed as follows:

1. D = G\ (g(del(r))∪dan(g, r)) (delete nodes and edges to be deleted together
with possible dangling edges)

2. H = D ∪ i(R) with i : R → i(R) a graph isomorphism identical to g on
elements of L ∩ R and disjoint with D on elements in cre(r) (create nodes
and edges to be created).

Each graph H ′ isomorphic to H is a valid result of this rule application too.

Note that a rule which is only applicable in the conservative approach will be
applied without implicit side-effects, since in this case the set of dangling edges
is empty because each match fulfills the dangling edge condition. Moreover, note
that because of the fact that dangling edges are deleted, D is a well-defined
graph again since source and target mappings can be inherited from G. The
application result H is a graph again as well, since source and target mappings
in D or i(R) are identical on edges belonging to D ∩ i(R). This is because the
graph morphisms g and i are identical on L ∩R.

We omit r and/or g in G
r,g⇒ H if not relevant. As a last remark, note that

the typing of H can be inherited from the typing of elements stemming from G
(i.e. being left in D) and the typing of created elements in rule r because of type
compatibility of g,i and rule r. This means that by construction rule application
ensures type correctness.

Example 8 (RailCab - Graph Transformation Rule and Rule Application). Fig. 9
depicts the application of rule r1 to a graph G1. It is a simple rule, since the LHS
pattern consists of a single graph L. Rule r1 is applicable in the conservative as well
as the dangling-edge-collecting approach, since a match g : L → G1 can be found,
depicted with pointed lines. The rule can be applied in the conservative as well as in
the dangling-edge-collecting approach, since the depicted match fulfills the dangling edge
condition. In particular, this holds already because no node is deleted. The result of the
rule application is therefore the same in both approaches. First, g(del(r1)) consisting
of o3 as image of o1 in G1 is deleted from G1 leading to a graph D. A copy of the RHS
graph is then unified in a suitable way with D. This means that the elements s1, t1, t2, n1

in L ∩ R are mapped by an isomorphism i identical to g inducing the gluing of i(R)
with D in the elements s2, t3, t4, n2. Moreover, a copy o4 = i(o2) of o2, belonging to

Graph Transformations for MDE, Adaptation, and M@RT 149

s1:Shuttle

t2:Trackt1:Track

o1:on

n1:next

s1:Shuttle

t2:Trackt1:Track

o2:on
n1:next

LHS RHS

G1 H1

s2:Shuttle

t4:Trackt3:Track

o3:on
n2:next

t5:Track

n3:next

s3:Shuttle
o2:on

s2:Shuttle

t4:Trackt3:Track

o4:on

n2:next

t5:Track

n3:next

s3:Shuttle
o2:on

r1

r1:

Fig. 9. SimpleMove rule and its application

t2:Trackt1:Track n1:next t2:Track
LHS RHS

G2 H2

s2:Shuttle

t4:Trackt3:Track

o2:on
n2:next

t5:Track

n3:next

s3:Shuttle
o3:on

s2:Shuttle

t4:Track

t5:Track

n3:next

s3:Shuttle
o3:onr2

r2:

Fig. 10. DeleteTrack rule and its applica-
tion with unwanted dangling edge deletion

s1:Shuttle

t2:Trackt1:Track

o1:on

n1:next t2:Track

LHS RHS

G3 H3

t4:Trackt3:Track n2:next

t5:Track
n3:next

s3:Shuttle
o3:on

t4:Track

t5:Track s3:Shuttle
o3:on

r3

r3:

Fig. 11. Corrected DeleteTrack rule and its
proper application

cre(r1) is indeed created, since it is added disjointly to D5 and glued with source node
i(s1) = g(s1) = s2 and target node i(t2) = g(t2) = t4.

Fig. 10 depicts the application of the DeleteTrack rule to a graph G. The rule can only
be applied in the dangling-edge-collecting approach, since the depicted match g : L → G2

does not fulfill the dangling edge condition. This is because dan(g, r2) = {o2}, since
o2 is an edge which is not matched by g, but its target node t3 is matched by g and
identified as a node to be deleted. When applying this rule in the dangling-edge-collecting
approach, this means that o2 is implicitly deleted together with t3 and n2. This has as
a consequence that the node s2 of type Shuttle would not be on a track anymore and
thus decoupled of the modeled track system. Forbidding the deletion of a Track if some
Shuttle is still on a track would make more sense. To this extent, it is possible to add a
negative application condition to the LHS rule pattern expressing that it can be applied
only if no Shuttle is on the Track. In this case, only edges of type next are implicitly
deleted during rule application as can be seen in Fig. 11.

Besides a single application we are also interested in the effect of multiple rule
applications. Therefore, we define graph transformation as the reflexive and tran-
sitive closure of separate rule applications.

Definition 12 (Graph Transformation). A graph transformation, denoted

as G0
∗⇒ Gn, is a sequence G0 ⇒ G1 ⇒ · · · ⇒ Gn of n ≥ 0 rule applications. A

5 Since another edge called o2 is present in D, this renaming via i(o2) = o4 is indeed
necessary in this example.

150 H. Giese et al.

rule application of length 0 is defined as a graph isomorphism G0
∼= G′

0 because
the result of rule application is only unique up to isomorphism.

Attributed Graph Transformation. Since often besides the structure also
attributes contained by the elements are relevant for modeling, we need a way
to include attributes in graphs for the formal description of models. We do not
introduce attributed graph transformation in a formal way here, but give a short
overview on available formal approaches and describe the basic concepts needed
to define attributed graphs and attributed graph transformation.

There are different approaches to define attributed graphs and graph transfor-
mation. In [36] attributed graphs are seen as algebras. In particular, the graph
part of an attributed graph is encoded as an algebra, extending the given data
algebra. In [35] an attributed graph is basically a pair (G,D) consisting of a
graph G and a data algebra D, whose values are nodes in G. [37] is based on
the use of labeled graphs to represent attributed graphs, and of rule schemata
to define graph transformations involving computations on the labels. That ap-
proach has some similarities with the so-called symbolic graph transformation
approach [38], including the simplicity provided by the separation of the algebra
and the graph part of attributed graphs.

The basic concepts needed to define attributes on the type level and on the
instance level are described as follows. For each node type (sometimes also edge
types) in the type graph TG a number of attributes of a certain data type is
defined leading to an attributed type graph ATG. Each node (or edge) in a graph
on the instance level may have the same number of attributes. These have at-
tribute assignments mapping each attribute to a concrete value of a data type
compatible with the attribute definition of the corresponding node type (or edge
type) in the attributed type graph ATG. Each graph in a graph pattern may
be equipped with an attribute condition Φ over attribute labels in this graph
constraining the range of possible values for these attributes when matching the
pattern to some instance graph. Moreover, attribute assignment mappings in
L of a LHS rule pattern may define assignments to variables that are reused
within a computation instruction in an attribute assignment mapping for some
attribute a of the RHS rule pattern. Matching the LHS pattern leads to a con-
crete value assignment of such a variable (respecting the attribute conditions)
and this value is reused to compute the attribute value of a according to the com-
putation instruction.6 The attribute condition and assignment mappings need
to be compatible with the data types defined in the attributed type graph for
each attribute.

Graph Transformation with Inheritance. Another concept often used in
modeling is inheritance that leads to generalization upwards in the inheritance
relation and specialization downwards leading to attributed graphs and attributed

6 In [38], assignments and attribute conditions in rule patterns are summarized into
one attribute formula over the attribute labels in both rule patterns that needs to
evaluate to true during rule application.

Graph Transformations for MDE, Adaptation, and M@RT 151

graph transformations with inheritance [39,35,40]. Again, we do not introduce
this formally here, but give a short informal idea of the basic concepts needed to
define attributed graphs and attributed graph transformation with inheritance.

The concept of generalization, specialization and inheritance can be described
in a type graph TG by introducing an inheritance relation between nodes in the
type graph, visualized by special edges from each type node to its super type
node, which we label with is a, and marking specific type nodes as abstract.
Patterns typed over such a type graph with inheritance ATGI consist of graphs
that may use these abstract nodes. Moreover, source and target mappings are
compatible with the inheritance relation. The created elements in the RHS pat-
tern of a rule should not be abstract because when a rule is applied it should
be clear which type of node is to be created on the instance level. Now there
are two possibilities to define attributed graph transformation with inheritance
according to such a type graph with inheritance ATGI and rules and patterns
typed as described briefly above over ATGI. (1) The type graph with inheritance
ATGI is flattened in a suitable way to an equivalent type graph TG without
inheritance relation and abstract nodes. Moreover, the rules and patterns typed
over ATGI as described briefly above are flattened to an equivalent set of rules
and patterns typed over TG. Using these flattened rules and patterns regular
typed attributed graph transformation can be applied. (2) The match notion for
patterns is extended to patterns typed over ATGI such that the derived notions
of rule application and property satisfaction are equivalent to flattened regular
rule application or property satisfaction.

For analysis we usually apply variant (1) and work with flattened properties
and rules, since most analysis techniques do not explicitly deal with inheritance
yet. For rule application and graph property checking at runtime we usually
apply the more efficient variant (2).

Graph Transformation with Priorities. Non-determinism due to several
applicable rules can be explicitly reduced by priorities over these rules. Given
a rule set R with priorities specified by a function prio : R → N assigning
priorities to the rules in R, the notion of rule applicability of Def. 10 defined
for a separate rule becomes more severe and has to be defined relative to the
complete rule set. We say that the rule is applicable with priority if for two rules
r, r′ ∈ R that are both applicable to the same graph if considered separately
holds that if they have different priorities only the rule with the highest priority
is applicable. Thus applicability with priority requires besides a match and the
dangling edge condition in case of the conservative approach also that no rule
with a higher priority is applicable as a separate rule. Given a set of rules R with

priority function prio, we write G
r,g⇒R,prio G′ if for rule r ∈ R a match g for G

exists, r is applicable with priority, and G
r,g⇒ G′. For the reflexive and transitive

closure we write
∗⇒R,prio.

Assumption: For the rest of this paper we work with attributed typed graphs
with inheritance and rules with priorities where necessary, although not explicitly

152 H. Giese et al.

mentioning it each time. Consequently, we sometimes write G
r,g⇒R G′ instead of

G
r,g⇒R,prio G

′ and ∗⇒R instead of
∗⇒R,prio.

Example 9 (RailCab - Attributes, Inheritance & Priorities). As depicted in Fig. 12
we may equip the type graph of our running example with an attribute energy of data type
Int for the node type Shuttle. Moreover we can make the node type Shuttle abstract and
insert two subtypes RailCab and CargoShuttle into the inheritance relation, respectively.
An assignment in an attributed instance graph as depicted in Fig. 2 defines a concrete
integer value for the attribute energy in nodes of node type RailCab or CargoShuttle.
The type graph with inheritance in Fig. 12 can be flattened into a regular type graph as
depicted on the right in Fig. 12.

Track

on

next
CargoShuttle

RailCab
is_a

is_a

Track

on1

next

CargoShuttle
Int : energy

RailCab
Int : energy

Shuttle
Int : energy

<< abstract >>

on2

ATGI

Fig. 12. Attributed Type Graph with Inheritance and Flattening

Fig. 13 depicts a graph pattern with inheritance PI that can be flattened into four
patterns without inheritance on the right. Note that the patterns P1 and P2 are isomor-
phic, so it is sufficient to keep one of these patterns after flattening.

s1:Shuttle

t1:Track

o1:on

s2:Shuttle

o2:on

s1:
CargoShuttle

t1:Track
o1:on1

s2:
CargoShuttle

o2:on1

s1:
CargoShuttle

t1:Track
o1:on1

s2:
RailCab

o2:on2

s1:
RailCab

t1:Track
o1:on2

s2:
CargoShuttle

o2:on1

s1:
RailCab

t1:Track
o1:on2

s2:
RailCab

o2:on2

PI P1 P2 P4P3

=

Fig. 13. A graph pattern and the related flattened graph patterns

Now our running example rule, moving a Shuttle from one Track to another (see
Fig. 9), can be flattened to two different rules by flattening the corresponding LHS and
RHS rule patterns. In Fig. 14, the first rule is depicted and we have added an operation
on the previously introduced attribute energy. The attribute value of the attribute energy
is constrained such that in the instance graph to which the pattern can be matched to,
a value bigger than or equal to 2 should appear. After rule application this attribute
value is diminished by 2. In Fig. 15, a similar rule is depicted modeling the movement
of a Railcab which is less expensive in the sense that the attribute value of energy is
diminished only by 1, when moving the Railcab from one Track to another Track.

In the example so far we do not need priorities. However, let us assume that the rule
of Fig. 15 refers to the general case of a Shuttle rather than a RailCab and thus defines
that all shuttles by default require one energy point to move along one Track. Then,
the rules of Fig. 14 and Fig. 15 could both be applied for CargoShuttles with energy
attribute value higher than 1. To ensure that in case of a CargoShuttle always only the
more specific rule of Fig. 14 and not the generic one of Fig. 15 is applied, we can then
assign the former rule of Fig. 14 a higher priority.

Graph Transformations for MDE, Adaptation, and M@RT 153

t2:Track

t1:Track

o1:on1

n1:next

LHS RHS
s1:

CargoShuttle
s2:

CargoShuttle

o2:on1

o3:on2

t2:Track

t1:Track

n1:next

s3:
RailCab

s1:CargoShuttle
energy = energy – 2

o4:on1s1.energy >= 2

Fig. 14. MoveCargoShuttle rule with at-
tribute condition and side effect

t2:Track

t1:Track

o1:on2

n1:next

LHS RHS
s2:

CargoShuttle
o2:on1

o3:on2

t2:Track

t1:Track

n1:next

s3:
RailCab

s1:RailCab
energy = energy–1

o4:on2

s1:
RailCab

s1.energy >= 1

Fig. 15. MoveRailCab rule with attribute
condition and side effect

Graph Transformation Systems. A dynamic system can be specified by a so-
called graph transformation system. It consists of a set of graph transformation
rules describing the dynamics in the system. Each system state is described by
a graph and state transitions correspond to rule applications. Initial states of a
dynamic system can be described by an initial graph or a set of initial graphs.

Definition 13 (graph transformation system). A graph transformation
system (GTS) S = (R, TG) consists of a set of rules R typed over a type graph
TG. A graph transformation system may be equipped with an initial graph G0 or
a set of initial graphs I being graphs typed over TG.

Note that the definition is analogous whatever type of type graph with inheri-
tance and attributes or without is employed. Also, the rule set R may support
priorities, which we do not always explicitly mention as described in the previous
assumption.

The set of reachable graphs of a graph transformation system models the set of
reachable states of a dynamic system from its initial states. A graph is reachable
if a graph transformation via the system rules exists from some initial graph,
describing some initial system state, to this graph. Since often in praxis it does
not make sense to distinguish isomorphic graphs, we also define a minimal set
of reachable graphs, where exactly one representative of the isomorphism class
of each reachable graph is contained.

Definition 14 (set of reachable graphs). For a GTS S = (R, TG) and a
set of initial graphs I the set of reachable graphs REACH(S, I) is defined as

{G|G0
∗⇒R G,G0 ∈ I} consisting of all graphs G such that there exists a graph

transformation via rules in R from some initial graph G0 to G of arbitrary
length. We say that G ⊆ REACH(S, I) is a complete set of reachable graphs up
to isomorphism for a GTS S and I if it contains at least one representative graph
of each isomorphism class of graphs in REACH(S, I) and that it is a minimal set
of reachable graphs up to isomorphism if it contains exactly one representative
graph of each isomorphism class of graphs in REACH(S, I).

Often, it is not only desired to analyze which system states can be reached,
but also how they can be reached. The transition system generated by a graph
transformation system and its initial graphs therefore describes the state space
of a dynamic system. If a distinction between isomorphic graphs (or states) is not

154 H. Giese et al.

desired, then it is possible to consider a minimal transition system, describing
rule applications between the corresponding minimal set of reachable graphs.

Definition 15 (labeled transition system). Given a GTS S = (R, TG), a
set of initial graphs I, and a set of graphs G ⊆ REACH(S, I) that is complete
up to isomorphism for S and I, the implied labeled transition system LTS =
(G, I,R×M,⇒R) with G the set of states, I the set of initial states, R×M the
label alphabet with M the set of injective morphisms, and ⇒R⊆ G×(R×M)×G
the transition relation defined as {(G, (r, g), H)|G,H ∈ G∧∃H ′ ∈ REACH(S, I) :

G
r,g⇒R H ′ ∧H ′ ∼= H}. LTS is minimal if its set of states G is a minimal set of

reachable graphs up to isomorphism for the GTS S with initial graphs I.

Example 10 (RailCab - GTS). The rules depicted in Fig. 14 and Fig. 15 typed over
the flattened type graph ATG as depicted in Fig. 12 constitute a GTS modeling the
structural dynamics and energy consumption of the shuttle system. Given also the at-
tributed graph in Fig. 2 as initial graph, we can consider the corresponding set of
reachable graphs and the corresponding transition system. They will have a finite min-
imal set of reachable graphs and minimal transition system, respectively. Since Shuttle
movement goes along with diminishing the energy attribute values of s1 and s2, this
leads to a terminating system. Moreover, each reachable graph satisfies the property
p = ¬Pi with Pi one of the graph patterns depicted in Fig. 13. This property can be
checked statically with the invariant checker as explained in Section 4.2 or dynamically
by analyzing the state transition system via model checking as explained in Section 4.3.

Graph Grammars. A modeling language L, where the abstract syntax of mod-
els is described by graphs, can be specified in a constructive way by an attributed
graph grammar. A graph grammar consists of a set of creating7 attributed graph
transformation rules and an attributed start graph. The graph transformation
rules describe how valid instances of the modeling language at the level of the
abstract syntax can be generated.

Definition 16 (graph grammar, graph language). A graph grammar (GG)
GR = (P , S, TG) consists of a set of non-deleting rules P and a start graph S

typed over TG. The graph language L(GR) is defined as {G|S ∗⇒ G} consisting
of all graphs G such that there exists a graph transformation from S to G of
arbitrary length.

Example 11 (SDL - Graph Grammar). As an example for a simple graph grammar
we consider the generation of all valid SDL block diagrams. At first, we have to define a
related type graph. In this case, we make use of generalization and assume a GTS for-
malism that is able to cope with it. In Fig. 16, the related type graph with generalization
can be seen. Note that flattening the type graph would require adding the name attribute
to all nodes that are a specialization of type Element as well as the addition of related
edge types for all specializations of Connectable. The start graph and rules (productions)

7 Note that in graph transformation standard literature the rules of a graph grammar
are in general not required to be creating or are not restricted to generate a language,
but we restrict them here accordingly to be consistent with more widely used notion
of grammars.

Graph Transformations for MDE, Adaptation, and M@RT 155

BlockDiagram

 name : string
SDLElement

elements

Connection Connectable

Process

Block

SystemBlock

source

target

elements

Fig. 16. Type graph for SDL instance graphs

 name := newName()
blockDiagram : BlockDiagram

Start graph:

blockDiagram : BlockDiagram blockDiagram : BlockDiagram

 name := newName()
systemBlock : SystemBlock

elements

rule 1:

parent : Block parent : Block

 name := newName()
block : Block

rule 2:

parent : Connectable

source : Connectable target : Connectable

parent : Connectable

source : Connectable target : Connectable

 name := newName()
connection : Connectionsource target

rule 4:

parent : Block parent : Block

 name := newName()
process : Process

rule 3:

elements

elements

elements elementselementselementselements

RHS

RHS

RHS

RHSLHS

LHS

LHS

LHS

Fig. 17. Start graph and rules for a simple SDL block diagram graph grammar

156 H. Giese et al.

of the grammar are described in Fig. 17. The start graph creates a BlockDiagram with a
new and unique name (described by newName()). The first rule creates a SystemBlock
as an element of a BlockDiagram node to which also a new and unique name is as-
signed. A Block as an element of a Block node to which also a new and unique name
is assigned is created by rule 2. The third rule creates a Process as an element of a
Block node to which also a new and unique name is assigned. In contrast to a process,
the blocks created by rule 2 may have contained connectable elements. Finally, rule 4
describes that between any two Connectable elements that are contained by the same
Connectable a Connection with a new and unique name might be created. An example

 name = "SDL1"
 : BlockDiagram

 name = "SystemBlock1"
 : SystemBlock

 name = "SDL1"
 : BlockDiagramrule 1

 name = "SystemBlock1"
 : SystemBlock

 name = "SDL1"
 : BlockDiagram

rule 2
 name = "Block1"

 : Block

 name = "SDL1"
 : BlockDiagram

 name = "SystemBlock1"
 : SystemBlock

 name = "Block1"
 : Block

 name = "Block2"
 : Block

 name = "Con1"
 : Connection

source target

rule 4

 name = "SystemBlock1"
 : SystemBlock

 name = "SDL1"
 : BlockDiagram

 name = "Block1"
 : Block

 name = "Block2"
 : Block

rule 2

elements

elements
elements

elements

elements

elements elementselementselementselements

Fig. 18. Derivation of the instance graph example

of how the particular instance graph may be derived by subsequent application of the
rules (productions) of the graph grammar starting with the start graph is presented in
Fig. 18.

3 Languages and Execution

There are several tools that support languages that have been established on top
of graph transformations.8 Examples are Fujaba9, AGG10 [42], Henshin11 [43],
PROGRESS [44], AToM312, and MDElab13.

8 For an updated view on more available tools we refer to the Transformation Tool
Contest[41] initiative.

9 http://www.fujaba.de
10 http://tfs.cs.tu-berlin.de/agg
11 http://www.eclipse.org/modeling/emft/henshin/
12 http://atom3.cs.mcgill.ca/
13 http://www.mdelab.org

http://www.fujaba.de
http://tfs.cs.tu-berlin.de/agg
http://www.eclipse.org/modeling/emft/henshin/
http://atom3.cs.mcgill.ca/
http://www.mdelab.org

Graph Transformations for MDE, Adaptation, and M@RT 157

We will in the paper and this section in particular look on the languages sup-
ported by MDElab. We will focus on the direct integration of meta-models resp.
class diagrams as type graphs presented in Section 3.1, Story Pattern outlined in
Section 3.2, Triple Graph Grammars introduced in Section 3.3, and a Runtime
Model Framework introduced in Section 3.4. Additionally concepts supported by
MDElab omitted for space reasons are Story Diagrams [45] that extend Story
Patterns with control flow constructs and Mega Models for model management
and traceability in scenarios with multiple models [46].

3.1 Type and Instance Graphs

In the last section we could already observe that type graphs and instance graphs
seem quite similar to class diagrams and object diagrams. Another similarity to
meta-models and models also became apparent. We will in the following study
both relation in more detail using two concrete examples.

Modeling: Structure with Class Diagrams and Object Diagrams. Con-
cerning the similarity between type graphs and instance graphs on the one hand
and class diagrams and object diagrams on the other hand holds that node
types and their defined attributes relate directly to class definitions and their
attributes. Furthermore, simple associations relate to edge types. Undirected
associations have to be mapped to directed edges. Thus, the core concepts of
class diagrams can be directly mapped. Some other concepts such as association
attributes, cardinality constraints, or OCL constraints have to be mapped to
additional node types that do not represent classes and sufficiently expressive
graph property specification techniques. Analogously, an object diagram is re-
lated to an instance graph. It is to be noted that here less differences exist. The
common case of binary links can be represented directly in an instance graph
and only non binary links require a indirect encoding. An example for such a
mapping only for the class diagram is explained in the following Example 12.

Example 12 (RailCab - Class Diagram). A class diagram used for modeling the col-
lision avoidance for the RailCab Example 1 is shown in Fig. 19(a). The class diagram
defines the classes Shuttle, Track and DistanceCoordinationPattern which are connected
through associations. A Track may have one successor Track, the annotation ”0 . . . 1”
expresses the multiplicity of the successor association. A Shuttle is always located at ex-
actly one Track (association one) and can mark further Tracks through the associations
next and go. A Track is marked through the go association if the Shuttle is about to go
to this Track, the next association models the Shuttle’s intent for the following move
operation. To avoid collisions, Shuttles can instantiate a DistanceCoordinationPattern
collaboration between them. The DistanceCoordinationPattern collaboration employs two
roles front and rear which are both modeled through associations.

The similarity to the corresponding type graph can be seen in Figure 19(b), which
only differs from Figure 19(a) in the absence of the cardinality constraints, which have
to be specified by appropriate graph properties (cf. Definition 7), and undirected asso-
ciations that are mapped to directed edge types.

158 H. Giese et al.

DistanceCoordinationPattern

Shuttle TrackTrack0...1
next

0...1
go

1
on

0...1
successor

front rear

(a) Class diagram

DistanceCoordinationPattern

Shuttle TrackTrack
next

go

on

successor
front rear

(b) Type graph

Fig. 19. Class diagram and type graph for
the collision avoidance model

BlockDiagram

 name : string
SDLElement

elements

Connection Connectable

Process

Block

SystemBlock

source

target

0 ..1
0 ..*

0 ..1 0 ..1

0 ..1 0 ..1

elements

0 ..10 ..*

Fig. 20. A simplified meta-model for SDL
block diagrams

Due to the explained mapping of class diagrams on type graphs and object
diagrams on graphs, we have a sound foundation and semantics based on typed
graphs with attributes and inheritance. This will be exploited later when the
complete model of the RailCab example that besides the class diagram also
includes a number of Story Patterns and simple graph properties are analyzed
in Section 4.2 and 4.3 .

MDE: Meta-Model and Model. The relation observed for the class diagrams
and object diagrams also holds for type graphs and instance graphs on the one
hand and meta-models and models on the other hand. Node types and their
defined attributes relate directly to class definitions in the meta-model and their
attributes. We also explain the mapping by the following Example 13. For the
syntax we use in the following as usual the notation of UML class diagrams to
depict EMF meta-models.

Example 13 (SDL - Meta-Model). The simplified meta-model used in the following
for our consideration of the Example 2 is depicted in Fig. 20. It introduces the main
concepts Connection and Connectable that are linked via the associations source and
target. Furthermore, the concept Connectable can be refined to be a Process or Block,
where a Block can be further be refined to be a SystemBlock. The grammar of Example 11
defines in addition that SystemBlocks may only contain Blocks, Blocks may only contain
Blocks or Processes and that Processes cannot contain anything. These restrictions are
not encoded in this meta-model and additional OCL constraints would have to be added
to declaratively exclude all unwanted forms of containment.

Thus, we have seen that the core concepts of meta-models can also be mapped
to typed graphs with attributes and inheritance such that we have also a sound
foundation and semantics for them. This will be a foundation for the analysis of
model transformations later in Section 4.1 and 4.2.

Graph Transformations for MDE, Adaptation, and M@RT 159

3.2 Story Pattern

We introduce in this section Story Patterns (SPs) [47] that are a compact vi-
sual notation for graph transformation rules and graph patterns. SPs have been
introduced in the context of Story Diagrams. They take advantage of the simi-
larity between UML object diagrams and graph patterns. As in object diagrams,
objects have a name and a classifier, separated by a colon. SPs represent a graph
transformation rule such that both sides of the rule are combined. Regular ele-
ments belong to both sides, elements with a ++ have to be created and belong
only to the RHS, elements with a −− belong only to the LHS and have to be
removed.

Example 14 (RailCab - SP(1/3)). The SP in Fig. 21 related to the class diagram in
Fig. 19(a) deletes the associations of type go and on between Shuttle s1 and Tracks t2
and t1, respectively. Further, the SP creates an association of type on between s1 and
t2. The SP can only be applied to an instance situation if no Shuttle is located at Track
t2.

s1:Shuttle

t2:Trackt1:Track

o1:on
n1:successor

s1:Shuttle

t2:Trackt1:Track

o3:onn1:
successor

s2:Shuttle

o2:ong1:go
energy = energy-1

LHS RHS

s1:Shuttle

t2:Trackt1:Track

o1:on

n1:successor

s2:Shuttle

o2:ong1:go

energy = energy–1

-- --

o3:on
++

s1.energy >= 1

s1.energy >= 1

Fig. 21. moveSingle: SP for moving a shuttle to an empty track

The semantics of SP is given via a mapping on GTS rules (cf. Def. 8) assum-
ing a proper mapping from class diagrams (meta-models) to type graphs with
attributes and inheritance as described in Section 3.1. For the translations of
SPs into GTS rules we have split up SPs into a graph pattern for the LHS and
RHS as follows: All elements that have no annotation or a −− become nodes
and edges in the graph pattern for the LHS. Note that in particular the NACs
are not allowed to carry annotations and thus always become part of the LHS.
Given the case that the SP contains NACs, they are directly mapped to NACs
in the graph pattern (L, {Ni|1 ≤ i ≤ I}) (cf. Def. 5) with I being the number of
NACs. Elements that have no −− attached and are not part of a NAC become
nodes and edges of the RHS. The types of the nodes and edges are set accord-
ing to the mapping to the type graph. All elements only occurring in the RHS
but not in the LHS are obviously those annotated with a ++ and all elements
besides the NACs only occurring in the LHS but not in the RHS are obviously
those annotated with a −−. A SP is called side-effect free if no elements are
annotated with ++ or −− and can be used to describe basic graph properties.
If the SPs do not delete nodes but at most edges, the conservative and dangling-
edge-collecting approach are identical. However, if also nodes are deleted, one of
the two options has to be chosen.

160 H. Giese et al.

Example 15 (RailCab - SP(2/3)). To exemplify the mapping from a SP to a GTS
rule, we consider here again the simple rule for the Example 12 of the RailCab system
that describes the Shuttle’s move operation. The SP for this rule is given in Fig. 21
(lower part) and the corresponding GTS rule is given in Fig. 21 (lower part). The
correspondence between nodes and edges in the SP and the GTS rule is indicated through
the names. Note that this an improved version of the GTS rule in Fig. 9 (upper part)
that excludes collisions by checking that no other Shuttle is located on the Track the
Shuttle moves to.

We restrict our discussion here to the main features of SP and refer to [48] for a
more complete coverage of features. The Story Diagrams language integrates SPs
as basic building blocks and in addition offers the typical control flow concepts
of an UML activity diagram to steer when which SP should be applied. An
additional activity node foreach in these Story Diagrams permit to also apply a
SP to all matches in the considered object graph. More on Story Diagrams can
be found also in [48].

Modeling: Structural Dynamics. SPs can be employed in combination with
class diagrams to describe the structural dynamics and other behavior of dy-
namic systems. To achieve this, one has to provide a suitable class diagram
describing all possible states of the system under development, a set of SPs
that specify the system’s behavior, and a set of side-effect free SPs that specify
required system properties.

Example 16 (RailCab - SP(3/3)). The behavior of a model of the RailCab system
of Example 1 to study the collision avoidance is defined by a set of SPs. The class dia-
gram of the model is depicted in Fig. 19(a) of Example 12. Based on this class diagram
the SPs shown in Fig. 21, 22(b), 22(c), and 22(d) describe how a shuttle may move.
Fig. 21, 22(c), and 22(d) specify the movement of Shuttles under different conditions
– i.e. succeeding Track is empty, Shuttle has the DistanceCoordinationPattern protocol
established – and Fig. 22(b) specifies the instantiation of the DistanceCoordinationPat-
tern protocol. The operational rules are equipped with priorities ensuring that rules
specifying the Shuttles’ movement without an established DistanceCoordinationPattern
protocol are preempted by rules requiring the DistanceCoordinationPattern protocol. The
instantiation of the DistanceCoordinationPattern protocol has the highest priority and
it’s removal the lowest.

Besides operational rules, the model also consists of forbidden patterns that identify
system states, which are considered unsafe or may lead to an unsafe situation. For the
RailCab system these forbidden patterns are depicted in Figure 22(a) and Figure 22(e),
which are SP without side-effects and describe situations where the DistanceCoordina-
tionPattern protocol is not established for two Shuttles located at succeeding Tracks and
a collision – i.e. two Shuttles at the same Track – respectively.

Overall, the complete RailCab system is specified through six rules and 19 forbidden
patterns (see [49]). Most of the forbidden patterns are required to encode cardinality
constraints. We use the conservative approach for the rule execution for this example,
as edges represent meaningful real world concepts that should not be implicitly deleted.
Anyway, the rules only delete DistanceCoordinationPattern nodes together with its two
links to the connected shuttles. Thus, in this case there will be no valid graph where the
behavior would differ if the dangling-edge-collecting approach would have been chosen.

Graph Transformations for MDE, Adaptation, and M@RT 161

frontrear

dca: DistanceCoordinationPattern

sb:Shuttlesa:Shuttle

tb:Trackta:Track

go

successor

on on

(a) Invariant: No uncoordinated
movement of Shuttles in close
proximity, which would consti-
tute a hazard

frontrear

dc2: DistanceCoordinationPattern

s2:Shuttles1:Shuttle

t2:Trackt1:Track

nexton on

dc3: DistanceCoordinationPattern

dc1: DistanceCoordinationPattern
++

rear
++

front
++

(b) Instantiation rule: creating a Distance-
CoordinationPattern

frontrear

dc1: DistanceCoordinationPattern

s2:Shuttles1:Shuttle

t2:Trackt1:Track

next

on
on

++

successor T3:Tracksuccessor

next
-- ++

go
go

(c) Behavioral rule: Coordinated
movement

rear

dc1: DistanceCoordinationPattern

s1:Shuttle

t2:Trackt1:Track

next

on

++

successor T3:Tracksuccessor

next
-- ++

go

t4:Track successor

(d) Behavioral rule: unrestricted
movement for a solitary Shuttle

sb:Shuttlesa:Shuttle ta:Trackon on

(e) Invariant: No colli-
sion accident

Fig. 22. SPs specifying the structural dynamics of the RailCab model

MDE: Refactoring. As outlined in the following example, SPs can be also
used in the context of MDE. A first example is the specification and execution
of a refactoring [50,7]. Based on the meta-model of a source model (in this case
the SDL block diagram meta-model), the required refactorings are described by
SPs. An in-place transformation of a source model then results in a refactored
model.

Example 17 (SDL - Refactoring). We consider here again SDL block diagrams as
in Example 11.14 Assume that we want to develop a refactoring that change improper
connections across Block boundaries. In case two Blocks are embedded into different
Blocks but are directly connected, this single Connection has to be replaced by three
Connections with the same name. One Connection between the outer blocks and two
additional Connections linking the inner bocks to their outer block (see Fig. 23). As in
case of refactoring deleting all edges to removed elements is rather cumbersome, here
the dangling-edge-collecting approach is used.

14 It is to be noted that the case considered here is not covered by the GG example
and later TGG examples where for space reasons the rule for connections across the
hierarchy are omitted.

162 H. Giese et al.

Block 1

Block 1.1 Block 1.2

Block 2

Block 2.1 Block 2.2

Block 1

Block 1.1 Block 1.2

Block 2

Block 2.1 Block 1.2

Fig. 23. Required refactoring at the concrete syntax level

 name = "S2"
 : Block

 name = "B11"
 : Block

 name = "B1"
 : Block

 name = "B12"
 : Block

 name = N1
 : Connectionsource

elements

elements

 name = "B21"
 : Block

 name = "B2"
 : Block

 name = "B22"
 : Block

target

elements

elements

Fig. 24. The abstract syntax of the example model before the refactoring

rule

sourceConnectable : Connectable

 name= N
connection : Connection

parentSourceConnectable : Connectable

targetConnectable : Connectable

target

source

elements

elements

el
em

en
ts

--
--

--

--

parentTargetConnectable : Connectable

elements

 name = N
connection : Connection

target

source

elements

++
++

++

 name = N
connection : Connection

target

source

++++

++

 name = N
connection : Connection

target

source

++
++

++

elements

elements

parentParentSourceConnectable : Connectable

elements

Fig. 25. SP for the refactoring that corrects connections across hierarchy

To capture the SDL block diagrams, we at first need a meta-model as depicted in
Fig. 20. Based on this meta-model the example of Fig. 23 can be depicted at the level of
the abstract syntax in Fig. 24. With a single SP we can then describe how to manipulate
the models by means of in-place model transformations. The required changes for the
refactoring are depicted in SP of Fig. 25. The direct Connection is removed and instead
three new Connections with the same name as the removed Connection are created that
ensure that the Connections are always respect the block hierarchy. In Fig. 26 we can
see the expected result of refactoring the model of Fig. 24 according to Fig. 25.

Graph Transformations for MDE, Adaptation, and M@RT 163

 name = "S2"
 : Block

 name = "B11"
 : Block

 name = "B1"
 : Block

 name = "B12"
 : Block

 name = N1
 : Connectionsource

target

elements

elements

 name = "B21"
 : Block

 name = "B2"
 : Block

 name = "B22"
 : Block

 name = N1
 : Connection

source

target

elements

elements

 name = N1
 : Connection

source

target

Fig. 26. Result of refactoring the model of Fig. 24 with the SP of Fig. 25

It is to be noted that the SPs can also be used to define complete model transfor-
mations in an operational style. However, either we simply identify corresponding
elements in the other model using names or complex additional structures have
to be maintained explicitly or explicit control structures as supported by Story
Diagrams would be required. In the next section, we will instead discuss how the
same kind of problem can be addressed with a graph grammar based approach
in a more elegant and effective manner by specifying the relation between source
and target model declaratively and derive related operational solutions for the
model transformation.

Code Generation and Interpreter. Story diagrams can be executed by gen-
erating code, which is the approach used in Fujaba and former versions of our
tool, and by interpreting them directly [45].

The former code generation required that all conditions are specified as Java
conditions such that they can be simply embedded in the generated code. The
generated code has a very good performance, but was not very flexible. First,
it did not support OCL. Second, the search for a match happened according to
fixed order for the nodes of an SP set at compile-time. Third, changes of the SPs
and Story Diagrams at runtime were not possible due to the generated code.

To overcome these limitations, an interpreter was developed that supports
OCL conditions, adjusts the matching order to the instance graph to decrease the
worst-case execution times, and permits to modify the SPs and Story Diagrams
at runtime (higher-order transformations). In addition, the SP matcher can start
the matching with any initial bindings such that also incremental matching of
SPs based on change events could be realized with the interpreter. The tool set
is completed by a debugger at modeling level (see [51]).

Note also that SPs and Story Diagrams have already be employed for indus-
trial strength case study such as the MATE project [52] for the enhanced model
validation and model transformation of Simulink/Stateflow models. The current
and older versions of the SP and Story Diagram Interpreter have been realized
based on Eclipse and the Eclipse Modeling Framework. It can be downloaded
from our Eclipse update site http://www.mdelab.org/update-site.

http://www.mdelab.org/update-site

164 H. Giese et al.

3.3 Triple Graph Grammars

In this section, we present Triple Graph Grammars (TGGs) [53] that allows
specifying model transformations in a rule-based and relational way. In partic-
ular, graph grammars as introduced in Section 2 are the formal basis for this
model transformation specification language.

In order to properly specify the triple graph transformations, we require a
meta-model for the source model, for an additionally supported correspondence
model, which stores traceability information that allows finding elements of
one model that correspond to an element of the other model, and for the tar-
get model. TGG rules are accordingly divided into three domains: The source
model domain (left), target model domain (right), and the correspondence model
domain (middle).

A TGG consists of an axiom (the grammar’s start graph) and several TGG
rules that describes how consistent triples of source, correspondence and target
models can be generated. TGGs permit to derive three kinds of model trans-
formation directions: Forward, backward, and correspondence transformations.
A forward (backward) transformation takes a source (target) model as input
and creates the correspondence and target (source) model. A correspondence
transformation15 requires a source and target model and creates only the corre-
spondence model. In addition, also forward or backward model synchronization
is possible where only changes are propagated. As in case of TGGs and re-
lated operational SPs only bookkeeping edges are deleted, the chosen approach
whether conservative or dangling-edge-collecting does not matter.

Example 18 (SDL - TGG Specification). For a transformation from SDL block di-
agrams to UML class diagrams we require a meta-model for SDL block diagrams (as
already depicted in Fig. 20), and a meta-model for UML class diagrams as presented
in Fig. 27. There is also a correspondence meta-model as depicted in Fig. 28.

The axiom in Fig. 29 relates the root elements of the source and target models with
the axiom correspondence node. The attribute assignments, defined through OCL ex-
pressions in our tool environment, state that the names of the block and class diagrams
must be equal. Rule 1 creates a Block and a corresponding UMLClass. The BlockDiagram
and ClassDiagram must already exist. Rule 2 creates a Block in the block diagram do-
main and connects it to an already existing parent Block. In the class diagram domain,
a class is created and connected to the parent Block’s UMLClass with an Association.
Rule 3 is analogous to Rule 2, but covers the creation Process in the block diagram
domain. Rule 4 creates a Connection and a corresponding UMLAssoc between already
corresponding Connectables in the block diagram domain and UMLClasses in the class
diagram domain.

Triple Generation. The TGG itself can be used to build the three models
in parallel by applying TGG rules successively to extend the axiom. In the
resulting graphs, the source and target components (i.e. the source and target
models) are consistent to each other according to the TGG. We employ this
triple generation, for example, to generate test cases for model transformation

15 The correspondence transformation is also known as mapping or model integration.

Graph Transformations for MDE, Adaptation, and M@RT 165

UMLClassDiagram
-string: name
UMLElement

UMLAssoc UMLClass0..1
-leftRole

0..1

0..1
-rightRole

0..1

0..*-elements0..1

0..*

0..1 -elements

Fig. 27. Simplified meta-model for UML
class diagrams

TGGNode

CorrAxiom CorrConnectable

CorrProcessCorrBlock

CorrSystem

CorrConnection

0..*

BookKeeper

UMLElementSDLElement

0..*

source

target

tbd

0..*0..1

0..1
0..*

0..1

0..*

Fig. 28. Correspondence meta-model with
extra concept for bookkeeping

implementations that need to adhere to the TGG. Since the TGG is a specific
graph grammar (see Section 2), it defines a language of consistent source and
target models.

Example 19 (SDL - TGG - Triple Generation). For the SDL block diagram to UML
class diagram transformation of Example 18 the triples can be generated by starting with
the axiom and then applying the rules directly as if they were simply SPs.

Forward & Backward Transformation. However, to perform model trans-
formations in practice it would be too cumbersome to generate all triples of
related size to determine what the output of a transformation should be. In-
stead, under some well-formedness conditions for the TGG rules an efficient op-
erationalization can be generated, which create target model elements for given
source model elements, so that both are consistent to each other. These well-
formedness conditions are described in more detail in [54,55] and range from
simple syntactical checks to more expensive checks (as discussed, for example,
in Section 4.1) that can still be performed at design time.

For each of the aforementioned transformation directions, separate operational
rules are derived from the TGG rules. In particular, the elements with ++ in the
source domain become regular elements by removing the ++. The parts with
++ of the correspondence domain and target domain remain as they are. The
operational rules also have to make sure that a given source model element is only
transformed once. This requires a bookkeeping mechanism, which keeps track of
those elements that were already transformed, and those that still have to be
transformed. Accordingly, an initially set link to a special bookkeeping object
is removed when a source element has been translated and its non-existence is
tested for all context objects as they should have been translated already.

Example 20 (SDL - TGG - Forward Transformation). For Example 18 the SPs
derived from the TGG rules to transform SDL block diagrams into UML class diagrams

166 H. Giese et al.

 name = classdiagram.name
blockdiagram : BlockDiagram corrAxiom : CorrAxiom

 name = blockdiagram.name
classdiagram : UMLClassDiagram

Axiom sources targets

rule 1

blockdiagram : BlockDiagram «input»

corrAxiom : CorrAxiom

classdiagram : UMLClassDiagram

sources targets

 name = clazz.name
system : SystemBlock corrSystem : CorrSystem

 name = system.name
clazz : UMLClass

sources targets
elements elements

rule 2

parentBlock : Block «input»

corrParent : CorrBlock

parentClazz : UMLClass

 name = clazz.name
block : Block corrBlock : CorrBlock

 name = block.name
clazz : UMLClass

classdiagram : UMLClassDiagram

sources

sources

targets

targets
elements

association : UMLAssoc

elements

elements

rightRole

leftRole

rule 4

sourceConnectable : Connectable

 name = association.name
connection : Connection

parentConnectable : Connectable

targetConnectable : Connectable

«input»
corrSource : CorrConnectable

corrTarget : CorrConnectable

classdiagram : UMLClassDiagram

sourceClazz : UMLClass

targetClazz : UMLClass

corrConnection : CorrConnection
 name = connection.name

association : UMLAssoc

sources

sources

sources

targets

targets

targets
target

source

elements

elements

el
em

en
ts

elements

elem
ents

elements

leftRole

rightRole

rule 3

parentBlock : Block «input»

corrParent : CorrBlock

parentClazz : UMLClass

 name = clazz.name
process : Process corrProcess : CorrProcess

 name = process.name
clazz : UMLClass

classdiagram : UMLClassDiagram

sources

sources

targets

targets
elements

association : UMLAssoc

elements

elements

rightRole

leftRole

++ ++ ++
++ ++

++ ++ ++
++

++++

++ ++ ++

++

++

++

++ ++

++

++

++

++

++

++ ++ ++
++

++ ++

++

++

++

++

++

++ ++ ++
++

++

++
++ ++

++

++

++

Fig. 29. TGG rules to transform SDL block diagrams into UML class diagrams

Graph Transformations for MDE, Adaptation, and M@RT 167

are depicted in Fig. 30. While the elements of the source model become additional
pre-conditions, the new elements of the TGG rule in the correspondence model and
target model are generated. In addition, it is checked if a link to a bookkeeping object
is available. It ensures that the translated source elements have not yet been processed
(required edge) and that all context elements of the source model have been processed
(forbidden edges). The links to the translated elements are deleted by the rules such
that subsequent rule applications will not consider the covered elements of the source
model.

The steps of a forward transformation with TGGs are depicted in Fig. 31. Dashed
lines separate the elements covered by each step for the source model and the generated
elements for the correspondence and target model.

Consistency Transformation. TGGs can also be used to derive the cor-
respondence model for a give source and target model. In that case, in each
TGG rule all elements of the source and target domain become part of the pre-
condition of the related SP and only the parts of the correspondence domain to
be generated become part of the post-condition. In addition, bookkeeping must
ensure that only those elements of the source and target model are considered
as match for the SP.

Forward & Backward Synchronization. In case of model synchronization,
the target and correspondence model are also input for the processing. Next

links leading from all referenced correspondence nodes to the newly created cor-
respondence nodes (also created by the model transformation, but omitted there
for space reasons) capture the dependencies between different rule applications
related to the correspondence nodes. The goal of the forward synchronization is
then to propagate only the changes that occur in the source model to the corre-
spondence model and target model but regenerate only the necessary minimum.

Example 21 (SDL - TGG - Model Synchronization). We consider here how to
synchronize a SDL block diagram with a UML class diagram, which is related to the
transformation considered in Example 18 and 20.

The considered change in a SDL block diagram is depicted in Fig. 32. A block Block3
and a contained block Block4 are moved from the embedding block Block1 into another
block Block2. Using model synchronization only the changes are propagated.

Model Transformation and Synchronization Engine. Our implementa-
tion of the model transformation takes advantage of the knowledge which cor-
respondence nodes can be a trigger for a TGG rule. It manages a queue of
the created correspondence nodes and then only triggers the necessary rules for
those nodes. In addition, the bookkeeping is used as an additional side-condition
to limit the search space as newly matched elements are always still connected
with the bookkeeping object. Both tricks permit to avoid any global search for
matches and considerably speedup the transformation.

In case of model synchronization, the correspondence model and target model
are also input for the processing. In addition, we remember the dependencies

168 H. Giese et al.

blockdiagram : BlockDiagram corrAxiom : CorrAxiom

 name = blockdiagram.name
classdiagram : UMLClassDiagram

rule 0 (establish start graph) sources targets

rule 1

blockdiagram : BlockDiagram «input»

corrAxiom : CorrAxiom

classdiagram : UMLClassDiagram

sources targets

system : SystemBlock corrSystem : CorrSystem

 name = system.name
clazz : UMLClass

sources targets
elements elements

rule 2

parentBlock : Block «input»

corrParent : CorrBlock

parentClazz : UMLClass

block : Block corrBlock : CorrBlock

 name = block.name
clazz : UMLClass

classdiagram : UMLClassDiagram

sources

sources

targets

targets
elements

association : UMLAssoc

elements

elements

rightRole

leftRole

rule 4

sourceConnectable : Connectable

connection : Connection

parentConnectable : Connectable

targetConnectable : Connectable

«input»
corrSource : CorrConnectable

corrTarget : CorrConnectable

classdiagram : UMLClassDiagram

sourceClazz : UMLClass

targetClazz : UMLClass

corrConnection : CorrConnection
 name = connection.name

association : UMLAssoc

sources

sources

sources

targets

targets

targets

target

source

elements

elements

el
em

en
ts

elements

elem
ents

elements

leftRole

rightRole

rule 3

parentBlock : Block «input»

corrParent : CorrBlock

parentClazz : UMLClass

process : Process corrProcess : CorrProcess

 name = process.name
clazz : UMLClass

classdiagram : UMLClassDiagram

sources

sources

targets

targets
elements

association : UMLAssoc

elements

elements

rightRole

leftRole

++ ++
++ ++

++ ++
++ ++

++

++ ++

++

++ ++

++

++

++

++

++

++ ++

++

++ ++

++

++

++

++

++

++ ++
++ ++

++

++

++

bk : BookKeeper

tbd

--

bk : BookKeeper

tbd

--

bk : BookKeeper

tbd

--

bk : BookKeeper

tbd

--

bk : BookKeeper

tbd

--

tbd

tbd

tbd

tbd

X

X

X

X

X

X

Fig. 30. Derived SPs to transform SDL block diagrams into UML class diagrams

Graph Transformations for MDE, Adaptation, and M@RT 169

 : BlockDiagram

 name = Block1
 : Block

 name = SystemBlock1
 : SystemBlock

 name = Block2
 : Block

 name = C1
 : Connection

source

target

 : UMLClassDiagram

 name = SystemBlock1
 : UMLClass

 name = Block1
 : UMLClass

 name = Block2
 : UMLClass

 : UMLAssoc

elements

leftRole

rightRole

 : UMLAssoc

leftRole

rightRole

 name = C1
 : UMLAssoc

rightRole

 : CorrAxiom

sources

targets

 : CorrSystem

sources

targets

elements

elements

 : CorrBlock

sources

targets

 : CorrBlock

targets

sources

leftRole

 : CorrConnection
sources

targets

source graph correspondence graph target graph

Axiom

rule 1

rule 2

rule 2

rule 4

 : BookKeeper

tbd

tbd

tbd

tbd

--

--

--

--

Fig. 31. Derivation of a forward transformation with TGGs

Fig. 32. Considered change in a SDL block diagram

between rule applications in the correspondence model in form of additional
next links as defined in Fig. 28 between the newly created correspondence nodes
and those in the LHS when transforming as well as synchronizing the models.
Therefore, the correspondence model with the next links has further the form
of a directed acyclic graph (visualized in Fig. 33 as a tree) and we can exploit
this acyclic structure in a number of improvements for the efficient incremental
processing of changes for the synchronization (similar to ideas for incremental
parsing as outlined in [56]).

In [57,58], we have achieved that in most cases a single change can be processed
in the average case with only logarithmic effort concerning the size of the models
involved. In [59], we further improved the solution in such a way that even in the
case of multiple changes, we can ensure only a slow increase of the efforts and
that the effort always remains below or equal to the batch algorithm. Further

170 H. Giese et al.

G
c

(a) batch

G
c

not visited

visited

(b) average case in-
cremental

G
c

(c) worst-case in-
cremental

Fig. 33. Parts of the correspondence model Gc affected by the different algorithms

improvements ensure that for a restricted class of TGG rule sets, also in the
worse-case [60] an incremental processing can be observed.

In the latest version [60], we additionally use the information available in
the declarative TGG rules to also derive additional checks to repair structural
changes by adjusting links and avoiding retransformation of elements. This
also ensures that the effects of changes are only propagated when necessary
(cf. Fig. 33(c)). Therefore, the new algorithm drastically improves our former
results [57,58,59] and we can show that it is even optimal if the overall algorithm
and not the rule matching dominates the complexity.

Example 22 (SDL - TGG - Efficient Model Synchronization). In case of a com-
plete transformation the whole source model would have been traversed following the
scheme in Fig. 33(a). If we in contrast follow the scheme of Fig. 33(b), only the com-
plete source model below the change would be retransformed. Therefore, the synchro-
nization would work as if Block3 and a contained block Block4 embedded into the block
Block1 are first deleted and a new Block3 and a contained block Block4 are created
located under the block Block2. The improved version of Fig. 33(c)) will instead con-
sider the right scenario and take into account that block Block3 and the contained block
Block4 are moved from the embedding block Block1 to block Block2.

Finally, in Fig. 34 the resulting effects of the model synchronization following the
scheme of Fig. 33(c) are presented. In the source model, only a link is deleted and
block Block3 is added a new element of block Block2. Due to the improved handling
the resulting synchronization effects requires that in the correspondence model and the
target model the related links are corrected as the algorithm is able to reuse the old
correspondence model and target model related to block Block3 and block Block4.

It should be noted that in the considered case the absolute improvement is only mod-
erate while the relative improvement is already considerable. However, if the part of the
correspondence model located under the correspondence directly affected by the a change
is large, the effort without repair can become as large as transforming the model anew
while only a few local changes are required for our synchronization algorithm.

TGGs have already be employed for an industrial strength case study in the
context of an automotive tool chain. The task was to transform elements of
SysML system models, which refer to the software, into an AUTOSAR soft-
ware architecture model. Additionally, both models had to be kept synchro-
nized after transformation [61]. The current and older versions of the presented
TGG Engines have been realized based on Eclipse and the Eclipse Modeling
Framework. The current version can be downloaded from our Eclipse update
site http://www.mdelab.org/update-site.

http://www.mdelab.org/update-site

Graph Transformations for MDE, Adaptation, and M@RT 171

 name = "SDL3"
 : BlockDiagram

 name = "Block1"
 : Block

 name = "Block2"
 : Block

 name = "Block3"
 : Block

 name = "SDL3"
 : UMLClassDiagram

 name = "Block1"
 : UMLClass

 name = "Block2"
 : UMLClass

 name = "Block3"
 : UMLClass

 name="elements"
 : UMLAssociation

 name="elements"
 : UMLAssociation

 : CorrAxiom

 : CorrBlock

 : CorrBlock

 : CorrBlock

 name = "Block4"
 : Block

 name = "Block4"
 : UMLClass

 name="elements"
 : UMLAssociation : CorrBlock

--

++ ++

++

--

--

sources targets

sources

sources

sources

sources

targets

targets

targets

targets

targets

targets

targets
next

next

nextnext

next

Fig. 34. Effects of the model synchronization following the scheme of Fig. 33(c)

3.4 Runtime Model Framework

In the following, we discuss a framework leveraging runtime models for self-
adaptive systems [62,63,64,65]. Having explicit models that represent the running
system, MDE techniques based on graph transformations (cf. Section 2) can be
applied. The generic architecture of the framework, which extends the control
loop concept proposed in [8], is depicted in Fig. 35.

A Managed System provides Sensors and Effectors that are used to observe
and change the running system, respectively. These sensors and effectors provide
the so-called Source Model, which is a runtime representation of the system.
This model is causally connected to the system, which generally means that any
change in the running system is reflected in the source model, and any change
in the source model is reflected in the system. Therefore, this model can be
directly used by Autonomic Managers to perform the feedback loop activities
that comprise the monitoring and analysis of the running system, and if changes
are required, the planning and execution of adaptation to the system.

However, a source model represents all functionalities and concerns of the
sensors and effectors. Therefore, it is usually complex and related to the solution
space and platform of a managed system. Thus, a source model provides a view
on a system at a low level of abstraction, which could make it laborious to use
it as a basis for the feedback loop activities performed by managers.

Therefore, several Target Models are derived from a source model at runtime.
Each target model abstracts from the source model and it provides a specific view
on a managed system required for a certain self-management capability. As an
example, a target model might represent the performance state or failures of a
system to address self-optimization or self-healing, respectively. A manager con-
cerned with self-optimization will use only the target models relevant for optimiz-
ing a system, but not necessarily consider target models addressing other
capabilities like self-healing. This and appropriate abstractions of models, reduce

172 H. Giese et al.

Monitor

Analyze Plan

Execute

Autonomic Manager

architectural element
model
monitoring

defined by
uses

Knowledge

EffectorsSensors

Managed System

adaptation

SP

Model Synchronization Engine

Source Model

Target Model

Factories

Metamodel

TGG Rules

Metamodel

SP Interpreter

OCL

OCL Interpreter

Fig. 35. Generic Architecture for the Runtime Model Framework (cf. [64])

the complexity for individual managers in coping with runtime models and per-
forming their activities.

Thus, target models tend to provide views related to problem spaces of dif-
ferent self-management capabilities and to abstract from the underlying sys-
tem platform. This supports the reusability of managers that focus on problem
spaces shared by different managed systems. Furthermore, as target models can
be platform-independent, the kinds of target models used in our approach are
primarily defined with the needs of the autonomic managers in mind rather than
focusing on the underlying infrastructure.

Therefore, managers preferably use target models than a complex source
model to perform the feedback loop activities. This requires that a target model
is causally connected to the source model. Thus, changes in the source model
are reflected in target models for monitoring, and vice versa for adaptation. To
maintain different target models at runtime and to realize causal connections
between the models, we use our Model Synchronization Engine based on TGGs
that incrementally synchronizes models with each other (cf. Section 3.3). To use
the engine, source and target models have to be defined by meta-models that
are the basis to define TGG Rules (cf. Fig. 35). These rules define how a pair of
source and target models are synchronized with each other.

However, all concepts in one model need not to be represented in the other
model. Especially, concepts in a source model may not be reflected in the target
model since target models are at a higher level of abstraction than source models.
Hence, synchronizing source model changes reflecting changes in the managed
system to a target model for monitoring is not problematic. During synchroniza-
tion, concepts that are represented in a source model but not in a target model
are simply discarded, which causes the intended abstraction. Therefore, changes
can be propagated from source to target models without any difficulty. However
for adaptation, the opposite direction of propagating target model changes to
the source model is problematic since these changes have to be refined in order
to be reflected properly in the source model. The abstraction gap between source

Graph Transformations for MDE, Adaptation, and M@RT 173

and target models prevents a bidirectional synchronization using the TGG-based
transformation engine. Therefore, this abstraction gap is filled by Factories (cf.
Fig. 35) that are invoked on target models but they operate on the source model
where all required information is provided. Hence, the intended changes are per-
formed by factories on the source model and afterwards they are synchronized
to target models by the synchronization engine, which makes them visible for
managers. Though factories are currently implemented in Java, they could also
be specified and realized by graph transformation rules, like SPs (cf. Section 3.2),
that perform an in-place transformation of the source model. Further issues con-
cerning adaptations based on target models are discussed in [64].

Overall, this approach leverages abstract runtime models and MDE techniques
for adaptive systems. In contrast to a complex source model, an abstract target
model provides a more appropriate abstraction for autonomic managers and a
more specific view for a self-management capability. Both aspects ease the work
of managers. Moreover, target models can abstract from a concrete managed sys-
tem and platform, which supports the reusability and extensibility of managers
being able to operate on these models across different systems.

While the synchronization between source and target models with TGGs as
discussed above supports the monitoring and the execution of adaptations, the
analysis and planning activities of the feedback loop can be tackled as well by
graph transformations. In [65], we discuss the applicability of SPs (cf. Section 3.2)
working on runtime (target) models. For analysis, SPs perform checks on a run-
time (target) model, while for planning adaptations, a runtime (target) model is
transformed in-place by SPs. In addition to SPs, OCL expressions can be used
by autonomic managers to perform the feedback loop activities. This is outlined
on top of Fig. 35 by an implementation example of an autonomic manager. The
analysis and planning activites of this manager are specified by SPs and OCL
expressions based on the target meta-models. These SPs and OCL expressions
are executed by corresponding interpreters and they operate on target models
to analyze the managed system and to plan adaptations.

As sketched in Fig. 35, several runtime models, like SPs, OCL, or target
models, and several model operations, i.e., tools like the synchronization engine
and different interpreters, are used to implement and execute a feeback loop
with its activities. To explicitly specify the interplay between all these models
and operations, so-called megamodels can be employed [66]. A megamodel is
a model that has models as its elements and that captures the relationships
between these models in the form of model operations. Thus, a feedback loop
and especially its flow of activities implemented by interacting models and model
operations can be specified by a megamodel. Moreover, having an interpreter for
megamodels, a megamodel can be kept alive at runtime in order to maintain
the different runtime models and operations, and to directly execute a feedback
loop. Therefore, besides making feedback loops explicit in the design of a self-
adaptive system, a megamodel approach together with an interpreter supports
the execution, adaptation, and composition of feedback loops [67].

174 H. Giese et al.

Fig. 36. Simplified source meta-model [64] Fig. 37. Simplified target meta-model [64]

Example 23 (Runtime Model Framework). As an example, we consider managed
systems implemented with Enterprise Java Beans 3.0 (EJB) technology. Fig. 36 shows
the simplified16 meta-model for the source model. Based on this meta-model, EJB-based
systems can be described at three different layers. The top layer covers components
types that correspond to artifacts from the development phase. These types define the
configuration space for a system. Concrete configurations of a system are instances
of these types that are deployed in a container (server) and they are considered by
the middle layer. Finally, the lower layer addresses bean instances and interactions by
means of calls among them.

Since models conforming to this meta-model are complex, very detailed, and platform-
specific, we introduce a meta-model for generic component-based software systems,
which is used for target models. A simplified version17 of this meta-model is depicted
in Fig. 37. It generally considers component-based systems and it covers failures that
have occurred when using a provided interface.

Using this generic meta-model, EJB-based systems can be described in a platform-
independent and abstract manner, while highlighting the specific concern of failures
occurring in the running system. Hence, a target model as an instance of this generic
meta-model has to be synchronized at runtime with the source model conforming to the
meta-model depicted in Fig. 36.

Overall, eleven TGG rules were required to specify the synchronization between in-
stances of these specific source and target meta-models. One of these rules is depicted
in Fig. 38. This rule transforms and synchronizes an EjbInterface element to an In-
terface element, or vice versa. Model elements on the left refer to the source model,
elements in the middle to the correspondence model, and elements on the right to the
target model. Thus, for each EjbInterface provided by a SessionBean that is part of an
EjbModule in the source model an Interface is created in the target model and associated

16 The meta-model depicted in Fig. 36 is simplified as it does not show any attributes,
operations, and enumerations, and it hides some associations. Moreover, elements
for concerns like security, transaction, timers, or quiescence are hidden.

17 The meta-model is simplified as several attributes and three associations to navigate
from a Component, Interface, or Property to their corresponding types are hidden.

Graph Transformations for MDE, Adaptation, and M@RT 175

m:EjbModule

uid := ib.uid

i:Interface

c:Component

uid := i.uid

ib:EjbInterface

sb:SessionBean

tb:EjbInterfaceType t:InterfaceType

corr1:
CorrEjbModule

corr2:
CorrEjbInterface

corr3:
CorrEjbInterfaceType

enterpriseBeans

ejbInterfaces

ejbInterfaceType

provides

type

++

++

++

++

++

++ ++

++++

Fig. 38. Example TGG Rule [64]

name = Shop

c1:Component

name = Warehousing

c2:Component

name = IWarehousing

i1:Interface

name = IWarehousing

i2:Interface

name = IWarehousing

i3:Interface

name = Warehousing2

c3:Component

name = c1

co1:Connector

name = c2

co2:Connector

requires provides

-- --

++++

provides

++

--

Fig. 39. Example adaptation SP

as a provided interface to the Component that corresponds to the EjbModule. Moreover,
a CorrEjbInterface element as part of the correspondence model is created that stores the
mapping between the EjbInterface and the Interface. Finally, the Interface is associated
to the InterfaceType that corresponds to the EjbInterfaceType to which the EjbInterface
is linked. Likewise, if an Interface is created in the target model, it is transformed or
synchronized to an EjbInterface in the source model. This rule also shows how attribute
values are synchronized. The uid of an Interface is directly derived from the uid of the
EjbInterface, and vice versa.

Moreover, this rule exemplifies that not all concepts in one model need to be rep-
resented in the other model. A SessionBean in a source model is not reflected in the
target model and therefore no correspondence model element exists that is connected to
a SessionBean.

As an example for manipulating a target model, Fig. 39 shows a SP specifying one
step within a complex architectural adaptation. This pattern works on target models
that conform to the meta-model shown in Fig. 37. Considering a web shop as an ex-
ample system, it changes the binding between components of the system by removing
the connector between the Shop and the Warehousing components, and creating a new
connector to bind the Shop component to the Warehousing2 component. This architec-
tural adaptation is motivated by a faulty Warehousing component that causes failures at
runtime. This requires that requests from the Shop component are routed to the alter-
native Warehousing2 component. Similar SPs are used for the other adaptation steps,
like checking if failures occur at runtime, to deploy and start the alternative component,
and to stop and undeploy the faulty component.

The framework has been employed to academic case studies for self-adaptive
software systems. The framework’s implementation is continuously enhanced
and elaborated, and it is available on request. For further information on the
research prototype, please contact us at contact@mdelab.org.

4 Analysis

For the introduced SP and TGG languages as well as the Runtime Models Frame-
work a number of analysis techniques available for graph transformations can
be employed. The formal foundation of graph transformation permits to analyze
them in different ways. At first we can use static analysis techniques that only
analyze the structure of the GTS rule sets such as static conflict detection [68]

contact@mdelab.org

176 H. Giese et al.

or invariant checking [49]. Secondly, there are analysis techniques that explore
the state space directly such as model-based testing [69,70,71] or model checking
[72,73]. Moreover, based on the formal foundation of graph transformation, it
is possible to apply theorem proving to graph transformation [74,75]. In [76],
for example, we already verified behavior preservation of a model transforma-
tion (see [76]) specified with TGGs using theorem proving. [77] presents another
static analysis technique for graph transformation systems based on a transla-
tion into so-called Petri graphs, which can be seen as unfoldings of the graph
transformation system. Finally, verification techniques for the correctness of so-
called graph programs, equipping graph transformation rules with basic control
structures, have been developed in [78], following Dijkstra’s approach to program
verification, and [79], where a Hoare calculus for graph programs is presented.

We will look in the following into static conflict detection for model trans-
formations with TGGs in Section 4.1, invariant checking for model refactorings
with SPs and systems with structural dynamics with SPs in Section 4.2, and
model checking for systems with structural dynamics with SPs in Section 4.3.

4.1 Static Conflict Detection

Conflict detection allows for detecting and visualizing conflicts that may occur
between rule applications. Conflicts arise, for example, if one rule deletes an el-
ement used by the other rule. This is because after applying the first rule and
deleting this used element from the other rule, this other rule cannot be applied
anymore. Conflicts between rule applications can be computed at design time
by analyzing the corresponding graph transformation rules. To this extent, the
so-called theory of critical pairs [35,80] can be applied. A critical pair describes
a conflict between two rule applications in a minimal context. AGG is a graph
transformation tool [42] able to compute the complete set of critical pairs for a
given set of graph transformation rules for the conservative approach.18 Since
this set can be computed from the rules (without executing them and generating
a corresponding state space), conflict detection is a so-called static analysis tech-
nique. In general, computing the complete set of critical pairs for a given pair of
rules is exponential in the number of rule elements in the LHSs of these rules.
This is because so-called overlaps (jointly surjective morphisms, see Def. 2) of
the rules’ preconditions need to be built in order to compute all possible minimal
contexts of rule applications.

Example 24 (SDL - TGG - Static Conflict Detection). In [54,55], we perform
conflict detection using AGG on the rule-based specification of model transformations in
order to find out at design time if each model transformation following this specification
can be performed efficiently, i.e. without backtracking at runtime.

For the example transformation rules in Fig. 40, depicting backward transformation
rules with bookkeeping from class diagrams to block diagrams derived from a similar

18 Note that we can verify with the invariant checker discussed in Section 4.2 whether
for a given rule set the dangling-edge-collecting approach and the conservative ap-
proach result in the same behavior.

Graph Transformations for MDE, Adaptation, and M@RT 177

bd1:BD cn1:BD2CD cd1:CD

sb2:SB cn2:SB2CL cl2:CL

++
++

++
++

++

sb2:SB cn2:SB2CL cl2:CL

bl3:BL cn3:BL2CL

as3:AS

cl3:CL

source

target

++

++
++

++
++

++

cn1:BD2CD cd1:CDbd1:BD

Rule 1 (SystemBlock to Class)

Rule 2 (Block to Class and Association)

SL1 CL1 TL1

SR1 CR1 TR1

SL2 CL2 TL2

SR2 CR2 TR2

b:B
- -

b:B

- -

- -

Fig. 40. Backward rules r1BB and r2BB

in conflict

bd1:BD

sb2:SB

bl3:BL

cn1:BD2CD

cn3:BL2CL

cn2:SB2CL

cd1:CD

cl2:CL

cl3:CL

as3:AS

source

target

r2- -

name := "bd1" name := "bd1"

name := "sb2"

name := "bl3"

name := "sb2"

name := "bl3"

name := "bl3"

cn3:SB2CLsb3:SB
name := "bl3"

Rule 2

Rule 1

r2++r2++

r1++ r1++

b:B

r2--

r1--/r2--

Fig. 41. Operational backward rules r1BB

and r2BB competing for translating cl3

TGG as presented earlier in this paper, a conflict arises. The LHS of rule 1 is completely
contained in the LHS of rule 2 (shaded background). Therefore, both rules can be applied
in the same context and compete for the translation of the same Class, namely cl2 in
rule 1 and cl3 in rule 2, respectively. Fig. 41 shows the backward transformation of a
class diagram model with both alternatives. In particular, cl3 can be translated by rules
1 and 2 but with different results, which are both shown in the figure.19 Rule 1 creates
a second SystemBlock in the block diagram model, rule 2 creates a Block. In particular,
we have a delete-use-conflict because if the bookkeeping edge to the instance class cl3
is deleted by rule 1, then it cannot be matched anymore by rule 2 and the other way
round. In addition, rule 1 leaves as3 untranslated. After applying rule 1 to translate
cl3, the bookkeeping edge to as3 still exists. Therefore, the transformation result is not
unique and our TGG model transformation implementation can not perform in a safe
way the corresponding model transformation efficiently without backtracking.

4.2 Invariant Checking

Given a set of SPs describing the behavior of a system and required properties
in form of side-effect free SPs being forbidden graph patterns, we present here
a static verification technique we developed for analyzing the structure of the
underlying GTS rules assuming the conservative approach to determine whether
the required properties are inductive invariants.18 Since it is a static analysis
technique, it even works when we have arbitrary many or even infinitely many
reachable graphs. We will only review here the basic idea [49] and refer the in-
terested reader to [81] for an extension for timed models. For the collaboration
building and its structural dynamism, a fully automatic checker for inductive
invariants of graph transformation systems [49] presented in Section 4.2 and an
extension supporting timed graph transformation systems [81] and an incremen-
tal checker [82] have been developed.

19 Thereby, cl2 of rule 1 as well as cl3 of rule 2 are mapped to the instance Class cl3.

178 H. Giese et al.

In our approach, a set of SPs describing the behavior relates to a GTS S =
(R, TG) (cf Def. 13), where R is equipped with a priority function prio, that
captures the possible changes of the graphs representing the state of a system.
An additional set of side-effect free SPs represent forbidden graph patterns F =
{F1, . . . , Fn} (cf. Def. 7) representing safety-violations of our system that have
to be excluded. The related property ΦF is thus a conjunction of the forbidden
patterns (¬F1) ∧ · · · ∧ (¬Fn). We call G a witness for the property ¬ΦF if G in
contrast matches any forbidden graph pattern F ∈ F .

The graph property ΦF is an operational invariant of the GTS S if for a
given initial graph G0 and for all G ∈ REACH(S, {G0}) (cf. Def. 14) holds G |=
ΦF (cf. [83]). However, checking operational invariants is undecidable as graph
transformations with types are Turing-complete. We therefore instead tackle the
problem whether the property ΦF is an inductive invariant. This is the case if for
all graphs G typed over TG and for all rules r ∈ R holds that G |= ΦF ∧ G

r⇒R
G′ implies G′ |= ΦF . If we have an inductive invariant and the initial graph G0

fulfills the graph property, then ΦF is also an operational invariant as inductive
invariants are stronger than their operational counterparts.

We can reformulate the definition of an inductive invariant as follows to have
a falsifiable form: a graph property ΦF is an inductive invariant of a GTS S =
(R, TG) if and only if there exists no pair (G, r) of a graph G and a rule r ∈ R
such that G |= ΦF , G

r⇒R G′ and G′
|= ΦF . Such a pair (G, r) which witnesses
the violation of graph property ΦF by rule r is then a counterexample for the
initial hypothesis.

The invariant checker proceeds as follows for verifying statically that the ab-
sence of forbidden patterns20 is preserved by a set of graph transformation rules
with priorities: it is analyzed statically which kind of graph elements may be
produced by a rule and then, it is checked how these created graph elements
may be overlapped with the forbidden pattern F ∈ F . In case that overlappings
are present, counterexamples can be constructed (by inverse rule application to
the overlapping), expressing that if the rule is applied to a graph holding the
remaining part of the forbidden pattern (source pattern), then after rule applica-
tion the complete forbidden pattern F will be present (target pattern). Thereby,
counterexamples may be rejected because of three reasons: (1) the source pat-
tern comprises the precondition for a rule with a higher priority to be applicable
(2) the source pattern comprises forbidden elements of one of the NACs of the
rule (3) the source pattern comprises a forbidden pattern. In the first case, the
rule with the higher priority ensures that the rule with lower priority under ver-
ification would not be applicable anyway. In the second case, similarly, the rule
under verification would not be applicable because the source pattern comprises
one of its NACs. In the latter case, the rule under verification would lead to a
state comprising the forbidden pattern, if it is applied to a state which com-
prises the forbidden pattern already. If no counterexamples exist, it is ensured

20 We explain the algorithm for patterns of the form (F, ∅), denoted also as F . For an
explanation of invariant checking for patterns of the form Π = (F, {Ni, i ∈ I}), we
refer to [49].

Graph Transformations for MDE, Adaptation, and M@RT 179

that a set of rules with priorities cannot be applied in such a way that they allow
for transitions from states holding no forbidden pattern to states holding some
forbidden pattern.

Example 25 (SP - Correct Model Refactorings). We have applied invariant check-
ing in the context of in-place model transformations, in particular, refactorings. In
this application context, invariant checking is very useful to investigate at design time
if a rule-based refactoring specification could lead to inconsistent refactored models
at runtime. We briefly review this approach here and we refer to [84] for a detailed
description.

Fig. 42. A forbidden pattern (with pred-
icate elements) specifying that no two
methods with the same signature are mem-
bers of the same class

Fig. 43. Refactoring rule for the “Pull Up
Method” refactoring

Fig. 44. Counterexample for the ”Pull Up
Method” refactoring

For example, for the consistency of the refactoring Pull Up Method [50], it is impor-
tant that afterwards “no two Methods sharing the same signature are contained in one
Class”. This well-formedness constraint is depicted as a forbidden pattern in Fig. 42.
The types Pred-SameSignature and Pred-NotSameSignature mark that two Methods have
the same or a different signature, respectively. If we run our Invariant Checker with
the well-formedness constraint shown in Fig. 42 and the refactoring rule depicted in
Fig. 43 the verification result is likely to be a counterexample as the one shown in
Fig. 44. The reason that the refactoring rule is unsafe is that the rule completely ig-
nores the Pred-SameSignature nodes. If we change the rule to require the existence of
a Pred-NotSameSignature and forbid the existence of a Pred-SameSignature node, the
rule is safe.

Example 26 (RailCab - Invariant Checking for Structural Dynamics). A further
example successfully applying our Invariant Checker is the Railcab system. Obviously,
this system is hard to check using other verification techniques, such as model checking,
as the system’s potential state space would be very large and it is hard to identify a valid
initial state.

To ensure that the Railcab system is safe, we have to verify that Shuttles never
collide. A collision can be expressed by a forbidden pattern, as shown in Fig. 22(e). An
invariant that is implied in this specification of the Railcab system is that a Shuttle will
never try to go to a Track occupied by another Shuttle without making sure the other
Shuttle is moving (see Fig. 22(a)). Along with several structural constraints restricting
cardinalities, these two forbidden patterns form the set F.

The complete set of rules is given through the Story-Pattern shown in Fig. 22(d),
22(b), 21 and 22(c). For a short description of the rules we refer to Example 16. For the

180 H. Giese et al.

RailCab system to be safe it is required that rules for the creation of the DistanceCoordi-
nationPattern protocol (cf. Fig. 22(b)) preempts all move-rules. Therefore this rule has
the highest priority. Due to space limitations we have omitted the rule that destroys the
DistanceCoordinationPattern protocol, however the complete example including a more
detailed explanation of the rules can be found in [49]. Using the rules mentioned above
we have verified in[49] that the RailCab system is collision free.

The Invariant Checker has be employed for several variants of the reported case
studies for MDE including the rules of the industrial case study [61] and models
with structural dynamics. The current implementation of our Invariant Checker
tool is constantly improved and is available on request only. For further infor-
mation on the research prototype, please contact us at contact@mdelab.org.

4.3 Model Checking

In contrast to the previously described static analysis methods model checking
[85] is a dynamic verification technique that explores the state space of the sys-
tem under consideration. In case of a graph transformation system S (see Def. 13)
with a set of initial graphs I, a related labeled transition system as specified in
Def. 15 as state space for model checking. However, model checking can only be
efficiently applied if the state space is finite, which is not necessarily the case
for graph transformation systems where nodes and edges can be dynamically
created. In addition, such a finite state space can only be build when the initial
graph or set of initial graphs is known. If a meaningful criterion to limit the
explored state space exists, bounded model checking [86] can be used to inves-
tigate only the related finite subset of the overall state space. Other approaches
use symbolic representations of the state space to overcome this limitation [87].

A desired property is usually expressed as a condition for all reachable states
or in form of a sequence property by some form of temporal-logic. An example of
such a temporal-logic is the Computation-Tree-Logic (compare [85]). The state
space is analyzed and depending on the given property a counterexample is
derived as a witness in the case the property is violated. Accordingly, also for
graph transformation systems approaches for model checking exist [72].

In [49] we used the particular tool GROOVE [88,73]. To be able to apply
model checking GROOVE requires a GTS according to Def. 13 including an
initial graph and supports the dangling-edge-collecting approach21 (see Def. 10).
Moreover, GROOVE allows for generating a minimal labeled transition system
in the sense of Def. 15. Atomic properties can be expressed in GROOVE in form
of side-effect free rules that are checked for applicability on a given graph state.
This conforms to properties as given in Def. 7 consisting of a required pattern,
where the pattern consists of the LHS of the side-effect free rule. If the required
pattern can be matched (see Def. 6) in a specific graph state, the property

21 Note that given a type graph additional NACs can be derived such that the adjusted
rule in the dangling-edge-collecting approach behaves like the original one in the
conservative approach. The additional NACs simply ensure that no dangling edges
can exist if the rule is applicable.

contact@mdelab.org

Graph Transformations for MDE, Adaptation, and M@RT 181

represented by the rule is fulfilled for that state. These atomic properties can
then be used inside a Computation-Tree-Logic (CTL) formula. GROOVE then
allows automatically exploring the reachable states via the transition relation
of the given GTS as well as automatically evaluating the given CTL formulae.
In case an example respectively counterexample in form of a witness can be
found, GROOVE provides an alternating sequence of states and rule applications
leading to or directly representing the witness.

The Henshin tool [43] also provides model checking capabilities for graph
transformation systems. Henshin is based on typed graphs and supports both the
dangling-edge-collecting approach and the conservative approach. State spaces
generated by Henshin can be checked for given properties. Model checking is
supported using external, third party verification tools, such as mCRL2 and
CADP.22 Similarly to the approach implemented in GROOVE, the specification
of atomic properties is based on matched graph patterns.

Example 27 (RailCab - SP - Model Checking for Structural Dynamics). In [49]
we used the GTS model checker GROOVE [88] and compared the results of GROOVE
with those of the approach described in Section 4.2. We have further investigated the
complexity of the different analysis methods. To be able to do so the rules describing the
application example of the Railcab system depicted in Fig. 22(d), 22(b) and 22(c) be-
neath others have been imported into GROOVE. We analyzed our model in GROOVE,
using the forbidden pattern collision depicted in Fig. 22(e). The outcome of the investi-
gation was that models of moderate size can be effectively analyzed and accordingly we
have been able to apply model checking in GROOVE on systems with smaller topolo-
gies. However, experiments on a Railcab system with more than 15 tracks turned out
to be to complex and leading to a large state space for which it was rarely possible to
apply model checking using GROOVE in a efficient way. For more details about the
used graph rules, the analyzed properties as well as the evaluation results concerning
the complexity of the different approaches compare [49].

5 Discussion

In order to discuss the benefits of graph transformations for MDE, the modeling
of structure dynamics, and models at runtime, we will at first look at the options
that exist for each of the areas and finally look into their combination.

In MDE, the models are not only a byproduct but become the core carrier of
the higher-level knowledge about the software. Model transformation to partially
generate subsequent models and code generation result in a situation where, if
properly done, the code and the models remain consistent. Thus, required classi-
cal adaptation steps can take advantage of the up-to-date higher-level knowledge
about the software. Therefore, MDE promises to better support the long-term
evolution of the software. Today, the principles of MDE are to employ meta-
models to define the modeling languages and to use related techniques for model
operations such as model transformations or consistency checks (e.g., QVT, ATL,

22 See http://www.mcrl2.org and http://www.inrialpes.fr/vasy/cadp/ for more
information about mCRL2 and CADP.

http://www.mcrl2.org
http://www.inrialpes.fr/vasy/cadp/

182 H. Giese et al.

or OCL) that take advantage of an underlying meta-meta-model and consider-
ably ease to develop the required model operations. We presented in particular
graph transformation based techniques such as SPs for model manipulation and
checking models in Section 3.2 and on model transformation and incremental
model synchronization based on TGGs in Section 3.3.

Besides the evolution of the software, also the co-adaptation resp. language
evolution is a fact that matters for the long-term evolution (cf. [89,90]). Typically,
this leads to a need for transformations to adjust the models but also higher-
order transformations to adjust model operation (e.g., model transformations).
Due to the employed interpreter for SPs [45] presented in Section 3.2 that is
also used as a basis for executing the derived TGG rules, our techniques support
higher order transformations of the transformation models at runtime.

Today, most existing work on (semi-)automatic correctness verification of
model operations only permits to prove that a particular result of a model trans-
formation is correct with respect to the input [91,92]. In our own work partially
presented in Section 4 we were in contrast able to derive guarantees that hold for
all possible results of a model operation with respect to the input. We presented
an approach employing a theorem prover for model transformations with TGGs
in [76] that show behavioral equivalence and an automated verification technique
for refactorings with SPs [84] that permit to guarantee that required properties
are preserved by the refactorings. [93] approach the first problem by compar-
ing two proof techniques with respect to chances of successful mechanization.
[94] tackles the problem of verifying required properties for model transforma-
tions specified with TGGs by proposing a method to derive OCL invariants from
TGGs in order to enable their automated verification and analysis.

