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Abstract In this note we initiate the probabilistic study of the critical points of
polynomials of large degree with a given distribution of roots. Namely, let f be a
polynomial of degree n whose zeros are chosen IID from a probability measure �

on C. We conjecture that the zero set of f 0 always converges in distribution to � as
n ! 1. We prove this for measures with finite one-dimensional energy. When �

is uniform on the unit circle this condition fails. In this special case the zero set of
f 0 converges in distribution to that of the IID Gaussian random power series, a well
known determinantal point process.

Keywords Gauss-Lucas theorem • Gaussian series • Critical points • Random
polynomials

1 Introduction

Since Gauss, there has been considerable interest in the location of the critical points
(zeros of the derivative) of polynomials whose zeros were known – Gauss noted that
these critical points were points of equilibrium of the electrical field whose charges
were placed at the zeros of the polynomial, and this immediately leads to the proof
of the well-known Gauss-Lucas Theorem, which states that the critical points of a
polynomial f lie in the convex hull of the zeros of f (see, e.g. [18, Theorem 6.1]).
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There are too many refinements of this result to state. A partial list (of which several
have precisely the same title!) is as follows: [1,3,5–9,12,14,16,17,19,20,22–26]).
Among these, we mention two extensions that are easy to state.

• Jensen’s theorem: if p.z/ has real coefficients, then the non-real critical points of
p lie in the union of the “Jensen Disks”, where a Jensen disk J is a disk one of
whose diameters is the segment joining a pair of conjugate (non-real) roots of p:

• Marden’s theorem: Suppose the zeroes z1; z2; and z3 of a third-degree polynomial
p.z/ are non-collinear. There is a unique ellipse inscribed in the triangle with
vertices z1; z2; z3 and tangent to the sides at their midpoints: the Steiner inellipse.
The foci of that ellipse are the zeroes of the derivative p0.z/:

There has not been any probabilistic study of critical points (despite the obvious
statistical physics connection) from this viewpoint. There has been a very extensive
study of random polynomials (some of it quoted further down in this paper), but
generally this has meant some distribution on the coefficients of the polynomial,
and not its roots [4]. Let us now define our problem:

Let � be a probability measure on the complex numbers. Let fXn W n � 0g
be random variables on a probability space .˝;F;P/ that are IID with common
distribution �. Let

fn.z/ WD
nY

j D1

.z � Xj /

be the random polynomial whose roots are X1; : : : ; Xn. For any polynomial f we
let Z.f / denote the empirical distribution of the roots of f , for example, Z.fn/ D
1
n

Pn
j D1 ıXj .

The question we address in this paper is:

Question 1.1. When are the zeros of f 0
n stochastically similar to the zeros of fn?

Some examples show why we expect this.

Example 1.1. Suppose � concentrates on real numbers. Then fn has all real zeros
and the zeros of f 0

n interlace the zeros of fn. It is immediate from this that the
empirical distribution of the zeros of f 0

n converges to � as n ! 1. The same is
true when � is concentrated on any affine line in the complex plane: interlacing
holds and implies convergence of the zeros of f 0

n to �.1 Once the support of � is not
contained in an affine subspace, however, the best we can say geometrically about
the roots of f 0

n is that they are contained in the convex hull of the roots of fn; this is
the Gauss-Lucas Theorem.

1Even in this case there are interesting probabilistic questions concerning the distribution of critical
points of fn close to the edge of the support of �; see [15]
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Fig. 1 Critical points of a polynomial whose roots are uniformly sampled inside the unit disk

Example 1.2. Suppose the measure � is atomic. If �.a/ D p > 0 then the
multiplicity of a as a zero of fn is n.p Co.1//. The mulitplicity of a as a zero of f 0

n

is one less than the multplicity as a zero of fn, hence also n.p C o.1//. This is true
for each of the countably many atoms, whence it follows again that the empirical
distribution of the zeros of f 0

n converges to �.

