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Foreword

This volume commemorates and celebrates the life and achievements of an extraor-
dinary person, Herb Wilf. The planning of the book started while he was still alive.
It was hoped to present it to him in person, but unfortunately he passed away before
that could happen. While he was brought down by a neuromuscular degenerative
disease, he had been active in research until shortly before his death, and this volume
even contains a paper he coauthored.

Among the most prominent qualities that endeared Herb to his many students
and colleagues was his warm personality. Deeply devoted to mathematics, he was an
enthusiastic supporter of other researchers, especially of young students struggling
to establish themselves. Always generous with suggestions and credit, he delighted
when others improved on his own results. He was also very supportive of women
mathematicians at a time when they faced high barriers and had an unusually large
number of women among his PhD students.

Herb Wilf was a superb teacher and writer. His books have had extensive impact
on a variety of fields. His many publications with their lucid explanations of
abstruse mathematical results give a taste of his abilities as an expositor. He received
a variety of teaching prizes, including the Deborah and Franklin Tepper Haimo
Award of the Mathematical Association of America, which is given to “teachers
of mathematics who have been widely recognized as extraordinarily successful.”
He devoted substantial effort to editorial activities, including a stint as the editor in
chief of the American Mathematical Monthly, and was a cofounder of the Journal
of Algorithms and of the Electronic Journal of Combinatorics.

However, Herb was foremost a researcher, driven by the desire to discover the
inner workings of the mathematical world, as expressed by Hilbert’s famous quote,
“We must know. We will know.” This volume consists of high-quality refereed
research contributions by some of his colleagues, students, and collaborators. The
origins of this book project were in the conference held on the occasion of Herb’s
80th birthday in May 2011. But this is not a conference proceedings, in that many
of the papers presented at that meeting are not included and some papers here
were not part of the conference program. They are meant as a tribute to Herb

ix



X Foreword

Wilf’s contributions to mathematics and mathematical life. Some are very close
to areas he worked in, and some are further apart. But they are all on topics he knew
well and cared deeply about.

Although all the papers in this volume have some connection to Herb, they
touch mostly on the last (although longest) phase of his career, that associated
with combinatorics. It therefore seems appropriate to say a few words about his
development as a mathematician. One of the many notable features of his life was
the willingness to undertake new projects and change directions. Thus, in the 1990s,
while he was already in his 60s and well established as an author and editor in
the traditional print world, he saw the promise of electronic communication and
moved to set up the free and completely scholar-operated Electronic Journal of
Combinatorics. In the spirit of practicing what he preached, he also arranged for
as many of his books as possible to be available for free downloads. In a rare case of
a good deed being properly rewarded, he found, contrary to predictions, that sales
of print copies of those freely downloadable books increased! This flexibility and
willingness to experiment extended to research directions. Even close to the end of
his life, he was always open to new ideas and wrote some papers in mathematical
biology. But this was just a continuation of a lifelong pattern.

The repeated appearance of certain intellectual themes in Herb’s work is
illustrated nicely by one of his most famous contributions, namely, the work with
Doron Zeilberger on automated proofs of identities. The computational aspect of
this research offers a link to the start of Herb’s professional career, which was
closely linked to computers. He did direct hands-on programming of some of
the first electronic digital computers, in order to implement early optimization
algorithms. He then went on to write a PhD thesis on numerical analysis and
carry out a substantial research program in that field, including producing books on
mathematical models. Later yet he moved on to more theoretical work on complex
analysis and inequalities. And then he was smitten by the charms of combinatorics,
and this became the main passion for the rest of his life. Not that he forgot or
abandoned his earlier interests completely. Computers, for example, continued to
play a major role in his life. As just one example, in 1975, he and Albert Nijenhuis
published Combinatorial Algorithms. It is not used as widely as it used to be, since
the methods it contains are incorporated into standard software programs, such as
Maple, Matlab, and Mathematica. But for that time, it was a tremendously useful
collection that not only explained the methods but provided working code that could
be used when needed. Another illustration of his later work drawing on earlier
experience is provided by his work on complex analysis, which played a role in
his extensive involvement with generating functions in combinatorics.

In conclusion, we can say that it is difficult to give a full picture of the many
facets of Herb Wilf’s life and work. There will be more formal obituary notices
that will cover his contributions in detail. The brief sketch here serves only as an
introduction to this collection of papers, original research contributions by some
of Herb’s many students, collaborators, and other admirers and beneficiaries, who
dedicate their works to his memory. Herb heard presentations of some of these
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papers at his 80th birthday conference. What is certain is that he would have loved to
read them all and appreciate the advances they represent in penetrating ever deeper
into the mysteries of mathematics.

Minneapolis, USA Andrew M. Odlyzko
March 2013






Preface

The Third Waterloo Workshop on Computer Algebra (WWCA 2011, W80) was held
May 26-29, 2011 at Wilfrid Laurier University, Waterloo, Canada.

The conference was devoted to the 80th birthday of distinguished combinato-
rialist Professor Herbert S. Wilf (University of Pennsylvania, USA). Several of
Professor Wilf’s books are considered classical; we mention for instance Gener-
atingfunctionology, Algorithms and Complexity, A = B.

Topics discussed at the workshop were closely related to several research areas
in which Herbert Wilf has contributed and influenced.

WWCA 2011 was a real celebration of combinatorial mathematics, with some
of the most famous combinatorial mathematicians of the world coming together to
present their talks. We had more than a 100 participants at the conference. The list
of scheduled invited lectures and presentations made at the conference includes:

* Herbert Wilf, University of Pennsylvania, USA, “Two exercises in combinatorial
biology”

e Gert Almkvist, University of Lund, Sweden, “Ramanujan-like formulas for #
and String Theory”

* George E. Andrews, Pennsylvania State University, USA, “Partition Function
Differences, and Anti-Telescoping”

* Miklos Bona, University of Florida, USA, “Permutations as Genome Rearrange-
ments”

* Rod Canfield, University of Georgia, USA, “The Asymptotic Hadamard Conjec-
ture”

* Sylvie Corteel, Univ. Paris 7, France, “Enumeration of staircase tableaux”

* Aviezri Fraenkel, Weizmann Institute of Science, Israel, “What’s a question to
Herb Wilf’s answer?”’

» Ira Gessel, Brandeis University, USA, “On the WZ method”

e Jan Goulden, University of Waterloo, Canada, “Combinatorics and the KP
hierarchy”

¢ Ronald Graham, UCSD, USA, “Joint statistics for permutations in S, and
Eulerian numbers”
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Xiv Preface

¢ Andrew Granville, Universite de Montreal, Canada, “More combinatorics and
less analysis: A different approach to prime numbers”

e Curtis Greene, Haverford College, USA, “Some Posets Related to Muirhead’s,
Maclaurin’s, and Newton’s Inequalities”

* Joan Hutchinson, Macalester College, USA, “Some challenges in list-coloring
planar graphs”

» David Jackson, University of Waterloo, Canada, “Enumerative aspects of cactus
graphs”

¢ Christian Krattenthaler, University of Vienna, Austria, “Cyclic sieving for gener-
alised non-crossing partitions associated to complex reflection groups”

e Victor H. Moll, Tulane University, USA, “p-adic valuations of sequences:
examples in search of a theory”

e Andrew Odlyzko, University of Minnesota, USA, “Primes, graphs, and generat-
ing functions”

* Peter Paule, RISC-Linz, Austria, “Proving strategies of WZ-type for modular
forms”

* Robin Pemantle, University of Pennsylvania, USA, “Zeros of complex polyno-
mials and their derivatives”

* Marko Petkovsek, University of Ljubljana, Slovenia, “On enumeration of struc-
tures with no forbidden substructures”

* Bruce Sagan, Michigan State University, USA, “Mahonian Pairs”

e CarlaD. Savage, NCSU, USA, “Generalized Lecture Hall Partitions and Eulerian
Polynomials”

» Jeffrey Shallit, University of Waterloo, Canada, “50 Years of Fine and Wilf”

* Richard Stanley, MIT, USA, “Products of Cycles”

e John Stembridge, University of Michigan, USA, “A finiteness theorem for
W-graphs”

e Volker Strehl, Universitaet Erlangen, Germany, “Aspects of a combinatorial
annihilation process”

* Michelle Wachs, University of Miami, USA, “Unimodality of q-Eulerian Num-
bers and p,q-Eulerian Numbers”

* Doron Zeilberger, Rutgers University, USA, “Automatic Generation of Theorems
and Proofs on Enumerating Consecutive-Wilf classes”

* FEugene Zima, Wilfrid Laurier University, Canada, “Synthetic division in the
context of indefinite summation”

The workshop was financially supported by the Fields Institute and various
offices of Wilfrid Laurier University.

This book presents a collection of selected formally refereed papers submitted
after the workshop. The topics discussed in this book are closely related to Herb’s
influential works. Initially it was planned as a celebratory volume. Herb’s sudden
death implied that this has now become a book commemorating his contributions to
mathematics and computer science.

This book would not have been possible without the dedication and hard work of
the anonymous referees, who supplied detailed referee reports and helped authors to
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improve their papers significantly. Finally, we wish to thank the people at Springer-
Verlag, in particular Ruth Allewelt and Martin Peters, for working closely with us
and for their dedicated and unwavering support throughout the entire publication
process.

We feel very fortunate that we were entrusted in the organization of this confer-
ence — “unforgettable conference of historical dimension” according to comments
of one of the invitees.

Waterloo, Canada Ilias S. Kotsireas
December 2012 Eugene Zima






A Tribute to Herb Wilf

Doron Zeilberger

To Herbert Saul Wilf (June 13, 1931-Jan. 7, 2012), in
memoriam

Herbert Wilf was one of the greatest combinatorialists of our time, but his influence
far transcends the boundaries of any specific area. He was way ahead of his
time when, as a fresh (28-year-old) PhD, he coedited (with Anthony Ralston)
the pioneering book “Mathematical Methods for Digital Computers”; — 3 years
later wrote the beautiful classic textbook “Mathematics for the Physical Sciences”;
when algorithms just started to pop up everywhere, pioneered (with Don Knuth)
the Journal of Algorithms; and when the Internet started, pioneered the Electronic
Journal of Combinatorics. Herb also realized the great potential of the Internet for
the sharing of knowledge and had several of his classic textbooks available for a free
download!

Not to mention his great mathematical contributions!

Not to mention that he academically fathered 28 (a perfect number!) brilliant
combinatorial children, including 8 females (way back when there were very few
female PhDs).

Many of these brilliant academic children became distinguished academic
mathematicians, for example, Fan Chung, Joan Hutchinson, the late Rodica Simion,
Felix Lazebnik, and many others. But some of them had brilliant careers elsewhere.
These include:

* Richard Garfield, of Magic the Gathering fame, one-time teenage idol, and still
a household name among gamesters

* The Most Rev. Dr. Anthony Mikovsky, Prime Bishop of the Polish National
Catholic Church

D. Zeilberger (<)
Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus,
110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA
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» Alkes Price, an ex-prodigy, who made a bundle in finance and wisely went back
to academia and is now a rising star in statistical genetics
* Michael Wertheimer, CTO of the National Security Agency from 2005 to 2010

The first scientific contribution of Herb Wilf (b. June 13, 1931) was in astronomy.
In the Oct. 1945 issue of Sky and Telescope, in an article that reported on readers’
observations of a solar eclipse, one can find the following: “Herbert Wilf of NY City,
sent in times of the first and last contacts agreeing closely with those predicted for
his location. He used a stop watch of known rate set with radio time signals.”