Structure dynamics is required to realize complex capabilities such as
self-healing, self-configuring etc. on top of related basic capabilities such as self-
awareness and context-awareness. A proper combination of the higher level capa-
bilities then finally leads to the capability of self-managing or more general self-
adaptive software [12,21,18]. Suggestions for the construction of such system in-
clude frameworks like the Rainbow approach [22] that addresses the construction
of self-adaptive software systems by providing reusable elements for the adapta-
tion engine in order to reduce development efforts. The MUSIC approach [95],
the context-aware and quality of service aware architectural variability of the core
function is specified bymodels during development. Likewise, in [96] modeling and
codegenerationare employed to simplify thedevelopmentof self-adaptive software,
while any further changes to the generated software requires re-modeling and re-
generation steps.

Our own work has resulted in the Mechatronic UML approach [97] for the
model-driven development of self-optimizing embedded real-time systems. It em-
ploys graph transformation systems and hybrid statecharts to reconfigure hier-
archical component-based systems. For the ad hoc formation of collaborations
between mechatronic systems (e.g., vehicles that form convoys) or other forms
of structural dynamism graph transformation systems are employed [49,81,98]
including also first ideas for exchanging models at runtime [99].

Graph Transformations for MDE, Adaptation, and M@RT 183

A first direction for assurance that is employed for self-adaptive systems is
runtime verification [100]. Available techniques for the assurance of self-adaptive
systems using model checking either restrict their focus to separate adaptation
steps [101,102,103] or assume a decoupling of the adaptation decision from the
local functional state [104] in order to achieve scalability. More fundamental work
is studying properties of graph transformation systems [105] for characteristics
which must hold for self-healing, a special case of self-adaptive behavior.

For our Mechatronic UML approach and and ad hoc real-time collaborations
between multiple complex subsystems a compositional verification approach has
been developed [106]. For the collaboration building and its structural dynamism,
a fully automatic checker for inductive invariants of graph transformation sys-
tems [49] presented in Section 4.2 and an extension supporting timed graph
transformation [81] has been developed. Finally, the combination of the verifi-
cation results for inductive invariants for graph transformation models and the
compositional verification of the collaboration of multiple roles represented by
real-time statecharts has been presented in [98]. These results have also led to
studies for self-adaptive software in general and first general results for modeling
and verifying them [107]. Furthermore, also an incremental invariant checker [82]
has been developed which allows to reduce the effort for performing checks when
the behavior has changed at runtime.

There is a lack of work on systematically developing causal connections be-
tween a runtime model and the running system to reflect changes of the system
in the model, and changes of the model in the system. Usually, manually devel-
oped solutions are employed, or some work tries to simplify the development by
increasing the level of automation for implementing a causal connection [108].
Most approaches focus on having appropriate abstractions (runtime models) of
a running system and on connecting a model and a system. Thereby, monitor-
ing the system and effecting adaptations to the system are supported. However,
the approaches do not completely work incrementally, like [109,110,111] that en-
tirely compares two models to identify the changes to be executed. However, the
available techniques are often very demanding and thus result in a too high over-
head while being not responsive enough (cf. need for an incremental handling
at runtime in general as discussed in the sidebar of [24]). In our work [62,63,64],
the monitoring [63] and effecting [64] stages of the feedback loop can handle the
causal connection including an abstraction step automatically. Furthermore, our
own model synchronization techniques [58], that we employ at runtime, works
incrementally as outlined in Section 3.2 and thus enable responsive solutions.

Existing approaches address assurances through validation and verification
of adaptation mechanisms, like testing conceivable adaptation results at the
level of the runtime model before executing it to the running system. First ap-
proaches employing certain techniques have been proposed for constraint check-
ing [110,111], simulation [112], and model checking [113]. However, there is a
lack of work on assurances for the runtime models themselves as well as for em-
ploying incremental MDE techniques working on these models. We think that

184 H. Giese et al.

the in Section 4 presented results provide a solid basis for a more subtantial
coverage of this problem.

As we pointed out in [26], a solution is required where adaptation steps in
the construction environment and in the runtime environment happen in an
integrated manner. Consequently, the integrated co-existence of self-adaptation
and classical adaptation including dependencies between them also have to be
addressed. In this direction, only few preliminary ideas exist [110] and a more
thorough approach towards integrating these ideas is required and we think
that due to the in this paper outlined support for the different cases graph
transformations are a good candidate as a foundation for such efforts.

6 Conclusion

As outlined in the paper graph transformations provide a solid basis for related
techniques such as SP, Story Diagrams and TGGs such that we cannot only ad-
dress MDE, structural dynamics as well as models at runtime using these tech-
niques but also analyze important properties for the resulting systems. Due to
the fact that all the developed techniques share the underlying concepts of graph
transformations, they do not only provide basic building blocks for MDE, sys-
tems with structural dynamics, and models at runtime, but furthermore provide
a basis to integrate these directions into a single coherent approach. Therefore,
graph transformations seem to be a good candidate to provide a solid foundation
for approaching the evolution challenge.

References

1. Lehman, M.M., Belady, L.A. (eds.): Program evolution: processes of software
change. Academic Press Professional, Inc., San Diego (1985)

2. Lehman, M.M.: Laws of Software Evolution Revisited. In: Montangero, C. (ed.)
EWSPT 1996. LNCS, vol. 1149, pp. 108–124. Springer, Heidelberg (1996)

3. Parnas, D.L.: Software aging. In: ICSE 1994: Proceedings of the 16th International
Conference on Software Engineering, pp. 279–287. IEEE Computer Society Press,
Los Alamitos (1994)

4. Mens, T., Demeyer, S.: Software Evolution. Springer (2008)
5. Martin, R., Osborne, W.: Guidance of Software Maintenance. Technical Report

NBS Pub. 500-129, U.S. Nat. Bureau of Standards (December 1983)
6. Chikofsky, E.J., Cross II, J.H.: Reverse Engineering and Design Recovery: A Tax-

onomy. IEEE Software 7(1), 13–17 (1990)
7. Mens, T., Tourwe, T.: A survey of software refactoring. IEEE Transactions on

Software Engineering 30(2), 126–139 (2004)
8. Kephart, J.O., Chess, D.: The Vision of Autonomic Computing. Computer 36(1),

41–50 (2003)
9. Brown, P., Bovey, J., Chen, X.: Context-aware applications: from the laboratory

to the marketplace. IEEE Personal Communications 4(5), 58–64 (1997)
10. Northrop, L., Feiler, P.H., Gabriel, R.P., Linger, R., Longstaff, T., Kazman, R.,

Klein, M., Schmidt, D.: Ultra-Large-Scale Systems: The Software Challenge of the
Future. Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA (2006)

Graph Transformations for MDE, Adaptation, and M@RT 185

11. Sztipanovits, J., Karsai, G., Bapty, T.: Self-adaptive software for signal processing.
Commun. ACM 41(5), 66–73 (1998)

12. Oreizy, P., Gorlick, M.M., Taylor, R., Heimbigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An Architecture-Based Approach to
Self-Adaptive Software. IEEE Intelligent Systems 14(3), 54–62 (1999)

13. Musliner, D.J., Goldman, R.P., Pelican, M.J., Krebsbach, K.D.: Self-Adaptive
Software for Hard Real-Time Environments. IEEE Inteligent Systems 14(4) (July
1999)

14. Robertson, P., Shrobe, H.E., Laddaga, R. (eds.): IWSAS 2000. LNCS, vol. 1936.
Springer, Heidelberg (2001)

15. Laddaga, R., Shrobe, H.E., Robertson, P. (eds.): IWSAS 2001. LNCS, vol. 2614.
Springer, Heidelberg (2003)

16. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp.
1–26. Springer, Heidelberg (2009)

17. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.): Self-
Adaptive Systems. LNCS, vol. 5525. Springer, Heidelberg (2009)

18. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 1–42 (2009)

19. Maes, P.: Concepts and experiments in computational reflection. In: Conference
Proceedings on Object-Oriented Programming Systems, Languages and Applica-
tions, OOPSLA 1987, pp. 147–155. ACM, New York (1987)

20. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M.,
Müller, H., Pezzè, M., Shaw, M.: Engineering Self-Adaptive Systems through
Feedback Loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee,
J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg
(2009)

21. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. In:
FOSE 2007: Future of Software Engineering, pp. 259–268. IEEE Computer Soci-
ety, Washington, DC (2007)

22. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rain-
bow: Architecture-Based Self-Adaptation with Reusable Infrastructure. Com-
puter 37(10), 46–54 (2004)

23. Georgas, J.C., Hoek, A., Taylor, R.N.: Using Architectural Models to Manage and
Visualize Runtime Adaptation. Computer 42(10), 52–60 (2009)

24. Blair, G., Bencomo, N., France, R.B.: Models@run.time: Guest Editors’ Introduc-
tion. Computer 42(10), 22–27 (2009)

25. Baresi, L., Ghezzi, C.: The disappearing boundary between development-time
and run-time. In: Proceedings of the FSE/SDP Workshop on Future of Software
Engineering Research (FoSER 2010), pp. 17–22. ACM, New York (2010)

26. Gacek, C., Giese, H., Hadar, E.: Friends or Foes? – A Conceptual Analysis of Self-
Adaptation and IT Change Management. In: Proc. of the ICSE 2008 Workshop on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2008),
Leipzig, Germany. ACM Press (2008)

186 H. Giese et al.

27. Baresi, L., Heckel, R.: Tutorial Introduction to Graph Transformation: A Software
Engineering Perspective. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg,
G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 402–429. Springer, Heidelberg (2002)

28. Rensink, A.: The Edge of Graph Transformation — Graphs for Behavioural Spec-
ification. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B.
(eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 6–32. Springer, Heidelberg (2010)

29. Giese, H., Klein, F.: Autonomous Shuttle System Case Study. In: Leue, S., Systä,
T.J. (eds.) Scenarios. LNCS, vol. 3466, pp. 90–94. Springer, Heidelberg (2005)

30. International Telecommunication Union, I.: ITU-T Recommendation Z.100: Spec-
ification and Description Language (SDL) (2002)

31. Schäfer, W., Wagner, R., Gausemeier, J., Eckes, R.: An Engineer’s Worksta-
tion to Support Integrated Development of Flexible Production Control Systems.
In: Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., Reif, W., Schnieder, E.,
Westkämper, E. (eds.) INT 2004. LNCS, vol. 3147, pp. 48–68. Springer, Heidel-
berg (2004)

32. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science 19,
1–52 (2009)

33. Ehrig, H., Habel, A., Lambers, L., Orejas, F., Golas, U.: Local Confluence for
Rules with Nested Application Conditions. In: Ehrig, H., Rensink, A., Rozen-
berg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 330–345. Springer,
Heidelberg (2010)

34. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation, vol. 1. World Scientific, Singapore (1999)

35. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

36. Löwe, M., Korff, M., Wagner, A.: An algebraic framework for the transformation
of attributed graphs, pp. 185–199. John Wiley and Sons Ltd., Chichester (1993)

37. Plump, D., Steinert, S.: Towards Graph Programs for Graph Algorithms. In:
Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS,
vol. 3256, pp. 128–143. Springer, Heidelberg (2004)

38. Orejas, F., Lambers, L.: Delaying Constraint Solving in Symbolic Graph Trans-
formation. In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT
2010. LNCS, vol. 6372, pp. 43–58. Springer, Heidelberg (2010)

39. Bardohl, R., Ehrig, H., de Lara, J., Taentzer, G.: Integrating Meta-modelling
Aspects with Graph Transformation for Efficient Visual Language Definition and
Model Manipulation. In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004.
LNCS, vol. 2984, pp. 214–228. Springer, Heidelberg (2004)

40. Golas, U., Lambers, L., Ehrig, H., Orejas, F.: Attributed graph transformation
with inheritance: Efficient conflict detection and local confluence analysis using
abstract critical pairs. Theoretical Computer Science 424, 46–68 (2012)

41. Gorp, P.V., Mazanek, S., Rose, L. (eds.): Proceedings Fifth Transformation Tool
Contest. EPTCS, vol. 74 (2011)

42. Ermel, C., Rudolf, M., Taentzer, G.: The AGG approach: language and envi-
ronment. In: Ehrig, H., Engels, G., Rozenberg, G. (eds.) Handbook of Graph
Grammars and Computing by Graph Transformation: Applications, Languages,
and Tools, vol. 2, pp. 551–603. World Scientific Publishing Co., Inc., River Edge
(1999)

Graph Transformations for MDE, Adaptation, and M@RT 187

43. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Ad-
vanced Concepts and Tools for In-Place EMF Model Transformations. In: Petriu,
D.C., Rouquette, N., Haugen, Ø. (eds.) MoDELS 2010. LNCS, vol. 6394, pp.
121–135. Springer, Heidelberg (2010)

44. Schürr, A., Winter, A., Zündorf, A.: The PROGRES Approach: Language and
Environment. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.)
Handbook of Graph Grammars and Computing by Graph Transformation: Ap-
plication, Languages and Tools, vol. 2, pp. 487–546. World Scientific, Singapore
(1999)

45. Giese, H., Hildebrandt, S., Seibel, A.: Improved Flexibility and Scalability by
Interpreting Story Diagrams. In: Magaria, T., Padberg, J., Taentzer, G. (eds.)
Proceedings of the Eighth International Workshop on Graph Transformation and
Visual Modeling Techniques (GT-VMT 2009), Electronic Communications of the
EASST, vol. 18 (2009)

46. Seibel, A., Neumann, S., Giese, H.: Dynamic hierarchical mega models: compre-
hensive traceability and its efficient maintenance. Software and System Model-
ing 9(4), 493–528 (2010), doi:10.1007/s10270-009-0146-z

47. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling Language and Java. In:
Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS,
vol. 1764, pp. 296–309. Springer, Heidelberg (2000)

48. Zündorf, A.: Rigorous Object Oriented Software Development with Fujaba. Draft
Version 0.3. (2002), http://www.se.eecs.uni-kassel.de/
se/fileadmin/se/publications/Zuen02.pdf

49. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic Invariant Ver-
ification for Systems with Dynamic Structural Adaptation. In: Proc. of the 28th
International Conference on Software Engineering (ICSE), Shanghai, China. ACM
Press (2006)

50. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
(1999)

51. Krasnogolowy, A., Hildebrandt, S., Wätzoldt, S.: Flexible Debugging of Behavior
Models. In: Proceedings of 2012 IEEE International Conference on Industrial
Technology (ICIT). IEEE (2011)

52. Stürmer, I., Kreuz, I., Schäfer, W., Schürr, A.: Enhanced Simulink/Stateflow
Model Transformation: The MATE Approach. In: Proc. of MathWorks Auto-
motive Conference (MAC 2007), Dearborn (MI), USA (2007)

53. Schafe, S.: Objektorientierte Entwurfsmethoden. Addison-Wesley (1994)

54. Giese, H., Hildebrandt, S., Lambers, L.: Toward Bridging the Gap Between Formal
Semantics and Implementation of Triple Graph Grammars. In: Proceedings of
MoDeVVa 2010, Models Workshop on Model-Driven Engineering, Verification
and Validation, Oslo, Norway (2010)

55. Giese, H., Hildebrandt, S., Lambers, L.: Toward Bridging the Gap Between Formal
Semantics and Implementation of Triple Graph Grammars. Technical Report 37,
Hasso Plattner Institute at the University of Potsdam (2010)

56. Larchevêque, J.M.: Optimal incremental parsing. ACM Trans. Program. Lang.
Syst. 17(1), 1–15 (1995)

57. Giese, H., Wagner, R.: Incremental Model Synchronization with Triple Graph
Grammars. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 543–557. Springer, Heidelberg (2006)

http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/Zuen02.pdf
http://www.se.eecs.uni-kassel.de/se/fileadmin/se/publications/Zuen02.pdf

188 H. Giese et al.

58. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling (SoSyM) 8(1) (March 28,
2009)

59. Giese, H., Hildebrandt, S.: Incremental Model Synchronization for Multiple Up-
dates. In: Proceedings of the 3rd International Workshop on Graph and Model
Transformations, GraMoT 2008, Leipzig, Germany, May 12. ACM Press (2008)

60. Giese, H., Hildebrandt, S.: Efficient Model Synchronization of Large-Scale Models.
Technical Report 28, Hasso Plattner Institute at the University of Potsdam (2009)

61. Giese, H., Hildebrandt, S., Neumann, S.: Model Synchronization at Work: Keeping
SysML and AUTOSARModels Consistent. In: Engels, G., Lewerentz, C., Schäfer,
W., Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 555–
579. Springer, Heidelberg (2010)

62. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Model-Driven
Architectural Monitoring and Adaptation for Autonomic Systems. In: Proceedings
of the 6th IEEE/ACM International Conference on Autonomic Computing and
Communications (ICAC 2009), Barcelona, Spain. ACM (2009)

63. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Incremental Model
Synchronization for Efficient Run-Time Monitoring. In: Ghosh, S. (ed.) MODELS
2009 Workshops. LNCS, vol. 6002, pp. 124–139. Springer, Heidelberg (2010)

64. Vogel, T., Giese, H.: Adaptation and Abstract Runtime Models. In: Proceedings
of the 5th Workshop on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2010) at the 32nd IEEE/ACM International Conference on
Software Engineering (ICSE 2010), Cape Town, South Africa, pp. 39–48. ACM
(2010)

65. Vogel, T., Giese, H.: Requirements and Assessment of Languages and Frameworks
for Adaptation Models. In: Kienzle, J. (ed.) MODELS 2011 Workshops. LNCS,
vol. 7167, pp. 167–182. Springer, Heidelberg (2012)

66. Vogel, T., Seibel, A., Giese, H.: The Role of Models and Megamodels at Runtime.
In: Dingel, J., Solberg, A. (eds.) MODELS 2010 Workshops. LNCS, vol. 6627, pp.
224–238. Springer, Heidelberg (2011)

67. Vogel, T., Giese, H.: A Language for Feedback Loops in Self-Adaptive Sys-
tems: Executable Runtime Megamodels. In: Proceedings of the 7th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS 2012). IEEE Computer Society (2012)

68. Hausmann, J., Heckel, R., Taentzer, G.: Detection of Conflicting Functional Re-
quirements in a Use Case-Driven Approach. In: Proc. of Int. Conference on Soft-
ware Engineering 2002, Orlando, USA, pp. 105–115. IEEE Computer Society
(2002)

69. Engels, G., Güldali, B., Lohmann, M.: Towards Model-Driven Unit Testing.
In: Kühne, T. (ed.) MODELS 2006 Workshops. LNCS, vol. 4364, pp. 182–192.
Springer, Heidelberg (2007)

70. Ehrig, K., Küster, J., Taentzer, G., Winkelmann, J.: Generating Instance Models
from Meta Models. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS,
vol. 4037, pp. 156–170. Springer, Heidelberg (2006)

71. Heckel, R., Mariani, L.: Automatic Conformance Testing of Web Services. In:
Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 34–48. Springer, Heidelberg
(2005)

72. Rensink, A., Schmidt, Á., Varró, D.: Model Checking Graph Transformations:
A Comparison of Two Approaches. In: Ehrig, H., Engels, G., Parisi-Presicce,
F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 226–241. Springer,
Heidelberg (2004)

Graph Transformations for MDE, Adaptation, and M@RT 189

73. Kastenberg, H., Rensink, A.: Model Checking Dynamic States in GROOVE. In:
Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 299–305. Springer, Heidelberg
(2006)

74. Strecker, M.: Modeling and Verifying Graph Transformations in Proof Assistants.
In: Mackie, I., Plump, D. (eds.) International Workshop on Computing with Terms
and Graphs (TERMGRAPH), Braga, Portugal, March 31, 2007. Electronic Notes
in Theoretical Computer Science, vol. 203, pp. 135–148. Elsevier Science (2008),
http://www.elsevier.com

75. Pennemann, K.H.: Resolution-Like Theorem Proving for High-Level Conditions.
In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS,
vol. 5214, pp. 289–304. Springer, Heidelberg (2008)

76. Giese, H., Glesner, S., Leitner, J., Schäfer, W., Wagner, R.: Towards Verified
Model Transformations. In: Hearnden, D., Süß, J., Baudry, B., Rapin, N. (eds.)
Proc. of the 3rd International Workshop on Model Development, Validation and
Verification (MoDeV2a), Genova, Italy, Le Commissariat à l’Energie Atomique -
CEA, pp. 78–93 (October 2006)

77. Baldan, P., Corradini, A., König, B.: A Static Analysis Technique for Graph
Transformation Systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001.
LNCS, vol. 2154, pp. 381–395. Springer, Heidelberg (2001)

78. Habel, A., Pennemann, K.-H., Rensink, A.: Weakest Preconditions for High-Level
Programs. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G.
(eds.) ICGT 2006. LNCS, vol. 4178, pp. 445–460. Springer, Heidelberg (2006)

79. Poskitt, C.M., Plump, D.: A Hoare Calculus for Graph Programs. In: Ehrig, H.,
Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp.
139–154. Springer, Heidelberg (2010)

80. Lambers, L.: Certifying Rule-Based Models using Graph Transformation.
PhD thesis, Technische Universität Berlin (2010); Also as book available:
Südwestdeutscher Verlag für Hochschulschriften, ISBN: 978-3-8381-1650-1

81. Becker, B., Giese, H.: On Safe Service-Oriented Real-Time Coordina-
tion for Autonomous Vehicles. In: Proc. of 11th International Sympo-
sium on Object/Component/Service-Oriented Real-time Distributed Computing
(ISORC), May 5-7, pp. 203–210. IEEE Computer Society Press (2008)

82. Becker, B., Giese, H.: Incremental Verification of Inductive Invariants for the
Run-Time Evolution of Self-Adaptive Software-Intensive Systems. In: Proc. 1st
International Workshop on Automated engineeRing of Autonomous and run-tiMe
evolvIng Systems (ARAMIS), pp. 33–40. IEEE Computer Society Press (2008)

83. Charpentier, M.: Composing Invariants. In: Araki, K., Gnesi, S., Mandrioli, D.
(eds.) FME 2003. LNCS, vol. 2805, pp. 401–421. Springer, Heidelberg (2003)

84. Becker, B., Lambers, L., Dyck, J., Birth, S., Giese, H.: Iterative Development of
Consistency-Preserving Rule-Based Refactorings. In: Cabot, J., Visser, E. (eds.)
ICMT 2011. LNCS, vol. 6707, pp. 123–137. Springer, Heidelberg (2011)

85. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (2002)
86. Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model check-

ing. Advances in Computers 58 (2003)
87. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic

model checking: 1020 states and beyond. Inf. Comput. 98, 142–170 (1992)
88. Rensink, A.: Towards Model Checking Graph Grammars. In: Leuschel, M.,

Gruner, S., Presti, S.L. (eds.) 3rd Workshop on Automated Verification of Critical
Systems (AVoCS), pp. 150–160. Technical Report DSSE–TR–2003–2, University
of Southampton (2003)

http://www.elsevier.com

190 H. Giese et al.

89. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automating Co-evolution
in Model-Driven Engineering. In: Proceedings of the 2008 12th International IEEE
Enterprise Distributed Object Computing Conference, pp. 222–231. IEEE Com-
puter Society, Washington, DC (2008)

90. Di Ruscio, D., Iovino, L., Pierantonio, A.: What is needed for managing co-
evolution in MDE? In: Proceedings of the 2nd International Workshop on Model
Comparison in Practice, IWMCP 2011, pp. 30–38. ACM, New York (2011)

91. Narayanan, A., Karsai, G.: Verifying Model Transformations by Structural Cor-
respondence. Electronic Communications of the EASST: Graph Transformation
and Visual Modeling Techniques 2008 10 (2008)

92. Varró, D., Pataricza, A.: Automated Formal Verification of Model Transforma-
tions. In: Jürjens, J., Rumpe, B., France, R., Fernandez, E.B. (eds.) CSDUML
2003: Critical Systems Development in UML; Proceedings of the UML 2003 Work-
shop. Number TUM-I0323 in Technical Report, Technische Universitat Munchen,
pp. 63–78 (September 2003)

93. Hülsbusch, M., König, B., Rensink, A., Semenyak, M., Soltenborn, C., Wehrheim,
H.: Showing Full Semantics Preservation in Model Transformation - A Compari-
son of Techniques. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp.
183–198. Springer, Heidelberg (2010)

94. Cabot, J., Clarisó, R., Guerra, E., Lara, J.: Verification and validation of declar-
ative model-to-model transformations through invariants. J. Syst. Softw. 83(2),
283–302 (2010)

95. Rouvoy, R., Barone, P., Ding, Y., Eliassen, F., Hallsteinsen, S., Lorenzo, J.,
Mamelli, A., Scholz, U.: MUSIC: Middleware Support for Self-Adaptation in
Ubiquitous and Service-Oriented Environments. In: Cheng, B.H.C., de Lemos, R.,
Giese, H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525,
pp. 164–182. Springer, Heidelberg (2009)

96. Bencomo, N., Blair, G.: Using Architecture Models to Support the Generation
and Operation of Component-Based Adaptive Systems. In: Cheng, B.H.C., de
Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS,
vol. 5525, pp. 183–200. Springer, Heidelberg (2009)

97. Burmester, S., Giese, H., Münch, E., Oberschelp, O., Klein, F., Scheideler, P.:
Tool Support for the Design of Self-Optimizing Mechatronic Multi-Agent Systems.
International Journal on Software Tools for Technology Transfer (STTT) 10(3),
207–222 (2008)

98. Giese, H.: Modeling and Verification of Cooperative Self-adaptive Mechatronic
Systems. In: Kordon, F., Sztipanovits, J. (eds.) Monterey Workshop 2005. LNCS,
vol. 4322, pp. 258–280. Springer, Heidelberg (2007)

99. Burmester, S., Giese, H.: Visual Integration of UML 2.0 and Block Diagrams for
Flexible Reconfiguration in Mechatronic UML. In: Proc. of the IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC 2005), Dallas,
Texas, USA, pp. 109–116. IEEE Computer Society Press (2005)

100. Goldsby, H.J., Cheng, B.H.C., Zhang, J.: AMOEBA-RT: Run-time verification of
adaptive software. In: Giese, H. (ed.) MODELS 2008 Workshops. LNCS, vol. 5002,
pp. 212–224. Springer, Heidelberg (2008)

101. Zhang, J., Cheng, B.: Using temporal logic to specify adaptive program semantics.
Journal of Systems and Software 79(10), 1361–1369 (2006); Architecting Depend-
able Systems

102. Zhang, J., Cheng, B.: Model-based development of dynamically adaptive software.
In: ICSE 2006: Proceeding of the 28th International Conference on Software En-
gineering, pp. 371–380. ACM, New York (2006)

Graph Transformations for MDE, Adaptation, and M@RT 191

103. Zhang, J., Goldsby, H.J., Cheng, B.: Modular verification of dynamically adaptive
systems. In: AOSD 2009: Proceedings of the 8th ACM International Conference
on Aspect-oriented Software Development, pp. 161–172. ACM, New York (2009)

104. Adler, R., Schaefer, I., Trapp, M., Poetzsch-Heffter, A.: Component-based mod-
eling and verification of dynamic adaptation in safety-critical embedded systems.
ACM Transactions on Embedded Computing Systems 10, 20:1–20:39 (2011)

105. Ehrig, H., Ermel, C., Runge, O., Bucchiarone, A., Pelliccione, P.: Formal Analysis
and Verification of Self-Healing Systems. In: Rosenblum, D.S., Taentzer, G. (eds.)
FASE 2010. LNCS, vol. 6013, pp. 139–153. Springer, Heidelberg (2010)

106. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the Com-
positional Verification of Real-Time UML Designs. In: Proc. of the European
Software Engineering Conference (ESEC), Helsinki, Finland, Proc. of the 9th Eu-
ropean Software Engineering Conference Held Jointly with 11th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ESEC/FSE-
11), pp. 38–47. ACM Press (2003)

107. Becker, B., Giese, H.: Modeling of Correct Self-Adaptive Systems: A Graph Trans-
formation System Based Approach. In: CSTST 2008: Proc. 5th Intl. Conference
on Soft Computing as Transdisciplinary Science and Technology, pp. 508–516.
ACM Press (2008)

108. Song, H., Xiong, Y., Chauvel, F., Huang, G., Hu, Z., Mei, H.: Generating Syn-
chronization Engines between Running Systems and Their Model-Based Views.
In: Ghosh, S. (ed.) MODELS 2009 Workshops. LNCS, vol. 6002, pp. 140–154.
Springer, Heidelberg (2010)

109. Morin, B., Fleurey, F., Bencomo, N., Jézéquel, J.-M., Solberg, A., Dehlen, V.,
Blair, G.S.: An Aspect-Oriented and Model-Driven Approach for Managing Dy-
namic Variability. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MoDELS 2008. LNCS, vol. 5301, pp. 782–796. Springer, Heidelberg (2008)

110. Morin, B., Barais, O., Jézéquel, J.M., Fleurey, F., Solberg, A.: Models@ Run.time
to Support Dynamic Adaptation. Computer 42(10), 44–51 (2009)

111. Morin, B., Barais, O., Nain, G., Jézéquel, J.M.: Taming Dynamically Adaptive
Systems using models and aspects. In: ICSE 2009: Proceedings of the 2009 IEEE
31st International Conference on Software Engineering, pp. 122–132. IEEE Com-
puter Society, Washington, DC (2009)

112. Fleurey, F., Solberg, A.: A Domain Specific Modeling Language Supporting Spec-
ification, Simulation and Execution of Dynamic Adaptive Systems. In: Schürr, A.,
Selic, B. (eds.) MoDELS 2009. LNCS, vol. 5795, pp. 606–621. Springer, Heidelberg
(2009)

113. Inverardi, P., Mori, M.: Model checking requirements at run-time in adaptive
systems. In: Proceedings of the 8th Workshop on Assurances for Self-Adaptive
Systems, ASAS 2011, pp. 5–9. ACM, New York (2011)

Abstractions for Validation in Action

Guido de Caso1, Victor Braberman1, Diego Garbervetsky1,
and Sebastian Uchitel1,2

1 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina

{gdecaso,vbraber,diegog,suchitel}@dc.uba.ar
2 Department of Computing, Imperial College,

London, UK
s.uchitel@doc.ic.ac.uk

Abstract. Many software engineering artefacts, such as source code or
specifications, define a set of operations and impose restrictions to the
ordering on which they have to be invoked. Enabledness Preserving Ab-
stractions (EPAs) are concise representations of the behaviour space for
such artefacts. In this paper, we exemplify how EPAs might be used for
validation of software engineering artefacts by showing the use of EPAs
to support some programming tasks on a simple C# class.

Keywords: Behaviour validation, enabledness-preserving abstractions.

1 Introduction

Verification and validation are artefact evaluation activities that are carried out
by software engineers in multiple stages of software development projects. They
come in many different guises: The artefacts under evaluation may be descrip-
tions related to the problem domain (e.g. requirements) or the solution space
(e.g. design) including the actual code. Furthermore, they can be written in
languages with different degrees of formality (e.g. from mathematics to natural
language). In addition, the evaluation itself can vary in terms of formality (e.g.
from axiomatic proof, through structured argumentation, to human inspection)
and exhaustiveness (e.g. from exhaustive search, through simulation, to selec-
tive scenario evaluation). All these characteristics lead to conclusions with very
different degrees of certainty.

Verification and validation are related activities both of which aim to increase
confidence regarding the quality of the software under construction. However,
they are of very different nature.

1.1 Verification

Verification aims at determining whether an artefact satisfies specific proper-
ties [25]. For instance, if software requirements entail system goals, if the archi-
tecture satisfies its reliability requirements, if the code is structured according

M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.): SFM 2012, LNCS 7320, pp. 192–218, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Abstractions for Validation in Action 193

to the static design, or the execution of a method never raises an array index
out of bounds exception.

Verification is particularly prone to automated, rigorous and even sometimes
exhaustive analysis. If both the artefact under evaluation and the properties
are given in appropriate formal languages, it is plausible to apply a battery
of tools such as model checkers [6], theorem provers [32], simulators [27] or
symbolic executers [34]. There are, of course, both theoretical (indecidability
results, e.g., [16]) and practical (e.g., state explosion [37]) limitations. However,
automated verification techniques are tractable and have shown to be useful,
specially when applying some restrictions on the artefact, the property, and/or
the degree of certainty. Most notably, software testing, when the intended test
results are provided (i.e., an oracle), is a widespread verification technique in
industry.

1.2 Validation

Validation is, arguably, a much more complex task than verification as it aims
to determine the degree to which an artefact is an accurate representation of
the real world. At the requirements level, a typical example used to distinguish
validation from verification is that validation evaluates if the requirements meet
stakeholders needs, while verification is applied to check that the design and/or
implementation has been built according to the requirements. In other words,
validation ensures that you built the right thing while verification ensures that
you built it right. Validation is indeed relevant in many software engineering
settings. For instance, determining if an architectural description conforms to an
architect’s intent, if the deployment model is consistent with the actual hardware
available at the client site, if assumptions on network traffic are reasonable, etc.

Validation, in industrial practice, is also a substitute for verification. The lack
of explicit (formal or informal) intended property descriptions impedes verifica-
tion and the only possibility is to validate if artefacts conform to the characteris-
tics intended by the engineer. In other words, a comparison between the artefact
and some mental model of what the artefact should comply to. Walkthroughs,
inspections and reviews are common techniques that support validation.

When the artefact under validation is written in a formal language (be it code,
or a well founded specification), a common strategy for validation is to apply an
automated, semantics preserving, manipulation. The idea behind this strategy
is that showing engineers alternative views of the artefact may exhibit elements
that stand out as contradicting to what is expected by the engineers. Some
examples of this strategy are the application of rewrite rules in specifications,
minimisation of state machines, slicing techniques for code, or executions and
simulations. Within the latter strategy, testing without oracles is a noteworthy
technique.

Another common strategy for validation is to turn the validation problem into
a verification one. More concretely, to produce a specification against which the
artefact can be verified. The idea is that if the specification is simpler than the
artefact, validation of the former is likely to be simpler and less error prone. This

194 G. de Caso et al.

is an effective strategy that is commonly used in practice. For instance, sanity
checks are used to filter out bugs in complex models (such as nonzenoness in
real time system models [2], as well as internal consistency and satisfiability in
requirements specifications [23]). However, this strategy has its downsides too.
Since an alternative specification is required, we need to be sure that it has
been validated appropriately. In other words, turning a validation problem into
a verification problem creates a new (possibly simpler but of reduced scope)
validation task, so eventually human intervention is required.

1.3 Abstraction

Abstraction is the act of withdrawing or removing something, the process of
leaving out of consideration one or more properties of a complex artefact so as
to attend to others. It is also used to refer to the simpler artefact that results
from this process. The abstraction captures the original artefact’s core or essence
relative to a specific aspect of interest. Abstraction is central to computing [26],
particularly to software engineering, and has been extensively applied to support
verification and validation.

Abstraction reduces the complexity of the artefact under evaluation and con-
sequently can reduce the cost and augment the effectiveness of verification and
validation activities. However, abstraction comes at a price. Building abstrac-
tions can be costly, but perhaps more importantly, the loss of detail in the
abstract artefact can impact the degrees of certainty of the evaluation outcome.
Given a particular verification or validation task, analysing a carefully chosen
abstraction will yield conservative (yet sound) results. On the other hand, an
incorrect choice might lead to invalid conclusions. For instance, let’s consider a
language with automatic memory management. A garbage collector (GC) is in
charge of reclaiming unreferenced objects. In order to make a decision whether
an object o can be collected, the GC must ensure that no other object or vari-
able points to o. If the GC makes the decision based on an abstraction that only
considers elements in the program stack, it may collect objects that are still
reachable from the heap.

Hence, given a validation or verification task, it is crucial to work with an
appropriate abstraction. That is, carefully selecting which aspects to leave out
of consideration and what mechanisms to use for representing the artefact’s
features relevant to the task at hand.

1.4 Abstractions for API Implementation Behaviour

We now set the scene for the rest of this paper. We first narrow the discussion
by stating our interest in the behaviour of stateful API implementations: A
collection of methods or procedures accessing a shared data structure. Such
artefacts are commonplace and pose a number of challenges to verification and
validation. It is insufficient to evaluate each method in isolation. We also need
to consider their interaction via the shared data structure and the emergent
behaviour of the combinations of method calls.

Abstractions for Validation in Action 195

State machines or behaviour models constitute a natural abstraction to vali-
date or verify an API implementation behaviour. Each abstract state in these
models represents one or more possible concrete states of the shared data struc-
ture. Transitions in the abstraction represent changes of state related to the
execution of one or more lines of code (including, for instance a whole method
invocation).

Abstractions for Verification. There has been a significant amount of work
in the use of abstractions for verification. Given an artefact a and a formalised
property ϕ to be verified, the aim is to automatically come up with simplified
versions â and ϕ̂ of the artefact and property, respectively. Hopefully, verifying
whether â satisfies ϕ̂ will be more tractable, while still providing information
about the initial verification problem regarding a and ϕ.

Applying abstraction to obtain a tractable behaviour model of the original
artefact typically involves paying the cost of the omitted detail in terms of loss
of precision. Abstracted behaviour models may be overapproximations (when â
accepts all behaviour of a, but possibly more) or underapproximations (when
â rejects all behaviour not in a, but possibly more) of the original artefact.
Furthermore, some abstractions may neither be over nor underapproximations.

Given an API implementation, an overapproximation of its behaviour de-
scribes all legal invocation sequence that API clients can perform on the API.
However, an overapproximation may include sequences which, if performed by
clients, would result in illegal invocation chains. On the other hand, an un-
derapproximation of the API implementation’s behaviour forbids every illegal
invocation sequence, which is why they are called safe from a client perspec-
tive. Underapproximated models may go too far and forbid behaviour which
was permitted in the original artefact. For this reason, overaproximated models
are sometimes referred to as permissive.

One common approach when applying abstraction for verification of API be-
haviour is to synthesise typestates [35,13,31,4] or interfaces [1,20,24]. The aim is
to statically obtain finite state machine representing a safe model from a client
perspective, using techniques such as automata learning [1,20,24] or abstract
interpretation [31].

The safety requirement associated to these kind of models tends to make
abstractions overly restrictive in terms of the model behaviour, sometimes lead-
ing to trivial abstractions (e.g. models in which very few or even no invocation
sequences are allowed). In some cases, permissiveness is possible at the cost
of assuming certain conditions over the artefacts. For instance, the algorithms
in [20,24] guarantee permissiveness only when the library’s internal state is finite.

Once inferred, safe typestates for an API can be used to effectively verify the
absence of illegal invocations from clients (e.g., [7]). The cost of non-permissive
typestates in this setting is that false-positives (client invocation sequences that
are in fact legal) may be reported.

Another way of obtaining abstract behaviour models is by using predicate
abstraction [36]. The idea is to define a set of predicates P and group concrete
states according to the validity of those predicates. Concretely, each abstract

196 G. de Caso et al.

state represents a set of concrete states that gives the same valuation to all the
predicates in P .

There are techniques that use this approach to construct abstract state graphs
from infinite state systems (e.g., [28,21,29,22]). For instance [21] builds an ab-
stract state graph out of a guarded transition system and a set of input predi-
cates. Concrete states are abstracted by using a lattice of monomials of abstract
boolean variables representing the truth values of the input predicates.

For testing purposes, [29] proposes the use of user-provided parameterless
boolean observers to quotient the state space of a class. The abstraction is not
meant to represent behaviour (e.g., it does not define transitions between states)
but to define goals for test coverage criteria (which may not be fulfilled due to
the overapproximated nature of the abstraction) . These models are then fed to
an algorithm that attempts to create a test suite that covers all of the states.

Another interesting approach is the mining of behaviour models out of ex-
ecution traces (e.g., [11,19,18,30,12,5,33]). These techniques aim at inferring a
specification which is used for test case generation or verification.

Mining techniques have a dynamic flavour, and thus heavily depend on the
quality of the traces used as input. The inferred models tend to be underapprox-
imations of the behaviour of the artefact under analysis, since some behaviour
may not appear in the collected traces. However, in some cases, these approaches
may also over-approximate due to the application of generalisation strategies.

For instance, [18] produces an automata by collecting information from the
client’s actual usage of a set of operations (underapproximation). Adabu [11]
produces finite state machines whose states are determined by a fixed level of ab-
straction ranging over the return values of the inspectors in a class (e.g., integers
are abstracted according to its sign), leading to both under and overappproxi-
mation of the concrete state. Another approaches [19,30], use invariant detection
tools such as Daikon [15] in order to generalise the set of traces and obtain more
conservative models.

Abstractions for Validation. We are interested is studying the use of ab-
straction in the context of validation rather than verification. Since validation
requires human intervention, the size and complexity of the models obtained are
a key aspect at the moment of choosing the abstraction.

As we previously stated, most of the models used in the typestate and interface
synthesis literature are used to feed machine-driven tasks such as automated
verification and test-case generation. There are a few exceptions, though.

For instance, the approach followed in [5] uses logging mechanisms already
in place and regular expressions to obtain behaviour models almost without
user intervention. The logs are mined looking for invariants encoding simple
temporal restrictions among operations. Then the authors build a behaviour
model that satisfies every invariant found in the previous step. These models
have been successfully used to guide human validation processes such as program
understanding or bug confirmation.

Another example of synthesised models being used for human inspection is
introduced in [14]. Authors present a technique to dynamically construct role

Abstractions for Validation in Action 197

transition diagrams (among other models), which have a resemblance to types-
tates. These models are used, together with a powerful graphical user interface,
to support program understanding tasks.

Even though these examples show the use of underapproximations for the
validation of artefacts, we believe that in general overapproximations are bet-
ter suited for validation since they are capable of exhibiting all the potential
behaviour of the artefact.

In this paper we will study a particular abstraction level that we denominate
enabledness-based abstractions [8] that focus the attention on the enabledness
of a set of actions or method within a API. We have successfully evaluated the
potential of these abstractions both for contract specifications validation [8] as
well as for validating code implementing APIs [9].

This rest of this paper is structured as follows: Section 2 introduces
enabledness-preserving abstractions (EPAs); Section 3 presents how the use of
EPAs can aid software developers in various activities such as program under-
standing or the implementation of new features; Section 4 provides a series of
strategies and checklists to work with EPA-guided software validation; finally,
Section 5 concludes our presentation.

2 Background

Enabledness-preserving abstractions (EPAs) are state machines that describe
behaviour of API implementations by introducing abstraction in two different
ways. Firstly, states reached by the implementation while executing API oper-
ations are ignored; focus is on states of the implementation before and after
operations are executed. Secondly, the actual values of the data structures of
the implementation are abstracted; focus is what operations those values allow
or disallow. Hence, states of an EPA represent sets of concrete implementation
states which allow the same set of operations. Finally, parameters and return
values of operations are also ignored; focus is on whether there exist values for
parameters of an operation such that the execution of the operation will make
the implementation transition from one abstract state to another.

We briefly define EPAs more formally utilising object oriented terminology.
For a more detailed presentation see [9]. A class C can be seen as a structure
�M, F, R, inv , init�, where M � �m1, . . . ,mk� is a finite set of public method
labels, F is an M -indexed set of method implementations, R is an M -indexed
set of requires clauses, inv is the class invariant, and init denotes the initial
conditions given by the constructors. Given a class C and two instances c1, c2,
we say that c1 and c2 are enabledness equivalent (noted c1 �e c2) iff for every
m � M : c1 satisfies Rm iff c2 satisfies Rm (i.e. if the two instances satisfy the
same set of requires clauses).

The set of class instances, when quotiented by �e, results in a set of abstract
states, such that each one is mapped to a (distinct) group of enabled methods.
Each abstract state groups all the instances that share the same set of enabled
methods, and can be characterized by a state predicate. Formally, the predicate

198 G. de Caso et al.

for an abstract state given by a set of methods ms � M is a function predms

that takes an instance of C and returns a boolean. It is formally defined as:

predms�c�
def
� inv�c� �

�

m�ms

c safisties Rm �
�

m�ms

c does not satisfy Rm

An abstract transition labeled with an action m between two abstract states
exists if and only if a class instance in the target abstract state can be reached
by executing m from a class instance in the source abstract state. Formally, let
ms1 and ms2 be method sets (that is, abstract states) and m � ms1 an action.
An m-labeled transition is added from ms1 to ms2 if there is a class instance c1
in ms1 that can execute m and evolve into a class instance c2 in ms2.

EPAs capture a superset of the concrete class’ behaviour. In practice, this
level of abstraction provides a good compromise: it is abstract enough to keep
the EPAs concise, and it is precise enough so that it is still a valuable information
source for humans to inspect.

2.1 EPA Construction

Enabledness-preserving abstractions can be statically and automatically built.
While the details of the construction process are out of scope in this presentation,
we present some brief notes and pointers to other articles.

The reader may notice that a class with k public methods has potentially
2k reachable abstract states. A näıf construction algorithm would compute all
the 2k states and its transitions, only to later restrict the result to the reachable
fragment. On the other hand, more sophisticated approaches such as parallelized
BFS exploration strategies (e.g. [9]) can drastically reduce construction times.

We implemented a prototype tool1 called Contractor which implements
various EPA construction algorithms, together with several optimisations. In its
current version, Contractor supports the construction of EPAs directly from
pre/postcondition contracts [8], C code [9] and .NET code [38].

In the rest of this paper, we focus on constructing EPAs out of C# code,
one of the most popular .NET languages. We leverage existing .NET
infrastructure to let the programmer identify the requires clauses and the
class invariant. More specifically, we use the Code Contracts [3] library calls
Contract.Requires(...) and Contract.Invariant(...).

3 Developing with EPAs

In this section we describe some simple (and fictional) software development
tasks supported by using enabledness-preserving abstractions as a visual aid.
Although applied to a small class, we aim to exemplify how EPAs can aid in
various tasks such as understanding someone else’s source code, extending it

1 Publicly available at http://lafhis.dc.uba.ar/contractor

http://lafhis.dc.uba.ar/contractor

Abstractions for Validation in Action 199

1 public class Stack {
2 private int[] elems;
3 private int next;
4

5 public Stack(int m) {
6 next = 0;
7 elems = new int[m];
8 }
9

10 public int top() {
11 if (isEmpty ())
12 return -1;
13 else
14 return elems[next - 1];
15 }
16

17 public bool isEmpty () {
18 return next == 0;
19 }
20

21 public int maxSize () {
22 return elems.Length;
23 }

24 public bool isFull () {
25 return next == elems.Length;
26 }
27

28 public void push(int k) {
29 elems[next] = k;
30 next++;
31 }
32

33 public void pop() {
34 if (isEmpty ())
35 return;
36 next --;
37 }
38

39 public void reset() {
40 next = 0;
41 }
42 }

Fig. 1. Train door controller

with a new feature, testing the new functionality, debugging the problems that
may arise and fixing them. Interested readers are directed to [8,9] for a report on
the application of EPAs on various real-life industrial scale software artefacts.

3.1 Understanding Code with EPAs

Tom, our fictional programmer hero, has just taken a job at DataXtructures Inc.,
a fictional software developing company specialized in implementing efficient
data containers.

His first assignment is to extend the functionality of a Stack class with some
new operations. The original code for the class that Tom has to extend is depicted
in Figure 1.

After a brief code inspection, Tom soon realizes that this simple data structure
was implemented using an underlying array. This imposes an upper bound on
the number of elements that can be stored. He also discovers that the are a
number of observer operations such as top(), isEmpty() or maxSize(). There
are also mutator operations such as push(int k), pop() and reset().

While each method is at most a couple of lines long, understanding how these
operations can be interleaved poses a much bigger challenge. For instance, it is
reasonable to expect pop() to be an illegal operation on a freshly constructed
Stack instance. Similarly, it would be awkward if that same operation was illegal
after successfully pushing an element on any legal stack.

This restrictions and many others constitute a set of “common sense” be-
haviour that any programmer would expect from a stack. We refer to this set of
informal (and often implicit) requirements as mental model.

200 G. de Caso et al.

The Stack class has been around in the company for a while, so Tom is quite
confident that it behaves properly (this is, according to his mental model). Still,
he wants to double-check this so he writes a couple of small programs such as
the following.

1 public void Main(string[] args) {

2 Stack s = new Stack (10);

3 s.push (27); s.push (19);

4 System.Console .WriteLine (s.top ());

5 s.pop();

6 System.Console .WriteLine (s.top ());

7 }

Tommanually compares the output with his mental model, effectively confirming
that 19 is printed first, followed by 27.

At this point Tom has a small positive piece of evidence that the Stack class
behaviour is aligned with his mental model. The problem for Tom is how to
confirm his hunch, how to know that he tested enough. In other words, he might
wonder “how do I know that this is indeed a correct stack implementation? When
do I stop testing/inspecting?”.

Fortunately, a colleague told Tom a little bit about enabledness-preserving
abstractions and Tom is willing to give them a try. By statically constructing
an EPA from the Stack source code, Tom will be able to compare his mental
model with the graphical representation of the abstraction and decide if there
are any inconsistencies between his understanding and the implementation.

As we mentioned before, in order to build an EPA for a class C we need to
define its components: a set of methods names M , their implementations F ,
their requires clauses R, the class invariant inv and the class initial condition
init .

The relevant operations that compose M are the mutators push(int k),
pop() and reset(). The constructor Stack() is used to define the initial con-
dition init , and the rest of the operations are merely observers, which do not
affect the internal state of the stack and which are excluded in the rest of the
section to simplify presentation.

The implementation set F for the selected group of operations is given by the
appropriate fragments of code in Figure 1. For instance, lines 28–31 define the
implementation for the push operation.

Regarding the requires clauses, for each operation m Tom needs to identify
(or explicitly add, if necessary) the adequate fragment of code that performs the
parameter and/or fields validation. This code fragment is then converted to a
boolean expression b that guarantees a safe invocation of m. Finally, Tom needs
to prepend the code for m with Contract.Requires(b).

For instance, lines 34–35 of Figure 1 check that the stack is not empty while
attempting to invoke the pop operation. Tom then rewrites this check as a
Contract.Requires(...) invocation, which results in the following.

Abstractions for Validation in Action 201

1 public void pop() {

2 Contract .Requires (! isEmpty ());

3 next --;

4 }

When considering the push operation there are no explicit fragments of code
that perform validation. However, this omission is actually a bug. The problem
is that the stack is based on a fixed-size array and pushing infinitely would
eventually produce an exception when the index goes beyond the limits of the
array.

In order to fix this, Tom adds a Contract.Requires(...) check to the
method as follows.

1 public void push(int k) {

2 Contract .Requires (! isFull ());

3 elems[next] = k;

4 next ++;

5 }

Finally, since it is safe to invoke the reset operation on any stack, there is no
need to rewrite it.

Having fixed the requires clauses for the relevant operations, Tom still needs
to define a class invariant inv and an initial condition init . As a first step,
Tom decides to leave the invariant as true. In other words, any possible value
assignment of the Stack class fields represents a valid stack.

Regarding the initial condition, it is straightforward to discover from the
source code of the Stack constructor that initially next == 0 and elems is
a fresh integer array. The size of elems depends of the actual value of the
constructor parameter m, but Tom realizes that empty arrays make no sense.
He therefore decides to always leave room for at least 2 elements and adds a
Contract.Requires(...) check to the constructor as follows.

1 public Stack(int m) {

2 Contract .Requires (m > 1);

3 next = 0;

4 elems = new int[m];

5 }

Having defined the action names, their implementations and requires clauses,
as well as the system invariant and initial condition, Tom is now ready to run
Contractor and obtain an EPA for the Stack class. Notice that mining the
requires clauses might seem an unnecessary burden (which could by lessened to
some extent with dynamic inference and static code analysis techniques), but it
actually led Tom to the discovery of a bug in the push operation.

Figure 2 presents the Stack EPA. As we mentioned, each abstract state is
described by a set of operations and groups all concrete stacks that enable those
operations only.

202 G. de Caso et al.

{ r e s e t ,
p u s h }

r e s e t {pop ,
r e s e t }

p u s h

{pop,
r e se t ,
p u s h }

p u s h

pop
r e s e t

pop

pop
r e s e t
p u s h

pop
p u s h

pop
p u s h

{ r e s e t }

pop
r e s e t
p u s h

r e s e t

Fig. 2. Initial EPA for the Stack class

The initial abstract state is marked with a double circle and enables both
the reset and push operations. This seems reasonable to Tom since reset is
always enabled and a freshly constructed Stack always has room for at least
one element, making push enabled as well. Furthermore, popping elements from
a freshly constructed empty stack is illegal, which is also aligned with Tom’s
mental model.

Pushing from the initial state is a non-deterministic action. It can take the
Stack instance to two possible destinations:

1. The {pop, reset} state, on which pushing is no longer enabled. This abstract
states groups the full stacks.

2. The {pop, reset, push} state, on which pushing is still enabled. This is the
abstract state that groups stacks that are ‘half-full’.

Tom notices however, that since the minimum size for a Stack is 2, it is not
possible to fill-up a freshly constructed instance after pushing a single element.
The transition from the initial state to the full state is not feasible. Furthermore,
while the initial abstract state and its outgoing transitions look rather good,
there is a sink state {reset} on the right which seems suspicious. The presence
of this abstract state indicates that eventually a Stack instance may be rendered
virtually unusable, since both pushing and popping would never be enabled for
the lifetime of that instance. Carefully reading the requires clauses for push and
pop, Tom discovers that this could only happen if the Stack instance was full
and empty at the same time. But this is not possible, so something is wrong.

These observations are not exhaustive, but even after a short inspection of the
EPA Tom has discovered that stacks may present strange behaviour. However
he feels pretty confident that it is impossible for a fresh Stack instance to get
full after a single push operation. And it is as impossible for any Stack instance
to be both empty and full at the same time.

Tom then remembers that he used an empty system invariant, and that might
have affected the resulting EPA. He creates a refined invariant and adds it to
the class as a new method as follows.

Abstractions for Validation in Action 203

1 [ContractInvariantMethod]

2 private void Invariant ()

3 {

4 Contract .Invariant (0 <= next);

5 Contract .Invariant (next <= elems.Length);

6 Contract .Invariant (elems.Length > 1);

7 }

The ContractInvariantMethod attribute in line 1 is a Code Contracts key-
word that identifies the method as the class invariant. Lines 4 and 5 indicate
the bounds for the variable that points to the next free element in the array (if
any). Notice that since popping is disabled on empty stacks, next will never be
negative; and since pushing is not allowed on full stacks, then next can not be
larger than the size of the elems array. Following the decision made when re-
defining the constructor, the last line of the invariant states that there is always
room for at least two elements.

{ r e s e t ,
p u s h }

r e s e t
{pop ,
r e se t ,
p u s h }

p u s h

r e s e t
pop

pop
p u s h

{pop,
r e s e t }

p u s h

r e s e t

pop

Fig. 3. EPA for the Stack class with proper invariant

Figure 3 presents the EPA that Tom gets when feeding Contractor with
the newly defined invariant. Tom realizes that this EPA is very well aligned with
his mental model. The suspicious sink state is now gone, and so is the push

transition that connected empty stacks directly with full stacks. The remaining
states and transitions are consistent with Tom’s idea of how a Stack instance
should behave. For instance, the reset operation always takes instances back to
the initial state, pushing eventually leads to the full state and popping eventually
takes instances back to the initial state.

However, not everything in Tom’s mental model is covered in this EPA. For in-
stance, the fact that the Stack shows actual LIFO (last in, first out) behaviour
is not part of the abstraction. Likewise, the overapproximated nature of the
EPA, implies it allows paths which are clearly illegal such as push�pop�pop.
While EPAs convey a concise representation of a class state-space, the negative
side-effect is that some aspects of the behaviour get lost in the way. More pre-
cise abstractions could capture some of these aspects that EPAs miss, but they

204 G. de Caso et al.

would do so at the cost of larger representations that could get in the way when
manually inspecting the abstraction.

3.2 Implementing and Debugging with EPAs

Now that Tom is confident with the Stack implementation being correct, he can
proceed with his first assignment. Different projects inside DataXtructures Inc.
make use of stacks, and some of them require the elements to be returned in
an ordered fashion. In other words, Tom has to add a popMax() operation that
returns the maximum integer on a Stack instance and removes it, leaving the
rest of the elements untouched, preserving their relative order. Tom proceeds
and produces the following implementation.

1 public int popMax()

2 {

3 Contract .Requires (! isEmpty ());

4 int m = elems [0];

5 for (int i = 1; i < next; i++)

6 if (elems[i] > elems[m])

7 m = i;

8 int ret = elems[m];

9 for (i = m; i < next - 1; i++)

10 elems[i] = elems[i + 1];

11 return ret;

12 }

Since a maximum element needs to be returned, the operation is enabled only if
the Stack instance is not empty. On a first pass, the position of the maximum
element is stored in m. The elements to “the right” of m are shifted so that they
remain in the same order, but occupying m’s position.

Tom is confident with his implementation, but DataXtructures Inc. mandates
that every new functionality needs to be subject to unit testing, so he writes the
following test.

1 void testPopMax ()

2 {

3 Stack s = new Stack (10);

4 s.push (3); s.push (42);

5 s.push (1); s.push (17);

6 int max = s.popMax ();

7 Contract .Assert(max == 42);

8 }

This test is executed and fortunately it provides a 100% branch coverage on the
popMax implementation. Furthermore, as Tom expected, the test passes and he
can now focus on other assignments. At that point, Tom remembers that he can
generate an new EPA that features the popMax operation.

Abstractions for Validation in Action 205

{ r e s e t ,
p u s h }

r e s e t
{pop ,

popMax,
re se t ,
p u s h }

p u s h

pop
r e s e t

pop
popMax

p u s h

{pop,
popMax,
r e s e t }

p u s h

r e s e t

pop

popMax

Fig. 4. EPA for the Stack class with popMax action

Tom then gets the EPA in Figure 4. As expected, the abstract states are
similar to the ones in the previous EPA (see Figure 3). The popMax operation is
enabled whenever the pop operation is enabled, since they indeed have the same
requires clause.

After checking the abstract states, Tom decides to look at the transitions.
Particularly, he is interested in the newly added popMax operation. He soon
notices that there is a popMax-labeled transitions looping over the {pop, popMax,
reset} abstract state. Since pushing is not allowed on this state, it represents
full stacks. Popping elements with the standard pop operation on this state
takes the stack back to the ‘half-full’ state. However, using the newer popMax

operation leaves the stack full. The target of the popMax transition should be
the ‘half-full’ state, so something looks suspicious. Similarly, there seems to be a
missing popMax-labeled transition that takes a ‘half-full’ stack back to the initial
empty state.

Tom figures out that since the popMax operation passed his test, the problem
is not related to the returned element, but to the state in which the Stack

structure is left after the operation. In particular, the fact that the only popMax-
labeled transitions are loops indicates that the size of the structure appears to
be unchanged by the operation, when it should be decreasing.

Tom reviews the implementation of popMax and discovers that the next vari-
able is not altered and this is a bug! He then adds a next--; operation right
before the end of the implementation in order to fix this.

Contractor is invoked once more after Tom has fixed the bug and the
resulting EPA is shown in Figure 5. The set of abstract states remains the
same, but the awkward popMax loop over the rightmost abstract state is now
gone. Furthermore, Tom notices that the popMax operation presents the same
(abstract) behaviour as pop.

206 G. de Caso et al.

{ r e s e t ,
p u s h }

r e s e t
{pop ,

popMax,
re se t ,
p u s h }

p u s h

pop
r e s e t

popMax

pop
p u s h

popMax

{pop,
popMax,
r e s e t }

p u s h

r e s e t

pop
popMax

Fig. 5. EPA for the Stack class with fixed popMax action

3.3 Refining the EPA States

Tom is happy that he finished his first assignment, but his colleagues are con-
cerned that the popMax operation is rather inefficient. Apparently, Stack in-
stances are increasingly used in contexts on which the elements are orderly
pushed in ascending order.

In such scenarios, going through all the elements looking for the maximum is
unnecessary since returning the last element is sufficient. The problem is that
returning the last element is not valid if the Stack instance is not ordered. Tom
figures out a strategy to keep track of whether the elements are ordered or not
by introducing an additional class field, as follows.

1 public class Stack {

2 private int[] elems;

3 private int next;

4 private int sorted;

5

6 [ContractInvariantMethod]

7 private void Invariant ()

8 {

9 Contract .Invariant (0 <= next);

10 Contract .Invariant (next <= elems.Length);

11 Contract .Invariant (0 <= sorted);

12 Contract .Invariant (sorted <= next);

13 Contract .Invariant (elems.Length > 1);

14 }

15

16 // ...

17 }

The sorted field stores the length of the largest sorted prefix in the elems array.
If sorted is equal to next then the Stack instance is sorted and returning the
last element accounts for returning the maximum. Otherwise, a linear scan is
still necessary.

Abstractions for Validation in Action 207

Notice that the Stack invariant is extended to indicate that sorted is in
range. The invariant could also be extended to indicate that sorted actually
marks the size of the biggest sorted prefix, but this weaker invariant is enough
for Tom’s purposes.

The operations responsible of pushing and popping elements need to carefully
update the new sorted field, as follows.

1 public void push(int k)

2 {

3 Contract .Requires (! isFull ());

4 if (isEmpty () || sorted == next && k >= top ())

5 sorted++;

6 elems[next] = k;

7 next ++;

8 }

9

10 public void pop() {

11 Contract .Requires (! isEmpty ());

12 if (sorted == next)

13 sorted --;

14 numberOfElements --;

15 }

Having extended the Stack representation and operations to work with the extra
field, Tom re-implements the popMax operation with the optimisation.

1 public int popMax()

2 {

3 Contract .Requires (! isEmpty ());

4 if (sorted == next) {

5 sorted --;

6 return elems[next];

7 } else {

8 int m = elems [0];

9 for (int i = 1; i < next; i++)

10 if (elems[i] > elems[m])

11 m = i;

12 int ret = elems[m];

13 for (i = m; i < next - 1; i++)

14 elems[i] = elems[i + 1];

15 next --;

16 return ret;

17 }

18 }

If the Stack instance is sorted, the last element is returned. Otherwise, the
implementation is the same as before.

Tom first runs the unit test that he already had from the unoptimised version
and it passes. He then runs Contractor to get a new EPA, which is shown in
Figure 6.

208 G. de Caso et al.

{ p u s h }
{pop,

popMax,
p u s h }

p u s h
pop

popMax

pop
popMax

p u s h

{pop,
popMax}

p u s h
pop

popMax

popMax

Fig. 6. EPA for the Stack class with optimized popMax action

{ p u s h }
isSorted

{pop,
popMax,

p u s h }
isSortedp u s h

pop

pop
p u s h

{pop,
popMax,

p u s h }

popMax
p u s h

{pop,
popMax}
isSorted

p u s h
{pop,

popMax}

p u s h

pop
popMax

pop
popMax

pop
popMax

p u s h

p u s hpop

popMax

pop
popMax

pop
popMax

Fig. 7. Refined EPA for the Stack class with optimized popMax action

First of all, notice that for presentation purposes the reset operation is now
not considered when building the EPA. The popMax operation appears to be
doing its job since it is accompanying every pop transition. The problem is that
there is an extra popMax-labeled transition looping over the full state.

Since the unoptimised version worked and the optimised seems to have a bug,
Tom decides to get a finer-grained abstraction and check what is wrong with
his code. Fortunately, Contractor provides the user with the ability to add
additional predicates that can be used to refine the set of abstract states.

Tom adds the predicate sorted == next, which he names isSorted, for pre-
sentation purposes. The refined EPA that he gets is depicted in Figure 7.

There are now 5 abstract states, from left to right:

– The initial state, which is sorted. An empty array can not be unordered.
– The sorted ‘half-full’ state.
– The sorted full state.
– The unsorted full state.
– The unsorted ‘half-full’ state.

Abstractions for Validation in Action 209

Pushing from the initial state takes the Stack instance to the sorted ‘half-full’
state; having a single element the elements have to be sorted.

Pushing from the sorted ‘half-full’ state is non-deterministic, as it can go to:

– Itself. In this case, the pushed element is higher than the top of the Stack

instance, and therefore it remains sorted. There is also still room for more
elements.

– The sorted full state. Similar to the previous case, but with no room for
more elements.

– The unsorted full state. The pushed element is lower than the top of the
Stack instance, so it is no longer sorted. There is no more room for new
elements.

– The unsorted ‘half-full’ state. Similar to the previous case, but with extra
room for other elements.

On the other hand, pushing a new element on the unsorted ‘half-full’ state (the
one in the far right) is still non-deterministic, but it can never result in the Stack
instance getting sorted.

The pop operation behaves dually. It can make an unsorted Stack become
sorted. On sorted stacks, popping will never mangle the elements.

Tom expects the popMax operation to behave as pop. When the Stack is
unsorted they share every transition. However, when the Stack is sorted, popMax
behaves oddly. For instance, there is a missing popMax-labeled transition from
the sorted ‘half-full’ state going back to the initial one. This manifestation is
similar to the bug that Tom discovered in his original implementation.

On top of that, there are popMax-labeled transitions going out of any sorted
abstract state to its unsorted counterpart. This is suspicious since taking el-
ements out of an ordered array should never result in their elements getting
unordered.

With this information in hand, Tom decides that his new implementation is
working fine on unsorted stacks, but his optimisation to deal with sorted stacks
is buggy. He then discovers that he forgot (again!) to update the next field in
the case in which the elements are ordered (the then branch).

Tom then fixes the bug and runs Contractor once more to confirm that
the suspicious elements in the original abstraction are now gone.

3.4 Refining the EPA Transitions

Having finished his previous assignment, Tom can now focus on his second task.
Some Stack users need to remove several elements at once. Tom has to im-
plement a popN(int n) operation, which takes an integer n and removes that
amount of elements from the top of the Stack instance. If there are fewer than
n elements, then the instance remains empty and the actual number of popped
elements is returned.

Tom is eager to implement this new method, and in a couple of minutes he
gets the following code.

210 G. de Caso et al.

1 public int popN(int n)

2 {

3 Contract .Requires (! isEmpty ());

4 Contract .Requires (n >= 1);

5 for (int i = 0; i < n; i++) {

6 pop();

7 if (isEmpty ())

8 break;

9 }

10 return i;

11 }

Similarly to the previous pop operations provided by the Stack class, popN
requires the instance to have at least one element. Furthermore, the amount of
elements to be popped has to be at least 1.

Tom decides to create a simple unit test to see what happens in two scenarios:
(a) when the requested amount of pops can be fulfilled; and (b) when it is greater
than the amount of elements in the stack.

1 void testPopN ()

2 {

3 Stack s = new Stack (10);

4 s.push (99); s.push (89); s.push (79);

5 int n1 = s.popN (1);

6 Contract .Assert(n1 == 1);

7 int n2 = s.popN (3);

8 Contract .Assert(n2 == 2);

9 }

The Assert in line 6 checks for scenario (a), while the one in line 8 checks for
scenario (b).

Fortunately, once again, the test achieves a 100% branch coverage over the
added functionality. Furthermore, the first Assert passes correctly, so the op-
eration seems to work properly when there are enough elements. Unfortunately,
the test case fails to pass the second Assert. The amount of elements in the
Stack instance at the time of the second popN operation is 2. However, when
attempting to pop 3 elements, the popN operation returns 1 instead of 2.

As usual, Tom decides to construct an EPA of the Stack, which we can see in
Figure 8. Unfortunately, the bug does not seem to be reflected in the abstraction.
All the popN-labeled transitions behave like pop, with the exception that popN
can also go directly from the full abstract state back to the initial one.

In his previous assignment, Tom used Contractor to refine the EPA states.
Similarly, Contractor features the possibility to refine abstract transitions
too. In order to do so, Tom needs to specify which label he wants to refine, and
what conditions he wishes to use.

In this particular case, Tom needs to refine the popN-labeled transitions using
two conditions:

Abstractions for Validation in Action 211

{ p u s h }

{pop,
popN,
p u s h }

p u s h

pop
popN

pop
p u s h
popN

{pop,
popN}

p u s h

popN

pop
popN

Fig. 8. EPA for the Stack class with popN action

{ p u s h }

{pop,
popN,
p u s h }

p u s h

pop
popN / break

pop
p u s h

popN / completed

{pop,
popN}

p u s h

popN / break

pop
popN / completed

Fig. 9. EPA with refined transitions for the Stack class with popN action

completed. This is the case on which the amount of popped elements equals
the amount that the user asked. Formally, n == popN(n).

break. In this other case the operation has to stop early since there are no more
elements to pop. Formally, n < popN(n).

The refined EPA that Tom gets using this feature is depicted in Figure 9. Notice
that now the popN transitions show extra information indicating which of the
two conditions holds on each case.

The popN / break transitions always return to the initial abstract state. This
seems fine to Tom, since in those cases the operation had to stop early due to
lack of elements. On the other hand, the popN / completed transitions always
go to the ‘half-full’ abstract state. This is suspicious, since a user could ask popN

to return exactly the amount of elements currently in the stack, which should
empty the instance.

212 G. de Caso et al.

{ p u s h }

{pop,
popN,
p u s h }

p u s h

pop
popN / break

popN / completed

pop
p u s h

popN / completed

{pop,
popN}

p u s h

popN / break
popN / completed

pop
popN / completed

Fig. 10. EPA with refined transitions for Stack with the fixed popN action

Tom decides to write a new test case in order to figure out what is wrong with
his implementation.

1 void anotherTestPopN ()

2 {

3 Stack s = new Stack (10);

4 s.push (99); s.push (89);

5 int n = s.popN (2);

6 Contract .Assert(n == 2);

7 }

Tom does a step-by-step execution and discovers that when the second element
is popped, the Stack instance is empty at that moment. Consequently, the if

statement in line 7 of the popN implementation is taken. Therefore, the execution
of the popN operation is halted before the i variable is incremented.

The bug can be solved by using a while-loop instead of a for-loop, as follows.

1 public int popN(int n)

2 {

3 Contract .Requires (! isEmpty ());

4 Contract .Requires (n >= 1);

5 int i = 0;

6 while (i < n) {

7 pop();

8 i++;

9 if (isEmpty ())

10 break;

11 }

12 return i;

13 }

With this fixed version, the EPA in Figure 10 looks much better. Tom’s job for
the day is completed!

Abstractions for Validation in Action 213

4 Validation Guidelines

The previous section showed a fictional story on which EPAs where used to
identify and locate problems in a software artefact. Based on our experience in
various real-life software artefacts [8,9], we now present a series of guidelines that
developers can use as heuristics that aid identification of “suspicious behaviour”
during the validation process.

We organise the heuristics into two categories. The first category is of a more
semantic nature while the second is related to the structure of the EPA.

We hypothesise that one of the benefits of the approach presented is that
the level of abstraction defined by the enabledness criterion is intuitive and
modelers can interpret the different abstract states into the problem domain
with relative ease. The first two heuristics we developed confirm, to some extent,
this hypothesis.

– Understanding states. There are certain abstract states in the EPA that
can be easily interpreted to particular situations of the system under analysis.
Identifying empty, half-full and full abstract states in any of the Stack EPAs
is an example of this.

When it is not possible or not easy to associate a particular states with a
declarative description of the set of instances that it abstracts, this may be
an indication that there is a problem with the program under analysis. We
have found that in these cases, it was often the case that the state should
have been inconsistent (and hence should not have appeared in the EPA)
but that the requires clauses of enabled actions or the system invariant were
(incorrectly) too weak. This is the case in Figure 2, in which the invariant
for the system was true.

– Understanding action sequences.On the other hand, states which can be
declaratively traced to a meaningful set of instances are good candidates for
analysing action sequences. Following fragments of traces from these states
may lead to discovering a certain sequence of actions which should not be
allowed by the program. Programmers should be aware that, given the ap-
proximate nature of the abstraction, the appearance of a (non singleton)
trace is not a guarantee that it denotes a feasible action sequence.

An example of this strategy is what led to the discovery that the EPA in
Figure 8 lacks popN / completed transitions going back to the initial state.

We also identified the following structural characteristics of an EPA that can
help pinpoint problems in the program under analysis:

– Large state space. A large state space in the EPA may be an indication
of either a poorly designed set of operations. The intuition is that a set of
operations that are intended to be used together to provide a more com-
plex service (e.g., a protocol, a public API) will conceptually have a few
modes that characterise the set operations available at a given moment. An
unmanageable set of enabledness states is an indication that the protocol,
class or API is either extremely complex to be used or that it is incorrectly

214 G. de Caso et al.

implemented. More specifically, a large state space can be an indication of
problems with requires clauses. A good strategy is to question why different
states in the EPA differ in the actions that they enable.

An example of this problem is showcased in the MS-WINSRA case study
in [8].

– Deadlock states. The presence (or absence) of a deadlock state is some-
thing that should be analysed in detail when validating a program using
EPAs. By definition of EPA there can be only one deadlock state, the state
whose action set is empty. The presence of an unintended deadlock state in
an EPA is likely to be an indication of a bug in the actions that evolve into
that state.

The MS-NSS case study in [8] presents a deadlock state which is studied
and validated.

– Sink states. Similarly to deadlock states, states which only have outgoing
transitions leading back to it can be indicators of problems. They are very
similar to deadlock states since they indicate that once this “operation mode”
is reached it can not be abandoned.

For instance, the Stack EPA in Figure 2 presents a suspicious sink state.
– Missing action. If a given specified action is not present in any of the EPA

reachable states then this is an indication that something is not quite right. It
may be the case that the requires clause for that action is inconsistent when
combined with the system invariant. It might also be the case that none
of the other actions leave the system in a state which enables the missing
action.

– High fan-in. States in an EPA that have a large number of incoming tran-
sitions can be an indication of problems. In particular, they are typically
undesirable since they cause history loss for all the paths that reach the
state. These states can be an indication of problems in requires clauses that
when corrected end up partitioning the high fan-in state into several states.

The MS-WINSRA case study in [8] presents this problem due to weak
requires clauses.

– Highly non-deterministic actions. When a state has a large number of
outgoing transitions labeled with the same action it is usually symptomatic of
a problem. Such situations may be caused by two different scenarios. Firstly,
it may be the case that the action is intrinsically non-deterministic. If this
is the case, it can be a symptom that this action is a good candidate to be
tested under different scenarios in order to trigger/cover all of its behaviour
space.

Secondly, a highly non-deterministic action on an abstract state can also
happen if the predicate for the state is weak. For instance, an action that
updates the system following the formula 	A1
 B1�� . . .�	An
 Bn� may
generate undesired non-deterministic behaviour in a state where Ai holds for
several values of i. In these cases, it may be the case that a requires clause
or the system invariant requires strengthening.

The {pop, popMax, push} isSorted abstract state in Figure 7 presents
a highly non-deterministic push operation.

Abstractions for Validation in Action 215

– Mirrored actions. If whenever there is a transition labeled with a given
action a1, there is another transition with the same origin and destination
state labeled with action a2, this is an indication that both actions were
specified independently but are treated in the same way by the system. It
may be the case that one action was copied from the other but the program-
mer forgot to modify the appropriate differences between the two (known as
copy-paste bugs).

This is the case with pop—popMax in Section 3.3, as well as pop—popN

in Section 3.4.

Some of the heuristics presented in this section are straightforward to implement
as a feature in our Contractor tool, and in fact some of them are already
implemented. These include the detection of deadlock or sink states, mirrored
or missing actions or enabled actions with missing transitions.

5 Closing Remarks

In this article we have shown how abstractions can play a key role in various
development activities. More concretely, we presented enabledness-preserving
abstractions and their application in a fictional development story involving code
understanding, the addition of new functionality and the refactoring of parts of
the implementation.

Even when this story is based on a toy stack implementation, EPAs have
shown to provide useful information on various industrial scale software arti-
facts. For instance, in [8] we show the application of our Contractor tool to 2
Microsoft protocol descriptions in the form of pre/postcondition contracts with
up to 33 actions. Our tool scaled well, keeping the construction time below 4
minutes in a standard desktop computer. More importantly, the resulting EPA
led to the discovery of flaws in the descriptions. In [9] we apply Contractor
directly on the Java Development Kit (JDK) 1.4 implementation of various stan-
dard classes such as ListItr (List iterator) or PipedOutputStream. The running
times ranged from 8 seconds to 5 minutes, and the EPAs led to discoveries such
as undocumented legal behaviour with respect to the official documentation.

Based on this experiences, this paper also presents a series of guidelines and
checklists that can guide programmers in their use of EPAs as a visual aid to
find suspicious elements in their programs.

While Contractor constructs EPAs statically and automatically, it requires
the developer to identify and annotate important program elements such as
requires clauses. The problem of tackling the annotation burden has been widely
studied, and different approaches have been proposed which range from type
inference or dataflow analysis (e.g., [17]) to carefully choosing default values
[10]. More concretely, Code Contracts [3] presents an outstanding ability to
infer requires clauses as the ones used in Section 3.

Enabledness-based abstractions constitute a good example of abstractions
aimed at user inspection and validation. While we found EPAs useful in our

216 G. de Caso et al.

experience, we believe that features such as state refinement via extra predicates
(Section 3.3) or transitions refinement (Section 3.4) present a good opportunity
to let developers “zoom in and out” the abstraction in order to fit their needs.
That said, we envision that other carefully chosen non enabledness-based levels
of abstraction could potentially help developers in their activities as well.

Acknowledgements. The work reported herein was partially supported by
CONICET, UBACyT 2011-813 and 20020090300064,PIP112-200801-00955KA4,
PICT-PAE 37279, ERC StG PBM-FIMBSE and PICT 2010-2351.

References

1. Alur, R., Černỳ, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications
for Java classes. In: POPL 2005, pp. 98–109 (2005)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1), 3–34 (1995)

3. Andersen, M., Barnett, M., Fahndrich, M., Grunkemeyer, B., King, K., Logozzo,
F., Patel, V., Zuniga, D.: Code Contracts (2009),
http://research.microsoft.com/en-us/projects/contracts/

4. Beckman, N., Nori, A.: Probabilistic, modular and scalable inference of typestate
specifications. In: PLDI (2011)

5. Beschastnikh, I., Brun, Y., Sloan, S., Ernst, M.: Leveraging existing instrumenta-
tion to automatically infer invariant-constrained models. In: FSE 2011 (2011)

6. Beyer, D., Henzinger, T., Jhala, R., Majumdar, R.: The software model checker
Blast. STTT 9, 505–525 (2007),
http://www.springerlink.com/index/10.1007/s10009-007-0044-z

7. Bierhoff, K., Aldrich, J.: Plural: checking protocol compliance under aliasing. In:
ICSE, pp. 971–972. ACM (2008)

8. de Caso, G., Braberman, V., Garbervetsky, D., Uchitel, S.: Automated abstractions
for contract validation. IEEE Transactions on Software Engineering 38(1), 141–162
(2012)

9. de Caso, G., Braberman, V.A., Garbervetsky, D., Uchitel, S.: Program abstractions
for behaviour validation. In: Proceedings of the 33rd International Conference on
Software Engineering, ICSE 2011, Waikiki, Honolulu, HI, USA, May 21-28, pp.
381–390 (2011)

10. Chalin, P., James, P.R.: Non-null References by Default in Java: Alleviating the
Nullity Annotation Burden. In: Bateni, M. (ed.) ECOOP 2007. LNCS, vol. 4609,
pp. 227–247. Springer, Heidelberg (2007)

11. Dallmeier, V., Lindig, C., Wasylkowski, A., Zeller, A.: Mining object behavior with
ADABU. In: Workshop on Dynamic Systems Analysis 2006 (2006)

12. Dallmeier, V., Knopp, N., Mallon, C., Hack, S., Zeller, A.: Generating test cases
for specification mining. In: ISSTA 2010 (2010)

13. DeLine, R., Fahndrich, M.: Enforcing high-level protocols in low-level software. In:
PLDI 2001, pp. 59–69 (2001)

14. Demsky, B., Rinard, M.: Automatic extraction of heap reference properties
in object-oriented programs. IEEE Transactions on Software Engineering 35,
305–324 (2009)

http://research.microsoft.com/en-us/projects/contracts/
http://www.springerlink.com/index/10.1007/s10009-007-0044-z

Abstractions for Validation in Action 217

15. Ernst, M., Perkins, J., Guo, P., McCamant, S., Pacheco, C., Tschantz, M., Xiao, C.:
The Daikon system for dynamic detection of likely invariants. Science of Computer
Programming 69, 35–45 (2007),
http://linkinghub.elsevier.com/retrieve/pii/S016764230700161X

16. Esparza, J.: Decidability of model checking for infinite-state concurrent systems.
Acta Informatica 34, 85–107 (1997),
http://www.springerlink.com/

openurl.asp?genre=article&id=doi:10.1007/s002360050074
17. Flanagan, C., Leino, K.: Houdini, an Annotation Assistant for ESC/Java. In:

Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001)

18. Gabel, M., Su, Z.: Symbolic mining of temporal specifications. In: ICSE 2008, pp.
51–60 (2008), http://portal.acm.org/citation.cfm?id=1368096

19. Ghezzi, C., Mocci, A., Monga, M.: Synthesizing intensional behavior models by
graph transformation. In: ICSE 2009, pp. 430–440 (2009)

20. Giannakopoulou, D., Păsăreanu, C.S.: Interface Generation and Compositional
Verification in JavaPathfinder. In: Chechik, M., Wirsing, M. (eds.) FASE 2009.
LNCS, vol. 5503, pp. 94–108. Springer, Heidelberg (2009)

21. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

22. Grieskamp, W., Kicillof, N., MacDonald, D., Nandan, A., Stobie, K., Wurden,
F.: Model-based quality assurance of Windows protocol documentation. In: ICST
2008, pp. 502–506 (2008),
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4539580

23. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consistency checking
of requirements specifications. ACM Transactions on Software Engineering and
Methodology (TOSEM) 5(3), 231–261 (1996)

24. Henzinger, T., Jhala, R., Majumdar, R.: Permissive interfaces. In: ESEC/FSE 2005,
pp. 31–40 (2005)

25. IEEE: IEEE Standard Glossary of Software Engineering Terminology (September
1990)

26. Kramer, J.: Is abstraction the key to computing? Commun. ACM 50, 36–42 (2007),
http://doi.acm.org/10.1145/1232743.1232745

27. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

28. Lee, D., Yannakakis, M.: Online minimization of transition systems (extended ab-
stract). In: STOC 1992, pp. 264–274 (1992),
http://portal.acm.org/citation.cfm?doid=129712.129738

29. Liu, L., Meyer, B., Schoeller, B.: Using Contracts and Boolean Queries to Improve
the Quality of Automatic Test Generation. In: Gurevich, Y., Meyer, B. (eds.) TAP
2007. LNCS, vol. 4454, pp. 114–130. Springer, Heidelberg (2007)

30. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: ICSE 2008, pp. 501–510 (2008)

31. Nanda, M., Grothoff, C., Chandra, S.: Deriving object typestates in the presence
of inter-object references. ACM SIGPLAN Notices 40(10), 77–96 (2005)

32. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

33. Pradel, M., Gross, T.R.: Automatic Generation of Object Usage Specifications
from Large Method Traces. In: ASE 2009, pp. 371–382. IEEE (November 2009),
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5431756

http://linkinghub.elsevier.com/retrieve/pii/S016764230700161X
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s002360050074
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s002360050074
http://portal.acm.org/citation.cfm?id=1368096
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4539580
http://doi.acm.org/10.1145/1232743.1232745
http://portal.acm.org/citation.cfm?doid=129712.129738
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5431756

218 G. de Caso et al.

34. Sasnauskas, R., Dustmann, O.S., Kaminski, B.L., Wehrle, K., Weise, C.,
Kowalewski, S.: Scalable symbolic execution of distributed systems. In: Proceed-
ings of the 2011 31st International Conference on Distributed Computing Sys-
tems, ICDCS 2011, pp. 333–342. IEEE Computer Society, Washington, DC (2011),
http://dx.doi.org/10.1109/ICDCS.2011.28

35. Strom, R., Yemini, S.: Typestate: A programming language concept for enhancing
software reliability. IEEE TSE 12(1), 157–171 (1986)

36. Uribe, T.: Abstraction-based Deductive-algorithmic Verification of Reactive Sys-
tems. Stanford University, Dept. of Computer Science (1999)

37. Valmari, A.: The State Explosion Problem. In: Reisig, W., Rozenberg, G. (eds.)
APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)

38. Zoppi, E., Braberman, V., de Caso, G., Garbervetsky, D., Uchitel, S.: Contrac-
tor.net: inferring typestate properties to enrich code contracts. In: Proceedings of
the 1st Workshop on Developing Tools as Plug-ins, TOPI 2011, pp. 44–47. ACM,
New York (2011), http://doi.acm.org/10.1145/1984708.1984721

http://dx.doi.org/10.1109/ICDCS.2011.28
http://doi.acm.org/10.1145/1984708.1984721

M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.): SFM 2012, LNCS 7320, pp. 219–262, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Software Performance Modeling

Dorina C. Petriu, Mohammad Alhaj, and Rasha Tawhid

Carleton University, 1125 Colonel By Drive, Ottawa ON Canada, K1S 5B6
{petriu,malhaj}@sce.carleton.ca, rtawhid@connect.carleton.ca

Abstract. Ideally, a software development methodology should include both
the ability to specify non-functional requirements and to analyze them starting
early in the lifecycle; the goal is to verify whether the system under
development would be able to meet such requirements. This chapter considers
quantitative performance analysis of UML software models annotated with
performance attributes according to the standard “UML Profile for Modeling
and Analysis of Real-Time and Embedded Systems” (MARTE). The chapter
describes a model transformation chain named PUMA (Performance by Unified
Model Analysis) that enables the integration of performance analysis in a UML-
based software development process, by automating the derivation of
performance models from UML+MARTE software models, and by facilitating
the interoperability of UML tools and performance tools. PUMA uses an
intermediate model called “Core Scenario Model” (CSM) to bridge the gap
between different kinds of software models accepted as input and different
kinds of performance models generated as output. Transformation principles are
described for transforming two kinds of UML behaviour representation
(sequence and activity diagrams) into two kinds of performance models
(Layered Queueing Networks and stochastic Petri nets). Next, PUMA
extensions are described for two classes of software systems: service-oriented
architecture (SOA) and software product lines (SPL).