Atomic measures are weakly dense in the space of all measures. Sufficient
continuity of the roots of f 0 with respect to the roots of f would therefore imply
that the zeros of f 0

n always converge in distribution to � as n ! 1. In fact we
conjecture this to be true.

Example 1.3. Our first experimental example has the roots of f uniformly
distributed in the unit disk. In the figure, we sample 300 points from the uniform
distribution in the disk, and plot the critical points (see Fig. 1). The reader may or
may not be convinced that the critical points are uniformly distributed.

Example 1.4. Our second example takes polynomials with roots uniformly
distributed on the unit circle, and computes the critical points. In Fig. 2 we do
this with a sample of size 300. One sees that the convergence is rather quick.

Remark 1. The figures were produced with Mathematica. However, the reader
wishing to try this at home should increase precision because Mathematica
(and Maple, Matlab and R) do not use the best method of computing zeros of
polynomials.
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Fig. 2 Critical points of polynomial whose roots are uniformly sampled on the unit circle

Conjecture 1. For any �, as n ! 1, Z.f 0/ converges weakly to �.

There may indeed be such a continuity argument, though the following coun-
terexample shows that one would at least need to rule out some exceptional sets of
low probability. Suppose that f .z/ D zn � 1. As n ! 1, the distribution of the
roots of f converge weakly to the uniform distribution on the unit circle. The roots
of f 0

n however are all concentrated at the origin. If one moves one of the n roots of
fn along the unit circle, until it meets the next root, a distance of order 1=n, then
one root of f 0

n zooms from the origin out to the unit circle. This shows that small
perturbations in the roots of f can lead to large perturbations in the roots of f 0. It
seems possible, though, that this is only true for a “small” set of “bad” functions f .

1.1 A Little History

This circle of questions was first raised in discussions between one of us (IR) and the
late Oded Schramm, when IR was visiting at Microsoft Research for the auspicious
week of 9/11/2001. Schramm and IR had some ideas on how to approach the
questions, but were somewhat stuck. There was always an intent to return to these
questions, but Schramm’s passing in September 2008 threw the plans into chaos.
We (RP and IR) hope we can do justice to Oded’s memory.
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These questions are reminscent of questions of the kind often raised by Herb
Wilf, that sound simple but are not. This work was first presented at a conference in
Herb’s honor and we hope it serves as a fitting tribute to Herb as well.

2 Results and Notations

Our goal in this paper is to prove cases of Conjecture 1.

Definition 2. We definite the p-energy of � to be

Ep.�/ WD
�Z Z

1

jz � wjp d�.z/ d�.w/

�1=p

:

Since in the sequel we will only be using the 1-energy, we will write E for E1:

By Fubini’s Theorem, when � has finite 1-energy, the function V� defined by

V�.z/ WD
Z

1

z � w
d�.w/

is well defined and in L1.�/.

Remark 2. The potential function V� is sometimes called the Cauchy transform of
the measure �. Commonly it is implied that � is supported on R or on the boundary
of a region over which z varies, but this need not be the case and is not the case for
us (except in Theorem 2).

Theorem 1. Suppose � has finite 1-energy and that

�
˚
z W V�.z/ D 0

� D 0 : (1)

Then Z.f 0
n/ converges in distribution to � as n ! 1.

A natural set of examples of � with finite 1-energy is provided by the following
observation:

Observation 1. Suppose ˝ � C has Hausdorff dimension greater than one, and �

is in the measure class of the Hausdorff measure on ˝: Then � has finite 1-energy.

Proof. This is essentially the content of [11][Theorem 4.13(b)]. ut
In particular, if � is uniform in an open subset (with compact closure) of C, its

1-energy is finite.
A natural special case to which Theorem 1 does not apply is when � is uniform

on the unit circle; here the 1-energy is just barely infinite.