After that, Herb focused on mathematics, but his interests ranged far and wide
and went through several phases. In a short (probably auto-) biographical footnote
for a 1982 American Mathematical Monthly article, it says:

His principal research interests have been in analysis: numerical, mathematical, and in the
past several years, combinatorical.

Herb’s “religious” conversion to combinatorics was already cited by Fan Chung
and Joan Hutchinson’s lovely tribute on the occasion of his 65th birthday: In 1965,
Gian-Carlo Rota came to the University of Pennsylvania to give a colloquium talk
on his then-recent work on Mobius functions and their role in combinatorics. Herb
recalled, “That talk was so brilliant and so beautiful that it lifted me right out of my
chair and made me a combinatorialist on the spot.”

But Herb returned the debt and made me convert to the religion of combinatorics.

The bio attached to one of my own articles reads:

Doron Zeilberger was born, as a person, on July 2, 1950. He was born, as a
mathematician, in 1976, when he got his PhD under the direction of Harry Dym (in
analysis). He was born-again, as a combinatorialist, 2 years later, when he read a
lovely proof of the so-called Hook-Length Formula (enumerating Standard Young
Tableaux) by Curtis Greene, Albert Nijenhuis, and Herb Wilf. He lived happily ever
after.

I still live happily, and all thanks to Herb (and Albert Nijenhuis and Curtis
Greene, now Herb’s beloved son-in-law).

Thanks Herb for the great inspiration that you bestowed on me and on so many
other people whose lives — both mathematically and personally — you have touched.
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Glaisher’s Formulas for % and Some
Generalizations

Gert Almkvist

In memory of Herb Wilf

1
Abstract Glaisher’s formulas for — are reviewed. Two generalized formulas

/4
are proved by using the WZ-method (named after Wilf and Zeilberger). Also an
improvement of Fritz Carlson’s theorem (proved in an Appendix by Arne Meurman)
is used.

Keywords m ¢ Glaisher

1 Introduction

1
Ramanujan-like formulas for — are rare. Only a dozen genuine (not obtained by
T

“squaring” formulas for —) formulas are known, most of them due to Guillera.
14
Only five of them are proved, all by Guillera, using the WZ-method. Until I found

1
Wenchang Chu’s paper [2] I did not know of Glaisher’s formulas for — from 1905

4
(see [3]). His paper is not easy to read (also literary, the exponents in Quaterly
Journal are very small) and I decided to write a self-contained survey.
After finding a slight generalization of Glaisher’s formulas and inspired of Levrie’s

1
paper, I was lead to the following two new formulas for —.
T

G. Almkvist (<)
Institute for Algebraic Meditation, Fogdarod 208, S-24333 Hoor, Sweden
e-mail: gert.almkvist@yahoo.se

LS. Kotsireas and E.V. Zima (eds.), Advances in Combinatorics, 1
DOI 10.1007/978-3-642-30979-3_1, © Springer-Verlag Berlin Heidelberg 2013
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Theorem 1.

(i)

4
2n
(4n+1) (”)

;) M+ D)(n+2)...n+k)2n—1)2n—3)...2n— 2k —1)) 256"

25k+1k|4 1
L-@OP 2

4
2n
(4n+1) (”)

ng(:) m+1)P3m+2)3%..(n+k)32n—-132n-3)3..2n— 2k - 1))3 256"

= (=1

(it)

K2 2Bk 13(3k)! 1

=037 @B 72

2 Glaisher’s Formulas

We will make use of Legendre polynomials P,(x), defined by the generating
function

P,(x)t
«/1—2xt+t2 Z 2
They form an orthogonal system with inner product

2

1
/_ PuOP (0 = B

Lemma 1.

Ply(¥) = xPy(x) = (0 + D Py (x)

Proof. Differentiate the generating function with respect to x
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b g

d 1
EJﬁzznf(uamﬂwﬂ ZP@ﬁ
Hence
Z( ()C) XP/(X))tn i L
nt1 " (L =2xt +12)32
d t =
S S 1) P, (x)t"
TN T ;(n + 1) Py (x)
Lemma 2.
xP)(x) — P,_;(x) = nP,(x)
Proof. We have
xt —12 d 1
Z(xP ) = Pt O = G T e
= ZHP,, (x)tn
n=0
Lemma 3.
Pl (x) = P/_,(x) = 2n + 1) P,(x)

Proof. Add Lemmas 1 and 2.

Lemma 4.

2
2m
Cn )

— if n =2 d0j dd.
i ﬂ16’” if n m an if no

Proof. We make the substitution x = cos(¢) and obtain

T

“”:A mmmmwwzéf Pa(cos(¢))dg

-
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Then
1

> Pu(cos(p))" = V1 =2t cos(p) + 2

n=0

1 1
T (I—texp(ig)2 (1 — 1 exp(—ig))'/2

0 ; k\ t/ Tk
-y (2]’ ) (2k ) e e — b))

j k=0

which gives

Paleoste)) = ;3 (2]’ ) (2: Y ) expli(2] — n)g)

Jj=0

Integrating, the only nonzero term is when 2j = n giving

il D

1 T
5 | Pueostondy = x4

2 )5
Lemma 5.
2
()
1
xP,(x) 2m+1\M ) )
_1\/1—_—)62 X=772m+2 167 lfn=2m+1and01fneven.

Proof. We have
1 Pn 1 s
2716) dx = —/ cos(¢) Py (cos(p))dy

1 A/1—x2 2 ),
and
cos(¢) Py (cos(p))
1 &2\ [2n-2j o o
= 2j — 1 2j—n—1
2,4,1;()(”_1. ){eXp(l(J n+ 1)g) +exp(i(2j —n—1)g)}

Integrating, we get a nonzeroresultonly if n =2m + land j =morj =m + 1.

The result is
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1 2m\ (2m + 2 -
42m+1\ m m+1

Proposition 1.

2
(")
ﬁ = 2(4” +1) Py (x)

Proof. Expanding

v ZC"P )

we get, using the orthogonality of the Legendre polynomials

2
2m
2n+1 P,(x) dx 4m+1 m
4
2 1 V1 —x2 2 16™

n if n=2m and 0 otherwise.

|

Remark 1. Putting x = 0 in the generating function we obtain

GH

~/1+12

and hence

2m
m
4—m and sz_l(o) =0

Then putting x = 0 in Proposition 1 implies
3
2n
2

nZO( D' @n+ )= =~

PZm(O) = (_1)m
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which was found by Bauer already in 1859 (see [1]). The convergence is very slow,
1

as —.

Jn

Proposition 2.

ool

(n+1)2 16" Poyt1(x)

arcsin(x) =

Proof. We integrate the formula in Proposition 1. By Lemma 3 we have, assuming
that P_I(X) =0

Po(x) = — e (Pl @) = Py ()

and

/X Py (1)dt =

; 1(P2n+l(x) — Py1(x))+ C

where C = 0 since P,,4+1(0) = P,—1(0) = 0. We get

5o

arcsin(x) = o (Pon+1(x) = Pop—1(x))
n=0
2 2
(2}1) <2n + 2)
o0
e n+1
EZ T Prpy1(x)
n=0
2
(2}1
o0
T 4n+3 \ 7
3 Z 112 16" 2n41(X)

Theorem 2.

2n )
> +D@En+3)\n)

(n+1)3 256" n?
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Proof. We have

2
2n
Z4n+3 n /1 X
“«(n+1)7 16" J J1-x2

arcsin(x)dx = Py (x)dx

1 X
/—1 V1 —x2

Partial integration gives

v 1— x2
arcsm(x)dx = [-V1 — x2arcsin(x)]", + =2
/ v 1+/1— x2
and we finish using Lemma 5. O
Proposition 3.
2
4n + 1 n
V1—x2= Py
o Z wr D=1 1o ‘W

Proof. Assume
o0
V1—-x2= Zc,,Pn(x)
n=0

Then

0= [ Ty =2 [ oo sinos

2n +1
= 2 [ Bacostoni — coszonde
Clearly ¢, = 0 if n is odd, so let n = 2m. Now we know from the proof of

Lemma 4

2m . .
Pan(cos(@)) = < x (ZJ’ ) (42”; - ) exp(2i (j — m)
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When integrating we get nonzero terms for j = m, j = m + land j = m — 1.
We have ¢y = 7 and form > 1

2
wdm + 1 2m 2m+2\(2m —2
Cp = ——F—— —
4 16m m m+1 m—1
2
2m
T dm + 1 m

__r O
4 (m+1D)2m—-1) 16m
Theorem 3.
4
2n
— 4n +1 n) 8
— (n+1)2n—1) 256" o2
Proof. Divide the formula in Proposition 3 by +/'1 — x?2
2
2n
T 1 i 4n +1 ) Pu(x)
T4 Vit Z@tnen-1) 160 JT_x2
Integrating from —1 to 1 and using Lemma 4 we are done. O

) 1
Remark 2. The series converges as —-.
n

Now

4n + 1 1 N 1
n+2)2n—1) 2n—1 2n+2

and



Glaisher’s Formulas for 45 and Some Generalizations
b g

4 4
2n—2 2n
1 \n—1 1 n

2n 2561 2n —1 256"

4
2n
_ (n) 1 1 256n*
B 2

256" \2n—1 1 2n16@2n = 1)

2n !
_ @2n -1+ @2n)* \ 1

(2n—1)* 256"

and we get

()
— 2n—1%+@n?\"n)
1_; 2n—1)* 256" n2

Similarly we can rewrite Theorem 2 as

2n—1)3 256" 2

)
Z 2n(4n — 1) _ i

Adding we obtain

Theorem 4.

4
(2”)
X 1—4n \ N 8
Z( _

2n —1)4% 256"  n2

Remark 3. Using the Pochhammer symbol this can be written as

2(1_4 )< 1/2)‘* _ 8

72

. 1 . .
which converges as — (not as as Glaisher claims).
n

noé
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Another formula with the same convergence is the following (not in Glaisher):

Theorem 5.

4
2n
i 4n +1 n)o 32

(n+ D) +2)2n—1)2n—3) 256" 272

Proof. Assume

(1 - X2)3/2 = Z Com PZm(x)

n=0

Doing as in the proof of Proposition 3 we obtain

2
2m
9 4m + 1 m

8 (m+ )(m~+2)2m—1)2m—3) 16"

Com =

Dividing by +/1 — x2 and integrating from —1 to 1 we find the formula. O

Remark 4. By expanding (1—x?)¥=D/2 the above result can be generalized to the
first formula below. Coming so far I received the paper [4] by Levrie from Zudilin.
Using the hints on p. 229 and experimenting a little one finds formula (ii):

4
2n
e ()

’; M+ D +2)...(n+k)2n—1D)@2n—3)...2n — 2k — 1)) 256"

Theorem 6.