1 Introduction

The quality of many software intensive systems, ranging from real-time embedded
systems to web-based applications, is determined to a large extent by their
performance characteristics, such as response time and throughput. The developers of
such systems should be able to assess and understand the performance effects of
various design decisions starting at an early stage and continuing throughout the
software life cycle. Software Performance Engineering (SPE) is an approach
introduced by Smith [37], which proposes to use quantitative methods and
performance models in order to assess the performance effects of different design and
implementation alternatives during the development of a system. SPE promotes the
integration of performance analysis into the software development process from its
earliest lifecycle stages, in order to insure that the system will meet its performance
objectives.

The process of building a system's performance model before the system is
completely implemented and can be measured begins with identifying a small set of
key performance scenarios representative of the way in which the system will be used

220 D.C. Petriu, M. Alhaj, and R. Tawhid

[37]. The performance analysts must understand first the system behaviour for each
scenario, following the execution path from component to component, identifying the
quantitative demands for resources made by each component (such as CPU execution
time and I/O operations), as well as the various reasons for queueing delays (such as
competition for hardware and software resources). The scenario descriptions thus
obtained can be mapped (manually or automatically) to a performance model, which
can be used for By solving the model, the analyst will obtain performance results
such as response times, throughput, utilization of different resources by different
software components, etc. Trouble spots can be identified and alternative solutions for
eliminating them can be assessed in a similar way. Many modeling formalisms have
been developed over the years for software performance evaluation, such as queueing
networks (QN), extended QN, Layered Queueing Networks (LQN) (a type of
extended QN), stochastic Petri nets, stochastic process algebras and stochastic
automata networks, as surveyed in [5][15].

Model-Driven Development (MDD) is an evolutionary step in the software field
that changes the focus of software development from code to models. MDD uses
abstraction to separate the model of the application under construction from
underlying platform models and automation to generate code from models. The
emphasis on models facilitates also the analysis of non-functional properties (NFP),
by deriving analysis models for different NFPs from the software models. Ideally,
analysis models should be generated automatically by model transformations from the
software models used for development, and become part of the model suite which is
maintained with the product. For brevity, we term the software models as Smodels,
and the performance models as Pmodels.

To facilitate the generation of Pmodels, UML Smodels can be extended with
standard performance annotations provided by the “UML Profile for Modeling and
Analysis of Real-Time and Embedded Systems” (MARTE) [30] defined for UML 2.x
or its predecessor, the “UML Profile for Schedulability, Performance and Time”
(SPT) [31] defined for UML1.x. Using UML profiles provides the additional
advantage that the extended models can be processed with standard UML editors,
without any need to change the tools, as profiles are standard mechanisms for
extending UML models.

This chapter addresses the problem of bridging the semantic gap between different
kinds of software models and performance models. We present the PUMA
(Performance by Unified Model Analysis) transformation chain, whose strategy [48]
“unifies” performance evaluation in the sense that it can accept as input different
types of source Smodels (from which the users choose the most suitable for their
project) and it generate different types of Pmodels (also according to the user’s
choice). To permit a user to combine arbitrary Smodel and Pmodel types according to
project needs (an N-by-M problem), PUMA employs an intermediate (or pivot)
language called Core Scenario Model (CSM) [34]. Based around CSM, PUMA has an
open architecture summarized in Figure 1 which shows the transformers (rounded
rectangles) and the flow of artifacts (rectangles) between them. It exploits several
standards: UML and its model-interchange XMI standard, MARTE, performance
model standards [18] [31], and the CSM metamodel [24] [25]. With suitable
translators, PUMA can support other design specification language defining scenarios
and resources, and other performance models.

 Software Performance Modeling 221

Fig. 1. PUMA transformation chain

Related Work. Many kinds of Pmodels (including queueing networks (QNs),
extended QNs, stochastic Petri nets, process algebras and automata networks) can be
used for performance analysis of software systems, as surveyed in [5]. The Pmodels
are often constructed “by hand”, based on the insight of the analysts and their
interactions with the designers. To fit into MDD, the present purpose is to automate
the derivation of Pmodels from the Smodels used for software development. A recent
book [15] covers all the way from the basic concepts for performance analysis of
software systems to describing the most representative methodologies from literature
for annotating and transforming Smodels into Pmodels. For example, UML models
with performance annotations (mostly SPT) containing some structural view and a
certain kind of behavior diagrams have been used to generate different kinds of
Pmodels: from sequence diagrams (SD) to simulation model [6], from SD and
statecharts (SC) to stochastic Petri nets [11][12], from SD to QNs [16], from activity
diagrams (AD) to stochastic process algebra (PEPA) [13], from SD to PEPA [44],
from UML to an intermediate model called Performance Model Context (PCM) to
stochastic Petri nets [20]. Many of these approaches transform from one kind of
UML behaviour diagram plus architectural information to one kind of Pmodel. The
difference of the PUMA strategy is that it unifies performance evaluation by
accepting different types of source Smodels and generating multiple types of Pmodel,
via the intermediate language Core Scenario Model (CSM), as described in more
detail in the next sections.

Another model driven approach for development and evaluation of non-functional
properties such as performance and reliability is based on the Palladio Component
Model (PCM), which allows specifying component-based software architectures in a
parametric way [27]. PCM captures the software architecture with respect to static
structure, behaviour, deployment/allocation, resource environment/execution
environment, and usage profile. Although its metamodel is completely different from
UML, the Palladio Component Model has a UML-like graphical notation representing
component diagrams, deployment and individual service behaviour models (similar to
activity diagrams).

 Software
model with

performance
annotations
(Smodel)

Transform
Smodel to

CSM
(S2C)

Improve
Smodel

Core
Scenario

Model
(CSM)

Transform
CSM to

some Pmodel
(C2P)

Performance
model

(Pmodel)

Explore
solution
space

Performance
results and

design advice

222 D.C. Petriu, M. Alhaj, and R. Tawhid

There are other intermediate models proposed in literature similar to PUMA’s
CSM, which captures only those software aspects that are relevant to performance
models. An example is the pioneering “execution graph” of Smith [37], which is a
kind of scenario model with performance parameters that is transformed into an
extended QN model. Another intermediate language that supports performance and
reliability analysis of component-based systems is KLAPER [26]. It is more oriented
toward representing calls and services rather than scenarios and has a more limited
view of resources (i.e., no basic distinction between hardware/software,
active/passive). It has also been applied as intermediate model for transformation
from different types of Smodels to different types of Pmodels.

The remaining of the paper is organized as follows: Section 2 describes how
PUMA bridges the gap between Smodels and Pmodels through performance
annotations and presents the source, target and intermediate models; Section 3
describes the transformations in the PUMA chain; Section 4 introduces PUMA
extensions for handle service-oriented systems; Section 5 presents PUMA extensions
needed to handle software product lines and Section 6 presents the conclusions and
future work.

2 Source, Intermediate and Target Models

2.1 Bridging the Gap between Smodels and Pmodels

Time-related performance is a runtime property of a software system determined by
how the software behaviour uses the system resources. Contention for resource
creates queueing delays that directly affect the overall performance. System
performance measures are closely connected with the use of the system as described
by a subset of use cases with performance constraints, and more specifically by
selected scenarios realizing such use cases. For instance, response time is usually
defined as the end-to-end delay of a particular scenario, and throughput is the
frequency of execution of a scenario or a set of related scenarios. Scenarios
corresponding to online operations frequently required by customers who are waiting
for the results have high priority for performance analysis, while scenarios doing
housekeeping operations in the background may be less important.

The Smodel and Pmodel share similar concepts of resources and scenarios. In
both, scenarios are composed of units of behaviour (called steps) which are using
resources. Hierarchical definition of steps is possible: a step may represent an
elementary operation or a whole sub-scenario. However an important difference
between Smodel and Pmodel is that the first is function/data-centric, while the second
is resource-centric. In other words, the Smodel scenario steps process data and
implement algorithms, while the Pmodel steps care mostly about what resources are
used, how and for what duration. This creates a semantic gap that needs to be bridged
in the process of deriving a Pmodel from a Smodel by adding performance
annotations to the latter.

Normally a Pmodel is generated from a Smodel subset containing the following:

 Software Performance Modeling 223

• High-level software architecture describing the main system components
instances and their interactions at a level of abstraction that captures certain
characteristics relevant to performance, such as distribution, concurrency,
parallelism, competition for software resources (such as software servers and
critical sections), synchronization, serialization, etc.

• Allocation of high-level software components instances to hardware devices
usually modeled as a deployment diagram.

• A set of key performance scenarios annotated with performance information
(see section 2.3 for a concrete example).

In order to understand what kind of performance annotations need to be added to
UML Smodels, we need to look at the basic concepts contained in the performance
domain model. As already mentioned, performance is determined by how the system
behaviour uses system resources. Scenarios define execution paths with externally
visible end points. Performance requirements (such as response time, throughput,
probability of meeting deadlines, etc.) can be placed on scenarios. In the “UML
Profile for Schedulability, Performance and Time” (SPT), the performance domain
model describes three main types of concepts: resources, scenarios, and workloads
[31]. These concepts are also used in MARTE [30].

The resources used by the software can be active or passive, logical or physical
software or hardware. Some of these resources belong to the software itself (e.g.,
critical section, software server, lock, buffer), others to the underlying platforms (e.g.,
process, thread, processor, disk, communication network).

Each scenario is composed from scenario steps joined by predecessor-successor
relationships, which may include fork/join, branch/merge and loops. A step may
represent an elementary operation or a whole sub-scenario. Quantitative resource
demands for each step must be given in the performance annotations. Each scenario is
executed by a workload, which may be open (i.e., requests arriving in some
predetermined pattern) or closed (a fixed number of users or jobs in the system).

Another source for the gap between Smodels and Pmodels is the fact that
performance is a system characteristic, affected not only by the application under
development represented by the Smodel, but also by the underlying platforms on top
of which the application will be running (such as middleware, operating system,
communication network software, hardware). There are different ways to approach
this problem: one is to add the missing platform information in performance
annotations, as explained in the subsections 2.3 and 2.4. Another way is to take a
MDA-like approach [33], by considering that the application Smodel is a Platform-
Independent Model (PIM) which can be composed with platform models defined as
aspect models; the result of the composition is a Platform Specific Model (PSM).
Such an approach is presented in Section 4.

2.2 MARTE Performance Annotations

In the “UML Profile for Modeling and Analysis of Real-Time and Embedded
Systems” (MARTE) [30], the foundation concepts and non-functional properties

224 D.C. Petriu, M. Alhaj, and R. Tawhid

(NFPs) shared by different quantitative analysis domains are joined in a single
package called Generic Quantitative Analysis Model (GQAM), which is further
specialized by the domain models for schedulability (SAM) and performance (PAM).
Other domains for quantitative analyses, such as reliability, availability, safety, are
currently being defined by specializing GQAM.

Core GQAM concepts describe how the system behavior uses resources over time,
and contains the same three main categories of concepts presented at the beginning of
the section: resources, behaviour and workloads.

GQAM Resource Concepts. A resource is based on the abstract Resource class
defined in the General Resource Model and contains common features such as
scheduling discipline, multiplicity, services. The following types of resources are
important in GQAM: a) ExecutionHost: a processor or other computing device on
which are running processes; b) CommunicationsHost: hardware link between
devices; c) SchedulableResource: a software resource managed by the operating
system, like a process or thread pool; and d) CommunicationChannel: a middleware
or protocol layer that conveys messages.

Services are provided by resources and by subsystems. A subsystem service
associated with an interface operation provided by a component may be identified as a
RequestedService, which is in turn a subtype of Step, and may be refined by a
BehaviorScenario.

GQAM Behaviour/Scenario Concepts. The class BehaviorScenario describes a
behavior triggered by an event, composed of Steps related by predecessor-successor
relationships. A specialized step, CommunicationStep, defines the conveyance of a
message. Resource usage is attached to behaviour in different ways: a) a Step
implicitly uses a SchedulableResource (process, thread or task); b) each primitive
Step executes on a host processor; c) specialized steps, AcquireStep or ReleaseStep,
explicitly acquire or release a Resource; and d) BehaviorScenarios and Steps may use
other kind of resources, so BehaviorScenario inherits from ResourceUsage which
links resources with concrete usage demands.

GQAM Workload Concepts. Different workloads correspond to different operating
modes, such as takeoff, in-flight and landing of an aircraft or peak-load and average-
load of an enterprise application. A workload is represented by a stream of triggering
events, WorkloadEvent, generated in one of the following ways: a) by a timed event
(e.g. a periodic stream with jitter); b) by a given arrival pattern (periodic, aperiodic,
sporadic, burst, irregular, open, closed); c) by a generating mechanism named
WorkloadGenerator; d) from a trace of events stored in a file.

As mentioned above, the Performance Analysis Model (PAM) specializes the
GQAM domain model. It is important to mention that only a few new concepts were
defined in PAM, while most of the concepts are reused from GQAM.

PAM specializes a Step to include more kinds of operation demands during a step.
For instance, it allows for a non-synchronizing parallel operation, which is forked but
never joins (noSync property). In addition to CPU execution, a Step can demand the

 Software Performance Modeling 225

execution of other Scenarios, RequestedServices offered by components at interfaces,
and “external operations” (ExtOp) which are defined outside the Smodel. (ExtOp is
one of the means of introducing platform resources in MARTE annotations). A new
step subtype, PassResource, indicates the passing of a shared resource from one
process to another.

In term of Resources, PAM reuses ExecutionHost for processor, Schedulable
Resources for processes (or threads) and adds a LogicalResource defined by the
software (such as semaphore, lock, buffer pool, critical section). A runtime object
instance (PaRunTInstance) is an alias for a process or thread pool identified in
behavior specifications by other entities (such as lifelines and swimlanes).

A UML model intended for performance analysis should contain a structural view
representing the software architecture at the granularity level of concurrent runtime
components and their allocation to hardware resources, as well as a behavioural view
showing representative scenarios with their respective resource usage and workloads.

2.3 Source Model: UML+MARTE

This section presents an example of a UML+MARTE source model for two CORBA-
based client-server systems selected from a performance case study published in [1]:
one is called the Handle-driven ORB (H-ORB) and the other the Forwarding ORB (F-
ORB). For each case, the authors have implemented a performance prototype based
on a Commercial-Off-The-Shelf (COTS) middleware product and a synthetic
workload running on a network of Sun workstations using Solaris 2.6; the prototypes
were measured for a range of parameters.

We used the system description from [1] to build a UML+MARTE model of each
system, which represents the source model for the PUMA transformation. The results
of the LQN model generated by PUMA are compared with measurement results
presented in [1].The synthetic application implemented in [1] contains two distinct
services A and B; the clients connect to these services through the ORB. Each client
executes a cycle repeatedly, making one request to Server A and one to Server B.
Two copies of A, called A1 and A2, and two copies of B, called B1 and B2, are
provided. The two copies of each server enable the system to handle more load and
allow the investigation of the performance effects of load balancing that is provided
by many commercial ORB products. The client performs a bind operation before
every request. The client request path varies depending on the underlying ORB
architecture. In the H-ORB, the client gets the address of the server from the agent
and communicates with the server directly. In the F-ORB, the agent forwards the
client request to the appropriate server, which returns the results of the computations
directly to the client. When a service is requested form a particular server, the server
process executes a loop and consumes a pre-determined amount of CPU time. The
synthetic application is used because it provides flexibility in experimentation with
various levels of different workload parameters, such as the service time at each
server, and the inter-node delay.

226 D.C. Petriu, M. Alhaj, and R. Tawhid

Fig. 2. The deployment of the H-ORD performance prototype

The synthetic application as considered here is characterized by the following
parameters: number of clients N, service demands SA, SB representing the CPU
execution time for each service, inter-node communication delay D and message
length L. Since the experiments were performed on a local area network, the inter-
node delay that would appear in a wide-area network was simulated by making a
sender process sleeps for D units of time before sending a message. However, in the
case of the H-ORB agent there was no access to the source code, so the inter-node
delay for the handle returning operation was simulated by making the client sleep for
D units of time before receiving the message.

Figure 2 shows the deployment diagram for the H-ORB performance prototype.
The processing nodes are stereotyped as «GaExecHost» and the LAN communication
network nodes as «GaCommHost». Each client, each server and the ORB agent are
allocated on their own processor.

Figure 3 represents the client request scenario in the form of a sequence diagram
(SD), while Figure 4 represents the same scenario as an activity diagram (AD). Both
the SD and the AD are stereotyped with «GaAnalysisContext» that indicate that the
respective scenarios are to be considered for performance analysis. Each lifeline role
stereotyped by «PaRunTInstance» is related to a runtime concurrent component
instance, which is in turn allocated on a processor in the deployment diagram. The
first step of the scenario has a workload stereotype «GWorkloadEventt» with an
attribute pattern indicating that the scenario is used under a closed workload with a
population of $N. ($N indicates a MARTE variable, to be substituted by a concrete
value when the performance model is actually solved. By convention, the name of all
MARTE variables in this work begin with “$” to distinguish them from other names).
A «PaStep» stereotype is applied to each of the steps corresponding to the following
messages: Get-Handle(), A1Work(), A2Work(), B1Work() and B2Work(). All
scenario steps are characterized by a certain hostDemand, which represents the CPU
execution time.

client1

«artifact»
Client-art

«deploy»

«manifest»

«GaCommHost»

:LAN

«GaExecHost»

PC1
«GaExecHost»

PCN
«GaExecHost»

PA

«GaExecHost»

PC2

client2

«artifact»
Client-art

«deploy»

«manifest»

clientN

«artifact»
Client-a

«deploy»

«manifest»

agent

«artifact»
Agent-art

«deploy»

«manifest»

«GaExecHost»

PA1
«GaExecHost»

PB1
«GaExecHost»

PB2

«GaExecHost»

PA2

«deploy» «deploy» «deploy» «deploy»

«artifact»

ServerA-art
«artifact»

ServerA-art
«artifact»

ServerB-art
«artifact»

ServerB-art

«manifest» «manifest» «manifest» «manifest»

ServerA1 ServerA2 ServerB1 ServerB2

 Software Performance Modeling 227

Fig. 3. Client request scenario for H-ORB as a sequence diagram

In the SD from Figure 3, the choice of which server instance to call (A1 or A2; B1
or B2) is modeled as two alt combined fragments respectively, with two operands
each. An operand itself is a «PaStep» with the attribute prob indicating the probability
of being chosen. The call to the Sleep() function in the SD is modeled by an
interaction occurrence ref making reference to another SD not shown here, which

GetHandle() «PaStep» {hostDemand=(4,ms)}

«PaStep» {hostDemand=($SA,ms)}

Client Agent ServerA1 ServerA2 ServerB1 ServerB2

alt

alt

«PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance»

«PaStep»
{prob=0.5}

«PaStep»
{prob=0.5}

«PaStep» {prob=0.5}

«PaStep» {prob=0.5}

«GaWorkloadEvent»
{pattern=(closed(Population= $N))}

GetHandle() «PaStep» {hostDemand=(4,ms)}

«GaAnalysisContext»
sd HORB

ref Sleep

«PaStep» {hostDemand=($SA,ms)}

«PaStep» {hostDemand=($SB,ms)}

«PaStep» {hostDemand=($SB,ms)}

ref Sleep

ref Sleep

ref Sleep

ref Sleep

ref Sleep

ref Sleep

ref Sleep

ref Sleep

ref Sleep

B1Work()

B2Work()

A1Work()

A2Work()

GetHandle() «PaStep» {hostDemand=(4,ms)}

«PaStep» {hostDemand=($SA,ms)}

Client Agent ServerA1 ServerA2 ServerB1 ServerB2

alt

alt

«PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance»

«PaStep»
{prob=0.5}

«PaStep»
{prob=0.5}

«PaStep» {prob=0.5}

«PaStep» {prob=0.5}

«GaWorkloadEvent»
{pattern=(closed(Population= $N))}

GetHandle() «PaStep» {hostDemand=(4,ms)}

«GaAnalysisContext»
sd HORB

«GaAnalysisContext»
sd HORB

ref Sleepref Sleep

«PaStep» {hostDemand=($SA,ms)}

«PaStep» {hostDemand=($SB,ms)}

«PaStep» {hostDemand=($SB,ms)}

ref Sleepref Sleep

ref Sleepref Sleep

ref Sleepref Sleep

ref Sleepref Sleep

ref Sleepref Sleep

ref Sleepref Sleep

ref Sleepref Sleep

ref Sleepref Sleep

ref Sleepref Sleep

B1Work()

B2Work()

A1Work()

A2Work()

228 D.C. Petriu, M. Alhaj, and R. Tawhid

Fig. 4. Client request scenario for H-ORB as an activity diagram

contains a call to a dummy server Sleep that delays the caller by a required time
without consuming the CPU time of the caller.

In the activity diagram, every active concurrent instance is represented by its own
partition (a.k.a. swimlane) and is stereotyped by «PaRunTInstance». The scenario
steps modeled as activities are stereotyped as «PaStep» with the same hostDemand
and prob attributes as in SD. An AD arc crossing the boundary between partitions
represents a message sent from one active instance to another. Sleep is a structured
activity, which contains inside the details of a call to a dummy instance that delays the
caller without consuming its CPU time. Eventually, in the performance model Sleep
will be represented as a dummy server that performs the same roll.

The scenario for the F-ORB case study is not presented here, but it is fairly similar
with the H-ORB. In the F-ORB architecture the client sends the entire service request
to the agent that locates the appropriate server and forwards the request to it. The
server performs the desired service and sends a response back to the client.

After describing the UML source model extended with MARTE annotations, we
will present the target performance model and then the intermediate model used in the
PUMA transformation.

«GaAnalysisContext»
ad HORB

«PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance»

Client Agent ServerA1 ServerA2 ServerB1 ServerB2

Sleep

Sleep

Sleep

Sleep

Sleep

GetHandle

Sleep

A1Work

Sleep

A1Work

Sleep

GetHandle

Sleep

A1Work

Sleep

A1Work

«GaWorkloadEvent»
{pattern=(closed(Population= $N))}

«PaStep»
{hostDemand=(4,ms)}

«PaStep»
{hostDemand=(4,ms)}

«PaStep» {prob=0.5,
hostDemand=($SA,ms)}

«PaStep» {prob=0.5,
hostDemand=($SA,ms)}

«PaStep» {prob=0.5,
hostDemand=($SB,ms)}

«PaStep» {prob=0.5,
hostDemand=($SB,ms)}

«GaAnalysisContext»
ad HORB

«GaAnalysisContext»
ad HORB

«PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance» «PaRunTInstance»

Client Agent ServerA1 ServerA2 ServerB1 ServerB2

Sleep

Sleep

Sleep

Sleep

Sleep

GetHandle

Sleep

GetHandle

Sleep

A1Work

Sleep

A1Work

Sleep

A1Work

Sleep

A1Work

Sleep

A1Work

Sleep

GetHandle

Sleep

GetHandle

Sleep

A1Work

Sleep

A1Work

Sleep

A1Work

Sleep

A1Work

Sleep

A1Work

«GaWorkloadEvent»
{pattern=(closed(Population= $N))}

«PaStep»
{hostDemand=(4,ms)}

«PaStep»
{hostDemand=(4,ms)}

«PaStep» {prob=0.5,
hostDemand=($SA,ms)}

«PaStep» {prob=0.5,
hostDemand=($SA,ms)}

«PaStep» {prob=0.5,
hostDemand=($SB,ms)}

«PaStep» {prob=0.5,
hostDemand=($SB,ms)}

 Software Performance Modeling 229

2.4 Target Performance Model: LQN

Many performance modeling formalisms have been developed over time, such as
queueing networks (QN), extended QN, Layered Queueing Networks (LQN),
stochastic Petri nets, stochastic process algebras and stochastic automata networks.
Although PUMA can incorporate model transformations from CSM to nay
performance modeling formalisms, in the paper we will consider one target
performance model, the Layered Queueing Network (LQN) [46][36].

LQN was developed as an extension of the well-known Queueing Network model;
the main difference is that LQN can easily represent nested services: a server may
become in turn a client to other servers from which it requires nested services, while
serving its own clients. The LQN toolset presented in [22][23] includes both
simulation and analytical solvers.

A slightly simplified LQN metamodel is presented in Figure 5. Examples of LQN
models are presented in Figures 5 and 18.

A LQN model is an acyclic graph, with nodes representing software entities and
hardware devices (both known as tasks), and arcs denoting service requests. The
software entities are drawn as rectangles with thick lines, and the hardware devices as
ellipses. The nodes with outgoing but no incoming arcs play the role of clients, the
intermediate nodes with both incoming and outgoing arcs are usually software servers
and the leaf nodes are hardware servers (such as processors, I/O devices,
communication network, etc.) A software or hardware server node can be either a
single-server or a multi-server.

Each kind of service offered by a LQN task is modeled as an entry, drawn as a
rectangle with thin lines attached to the task or other entries of the same task. Every
entry has its own execution times and demands for other services (given as model
parameters). Each software task is running on a processor shown as an ellipse. The
communication network, disk devices and other I/O devices are also shown as
ellipses. The word “layered” in the LQN name does not imply a strict layering of
tasks (for example, tasks in a layer may call each other or skip over layers). The arcs
with a filled arrow represent synchronous requests, where the sender is blocked until
it receives a reply from the provider of service. It is possible to have also
asynchronous request messages (shown as a stick arrow), where the sender does not
block after sending a request and the server does reply back. Another communication
style called forwarding (shown with a dotted line), allows for a client request to be
processed by a chain of servers instead of a single server. The first server in the chain
will forward the request to the second and become free; the second to the third, etc.,
and the last server in the chain will reply to the client. Although not explicitly
illustrated in the LQN notation, every server, be it software or hardware, has an
implicit message queue, where incoming requests are waiting their turn to be served.
Servers with more then one entry have a single input queue where requests for
different entries wait together.

A server entry may be decomposed in two or more sequential phases of service.
Phase 1 is the portion of service during which the client is blocked waiting for a reply

230 D.C. Petriu, M. Alhaj, and R. Tawhid

Fig. 5. LQN metamodel

from the server (it is assumed that the client has made a synchronous request). At the
end of phase 1, the server will reply to the client, which will unblock and continue its
execution. The remaining phases, if any, will be executed in parallel with the client.
An extension to LQN [23] allows for an entry to be further decomposed into activities
if more details are required to describe its execution (see Figure Y). The activities are
connected together to form a directed graph that may branch into parallel threads of
control, or may choose randomly between different branches. Just like phases,
activities have execution time demands, and can make service requests to other tasks.

The parameters of a LQN model are as follows:

─ customer (client) classes and their associated populations or arrival rates;
─ for each phase (activity) of a software task entry: average execution time;
─ for each phase (activity) making a request to a device: average service time at the

device, and average number of visits;
─ for each phase (activity) making a request to another task entry: average number

of visits
─ for each request arc: average communication delay;
─ for each software and hardware server: scheduling discipline.

 package LQNmetamodel

-thinkTime : float = 0.0
-hostDemand : float
-hostDemCV : float = 1.0
-deterministicFlag : Integer = 0
-repetitionsForLoop : float = 1.0
-probForBranch : float = 1.0
-replyFwdFlag : Boolean

Activity

-multiplicity : Integer = 1
-priorityOnHost : Integer = 1
-schedulerType

Task
-meanCount ...

Call

-probForward

Forward

-replyFlag = true
-successor.after = phase2 ...

Phase1

-multiplicity : Integer = 1
-schedulerType

Processor

Entry

-replyFlag = False
-successor = NIL

Phase2

Precedence

Sequence

Branch

Merge

Fork

Join

-actSetForTask

0..*

0..1
-callByActivity

0..*

1

-fwdToEntry
1

-fwdTo
1

-fwdByEntry
0..*

1

-callToEntry
1

-callTo
1

-actSetForEntry

0..*

0..1

-successor
1

1..*

-predecessor
1

-after1..*

0..1

-replyTo 0..*

-firstActivity 1

1

-allocatedTask 0..*

-host 1

-taskOperation 1..*

-schedulableProcess 1

-before

-fwdBy

SyncCall

AsyncCall

 Software Performance Modeling 231

2.5 Intermediate Model: CSM

The Core Scenario Model [34] represents scenarios, which are implicit in many
software specifications; they are useful for communicating partial behaviours among
diverse stakeholders and provide the basis for defining performance characteristics.
The CSM metamodel is similar to the SPT Performance Profile, describing three main
types of concepts: resources, scenarios, and workloads. Each Scenario is a directed
graph with Steps as nodes, and explicit PathConnectors which define Sequence,
Branch, Merge, Fork and Join. A Step is owned by a Component, which may be a
ProcessResource, and which in turn is associated to a HostResource (processor).
Logical resources are acquired and released along the path by special subtypes of Step
called ResourceAcquire and ResourceRelease. External Resource represents a
resource not explicitly represented in the UML model required for executing external
operations that have a performance impact (for example, a disk operation). The CSM
metamodel is described in more detail in [34].

3 PUMA Transformation Chain

In this section we present the principles of the transformation used in PUMA: a) from
source Smodel in UML extended with MARTE to the intermediate CSM; and b) from
CSM to LQN Pmodel. The section also shows a few performance results obtained with
the LQN model generated from the CORBA source model introduced in Section 2.3 and
compares them with measurements.

3.1 Transformation from UML+MARTE to CSM

The general strategy is to identify the scenarios and structural diagrams to be
considered by looking for MARTE stereotypes and then to generate structural CSM
elements (Resources and Components) from the structure diagram (e.g., deployment),

Table 1. Mapping between MARTE stereotypes and CSM Elements

MARTE CSM

«GaWorkloadEvent» Closed/OpenWorkload

«GaScenario» Scenario

«PaStep» Step

«PaCommStep» Step (for the message)

«GaResAcq» ResourceAcquire

«GaResRel» ResourceRelease

«PaResPass» ResourcePass

«GaExecHost» ProcessingResource

«PaCommHost» ProcessingResource

«PaRunTInstance» Component

«PaLogicalResource» LogicalResource

232 D.C. Petriu, M. Alhaj, and R. Tawhid

and behavioural elements (Scenarios, Steps and PathConnectors) from the behaviour
diagrams. The mapping between MARTE stereoptypes and CSM elements is
presented in Table 1.

The transformation algorithm begins with generating the structural elements first.
A UML Node from a deployment diagram stereotyped «GaExecHost» or
«PaCommHost» is converted into a CSM ProcessingResource. A UML run-time
component manifested by an artifact, which is in turn deployed on a node is converted
into a CSM Component.

Scenarios Described by Sequence Diagrams. The transformation continues with the
scenarios described by sequence diagrams stereotyped with «GaAnalysisContext».
For each scenario, a CSM Start PathConnection is generated first, and the workload
information is attached to it. Each Lifeline from a sequence diagram describes the
behaviour of a UML instance (be it active or passive) and corresponds in turn to a
CSM Component. The Lifelines stereotyped as «PaRunTInstance» corresponds to an
active runtime instance. We assume that the artifacts for all active UML instances
are shown on the deployment diagram, so their corresponding CSM Components were
already generated. However, it is possible that the sequence diagram contains lifelines
for passive objects not shown in the deployment diagram. In such a case, the
corresponding CSM Passive Component is generated, and its host is inferred to be the
same as that of the active component in whose context it executes.

The translation follows the message flow of the scenario, generating the
corresponding Steps and PathConnections. A simple Step corresponds to a UML
Execution Occurrence, which is the execution of an operation as an effect of receiving a
message. Complex CSM Steps with a nested scenario correspond to operand regions of
UML Combined Fragments and Interaction Occurrences. A synchronous message will
generate a CSM Sequence PathConnection between the step sending the message and
the step executed as an effect. An asynchronous message spawns a parallel thread, and
thus will generate a Fork PathConnection with two outgoing paths: one follows the
sender's activity, and the other follows the path of the message. The two paths may
rejoin later through a Join PathConnection. Fork/join of parallel paths may be also
generated by a par Combined Fragment. Conditional execution of alternate paths is
generated by alt and opt Combined Fragments.

Scenarios Described by Activity Diagrams. We consider all the scenarios described
by activity diagrams stereotyped as «GaAnalysisContext». For each scenario, the
transformation starts with the Initial ControNode, which is converted into a CSM
Start PathConnection and a Resource Acquire step for acquiring the component for
the respective swimlane. Also, the scenario workload information described by a
«GaWorkloadEvent» stereotype is used to generate a CSM Workload element
attached to the Start PathConnection. (Note that in MARTE, the scenario workload
information is associated by convention with the first step of a scenario, not with its
Initial ControlNode, which cannot be stereotyped as Step). The translation follows
the sequence of the scenario from start to finish, identifying the Steps and
PathConnections (sequence, branch/merge, fork/join) from the context of the
diagram. Each UML ActivityNode that represents a simple activity is converted into a
CSM Step, one that represents an activity further refined by another diagram
generates a CSM Step with a nested Scenario.

 Software Performance Modeling 233

As mentioned before, we assume that each partition (a.k.a. swimlane) is associated
with a Component through the «PaRunTInstance» stereotype. A special treatment is
given to ActivityEdges that cross the partition boundary (named here cross-transition).
A cross-transition represents a message (signal) between the corresponding
components that implies releasing the sender (which is a Component, but also a
Resource) and acquiring the receiver. Therefore, a cross-transition generates in CSM
a ResourceRelease step, a Sequence PathConnection and ResourceAcquire step.

Figure 6 shows the CSM generated for the H-ORD source model from section 2.3.

Fig. 6. CSM for the H-ORB system from Figures 2 and 3

Start:HORB

R_Acquire: client

Step:

R_Acquire: agent

Step: GetHandle()

Step: Sleep()

R_Release: agent

Step: Sleep()

Branch

Merge

R_Acquire: agent

Step: GetHandle()

R_Release: agent

Branch

Step: OpB1 Step: OpB2

Merge

R_Release:client

End

Step: Sleep()

Step: Sleep()

Step: OpA1 Step: OpA2

Start: Sleep

R_Acquire: ServerS

Step: sleep()

R_Release: ServerS

End

Start: OpA1

R_Acquire: ServerA1

Step: A1Work()

R_Release: ServerA1

End

Step: Sleep()

Start: OpB1

R_Acquire: ServerB1

Step: B1Work()

R_Release: ServerB1

End

Step: Sleep()

Start:HORB

R_Acquire: client

Step:

R_Acquire: agent

Step: GetHandle()

Step: Sleep()

R_Release: agent

Step: Sleep()Step: Sleep()

Branch

Merge

R_Acquire: agent

Step: GetHandle()

R_Release: agent

Branch

Step: OpB1 Step: OpB2

Merge

R_Release:client

End

Step: Sleep()Step: Sleep()

Step: Sleep()Step: Sleep()

Step: OpA1 Step: OpA2

Start: Sleep

R_Acquire: ServerS

Step: sleep()

R_Release: ServerS

End

Start: Sleep

R_Acquire: ServerS

Step: sleep()

R_Release: ServerS

End

Start: OpA1

R_Acquire: ServerA1

Step: A1Work()

R_Release: ServerA1

End

Step: Sleep()Step: Sleep()

Start: OpB1

R_Acquire: ServerB1

Step: B1Work()

R_Release: ServerB1

End

Step: Sleep()Step: Sleep()

234 D.C. Petriu, M. Alhaj, and R. Tawhid

The main CSM model represents the main flow of steps from the scenario
represented in Figure 3 as SD and in Figure 4 as AD. Composite steps were generated
for every Interaction Occurrence invoking Sleep() and for each operand of the alt
CombineFragments making a choice of a server. The Composite steps are refined by
CSM sub-scenarios on the right of the figure. (The fragment for the operand invoking
A2 is not shown, being similar with the one invoking A1; the same is true for operand
invoking B2, which is similar to B1).

3.2 Transformation from CSM to LQN

The first stage of the transformation algorithm parses the resources in the CSM and
generates a LQN Processor for each CSM ProcessingResource and an LQN Task for
each CSM Component. The second stage traverses the CSM to determine the
branching structure and the sequencing of Steps within branches, and to discover the
calling interactions between Components.

The traversal creates a new LQN Entry whenever a task receives a call. The entry
internals are described by LQN Activities that represent the sequence of Steps for the
call, using a notation like CSM itself. Another possibility is to generate LQN Phases
when there is only a sequence of Steps (without branching or forking). The traversal
generates an LQN Activity for each CSM Step it encounters and it generates LQN
Branch, Merge, Fork, Join and Sequence connectors corresponding to the same
PathConnectors in the CSM. Whenever an interaction between two CSM
Components is detected, an Activity is created in the Task corresponding to the
requesting Component with a Call to the new LQN Entry which is created in the Task
corresponding to the called Component. This Entry serves the request and its
workload is defined by the ensuing Activities generated from the Steps encountered in
the new Component.

The type of call (synchronous or asynchronous) is detected by its context in the
CSM. More exactly, a message back to a Component that previously sent a request is
considered to be a reply to a synchronous call. Any messages that do not have matching
replies when the end of the scenario is reached are considered to be asynchronous calls.
During the traversal of the CSM, the algorithm creates a stack of unresolved call
messages and removes them as the matching reply messages are detected (other
interaction patterns can also be identified). At Branch and Fork points, the stack of
unresolved messages is duplicated for each outgoing alternate or parallel subpath so that
each ensuing subpath maintains its own message history. All of the duplicate call stacks
except one are discarded at Merge and Join points after every incoming alternate or
parallel branch has been traversed. The ordering of the messages is a direct result of the
traversal of the CSM scenarios and is a partial order for the particular path being
traversed. Parallel or alternate branches each have a partial order of the messages along
their own subpaths, but no global ordering is implied.

A CSM ClosedWorkload is transformed into parameters for a load-generating
Reference Task, and a CSM OpenWorkload into an open stream of requests made to
the first entry. An External Operation by a CSM Step is represented by an activity
which makes a call to a submodel that has to be provided by the analyst.

 Software Performance Modeling 235

Fig. 7. LQN model for the H-ORB system

Figure 7 shows the LQN model generated from the CSM for the H-ORB given in
Figure 6. As mentioned before, the Sleep task running on a dummy server implements
the sleep function. All requests are synchronous calls in this example. The numbers in
parentheses on the arcs represent the average number of calls. The service times (Not
shown in the figure) are represented by the variables $A, $B, $D which are assigned
concrete values doing the experiments.

The LQN model thus generated has been validated against measurements of the
H-ORB and F-ORB performance prototypes that have been published in [1]. As it can
be seen in Figure 8, the accuracy of the analytic model is fairly reasonable.

Fig. 8. Validation of the LQN results against measurements

In this section we have presented the PUMA transformations from a Smodel to the
corresponding intermediate model to the Pmodel. According to the PUMA
architecture from Figure 1, once the Pmodel has been generated, the next step is to
use it for experiments that are exploring the parameter space in order to evaluate
design changes such as execution in parallel, replication, modified concurrency, and
reduced demands and delays. The Pmodel results evaluate the potential of these
changes, which can then be mapped to possible software solutions [49].

In the next two sections we will present extensions to the PUMA transformation to
specialize it for Service-Oriented Architecture and for Software Product lines.

The Response Time of the H-ORB,
 SA=10ms SB=15 ms, D=200 ms, L=4800 bytes

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 8 16 24
Number of Clients (N)

R
es

po
ns

e
T

im
e

R
 [s

] Model

Measured

The Response Time of the F-ORB model
SA=10, SB=15, D=200, L = 4800 bytes.

0

1

2

3

4

0 5 10 15 20 25

Number Of Clients

R
es

po
ns

e
T

im
e

[s
]

Measure

Model

Clientclient_e

Server
B2

B2WorkServer
B1

B1WorkServer
A2

A2WorkServer
A1

A1Work

AgentGet
Handle

Sleepsleep_e

PA

dummy

PC

PA1 PA2 PB1 PB2

(2)

(1)

(4)

(1) (1) (1) (1)

Clientclient_e Clientclient_e

Server
B2

B2Work Server
B2

B2WorkServer
B1

B1Work Server
B1

B1WorkServer
A2

A2Work Server
A2

A2WorkServer
A1

A1Work Server
A1

A1Work

AgentGet
Handle

Sleepsleep_e Sleepsleep_e

PAPA

dummy

PCPC

PA1PA1 PA2PA2 PB1PB1 PB2PB2

(2)

(1)

(4)

(1) (1) (1) (1)

236 D.C. Petriu, M. Alhaj, and R. Tawhid

4 Extension of PUMA to Service-Oriented Architecture(SOA)

SOA is a paradigm for developing and deploying business applications as a set of
reusable services [19]. SOA is used for enterprise systems, web-based applications,
multimedia, healthcare, etc. Model Driven SOA (MDSOA) is an emerging approach
for developing service-oriented applications developing models at multiple levels of
abstraction, which can be used eventually to generate code. MDSOA is also used to
verify the non-functional properties (NFP) by transforming the software models to
different NFP analysis models (including performance). In order to improve modeling
SOA systems, OMG has introduced a new profile called Service Oriented
Architecture Modeling Language (SoaML) [32], which extends UML with the ability
to model the service structure and dependencies, to specify service capabilities and
classification, and to define service consumers and providers.

The emergence of MDD in general and of MDSOA in particular has attracted a lot
of interest in the research community in using software models to evaluate the non
functional properties of service-based systems. A model transformation framework
is proposed in [45] to automatically include the architectural impact and the
performance overhead of the middleware layer in distributed systems. This allows one
to model the application independent of the middleware and then obtain a platform
specific model by composition. Another model-driven approach for development and
evaluation of non-functional properties such as performance and reliability is based
on the Palladio Component Model (PCM), which allows specifying component-based
software architectures in a parametric way [27]. A parametric performance
completion for message-oriented middleware proposed for PCM in [27] allows for the
composition of platform components with application components. Other research on
building performance models for web services takes a two layered user/provider
approach in [18] and [28]: the user is a represented by a set of workflows and the
provider by a set of services deployed on a physical system. Performance information
about service capabilities and invocation mechanisms is given by the means of P-
WSDL (Performance-enabled WSDL) in [18], where a LQN model is generated for
analyzing the system performance. In [28] the queueing network formalism is used to
derive performance bounds.

4.1 PUMA4SOA Transformation Chain

Performance by Unified Model Analysis for SOA (PUMA4SOA) is a modeling
approach proposed first in [2] which extends the PUMA transformation, specializing
it for service-based systems. The difference between the original PUMA and the
extended one for SOA stems from: a) the kind of design models accepted as input,
and b) the separation between Platform Independent Model (PIM) and Platform
Specific Model (PSM) of the application and the use of platform models. Figure 4.1
illustrates the steps of PUMA4SOA; the top leftmost represents the main difference
from PUMA (whose steps are shown in Figure 1). There are three input models to
PUMA4SOA: a) application PIM, b) deployment model which describes the
allocation of the artifacts to a deployment target, and c) platform aspect models.

 Software Performance Modeling 237

Fig. 9. The Steps of PUMA4SOA

The platform independent model of the application contains a UML software
model with three levels of abstractions. The UML model is annotated with
performance information using the standard UML profile MARTE. Each level
represents a part of the system details that will be used together with the other parts to
build the performance model. The three abstraction levels are as follows:

a) Workflow Model which represents a set of business processes. Each workflow
contains a sequence of activities and actions controlled by conditions, iterations,
and concurrency.

b) Service Architecture Model which describes the service capabilities arranged in a
hierarchy showing anticipated usage dependencies. It also depicts the level of
service granularity, which has a substantial effect on the system performance.
Invoking services in heterogeneous and distributed environment produces
message overheads due to marshalling/unmarshalling of the message data at the
service platform. A coarser service granularity reduces the number of service
invocations, which improves the performance, but produces unnecessary
coupling between the components of the SOA system. However, a finer service
granularity increases the number of service invocations, which reduces the
performance but produces a loosely coupled system. Service Architecture
Modeling helps the modeler to manage the tradeoff between the service
granularity and performance.

Transform to
CSM

Feedback

Performance
Results

Explore
Solution space

Performance
model

Transform from CSM
to a Performance

Model

Core Scenario
Model (CSM)

 PSM
SOA system
model with

performance
annotations

Platform
Aspect Models

PIM

Deployment
Diagram of

Primary model

SOA system
model with

performance
annotations

Select Platform
Features

PC Feature
Model

238 D.C. Petriu, M. Alhaj, and R. Tawhid

c) Service Behavior Model which refines the workflow behavior, giving more
details about the services invoked. Each workflow activity may be refined by a
sequence diagram which represents its detailed behavior, including the
invocations of the other services and the interaction between participants.

PUMA4SOA also defines two models: a) Performance Completion Feature model (PC
feature model), and b) Platform aspect models. The concept of “performance
completions” was introduced by Woodside et al. [47] to close the gap between abstract
design models and external platform factors. The PC feature model, introduced in the
work of the Palladio group (see [27]) and also used in [41], defines the variability in
platform choices, execution environments, types of platform realizations, and other
external factors that have an impact on the system’s performance. Since the regular
notation for feature diagrams is not part of UML, we use a UML class diagram extended
with stereotypes to represent the PC feature model, where each feature is represented as
a class element. Four relationships between a feature and its sub features are defined:
Mandatory, Optional, Or, and Alternative. Each feature in the feature model represents a
platform aspect. A platform aspect model describes the structure and the behavior of the
service platform in a generic format. The PC feature model allows the modeler to select
between different platform aspect models that are most appropriate for the application
of interest.

The selected platform aspect models composed with the PIM generate the PSM.
The Aspect Oriented Modeling (AOM) approach is used to generate the platform
specific model (PSM) by weaving the selected platform aspect model behaviors into
different locations of the platform independent model (PIM). The AOM approach
requires two types of models: a) the primary model which describes the core design
decisions, and b) a set of aspect models, each describing a concern that crosscuts the
primary model [21]. PUMA4SOA considers the application PIM as the primary
model. An aspect model can be seen as a template or pattern, independent of any
primary model it may be composed with. For each composition with the primary
model, the template is instantiated and its formal parameters are bound to concrete
values using binding rules, to give a context-specific aspect model. The composed
model is generated by weaving the context-specific aspect models into the primary
model at different locations. In the next section, we will describe the PUMA4SOA
approach with an example from the healthcare domain.

4.2 Platform Independent Model: Case Study

The platform independent model is illustrated with a healthcare case study, the
Eligibility Referral System, which is introduced in [3]. A UML activity diagram is
used to model the workflow in Figure 10. It is the top level model that describes the
process of transferring a patient from one hospital to another. Three organizations are
involved, the transferring and receiving hospitals and the insurance company. The
workflow begins with the transferring hospital filling and processing the initial forms
needed to transfer the patient. The next process is getting the physician and the
payment approvals. The transferring hospital is then sending the forms and waits for

 Software Performance Modeling 239

Fig. 10. Workflow model represented by an activity diagram

an acknowledgement from the receiving hospital. Finally, the transferring hospital
schedules the transferring date and updates the transferring process. The workload of
the system is described by the «GaWorkloadEvent» stereotype, which can be a closed
arrival pattern defining a fixed populations of users or an open arrival pattern which
defining a stream of requests that arrive at a given rate. A swimlane is stereotyped
as «PaRunTInstance» to indicate that the activities are executed by a concurrent
participant. This stereotype has a poolsize attribute to define the number of concurrent
threads. An activity is stereotyped as «PaStep» to indicate a scenario step. It has a
hostDemand attribute for the required execution time, a prob for its probability, and a
rep for the number of repetitions. The communication between participants is
described by «PaCommStep» to indicate the conveyance of a message. It has a
msgSize attribute to indicate the amount of transmitted data.

The Service Architecture model, illustrated in Figure 11, is using a new OMG
profile called the Service Oriented Architecture Modeling Language (SoaML) [32].
SoaML extends UML with the ability to define the service structure and dependencies
to specify service capabilities, and to define service consumers and providers. The
Eligibility Referral System defines five components stereotyped as «participants»:

<<PaStep>>
<<GaWorkloadEvent>>

Process Eligibility
Referral

<<PaStep>>

Initial Patient
Transfer

<<PaStep>>

Perform Payor
Authorization

<<PaStep>>

Scheduling
Transfer

<<PaStep>>

Process Eligibility
Transfer

<<PaStep>>

Selecting
Referral

<<PaStep>>

Confirm
Transfer

<<PaStep>>

Perform Physician
Authorization

<<PaStep>>

Validating
Request

<<PaStep>>

Complete
Transfer

nurse:Nurse
<<PaRunTInstance>>
na:NursingAccount

<<PaRunTInstance>>

pa:PhysicianAccount
<<PaRunTInstance>>

dm:Datamanagement
<<PaRunTInstance>>

es:EstimatorServer
<<PaRunTInstance>>
as:AdmissionServer

240 D.C. Petriu, M. Alhaj, and R. Tawhid

Fig. 11. Service Architecture Model

Fig. 12. Service behavior model for Initial Patient Transfer service

Fig. 13. Deployment of the Eligibility Referral System

<<Participant>>

es:EstimatorServer

<<Participant>>
na:NursingAccount

<<Participant>>
dm:Datamanagement

<<Participant>>
pa:PhysicianAccount

<<Request>>
physicianAuth

<<Participant>>
as:AdmissionServer

<<Request>>
validateTransfer

<<Request>>
confirmTransfer

<<Request>>
payorAuth

<<Request>>
recordTransfer

<<Request>>
scheduleTransfer

<<Request>>
requestReferral <<Service>>

physicianAuth

<<Service>>
recordTransfer

<<Service>>
scheduleTransfer

<<Service>>
requestReferral

<<Service>>
validateTransfer

<<Service>>
confirmTransfer

<<Service>>
payorAuth

 <<GaCommHost>>

WAN
Gateway2

Gateway1

<<GaCommHost>>

LAN2 <<GaCommHost>>

LAN1

<<GaExecHost>>

AdmissionHost <<GaExecHost>>

TransferringHost

<<SchedulableResource>>

AdmissionServer

<<deploy>>

<<deploy>> <<deploy>>

<<deploy>>

Gateway3

<<GaCommHost>>

LAN3

<<GaExecHost>>
InsuranceHost

<<GaExecHost>>

DMHost
<<GaExecHost>>

Disk

<<SchedulableResource>>

Datamanagement

<<SchedulableResource>>

NursingAccount

<<SchedulableResource>>

PhysicianAccount

<<SchedulableResource>>

EstimatorServer

<<SchedulableResource>>

disk

<<deploy>> <<deploy>>

<<SchedulableResource>>

ReferralBusinessProcess

<<deploy>>

 <<PaRunTInstance>>

na:NursingAccount

<<PaRunTInstance>>

dm:Datamanagement
<<PaRunTInstance>>

disk:Disk

<<PaStep>>
RecordReansferForm

<<PaStep>>
ReadData

<<PaStep>>
ReviewData

RecordReansferForm

 Software Performance Modeling 241

NursingAccount, PhysicianAccount, AdmissionServer, EstimatorServer, and Data
management. The model also presents different service contracts; each one of them
defines service consumers (their ports are stereotyped with «Request»), and service
providers (their ports are stereotyped with «Service»). UML sequence diagrams are
used to model the behavior of each activity defined in the workflow model. Figure 12
shows an example of the service behavior model of “Initial Patient Transfer” activity.
In this interaction, the nurse generates the patient transfer form by retrieving patient’s
data from the Database, and then reads and reviews it before sending it back to the
form. Lifelines are stereotyped with «PaRunTInstance» to indicate a concurrent
process, and messages are stereotyped with «PaStep» to indicate an action.

The UML Deployment diagram in Figure 12 shows the allocation of software to
hardware. Physical communication nodes, such as WAN, LAN1, LAN2, and LAN3,
are stereotyped with «GaCommHost» to indicate a physical communication link.
Processors, such as AdmissionHost, TransferringHost, InsuranceHost, DMHost, and
Disk, are stereotyped with «GaExecHost» to indicate the processor host. Artifacts,
such as NursingAccount, PhysicainAccount, AdmissionServer, EstimatorServer,
Datamanagement, and disk, are stereotyped with «SchedulableResource» to indicate a
concurrent resource. The ReferralBusinessProcess component represents the
execution engine which runs the business process of the system.

4.3 PC Feature Model

The PC feature model describes the variability in service platform which may affect
the system’s performance. Figure 13 describes the features which may affect the
performance of our example, the Eligibility Referral System. There are three
mandatory feature groups which are required by any service platform: the operation,
message protocol and realization. There are also two optional feature groups:
communication and data compression. The relationship between the feature groups
and their sub-features are alternative with exactly-one-of feature selected. Although
the dependencies between the sub-features are not shown in the model, some features,
such as the operation feature, message protocol feature and realization feature, are
dependent. As an example selecting one of the operation sub-features, such as
invocation, requires selecting one of the message protocol (Http or SOAP) and the
realization (WebService, REST, etc.)

Fig. 14. Platform Completion (PC) Feature Model

 Service Platform

Operation

<< Feature>>
Invocation

<<Feature>>
Publishing

<< Feature>>
Discovery

<< Feature>>
Subscribing

Communication

<<Feature>>
Http

<<Feature>>
Unsecure

Message Protocol

<<Feature>>
SOAP

<<Feature>>
Secure

Realization

<<Feature>>
Web service

<< Feature>>
REST

<<Feature>>
DCOM

<< Feature>>
CORBA

<< Feature>>
SSL Protocol

<< Feature>>
TSL Protocol

Data Compression

<<Feature>>
Uncompressed

<<Feature>>
Compressed

<1-1> <1-1>

<1-1>

<1-1>
<1-1>

<1-1>

242 D.C. Petriu, M. Alhaj, and R. Tawhid

4.4 Aspect Platform Model for Service Invocation

The aspect platform models define the middleware structure and behavior of the
selected aspects from the PC feature model. In our example, we selected a service
invocation aspect realized as a webservice with the message protocol SOAP. Figure 15
describes the generic deployment including the hosts and artifacts involved in the
service invocation aspect model. As a naming convention the vertical bar ‘|’ indicate a
generic role name as in [21]. Two hosts are involved in the service invocation operation,
the |Client which consumes the service, and the |Provider which provides it.

Fig. 15. Generic Invocation aspect: deployment view

Fig. 16. Generic Aspect model for Service Invocation

 |WAN

|GatewayC
|GatewayP

|LANC
|LANP

|ClientHost |ProviderHost

|Client |XMLParserC
|SOAPClient

<<deploy>>
<<deploy>>

<<deploy>> <<deploy>>

<<deploy>>

<<deploy>>

|Provider
|XMLParserP

|SOAPProvider

 |Client |XMLParserC |SOAPClient |SOAPProvider |XMLParserP |Provider

<<PaStep>>
RequestService

<<PaStep>>
Marshalling

Message

<<PaCommStep>>
RequestSOAPMessage

<<PaStep>>

Unmarshalling
Message

<<PaStep>>
ServiceInvocation

<<PaStep>>
Marshalling

Message

<<PaCommStep>>
Reply

<<PaStep>>

Unmarshalling
Message

 Software Performance Modeling 243

The middleware on both sides contains an |XMLParser to marshal/unmarshal the
message, and a |SOAP stub for message communication. Figure 16 describes the
generic service request invocation and response behavior. A request message call is
sent from a |Client to a |Provider. This message call differs from the regular operation
call due to the heterogeneous environment it operates in, which require the message to
be parsed in acceptable format at both |Client, and |Provider sides, before it is being
sent or received.

In the AOM approach, the generic aspect model for the service invocation,
illustrated in Figure 16, may be inserted in the PIM multiple times wherever there is a
service invocation. For each insertion, the generic aspect model is instantiated and its
formal parameters are bound to concrete values using binding rules to produce a
context specific aspect model. Each context specific aspect model is then composed
into the primary model, which in our case is the PIM. More details about AOM
approach can be found in [2][48].

In PUMA4SOA the aspect composition can be performed at three modeling levels:
the UML level, the CSM level or the LQN level. The complexity of the aspect
composition may determine where to perform it. At the UML level, the aspect
composition is more complex because the performance characteristics of the system
are scattered between different views and diagrams, which may require many models
to be used as input to the composition. On the contrary, performing aspect
composition at the CSM or LQN level is simpler because only one view is used for
modeling the system. In our example, we performed aspect composition at the CSM
level which is discussed in the next section (see also [48]).

4.5 From Annotated UML to CSM

In PUMA4SOA, generating the Platform specific model can be delayed to the CSM
level. The UML PIM and platform aspect models are first transformed to CSM
models. The CSM PSM is then generated by composing the CSM platform aspect
models with the CSM PIM. The generated CSM model is separated into two layers,
the business layer representing the workflow model, and the component layer
representing the service behavior model. The workflow model is transformed into the
top level scenario model. The composite activities in the workflow are refined using
multiple service behavior models, which are transformed into multiple sub-scenarios
within the top level scenario. The CSM on the left in Figure 17 is the top level
scenario representing the workflow model. It has a Start, and End elements for
beginning and finishing the scenario. The ResourseAcquire and ResourseRelease
indicate the usage of the resources. A Step element describes an operation or action.
An atomic step is drawn as a box with a single line and a composite step as a box with
double lines on the sides. The scenario on the right of Figure 17 illustrates the
composed model which describes the PSM of the sub-scenario InitialPatientTransfer.
The grayed parts originated from the context-specific aspect model which was
composed with the PIM. Whenever a consumer requests a service in the workflow
model, the generic service invocation aspect is instantiated using binding roles to
generate the context specific service invocation aspect, which is then composed with
the PIM to produce the PSM. Figure 10 shows seven service requests, which means
that seven invocation aspect instances are composed within top level scenario.

244 D.C. Petriu, M. Alhaj, and R. Tawhid

Fig. 17. CSM of the Eligibility Referral System

Step: PerformPayor
Authorization

Start: EligibilityReferral

R_Acquire: nurse

Step:

R_Acquire: na

Step: FillTransferForm

Step: IntialPatientTransfer

Step: ProcessEligibilityTransfer

Fork

Step: PerformPhysician
Authorization

Join

Step: SelectingReferral

Step: ValidatingRequest

Branch

Step: Accept Step: Reject

Merge

R_Release: na

R_Release nurse

End

Start: IntialPatientTransfer

R_Acquire: na

Step:

Step: RecordTransferForm

R_Acquire: xmlParserNA

Step: MarshallingMessage

R_Release: xmlParserNA

R_Acquire: soapDM

Step: RequestedSOAPMessage

R_Acquire: xmlParserDM

Step: UnmarshallingMessage

R_Release: xmlParserDM

R_Acquire: dm

Step: RecordTransferFormInvocation

R_Acquire: disk

Step: ReadData

R_Release disk

Step: ReviewData

R_Release: dm

R_Acquire: xmlParserDM

Step: MarshallingMessage

R_Release: xmlParserDM

R_Acquire: xmlParserNA

Step: UnmarshallingMessage

R_Release: xmlParserNA

R_Release: na

End

 Software Performance Modeling 245

4.6 From CSM to LQN

Model transformation from CSM to LQN is performed by separating the workflow
and service layer, as done in section 3.2. The workflow layer which represents the top
level scenario is transformed into an LQN activity graph associated with a task called
“workflow”, and runs on its own processor. The service layer, which represents CSM
sub-scenario containing services, is transformed into a set of tasks with their owned
entries corresponding to services. Figure 18 shows the LQN performance model for
the Eligibility Referral System. The top level of the LQN represents the workflow
activity graph (in gray), while the underlying services are represented by the lower
level tasks and entries. The middleware tasks are shown in darker gray.

Fig. 18. LQN model

&

user User

dProcessEligibilityReferral

&
dSelectingReferral

+

W
orkflow

dInitialPatientTransfer

dPerformPhysicianAuthorization dPerformPayorAuthorization

dConfirmTransfer

dCompleteTransfer

receive MW-PA

receive MW-ES ConfirmTransfer ValidatingRequest AdmisionServer

FillTransferForm NursingAccount

receive MW-AS

receive MW-DM

delay Net

UserP

ReferralBusi
nessProcess

transferring

dm

insurance

admission Disk

ObtainPayerAuthorization EstimatorServer

send MW-NA

ObtainPhysicianAuthorization PhysicianAccount

ScheduleTransfer RequestReferral Update RecordTransferForm DataManagement

ReadData Disk WriteData

dValidatingRequest

dProcessEligibilityTransfer

dSchedulingTransfer

246 D.C. Petriu, M. Alhaj, and R. Tawhid

4.7 Performance Results

The performance of the Eligibility Referral System has been evaluated based on two
design alternatives: a) with finer service granularity corresponding to service
architecture from Figure 11; and b) with coarser service granularity, where the
invocations of low level services for accessing the database DM are replaced with
regular calls, avoiding the regular service invocation overhead. In the second solution,
the functionality of the lower level services have been integrated within the higher
level services provided by the NursingAccount component. Figure 18 shows the LQN
model generated for the Eligibility Referral System for the first alternative only. The
LQN model of the second alternative is not shown here.

The performance analysis is performed to compare the response time and the
throughput of the system. It aims to find the system’s bottleneck (i.e. software and
hardware components that saturate first and throttle the system). To mitigate the
bottleneck and improve the performance of the overall system, a series of hardware
and/or software modifications are applied after identifying every bottleneck. The
LQN results will show the response time reduction obtained by making fewer
expensive service invocations using SOAP and XML in the same scenario. Figure 19
compares the response time and throughput of the system versus the number of users
ranging from 1 to 100. The results illustrate the difference between the system with
finer and coarser granularity. The compared configurations are similar in the number
of processors, disks, and threads, except that the latter performs fewer service
invocations through the service platform. The improvement is considerable (about
40% for a large number of users).

The results show the importance of service granularity on system performance,
which must be evaluated at an early phases of the system design. The proposed
analysis helps the modeler to decide on the right granularity level, making a tradeoff
between system performance and level of granularity of the deployed services.

Fig. 19. LQN results for response time and throughput comparing different service granularity

e) Finer and Coarser service granularity: Response time
vs, # of Users

0

10

20

30

40

50

60

0 20 40 60 80 100 120

of Users

R
es

p
o
ns

e
 ti

m
e
 (
se

Finer service granularity

Coarser service granularity

f) Finer and Coarser service granularity: Throughput vs.
of Users

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 20 40 60 80 100 120

of Users

Th
ro

u
gh

p
u

Finer service granularity

Coarser service granularity

 Software Performance Modeling 247

5 Extension of PUMA to Software Product Lines (SPL)

A Software Product Line (SPL) is a set of similar software systems built from a
shared set of assets, which are realizing common features satisfying a particular
domain. Experience shows that by adopting a SPL development approach,
organizations achieve increased quality and significant reductions in cost and time to
market [14].

An emerging trend apparent in the recent literature is that the SPL development
moves toward adopting a Model-Driven Development (MDD) paradigm. This means
that models are increasingly used to represent SPL artifacts, which are building blocks
for many different products with all kind of options and alternatives. We propose to
integrate performance analysis in the early phases of the model-driven development
process for Software Product Lines (SPL), with the goal of evaluating the
performance characteristic of different products by generating and analyzing
quantitative performance models [39]. Our starting point is the so-called SPL model,
a multi-view UML model of the core family assets representing the commonality and
variability between different products. We added another dimension to the SPL
model, annotating it with generic performance specifications (i.e., using parameters
instead of actual values) expressed in the standard UML profile MARTE [30]. Such
parameters appear as variables and expression in the MARTE stereotype attributes. A
model transformation realized in the Atlas Transformation Language (ATL) derives
the UML model of a specific product with concrete MARTE performance annotations
from the SPL model. The product derivation process binds the variability expressed in
the SPL to a specific product, and also the generic SPL performance annotations to
concrete values provided by the designer for this product. The proposed model
transformation approach can be applied to any existing SPL model-driven
development process using UML for modeling software.

Performance is a runtime property of the deployed system and depends on two
types of factors: some are contained in the design model of the product (generated
from the SPL model) while others characterize the underlying platforms and runtime
environment. Performance models need to reflect both types of factors. Woodside et
al. [47] proposed the concept of performance completions to close the gap between
abstract design models and external platform factors. Since our goal is to automate the
derivation of a performance model for a specific product from the SPL model, we
propose to deal with performance completions in the early phases of the SPL
development process by using a Performance Completion feature (PC-feature) model
as described in the previous section. The PC-feature model explicitly captures the
variability in platform choices, execution environments, different types of
communication realizations, and other external factors that have an impact on
performance, such as different protocols for secure communication channels and
represents the dependencies and relationships between them [41]. Therefore, our
approach uses two feature models for a SPL: 1) a regular feature model for expressing
the variability between member products, and 2) a PC-feature model introduced for
performance analysis reasons to capture platform-specific variability.

248 D.C. Petriu, M. Alhaj, and R. Tawhid

Dealing manually with a large number of performance parameters and with their
mapping, by asking the developers to inspect every diagram in the model, to extract
these annotations and to attach them to the corresponding PC-features, is an error-
prone process. A model transformation approach is proposed in [43] to automate the
collection of all the generic parameters that need to be bound to concrete variables
from the annotated product model, presenting them to the user in a user-friendly
format.

The automatic derivation of a specific product model based on a given feature
configuration is enabled through the mapping between features from the feature
model and their realizations in the design model. In this section, an efficient mapping
technique is used, which aims to minimize the amount of explicit feature annotations
in the UML design model of SPL. Implicit feature mapping is inferred during product
derivation from the relationships between annotated and non-annotated model
elements as defined in the UML metamodel [40].

In order to analyze the performance of a specific product running on a given
platform, we need to generate a performance model for that product by model
transformations from the SPL model with generic performance annotations. In our
research, this is done in four big steps: a) instantiating a product platform independent
model (PIM) with generic performance parameters from the SPL model; b) collecting
all the generic parameters that need bounding from the automatically generated
product PIM and presents them to the developer in a user-friendly spreadsheet format;
c) performing the actual binding to concrete values provided by the developer to
obtain a product platform specific model (PSM) and d) generating a performance
model for the product from the model obtained in the previous step.

Related Work. To the best of our knowledge, no work has been done to evaluate and
predict the performance of a given member of a SPL family by generating a formal
performance model. Most of the work aims to model non-functional requirements
(NFRs) in the same way as functional requirements. Some of the works are concerned
with the interactions between selected features and the NFRs and propose different
techniques to represent these interactions and dependencies. In [8], the MARTE
profile is analyzed to identify the variability mechanisms of the profile in order to
model variability in embedded SPL models. Although MARTE was not defined for
product lines, the paper proposes to combine it with existing mechanisms for
representing variability, but it does not explain how this can be achieved. A model
analysis process for embedded SPL is presented in [9] to validate and verify quality
attributes variability. The concept of multilevel and staged feature model is applied by
introducing more than one feature models that represent different information at
different abstraction levels; however, the traceability links between the multilevel
models and the design model are not explained.

In [7], the authors propose an integrated tool-supported approach that considers
both qualitative and quantitative quality attributes without imposing hierarchical
structural constraints. The integration of SPL quality attributes is addressed by
assigning quality attributes to software elements in the solution domain and linking
these elements to features. An aggregation function is used to collect the quality
attributes depending on the selected features for a given product.

 Software Performance Modeling 249

A literature survey on approaches that analyze and design non-functional
requirements in a systematic way for SPL is presented in [29]. The main concepts of
the surveyed approaches are based on the interactions between the functional and
non-functional features.

An approach called Svamp is proposed to model functional and quality variability
at the architectural level of the SPL [35]. The approach integrates several models: a
Kumbang model to represent the functional and structural variability in the
architecture and to define components that are used by other models; a quality
attribute model to specify the quality properties and a quality variability model for
expressing variability within these quality attributes.

Reference [10] extends the feature model with so-called extra-functional features
representing non-functional features. Constraint programming is used to reason on
this extended feature model to answer some questions such as how many potential
products the feature model contains.

The Product Line UML-Based Software Engineering (PLUS) method is extended
in [38] to specify performance requirements by introducing several stereotypes
specific to model performance requirements such as «optional» and «alternative
performance feature».

5.1 Domain Engineering Process

The SPL development process is separated into two major phases: 1) domain
engineering for creating and maintaining a set of reusable artifacts and introducing
variability in these software artifacts, so that the next phase can make a specific
decision according to the product’s requirements; and 2) application engineering for
building family member products from reusable artifacts created in the first phase
instead of starting from scratch.

The domain engineering process is a development cycle for reuse and includes, but
is not limited to, creating the requirement specifications, domain models, architecture,
reusable software components [14]. The SPL assets created by the domain
engineering process which are of interest for our research are represented by a multi-
view UML design model of the family, called the SPL model, which represents a
superimposition of all variant products. The creation of the SPL model employs two
separate UML profiles: a product line profile based on [24] for specifying the
commonality and variability between products, and the MARTE profile for
performance annotations. Another important outcome of the domain engineering
process is the feature model used to represent commonalities and variabilities between
family members in a concise taxonomic form. Additionally, the PC-feature model is
created to represent the variability space of the performance completions.

An e-commerce case study is used to illustrate the construction of the UML model
for SPL that represents the source model of our model transformation approach. The
e-commerce SPL is a web-based product line that can generate a distributed
application that can handle either business-to-business (B2B) or business-to-consumer
(B2C) systems. For instance, in B2B, a business customer can browse and select
items through several catalogs. Each customer has a contract with a supplier for
purchases, as well as bank accounts through which payments can be made. An
operation fund is associated with each contract.

250 D.C. Petriu, M. Alhaj, and R. Tawhid

Fig. 20. Feature model of the e-commerce SPL

Feature Model. The feature models are used in our approach to represent two
different variability spaces. The PC-feature model represents the variability in
platform choices, execution environments, and other external factors that have an
impact on performance as described in the previous section. This sub-section
describes the regular feature model representing functional variabilities between
products. An example of feature model of an e-commerce SPL is represented in
Figure 20 in the extended FODA notation, Cardinality-Based Feature Model (CBFM)
[17]. Since the FODA notation is not part of UML, the feature diagram is represented
in the source model taken as input by our ATL transformation as an extended UML
class diagram, where the features and feature groups are modeled as stereotyped
classes and the dependencies and constraints between features as stereotyped
associations. For instance, the two alternative features Static and Dynamic are
mutually exclusive and so they are grouped into an exactly-one-of feature group
called Catalog, while the three optional features CreditCard, DebitCard, and Check
are grouped into an at-least-one-of feature group called Payment. Thus, an individual
system can provide at least one of these features or any number of them. In the case of
an individual system providing all of these features, the user can choose one of them
during the run-time execution. In addition to functional features, we add to the
diagram another type of features characterizing design decisions that have an impact
on the non-functional requirements or properties. For example, the architectural
decision related to the location of the data storage (centralized or distributed) affects
performance, reliability and security, and is represented in the diagram by two
mutually exclusive quality features. This type of feature related to a design decision is
part of the design model, not just an additional PC-feature required only for
performance analysis. This feature model represents the set of all possible
combinations of features for the products of the family. It describes the way features
can be combined within this SPL. A specific product is configured by selecting a
valid feature combination from the feature model, producing a so-called feature
configuration based on the product’s requirements. To enable the automatic derivation
of a given product model from the SPL model, the mapping between the features

purchaseOrder

catalog

static dynamic

delivery

invoices

on-lineDisplay

printedInvoice

e-commerceKernel

customer

businessCustomer

homeCustomer

payment

customerAttractions

promotions

membershipDiscount

sales

customerInquiries

helpDesk callCenter

shippingType

normal express

packageSlip

internationalSale

dataStorage

electronic

shipping

distributed centralized

creditCard

check

debitCard

switchingMenu

severalLanguage

currencyConversion

tariffsCalculation

I/ELaws

security

<1-1><1-1>

<1-3>

<1-1>

<1-3>
<1-3>

<1-4>

<1-2>

<1-2>

<1-2>

Features composition rules:

• switchingMenu requires debitCard and creditCard

• switchingMenu requires debitCard and check

• switchingMenu requires creditCard and check

•electronic requires on-lineDisplay

• shipping requires printedInvoices

 Software Performance Modeling 251

contained in the feature model and their realizations in a reusable SPL model needs to
be specified, as shown in the next sub-section. Also, each stereotyped class in the
feature model has a tagged value indicating whether it is selected in a given feature
configuration or not.

SPL Model. The SPL model should contain, among other assets, structural and
behavioural views which are essential for the derivation of performance models. It
consists of: 1) structural description of the software showing the high-level classes or
components, especially if they are distributed and/or concurrent; 2) deployment of
software to hardware devices; 3) a set of key performance scenarios defining the main
system functions frequently executed.

The functional requirements of the SPL are modeled as use cases. Use cases
required by all family members are stereotyped as «kernel». The variability
distinguishing the members of a family from each other is explicitly modeled by use
cases stereotyped as «optional» or «alternative». In order to avoid polluting our
model with extra annotations and to ensure the well-formedness of the derived
product model, we propose to annotate explicitly the minimum number of model
elements within each diagram of our SPL model. For instance, in the use case
diagram, only the optional and alternative use cases are annotated with the name of
the features requiring them (given as stereotype attributes); since a kernel use case
represents commonality, it is sufficient to just stereotype it as «kernel». Other model
elements, such as actors, associations, generalizations, properties, are mapped
implicitly to feature through their relationship with the use cases, so there is no need
to clutter the model with their annotations. The evaluation of implicit mapping during
product derivation is explained in the following subsection.

Fig. 21. A fragment of the class diagram of the e-commerce SPL

252 D.C. Petriu, M. Alhaj, and R. Tawhid

Fig. 22. SPL Scenario Browse Catalog

The structural view of the SPL is presented as a class diagram; Figure 21 depicts a
small fragment. The classes that are common to all members of the SPL are
stereotyped as «kernel». The variability that distinguishes the members of a family
from each other is explicitly modeled by classes stereotyped as «optional» or
annotated with the name of the feature(s) requiring them (given as stereotype
attributes). This is an example of mapping between features and the model elements
realizing them. In cases where a class behaves differently in different product (such as
CustomerInterface in B2B and B2C systems) a generalization/specialization hierarchy
is used to model the different behaviours of this class. The two subclasses
B2BInterface and B2CInterface are used by B2B systems and B2C systems,
respectively.

The behavioural SPL view is modeled as sequence diagrams for each scenario of
each use case of interest. Figure 22 illustrates the kernel scenario BrowseCatalog.
Sequence diagram variability that distinguishes between the behaviour of different
features is expressed by extending the alt and opt fragments with the stereotypes
«AltDesignTime» «OptDesignTime», respectively. For example, the alt fragment
stereotyped with «AltDesignTime» {VP=Catalog} gives two choices based on the
value of the Catalog feature (Static or Dynamic); more specifically, each one of its
Interaction Operand has a guard denoting the feature Static or Dynamic. An
alternative feature that is rather complex and is represented as an extending use case,
can be also modeled as an extended alt operator that contains an Interaction Use
referring to an Interaction representing the extending use case. Note that regular alt
and opt fragments that are not stereotyped represent choices to be made at runtime, as
defined in UML.

Since the SPL model is generic, covering many products and containing variation
points with variants, the MARTE annotations need to be generic as well. We use

«kernel»
«PaRunTInstance»

{instance = CatServer,
host=$CatNode}

:Catalog

«kernel-abstract-vp»
«PaRunTInstance»

{instance=CBrowser,
host=$CustNode}

:CustomerInterface

«optional »
«PaRunTInstance»
{instance = CatDB,
host=$DTopNode}

:StaticStorage

«GaAnalysisContext» {contextParams= $N1, $Z1, $ReqT, $FSize, $Blocks}

catalogInfo
«PaCommStep»
{msgSize=($CatI,KB)}

sd Browse Catalog

getList

«GaWorkloadEvent»
{pattern=(closed (population=$N1),
(extDelay=$Z1))}
«PaStep» {hostDemand=($ CatD, ms),
respT=($ReqT,ms),calc)}
«PaCommStep» {msgSize = ($FSize
*0.2,KB), commTxOvh = ($GetLSend,ms),
commRcvOvh = ($GetLRcv, ms)} }}

«optional »
«PaRunTInstance»
{instance = CatDB,
host=$ProDBNode}

:ProductDB

«optional »
«PaRunTInstance»
{instance = CatDB,
host=$ProDisNode}

:ProductDiplay

alt [Static]

[Dynamic]

«AltDesignTime» {VP=Catalog}

returnData
«PaCommStep»
{msgSize=($RetD,KB),
commTxOvh=($RetDSend,ms),
commRcvOvh=($RetDRcv, ms)}

getData
«PaStep»
{hostDemand=($Blocks*0.9,ms)}
«PaCommStep»
{msgSize=($GetD,KB),
commTxOvh=($GetDSend,ms),
commRcvOvh=($GetDRcv, ms)}

disData
«PaStep»
{hostDemand=($PDisD,ms)}
«PaCommStep»
{msgSize=($DisD,KB),
commTxOvh=($DisDSend,ms),
commRcvOvh=($DisDRcv, ms)}

returnCatList
«PaCommStep»
{msgSize=($RCL,KB)}

getCatList
«PaStep»
{hostDemand=($DToptD,ms)}
«PaCommStep»
{msgSize=($GCatL,KB)}

 Software Performance Modeling 253

MARTE variables as a means of parameterizing the SPL performance annotations;
such variables (parameters) will be assigned (bound to) concrete values during the
product derivation process. For instance the message getList is stereotyped as a
communication step (by convention, we use names starting with ‘$’ for all MARTE
variables to distinguish them from other identifiers and names):

«PaCommStep» { msgSize = ($MReq, KB),
commTxOvh = ($GetLSend, ms),

commRcvOvh = ($GetLRcv, ms)}}

where the message size is the variable $GetL in KiloBytes. The overheads for sending
and receiving this particular message are the variables $GetLSend and $GetLRcv,
respectively, in milliseconds. We propose to annotate each communication step
(which corresponds to a logical communication channel) with the CPU overheads for
transferring the respective message: commTxOvh for transmitting (sending) the
message and commRcvOvh for receiving it. Eventually, these overheads will be added
in the performance model to the execution demands of the two execution hosts
involved in the communication (one for sending and the other for receiving the
respective message).

Performance Completions. In SPL, different members may vary from each other in
terms of their functional requirements, quality attributes, platform choices, network
connections, physical configurations, and middleware. Many details contained in the
system that are not part of its design model but of the underlying platforms and
environment, do affect the run-time performance and need to be represented in the
performance model. Performance completions, as proposed by Woodside [47] and
explained in the previous section, are a manner to close the gap between the high-
level design model and its different implementations. Performance completions
provide a general concept to include low-level details of execution environment/
platform in performance models

In this approach, we propose to include the performance impact of underlying
platforms into the UML+MARTE model of a product as aggregated platform
overheads, expressed in MARTE annotations attached to existing processing and
communication resources in the generated product model. This will keep the model
simple and still allow us to generate a performance model containing the performance
effects of both the product and the platforms. Every possible PC-feature choice is
mapped to certain MARTE annotations corresponding to UML model elements in the
product model. This mapping is realized by the transformation generating the
parameter spreadsheets, which is providing the user with mapping information in
order to put the annotation parameters needing to be bound to concrete values into
context.

Adding security solutions requires more resources and longer execution times,
which in turn has a significant impact on system performance. The PC-feature group
Communication shown in Figure 13 contains two alternative features secured and
unsecured. The secured feature offers two security protocols, each with different
overheads for sending and receiving secure messages. These overheads are mapped to
the communication overheads through the attributes commRcvOvh and commTxOvh,

254 D.C. Petriu, M. Alhaj, and R. Tawhid

which represent the host demand overheads for receiving and sending messages,
respectively. Since not all the messages exchanged in a product need to have the same
communication overheads, we propose to annotate each individual message
stereotyped as «PaCommStep» with the processing overheads for the respective
message: commTxOvh for transmitting (sending) it and commRcvOvh for receiving it.
In fact, these overheads correspond to the logical communication channel that
conveys the respective message. Eventually, the logical channel will be allocated to a
physical communication channel (e.g., network or bus) and to two execution hosts,
the sender and the receiver. The commTxOvh overhead will be eventually added in the
performance model to the execution demands of the sender host and commRcvOvh to
that of the receiver host.

Each feature from the PC-feature model shown in Figure 13 may affect one or
more performance attributes. For instance, data compression reduces the message size
and at the same time increases the processor communication overhead for
compressing and decompressing the data. Thus, it is mapped to the performance
attributes message size and communication overhead through the MARTE attributes
msgSize, commTxOvh and commRcvOvh, respectively. The mapping here is between a
PC-feature and the performance attribute(s) affected by it, which are represented as
MARTE stereotype attributes associated to different model elements.

5.2 Model Transformation Approach

The derivation of a specific UML product model with concrete performance
annotations from the SPL model with generic annotations requires three model
transformations: a) transforming the SPL model to a product platform independent
model (PIM) with generic performance annotations, b) generating spreadsheets for the
user containing generic parameters and guiding information for the specific product,
c) performing the actual binding by using the concrete values provided by the user to
produce a product platform specific model (PSM). We have implemented these model
transformations in the Atlas Transformation Language (ATL) [1]. We handle two
kind of generic parametric annotations: a) product-specific (due to the variability
expressed in the SPL model) and platform-specific (due to device choices, network
connections, middleware, and runtime environment).

Product PIM Derivation. The derivation process is initiated by specifying a given
product through its feature configuration (i.e., the legal combination of features
characterizing the product). The selected features are checked for consistency against
the feature dependencies and constraints in the feature model, in order to identify any
inconsistencies. An example is checking to ensure that no two mutually exclusive
features are chosen.