Theorem 2. If � is uniform on the unit circle then Z.fn/ converges to the unit circle
in probability.
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This result is somewhat weak because we do not prove Z.fn/ has a limit in
distribution, only that all subsequential limits are supported on the unit circle. By the
Gauss-Lucas Theorem, all roots of fn have modulus less than 1, so the convergence
to � is from the inside. Weak convergence to � implies that only o.n/ points can
be at distance �.1/ inside the cirle; the number of such points turns out to be �.1/.
Indeed quite a bit can be said about the small outliers. For 0 < � < 1, define
B� WD fz W jzj � �g. The following result, which implies Theorem 2, is based on a
very pretty result of Peres and Virag [21, Theorems 1 and 2] which we will quote in
due course.

Theorem 3. For any � 2 .0; 1/, as n ! 1, the set Z.gn/\B� of zeros of gn on B�

converges in distribution to a determinantal point process on B� with the so-called
Bergmann kernel ��1.1 � zi zj /2. The number N.�/ of zeros is distributed as the
sum of independent Bernoullis with means �2k, 1 � k < 1.

2.1 Distance Functions on the Space of Probability Measures

If � and � are probability measures on a separable metric space S , then the
Prohorov2 distance j� � �jP is defined to be the least � such that for every set
A, �.A/ � �.A�/ C � and �.A/ � �.A�/ C �. Here, A� is the set of all points
within distance � of some point of A. The Prohorov metric metrizes convergence in
distribution. We view collections of points in C (e.g., the zeros of fn) as probability
measures on C, therefore the Prohorov metric serves to metrize convergence of zero
sets. The space of probability measures on S , denoted P.S/, is itself a separable
metric space, therefore one can define the Prohorov metric on P.S/, and this
metrizes convergence of laws of random zero sets.

The Ky Fan metric on random variables on a fixed probability space will be of
some use as well. Defined by K.X; Y / D inff� W P.d.X; Y / > �/ < �g, this
metrizes convergence in probability. The two metrics are related (this is Strassen’s
Theorem):

j� � �jP D inffK.X; Y / W X � �; Y � �g : (2)

A good reference for the facts mentioned above is available on line [13]. We
will make use of Rouché’s Theorem. There are a number of formulations, of
which the most elementary is probably the following statement proved as Theorem
10.10 in [2].

Theorem 4 (Rouché). If f and g are analytic on a topological disk, B , and jgj <

jf j on @B , then f and f C g have the same number of zeros on B .

2Also known as the Prokhorov and the Lévy-Pro(k)horov distance
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3 Proof of Theorem 1

We begin by stating some lemmas. The first is nearly a triviality.

Lemma 1. Suppose � has finite 1-energy. Then

(i)

t � P
�

jX0 � X1j � 1

t

�
! 0 :

(ii) for any C > 0,

P

�
min

1�j �n
jXj � XnC1j � C

n

�
! 0 I

Proof. For part .i/ observe that lim sup t � P.jX0 � X1j � 1=t/ � 2 lim sup 2j �
P
�jX0 � X1j � 2�j

�
as t goes over reals and j goes over integers. We then have

1 > E.�/

D E
1

jX0 � X1j

� 1

2
E

X

j 2Z
2j 1jX0�X1j�2�j

D 1

2

X

j

2j
P
�jX0 � X1j � 2�j

�

and from the finiteness of the last sum it follows that the summand goes to zero.
Part .ii/ follows from part .i/ upon observing, by symmetry, that

P

�
min

1�j �n
jXj � XnC1j � C

n

�
� nP

�
jX0 � X1j � C

n

�
: ut

Define the nth empirical potential function V�;n by

V�;n.z/ WD 1

n

nX

j D1

1

z � Xj

which is also the integral in w of 1=.z � w/ against the measure Z.fn/. Our next
lemma bounds V 0

�;n.z/ on the disk B WD BC=n.XnC1/.
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Lemma 2. For all � > 0,

P

�
sup
z2B

jV 0
�;n.z/j � �n

�
! 0

as n ! 1.