(i)

25k+lk'4 1
k- (2k)B 2

4
2n
(4n+1) (”)

;) (n+ 13423 . .(n+k)PCn—1p32n—3)%..2n—(2k—1))3 256"

= (D"

(it)

. 22k EK)! 1

=03 @B 72
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Proof.
Proof of (i):
The first formula can be written as

oo

2
> G0k = 2
n=0 T

2 3
k 2k 2n 2n
1) k(4n+1)(k) (+k)()
2n
162 +k (2k>

Zeilberger’s imaginary friend EKHAD (i.e using “WZMethod” in Maple) gives us

2 3
oG 2

2n
1620tk (k + 1)(2k + 1
(k+ Dk + )<2k+2)

where

G(n, k) =

F(n,k) =

such that
Fn+1,k)— Fn,k)=Gn,k+1)—G(n,k)

Write this as
F(n+1,k)_ _G(n,k+1)_G(n,k)
F(n, k)  F(n,k) F(n,k)

_ (4n+ D)@’k + 4nk + 2k +1)
N 16n3(n +k +1)

an algebraic identity which is valid for any complex number k. The usual telescop-
ing gives for H(z) = Y vo, G(n,2)

Hz+1)—H(x) = ZG(n,z—}- 1) — ZG(n,z)
n=0 n=0

=1lm(F(n+1,2) — F(0,2)) =0
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so H(z) is periodic with period one. We want to use Meurman’s version of Fritz
Carlson’s theorem (see the Appendix). We write

2 3
zcos(wz)(4n + 1)(22) ( 2 )<2n)
Z n—+z n
162n+z (2’1)
2z

cos(mz) = Sin(ﬂ(% —27) =

G(n,z) =

First we notice that
b4

F(E_Z)F(%‘i‘Z)

and

Q! _2r@y) _ &
2 Tk Jm

2
zcos(mz) (2;) (n Z_Z z)
()
162
2z

- 8mz { ) } 3 r@2n—22)
2!1611“(% —Z)F(% F)ernn  T@) Te=2)

F(z—i—%)

Consider

1 1
4nr 2F
(@ 2) (2 z+m

HF(Z)F(%—Z)FU +z+n)

Since H (z) has period one, we can assume that 1 < R(z) <2.Letz = x +iy. Then
we have

. _ T
| (x 4+ iy)| ~ V27 |y|* l/zexp(—E [y

and
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1
T tztny|  ames =

1
P for large n

Furthermore
1o
Fe+ 5) 2x+1/2 9/2
2 |y <y
r'@r( -2z
2
We have for large n
5 3
@n+ ™"
n 4n
162" = an(zn)d?
Collecting the evidence we obtain
4n 1 4 o _ 21y77 1
IG(’%Z)I = ;W“_n(n)yznl/z |y| = 75/2 ’?
and
2|y[”"
|H(2)| = —%;57=5(3) = O(exp(c |y])
4
for any positive ¢ < 2w, so H(z) = A, a constant by Meurman’s Theorem.

1
To determine the constant A we put z = > We find G(0,z) — — whenz — 3
bid

1
while G(n, 5) =0forn > 0.

Proof of (ii):
Here we have

2 3 3
2k 4k 2n 2n
ok = 3\ (21
n
162 +3k ( ‘ ) <2k)

and
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2 3 3
2k 4k 2n 2n
e (3) (5) () () e

reb =g k+3\[ 22\
+ n
12n+3kk 142k 1)4
6 (ke + DX +)(k+1)(2k+2)

14

where

P(n.k) = 64n3(n — 1)(3k + 1)(3k + 2) — 8n(3k + 2)(80k> + 72k* + 12k — 1)
+4n(2k + 1)(3k + 2)(40k> + 16k + 1) + (2k + 1)>(592k* + 752> + 300k 4 48k + 3)

As before we check

Fn+1,k)— F(n,k) =Gn,k+1)—G(n,k)

To use Meurman’s theorem we write
2 2 4 ’ 2 } 2
zcos>(wz)(4n + 1) ¢ ¢ " &
z 2z n+z n
G(n,z) = 3
1621+3: 3z) (2n
z 2z
We consider
) 2 A 3 ) 3
3 z 4 n
zcos’(mz
3
16% 3z) [2n
z 2z

1 1 1
:43n F(z+§)1"(21+§)3 F(n+§—z)
'n+1+2)

3

3m? zr(z)r(3z)1“(% —2)3

Now for 1 < N (z) <2 we have

1 1
r )2 —)3
(Z+2) (Z+2) 13

6. 1
<y <y

zF(z)F(3z)F(§ —2)3
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Furthermore
1 3
F(E —z+n) 1 1
T(t+z4n)p| " ni+e < 757z forlarge n
We have
2n
(4n +1)
n 4n
1627 ~ 431 (s p)l/2
We obtain
1 b4yt
|G(n,z)| < 372 n15/2 430 () 12172 [y = 3052 07
and

13
HOI = 526 = Otexpte v

2
for any positive ¢ < 2. Hence H (z) is constant. As above we find G(0,z) — 32
i

1 1
when 7 — E,While G(nz) = 0forn > 0. O

2n 2k
n+k n+k
Remark 5. Forn < k we must replace ~———- with (—1)*~" 2— and we

2n k —2n
2k k—n
%\’
k
=1 k(k)

16k
2k 2n } 2n 2n }
k-1 (_l)k_n(4n+1)<n+k)<n) o (4n+1)<n+k)<n) 2
X2 +2
=k

)
— 2k —2n 2n T
n=0 n 2n
16 16
( k—n ) <2k)

obtain the formulas

®
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(ii)

e () (4
DR
3k
163k(k)
Cirgan (> @+ > (>
kz_l n+k n 00 n+k n

2

2
g g 3
n=0 1627 2k —2n n=k Le2n 2n
k—n 2k

Remark 6. By using “WZMethod” in Maple on F(n,k +n) in the proof of

Conjecture (i) we get an enormous expression, which after putting k = 0
simplifies to

oo

5
2n 1 8
Z(—l)”(n ) (20n* + 8n + D =3

n=0

1
which is Guillera’s first formula for — . Similarly for F'(n, k + 2n) we obtain
T

3 3
2n 4n
i( 1y n ) \2n) 1376n* + 18081 + 784n% + 138n +9 1 32
n=0 (371) Bn+1)(Bn+2) olen — ;2

n

. . [2n : . .
In Maple’s answer occur expressions like A which need interpretation. Hereby
n

one needs the following expansions to turn the binomial coefficients “upside down”

2m+e)\ 1 )
(4(n n s)) - (4n) £+ 0()

2(n+e)) _ (=1)" )
(3(}1—}—8))_ e+ 0(g)
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b g

2(n +¢) _ 1 )

(4(n+8)+2)_ 4n +2 e+ 0()
n+1) o

2(n+e)+2\ 1 )

(4(n+£)+6)_ 4n+6 e+ 0()
U P

Finally for F(n,k + 3n) we get

(Zn)3 <6n)2 (611)
i(—l)" n 3n 2n P(n)

n=0 <4n) Gn + 1)(3n + 2)(4n + 1)2(4n + 3)2 2200 —
2n

where

P(n) = 40389121 4+ 13296384n" + 18184448n° + 13423232n°
+5828864n* + 1523184n° + 234144n> 4 19440n + 675

Conjecture.

(a) If p > k is a prime then

2
2k 2k
(—l)kk<k) oy (CDF(4n + 1)<n N k) (

1

S

k
16 — . <2k - Zn)
k—n

3
2n 2n
p—1 (4n + U(n—}-k)(n)
+2

=0 mod p*

17

256

72
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(b) If p > 7 is prime then

1

S = 8p> mod p?

p—1 5 2
2w\ @n +1
S () B 0n 4 8an? 4 540 +9)
= n n+1

3 Consequences of Levrie’s Work

Levrie’s Theorem 7 in [4] can be proved by using the WZ-pair
2k ? 4k \ (2n 2 2n 2
() G)C) 67
2n ?
162n+2k (zk)

2 2 2
2k 4k \ [ 2n 2n
20 @2 2
s a2 (£ () ()
2

2
2. 162142 (2 — 2k — 1)2< n)

G(n, k) =

F(n,k)=-—

2k
Using the “WZMethod” on F(n, k + n) and putting k¥ = 0 we have a new proof of

Guillera’s formula
4
i 2n\ (4n\120n> +34n+3 32
n 2n 216n o2

n=0

Similarly for F(n,k 4 2n) we get

(2}1) 2 (4}1) ) (Srz)
i n ) \2n) \4n P(n) 1 1,024

n=0 (3}1)2 @2n 4+ 1)@Bn+ 1)23n +2)22% g2

n

where

P(n) = 968704n" + 2683904n° + 3013376n° + 1758208n*
+568224n3 4+ 10020012 + 8844n + 315.
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Appendix

A Periodic Version of Fritz Carlson’s Theorem
Arne Meurman!

When using the WZ-method one often needs Fritz Carlson’s theorem (see e.g. [1])
to find the value of a constant. Usually the function H(z) which one wants to prove
constant is periodic, H(z+ 1) = H(z). The following theorem uses the full strength
of the periodicity and also improves the size of the constant in the growth condition
toc < 2m.

Theorem. Let H(z) be an entire function such that H(z + 1) = H(z) and there is
¢ € Rsuch that ¢ < 27 and

H(z) = O(exp(c [Im(2)]))

for z € C. Then H(z) is constant.

Proof. Replacing H(z) by H(z) — H(0) we may assume that H(k) = 0 for all
k € Z. Then H(z) is divisible by e?*/% — 1 in the sense that

H(z) = (7 = 1) Hi(2)

with H; entire. As H; is also periodic with period 1 we can express H((z) =
h(e?* %) with & analytic in the punctured plane C \ {0}. Expanding / in a Laurent
series we obtain

o

H(z) = (ezmz -1 Z aneZm‘nz'

n=—0o0

The coefficients satisfy

a+1+yi H
4, = / @

+yi (62niz _ 1)62ninz

for any a,y € R.Forn < 0 we let y — 400 and the assumed estimate on | H(z)|
gives

i a+1+yi H(Z) d O
dp = M . 2riz _ 1)g2minz =0
Y>F00 Juqyi (e )e

1Depanment of Mathematics, Lund University, Box 118, SE-221 00 Lund, Sweden,
arnem @maths.Ith.se
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Forn > 0 we let y — —o0 and obtain

a+1+yi H(Z)
a, = lim

y—>—00 atyi (ezmz — 1)827”‘)11

Hence H(z) = 0.
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Complementary Bell Numbers: Arithmetical
Properties and Wilf’s Conjecture
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Abstract The 2-adic valuations of Bell and complementary Bell numbers are
determined. The complementary Bell numbers are known to be zero at n = 2
and H. S. Wilf conjectured that this is the only case where vanishing occurs.
N. C. Alexander and J. An proved (independently) that there are at most two indices
where this happens. This paper presents yet an alternative proof of the latter.

Keywords Valuations ¢ Bell numbers ¢ Complementary Bell numbers e
Closed-form summation * Wilf’s conjecture

1 Introduction

The Stirling numbers of the second kind S(n, k), defined forn € Nand 0 <k <n,
count the number of ways to partition a set of n elements into exactly kK nonempty
subsets (blocks). The Bell numbers

B(n) =) S(n.k) (1)

k=0

T. Amdeberhan (<) - V.H. Moll
Department of Mathematics, Tulane University, New Orleans, LA 70118, USA
e-mail: tamdeberhan @math.tulane.edu; vhm @math.tulane.edu

V. De Angelis
Department of Mathematics, Xavier University of Louisiana, New Orleans, LA 70125, USA
e-mail: vdeangel @xula.edu

LS. Kotsireas and E.V. Zima (eds.), Advances in Combinatorics, 23
DOI 10.1007/978-3-642-30979-3_2, © Springer-Verlag Berlin Heidelberg 2013


mailto:tamdeberhan@math.tulane.edu
mailto:vhm@math.tulane.edu
mailto:vdeangel@xula.edu

24 T. Amdeberhan et al.

count all such partitions independent of size and the complementary Bell numbers
5 n
B(n) = (=1)*S(n.k) )
k=0

takes the parity of the number of blocks into account. The exponential generating
functions are given by

n

| =

= exp(exp(x) — 1) and Z l?(n)z—}: = exp(1 — exp(x)). 3)
n=0 ’

[
>,
n=0

!

