Set Partitions with No m-Nesting

Marni Mishna and Lily Yen

Abstract A partition of {1, ..., n} has an m-nesting if it contains at least m disjoint
blocks, and a subset of 2m points i} < ip < *++ < iy < ju < Jjm=1 < -+ <
J1, such that i; and j; are in the same block for all 1 < [ < m, but no other
pairs are in the same block. In this note, we use generating trees to construct the
class of partitions with no m-nesting, determine functional equations satisfied by
the associated generating functions, and generate enumerative data for m > 4.

Keywords Set partition ¢ Nesting ¢ Pattern avoidance ¢ Generating tree
Algebraic kernel method e Coefficient extraction * Enumeration

1 Introduction

Graphic representations of set partitions can contain various patterns and shapes.
One particular pattern, known as an m-nesting, resembles a rainbow, for example. In
this work we address the enumeration of set partitions that avoid m-nestings. These
results are in the context of recent studies of other combinatorial objects that avoid
similar or related patterns. We are particularly motivated by the study of protein
folding [7] where such patterns arise in the molecular bonds and their presence has
strong consequences on the geometry of the protein.

Our strategy parallels a recent generating tree approach used by Bousquet-Mélou
to enumerate a family of pattern avoiding permutation classes [3]. A novel feature
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of this approach is that the length of the label in the generating tree is related to
the length of the pattern avoided. Thus, the resulting expressions for generating
functions are generic, and expressed in terms of m. The generating tree permits
direct access to new enumerative data for set partitions avoiding m-nestings for
some m > 4, and we present the equations as a starting point for further analysis.

1.1 Notation and Definitions

A set partition 7 of [n] := {1,2,3,...,n}, denoted by = € [I1,, is a collection of
nonempty and mutually disjoint subsets of [r], called blocks, whose union is [n].
The number of set partitions of [r] into k blocks is denoted S(n, k), and is known
as a Stirling number of the second kind. The total number of partitions of [r] is
the Bell number B, = ), S(n,k). We represent 7 by a graph on the vertex set
[n] whose edge set consists of arcs connecting elements of each block in numerical
order. Such an edge set is called the standard representation of the partition m, as
seen in [6]. For example, the standard representation of

112568|37/4

is given by the following graph with edge set {(2, 5), (5, 6), (6,8), (3,7)}:

With this representation, we can define two classes of patterns: crossings and
nestings. An m-crossing of 7 is a collection of m edges (i1, j1), (i2, j2), --+» (ms jm)
such that i} < ip < -+ < @, < j1 < Jo < +++ < jp. Using the standard
representation, an m-crossing is drawn as follows:

i i im J 2 Jm

Similarly, we define an m-nesting of m to be a collection of m edges (i1, ji),

(i2, j2)s --» (im, jm) suchthati| <ip < -+ <ipy < jm < jm—1 < --- < ji. Thisis
drawn:
//f\x\
i 153 o im jn1 e j2 J1

A partition is m-noncrossing if it contains no m-crossing, and it is said to be
m-nonnesting if it contains no m-nesting.
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1.2 Context and Plan

Chen, Deng, Du, Stanley and Yan in [6], and independently Krattenthaler in [8],
gave a non-trivial bijective proof that m-noncrossing partitions of [n] are equinumer-
ous with m-nonnesting partitions of [r], for all values of m and n. A straightforward
bijection with Dyck paths illustrates that 2-noncrossing partitions (or simply,
noncrossing partitions) are counted by Catalan numbers. Bousquet-Mélou and Xin
in [4] showed that the sequence counting 3-noncrossing partitions is P-recursive,
that is, satisfies a linear recurrence relation with polynomial coefficients. Indeed,
they determined an explicit recursion, complete with solution and asymptotic
analysis. They further conjectured that m-noncrossing partitions are not P-recursive
for all m > 4. Certainly, the limit as m goes to infinity is not D-finite, since Bell
numbers are well known not to be P-recursive because of the composed exponentials
in the generating function B(x) = e* ~! (see Example 19 of [2]). If it turns out that
m-noncrossing partitions do have a D-finite generating function, then we have a
very interesting refinement of a non-D-finite class.