Proof. Let Gn denote the event that min1�j �n jXj � XnC1j > 2C=n. Let Sn WD
supz2B jV 0

�;n.z/j. We will show that

ESn1Gn D o.n/ (3)

as n ! 1. By Markov’s inequality, this implies that P.Sn1Gn � �n/ ! 0 for all
� > 0 as n ! 1. By part .ii/ of Lemma 1 we know that P.Gn/ ! 1, which then
establishes that P.Sn � �n/ ! 0, proving the lemma.

In order to show (3) we begin with

jV 0
�;n.z/j D

ˇ̌
ˇ̌
ˇ̌
1

n

nX

j D1

�1

.z � Xj /2

ˇ̌
ˇ̌
ˇ̌ � 1

n

nX

j D1

1

jz � Xj j2 :

Therefore,

Sn1Gn � 1

n

nX

j D1

1

.jXnC1 � Xj j � C=n/2
1Gn � 1

n

nX

j D1

4

jXnC1 � Xj j2 1Gn ; (4)

where we have used the triangle inequality, thus:

jz � Xj j D j.z � XnC1/ C .xnC1 � Xj /j � jXnC1 � Xj j � jz � XnC1j :

Since we are in B , we know that jz � XnC1j � C=n; and since we are in Gn; we
know that C=n < jXnC1 � Xj j=2:

Because Sn is the supremum of an average of n summands and the summands are
exchangeable, the expectation of Sn1Gn is bounded from above by the expectation
of one summand. Referring to (4), and using the fact that Gn is contained in the
event that jXnC1 � X1j > 2C=n, this gives

ESn1Gn � E
4

jXnC1 � X1j2 1jXnC1�X1j�2C=n :

A standard inequality for nonnegative variables (integrate by parts) is

EW 21W �t �
Z t

0

2sP.W � s/ ds :
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When applied to W D jXnC1 � X1j�1 and t D n=.2C /, this yields

ESn1Gn �
Z n=.2C /

0

2s P

�
1

jX0 � X1j > s

�
ds :

The integrand goes to zero as n ! 1 by part .i/ of Lemma 1. It follows that the
integral is o.n/, proving the lemma. ut

Define the lower modulus of V to distance C=n by

V C
n .z/ WD inf

wWjw�zj�C=n

ˇ̌
V�;n.w/

ˇ̌
:

This depends on the argument � as well as C and n but we omit this from the
notation.

Lemma 3. Assume � has finite 1-energy. Then as n ! 1, the random variable
V C

n .XnC1/ converges in probability, and hence in distribution, to jV�.XnC1/j.
In the sequel we will need the Glivenko-Cantelli Theorem [10, Theorem 1.7.4].

Let X1; : : : ; Xn; : : : be independent, identitically distributed random variables in
R with common cumulative distribution function F . The empirical distribution
function Fn for X1; : : : ; Xn is defined by

Fn.x/ D 1

n

nX

iD1

I.�1;x�.Xi /;

where IC is the indicator function of the set C: For every fixed x, Fn.x/ is a
sequence of random variables, which converges to F.x/ almost surely by the
strong law of large numbers. Glivenko-Cantelli Theorem strengthen this by proving
uniform convergence of Fn to F:

Theorem 5 (Glivenko-Cantelli).

kFn � F k1 D sup
x2R

jFn.x/ � F.x/j �! 0 almost surely.

The following Corollary is immediate:

Corollary 1. Let f be a bounded continuous function on R: Then

lim
n!1

Z

R

fdFn D
Z

R

fdF; almost surely:

Another immediate Corollary is:

Corollary 2. With notation as in the statement of Theorem 5, the Prohorov distance
between Fn and F converges to zero almost surely.
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Proof of Lemma 3. It is equivalent to show that V C
n � jV�.XnC1/j ! 0 in

probability, for which it sufficient to show

sup
u2B

ˇ̌
V�;n.u/ � V�.XnC1/

ˇ̌ ! 0 (5)

in probability. This will be shown by proving the following two statements:

sup
u2B

ˇ̌
V�;n.u/ � V�;n.XnC1/

ˇ̌ ! 0 in probability I (6)

ˇ̌
V�;n.XnC1/ � V�.XnC1/

ˇ̌ ! 0 in probability : (7)

The left-hand side of (6) is bounded above by .C=n/ supu2B jV 0
�;n.u/j. By Lemma 2,

for any � > 0, the probability of this exceeding C� goes to zero as n ! 1. This
establishes (6).