N

In this paper we consider arithmetical properties of the Bell and complementary
Bell numbers. The results described here are part of a general program to describe
properties of p-adic valuations of classical sequences. The example of Stirling
numbers is described in [3], the ASM numbers that count the number of alternating
sign matrices appear in [15] and a not-so-classical sequence appearing in the
evaluation of a rational integral is described in [2, 10]. On the other hand, much
of our interest in the valuations of the complementary Bell numbers is motivated by

Wilf's conjecture : B(n) = 0 only forn = 2.

The guiding strategy for us is this: if we manage to prove that v, (B (n)) is finite
for n > 2, the non-vanishing result will follow. The authors [4] have succeeded in
employing this method to prove that the sequence

n-—+ x,— .
X, = — 7t starting at x; = 1 4)
1— nx,—

only vanishes at n = 3. The more natural question that x,, ¢ Z for n > 5 remains
open.

The following notation is adopted throughout this paper: for n € N and a prime
D, the p-adic valuation of n, denoted by v,(n), is the largest power of p that
divides n. The value v,(0) = +o0 is consistent with the fact that any power of
p divides 0. As an example, the complementary Bell number B(14) = 110,176
factors as 2° - 11 - 313; therefore v,(B(14)) = 5 and v3(B(14)) = 0. Legendre [9]
established the formula

n—spy(n)

P 5)

vp(n!) =

where s, (n) is the sum of the digits of n in base p.
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The exponential generating function (3) and the series representation
~ > r’
Bn)=e) (-1)—. ©6)
=0

as well as elementary properties of the complementary Bell numbers are presented
in [16]. The numbers B(n) also appear in the literature as the Uppuluri-Carpenter
numbers. Subbarao and Verma [14] established the asymptotic growth of B(n),
showing that

limsup 28BN _ | )
n—soo N logn

The non-vanishing of B(n) has been considered by M. Klazar [7, 8] in the
context of partitions and by M. R. Murty [11] in reference to p-adic irrationality.
Y. Yang [17] established the result [{n < x : B(n) = 0}| = O(x?/?) and
De Wannemacker [13] proved that if n # 2, 2,944,838 (mod 3 - 2%°), then
B(n) # 0. The main result of [13] is that B(n) = 0 has at most two solutions. This
has been achieved by different techniques by N. C. Alexander [1] and Junkyu An [5].
Our interest in the non-vanishing questions comes from the theory of summation in
finite terms.

The methods developed by R. Gosper show that the finite sum

Xn:k! )
k=1

does not admit a closed-form expression as a hypergeometric function of n. The
identity

n—1 a n—1
DokkN = (=D @) + (=D Ba+ 1) ) k! ©)
k=1 =1 k=0
where
{—1
(@) =S@+ 1L+ 1) ((n+i)—il), (10)
i=0

shows that a positive verification of Wilf’s conjecture implies that the elementary
identity

D kkl=(n+1!-1 (1)
k=1
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is unique in this category. M. Petkovsek, H. S. Wilf and D. Zeilberger [12] is the
standard reference for issues involving closed-form summation. The details for (9)
are provided in [6].

Section 2 presents a family of polynomials that play a crucial role in the study
of the 2-adic valuations of Bell numbers given in Sect.3. The main arguments
presented here are based on the representation of the polynomials introduced in
Sect.2 in terms of rising and falling factorials. This is discussed in Sect.4. An
alternative proof of the analytic expressions for the valuations of regular Bell
numbers is presented in Sect. 5. This serves as a motivating example for the more
difficult case of the 2-adic valuations of complementary Bell numbers. Experimental
data on these valuations are presented in Sect. 6. The data suggests that only those
indices congruent to 2 modulo 3 need to be considered. The study of this case begins
in Sect. 7, where these valuations are determined for all but two classes modulo 24.
The two remaining classes require the introduction of an infinite matrix. This is done
in Sect. 8. The two remaining classes are analyzed in Sects.9 and 10, respectively.
The final section presents the exponential generating functions of the two classes of
polynomials employed in this work, and some open problems.

2 An Auxiliary Family of Polynomials

The recurrence for the Stirling numbers of second kind
Sn+1,k)y=Smnk—1)+kS(n, k) (12)

is summed over 0 < k < n + 1 to produce

n+1 n
Y Sm+1.k)=Y (k+1)S(n.k) (13)
k=0 k=0

using the vanishing of S(n, k) for k < 0 or k > n. Iteration of this procedure leads
to the next result.

Lemma 1. The family of polynomials ; (k), defined by

pj+1(k) =kp;k) + pjk + 1), (14)
po(k) =1, (15)
satisfy
n+j n
Bn+j)=Y_Sm+jk)=Y njk)Sn.k), (16)
k=0 k=0

foralln, j > 0.
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Proof. The proof is by induction on j. The inductive step gives

(n+1D+j n+1
YO S+ D+ k) =) pujk)Sn+ 1.k). (17)
k=0 k=0
The recurrence (12) and (14) yield the result. ]

Note. The polynomials 1 ; (k) have positive integer coefficients and the first few
are given by

polk) =1

pilk) =k +1

palk) = k* + 2k +2

wa(k) = k* + 3k* 4 6k + 5.
The degree of u; is j, so the family Z,, := {,uj : 0 < j < mj} forms a basis for
the space of polynomials of degree at most m.

The special polynomial

puia(k) = k' + 12k 4+ 132k 4+ 1100k° + 7425k3 + 41184k7  (18)
+187572k8 4 694584k> + 2049300k* 4 4652340k>
+7654350k> + 8142840k + 4,213,597

plays a crucial role in the study of 2-adic valuation of Bell numbers discussed in
Sect. 3.

3 The 2-adic Valuation of Bell Numbers

In this section we determine the 2-adic valuation of the Bell numbers. The data
presented in Fig. | suggests examining this valuation according to the equivalence
classes modulo 12.

Theorem 1. The 2-adic valuation of the Bell numbers satisfy
w(BMm)) =0 ifn=0,1 (mod3). (19)
In the missing case, n = 2 (mod 3), the sequence v,(B(3n + 2)) is a periodic

Sfunction of period 4. The repeating values are {1, 2, 2, 1}. In particular, the 2-adic
valuation of the Bell numbers is completely determined modulo 12. In detail,
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Fig. 1 The 2-adic valuation 2k
of Bell numbers

10 20 30 40 50 60

0 ifj=0,13,46,72910 (mod 12);
v(BU2n + ) =41 ifj=211 (mod 12); (20)
ifj=58 (mod 12).

[\

The proof of the theorem starts with a congruence for the Bell numbers.

Lemma 2. The Bell numbers satisfy
B(n +24) = B(n) (mod ). 2n

Proof. The identity (16) gives

n+12 n
DS+ 12.k) =) pnk)S(n. k). (22)
k=0 k=0

The polynomial p1, (k) given in (18) is now expressed in terms of the basis of rising
factorials

) = k(k + D)(k +2)---(k + m—1), m € N, with (k) = 1. (23)

A direct calculation shows that
12
k) =Y an (k)™ (24)
m=0

with ag = 421,359 = 5, a; = 3,633,280 = 0, a; = 1,563,508 = 4, and a3 =
414,920 = 0 (mod 8). Also, for m > 4, we have (k)" = 0 (mod 8). Thus

piak) =5+ 4k(k +1) =5 (mod 8). (25)
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O

20 40 60 80 100 120 140

Fig. 2 The 3-adic valuation of Bell numbers

Now (22) produces
n+12 n
D> S(n+12,k)=5) S(n.k) (modS8). (26)
k=0 k=0

that is, B(n 4+ 12) = 5B(n) (mod 8). Repeating this yields B(n + 24) = 5B(n +
12) = 25B(n) = B(n) (mod 8). O

The result of the theorem now follows from computing of the first 24 Bell
numbers modulo § to obtain the pattern asserted in the theorem.

Remark 1. The p-adic valuation of Bell numbers for primes p # 2 exhibit some
patterns. Figure 2 shows the case p = 3.
Experimental observations show that, if j % 2 (mod 3), then

v3(Bi2n+13j) = v3(Bi2,), forn > 0. 27)

In other words, up to a shift, the valuations v3(B12,+ ;) are independent of j.

4 A Representation in Two Bases

The set
Zn ={p;jk):0<j <m} (23)

is a basis of the vector space of polynomials of degree at most m. This section
explores the representation of this basis in terms of the usual rising factorials,
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defined by
=k + Dk +2)---(k+r—1) forr >0, (29)
) 2= 1,
and the falling factorials, given by
k), =ktk—1)(k—-2)---(k—r+1) forr >0, (30)
(k)() = 1,
Definition 1. The coefficients of u, (r) with respect to these bases are denoted
J J
k) = a; ()& and p;k) =Y d;(r)(k),. 31)
r=0 r=0

These coefficients are stored in the vectors
aj:=[a;(0), a;(1),---] and dj:=[d;(0), d;(1), -] (32)

wherea;(r) =d;(r) =0forr > j.

Certain properties of (k), and (k)I'! required in the analysis of the 2-adic
valuations are stated below.

Lemma 3. The rising factorial symbol satisfies

(k=DM = (0 = ()=
k(k)["] — (k)["“] _ r(k)["].

The corresponding relations for the falling factorials are

(k+1), = (k) +rk)r—
k) = B)esr + 1),

The next step is to transform the recurrence for 1 ; in (14) into recurrences for
the coefficients a; (r) and d; (7).

Proposition 1. The coefficients a; (r) in Definition I satisfy
ajr1(r)—(r+Daj(r+1)=a;r—1)-2ra;r)+ @+ 1)2aj(r+ 1), (33)

with the assumptions that a;(r) = 0ifr <Oorr > j.
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Proof. This follows directly from the recurrence for ( ; and the properties described
in Lemma 3. O

Note. The recurrences for the coefficients a; can be written using the (infinite)
matrices

M = (m,'j),',jz() and N = (nij)i,jzo (34)
with
| £ 1 ) 1 ifi =j+1;
i =yj; o .
. T 20— ifi = J;
mij = =@ +1) ifi=j—1; and ny=q i
i ifi =j—1;
0 otherwise; j
0 otherwise;
in the form
Maj+1 = Naj. (35)

The analogue of Proposition 1 for falling factorials is stated next.

Proposition 2. The coefficients d; (r) in (1) satisfy
dj+1(r) = dj(r — 1) =+ (r =+ 1)dj(r) =+ (r =+ 1)dj(r =+ 1), (36)

with the assumptions that d;(r) = 0ifr <Oorr > j.

Note. The recurrence for d; is now written using T = (#;;);, >0, where

i+1 ifi =j;
i ifi =j—1;
lij = U
ifi =j+1;
0 otherwise;
in the form
dj41 = Td;. (37)

S An Alternative Approach to Valuation of Bell Numbers

This section presents an alternative proof of the congruence (2) based on the
results of Sect.4. Recall that this congruence provides complete structure of the
2-adic valuation of the Bell numbers. The ideas introduced here provide a partial
description of the 2-adic valuations of complementary Bell numbers.
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The first step is to identify the Bell numbers as the first entry of the vectors a;
andd;.
Lemma 4. The Bell numbers are given by
B(j) = 11;(0) = a;(0) = d;(0). (38)
Proof. Let n = 0 in the identity (16) to obtain B(j) = wu;(0). The other two

expressions for the Bell numbers B(j) are obtained by letting k = 0 in (31). O

The congruence for the Bell numbers now arises from the analysis of the relations
(35) and (37) modulo 8. The key statement is provided next.