Since m-noncrossing partitions of [#] and m-nonnesting partitions of [n] are
equinumerous, we study m-nonnesting partitions in this paper and show how to
generate the class using generating trees, and how to determine a recursion satisfied
by the counting sequence for m-nonnesting partitions.

Our approach is an adaptation of Bousquet-Mélou’s recent work on the
enumeration of permutations with no long monotone subsequence in [3]. She
combined the ideas of recursive construction for permutations via generating trees
and the algebraic kernel method to determine and solve functional equations with
multiple catalytic variables.

In Sect.2, we employ Bousquet-Mélou’s generating tree construction to find
functional equations satisfied by the generating functions for set partitions with no
m-nesting. The resulting equations, though similar to the equations arising in [3],
have a key structural difference which resists a similar treatment of the algebraic
kernel method followed by a constant term extraction as used by Bousquet-Mélou
in [3]. However, the process does yield the result for nonnesting set partitions
counted by the Catalan numbers. We refer interested readers to [9] for the processing
of functional equations in the spirit of [3].

Using our constructions we generate new enumerative data for m > 4, discuss
the limiting factors in data generation, and assess the current state of recurrences
and explicit forms.

2 Generating Trees and Functional Equations

The generating tree construction for the class of m-nonnesting partitions is based on
a standard generating tree description of partitions, and the constraint is incorporated
using a vector labelling system. The generating tree construction has an immediate
translation to a functional equation with m-variate series.
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2.1 A Generating Tree for Set Partitions

Let 7 be a set partition. Define ne(rr) to be the maximal i such that 7 has an i-
nesting, also called the maximal nesting number of m, and let 1'1,5’”’ be the set of
partitions of [n] for n > 0 (where n = 0 means the empty partition) with ne(rr) <
m, thus (m + 1)-nonnesting. We define the union 170" = U, 1™,

Note that an arc over a fixed point is not a 2-nesting, but a 1-nesting:

. T

i J k

We next describe how to generate all set partitions via generating trees in the
fashion of [2]. First, order the blocks of a given partition, r, by the maximal element
of each block in descending order.

Example 1. The first block of 1]12568|3 7|4 is 256 8; the second block is 3 7; the
third block is singleton 4; and 1 is the last block. Using the standard representation,

?

wW— &
N —
—

I
4

Block:

[y

we number the blocks in descending order (from the right to the left) according to
the maximal element in each block (that is, the rightmost vertex of each block).

With the order of blocks thus defined, we warm up by generating all set partitions
without nesting restriction first. Figure 1 contains the generating tree for all set
partitions, in addition to the generating tree for the number of children of each node
from the tree of set partitions to indicate how enumeration can be facilitated.

1. Begin with @ as the top node of the tree. It has only one child, so the
corresponding node in the tree for the number of children is labelled 1.

2. To produce the n + 1st level of nodes, take each set partition at the nth level, and
either add n + 1 as a singleton, or join n 4 1 to block j foreach 1 < j < k if
the set partition has k blocks.

Summarizing the description above in the notation of [2], we recall that the
rewriting rule of a generating tree is denoted by:

[(s0), {(k) — (e1x)(e2k) ... (exi)}],

where sy denotes the degree of the root, and for any node labelled k, that is, with k
descendants, the label of each descendent is given by (e; ;) for 1 < j < k. Thus,
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the class of set partitions has a generating tree of labels given by [(1) : (k) —

(k + D)(k)].

2.2 A Vector Label to Track Nestings

The generating tree of set partitions generates all set partitions = graded by n, the
size of m, but it does not keep track of nesting numbers. Also note that the number
of children of 7 is one more than the number of blocks of m. Let us now address
nestings.