For (7) we observe, using Dominated Convergence, that under the finite 1-energy
condition,

EK.�/ WD
Z Z

1

jz � wj1jz�wj�1�K d�.z/ d�.w/ ! 0

as K ! 1. Define 	K;z by

	K;z.w/ D 1

z � w

jz � wj
maxfjz � wj; 1=Kg

in other words, it agrees with 1=.z�w/ except that we multiply by a nonegative real
so as to truncate the magnitude at K . We observe for later use that

ˇ̌
ˇ̌	K;z.w/ � 1

jz � wj
ˇ̌
ˇ̌ � 1

jz � wj1jz�wj�1�K

so that

Z Z ˇ̌
ˇ̌	K;z.w/ � 1

jz � wj
ˇ̌
ˇ̌ d�.z/ d�.w/ � EK.�/ ! 0 : (8)

We now introduce the truncated potential and truncated empirical potential with
respect to 	K;z:

V K
� .z/ WD

Z
	K;z.w/ d�.w/

V K
�;n.z/ WD

Z
	K;z.w/ dZ.fn/.w/ :
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We claim that

E

ˇ̌
ˇV K

� .XnC1/ � V�.XnC1/
ˇ̌
ˇ � EK.�/ : (9)

Indeed,

V�.XnC1/ � V K
� .XnC1/ D

Z �
1

z � XnC1

� 	K;z.XnC1/

�
d�.z/

so taking an absolute value inside the integral, then integrating against the law of
XnC1 and using (8) proves (9). The empirical distribution V�;n has mean � and is
independent of XnC1, therefore the same argument proves

E

ˇ̌
ˇV K

�;n.XnC1/ � V�;n.XnC1/
ˇ̌
ˇ � EK.�/ (10)

independent of the value of n.
We now have two thirds of what we need for the triangle inequality. That is, to

show (7) we will show that the following three expressions may all be made smaller
than � with probability 1 � �.

V�;n.XnC1/ � V K
�;n.XnC1/

V K
�;n.XnC1/ � V K

� .XnC1/

V K
� .XnC1/ � V�.XnC1/

Choosing K large enough so that EK.�/ < �2, this follows for the third of these
follows by (9) and for the first of these by (10). Fixing this value of K , we turn
to the middle expression. The function 	K;z is bounded and continuous. By the
Corollary 1 to the Glivenko-Cantelli Theorem 5, the empirical law Z.fn/ converges
weakly to �, meaning that the integral of any bounded continuous function 	 against
Z.fn/ converges in probability to the integral of 	 against �. Setting 	 WD 	K;z

and z WD XnC1 proves that V K
�;n.XnC1/ � V K

� .XnC1/ goes to zero in probability,
establishing the middle statement (it is in fact true conditionally on XnC1) and
concluding the proof. ut
Proof of Theorem 1. Suppose that V C

n .XnC1/ > 1=C . Then for all w with jw �
XnC1j � C=n, we have

f 0
n.w/ D

nX

j D1

1

w � Xj

D nV�;n.w/ � n

C
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and hence

ˇ̌
f 0

n.w/
ˇ̌ D n

ˇ̌
V�;n.w/

ˇ̌ � nV C
n .XnC1/ � n

C
:

To apply Rouché’s Theorem to the functions 1=f 0
n and z � XnC1 on the disk B WD

BC=n.XnC1/ we note that j1=f 0
n j < C=n D jz � XnC1j on @B and hence that

the sum has precisely one zero in B , call it anC1. Taking reciprocals we see that
anC1 is also the unique value in z 2 B for which f 0

n.z/ D �1=.z � XnC1/. But
f 0

n.z/ C 1=.z � XnC1/ D f 0
nC1.z/, whence f 0

nC1 has the unique zero anC1 on B .
Now fix any ı > 0. Using the hypothesis that �fz W V�.z/ D 0g D 0, we pick a

C > 0 such that P.jV�.XnC1/j � 2=C / � ı=2. By Lemma 3, there is an n0 such
that for all n � n0,

P

�
V C .XnC1/ � 1

C

�
� ı :

It follows that the probability that f 0
nC1 has a unique zero anC1 in B is at least 1 � ı

for n � n0. By symmetry, we see that for each j , the probability is also at least
1 � ı that f 0

nC1 has a unique zero, call it aj , in the ball of radius C=n centered at
Xj ; equivalently, the expected number of j � n C 1 for which there is not a unique
zero of f 0

nC1 in BC=n.Xj / is at most ın for n � n0.
Define xj to equal aj if f 0

nC1 has a unique root in BC=n.Xj / and the minimum
distance from Xj to any Xi with i � n C 1 and i ¤ j is at least 2C=n. By
convention, we define xj to be the symbol 
 if either of these conditions fails.
The values xj other than 
 are distinct roots of f 0

nC1 and each such value is
within distance C=n of a different root of fnC1. Using part .ii/ of Lemma 1 we
see that the expected number of j for which xj D 
 is o.n/. It follows that
P.jZ.fnC1/ � Z.f 0

nC1/jP � 2ı/ ! 0 as n ! 1. But also the Prohorov distance
between Z.fnC1/ and � converges to zero by Corollary 2. The Prohorov distance
metrizes convergence in distribution and ı > 0 was arbitrary, so the theorem is
proved. ut

4 Proof of Remaining Theorems

Let G WD P1
j D0 Yj zj denote the standard complex Gaussian power series where

fYj .!/g are IID standard complex normals. The results we require from [21] are as
follows.

Proposition 1 ([21]). The set of zeros of G in the unit disk is a determinantal point
process with joint intensities

p.z1; : : : ; zn/ D ��n det

�
1

.1 � zi zj /2

�
:
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The number N.�/ of zeros of G on B� is distributed as the sum of independent
Bernoullis with means �2k , 1 � k < 1.

To use these results we broaden them to random series whose coefficients are
nearly IID Gaussian.

Lemma 4. Let fgn WD P1
rD0 anr zrg be a sequence of power series. Suppose

(i) For each k, the k-tuple .an;1; : : : ; an;k/ converges weakly as n ! 1 to a
k-tuple of IID standard complex normals;

(ii) Ejanr j � 1 for all n and r .

Then on each disk B�, the set Z.gi / \ B� converges weakly to Z.G/ \ �.

Proof. Throughout the proof we fix � 2 .0; 1/ and denote B WD B�. Suppose an
analytic function h has no zeros on @B . Denote by jjg � hjjB the sup norm on
functions restricted to B . Note that if hn ! h uniformly on B then Z.hn/ \ B !
Z.h/ \ B in the weak topology on probability measures on B , provided that h has
no zero on @B . We apply this with h D G WD P1

j D0 Yj zj where fYj .!/g are IID
standard complex normals. For almost every !, h.!/ has no zeros on @B . Hence
given � > 0 there is almost surely a ı.!/ > 0 such that jjg � GjjB < ı implies
jZ.g/ � Z.G/jP < �. Pick ı0.�/ small enough so that P.ı.!/ � ı0/ < �=3; thus
jjg �GjjB < ı0 implies jZ.g/ �Z.G/j < � for all G outside a set of measure at most
�=3.