Lemma 5. Ifk € Nandr > 4, then
(k)= (k), =0 (mod 8). (39)

Proof. Among any set of four consecutive integers there is one that is a multiple of
2 and a different one that is a multiple of 4. O

The system (35) now reduces to

1-10 O aj_H(O) 01 0 O aj(O)
01 -2020 aj_H(l) _ 1-2 4 0 aj(l)
00 1 =3||a+12| (01 =49 |]|a;Q)
00 0 1]Llaj13) 00 1 —6] La;(3)

Inverting the matrix on the left and taking entries modulo § leads to

ay, = Xsa  (mod 8) (40)

where al* represents the first four entries of the coefficient vector a; and

J
1126
1026

0177
0012

X,

Now observe that

4 4 4
al}, = Xual¥, = Xa  (mod 8) 41)
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and this extends to

al), = X;a¥ (mod 8) (42)

forany s € N.
Lemma 6. The matrix X satisfies X** = I (mod 8).
Proof. Direct (symbolic) calculation. O

The Bell number B() is the first entry of the vector 3}4) . Then considering the
first entry in the relation

3}224 =X 343;4) (mod 8) (43)

gives the congruence B(j + 24) = B(j) (mod 8).

Note. The corresponding relation for the coefficient vector d; is simpler: the
system (37) reduces to

dj4+1(0) d;(0)
djp1() | _ d;(1)
=T, x mod 8 44
din@ | = ey ™Y @9
dj+1(3) d;(3)
where
1100
1220
L=10133 “45)
0014

The matrix 7} also satisfies T424 = ] (mod 8) and the argument proceeds as before.

6 Some Experimental Data on v, (B (n))

This section discusses the 2-adic valuations of the complementary Bell numbers
B(n). The data is depicted in Fig. 3 in the range 3 < n < 1,000.

This discussion begins with some empirical data from the sequence v,(B(n)).
For 3 < n < 30, the list is

{0,0,1,0,0,1,0,0,2,0,0,5,0,0,1,0,0,1,0,0,2,0,0,5,0,0, 1, 0}.
(46)
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Fig. 3 The 2-adic valuation
of the complementary Bell 10k
numbers
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This suggests that v2(B(n)) = 0ifn # 2 (mod 3). The list of values of
V2(B(3n +2))is

{1,1,2,5,1,1,2,5,1,1,2,7,1,1,2,6,1,1,2,5,1,1,2,5,1, 1,2, 6, 1, 1}

and the patterns {1, 1, 2, *} suggests considering the sequence v2(B(n)) for n
modulo 12. The values n = 2 (mod 3) split into classes 2, 5, 8 and 11 modulo
12. The data suggests

v (B(12n +5)) = 1, va(B(12n +8)) = 1, va(B(12n + 11)) = 2,
while the class n = 2 (mod 1)2 does not exhibit such a pattern.
The first step in the analysis of 2-adic valuations of B(n) is to present some

elementary congruences to establish that both B(3n) and B(3n + 1) are always odd
integers. The proof relies on the recurrence

n—I1
By ==Y (” - 1)E(k), forn > 1 and B(0) = 1. (47)

k=0 k
Proposition 3. The complementary Bell numbers B(n) satisfy
BGBn)=BBn+1)=1,and BBn+2)=0 (mod 2). (48)

Proof. Proceed by induction. The recurrence (47) yields

_ 3n—1 3n—1 ~
—BGn) =) LB (49)

k=0
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Fig. 4 The 2-adic valuation
of B(3n + 2) 10 +
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Splitting the sum as
i 23— 231\ ; 2 3n—1) ;
—B = B(3k BBk +1 BBk +2
MG LLE o o) LRI o S L

and using the inductive hypothesis gives
" — -1\ S (3n-1
— B(@3n) = d 2). 50
(3n) Z( 3k )+Z(3k+1) (mod 2) 0)
k=0 k=0
The two sums appearing in the previous line add up to
S 3n—1
2t — . 51
>(3s) o
k=0
The result now follows from the identity
n—1
3n—1 23n—1 —1)"
Z " = # (52)
pard 3k +2 3

Both sides satisfies the recurrence x;,+2 —7x,+1 —8x, = 0 and have the same initial
conditions x; = 1 and x, = 11. O

Proposition 3 shows that
12(B(3n)) = v2(B(3n + 1)) = 0, (53)

leaving the case v2(B (3n + 2)) for discussion. This is presented in Sect. 7. Figure 4
shows the data for this sequence and its erratic behavior can be seen from the graph.
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7 The 2-Adic Valuation of B (3n + 2)

The results from the previous section show that B(3n) and B(3n + 1) are odd
integers and §(3n + 2) is an even integer. This section explores the value of the
sequence v, (B(3n +2)). The family of polynomials {1 j(k) : j = 0} play the same
role as (k) did for the regular Bell numbers B(n).

Lemma 7. The family of polynomials A ; (k), defined by

Ajyi(k) =kAjk) —Aj(k+ 1), 54)
Ao(k) =1,
satisfy
_ n+j n
Bn+j) =) (DSt +j.k) =D (=D*A;(0)Sm.k), (59
k=0 k=0
foralln, j = 0.
Proof. Use the recurrence (54) and proceed as in the proof of Lemma 1. O

Corollary 1. The evaluation B(j) = A;(0) is valid for j € N.

The recursions for the falling factorials, given in Proposition 3, yields an
evaluation of B(n) in terms of the powers of an infinite matrix.

Note. The (i, j)-entry of a matrix A4 is denoted by A(i, j). This notation is used to
prevent confusion with the presence of a variety of subindices.

Theorem 2. Let P = P(r,s), r,s > 0 be the infinite matrix defined by

Pr+1,r)=1,P(r,r)y=r—1,P(r,r+1)=—r—1, P(r,s) =0for|r—s|>1

(56)
or
-1-10 0 0 O -
1 020 0 0
0601 1-300:
p=| 0 01 2 —-40- (57)
0001 3 -5
00001 4.
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Then
B(n) = P"(0,0). (58)

Proof. The first step is to express the polynomials A,(x) in terms of the falling
factorial:

(k) = en(r) k), (59)

r=0

The recurrence relation in Lemma 7 shows that ¢, (r) are integers with ¢(0) = 1,
co(r) = 0forr > 0 and ¢,(r) = 0 if r > n. Moreover, this recurrence may be
expressed as

Cnt1 = Pen, (60)

with P defined in (57) and ¢, is the vector (¢, (r) : r > 0).
Note that powers of P can be computed with a finite number of operations: each
row or column has only finitely many non-zero entries. Iterating (60) gives

cy(r)y = P"(r,0),r > 0. (61)

The result now follows from Corollary 1 and ¢, (0) = A4,,(0). O

The next lemma contains a precise description of the fact that the falling factorial
(k) is divisible by a large power of 2. This is a fundamental tool in the analysis of
the 2-adic valuation of B(n).

Lemma 8. For eachm > 0 and k > 1, the congruence
k), =0  (mod 2*"7Y) holds for all r > 2. (62)

Proof. Since (k), divides (k); for j > r, it may be assumed that r = 2”". Now
observe that (k),/r! = (/:), thus v2((k),) = va(r!). Forr = 2™, Legendre’s formula
(5) gives the value vo(r!) = 2" —5,(2") = 2" — 1. O

Now we exploit the previous lemma to derive congruences for E(n) modulo a
large power of 2. The first step is to show a result analogous to Theorem 2, with
P replaced by a 2" x 2" matrix, provided the computations are conducted modulo
22"=1 Proposition 4 is not necessary for the results that follow it, but it is of interest
because it allows us to express E(n) as the top left entry of the power of a finite
matrix (with size depending on n).

Proposition 4. Let P[n] be the n x n matrix defined by

Pln](r,s) = P(r.s), 0=<rs=n-—1. (63)



38 T. Amdeberhan et al.
Foreachn > 1landi > 1,

(P[n))’ (r.s) = P'(r,s) forO<r,s<n—1, r+s+i<2n—1.

Proof. Fix n > 1 and proceed by induction on i. The statement is clearly true for
i = 1.Assume thatr 4+ s 4 i 4+ 1 < 2n — 1, then the claim follows by computing

n—1
(Pl ™ (r.5) = Y (P[] (r.0) P[a)(2, 5). (64)
1=0
O
Corollary 2. Fori < 2n — 1, the complementary Bell number is given by
B(i) = (P[n])". (65)

For m > 1 fixed, denote P[2™] by P,,. This is a matrix of size 2" x 2", indexed
by {0,1,...,2" — 1}. Lemma 8 gives

2m—1
(k) = Z en(r)(k), (mod 22"7Y), n>1k >0, (66)

r=0

and then the same argument as before gives
en(r) = P'(r,0)  (mod 22"7h), for0<r<2"—1,n>1.  (67)

The next proposition summarizes the discussion.

Proposition 5. Forn € N,

B(n) = P"(0,0)  (mod 2*"71). (68)

Corollary 3. The complementary Bell numbers satisfy

21
Bin+j)= ) PJO.r)Pp(r.0)  (mod2”").n>1,j=0. (69
r=0
Proof. This is simply the identity Py / = P x P, u]

Proposition 6. The following table gives the values of 1;’(2471 + j) modulo 8 for
0<j <23
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j |B@4n + j) mod 8 j |B@24n + j) mod 8
0 1 12 5
1 7 13 3
2 0 14 0
3 1 15 5
4 1 16 5
5 6 17 6
6 7 18 3
7 7 19 3
8 2 20 2
9 3 21 7
10 5 22 1
11 4 23 4

Proof. Choose m = 2, and check that P* = I (mod 8). Corollary 3 gives

3
BQ4n+ j) =) P/ (0.r)P}*(r.0)= P{(0.0)= B(j)  (mod8). (70)
r=0

Therefore the value of l;’( J) modulo 8 is a periodic function with period 24.
The result follows by computing the values B(j) for0 < j < 23. O

Corollary 4. Assume j #£ 2, 14 (mod 24). Then

n(B(j)) = {2 if j = 11,23 (mod 24); (71)

0 otherwise.

Corollary 5. Assume j # 2, 14 (mod 24). Then B(j) # 0.

The remaining sections discuss the more difficult cases n = 2 and n = 14
(mod 24).

8 The Top-Left Block of Powers of the Matrix P,

The analysis of the 2-adic valuation of B(n) employs the sequence of matrices
appearing in the top-left block of powers of the matrix P,,. This section describes
properties of this sequence.

A convention on their block structure is presented next:
letn € Nandi, j integers with 1 < i, j < n — 1. For an n x n matrix Q and an
i X j matrix A, the block structure is
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A B
Q=(CD). (72)

Since the size of the top left corner determines the rest, the notation

iXj

——
o=|"4 B

cC D

will be used to specify the size of all blocks when necessary. The default convention
is that whenever a 2™ x 2™ matrix is written in block form (é g), it will be

understood that the blocks are of size 2! x 2~
_ The next lemma is the essential part of the argument for the 2-adic analysis of
B(n). The proof is a simple check with the definitions.

Definition 2. For each m > 0, define 2" x 2™ matrices B,,, D,,, V,, inductively as
follows: By = —1,Dg=1,Vy =1,

00 D,, B oV,
Bm+1=(B 0),Dm+1=( OmDm)’Vm+1=(O (;"),

where all blocks are 2™ x 2™ matrices.

Recall the P, is the 2" x 2™ matrix obtained from the top left corner of the
infinite matrix P defined in (57).

Lemma 9. The matrices Py, satisfy the recurrence

Py 0 w (0 By
P’”“_(Vm Pm)+2 (ODm)'

The first point in the analysis is to show that, for every power of P,,, the top half
of the last column is zero modulo a large power of 2.

Lemma 10. Forallm > 1,n > 1,and 0 <i < 2" — 1, the inequality
vy (P,Z(i,Z’”—l)) >2" —m—1—v(i!). (73)

holds.