Fix m. In order to keep track of nesting numbers, we need to define the /abel of
7w € IT'™. To identify the position of a nesting, we consider the relative position
of the smallest vertex incident to the nesting. Thus, the rightmost j-nesting is the
set of j edges forming a j-nesting pattern such that its minimal incident vertex is
greater than, or equal to the minimal vertex incident to all the other j-nestings. If
one vertex is common to two j-nestings, we consider the second smallest incident
vertex, and so on. Roughly, our labels keep track of the number of blocks to the
right of a j-nesting that might potentially become a j-nesting based on how the
next edge is added. Any edge added that affect nestings to the left of the right most
j-nesting, will necessarily create a j + 1 nesting because it will create an arc overtop
of the rightmost j -nesting.

Definition 1. Define the label of a partition, L(w) = (a;(x),ax(xw),...,a,(xw)),
or in short, L(7) = (ay,az,...,a,) as follows. For 1 < j <m,

1+ number of blocks in =, if 7 is j-nonnesting,
a;(mw) =
’ 1+ number of blocks ending to the right of

. . . . otherwise.
the smallest vertex in the rightmost j-nesting

Example 2. To continue the example, let 7 = 1|25 6 8|3 7|4 and suppose m = 3.
Then L(1|12568|37|4) = (3,4,5) for the following reasons. The rightmost
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1-nesting is the edge with largest vertex endpoint: (6, 8). Hence, a; () = 3 because
blocks 1 and 2 end to the right of vertex 6. The rightmost 2-nesting is the set of
edges {(5,6), (3,7)} hence a, () = 4 because 3 blocks end to the right of vertex 3.
Finally, as(w) = 5 because the diagram has no 3-nesting, and is comprised of
4 blocks. Note that in this convention, the empty set partition has label (1,1, ..., 1),
since it has no nestings and no blocks.

A set partition in 7" always has a,, children. This is one more than the number
of blocks, if there is no m-nesting (and hence there is no risk that adding an edge will
create an m + 1-nesting). Otherwise, it indicates more than the number of blocks
to which you can add an edge without creating an m + 1-nesting. The label of a
set partition is sufficient to derive the label of each of its children, and this process
is described in the next proposition. Also, remark that the label is a non-decreasing
sequence, since the rightmost j-nesting either contains the rightmost j — 1 nesting
or is to the left of it.

Proposition 1 (Labels of children). Let 7 be in 1], ™ the set of set partitions on
[n] avoiding m + 1-nestings, and suppose the label of w is L(xw) = (a1, az, ..., am).
Then, the labels of the a,, set partitions of H;'_T_)l obtained by recursive construction
via the generating tree are

(ar+lLax+1,....,an+ 1) (Add n + 1 as a singleton to 1)

and
( 2, a, as,..., Am—1,0m) (Add n + 1 to block 1)
( 3, a, as,..., Am—1,0m) (Add n + 1 to block 2)
( ai, a, as,..., Am—1,0m) (Add n + 1 to blockay — 1)
(ar+1,a; +1, asz,..., Am—1,0m) (Add n + 1 to block ay)
(ay +1,a; +2, asz,..., Am—1,0m) (Add n + 1 to block a1 + 1)
(ar+la+lay+1,..., Am—1,0m) (Add n + 1 to block ay)
(a+lLa+1laz+1,....am—1 + 1, apy—1 + 1) (Add n + 1 to block an,—1)
(ar+1l,a+l,a3+1,..., am—1+ 1,am) (Add n + 1 to block a;, — 1)
Proof. By careful inspection. O

Example 3. Consider the following partition from Hé’” . The reader can refer to
its arc diagram in Example 1 which shows that it is 3-nonnesting, thus also
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4-nonnesting. The partition 1|25 6 8|3 7|4 with label (3, 4, 5) has five children and
their respective labels are:
b/d L(m)

112568|37|4|9 (4,5, 6)

1125689|37]4 (2,4,5)

112568|379]4 (3,4,5)

112568[37|49 (4,4,5)

19]2568|37|4 (4,5,5)

Example 4. As we mentioned before, 2-nonnesting set partitions are counted by
Catalan numbers. The generating tree construction given in Proposition 1 restricted
to this case is given by

(1) : (k) = (k + 1DH(2)3) ... (k)]

which is the same construction for Catalan numbers given in [2]. The generating
tree for 3-noncrossing partitions is given by

(LD):Gj)H)—>G0+1,j+D2, j)H)GB )G HE+1L,i+D)E+1,i+2)...(G0+1, ))).