By hypothesis .ii/,

E

ˇ̌
ˇ̌
ˇ

1X

rDkC1

anr zr

ˇ̌
ˇ̌
ˇ � �kC1

1 � �
:

Thus, given � > 0, once k is large enough so that �kC1=.1 � �/ < �ı0.�/=6, we
see that

P

 ˇ̌
ˇ̌
ˇ

1X

rDkC1

anr zr

ˇ̌
ˇ̌
ˇ � ı0.�/

2

!
� �

3
:

For such a k.�/ also jP1
rDkC1 Yrzr j � �=3. By hypothesis .i/, given � > 0 and

the corresponding ı.�/ and k.�/, we may choose n0 such that n � n0 implies
that the law of .an1; : : : ; ank/ is within minf�=3; ı0.�/=.2k/g of the product of k

IID standard complex normals in the Prohorov metric. By the equivalence of the
Prohorov metric to the minimal Ky Fan metric, there is a pair of random variables
Qg and Qh such that Qg � gn and Qh � G and, except on a set of of measure �=3, each of
the first k coefficients of Qg is within ı0=.2k/ of the corresponding coefficient of G.
By the choice of k.�/, we then have

P.jj Qg � QhjjB � ı0/ � 2�

3
:
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By the choice of ı0, this implies that

P.jZ. Qg/ � Z. Qh/jP � �/ < � :

Because Qg � gn and Qh � G, we see that the law of Z.gn/ \ B and the law of
Z.G/ \ B are within � in the Prohorov metric on laws on measures. Because � > 0

was arbitrary, we see that the law of Z.gn/ \ B converges to the law of Z.G/ \ B .
ut

Proof of Theorem 3. Let � < 1 be fixed for the duration of this argument and denote
B WD B�. Let

gn.z/ WD f 0
n.z/

f .z/
D

nX

j D1

1

z � Xj

:

Because jXj j D 1, the rational function 1=.z�Xj / D �X�1
j =.1�X�1

j z/ is analytic
on the open unit disk and represented there by the power series �P1

rD0 X�r�1
j zr . It

follows that �gn=
p

n is analytic on the open unit disk and represented there by the
power series �gn.z/=

p
n D P1

rD0 anr zr where

anr D n�1=2

nX

j D1

X�r�1
j :

The function �gn=
p

n has the same zeros on B as does f 0
n , the normalization by

�1=
p

n being inserted as a convenience for what is about to come.
We will apply Lemma 4 to the sequence fgng. The coefficients anj are normalized

power sums of the variables fXj g. For each r � 0 and each j , the variable X�r�1
j

is uniformly distributed on the unit circle. It follows that Eanr D 0 and that

Eanranr D n�1
P

ij X�r�1
i Xj

�r�1 D n�1
P

ij ıij D 1. In particular, Ejanr j �
.Ejanr j2/1=2 D 1, satisfying the second hypothesis of Lemma 4. For the first
hypothesis, fix k, let �j D Arg.Xj /, and let v.j / denote the .2k/-vector .cos.�j /,
� sin.�j /, cos.2�j /, � sin.2�j /, : : :, cos.k�j /, � sin.k�j //; in other words, v.j / is
the complex k-vector .X�1

j ; X�2
j ; : : : ; X�k

j / viewed as a real .2k/-vector. For each

1 � s; t � 2k we haveEv.j /
s v.j /

t D .1=2/ıij . Also the vectors fv.j /g are independent
as j varies. It follows from the multivariate central limit theorem (see, e.g., [10,
Theorem 2.9.6]) that u.n/ WD n�1=2

Pn
j D1 v.j / converges to 1=

p
2 times a standard

.2k/-variate normal. For 1 � r � k, the coefficient anr is equal to u.n/
2r�1 C iu.n/

2r .
Thus fanr W 1 � r � kg converges in distribution as n ! 1 to a k-tuple of IID
standard complex normals. The hypotheses of Lemma 4 being verified, the theorem
now follows from Proposition 1. ut
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