Proof. The right-hand side vanishes form = 1. Fixm > 2.Ifn = 1, the last column
of P, has 2" — 2 zeros at the beginning and its last two entries are —(2” — 1) and
2™ — 2. Therefore, vy (P, (i,2" — 1)) = oo for0 <i <2™ — 3, and

v (P (2" =2,2" = 1)) = na(—=(2" = 1)) =0,

v (P (2" —=1,2" = 1)) = v,(2" =2) = 1.
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Legendre’s formula (5) shows that the right-hand side of (73) is 2" —m—1—i +s2(i),
so it vanishes fori = 2" —2 and i = 2" — 1. This proves the case forn = 1.
The inductive step is presented next:

2"—1

Patii 2" —1) = Y Puli.j)PL(G.2" = 1)
j=0

Pu(ii — )Pl — 1,2 — 1) + P, (i.i) P (i, 2" — 1)
+ P i + DPIG 41,27 — 1)
= P (i—12"—1)+(—DP'G.2" =)= + )P +1,2" —1).

Observe that the three terms on the last line are elements of the last column of the
matrix P). The inductive argument provides a lower bound on the power of 2 that
divides these integers. Therefore, there are integers ¢1, ¢2, ¢3 such that

P)Z +1 (l, om _ 1) — zszmfl (27”2(("71)!)% + 21)2(1' — 1)71)2(1'!)q2 _ zvz(i + 1) —w(i+ l)!)éh) .

It follows that
v (PpE,2" = 1)) =

2" —m — 1 +min{—v,(({ — D), v2(i — 1) — (i), v2(@ + 1) —va((@ + 1)H}.
(74)

Now use v (i + 1) —v2((i + 1)) = —vo(i!) and —v,o((i — 1)) > —v, (i), to verify
that the minimum on the right is —v,(i!). This completes the argument. O

The next step is to describe the relation of the matrix P, (of size 2" x2")to P+
(of size 21 x 2T 1), The additional block matrices appearing in this transition are
defined recursively:

Fix m > 0, define 2" x 2™ matrices Vi, », Amans Bmns Cmns Dm.n inductively by

Vad = Ve Viuns1 = Viun P + P Vi g

B = B, Bupt1 =P By + BppPy

An1 =0, Apnt1 = AmaPm + BunVn
Dui=Dp, Dppst = ViguBm + Py Dy + Dy Py

Cm,l =0, Cm,n+l = Cm,n Pm + Dm,n Vm

The relation between P,, and P,y is stated next.
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Lemma 11. For each n > 1, the congruence

Py 0 Ann B
pro=(. " pA I d 2% 75
m+1 (Vm’n PIZ ) + (Cm’n Dm'n ) (mo ) ( )
holds.
Proof. The result is clear for n = 1. Computing P = P!, | Py, it follows
that

Pn+l — Pr’:, + 2mAm,n 2mBm,n P,Z ZmBm
ML A\ Vi +2"Crp P2+ 2" Dy ) \ Vi P+ 27D,
Pn+l 0
— m
N (Vm,n Py + P!V, P;;H)

n
+2m(Am,an+Bm,an PmBm+Bm,an )

d 2%™).
Corn Pos + DusVin Vi B + P Dyy + Dyy Py (mod 2°)

The recurrence for the matrices A, B, C, D and V are designed to complete the

inductive step. O
Corollary 6.

Vinon = Vun P+ P2V, (mod 2°™) (76)
Proof. This follows from Lemma 11 by computing P,ﬁ’fH =P P O

The next lemma shows some operational rules for the matrices A, B introduced
above. The symbol * indicates an unspecified integer or matrix.

Lemma 12. (a) For any 2™ x 2™ matrix M (i, j) and arbitrary i € N, we have
(MB,)(i,0) =—M(@,2" —1).

(b) Form > 2andn > 1, both By, , and Ay, n have the form

(0 0) (mod 2271

* Xk

Proof. Part (a) follows directly from the definition of B,,. Part (b) is established by
induction. The statement holds for B,, ;. Now observe that

(P!B,)(i,0) = —P"(i,2" —1)=0  (mod2*"'~1) for0 <i <2" ' 1,
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by part (a) and Lemma 10. The induction hypothesis implies that

By = (0 0) (mod 2271,
k ok

and this leads to

Bunst = P By + Bun P = (0 O) (mod 22"~ 1),
' k ok

A similar argument shows that
Am~"+1 = ApnPpu + Bm,an = (0 :‘)) (mod sz_l_l)- O
, , X

The next results describe the powers of P, considered modulo 2!, This leads to
explicit formula for the 2-adic valuation of B (n).

Notation: d,, = 3 x 2™,

Proposition 7. Forallm > 1,
Pin =] (mod 4), and Vya, =0 (mod 2).

Proof. For m = 1, a direct calculation shows that Pf’ = I and so Pld = Pl6 =1.
Also,

V1,25V1P1+P1V15((1)1) (mod 2),
_ >, (01
Via=Via P+ PiV = 1 (mod 2),

and this produces

00

Vl,dl = Vl,() = I/1,31')13 + Pl?)l/lq?’ = (0 O

) (mod 2).

Assume now P, = I (mod 4) and V}, 4, = 0 (mod 2). For simplicity, drop the
subscripts in the matrices. Lemma 11 gives

dyn _ (PO _ (10
Pm+l:(VP)=(VI) (m0d4)
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and

2
derl — d
Pm+l - (Pm’l;-l)

(L) () (1) wwn

XY
Vin+1.d, = (Z W)

Using the notation

it follows that

Vint1.dpsr = Vn+12d, = m+1,de,Z’11 + P,Z’Z,’_leH,dm
XY P O n P O XY
Z W vV P vV P zZ W
XY 10 n 10 XY
Z W VI Vi Z W
X+YVY " X Y
Z+WVw VX+ZVY+W

E( X +YV 27 )E(oo) (tmod 2). .

2Z+ WV +VX VY +2W 00

The next proposition provides the structure of Pn‘f”' modulo 2”3, for m > 4.
Introduce the notation

1260
6106
3454
0143

and define recursively for m > 4 the 4 x (2" — 4) matrices R,, by

110000000000
100000000000

Re=1011100000000]
001000000000
Rus1 = (R, 0).

Notation: ¢(*) indicates a matrix or number that is a multiple of g.
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Proposition 8. Let m > 4. Then

4x4

—_——

o zmQ 2m+2Rm ”
Pin =] + (4(*) 40 ) (mod 2™+3).

Proof. The claim holds for m = 4 by simple task: evaluate P, modulo 27. Keep in
mind that P, is a 16 x 16 matrix.

Assume the claim holds for 7. Observe that 2m > m +4 for m > 4, therefore the
congruence modulo 2> of Lemma 11 can be replaced with a congruence modulo

2m+4 Write V = (X Y ) to obtain

zZWw
dyn _ (PO mfAB
wha=(ve) e (E)
[+2"Q 2mP2R 0 0
_| o4 144w 2 2w (mod 27+,

X 4+27(k) Y +27(x) [ +27(x) 2"(%)
Z+2"() WA2T(x)  4(x) T +4(x)

Squaring this matrix gives

I + o+l 0 om+3 R 0 0
A1 — 4(*) I+ 4(*) 4(*) 4(*) d

27 +4(x) 2W +4(x)  4(x) I +4(%)

XY

Th i ition shows that V' =
e previous proposition shows tha ( 7 W

) =0 (mod 2), therefore

A1 _ 2 2m 3R, mtd
P =1+ ( 4(%) 4(%) (mod 2"77).

This completes the induction argument. O

The next corollary is employed in the next section to establish the 2-adic
valuation of complementary Bell numbers.
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Corollary 7. For eachn > 1,

4x4

—_——
om Q 2m+2Rm

P,;’,dm EI+I’I(4(*) 4%)

) (mod 2mF3).

Proof. The result follows immediately from Proposition 8 and the binomial
theorem. O

9 The Casen =2 (mod 24)

The 2-adic valuations for the complementary Bell numbers B(n) are given in
Corollary 4 for j # 2, 14 (mod 24). This section determines the case j = 2.
The main result is:

Theorem 3. Forn € N,
vy (B(24n +2)) = 5 + va(n).

Proof. Write n = 2"q with g odd. Corollary 3 and Proposition 8 give

2m+3_1

Ban+2) = BG-2"Pq+2 = Y PIAE0.r)P24(r.0)
r=0

dm dm
= PIY (0,00 P2,5(0.0) + P4 (0.1 P2, ,(1,0)
d}’ll
+ P 0,2)P) 5(2,0)
= (1 + 2m+3q)(0) _ q2m+4 + 6q2m+3

= q2m+5 = 2m+5 (mod 2m+6)'

The expression for the valuation v, (B(24n + 2)) follows immediately. O

The tree shown in Fig.5 summarizes the information derived so far on the
2-adic valuation of B(n). The top three edges of the tree correspond to the
residue class of n (mod 3). The number by the side of the edge (if present)
gives the (constant) 2-adic valuation of B(n) for that residue class. For example
v2(B(3n + 1)) = 0. If there is no number next to the edge, the 2-adic valuation is
not constant for that residue class, so n needs to be split further. The split at each
stage is conducted by replacing the index n of the sequence by 2n and 2n + 1.
For example, the sequence v2(B(12n + 2)) is not constant so it generates the two
new sequences v,(B(24n + 2)) and v2(B(24n + 14)). Constant sequences include
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mod 3

mod3-2

mod3-2°

mod3-2°

mod3-2*

mod3-2°

mod3-2°

mod3-2’

mod3-2°

Fig. 5 The 2-adic valuation of B(24n + 2)

v2(B(12n + 8)) = v2(B(12n +5)) = 1 and v,(B(12n + 11)) = 2. The main
theorem of this section shows that the infinite branch on the left, coming from the
splitting of 24n + 2, has a well-determined structure. The other infinite branch,
corresponding to 24n 4 14, does not exhibit such a regular pattern. This is the topic
of the next section.

10 The Case n = 14 (mod 24)

This section discusses the last missing case in the 2-adic valuations of B(n). The
main result of this section is:

Theorem 4. There is at most one integer n > 2 such that B(n) = 0.

Outline of the proof. The proof consists of a sequence of steps. O
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Step 1. Define two sequences {x,,, yn } recursively via

Vm if vy (B (xp)) > m + 5;
Ym+1 =
Ym + 27 if VZ(g(xm)) <m+5;

Xm+1 = 24ym+l + 14.

Step2. Let y, = Z sm,,-Z" and let s; = lim s,; and define s =
Pt m—00
(SOs S17s27”')'
Step3. Forn eNletn = Z by (n)2* be its binary expansion. Let
k

w(n) = first index k such that by (n) # si; a7
o0 otherwise.

Then w(n) < oo unless s has ony finitely many ones and s is the binary expansion
of n. If such n exists, it is called~exceptional.
Step 4. The 2-adic valuation of B(24n + 14) is given by

v2(B(24n + 14)) = w(n) + 5. (78)
In particular l?(n) = 0 only if n is exceptional. This concludes the proof of the

theorem.

Proof of Theorem 4. The r-th entry of the top row of P} needs to be expressed as
a linear combination of B(j + i) (mod 22"~'), 0 < i < r. This is the content of
the next lemma. O

Lemma 13. Define b, (i) recursively by
bo(0) = 1,
by+1() = b,(i = 1) + (1 =r)by (i) + rby—1(i), 0<i <r
b.(i) =0 fori <O0ori >r.
Then foreachm > 1, j > 1, and 0 <r < 2™ — 1, we have

PJ(0.r) =) b ())B(j +i) (mod 2"
i=0
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Proof. The proof is by induction on r. If r = 0, the statement is Proposition 5.
Assuming the statement for r, it follows that

PJT0.r) =) b()B(j +1+i)  (mod 27"
i=0

and also

PiTN0.r) = Pi(0.r — 1) Pyy(r — L,r) + P (0.7) Pyu(r.7)
+ PJO.r + )P, (r +1,r)
= —rPJ(0,r — 1) + (r — )PJ(0,r) + PL(0,r + 1).