The second step in the derivation process is to select the use cases realizing the
chosen features. All kernel use cases are copied to the product use case diagram, since
they represent functionality provided by every member of the SPL. If a chosen feature
is realized through extend or include relationships between use cases, both the base
and the included or extending use cases have to be selected, as well. A use case

 Software Performance Modeling 255

containing in its scenario variation point(s) required to realize the selected feature(s)
has to be chosen, too. The optional and alternative use cases are selected and copied
to the target use case diagram if they are mapped to a feature from the feature
configuration. The implicit mapping of other non-annotated elements is inferred from
their relationships with annotated elements as defined in the UML metamodel and
well-formedness rules. For example, Actor is a non-annotated element associated to
one or more use cases, so its implicit mapping is evaluated through the attribute
memberEnd owned by the Association connected it with a use case. The attribute
memberEnd collects all the properties related to the association and since the type of
the property refers to the end of the association, we can navigate to the use case and
the corresponding actor through this attribute. Whenever, the use case is selected, the
actor and the association are selected as well. Finally, the use case diagram for the
product is developed after all the PL variability stereotypes were eliminated.

The third step is to derive the product class diagram by selecting first all kernel
classes from the SPL class diagram. Optional and variant classes needed for the
desired product are selected next (each is annotated with the feature(s) requiring it).
Moreover, superclasses of the selected optional or variant classes have to be selected
as well. The other non-annotated elements are selected based on their relationships
with annotated elements as defined in the UML metamodel. For example, according
to the UML metamodel, a binary association has to be attached to a classifier at each
end. Therefore, the decision whether a binary association has to be copied or not to
the target is based on the selection of both of its classifiers. If at least one of the
classifiers is not selected, the association will not be created in the target model. In
other words, the binary association is created in the target model if and only if both of
its memberEnd properties have their classifiers already selected and created. At the
same time, if only one of its classifier is selected, the property attached to this
unselected association and owned by the selected classifier should not be created in
the target model.

The final step of the product derivation is to generate the sequence diagrams
corresponding to different scenarios of the chosen use cases. Each such scenario is
modeled as a sequence diagram, which has to be selected from the SPL model and
copied to the product one. The PL variability stereotypes are eliminated after binding
the generic roles associated to the lifelines of each selected sequence diagram to
specific roles corresponding to the chosen features. For instance, the sequence
diagram BrowseCatalog has the generic alternate role CustomerInterface which has to
be bound to a concrete role, either B2BInterface or B2CInterface to realize the
features BusinessCustomer or HomeCustomer, respectively. However, the selection of
the optional roles is based on the corresponding features. For instance, the generic
optional role StaticStorage is selected if the feature Static Catalog is chosen. More
details about the derivation approach and the mapping of functional features to model
elements are presented in our previous work [40] [42].

The outcome of this model transformation is a product model where the variability
related to SPL has been resolved based on the chosen feature configuration. However,
the performance annotations are still generic and need to be bound to concrete values.

256 D.C. Petriu, M. Alhaj, and R. Tawhid

Generating User-Friendly Representation. The generic parameters of a product PIM
derived from the SPL model are related to different kind of information: a) product-
specific resource demands (such as execution times, number of repetitions and
probabilities of different steps); b) software-to-hardware allocation (such as component
instances to processors); and c) platform/environment-specific performance details (also
called performance completions). The user (i.e., performance analyst) needs to provide
concrete values for all generic parameters; this will transform the generic product model
into a platform-specific model describing the run-time behaviour of the product for a
specific run-time environment.

Choosing concrete values to be assigned to the generic performance parameters of
type (a) is not a simple problem. In general, it is difficult to estimate quantitative
resource demands for each step in the design phase, when an implementation does not
exist and cannot be measured yet. Several approaches are used by performance
analysts to come up with reasonable estimates in the early design stages: expert
experience with previous versions or with similar software, understanding of the
algorithm complexity, measurements of reused software, measurements of existing
libraries, or using time budgets. As the project advances, early estimates can be
replaced with measured values for the most critical parts. Therefore, it is helpful for
the user of our approach to keep a clearly organized record for the concrete values
used for binding in different stages of the project. For this reason, we proposed to
automate the collection of the generic parameters from the model on spreadsheets,
which will be provided to the user.

The parameters of type (b) are related to the allocation of software components to
processors available for the application. The user has to decide for a product what the
actual hardware configuration is and how to allocate the software to processing nodes.
The MARTE stereotype «RunTInstance» annotating a lifeline in a sequence diagram
provides an explicit connection between a role in the behaviour model and the
corresponding runtime instance of a component. The attribute host of this stereotype
indicates on which physical node from the deployment diagram the instance is
running. Using parameters for the attribute host enable us to allocate each role (a
software component) to an actual hardware resource. The transformation collects all
these hardware resources and associates their list to each lifeline in the spreadsheets.
The user decides on the actual allocation by choosing a processor from this list.

The performance effects of variations in the platform/environment factors (such as
network connections, middleware, operating system and platform choices) are
included into our model by aggregating the overheads caused by each factor and by
attaching them via MARTE annotations to the affected model elements. As already
mentioned, the variations in platform/environment factors are represented in our
approach through the PC-feature model (as explained in the previous section). A
specific run-time instance of a product is configured by selecting a valid PC-feature
combination from the PC-feature model. We define a PC-feature configuration as a
complete set of choices of PC-features for a specific model element.

It is interesting to note that a PC-feature has impact on a subset of model elements
in the model, but not necessarily on all model elements of the same type. For instance,
the PC-feature Secured affects only certain communication channels in a product

 Software Performance Modeling 257

Fig. 23. Part of the generated Spreadsheet for the scenario Browse Catalog

model, not all of them. Hence, a PC-feature needs to be associated to certain model
element(s), not to the entire product. This mapping is set up through the MARTE
performance specifications annotating the affected model elements.

Dealing manually with a huge number of performance annotations by asking the
developer to inspect every diagram in the generated product model, to extract the
generic parameters and to match them with the PC-features is an error-prone process.
We propose to automate the process of collecting all generic parameters that need to
be bound to concrete values from the product model and to associate each PC-feature
to the model element(s) it may affect, then present the information to the developer in
a user-friendly format. We generate a spreadsheet per diagram, indicating for each
generic parameter some guiding information that helps the user in providing concrete
binding values.

The transformation handles differently the context analysis parameters, which are
usually defined by the modeler to be carried without binding throughout the entire
transformation process, from the SPL model to the performance model for a product.
These parameters can be used to explore the performance analysis space. A list of the
context analysis parameters are provided to the user, who will decide whether to bind
them now to concrete values, or to use them unbound in MARTE expressions.

A part of the generated spreadsheet for the scenario BrowseCatalog is shown in
Figure 23. For instance, the PC-feature DataCompression is mapped to the MARTE
attribute msgSize annotating a model element of type message. As the value of the
attribute msgSize is an expression $FSize*0.2 in function of the context analysis
parameter $FSize, it is the user’s choice to bind it at this level or keep it as a parameter
in the output it produces. The column titled Concrete Value is designated for the user
to enter appropriate concrete value for each generic parameter, while the column
Guideline for Value provides a typical range of values to guide the user. For instance, if
the PC-selection features chosen are “secured” with “TLS”, the concrete value entered
by the user is obtained by evaluating the expression (11.9+0.134*msgsize), assuming

258 D.C. Petriu, M. Alhaj, and R. Tawhid

that the user follows the provided guideline. Assuming that the choice for the PC-
feature DataCompression is “compressed”, the user may decide to increase by 4% the
existing overhead due to compression features. In general, the guidelines can be
adjusted by the performance analyst for a given SPL and a known execution
environment. The generated spreadsheet presents a user-friendly format for the users of
the transformation who have to provide appropriate concrete values for binding the
generic performance annotations. Being automatically generated, they capture all the
parameters that need to be bound and reduce the incidence of errors.

Performing the Actual Binding. After the user selects an actual processor for each
lifeline role provided in the spreadsheets and enters concrete values for all the generic
performance parameters, the next model transformation takes as input these
spreadsheets along with its corresponding product model, and binds all the generic
parameters to the actual values provided by the user. The outcome of the
transformation is a specific product model with concrete performance annotations,
which can be further transformed into a performance model.

In order to automate the actual binding process, the generated spreadsheets with
concrete values are given as a mark model to the binding transformation. The mark
model concept has been introduced in the OMG MDA guide [33] as a means of
providing concrete parameter values to a transformation. This capability of allowing
transformation parameterization through mark model instances makes the
transformation generic and more reusable in different contexts.

6 Conclusions

In this chapter we presented the open PUMA tool architecture that can accept a
variety of types of Smodels and generate a variety of types of Pmodels. The
practicality of PUMA is demonstrated by different implemented transformations from
UML 1.4 and UML 2.X to CSM for sequence and activity diagrams, and
transformations from CSM to queueing networks, LQN and Petri nets. We are
extending PUMA for SOA and SPL and are working on the final component of
PUMA, to support the systematic use of performance models in order to generate
feedback to the designers. PUMA promises a way out of the maze of possible
evaluation techniques. From the point of view of practical adoption, this is of the
utmost importance, as the software developer is not tied to an evaluation model whose
limitations he or she does not understand. Performance modelers are similarly freed to
generate a wide variety of forms of model, and explore their relative capabilities,
without having to create the (quite difficult) interface to UML. As UML is constantly
changing, this can also make maintenance of model-building easier. While PUMA is
described for performance, CSM may be adapted to other evaluations based on
behaviour.

In general, experience in conducting model-driven performance analysis and other
non-functional properties (NFPs) in the context of model-driven development shows
that the domain is still facing a number of challenges.

 Software Performance Modeling 259

Human qualifications. Software developers are not trained in all the formalisms
used for the analysis of performance and other kind of NFPs, which leads to the idea
of hiding the analysis details from developers. However, the software models have to
be annotated with extra information for each NFP and the analysis results have to be
interpreted in order to improve the designs. A better balance needs to be made
between what to be hidden and what to de exposed.

Abstraction level. The analysis of different NFPs may require source models at
different levels of abstraction/detail. The challenge is to keep all the models
consistent.

Tool interoperability. Experience shows that it is difficult to interface and to
integrate seamlessly different tools, which were created at different times with
different purposes and maybe running on different platforms or platform versions.

Software process. Integrating the analysis of different NFP raises process issues.
For each NFP it is necessary to explore the state space for different design
alternatives, configurations, workload parameters in order to diagnose problems and
decide on improvement solutions. The challenge is how to compare different solution
alternatives that may improve some NFPs and deteriorate others, and how to decide
on trade-offs.

Change propagation through the model chain. Currently, every time the software
design changes, a new analysis model is derived in order to redo the analysis. The
challenge is to develop incremental transformation methods for keeping different
model consistent instead of starting from scratch after every model improvement.

Acknowledgements. This work was partially supported by the Natural Sciences and
Engineering Research Council (NSERC) and industrial and government partners,
through the Healthcare Support through Information Technology Enhancements
(hSITE) Strategic Research Network and through Discovery grants.

References

[1] Abdul Fatah, I., Majumdar, S.: Performance of CORBA-Based Client Server
Architectures. IEEE Transactions on Parallel & Distributed Systems, 111–127 (February
2002)

[2] Alhaj, M., Petriu, D.C.: Approach for generating performance models from UML models
of SOA systems. In: Proceedings of CASCON 2010, Toronto, November 1-4 (2010)

[3] Anyanwu, K., Sheth, A., Cardoso, J., Miller, J., Kochut, K.: Healthcare Enterprise
Process Development and Integration. Journal of Research and Practice in Information
Technology 35(2) (May 2003)

[4] Atlas Transformation Language (ATL), http://www.eclipse.org/m2m/atl
[5] Balsamo, S., DiMarco, A., Inverardi, P., Simeoni, M.: Model-based Performance

Prediction in Software Development. IEEE Transactions on Software Eng. 30(5), 295–
310 (2004)

[6] Balsamo, S., Marzolla, M.: Simulation Modeling of UML Software Architectures. In:
Proc. ESM 2003, Nottingham, UK (June 2003)

260 D.C. Petriu, M. Alhaj, and R. Tawhid

[7] Bartholdt, J., Medak, M., Oberhauser, R.: Integrating Quality Modeling with Feature
Modeling in Software Product Lines. In: Proc. of the 4th Int. Conference on Software
Engineering Advances (ICSEA 2009), pp. 365–370 (2009)

[8] Belategi, L., Sagardui, G., Etxeberria, L.: MARTE Mechanisms to Model Variability
When Analyzing Embedded Software Product Lines. In: Bosch, J., Lee, J. (eds.) SPLC
2010. LNCS, vol. 6287, pp. 466–470. Springer, Heidelberg (2010)

[9] Belategi, L., Sagardui, G., Etxeberria, L.: Model based analysis process for embedded
software product lines. In: Proc. of 2011 Int. Conference on Software and Systems
Process, ICSSP 2011 (2011)

[10] Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature Models.
In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–503.
Springer, Heidelberg (2005)

[11] Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence diagrams and statecharts
to analysable Petri net models. In: Proc. 3rd Int. Workshop on Software and Performance,
Rome, pp. 35–45 (July 2002)

[12] Bernardi, S., Merseguer, J.: Performance evaluation of UML design with Stochastic
Well-formed Nets. Journal of Systems and Software 80(11), 1843–1865 (2007)

[13] Cavenet, C.G., Hillston, J., Kloul, L., Stevens, P.: Analysing UML 2.0 activity diagrams
in the software performance engineering process. In: Proc. 4th Int. Workshop on
Software and Performance, Redwood City, CA, pp. 74–83 (January 2004)

[14] Clements, P.C., Northrop, L.M.: Software Product Lines: Practice and Patterns, p. 608.
Addison-Wesley (2001)

[15] Cortellessa, V., Di Marco, A., Inverardi, P.: Model-Based Software Performance
Analysis. Springer (2011)

[16] Cortellessa, V., Mirandola, R.: Deriving a Queueing Network based Performance Model
from UML Diagrams. In: Proc. Second Int. Workshop on Software and Performance,
Ottawa, September 17-20, pp. 58–70 (2000)

[17] Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature models
and their specialization. Software Process Improvement and Practice, 7–29 (2005)

[18] D’Ambrogio, A., Bocciarelli, P.: A Model-driven Approach to Describe and Predict the
Performance of Composite Services. In: WOSP 2007, Buenos- Aires, Argentina (2007)

[19] Earl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Pearson
Education (2005)

[20] DiStefano, S., Scarpa, M., Puliafito, A.: From UML to Petri Nets: The PCM-Based
Methodology. IEEE Trans. on Software Engineering 37(1), 65–79 (2011)

[21] France, R., Ray, I., Georg, G., Ghosh, S.: An Aspect-Oriented Approach to Early Design
Modeling. In: IEE Proceedings - Software, Special Issue on Early Aspects (2004)

[22] Franks, G., Hubbard, A., Majumdar, S., Petriu, D.C., Rolia, J., Woodside, C.M.: A toolset
for Performance Engineering and Software Design of Client-Server Systems.
Performance Evaluation 24(1-2), 117–135 (1995)

[23] Franks, G.: Performance Analysis of Distributed Server Systems, Report OCIEE-00-01,
Ph.D. Thesis, Carleton University, Ottawa, Canada (2000)

[24] Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-
based Software Architectures. Addison-Wesley Object Technology Series (July 2005)

[25] Gómez-Martínez, E., Merseguer, J.: Impact of SOAP Implementations in the
Performance of a Web Service-Based Application. In: Min, G., Di Martino, B., Yang,
L.T., Guo, M., Rünger, G. (eds.) ISPA Workshops 2006. LNCS, vol. 4331, pp. 884–896.
Springer, Heidelberg (2006)

 Software Performance Modeling 261

[26] Grassi, V., Mirandola, R., Randazzo, E., Sabetta, A.: KLAPER: An Intermediate
Language for Model-Driven Predictive Analysis of Performance and Reliability. In:
Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Component
Modeling Example. LNCS, vol. 5153, pp. 327–356. Springer, Heidelberg (2008)

[27] Happe, J., Becker, S., Rathfelder, C., Friedrich, H., Reussner, R.: Parametric performance
completions for model-driven performance prediction. Performance Evaluation 67(8),
694–716 (2010)

[28] Marzolla, M., Mirandola, R.: Performance Prediction of Web Service Workflows. In:
Overhage, S., Ren, X.-M., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS,
vol. 4880, pp. 127–144. Springer, Heidelberg (2008)

[29] Nguyen, Q.: Non-Functional Requirements Analysis Modeling for Software Product
Lines. In: Proc. of Modeling in Software Engineering (MISE 2009), ICSE Workshop, pp.
56–61 (2009)

[30] Object Management Group, UML Profile for Modeling and Analysis of Real-Time and
Embedded Systems (MARTE), Version 1.1, OMG document formal/2011-06-02 (2011)

[31] Object Management Group, UML Profile for Schedulability, Performance, and Time
Specification, Version 1.1, OMG document formal/05-01-02 (January 2005)

[32] Object Management Group, Service oriented architecture Modeling Language (SoaML),
ptc/2009-04-01 (April 2009)

[33] Object Management Group, MDA Guide Version 1.0.1, omg/03-06-01 (2003)
[34] Petriu, D.B., Woodside, C.M.: An intermediate metamodel with scenarios and resources

for generating performance models from UML designs. Software and Systems
Modeling 6(2), 163–184 (2007)

[35] Raatikainen, M., Niemelä, E., Myllärniemi, V., Männistö, T.: Svamp - An Integrated
Approach for Modeling Functional and Quality Variability. In: 2nd Int Workshop on
Variability Modeling of Software-intensive Systems, VaMoS (2008)

[36] Rolia, J.A., Sevcik, K.C.: The Method of Layers. IEEE Trans. on Software
Engineering 21(8), 689–700 (1995)

[37] Smith, C.U.: Performance Engineering of Software Systems. Addison Wesley (1990)
[38] Street, J., Gomaa, H.: An Approach to Performance Modeling of Software Product Lines.

In: Workshop on Modeling and Analysis of Real-Time and Embedded Systems, Genova,
Italy (October 2006)

[39] Tawhid, R., Petriu, D.C.: Integrating Performance Analysis in the Model Driven
Development of Software Product Lines. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl,
A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 490–504. Springer,
Heidelberg (2008)

[40] Tawhid, R., Petriu, D.C.: Product Model Derivation by Model Transformation in
Software Product Lines. In: Proc. of the 2nd IEEE Workshop on Model-based
Engineering for Real-Time Embedded Systems (MoBE-RTES 2011), Newport Beach,
CA, USA (2011)

[41] Tawhid, R., Petriu, D.C.: Automatic Derivation of a Product Performance Model from a
Software Product Line Model. In: Proc. of the 15th International Conference on Software
Product Line (SPLC 2011), Munich, Germany (2011)

[42] Tawhid, R., Petriu, D.C.: Integrating Performance Analysis in Software Product Line
Development Process. In: Software Product Lines - The Automated Analysis. InTech -
Open Access Publisher (2011)

[43] Tawhid, R., Petriu, D.C.: User-Friendly Approach for Handling Performance Parameters
during Predictive Software Performance Engineering. In: Proc. of the 3rd ACM/SPEC
International Conference on Performance Engineering (ICPE 2012), Boston, USA (2012)

262 D.C. Petriu, M. Alhaj, and R. Tawhid

[44] Tribastone, M., Gilmore, S.: Automatic Translation of UML Sequence Diagrams into
PEPA Models. In: Proc. of 5th Int. Conference on Quantitative Evaluation of SysTems
(QEST 2008), St Malo, France, pp. 205–214 (2008)

[45] Verdickt, T., Dhoedt, B., Gielen, F., Demeester, P.: Automatic Inclusion of Middleware
Performance Attributes into Architectural UML Software Models. IEEE Trans. on
Software Eng. 31(8), 695–711 (2005)

[46] Woodside, C.M., Neilson, J.E., Petriu, D.C., Majumdar, S.: The Stochastic Rendezvous
Network Model for Performance of Synchronous Client-Server-like Distributed Software.
IEEE Transactions on Computers 44(1), 20–34 (1995)

[47] Woodside, C.M., Petriu, D.C., Siddiqui, K.H.: Performance-related Completions for
Software Specifications. In: Proc. of the 22nd Int. Conference on Software Engineering,
ICSE 2002, Orlando, Florida, USA, pp. 22–32 (2002)

[48] Woodside, C.M., Petriu, D.C., Petriu, D.B., Xu, J., Israr, T., Georg, G., France, R.,
Houmb, S.H., Jürjens, J.: Performance Analysis of Security Aspects by Weaving
Scenarios Extracted from UML Models. Journal of Systems and Software 82, 56–74
(2009)

[49] Xu, J.: Rule-based automatic software performance diagnosis and improvement.
Performance Evaluation 67(8), 585–611 (2010)

Model Transformations

in Non-functional Analysis

Steffen Becker

Heinz Nixdorf Institute,
Department of Computer Science, University of Paderborn,

D-33102 Paderborn, Germany
steffen.becker@upb.de

http://www.cs.uni-paderborn.de/en/research-group/

software-engineering/people/steffen-becker.html

Abstract. The quality assessment of software design models in early
development phases can prevent wrong design decisions on the architec-
tural level. As such wrong decisions are usually very cost-intensive to
revert in late testing phases, model-driven quality predictions offer early
quality estimates to prevent such erroneous decisions. By model-driven
quality predictions we refer to analyses which run fully automated based
on model-driven methods and tools. In this paper, we give an overview
on the process of model-driven quality analyses used today with a special
focus on issues that arise in fully automated approaches.

Keywords: Model-driven quality analyses, performance, reliability,
MARTE, Palladio Component Model.

1 Motivation

Dealing with non-functional requirements is still a major challenge in today’s
software development processes. In the industrial state-of-the-art, non-functional
requirements are often not collected in a systematic manner or disregarded dur-
ing the design and implementation phases. However, in testing phases or, even
worse, during final operation on the customer’s side, systems often fail due to
insufficient performance or reliability characteristics.

Only few examples of insufficient quality have been reported in detail as they
are potentially hurtful to the image of the reporting companies. From the avail-
able case studies, we reference one from the area of performance problems. The
migration of SAP R3 to SAP’s ByDesign SOA solution almost failed as the
legacy system architecture was unable to work properly in the new environ-
ment [34]. The consequence was that the performance was unacceptably low
and the system went through a costly redesign process deferring product release
by approximately 3 years.

During the last decade, model-based and model-driven quality analysis meth-
ods have been developed by the scientific community to prevent such issues.
These methods aim at early design time estimates of quality properties like

M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.): SFM 2012, LNCS 7320, pp. 263–289, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

264 S. Becker

performance or reliability. Based on these estimates, system designs which are
unable to fulfil their requirements can be ruled out and thus, costly failures at
the end of the development process are prevented. For performance, most ap-
proaches are based on the initial idea of software performance engineering as
introduced by Smith et al. [44]. Recently these efforts have been consolidated in
the book by Cortellessa et al. [13]. For reliability, Gokhale [20] presents a survey
on the recent trends.

In this article, we are going to present an overview of model-driven quality
analysis approaches. These approaches are specialisations of model-based qual-
ity analysis methods. In model-driven quality analysis approaches, the idea is
that the software model is the first-class entity under development and all other
artefacts should be automatically derived from the model. Hence, activities like
quality analyses should also be fully automated. In most cases, the automation
requirement is realised by model transformations which automatically derive
quality analyses models. This high degree of automation poses much higher re-
quirements on the formalisation of the models involved in the process. Addition-
ally, developers of the necessary transformations have to take difficult decisions
on necessary abstractions both in the model’s structural as well as for stochas-
tic properties. We use the Palladio Component Model throughout this article
as a running example of a model-driven quality analysis approach supporting
multiple quality properties.

This article is structured as follows. The following section gives an overview of
the process implemented in any model-driven quality analysis method discussed
in this article. Subsequent sections then highlight specific aspects of this process.
Section 3 explains the input models software architects have to create for quality
analyses. Section 4 gives a brief overview of commonly used formal analysis mod-
els with a focus on performance and reliability predictions. For a model-driven
quality analysis, automated transformations derive analysis models from input
models as explained in Section 5. Section 6 illustrates how transformations can
be used to automatically include performance overheads into analysis models
as performance completions. The remaining sections address practical aspects in
model-driven quality analyses. Section 7 illustrates how to use model transforma-
tions to bridge the differences between different modelling languages. Section 8
briefly surveys the use of reverse engineering techniques to generate input mod-
els for model-driven quality analyses. Section 9 gives a short introduction to
architecture trade-offs on the basis of different model-driven quality analyses.
To demonstrate the usefulness of model-driven quality analyses, Section 10 gives
an overview on three different case studies. Finally, Section 11 summarises the
topics presented in this article and gives pointers for further reading.

2 Process Overview

This section gives a high-level overview of the process which the software ar-
chitect follows in the system’s design phase to perform model-driven quality
analyses. This process is illustrated in Figure 1. In the following we describe

Model Transformations in Non-functional Analysis 265

each of the steps in the order of execution followed by the software architect. We
assume a classical web- or three tier business information system as system un-
der study in our presentation. However, for other types of systems, the relevance
of different aspects of the system model changes, while in general the process
remains fixed.

Fig. 1. Process for Model-Driven Quality Analyses

Modelling Using UML2/DSLs: In the first step, software architects needs
to create a model of the system under study either using the UML or specific
DSLs for software modelling. For most quality attributes this means to create a
full model of the system’s architecture, i.e., a model that covers a broad range
of viewpoints of the system as explained in the following.

Commonly, software architects start by creating a model of the system’s static
structure, e.g., class or component diagrams. This viewpoint highlights the sys-
tem’s functional blocks and is guided by the functional decomposition of the
system’s requirements into software elements which realise specific parts of these
requirements.

Based on the functional decomposition, software architects specify behavioural
aspects of the system under study. Most processes rely on one of two options
to represent behaviour: either they specify the behaviour of single entities as

266 S. Becker

activities of these entities or they rely on the specification of the interaction
between different entities by highlighting interaction scenarios, e.g., as sequence
diagrams.

Having the system’s software parts and their behaviour in place, software
architects model the system’s deployment. This covers two types of informa-
tion. First, software architects model the system’s hardware environment and
its properties, e.g., number and speed of CPU cores, available network band-
width and latency, disks, memory, etc. Second, architects allocate the entities
from the static structure viewpoint to these hardware nodes. In the UML both
kinds of information are usually contained in deployment diagrams.

Finally, software architects need to model the use cases of the system. They
capture the typical interactions of users with the system. Especially for non-
functional analysis use cases need to be significantly enhanced by annotations
as explained in the following paragraph.

Add Quality Annotations: The models created in the previous step often
contain no or only a limited set of quantitative information which is, however,
needed to perform quantitative analyses. For example, for performance analyses,
we need to know how much load is generated by each operation of the system on
the underlying hardware while serving single requests. Hence, resource demands
per hardware type have to be added as quality annotations to the model. Similar,
for reliability analyses, we need to know failure rates of each software step and
each hardware node.

Also important are probabilities for each use case and the workload they
generate on the system. Notice, that the workload specification consists of two
elements which we need to annotate: the work and the load. The work is char-
acterised by the complexity of each single job or task submitted to the system,
e.g., parameter values or number of elements in collection parameters. The load
reflects the frequency of concurrent users arriving at the system and asking for
service.

To realise quality annotations, modelling languages follow different approaches.
UML2-based approaches rely on profiles. For approximately a decade the SPT
profile was used, however, today it has been superseded by the MARTE profile.
In case of special DSLs for quality analyses, e.g., the Palladio Component Model
(PCM) [7], these languages usually provide build-in mechanisms to specify qual-
ity annotations (in the PCM this is the Stochastic Expression language). We
provide a more detailed discussion of the quality annotation in Section 3.

Transform: The UML2 or domain specific models are transformed in the next
step into analysis models. These models have formal semantics and allow the
analysis of properties of interest. For performance, we use queueing networks,
stochastic process algebras, or queued Petri-Nets in order to analyse response
times, throughput, or utilisations. For reliability analyses, most approaches rely
on discrete-time Markov chains. From them, reliability analyses derive for ex-
ample the probability of failure on demand, i.e., the probability that a certain
request issued returns an incorrect result or fails during request processing. For

Model Transformations in Non-functional Analysis 267

safety analyses, approaches rely on fault-trees or model checking techniques. For
development cost estimates, transformations generate workflow models describ-
ing the necessary development tasks and do an estimate of the human resources
needed.

To summarise, while the type of analysis model depends on the properties of
interest, the overall workflow remains fixed. The software model and its anno-
tations are transformed into formal models which are then solved in the next
step.

Solve: After generating the formal analysis models, usually solving these mod-
els relies on existing solvers. These solvers are typically either analytical or
simulation-based. Analytical methods rely on established mathematical rules
which allow fast and accurate analyses of the models they solve. However, this
comes at the cost of preconditions the models have to fulfil and limitations on
the available result metrics. On the other hand, simulations usually imply no
restrictions on the models to be simulated or the result metrics to be collected.
However, simulating a model up to a certain level of accuracy takes time. As a
rule of thumb, simulations are orders of magnitude slower than analytical meth-
ods to achieve the same level of accuracy.

For example, performance models can be solved efficiently with analytic meth-
ods if the resource demands or arrival rates are exponentially distributed. For
the result metric, they are restricted for example to the mean response time, e.g.,
the average time a request takes to be handled by the system. If the response
time distribution is needed, simulation-based approaches are used.

Interpretation and Feedback: In the last step of the model-driven analysis
of a software system, the results collected from solving the analytical models
need to be fed back into the initial software model. For example, the utilisation
value of a formal representation of a hardware node in the analysis model, e.g.,
as queue in a queuing network, needs to be interpreted as the utilisation of a
hardware node in the initial software model.

Additionally, after feeding the results of the analytical model back into the
software model, a decision support step usually takes place which aims at giving
recommendations on how to further improve the system’s design (or, in case that
the results were not satisfying at all, how to make the system’s design feasible).

3 Input Models

In the following, we present an example of an input model. We intentionally
present an instance of a DSL [18] for non-functional analyses as we assume that
UML models with MARTE annotations have been used and discussed more
often. We show the Palladio Component Model here as it addresses several re-
quirements:

– Support for a distributed software development process based on a rigorous
definition of software components and their functional and non-functional
interfaces

268 S. Becker

– A specifically tailored language known as Stochastic Expression Language
to denote QoS annotations

– Explicit support for Model-Driven Completions [2], i.e., in-place transfor-
mations of PCM models that automatically include platform specific perfor-
mance overheads into PCM models (see Section 6)

3.1 Component-Based Quality Analyses

In component-based software development (and similarly in service-oriented de-
velopment), the development task is split among several independent software
developers which develop components or services. However, in software perfor-
mance engineering, we assume the availability of models of the internal behaviour
of the software including the resource demands caused by it according to the pro-
cess outlined in Section 2. This is a contradiction to the idea that components
are provided as black-boxes, i.e., software architects only have access to the com-
ponent’s binary code and its specification. Hence, in order to enable performance
engineering in component-based software development processes, component de-
velopers have to provide specifications on the performance relevant behaviour of
their components.

In the Palladio Component Model, component developers model components
(either basic or composite), their interfaces, and their behaviour. For the latter,
they use so called ResourceDemanding-ServiceEffectSpecifications (RD-
SEFFs) [7]. RD-SEFFs model the externally observable behaviour of single com-
ponent operations as a kind of activity diagram (cf. Figure 2). These activities
contain so called InternalActions, ExternalActions, acquiring and releasing
resources, and control flow constructs.

InternalActions model the observable resource requests a component is-
sues while running. This includes for example CPU demands as a consequence
of algorithmic computations, I/O demands to hard disks, or network accesses.
ExternalActions model the call of an operation of a component connected to
the required interface of the calling component. Modelling ExternalCalls, how-
ever, requires special attention. As the parameters passed to a called operation
may have significant impact on the execution time of the operation, component
developers also need to specify performance characteristics of the parameter val-
ues. To give an example, if a component operation executes an algorithm on
items of a collection, component developers need to provide a specification of
the number of elements in this collection (cf. Figure 2 and Section 3.2).

Acquire- and ReleaseActions model access to limited resources like
semaphores, database connections or locks, etc. Control flow constructs model
loops, branches, and fork-join blocks.

Most elements may be annotated using the Stochastic Expressions languages
as explained in the following subsection.

3.2 Stochastic Expression Language

Stochastic Expressions [7] are used in the PCM as annotation language. Software
architects use this language to provide quantitative stochastic information in

Model Transformations in Non-functional Analysis 269

«iterate»

<<ExternalCall>>
iterate

things.NUMBER_OF_ELEMENTS=
IntPMF[(0.3,5)(0.4,6)(0.3,7)]

Client

<<InternalActionl>>
process

loopCount=
things.NUMBER_OF_ELEMENTS

iterate(Collection things)

Client Server

void iterate
(Collection<T> things)

Fig. 2. Example of one component’s SEFF calling another component’s SEFF

order to characterise typical executions of the software systems they model. For
example, software architects can annotate the number of loop iterations, resource
demands caused by InternalActions, branch transition probabilities, or aspects
of the data flow, e.g., how the size of collections changes during processing. An
alternative language for a similar task is the value specification language (VSL)
from the MARTE specification [39].

In the following, we discuss two examples of stochastic expressions. In the
first example, we model the fact that a loop iterates in 30% of all cases 5 times,
in 40% of all cases 6 times, and in the remaining 30% it loops 7 times. The
corresponding stochastic expression is

IntPMF[(0.3, 5)(0.4, 6)(0.3, 7)] (1)

IntPMF here indicates that the expression is of type Integer and PMF is an
abbreviation for probability mass function, i.e., the expression characterises the
distribution of a discrete random variable [10].

In the second example, we illustrate the use of stochastic expressions to model
performance relevant aspects of the data flow as introduced by Koziolek in his
PhD thesis [28]. Assume we model the performance of a component’s method
which iterates over a collection of items. The signature of the method is

void iterate(Collection< T > things) (2)

270 S. Becker

As in component-based software development we do not know the end-user of a
component while we are developing it, we cannot make assumptions on the num-
ber of elements in this collection. Hence, the caller of the component’s method
needs to specify this number in the PCM instance. For this, she adds an anno-
tation to the ExternalCall that models the call in our example (cf. Figure 2,
left-hand side). If we want to encapsulate the same loop we modelled in Exam-
ple (1) in a component, the annotation on the caller side would be

things.NUMBER OF ELEMENTS = IntPMF[(0.3, 5)(0.4, 6)(0.3, 7)] (3)

The developer of the component which contains the iterate method can use
this expression, e.g., to specify the loop count (cf. Figure 2, right-hand side)
simply as

things.NUMBER OF ELEMENTS (4)

This mechanism allows to reuse components and their specification in multiple
contexts, i.e., in multiple environments which are determined by the component
instance’s usage, its connected external component instances, and its allocation.
The example above illustrates a flexible usage context. However, the PCM also
supports flexible allocation contexts as well as assembly contexts using a similar
approach [5].

Notice, both examples show the concrete textual syntax of the stochastic ex-
pression, i.e., the format in which software architects specify these annotations.
To foster the use of model-driven technologies, especially the use of standard-
ised model transformation languages like QVT [38], textual annotations like the
stochastic expressions presented here, need to be parsed into an abstract syntax
tree and not just stored as simple string values. In the PCM, this is done by
a parser generated by the ANTLR framework [40]. This parser has been inte-
grated with the PCM manually. However, today, model-driven approaches like
the xText framework [17] are used more frequently to generate concrete textual
syntaxes [21].

3.3 Completions

In this subsection, we introduce model-driven performance completions [23]. Per-
formance completions have been introduced by Woodside et al. [46] as a mean
to include the performance impact of underlying system layers into performance
analyses, i.e, layers below the application layer itself. Examples of sources for
such kinds of impact are internal database overheads, overheads of middleware
platforms like resources needed to serialise messages, virtual machine layers, etc.

Model-driven performance completions extend the initial idea in situations
where the application code is strictly corresponding to its model, e.g., when it
is generated from the model. In such cases, model-driven completions are auto-
matically added to the model in order to increase its accuracy. Most approaches
use in-place model-transformations to enrich the analysis model automatically.

In this section, we focus on the input models needed for model-driven perfor-
mance completions, while Section 6 explains the details of the technical
realisation of these completions.

Model Transformations in Non-functional Analysis 271

In the modelling phase, software architects need to specify their selection of
layers they use for their implementation. As an example, consider Figure 3.

Client Server

WebService (SOAP)
based RPC call

Fig. 3. Annotated component communication

In our example, we see again the Client and Server component used before.
They are connected via an assembly connector. In the technical realisation of
this architecture, the software architect has to decide how to realise the commu-
nication running over the assembly connector technically. For example, in Java
she could select among an RPC realisation based on Java RMI, REST, or the
SOAP protocol used in the WebService technology stack. Further options arise
if the software architect intended a realisation based on message exchange, e.g.,
using the Java Messaging Standard (JMS).

If we now consider the performance overhead implied by each variant, we
realise that this overhead differs significantly. For example, when we compare
RMI and SOAP, SOAP has a much higher overhead due to the fact, that SOAP
relies on XML technology. Hence, there is additional time required to process
XML documents, send them over the network (as they usually need more bytes to
encode their information), and to de-serialise and interpret them on the receiver’s
side.

For the input models of the quality analysis process, we assume that the
software architect is well aware of such technical alternatives. However, as she
is not an expert for performance or reliability modelling, she does not want to
provide detailed specifications of the quality impact of her choice. Therefore, our
model-driven performance completions require the software architect to annotate
model elements of the application model (e.g., assembly connectors) with the
technical details on their realisation in an abstract way.

In our approach, we selected feature diagrams [14] and their instances (known
as configurations) as a well-known modelling formalism to express different vari-
ants in software product line engineering. To give an example, Figure 4 shows a
feature diagram for the selection of the communication details.

The feature diagram first allows to differentiate between local and remote
procedure calls (with local calls having almost no performance impact). For
remote procedure calls, software architects can select among RMI and SOAP.
Additionally, they can add features which impact the reliability, performance or
security of the connector.

272 S. Becker

AssemblyConnector

Protocol Additional
Processing

RMI SOAP
Encryption Compression Authorisation

RemoteCall
LocalCall

...

Legend
XOR-Relation

Optional Feature

Required Feature

Fig. 4. Feature diagram showing different options to realise an assembly connector [3]

In order to create a valid input model for the model-driven quality analysis,
a software architect needs to select a feature configuration for all connectors in
the model.

4 Analyses Models

In the following we briefly introduce analysis models for performance and relia-
bility. They are the output of the transformations discusses in the next Section.
We can distinguish analysis models according to the quality properties they are
able to analyse.

For performance, a large set of analysis models has been developed in the
past - each of them having its own advantages and disadvantages. In general we
aim for models which can be analytically solved which normally implies efficient
solutions that can be solved quickly. However, if models become too complex,
we have to simulate which is time intensive.

Among the often used models in analytical performance predictions are queu-
ing networks [10]. They are intuitive to understand, and many networks can be
solved analytically with a sufficient degree of accuracy with respect to mean re-
sponse times, utilisation and throughput. However, their disadvantage is while
they provide a good abstraction of shared resources like CPUs, HDDs, or net-
work links, they fail in modelling the layered behaviour of software systems, i.e.,
blocking calls in client/server communications, or acquiring and releasing passive
resources. On the tooling side, there is a variety of tools, for example, the Java
Modelling Tools which both provide analytical and simulation based solvers.

To overcome these limits, Layered Queuing Networks have been introduced
[42]. They allow to model systems in layers, where the behaviour of an upper layer
is allowed to call the behaviour of lower layers. The lowest layers then contain
the hardware resources as in standard queuing networks. LQNs have built-in
support for performance relevant aspects of client/server systems like thread

Model Transformations in Non-functional Analysis 273

pools or clean up procedures on the server side that execute after sending the
request’s response. Heuristic and simulation-based solvers exist that can predict
mean response times, utilisations and throughput of systems efficiently.

For concurrent systems, Queuing Petri nets extend standard stochastic Petri
nets [1]. They introduce a new type of places that model queues, i.e., tokens get
queued when they enter such places and can only leave the place after passing
the queue. They provide an easily understandable modelling language. However,
most Queuing Petri nets cannot be solved analytically but need to be simulated
to derive response time distributions, utilisations of queuing places, and net
throughput. Recent tools like the QPME tool rely on Eclipse technologies for
modelling and analyses.

Finally, there are stochastic process algebras which model systems as a set of
communicating processes. Among them, for example, PEPA [24] is a process al-
gebra which has been applied in different projects successfully. The advantage of
this formalism is that many systems are indeed implemented as a set of commu-
nicating systems. However, process algebras are often difficult to use for systems
where you have to model a large set of identical processes, e.g., the user processes
in business information systems. PEPA is supported by tools implemented on
top of Eclipse technologies.

For reliability analyses, most approaches are built on top of Discrete Time
Markov Chains (DTMCs) [10]. In DTMCs, time passes in discrete steps. The
Markov chain itself is composed from states and probabilistic transitions. On
each time step, the Markov chain proceeds to the next state according to the
transition probabilities of all outgoing transitions of the current state. DTMCs
can be solved efficiently by analytical means. Today, most approaches utilise the
PRISM probabilistic model checker [25] to solve the DTMCs. PRISM reads the
DTMC to be analysed in a textual language defined by the tool. It then can
evaluate for example the steady state probability to reach a failure state from
the DTMC’s start state.

When taking the viewpoint of model-driven performance analyses, we notice,
that most languages and tools discussed above have been developed before current
model-driven methods and tools. Hence, most of them do not provide a MOF [37]
compliant meta-model which is a pre-requisite for the use of most model-driven
tools. The reason is that these tools have to rely on a common modelling founda-
tion and data formats. As a consequence, we cannot simply transform our soft-
ware models to analytical models via model-2-model transformations, but need
an additional model-2-text transformation step that generates the corresponding
performance model in a format readable by the solvers. However, such transfor-
mation and parsing steps incur additional performance overheads for solving the
performance models. They are crucial at least in online methods [13], i.e., when
we use performance predictions at run-time (cf. Section 11).

Second, we notice that transformations from software models to analytical
model may need to make additional abstraction steps in order to keep the ana-
lytical models solvable in reasonable time. This may both include abstractions
in the structure of the model as well as in the complexity of the annotations.

274 S. Becker

To give an example, in the PCM there is an additional transformation step in-
volved (known as Dependency Solver [11,28]) that computes for each component
instance its context and the impact of this context on the component’s per-
formance or reliability. This involves computing the convolution of probability
distributions which is realised via Fourier transforms. They are computational
complex. The same problem arises when having general MARTE annotations
in the software model and generating analytical model with tighter constraints.
For example, MARTE allows the use of generally distributed service time speci-
fications while most analytical performance models are restricted to exponential
distributions to ensure efficient analytical solutions.

5 Transformations

In this section, we give concrete examples for transformations for the perfor-
mance and the reliability domain. We discuss on these examples which require-
ments they have to deal with. We use the transformations implemented in the
Palladio Component Model for the discussion here as typical examples of trans-
formations used in other approaches. For an overview, see Figure 5.

Component
Repository

Component
Assembly

Resources &
Allocation

Resources &
Allocation

Palladio Component
Model Instance

SimuCom
M2T

ProtoCom
M2T

PCM2LQNs
M2M

PCM2QPNs
M2M

Simulation
Code

Prototype
Code

LQN

QPN

PCM2DTMCs
M2M

DTMC

Fig. 5. Overview of PCM transformations

5.1 PCM2SimuCom

SimuCom (Simulation ofComponentArchitectures) is the PCM’s reference solver.
It has been implemented as a simulation to define and evaluate the semantics of
PCMmodels with respect to their performance properties. It relies on an extended

Model Transformations in Non-functional Analysis 275

queuing network simulation, where the PCM’s active resources (CPUs, HDDs,
LANs) are mapped to simulated queues. The behaviour as defined by the RD-
SEFFs of the components is simulated directly. SimuCom also directly interprets
Stochastic Expressions by drawing samples from the simulation framework’s ran-
dom number generator. Figure 6 gives an overview on the layers of a SimuCom
simulation.

Simulated
Resources

Simulated
RD-SEFFs

Simulated
Components

Simulated
Workload

Fig. 6. Conceptual overview on SimuCom [3]

On the top layer, SimuCom simulates users accessing a component-based sys-
tem. For each user, it simulates the user’s behaviour. Each call to the simulated
system then triggers a control flow thread that runs through the components and
triggers their RD-SEFFs. Finally, InternalActions inside of RD-SEFFs cause
resource loads which are then handled by the simulated resource queues.

In the context of this paper, we focus on the model-driven realisation of
SimuCom. SimuCom simulations are generated by a model-driven tool chain
as Java-based simulation code (cf. Figure 7). This tool chain is an instance
of the Architecture Centric Model-Driven Software Development (AC-MDSD)
paradigm introduced by Völter and Stahl [45]. In this paradigm, software is gen-
erated in a single model-2-text transformation step. This steps reads an instance
of a DSL (here a PCM instance) and generates source code of it which makes
use of generic library code (also known as platform code in AC-MDSD).

In SimuCom’s transformation, we generate components as specified in the
PCM instance. For a component, we use a set of implementing Java classes. The
methods of these classes contain the code to simulate the component’s RD-SEFF.
SimuCom’s platform contains generic simulation support code. It encapsulates

276 S. Becker

PCM Instance

M2T-
Templates

Generated
Simulation Code

SimuCom
PlatformM2T Transformation use

Fig. 7. Overview on SimuCom’s transformation [3]

the supported simulation frameworks (Desmo-J [16] and SSJ [32]) and provides
generic high-level functions. The latter include evaluating stochastic expressions,
the simulation logic of queues, and the code to instrument the simulation in order
to collect the metrics of interest. In the PCM’s tool, generated simulations are
compiled and executed on-the-fly.

5.2 ProtoCom

Using the same underlying principles as SimuCom, ProtoCom [4] (Prototyping of
Component Architectures) generates Java source code from PCM instances that
can be used as performance prototypes. Here, the idea is to create artificial load
which represents the load specified in the PCM instance on real hardware. This
has the advantage that a realistic infrastructure environment is present and no
restrictions due to model abstractions apply. Examples of such abstraction used
in today’s performance analyses models are: disregard of memory limitations and
memory bandwidth, abstraction from details of the underlying middleware, re-
alistic operating system scheduling policies, hard-drive characteristics, etc. How-
ever, the major disadvantage of performance prototypes is that it takes a lot of
time to configure and run them on realistic soft- and hardware environments.

Generating prototypes using model-driven techniques relieves developers from
the burden to develop such prototypes by themselves. ProtoCom follows the
same AC-MDSD process as SimuCom, i.e., again there is a single model-2-text
transformation that generates the prototype based on a given PCM instance.
However, the platform code now contains algorithms which can be used to mimic
resource loads on CPUs and HDDs instead of the simulation code.

5.3 PCM2LQNs

PCM2LQN [29] allows the generation of LQN models from PCM instances. The
layers provided by the LQNs are used in this transformation to reflect the lay-
ers implied by PCM models (cf. Figure 6). That is, there is a layer for user
behaviours, for the system, and for each of the component instances. Like in
the queuing network based SimuCom, hardware resources are again mapped to
queues. For full details of the PCM2LQN mappings please consult [29].

From the model-driven perspective, PCM2LQN is a model-2-model transfor-
mation. It is implemented as a two step transformation. In the first step, the

Model Transformations in Non-functional Analysis 277

dependencies are resolved as explained in the beginning of Section 4. In the
second step, the LQN model is created. Both transformations are implemented
in Java and use the Visitor design pattern [19] to structurally [15] traverse the
PCM instance and generate elements in the LQN.

5.4 PCM2QPNs

As a last example from the performance domain, we introduce PCM2QPN [36].
This transformation takes a PCM model and generates a Queuing Petri net. The
central mapping ideas are as follows. User requests are represented as tokens in
the Petri net. These tokens traverse through the network of places and transi-
tions. Places represent single elements of PCM RD-SEFFs. In case of control
flow elements of RD-SEFFs, transitions are aligned according to their RD-SEFF
counterparts. For example, for a loop there is a place which models checking the
loop condition and a network of places and transitions which models the loop’s
body behaviour.

Internal actions are represented by queued places in the QPN. Their schedul-
ing discipline is set according to the scheduling discipline of the active resource
referenced by the internal action.

Investigating the transition again from a model-driven perspective, it is simi-
lar to the PCM2LQN transformation. Again, there are two steps, where the first
transformation step solves the dependencies of single component’s quality anno-
tations. The second step then generates the QPNs using the solved dependencies.
It is implemented as a model-2-model transformation using the imperative QVT
Operations [38] transformation language.

5.5 PCM2DTMCs

In the area of reliability predictions, we present the PCM2DTMC approach [11].
Conceptually, it generates DTMCs from a given PCM instance. In these DTMCs
it takes both, hardware and software failures into account. For the hardware
failures, a matrix is computed which contains the probabilities for all possible
combinations of any hardware device from the PCM model being either in a
working or in a failure state. For example, if we consider two hardware resources,
e.g., two CPUs, we have four possible hardware states. Either both CPUs are
working, both failed, CPU1 failed but CPU2 is working, or CPU1 is working but
CPU2 failed.

For software failures, RD-SEFFs are interpreted as control flow graphs, where
each action in the RD-SEFF can either succeed or fail - the latter either due
to a software failure or due to a hardware failure. In case of hardware failures,
only failures of hardware resources needed for a certain step in the RD-SEFF
are taken into account. For all resources needed in a step, the transformation
sums up the probabilities of all system states in which any needed resource is in
a failure state.

Inside the DTMC, the control flow graph given by the RD-SEFFs is trans-
lated into a Markov chain where each state in the Markov chain models the fact,

278 S. Becker

that the corresponding RD-SEFF is processing the corresponding action. Then
for each of these states in the Markov chain, there is an additional transition to
a single failure state. This transition has the combined probability of a software
or hardware failure which would lead to a failure in the processing of this action.
Figure 8 gives a simplified example of a RD-SEFF with failure probability anno-
tations for software failures on the left hand side. The right hand side illustrates
the resulting DTMC showing the two absorbing states for failure and success and
the two transient states which represent the two RD-SEFF’s InternalActions.

Failure

Success

Action1

Action2

failureRate=
0.01

failureRate=
0.03

0.01

0.99

0.03

0.97

Fig. 8. Illustrating example of an RD-SEFF and its corresponding DTMC

PCM2DTMC generates a DTMC for each possible hardware state from the
matrix of all hardware states. For each DTMC it computes the probability of
failure on demand (PROFOD).

From the perspective of model transformations, the PCM2DTMC approach
uses again a two step transformation approach. In the first step, component
dependencies are solved and the hardware failure matrix is computed. In the
second step for each hardware system state a DTMC is generated and solved.
The transformation is a structural transformation written in Java.

6 Model-Driven Completions

As introduced in Section 3.3, model-driven completions enhance performance
models with details which model performance overheads of underlying infras-
tructure services. In the following, we focus on connector completions and we
restrict the discussion to performance as quality attribute.

Types of Completion Transformations: In principle, there is a general
choice in designing model-driven completions. First, we can use a transformation
to alter the software model in-place and then use standard transformations to
create the analysis models from the extended software model. Second, we can
enhance the transformation from the software model to the analysis model and
create an extended analysis model. The advantage of the first alternative is that

Model Transformations in Non-functional Analysis 279

we can reuse all features of the software modelling language, e.g., the introduced
stochastic expressions from the Palladio Component Model. Furthermore, the
completion transformation often does not become too complex, as it can be split
into a part that adds completions and a reused part that generates the analysis
model. The advantage of the second alternative is that we have direct access
to all features provided by the analysis model, i.e., we can utilise special mod-
elling features like modelling resource demands which happen after sending the
response in LQNs (cf. Section 4).

In the PCM, we use the first alternative as its advantages outweigh its disad-
vantages in our context. Especially the fact that PCM supports multiple anal-
ysis transformations which we all could reuse in the first approach is a strong
argument.

Connector Completions in the PCM: In the following, we illustrate how the
PCM’s completion transformations include technical details of RPC connectors
as an example. As input we expect PCM models which have been annotated
by the software architect as illustrated in Figure 3 in Section 3.3. The aim
is to include PCM components that model the performance overhead of the
middleware platform which realises the annotated connectors.

To design the completion, we first need to understand the reasons for the
performance overhead of RPC communication. First, the method call and all its
parameters are sent to the server. For this, they are processed by a pipe-and-
filter architecture [12], that takes the high level method call and generates its
serialised form as byte stream. It first marshals the method call and all param-
eters which causes respective computational performance overheads. Depending
on additional setting for the connector, subsequent filters in the pipe-and-filter
chain encrypt the message, sign it, validate it, etc. Depending on the message
size, this causes again a performance overhead. When the communication layer
has produced the byte stream, it is send over the network which delays the pro-
cessing according to network throughput and latency. Notice, that the size of
the network package depends on the underlying RPC protocol and all applied
processing steps. For example, SOAP messages are usually larger than RMI mes-
sages, causing an additional networking overhead. On the server side the whole
process is executed in the other direction, i.e., the byte stream is converted back
into a method call. Finally, after processing the method call, the whole RCP
stack is used again to send back the server’s response.

We now present the in-place transformation [15] we have created to model this
processing chain as performance completion. In the first step, we remove the an-
notated connector and replace it with components which model the marshalling
and demarshalling steps. The result is shown in Figure 9.

Figure 9 shows the connector completion component (as indicated by the
component’s stereotype) which now replaces the connector in Figure 3. It has
the same provides and requires interface as the connector it replaces (IA in
our example). This is needed to fit our completion in the place of the original
connector and still create a valid PCM instance. The second aspect to notice
are the interfaces starting with IMiddleware. They have been introduced to

280 S. Becker

<<ConnectorCompletion>>
Con1

Marshal Demarshal

IMiddleware-Sender IMiddleware-Receiver

IA IA
IA IA’IA’ Con1'

Fig. 9. First transformation step to include a connector completion [3]

make the completion more flexible. The underlying idea is that the Marshal

and Demarshal components do not issue resource demands directly, but rather
delegate their internal processing steps to the IMiddleware interfaces. These
interfaces then are connected to a specific instance of a middleware component,
e.g., a Sun Glassfish JavaEE server component. By exchanging this middleware
component, we can model the different performance overheads of different server
implementations. For example, exchanging the Glassfish component by a JBoss
component we can include the performance overhead of this particular JavaEE
server into our model. Also notice, that there are a client and a server variant
of the middleware interface. Hence, we can also include different overheads on
each communication side, depending on the real deployment setup.

In order to include the performance overhead of further processing steps, the
transformation now executes further steps depending on the selected features in
the connector’s annotation. For example, assume the software architect in addi-
tion to the communication protocol also selected an encrypted communication
channel. Then an additional step, as illustrated in Figure 10, includes the addi-
tional overhead into the completion component by adding another completion
component, i.e., by applying the transformation idea illustrated in the previous
paragraph again.

In Figure 10 we can again see the same structure we discussed before. However,
notice that the interface has changed from IA to IA’. This was needed as the
IA’ interface now deals with the byte stream which represents the method call
on the network instead of the method call itself. The interface IA’ takes track of
the size of the message stream as this size is important for the network overhead
later (as stated in the description of the RPC protocol above). However, as the
full details of the structure of the interface IA’ would go into too much detail,
we refer the reader to [3] where the full mechanics of the transformation are
documented.

Figure 11 shows the resulting model after the execution of the completion
transformation.

In Figure 11 we can see that the transformation has added a component realis-
ing the middleware on both, the client’s and the server’s, side. Which middleware

Model Transformations in Non-functional Analysis 281

<<ConnectorCompletion>>
Con1

Marshal Demarshal

IMiddleware-Sender IMiddleware-Receiver

IA IAIA IA’

<<ConnectorCompletion>>
Con1'

Encrypt Decrypt

IMiddleware-Sender IMiddleware-Receiver

IA’ IA’
IA’ IA’Con1'’

<<Connector
Completion>>

Con1'

IA’

Fig. 10. Second transformation step to include a connector completion [3]

component gets added on which side is configurable in the system’s deployment
model. However, providers of middleware server’s ideally need to provide a li-
brary of components which model their server’s performance overhead. Today
such libraries are not available. As an alternative, we used an automated bench-
mark for our experiments in [23] which created performance models of mid-
dleware servers. Our completion transformation then included these generated
models. Additionally, we can see in Figure 11 that the completion transformation
automatically deployed the created components to either the client’s deployment
node or the server’s node.

To summarise, we have demonstrated in this section how a completion trans-
formation transforms specially annotated software models to include middleware

Client Marshal
IA

Encrypt
IA’ IA’

Decrypt Demarshal
IA’

Server
IAIA’

NetComp
IA’ IA’

<<ConnectorCompletion>>

ClientRC ServerRC

Net

Client
Middleware

Server
Middleware

Fig. 11. PCM instance with connector completion [3]

282 S. Becker

details. Besides this special use case, the general principle on how to design a
completion transformation is invariant of both the type of completion as well as
the quality attribute under study.

7 Model-Driven Integration

In software quality analyses, model transformations are not only used to trans-
form software design models into analysis models, but also to bridge different
levels of abstraction more easily or to integrate different software architecture
description models.

UML Model

BPMN Model

WS-* Model

Performance
Model

Reliability
Model

Intermediate
Model

...

...

Fig. 12. Basic idea of intermediate models

Intermediate Models: There are approaches like KLAPER [22] or the Core
Scenario Model (CSM) [41] which promote the use of intermediate models. These
models aim at alleviating the creation of transformations into the analysis do-
main. To reach this goal, they favour a two-step transformation from the soft-
ware model to the analysis model. First, a software model is transformed into
the intermediate model which then is transformed into the analysis model.

Figure 12 outlines the idea of intermediate models. Their advantage is that
they allow to transform n different software models into m different analysis
models by just n+m different transformations (in contrast to m∗n transforma-
tions if each software model is transformed into each analysis model directly).
However, the disadvantage is that intermediate models may become quite com-
plex in order to support all features available in all software modelling languages.
For example, none of the cited approaches in this article is able to deal with the
full complexity of UML, they just allow the use of a subset of it.

Integration of Software Models. There are also some approaches for us-
ing model transformations to integrate different types of software modelling

Model Transformations in Non-functional Analysis 283

languages. The DUALLy tool developed by Malavolta et al. [33] focuses on
bridging different software architecture modelling languages. In the EU project
Q-ImPrESS [6] we focused on bridging different component-based software mod-
elling languages via a core model that takes quality aspects into account.
Figure 13 provides an overview on the approach taken by Q-ImPrESS.

LQN EQN-Sim...

(T3.3)

QN Model
Checker...

(T3.3)

LQN Markov
Chain...

(T3.3)

Automata Markov
Chain...

(T3.3)

Common Service Architecture Meta-Model

Static Behaviour

QoS
Annotations

Resources &
Environment

Usage Model

Allocation

(T3.2) (T3.2)

Legend

Prediction Formalism

Prediction Model

M2M-Transformation

New Meta-Model
Code Code

Java C/C++

R
ev

er
se

E
ng

in
ee

rin
g

(T2.2 & T2.3) Static Reverse Engineering
(T2.4) Dynamic Reverse Engineering

C
onsistency(T5.1)

T2M-Transformation
Check Transformation

(generated)
Model Editors

(T4.1)

(T2.1)

Analyses
Results

<<annotate>>(T5.2)

<<System Architect>>

ProgressCM SOFAPalladioCM
KLAPER

(T3.1)

Fig. 13. Overview on Transformations in Q-ImPrESS [8]

There are different software architecture modelling languages on top of
Figure 13. Each of these approaches has its own dedicated meta-model and sup-
port different types of analyses. To reuse as many of these analysis approaches,
Q-ImPrESS promotes the use of a core meta-model, the Service Architecture
Meta-Model (SAMM). Transformations exist from the SAMM into each of the
software architecture models. This allows to perform different analyses with re-
spect to different types of quality properties. This is useful for architecture trade-
off analysis, i.e., finding the right trade-off among different quality attributes (see
Section 9) for details.

On the bottom of Figure 13, it is also indicated that Q-ImPrESS also supports
reverse engineering of source code to create initial instances of the SAMM. This
step is discussed in the following Section.

8 Reverse Engineering of Models

In model-driven quality analyses, the most important step is to get to the models
of the software under study. Hence, researches have proposed approaches in the

284 S. Becker

past to create initial models from source code or execution traces. However,
only a few of them support reverse engineering of models which can be used for
quality analyses.

For Q-ImPrESS and the PCM, there is support via the SoMoX tool chain [30].
SoMoX creates instances of the SAMM from object-oriented source codes written
in Java, C++ or Delphi. It analyses the source code and clusters its classes into
components. This is done according to a well-defined set of software metrics
specifically tailored to identify components. For components detected in this
way SoMoX automatically creates RD-SEFFs (as introduced in Section 3). These
RD-SEFFs are limited to ExternalCalls and control flow elements.

One step further goes Beagle which builds on top of SoMoX [31]. It exe-
cutes the software components in typical use cases, e.g., test cases, and counts
the byte code instructions the Java VM executes while running the compo-
nent. Based on these counts, Beagle approximates stochastic expressions using
a genetic programming heuristic. This heuristic fits observed byte counts to es-
timated stochastic expressions and tries to find the best fit.

9 Architecture Trade-Offs

With model-driven quality analyses in place, software architects are able to anal-
yse a particular software system’s model for multiple quality attributes like per-
formance, reliability, or costs. Consequently, the question arises how to decide
among two different software architectures, i.e., how to trade-off the different
quality properties.

Here, two types of approaches exist in literature. First, manual approaches
where software architects interpret the analyses results and try to identify the un-
derlying trade-offs in discussions among the stakeholders. Especially, SAMM [27]
and ATAM promoted by the SEI contain structured processes for this. Second,
quantitative methods which are semi-automated and supported by tools try
to quantify the preferences of the software architect for different quality prop-
erties and compute a ranking of alternative software designs according to these
preferences. In the latter, the AHP method invented by Saaty has been used [43].
We describe this approach in the following.

In the AHP process, the decision problem is split into hierarchical sub-
decisions. For example, we could subdivide the overall quality goal into exter-
nal quality goals (e.g., performance, reliability) on the same level as the goals
for internal quality attributes (e.g., maintainability, understandability). For each
hierarchy level, the AHP method determines weights that capture the decision
makers preferences for all sub-goals. For example, if the decision maker states
that internal and external quality goals are equally important, the weights would
be 0.5 (50%) for each of the sub-goals. Finally, different software architecture
alternatives are evaluated with respect to the leafs of the decision tree and AHP
computes from this an overall ranking of the alternatives.

Model Transformations in Non-functional Analysis 285

10 Case Studies

In this section, we report on case studies of model-driven quality analyses in prac-
tice. All case studies are based onQ-ImPrESS or PCM. The reason for this may be
in the fact that Q-ImPrESS and PCM have mature tooling which allows their use
in industry projects. Most other model-driven quality analysis approaches found
in literature stay, in contrast, on the conceptual or prototype level.

We can evaluate model-driven approaches with two different evaluation goals.
First, we can empirically evaluate whether software architects are able to create
the necessary input model with sufficient degree of accuracy. Second, we can
evaluate how prediction results help in realistic projects in making decisions.

10.1 Empirical Evaluation

We have performed a series of empirical experiments in which we evaluated the
applicability of model-driven performance analysis with the PCM [35]. In one
of the experiments we conducted, we compared modelling with PCM against
modelling with the software performance engineering tool SPE [44].

In the experiment setup two sets of students performed performance analyses
of two different systems in a cross-over experiment, i.e., the first group of students
used PCM to model the first system and the second group used SPE. For the
second system we switched the roles of the groups.

In the experiment, we evaluated both, the time it took the students to model
the systems and make performance predictions as well as the correctness of their
solution. It turned out that both approaches supported performance predictions
to an extend in which the students were able to produce meaningful results. Mod-
elling and analysing with the PCM revealed more issues related to tooling, e.g.,
issues with the model editors, while modelling with SPE revealed more problems
on the conceptual level, especially with non-automated stochastic computations.

10.2 Industrial Case Studies

From the industrial case studies, we report here on a case study performed at
IBM and another case study at ABB. We briefly characterise the analysis goal,
the analysed system and the main findings. For additional details, please refer
to the literature reference of each study. For smaller case studies visit the PCM
homepage1.

IBM Storage Modelling. In our case study performed with IBMGermany [26],
we supported the design decision whether to implement the I/O layer of an
IBM server system in a synchronous or asynchronous communication style. This
layer’s main responsibility is to communicate with the hard disks array of the
server. Due to external requirements, this layer has to guarantee high through-
put. While modelling the system in the PCM showed several obstacles in mod-
elling the system with sufficient degree of accuracy, the results showed that from

1 http://www.palladio-simulator.com

http://www.palladio-simulator.com

286 S. Becker

a performance perspective this decision did not have a significant impact. Both
alternatives were comparable in their performance.

ABB Process Control System. In the course of the Q-ImPrESS project we
evaluated a process control system at ABB with respect to performance and
reliability [30]. The case study revealed good prediction results for performance
as well as reliability. However, it also showed that collecting the required input
data for the model-driven quality analyses is a non-trivial task and should be
better supported in the future. Especially collecting failure rates for reliability
models turned out to be a difficult task. Additionally, we also tried to use reverse
engineering of models of the ABB PCS system. However, this failed to produce
useful models due to the complexity and size of the system’s code base.

11 Conclusions and Further Reading

In this article, we give an overview on model-driven analyses methods of non-
functional properties. We illustrate a process which consists of the steps mod-
elling the system, annotating the model, transforming the model, solving it,
and interpreting the results. For each of the steps, this article gives details of
the actions performed by the software architect. Furthermore, we presented brief
discussions on practical aspects related to model-driven quality analyses, namely
model-driven integration, reverse engineering of the input models from existing
systems, and architecture trade-off analyses among several different quality at-
tributes. Case studies show the practicability of the presented approaches in
industrial settings.

Software architects use the presented methods to analyse the quality of their
systems in various dimensions. They can make dedicated design decisions by
taking their quality impacts into account. Also the evolution of existing systems
under quality constraints is supported by quality analyses.

In the future, model-driven quality analyses have to deal with systems which
are much more dynamic than the systems we modeled in the past. For example,
cloud computing results in dynamic allocations where the amount of available
hardware changes at run-time. Here, quality analyses at run-time can guide
adaptation decisions in order to resolve quality problems of running systems [13].
For this, these approaces use quality models@run-time [9].

References

1. Bause, F.: Queueing petri nets-a formalism for the combined qualitative and quan-
titative analysis of systems. In: Proceedings of 5th International Workshop on Petri
Nets and Performance Models, pp. 14–23 (October 1993)

2. Becker, S.: Coupled Model Transformations. In: WOSP 2008: Proceedings of the
7th International Workshop on Software and Performance, pp. 103–114. ACM, New
York (2008)

3. Becker, S.: Coupled Model Transformations for QoS Enabled Component-Based
Software Design. Karlsruhe Series on Software Quality, vol. 1. Universitätsverlag
Karlsruhe (2008)

Model Transformations in Non-functional Analysis 287

4. Becker, S., Dencker, T., Happe, J.: Model-Driven Generation of Performance Pro-
totypes. In: Kounev, S., Gorton, I., Sachs, K. (eds.) SIPEW 2008. LNCS, vol. 5119,
pp. 79–98. Springer, Heidelberg (2008),
http://www.springerlink.com/content/62t1277642tt8676/fulltext.pdf

5. Becker, S., Happe, J., Koziolek, H.: Putting Components into Context: Support-
ing QoS-Predictions with an explicit Context Model. In: Reussner, R., Szyperski,
C., Weck, W. (eds.) Proc. 11th International Workshop on Component Oriented
Programming (WCOP 2006), pp. 1–6 (July 2006),
http://research.microsoft.com/ cszypers/events/

WCOP2006/WCOP06-Becer.pdf
6. Becker, S., Hauck, M., Trifu, M., Krogmann, K., Kofron, J.: Reverse Engineering

Component Models for Quality Predictions. In: Proceedings of the 14th European
Conference on Software Maintenance and Reengineering, European Projects Track,
pp. 199–202. IEEE (2010),
http://sdqweb.ipd.kit.edu/publications/pdfs/becker2010a.pdf

7. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. Journal of Systems and Software 82, 3–22 (2009),
http://dx.doi.org/10.1016/j.jss.2008.03.066

8. Becker, S., Trifu, M., Reussner, R.: Towards Supporting Evolution of Service Ori-
ented Architectures through Quality Impact Prediction. In: 1st International Work-
shop on Automated Engineering of Autonomous and Run-time Evolving Systems
(ARAMIS 2008) (September 2008)

9. Blair, G., Bencomo, N., France, R.: Models@ run.time. Computer 42(10), 22–27
(2009)

10. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains. John Wiley & Sons Inc. (1998)

11. Brosch, F., Koziolek, H., Buhnova, B., Reussner, R.: Parameterized Reliability Pre-
diction for Component-Based Software Architectures. In: Heineman, G.T., Kofron,
J., Plasil, F. (eds.) QoSA 2010. LNCS, vol. 6093, pp. 36–51. Springer, Heidelberg
(2010)

12. Clements, P.C., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord,
R., Stafford, J.: Documenting Software Architectures. SEI Series in Software En-
gineering. Addison-Wesley (2003)

13. Cortellessa, V., Marco, A.D., Inverardi, P.: Model-Based Software Performance
Analysis. Springer, Berlin (2011)

14. Czarnecki, K., Eisenecker, U.W.: Generative Programming. Addison-Wesley, Read-
ing (2000)

15. Czarnecki, K., Helsen, S.: Classification of Model Transformation
Approaches. In: OOPSLA 2003 Workshop on Generative Tech-
niques in the Context of Model Driven Architecture (October 2003),
http://www.softmetaware.com/oopsla2003/czarnecki.pdf

(last retrieved January 6, 2008)
16. The DESMO-J Homepage (2007),

http://asi-www.informatik.uni-hamburg.de/desmoj/ (last retrieved January 6,
2008)

17. Eclipse Foundation: xText website, http://www.xtext.org (last visited February
22, 2012)

18. Fowler, M., Parsons, R.: Domain Specific Languages. Addison-Wesley, Reading
(2010)

19. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

http://www.springerlink.com/content/62t1277642tt8676/fulltext.pdf
http://research.microsoft.com/~cszypers/events/WCOP2006/WCOP06-Becer.pdf
http://research.microsoft.com/~cszypers/events/WCOP2006/WCOP06-Becer.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/becker2010a.pdf
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://www.softmetaware.com/oopsla2003/czarnecki.pdf
http://asi-www.informatik.uni-hamburg.de/desmoj/
http://www.xtext.org

288 S. Becker

20. Gokhale, S.S.: Architecture-based software reliability analysis: Overview and limi-
tations. IEEE Trans. on Dependable and Secure Computing 4(1), 32–40 (2007)

21. Goldschmidt, T., Becker, S., Uhl, A.: Classification of Concrete Textual
Syntax Mapping Approaches. In: Schieferdecker, I., Hartman, A. (eds.)
ECMDA-FA 2008. LNCS, vol. 5095, pp. 169–184. Springer, Heidelberg (2008),
http://sdqweb.ipd.uka.de/publications/pdfs/goldschmidt2008b.pdf

22. Grassi, V., Mirandola, R., Sabetta, A.: From Design to Analysis Models: a Kernel
Language for Performance and Reliability Analysis of Component-based Systems.
In: WOSP 2005: Proceedings of the 5th International Workshop on Software and
Performance, pp. 25–36. ACM Press, New York (2005)

23. Happe, J., Becker, S., Rathfelder, C., Friedrich, H., Reussner, R.H.: Parametric
Performance Completions for Model-Driven Performance Prediction. Performance
Evaluation 67(8), 694–716 (2010),
http://sdqweb.ipd.uka.de/publications/pdfs/happe2009a.pdf

24. Hermanns, H., Herzog, U., Katoen, J.P.: Process algebra for performance evalua-
tion. Theoretical Computer Science 274(1-2), 43–87 (2002),
http://www.sciencedirect.com/science/article/B6V1G-4561J4H-3/

2/21516ce76bb2e6adab1ffed4dbe0d24c

25. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A Tool for Auto-
matic Verification of Probabilistic Systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

26. Huber, N., Becker, S., Rathfelder, C., Schweflinghaus, J., Reussner, R.: Per-
formance Modeling in Industry: A Case Study on Storage Virtualization. In:
ACM/IEEE 32nd International Conference on Software Engineering, Software En-
gineering in Practice Track, Capetown, South Africa, pp. 1–10. ACM, New York
(2010), http://sdqweb.ipd.uka.de/publications/pdfs/hubern2010.pdf

27. Kazman, R., Bass, L., Abowd, G., Webb, M.: SAAM: A method for analyzing
the properties of software architectures. In: Fadini, B. (ed.) Proceedings of the
16th International Conference on Software Engineering, pp. 81–90. IEEE Computer
Society Press, Sorrento (1994)

28. Koziolek, H.: Parameter Dependencies for Reusable Performance Specifications of
Software Components. The Karlsruhe Series on Software Design and Quality, vol. 2.
Universitätsverlag Karlsruhe (2008)

29. Koziolek, H., Reussner, R.: A Model Transformation from the Palladio Compo-
nent Model to Layered Queueing Networks. In: Kounev, S., Gorton, I., Sachs,
K. (eds.) SIPEW 2008. LNCS, vol. 5119, pp. 58–78. Springer, Heidelberg (2008),
http://www.springerlink.com/content/w14m0g520u675x10/fulltext.pdf

30. Koziolek, H., Schlich, B., Bilich, C., Weiss, R., Becker, S., Krogmann, K.,
Trifu, M., Mirandola, R., Koziolek, A.: An industrial case study on qual-
ity impact prediction for evolving service-oriented software. In: Proceeding of
the 33rd International Conference on Software Engineering, Software Engi-
neering in Practice Track, ICSE 2011, pp. 776–785. ACM, New York (2011),
http://doi.acm.org/10.1145/1985793.1985902

31. Krogmann, K., Kuperberg, M., Reussner, R.: Using Genetic Search for Reverse
Engineering of Parametric Behaviour Models for Performance Prediction. IEEE
Transactions on Software Engineering 36(6), 865–877 (2010),
http://sdqweb.ipd.kit.edu/publications/pdfs/krogmann2009c.pdf

32. L’Ecuyer, P., Buist, E.: Simulation in Java with SSJ. In: WSC 2005: Proceedings
of the 37th Conference on Winter Simulation, Winter Simulation Conference, pp.
611–620 (2005)

http://sdqweb.ipd.uka.de/publications/pdfs/goldschmidt2008b.pdf
http://sdqweb.ipd.uka.de/publications/pdfs/happe2009a.pdf
http://www.sciencedirect.com/science/article/B6V1G-4561J4H-3/2/21516ce76bb2e6adab1ffed4dbe0d24c
http://www.sciencedirect.com/science/article/B6V1G-4561J4H-3/2/21516ce76bb2e6adab1ffed4dbe0d24c
http://sdqweb.ipd.uka.de/publications/pdfs/hubern2010.pdf
http://www.springerlink.com/content/w14m0g520u675x10/fulltext.pdf
http://doi.acm.org/10.1145/1985793.1985902
http://sdqweb.ipd.kit.edu/publications/pdfs/krogmann2009c.pdf

Model Transformations in Non-functional Analysis 289

33. Malavolta, I., Muccini, H., Pelliccione, P., Tamburri, D.A.: Providing architectural
languages and tools interoperability through model transformation technologies.
IEEE Transactions of Software Engineering 36(1), 119–140 (2010)

34. Marshall, R.: SAP gives update on Business ByDesign plans (2009),
http://www.v3.co.uk/v3-uk/news/1970547/

sap-update-business-bydesign-plans (last visited November 22, 2009)
35. Martens, A., Koziolek, H., Prechelt, L., Reussner, R.: From monolithic to

component-based performance evaluation of software architectures. Empirical Soft-
ware Engineering 16(5), 587–622 (2011),
http://dx.doi.org/10.1007/s10664-010-9142-8

36. Meier, P., Kounev, S., Koziolek, H.: Automated Transformation of Palladio Com-
ponent Models to Queueing Petri Nets. In: 19th IEEE/ACM International Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS 2011), Singapore, July 25-27 (2011)

37. Object Management Group (OMG): MOF 2.0 Core Specification (formal/2006-01-
01) (2006), http://www.omg.org/cgi-bin/doc?formal/2006-01-01

38. Object Management Group (OMG): Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification – Version 1.1 Beta 2 (December 2009),
http://www.omg.org/spec/QVT/1.1/Beta2/

39. Object Management Group (OMG): UML Profile for MARTE: Model-
ing and Analysis of Real-Time Embedded Systems, version 1.0 (2009),
http://www.omg.org/spec/MARTE/1.0/PDF

40. Parr, T.: The Definitive ANTLR Reference Guide: Building Domain-specific Lan-
guages (Pragmatic Programmers). Pragmatic Programmer (2007)

41. Petriu, D.B., Woodside, M.: An intermediate metamodel with scenarios and re-
sources for generating performance models from UML designs. Software and Sys-
tems Modeling 6(2), 163–184 (2007)

42. Rolia, J.A., Sevcik, K.C.: The Method of Layers. IEEE Transactions on Software
Engineering 21(8), 689–700 (1995)

43. Saaty, T.L.: The Analytic Hierarchy Process, Planning, Piority Setting, Resource
Allocation. McGraw-Hill, New York (1980)

44. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison-Wesley (2002)

45. Völter, M., Stahl, T.: Model-Driven Software Development. Wiley & Sons, New
York (2006)

46. Woodside, M., Petriu, D.C., Siddiqui, K.H.: Performance-related Completions for
Software Specifications. In: Proceedings of the 22nd International Conference on
Software Engineering, ICSE 2002, Orlando, Florida, USA, May 19-25, pp. 22–32.
ACM (2002)

http://www.v3.co.uk/v3-uk/news/1970547/sap-update-business-bydesign-plans
http://www.v3.co.uk/v3-uk/news/1970547/sap-update-business-bydesign-plans
http://dx.doi.org/10.1007/s10664-010-9142-8
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/spec/QVT/1.1/Beta2/
http://www.omg.org/spec/MARTE/1.0/PDF

Software Performance Antipatterns:

Modeling and Analysis

Vittorio Cortellessa, Antinisca Di Marco, and Catia Trubiani

University of L’Aquila, Dipartimento di Informatica, Italy
{vittorio.cortellessa,antinisca.dimarco,

catia.trubiani}@univaq.it

Abstract. The problem of capturing performance problems is critical in
the software design, mostly because the results of performance analysis
(i.e. mean values, variances, and probability distributions) are difficult
to be interpreted for providing feedback to software designers. Support
to the interpretation of performance analysis results that helps to fill the
gap between numbers and design alternatives is still lacking. The aim of
this chapter is to present the work that has been done in the last few
years on filling such gap. The work is centered on software performance
antipatterns, that are recurring solutions to common mistakes (i.e. bad
practices) affecting performance. Such antipatterns can play a key role in
the software performance domain, since they can be used in the investi-
gation of performance problems as well as in the formulation of solutions
in terms of design alternatives.

Keywords: Software Architecture, Performance Evaluation, Antipat-
terns, Feedback Generation, Design Alternatives.

1 Introduction

In the software development domain there is a very high interest in the early
validation of performance requirements because this ability avoids late and ex-
pensive fix to consolidated software artifacts.

Model-based approaches, pioneered under the name of Software Performance
Engineering (SPE) by Smith [1–3], aim at producing performance models early
in the development cycle and using quantitative results from model solutions to
refactor the architecture and design [4] with the purpose of meeting performance
requirements [5]. Advanced Model-Driven Engineering (MDE) techniques have
successfully been used in the last few years to introduce automation in software
performance modeling and analysis [6, 7].

Nevertheless, the problem of interpreting the performance analysis results is
still quite critical. A large gap exists between the representation of performance
analysis results and the feedback expected by software architects. Additionally,
the former usually contains numbers (e.g. mean response time, throughput vari-
ance, etc.), whereas the latter should embed architectural suggestions, i.e. design

M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.): SFM 2012, LNCS 7320, pp. 290–335, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Software Performance Antipatterns: Modeling and Analysis 291

alternatives, useful to overcome performance problems (e.g. split a software com-
ponent in two components and re-deploy one of them).

Such activities are today exclusively based on the analysts’ experience, and
therefore their effectiveness often suffers of lack of automation. MDE techniques
represent very promising means on this scenario to tackle the problem.

Figure 1 schematically represents the typical steps that are executed at the ar-
chitectural phase of the software lifecycle to conduct a model-based performance
analysis process. Rounded boxes in the figure represent operational steps whereas
square boxes represent input/output data. Vertical lines divide the process in
three different phases: in the modeling phase, an (annotated) software architec-
tural model is built; in the performance analysis phase, a performance model is
obtained through model transformation, and such model is solved to obtain the
performance results of interest; in the refactoring phase, the performance results
are interpreted and, if necessary, feedback is generated as refactoring actions on
the original software architectural model.

Fig. 1. Model-based software performance analysis process

The modeling and performance analysis phases (i.e. arrows numbered from 1
through 4) represent the forward path from an (annotated) software architectural
model all the way through the production of performance indices of interest. As
outlined above, while in this path well-founded model-driven approaches have
been introduced for inducing automation in all steps (e.g. [6, 8, 9]), there is
a clear lack of automation in the backward path that shall bring the analysis
results back to the software architecture.

The core step of the backward path is the shaded rounded box of Figure 1.
Here, the performance analysis results have to be interpreted in order to detect,
if any, performance problems. Once performance problems have been detected
(with a certain accuracy) somewhere in the architectural model, solutions have

292 V. Cortellessa, A. Di Marco, and C. Trubiani

to be applied to remove those problems1. A performance problem originates from
a set of unfulfilled requirement(s), such as “the estimated average response time
of a service is higher than the required one”. If all the requirements are satisfied
then the feedback obviously suggests no changes.

In Figure 1 the (annotated) software architectural model (label 5.a) and the
performance results (label 5.b) are both inputs to the core step that searches
problems in the model. The third input of this step represents the most promising
elements that can drive this search, i.e. performance antipatterns (label 5.c).
The rationale of using performance antipatterns is two-fold: on one hand, a
performance antipattern identifies a bad practice in the software architectural
model that negatively affects the performance indices, thus it supports the results
interpretation step; on the other hand, a performance antipattern definition
includes a solution description that lets the software architect devise refactoring
actions, thus it supports the feedback generation step.

The main reference we consider for performance antipatterns is the work done
across the years by Smith and Williams [10] that have ultimately defined four-
teen notation-independent antipatterns2. Some other works present antipatterns
that occur throughout different technologies, but they are not as general as the
ones defined in [10] (more references are discussed in Section 2 as well as other
approaches to the backward path).

Figure 2 details the performance analysis process of Figure 1. In Figure 2,
the core step is split in two steps: (i) detecting antipatterns that provides the
localization of the critical parts of software architectural models, performing the
results interpretation step; (ii) solving antipatterns that suggests the changes
to be applied to the architectural model under analysis, executing the feedback
generation step.

Several iterations can be conducted to find the software architectural model
that best fits the performance requirements, since several antipatterns may be de-
tected in an architectural model, and several refactoring actions may be available
for solving each antipattern. At each iteration, the refactoring actions (labels 6.1
. . . 6.h of Figure 2) aim at building a new software architectural model (namely
Candidate) that replaces the analyzed one. For example, Candidatei−j denotes
the j-th candidate generated at the i-th iteration. Then, the detection and so-
lution approach can be iteratively applied to all newly generated candidates to
further improve the system, when necessary.