2.3 A Functional Equation for the Generating Function

The simple structure of the labels in Proposition 1 permits a direct translation from
the generating tree to a functional equation.

Letus define F (uy, ua, . . ., t) to be the ordinary generating function of partitions
in 7" counted by the statistics ay, a», ..., a,, and by size,

F(”ls”Zs---sum;Z) = Z u‘;l(”)u;ﬂ”),..uz;”(”)llnl

el m

= Z Fa()u us? .. ulm,

ar,az,....dm

where Fa(t) is the size generating function for the set partitions of I7"") with the
label a = (a;,as, ..., a;). For example, when m = 2,

Fu;1) = wyus + uup’t + (u13u23 + u12u22) 2+ (u14u24 +2uus’ 4wy + u12u23) I

Proposition 1 implies
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Fuy,..., Upil) = Uiy .. Uy + tugUy Uy F Uy, U, 5 1)
ai
r ax ajs a a
+1 E Fa(t)uy’us’ .. uyr E us
ay,az....am oa=2

m aj
r ai+1 a)+1 aj—1+1 o aj+1 a
4+t E F,(t) E Z PR oS A 1 R

ap.az.....am J=2a=aj—1+1

We can simplify the expression using the finite geometric series sum formula to
rewrite this as the following expression.

Proposition 2. The ordinary generating function of partitions in IT" counted
by the statistics a, a, ..., a,, and by size, denoted F(ui,uy,...,upy;t), or
simply F (u; t) satisfies the following functional equation:

F(u;t) =u1...um+tu1u2...umF(u;t)

o (F(u;r)—ulF”(Luz,...,um;r))

I/ll—l

m - -
Fut)— F(uy,...,uj—,uj—qui, Luivr, ..., umt
+Z‘E uluz...uj< ( ) ( / / / it o ) .
—

Mj—l

1)

3 Computing Series Expansions

Notice that in Eq. (1), if one has a series expansion of F (u; ) correct up to #*, then
substituting this series into RHS of Eq. (1) yields the series expansion of F correct
to t**1 because the RHS of Eq. (1) contains a term free of ¢; otherwise, the degree
of ¢ is increased by 1. We have iterated Eq. (1) to get enumerative data for up to
m=09.

For 3-nonnesting set partitions, an average laptop running Maple 15 can produce
70 terms in a reasonable time (less than 24 h). For m = 4, only 38 terms; m = 5,27
terms; m = 6, 20 terms; m = 7, 16 terms, m = 8§, 12 terms; and finally m = 9, 12
terms. The limitation seems memory space due to the growing complication in the
functional equation when m gets larger (Table 1).

4 Conclusion

The generating tree approach permits a direct translation to a functional equation
involving an arbitrary number of catalytic variables satisfied by set partitions
avoiding m + I-nestings for any positive integer m. We avoid passing through
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vacillating lattice walks or tableaux. The functional equation can be iterated to
generate series data for m + 1-nonnesting set partitions, but ideally we would like
to solve the equations, or find some other format from which more information
can be obtained. For example, perhaps under further scrutiny one can decide if the
generating functions are D-finite or not.

One possible route to a proof of non-D-finiteness is to use our expressions to
determine bounds on the order and the coefficient degrees of the minimal differential
equation satisfied by the generating function. Though a tantalizingly simple idea, the
limitation is the lack of series data for large m.

The generating tree studied is for m + 1-nonnesting set partitions. The authors
have tried to study a generating tree for m 4 1-noncrossing set partitions in the
hope of reproving the result of Chen et al. in [6] by tree isomorphism. However, the
authors were unable to generate m + 1-noncrossing set partitions.

Finally, our generating tree approach is limited only to the non-enhanced case.
For a more general treatment of the subject involving enhanced set partitions and
permutations, both enhanced and non-enhanced, we refer the reader to [5] by Burrill,
Elizalde, Mishna, and Yen.
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