Comparing the two expressions and using induction, P,,’; (0,7 + 1) is expressed as a
linear combination of B(j 4+ i), 0 <i < r, with coefficients as in the right side of
the equation defining b, 41 (7). O

Extensive calculations suggest that vz(é (24n + 14)) is always at least 5, and it
is rather irregular. After examining the experimental data, we were led to define the
following sequences.

Define x,,, y» inductively by:

Yo = 0, xo= 24y0 + 14,
and if x,,, y,, have been defined, set

Vi if vy (l?(xm)) >m+5
2" + y ifva (B(xm)) <m+5"°

Ym+1 = Xmt1 = 24ypm41 + 14.

This is the statement of Step 1.
The next table gives the first few values of y,, and x,,.

m|0 12 3 4 5 6 7 8 9 10
ym|O 1 1 5 13 13 13 77 77 333 845
xm|14 38 38 134 326 326 326 1,862 1,862 8,006 20,294

The next lemma provides a lower bound for the 2-adic valuation of the
subsequence of complementary Bell numbers indexed by x,,.

Lemma 14. Form € N, vy(B(x,)) = m + 5.
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Proof. The proof employs the values of b, (i) for 0 < r < 2. These are given in
Lemma 13 for r = 0, 1, 2. It turns out that »;(0) = b;(1) = by(0) = by(1) =
b>(2) = 1. (In case one wonders here if all non-zero terms of b, (i) are 1, this is not
true for r > 3).

Direct calculation shows that v,(B(xg)) = v2(B(14)) = 5, and v,(B(x))) =
v>(B(38)) = 7. Therefore the statement holds for m = 0, 1. Assume the result for
m > 1. Therefore vz(é (xp)) =m+5.1f vz(é (X)) > m + 5, then by definition
Xm+1 = Xm, and it follows that vz(é (Xm+1)) = m + 6. On the other hand, if
Vo (B(xp)) = m+ 5, write B(x,,) = 2" %3¢, with ¢ is odd. Then yy41 = 2" + Y,
and X, +1 = 242" +y,,) +14 = 3-2"T3 4 x,,. Corollary 3 (withn = 3.2"+3, j =
Xm, and m replaced by m 4+ 3) and Proposition 8 (with m replaced by m 4-3), produce

2m+3 1
- - m—+3_
Boms) = BG-2"P )= Y PMO0.)PYE (n0)  (mod 22"
r=0

=(1+ 2m+3)PXm 3(0 0)+6- 2m+3me 3(0 1)+3- 2m+3PXm 3(0 2)

om+3_q
+ 3 PP 0)  (mod 276,

Proposition 8 shows that the first term in the last sum is divisible by 2”5 and the
second term is divisible by 4. Then, Lemma 13 yields

B (xpg1) = (1 +2"THB (x) +3-2"T* (B (x0) + B (3 + 1))
+3-2"F3 (B (x) + B (x + 1) + B (X +2)) (mod 2" 7T°).
Since x,, + 1 = 15 and x,, + 2 = 16 (mod 24), Proposition 6 shows that

B(xy +1)= B (x, +2) =5 (mod 8). So we find

B (xps1) = (142732715 3. 2mF4 (275G + 5 + 8(x))
+ 3273 (2" g + 5+ 8(x) + 5 + 8(x))
=2"t5g 4 15. 2" 4 15.2m%3 4 15. 0713
=2"Pg 4 152" = (g + 152" =0 (mod 2"*°).

This completes the inductive step. O

Lemma 15. The binary expansion of y,, has the form
m
Ym =) Smi2 (79)

and s; = lim s, ; exists.
m—00
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Proof. By construction y, < 2™ — 1, showing that the binary expansion of y,, ends
at 2"~!. Moreover, the binary expansion of y,,+| is the same as that of y,, with
possibly and extra leading 1. This confirms the existence of the limit s;. O

Note. Step 2 concludes by defining s = (5o, s1,...)=(1,0,1,1,0,0,1,0,1,1,...).

Theorem 5. Let n be a positive integer with binary expansionn =y, by 2%, and
let w(n) be the first index for which by # si. If no such index exists, let w(n) = oo.
Then

V(B (24n + 14)) = w(n) + 5.

Note. Asdiscussed in Step 3, there is at most one index n > 2 for which w(n) = oco.
This happens when s, defined above, has finitely many ones. In this situation, s is
the binary expansion of this exceptional index. The conjecture of Wilf states that
this situation does not happen.

Proof. The notation m = w(n) is employed in the proof. If m = oo, then B(24n +
14) = 0 and the formula holds. Suppose now that m # oo. Then there is p € N
such that 24n + 14 = 3.2"3p 4 x,,.

Write B(x,,) = 2"+ g, with ¢ odd and i > 0. Then, as in the previous proof
(and also using Lemma 7), it follows that

B(24n +14) = B (3-2"Fp + x,)
= (1 + 2m+3p)2m+5+iq 4 3]7 . 2m+4 (2m+5+iq +54 8(*))
+3p- 2" (2" g + 5+ 8(x) + 5+ 8(x))
= 2"t 4 15p - 2" L 15p - 2m 3 p 15p 23
= 2"ty 4 15p . 2" = 2" P52l +15p)  (mod 2™9).

Ifi = 0, thens,, = 1, and p must be even (because this is where n and s disagree).
Thus the quantity in parentheses on the last line is odd, and v2(B(24n + 14)) =
m+ 5.1fi > 0, then s, = 0, and p must be odd and, as in the previous case, the
quantity in parentheses is odd. The result follows from here. O

Note. The tree shown in Fig. 6 updates Fig. 5 by including the 2-adic valuation of
B(24n + 14). It is a curious fact that v,(B(n)) takes on all non-negative values
except 3 and 4.

Final comment. It remains to decide if the exceptional case exists. If it does
not, then B(n) # 0 for n > 2, Wilf’s conjecture is true and the sequence
v,(B(24n + 14)) is unbounded. If this exceptional index exists, then it is unique.
Observe that the exceptional case exists if and only if the sequence x,, is eventually
constant.
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0
© D 2) mod3
@) 3) mod3-2
1 1 2

Q ® & O mod3-2°

Q) @ mod3-2°
5 5
@ @ @ &3 mod3-2*
6 6
@ @ @ @ mod3-2°
7 7
@) @ 69 (39 mod3-2°
8 8
@ 66) () G20 mod3-2’
9 9
@ @0 Q) mod3-2
K 10

@O @ med3
11
@ @ mod3.2"
12
BD@D  mods 2!
13

G G0 mod3.2"
14
GO mod32”
15

GIDWSTD  mod3-2"

Fig. 6 The 2-adic valuation of B(24n + 14)
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11 Two Classes of Polynomials

Two families of polynomials have been considered in Lemmas 1 and 7: po(x) =
1,A0(x) =1, and

Wj+1(x) = xpj(x) + pj(x +1); forn >0; (80)
/\j-l—l(-x) :x/\j(x)—/\j(x—i—l); forn > 0. (81)
The corresponding exponential generating functions are provided below.
Lemma 16. The polynomials jv; and A ; have generating functions given by

o

J ) X .
S S =T and YA () = e (82)
j=0/" j=0/"

Proof. Let F(x,z) = Z Z,—j',uj (x) and G(x,z) = e '*¢ Multiplying the
polynomial recurrence thi(z)l(;gh by z/ /j! yields
(05 = 314,05 1+ DT

Now sum over all non-negative integers j to find

0

B—ZF(x,z) =xF(x,z) + F(x + 1,2). (83)
Since G(x + 1,z) = €*G(x, z), it follows

a%G(x,z) =G(x,2)(x +¢%) = xG(x,2) + G(x + 1,2). (84)

On the other hand, F(x,0) = uo(x) = 1 = G(x,0). Therefore, F(x,z) = G(x,2).

The same argument verifies the second assertion of the lemma. The proof is
complete. O

Corollary 8. The polynomials p; and A ; satisfy
p;(0) = B(j) and 2;(0) = B(j). (85)

Corollary 9. There are double-indexed exponential generating functions for
(), A (n):

Zy" _ —l+(+Des Zy" _ =14+ (—1)e
Z“’(”)j!n! - ’ ZA’(”)j!n! - '

Jjn=0 Jjn=0




54 T. Amdeberhan et al.

Proof. Direct computation shows

ijn _ nz—14e€* yn _ —l4ef (yez)n
Doy = 2 = Y @9
j.an n n
with a similar argument for A ;. O

Corollary 10. The polynomials j1;(x), ) ;(x) are binomial convolutions of Bell
numbers,

i) =y (i)B(r)xj_r’ NIOEDY (i)é(r)xj_r.

r r

Proof. This follows directly from

. Zj _ =1 xz _ B(k Zk nzn ]7
Zu,(x)ﬁ—e =) Bl x D X" (87)
j=>0 k>0 n>0
and a similar argument for A ;. o

Corollary 11. The family of polynomials A;(x) have a missing strip of coeffi-
cients, i.e.

[xj_z])kj (x)=0.
Proof. Follows from Corollary 10 and B(2) = 0. O

Define the functions ) (x) inductively, as follows:

e(x) =eV(x)=1-¢"
e* TV (x) = e(e®(x)).
These are called super-exponentials. For example,
1—e*

ePx)=1-¢" and e®x)=1-¢"""

Introduce the super-complementary Bell numbers, B%)(n), according to

Zé”‘)(n)z—’: =1—e*D(x). (88)

n>0

The usual complementary Bell numbers B(n) become BW (1) due to the relation

Z l?(n)i—}: =™ =1-eP(x). (89)
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The next conjecture is a natural extension of Wilf’s original question.

Conjecture 1. Letk € Nbe odd. Then B®)(n) = Oifand only if n = 2. Fork € N
even and k # 2, it is conjectured that B®(n) # 0. The case k = 2 is peculiar: the
corresponding conjecture is that B® (n) = 0 if and only if n = 3.

Combinatorial meanings: Bl(l)(n) = number of set partitions of {1,...,n} with
an even number of parts, minus the number of such partitions with an odd number
of parts; Bl(z) (n) = number of set partitions of {1,...,n} with an even number
of parts, minus the number of such partitions with an odd number of parts, and
then repeating this process for each block. Similar number of chain reactions yield

B fk) (n). For instance,

BO(n) =) (=1)/S(n, ) B(). (90)

=0

Illustrative example. Take n = 3, and partition the set {1,2,3}. For k = 1:
{1,2,3}; fork = 2: {1,{2,3}}, {2,{1,3}}, {3,{1,2}}; for k = 3: {{1},{2},{3}}.In
the next step, partition blocks as follows. When k = 1: {1, 2, 3} is its own partition
as a l-element set; when k = 2, partition each of {1, {2, 3}}, {2, {1, 3}}, {3,{1,2}}
as 2-element sets; when k = 3, partition {{1},{2},{3}} as a 3-element set. The
resulting collection looks like this:

{1,2,3},

{1.{2.3}},

{1 42,345

{2.{1.3}},

{123, {1,315}

{3.{1.2}},

{35, {1,215}

{13,423, 33}

{1, {25 {33},

{12}, {13 {333,

{35 {13,423,

{13 {23 35
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Partitions with Early Conditions

George E. Andrews™

In honor of my friend, Herb Wilf, on the occasion of his 80th
birthday.