1 Note that this task very closely corresponds to the work of a physician: observing a
sick patient (the model), studying the symptoms (some bad values of performance
indices), making a diagnosis (performance problem), prescribing a treatment (per-
formance solution through refactoring).

2 From the original list of fourteen antipatterns [10] two antipatterns are not consid-
ered for the following reason: the Falling Dominoes antipattern refers to reliability
and fault tolerance issues and it is out of interest; the Unnecessary Processing an-
tipattern deals with the semantics of the processing by judging the importance of the
application code that it is an abstraction level not included in software architectural
models. Hence, twelve is the total number of the antipatterns we examine.

Software Performance Antipatterns: Modeling and Analysis 293

Fig. 2. Software performance analysis process across different iterations

Different termination criteria can be defined in the antipattern-based process:
(i) fulfilment criterion, i.e. all requirements are satisfied and a suitable software
architectural model is found; (ii) no-actions criterion, i.e. antipatterns are not
detected in the software architectural models therefore no refactoring action can
be experimented; (iii) #iterations criterion, i.e. the process can be terminated if
a certain number of iterations have been completed.

It is worth to notice that the solution of one or more antipatterns does not a
priori guarantee performance improvements, because the entire process is based
on heuristic evaluations. However, an antipattern-based refactoring action is usu-
ally a correctness-preserving transformation that improves the quality of the
software. For example, the interaction between two components might be refac-
tored to improve performance by sending fewer messages with more data per
message. This transformation does not alter the semantics of the application,
but it may improve the overall performance.

The remainder of the chapter is organized as follows. Section 2 discusses ex-
isting work in this research area. Sections 3 and 4 present our approach to the
representation, and detection/solution activities, needed to embed antipatterns
in a software performance process. Section 5 describes a model-driven framework
to widen the scope of antipatterns. Finally, Section 6 concludes the chapter by
pointing out the pros and cons of using antipatterns in the software performance
process and illustrating the most challenging research issues in this area.

294 V. Cortellessa, A. Di Marco, and C. Trubiani

2 Related Work

Table 1 summarizes the main existing approaches in literature for the automated
generation of architectural feedback. In particular, four categories of approaches
are outlined: (i) antipattern-based approaches (see Section 2.1); (ii) rule-based
approaches (see Section 2.2); (iii) design space exploration approaches (see Sec-
tion 2.3); (iv) metaheuristic approaches (see Section 2.4).

Each approach is classified on the basis of the category it belongs to. Table
1 compares the different approaches by reporting the (annotated) software ar-
chitectural model and the performance model they are based on, if available.
The last column of Table 1 denotes as framework the set of methodologies the
corresponding approach entails. Note that in some cases the framework has been
implemented and it is available as a tool (e.g. SPE • ED, ArchE, PerOpteryx).

Our approach somehow belongs to two categories, that are: antipattern-based
and rule-based approaches. This is because it makes use of antipatterns for spec-
ifying rules that drive towards the identification of performance flaws. PANDA
(PerformanceAntipatterns aNd FeeDback in SoftwareArchitectures) is a frame-
work that embeds all the techniques we propose in this research work that are
aimed at performing three main activities, i.e. representing, detecting and solv-
ing antipatterns. The implementation of PANDA is still a work in progress and
we aim at developing it in the next future.

2.1 Antipattern-Based Approaches

Williams et al. in [11] introduced the PASA (Performance Assessment of Soft-
ware Architectures) approach. It aims at achieving good performance results
through a deep understanding of the architectural features. This is the approach
that firstly introduces the concept of antipatterns as support to the identifica-
tion of performance problems in software architectural models as well as in the
formulation of architectural alternatives. However, this approach is based on the
interactions between software architects and performance experts, therefore its
level of automation is still low.

Cortellessa et al. in [12] introduced a first proposal of automated genera-
tion of feedback from the software performance analysis, where performance
antipatterns play a key role in the detection of performance flaws. However, this
approach considers a restricted set of antipatterns, and it uses informal inter-
pretation matrices as support. The main limitation of this approach is that the
interpretation of performance results is only demanded to the analysis of Layered
Queue Networks (LQN) [28] performance model. Such knowledge is not enriched
with the features coming from the software architectural models, thus to hide
feasible refactoring actions.

Enterprise technologies and EJB performance antipatterns are analyzed by
Parsons et al. in [13]: antipatterns are represented as sets of rules loaded into an
engine. A rule-based performance diagnosis tool, named Performance Antipat-
tern Detection (PAD), is presented. However, it deals with Component-Based
Enterprise Systems, targeting only Enterprise Java Bean (EJB) applications.

Software Performance Antipatterns: Modeling and Analysis 295

Table 1. Summary of the approaches for the generation of architectural feedback

Approach

(Annotated)
Performance

Framework
Software

Model
Architectural
Model

Antipattern-based

Williams et al. [11], 2002 Software exe-
cution model
(Execution
graphs)

System exe-
cution model
(Queueing
Network)

SPE • ED

Cortellessa et al. [12], 2007 Unified
Modeling
Language
(UML)

Layered
Queueing
Network
(LQN)

GARFIELD
(Generator of
Architectural
Feedback
through Per-
formance
Antipatterns
Revealed)

Parsons et al. [13], 2008 JEE systems
from which
component
level end-to-
end run-time
paths are
collected

Reconstructed
run-time de-
sign model

PAD (Per-
formance
Antipattern
Detection)

Our approach [14] [15], 2009-2011 Unified
Modeling
Language
(UML), Pal-
ladio Compo-
nent Model
(PCM)

Queueing
Network,
Simulation
Model

PANDA
(Performance
Antipatterns
aNd
FeeDback
in Software
Architectures)

Rule-based

Barber et al. [16], 2002 Domain
Reference
Architecture
(DRA)

Simulation
Model

RARE and
ARCADE

Dobrzanski et al. [17], 2006 Unified
Modeling
Language
(UML)

- Telelogic
TAU (i.e.
UML CASE
tool)

McGregor et al. [18], 2007 Attribute-
Driven De-
sign (ADD)

Simulation
Model

ArchE

Kavimandan et al. [19], 2009 Real-Time
Component
Middleware

- extension of
the LwCCM
middleware
[20]

Xu [21], 2010 Unified
Modeling
Language
(UML)

Layered
Queueing
Network
(LQN)

PB (Per-
formance
Booster)

Design Exploration

Zheng et al. [22], 2003 Unified
Modeling
Language
(UML)

Simulation
Model

-

Bondarev et al. [23], 2007 Robocop
Component
Model

Simulation
model

DeepCompass
(Design Ex-
ploration and
Evaluation
of Perfor-
mance for
Component
Assemblies)

Ipek et al. [24], 2008 Artificial
Neural Net-
work (ANN)

Simulation
Model

-

Metaheuristic

Canfora et al. [25], 2005 Workflow
Model

Workflow
QoS Model

-

Aleti et al. [26], 2009 Architecture
Analysis and
Description
Language
(AADL)

Markov
Model

ArcheOpterix

Martens et al. [27], 2010 Palladio
Compo-
nent Model
(PCM)

Simulation
Model

PerOpteryx

296 V. Cortellessa, A. Di Marco, and C. Trubiani

From the monitored data of running systems, it extracts the run-time system
design and detects EJB antipatterns by applying the defined rules to it. Hence,
the scope of [13] is restricted to such domain, and performance problems can
neither be detected in other technology contexts nor in the early development
stages.

2.2 Rule-Based Approaches

Barber et al. in [16] introduced heuristic algorithms that in presence of detected
system bottlenecks provide alternative solutions to remove them. The heuris-
tics are based on architectural metrics that help to compare different solutions.
However, it basically identifies and solve only software bottlenecks, more complex
problems are not recognized.

Dobrzanski et al. in [17] tackled the problem of refactoring UML models.
In particular, bad smells are defined as structures that suggest possible prob-
lems in the system in terms of functional and non-functional aspects. Refactor-
ing operations are suggested in the presence of bad smells. However, no spe-
cific performance issue is analyzed, and refactoring is not driven by unfulfilled
requirements.

McGregor et al. in [18] proposed the ArchE framework to support the software
designers in creating architectures that meet quality requirements. It embodies
knowledge of quality attributes and the relation between the achievement of
quality requirements and architectural design. However, the suggestions (or tac-
tics) are not well explained, and it is not clear at which extent the approach can
be applied.

Kavimandan et al. in [19] presented an approach to optimize deployment and
configuration decisions in the context of distributed, real-time, and embedded
component-based systems. Enhanced bin packing algorithms and schedulability
analysis have been used to make fine-grained assignments of components to
different middleware containers, since they are known to impact on the system
performance and resource consumption. However, the scope of this approach is
limited to deployment and configuration features.

Xu in [21] presented an approach to software performance diagnosis that iden-
tifies performance flaws before the software system implementation. It defines
a set of rules detecting patterns of interaction between resources. The software
architectural models are translated in a performance model, i.e. Layered Queue-
ing Networks (LQNs) [28], and then analyzed. The approach limits the detection
to bottlenecks and long execution paths identified and removed at the level of
the LQN performance model. The overall approach applies only to LQN models,
hence its portability to other notations is yet to be proven and it may be quite
complex.

2.3 Design Space Exploration Approaches

Zheng et al. in [22] described an approach to find optimal deployment and
scheduling priorities for tasks in a class of distributed real-time systems. In

Software Performance Antipatterns: Modeling and Analysis 297

particular, it is intended to evaluate the deployment of such tasks by applying
a heuristic search strategy to LQN models. However, its scope is restricted to
adjust the priorities of tasks competing for a processor, and the only refactoring
action is to change the allocation of tasks to processors.

Bondarev et al. in [23] presented a design space exploration framework for
component-based software systems. It allows an architect to get insight into a
space of possible design alternatives with further evaluation and comparison of
these alternatives. However, it requires a manual definition of design alterna-
tives of software and hardware architectures, and it is meant to only identify
bottlenecks.

Ipek et al. in [24] described an approach to automatically explore the design
space for hardware architectures, such as multiprocessors or memory hierarchies.
The multiple design space points are simulated and the results are used to train
a neural network. Such network can be solved quickly for different architecture
candidates and delivers accurate results with a prediction error of less than 5%.
However, the approach is limited to hardware properties, it is not suitable for
the analysis of software architectural models that usually spread on a wide rage
of features.

2.4 Metaheuristic Approaches

Canfora et al. in [25] used genetic algorithms for Quality of Service (QoS)-aware
service composition, i.e. to determine a set of concrete services to be bound to the
abstract ones in the workflow of a composite service. However, each basic service
is considered as a black-box element, where performance metrics are fixed to
certain units, and the genetic algorithms search the best solutions by evaluating
the composition options. Hence, no real feedback is given to the designer with
the exception of a pre-defined selection of basic services.

Aleti et al. in [26] presented a framework for the optimization of embedded
system architectures. In particular, it uses the AADL (Architecture Analysis and
Description Language) [29] as the underlying architecture description language
and provides plug-in mechanisms to replace the optimization engine, the quality
evaluation algorithms and the constraints checking. Architectural models are
optimized with evolutionary algorithms considering multiple arbitrary quality
criteria. However, the only refactoring action the framework currently allows is
the component re-deployment.

Martens et al. in [27] used meta-heuristic search techniques for improving per-
formance, reliability, and costs of component-based software systems. In partic-
ular, evolutionary algorithms search the architectural design space for optimal
trade-offs by means of Pareto curves. However, this approach is quite time-
consuming, because it uses random changes (spanning on all feasible solutions)
of the architecture, and the optimality is not guaranteed.

298 V. Cortellessa, A. Di Marco, and C. Trubiani

3 Representation of Performance Antipatterns

Performance antipatterns were originally defined in natural language [10]. For
sake of simplification, Table 2 reports some examples (i.e. the Blob, the Con-
current Processing Systems, and the Empty Semi Trucks antipatterns [10]) that
will be used throughout this section as driving examples. In the table, the prob-
lem column identifies the system properties that define the antipattern and are
useful for detecting it3; the solution column suggests the architectural changes
for solving the antipattern.

Table 2. Some examples of Performance Antipatterns [10]

Antipattern Problem Solution

Blob Occurs when a single class or component ei-
ther 1) performs all of the work of an applica-
tion or 2) holds all of the applications data.
Either manifestation results in excessive mes-
sage traffic that can degrade performance.

Refactor the design to distribute intel-
ligence uniformly over the applications
top-level classes, and to keep related
data and behavior together.

Concurrent
Processing
Systems

Occurs when processing cannot make use of
available processors.

Restructure software or change schedul-
ing algorithms to enable concurrent ex-
ecution.

Empty Semi
Trucks

Occurs when an excessive number of requests
is required to perform a task. It may be due
to inefficient use of available bandwidth, an
inefficient interface, or both.

The Batching performance pattern
combines items into messages to make
better use of available bandwidth. The
Coupling performance pattern, Session
Facade design pattern, and Aggregate
Entity design pattern provide more ef-
ficient interfaces.

Starting from their textual description, in the following we provide a graphi-
cal representation of performance antipatterns (Section 3.1) in order to quickly
convey their basic concepts. The graphical representation (here visualized in
a UML-like notation) reflects our interpretation of the textual description of
performance antipatterns [10]. It is conceived to capture one reasonable illustra-
tion of both the antipattern problem and solution, but it does not claim to be
exhaustive. Either the problem or even more the solution description of antipat-
terns gives rise to a set of options that could be considered to refine the current
interpretation.

An antipattern identifies unwanted software and/or hardware properties, thus
an antipattern can be formulated as a (maybe complex) logical predicate on the
software architectural model elements. In fact, from the informal representation
of the problem (as reported in Table 2), a set of basic predicates (BPi) is built,
where each BPi addresses part of the antipattern problem specification. The
basic predicates are first described in a semi-formal natural language and then
formalized by means of first-order logics (Section 3.2).

3 Such properties refer to software and/or hardware architectural characteristics as
well as to the performance indices obtained by the analysis.

Software Performance Antipatterns: Modeling and Analysis 299

3.1 Graphical Representation of Performance Antipatterns

In this section we present the graphical representation of some performance
antipatterns, i.e. the Blob, the Concurrent Processing Systems, and the Empty
Semi Trucks4 [10].

We organize the software architectural model elements into views, each cap-
turing a different aspect of the system. Similarly to the Three-View Model [31],
we consider three different views representing three sources of information: the
Static View that captures the software elements (e.g. classes, components) and
the static relationships among them; the Dynamic View that represents the in-
teraction (e.g. messages) that occurs between the software entities elements to
provide the system functionalities; and finally the Deployment View that de-
scribes the hardware elements (e.g. processing nodes) and the mapping of the
software entities onto the hardware platforms.

Blob Antipattern

Figures 3 and 4 provide a graphical representation of the Blob antipattern in its
two forms, i.e. Blob-controller and Blob-dataContainer respectively.

The upper side of Figures 3 and 4 describes the properties of a Software Model
S with a BLOB problem: (a) Static View, a complex software entity instance, i.e.
Sx, is connected to other software instances, e.g. Sy and Sz , through many de-
pendencies (e.g. setData, getData, etc.); (b) Dynamic View, the software instance
Sx generates (see Figure 3) or receives (see Figure 4) excessive message traffic to
elaborate data managed by other software instances such as Sy; (c) Deployment
View, it includes two sub-cases: (c1) the centralized case, i.e. if the communicat-
ing software instances are deployed on the same processing node then a shared
resource will show high utilization value, i.e. $util; (c2) the distributed case,
i.e. if the communicating software instances are deployed on different processing
nodes then the network link will be a critical resource with a high utilization
value, i.e. $utilNet 5. The occurrence of such properties leads to assess that the
software resource Sx originates an instance of the Blob antipattern.

The lower side of Figures 3 and 4 contains the design changes that can be
applied according to the BLOB solution. The refactoring actions are: (a) the
number of dependencies between the software instance Sx and the surrounding
ones, like Sy and Sz, must be decreased by delegating some functionalities to the
surrounding instances; (b) the number of messages sent (see Figure 3) or received
(see Figure 4) by Sx must be decreased by moving the data management from Sx

to the surrounding software instances. As consequence of previous actions: (c1)
if the communicating software instances were deployed on the same hardware
resource then the latter will not be a critical resource anymore, i.e. $util′ �
$util; (c2) if the communicating software instances are deployed on different

4 Readers interested to the graphical representation of other antipatterns can refer to
[30].

5 The characterization of antipattern parameters related to system characteristics (e.g.
many usage dependencies, excessive message traffic) or to performance results (e.g.
high, low utilization) is based on thresholds values (see more details in Section 4).

300 V. Cortellessa, A. Di Marco, and C. Trubiani

Fig. 3. A graphical representation of the Blob-controller Antipattern

Software Performance Antipatterns: Modeling and Analysis 301

Fig. 4. A graphical representation of the Blob-dataContainer Antipattern

302 V. Cortellessa, A. Di Marco, and C. Trubiani

hardware resources then the network will not be a critical resource anymore, i.e.
$utilNet′ � $utilNet.

Concurrent Processing Systems Antipattern

Figure 5 provides a graphical representation of theConcurrent Processing Systems
antipattern.

Fig. 5. A graphical representation of the Concurrent Processing Systems Antipattern

The upper side of Figure 5 describes the system properties of a Software Model
S with a Concurrent Processing Systems problem: (a) Deployment View, there
are two processing nodes, e.g. PN1 and PN2, with un unbalanced processing,

Software Performance Antipatterns: Modeling and Analysis 303

i.e. many tasks are assigned to PN1 whereas PN2 is not so heavily used. The
over used processing node will show high queue length value ($ql 1, estimated as
the maximum value overall its hardware devices, i.e. $cpu(i) ql and $disk(j) ql),
and a high utilization value among its hardware entities either for cpus ($cpu 1,
estimated as the maximum value overall its cpu devices, i.e. $cpu(i) util), and
disks ($disk 1, estimated as the maximum value overall its disk devices, i.e.
$disk(j) util). The less used PN2 processing node will show low utilization value
among its hardware entities either for cpus ($cpu 2), and disks ($disk 2). The
occurrence of such properties leads to assess that the processing nodes PN1 and
PN2 originate an instance of the Concurrent Processing Systems antipattern.

The lower side of Figure 5 contains the design changes that can be applied
according to the Concurrent Processing Systems solution. The refactoring actions
are: (a) the software entity instances must be deployed in a better way, according
to the available processing nodes. As consequences of the previous action, if the
software instances are deployed in a balanced way then the processing node PN1

will not be a critical resource anymore, hence $ql 1′, $cpu 1′, $disk 1′ values
improves despite the $cpu 2′, $disk 2′ values.

Empty Semi Trucks Antipattern

Figure 6 provides a graphical representation of the Empty Semi Trucks antipat-
tern.

The upper side of Figure 6 describes the system properties of a Software Model
S with a Empty Semi Trucks problem: (a) Static View, there is a software entity
instance, e.g. Sx, retrieving some information from several instances (Srem1,
. . . , Sremn); (b) Dynamic View, the software instance Sx generates an excessive
message traffic by sending a big amount of messages of low sizes ($msgS), much
lower than the network bandwidth, hence the network link has a low utilization
value ($utilNet); (c) Deployment View, the processing node on which Sx is
deployed, i.e. PN1, reveals a high utilization value ($util). The occurrence of such
properties leads to assess that the software instance Sx originates an instance of
the Empty Semi Trucks antipattern.

The lower side of Figure 6 contains the design changes that can be applied
according to the Empty Semi Trucks solution. The refactoring action is: (a) the
communication between Sx and the remote instances must be restructured, mes-
sages are merged in bigger ones ($msgS′) to reduce the number of messages sent
over the network. As consequences of the previous action, if the information is ex-
changed with a smarter organization of the communication, then the utilization
of the processing node hosting Sx is expected to improve, i.e. $util′ � $util.

3.2 Logic-Based Representation of Performance Antipatterns

Logical predicates for antipatterns are aimed at defining conditions on specific
architectural model elements (e.g. number of interactions among software re-
sources, hardware resources throughput) that we had originally organized in an
XML Schema [30], and we here denote with the typewriter font.

304 V. Cortellessa, A. Di Marco, and C. Trubiani

Fig. 6. A graphical representation of the Empty Semi Trucks Antipattern

Software Performance Antipatterns: Modeling and Analysis 305

As shown in Section 3.1, the specification of model elements to describe an-
tipatterns is a quite complex task, because such elements can be of different
types: (i) elements of a software architectural model (e.g. software resource,
message, hardware resource); (ii) performance results (e.g. utilization of a net-
work resource); (iii) structured information that can be obtained by processing
the previous ones (e.g. the number of messages sent by a software resource to-
wards another one); (iv) bounds that give guidelines for the interpretation of the
system features (e.g. the upper bound for the network utilization).

These two latter model elements, i.e. structured information and bounds,
can be defined, respectively, by introducing supporting functions that elaborate
certain sets of system elements (represented in the predicates as FfuncName), and
thresholds that need to be compared with (observed) properties of the software
system (represented in the predicates as ThthresholdName).

In this section we present the logic-based representation of the performance
antipatterns graphically introduced in Section 3.1, that are Blob, Concurrent
Processing Systems, and Empty Semi Trucks6 [10].

Blob Antipattern

The Blob (or “god” class/component) antipattern [10] has the following problem
informal definition: “occurs when a single class either 1) performs all of the work
of an application or 2) holds all of the application’s data. Excessive message
traffic that can degrade performance” (see Table 2).

Following the graphical representation of Figures 3 and 4, we formalize this
sentence with four basic predicates: the BP1 predicate whose elements belong to
the Static View; the BP2 predicate whose elements belong to the Dynamic View;
and finally the BP3 and BP4 predicates whose elements belong to Deployment
View.

BP1- Two cases can be identified for the occurrence of the blob antipattern.
In the first case there is at least one SoftwareEntityInstance, e.g. swEx,

such that it “performs all of the work of an application”, while relegating other
instances to minor and supporting roles. Let us define by FnumClientConnects

the function that counts how many times the software entity instance swEx

is in a Relationship with other software entity instances by assuming swEx

as client. The property of performing all the work of an application can be
checked by comparing the output value of the FnumClientConnects function with
the ThmaxConnects threshold:

FnumClientConnects(swEx) ≥ ThmaxConnects (1)

In the second case there is at least one SoftwareEntityInstance, e.g. swEx,
such that it “holds all of the application’s data”. Let us define the function
FnumSupplierConnects that counts how many times the software entity instance
swEx is in a Relationship with other software entity instances by assuming
swEx as supplier. The property of holding all of the application’s data can be

6 Readers interested to the logic-based representation of other antipatterns can refer
to [30].

306 V. Cortellessa, A. Di Marco, and C. Trubiani

checked by comparing the output value of the FnumSupplierConnects function with
the ThmaxConnects threshold:

FnumSupplierConnects(swEx) ≥ ThmaxConnects (2)

BP2 - swEx performs most of the business logics in the system or holds all
the application’s data, thus it generates or receives excessive message traffic.
Let us define by FnumMsgs the function that takes in input a software entity
instance with a senderRole, a software entity instance with a receiverRole,
and a Service S, and returns the multiplicity of the exchanged Messages. The
property of excessive message traffic can be checked by comparing the output
value of the FnumMsgs function with the ThmaxMsgs threshold in both directions:

FnumMsgs(swEx, swEy, S) ≥ ThmaxMsgs (3a)

FnumMsgs(swEy , swEx, S) ≥ ThmaxMsgs (3b)

The performance impact of the excessive message traffic can be captured by
considering two cases. The first case is the centralized one (modeled by the BP3

predicate), i.e. the blob software entity instance and the surrounding ones are
deployed on the same processing node, hence the performance issues due to the
excessive load may come out by evaluating the utilization of such processing
node. The second case is the distributed one (modeled by the BP4 predicate),
i.e. the Blob software entity instance and the surrounding ones are deployed on
different processing nodes, hence the performance issues due to the excessive
message traffic may come out by evaluating the utilization of the network links.

BP3- The ProcesNode Pxy on which the software entity instances swEx and
swEy are deployed shows heavy computation. That is, the utilization of a
hardware entity of the ProcesNodePxy exceeds a certain ThmaxHwUtil threshold.
For the formalization of this characteristic, we use the FmaxHwUtil function that
has two input parameters: the processing node, and the type of HardwareEn-

tity, i.e. ’cpu’, ’disk’, or ’all’ to denote no distinction between them. In this
case the FmaxHwUtil function is used to determine the maximum Utilization

among ’all’ the hardware entities of the processing node. We compare such value
with the ThmaxHwUtil threshold:

FmaxHwUtil(Pxy, all) ≥ ThmaxHwUtil (4)

BP4- The ProcesNode PswEx on which the software entity instance swEx is
deployed, shows a high utilization of the network connection towards the Proces
Node PswEy on which the software entity instance swEy is deployed. Let us
define by FmaxNetUtil the function that provides the maximum value of the
usedBandwidth overall the network links joining the processing nodes PswEx and
PswEy . We must check if such value is higher than the ThmaxNetUtil threshold:

FmaxNetUtil(PswEx , PswEy) ≥ ThmaxNetUtil (5)

Summarizing, the Blob (or “god” class/component) antipattern occurs when the
following composed predicate is true:

Software Performance Antipatterns: Modeling and Analysis 307

∃swEx, swEy ∈ swE, S ∈ S | ((1) ∨ (2)) ∧ ((3a) ∨ (3b)) ∧ ((4) ∨ (5))

where swE represents the SoftwareEntityInstances, and S represents the Ser-
vices in the software system. Each (swEx, swEy , S) instance satisfying the
predicate must be pointed out to the designer for a deeper analysis, because it
represents a Blob antipattern.

Concurrent Processing Systems Antipattern

The Concurrent Processing Systems antipattern [10] has the following problem
informal definition: “occurs when processing cannot make use of available pro-
cessors” (see Table 2).

Following the graphical representation of Figure 5, we formalize this sentence
with three basic predicates: the BP1, BP2, BP3 predicates whose elements be-
long to the Deployment View. In the following, we denote with P the set of the
ProcesNode instances in the system.

BP1 - There is at least one ProcesNode in P, e.g. Px, having a large Queue-
Length. Let us define by FmaxQL the function providing the maximum Queue-

Length among all the hardware entities of the processing node. The first
condition for the antipattern occurrence is that the value obtained from FmaxQL

is greater than the ThmaxQL threshold:

FmaxQL(Px) ≥ ThmaxQL (6)

BP2 - Px has a heavy computation. This means that the utilizations of some
hardware entities in Px (i.e. cpu, disk) exceed predefined limits. We use the
already defined FmaxHwUtil to identify the highest utilization of cpu(s) and
disk(s) in Px, and then we compare such utilizations to the ThmaxCpuUtil and
ThmaxDiskUtil thresholds:

FmaxHwUtil(Px, cpu) ≥ ThmaxCpuUtil (7a)

FmaxHwUtil(Px, disk) ≥ ThmaxDiskUtil (7b)

BP3- The processing nodes are not used in a well-balanced way, as there is
at least another instance of ProcesNode in P, e.g. Py, whose Utilization of
the hardware entities, differentiated according to their type (i.e. cpu, disk), is
smaller than the one in Px. In particular two new thresholds, i.e. ThminCpuUtil

and ThminDiskUtil , are introduced:

FmaxHwUtil(Py , cpu) < ThminCpuUtil (8a)

FmaxHwUtil(Py, disk) < ThminDiskUtil (8b)

Summarizing, the Concurrent Processing Systems antipattern occurs when the
following composed predicate is true:

∃Px, Py ∈ P | (6) ∧ [((7a) ∧ (8a)) ∨ ((7b) ∧ ((8b)))]

308 V. Cortellessa, A. Di Marco, and C. Trubiani

where P represents the set of all the ProcesNodes in the software system. Each
(Px, Py) instance satisfying the predicate must be pointed out to the designer
for a deeper analysis, because it represents a Concurrent Processing Systems
antipattern.

Empty Semi Trucks Antipattern

The Empty Semi Trucks antipattern [10] has the following problem informal
definition: “occurs when an excessive number of requests is required to perform
a task. It may be due to inefficient use of available bandwidth, an inefficient
interface, or both” (see Table 2).

Following the graphical representation of Figure 6, we formalize this sen-
tence with three basic predicates: the BP1 predicate whose elements belong to
the Dynamic View; the BP2 and BP3 predicates whose elements belong to the
Deployment View.

BP1 - There is at least one SoftwareEntityInstance swEx that exchanges
an excessive number of Messages with remote software entities. Let us define by
FnumRemMsgs the function that calculates the number of remote messages sent
by swEx in a Service S. The antipattern can occur when this function returns
a value higher or equal than the ThmaxRemMsgs threshold:

FnumRemMsgs(swEx, S) ≥ ThmaxRemMsgs (9)

BP2- The inefficient use of available bandwidth means that the SoftwareEn-

tityInstance swEx sends a high number of messages without optimizing the
network capacity. Hence, the ProcesNode PswEx , on which the software entity
instance swEx is deployed, reveals an utilization of the network lower than the
ThminNetUtil threshold. We focus on the NetworkLink(s) that connect PswEx

to the whole system, i.e. the ones having PswEx as their EndNode. Since we are
interested to the network links on which the software instance swEx generates
traffic, we restrict the whole set of network links to the ones on which the inter-
actions of the software instance swEx with other communicating entities take
place:

FmaxNetUtil(PswEx , swEx) < ThminNetUtil (10)

BP3- The inefficient use of interface means that the software instance swEx

communicates with a certain number of remote instances, all deployed on the
same remote processing node. Let us define by FnumRemInst the function that
provides the maximum number of remote instances with which swEx communi-
cates in the service S. The antipattern can occur when this function returns a
value higher or equal than the ThmaxRemInst threshold:

FnumRemInst(swEx, S) ≥ ThmaxRemInst (11)

Summarizing, the Empty Semi Trucks antipattern occurs when the following
composed predicate is true:

∃swEx ∈ swE, S ∈ S | (9) ∧ ((10) ∨ (11))

Software Performance Antipatterns: Modeling and Analysis 309

where swE represents the SoftwareEntityInstances, and S represents the Ser-
vices in the software system. Each (swEx, S) instance satisfying the predicate
must be pointed out to the designer for a deeper analysis, because it represents
an Empty Semi Trucks antipattern.

Finally, Table 3 lists the logic-based representation of all the performance an-
tipatterns we consider. Each row represents a specific antipattern that is charac-
terized by two attributes: antipattern name, and its formula, i.e. the first order
logics predicate modeling the corresponding antipattern problem.

The list of performance antipatterns has been here enriched with an addi-
tional attribute. As shown in the leftmost part of Table 3, we have partitioned
antipatterns in two different categories: antipatterns detectable by single values
of performance indices (such as mean, max or min values), named as Single-value
Performance Antipatterns, and antipatterns requiring the trend (or evolution) of
the performance indices during the time to capture the performance problems in
the software system, named as Multiple-values Performance Antipatterns. The
mean, max or min values are not sufficient to define the latter category of an-
tipatterns, unless these values refer to several observation time frames. Due to
these characteristics, the performance indices needed to detect such antipatterns
must be obtained via simulation or monitoring.

Note that the formalization of antipatterns is the result of multiple formula-
tions and checks. This is a first attempt to formally define antipatterns and it
may be subject to some refinements. However, the logic-based formalization was
meant to demonstrate the potential for a machine-processable management of
performance antipatterns.

4 Detection and Solution of Performance Antipatterns

In this section we apply the antipattern-based approach to an Electronic Com-
merce System (ECS) case study, modeled with the Unified Modeling Language
(UML) [32]. Figure 7 customizes the approach of Figure 1 to the specific method-
ologies adopted for this case study.

ECS has been modeled with UML annotated with the MARTE profile7 [33]
that provides all the information we need for reasoning on performance issues.
The transformation from the software architectural model to the performance
model is performed with PRIMA-UML, i.e. a methodology that generates Queue-
ing Network models from UML models [34]. Once the Queueing Network (QN)
model is derived, classical QN solution techniques based on well-known method-
ologies [35], such as Mean Value Analysis (MVA), can be applied to solve it. The
performance model is analyzed to obtain the performance indices of interest (i.e.
response time, utilization, throughput, etc.).

The UML model and the performance indices are joined in an XML repre-
sentation8 of the ECS, parsed by a detection engine that provides the critical

7 MARTE provides stereotypes and tags to annotate UML models with information
required to perform performance analysis.

8 The XML representation of the ECS can be viewed in
http://www.di.univaq.it/catia.trubiani/phDthesis/ECS.xml

http://www.di.univaq.it/catia.trubiani/phDthesis/ECS.xml

310 V. Cortellessa, A. Di Marco, and C. Trubiani

Table 3. A logic-based representation of Performance Antipatterns

Antipattern Formula

Blob (or god class/component) ∃swEx, swEy ∈ swE, S ∈ S | (FnumClientConnects(swEx) ≥
ThmaxConnects ∨ FnumSupplierConnects(swEx) ≥
ThmaxConnects) ∧ (FnumMsgs(swEx, swEy, S) ≥
ThmaxMsgs ∨ FnumMsgs(swEy, swEx, S) ≥ ThmaxMsgs)
∧ (FmaxHwUtil(Pxy, all) ≥ ThmaxHwUtil ∨
FmaxNetUtil(PswEx , PswEy) ≥ ThmaxNetUtil)

Concurrent
Processing
Systems

∃Px, Py ∈ P | FmaxQL(Px) ≥ ThmaxQL ∧
[(FmaxHwUtil(Px, cpu) ≥ ThmaxCpuUtil ∧
FmaxHwUtil(Py , cpu) < ThminCpuUtil) ∨
(FmaxHwUtil(Px, disk) ≥ ThmaxDiskUtil ∧
(FmaxHwUtil(Py , disk) < ThminDiskUtil))]

S
in
g
le
-v
a
lu
e

Unbalanced
Processing

“Pipe and
Filter” Ar-
chitectures

∃OpI ∈ O, S ∈ S | ∀i : FresDemand(Op)[i] ≥
ThresDemand[i] ∧ FprobExec(S,OpI) = 1 ∧
(FmaxHwUtil(PswEx , all) ≥ ThmaxHwUtil ∨ FT (S) <
ThSthReq)

Extensive
Processing

∃OpI1, OpI2 ∈ O, S ∈ S | ∀i : FresDemand(Op1)[i] ≥
ThmaxOpResDemand[i] ∧ ∀i : FresDemand(Op2)[i] <
ThminOpResDemand[i] ∧ FprobExec(S,OpI1) +
FprobExec(S,OpI2) = 1 ∧ (FmaxHwUtil(PswEx , all) ≥
ThmaxHwUtil ∨ FRT (S) > ThSrtReq)

Circuitous Treasure Hunt ∃swEx, swEy ∈ swE, S ∈ S | swEy.isDB =
true ∧ FnumDBmsgs(swEx, swEy, S) ≥ ThmaxDBmsgs ∧
FmaxHwUtil(PswEy , all) ≥ ThmaxHwUtil ∧
FmaxHwUtil(PswEy , disk) > FmaxHwUtil(PswEy , cpu)

Empty Semi Trucks ∃swEx ∈ swE, S ∈ S | FnumRemMsgs(swEx, S) ≥
ThmaxRemMsgs ∧ FmaxNetUtil(PswEx , swEx) <
ThminNetUtil ∨ FnumRemInst(swEx, S) ≥ ThmaxRemInst)

Tower of Babel ∃swEx ∈ swE, S ∈ S | FnumExF (swEx, S) ≥ ThmaxExF ∧
FmaxHwUtil(PswEx , all) ≥ ThmaxHwUtil

One-Lane Bridge ∃swEx ∈ swE, S ∈ S | FnumSynchCalls(swEx, S) �
FpoolSize(swEx) ∧ FserviceTime(PswEx) �
FwaitingT ime(PswEx) ∧ FRT (S) > ThSrtReq

Excessive Dynamic Allocation ∃S ∈ S | (FnumCreatedObj (S) ≥ ThmaxCrObj ∨
FnumDestroyedObj (S) ≥ ThmaxDeObj) ∧ FRT (S) >
ThSrtReq

Traffic Jam ∃OpI ∈ O |
∑

1≤t≤k|(FRT (OpI,t)−FRT (OpI,t−1))|
k−1 <

ThOpRtV ar∧FRT (OpI, k)−FRT (OpI, k−1) > ThOpRtV ar∧
∑

k≤t≤n|(FRT (OpI,t)−FRT (OpI,t−1))|
n−k < ThOpRtV ar

The Ramp
∃Op ∈ O |

∑
1≤t≤n|(FRT (OpI,t)−FRT (OpI,t−1))|

n >

ThOpRtV ar ∧
∑

1≤t≤n|(FT (OpI,t)−FT (OpI,t−1))|
n >

ThOpThV ar

M
u
lt
ip
le
-v
a
lu
e
s

More is Less ∃Px ∈ P | ∀i : Fpar(Px)[i] �
∑

1≤t≤N (FRTpar(Px,t)[i]−FRTpar(Px,t−1)[i])

N

Software Performance Antipatterns: Modeling and Analysis 311

Fig. 7. ECS case study: customized software performance process

elements in architectural models representing the source of performance prob-
lems as well as a set of refactoring actions to overcome such issues.

The rest of this section is organized as follows. Section 4.1 describes the
UML model of the system under analysis. Then, the stepwise application of
our antipattern-based process is performed, i.e. the detection of antipatterns
(see Section 4.2) and their solution (see Section 4.3). Finally, in Section 4.4 we
briefly discuss a technique to optimize the antipatterns solution process.

4.1 Electronic Commerce System

Figure 8 shows an overview of the ECS software system. It is a web-based sys-
tem that manages business data: customers browse catalogs and make selections
of items that need to be purchased; at the same time, suppliers can upload
their catalogs, change the prices and the availability of products, etc. The ser-
vices we analyze here are browseCatalog and makePurchase. The former can be
perfomance-critical because it is required by a large number of (registered and
not registered) customers, whereas the latter can be perfomance-critical because
it requires several database accesses that can drop the system performance.

In Figures 9 and 10 we report an excerpt of the ECS annotated software archi-
tectural model. We use UML 2.0 [32] as modeling language and MARTE [33] to
annotate additional information for performance analysis (such as workload to
the system, service demands, hardware characteristics). In particular, the UML
Component Diagram in Figure 9 describes the software components and their
interconnections, whereas the UML Deployment Diagram of Figure 10 shows
the deployment of the software components on the hardware platform. The de-
ployment is annotated with the characteristics of the hardware nodes to specify
CPU attributes (speedFactor and schedPolicy) and network delay (blockT).

Performance requirements are defined for the ECS system on the response
time of the main services of the system (i.e. browseCatalog and makePurchase)
under a closed workload with a population of 200 requests/second, and thinking

312 V. Cortellessa, A. Di Marco, and C. Trubiani

system services

uploadCatalog

manageProducts

deliverOrder

makePurchase

browseCatalog

login

invoiceOrder

register

supplier

customer

bank

<<include>>

Fig. 8. ECS case study: UML Use Case Diagram

time of 0.01 seconds. The requirements are defined as follows: the browseCata-
log service must be performed in 1.2 seconds, whereas the makePurchase in 2
seconds. These values represent the upper bound for the services they refer to.

The Prima-UML methodology requires the modeling of: (i) system require-
ments with a UML Use Case Diagram, (ii) the software dynamics with UML
Sequence Diagrams, and (iii) the software-to-hardware mapping with a UML
Deployment Diagram. The Use Case Diagram must be annotated with the oper-
ational profile, the Sequence Diagram with service demands and message size of
each operation, and the Deployment Diagram with the characteristics of hard-
ware nodes (see more details in [34]).

Figure 11 shows the Queueing Network model produced for ECS. It includes:
(i) a set of queueing centers (e.g. webServerNode, libraryNode, etc.) representing
the hardware resources of the system, a set of delay centers (e.g. wan1, wan2,
etc.) representing the network communication delays; (ii) two classes of jobs,
i.e. browseCatalog (class A, denoted with a star symbol in Figure 11) is invoked
with a probability of 99%, and makePurchase (class B, denoted with a bullet
point in Figure 11) is invoked with a probability of 1%.

The parametrization of the Queueing Network model for the ECS case study
is summarized in Table 4. In particular the input parameters of the QN are
reported: the first column contains the service center names, the second column
shows their corresponding service rates for each class of job (i.e. class A and
class B).

Table 5 summarizes the performance analysis results of the ECS Queueing
Network model: the first column contains the names of requirements; the second
column reports their required values; the third column shows their predicted
values, as obtained from the QN solution. As it can be noticed both services
have a response time that does not fulfill the required ones: the browseCatalog

Software Performance Antipatterns: Modeling and Analysis 313

Fig. 9. ECS case study: UML Component Diagram

314 V. Cortellessa, A. Di Marco, and C. Trubiani

Fig. 10. ECS case study: UML Deployment Diagram

Fig. 11. ECS - Queueing Network model

Software Performance Antipatterns: Modeling and Analysis 315

Table 4. Input parameters for the queueing network model in the ECS system

Input parameters
Service Center ECS

classA classB
lan 44 msec 44 msec

wan 208 msec 208 msec

webServerNode 2 msec 4 msec

libraryNode 7 msec 16 msec

controlNode 3 msec 3 msec

db cpu 15 msec 30 msec

db disk 30 msec 60 msec

Table 5. Response time requirements for the ECS software architectural model

Required Predicted Value
Requirement Value ECS

RT(browseCatalog) 1.2 sec 1.5 sec

RT(makePurchase) 2 sec 2.77 sec

service has been predicted as 1.5 sec, whereas the makePurchase service has
been predicted as 2.77 sec. Hence we apply our approach to detect performance
antipatterns.

As said in Section 3.2, basic predicates contain boundaries that need to be
actualized on each specific software architectural model. Table 6 reports the

Table 6. ECS- antipatterns boundaries binding

antipattern parameter value

Blob ThmaxConnect 4
ThmaxMsgs 18
ThmaxHwUtil 0.75
ThmaxNetUtil 0.85

CPS ThmaxQueue 40
ThcpuMaxUtil 0.8
ThdiskMaxUtil 0.7
ThcpuMinUtil 0.3
ThdiskMinUtil 0.4

EST ThremMsgs 12
ThremInst 5
ThminNetUtil 0.3

.

316 V. Cortellessa, A. Di Marco, and C. Trubiani

binding of the performance antipatterns boundaries for the ECS system9. Such
values allow to set the basic predicates, thus to proceed with the actual detection.

4.2 Detecting Antipatterns

The detection of antipatterns is performed by running a detection engine on the
XML representation of the ECS software architectural model. This leaded to
detect three antipatterns occurrences in the model, that are: Blob, Concurrent
Processing Systems, and Empty Semi Trucks.

Fig. 12. ECS- the Blob antipattern occurrence

In Figure 12 we illustrate an excerpt of the ECS software architectural model
where we highlight, in the shaded boxes, the parts of the model that give ev-
idence to the Blob antipattern occurrence. Such antipattern is detected since
the instance lc1 of the component libraryController satisfies all the Blob logi-
cal predicates. In particular (see Table 6 and Figure 12): (a) it has more than

9 Readers interested to the heuristics used to set antipatterns boundaries can refer to
[30].

Software Performance Antipatterns: Modeling and Analysis 317

Fig. 13. ECS- the Concurrent Processing Systems antipattern occurrence

4 usage dependencies towards the instance bl1 of the component bookLibrary;
(b) it sends more than 18 messages (not shown in Figure 12 for sake of space);
(c) the component instances (i.e. lc1 and bl1) are deployed on different nodes,
and the LAN communication host has an utilization (i.e. 0.92), higher than the
threshold value (0.85).

In Figure 13 we illustrate an excerpt of the ECS software architectural model
where we highlight, in the shaded boxes, the parts of the model that give evidence
to the CPS antipattern occurrence. Such antipattern is detected the instances
libraryNode and webServerNode satisfy all the CPS logical predeicates. In par-
ticular (see Table 6 and Figure 13): (a) the queue size of libraryNode (i.e. 50)
is higher than the threshold value of 40 ; (b) an unbalanced load among CPUs
does not occur, because the maximum utilization of CPUs in libraryNode (i.e.
0.82 in the lbNodeproc1 instance) is higher than 0.8 threshold value, but the
maximum utilization of CPUs in webServerNode (i.e. 0.42 in the wsNodeproc1
instance) is not lower than 0.3 threshold value; (c) an unbalanced load among
disks occurs, in fact the maximum utilization of disks in libraryNode (i.e. 0.78
in the lbNodemem1 instance), is higher than the threshold value of 0.7, and the
maximum utilization of disks in webServerNode (i.e. 0.35 in the wsNodemem1

instance), is lower than the threshold value of 0.4.
In Figure 14 we illustrate an excerpt of the ECS software architectural model

where we highlight, in the shaded boxes, the parts of the model that give evidence

318 V. Cortellessa, A. Di Marco, and C. Trubiani

Fig. 14. ECS- the Empty Semi Trucks antipattern occurrence

Software Performance Antipatterns: Modeling and Analysis 319

to the EST antipattern occurrence. Such antipattern occurs since the instance
uc1 of the userController component satisfies all the EST logical predicates. In
particular (see Table 6 and Figure 14): (a) it sends more than 12 remote messages
(not shown in Figure 14 for sake of space); (b) the component instances are
deployed on different nodes, and the communication host utilization (i.e. 0.25 in
the wan instance) is lower than the 0.3 threshold value; (c) it communicates with
more than 5 remote instances (ce1, . . . , ce8) of the catalogEngine component.

4.3 Solving Antipatterns

In Table 7 we have tailored the textual descriptions (see Table 2) on antipattern
instances detected on ECS.

Table 7. ECS Performance Antipatterns: problem and solution

Antipattern Problem Solution

Blob libraryController performs most of
the work, it generates excessive
message traffic.

Refactor the design to keep related
data and behavior together. Dele-
gate some work from libraryCon-
troller to bookLibrary.

Concurrent
Processing
Systems

Processing cannot make use of the
processor webServerNode.

Restructure software or change
scheduling algorithms between
processors libraryNode and web-
ServerNode.

Empty Semi
Trucks

An excessive number of requests
is performed for the makePurchase
service.

Combine items into messages to
make better use of available band-
width.

According to Table 7, we have refactored the ECS (annotated) software ar-
chitectural model obtaining three new software architectural models, namely
ECS� {blob}, ECS� {cps}, and ECS� {est}, where the Blob, the Concurrent
Processing Systems and the Empty Semi Trucks antipatterns have been solved,
respectively.

Figure 15 shows the software model ECS � {blob} where the Blob antipat-
tern is solved by modifying the inner behavior of the libraryController software
component, thus it delegates some work to the bookLibrary component and the
logical predicates are not valid anymore. The Concurrent Processing Systems an-
tipattern is solved by re-deploying the software component userController from
libraryNode to webServerNode. The Empty Semi Trucks antipattern is solved by
modifying the inner behavior of the userController component in the communi-
cation with the catalogEngine component for the makePurchase service.

ECS� {blob}, ECS� {cps}, and ECS� {est} systems have been separately
analyzed. Input parameters are reported in Table 8 where bold numbers repre-
sent the changes induced from the solution of the corresponding antipatterns.

320 V. Cortellessa, A. Di Marco, and C. Trubiani

Fig. 15. ECS � {blob}- the Blob antipattern refactoring

For example, in the column ECS � {cps} we can notice that the service
centers webServerNode and libraryNode have different input values, since the re-
deployment of the software component userController implies to move the load
from libraryNode to webServerNode.

In case of class A, the load is estimated of 2 msec, in fact in libraryNode the
initial value of 2 msec in ECS (see Table 4) is increased by 2 msec, thus to become
4 msec in ECS � {cps} (see Table 8), whereas in webServerNode the initial value
of 7 msec in ECS (see Table 4) is decreased by 2 msec, thus to become 5 msec in
ECS � {cps} (see Table 8). In case of class B, the load is estimated of 8 msec, in
fact in libraryNode the initial value of 4 msec in ECS (see Table 4) is increased
by 8 msec, thus to become 12 msec in ECS � {cps} (see Table 8), whereas in
webServerNode the initial value of 16 msec in ECS (see Table 4) is decreased by
8 msec, thus to become 8 msec in ECS � {cps} (see Table 8).

Table 9 summarizes the performance analysis results obtained by solving the
QN models of the new ECS systems (i.e. ECS � {blob}, ECS � {cps}, and
ECS � {est} columns), and by comparing them with the results obtained from
the analysis of the initial system (i.e. ECS column). The response time of the
browseCatalog service is 1.14, 1.15, and 1.5 seconds, whereas the response time
of the makePurchase service is 2.18, 1.6, and 2.24 seconds, across the different
reconfigurations of the ECS architectural model.

Software Performance Antipatterns: Modeling and Analysis 321

Table 8. Input parameters for the queueing network model across different software
architectural models

Input parameters
Service Center ECS � {cps} ECS � {est} ECS � {blob}

classA classB classA classB classA classB
lan 44 msec 44 msec 44 msec 44 msec 44 msec 44 msec

wan 208 msec 208 msec 208 msec 208 msec 208 msec 208 msec

webServerNode 4 msec 12 msec 2 msec 4 msec 2 msec 4 msec

libraryNode 5 msec 8 msec 7 msec 12 msec 5 msec 14 msec

controlNode 3 msec 3 msec 3 msec 3 msec 3 msec 3 msec

db cpu 15 msec 30 msec 15 msec 30 msec 15 msec 30 msec

db disk 30 msec 60 msec 30 msec 60 msec 30 msec 60 msec

Table 9. Response time required and observed

Required Predicted Value
Requirement Value ECS ECS � {blob} ECS � {cps} ECS � {est}

RT(browseCatalog) 1.2 sec 1.5 sec 1.14 sec 1.15 sec 1.5 sec

RT(makePurchase) 2 sec 2.77 sec 2.18 sec 1.6 sec 2.24 sec

The solution of the Blob antipattern satisfies the first requirement, but not the
second one. The solution of the Concurrent Processing System leads to satisfy
both requirements. Finally, the Empty Semi Trucks solution was useless for the
first requirement as no improvement was carried out, but it was quite beneficial
for the second one, even if both of them were not fulfilled.

We can conclude that the software architectural model candidate that best
fits with user needs is obtained by applying the following refactoring action:
the userController software component is re-deployed from libraryNode to web-
ServerNode, i.e. the solution of the Concurrent Processing Systems antipattern.
In fact, as shown in Table 9 both requirements have been fulfilled by its solution,
i.e. the fulfilment termination criterion (see Section 1). The experimental results
are promising, and other decisions can be taken by looking at these results, as
opposite to the common practice where software architects use to blindly act
without this type of information.

4.4 A Step Ahead in the Antipatterns Solution

In this section the problem of identifying, among a set of detected performance
antipattern instances, the ones that are the real causes of problems (i.e. the
“guilty” ones) is tackled. In particular, it is introduced a process to elaborate
the performance analysis results and to score performance requirements, model
entities and performance antipattern instances. The cross observation of such
scores allows to classify the level of guiltiness of each antipattern.

322 V. Cortellessa, A. Di Marco, and C. Trubiani

Figure 16 reports the process that we propose: the goal is to modify a soft-
ware architectural model in order to produce a model candidate where the per-
formance problems of the former have been removed. Shaded boxes of Figure 16
represent the ranking step that is object of this section.

Fig. 16. A process to improve the performance analysis interpretation

The typical inputs of the detection engine are: the software architectural
model, the performance results, and the performance antipatterns representa-
tion (see Figure 1). We here also report performance requirements (label 5.d)
because they will be used in the ranking step. We obtain two types of outputs
from the detection step: (i) a list of violated requirements as resulting from the
analysis, and (ii) a complete antipatterns list. If no requirement is violated by
the current software architectural model then the process terminates.

Then we compare the complete antipatterns list with the violated require-
ments and examine relationships between detected antipattern instances and
each violated requirement through the system entities involved in them. We ob-
tain a filtered antipatterns list, where instances that do not affect any violated
requirement have been filtered out.

On the basis of relationships observed before, we estimate how guilty an an-
tipattern instance is with respect to a violated requirement by calculating a
guiltiness score. As a result, we obtain a ranked antipatterns list for each violated
requirement. Finally, candidates software architectural model can be obtained
by applying the solutions of one or more high-ranked antipattern instances to
the current software architectural model for each violated requirement10.

10 For sake of space we do not detail this approach here, but interested readers can
refer to [36].

Software Performance Antipatterns: Modeling and Analysis 323

5 Plugging Antipatterns in a Model-Driven Framework

In this section we discuss the problem of interpreting the performance analysis
results and generating architectural feedback by means of a model-driven frame-
work that supports the antipatterns management. The aim is to make use of all
basic and advanced model-driven techniques.

We recall that the main activities performed within such framework are: (i) rep-
resenting antipatterns (see Section 5.1), to define in a well-formed way the prop-
erties that lead the software system to reveal a bad practice, as well as the changes
that provide a solution; (i) detecting and solving antipatterns (see Section 5.2), to
actually locate and remove antipatterns in software models. Finally, Section 5.3
provides some afterthoughts about the model-driven framework.

5.1 Model-Driven Representation of Antipatterns

The activity of representing antipatterns is performed on this framework by in-
troducing a metamodel (i.e. a neutral and a coherent set of interrelated concepts)
to collect the system elements that occur in the definition of antipatterns (e.g.
software entity, network resource utilization, etc.), which is meant to be the basis
for a machine-processable definition of antipatterns.

This section briefly presents the metamodel, named Performance Antipattern
Modeling Language (PAML), that collects all the system elements identified by
analyzing the antipatterns definition in literature [10].

The PAML structure is shown in Figure 17. It is constituted of two main
parts as delimited by the horizontal dashed line: (i) the Antipattern Specifica-
tion collects the high-level features, such as the views of the system (i.e. static,
dynamic, deployment) and their boolean relationships; (ii) the Model Elements
Specification collects the concepts of the software architectural models and the
performance results.

All the architectural model elements and the performance indices occurring in
antipatterns’ specifications are grouped in a metamodel called SML+
(see Figure 17). SML+ shares many concepts with existing Software Modeling
Languages. However, it is not meant to be another modeling language, rather it
is oriented to specify the basic elements of performance antipatterns11.

An antipattern can be specified as a PAML-based model that is intended
to formalize its textual description (similarly to what we have done with the
logic-based representation of Section 3.2). For example, following the graphical
representation of the Blob antipattern (see Figure 3), the corresponding PAML-
based model will be constituted by an AntipatternSpecification with three
AntipatternViews: (a) the StaticView, (b) the DynamicView, (c) the Deploy-
mentView for which two AntipatternSubViews are defined, i.e. (c1) the central-
ized one and (c2) the distributed one. A BooleanRestriction can be defined

11 For sake of space we do not detail SML+ here. However, a restricted set of model
elements, such as software entity, processing node, etc., are shown in Figure 18, and
readers interested to the whole language can refer to [30].

324 V. Cortellessa, A. Di Marco, and C. Trubiani

Fig. 17. The Performance Antipattern Modeling Language (PAML) structure

between these sub-views, and the type is set by the BooleanOperator equal to
the OR value. Each subview will contain a set of ModelElements.

5.2 Model-Driven Detection and Solution of Antipatterns

The activities of detecting and solving antipatterns are performed on this frame-
work by translating the antipatterns representation into concrete modeling
notations. In fact, the modeling language used for the target system, i.e. the
(annotated) software architectural model of Figure 1, is of crucial relevance,
since the antipatterns neutral concepts must be translated into the actual con-
crete modeling language, if possible12.

Our model-driven framework is currently considering two concrete notations:
UML [32] plus MARTE profile [33]; and the Palladio Component Model (PCM)
[37]. Note that the subset of target modeling languages is being enlarged (e.g.
with an Architecture Description Language like Æmilia [38]) as far as the con-
cepts for representing antipatterns are available.

Figure 18 shows how the neutral specification of performance antipatterns in
PAML can be translated into concrete modeling languages. In fact, antipatterns
are built on a set of model elements belonging to SML+, i.e. the infrastructure
upon which constructing the semantic relations among different notations.

The semantic relations between a concrete modeling language and SML+
depend on the expressiveness of the target modeling language. For example, in

12 It depends on the expressiveness of the target modeling language.

Software Performance Antipatterns: Modeling and Analysis 325

Fig. 18. Translating antipatterns into concrete modeling languages

Fig. 19. Metamodel instantiation via weaving models

Figure 18 we can notice that a SoftwareEntity is respectively translated in a UML
Component, a PCM Basic Component, and an Æmilia ARCHI ELEM TYPE.
On the contrary, the ProcesNode translation is only possible to a UML Node and
a PCM Resource Container, whereas in Æmilia this concept remains uncovered.

We can therefore assert that in a concrete modeling language there are an-
tipatterns that can be automatically detected (i.e. when the entire set of SML+

326 V. Cortellessa, A. Di Marco, and C. Trubiani

model elements can be translated in the concrete modeling language) and other
ones that are not detectable (i.e. when a restricted set of model elements is
translated).

Weaving models [39] can be defined by mapping the concepts of SML+ into
the corresponding concepts of a concrete modeling language (as done in [40]
for different purposes, though). Weaving models represent useful instruments
in software modeling, as they can be used for setting fine-grained relationships
between models or metamodels and for executing operations based on the link
semantics.

Figure 19 depicts how weaving models define the correspondences among two
metamodels, hence the concepts in SML+ can be mapped on those of a concrete
notation (e.g. UML and MARTE profile).

The benefit of weaving models is that they can be used in automated trans-
formations to generate other artifacts. In fact it is possible to define high-
order transformations that, starting from the weaving models, can generate
metamodel-specific transformations that allow to embed the antipatterns in an
actual concrete modeling language.

Figure 20 shows how to automatically generate antipatterns models in con-
crete modeling languages with the usage of weaving models. The metamodel we
propose for antipatterns is PAML containing SML+ (box PAML[SML+]MM).
Performance antipatterns are defined as models conform to the PAML meta-
model (box PAML[SML+]M). Antipatterns models in concrete modeling lan-
guages can be automatically generated by using the high-order transformation T
that takes as input the weaving model WM specifying correspondences between
SML+ and a concrete notation (e.g. UML+MARTE) metamodel. Hence, perfor-
mance antipatterns in UML+MARTE are defined as models (box PAML[UML+
MARTE]M) conform to the PAML metamodel containing UML+MARTE (box
PAML[UML+MARTE]MM).

A first experimentation in this setting has been conducted in UML+MARTE
where antipatterns can be naturally expressed by means of OCL [41] expressions,
i.e. model queries with diagrammatic notations that correspond to first-order
predicates.

Fig. 20. Weaving model over different software modeling languages

Software Performance Antipatterns: Modeling and Analysis 327

Figure 21 shows the process that gives to each antipattern model an OCL-
based semantics, in a similar way to [42], and OCL detection code can be
automatically generated from the antipattern specification. The leftmost part
of the Figure 21 reports again the PAML metamodel (box PAML[UML +
MARTE]MM) and antipatterns models (box PAML[UML+MARTE]M) de-
fined in the UML+MARTE concrete modeling notation. Firstly, antipatterns
models are translated into intermediate models (box OCLM) conforming to the
OCL metamodel (box OCLMM) with a model-to-model transformation. The
OCL code is generated by using a model-to-text transformation, and it is used
to check software model elements, thus to actually perform the antipattern de-
tection. Note that the PAML metamodel provides semantics in terms of OCL: a
semantic anchoring [43] is realized by means of automated transformations that
map each antipattern model to an OCL expression.

Fig. 21. Tranforming PAML-based models in OCL code

5.3 Afterthoughts

The benefits of introducing a metamodel for representing antipatterns are mani-
fold: (i) expressiveness, as it currently contains all the concepts needed to specify
performance antipatterns introduced in [10]; (ii) usability, as it allows a user-
friendly representation of (existing and upcoming) performance antipatterns;
(iii) extensibility, i.e., if new antipatterns are based on additional concepts the
metamodel can be extended to introduce such concepts.

Note that the set of the antipatterns can be enlarged as far as the concepts
for representing new ones are available. Technology-specific antipatterns, such as
EJB and J2EE antipatterns [44] [45], can be also suited to check if the current
metamodel is reusable in domain-specific fields. For example, we retain that
the EJB Bloated Session Bean Antipattern [44] can be currently specified as a
PAML-based model, since it describes a situation in EJB systems where a session
bean has become too bulky, thus it is very similar to the Blob antipattern in the
Smith-Williams’ classification.

Currently PAML only formalizes the performance problems captured by an-
tipatterns. As future work we plan to complete PAML with a Refactoring Mod-
eling Language (RML) for formalizing the solutions in terms of refactorings,

328 V. Cortellessa, A. Di Marco, and C. Trubiani

i.e. changes of the original software architectural model. Such formalization may
be supported by high order transformations (similarly to what done for prob-
lems) that express the refactoring in concrete modeling languages.

The problem of refactoring architectural models is intrinsically complex and
requires specialized algorithms and notations to match the abstraction level of
models [46]. Recently, in [47, 48] two similar techniques have been introduced to
represent refactorings as difference models. Interestingly these proposals com-
bine the advantages of declarative difference representations and enable the re-
construction of the final model by means of automated transformations which
are inherently defined in the approaches.

6 Discussion and Conclusions

In this chapter we dealt with the automated generation of performance feedback
in software architectures. We devised a methodology to keep track of the perfor-
mance knowledge that usually tends to be fragmented and quickly lost, with the
purpose of interpreting the performance analysis results and suggesting the most
suitable architectural refactoring. Such knowledge base is aimed at integrating
different forms of data (e.g. architectural model elements, performance indices),
in order to support relationships between them and to manage the data over
time, while the development advances.

The performance knowledge that we have organized for reasoning on perfor-
mance analysis results can be considered as an application of data mining to the
software performance domain. It has been grouped around design choices and
analysis results concepts, thus to act as a data repository available to reason
on the performance of a software system. Performance antipatterns have been
of crucial relevance in this context since they represent the source of the con-
cepts to identify performance flaws as well as to provide refactorings in terms of
architectural alternatives.

6.1 Summary of Contributions

A list of the main scientific contributions is given in the following.

Specifying Performance Antipatterns. The activity of specifying antipat-
terns has been addressed in [15]: a structured description of the system elements
that occur in the definition of antipatterns has been provided, and performance
antipatterns have been modeled as logical predicates. Additionally, in [15] the
operational counterpart of the antipattern declarative definitions as logical pred-
icates has been implemented with a java rule-engine application. Such engine was
able to detect performance antipatterns in an XML representation of the soft-
ware system that grouped the software architectural model and the performance
results data.

A Model-Driven Approach for Antipatterns. A Performance Antipattern
Modeling Language (PAML), i.e. a metamodel specifically tailored to describe

Software Performance Antipatterns: Modeling and Analysis 329

antipatterns, has been introduced in [14]. Antipatterns are represented as PAML-
based models allows to manipulate their (neutral) specification. In fact in [14,
49] it has been also discussed a vision on how model-driven techniques (e.g.
weaving models [39], difference models [47]) can be used to build a notation-
independent approach that addresses the problem of embedding antipatterns
knowledge across different modeling notations.

Detecting and Solving Antipatterns in UML and PCM. The activities
of detecting and solving antipatterns have been currently implemented by defin-
ing the antipattern rules and actions into two modeling languages: (i) the UML
and MARTE profile notation in [50]; (ii) the PCM notation in [51]. In [50] per-
formance antipatterns have been automatically detected in UML models using
OCL [41] queries, but we have not yet automated their solution. In [51] a lim-
ited set of antipatterns has been automatically detected and solved in PCM
models through a benchmark tool. These experiences led us to investigate the
expressiveness of UML and PCM modeling languages by classifying the antipat-
terns in three categories: (i) detectable and solvable; (ii) semi-solvable (i.e. the
antipattern solution is only achieved with refactoring actions to be manually
performed); (iii) neither detectable nor solvable.

A Step Ahead in the Antipatterns Solution. Instead of blindly moving
among the antipattern solutions without eventually achieving the desired results,
a technique to rank the antipatterns on the basis of their guiltiness for violated
requirements has been defined in [52] [36], thus to decide how many antipatterns
to solve, which ones and in what order. Experimental results demonstrated the
benefits of introducing ranking techniques to support the activity of solving
antipatterns.

6.2 Open Issues and Future Work

There are several open issues in the current version of the framework and many
directions can be identified for future work.

6.2.1 Short/Medium Term Issues

Further Validation. The approach has to be more extensively validated in
order to determine the extent to which it can offer support to user activities.
The validation of the approach includes two dimensions: (i) it has to be exposed
to a set of target users, such as graduate students in a software engineering
course, model-driven developers, more or less experienced software architects, in
order to analyze its scope and usability; (ii) it has to be applied to complex case
studies by involving industry partners, in order to analyze its scalability. Such
experimentation is of worth interest because the final purpose is to integrate the
framework in the daily practices of the software development process.

Both the detection and the solution of antipatterns generate some pending
issues that give rise to short term goals.

330 V. Cortellessa, A. Di Marco, and C. Trubiani

The detection of antipatterns presents the following open issues:

Accuracy of Antipatterns Instances. The detection process may introduce
false positive/negative instances of antipatterns. We outlined some sources to
suitably tune the values of antipatterns boundaries, such as: (i) the system re-
quirements; (ii) the domain expert’s knowledge; (iii) the evaluation of the system
under analysis. However, threshold values inevitably introduce a degree of un-
certainty and extensive experimentation must be done in this direction. Some
fuzziness can be introduced for the evaluation of the threshold values [53]. It
might be useful to make antipattern detection rules more flexible, and to detect
the performance flaws with higher/lower accuracy.

Some metrics are usually used to estimate the efficiency of design patterns
detection, such as precision (i.e. measuring what fraction of detected pattern
occurrences are real) and recall (i.e. measuring what fraction of real occurrences
are detected). Such metrics do not apply for antipatterns because usually neg-
ative patterns are not explicitly documented in projects’ specifications, due to
their nature of revealing bad practices. A confidence value can be associated to an
antipattern to quantify the probability that the formula occurrence corresponds
to the antipattern presence.

Relationship between Antipatterns Instances. The detected instances
might be related to each other, e.g. one instance can be the generalization or
the specialization of another instance. A dependence value can be associated to
an antipattern to quantify the probability that its occurrence is dependent from
other antipatterns presence.

The solution of antipatterns presents the following open issues:

No Guarantee of Performance Improvements. The solution of one or more
antipatterns does not guarantee performance improvements in advance: the en-
tire process is based on heuristics evaluations. Applying a refactoring action re-
sults in a new software architectural model, i.e. a candidate whose performance
analysis will reveal if the action has been actually beneficial for the system under
study. However, an antipattern-based refactoring action is usually a correctness-
preserving transformation that does not alter the semantics of the application,
but it may improve the overall performance.

Dependencies of Performance Requirements. The application of antipat-
tern solutions leads the system to (probably) satisfy the performance require-
ments covered by such solutions. However, it may happen that a certain number
of other requirements get worse. Hence, the new candidate architectural model
must take into account at each stage of the process all the requirements, also
the previously satisfied ones.

Conflict between Antipattern Solutions. The solution of a certain number
of antipatterns cannot be unambiguously applied due to incoherencies among
their solutions. It may happen that the solution of one antipattern suggests to
split a component into three finer grain components, while another antipattern
at the same time suggests to merge the original component with another one.

Software Performance Antipatterns: Modeling and Analysis 331

These two actions obviously contradict each other, although no pre-existing re-
quirement limits their application. Even in cases of no explicit conflict between
antipattern solutions, coherency problems can be raised from the order of ap-
plication of solutions. In fact the result of the sequential application of two (or
more) antipattern solutions is not guaranteed to be invariant with respect to
the application order. Criteria must be introduced to drive the application or-
der of solutions in these cases. An interesting possibility may be represented
by the critical pairs analysis [54] that provides a mean to avoid conflicting and
divergent refactorings.

6.2.2 Long Term Issues

Lack of Model Parameters. The application of the antipattern-based ap-
proach is not limited (in principle) along the software lifecycle, but it is obvious
that an early usage is subject to lack of information because the system knowl-
edge improves while the development process progresses. Both the architectural
and the performance models may lack of parameters needed to apply the process.
For example, internal indices of subsystems that are not yet designed in details
cannot be collected. Lack of information, or even uncertainty, about model pa-
rameter values can be tackled by analyzing the model piecewise, starting from
sub-models, thus to bring insight on the missing parameters.

Influence of Domain Features. Different cross-cutting concerns such as the
workload, the operational profile, etc. usually give rise to different performance
analysis results that, in turn, may result in different antipatterns identified in
the system. This is a critical issue and, as usually in performance analysis exper-
iments, the choice of the workload(s) and operational profile(s) must be carefully
conducted.

Influence of Other Software Layers. We assume that the performance model
only takes into account the (annotated) software architectural model that usu-
ally contains information on the software application and hardware platform.
Between these two layers there are other components, such as different middle-
wares and operating systems, that can embed performance antipatterns. The
approach shall be extended to these layers for a more accurate analysis of the
system. An option can be to integrate benchmarks or models suitable for these
layers in our framework.

Limitations from Requirements. The application of antipattern solutions
can be restricted by functional or non-functional requirements. Example of func-
tional requirements may be legacy components that cannot be split and re-
deployed whereas the antipattern solution consists of these actions. Example
of non-functional requirements may be budget limitations that do not allow to
adopt an antipattern solution due to its extremely high cost. Many other exam-
ples can be provided of requirements that (implicitly or explicitly) may affect the
antipattern solution activity. For sake of automation such requirements should

332 V. Cortellessa, A. Di Marco, and C. Trubiani

be pre-defined so that the whole process can take into account them and pre-
ventively excluding infeasible solutions.

Consolidated Formalization of Performance Antipatterns. The Perfor-
mance Antipatterns Modeling Language (PAML) currently only formalizes the
performance problems captured by antipatterns. As future work we plan to com-
plete PAML with a Refactoring Modeling Language (RML) for formalizing the
solutions in terms of refactorings, i.e. changes of the original software architec-
tural model.

Note that the formalization of antipatterns reflects our interpretation of the
informal literature. Different formalizations of antipatterns can be originated by
laying on different interpretations. This unavoidable gap is an open issue in this
domain, and certainly requires a wider investigation to consolidate the formal
definition of antipatterns. Logical predicates of antipatterns can be further re-
fined by looking at probabilistic model checking techniques, as experimented in
[55].

Architectural Description Languages. The framework is currently consid-
ering two modeling notations: UML and PCM. In general, the subset of target
modeling languages can be enlarged as far as the concepts for representing an-
tipatterns are available; for example, architectural description languages such
as AADL [56] can be also suited to validate the approach. A first investigation
has been already conducted on how to specify, detect, and solve performance
antipatterns in the Æmilia architectural language [38], however it still requires
a deep experimentation.

Multi-objective Goals. The framework currently considers only the perfor-
mance goals of software systems. It can be extended to other quantitative quality
criteria of software architectures such as reliability, security, etc., thus to support
trade-off decisions between multiple quality criteria.

Acknowledgments. This work has been partially supported by VISION ERC
project (ERC-240555).

References

1. Smith, C.U., Millsap, C.V.: Software performance engineering for oracle applica-
tions: Measurements and models. In: Int. CMG Conference, Computer Measure-
ment Group, pp. 331–342 (2008)

2. Williams, L.G., Smith, C.U.: Software performance engineering: A tutorial intro-
duction. In: Int. CMG Conference, Computer Measurement Group, pp. 387–398
(2007)

3. Smith, C.U.: Introduction to Software Performance Engineering: Origins and
Outstanding Problems. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS,
vol. 4486, pp. 395–428. Springer, Heidelberg (2007)

4. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Software
Eng. 30, 126–139 (2004)

Software Performance Antipatterns: Modeling and Analysis 333

5. Woodside, C.M., Franks, G., Petriu, D.C.: The Future of Software Performance
Engineering. In: Briand, L.C., Wolf, A.L. (eds.) FOSE, pp. 171–187 (2007)

6. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-Based Performance
Prediction in Software Development: A Survey. IEEE Trans. Software Eng. 30,
295–310 (2004)

7. Cortellessa, V., Di Marco, A., Inverardi, P.: Model-Based Software Performance
Analysis. Springer (2011)

8. Koziolek, H.: Performance evaluation of component-based software systems: A sur-
vey. Perform. Eval. 67, 634–658 (2010)

9. Woodside, C.M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer, J.:
Performance by unified model analysis (PUMA). In: WOSP, pp. 1–12. ACM (2005)

10. Smith, C.U., Williams, L.G.: More New Software Antipatterns: Even More Ways
to Shoot Yourself in the Foot. In: International Computer Measurement Group
Conference, pp. 717–725 (2003)

11. Williams, L.G., Smith, C.U.: PASA(SM): An Architectural Approach to Fixing
Software Performance Problems. In: International Computer Measurement Group
Conference, Computer Measurement Group, pp. 307–320 (2002)

12. Cortellessa, V., Frittella, L.: A Framework for Automated Generation of Architec-
tural Feedback from Software Performance Analysis. In: Wolter, K. (ed.) EPEW
2007. LNCS, vol. 4748, pp. 171–185. Springer, Heidelberg (2007)

13. Parsons, T., Murphy, J.: Detecting Performance Antipatterns in Component Based
Enterprise Systems. Journal of Object Technology 7, 55–91 (2008)

14. Cortellessa, V., Di Marco, A., Eramo, R., Pierantonio, A., Trubiani, C.: Approach-
ing the Model-Driven Generation of Feedback to Remove Software Performance
Flaws. In: EUROMICRO-SEAA, pp. 162–169. IEEE Computer Society (2009)

15. Cortellessa, V., Di Marco, A., Trubiani, C.: Performance Antipatterns as Logical
Predicates. In: Calinescu, R., Paige, R.F., Kwiatkowska, M.Z. (eds.) ICECCS, pp.
146–156. IEEE Computer Society (2010)

16. Barber, K.S., Graser, T.J., Holt, J.: Enabling Iterative Software Architecture
Derivation Using Early Non-Functional Property Evaluation. In: ASE, pp. 172–
182. IEEE Computer Society (2002)

17. Dobrzanski, L., Kuzniarz, L.: An approach to refactoring of executable UML mod-
els. In: Haddad, H. (ed.) ACM Symposium on Applied Computing (SAC), pp.
1273–1279. ACM (2006)

18. McGregor, J.D., Bachmann, F., Bass, L., Bianco, P., Klein, M.: Using arche in the
classroom: One experience. Technical Report CMU/SEI-2007-TN-001, Software
Engineering Institute, Carnegie Mellon University (2007)

19. Kavimandan, A., Gokhale, A.: Applying Model Transformations to Optimizing
Real-Time QoS Configurations in DRE Systems. In: Mirandola, R., Gorton, I.,
Hofmeister, C. (eds.) QoSA 2009. LNCS, vol. 5581, pp. 18–35. Springer, Heidelberg
(2009)

20. Object Management Group (OMG): Lightweight CCM RFP. OMG Document
realtime/02-11-27 (2002)

21. Xu, J.: Rule-based automatic software performance diagnosis and improvement.
Perform. Eval. 67, 585–611 (2010)

22. Zheng, T., Woodside, M.: Heuristic Optimization of Scheduling and Allocation for
Distributed Systems with Soft Deadlines. In: Kemper, P., Sanders, W.H. (eds.)
TOOLS 2003. LNCS, vol. 2794, pp. 169–181. Springer, Heidelberg (2003)

23. Bondarev, E., Chaudron, M.R.V., de Kock, E.A.: Exploring performance trade-offs
of a JPEG decoder using the deepcompass framework. In: International Workshop
on Software and Performance, pp. 153–163 (2007)

334 V. Cortellessa, A. Di Marco, and C. Trubiani

24. Ipek, E., McKee, S.A., Singh, K., Caruana, R., de Supinski, B.R., Schulz, M.: Effi-
cient architectural design space exploration via predictive modeling. ACM Trans-
actions on Architecture and Code Optimization (TACO) 4 (2008)

25. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach for QoS-aware
service composition based on genetic algorithms. In: Beyer, H.G., O’Reilly, U.M.
(eds.) GECCO, pp. 1069–1075. ACM (2005)

26. Aleti, A., Björnander, S., Grunske, L., Meedeniya, I.: ArcheOpterix: An extendable
tool for architecture optimization of AADL models. In: ICSE Workshop on Model-
Based Methodologies for Pervasive and Embedded Software, pp. 61–71 (2009)

27. Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve soft-
ware architecture models for performance, reliability, and cost using evolutionary
algorithms. In: WOSP/SIPEW International Conference on Performance Engineer-
ing, pp. 105–116 (2010)

28. Petriu, D.C., Shen, H.: Applying the UML Performance Profile: Graph Grammar-
Based Derivation of LQN Models from UML Specifications. In: Field, T., Harrison,
P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 159–177.
Springer, Heidelberg (2002)

29. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The Architecture Analysis and Design Lan-
guage (AADL): An Introduction. Technical Report CMU/SEI-2006-TN-001, Soft-
ware Engineering Institute, Carnegie Mellon University (2006)

30. Trubiani, C.: Automated generation of architectural feedback from software per-
formance analysis results. PhD thesis, University of L’Aquila (2011)

31. Woodside, C.M.: A Three-View Model for Performance Engineering of Concurrent
Software. IEEE Transactions on Software Engineering (TSE) 21, 754–767 (1995)

32. Object Management Group (OMG): UML 2.0 Superstructure Specification. OMG
Document formal/05-07-04 (2005)

33. Object Management Group (OMG): UML Profile for MARTE. OMG Document
formal/08-06-09 (2009)

34. Cortellessa, V., Mirandola, R.: PRIMA-UML: a performance validation incremen-
tal methodology on early UML diagrams. Sci. Comput. Program. 44, 101–129
(2002)

35. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Ex-
perimental Design, Measurement, Simulation, and Modeling. SIGMETRICS Per-
formance Evaluation Review 19, 5–11 (1991)

36. Cortellessa, V., Martens, A., Reussner, R., Trubiani, C.: A Process to Effectively
Identify “Guilty” Performance Antipatterns. In: Rosenblum, D.S., Taentzer, G.
(eds.) FASE 2010. LNCS, vol. 6013, pp. 368–382. Springer, Heidelberg (2010)

37. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. Journal of Systems and Software 82, 3–22 (2009)

38. Bernardo, M., Donatiello, L., Ciancarini, P.: Stochastic Process Algebra: From an
Algebraic Formalism to an Architectural Description Language. In: Calzarossa,
M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 236–260. Springer,
Heidelberg (2002)

39. Bézivin, J.: On the unification power of models. Software and System Modeling 4,
171–188 (2005)

40. Malavolta, I., Muccini, H., Pelliccione, P., Tamburri, D.A.: Providing Architectural
Languages and Tools Interoperability through Model Transformation Technologies.
IEEE Trans. Software Eng. 36, 119–140 (2010)

41. Object Management Group (OMG): OCL 2.0 Specification. OMG Document
formal/2006-05-01 (2006)

Software Performance Antipatterns: Modeling and Analysis 335

42. Stein, D., Hanenberg, S., Unland, R.: A Graphical Notation to Specify Model
Queries for MDA Transformations on UML Models. In: Aßmann, U., Aksit, M.,
Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp. 77–92. Springer, Heidelberg
(2005)

43. Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic Anchoring with
Model Transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005.
LNCS, vol. 3748, pp. 115–129. Springer, Heidelberg (2005)

44. Dudney, B., Asbury, S., Krozak, J.K., Wittkopf, K.: J2EE Antipatterns (2003)
45. Tate, B., Clark, M., Lee, B., Linskey, P.: Bitter EJB (2003)
46. Lin, Y., Zhang, J., Gray, J.: Model Comparison: A Key Challenge for Transfor-

mation Testing and Version Control in Model Driven Software Development. In:
OOPSLA Workshop on Best Practices for Model-Driven Software Development
(2004)

47. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A Metamodel Independent Approach
to Difference Representation. Journal of Object Technology 6, 165–185 (2007)

48. Rivera, J.E., Vallecillo, A.: Representing and Operating with Model Differences.
In: International Conference on TOOLS, pp. 141–160 (2008)

49. Trubiani, C.: A Model-Based Framework for Software Performance Feedback. In:
Dingel, J., Solberg, A. (eds.) MODELS 2010 Workshops. LNCS, vol. 6627, pp.
19–34. Springer, Heidelberg (2011)

50. Cortellessa, V., Di Marco, A., Eramo, R., Pierantonio, A., Trubiani, C.: Digging
into UML models to remove performance antipatterns. In: ICSE Workshop Quo-
vadis, pp. 9–16 (2010)

51. Trubiani, C., Koziolek, A.: Detection and solution of software performance antipat-
terns in palladio architectural models. In: International Conference on Performance
Engineering (ICPE), pp. 19–30 (2011)

52. Cortellessa, V., Martens, A., Reussner, R., Trubiani, C.: Towards the identification
of “Guilty” performance antipatterns. In: WOSP/SIPEW International Conference
on Performance Engineering, pp. 245–246 (2010)

53. So, S.S., Cha, S.D., Kwon, Y.R.: Empirical evaluation of a fuzzy logic-based soft-
ware quality prediction model. Fuzzy Sets and Systems 127, 199–208 (2002)

54. Mens, T., Taentzer, G., Runge, O.: Detecting Structural Refactoring Conflicts
Using Critical Pair Analysis. Electr. Notes Theor. Comput. Sci. 127, 113–128 (2005)

55. Grunske, L.: Specification patterns for probabilistic quality properties. In: Schäfer,
W., Dwyer, M.B., Gruhn, V. (eds.) ICSE, pp. 31–40. ACM (2008)

56. Feiler, P.H., Lewis, B.A., Vestal, S.: SAE, Architecture Analysis and Design Lan-
guage (AADL), as5506/1 (2006), http://www.sae.org

http://www.sae.org

An Introduction to Model Versioning�

Petra Brosch1, Gerti Kappel1, Philip Langer1,
Martina Seidl2, Konrad Wieland3, and Manuel Wimmer4

1 Vienna University of Technology, Austria
{brosch,gerti,langer}@big.tuwien.ac.at
2 Johannes Kepler University Linz, Austria

martina.seidl@jku.at
3 LieberLieber Software GmbH, Austria
konrad.wieland@lieberlieber.com

4 Universidad de Málaga, Spain
mw@lcc.uma.es

Abstract. With the emergence of model-driven engineering (MDE),
software models are considered as central artifacts in the software engi-
neering process, going beyond their traditional use as sketches. In MDE,
models rather act as the single source of information for automatically
generating executable software. This shift poses several new research
challenges. One of these challenges constitutes model versioning, which
targets at enabling efficient team-based development of models. This
compelling challenge induced a very active research community, who
yielded remarkable methods and techniques ranging from model differ-
encing to merging of models.

In this tutorial, we give an introduction to the foundations of model
versioning, the underlying technologies for processing models and their
evolution, as well as the state of the art in model versioning. Thereby,
we aim at equipping students and researchers alike that are new to this
domain with enough information for commencing to contribute to this
challenging research area.

1 Introduction

Since the emergence of software engineering [72,94], researchers and practition-
ers have been struggling to cope with the ever growing complexity and size of the
developed systems. One way of coping with the complexity of a system has been
raising the level of abstraction in the languages used to specify a system. Besides
dealing with the complexity of software systems under development, also man-
aging the size of software systems constitutes a major challenge. As stated by
Ghezzi et al., “software engineering deals with the building of software systems
that are so large or so complex that they are built by teams of engineers” [37].

� This work has been funded by the Vienna Science and Technology Fund (WWTF)
through project ICT10-018, by the Austrian Science Fund (FWF) under grant
J 3159-N23, and by the fFORTE WIT Program of the Vienna University of Tech-
nology and the Austrian Federal Ministry of Science and Research.

M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.): SFM 2012, LNCS 7320, pp. 336–398, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Introduction to Model Versioning 337

Orthogonal to the challenge entailed by the complexity and size of software sys-
tems, dealing with the demand to constantly evolve a system in order to meet
ever changing requirements constitutes an additional major challenge. To sum-
marize, Parnas defines software engineering as the “multi-person construction of
multi-version software” [92].

Model-driven engineering (MDE) has been proposed as a new paradigm for
raising the level of abstraction [7,38,98]. In MDE, softare models are considered
as central artifacts in the software engineering process, going beyond their tradi-
tional use as sketches and blueprints. Models constitute the basis and the single
source of information to specify and automatically generate an executable sys-
tem. Thereby, developers may build models that are less bound to an underlying
implementation technology and are much closer to the problem domain [103].
However, the emergence of this shift from code to models poses several new re-
search challenges. One of these challenges is to cope with the ever growing size
of systems being built in practice [34]. Developing a large system entails the
need for a large number of developers who collaborate to succeed in creating
a large system. Thus, adequate support for team-based development of mod-
els is a crucial prerequisite for the success of MDE. Therefore, as in traditional
code-centric software engineering, versioning systems [18,66] are required, which
allow for concurrent modification of the same model by several developers and
which are capable of merging the operations applied by all developers to obtain
ultimately one consolidated version of a model again.

In traditional code-centric software engineering, text-based versioning sys-
tems, such as Git1, Subversion2, and CVS3, have been successfully deployed to
allow for collaborative development of large software systems. To enable col-
laborative modeling among several team members, such text-based versioning
systems have been reused for models. Unfortunately, it turned out quickly that
applying text-based versioning is inadequate for models and leads to unsatisfac-
tory results [2]. This is because such versioning systems consider only text lines
in a text-based representation of a model as, for instance, the XMI serializa-
tions [81]. As a result, the information stemming from the model’s graph-based
structure is destroyed and associated syntactic information is lost. To overcome
these drawbacks of text-based versioning systems used for models, dedicated
model versioning approaches have been proposed recently. Such approaches do
not operate on the textual representation; instead, they work directly on the
model’s graph-based structure.

Especially optimistic versioning systems gained remarkable popularity be-
cause they enable several developers to work concurrently on the same artifacts
instead of pessimistically locking each artifact for the time it is changed by one
developer. The price to pay for being able to work in parallel is that the con-
currently applied operations of all developers have to be merged again. There-
fore, the versioning process depicted in Fig. 1 is applied, which is referred to

1 http://git-scm.com
2 http://subversion.tigris.org
3 http://cvs.nongnu.org

http://git-scm.com
http://subversion.tigris.org
http://cvs.nongnu.org

338 P. Brosch et al.

Developer 1

Developer 2 Vo

Vo

t1

Vr1

Vr2

t2 t3

Check Out

Check Out

Check In

Check In

Repository

t0

D l 1

O
pe

ra
tio

n
De

te
ct

io
n

Co
nf

lic
t

De
te

ct
io

n

Co
nf

lic
t

Re
so

lu
tio

n

Co
ns

ol
id

at
io

n

Merge Process

Fig. 1. Versioning Process

as check-out/check-in protocol [30]. Developers may concurrently check-out the
latest version Vo of a model from a common repository at the time of t0 (cf.
Fig. 1). Thereby, a local working copy of Vo is created. Both developers may
independently modify their working copies in parallel. As soon as one developer
completes the work, assume this is developer 1, she performs a check-in at t1.
Because no other developer performed a check-in in the meanwhile, her work-
ing copy can be saved directly as a new revised version Vr1 in the repository.
Whenever developer 2 completes his task and performs the check-in, the version-
ing system recognizes that a new version has been created since the check-out.
Therefore, the merge process is triggered at t2 in order to merge the new version
Vr1 in the repository with the version Vr2 by developer 2. Once the merge is car-
ried out, the resulting merged version incorporating the operations of developer 1
and developer 2 is saved in the repository.

In this tutorial, we give an introduction to the underlying technologies for real-
izing this versioning process to allow for merging concurrently modified models.
Therefore, we discuss the foundations of versioning in Section 2 and introduce the
prerequisites for building a model versioning system in Section 3. Subsequently,
we review the state of the art in model versioning in Section 4 and present our
own model versioning system AMOR in Section 5. Finally, we conclude this tu-
torial with some challenging topics for future research in the domain of model
versioning in Section 6.

2 Foundations of Versioning

The history of versioning in software engineering goes back to the early 1970s.
Since then, software versioning was constantly an active research topic. As stated

An Introduction to Model Versioning 339

by Estublier et al. in [30], the goal of software versioning systems is twofold.
First, such systems are concerned with maintaining a historical archive of a set
of artifacts as they undergo a series of operations and form the fundamental
building block for the entire field of Source Configuration Management (SCM),
which deals with controlling change in large and complex software systems. Sec-
ond, versioning systems aim at managing the evolution of software artifacts
performed by a distributed team of developers.

In that long history of research on software versioning, diverse formalisms
and technologies emerged. To categorize this variety of different approaches,
Conradi and Westfechtel [18] proposed version models describing the diverse
characteristics of existing versioning approaches. A version model specifies the
objects to be versioned, version identification and organization, as well as opera-
tions for retrieving existing versions and constructing new versions. Conradi and
Westfechtel distinguish between the product space and the version space within
version models. The product space describes the structure of a software product
and its artifacts without taking versions into account. In contrast, the version
space is agnostic of the artifacts’ structure and copes with the artifacts’ evolu-
tion by introducing versions and relationships between versions of an artifact,
such as, for instance, their differences (deltas). Further, Conradi and Westfechtel
distinguish between extensional and intentional versioning. Extensional version-
ing deals with the reconstruction of previously created versions and, therefore,
concerns version identification, immutability, and efficient storage. All versions
are explicit and have been checked in once before. Intentional versioning deals
with flexible automatic construction of consistent versions from a version space.
In other words, intentional versioning allows for annotating properties to specific
versions and querying the version space for these properties in order to derive a
new product consisting of a specific combination of different versions.

In this paper, we only consider extensional versioning in terms of having
explicit versions, because this kind of versioning is predominantly applied in
practice nowadays. Furthermore, we focus on the merge phase in the optimistic
versioning process (cf. Fig. 1). In this section, we outline the fundamental design
dimensions of versioning systems and elaborate on the consequences of different
design decisions concerning the quality of the merge based on an example.

2.1 Fundamental Design Dimensions for Versioning Systems

Current approaches to merging two versions of one software artifact (software
models or source code) can be categorized according to two basic dimensions. The
first dimension concerns the product space, in particular, the artifact representa-
tion. This dimension denotes the representation of a software artifact, on which
the merge approach operates. The used representation may either be text-based
or graph-based. Some merge approaches operate on a tree-based representation.
However, we consider a tree as a special kind of graph in this categorization.
The second dimension is orthogonal to the first one and concerns how deltas are
identified, represented, and merged in order to create a consolidated version. Ex-
isting merge approaches either operate on the states ; that is, the versions of an

340 P. Brosch et al.

artifact, or on identified operations that have been applied between a common
origin model (cf. Vo in Fig. 1) and the two successors (cf. Vr1 and Vr2 in Fig. 1).

When merging two concurrently modified versions of a software artifact, con-
flicts might inevitably occur. The most basic types of conflicts are update-update
and delete-update conflicts. Update-update conflicts occur if two elements have
been updated in both versions whereas delete-update conflicts are raised if an
element has been updated in one version and deleted in the other (cf. [66] for
more information on software merging in general).

Text-based merge approaches operate solely on the textual representation of a
software artifact in terms of text files. Within a text file, the atomic unit of the
versioned text file may either be a paragraph, a line, a word, or even an arbitrary
set of characters. The major advantage of such approaches is their independence
of the programming languages used in the versioned artifacts. Since a solely text-
based approach does not require language-specific knowledge it may be adopted
for all flat text files. This advantage is probably, besides simplicity and efficiency,
the reason for the widespread adoption of pure text-based approaches in prac-
tice. However, when merging flat files—agnostic of the syntax and semantics of
a programming language—both compile-time and run-time errors might be in-
troduced during the merge. Therefore, graph-based approaches emerged, which
take syntax and semantics into account.

Graph-based merge approaches operate on a graph-based representation of a
software artifact for achieving more precise conflict detection and merging. Such
approaches de-serialize or translate the versioned software artifact into a specific
structure before merging. Mens [66] categorized these approaches in syntactic
and semantic merge approaches. Syntactic merge approaches consider the syn-
tax of a programming language by, for instance, translating the text file into the
abstract syntax tree and, subsequently, performing the merge in a syntax-aware
manner. Consequently, unimportant textual conflicts, which are, for instance,
caused by reformatting the text file, may be avoided. Furthermore, such ap-
proaches may also avoid syntactically erroneous merge results. However, the
textual formatting intended by the developers might be obfuscated by syntactic
merging because only a graph-based representation of the syntax is merged and
has to be translated back to text eventually. Westfechtel was among the first to
propose a merging algorithm that operates on the abstract syntax tree of a soft-
ware artifact [116]. Semantic merge approaches go one step further and consider
also the static and/or dynamic semantics of a programming language. Therefore,
these approaches may also detect issues, such as undeclared variables or even
infinite loops by using complex formalisms like program dependency graphs and
program slicing. Naturally, these advantages over flat textual merging have the
disadvantage of the inherent language dependence (cf. [66]) and their increased
computational complexity.

The second dimension for categorizing versioning systems is orthogonal to the
first one and considers how deltas are identified and merged in order to create
a consolidated version. This dimension is agnostic of the unit of versioning.

An Introduction to Model Versioning 341

Therefore, a versioned element might be a line in a flat text file, a node in a
graph, or whatsoever constitutes the representation used for merging.

State-based merging compares the states (i.e., versions) of a software artifact
to identify the differences (deltas) between these versions and merge all differ-
ences that are not contradicting with each other. Such approaches may either
be applied to two states (Vr1 and Vr2 in Fig. 1), called two-way merging, or to
three states (including their common ancestor Vo in Fig. 1), called three-way
merging. Two-way merging cannot identify deletions since the common original
state is unknown. A state-based comparison requires a match function which
determines whether two elements of the compared artifact correspond to each
other. The easiest way to match two elements is to search for completely equiv-
alent elements. However, the quality of the match function is crucial for the
overall quality of the merge approach. Therefore, especially graph-based merge
approaches often use more sophisticated matching techniques based on identifiers
and heuristics (cf. [47] for an overview of matching techniques). Model matching,
or more generally the graph isomorphism problem is NP-hard [46] and, there-
fore, very computation intensive. If the match function is capable of matching
also partially different elements, a difference function is additionally required to
determine the fine-grained differences between two corresponding elements. Hav-
ing these two functions, two states of the same artifact may be merged by using
the following process. For each element in the common origin version Vo of a
software artifact, the corresponding elements from the two modified versions Vr1

and Vr2 are retrieved. If in both versions Vr1 and Vr2 a corresponding element is
available, the algorithm checks whether the matching element has been modified
in the versions Vr1 and Vr2. If this is true in one and only one of the two versions
Vr1 and Vr2, the modified element is used for creating the merged version. If,
however, the matching element is different in both versions, an update-update
conflict is raised by the algorithm. If the matching element has not been modi-
fied at all, the original element can be left as it is in the merged version. In case
there is no corresponding element in one of the two modified versions (i.e., it has
been removed), it is checked whether it has been concurrently modified in the
opposite revision and raises, in this case, a delete-update conflict. If the element
has not been concurrently modified, it is removed from the merged version. The
element is also removed, if there is no corresponding element in both modified
versions (i.e., it has been deleted in both versions). Finally, the algorithm adds
all elements from Vr1 and Vr2 that have no corresponding element in the original
version Vo, as they have been added in Vr1 or Vr2.

Operation-based merging does not operate on the states of an artifact. Instead,
the operation sequences which have been concurrently applied to the original ver-
sion are recorded and analyzed. Since the operations are directly recorded by the
applied editor, operation-based approachesmay support, besides recording atomic
operations, also to record composite operations, such as refactorings (e.g., [48]).
The knowledge on applied refactoringsmay significantly increase the quality of the
merge as stated byDig et al. [22]. The downside of operation recording is the strong
dependency on the applied editor, since it has to record each performed operation

342 P. Brosch et al.

and it has to provide this operation sequence in a format which the merge ap-
proach is able to process. The directly recorded operation sequence might include
obsolete operations, such as updates to an element which will be removed later
on. Therefore, many operation-based approaches apply a cleansing algorithm to
the recorded operation sequence for more efficient merging. The operations within
the operation sequence might be interdependent because some of the operations
cannot be applied until other operations have been applied. As soon as the op-
eration sequences are available, operation-based approaches check parallel opera-
tion sequences (Vo to Vr1 and Vo to Vr2) for commutativity to reveal conflicts [60].
Consequently, a decision procedure for commutativity is required. Such decision
procedures are not necessarily trivial. In the simplest yet least efficient form, each
pair of operations within the cross product of all atomic operations in both se-
quences are applied in both possible orders to the artifact and both results are
checked for equality. If they are not equivalent, the operations are not commuta-
tive. After checking for commutativity, operation-based merge approaches apply
all non-conflicting (commutative) operations of both sides to the common ances-
tor in order to obtain a merged model.

In comparison to state-based approaches, the recorded operation sequences
are, in general, more precise and potentially allow for gathering more informa-
tion (e.g., change order and refactorings), than state-based differencing; espe-
cially if the state-based approach does not rely on a precise matching technique.
Moreover, state-based comparison approaches are—due to complex comparison
algorithms—very expensive regarding their run-time in contrast to operation-
based change recording. However, these advantages come at the price of strong
editor-dependence. Nevertheless, operation-based approaches scale for large mod-
els from a conceptual point of view because their computational effort mainly
depends on the length of the operation sequences and—in contrast to state-based
approaches—not on the size of the models [48].

Anyhow, the border between state-based and operation-based merging is
sometimes blurry. Indeed, we can clearly distinguish whether the operations are
recorded or differences are derived from the states, nevertheless, some state-based
approaches derive the applied operations from the states and use operation-based
conflict detection techniques. However, this is only reasonable if a reliable match-
ing function is available, for instance, using unique identifiers. On the contrary,
some operation-based approaches derive the states from their operation sequences
to check for potentially inconsistent states after merging. Such an inconsistent
state might for instance be a violation of the syntactic rules of a language.
Detecting such conflicts is often not possible by solely analyzing the operation
sequences. Eventually, the conflict detection strategies conducted in state-based
and operation-based approaches are very similar from a conceptual point of view.
Both check for direct or indirect concurrent modifications to the same element
and try to identify illegal states after merging, whether the modifications are
explicitly given in terms of operations or whether they are implicitly derived
from a match between two states.

An Introduction to Model Versioning 343

2.2 Consequences of Design Decisions

To highlight the benefits and drawbacks of the four possible combinations of the
versioning approaches (text-based vs. graph-based and state-based vs. operation-
based), we present a small versioning example depicted in Fig. 2 and conceptually
apply each approach for analyzing its quality in terms of the detected conflicts
and derived merged version.

nt
at

io
n

Version 0 Version 1

1: class Human {
2: string[1..1] name
3: }
4: class Vehicle {

1: class Person {
2: string[1..1] name
3: Vehicle[0..*] owns
4: }
5: class Vehicle {

d
R

ep
re

se
n

Version 2

: c ass e c e {
5: integer[0..1] carNo
6: }

5: c ass e c e {
6: integer[1..1] carNo
7: }

Grammar
Class:= "class" name=ID "{"
(properties+=Property)*

Te
xt

-b
as

ed 1: class Human {
2: string[1..1] name
3: }
4: class Car {
5: integer[0..1] regId
6: }

(properties+=Property)
(references+=Reference)*

"}";
Reference:= target=[Class] "[" lower=BOUND

".." upper=BOUND "]" name=ID;
Property:= type=ID "[" lower=BOUND

".." upper=BOUND "]" name=ID;

Version 0 Version 1

}.. upper BOUND] name ID;
terminal ID:= ('a'..'z'|'A'..'Z'|'_')+;
terminal BOUND:= (('0'..'9')+)|('*');

Person : Class
name : Property

Human : Class

name : Property
type = string
lower = 1
upper = 1

owns : Reference
lower = 0
upper = *

se
nt

at
io

n

carNo : Property

type = string
lower = 1
upper = 1

Vehicle : Class

as
ed

 R
ep

re
s

Version 2

carNo : Property
type = integer
lower = 0
upper = 1

Vehicle : Class

type = integer
lower = 1
upper = 1

name : Property

G
ra

ph
-b

a

Legend

Human : Class

name : Property
type = string
lower = 1
upper = 1

regId : Property

<NodeName> : <Type>
<attributeName> = <value>

Containment Edge
Edge

Car : Class type = integer
lower = 0
upper = 1

Fig. 2. Versioning Example

Consider a small language for specifying classes, its properties, and references
linking two classes. The textual representation of this language is depicted in the
upper left area of Fig. 2 and defined by the EBNF-like Xtext4 grammar specified
in the box labeled Grammar. The same language and the same examples are
depicted in terms of graphs in the lower part of Fig. 2. In the initial version

4 http://www.eclipse.org/Xtext

http://www.eclipse.org/Xtext

344 P. Brosch et al.

Version 31: class Person {
2: string[1..1] name
3: Vehicle[0..*] owns
4: }
5: class Car {
6: <<UP/UP>>
7: }

a: integer[1..1] carNo
b: integer[0..1] regId
c: integer[1..1] regId

(a) State-based Versioning

Version 31: class Person {
2: string[1..1] name
3: Car[0..*] owns
4: }
5: class Car {
6: <<UP/UP>>
7: }

a: integer[1..1] carNo
b: integer[0..1] regId
c: integer[1..1] regId

Rename-Op:
change Class.name;
update Property.type
pre@Class.name with
post@Class.name;

(b) Operation-based Versioning

Fig. 3. Text-based Versioning Example

(Version 0) of the example, there are two classes, namely Human and Vehicle.
The class Human contains a property name and the class Vehicle contains a
property named carNo. Now, two users concurrently modify Version 0 and create
Version 1 and Version 2, respectively. All operations in Version 1 and Version 2
are highlighted with bold fonts or edges in Fig. 2. The first user changes the
name of the class Human to Person, sets the lower bound of the property carNo
to 1 (because every car must have exactly one number) and adds an explicit
reference owns to Person. Concurrently, the second user renames the property
carNo to regId and the class Vehicle to Car.

Text-based versioning. When merging this example with text- and state-based
approaches (cf. Fig. 3a for the result) where the artifact’s representation is a
single line and the match function only matches completely equal lines (as with
Subversion, CVS, Git, and bazaar), the first line is correctly merged since it has
only been modified in Version 1 and remained untouched in Version 2. The same
is true for the added reference in line 3 of Version 1 and the renamed class Car
in line 4 of Version 2. However, the property carNo shown in line 5 in Version 0
has been changed in both Versions 1 (line 6) and Version 2 (line 5). Although
different features of this property have been modified (lower and name), these
modifications result in a concurrent change of the same line and, hence, a conflict
is raised. Furthermore, the reference added in Version 1 refers to class Vehicle,
which does not exist in the merged version anymore since it has been renamed
in Version 2. We may summarize that text- and state-based merging approaches
provide a reasonable support for versioning software artifacts. They are easy to
apply and work for every kind of flat text file irrespectively of the used language.
However, erroneous merge results may occur and several “unnecessary” conflicts
might be raised. The overall quality strongly depends on the textual syntax.
Merging textual languages with a strict syntactic structure (such as XML) might
be more appropriate than merging languages which mix several properties of
potentially independent concepts into one line. The latter might cause tedious
manual conflict and error resolution.

One major problem in the merged example resulting from text-based and
state-based approaches is the wrong reference target (line 3 in Version 1) caused
by the concurrent rename of Vehicle. Operation-based approaches (such as Mol-
hadoRef) solve such an issue by incorporating knowledge on applied refactorings
in the merge. Since a rename is a refactoring, MolhadoRef would be aware of

An Introduction to Model Versioning 345

owns : Reference
lower = 0
upper = *

Person : Class name : Property
type = string
lower = 1
upper = 1

Version 3

Car : Class regId : Property
type = integer
lower = 0
upper = 1

carNo : Property

type = integer
lower = 1
upper = 1

<<UP/DEL>>

X
(a) State-based Versioning

owns : Reference
lower = 0
upper = *

Person : Class

Car : Class

regId : Property
type = integer
lower = 1
upper = 1

name : Property
type = string
lower = 1
upper = 1

Version 3

(b) Operation-based Versioning

Fig. 4. Graph-based Versioning Example

the rename and resolve the issue by re-applying the rename after a traditional
merge is done. The result of this merge is shown in Fig. 3b.

Graph-based versioning. Applying the merge on top of the graph-based represen-
tation depicted in Fig. 2 may also significantly improve the merge result because
the representation used for merging is a node in a graph which more precisely
represents the versioned software artifact. However, as already mentioned, this
advantage comes at the price of language dependence because merging operates
either on the language specific graph-based representation or a translation of
a language to a generic graph-based structure must be available. Graph- and
state-based approaches additionally require a match function for finding corre-
sponding nodes and a difference function for explicating the differences between
matched nodes. The preciseness of the match function significantly influences the
quality of the overall merge. Assume matching is based on name and structure
heuristics for the example in Fig. 2. Given this assumption, the class Human may
be matched since it contains an unchanged property name. Therefore, renaming
the class Human to Person can be merged without user intervention. However,
heuristically matching the class Vehicle might be more challenging because both
the class and its contained property have been renamed. If the match does not
identify the correspondence between Vehicle and Car, Vehicle and its contained
property carNo is considered to be removed and Car is assumed to be added in
Version 2. Consequently, a delete-update conflict is reported for the change of the
lower bound of the property carNo in Version 1. Also the added reference owns
refers to a removed class which might be reported as conflict. This type of conflict
is referred to as delete-use or delete-reference in literature [110,117]. If, in con-
trast, the match relies on unique identifiers, the nodes can soundly be matched.
Based on this precise match, the state-based merge component can resolve this
issue and the added reference owns correctly refers to the renamed class Car in
the merged version. However, the concurrent modification of the property carNo
(name and lower) might still be a problem because purely state-based approaches
usually take either the entire element from either the left or the right version
to construct the merged version. Some state-based approaches solve this issue
by conducting a more fine-grained difference function to identify the detailed

346 P. Brosch et al.

differences between two elements. If these differences are not overlapping—as in
our example—they can both be applied to the merged element. The result of
a graph-based and state-based merge without taking identifiers into account is
visualized in Fig. 4a.

Purely graph- and operation-based approaches are capable of automatically
merging the presented example (cf. Fig. 4b). Between Version 0 and Version 1,
three operations have been recorded, namely the rename of Human, the addition
of the reference owns and the update concerning the lower bound of carNo. To get
Version 2 from Version 0, class Vehicle and property carNo have been renamed.
All these atomic operations do not interfere and therefore, they all can be re-
applied to Version 0 to obtain a correctly merged version.

In summary, a lot of research activity during the last decades in the domain
of traditional source code versioning has lead to significant results. Approaches
for merging software models draw a lot of inspiration from previous works in the
area of source code merging. Especially graph-based approaches for source code
merging form the foundation for model versioning. However, one major chal-
lenge still remains an open problem. The same trade-off as in traditional source
code merging has to be made regarding editor- and language-independence ver-
sus preciseness and completeness. Model matching, comparison and merging, as
discussed above, can significantly be improved by incorporating knowledge on
the used modeling language, as well as language-specific composite operations,
such as refactorings. On the other hand, model versioning approaches are also
forced to support several languages at the same time, because even in small
MDE projects several modeling languages are usually combined.

3 Five Steps towards Model Versioning

In this section, we survey the fundamental techniques for stepwise establishing
versioning support for software models. Therefore, we introduce the basics of
model-driven engineering, model transformations, model differencing, conflicts,
and merging in the following.

3.1 Model-Driven Engineering

The idea of MDE is to automate the repetitive task of translating model based
blueprints to code and enable developers to concentrate on creative and non-
trivial tasks which computers cannot do, i.e., creating those blueprints [10]. Sev-
eral techniques are indispensable for putting MDE into practice. In the following,
we introduce a common framework for creating domain-specific modeling lan-
guages and models called metamodeling.

An early attempt towards MDE was made in the 1980s with computer-aided
software engineering (CASE) tools, already following the goal to directly gener-
ate executable systems based on graphical domain-specific models [98]. As CASE
tools were (1) costly to develop, and (2) only appropriate to certain domains,
it was soon realized that the development of domain-specific environments was

An Introduction to Model Versioning 347

MOF MMM

CWM MM UML MM

A UML model
m1

A specific
instance of m1

Another
instance of m1

A UML model
m2

Custom MM

Level M0
Runtime of
program p

Level M1
A Java
program p

Level M2

Java Gram-
mar, Smalltalk
Grammar,
etc

Level M3 EBNF

Fig. 5. Metamodeling Layers; adapted from [9]

itself a domain and metamodeling environments to create domain-specific en-
vironments were established [58,106,71]. In fact, the term meta denotes that
an operation is applied on itself, e.g., a discussion about conducting a discus-
sion is called meta-discussion [53]. In a similar vein, metamodeling is referred to
modeling modeling languages.

In an endeavor to establish a commonly accepted set of key concepts and to
preserve interoperability between the rapidly growing number of domain-specific
development environments, the Object Management Group (OMG) released the
specification forModel Driven Architecture (MDA) [79], standardizing the defini-
tion and usage of (meta-)metamodels as driving factor of software development.
To this end, the OMG proposes a layered organization of the metamodeling stack
similar to the architecture of formal programming languages [9], as depicted in
Fig. 5. The meta-metamodel level M3 manifests the role of the Meta-Object Fa-
cility (MOF) [77] as the unique and self-defined metamodel for building meta-
models, i.e., the meta-metamodel ensuring interoperability of any metamodel
defined therewith. Every metamodel defined according OMG’s proposed MDA
standard share the same metatypes and may be reflectively analyzed. MOF may
be compared to the Extended Backus-Naur Form (EBNF) [42], the metagram-
mar for expressing programming languages. The metamodel level M2 contains
any metamodel defined with MOF, including the Unified Modeling Language
(UML) [86], the Common Warehouse Metamodel (CWM) [76] also specified by
the OMG, and any custom domain-specific metamodel. A metamodel at this
level conforms to a definition of a programming language with EBNF, such
as the Smalltalk grammar or the Java grammar. A metamodel defines the ab-
stract syntax of the modeling language and is usually supplemented with one or
more concrete syntactics. Though textual concrete syntactics get more and more
popular, graphical concrete syntactics are more common. To leverage MOF’s in-
teroperability power also for the graphical visualization of models, a graphical
concrete syntax is again defined as metamodel at level M2. The metamodel for

348 P. Brosch et al.

the concrete syntax defines graphical elements such as shapes and edges by ex-
tending a standardized diagram interchange metamodel [75,80] and associates
those elements with corresponding elements of the abstract syntax metamodel.
The model level M1 contains any model built with a metamodel of level M2,
e.g., a UML model. An equivalent for a model is a specific program written
in any programming language defined in EBNF. Finally, the concrete level M0
reflects any model based representation of a real situation. This representation
is an instance of a model defined in level M1. We may again draw the parallel
to the formal programming language architecture. Level M0 corresponds to all
dynamic execution traces of a program of level M1.

The major benefit of MDA is to decouple system specifications from the un-
derlying platform [14]. In this way, the specification is much closer to the problem
domain and not bound to a specific implementation technique. This benefit is
maximized when domain-specific modeling languages are employed. Thus, the
MDA specification [79] differentiates at level M2 languages for Computation
Independent Model (CIM), Platform Independent Model (PIM), and Platform
Specific Model (PSM) to quantify the abstraction quality of a model. While a
CIM provides a fully computation independent viewpoint close to the domain
in question, a PIM approximates the system description in a technology neutral
manner. A PSM eventually unifies the PIM with the specifics of the underlying
platform to be used as specification for code generation.

To bridge metamodeling and programming languages, and to justify MOF
as interoperability standard, the OMG provides a standardized way for ex-
changing MOF based artifacts. OMG’s standard for XML Metadata Interchange
(XMI) [81] defines a mapping of any (meta)model expressed in MOF to the
Extensible Markup Language (XML) [114]. The specification of MOF itself is di-
vided into the kernel metamodel Essential MOF (EMOF) and the more expres-
sive Complete MOF (CMOF) [77]. EMOF is closely related to object-oriented
programming languages, such as Java, which allows a straightforward mapping,
as implemented in [91,23]. Especially the Eclipse Modeling Framework (EMF)
with its reference implementations for EMOF [23] and UML [24] fosters several
adjacent subprojects for arbitrary MDA tasks, such as querying and comparing
models, building textual and graphical modeling editors, etc. leading to increas-
ing adoption in academia and in practice.

3.2 Model Transformation

In modern software engineering practice employing the MDE paradigm, a vast
amount of interrelated models accrues. Those models are in the first place utilized
to gain abstraction of the technical realization of a system, such that develop-
ers may completely concentrate on a specific matter of the problem domain and
serve finally as construction plan for implementation. To free developers from the
burden of repetitive and error-prone tasks such as translating models into source
code and propagating changes throughout dependent models, a mechanism to
transform and synchronize models is demanded. The field of model transforma-
tion accepts to play this central role and is thus noticed as the heart and soul

An Introduction to Model Versioning 349

of MDE [104]. To embrace the diversity of domain-specific modeling languages
the transformable models conform to, a model transformation language usually
makes use of the flexible type-system gained by metamodeling and defines a
fixed syntax for defining transformation rules only. The metamodels holding the
actual types of elements to be transformed are bound not until a specific model
transformation is specified [8]. Reflecting the plethora of application areas of
models, model transformation tasks cover all sorts of activities, such as updat-
ing, synchronizing, translating models to other models, or translating models to
code. To support these activities, a multitude of either general or specifically
tailored model transformation languages and approaches emerged.

In the following, we briefly present distinguishing characteristics of current
model transformation approaches. However, those approaches may not only be
adopted for one specific task. As shown in [27], exogenous model transformations
may be also achieved with tools primarily built for endogenous model transfor-
mations. Conversely, tools for exogenous model transformations may perform
endogenous model transformations by defining transformations with equal input
metamodel and output metamodel. Even bidirectional model transformations
may be achieved by defining one transformation for each direction. Although
this interchange is possible, defining transformations is much easier and safer
with the right tool.

Endogenous model transformation. Endogenous model transformation
describes transformations where source and target model conform to the same
metamodel. In case that the source and target models are one and the same
artifact, i.e., the source model is directly refined, this kind of transformation is
also called in-place transformation. If a new target model based on the source
model’s properties is created, the transformation is called out-place, even if both
models conform to the same metamodel [67].

Outstanding approaches realizing endogenous model transformations are
among others the graph transformation tool AGG [29], the model transformation
by-demonstration approach EMF Modeling Operations (EMO) [13], and the re-
flective API of Eclipse’s Modeling Framework EMF allowing direct programmatic
manipulation of models as, e.g., employed in graphical modeling editors [23]. This
kind of model transformation frames the basis for model versioning, as it describes
the evolution of a model. More precisely, the original version is considered as input
model for an endogenous model transformation—either for a predefined transfor-
mation or for a manual transformation performed in a modeling editor—and the
output model shapes the revised version.

Exogenous model transformation. An exogenous model transformation denotes
a model transformation between models conforming to different metamodels, i.e.,
it takes one or more models of any modeling language as input and generates one
or more new models of another modeling language from scratch. A special case
of exogenous model transformation is bidirectional model transformation, which
provides a synchronous framework, i.e., the transformation definition may be
executed in both directions. Based on this definition, bidirectional model trans-
formation further enables incremental change propagation from one model to

350 P. Brosch et al.

another model, triggering an in-place transformation to recover a consistent
state. The unidirectional exogenous model transformation approach is imple-
mented in, e.g., the Atlas Transformation Language (ATL) [43]. One represen-
tatives for the bidirectional model transformation approach is OMG’s standard
for model transformation Query/View/Transformation (QVT) [78].

Model-to-text transformation. Model-to-text transformations address the gen-
eration of code or any other text representation (e.g., configuration files and
reports) from an input model. Such transformation languages employ usually a
template-based approach, where the expected output text is parameterized with
model elements conforming the input metamodel. Acceleo5 implementing OMG’s
MOF Model-to-Text Transformation Language standard (Mof2Text) [82], JET6,
and Xpand7 are well-known representatives for this category.

3.3 Model Differencing

One major task of model versioning is to obtain the operations that have been
applied between two versions of a model (e.g., between Vo and Vr1 in Fig. 1). As
already discussed in Section 2, obtaining the applied operations can be accom-
plished using two alternatives: operation recording [41,48,60,101], which is often
referred to as operation-based versioning, and model differencing [1,14,45,54,59],
which is also referred to as state-based versioning.As operation recording is largely
straightforward and depends on the interfaces of the modeling editor heavily, we
will focus on the state of the art in model differencing in the following.

Model differencing is usually realized as follows. First, a match is computed,
which describes the correspondences between two versions of a model. Second,
the actual differences are obtained by a fine-grained comparison of all corre-
sponding model elements based on the beforehand computed match. After the
differences have been obtained, they have to be represented in some way for their
further usage, such as conflict detection and merging. In the following, we will
elaborate on the state of the art of these three tasks, matching, differencing, and
representing differences in more detail.

Model Matching. The problem of matching two model elements is to find the
identity of the model elements to be matched. Once the identity is explicit, model
elements with equal identities are considered as a match. Thereby, the identity
is computed by a match function. The characteristics of a model element that
are incorporated to compute the identity of a model element within the match
function, however, varies among approaches, scenarios, and objectives of per-
forming model matching. The predecessors of model matching approaches stem
from schema matching in the data base research domain [95] and from ontology
matching in the knowledge representation research domain [115]. Therefore, we
first highlight remarkable categorizations of matching techniques from these two

5 http://www.eclipse.org/acceleo
6 http://www.eclipse.org/modeling/m2t/?project=jet#jet
7 http://wiki.eclipse.org/Xpand

http://www.eclipse.org/acceleo
http://www.eclipse.org/modeling/m2t/?project=jet#jet
http://wiki.eclipse.org/Xpand

An Introduction to Model Versioning 351

research domains and, subsequently, proceed with surveying recent approaches
to model matching.

Schema matching and ontology matching. The problem of matching database
schema gained much attention among researchers for addressing various research
topics, such as schema integration, data extraction for data warehouses and e-
commerce, as well as semantic query processing. To reconcile the structure and
terminology used in the emerged approaches from these research topics, Rahm
and Bernstein [95] proposed a remarkable classification of existing approaches.
On the most upper layer, Rahm and Bernstein distinguish between individual
matcher approaches and combining matchers. Individual matchers are further
classified according to the following largely orthogonal criteria. First of all, they
consider whether matching approaches also incorporate instance data (i.e., data
contents) or only the schema for deriving correspondences among schema ele-
ments. Further, they distinguish between approaches that perform the match
only on single schema elements (i.e., they operate on element level) or on com-
binations of multiple elements to also regard complex schema structures (i.e.,
structure level). Another distinction is made upon approaches that uses either
linguistic-based matching (e.g., based on names or descriptions) or constraint-
based matching (e.g., unique key properties or data types). Matching approaches
may also be characterized according to the match cardinality; that is, whether
they return one-to-one correspondences or also one-to-n or even n-to-m corre-
spondences. Finally, there are approaches that not only take a schema as input,
but also exploit auxiliary information (e.g., dictionaries, global schemata, pre-
vious matching decisions, or user input). On the other side, among combining
matchers, Rahm and Bernstein identified hybrid matchers that directly combine
several matching approaches to determine match candidates based on multiple
criteria or information sources. They also identified composite matchers, which
combine the results of several independently executed matchers. The composition
of matchers is either done automatically or manually by the user.

With the rise of the semantic web [6], the problem of integrating, aligning,
and synchronizing different ontologies into one reconciled knowledge represen-
tation induced an active research area. Therefore, several ontology matching
approaches have been proposed (cf. [115] for a survey). As argued by Shvaiko
and Euzenat [105], schema matching and ontology matching are largely the same
problem because schemata and ontologies both provide a vocabulary of terms
that describes a domain of interest and both constrain the meaning of terms
used in the vocabulary [105].

Model matching. The aforementioned categorizations and terminologies also can
be used for characterizing model matching approaches. However, the distinction
between schema-only and instance-based approaches only applies to approaches
specifically tailored to match metamodels, because models on the M1 level in the
metamodeling stack (cf. Section 3.1) have no instances to be used for matching.
Furthermore, in the context of model matching, the only constraint-based sim-
ilarity measure that can be used across all meta levels is the type information

352 P. Brosch et al.

(i.e., the respective metaclass) of a model element. Besides applying the catego-
rization coming from schema and ontology matching, Kolovos et al. [52] further
proposed a categorization specifically dedicated to model matching approaches.
In particular, they distinguish between static identity-based matching, signature-
based matching, similarity-based matching, and custom language-specific match-
ing. Static identity-based matching relies on immutable UUIDs attached to each
model element, whereas signature-based matching compares model elements
based on a computed combination of feature values (i.e., its signature) of the re-
spective model elements. Which features should be incorporated for computing
this signature strongly depends on the modeling language. Whereas approaches
of these two categories, identity- and signature-based matching, treat the prob-
lem of model matching as a true/false identity (i.e., two model elements are
either a match or not), similarity-based matching computes an aggregated simi-
larity measure between two model elements based on their feature values. As not
all feature values of a model element are always significant for matching, they
often can be configured in terms of weights attached to the respective features.
Finally, custom language-specific matching enables its users to specify dedicated
match rules in order to also respect the underlying semantics of the respective
modeling language for matching.

In the following, we discuss existing approaches in the domain of model match-
ing. Many existing approaches in this domain are integrated in model versioning
tools. In the following, however, we focus on their model matching capabilities
only, and discuss the respective approaches concerning their model versioning
support again in Section 4.

One of the first model matching approaches has been proposed alongside their
model comparison algorithm by Alanen and Porres [93]. Although their approach
only supports UML models and, thereby, they easily could have incorporated
language-specific match rules, the proposed match function relies on static iden-
tifiers only. Also, specifically tailored for a specific modeling language is UMLD-
iff [119], which is, however, not based on static identifiers. Instead, UMLDiff
computes similarity metrics based on a model element’s name and structure.
In terms of the aforementioned categorizations, UMLDiff applies string-based
matching at the element level as well as graph-based matching at the structure
level and internally combines the obtained similarity measures; thus, UMLDiff
is a hybrid matching approach. The same is true for the approach by Nejati et
al. [73], which is specifically tailored for matching UML state machines. Their
matching approach uses static similarity measures, such as typographic, lin-
guistic, and depth properties of model elements, but also behavioural similarity
measures. Also specifically tailored to UML models is ADAMS [20], which uses
a hybrid matcher that first applies a static identity-based matcher and matches
all remaining (not matched) model elements using a simple static signature-
based approach based on model element names. In contrast to language-specific
matching approaches, also several generic approaches have been proposed such
as DSMDiff [59] and EMF Compare [14]. DSMDiff first compares elements
based on a computed signature (incorporating the element name and type) and,

An Introduction to Model Versioning 353

subsequently, considers the relationship among model elements previously
matched by signature. Largely similar to DSMDiff, EMF Compare computes
four different metrics and combines them to obtain a final similarity measure.
In particular, EMF Compare regards the name of an element, its content, its
type and the relations to other elements. EMF Compare also offers a static
identity-based comparison mode, which works similarly to the approach by Ala-
nen and Porres [93]. However, EMF Compare only allows for either similarity-
based or static-identity based matching; both strategies cannot be combined. The
similarity-based matching approach applied in EMF Compare heavily exploits
the tree-based containment structure when comparing models. Rivera and Valle-
cillo [97] argue that this leads to issues concerning the detection of, for instance,
elements that have been moved to new container elements. Therefore, Rivera and
Vallecillo [97] propose to compare model elements independently of their depth
in the containment tree. Besides this difference, the exploited information on
model elements for matching is largely similar to DSMDiff and EMF Compare.
DSMDiff and EMF Compare aim at obtaining an optimal result, whereas no
language-specific information or configuration is necessary; in contrast, the goal
of SiDiff [99] is to provide an adaptable model comparison framework, which
may be fine-tuned for specific modeling languages by configuring the actual
characteristics of model elements to be considered in the comparison process
and attaching weights to these characteristics. DSMDiff, EMF Compare, and
SiDiff are hybrid matching approaches. On the contrary, Barret et al. recently
presented Mirador [5], which is a composite matching approach. That is, several
matching strategies are independently applied and presented in a consolidated
view of all match results. Using this view, users may interactively refine the com-
puted match by attaching weights and manually discarding or adding matches.
Thereby, the goal is to offer a wide assortment of model comparison algorithms
and matching strategies under control of the user. Yet another approach is taken
by Kolovos with the Epsilon Comparison Language (ECL) [50]. Instead of pro-
viding a set of predefined and configurable matching strategies, ECL is a hybrid
rule-based language, which enables users to implement comparison algorithms at
a high level of abstraction and execute them for identifying matches. Although
it indeed requires some dedicated knowledge to create language-specific match
rules with ECL, it facilitates highly specialized matching algorithms, which may
also incorporate external knowledge, such as lexicons and thesauri.

In summary, during the last years several notable yet diverse approaches for
model matching have been proposed. The set of available matchers ranges from
generic to language-specific and from hybrid to composite approaches, whereas
some are adaptable and some are not. Nearly all operate on the structure level
regarding the importance of a model element’s context. In contrast to ontology
matching approaches, the approaches for model matching are mainly syntactic
and do not incorporate external knowledge. Only ECL explicitly enables match-
ers that take advantage of external knowledge or even formal semantics.

354 P. Brosch et al.

Computing and Representing Differences. The differences among models
may be computed based on three orthogonal levels: the abstract syntax, the con-
crete syntax, and the semantics of the models. The abstract syntax describes a
model in terms of a tree (or more generally, a graph), whereas nodes represent
model elements and edges represent references among them. Each node may
further be described by a set of features values (i.e., attribute values). Thus,
abstract syntax differencing approaches are only capable of detecting differences
in the syntactic data that is carried in the compared models. Differencing ap-
proaches that also take the concrete syntax of a model into account are further
capable of detecting changes of the diagramming layout visualizing of a model
(e.g., [20,65,87,88]). More recently, Maoz et al. [62] introduce semantic model
differencing, which aims at comparing the meaning [39] of models rather than
their syntactic representation. For instance, Maoz et al. propose an algorithm
to compute the differences between two UML activity diagrams regarding their
possible execution traces, as well as the differences concerning the instantiability
of UML class diagrams [63,64]. In the context of model versioning, the compari-
son of models is largely based on the abstract syntax currently, which is why we
focus on such differencing approaches in the remainder of this section.

Model differencing based on the abstract syntax. Existing work in the area of
differencing based on the abstract syntax mainly differ regarding the used ap-
proach for matching model elements across two versions of a model, which has
been discussed above already, and they vary concerning the detectable types of
differences. Most of the existing model differencing approaches are only capable
of detecting the applied atomic operations (i.e., add, delete, move, and update).
The computation of such applied operations works largely similar in existing ap-
proaches. That is, the differencing algorithms perform a fine-grained comparison
of two model elements that correspond to each other (as indicated by the applied
match function). If two corresponding model elements differ in some way (i.e.,
an update has been applied), a description of the update is created and saved to
the list of differences. If a model element has no corresponding model element
on the opposite side, an element insertion or deletion is noted.

Besides such atomic operations, developers may also apply composite opera-
tions. A composite operation is a set of cohesive atomic operations that are ap-
plied within one transaction to achieve ultimately one common goal. The most
prominent class of such composite operations are refactorings as introduced by
Opdyke [90] and further elaborated by Fowler et al. [33]. The composite opera-
tions that have been applied between two versions of a model represents a valuable
source of information for several model management tasks [68]. Furthermore, this
information helps other developers significantly to better understand the evolu-
tion of a software artifact [49]. Three approaches have been proposed for detecting
applied composite operations from two states of a model. First, Xing and Strou-
lia [120] presented an extension of UMLDiff for detecting refactorings. In their ap-
proach, refactorings are expressed in terms of change pattern queries that are used
to query a set of atomic differences obtained from the UMLDiff model differencing
algorithm. If a query returns a match, an application of a refactoring is reported.

An Introduction to Model Versioning 355

A very similar approach has been proposed by Vermolen et al. [113] to allow for a
higher automation in model migration. Both approaches are restricted to a spe-
cificmodeling language and use hard-coded refactoring detection rules. In contrast
to these approaches, Kehrer et al. [44] propose to derive the detection rules from
graph transformation units realizing the composite operations. The derived de-
tection rules may then be matched with generic difference models containing the
atomic operations that have been applied between two versions of a model.

Representation of differences. For assessing different approaches for representing
differences between two versions of a model, Cicchetti et al. [16] identified a num-
ber of properties a representation of operations should fulfill. Most importantly,
they mention the properties indicating whether a representation is model-based
(i.e., conforming to a dedicated difference metamodel), transformative (i.e., ap-
plicable to the compared models), and metamodel independent (i.e., agnostic of
the metamodel the compared models conform to). Besides these properties, it is
also important how explicit the detected operations are represented, or whether
important information (such as the index at which a value has been added to an
ordered feature) is hidden in the context of a detected operation’s representation.

In several research papers addressing the topic of model differences, such as
[5,20,65], it is not explicitly mentioned how the detected differences are repre-
sented. Many others at least define the types of differences they aim to detect. For
instance, DSMDiff [59] marks model elements to be added, deleted, or changed.
Alanen & Porres [93] explicitly represent, besides added and deleted model el-
ements, updates of single-valued features, insertions and deletions of values in
multi-valued features as well as ordered features. SiDiff [99] distinguishes among
structural differences, attribute differences, reference differences, and move dif-
ferences. Several language-specific approaches, in particular, Gerth et al. [35],
UMLDiff [119], and Ohst et al. [88], introduce operations that are tailored to
the specific modeling language they support; thus, they use a metamodel depen-
dent representation of applied operations. For instance, Gerth et al. defines the
operations, such as move activity and delete fragment, for state machines and
UMLDiff presents a fine-grained definition of UML class diagram operations,
such as new inheritance relationship (for UML classes).

All of the approaches mentioned above do not represent the detected differ-
ences in terms of a model that conforms to a dedicated difference metamodel; at
least, it is not explicitly mentioned in their research papers. Nevertheless, the dif-
ference representations by Alanen & Porres and Gerth et al. are transformative;
that is, detected differences can be applied to the comparedmodels in order to cre-
ate a merged version. To the best of our knowledge, the only approaches that use a
model-based representation of differences are EMF Compare [14], Herrmannsdo-
erfer & Koegel [41], and Cicchetti et al. [16]. All of these approaches are designed
to be independent from the metamodel. Whereas EMF Compare and Herrmanns-
doerfer & Koegel use a generic metamodel, Cicchetti et al. generate a dedicated
difference metamodel for specific modeling languages. Thereby, in the approach
by Cicchetti et al., a dedicated metaclass for indicating insertions, deletions, and
changes for every metaclass in the respective modeling language’s metamodel is

356 P. Brosch et al.

generated. For instance, for UML class diagrams, difference metaclasses, such as
AddedClass and ChangedAttribute are generated, whereas Class and Attribute are
metaclasses in the modeling language’s metamodel. In contrast, EMF Compare
and Herrmannsdoerfer & Koegel make use of the reflective power of EMF and
refer to the modeling language’s metaclasses to indicate, for instance, a modifica-
tion of a specific feature of a model element. EMF Compare refers to the affected
model element by a generic reference to EObject, which is the abstract type of all
objects within EMF. In contrast, Herrmannsdoerfer & Koegel foresee a more flex-
ible model referencing technique to also enable, for instance, persistent ID-based
model element references.

3.4 Conflicts in Versioning

Whenever an artifact is modified concurrently by two or more developers, con-
flicts may occur. In the following, we survey existing definitions of the term
conflict and discuss proposed conflict categorizations.

The term conflict has been used in the area of versioning to refer to interfer-
ing operations in the parallel evolution of software artifacts. However, the term
conflict is heavily overloaded and differently co-notated. Besides using the term
conflict, also the terms interference and inconsistency have been applied syn-
onymously in the literature as, for instance, in [32,112] and [66], respectively.
The term conflict usually refers to directly contradicting operations; that is, two
operations, which do not commute [60]. Nevertheless, there is a multitude of
further problems that might occur, especially when taking syntax and semantics
of the versioned artifact’s language into account. Therefore, in order to better
understand the notion of conflict, different categories have been created to group
specific merge issues as surveyed in the following.

In the field of software merging, Mens [66] introduces textual, syntactic, se-
mantic, and structural conflicts. Whereas textual conflicts concern contradicting
operations applied to text lines as detected by a line-based comparison of a pro-
gram’s source code, syntactic conflicts denote issues concerning the contradicting
modification of the parse tree or the abstract syntax graph; thus, syntactic merg-
ing takes the programming language’s syntax into account and may also report
operations that cause parse errors when merged (cf. line-based versus graph-
based versioning in Section 2). Semantic merging goes one step further and also
considers the semantic annotation of the parse tree, as done in the semantic
analysis phase of a compiler. In this context, static semantic conflicts denote
issues in the merged artifact such as undeclared variables or incompatible types.
Besides static semantic conflicts, Mens also introduced the notion of behavioral
conflicts, which denote unexpected behavior in the merged result. Such conflicts
can only be detected by applying even more sophisticated semantic merge tech-
niques that rely on the runtime semantics. Finally, Mens introduces the notion of
structural conflicts, which arise when one of the applied operations to be merged
is a “restructuring” (i.e., a refactoring) and the merge algorithm cannot uniquely
decide in which way the merged result should be restructured.

An Introduction to Model Versioning 357

Also the notion of conflict in the domain of graph transformation theory
serves as a valuable source of knowledge in this matter. As defined by Heckel et
al. [40], two direct graph transformations are in conflict, if they are not parallel
independent. Two direct graph transformations are parallel independent, if they
preserve all elements that are in the match of the other transformation; otherwise
we encounter a delete-use conflict. Another manifestation of such a case is a
delete-delete conflict. Although both transformations delete the same element
anyway, this is still considered a conflict because one transformation deletes an
element that is indeed in the match of the other transformation. If the graph
transformations comprise negative application conditions, they also must not
create elements that are prohibited by negative application conditions of the
other transformation; otherwise an add-forbid conflict occurs. To summarize,
two direct graph transformations are in conflict, if one of both disables the other.
Furthermore, as shown in [26], based on the local Church-Rosser theorem [15],
we may further conclude that two parallel independent direct transformations
can be executed in any order with the same final result.

In the domain of model versioning, no widely accepted categorization of dif-
ferent types of merge conflicts has been established yet. Nevertheless, two de-
tailed categorizations have been proposed by Westfechtel [117] and Taentzer
et al. [110,111]; these categorizations concern generic conflicts between atomic
operations only. In the following, we summarize these definitions briefly.

The conflict categorization by Westfechtel [117] is defined using set-theoretical
rules and distinguishes between context-free conflicts and context-sensitive con-
flicts. Context-free conflicts denote contradicting modifications of the same fea-
ture value at the same model element; thus, such conflicts are independent of the
context of the model element. Context-sensitive conflicts take also the context of
a concurrently modified model element into account. With the term “context”,
Westfechtel refers to the neighbor elements of a model elements, such as its con-
tainer or referenced model elements. Context-sensitive conflicts are again classi-
fied into (i) containment conflicts, which occur, for instance, if both developers
move the same model element to different containers so that no unique con-
tainer can be chosen automatically, (ii) delete conflicts, which denote deletions
of elements that have been updated or moved concurrently, and (iii) reference
conflicts, which concern contradicting changes to bi-directional references.

Taentzer et al. [110,111] present a fundamental categorization of conflicts
based on graph theory. Thus, models are represented in terms of graphs, and
changes applied to the models are formalized using graph modifications. On
the most general level of this categorization, Taentzer et al. distinguish between
operation-based conflicts and state-based conflicts. Operation-based conflicts are
caused by two directly interfering graph modifications. More precisely, two graph
modifications are conflicting, if either the source or the target node of an edge
that has been inserted in one graph modification has been deleted concurrently
in the other graph modification. State-based conflicts denote inconsistencies con-
cerning the consistency rules of the respective modeling language in the merged
graph; that is, the final state of the graph after applying the concurrent graph

358 P. Brosch et al.

1

2

Vr1

1

3

4

Vr21

2 3

4

Vm

(a) Two-Way Merge

1

2

Vr1

1

3

4

Vr21
4

Vm

1

2 3

Vo

(b) Three-Way Merge

Fig. 6. Two-Way and Three-Way Merge Strategies

modifications to the common ancestor graph violates graph constraints stemming
from the definition of the modeling language. In [111], Taentzer et al. refine this
fundamental categorization for conflicts in EMF-based models. Thus, also the
additional modeling features of EMF-based models are taken into account, such
as containment references, feature multiplicities, and ordered features. Therefore,
conflict patterns are introduced, which indicate combinations of concurrently ap-
plied operations leading to a conflict when applied to common model elements.
In particular, they define delete-use, delete-move, delete-update, update-update,
move-move, and insert-insert conflicts.

3.5 Merging

When only non-conflicting changes are detected between two versions of an ar-
tifact, merging is a straightforward task. In case of two-way merging, only the
revised versions Vr1 and Vr2 are compared [18]. As deletions cannot be deter-
mined (cf. Section 2.1), the merged version Vm is constructed as joint union of
both input artifacts, as depicted in Fig. 6a. In case of three-way merging, the
merge is more reliable, as it takes the common ancestor Vo of both artifacts
into account and is thus able to consider deleted elements [18]. The merge is
performed by applying the union of all changes detected between the common
ancestor and both revised versions to the common ancestor version. Consider
the example in Fig. 6b. Element 3 is deleted in Vr1, while in Vr2 element 2 is
deleted and element 4 is added. Consequently, the merged version Vm is con-
structed by deleting elements 2 and 3 from the ancestor version Vo and adding
the new element 4 resulting in a version consisting of elements 1 and 4. As the
more powerful three-way merging approach is the preferred strategy in almost all
versioning systems [66], we neglect two-way merging in the following. However,
whenever conflicting changes are detected between the two revised versions Vr1

and Vr2, the merged version cannot be uniquely determined, regardless whether
two-way or three-way merging is employed.

An Introduction to Model Versioning 359

Manual conflict resolution. The most pragmatic solution is to shift the responsi-
bility of merging to the user, whenever it comes to conflicting changes. Version-
ing systems for code like Subversion typically employ a manual merge strategy.
Then, the two parallel evolved versions are shown to the user side by side. Con-
flicting and non-conflicting changes are highlighted. The user has to analyze the
evolution of the artifact and to decide which changes shall be integrated into
the merged version. This approach works satisfactory well for line-oriented ar-
tifacts like source code and is thus employed in most model versioning systems
too. However, the graph based structure of models impedes manual merging,
as dependent changes are not located close together in a sequence, but may be
scattered across the model. Considering visual models with their dual representa-
tion manifested in the abstract syntax and the graphical concrete syntax, renders
manual merging even harder. If these representations are merged separately, the
user’s perception is completely destroyed. Even if graphical comparison of both
versions side by side mitigates the representational gap, the manual effort for
identifying corresponding elements on the two-dimensional canvas increases with
the model’s size. Recently, Gerth et al. [36] propose to support manual merg-
ing of process models by guiding the modeler through conflict resolution. They
apply non-conflicting changes automatically and suggest one of three strategies
depending on the conflict type at hand.

Automatic conflict resolution. As manual conflict resolution is error-prone and
cumbersome, it seems naturally, that avoiding conflicts by automaticmerge strate-
gies is a preferable goal.Munson andDewan present a flexible framework formerg-
ing arbitrary objects, which may be configured in terms of merge policies [69].
Merge policies may be tailored by users to their specific needs and include rules
for conflict detection and rules for automatic conflict resolution. Actions for auto-
matic conflict resolution are defined in merge matrices and incorporate the kinds
of changesmade to the object and the users who performed those changes. Thus, it
may be configured, e.g., that changes of specific users always dominate changes of
others, or that updates outpace deletions. Edwards [25] proposes further strategies
for conflict management in collaborative applications and allows to distinguish
manual and automatic resolution in his merge policies. Automatic conflict reso-
lution is achieved by calculating all possible combinations of parallel performed
operations leading to a valid version. Alanen &Porres [1] use a fixed policy in their
merge algorithm for MOF based models to interleave the differences performed in
Vr2 with the differences of Vr1. Cicchetti et al. [17] allow to adapt conflict detection
and merging by defining conflict patterns describing specific difference patterns,
which are not allowed to occur in Vr1 and Vr2 together. These conflict patterns
are supplemented with a reconciliation strategy, stating which side should be pre-
ferred in the merge process. While policy based approaches require user interven-
tion in certain conflict cases where no policy is at hand, Ehrig et al. [28] present a
formal merge approach based on graph transformation theory, yielding a merged
model by construction.

360 P. Brosch et al.

Conflict tolerance. In contrast to automatic merging, nearly as long as collab-
orative systems exist, several works have been published, arguing that incon-
sistencies are not always a negative result of collaborative development. They
propose to tolerate inconsistencies at least temporarily for several reasons [74].
Inconsistencies may identify areas of a system, where the developers’ common
understanding has broken down, and where further analysis is necessary. Another
reason for tolerable inconsistencies arise when changes to the system are so large,
that not all dependent changes can be performed at once. Further, fixing incon-
sistencies may be more expensive than their impact and risk costs. Tolerating
inconsistencies requires the knowledge of their existence and careful manage-
ment. Undetected inconsistencies in contrast, should be avoided. Schwanke and
Kaiser [102] propose an adapted programming environment for identifying, track-
ing, tolerating, and periodically resolving inconsistencies. Similarly, Balzer [4]
allows to tolerate inconsistencies in programming environments and database
systems by relaxing consistency constraints and annotating inconsistent parts
with so called pollution markers.

To summarize, existing merge strategies are manifold. Manual merge ap-
proaches provide on the one hand most user control, but require on the other
hand high effort and bear the risk of loosing changes. Automatic merge ap-
proaches in contrast, accelerate merging and reduce manual intervention. How-
ever, this benefit comes at the cost of loss of control. Conflict tolerance reveals
a completely different strategy and allows to temporarily tolerate an inconsis-
tent state of the merged artifact instead of immediately rolling back conflicting
changes. The drawback of conflict tolerance is the need for dedicated editors and
that the attached pollution markers may violate the grammar of highly struc-
tured artifacts like models. However, the variety of existing merge approaches
reflects the pivotal role of the merge process.

4 State-of-the-art Model Versioning Systems

In the previous section, we discussed underlying concepts and existing fundamen-
tal techniques acting as a basis for building a model versioning system. In this
section, we present the current state-of-the-art in model versioning and evaluate
the features of existing solutions stemming from industry and academia.

4.1 Features of Model Versioning Approaches

Before we survey the state-of-the-art model versioning systems, we first discuss
the particular features of model versioning systems that we have investigated in
this survey.

Operation recording versus model differencing. As already introduced in
Section 2, we may distinguish between approaches that obtain operations per-
formed between two versions of a model by applying operation recording or by
model differencing. If an approach applies model differencing, which is, in general,
more flexible concerning the adopted modeling editors, it is substantial to con-
sider the techniques conducted in thematch function for identifying corresponding

An Introduction to Model Versioning 361

model elements because the quality of the match is crucial for an accurate sub-
sequent operation detection. We may distinguish between match functions that
rely on universally unique IDs (UUIDs), and those applying heuristics based on
the model element’s content (i.e., feature values and contained child elements).

Composite operation detection. The knowledge on applied composite opera-
tions is the prerequisite for considering them in the merge process. Therefore,
it is a distinguished feature whether an operation detection component is also
capable of detecting applications of composite operations besides only identify-
ing atomic operations. It is worth noting that, in case of model differencing, the
state-based a posteriori detection of composite operation applications is highly
challenging as stated in Section 6 of [21].

Adaptability of the operation detection. Obviously, generic operation detection
approaches are, in general, more flexible than language-specific approaches be-
cause it is very likely that several modeling languages are concurrently applied
even within one project and, therefore, should be supported by one model ver-
sioning system. However, neglecting language-specific aspects in the operation
detection phase might lead to a lower quality of the detected set of applied oper-
ations. Therefore, we investigate whether generic operation detection approaches
are adaptable to language-specific aspects. In particular, we consider the adapt-
ability concerning language-specific match rules, as well as the capability to
extend the detectable set of language-specific composite operations.

Detection of conflicts between atomic operations. One key feature of model
versioning systems is, of course, their ability to detect conflicts arising from con-
tradictory operations applied by two developers in parallel. Consequently, we
first investigate whether the approaches under consideration are capable of de-
tecting conflicts between contradictory atomic operations. In this survey, we do
not precisely examine which types of conflicts are supported. We rather investi-
gate whether conflicts among atomic operations are considered at all.

Detection of conflicts caused by composite operations. Besides conflicts caused
by contradicting atomic operations, conflicts might also occur if a composite op-
eration applied by one developer is not applicable anymore, after the concurrent
operations of another developer have been performed. Such a conflict occurs, if
a concurrent operation causes the preconditions of an applied composite opera-
tion to fail. Therefore, we investigate whether the model versioning approaches
adequately consider composite operations in their conflict detection phase.

Detection of inconsistencies. Besides conflicts caused by operations (atomic
operations and composite operations), a conflict might also occur if the merged
model contains errors in terms of the modeling language’s well-formedness and
validation rules. Consequently, we examine model versioning approaches under
consideration whether they perform a validation of the resulting merged model.

Adaptability of the conflict detection. With this feature, we review the adapt-
ability to language-specific aspects of the conflict detection approach. This in-
volves techniques to configure language-specific conflict types that cannot be
detected by analyzing of the applied operations only generically.

362 P. Brosch et al.

Graphical visualization of conflicts.Developers largely create and modify mod-
els using a graphical diagramming editor. Thus, also the occurred conflicts should
be visualized and resolved graphically on top of the model’s concrete syntax.
Hence, we investigate whether developers have to cope with switching the visu-
alization for understanding and resolving conflicts, or whether they are allowed
to stick with their familiar way of working with their models.

Adaptable resolution strategies. If a model versioning system offers techniques
for resolving certain types of conflicts automatically, the correct resolution strat-
egy is key. However, the correct resolution strategy may depend strongly on the
modeling language, the aim of the models, the project culture, etc. Thus, it is
important to allow users to adapt the offered resolution strategies to their needs.

Flexibility concerning the modeling language. This feature indicates whether
model versioning systems are tailored to a specific modeling language and, there-
fore, are only usable for one modeling language, or whether they are generic and,
therefore, support all modeling languages defined by a common meta-metamodel.

Flexibility concerning the modeling editor. Model versioning systems may be
designed to work only in combination with a specific editor or modeling environ-
ment. This usually applies to approaches using operation recording. In contrast,
model versioning systems may avoid such a dependency and refrain from relying
on specific modeling environments by only operating on the evolved models put
under version control.

4.2 Evaluation Results

In this section, we introduce current state-of-the-art model versioning systems
and evaluate them on the basis of the features discussed in the previous section.
The considered systems and the findings of this survey are summarized in Table 1
and discussed in the following. Please note that the order in which we introduce
the considered systems is alphabetically and has no further meaning.

ADAMS. The “Advanced Artifact Management System” (ADAMS) offers pro-
cess management functionality, supports cooperation among multiple develop-
ers, and provides artifact versioning [19]. ADAMS can be integrated via specific
plug-ins into modeling environments to realize versioning support for models.
In [20], De Lucia et al. present an ADAMS plug-in for ArgoEclipse8 to enable
version support for ArgoUML models. Because artifacts are stored in a propri-
etary ADAMS-specific format to be handled by the central repository, models
have to be converted into that format before they are sent to the server and
translated back to the original format, whenever the model is checked out again.
ADAMS applies state-based model differencing based on UUIDs. Added model
elements, which, as a consequence, have no comparable UUIDs, are matched
using simple heuristics based on the element names to find corresponding ele-
ments concurrently added by another developer. The differences are computed
at the client and sent to the ADAMS server, which finally performs the merge.

8 http://argoeclipse.tigris.org

http://argoeclipse.tigris.org

An Introduction to Model Versioning 363

Table 1. Evaluation of State-of-the-art Model Versioning Systems

The ADAMS plug-in supports ArgoUML models only. Interestingly, ADAMS
can be customized to a certain extent. For instance, it is possible to customize
the unit of comparison; that is, the smallest unit, for which, if concurrently mod-
ified, a conflict is raised. In [20], it is also mention that the conflict detection
algorithm may be customized for specific model types with user-defined correla-
tion rules, which specify when two operations should be considered as conflicting.
However, it remains unclear, how these rules are exactly specified and how these
rules influence the conflict detection. The implementation promoted in this pub-
lication is not available to further review this interesting customization feature.
Composite operations and state-based conflicts are not supported.

Approach by Alanen and Porres. One of the earliest works on versioning UML
models was published by Alanen and Porres [1], who present metamodel-
independent algorithms for difference calculation, model merging, as well as

364 P. Brosch et al.

conflict resolution. They identified seven elementary operation types a developer
may perform to modify a model. For calculating the differences between the orig-
inal version and the modified version, a match between model elements is com-
puted based on UUIDs first. Subsequently, the created, deleted, and changed
elements are identified based on thematch computed before; composite operations
are, however, not considered. Alanen and Porres provide an algorithm to compute
a union of two sets of operations, whereas also an automatic merging for values of
ordered features is presented. Furthermore, Alanen and Porres also popose to val-
idate the merged result and envision a semi-automatic resolution process. Their
work serves as a fundamental contribution to the model versioning domain and
influenced many other researchers strongly.

Approach by Cicchetti, Di Ruscio, and Pierantonio. Cicchetti et al. [17] present
an approach to specify and detect language-specific conflicts arising from paral-
lel modifications. Their work does not address the issue of obtaining differences,
but proposes a model-based way of representing them. Howsoever the differences
are computed, they are represented by instantiating an automatically generated
language-specific difference metamodel (cf. Section 3.3). Conflicts are specified
by manually created conflict patterns. Language-specific conflict patterns are
represented in terms of forbidden difference patterns. Thereby, the realization of
a customizable conflict detection component is possible. Although the authors
do not discuss how differences and applications of composite operations are ob-
tained, their approach supports also conflicts caused by composite operations.
The authors also allow to specify reconciliation strategies (i.e., automatic resolu-
tion strategies) to specific conflict patterns. It seems to be a great deal of work to
establish a complete set of conflict patterns and resolution patterns for a specific
language; nevertheless, in the end, a highly customized model versioning system
can be achieved.

CoObRA. The Concurrent Object Replication framework CoObRA developed
by Schneider et al. [101] realizes optimistic versioning for the UML case tool
Fujaba9. CoObRA records the operations performed on the model elements and
stores them in a central repository. Whenever other developers update their local
models, these operations are fetched from this repository and replayed locally.
To identify equal model elements, UUIDs are used. Conflicting operations are
not applied (also the corresponding local change is undone) and finally presented
to the user, who has to resolve these conflicts manually. In [100], the authors also
shortly discuss state-based conflicts (i.e., inconsistencies). CoObRA is capable of
detecting a small subset of such conflicts when the underlying modeling frame-
work rejects the execution of a certain operation. For example, a class cannot be
instantiated anymore if the respective class has been concurrently deleted. How-
ever, for instance, concurrent additions of an equally named class is not reported
as conflict. The authors also shortly mention composite operations in terms of a
set of atomic operations grouped into commands. The operation recording com-
ponent seems to be capable of grouping atomic operations into commands to

9 http://www.fujaba.de

http://www.fujaba.de

An Introduction to Model Versioning 365

allow for a more comprehensible undo mechanism. In particular, one command
in the modeling editor might cause several atomic operations in the log; if the
user aims to undo the last change, the complete command is undone and not
only the latest atomic change. In their papers, however, no special treatment of
these commands in the merge process is mentioned.

EMF Compare. The open-source model comparison framework EMF Compare
[14], which is part of the Eclipse Modeling Framework Technology project, sup-
ports generic model comparison and model merging. EMF Compare provides
two-way and three-way model comparison algorithms for EMF-based models.
EMF Compare’s model comparison algorithm consists of two phases, a matching
phase and a differencing phase (cf. Section 3.3). EMF Compare provides a merge
service, which is capable of applying difference elements in a difference model to
allow for merging models. It also offers basic conflict detection capabilities and
user interfaces for displaying match and difference models. All these features of
EMF Compare are generic; consequently, they can be applied to any EMF-based
model irrespectively of the modeling language these models conform to. How-
ever, EMF Compare can be extended programmatically for language-specific
matching and differencing. Thus, it is not adaptable in the sense that it can be
easily configured for a specific language, but it constitutes a programmatically
extensible framework for all tasks related to model comparison.

EMFStore. The model repository EMFStore, presented by Koegel et al. [48],
has been initially developed as part of the Unicase10 project and provides a ded-
icated framework for model versioning of EMF models. After a copy of a model
is checked out, all operations applied to this copy are tracked by the model-
ing environment. Once all modifications are done, the recorded operations are
committed to a central repository. For recording the operations, a framework
called Operation Recorder [41] is used, which allows to track any modifications
performed in an EMF-based editor. Also transactions (i.e., a series of dependent
operations) can be tracked and grouped accordingly. Having two lists of the
recorded operations, in particular, the list of uncommitted local operations and
the list of new operations on the server since the last update, the relationships
the requires relationship and the conflicts relationship are established among
the operations. The former relationship expresses dependencies between opera-
tions, the later indicates contradicting modifications. As the exact calculation
of these relationships requires expensive computations, heuristics are applied
to obtain an approximation for setting up those relationships. The conflict de-
tection component classifies two operations as conflicting, if the same attribute
or the same reference is modified. Furthermore, the authors introduce levels of
severity to classify conflicts. They distinguish between hard conflicts and soft
conflicts referring to the amount of user support necessary for their resolution.
Whereas hard conflicts do not allow including both conflicting operations within
the merged model, for soft conflicts this is possible (with the danger of obtaining

10 http://www.unicase.org

http://www.unicase.org

366 P. Brosch et al.

an inconsistent model). Summarizing, EMFStore is completely operation-based;
that is, the actual model states are never considered for detecting conflicts. This
also entails that a removed and subsequently re-added model element is treated
as a new model element so that all concurrent operations to the previously re-
moved element are reported as conflict. Composite operations can be recorded
and saved accordingly. In the conflict detection, however, composite operations
are not specifically treated. If an atomic change within a composite operation
conflicts with another change, the complete transaction is indeed marked as
conflicting; the intentions behind composite operations, as well as potentially
violated preconditions of composite operations are not specifically considered.

Approach by Gerth et al. Gerth et al. [35] propose a conflict detection approach
specifically tailored to the business process modeling language (BPMN) [83]. To
identify the differences between two process models (cf. [54]), in a first step, a
mapping between corresponding elements across two versions of a process model
is computed based on UUIDs which are attached to each element. In the next
step, for each element that has no corresponding counterpart in the opposite
version, a operation is created representing the addition or deletion. The result-
ing operations are specific to the type of the added or deleted element (e.g.,
InsertAction or DeleteFragment). Finally, this list of operations is hierarchically
structured according to the fragment hierarchy of the process model in order
to group those atomic operations into so-called compound operations. Conse-
quently, these compound changes group several atomic operations into composite
additions or deletions. Having identified all differences in terms of operations be-
tween two process models, syntactic, as well as semantic conflicts among those
concurrent operations can be identified using a term formalization of process
models. According to their definitions, a syntactic conflict occurs if an opera-
tion is not applicable after another operation has been performed. A semantic
conflict is at hand whenever two operations modify the same elements so that
the process models are not “trace equivalent”; that is, all possible traces of a
process model are not exactly equal. Obviously, rich knowledge on the opera-
tional semantics of process models has to be encoded in the conflict detection to
be able to reveal semantic conflicts. Although the authors presented an efficient
way of detecting such conflicts, no possibility to adapt the operation detection
and conflict detection mechanisms to other languages is foreseen.

Approach by Mehra, Grundy, and Hosking. The publication by Mehra et al. [65]
mainly focuses on the graphical visualization of differences between versions of
a diagram. Therefore, they provide a plug-in for the meta-CASE tool Pounamu,
a tool for the specification and generation of multi-view design editors. The di-
agrams created with this tool are serialized in XMI and are converted into an
object graph for comparison. In their proposed comparison algorithm, the dif-
ferences are obtained by applying a state-based model differencing algorithm,
which uses UUIDs to map corresponding model elements. The obtained differ-
ences are translated to Pounamu editing events, which are events corresponding
to the actions performed by users within the modeling environment. Differences

An Introduction to Model Versioning 367

cover not only modifications performed on the model, but also modifications per-
formed on the graphical visualization. The differences between various versions
are visualized in the concrete syntax so that developers may directly accept or
reject modifications on top of the graphical representation developers are famil-
iar with. In their works, also conflict detection facilities are shortly mentioned,
however, not discussed in detail.

Approach by Oda and Saeki. Oda and Saeki [87] propose to also generate version-
ing features along with the modeling editor generated from a specified metamodel
as known from metamodeling tools. The generated versioning-aware modeling
editors are capable of recording all operations applied by the users. In particu-
lar, the generated tool records operations to the logical model (i.e., the abstract
syntax tree of a model), as well as the diagram’s layout information (i.e., the con-
crete syntax). Besides recording, the generated modeling tool includes check in,
check out, and update operations to interact with a central model repository. It
is worth noting that only the change sequences are sent to the repository and not
the complete model state. In case a model has been concurrently modified and,
therefore, needs to be merged, conflicts are identified by re-applying all recorded
operations to the common ancestor version. Before each change is performed
in the course of merging, its precondition is checked. In particular, the precon-
dition of each change is that the modified model element must exist. Thereby,
delete-update conflicts can be identified. Update-update conflicts, however, re-
main unrevealed and, consequently, the values in the resulting merged model
might depend on the order in which the recorded updates are applied because
one update might overwrite another previous update. Composite operations and
their specific preconditions are not particularly regarded while merging. The
approach also does not enable to specify additional language-specific conflicts.
Although metamodel violations can, in general, be checked in their tool, they
are not particularly considered in the merge process. As the versioning tool is
generated from a specific metamodel, the generated tool is language dependent;
the approach in general, however, is independent from the modeling language.
However, the approach obviously forces users to use the generated modeling
editor to be able to use their versioning system.

Odyssey-VCS 2. The version control systemOdyssey-VCS byOliveira et al. [89] is
dedicated to versioning UMLmodels. Operations between two versions of a model
are identifiedby applying state-basedmodel differencing relying onUUIDs for find-
ing correspondingmodel elements.Language-specificheuristics for thematch func-
tions may not be used. Also language-specific composite operations are neglected.
Interestingly, however, for eachproject, so-calledbehavior descriptorsmaybe spec-
ified, which define how eachmodel element should be treated during the versioning
process. Consequently, the conflict detection component ofOdyssey-VCS is adapt-
able, in particular, it may be specified which model elements should be considered
to be atomic. If an atomic element is changed in twodifferentways at the same time,
a conflict is raised. These behavior descriptors (i.e., adaptations) are expressed in
XML configuration files. Thus, Odyssey-VCS is customizable for different projects

368 P. Brosch et al.

concerning the unit of comparison, as well as whether to apply pessimistic or op-
timistic versioning. Conflicts coming from language-specific operations, as well as
additional language-specific conflicts, however, may not be configured. More re-
cently, Odyssey-VCS 2 [70] has been published, which is capable of processing any
EMF-basedmodels andnot onlyUMLmodels.Avalidation of the resultingmerged
model is not considered.

Approach by Ohst, Welle, and Kelter. Within the proposed merge algorithm, also
Ohst et al. [88] put special emphasis on the visualization of the differences. There-
fore, differences between the model as well as the layout of the diagram are com-
puted by applying a state-based model differencing algorithm relying on UUIDs.
Conflict detection, however, is not discussed in detail; only update-update and
delete-update conflicts are shortly considered. After obtaining the differences, a
preview is provided to the user, which visualizes all modifications, even if they are
conflicting. The preview diagram can also be modified and, therefore, allows users
to resolve conflicts easily using the concrete syntax of a diagram. For indicating
the modifications, the different model versions are shown in a unified document
containing the common parts, the automatically merged parts, as well as the con-
flicts. For distinguishing the differentmodel versions, coloring techniques are used.
In the case of delete-update conflicts, the deleted model element is crossed out and
decorated with a warning symbol to indicate the modification.

IBM Rational Software Architect (RSA). The Eclipse-based modeling environ-
ment RSA 11 is a UML modeling environment built upon the Eclipse Modeling
Framework. Under the surface, it uses an adapted version of EMF Compare for
UML models offering more sophisticated views on the match and difference mod-
els for merging. These views show the differences and conflicts in the graphical
syntax of the models. The differencing and conflict detection capabilities are,
however, equal to those of EMF Compare, besides that RSA additionally runs
a model validation against the merged version and, in case an validation rule is
violated, the invalid parts of the model are graphically indicated.

SMOVER. The semantically-enhanced model versioning system by Reiter et
al. [96], called SMOVER, aims at reducing the number of falsely detected con-
flicts resulting from syntactic variations of semantically equal modeling concepts.
Furthermore, additional conflicts shall be identified by incorporating knowledge
on the modeling language’s semantics. This knowledge is encoded by the means
of model transformations, which rewrite a given model to so-called semantic
views. These semantic views provide a canonical representations of the model,
which makes certain aspects of the modeling language more explicit. Conse-
quently, also potential semantic conflicts might be identified when the semantic
view representations of two concurrently evolved versions are compared. It is
worth noting that the system itself is independent from the modeling language
and language-specific semantic views can be configured to adapt the system to

11 http://www.ibm.com/developerworks/rational/library/05/712 comp/

index.html

http://www.ibm.com/developerworks/rational/library/05/712_comp/index.html
http://www.ibm.com/developerworks/rational/library/05/712_comp/index.html

An Introduction to Model Versioning 369

a specific modeling language. The differences are identified using a state-based
model differencing algorithm based on UUIDs. Therefore, the system is indepen-
dent of the used modeling editor. However, this differencing can not be adapted
to specific modeling languages and only works in a generic manner. SMOVER
also only addresses detecting conflicts regarding the semantics of a model and
does not cover syntactic operation-based conflicts.

Approach by Westfechtel. Recently, Westfechtel [117] presented a formal ap-
proach for merging EMF models. Although no implementation of his work is
available, it provides well-defined conflict rules based on set-theoretical conflict
definitions. In [117], Westfechtel does not address the issue of identifying dif-
ferences between model versions and rather focuses on conflict detection only
and assumes the presence of change-based differences that can be obtained by,
for instance, EMF Compare. Westfechtel’s approach is directly tailored to EMF
models and defines context-free merge rules and context-sensitive merge rules.
Context-free merge rules determine “the set of objects that should be included
into the merged versions and consider each feature of each object without taking
the context [i.e., relationships to other objects] into account“ [117]. The presented
algorithm also supports merging of ordered features and specifies when to raise
update-update conflicts. The conflict types defined by Westfechtel have been
discussed in Section 3.4 already. Besides these operation-based conflicts, West-
fechtel also addresses conflicts arising from the well-formedness rules of EMF.
However, no techniques that enable further language-specific constraints are dis-
cussed. Moreover, he only addresses conflicts among atomic operations and is
not adaptable to language-specific knowledge.

4.3 Summary

After surveying existing model versioning approaches, we may conclude that
the predominant strategy is to apply state-based model differencing and generic
model versioning. The majority of model differencing approaches rely on UUIDs
for matching. However, only ADAMS combines UUIDs and (very simple) content-
based heuristics. The detection of applications of composite operations is only
supported by approaches applying operation recording. The only approach that
is capable of detecting composite operations by using a state-based model com-
parison approach is Gerth et al.; however, their approach is specifically tailored to
process models and the supported composite operations are limited to compound
additions and deletions. Consequently, none of the surveyed generic approaches
is capable of detecting applications of more complex composite operations having
well-defined pre- and postconditions without directly recording their application
in the editor. Furthermore, none of the approaches are adaptable in terms of ad-
ditional match rules or composite operation specifications. EMF Compare and
EMFStore foresee at least an interface to be implemented in order to extend
the set of detectable applications of composite operations. In EMF Compare,
however, the detection algorithm has to be provided by an own implementation.

370 P. Brosch et al.

In EMFStore, additional commands may be plugged into the modeling editor
programmatically for enabling EMFStore to record them.

Obviously, all model versioning approaches provide detection capabilities for
conflicts caused by two concurrent atomic operations. Unfortunately, most of
them lack a detailed definition or at least a publicly available implementation.
Therefore, we could not evaluate which types of conflicts can actually be de-
tected by the respective approaches. In this regard, we may highlight Alanen
and Porres, EMF Compare, EMFStore, Gerth et al., and Westfechtel. These ei-
ther clearly specify their conflict detection rules in their publications or publish
their detection capabilities in terms of a publicly available implementation.

Only Cicchetti et al. and Gerth et al. truly consider composite operations in
their conflict detection components. However, in the case of Cicchetti et al., all
potentially occurring conflict patterns in the context of composite operations
have to specified manually. It is not possible to derive automatically the con-
flict detection capabilities regarding composite operations from the specifications
of such operations. The approach by Gerth et al. is limited to specific model-
ing language and supports only rather simple composite operations. EMFStore
partially respects composite operations: if a conflict between two atomic opera-
tions is revealed and one atomic operation is part of a composite operation, the
complete composite operation is reverted. However, additional preconditions of
composite operations are not considered. None of the surveyed approaches aims
at respecting the original intention behind the composite operation; that is, in-
corporating concurrently changed or added elements in the re-application of the
composite operation when creating the merged version.

Several of the surveyed approaches take inconsistent merge results into ac-
count. CoObRA is capable of detecting at least a subset of all potentially occur-
ring violations of the modeling language’s rules. Westfechtel only addresses the
basic well-formedness rules coming from EMF, such as spanning containment
tree. The approaches proposed by Alanen and Porres, EMFStore, Gerth et al.,
Oda and Saeki, and the RSA perform a full validation after merging.

Most of the proposed conflict detection approaches are not adaptable. ADAMS
and Odyssey-VCS provide some basic configuration possibilities such as chang-
ing the unit of comparison. EMF Compare can be programmatically extended to
attach additional conflict detection implementations. Only Cicchetti et al. and
SMOVER allow to plug in language-specific artifacts to enable revealing addi-
tional conflicts. However, in the approach by Cicchetti et al., the conflict patterns
have to be manually created in terms of object models, which seems to be a great
deal of work requiring deep understanding of the underlying metamodel. Due to
the lack of a public implementation, it is hard to evaluate the ease of use and the
scalability of this approach. SMOVER allows to provide a mapping of a model
to a semantic view in order to enable the detection of semantically equivalent or
contradicting parts of a model. The comparison and conflict detection algorithm
that is applied to the semantic views, however, is not adaptable. Consequently,
SMOVER only aims to detect a very specific subset of conflicts only.

An Introduction to Model Versioning 371

PersonTicket

getInfo()
buy()

Event

Concert

artist

Exhibition

artist

Original Version Vo

Customer
buys

Ticket

getTInfo()
buy()

Event

Concert

artist

Exhibition SoccerMatch

Harry‘s Version Vr1
Ticket

getTicketInfo()
purchase()

Event

Concert Exhibition

artist

Sally‘s Version Vr2

Fig. 7. Model Versioning Example

Conflict resolution has not gained much attention among existing approaches
yet. Only four of the 15 surveyed approaches, namely CoObRA, Mehra et al.,
Ohst et al., and the RSA provide dedicated views for visualizing conflicts ad-
equately to help developers to understand and resolve conflicts. Most notably
concerning conflict resolution is the approach by Cicchetti et al., which allows
to specify dedicated conflict resolution strategies for certain conflict patterns.

5 An Introduction to AMOR

In this section, we introduce the adaptable model versioning system AMOR12, which
has been jointly developed at the ViennaUniversity of Technology13, the Johannes
Kepler University Linz14, and SparxSystems15. Therefore, we first present amodel
versioning scenario in Section 5.1 serving as running example throughout the re-
mainder of this section. Next, we discuss the goals of AMOR and give an overview
of the AMORmerge process in Section 5.2. Subsequently, we describe each step in
the merge process in more detail in the sections 5.3 to 5.6.

5.1 Running Example

Consider the following example. The modelers Harry and Sally work together on
a project, where an event managing system has to be developed. Both modelers
check out the latest version of the common repository (cf. Original Version Vo in
Fig. 7) and start with their changes. Harry renames the class Person to Customer
and adds an association buys from Customer to Ticket. He further renames the
operation getInfo() in class Ticket to getTInfo(). In Harry’s opinion exhibitions do

12 http://www.modelversioning.org
13 http://www.tuwien.ac.at
14 http://www.jku.at
15 http://www.sparxsystems.eu

http://www.modelversioning.org
http://www.tuwien.ac.at
http://www.jku.at
http://www.sparxsystems.eu

372 P. Brosch et al.

not have an artist. Thus he deletes the property artist from the class Exhibition.
Afterwards, he checks in his revised version resulting in Harry’s Version in Fig. 7.
In the meanwhile, unaware of Harry’s changes, Sally performs the following
changes. She renames both operations in the class Ticket. The operation getInfo()
is renamed to getTicketInfo() and the operation buy() is renamed to purchase().
She identifies the property artist, which is common to all subclasses of the class
Event, as undesirable redundancy, and performs the refactoring Pull Up Field to
shift the property to the superclass. Finally, she deletes the isolated class Person
and commits her revised version to the common repository. However, the commit
fails, as her changes partly contradict Harry’s changes.

In the following, we discuss the technical details how the model versioning
system AMOR detects and reports the occurred conflicts and accompany Sally
while she is merging her changes with Harry’s changes.

5.2 AMOR at a Glance

The main goal of AMOR is to combine the advantages of both generic and
language-specific model versioning by providing a generic, yet adaptable model
versioning framework. The generic framework offers versioning support for all
modeling languages conforming to a common meta-metamodel out of the box
and enables users to enhance the quality of the versioning capabilities by adapt-
ing the framework to specific modeling languages using well-defined adaptation
points. Thereby, developers are empowered to balance flexibly between reason-
able adaptation efforts and the required level for versioning support. For realiz-
ing this goal, we aligned the development of each component according to the
following design principles.

Flexibility concerning modeling language and editor. In traditional, code-centric
versioning, mainly language-independent systems that do not pose any restric-
tions concerning the used editor gained significant adoption in practice. Thus,
we may draw the conclusion that a versioning system that only supports a re-
stricted set of languages and that has an inherent dependency on the used editor
might not find broad adoption in practice. Also, when taking into consideration
that domain-specific modeling languages are becoming more and more popular,
language-specific systems seem to be an unfavorable choice.

Therefore,AMOR is designed to provide generic versioning support irrespective
of the usedmodeling languages andmodeling editors. Generic versioning is accom-
plished by using the reflective interfaces of the Eclipse Modeling Framework [107]
(EMF) serving as reference implementation of OMG’s MOF standard [77]
(cf. Section 3.1). Thereby, all modeling languages can be handled immediately for
which an EMF-based metamodel is available.

AMOR is also independent of the used modeling editor and does not rely on
specific features on the editor side. Therefore, we may not apply editor-specific
operation recording to obtain the applied operations. Instead, AMOR works only
with the states of a model before and after it has been changed and derives the
applied operations using state-based model differencing.

An Introduction to Model Versioning 373

Easy adaptation by users. Generic versioning systems are very flexible, but they
lack in precision in comparison to language-specific versioning systems because
no language-specific knowledge is considered. Therefore, AMOR is adaptable
with language-specific knowledge whenever this is needed. Some existing model
versioning approaches are adaptable in terms of programming interfaces. Hence,
it is possible to implement specific behavior to adapt the system according to
their needs. Especially with domain-specific modeling languages, a plethora of
different modeling languages exists, which often are not even publicly available.
Bearing that in mind, it is hardly possible for versioning system vendors to
pre-specify the required adaptations to incorporate language-specific knowledge
for all existing modeling languages. Thus, users of the versioning system should
be enabled to create and maintain those adaptation artifacts by themselves.
This, however, entails that these adaptation artifacts do not require deep knowl-
edge on the implementation of the versioning system and programming skills.
Therefore, AMOR is designed to be adapted by providing descriptive adapta-
tion artifacts and uses, as far as possible, well-known languages to specify the
required language-specific knowledge. No programming effort is necessary to en-
hance AMOR’s versioning capabilities with respect to language-specific aspects.
Besides aiming at the highest possible adaptability, the ease of adaptation is one
major goal of AMOR.

AMOR Merge Process. The merge process of AMOR is depicted in Fig. 8.
This figure presents a more fine-grained view on the same merge process that is
depicted in Fig. 1. Furthermore, we now illustrate explicitly the artifacts that
are exchanged between the steps of this process. The input of this merge process
are three models: the common original model Vo and two concurrently changed
models, Vr1 and Vr2.

The first phase of the merge process concerns the operation detection. The
goal of this phase of the process is to detect precisely which operations have been
applied in between Vo and Vr1, as well as between Vo and Vr2. As argued above,
AMOR aims to be independent from the modeling editor. Hence, a state-based
model comparison is performed, which is carried out in three steps in AMOR.
First, the revised models are each matched with the common original model Vo.
Therefrom, two match models are obtained, which describe the correspondences
among the original model and the revised models. Next, the applied atomic
operations are computed. Besides these atomic operations, AMOR also provides
techniques for detecting composite operations, such as model refactorings [109],
among the applied atomic operations. The output of this phase of the process
are two difference models DVo,Vr1 and DVo,Vr2 , which describe all operations
performed in the concurrent modifications. The operation detection is discussed
more precisely in Section 5.3.

Based on the two difference models computed in the previous phase of the
process, the next phase of the process aims to detect conflicts among the con-
currently applied operations. Thereby not only atomic operation conflicts (e.g.,
delete-update conflicts), but also conflicts among composite operations are re-
vealed in the respective steps of this phase. All detected conflicts are saved into

374 P. Brosch et al.

M
at

ch
D

iff
[a

to
m

ic
]

D
iff

[c
om

po
si

te
]

O
pe

ra
tio

n
D

et
ec

tio
n

C
on

fli
ct

 D
et

ec
tio

n

V o

V r
1

m
1

M
at

ch

M
od

el
M

V
o,

V
r1

M
at

ch
in

g

D
iff

M

od
el

D
V

o,
V

r1

A
to

m
ic

 O
pe

ra
tio

n
D

t
ti

A
to

m
ic

 O
pe

ra
tio

n
C

fli
tD

t
ti

C
om

po
si

te

O
ti

D
t

ti

D
iff

M

od
el

D
V

o,
V

r1

V o

V r
2

m
2

M
at

ch

M
od

el
M

V
o,

V
r2

M
at

ch
in

g

D
iff

M

od
el

D
V

o,
V

r2

D
et

ec
tio

n
C

on
fli

ct
 D

et
ec

tio
n

O
pe

ra
tio

n
D

et
ec

tio
n

D
iff

M

od
el

D
V

o,
V

r2

[a
to

m
ic

]
[c

om
po

si
te

]

O
pe

ra
tio

n
Sp

ec
ifi

ca
tio

ns
C

on
fli

ct
 R

es
ol

ut
io

n

C
on

fli
ct

M

od
el

C
m

1,
m

2

[a
to

m
ic

]

C
om

po
si

te
 O

pe
ra

tio
n

C
on

fli
ct

 D
et

ec
tio

n

C
on

fli
ct

M

od
el

C
m

1,
m

2

[c
om

po
si

te
]

C
on

fli
ct

-to
le

ra
nt

M

er
ge

r
V

m
t

C
ol

la
bo

ra
tiv

e
C

on
fli

ct
 R

es
ol

ut
io

n
V

m

C
on

fli
ct

-a
w

ar
e

V
C

on
fli

ct
R

es
ol

ut
io

n
V

C
R

E
P

s

M
er

ge
r

V
m

a
C

on
fli

ct
 R

es
ol

ut
io

n
V

m

In
co

ns
is

te
nc

y
D

et
ec

tio
n

F
ig
.
8
.
A
M
O
R

M
er
g
e
P
ro
ce
ss

An Introduction to Model Versioning 375

a conflict model called Cm1,m2 in Fig. 8. More information on how conflicts are
detetected in AMOR is provided in Section 5.4.

The computed differences and detected conflicts serve then as input for the
conflict resolution phase. AMOR’s conflict resolution process may be adapted and
provides two interchangeable strategies. Both strategies combine the strength of
automatic merging and inconsistency toleration and calculate a tentative merge,
which is discussed in Section 5.5. The tentative merge acts as base for either col-
laborative conflict resolution or for recommendation supported conflict resolution,
as elaborated in Section 5.6.

5.3 Operation Detection

The first phase of the merge process is the operation detection with the goal to
detect precisely which operations have been applied in between Vo and Vr1, as
well as Vo and Vr2. This phase consists of three steps, model matching, atomic
operation detection, and composite operation detection (cf. Fig. 8), which are
discussed in the following.

Model Matching. AMOR aims to be independent from the modeling editor.
Hence, state-based model differencing is applied. The first step of model dif-
ferencing is model matching, which computes the corresponding model elements
between the original model Vo and the revised models Vr1 and Vr2. The computed
correspondences are saved in two distinct match models MVo,Vr1 and MVo,Vr2 .
Therein, one correspondence connects a model element in the original model Vo

with its corresponding revised model in Vr1 or Vr2, respectively.

Computing correspondences between model elements. Even if UUID-based match-
ing is probably the most efficient and straightforward technique for obtaining the
actual model changes, there are some drawbacks of this approach. In particular,
if model elements loose their UUID, they cannot be matched anymore. Unfor-
tunately, such a scenario is happening quite frequently; not only because the
developer deletes and re-creates a similar model element subsequently, but also
because of improperly implemented copy & paste or move actions in certain
modeling editors causing the model elements’ UUIDs to be lost (e.g., in the
tree-based Ecore editor).

To address these drawbacks, we apply a two-step matching process: first, a
UUID-based matching is applied to obtain a base match, which is improved sub-
sequently by applying user-specified language-specific match rules to the pairs of
model elements that could not be matched based on their UUIDs. Thereby, the
advantages of UUID-based matching is retained and its drawbacks are reduced
significantly. As the comparatively slow rule-based matching is kept at a mini-
mum with this approach, the additional execution time of the model matching
phase should still be reasonable.

Representing correspondences. Having obtained the model element correspon-
dences between the original model Vo and a revised model, called Vr to refer

376 P. Brosch et al.

MatchModel Match

Unmatch

side:Side

*

*

EObject
(from Ecore)

1

1

1

original

revised

object

«Enumeration»
Side

- Original
- Revised

(a) Match Metamodel

Vo \ Vr Vo Vr Vr \ Vo

:MatchModel

:Match :Unmatch

side=Revised

:Unmatch

side=Original

Vo Vr

(b) Conceptual Representation
of a Match Model

Fig. 9. Representing Model Correspondences

to both Vr1 and Vr2, they have to be represented in some way for their fur-
ther usage. Therefore, we introduce the match metamodel depicted in Fig. 9a.
Please note that this match metamodel is largely equivalent to the one used in
EMF Compare [14]. Basically, a match model is a so-called weaving model [31],
which adds additional information to two existing models by introducing new
model elements that refer to the model elements in the original and the revised
model. In particular, a match model comprises an instance of the class Match-
Model, which contains, for each pair of matching model elements, an instance of
the class Match. This instance refers to the corresponding model element in the
original version through the reference original and the revised version through
the reference revised. If a model element, either in the original model and in
the revised model, could not be matched, an instance of the class Unmatch is
created, which refers to the unmatched model element in the respective model.
The attribute side indicates whether the unmatched model element resides in
the original or the revised model.

A match model groups the model elements in Vo and Vr into three distinct
sets (cf. Fig. 9b). The first set constitutes all model elements that are contained
in the original version, but not in the revised version (i.e., Vo\Vr). The second
set contains all model elements that are contained in both models (i.e., Vo ∩ Vr)
and the third set comprises all model elements that are contained in the revised
model but not in the original model (i.e., Vr\Vo). In EMF, attribute and reference
values of a model element are possessed by the respective model element. Thus,
they are considered as being a property of the model element rather than being
treated as its own entity. Consequently, in the match model only corresponding
model elements are linked by Match instances.

Atomic Operation Detection. Having obtained the correspondences among
model elements in an original model Vo and a revised model Vr, we may now pro-
ceed with deriving the atomic operations that have been applied by the user to
Vo in order to create Vr. As already mentioned, match models only indicate the
corresponding model elements and those model elements that only exist either in
Vo or in Vr. Corresponding model elements, however, might not be entirely equal
as their attribute values or reference value might have been modified. Therefore,

An Introduction to Model Versioning 377

DifferenceModel

FeatureOperation ObjectOperation

*

featureOperation

Feature

InsertFeatureValue DeleteFeatureValue InsertObject DeleteObject

Object

affected
Object

value

1

1

1

1

Operation self.featureOperation
.feature.containment = true

self.featureOperation
.oclIsKindOf(InsertFeatureValue)

self.featureOperation
.oclIsKindOf(DeleteFeatureValue)

feature object

1

FeatureUpdate Move

11 sourcetarget

Fig. 10. Difference Metamodel

we further derive a diff model from the match model to also represent operations
affecting attribute values and reference values before we may search for conflicts
among concurrently performed operations. To put the detection of atomic opera-
tions in the context of a model versioning scenario, recall that we have two mod-
ifications, m1 and m2, and one match model comprising the correspondences for
each side,MVo,Vr1 andMVo,Vr2 . Therefore, we also have two diff models (cf. Fig. 8).
In particular,DVo,Vr1 , which is computed fromMVo,Vr1 , represents the operations
applied in m1 and DVo,Vr2 , derived from MVo,Vr2 , represents the operations ap-
plied in m2.

Computing operations from corresponding model elements. Starting from a match
model, the detection of applied operations is largely straightforward. In partic-
ular, the atomic operation detection component first iterates through all Match
instances of this match model and performs a fine-grained feature-wise compar-
ison of the two corresponding model elements. Thereby, the feature values of
each feature of both corresponding model elements are checked for equality. If a
feature value of one model element differs from the respective value of the cor-
responding model element, the respective feature of the model element has been
subjected to a modification in the revision. After all Match instances have been
processed, we proceed with iterating through all Unmatch instances. Depending
on its value at the attribute side, we either encounter an addition of a new model
element if the side is Revised, or a deletion if the side is Original.

Representing operations. To represent the applied operations, we introduce a
difference model, which is depicted in Fig. 10. Due to space limitations, we
only present the kernel of the difference metamodel in this paper, which does
not reflect more advanced modeling features of EMF models, such as ordered
features. For a complete specification of differences between EMF models, we
kindly refer to Section 5.2.2 in [56]. In this kernel difference model, we distinguish
between two types of operations: FeatureOperation, which modifies the value of
a feature, and ObjectOperation, which represent the insertion or deletion of a

378 P. Brosch et al.

model element. Please note that model elements are referred to as objects in this
metamodel for the sake of generalization.

If the respective features are multi-valued, values can be inserted or deleted
from the feature. For expressing such operations, we use two concrete subclasses
of FeatureOperation in the difference metamodel, namely InsertFeatureValue and
DeleteFeatureValue. If feature values are single-valued, it is not possible to add
or delete feature values. Instead, they only can be updated, whereas the old
value is overwritten. Therefore, we introduce the operation type FeatureUpdate.
If the respective feature is defined to be a containment feature, it may contain
other model elements. In this case, model elements may also be moved from one
container to another container, whereas the identity of the moved model element
is retained. Such an operation is represented by the class Move, which links the
deletion of it in the source feature and the insertion of it in the target feature.
All types of feature operations refer to the object that has been changed using
the reference affectedObject, to the affected feature in the modeling language’s
metamodel (reference affectedFeature), and to the inserted or deleted feature
value (reference value). In case of a reference, this value is a model element and
in case of an attribute, the value is a simple data type such as String, or Boolean,
etc. However, we omitted to distinguish explicitly between model elements and
simply typed data values in Fig. 10 for the sake of readability. It is worth noting
that, in case of a InsertFeatureValue, the reference value refers to the inserted
value in the revised model (Vr1 or Vr2) and, in case of a DeleteFeatureValue, it
refers to the deleted value in the original model Vo.

Besides modifying feature values in existing objects, users may also insert and
delete entire objects (i.e., model elements). Therefore, the metamodel contains
the two classes InsertObject and DeleteObject, which are subclasses of Object-
Operation. Except for root objects, objects are always contained by another
object through a containment feature. Consequently, inserting and removing an
object is realized by a feature operation affecting the respective containment
feature. Thus, object operations are further specified by a reference to the re-
spective instance of a FeatureOperation, which gives information on the inserted
or deleted object (reference value), the container of the inserted or removed ob-
ject (reference affectedObject), and the containment feature through which the
object is or originally was contained (reference affectedFeature). Certainly, as
defined by the invariants in Fig. 10, a valid instance of InsertObject must refer
to an instance of InsertFeatureValue and a valid instance of DeleteObject must
refer to an instance of DeleteFeatureValue, whereas the affected feature has to
be a containment feature.

Example of a difference model. To exemplify the difference metamodel, a con-
crete instance is depicted in terms of an object diagram in Fig. 11, which rep-
resents a subset of the operations applied by Sally in the example introduced
in Section 5.1. Please note that we depicted the object diagrams representing
the original and the revised model in gray for the sake of readability. This figure
depicts an excerpt of the original UML class diagram Vo and Sally’s revision Vr2,
the respective difference model DVo,Vr2 , as well as an excerpt of the metamodel

An Introduction to Model Versioning 379

Sally‘s Model Vr2Original Model Vo

: Generalization

: Class
name = "Event"

: Class
name = "Exhibition"

: Class
name = "Concert"

general

Difference Model
DVo,Vr2

: InsertFeatureValue: DeleteFeatureValue

: DeleteObject
target

: DeleteFeatureValue

: Move

source

value affectedObject affectedObject affectedObjectvalue
value

: EReference
name = "ownedAttributes"
containment = true
ordered = false
lowerBound = 0
upperBound = -1

UML Class Diagram
Metamodel

: EClass
name = "Class"

: EClass
name = "Property"

featurefeaturefeature

features

type

generalization

: Generalization

general

generalization : Generalization

: Class
name = "Event"

: Class
name = "Exhibition"

: Class
name = "Concert"

general

generalization

: Generalization

general

generalization

p1 : Property
name = "artist"

owned
Attributes

p2 : Property
name = "artist"

owned
Attributes

p1 : Property
name = "artist"

owned
Attributes

featureOperation

Fig. 11. Example of a Difference Model

for UML class diagrams. Sally moved the attribute artist from the class Concert
to its superclass Event and deleted the equally named attribute artist from the
class Exhibition. As a result, the difference model contains five operations. First
of all, there is an instance of Move, which represents the shift of the attribute
artist. As a move is realized by a deletion and a subsequent insertion of a feature
value, the instance of Move refers to an instance of DeleteFeatureValue via the
reference source and an instance of InsertFeatureValue with the reference target.
Besides, Sally deleted the second attribute artist from the class Exhibition, which
is represented by an instance of DeleteObject. This deletion is realized by another
instance of DeleteFeatureValue referring to the deleted value (i.e., the deleted at-
tribute artist), the affected object (i.e., the containing class Exhibition), as well
as the UML metamodel feature the deleted value originally resided in (i.e., the
feature ownedAttributes).

Composite Operation Detection. Having represented the applied atomic
operations, we proceed with detecting applications of composite operations.
Composite operations, such as model refactorings [109], pose specific pre- and
postconditions and consist of a set of atomic operations that are executed in a
transaction in order to fulfill one common goal. Thus, the knowledge on applica-
tions of composite operations between two versions of a model significantly helps
in many scenarios to better respect the original intention of a developer, as well

380 P. Brosch et al.

as to reveal additional issues when merging two concurrent modifications [22,68].
Such an additional merge issue may occur, if concurrent modifications invalidate
the preconditions of a composite operation or when concurrent modifications in-
fluence the execution of the composite operation.

Composite operations are specific to a certain modeling language. Thus, users
should be empowered to pre-specify them for their employed modeling languages
on their own in order to adapt the generic operation detection step of AMOR.
Once a composite operation is specified and configured in AMOR, applications of
composite operations, as well as conflicts concerning composite operations can be
detected. However, specifying composite operations, or more generally, endoge-
nous model transformation, is a challenging task, because users have to be capa-
ble of applying dedicated model transformation languages and have to be familiar
with the metamodels of the models to be transformed. To ease the specification
of such transformations, we make use of a novel approach called model trans-
formation by demonstration (MTBD) [13,56,108], which is introduced briefly in
the following.

Specifying composite operations. The general idea behind MTBD is that users
apply or “demonstrate” the transformation to an example model once and, from
this demonstration, as well as from the provided example model, the generic
model transformation is derived semi-automatically. To realize MTBD, we de-
veloped the following specification process.

In a first step, the user creates the initial model in a familiar modeling en-
vironment. This initial model contains all model elements that are required in
order to apply the composite operation. Next, each element of the initial model
is annotated automatically with an ID, and a so-called working model (i.e., a
copy of the initial model for demonstrating the composite operation by applying
its atomic operations) is created. Subsequently, the user performs the complete
composite operation on the working model by applying all necessary atomic op-
erations. The output of this step is the revised model, which is together with
the initial model the input for the following steps of the operation specification
process. Due to the unique IDs, which preserve the relationship among model
elements in the initial model and their corresponding model elements in the re-
vised model, the atomic operations of the composite operation may be obtained
precisely using our model comparison approach presented above. The obtained
operations are saved in a difference model. Subsequently, an initial version of
pre- and postconditions of the composite operation is inferred by analyzing the
initial model and the revised model, respectively. The automatically generated
conditions from the example might not always entirely express the intended pre-
and postconditions of the composite operation. They only act as a basis for ac-
celerating the operation specification process and may be refined by the user.
In particular, parts of the conditions may be activated, deactivated, or modified
within a dedicated environment. If needed, additional conditions may be added.
After the configuration of the conditions, an operation specification is generated,
which is a model-based representation of the composite operation consisting of
the diff model and the revised pre- and postconditions, as well as the initial and

An Introduction to Model Versioning 381

•Class_0 [Event]
•Class_1 [Concert]

• generalisations->includes(Generalisation_0)
• ownedAttributes->includes(Property_0)
•Generalisation_0

• general = Class_0
• Property_0 [artist]

•Class_2 [Exhibition]
• generalisations->includes(Generalisation_1)
• ownedAttributes->includes(Property_1)
• Generalisation_1

• general = Class_0
• Property_1 [artist]

• name = Property_0.name

Excerpt of the Preconditions Excerpt of the Postconditions

•Class_0 [Event]
• Property_0 [artist]

•Class_1 [Concert]
• generalisations->includes(Generalisation_0)
• ownedAttributes->includes(Property_0)
•Generalisation_0

• general = Class_0
•Class_2 [Exhibition]

• generalisations->includes(Generalisation_1)
•Generalisation_1

• general = Class_0

Legend: … iteration

Fig. 12. Excerpt of the Pre- and Postconditions of “Pull Up Field”

revised example model. Thus, this model contains all necessary information for
executing the composite operation, as well as for detecting applications of it. For
more information on the specification process, and how these specifications can
be executed automatically to arbitrary models, we kindly refer to [13,56,108].

Example for specifying “Pull Up Field”. To provide a better understanding of
how composite operations can be specified, we discuss the specification process
for developing the composite operation “Pull Up Field”. In the first step, the user
creates the initial model, which contains all model elements that are necessary
to apply the composite operation. The resulting initial model is equivalent to the
original model depicted in Fig. 11. Now, a copy of this initial model is created
automatically, to which the user now applies all atomic operations, which leads
to the revised model again shown in Fig. 11. From these two models, we now
compute the applied atomic operations using the previously discussed model
comparison resulting in the difference model of our previous example presented
in Fig. 11. Besides for computing the atomic operations, these two models also act
as input for the automatic derivation of the pre- and postconditions in the form
of OCL expressions [84], which may now be fine-tuned by the user. The resulting
conditions, after the refinement by the user, are illustrated in Fig. 12. The pre-
and postconditions are structured according to the model elements in the initial
and revised model, respectively, and my refer to each other using a model element
identifier (e.g., Class 0), which is comparable to a variable. The user only has to
refine the precondition name = Property 0.name in order to restrict the names
of the properties that are pulled up to the common superclass to be equal.
In other words, the property Property 1, which resides in the second subclass
Class 2 must have the same name as the other property Property 0, which is
contained by the class Class 1, for acting as a valid property in this composite
operation. Without satisfying this condition, the execution of the refactoring
would lead to a change of the semantics of the model, because Class 2 would
inherit a differently named property from its superclass after the refactoring has
been applied. Besides fine-tuning this precondition, the user may also attach

382 P. Brosch et al.

iterations, which has been done for Property 0, Class 1, and Property 1. With
these iterations, the user specifies that all atomic operations that have been
applied to these model elements in the demonstration have to be repeated for
all model elements that match the respective preconditions when applied to an
arbitrary model.

Detecting composite operations. After the difference models are computed, we
may proceed with the next step in the merge process, which aims at detecting
applications of composite operations (cf. Fig. 8). The composite operation de-
tection step relies on a set of composite operation specification. As mentioned
above, an operation specification contains a description of the atomic opera-
tions applied during the demonstration of the composite operation, which can
be thought of as the difference pattern of the composite operation. Besides this
difference pattern, an operation specification also contains the composite oper-
ation’s pre- and postconditions.

For detecting applications of composite operations, it is searched for occur-
rences of the composite operations’ difference pattern in each of the difference
models DVo,Vr1 andDVo,Vr2 . If a difference pattern could be found, the respective
parts of the original model Vo are evaluated concerning the composite operation’s
preconditions. If also these preconditions are fulfilled in the original model, also
the postconditions of the composite operation are verified for the corresponding
model elements in the respective revised model. In case also the postconditions
can be evaluated positively in the revised model, an application of the respective
composite operation is reported and annotated in the difference model. For more
information on how composite operations are detected in AMOR, we kindly refer
to Section 5.3 in [56].

5.4 Conflict Detection

Having obtained the operations that have been applied concurrently to the com-
mon original model, we may now proceed with detecting conflicts among them.
As discussed in Section 3.4, a conflict occurs if two operations do not commute
or if one operation is not applicable anymore after the other operation has been
performed. The conflict detection in AMOR takes two difference models, DVo,Vr1

and DVo,Vr2 , as input and is realized by two subsequent steps: the atomic oper-
ation conflict detection and the composite operation conflict detection.

Atomic operation conflict detection. The goal of the first step, the atomic opera-
tion conflict detection, is to find concurrent atomic operations that interfere with
each other. This step is completely generic and does not demand for language-
specific information. Also composite operations remain unconsidered in this step;
however, the atomic operations that realize the composite operation applications
are still included in the conflict detection mechanisms.

We define the types of atomic operation conflicts by so-called generic conflict
patterns. These conflict patterns serve, on the one hand, as a clear specifica-
tion of the existing conflict types, and, on the other hand, they can be used for

An Introduction to Model Versioning 383

fo1 : FeatureOperation f : Feature

{upperBound = 1 and
fo1.value <> fo2.value}

o : Object

affected
Object

affected
Object

feature

feature

context UpdateUpdate
inv: self.update1.affectedObject = self.update2.affectedObject and

self.update1.feature = self.update2.feature and
(self.update1.feature.upperBound = 1 and
self.update1.value <> self.update2.value)

update1

update2

fo2 : FeatureOperation

uu : UpdateUpdate

Fig. 13. Update-update Conflict Pattern

detecting conflicts. More precisely, if such a conflict pattern matches with two
operations in the difference models, DVo,Vr1 and DVo,Vr2 , a conflict of the respec-
tive type occurred. However, for the sake of efficiency, we refrain from checking
the complete crossproduct of all operation combinations among all operations of
both difference models. In contrast, both difference models are translated in a
first step into an optimized view grouping all operations according to their type
into potentially conflicting combinations. Secondly, all combinations are filtered
out if they do not spatially affect overlapping parts of the original model. Finally,
all remaining combinations are checked in detail by evaluating the conflict rules.

An example for such a conflict pattern is provided in Fig. 13, which defines
an update-update conflict in terms of an object diagram, as well as an OCL con-
straint. As already mentioned, if a single-valued feature is concurrently modified
in EMF models a conflict occurs, because the merged model may not contain
both values and one value overwrites the other; thus, two updates of the same
feature value do not commute. Therefore, as illustrated in the conflict pattern
in Fig. 13, an update-update conflict is raised, if an object o has been concur-
rently updated at the same feature f by two instances of FeatureOperation, fo1
and fo2, unless both operations set the same new value such that fo1.value =
fo2.value. In our running example presented in Section 5.1, we encounter such
a conflict. Harry and Sally both renamed the UML operation getInfo(). Since
the name of UML operations is a single-valued feature and the new values for
the name of the UML operation are different (getTInfo() vs. getTicketInfo()), an
update-update conflict is raised.

All detected conflicts are saved into a conflict model called Cm1,m2 , which is
a model-based description of the occurred conflicts. Such a description provides
the necessary information concerning the type of the conflict and the involved
atomic operations. The complete set of all conflict patterns, as well as the conflict
metamodel is discussed more profoundly in Section 6.1 of [56].

Composite operation conflict detection. The next step in the conflict detection
phase is the composite operation conflict detection, which takes the knowledge on
the ingredients of composite operations, such as preconditions, into account for

384 P. Brosch et al.

revealing additional conflicts. In particular, this step aims to detect scenarios in
which modifications of one developer invalidate the preconditions of a composite
operation that has been applied in a parallel revision by another developer.

To detect composite operation conflicts, each application of a composite op-
eration in one revision (let us assume this is Vr1) is separately checked at the
respective opposite revision Vr2. Therefore, we first identify the model elements
of the opposite revision Vr2 that correspond to the model elements in Vo to
which the composite operation has been applied originally. Next, we evaluated
the preconditions of the composite operation with the identified model elements
of Vr2. If the preconditions are not fulfilled, the composite operation cannot be
applied after the concurrent operations have been performed; thus, a conflict is
raised and added to the conflict model Cm1,m2 .

Such a conflict is illustrated in the running example presented in Section 5.1.
Sally applied the refactoring “Pull Up Field” by moving the property artist from
the classes Concert and Exhibition to their common superclass Event. As discussed
in Section 5.3, a precondition of this composite operation is that each subclass
must contain a property having the same name as the property that is moved to
the common superclass. However, in the concurrent revision, Harry deleted the
property artist and added another subclass named SoccerMatch without having
a property named artist. Thus, the composite operation is not applicable to
the revised version of Harry, because no valid match could be found for the
preconditions of the refactoring. Consequently, a composite operation conflict,
which is also referred to as composite operation contract violation, is added to
the conflict model Cm1,m2 .

5.5 Merging

With the conflict model Cm1,m2 at hand, we may now proceed with merging the
parallel evolved models. Merging is the intricate task of usually one developer,
i.e., the developer who performs the later check-in, of integrating all changes
into one consolidated version of the model. However, several strategies exist
how merging may be realized, as discussed in Section 3.5. To justify AMOR’s
claim for adaptability not only with respect to supported modeling languages
and detectable conflicts, also the merge process may be configured. The overall
goal is to support the developer in understanding the evolution of the other
developer’s version as well as how this version contradicts her own changes to
the model. In fact, AMOR provides two interchangeable merge strategies, each
tailored to specific needs of a project’s stage.

Conflict-tolerant merging is adopted in the early phases of a project, i.e.,
analysis phase and design phase, where a common perception of the system under
study is not yet established. These phases are considered critical, as mistakes are
likely to happen and the costs of fixing such errors are high, when detected in
later phases [37]. Thus, in order to keep all viewpoints on the system, conflicts are
not resolved immediately after each commit, but are tolerated until a specified
milestone is reached. Then, to minimize the risk of losing any modifications,

An Introduction to Model Versioning 385

all developers may resolve conflicts together in a meeting or with the help of a
tool-supported collaborative setting as proposed in [118,12].

Conflict-aware merging is primary designed to support merging of a single
developer after each commit. If conflicts are not collaboratively resolved, it is
even more important, that the developer in charge of merging is supported to
effectually understand the model’s evolution. In a manual merge process, the de-
veloper has to navigate through several artifacts to collect information necessary
to comprehend the intentions behind all operations and the reasons of occurred
conflicts. To support this process, we combine automatic merge strategies with
the benefits of pollution markers known from the field of tolerating inconsisten-
cies [4,74,102]. We therefore calculate an automatically merged version which
reveals all operations and conflicts at a single glance by introducing dedicated
annotations. This automatically merged version acts as basis for conflict resolu-
tion and is thus denoted tentative merge.

In the remainder of this section, we present details how the tentative merge
is calculated employing the conflict-aware merge strategy of AMOR.

Design Rationale. In order to fully exploit the abstraction power of models,
modeling languages, such as UML, are usually complemented with a graphi-
cal concrete syntax to hide the complexity of the abstract syntax. As develop-
ers are mostly used to the graphical concrete syntax only, merging shall also
be performed directly using the concrete syntax of models. The major goal of
conflict-aware merging is to provide the model’s evolution in a single graphical
view without losing any model elements or modifications. Our design rationale
is based on the following requirements.

– User-friendly visualization. Information about performed operations and re-
sulting merge conflicts shall be presented in the concrete syntax of the model
retaining the original diagram layout.

– Integrated view. All information necessary for the merge shall be visualized
within a single diagram to provide a complete view on the models evolution.

– Standard conform models. The models incorporating the merge information
shall be conform to the corresponding metamodel without requiring heavy-
weight modifications.

– Model-based representation. The merge information shall be explicitly rep-
resented as model elements to facilitate model exchange between modeling
tools, as well as postponing the resolution of certain conflicts.

– No editor modifications. The visualization of the merge information shall be
possible without modifying the graphical editors of modeling tools.

In the following, we elaborate on the technical details of the conflict-aware merge
strategy with respect to the mentioned requirements.

Model Versioning Profile. As mentioned above, we use annotations to mark
conflicting or inconsistent parts of the merged model. Those conflicts are tol-
erated to a certain extent and eventually corrected. In our case, conflicts are
tolerated during the merge phase.

386 P. Brosch et al.

Annotations extend the model and carry information. Hence, annotations
need an appropriate representation in the modeling language’s abstract and
concrete syntaxes. However, creating new modeling languages goes hand in hand
with building new editors and code generators, as well as preparing documenta-
tion and teaching materials, among others. Further, several modeling languages
have already matured and may not be neglected when setting up versioning
support. Thus, mechanisms are needed to customize existing languages. When
directlymodifying existing languages, the aforementioned issues remain unsolved,
as newly introduced metamodel elements cannot be parsed by existing editors.
According to [3], a lightweight language customization approach is desirable.
For customizing immutable modeling languages like UML, UML profiles are
the means of choice. UML profiles provide a language-inherent, non-intrusive
mechanism for dynamically adapting the existing language to specific needs. As
UML profiles are not only part of UML, but defined in the infrastructure spec-
ification [85], various modeling languages, which are defined as instance of the
common core may be profiled and thus dynamically tailored. UML profiles de-
fine a lightweight extension to the UML metamodel and allow for customizing
UML to a specific domain. UML profiles typically comprise stereotypes, tagged
values, and additional constraints stating how profiled UML models shall be
built. Stereotypes are used to introduce additional modeling concepts which
extend standard UML metaclasses. Once a stereotype is specified for a meta-
class, the stereotype may be applied to instances of the extended metaclass to
provide further semantics. With tagged values, additional properties may be
defined for stereotypes. These tagged values may then be set on the modeling
level for applied stereotypes. Furthermore, syntactic sugar in terms of icons for
defined stereotypes may be configured to improve the visualization of profiled
UML models. The major benefit of UML profiles is, reflected by the fact that
profiled models are still conforming to UML, that they are naturally handled
by current UML tools. Recently, in an endeavor to broaden the idea of UML
profiles to modeling languages based on implementations of Essential MOF [77],
such as Ecore [23], several works have been published [51,57,61]. The profiling
mechanism inherently reflects our design rationale and is thus our means of
choice. UML profiles are standardized by the OMG and act as conceptual role
model for Ecore based implementations. Thus, we discuss the annotations for
the conflict-aware merge based on UML profiles in the following.

The information on detected operations and conflicts is already available in
the difference models DVo,Vr1 and DVo,Vr2 , as well as the conflict model Cm1,m2 ,
as described in Section 5.3 and Section 5.4, respectively. However, we assemble
the difference and conflict models and generate a dedicated model versioning
profile to realize the gluing of the available information into the model. Thus,
the versioning profile reflects the separation on changes and conflicts and expli-
cates additional information on the respective users, which was only implicitly
available beforehand. An excerpt of the versioning profile is depicted in Fig. 14.
Detailed information on the versioning profile may be found in Section 5.3 in [11].

An Introduction to Model Versioning 387

Changes Conflicts
<<enumeration>>

StateKind

- PENDING
- APPLIED
- REVERTED

<<stereotype>>
Change

- user: Actor
- state: StateKind
- diffElement: EObject

<<stereotype>>
Conflict

- myChange: Change
- theirChange: Change
- isResolved: boolean

<<stereotype>>
MyUpdate

<<stereotype>>
TheirUpdate

<<stereotype>>
Update

- feature: Feature
- oldVal: String
- newVal: String

<<metaclass>>
Element

<<extends>>

<<extends>>

<<stereotype>>
UpdateUpdate

<<stereotype>>
OperationContractViolation

<<metaclass>>
Collaboration

<<metaclass>>
Element

<<stereotype>>
DeleteUse

- violatedCondition:
EObject

<<metaclass>>
Relationship

<<extends>>

<<extends>>

MyUpdate TheirUpdate

Fig. 14. Excerpt of the Model Versioning Profile

Changes. The versioning profile provides stereotypes for each kind of atomic
operation, i.e., �Add�, �Delete�, �Update�, �Move�, and a stereotype
for composite operations, i.e., �CompositeChange�. Each change stereotype
is specialized as �MyChange� and �TheirChange� to explicate the user
who performed the change. An atomic change is always performed on a single
UML element, i.e., Class, Generalization, Property, etc., and thus, is defined
to extend Element, the root metaclass of the UML metamodel (cf. stereotype
�Update� in the left part of Fig. 14). In contrast, a composite change in-
corporates a set of indivisible atomic operations. Therefore, we introduce a new
UML Collaboration interlinking the involved elements, which is annotated with
a �CompositeChange� stereotype. Further metadata regarding the respective
users, the application state of the change, and the affected feature of the changed
element including its old and new value in case of updates is stored in tagged
values.

Conflicts. The conflict part of the versioning profile defines stereotypes for all
conflict patterns subsumed in the conflict metamodel. Again, stereotypes for
overlapping operations regarding a single element, such as �UpdateUpdate�
in the right part of Fig. 14, extend the metaclass Element, while violations,
like an �OperationContractViolation� comprise different modeling elements
and are thus annotated on newly introduced Collaboration elements. In case
of an �OperationContractViolation�, the UML relationships interlinking the
involved elements to the UML collaboration, are annotated with stereotypes
(inspired from graph transformation theory [55]) indicating how the contract is
violated by the model element. The stereotype �DeleteUse� are applied on
model elements already existing in the original model, which are involved in a
composite operation and deleted by the other user, respectively. �AddForbid�
indicates the addition of a new model element which invalidates the precondition
of a composite operation. Finally, all conflict stereotypes refer via tagged values
to the underlying change stereotypes, what makes understanding and reproducing
the conflicts possible.

388 P. Brosch et al.

Fig. 15. Tentative Merge

Merge Algorithm. With the versioning profile at hand, we may now proceed
with merging the parallel evolved versions Vr1 and Vr2. The conflict-aware merge
strategy automatically calculates a tentatively merged version Vma , by embrac-
ing all non-conflicting operations in an element preserving manner. Additionally,
conflicting operations are not ignored, but integrated via dedicated stereotypes
of the versioning profile. The merge algorithm takes the common original model
Vo, the difference models DVo,Vr1 and DVo,Vr2 , and the conflict model Cm1,m2 as
input and produces a tentative merge, as depicted in Fig. 15. Details on merg-
ing the concrete syntax of the models may be found in Chapter 5 in [11]. The
algorithm for merging the abstract syntax proceeds as follows. In order to keep
the original model Vo untouched, it is initially copied to the output model Vma .

1. Merge atomic operations. For each atomic change of DVo,Vr1 and DVo,Vr2 ,
it is checked, whether the change is involved in a conflict pattern described
in the conflict model Cm1,m2 , or whether it is considered non-conflicting. If

An Introduction to Model Versioning 389

the change is non-conflicting and non-deleting, it is applied to the tentative
merge Vma and annotated with the respective stereotype. In the running
example of Fig. 7, the renaming of the operation buy() to purchase() per-
formed by Sally is executed and annotated as �MyUpdate�, as Sally did
the later check-in and the merge is performed reflecting her viewpoint. The
corresponding metadata of the difference model is stored in tagged values of
the stereotype. Additionally, the tagged value user is set to Sally and the state
value is set to APPLIED. Even if deletions are non-conflicting, they are not
yet executed, as they otherwise cannot be annotated and information would
get lost. Similarly, conflicting operations are annotated with state value set
to PENDING without applying them to the tentative merge. Thus, the class
Person deleted by Sally and renamed to Customer by Harry is annotated with
the stereotypes �TheirUpdate� and �MyDelete� in this step.

2. Annotate overlapping operations. After processing all atomic operations,
conflicts due to overlapping atomic operations are annotated. In the run-
ning example, the operation getInfo() of class Ticket is concurrently renamed
resulting in an update-update conflict. Thus, the operation is annotated
with an �UpdateUpdate� stereotype, which links to the respective change
stereotypes via tagged values. Further, it the tagged value indicating the
resolution state is set to false, as depicted in Fig. 15.

3. Merge composite operations. To express that composite operations consists
of an indivisible unit of atomic operations, a UML Collaboration is added
to the tentative merge, which links to the involved elements and is annotated
with a �CompositeChange� stereotype. If no composite operation conflict
is reported in the conflict model Cm1,m2 , the composite change is replayed
to the tentative merge and set to APPLIED. Otherwise, it is still PENDING.

4. Annotate operation contract violations. If a composite operation conflict is
at hand, a �CompositeOperationConflict� stereotype is attached to the
collaboration. Further, the relationships linking to the affected model ele-
ments of conflicting operations are named according to the the operation
specification’s template names and subsequently annotated. In the running
example, the deletion of the property artist in class Exhibition (cf. Property 1
in Fig. 12) and the added class SoccerMatch (Class 2) violate the precondi-
tion of the refactoring Pull Up Field. Thus, the relationships are annotated
with �DeleteUse� and �AddForbid�, respectively.

5. Validate model. Next, the tentative merge is then validated and, if con-
straints are violated, the violation is added to the conflict report Cm1,m2 .

6. Annotate constraint violations. Finally, the detected violations are anno-
tated in the tentative merge, by again introducing UML Collaboration

elements linking to the model elements involved in the violation.

5.6 Conflict Resolution

In AMOR, conflict resolution is performed on top of the tentative merge. The
stereotypes included in the tentative merge may be further exploited to provide
dedicated tooling support for conflict resolution. For example, resolution actions

390 P. Brosch et al.

in form of “take my change”, “take their change”, or “revert this change” may be
easily implemented, as the link to the difference model is retained. However, as
the same kind of conflicts are likely to reoccur, AMOR provides a recommender
system for conflict resolution, which suggests even Conflict Resolution Patterns
going beyond a combination of applied changes. These patterns are stored in
AMOR’s conflict resolution pattern repository and are currently predefined in
the same manner as composite operations (cf. Section 5.3).

Coming back to the running example, Sally has to resolve several conflicts,
which are annotated in the tentative merge. She starts resolving the delete-
update conflict annotated in the class Customer. As there is currently no conflict
resolution pattern stored in the conflict resolution recommender system for the
resolution of delete-update conflicts, only the choices of applying one of the re-
spective changes is available. Sally decides to revert her delete operation. The
application states stored in the tagged values of the overlapping delete and up-
date operations are automatically set to REVERTED and APPLIED, respectively.
Further, the tagged value isResolved of the �DeleteUpdate� stereotype is set
to true. She continues with the update-update conflict of the operation get-
Info(), where she prefers her change. Now, only the composite operation conflict
remains left. Sally disagrees with Harry’s opinion that exhibitions do not have
an artist, and she reverts his change, resulting in a removal of the delete-use
conflict. The conflict resolution recommender system announces, that a conflict
resolution pattern is found for the remaining add-forbid conflict. The resolution
is performed by introducing a new class into the inheritance hierarchy. The new
class gets subclass of the class Event and superclass of the classes Concert and
Exhibition. In this way, it displaces the original superclass as target for the Pull
Up Field refactoring. Sally has only to provide a name for the new class and
is confident with this solution. Finally, she commits the resolved version to the
repository.

6 Open Challenges

In this paper, we introduced the fundamental technologies in the area of model
versioning and surveyed existing approaches in this research domain. Besides,
we gave an overview on the model versioning system AMOR and showcased its
techniques based on a model versioning example. Although the active research
community accomplished remarkable achievements in the area of model version-
ing in the last years, this research field still poses a multitude of interesting open
challenges to be addressed in future, which we outline in the following.

Intention-aware model versioning. When merging two concurrently modified ver-
sions, ideally the merged version represents a combination of all intentions each
developer had in mind when performing their operations. Merging intentions is
usually more than just naively combining all non-conflicting atomic operations
of both sides. When a developer modifies a model, this is done in order to realize
a certain goal rather than simply modifying some parts of it. However, capturing
the developer’s intention from a set of operations is a major challenge.

An Introduction to Model Versioning 391

A first step in this direction is respecting the original intention of composite
operations, such as model refactorings, in the merge process. Composite opera-
tions constitute a set of cohesive atomic operations that are applied in order to
fulfill one common goal. Therefore, detecting applications of well-defined com-
posite operations and regarding their conditions and intention during the merge
is a first valuable step towards intention-aware versioning [22,56,68].

However, further means for capturing and respecting the intention of applied
operations may be investigated, such as allowing developers to annotate his/her
intention for a set of applied operations in a structured and automatically ver-
ifyable manner. For instance, a developer might want to change a metamodel
in order to limit its instatiability. Thus, an “issue witness” in terms of an in-
stance model that should not be valid anymore can be annotated to give the
set of applied operations more meaning. After merging concurrent operations,
the versioning system may verify whether the original intention (i.e., the non-
instatiability of the issue witness) is still fulfilled.

Semantics-aware model versioning. Current model versioning systems mainly
facilitate matching and differencing algorithms operating on the syntactic level
only. However, syntactical operations that are not conflicting may still cause se-
mantic issues and unexpected properties (e.g., deadlocks in behavior diagrams).
Thus, a combination of syntactic and semantic conflict detection is highly valu-
able but very challenging to achieve, because currently no commonly agreed
formal semantics exists for widespread employed modeling languages, such as
UML. First approaches for performing semantic differencing are very promis-
ing [62,63,64,73]. As these approaches focus only on two-way comparison and
operate on a restricted set of modeling languages and constructs, the applica-
tion of semantic differencing techniques in model versioning systems is not di-
rectly possible yet and the definition of a formal semantics for a comprehensive
set of the UML, including intra-model dependencies, is a challenge on its own.
Furthermore, as models may be used as sketch in the early phases of software
development, as well as for specifying systems precisely to generate code, a satis-
factory compromise has to be found to do justice to the multifaceted application
fields of modeling.

Overall, we conclude this tutorial with the observation that the research area
of model versioning still offers a multitude of tough challenges despite the many
achievements which have been made until today. These challenges must be over-
come in order to obtain solutions which ease the work of the developers in prac-
tice. The final aim is to establish methods which are so well integrated in the
development process that the developers themselves do not have to care about
versioning tasks and that they are not distracted from their actual work by
time consuming management activities. Therefore, different facets of the mod-
eling process itself have to be reviewed to gain a better understanding of the
inherent dynamic. Versioning is about supporting team work, i.e., about the
management of people who work together in order to achieve a common goal.
Consequently, versioning solutions require not only the handling of technical
issues like adequate differencing and conflict detection algorithms or adequate

392 P. Brosch et al.

visualization approaches, but also the consideration of social and organizational
aspects. Especially in the context of modeling, the current versioning approaches
have to be questioned and eventually revised. Here the requirements posed on
the versioning systems may depend on the intended usage of the models.

References

1. Alanen, M., Porres, I.: Difference and Union of Models. In: Stevens, P., Whittle,
J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg
(2003)

2. Altmanninger, K., Brosch, P., Kappel, G., Langer, P., Seidl, M., Wieland, K.,
Wimmer, M.: Why Model Versioning Research is Needed!? An Experience Report.
In: Proceedings of the MoDSE-MCCM 2009 Workshop @ MoDELS 2009 (2009)

3. Atkinson, C., Kühne, T.: A Tour of Language Customization Concepts. Advances
in Computers 70, 105–161 (2007)

4. Balzer, R.: Tolerating Inconsistency. In: Proceedings of the 13th International
Conference on Software Engineering (ICSE 1991), pp. 158–165. IEEE (1991)

5. Barrett, S., Butler, G., Chalin, P.: Mirador: A Synthesis of Model Matching Strate-
gies. In: Proceedings of the International Workshop on Model Comparison in
Practice (IWMCP 2010), pp. 2–10. ACM (2010)

6. Berners-Lee, T., Hendler, J.: Scientific Publishing on the Semantic Web. Na-
ture 410, 1023–1024 (2001)

7. Bézivin, J.: On the Unification Power of Models. Software and Systems Model-
ing 4(2), 171–188 (2005)

8. Bézivin, J.: From Object Composition to Model Transformation with the MDA.
In: Proceedings of the 39th International Conference and Exhibition on Tech-
nology of Object-Oriented Languages and Systems (TOOLS 2001), pp. 350–355.
IEEE (2001)

9. Bézivin, J., Gerbé, O.: Towards a Precise Definition of the OMG/MDA Frame-
work. In: Proceedings of the 16th Annual International Conference on Automated
Software Engineering, ASE 2001, pp. 273–280 (2001)

10. Booch, G., Brown, A.W., Iyengar, S., Rumbaugh, J., Selic, B.: An MDA Mani-
festo. MDA Journal (5) (2004)

11. Brosch, P.: Conflict Resolution in Model Versioning. Ph.D. thesis, Vienna Uni-
versity of Technology (2012)

12. Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M., Kappel, G.: Con-
current Modeling in Early Phases of the Software Development Life Cycle. In:
Kolfschoten, G., Herrmann, T., Lukosch, S. (eds.) CRIWG 2010. LNCS, vol. 6257,
pp. 129–144. Springer, Heidelberg (2010)

13. Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M., Kappel, G., Rets-
chitzegger, W., Schwinger, W.: An Example Is Worth a Thousand Words: Com-
posite Operation Modeling By-Example. In: Schürr, A., Selic, B. (eds.) MoDELS
2009. LNCS, vol. 5795, pp. 271–285. Springer, Heidelberg (2009)

14. Brun, C., Pierantonio, A.: Model Differences in the Eclipse Modeling Framework.
UPGRADE, The European Journal for the Informatics Professional 9(2), 29–34
(2008)

15. Church, A., Rosser, J.: Some Properties of Conversion. Transactions of the Amer-
ican Mathematical Society, 472–482 (1936)

An Introduction to Model Versioning 393

16. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A Metamodel Independent Approach
to Difference Representation. Journal of Object Technology 6(9), 165–185 (2007)

17. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing Model Conflicts in Dis-
tributed Development. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter,
M. (eds.) MoDELS 2008. LNCS, vol. 5301, pp. 311–325. Springer, Heidelberg
(2008)

18. Conradi, R., Westfechtel, B.: Version Models for Software Configuration Manage-
ment. ACM Computing Surveys 30(2), 232 (1998)

19. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: ADAMS: Advanced Artefact
Management System. In: Proceedings of the European Conference on Software
Maintenance and Reengineering (CSMR 2006), pp. 349–350. IEEE (2006)

20. De Lucia, A., Fasano, F., Scanniello, G., Tortora, G.: Concurrent Fine-Grained
Versioning of UML Models. In: Proceedings of the European Conference on Soft-
ware Maintenance and Reengineering, pp. 89–98. IEEE (2009)

21. Dig, D., Comertoglu, C., Marinov, D., Johnson, R.: Automated Detection of
Refactorings in Evolving Components. In: Hu, Q. (ed.) ECOOP 2006. LNCS,
vol. 4067, pp. 404–428. Springer, Heidelberg (2006)

22. Dig, D., Manzoor, K., Johnson, R., Nguyen, T.: Effective Software Merging in
the Presence of Object-Oriented Refactorings. IEEE Transactions on Software
Engineering 34(3), 321–335 (2008)

23. Eclipse: Eclipse Modeling Framework Project (EMF),
http://www.eclipse.org/modeling/emf (accessed November 04, 2011)

24. Eclipse: EMF UML2,
http://www.eclipse.org/modeling/mdt/?project=uml2 (accessed December
05, 2011)

25. Edwards, W.K.: Flexible Conflict Detection and Management in Collaborative
Applications. In: Proceedings of the 10th Annual ACM Symposium on User In-
terface Software and Technology, UIST 1997, pp. 139–148. ACM (1997)

26. Ehrig, H.: Introduction to the Algebraic Theory of Graph Grammars (A Survey).
In: Ng, E.W., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS,
vol. 73, pp. 1–69. Springer, Heidelberg (1979)

27. Ehrig, H., Ehrig, K.: Overview of Formal Concepts for Model Transformations
Based on Typed Attributed Graph Transformation. Electronic Notes in Theoret-
ical Computer Science 152, 3–22 (2006)

28. Ehrig, H., Ermel, C., Taentzer, G.: A Formal Resolution Strategy for Operation-
Based Conflicts in Model Versioning Using Graph Modifications. In: Gian-
nakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 202–216.
Springer, Heidelberg (2011)

29. Ermel, C., Rudolf, M., Taentzer, G.: The AGG Approach: Language and Envi-
ronment. In: Handbook of Graph Grammars and Computing by Graph Transfor-
mation: Applications, Languages and Tools, ch. 14, vol. 2, pp. 551–603. World
Scientific Publishing Co., Inc. (1999)

30. Estublier, J., Leblang, D., Hoek, A., Conradi, R., Clemm, G., Tichy, W., Wiborg-
Weber, D.: Impact of Software Engineering Research on the Practice of Soft-
ware Configuration Management. ACM Transactions on Software Engineering
and Methodology (TOSEM) 14(4), 383–430 (2005)

31. Fabro, M., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: A Generic
Model Weaver. In: Proceedings of the 1re Journe sur l’Ingnierie Dirige par les
Modles, IDM 2005 (2005)

http://www.eclipse.org/modeling/emf
http://www.eclipse.org/modeling/mdt/?project=uml2

394 P. Brosch et al.

32. Feather, M.: Detecting Interference When Merging Specification Evolutions. In:
Proceedings of the International Workshop on Software Specification and Design
(IWSSD 1989), pp. 169–176. ACM (1989)

33. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley (1999)

34. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Re-
search Roadmap. In: Proceedings of Future of Software Engineering @ ICSE 2007,
pp. 37–54 (2007)

35. Gerth, C., Küster, J.M., Luckey, M., Engels, G.: Precise Detection of Conflicting
Change Operations Using Process Model Terms. In: Petriu, D.C., Rouquette,
N., Haugen, Ø. (eds.) MoDELS 2010. LNCS, vol. 6395, pp. 93–107. Springer,
Heidelberg (2010)

36. Gerth, C., Küster, J., Luckey, M., Engels, G.: Detection and Resolution of Con-
flicting Change Operations in Version Management of Process Models. Software
and Systems Modeling, pp. 1–19 (Online First)

37. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering,
2nd edn. Prentice Hall PTR, Upper Saddle River (2002)

38. Greenfield, J., Short, K.: Software Factories: Assembling Applications With Pat-
terns, Models, Frameworks and Tools. In: Proceedings of the Conference on
Object-oriented Programming, Systems, Languages, and Applications (OOPSLA
2003), pp. 16–27. ACM (2003)

39. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of Semantics?
Computer 37(10), 64–72 (2004)

40. Heckel, R., Küster, J., Taentzer, G.: Confluence of Typed Attributed Graph Trans-
formation Systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G.
(eds.) ICGT 2002. LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002)

41. Herrmannsdoerfer, M., Koegel, M.: Towards a Generic Operation Recorder for
Model Evolution. In: Proceedings of the International Workshop on Model Com-
parison in Practice @ TOOLS 2010. ACM (2010)

42. International Organization for Standardization and International Electrotechnical
Comission: Information Technology—Syntactic Metalanguage—Extended BNF
1.0 (December 1996), http://standards.iso.org/ittf/
PubliclyAvailableStandards/s026153 ISO IEC 14977 1996(E).zip

43. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

44. Kehrer, T., Kelter, U., Taentzer, G.: A rule-based approach to the semantic lifting
of model differences in the context of model versioning. In: Proceedings of the
International Conference on Automated Software Engineering (ASE 2011). IEEE
(2011)

45. Kelter, U., Wehren, J., Niere, J.: A Generic Difference Algorithm for UMLModels.
In: Software Engineering, pp. 105–116. LNI, GI (2005)

46. Khuller, S., Raghavachari, B.: Graph and network algorithms. ACM Computing
Surveys 28(1), 43–45 (1996)

47. Kim, M., Notkin, D.: Program Element Matching for Multi-version Program Anal-
yses. In: Proceedings of the International Workshop on Mining Software Reposi-
tories (MSR 2006). ACM (2006)

48. Koegel, M., Herrmannsdoerfer, M., Wesendonk, O., Helming, J.: Operation-based
Conflict Detection on Models. In: Proceedings of the International Workshop on
Model Comparison in Practice @ TOOLS 2010. ACM (2010)

http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip

An Introduction to Model Versioning 395

49. Koegel, M., Herrmannsdoerfer, M., von Wesendonk, O., Helming, J., Bruegge,
B.: Merging Model Refactorings – An Empirical Study. In: Proceedings of the
Workshop on Model Evolution @ MoDELS 2010 (2010)

50. Kolovos, D.S.: Establishing Correspondences between Models with the Epsilon
Comparison Language. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-
FA 2009. LNCS, vol. 5562, pp. 146–157. Springer, Heidelberg (2009)

51. Kolovos, D.S., Rose, L.M., Drivalos Matragkas, N., Paige, R.F., Polack, F.A.C.,
Fernandes, K.J.: Constructing and Navigating Non-invasive Model Decorations.
In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 138–152.
Springer, Heidelberg (2010)

52. Kolovos, D., Di Ruscio, D., Pierantonio, A., Paige, R.: Different Models for Model
Matching: An Analysis of Approaches to Support Model Differencing. In: Proceed-
ings of the International Workshop on Comparison and Versioning of Software
Models @ ICSE 2009. IEEE (2009)

53. Kühne, T.: Matters of (Meta-) Modeling. Software and Systems Modeling 5, 369–
385 (2006)

54. Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and Resolving Process
Model Differences in the Absence of a Change Log. In: Dumas, M., Reichert, M.,
Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 244–260. Springer, Heidelberg
(2008)

55. Lambers, L., Ehrig, H., Orejas, F.: Conflict Detection for Graph Transformation
with Negative Application Conditions. In: Corradini, A., Ehrig, H., Montanari,
U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 61–76.
Springer, Heidelberg (2006)

56. Langer, P.: Adaptable Model Versioning based on Model Transformation by
Demonstration. Ph.D. thesis, Vienna University of Technology (2011)

57. Langer, P., Wieland, K., Wimmer, M., Cabot, J.: From UML Profiles to EMF
Profiles and Beyond. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011. LNCS,
vol. 6705, pp. 52–67. Springer, Heidelberg (2011)

58. Ledeczi, A., Maroti, M., Karsai, G., Nordstrom, G.: Metaprogrammable Toolkit
for Model-Integrated Computing. In: Proceedings of the IEEE Conference and
Workshop on Engineering of Computer-Based Systems, ECBS 1999, pp. 311–317
(March 1999)

59. Lin, Y., Gray, J., Jouault, F.: DSMDiff: A Differentiation Tool for Domain-specific
Models. European Journal of Information Systems 16(4), 349–361 (2007)

60. Lippe, E., van Oosterom, N.: Operation-Based Merging. In: ACM SIGSOFT Sym-
posium on Software Development Environment, pp. 78–87. ACM (1992)

61. Madiot, F., Dup, G.: EMF Facet Website (November 2010),
http://www.eclipse.org/modeling/emft/facet/

62. Maoz, S., Ringert, J.O., Rumpe, B.: A Manifesto for Semantic Model Differencing.
In: Dingel, J., Solberg, A. (eds.) MoDELS 2010 Workshops. LNCS, vol. 6627, pp.
194–203. Springer, Heidelberg (2011)

63. Maoz, S., Ringert, J., Rumpe, B.: ADDiff: Semantic Differencing for Activity
Diagrams. In: Proceedings of the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE 2011), pp. 179–189. ACM (2011)

64. Maoz, S., Ringert, J.O., Rumpe, B.: CDDiff: Semantic Differencing for Class Dia-
grams. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 230–254. Springer,
Heidelberg (2011)

http://www.eclipse.org/modeling/emft/facet/

396 P. Brosch et al.

65. Mehra, A., Grundy, J., Hosking, J.: A Generic Approach to Supporting Diagram
Differencing and Merging for Collaborative Design. In: Proceedings of the Interna-
tional Conference on Automated Software Engineering (ASE 2005), pp. 204–213.
ACM (2005)

66. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Transactions on
Software Engineering 28(5), 449–462 (2002)

67. Mens, T., Gorp, P.V.: A Taxonomy of Model Transformation. Electronic Notes
in Theoretical Computer Science 152, 125–142 (2006)

68. Mens, T., Taentzer, G., Runge, O.: Detecting Structural Refactoring Conflicts
Using Critical Pair Analysis. Electronic Notes in Theoretical Computer Sci-
ence 127(3), 113–128 (2005)

69. Munson, J.P., Dewan, P.: A Flexible Object Merging Framework. In: Proceedings
of the 1994 ACM Conference on Computer Supported Cooperative Work, CSCW
1994, pp. 231–242. ACM (1994), http://doi.acm.org/10.1145/192844.193016

70. Murta, L., Corrêa, C., Prudêncio, J., Werner, C.: Towards Odyssey-VCS 2: Im-
provements Over a UML-based Version Control System. In: Proceedings of the
International Workshop on Comparison and Versioning of Software Models @
MoDELS 2008, pp. 25–30. ACM (2008)

71. Nagl, M. (ed.): Building Tightly Integrated Software Development Environments:
The IPSEN Approach. LNCS, vol. 1170. Springer, Heidelberg (1996)

72. Naur, P., Randell, B., Bauer, F.: Software Engineering: Report on a Conference
Sponsored by the NATO SCIENCE COMMITTEE, Garmisch, Germany, October
7-11, 1968. Scientific Affairs Division, NATO (1969)

73. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching
and Merging of Statecharts Specifications. In: Proceedings of the International
Conference on Software Engineering (ICSE 2007), pp. 54–64. IEEE (2007)

74. Nuseibeh, B., Easterbrook, S.M., Russo, A.: Making Inconsistency Respectable in
Software Development. Journal of Systems and Software 58(2), 171–180 (2001)

75. Object Management Group: Diagram Definition (DD),
http://www.omg.org/spec/DD/1.0/Beta2/ (accessed: February 21, 2012)

76. Object Management Group: Common Warehouse Metamodel (CWM) Specifica-
tion V1.1. (March 2003), http://www.omg.org/spec/CWM/1.1/

77. Object Management Group: Meta-Object Facility 2.0 (MOF) (October 2004),
http://www.omg.org/cgi-bin/doc?ptc/03-10-04

78. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/-
Transformation Specification. Final Adopted Specification (November 2005),
http://www.omg.org/docs/ptc/07-07-07.pdf

79. Object Management Group: Model-driven Architecture (MDA) (April 2005),
http://www.omg.org/mda/specs.html

80. Object Management Group: UML Diagram Interchange, Version 1.0. (April 2006),
http://www.omg.org/spec/UMLDI/1.0/

81. Object Management Group: XML Metadata Interchange 2.1.1 (XMI) (December
2007), http://www.omg.org/spec/XMI/2.1.1

82. Object Management Group: MOF Model to Text Transformation Language
(MOFM2T) (January 2008), http://www.omg.org/spec/MOFM2T/1.0/

83. Object Management Group: Business Process Modeling Notation (BPMN), Ver-
sion 1.2 (January 2009), http://www.omg.org/spec/BPMN/1.2

84. Object Management Group: Object Constraint Language (OCL), Version 2.2
(February 2010), http://www.omg.org/spec/OCL/2.2

85. Object Management Group: OMG Unified Modeling Language (OMG UML),
Infrastructure V2.4.1 (August 2011), http://www.omg.org/spec/UML/2.4.1/

http://doi.acm.org/10.1145/192844.193016
http://www.omg.org/spec/DD/1.0/Beta2/
http://www.omg.org/spec/CWM/1.1/
http://www.omg.org/cgi-bin/doc?ptc/03-10-04
http://www.omg.org/docs/ptc/07-07-07.pdf
http://www.omg.org/mda/specs.html
http://www.omg.org/spec/UMLDI/1.0/
http://www.omg.org/spec/XMI/2.1.1
http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/BPMN/1.2
http://www.omg.org/spec/OCL/2.2
http://www.omg.org/spec/UML/2.4.1/

An Introduction to Model Versioning 397

86. Object Management Group: OMG Unified Modeling Language (OMG UML),
Superstructure V2.4.1 (July 2011), http://www.omg.org/spec/UML/2.4.1/

87. Oda, T., Saeki, M.: Generative Technique of Version Control Systems for Soft-
ware Diagrams. In: Proceedings of the IEEE International Conference on Software
Maintenance (ICSM 2005), pp. 515–524. IEEE (2005)

88. Ohst, D., Welle, M., Kelter, U.: Differences Between Versions of UML Diagrams.
ACM SIGSOFT Software Engineering Notes 28(5), 227–236 (2003)

89. Oliveira, H., Murta, L., Werner, C.: Odyssey-VCS: A Flexible Version Control
System for UML Model Elements. In: Proceedings of the International Workshop
on Software Configuration Management, pp. 1–16. ACM (2005)

90. Opdyke, W.: Refactoring Object-oriented Frameworks. Ph.D. thesis, University
of Illinois at Urbana-Champaign (1992)

91. Oracle: Java Metadata Interface (JMI) (June 2002),
http://java.sun.com/products/jmi/

92. Parnas, D.: Software Engineering or Methods for the Multi-person Construction
of Multi-version Programs. In: Hackl, C.E. (ed.) IBM 1974. LNCS, vol. 23, pp.
225–235. Springer, Heidelberg (1975)

93. Porres, I.: Rule-based Update Transformations and their Application to Model
Refactorings. Software and System Modeling 4(4), 368–385 (2005)

94. Pressman, R., Ince, D.: Software Engineering: A Practitioner’s Approach.
McGraw-Hill, New York (1982)

95. Rahm, E., Bernstein, P.: A Survey of Approaches to Automatic Schema Matching.
The VLDB Journal 10(4), 334–350 (2001)

96. Reiter, T., Altmanninger, K., Bergmayr, A., Schwinger, W., Kotsis, G.: Models
in Conflict – Detection of Semantic Conflicts in Model-based Development. In:
Proceedings of International Workshop on Model-Driven Enterprise Information
Systems @ ICEIS 2007, pp. 29–40 (2007)

97. Rivera, J., Vallecillo, A.: Representing and Operating With Model Differences.
In: Paige, R.F., Meyer, B. (eds.) TOOLS EUROPE 2008. LNBIP, vol. 11, pp.
141–160. Springer, Heidelberg (2008)

98. Schmidt, D.: Guest Editor’s Introduction: Model-driven Engineering. Com-
puter 39(2), 25–31 (2006)

99. Schmidt, M., Gloetzner, T.: Constructing Difference Tools for Models Using the
SiDiff Framework. In: Companion of the International Conference on Software
Engineering, pp. 947–948. ACM (2008)

100. Schneider, C., Zündorf, A.: Experiences in using Optimisitic Locking in Fujaba.
Softwaretechnik Trends 27(2) (2007)

101. Schneider, C., Zündorf, A., Niere, J.: CoObRA – A Small Step for Development
Tools to Collaborative Environments. In: Proceedings of the Workshop on Direc-
tions in Software Engineering Environments (2004)

102. Schwanke, R.W., Kaiser, G.E.: Living With Inconsistency in Large Systems. In:
Proceedings of the International Workshop on Software Version and Configuration
Control, pp. 98–118. Teubner B.G. GmbH (1988)

103. Selic, B.: The Pragmatics of Model-driven Development. IEEE Software 20(5),
19–25 (2003)

104. Sendall, S., Kozaczynski, W.: Model Transformation: The Heart and Soul of
Model-Driven Software Development. IEEE Software 20, 42–45 (2003)

105. Shvaiko, P., Euzenat, J.: A Survey of Schema-Based Matching Approaches. In:
Spaccapietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–
171. Springer, Heidelberg (2005)

http://www.omg.org/spec/UML/2.4.1/
http://java.sun.com/products/jmi/

398 P. Brosch et al.

106. Sprinkle, J.: Model-integrated Computing. IEEE Potentials 23(1), 28–30 (2004)
107. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Frame-

work 2.0. Addison-Wesley Professional (2008)
108. Sun, Y., White, J., Gray, J.: Model Transformation by Demonstration. In: Schürr,

A., Selic, B. (eds.) MoDELS 2009. LNCS, vol. 5795, pp. 712–726. Springer, Hei-
delberg (2009)

109. Sunyé, G., Pollet, D., Le Traon, Y., Jézéquel, J.-M.: Refactoring UML Models.
In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 134–148.
Springer, Heidelberg (2001)

110. Taentzer, G., Ermel, C., Langer, P., Wimmer, M.: Conflict Detection for Model
Versioning Based on Graph Modifications. In: Ehrig, H., Rensink, A., Rozenberg,
G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 171–186. Springer, Hei-
delberg (2010)

111. Taentzer, G., Ermel, C., Langer, P., Wimmer, M.: A Fundamental Approach to
Model Versioning Based on Graph Modifications. Accepted for Publication in
Software and System Modeling (2012)

112. Thione, G., Perry, D.: Parallel Changes: Detecting Semantic Interferences. In:
Proceedings of the International Computer Software and Applications Conference,
pp. 47–56. IEEE (2005)

113. Vermolen, S., Wachsmuth, G., Visser, E.: Reconstructing Complex Metamodel
Evolution. Tech. Rep. TUD-SERG-2011-026, Delft University of Technology
(2011)

114. W3C: Extensible Markup Language (XML), Version 1.0 (2008),
http://www.w3.org/TR/REC-xml

115. Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann,
H., Hübner, S.: Ontology-based Integration of Information — A Survey of Exist-
ing Approaches. In: Proceedings of the Workshop on Ontologies and Information
Sharing (IJCAI 2001), pp. 108–117 (2001)

116. Westfechtel, B.: Structure-oriented Merging of Revisions of Software Documents.
In: Proceedings of the International Workshop on Software Configuration Man-
agement, pp. 68–79. ACM (1991)

117. Westfechtel, B.: A Formal Approach to Three-way Merging of EMF Models. In:
Proceedings of the International Workshop on Model Comparison in Practice @
TOOLS 2010, pp. 31–41. ACM (2010)

118. Wieland, K.: Conflict-tolerant Model Versioning. Ph.D. thesis, Vienna University
of Technology (2011)

119. Xing, Z., Stroulia, E.: UMLDiff: An Algorithm for Object-oriented Design Differ-
encing. In: Proceedings of the International Conference on Automated Software
Engineering (ASE 2005), pp. 54–65. ACM (2005)

120. Xing, Z., Stroulia, E.: Refactoring Detection based on UMLDiff Change-Facts
Queries. In: Proceedings of the 13th Working Conference on Reverse Engineering
(WCRE 2006), pp. 263–274. IEEE (2006)

http://www.w3.org/TR/REC-xml

Formal Specification and Testing

of Model Transformations

Antonio Vallecillo1, Martin Gogolla2, Loli Burgueño1, Manuel Wimmer1,
and Lars Hamann2

1 GISUM/Atenea Research Group, Universidad de Málaga, Spain
2 Database Systems Group, University of Bremen, Germany

{av,loli,mw}@lcc.uma.es, {gogolla,lhamann}@informatik.uni-bremen.de

Abstract. In this paper we present some of the key issues involved
in model transformation specification and testing, discuss and classify
some of the existing approaches, and introduce the concept of Tract, a
generalization of model transformation contracts. We show how Tracts
can be used for model transformation specification and black-box testing,
and the kinds of analyses they allow. Some representative examples are
used to illustrate this approach.

1 Introduction

Model transformations are key elements of Model-driven Engineering (MDE).
They allow querying, synthesizing and transforming models into other models
or into code, and can also be composed in chains for building new and more
powerful model transformations.

As the size and complexity of model transformations grow, there is an increas-
ing need to count on mechanisms and tools for testing their correctness. This
is specially important in case of transformations with hundreds or thousands
of rules, which are becoming commonplace in most MDE applications, and for
which manual debugging is no longer possible. Being now critical elements in
the software development process, their correctness becomes essential for ensur-
ing that the produced software applications work as expected and are free from
errors and deficiencies. In particular, we do need to check whether the produced
models conform to the target metamodel, or whether some essential properties
are preserved by the transformation.

In general, correctness is not an absolute property. Correctness needs to be
checked against a contract, or specification, which determines the expected be-
haviour, the context whether such a behaviour needs to be guaranteed, as well
as some other properties of interest to any of the stakeholders of the system (in
this case, the users of a model transformation and their implementors). A speci-
fication normally states what should be done, but without determining how. An
additional benefit of some forms of specifications is that they can also be used
for testing that a given implementation of the system (which describes the how,
in a particular platform) conforms to that contract.

M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.): SFM 2012, LNCS 7320, pp. 399–437, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

400 A. Vallecillo et al.

In general, the specification and testing of model transformations are not easy
tasks and present numerous challenges [1–4]. Besides, the kinds of tests depend
on the specification language and vice-versa. Thus, in the literature there are
two main approaches to model transformation specification and testing (see also
Section 3). In the first place we have the works that aim at fully validating the
behaviour of the transformation and its associated properties (confluence of the
rules, termination, etc.) using formal methods and their associated toolkits (see,
e.g., [5–11]). The potential limitations of these proposals lie in their inherent
computational complexity, which makes them inappropriate for fully specifying
and testing large and complex model transformations. An alternative approach
(proposed in, e.g., [12–15, 8]) consists using declarative notations for the spec-
ification, and then trying to certify that a transformation works for a selected
set of test input models, without trying to validate it for the full input space.
Although such a certification approach cannot fully prove correctness, it can
be very useful for identifying bugs in a very cost-effective manner and can deal
with industrial-size transformations without having to abstract away any of the
structural or behavioural properties of the transformations.

In this paper we show a proposal that follows this latter approach, making
use of some of the concepts, languages and tools that have proved to be very
useful in the case of model specification and validation [16]. In particular, we
generalize model transformation contracts [2, 17] for the specification of the
properties that need to be checked for a transformation, and then apply the
ASSL language [18] to generate input test models, which are then automatically
transformed into output models and checked against the set of contracts defined
for the transformation, using the USE tool [19].

In the following we will assume that readers are familiar with basic Software
Engineering techniques such as program specification (using, in particular, pre-
and postconditions [20]) and program testing (using, e.g., JUnit); with modeling
techniques using UML [21] and OCL [22]; and have basic knowledge of model
transformations [23].

This paper is organized as follows. After this introduction, Section 2 describes
the context of our work and Section 3 presents existing related works. Then,
Section 4 presents our proposal and Section 5 discusses the kinds of tests and
analysis that can be conducted and how to perform them. Tracts are illustrated
in Section 6 with several application examples. Finally, Section 7 draws the final
conclusions and outlines some future research lines.

2 Context

2.1 Models and Metamodels

In MDE, models are defined in the language of their metamodels. In this paper
we consider that metamodels are defined by a set of classes, binary associations
between them, and a set of integrity constraints.

Figure 1 shows our first running example as handled by the tool USE [19].
The aim of the example is to transform a Person source metamodel shown in

Formal Specification and Testing of Model Transformations 401

Fig. 1. USE Screenshot with the Families2Person example

the upper part of the class diagram into a Family target metamodel displayed
in the middle part. The source permits representing people and their relations
(marriage, parents, children) while the target focuses on families and their mem-
bers. (This example is just the opposite to the typical Families2Person model
transformation example [24, 25], that we shall also discuss later in Section 6.1.)

Some integrity constraints are expressed as multiplicity constraints in the
metamodels, such as the ones that state that a family always has to have one
mother and one father, or that a person (either female or male) can be married
to at most one person.

There are other constraints that require specialized notations because they
imply more complex expressions. In this paper we will use OCL [26] as the
language for stating constraints. In order to keep matters simple, we have decided
to include only one source metamodel constraint (SMM) and one target metamodel
constraint (TMM). On the Person side (source), we require that, if two parents
are present, they must have different gender (SMM parentsFM). On the Family

side (target), we require an analogous condition (TMM mumFemale dadMale).

context Person inv SMM_parentsFM :
parent−>s ize ()=2 implies

parent−>select (oclIsTypeOf (Female))−>s ize ()=1 and
parent−>select (oclIsTypeOf (Male))−>s ize ()=1

context Family inv TMM_mumFemale_dadMale :
mother . gender = #female and father . gender = #male

402 A. Vallecillo et al.

Many further constraints (like acyclicity of parenthood or exclusion of marriage
between parents and children or between siblings) could be stated for the two
models.

2.2 Model Transformations

In a nutshell, a model transformation is an algorithmic specification (either
declarative or operational) of the relationship between models, and more specifi-
cally of the mapping from one model to another. A model transformation involves
at least two models (the source and the target), which may conform to the same
or to different metamodels. The transformation specification is often given by
a set of model transformation rules, which describe how a model in the source
language can be transformed into a model in the target language.

One of the challenges of model transformation testing is the heterogeneity of
model transformation languages and techniques [4]. This problem is aggravated
by the possibility of having to test model transformations which are defined as a
composition of several model transformations chained together. In our proposal
we use a black-box approach, by which a model transformation is just a program
that we invoke. The main advantages of this approach are that we can deal
with any transformation language and that we will be able to test the model
transformation as-is, i.e., without having to transform it into any other language,
represent it using any formalism, or abstract away any of its features.

To illustrate one example of model transformation, we asked some students
to write the model transformation that, given a Family model, creates a Person

model described in the example above. The resulting code of the Persons2Family

transformation is shown below. It is written in ATL [27], a hybrid model trans-
formation language containing a mixture of declarative and imperative con-
structs which is widely used in industry and academia. There are of course other
model transformation languages, such as for instance QVT [28], RubyTL [29]
or JTL [30], that we could have also used. Nevertheless, in this paper we will
mainly focus on ATL for illustration purposes.

This transformation is defined in terms of four basic rules, each one responsible
for building the corresponding target model elements depending on the four kinds
of role a source person can play in a family: father, mother, son or daughter.
The attributes and references of every target element are calculated using the
information of the source elements. Target elements that represent families are
created with the last name of the father (in rule Father2Family).

module Persons2Families ;
create OUT : Families from IN : Persons ;

rule Father2Family {
from f : Persons ! Male (not f . child −> isEmpty ())
to fam : Families ! Family (

lastName <−f . name . substring (f . name . lastIndexOf (’� ’)+2,
f . name . size ())) ,

mb : Families ! Member (
firstName <− f . name . substring (1 , f . name . lastIndexOf (’� ’)) ,
age <− f . age , gender <− #male , famFather <− fam)

}

Formal Specification and Testing of Model Transformations 403

rule Mother2Family {
from m : Persons ! Female (not m . child −> isEmpty ())
to mb : Families ! Member (

firstName <− m . name . substring (1 , m . name . lastIndexOf (’� ’)) ,
age <− m . age , gender <− #female , famMother <− m . husband)

}
rule Son2Family{
from s : Persons ! Male (s . child −> isEmpty ())
to mb : Families ! Member (

firstName <− s . name . substring (1 , s . name . lastIndexOf (’� ’)) ,
age <− s . age , gender <− #male ,
famSon <−s . parent−>select (e | e . oclIsTypeOf (Persons ! Male)))

}
rule Daughter2Family {
from d : Persons ! Female (d . child −> isEmpty ())
to mb : Families ! Member (

firstName <−d . name . substring (1 , d . name . lastIndexOf (’� ’)) ,
age <− d . age , gender <− #female ,
famDaughter <− d . parent−>select (e | e . oclIsTypeOf (Persons ! Male)))

}

The question is whether this transformation is correct. For that we need to
determine first which is expected behaviour (i.e., its specification) and then test
whether the provided implementation conforms to such a specification.

3 Related Work

The need for systematic verification of model transformations has been docu-
mented by the research community by several publications outlining the chal-
lenges to be tackled [31–33, 4]. As a response, a plethora of approaches ranging
from lightweight certification to full verification have been proposed to reason
about different kinds of properties of model transformations [34]. Before specifi-
cation and testing approaches for model transformations are discussed in more
detail, the broader landscape of transformation properties is spanned first.

3.1 Categories of Model Transformation Properties

The right hand side of figure 2 (column model transformation (MT) implemen-
tation) aligns different kinds of properties for model transformations with the
well-known model transformation pattern [35]. The transformation pattern gives
an overview of the main concepts involved in model transformation. A model
transformation is represented by a transformation model (TM in the description
layer) has to conform to a model transformation language (described by a meta-
model, TMM in the language layer) and analogously, the execution of the model
transformation (TM Ex in the execution layer) has to conform to the description
layer for producing from a source model (SoM) a corresponding target model
(TaM).

Having this model transformation pattern as a framework for classifying model
transformation properties which have been discussed in literature, the first dis-
criminator for classifying them is the level on which they are introduced. In
particular, two kinds of properties may be distinguished: (i) general transforma-
tion properties defined on the language layer allow to make statements about

404 A. Vallecillo et al.

TMM

TM

TM Ex

Syn Sem

Properties

Syn Sem

Properties

SoM TaM

SoM Ex TaM Ex

Spec MM

Spec

Test Ex

*

*

describes >

< fulfils

< pass

*

MT Specification MT Implementation

Language

Description

Execution

1

1

2

2

3

4

3 4

QVT MModel

QVT Model

QVT Model Ex

ATL MModel

ATL Model

ATL Model Exec

Fig. 2. Specification and testing of model transformations at a glance

transformations themselves and (ii) specific transformation properties defined on
the description layer allow to make statements about pairs of source and tar-
get models of a transformation execution. Properties of the first kind abstract
from the specifics of a transformation problem and are therefore usable for every
transformation defined in a transformation language offering such properties.
Properties of the second kind are always specific to a transformation problem,
and thus, have to be defined for each transformation individually.

Orthogonal to the distinction between general and specific, is the distinction
if properties are related to syntax or semantics. Thus, properties may be par-
titioned into syntactic and semantic properties. While syntactic properties are
stated and checked based on the information provided by the next lower layer,
for specifying semantic properties two steps down the stack have to be made.
To be more concrete, for general transformation properties (defined on the lan-
guage layer), the syntactic properties are calculated based on the transformation
(defined on the description layer). However, the semantic properties have to be
verified by taking the knowledge of the execution of the transformation into ac-
count (available on the execution layer, defined by the transformation execution
engine). Analogously, for specific transformation properties, syntactical proper-
ties of the source and target model as well as their relationships are directly
calculated using the models. For semantic properties, again the execution of the
models has to be considered. This means, knowledge on the model execution

Formal Specification and Testing of Model Transformations 405

engines used for the source and target models is needed to reason about their
semantic properties.

General properties. General properties may be calculated based solely on the
knowledge of the transformation language. It has to be emphasized that these
properties are about the transformation, i.e., only statements about the trans-
formation itself can be made, but not about the source and target models of the
transformation.

An example for a basic general syntactic property is conformance of the trans-
formation to the transformation language. A transformation language may be
either generic or specific to a transformation problem, i.e., in the second case,
the metamodels of the source and target models are considered to form an im-
portant part of the transformation language. This allows to provide enhanced
syntactic checks compared to just using a generic transformation language. Ap-
proaches how to build specific transformation languages are presented in [36] for
graphical modeling languages and in [37] for textual ones.

Several general semantic properties have been proposed for model transfor-
mation languages such as confluence [6, 8], applicability [38], and termination
[39] of a set of graph transformation rules. Other group of works aim at fully
validating the behavior of the transformation using formal methods and their
associated toolkits. For example, in [11] model transformations defined in ATL
are translated to Maude for analyzing them using out-of-the-box verification
techniques.

Specific properties. In addition to general properties, there are properties that
are specific for a certain transformation. In particular, this means that it is not
enough to reason about the transformation itself: statements about the source
and target models are also needed. In particular, this is a must when one has to
reason about the correctness of the translation of the source model into a target
model. As models comprise syntax as well as semantics, both aspects have to be
considered.

Concerning syntactic properties, one may reason about if for each source el-
ement of a certain type a corresponding target element of a certain type is
produced by the transformation. Such concerns are naturally formulated as con-
tracts by using specification languages which allow to state the requirements
which have to be fulfilled by a transformation implementation. Contracts [20]
are a well-established technique in software engineering in general and in partic-
ular for verifying object-oriented programs by providing pre- and post-conditions
as well as invariants for operations. Inspired by this work, contracts have also
been applied for model transformations. In particular, as is explained in the next
subsection in more detail, contracts allow for several benefits such as they can
be used as oracle functions for testing model transformations by using a set of
test source models. Oracle functions give an approximation of the target models
which should be produced by the transformation.

For dealing with semantic properties which have to be fulfilled by the source
and target models, their execution have to be taken into account. Thus, the oper-
ational semantics of the source and target languages are needed as a prerequisite.

406 A. Vallecillo et al.

Reasoning about semantic properties of models ranges from reasoning about some
selected behavioral property such as liveness or deadlock freeness to a more com-
plete notion of behavioral equivalence, e.g., based on bi-similarity. For example,
if liveness is guaranteed by a source model, one may be interested in a transfor-
mation which generates from such models always target models guaranteing live-
ness as well. Furthermore, one may reason about bi-similarity of the source and
target model pairs, i.e., an observer should not be able to differentiate the state-
transition systems generated by the source and target models. For instance, [40]
describes such an approach where each execution of the transformation is verified
by checking whether the target model bi-simulates the sourcemodel. Another sim-
ilar approach is presented in [41] where a model checker is used to check dynamic
properties of the source and target models. It has to be noted that semantic prop-
erties are not limited to behavioral models, but may also be verified for structural
models. For example, in [42] an approach is presented for reasoning about seman-
tic differences between class diagrams by comparing all possible instantiations of
them.

This chapter is dedicated to the specification and testing of transformation
specific and syntax related properties of model transformations. Thus, in the
following subsection, approaches going in this direction are elaborated in more
detail. For a more in-depth discussion of approaches supporting the verification
of other kind of properties, we kindly refer the interested reader to [34].

3.2 Specification and Testing Approaches for Model
Transformations

The left hand side of figure 2 (column model transformation (MT) specification)
focusses on the specification of specific syntactic properties and their verification.
The relationships between the left hand side and the right hand side of figure 2
illustrates how transformation specifications are related to transformation imple-
mentations. As mentioned before, these properties are naturally defined in terms
of contracts which form the specification for a transformation implementation.
One of the advantages of contracts is that they allow defining what a piece of
software does but not how it is done. In the context of model transformations,
basic syntactic contracts are specified by the source and target metamodels since
source and target models must conform to them. However, further restrictions
on the source and target models as well as on their relationships are needed [14].
First, contracts can be used to precisely specify the constraints (going beyond
metamodel constraints) to be satisfied by source models such that the transfor-
mation is applicable, i.e., preconditions of the transformations. Second, they can
be used to express constraints on the target models, i.e., postconditions of the
transformation. Finally, they can be used to specify constraints that need to be
satisfied by any pair of source/target models of a correct transformation. Thus,
a specification language should allow to formulate these three kinds of contracts.

Model transformation contracts may be used for several scenarios [17]. (i) Con-
tracts are useful information for the transformation designer in the development
and maintenance phase. (ii) They can be used to check the compatibility of

Formal Specification and Testing of Model Transformations 407

transformations in a model transformation chain, e.g., the postconditions of a
preceding transformation have to be compatible with the preconditions of a
succeeding transformation. (iii) Contracts may be used as oracle functions to
approximate the expected output for a given source model.

Especially, this latter aspect has been the subject of several kinds of works
that apply contracts for model transformation testing using different notations
for defining the contracts. In the following, we elaborate on these approaches
which are divided into the two main categories. First, contracts may be defined
on the model level by either giving (i) complete examples of source and target
model pairs, or (ii) giving only model fragments which should be included in
the produced target models for given source models. Second, contracts may be
defined on the metamodel level either by using (iii) graph constraint languages
or (iv) textual constraint languages such as OCL.

Contracts at Model Level

Model Examples. A straight-forward approach is to define the expected target
model for a given source model which acts as a reference model for analyzing
the actual produced target model of a transformation as proposed in [43, 1,
44, 45]. Model comparison frameworks are employed for computing a difference
model between the expected and the actual target models. If there are differences
then there is considered to be an error either in the transformation or in the
source/target model pair. The advantage of this approach is its simplicity, e.g., as
specification language, the source and target metamodels are sufficient. However,
reasoning about the cause for the mismatch between the expected and actual
target model solely based on the difference model is challenging. Even more
aggravating, several elements in the difference model may be caused by the
same error, however, the transformation engineer has the burden to cluster the
differences by herself.

Fragments. A special form of verification by contract was presented in [46].
The authors propose to use model fragments (introduced in [47]) which are ex-
pected to be included in a target model which is produced from a specific source
model. For verifying these properties, the model fragments are matched on the
produced target model. Using fragments as contracts is different from using ex-
amples as contracts. Examples require an equivalence relationship between the
expected model and actual target model, while fragments require an inclusion
relationship between the expected fragments and the actual target model. As for
examples, the source and target metamodels are sufficient to define the specifi-
cations; but as before, this benefit comes with the price that the contracts are
described at the model level. Thus, they have to be defined for each particular
test source model again and again.

Contracts at Metamodel Level

Graph constraints. In [48], the authors propose to use the graph patterns sup-
ported by the VIATRA2 tool to specify contracts for model transformations at
the metamodel level. However, the patterns cannot define contracts crossing the

408 A. Vallecillo et al.

borders of one metamodel, being therefore usable to specify pre- and postcondi-
tions, but not the relations between the source and target models.

In [49] a declarative language for the specification of visual contracts is in-
troduced for defining pre- and post-conditions as well as invariants for model
transformations. For evaluating the contracts on test models, the specifications
are translated to QVT Relations which are executed in check-only mode. In
particular, QVT Relations are executed before the transformation under test is
executed to check the preconditions on the source models and afterwards to check
relationships between the source and target models as well as postconditions on
the target models.

Textual constraints. The first approach using contracts for model transforma-
tions was proposed by Cariou et al. [50, 17]. The authors suggest implementing
transformations with OCL. In this way, the source metamodel classes are pro-
vided with operations, which may comprise preconditions, postconditions, and
invariants. Although OCL natively supports design-by-contract, OCL is not in-
tended to specify transformations and relationships between models. Thus, the
authors propose an extension for OCL that allows defining mappings between
input and output model elements.

The work in [2] also proposes OCL for defining transformation contracts. Their
ideas are also close to [17], but in their paper they just provide a general view of
what they think that could be done with model transformation contracts, but
without delving into the details about how to achieve it. A similar approach for
defining contracts with OCL has been proposed in [14]. Kuester et al. [8] also
proposes to use OCL for the definition of transformation constraints.

In [51, 45], the Epsilon Unit Testing Language for testing model management
operations is presented. The language permits defining, as already mentioned,
expected target models, but in addition, test operations where post-conditions
for the target models can be specified. Giner and Pelechano [52] propose a test-
driven development approach for model transformations. Test cases comprising
an input model together with output fragments and OCL assertions are defined
before the actual transformation implementation is developed.

Finally, formal notations to specify and test model transformations may be
employed. For instance, Anastasakis et al [10] convert the model transformation
under test into Alloy to perform the analysis if given assertions that have to
hold for a transformation. If no target model is found by Alloy for a given source
model, means that the transformation does not fulfill the assertions. Similarly,
ATL transformations are translated into Maude in [11] for defining their formal
semantics and for conducting different kinds of formal analyses.

4 Tracts for Model Transformations

4.1 Model Transformation Contracts

One of the problems of the previous specification approaches of Model Transfor-
mations lies on its complexity. The specifications of a model transformation can

Formal Specification and Testing of Model Transformations 409

Fig. 3. Concepts in a Tract

become monstrously large as far as the transformation is not trivial (even far
more complex than the transformation itself). The reasons are, among others,
the lack of modularity, having to deal with too many details at the same time,
and the excessive size. Because the specifications try to capture all the model
transformation behaviour in one huge set of constraints, they become hard to
write, debug and maintain. In addition, tests become quite cumbersome, very
complex, and computationally prohibitive to prove.

In order to deal with these problems, tracts were introduced in [53] as a
specification and black-box testing mechanism for model transformations. They
provide modular pieces of specification, each one focusing on a particular sce-
nario or context of use. Thus every model transformation can be specified by
means of a set of tracts, each one covering a particular use case—which is de-
fined in terms of particular input and output models and how they should be
related by the transformation. In this way, tracts allow to partition the full in-
put space of the transformation into smaller, more focused behavioural units,
and to define specific tests for them. Basically, what we do with the tracts is
to identify the scenarios of interest to the user of the transformation (each one
defined by a tract) and check whether the transformation behaves as expected
in these scenarios. Another characteristic of our proposal is that we not require
complete proofs, just to check that the transformation works for the tract test
suites, hence providing a light-weight form of verification.

In a nutshell, a tract defines a set of constraints on the source and target
metamodels, a set of source-target constraints, and a tract test suite, i.e., a col-
lection of source models satisfying the source constraints. The constraints serve
as “contracts” (in the sense of contract-based design [20]) for the transformation
in some particular scenarios, and are expressed by means of OCL invariants. The
provide the specification of the transformation. Figure 3 gives an overview on
the used concepts and their connection.

Additionally, every tract provides a test suite that allows to operationalize
the conformance tests. We do not provide the full behavioral specification of a
model transformation, but just a set of tracts that defines how the transformation
should behave in certain particular scenarios (or use cases) which are the ones
of interest to the user. We do not care how the transformation works in the
rest of the cases. In this respect, this approach is a form of Duck typing: “If it

410 A. Vallecillo et al.

Fig. 4. Building Blocks of a Tract

looks like a duck, swims like a duck, and quacks like a duck, then it probably
is a duck” [54]. Tracts are composed by conjunction, similarly to the modular
specification of an operation using several pre- and post-conditions, each one
defining a specific situation or use case of the operation.

In figure 4 we have displayed the central ingredients of our approach for trans-
formation testing: a source and target metamodel, the transformation T under
test, and a transformation contract, for short tract, which consists of a tract test
suite and a set of tract constraints. The test suite and its transformation result
are shown with dashed lines and the different tract constraints with thick lines.
Five different kinds of constraints are present: the source and target class dia-
grams are restricted by source and target metamodels constraints, and the tract
imposes source, target, and source-target tract constraints. Such constraints are
expressed by means of OCL invariants. The context of these invariants is a class
representing a transformation tract, a so-called tract class. An example of a tract
class called mfdsTract is shown in figure 1.

Assume a source model m being an element of the test suite and satisfying
the metamodel source and the tract source constraints is given. Then, the tract
essentially requires that the result T (m) of applying transformation T satisfies
the target metamodel and the target tract constraints and the pair (m,T (m))
satisfies the source-target tract constraints. The source-target tract constraints
are crucial insofar that they can establish a correspondence between a source
element and a target element in a declarative way by means of a formula. In
technical terms, a source tract constraint is basically an OCL expression with
free variables over source elements, a target tract constraint has free variables
over target elements, and a source-target tract constraint possesses free variables
over source and target elements.

In figure 4, the rectangles indicate possible overlap (resp. disjointness) of
source and target models. Basically, the tract—consisting of the test suite and
the three kinds of constraints—checks for the correctness of the transformation
in the sense that correct source models from the test suite are transformed to
correct target models, i.e., our approach checks that in figure 4 the grey source
section is transformed into the grey target section. In general, there will be more

Formal Specification and Testing of Model Transformations 411

than one tract for a single transformation because particular source models are
constructed in the test suite which then induce particular tract constraints.

Although this approach to testing does not guarantee full correctness, it pro-
vides very interesting benefits. In particular, it can be useful for identifying bugs
in a cost-effective manner. Moreover, it allows dealing with industrial-size trans-
formations without having to transform them into any other formalism or to
abstract away any of its features. Tracts also provide a modular approach to
specification and testing, allowing to focus on particular scenarios of use, and
to define precise specifications for them. These are important advantages over
other approaches that prove full correctness but at a higher computational cost.

To test a transformation T against a tract t, the input test suite models can be
automatically generated using languages like ASSL [18], and then transformed
into their corresponding target models. These models can also be automatically
checked with the USE tool [19] against the constraints defined for the transforma-
tion. The checking process can be automated, allowing the model transformation
tester to process a large number of models in a mechanical way.

Let us go back to our example in figure 1. The lower part of the class diagram
pictures the tract metamodel represented by the class mfdsTract where mfds
is a shortcut for mother-father-daughter-son expressing that our tract and our
testing (for demonstration purposes) concentrates on conventional families with
exactly one person in the respective role. The operations in class mfdsTract are
helper operations for formulating the tract constraints which are shown as invari-
ants on the left in the project browser. The five different kinds of constraints are
reflected by different prefixes for invariant names: SMM for source metamodel con-
straints, TMM for target metamodel constraints, SRC for source tract constraints,
TRG for target tract constraints, and SRC TRG for source-target tract constraints.

Note that concepts like father or mother are not explicitly present in the
Person metamodel (through attributes or association ends). Besides, please be
warned: both metamodels and their transformation seem simple, but intricate
complications live under the surface. Roughly speaking, the transformation must
(a) split one source attribute into two target attributes in different target classes;
(b) merge two source associations into one target class and four target associ-
ations; (c) map a source generalization hierarchy into a target attribute. The
following listing details the five OCL invariants that constitute the mfdsTract.

inv SRC_fullName_EQ_firstSepLast :
Person . allInstances−>forAll (p |

p . fullName=firstName (p) . concat (sep ()) . concat (lastName (p)))
inv SRC_allPersonInMfds :

l e t allFs=Female . allInstances in let allMs=Male . allInstances in
Person . allInstances−>forAll (p |

Bag{allFs−>exists (d | allMs−>exists (f , s | mfdsPerson (p , f , d , s))) ,
allFs−>exists (m , d | allMs−>exists (s | mfdsPerson (m , p , d , s))) ,
allFs−>exists (m | allMs−>exists (f , s | mfdsPerson (m , f , p , s))) ,
allFs−>exists (m , d | allMs−>exists (f | mfdsPerson (m , f , d , p)))} =

Bag{true , false , false , false })
inv TRG_oneDaughterOneSon :

Family . allInstances−>forAll (fam |
fam . daughter−>s ize ()=1 and fam . son−>s ize () =1)

inv SRC_TRG_mfdsPerson_2_mfdsFamily :
Female . allInstances−>forAll (m , d | Male . allInstances−>forAll (f , s |

mfdsPerson (m , f , d , s) implies

412 A. Vallecillo et al.

Family . allInstances−>exists (fam | mfdsFamily (fam , m , f , d , s))))
inv SRC_TRG_forPersonOneMember :

Female . allInstances−>forAll (p | Member . allInstances−>one (m |
p . fullName=fullName (m) and p . age=m . age and m . gender = #female and
(p . child−>notEmpty() implies (l e t fam=m . famMother in

p . child−>s ize ()=fam . daughter−>union (fam . son)−>s ize ())) and
(p . parent−>notEmpty() implies m . famDaughter . isDefined ()) and
(p . husband . isDefined () implies m . famMother . isDefined ()))) and

Male . allInstances−>forAll (p | Member . allInstances−>one (m |
p . fullName=fullName (m) and p . age=m . age and m . gender = #male and
(p . child−>notEmpty() implies (l e t fam=m . famFather in

p . child−>s ize ()=fam . daughter−>union (fam . son)−>s ize ())) and
(p . parent−>notEmpty() implies m . famSon . isDefined ()) and
(p . wife . isDefined () implies m . famFather . isDefined ())))

There are two source, one target, and two source-target tract constraints. The
source constraint SRC fullName EQ firstSepLast guarantees that one can decom-
pose the fullName into a firstName, a separator, and a lastName. The source
constraint SRC allPersonInMfds requires that every Person appears exactly once
in a mfdsPerson pattern. mfdsPerson patterns are described by the boolean op-
eration mfdsPerson which characterizes an isolated mother-father-daughter-son
pattern having no further links to other persons.

The constraint SRC allPersonInMfds is universally quantified on Person ob-
jects. Each Person must appear either as a mother or as a father or as a daughter
or as a son. This exclusive-or requirement is formulated as a comparison between
bags of Boolean values. From the four possible cases, exactly one case must be
true. Technically this is realized by requiring that the bag of truth values, which
arises from the evaluation of the respective sub-formulas, contains exactly once
the Boolean value true and three times the Boolean value false.

mfdsTract : : mfdsPerson (m : Person , f : Person , d : Person , s : Person) : Boolean=
Set{m , f , d , s}−>excluding (n u l l)−>s ize ()=4 and
m . oclIsTypeOf (Female) and f . oclIsTypeOf (Male) and
m . oclAsType (Female) . husband=f and
d . oclIsTypeOf (Female) and s . oclIsTypeOf (Male) and
m . child=Set{d , s} and f . child=Set{d , s} and
d . parent=Set{m , f} and s . parent=Set{m , f}

mfdsTract : :
mfdsFamily (fam : Family , m : Person , f : Person , d : Person , s : Person) : Boolean=
fam . lastName=lastName (m) and fam . lastName=lastName (f) and
fam . lastName=lastName (d) and fam . lastName=lastName (s) and
fam . mother . firstName=firstName (m) and
fam . father . firstName=firstName (f) and
fam . daughter . firstName=Bag{ firstName (d)} and
fam . son . firstName=Bag{ firstName (s)}

Both source constraints reduce the range of source models to be tested. The
target tract constraint TRG oneDaughterOneSon basically focusses the target on
models in which the multiplicity “*” on the daughter and son roles are changed
to the multiplicity 1. The first central source-target constraint SRC TRG mfds-

Person 2 mfdsFamily demands that a mfdsPerson pattern must be found in
transformed form as a mfds Family pattern in the resulting target model. The sec-
ond central source-target constraint SRC TRG forPersonOneMember requires that a
Person must be transformed into exactly one Member having comparable attribute
values and roles as the originating Person. Both source-target tract constraints
are central insofar that they establish a correspondence between a Person

Formal Specification and Testing of Model Transformations 413

(from the source) and a Family Member (from the target) in a declarative way
by means of a formula.

4.2 Generating Test Input Models

The generation of source models for testing purposes is done by means of the
language ASSL (A Snapshot Sequence Language) [18]. ASSL was developed to
generate object diagrams for a given class diagram in a flexible way. Positive and
negative test cases can be built, i.e., object diagrams satisfying all constraints or
violating at least one constraint. ASSL is basically an imperative programming
language with features for randomly choosing attribute values or association
ends. Furthermore ASSL supports backtracking for finding object diagrams with
particular properties.

For the example, we concentrate on the generation of (possibly) isolated mfds
patterns representing families with exactly one mother, father, daughter, and
son in the respective role. The procedure genMfdsPerson shown below is param-
eterized by the number of mfds patterns to be generated. It creates four Person

objects for the respective roles, assigns attribute values to the objects, links the
generated objects in order to build a family, and finally links two generated mfds
patterns by either two parenthood links or one parenthood link or no parenthood
link at all. The decision is taken in a random way. For example, for a call to
genMfdsPerson(2) a generated model could look like one of the three possibili-
ties shown in figure 5. Marriage links are always displayed horizontally, whereas
parenthood links are shown vertically or diagonally.

procedure genMfdsPerson (numMFDS : Integer) -- number of mfds patterns
var lastNames : Sequence(String) , m : Person . . . -- further variables

begin
-- -- variable initialization
lastNames := [Sequence{’ Kennedy ’ . . . ’ Obama ’ }] ; -- more
firstFemales := [Sequence{’ Jacqueline ’ . . . ’ Michelle ’ }] ; -- constants
firstMales := [Sequence{’John ’ . . . ’ Barrack ’ }] ; -- instead
ages := [Sequence{30 , 36 , 42 , 48 , 54 , 60 , 66 , 72 , 78}] ; -- of ...
mums := [Sequence { }] ; dads := [Sequence { }] ;

-- -- creation of objects
for i : Integer in [Sequence { 1 . . numMFDS }] begin

m :=Create (Female) ; f :=Create(Male) ; -- mother father
d :=Create (Female) ; s :=Create(Male) ; -- daughter son
mums := [mums−>append (m)] ; dads := [dads−>append (f)] ;

-- assignment of attributes
lastN :=Any ([lastNames]) ; firstN :=Any ([firstFemales]) ;
[m] . fullName := [firstN . concat (’� ’) . concat (lastN)] ; [m] . age :=Any([ages]) ;
firstN :=Any ([firstMales]) ;
[f] . fullName := [firstN . concat (’� ’) . concat (lastN)] ; [f] . age :=Any([ages]) ;
. . . -- analogous handling of daughter d and son s

-- creation of mfds links
Insert (Marriage , [m] , [f]) ;
Insert (Parenthood , [m] , [d]) ; Insert (Parenthood , [f] , [d]) ;
Insert (Parenthood , [m] , [s]) ; Insert (Parenthood , [f] , [s]) ;
-- -------- random generation of additional links between mfds patterns
-- ----------------------------- such links lead to negative test cases

flagA :=Any([Sequence{0 , 1 , 2 , 3}]) ; -- 0 none , 1 mother , 2 father , 3 both
i f [i>1 and flagA >0] then begin

i f [flagA=1 or flagA=3] then begin

414 A. Vallecillo et al.

flagB :=Any ([Sequence{0 , 1}]) ; -- 1 give daughter , 0 give son
i f [flagB=1] then begin

Insert (Parenthood , [mums−>at (i−1)] , [mums−>at (i)]) ; end
else begin

Insert (Parenthood , [mums−>at (i−1)] , [dads−>at (i)]) ; end ;
end ; . . .

end ; end ;

Fig. 5. Three Possibilities for Linking Two mfds Patterns

5 Analysis

Counting on mechanisms for specifying tract invariants on the source and target
metamodels, and on the relationship that should be established between them, has
proved to be beneficial when combined with the testing process defined above.

Transformation Code Errors: In the first place, we can look for errors due
to either bugs in the transformation code that lead to misbehaviours, or
to hidden assumptions made by the developers due to some vagueness in
the (verbal) specification of the transformation. These errors are normally
detected by observing how valid input models (i.e., belonging to the grey area
in the left hand side of figure 1) are transformed into target models that break
either the target metamodel constraints or the source-target constraints.
This is the normal kind of errors pursued by most MT testing approaches.

Transformation Tract Errors: The second kind of errors can be due to the
tract specifications themselves. Writing the OCL invariants that comprise
a given tract can be as complex as writing the transformation code itself
(sometimes even more). This is similar to what happens with the specifi-
cation of the contract for a program: there are cases in which the detailed
description of the expected behaviour of a program can be as complex as
the program itself. However, counting on a high-level specification of what
the transformation should do at the tract level (independently of how it ac-
tually implements it) becomes beneficial because both descriptions provide

Formal Specification and Testing of Model Transformations 415

Fig. 6. Generated Negative Test Case with Linked mfds Patterns

two complementary views (specifications) of the behaviour of the transfor-
mation. In addition, during the checking process the tract specifications and
the code help testing each other. In this sense, we believe in an incremen-
tal and iterative approach to model transformation testing, where tracts are
progressively specified and the transformation checked against them. The
errors found during the testing process are carefully analyzed and either the
tract or the transformation refined accordingly.

Issues due to Source-Target Semantic Mismatch: This process also helps
revealing a third kind of issues, probably the most difficult problems to cope
with. They are due neither to the transformation code nor the tract invari-
ant specifications, but to the semantic gap between the source and target
metamodels. We already mentioned that the metamodels used to illustrate
our proposal look simple but hide some subtle complications. For exam-
ple, one of the tracts we tried to specify was for input source models that
represented three-generation families, i.e., mfds patterns linked together by
parenthood relations (see figure 6 representing a generated negative test case
failing to fulfill SRC allPersonInMfds; without the links (’Elizabeth Reagan’,

’Ronald Reagan’), (’Alta Reagan’, ’John Carter’), and (’Ronald Reagan’,

’John Carter’) we would obtain a valid mfds source model). This revealed
the fact that valid source models do not admit in general persons with grand-
children. More precisely, after careful examination of the problem we discov-
ered that such patterns are valid inputs for the transformation only if the
last name of all persons in the family is the same. This is because the trans-
formed model will consist of three families, where one of the members should
end up, for example, playing the role of a daughter in one family and the role
of mother in the other. Since all members of a family should share the same

416 A. Vallecillo et al.

Fig. 7. Semantic Differences between Source and Target Example Metamodels

last name, and due to the fact that a person should belong to two families,
the last names of the two families should coincide.

Examples of these problems can also happen because of more restric-
tive constraints in the target metamodel. For instance a family in the target
metamodel should have both a father and a mother, and they should share
the same last name. This significantly restricts the set of source models that
can be transformed by any transformation because it does not allow unmar-
ried couples to be transformed, nor families with a single father or mother.
Married couples whose members have maintained their last names cannot be
transformed, either. Another problem happens with persons with only a sin-
gle name (i.e., neither a first nor last name, but a name only), because they
cannot be transformed. These are good examples of semantic mismatches
between the two metamodels that we try to relate through the transforma-
tion. How to deal with (and solve) this latter kind of problems is out of the
scope of this paper, here we are concerned only with the detection of such
problems. A visual representation of some semantic differences between the
example metamodels is shown in figure 7.

Being able to select particular patterns of source models (the ones defined for
a tract test suite) offers a fine-grained mechanism for specifying the behaviour
of the transformation, and allows the MT tester to concentrate on specific be-
haviours. In this way we are able to partition the full input space of the transfor-
mation into smaller, more focused behavioural units, and to define specific tests
for them. By selecting particular patterns we can traverse the full input space,
checking specific spots. This is how we discovered that the size of the grey area
in figure 1 was much smaller than we initially thought, as mentioned above.

It is also worth pointing out that tracts open the possibility of testing the
transformation with invalid inputs, to check its behaviour. For example, we de-
fined a tract where people could have two male parents, being able to check

Formal Specification and Testing of Model Transformations 417

whether the transformation produced output models that violated the target
metamodel constraints or not, or just hanged. In this way we can easily define
both positive and negative tests for the transformation.

5.1 Model Transformation Typing Using Tracts

Tracts can also be used for “typing” model transformations. Let us explain how
(sub-)typing works for tracts.

As mentioned at the beginning, what we basically do with the tracts is to
identify the scenarios of interest to the user of the transformation (each one
defined by a tract) and check whether the transformation behaves as expected
in these scenarios. We do not care how the transformation works in the rest of
the cases. This is why we consider this approach to typing is a form of “Duck”
typing.

In Fig. 8 we see that TractG transforms metamodel SourceG into metamodel
TargetG. ‘G’ and ‘S’ stand for ‘general’ (resp. ‘special’). SourceS is a specialization
of SourceG in the the sense that it extends SourceG by adding new elements
(classes, attributes, associations) and possibly more restricting constraints.

Analogously this is the

Fig. 8. Tract subtyping

case for TargetS. TractS is a
specialization of TractG and
inherits from TractG its con-
necting associations. Constra-
ints must guarantee that the
tract TractS connects SourceS

and TargetS elements. Both, TractG and TractS are established with a test suite
generating a set of SourceG models (resp. a set of SourceS models).

In order to illustrate our typing approach, Fig. 9 shows an example for tract
subtyping, using a different case study. The first source metamodel is the plain
Entity-Relationship (ER) model with entities, relationships and attributes only.
An ER model is identified by an object of class ErSchema. The second source
metamodel is a specialization of the Entity-Relationship model which adds car-
dinality constraints for the relationship ends. Objects of class ErSchemaC are
associated with ER models which additionally possess cardinality constraints.

The first target metamodel is the relational data model allowing primary
keys to be specified for relational schemas. Objects of class RelDBSchema identify
relational database schemas with primary keys. The second target metamodel
describes relational database schemas with primary keys and additional foreign
keys. The upper part of the diagram shows the principal structure with respective
source and target as well as general and special elements. The lower part shows
the details. Please note that the four source and target metamodels have a
common part, namely the class Attribute.

It would also be possible to have disjoint source and target models by introduc-
ing classes ErAttribute and ErDataType for the ER model as well as RelAttribute
and RelDataType for the relational model. The association class ForeignKey be-
longs exclusively to the relational database metamodel with foreign keys. This

418 A. Vallecillo et al.

Fig. 9. An example of tract subtyping

could be made explicit by establishing a component relationship, a black dia-
mond, from class RelDBSchemaFK to ForeignKey. The central class Tract specifies
the transformation contract and has access, through associations, to both the
source and target metamodel. Tract subtyping is expressed through the fact that
class TractC2FK is a subtype of class Tract.

The scenario Town-liesIn-Country depicted in Fig. 10 shows informally what
will be represented further down as a formal instantiation of the metamodels.
Three transformations are shown. The first one ER 2 Rel transforms a plain ER
schema (without cardinalities) into a relational database schema with primary
keys only. The second one ERC 2 Rel goes from an ER schema with cardinalities
into a relational database schema with only primary keys. The third transforma-
tion ERC 2 RelFK takes the ER schema with cardinalities and yields a relational
database schema with primary keys and foreign keys. Please note that the three
relational database schemas can be distinguished by their use of primary keys
and foreign keys.

The informal scenario Town-liesIn-Country is formally presented in Fig. 11
with object diagrams instantiating the metamodel class diagrams. The most
interesting parts which handle the primary and foreign keys are pictured in a
white-on-black style. Please pay attention to the typing of the source, target, and
tract objects which are different in each of the three cases and which formally
reflect the chosen names of the transformations (trafo GG, trafo SG, trafo SS).

Formal Specification and Testing of Model Transformations 419

Fig. 10. Town-liesIn-Country scenario

Fig. 11. Town-liesIn-Country object diagram

As shown in Fig. 12, in the ER and relational database metamodel example
we see three different transformations: trafo GG, trafo SS, and trafo SG. trafo GG

and trafo SS are the transformations directly obtained from the respective tracts.
Another transformation is trafo SG, which takes SourceS models, builds TargetG

420 A. Vallecillo et al.

Fig. 12. Relationship between Example Transformations

models and checks them against the TargetG constraints. As shown in the right
lower part, the example transformations trafo SS and trafo SG are subtypes of
trafo GG.

5.2 Working with Tract Types

The fact of considering tracts as types for model transformations, and the fact
that tracts provide automated testing mechanisms, will allow us to perform
several kinds of checks over model transformations.

Correctness of a MT Implementation. The first thing we can do is to check
whether a given transformation behaves as expected, i.e., its implementa-
tion is correct w.r.t. a specification. In our approach, this is just checking
that a given transformation conforms to a type. For example, a developer
can come up with an ATL [27] model transformation that implements the
Families2Person specification, and we need to test whether such MT is cor-
rect. This was the original intention of Tracts [53].

Safe Substitutability of Model Transformations. Now, given another
model transformation T ′, how to decide whether T ′ can safely substitute
T (T ′ <: T)? In our approach, it is a matter of testing that T ′ satisfies all
T tracts, which can be checked in an automated way. We will not get 100%
assurance that T ′ <: T for all possible models, but we will be able to know
that at least it will work in all scenarios that we have identified as relevant
for us with the tracts.

Incrementality of Transformation Development. The ERC 2 RelFK exam-
ple uses an incremental methodology for transformation development. Source
and target metamodels are extended by subtyping through small increments
which are accompanied by corresponding tracts including test suites. The
tract test suites can give direct feedback on the correctness of the increment.

Declarative vs Imperative Tracts. Tracts may have a descriptive nature
when only the relationship between source and target elements is charac-
terized. Tracts may also be described in an operational way when the tract
includes operations that map source elements to target elements. Opera-
tional tracts may be understood as implementations of descriptive ones and

Formal Specification and Testing of Model Transformations 421

their correctness can be checked against the descriptive tract by employing
the descriptive test suite for the operational tract.

Pros and Cons. In general, we have found that typing model transformations
using tracts provides interesting advantages, such as modularity, usability, and
cost-effectiveness, but at the cost of sacrificing completeness and full verification.
Furthermore, having a high-level specification of what the transformation should
do at the tract level (independently of how it actually implements it) becomes
beneficial because both descriptions provide two complementary views (spec-
ifications) of the behaviour of the transformation. Then, during the checking
process the tract specifications and the code help testing each other.

5.3 Tool Support

The approach we have presented in this paper allows modellers to check the
behaviour of a transformation by specifying a set of tracts that should be fulfilled.
For each of these tracts we generate the tract test suite mentioned in the previous
section, i.e. the sample input models for the tract, and then we check that the
corresponding output models (i.e., the ones produced by the transformation)
fulfil the tract invariants.

As a proof-of-concept of our proposal we have built a prototype that allows
testing a transformation in an automated way, chaining three tools. In the first
place, the tract classes and their associated invariants are specified using USE.
The ASSL program that generates the tract test suite is also specified within
the USE environment, and then executed within it. The second tool is a script
that takes the input models generated by the ASSL procedure (which are in the
textual format that both ASSL and USE understand, .cmd), converts them into
the Ecore format so that they can be manipulated by ATL, invokes the ATL
transformation under test, and converts the resulting target model into the USE
.cmd format again (using an ATL query). Finally, the correctness of these output
models is checked against the OCL invariants specified in the transformation
tract using USE.

6 Further Application Examples

This sections presents two further case studies, showing their specification using
tracts.

6.1 Families2Person

This section presents a set of tracts for the Families2Person model transforma-
tion, one of the simplest examples of model transformations used in the literature
to explain model transformation concepts and mechanisms—it is even mentioned
in the ATL documentation as some kind of ATL “hello world” example [24, 25].
Despite its apparent simplicity, the formalization of this example using tracts

422 A. Vallecillo et al.

+firstName : String

Member
+familiyName : String

Family

Families

+fullName : String

Person

Persons

FemaleMale

Fatherhood

+father

1

+familyFather

0..1

Motherhood

+mother

1

+familyMother

0..1

Sonhood

+son

0..*

+familySon

0..1

Daughterhood

+daughter

0..*

+familyDaughter

0..1

Fig. 13. Families and Persons Metamodels

has allowed us to reveal several critical problems of this transformation, which
ends up being by no means simple.

This transformation takes models conforming to the Families metamodel and
transforms them into models that conform to the Persons metamodel. Figure 13
shows these input and output metamodels. The first one describes families, which
are composed of members: a father, a mother, several sons and several daugh-
ters. Each family member has a first name. In the Persons metamodel, a person
has a full name (first name and surname), and is either a male or a female.
This example follows the original specification by Freddy Allilaire and Frédéric
Jouault in 2007, described in [25]. Cardinality constraints, as well as black di-
amonds, impose some restrictions on the relationships: for example, a family
should have exactly one father and one mother. Other significant constraints are
also implicitly imposed by black diamonds, as we shall later see.

The ATL transformation that implements the conversion is shown in figure 14,
also taken from [25]. It has two helpers, one to decide whether a member is female
or not, and other to compute the full name of members. The transformation
comprises two rules, for producing male and female persons.

Tracts for the Families2Person Transformation. The Families2Persons

transformation has been extensively used in many tutorials and papers to show
a simple ATL model transformation. We therefore assume it is perfectly correct.
Our aim in this section is to specify it using tracts. As mentioned earlier, tracts
allow a modular specification of a model transformation whereby each tract
concentrates on a set of input models (intensionally defined by the source tract
constraints), the corresponding set of output models (intensionally defined by
the target tract constraints), and the relationships between them as (should
be) realized by the transformation (intensionally defined by the source-target
tract constraints). In addition, every tract defines a tract test suite which is a
collection of sample input models that are used to test the actual behaviour of
the transformation.

Formal Specification and Testing of Model Transformations 423

module Families2Persons ;
create OUT : Persons from IN : Families ;

helper context Families ! Member def : isFemale () : Boolean =
if not self . familyMother . oclIsUndefined () then true
else

if not self . familyDaughter . oclIsUndefined () then true
else false
endif

endif ;

helper context Families ! Member def : familyName : S t r i ng =
if not self . familyFather . oclIsUndefined () then

self . familyFather . lastName
else

if not self . familyMother . oclIsUndefined () then
self . familyMother . lastName

else
if not self . familySon . oclIsUndefined () then

self . familySon . lastName
else

self . familyDaughter . lastName
endif

endif
endif ;

rule Member2Male {
from

s : Families ! Member (not s . isFemale ())
to

t : Persons ! Male (fullName <− s . firstName + ’� ’ + s . familyName)
}
rule Member2Female {

from
s : Families ! Member (s . isFemale ())

to
t : Persons ! Female (fullName <− s . firstName + ’� ’ + s . familyName)

}

Fig. 14. ATL transformation Families2Persons (from [24])

Every tract is formally specified in terms of a class, that serves as context for
all the OCL invariants that describe the different tract constraints.

Members Only Tract. The first tract (specified by class MembersOnlyTract)
focuses on the simplest elements that can be used as input of the transformation:
just members. According to the Families metamodel, a valid model may contain
members associated to no family. An example of such model is shown in figure 15.

The tract source constraint that specifies such models is defined by OCL
invariant SCR MembersOnly:

context MembersOnlyTract
inv SCR_MembersOnly :

Member . allInstances−>forAll (m |
m . familyFather−>s ize () + m . familyMother−>s ize () +
m . familySon−>s ize () + m . familyDaugther−>s ize () = 0)

We need to decide what the transformation should do when these models are
used as input models. In the first place, there is no restriction on the kind of
persons that can be produced. So no tract target constraint is needed. Regarding

424 A. Vallecillo et al.

MembersOnly

firstName = "Carmen"

m3 : Member

firstName = "Brigita"

m1 : Member

firstName = "Antonio"

m4 : Member

firstName = "Martin"

m2 : Member

Fig. 15. A source test model for the MembersOnly tract

the source-target constraints, in this case there is no family to get the last name
from, and there is no indication about the sex of the members. We can then
decide that their full names will coincide with their first names, and that they
all will be female. This is expressed by the following constraint:

context MembersOnlyTract
inv SRC_TRG_MembersOnly :

Member . allInstances−>forAll (m |
Female . allInstances−>one (p | p . fullName=m . firstName))

and Member . allInstances−>s ize () = Person . allInstances−>s ize ()

Now it comes to checking what the transformation does, and (with horror) we
find that the transformation does not work. In fact, it aborts execution with the
following error message:

An internal error occurred during : ” Launching Families2Persons ” .
java . lang . ClassCastException :

org . eclipse . m2m . atl . engine . emfvm . lib . OclUndefined cannot be cast to
org . eclipse . m2m . atl . engine . emfvm . lib . HasFields

After investigating, it is due to the fact that the familyName attribute of vari-
able s in the transformation rule is not defined. And what is worse, even if the
transformation did not abort its execution, we realized that it would convert
all members into male persons. And then, it would add a blank space to their
names. So the exemplar transformation have not even passed our most simple
test... What is wrong with all this?

In the first place, our decisions above may seem arbitrary. Why should they
all become female persons and not male? In fact, it may be not fair to make
any decision at all, it really does not make any sense to have no families in the
Families model, only members. So the best option in this case is to rule out the
possibility of having members with no associated families in any valid Families

model. This is expressed by OCL constraint NoIsolatedMembers that provides an
invariant for class Member in the Families metamodel:

context Member
inv NoIsolatedMembers :

Member . allInstances−>forAll (m |
m . familyFather−>s ize () + m . familyMother−>s ize () +
m . familySon−>s ize () + m . familyDaugther−>s ize () > 0)

From this moment on, we will suppose that this constraint forms an integral
part of the Families metamodel.

No Children Tract. The second tract (specified by class NoChildrenTract)
focuses on simple families composed of two members: a father and a mother.

Formal Specification and Testing of Model Transformations 425

familiyName = "Vallecillo"

f2 : Family

familiyName = "Gogolla"

f1 : Family

NoChildren

firstName = "Carmen"

m3 : Member

firstName = "Antonio"

m4 : Member

firstName = "Brigita"

m1 : Member

firstName = "Martin"

m2 : Member

fullName = "Martin Gogolla"

p2 : Male

fullName = "Brigita Gogolla"

p1 : Female

fullName = "Carmen Vallecillo"

p3 : Female

fullName = "Antonio Vallecillo"

p4 : Male

T(NoChildren)

 : Motherhood

 : Fatherhood

 : Motherhood

 : Fatherhood

Fig. 16. Test model for the NoChildren tract and its corresponding transformed model

An example of such model is shown on the left hand side of figure 16. The
tract source constraint that specifies such models is defined by OCL invariant
SCR NoChildren:

context NoChildrenTract
inv SCR_NoChildren :

Family . allInstances−>forAll (f | f . son−>s ize ()+f . daughter−>s ize () = 0)

We need to decide what the transformation should do when these models are
used as input models. In the first place, there is no restriction on the kind of
persons that can be produced. So no tract target constraint is needed.

Regarding the source-target constraints, in this case we need to check that for
every member there is one person that is either male or female depending on
the role he or she plays in the family, and whose full name corresponds to the
first name of the member and the family name of the family. This is expressed
by the following constraint:

context NoChildrenTract inv SRC_TRG_NoChildren :
Member . allInstances−>forAll (m |
m . familyMother−>s ize ()=1 implies Female . allInstances−>exists (p |
p . fullName=m . firstName . concat (’� ’) . concat (m . familyMother . familyName)))

and
Member . allInstances−>forAll (m |
m . familyFather−>s ize ()=1 implies Male . allInstances−>exists (p |
p . fullName=m . firstName . concat (’� ’) . concat (m . familyFather . familyName)))

and
Member . allInstances−>s ize () = Person . allInstances−>s ize ()

The test suite for this tract is defined by the following ASSL procedure, which
generates sample input models that conform to the Families metamodel to be
transformed by the transformation.

426 A. Vallecillo et al.

procedure mkSourceNoChildren (numFamily : Integer , numMember : Integer ,
numMother : Integer , numFather : Integer)

var theFamilies : Sequence(Family) , theMember : Sequence(Member) ,
f : Family , m : Member ;

begin
theFamilies := CreateN (Family , [numFamily]) ;
theMember := CreateN (Member , [numMember]) ;
for i : Integer in [Sequence { 1 . . numFamily }] begin

[theFamilies−>at (i)] . familyName :=Any ([Sequence{’ Red ’ , ’ Green ’ ,
’ Blue ’ , ’ Black ’ , ’ White ’ , ’ Brown ’ , ’Amber ’ , ’ Yellow ’ }]) ;

end ;
for i : Integer in [Sequence { 1 . . numMember }] begin

[theMember−>at (i)] . firstName :=Any ([Sequence{
’ Ada ’ , ’ Bel ’ , ’Cam ’ , ’ Day ’ , ’ Eva ’ , ’Flo ’ , ’ Gen ’ , ’ Hao ’ , ’ Ina ’ , ’Jen ’ ,
’ Ali ’ , ’ Bob ’ , ’Cyd ’ , ’ Dan ’ , ’ Eli ’ , ’Fox ’ , ’ Gil ’ , ’ Hal ’ , ’ Ike ’ , ’Jan ’ }]) ;

end ;
for i : Integer in [Sequence { 1 . . numMother }] begin

f :=Try ([theFamilies−>select (f | f . noMother ())]) ;
m :=Try ([theMember−>select (m | m . noFamily ())]) ;
Insert (Motherhood , [f] , [m]) ;

end ;
for i : Integer in [Sequence { 1 . . numFather }] begin

f :=Try ([theFamilies−>select (f | f . noFather ())]) ;
m :=Try ([theMember−>select (m | m . noFamily ())]) ;
Insert (Fatherhood , [f] , [m]) ;

end ; end ;

The following Ecore model shows an example of the models constructed in this
way (also shown in figure 16), ready to serve as input to the model transformation
under study:

<?xml version=" 1.0" encoding=" ISO -8859 -1 "?>
<xmi:XMI xmi : v e r s i on=" 2.0" xmlns:xmi=" http: // www. omg . org/ XMI"

xmlns=" Families ">
<Family lastName=" Gogolla">

<mother f i rstName=" Brigita"/>
<f a t h e r f i rstName=" Martin"/>

</Family>
<Family lastName=" Vallecillo ">

<mother f i rstName=" Carmen"/>
<f a t h e r f i rstName=" Antonio"/>

</Family>
</xmi:XMI>

MFDS Tract. This tract (specified by class MFDS) focuses on families composed
of exactly four members: one father, one mother, one son and one daughter. An
example of such model is shown in figure 17. The tract constraint that specifies
such models is defined by the next OCL invariants:

context MFDS inv SRC_OneDaughterOneSon :
Family . allInstances−>forAll (f | f . daughter−>s ize=1 and f . son−>s ize () =1)

context MFDS inv SRC_TRG_MotherDaughter2Female :
Family . allInstances−>forAll (fam | Female . allInstances−>exists (m |

fam . mother . firstName . concat (’� ’) . concat (fam . familyName)=m . fullName))
and
Family . allInstances−>forAll (fam | Female . allInstances−>exists (d |

fam . daughter−>any(true) . firstName . concat (’� ’) . concat (fam . familyName)
=d . fullName))

context MFDS inv SRC_TRG_FatherSon2Male :
Family . allInstances−>forAll (fam | Male . allInstances−>exists (f |

fam . father . firstName . concat (’� ’) . concat (fam . familyName)
=f . fullName))

and

Formal Specification and Testing of Model Transformations 427

Family . allInstances−>forAll (fam | Male . allInstances−>exists (s |
fam . son−>any(true) . firstName . concat (’� ’) . concat (fam . familyName)=

s . fullName))

context MFDS inv SRC_TRG_Female2MotherDaughter :
Female . allInstances−>forAll (f | Family . allInstances−>exists (fam |

fam . mother . firstName . concat (’� ’) . concat (fam . familyName)=f . fullName
or
fam . daughter−>any(true) . firstName . concat (’� ’) . concat (fam . familyName)

=f . fullName))

context MFDS inv SRC_TRG_Male2FatherSon :
Male . allInstances−>forAll (m | Family . allInstances−>exists (fam |

fam . father . firstName . concat (’� ’) . concat (fam . familyName)=m . fullName
or
fam . son−>any(true) . firstName . concat (’� ’) . concat (fam . familyName)

=m . fullName))

context MFDS inv SRC_TRG_MemberSize_EQ_PersonSize :
Member . allInstances−>s ize=Person . allInstances−>s ize

mfds

familiyName = "Brown"

f2 : Family

familiyName = "Smith"

f1 : Family

firstName = "Connie"

m1 : Member

firstName = "John"

m2 : Member

firstName = "Lucy"

m3 : Member

firstName = "James"

m4 : Member

firstName = "Maria"

m6 : Member

firstName = "Anthony"

m7 : Member

firstName = "Mathias"

m8 : Member

firstName = "James"

m5 : Member

 : Motherhood

 : Fatherhood

 : Daughterhood

 : Sonhood

 : Motherhood

 : Fatherhood

 : Sonhood

 : Daughterhood

Fig. 17. A test model for the MFDS tract

428 A. Vallecillo et al.

And the ASSL code is:

procedure mkSourceMFDS (numFamily : Integer , numMember : Integer , numMother :
Integer , numFather : Integer , numDaughter : Integer , numSon : Integer)
var theFamilies : Sequence(Family) , theMember : Sequence(Member) ,

f : Family , m : Member ;
begin

theFamilies := CreateN (Family , [numFamily]) ;
theMember := CreateN (Member , [numMember]) ;
for i : Integer in [Sequence { 1 . . numFamily }] begin

[theFamilies−>at (i)] . familyName :=Any ([Sequence{’ Red ’ , ’ Green ’ ,
’ Blue ’ , ’ Black ’ , ’ White ’ , ’ Brown ’ , ’Amber ’ , ’ Yellow ’ }]) ;

end ;
for i : Integer in [Sequence { 1 . . numMember }] begin

[theMember−>at (i)] . firstName :=Any([Sequence{
’Ada ’ , ’ Bel ’ , ’ Cam ’ , ’ Day ’ , ’Eva ’ , ’ Flo ’ , ’ Gen ’ , ’ Hao ’ , ’Ina ’ , ’ Jen ’ ,
’Ali ’ , ’ Bob ’ , ’ Cyd ’ , ’ Dan ’ , ’Eli ’ , ’ Fox ’ , ’ Gil ’ , ’ Hal ’ , ’Ike ’ , ’ Jan ’ }]) ;

end ;
for i : Integer in [Sequence { 1 . . numMother }] begin

f :=Try ([theFamilies−>select (f | f . noMother ())]) ;
m :=Try ([theMember−>select (m | m . noFamily ())]) ;
Insert (Motherhood , [f] , [m]) ;

end ;
for i : Integer in [Sequence { 1 . . numFather }] begin

f :=Try ([theFamilies−>select (f | f . noFather ())]) ;
m :=Try ([theMember−>select (m | m . noFamily ())]) ;
Insert (Fatherhood , [f] , [m]) ;

end ;
for i : Integer in [Sequence { 1 . . numDaughter }] begin

f :=Try ([Family . allInstances−>sortedBy (f | f . daughter−>s ize ()+
f . son−>s ize)−>asSequence ()]) ;

m :=Try ([theMember−>select (m | m . noFamily ())]) ;
Insert (Daughterhood , [f] , [m]) ;

end ;
for i : Integer in [Sequence { 1 . . numSon }] begin

f :=Try ([Family . allInstances−>sortedBy (f | f . daughter−>s ize+
f . son−>s ize ())−>asSequence ()]) ;

m :=Try ([theMember−>select (m | m . noFamily ())]) ;
Insert (Sonhood , [f] , [m]) ;

end ; end ;

Note that this code subsumes the previous one used in the NoChildren tract,
which can be expressed as mkSourceMFDS(x, y, z, 0, 0).

Two Generation Families Tract. Another interesting situation that we may
think of happens with two-generation families, where a son or a daughter plays
the role of father or mother in another. Figure 18 shows an example of this kind
of input models, which represent a common case in real-world families.

The issue with this kind of families is that they are not valid models according
to the Families metamodel, the problem being that the relationship between a
family and its members is a composition (black diamond). This means that a
member can belong to at most one family, i.e., a member can only play a role in
at most one family.

Here, the problem is due to the source metamodel, which is too restrictive
and does not allow this kind of families. A possible solution would be to change
the source metamodel, relaxing it, but this is outside our hands. We wanted to
respect the source and target metamodels, as well as the transformation itself,
as much as possible. At most we could add some constraints if the transforma-
tion is ill-defined, to avoid problematic source models (as we have done with

Formal Specification and Testing of Model Transformations 429

TwoLevels

familiyName = "Simpson"

f3 : Family

familiyName = "Brown"

f2 : Family

familiyName = "Smith"

f1 : Family

firstName = "Anthony"

m7 : Member

firstName = "Mathias"

m8 : Member

firstName = "Connie"

m1 : Member

firstName = "James"

m4 : Member

firstName = "James"

m5 : Member

firstName = "Maria"

m6 : Member

firstName = "John"

m2 : Member

firstName = "Lucy"

m3 : Member

 : Motherhood

 : Daughterhood

 : Motherhood

 : Daughterhood

 : Fatherhood

 : Sonhood

 : Fatherhood

 : Sonhood

 : Fatherhood

 : Motherhood

Fig. 18. A two-generations model

MonoParental

familiyName = "Smith"

f1 : Family

firstName = "John"

m1 : Member : Motherhood

 : Fatherhood

Fig. 19. A test model for the Monoparental tract

the first tract). But relaxing the original constraints may not be appropriate.
Besides, making this kind of changes to any of the metamodels can produce un-
desirable effects, because the developers of the example may have made use of
these constraints.

Monoparental Tract. Although a composition relation forbids an element to
play two roles in two different containers, it is not so clear whether a contained
element can play two different roles in the same container or not. An example in

430 A. Vallecillo et al.

our domain would be a mono-parental family, with a person fulfilling the roles
of father and mother (see figure 19).

Although UML allows this model to be drawn, and it is valid according to
the UML metamodel, it is invalid both in Ecore and in USE. They do not allow
the same object to play two contained roles even within the same container.

And even if this model was valid, the expected result of the transformation is
not clear. The problem here is determining the sex of the person because now it
cannot be inferred.

To avoid this case we suggest to add an additional constraint to the Family

metamodel, which makes this restriction clear, and not implicit (and therefore
valid in some technical spaces, and invalid in others):

context Member inv BlackDiamonds :
familyMother−>s ize () + familyFather−>s ize () +
familyDaughter−>s ize () + familySon−>s ize () <= 1

Note how this invariant, together with the NoIsolatedMembers invariant, forces
the number of roles that a member can have in a family to be exactly 1.

OtherTracts. So far tracts have allowed us to identify interesting sample models
for the transformation, some ofwhich revealedproblematic sourcemodels and erro-
neous behaviours. Others, such as the MFDS or NoChildren tracts, determined valid
use cases for which the transformation should work as well as the specification of
such behaviour. Other tracts for the transformation may include:

– OnlyGirls where families only have daughters, no sons.
– OnlyBoys where families only have sons, no daughthers.
– NoFather3Kids where families have a mother but no father, and 3 children.
– NoMother3Kids where families have a father but no mother, and 3 children.
– NoFatherNoKids where families have a mother but no father, and no children.
– NoMotherNoKids where families have a father but no mother, and no children.
– OrphanSons where families have only sons (no father, mother or daughthers).
– OrphanDaughthers where families have only daughters (no father, mother or

sons).

The specification of these tracts are left as exercise to the reader.

Summary. Here we have illustrated the Tract concept with the example of the
Families2Person transformation. It has allowed us to discover that even such a
simple example is by no means trivial. In particular, the specification of this
transformation using Tracts has uncovered one case where the transformation
fails (MembersOnly), and has also allowed us to explore the input and output
spaces of the transformation, discovering that its scope is much more reduced
that we intuitively thought: only individual families are allowed, with no shared
members. This rules out, for instance, most common cases of two-generation fam-
ilies (grandparent-parent-children) or families whose children marry members of
other families. We have also discovered that the implicit restrictions imposed
by some modeling constructs, such as black diamonds, are treated differently in
several modeling tools. In these cases, the explicit expression of these constraints
may be helpful.

Formal Specification and Testing of Model Transformations 431

+name : String

StateMachine

+name : String

State

SimpleStateMachine

+event : String

Transition

SimpleLookUpTable

+sm : String
+fromState : String
+toState : String

Change

LookUpTable

+name : String

Event
+transition 0..*

+outgoing

0..*1

+src

+incoming

0..*1

+tgt
+state 0..*

1

+change

0..*+event

1

+event 0..*

Fig. 20. Source and Target Metamodels of transformation SM2T

6.2 StateMachineTo LookUp Tables

As a second example, let us consider a model transformation SM2T between simple
state machines and a lookup table that lists the events and their associated
transitions [55]. The source and target metamodels of this transformation are
shown in figure 20. In this case, we want only one lookup table to be built,
whose entries are all the events of all the state machines in the source model. In
addition to the (multiplicity) constraints shown in these class diagrams, we need
to add uniqueness on names of the state machines, and uniqueness of names of
states within the same state machine:
context StateMachine inv uniqueNames :

s e l f . state−>isUnique (name) and
StateMachine . allInstances−>isUnique (name)

To specify the SM2T transformation we can define the following six tracts, whose
test suite models are illustrated in figure 21 (literals SM1...SM6 represent the names
of the state machines):

– 1S0T: state machines with single states and no transitions.
– 2S1T: state machines with two states and one transition between them. In

this case the entries of the resulting lookup table will have the form {x �→
(SM2, A, B)}.

– 2S2T: state machines with two states and two transition between them. In
this case the entries of the resulting lookup table will be of the form {x �→
(SM3, A, B), y �→ (SM3, B, A)}.

– 1S1T: state machines with single states and one transition. In this case the
entries of the resulting lookup table will have the form {x �→ (SM4, A, A)}.

– 3S3T: state machines with three states and three transitions, forming a cycle.
In this case the entries of the resulting lookup table will be of the form
{x �→ (SM5, A, B), y �→ (SM5, B, C), z �→ (SM5, C, A)}.

– 3S9T: state machines with three states and 9 transitions (see figure 21).
In this case the entries of the resulting lookup table will have the form
{x0 �→ (SM6, A, A), x1 �→ (SM6, A, B), x2 �→ (SM6, B, A), y0 �→ (SM6, B, B), y1 �→
(SM6, B, C), y2 �→ (SM6, C, B), z0 �→ (SM6, C, C), z1 �→ (SM6, C, A), z2 �→ (SM6, A, C)}.

Let us show here one of this tracts, 2S1T, for illustration purposes. The rest follow
similar patters. In the first place, the tract source constraint that specifies the
source models is defined by OCL invariant SCR 2S1T:

432 A. Vallecillo et al.

B

y0

B

B

A

C

z0

A A

x0

AA B

A

x

C

SM3

1S0T

1S1T

SM6

2S1T

2S2T

SM2

3S3T

SM5

3S9T

SM4

SM1

y

x

x

x
x2

x1

z1 y1y
z

z2 y2

Fig. 21. Test suites samples for the 6 tracts defined for model transformation SM2T

context 2S1T−Tract
inv SCR_2S1T :

StateMachine . allInstances−>forAll (sm |
(sm . state−>s ize () = 2) and (sm . transition−>s ize () = 1)
(sm . transition . src <> sm . transition . tgt)

We need to decide what the transformation should do when these models are
used as input models. There is no restriction on the kinds of entries that can be
produced in the lookup table, but we need to state that only one lookup table
is produced. This is expressed by the following OCL constraint:

context 2S1T−Tract
inv TRG_2S1T : LookUpTable . allInstances−>s ize () = 1

Regarding the source-target constraints, given that every state machine has only
one transition, there should be one change in the lookup table for every state
machine, and the attributes should match with the events and states related
by the corresponding transition in the state machine. This is expressed by the
following source-target constraint:

context 2S1T−Tract
inv SRC_TRG_2S1T :

StateMachine . allInstances−>s ize () = LookUpTable . change−>s ize () and
LookUpTable . change−>forAll (c |

StateMachine . allInstances−>one (sm | (sm . name = c . sm) and
(sm . transition . src−>col lect (name) = c . fromState . asSet ()) and
(sm . transition . tgt−>col lect (name) = c . toState . asSet ()) and
(sm . transition . event = c . event . name))

Finally, the test suite for this tract is defined by an ASSL procedure that gen-
erates the input models.

procedure mk2S1T (numSM : Integer)
var theStateMachines : Sequence(StateMachine) ,

theStates : Sequence(State) ,
theTransitions : Sequence(Transition) ;

begin
theStateMachines := CreateN (StateMachine , [numSM]) ;
theStates := CreateN (State , [2 ∗ numSM]) ;
theTransitions := CreateN (Transition , [numSM]) ;
for i : Integer in [Sequence { 1 . . numSM }] begin

[theStateMachines−>at (i)] . name := [’SM ’ . concat (i . toString ())] ;
[theTransitions−>at (i)] . event := [’E ’ . concat (i . toString ())] ;
[theStates−>at (2∗i−1)] . name := [’ST ’ . concat ((2∗ i−1) . toString ())] ;
[theStates−>at (2∗i)] . name := [’ST ’ . concat ((2∗ i) . toString ())] ;

Formal Specification and Testing of Model Transformations 433

Insert (States , [theStateMachines−>at (i)] , [theStates−>at (2∗i−1)]) ;
Insert (States , [theStateMachines−>at (i)] , [theStates−>at (2∗ i)]) ;

Insert (Transition , [theStateMachines−>at (i)] , [theTransitions−>at (i)]) ;
Insert (Cause , [theTransitions−>at (i)] , [theStates−>at (2∗i−1)]) ;

Insert (Effect , [theTransitions−>at (i)] , [theStates−>at (2∗ i)]) ;
end ;

end ;

In the example above, the type of the SM2T transformation is given by the six
tracts defined for it: SM2T |= 1S0T ∧ 2S1T ∧ 2S2T ∧ 1S1T ∧ 3S3T ∧ 3S9T. Of course,
other tracts could have been defined for this transformation if the user requires
to include further contexts of use.

7 Conclusion

In this paper we have presented the issues involved in model transformation
specification and testing, and introduced the concept of Tract, a generaliza-
tion of model transformation contracts. We have showed how it can be used
for model transformation specification and black-box testing. A tract defines a
set of constraints on the source and target metamodels, a set of source-target
constraints, and a tract test suite, i.e., a collection of source models satisfying
the source constraints. To test a transformation T we automatically generate
the input test suite models using the ASSL language, and then transform them
into their corresponding target models. These models are checked with the USE
tool against the constraints defined for the transformation. The checking process
can be automated, allowing the model transformation tester to process a large
number of models in a mechanical way. Although this approach to testing does
not guarantee full correctness, it provides very interesting advantages over other
approaches, as we have discussed above.

There are other issues that we have not covered in this paper, such as the gen-
eration of source models (test suites) to optimize metamodel coverage or trans-
formation code coverage (in case of white-box testing). In this respect, there are
several lines of work that we plan to address next. In particular, we would like to
study how to improve our proposal by incorporating some of the existing works on
the effective generation of input test cases. We expect this to help us enhance the
definition of our tract test suites. Larger case studies will be carried out in order
to stress the applicability of our approach and to obtain more extensive feedback.
We would also like to conduct some empirical studies on the effects of the use
of tracts in the lifecycle of model transformations. Concerning the tracts, we also
plan to investigate some of their properties, such as their composability, subsump-
tion, refinement or coverage. Finally, we plan to improve the current tool support
for tracts, incorporating the creation and maintenance of libraries of tracts, and
the concurrent execution of the tests using sets of distributed machines.

Acknowledgements. The authors would like to thank the volume editors,
Marco Bernardo, Vittorio Cortellessa and Alfonso Pierantonio for their invitation
to present our ideas on model transformation specification and testing, and to
Mirco Kuhlmann, Fernando López and Javier Troya for their help and support

434 A. Vallecillo et al.

during the preparation of the paper. This work is supported by Research Projects
TIN2008-03107 and TIN2011-23795 and by the Austrian Science Fund (FWF)
under grant J 3159-N23.

References

1. Lin, Y., Zhang, J., Gray, J.: Model comparison: A key challenge for transformation
testing and version control in model driven software development. In: Control in
Model Driven Software Development. OOPSLA/GPCE: Best Practices for Model-
Driven Software Development, pp. 219–236. Springer (2004)

2. Baudry, B., Dinh-Trong, T., Mottu, J.M., Simmonds, D., France, R., Ghosh, S.,
Fleurey, F., Traon, Y.L.: Model transformation testing challenges. In: Proc. of
IMDD-MDT 2006 (2006)

3. Stevens, P.: A Landscape of Bidirectional Model Transformations. In: Lämmel, R.,
Visser, J., Saraiva, J. (eds.) GTTSE 2008. LNCS, vol. 5235, pp. 408–424. Springer,
Heidelberg (2008)

4. Baudry, B., Ghosh, S., Fleurey, F., France, R., Traon, Y.L., Mottu, J.M.: Barriers
to systematic model transformation testing. Communications of the ACM 53(6),
139–143 (2010)

5. Baresi, L., Ehrig, K., Heckel, R.: Verification of Model Transformations: A Case
Study with BPEL. In: Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006.
LNCS, vol. 4661, pp. 183–199. Springer, Heidelberg (2007)

6. Ehrig, H., Ehrig, K., de Lara, J., Taentzer, G., Varró, D., Varró-Gyapay, S.: Termi-
nation Criteria for Model Transformation. In: Cerioli, M. (ed.) FASE 2005. LNCS,
vol. 3442, pp. 49–63. Springer, Heidelberg (2005)

7. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta mod-
els. Software and Systems Modeling 8, 479–500 (2009)

8. Küster, J.M.: Definition and validation of model transformations. Software and
Systems Modeling 5(3), 233–259 (2006)

9. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verification and validation of declar-
ative model-to-model transformations through invariants. Journal of Systems and
Software 83(2), 283–302 (2010)

10. Anastasakis, K., Bordbar, B., Küster, J.M.: Analysis of model transformations via
Alloy. In: Proc. of MODEVVA (2007),
http://www.cs.bham.ac.uk/~bxb/Papres/Modevva07.pdf

11. Troya, J., Vallecillo, A.: A rewriting logic semantics for ATL. Journal of Object
Technology 10(5), 1–29 (2011)

12. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Traon, Y.L.: Metamodel-based test
generation for model transformations: an algorithm and a tool. In: Proc. of ISSRE
2006, pp. 85–94 (2006)

13. Solberg, A., Reddy, R., Simmonds, D., France, R., Ghosh, S.: Developing dis-
tributed services using an aspect-oriented model driven framework. International
Journal of Cooperative Information Systems 15(4), 535–564 (2006)

14. Mottu, J.-M., Baudry, B., Le Traon, Y.: Reusable MDA Components: A Testing-
for-Trust Approach. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 589–603. Springer, Heidelberg (2006)

15. Fleurey, F., Baudry, B., Muller, P.A., Traon, Y.L.: Qualifying input test data for
model transformations. Software and Systems Modeling 8(2), 185–203 (2009)

http://www.cs.bham.ac.uk/~bxb/Papres/Modevva07.pdf

Formal Specification and Testing of Model Transformations 435

16. Gogolla, M., Hamann, L., Kuhlmann, M.: Proving and Visualizing OCL Invariant
Independence by Automatically Generated Test Cases. In: Fraser, G., Gargantini,
A. (eds.) TAP 2010. LNCS, vol. 6143, pp. 38–54. Springer, Heidelberg (2010)

17. Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: OCL for the specification of
model transformation contracts. In: Proc. of the OCL and Model Driven Engineer-
ing Workshop (2004)

18. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL Models in USE
by Automatic Snapshot Generation. Software and Systems Modeling 4(4), 386–398
(2005)

19. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Science of Computer Programming 69, 27–34
(2007)

20. Meyer, B.: Applying design by contract. IEEE Computer 25(10), 40–51 (1992)

21. Andova, S., van den Brand, M.G.J., Engelen, L.J.P., Verhoeff, T.: MDE Basics
with a DSL Focus. In: Bernardo, M., Cortellessa, V., Pierantonio, A. (eds.) SFM
2012. LNCS, vol. 7320, pp. 21–57. Springer, Heidelberg (2012)

22. Cabot, J., Gogolla, M.: Object Constraint Language (OCL): A Definitive Guide. In:
Bernardo, M., Cortellessa, V., Pierantonio, A. (eds.) SFM 2012. LNCS, vol. 7320,
pp. 58–90. Springer, Heidelberg (2012)

23. Di Ruscio, D., Eramo, R., Pierantonio, A.: Model Transformations. In: Bernardo,
M., Cortellessa, V., Pierantonio, A. (eds.) SFM 2012. LNCS, vol. 7320, pp. 91–136.
Springer, Heidelberg (2012)

24. Eclipse: ATL Tutorials – A simple ATL transformation (2007),
http://wiki.eclipse.org/ATL/

Tutorials Create a simple ATL transformation

25. Eclipse: Basic ATL examples (2007),
http://www.eclipse.org/m2m/atl/basicExamples_Patterns/

26. Object Management Group: Object Constraint Language (OCL) Specification.
Version 2.2. OMG Document formal/2010-02-01 (2010)

27. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Science of Computer Programming 72(1-2), 31–39 (2008)

28. OMG: MOF QVT Final Adopted Specification. Object Management Group. OMG
doc. ptc/05-11-01 (2005)

29. Cuadrado, J.S., Molina, J.G., Tortosa, M.M.: RubyTL: A Practical, Extensible
Transformation Language. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006.
LNCS, vol. 4066, pp. 158–172. Springer, Heidelberg (2006),
http://rubytl.rubyforge.org/

30. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: A Bidirectional and
Change Propagating Transformation Language. In: Malloy, B., Staab, S., van den
Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer, Heidelberg
(2011), http://jtl.di.univaq.it/

31. Baudry, B., Dinh-Trong, T., Mottu, J., Simmonds, D., France, R., Ghosh, S.,
Fleurey, F., Le Traon, Y.: Model transformation testing challenges. In: ECMDA
Workshop on Integration of MDD and Model Driven Testing (2006)

32. France, R.B., Rumpe, B.: Model-driven development of complex software: A re-
search roadmap. In: Proc. of ISCE 2007, pp. 37–54 (2007)

33. Van Der Straeten, R., Mens, T., Van Baelen, S.: Challenges in Model-Driven Soft-
ware Engineering. In: Chaudron, M.R.V. (ed.) MoDELS 2008. LNCS, vol. 5421,
pp. 35–47. Springer, Heidelberg (2009)

http://wiki.eclipse.org/ATL/Tutorials_Create_a_simple_ATL_transformation
http://wiki.eclipse.org/ATL/Tutorials_Create_a_simple_ATL_transformation
http://www.eclipse.org/m2m/atl/basicExamples_Patterns/
http://rubytl.rubyforge.org/
http://jtl.di.univaq.it/

436 A. Vallecillo et al.

34. Amrani, M., Lúcio, L., Selim, G., Combemale, B., Dingel, J., Vangheluwe, H.,
Traon, Y.L., Cordy, J.R.: A tridimensional approach for studying the formal veri-
fication of model transformations. In: Proc. of the 1st International Workshop on
Verification and Validation of Model Transformations, VOLT 2012 (2012)

35. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621–646 (2006)

36. Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.: Systematic trans-
formation development. ECEASST 21 (2009)

37. Weisemoeller, I., Rumpe, B.: A domain specific transformation language. In: Mod-
els and Evolution Workshop @ MoDELS 2011 (2011)

38. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: An Invariant-Based Method for the
Analysis of Declarative Model-to-Model Transformations. In: Czarnecki, K., Ober,
I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp.
37–52. Springer, Heidelberg (2008)

39. Varró, D., Varró–Gyapay, S., Ehrig, H., Prange, U., Taentzer, G.: Termination
Analysis of Model Transformations by Petri Nets. In: Corradini, A., Ehrig, H.,
Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp.
260–274. Springer, Heidelberg (2006)

40. Narayanan, A., Karsai, G.: Towards verifying model transformations. Electr. Notes
Theor. Comput. Sci. 211, 191–200 (2008)

41. Varró, D.: Automated formal verification of visual modeling languages by model
checking. Software and System Modeling 3(2), 85–113 (2004)

42. Maoz, S., Ringert, J.O., Rumpe, B.: CDDiff: Semantic Differencing for Class Dia-
grams. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 230–254. Springer,
Heidelberg (2011)

43. Kolovos, D.S., Paige, R.F., Polack, F.A.: Model comparison: a foundation for model
composition and model transformation testing. In: GaMMa 2006, pp. 13–20. ACM
(2006)

44. Lin, Y., Zhang, J., Gray, J.: A testing framework for model transformations. Model-
Driven Software Development, 219–236 (2005)

45. Garćıa-Domı́nguez, A., Kolovos, D.S., Rose, L.M., Paige, R.F., Medina-Bulo, I.:
EUnit: A Unit Testing Framework for Model Management Tasks. In: Whittle, J.,
Clark, T., Kühne, T. (eds.) MoDELS 2011. LNCS, vol. 6981, pp. 395–409. Springer,
Heidelberg (2011)

46. Mottu, J.M., Baudry, B., Traon, Y.L.: Model transformation testing: oracle issue.
In: ICSTW 2008, pp. 105–112. IEEE (2008)

47. Ramos, R., Barais, O., Jézéquel, J.-M.: Matching Model-Snippets. In: Engels, G.,
Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MoDELS 2007. LNCS, vol. 4735, pp.
121–135. Springer, Heidelberg (2007)

48. Balogh, A., Bergmann, G., Csertán, G., Gönczy, L., Horváth, Á., Majzik, I., Patar-
icza, A., Polgár, B., Ráth, I., Varró, D., Varró, G.: Workflow-Driven Tool Integra-
tion Using Model Transformations. In: Engels, G., Lewerentz, C., Schäfer, W.,
Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 224–248.
Springer, Heidelberg (2010)

49. Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W.,
Schönböck, J., Schwinger, W.: Automated verification of model transformations
based on visual contracts. Autom. Softw. Eng. (accepted for publication) (2012)

50. Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL contracts for the verification
of model transformations. ECEASST 24 (2009)

51. Kolovos, D., Paige, R., Rose, L., Polack, F.: Unit testing model management op-
erations. In: ICSTW 2008, pp. 97–104. IEEE (2008)

Formal Specification and Testing of Model Transformations 437

52. Giner, P., Pelechano, V.: Test-Driven Development of Model Transformations. In:
Schürr, A., Selic, B. (eds.) MoDELS 2009. LNCS, vol. 5795, pp. 748–752. Springer,
Heidelberg (2009)

53. Gogolla, M., Vallecillo, A.: Tractable Model Transformation Testing. In: France,
R.B., Kuester, J.M., Bordbar, B., Paige, R.F. (eds.) ECMFA 2011. LNCS,
vol. 6698, pp. 221–235. Springer, Heidelberg (2011)

54. Heim, M.: Exploring Indiana Highways: Trip Trivia. Exploring America’s Highway.
Travel Organization Network (2007),
http://en.wikipedia.org/wiki/Duck_test

55. Steel, J., Jézéquel, J.M.: On model typing. Software and Systems Modeling 6(4),
401–413 (2007)

http://en.wikipedia.org/wiki/Duck_test

Author Index

Alhaj, Mohammad 219
Andova, Suzana 21

Becker, Basil 137
Becker, Steffen 263
Braberman, Victor 192
Brosch, Petra 336
Burgueño, Loli 399

Cabot, Jordi 58
Cortellessa, Vittorio 290

de Caso, Guido 192
Di Marco, Antinisca 290
Di Ruscio, Davide 91

Engelen, Luc J.P. 21
Eramo, Romina 91

Garbervetsky, Diego 192
Giese, Holger 137
Gogolla, Martin 58, 399

Hamann, Lars 399
Hildebrandt, Stephan 137

Kappel, Gerti 336

Lambers, Leen 137
Langer, Philip 336

Neumann, Stefan 137

Petriu, Dorina C. 219
Pierantonio, Alfonso 91

Seidl, Martina 336
Selic, Bran 1

Tawhid, Rasha 219
Trubiani, Catia 290

Uchitel, Sebastian 192

Vallecillo, Antonio 399
van den Brand, Mark G.J. 21
Verhoeff, Tom 21
Vogel, Thomas 137

Wätzoldt, Sebastian 137
Wieland, Konrad 336
Wimmer, Manuel 336, 399

	Title
	Preface
	Table of Contents
	The Less Well Known UML
	Introduction
	The Progressive Formalization of UML
	UML “versus” Domain-Specific Modeling Languages
	The Structure of UML 2
	The Specification of UML Semantics
	The Dynamic (Run-Time) Semantics of UML
	Advanced Structure Modeling in UML 2
	Collaborations and Collaboration Uses
	Structured Classes and Components

	Summary
	References

	MDE Basics with a DSL Focus
	Introduction
	From Low Level to High Level Programming Languages
	From Informal to Formal Modeling
	From UML to MOF
	Outline of Tutorial

	Domain Specific Languages
	Forms of Domain Specific Languages
	Effectiveness of Domain Specific Languages
	Identification of Domain Concepts
	Examples of Domain Specific Languages
	Simple Language of Communicating Objects

	Defining the Structure of a Domain Specific Language
	Abstract Syntax
	Metamodeling

	Semantics
	Static Semantics
	Dynamic Semantics

	Concrete Syntax
	(E)BNF
	SDF
	ANTLR, Xtext and EMFtext

	Outlook
	Development and Usage of SLCO
	How to Get Started
	Future Developments

	References

	Object Constraint Language (OCL): A Definitive Guide
	Introduction
	Motivation
	OCL in a Nutshell
	Invariants
	Initialization Expressions
	Derived Elements
	Query Operations
	Operation Contracts

	Language Description
	OCL Types
	OCL Values
	OCL Collection Properties
	OCL null Value
	Navigation in OCL
	Logic-Related Operations in OCL
	OCL Collection Operations
	OCL Collection Operation iterate

	Tool Support
	OCL Parsers and IDEs
	UML Tools with OCL Support
	Verification and Validation Tools for OCL
	Code Generation from OCL Expressions

	Research Agenda for OCL
	Modularization and Extensibility
	Language Improvements
	Efficient Reasoning on OCL Expressions
	Establishing an OCL Community

	Conclusions
	References

	Model Transformations
	Introduction
	Model Driven Engineering
	Model Transformations
	Classification
	Languages

	Application Scenario 1: Change Propagation with JTL
	Motivating Scenario
	Requirements for Bidirectionality and Change Propagation
	The Janus Transformation Language
	JTL in Practice

	Application Scenario 2: Metamodel/Model Coupled Evolution
	Metamodel Differences
	Formalizing Metamodel Differences
	Transformational Adaptation of Models

	Conclusions
	References

	Graph Transformations for MDE, Adaptation, and Models at Runtime
	Introduction
	Graph Transformations
	Languages and Execution
	Type and Instance Graphs
	Story Pattern
	Triple Graph Grammars
	Runtime Model Framework

	Analysis
	Static Conflict Detection
	Invariant Checking
	Model Checking

	Discussion
	Conclusion
	References

	Abstractions for Validation in Action
	Introduction
	Verification
	Validation
	Abstraction
	Abstractions for API Implementation Behaviour

	Background
	EPA Construction

	Developing with EPAs
	Understanding Code with EPAs
	Implementing and Debugging with EPAs
	Refining the EPA States
	Refining the EPA Transitions

	Validation Guidelines
	Closing Remarks
	References

	Software Performance Modeling
	Introduction
	Source, Intermediate and Target Models
	Bridging the Gap between Smodels and Pmodels
	MARTE Performance Annotations
	Source Model: UML+MARTE
	Target Performance Model: LQN
	Intermediate Model: CSM

	PUMA Transformation Chain
	Transformation from UML+MARTE to CSM
	Transformation from CSM to LQN

	Extension of PUMA to Service-Oriented Architecture(SOA)
	PUMA4SOA Transformation Chain
	Platform Independent Model: Case Study
	PC Feature Model
	Aspect Platform Model for Service Invocation
	From Annotated UML to CSM
	From CSM to LQN
	Performance Results

	Extension of PUMA to Software Product Lines (SPL)
	Domain Engineering Process
	Model Transformation Approach

	Conclusions
	References

	Model Transformations in Non-functional Analysis
	Motivation
	Process Overview
	Input Models
	Component-Based Quality Analyses
	Stochastic Expression Language
	Completions

	Analyses Models
	Transformations
	PCM2SimuCom
	ProtoCom
	PCM2LQNs
	PCM2QPNs
	PCM2DTMCs

	Model-Driven Completions
	Model-Driven Integration
	Reverse Engineering of Models
	Architecture Trade-Offs
	Case Studies
	Empirical Evaluation
	Industrial Case Studies

	Conclusions and Further Reading
	References

	Software Performance Antipatterns: Modeling and Analysis
	Introduction
	Related Work
	Antipattern-Based Approaches
	Rule-Based Approaches
	Design Space Exploration Approaches
	Metaheuristic Approaches

	Representation of Performance Antipatterns
	Graphical Representation of Performance Antipatterns
	Logic-Based Representation of Performance Antipatterns

	Detection and Solution of Performance Antipatterns
	Electronic Commerce System
	Detecting Antipatterns
	Solving Antipatterns
	A Step Ahead in the Antipatterns Solution

	Plugging Antipatterns in a Model-Driven Framework
	Model-Driven Representation of Antipatterns
	Model-Driven Detection and Solution of Antipatterns
	Afterthoughts

	Discussion and Conclusions
	Summary of Contributions
	Open Issues and Future Work

	References

	An Introduction to Model Versioning
	Introduction
	Foundations of Versioning
	Fundamental Design Dimensions for Versioning Systems
	Consequences of Design Decisions

	Five Steps towards Model Versioning
	Model-Driven Engineering
	Model Transformation
	Model Differencing
	Conflicts in Versioning
	Merging

	State-of-the-art Model Versioning Systems
	Features of Model Versioning Approaches
	Evaluation Results
	Summary

	An Introduction to AMOR
	Running Example
	AMOR at a Glance
	Operation Detection
	Model Matching.
	Atomic Operation Detection.
	Composite Operation Detection.

	Conflict Detection
	Merging
	Conflict Resolution

	Open Challenges
	References

	Formal Specification and Testing of Model Transformations
	Introduction
	Context
	Models and Metamodels
	Model Transformations

	Related Work
	Categories of Model Transformation Properties
	Specification and Testing Approaches for Model Transformations

	Tracts for Model Transformations
	Model Transformation Contracts
	Generating Test Input Models

	Analysis
	Model Transformation Typing Using Tracts
	Working with Tract Types
	Tool Support

	Further Application Examples
	Families2Person
	StateMachineTo LookUp Tables

	Conclusion
	References

	Author Index