Abstract In an earlier paper, partitions in which the smaller parts were required to
appear at least k-times were considered. Some of those results were tied up with
Rogers-Ramanujan type identities and mock theta functions. By considering more
general conditions on initial parts we are led to natural explanations of many more
identities contained in Slater’s compendium of 130 Rogers-Ramanujan identities.

1 Introduction

In 1886, J. J. Sylvester [17] posed a couple of problems in the Educational Times
that are precursors to the study undertaken here. We reproduce the problems in their
entirety:

Definition. If, in any arrangement of integers, each of the numbers 1,2, 3, ... up to any odd
number (unity inclusive), say 2i — 1, occurs once or any odd number of times, but the even
number following, say 2i, does not occur any odd number of times, the arrangement is said
to be flushed; if such kind of sequence does not occur, it is said to be unflushed.

1. Required to prove, that if any number be partitioned in every possible way, the number
of unflushed partitions containing an odd number of parts is equal to the number of
unflushed partitions containing an even number of parts.
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Ex.gr.: The total partitions of 7 are
7,6,1;52;5,1,1;4,3;4,2,1;4,1,1,1;3,3,1;3,2,2;3,2,1, 1, 2,2, 2, 153, 1, 1, 1,
1;2,2,1,1,1;2,1,1, 1,1, 1; 1, 1,1, 1, 1, 1, 1.
Of these, 6, 1;4,1,1,1;3,3,1;2,2, 1,1, 1; 1, 1, 1, 1, 1, 1, 1 alone are flushed. Of
the remaining unflushed partitions, five contain an odd number of parts, and five an even
number.
Again, the total partitions of 6 are
6;5,1;4,2;4,1,1;3,3;3,2,1;2,2,2;3,1,1,1;2,2,1, 1;2, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1;
of which 5, 1; 3, 2, 1; 3, 1, 1, 1 alone are flushed. Of the remainder, four contain an odd
and four an even number of parts.
N.B.—This transcendental theorem compares singularly with the well-known alge-
braical one, that the total number of the permuted partitions of a number with an odd
number of parts is equal to the same of the same with an even number.

2. Required to prove that the same proposition holds when any odd number is partitioned
without repetitions in every possible way.

>

Sylvester did not publish solutions to these problems. In 1970, solutions to both
problems were published [1] and the generating function for flushed partitions
(corrected) was revealed as

[e.0]

an(Sn—l)/Z(l _ qn)

n=1

(¢:9) oo

where

(A;q)n = (1= A)(1 = Ag) (1 = Ag" ™).

The solutions of Sylvester’s problems involved generating functions. It is com-
pletely unknown whether this was Sylvester’s approach and how he came upon
flushed partitions in the first place.

Sylvester’s flushed partitions suggest a more extensive study of partitions subject
to variations on the following three constraints which we shall call the Sylvester
constraints:

1. Some of the smaller parts are required to appear a specified number of times
(e.g. in the case of flushed partitions, an odd number of times).

2. Immediately following the parts considered in (1) there may be one or two
special parts (e.g. in the case of flushed partitions, the first integer appearing
an even number of times is even).

3. The larger parts are constrained differently if at all (e.g. in the case of flushed
partitions there are no constraints).

In the subsequent decades of the twentieth century, N. J. Fine appears to have
been the only one to consider questions of this type. In lectures at Penn State, he
observed that the conjugates of partitions into distinct parts are “partitions without
gaps,” i.e. partitions in which every integer smaller than the largest part is also a
part. For example, here are the partitions of 6 into distinct parts paired with their
conjugates:
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6 I+1+1+1+1+1
5+1 24+1+14+1+1
442 24+2+1+1

3+2+1 3+2+1

Fine also noted in his book [7, p. 57] (see also [18]) that in one of Ramanujan’s
third order mock theta functions

the coefficient S(n) is the number of partitions of n into odd parts where each odd
integer smaller than the largest part must also be a part.

In 2009, the theme initiated by Sylvester was further developed in a paper titled
“Partitions with initial repetitions” [5].

Definition 1. A partition with initial k-repetitions is a partition in which if any j
appears at least k times as a part, then each positive integer less than j appears k
times as a part.

As noted in [5, Theorem 1], partitions with initial k-repetitions fit naturally into
an expanded version of the Glaisher/Euler theorem [2, Corollary 1.3, p. 6].

Theorem 1. The number of partitions of n with initial k-repetitions equals the
number of partitions of n into parts not divisible by 2k and also equals the number
of partitions of n in which no part is repeated more than 2k — 1 times.

This idea was further developed in [5] and sets the stage for the results in this
paper.
Definition 2. Let F,(n) (resp. F,(n)) denote the number of partitions of 7 in which
no odd (resp. no even) parts are repeated and no odd part (resp. even part) is smaller

than a repeated even part (resp. odd part), and if an even (resp. odd) part is repeated
then each smaller even (resp. odd) positive integer is also a repeated part.

Theorem 2. F,(n) equals the number of partitions of n into parts % 0,=£2
(mod 7).

This result follows immediately from the second Rogers-Selberg identity

[16, p. 155, Eq.(32)]

2n%+2n (_q2n+l;

o 4 q) = 1
o p—
,; (@%q%)n e q"

n=1
n#£0=£2 (mod 7)
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o0

Theorem 3. Z F,(0)q" = (—=q:q)o0 f(q%), where f(q) is one of Ramanujan’s
n=0

seventh order mock theta functions [14, p. 355]

n2

— 4
fla) = Pyl
nz::l(q Sn

Our object in this paper is to apply the Sylvester constraints to various other
Rogers-Ramanujan type identities found by Slater [16], (cf. [14, Appendix A]). In
each instance odds and evens will be subject to different restrictions. Interchanging
the roles of odds and evens (as was done in passing from Theorems 2 to 3) has
an interesting outcome. Sometimes mock theta functions (cf. [18]) arise (cf. (7),
(8) and Sect.4), and sometimes other Rogers-Ramanujan type identities arise
(cf. Sect. 3).

In Sect. 2, we analyze two theorems that were originally found by F. H. Jackson
and are listed as identities (38) and (39) in Slater [16]. In this case the
exchange of the roles of odds and evens yields two of the mock theta functions
listed in [6].

In Sect.3, we begin with Slater’s identity (119) [16, p. 165]. In this case,
the reversed roles of odds and evens leads to a result equivalent to Slater’s (81)
[16, p. 160].

In Sect.4, events take a surprising turn. We begin with Slater’s (44) and (46)
[16, p. 156]. Each of these makes condition (2) of the Sylvester constraints rather
cumbersome. So the terms of the series in (44) and (46) are slightly altered to
streamline condition (2). The result is new Hecke-type series, and the odd even
reversal yields a further instance.

Finally in Sect.5, we start with Slater’s (53). This requires us to move from
odd-even (or modulus 2) conditions to modulus 4 conditions. In this case, the role
reversal takes us from Slater’s (53) to Slater’s (55).

Section 6 is the conclusion where we discuss a variety of potential projects
foreshadowed by this paper.

2 Identities of Modulus 8

Of course, there are two famous modulus 8, Rogers-Ramanujan identities. They are
due to Lucy Slater [14, Egs. (36) and (34)]:

49" = 5 1
Z = I = M

(9%:9%)n

n=1
n=1,4,7 (mod 8)
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and

( e (]2) qn 242n 00 1
Z (4% q*)n l:[ 1—g" @

n=|1
n=3,4,5 (mod 8)

Although Slater first obtained these results in her Ph.D. thesis in the late 1940s,
they have become known as the Gollnitz-Gordon identities because in the early
1960s both H. Gollnitz [9] and B. Gordon [10] discovered their partition theoretic
interpretation.

As A. Sills notes in [15, p. 103], F. H. Jackson [11] found, and Slater
[16, Egs. (39) and (38)] re-found closely related results which we now consider
in slightly altered form:

00 Zn ( q2n+17q ) _ 10_0[ 1 (3)
S (A M T R
n=1,4,7 (mod 8)
and
00 q2n2+2n( q2n+3’q) _ 1°_°[ 1 @
= (4% q*)n - 1—q"

n=1
=3,4,5 (mod 8)

S

Let us rewrite these series in a form where the partition theoretic interpretation
is obvious.

e q2+2+4+4+-'-+(2n—2)+(2n—2)+2n(1 4 q2n+l)(1 4 q2n+3)(1 4 q2n+5) .
e (I—g)(A=g*---(1—¢>")

o0 q2+2+4+4+~"+2n+2n(1 + q2n+3)(1 + q2n+5)(1 + q2n+7)___

= (I=g)H(A—g%---(1—¢g*)

The standard methods for generating partitions from g-series and products
[2, Chap. 1] allows us to interpret (5) and (6) as follows.
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Theorem 4. Let G(n) denote the number of partitions of n into parts = 1,4 or7
(mod 8). Let R, (n) denote the number of partitions of n in which, (i) odd parts are
distinct and each is larger than any even part, and (ii) all even integers less than the
largest even part appears at least twice. Then for eachn > 0,

Gi(n) = Ri(n).

For example, the 12 partitions enumerated by G(15) are 15, 12+ 1+ 1 + 1,
9+4+1+L9+1+1+---+1L,74+7+1,7+4+4,T7+4+1+1+14+1,
T+1+1+---+1L44+44+4+1+1+1L,44+44+14+1+---+1,4+14+14---+1,
14+ 1+4---4 1, and the 12 partitions enumerated by R;(15) are 15, 11 4+ 3 + 1,
94+5+1,7+54+3,134+2, 11 +24+2,94+24+2+2,74+2+2+2+2,
S+H2+2+2+42+2,34+2424+-+2,7+44+24+2,5+4+2+2+2.

Theorem 5. Let G,(n) denote the number of partitions of n into parts = 3, 4, or
5 (mod 8). Let Ry(n) denote the number of partitions of n in which, (i) odd parts
are distinct, greater than 1, and each is larger than the largest even+2, and (ii) all
even integers up to and including the largest even part appear at least twice. Then
foreachn >0

Ga(n) = Ra(n).

For example, the 7 partitions enumerate by G,(16) are 13 + 3, 12 + 4, 11 + 5,
5454+3+3,5+44+4+3,4+4+4+4,44 34 3+ 3, and the 7 partitions
enumerated by R,(16) are 1343, 114+5,9+7,74+54+24+2,4+44+2+24+2+2,
44+44+44+24+2,2424---42.

Now let us reverse the roles played by the evens and odds. The resulting
counterpart of (5) is

— — — 2
q1—|—1-|—3+3-|— +@2n—3)+2n—3)+C2n 1)(_[1211;[12)00 q2n +211(_q2n+2;q2)00

(q:9%)n = (q:9%)n+1

n>1

o0 2n24-2n
q

(22
a0 )w,;, (@5 =) 2n-+1
= q(—4% 4% 51(q). (7)
where [6]
B B oo q2n2+2n
51a) _,;, (=¢:@)2nt1
1 4n2—3n 14n+7 _ —
q (g -1 (~1)/g™7"
T @)oo ,;) ,;n
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The latter is the now familiar form of a Hecke-type series involving an indefinite
quadratic form (see also [6, Eq. (1.15)]).
The resulting counterpart of (6) is

q1+1+3+3+“'+(2n—1)+(2n—1)(_q2n+2;q2)oo _ qz"z(—qz“"'z;qz)oo
= (q:9%)n = (q:97)n
[ee] qznz
= (—¢*4%) —
= n;) (@3 =92
= (—¢%14") 00 52(9). (8)

where [6, Eq. (1.14)]

o0 202

Sa(-) =) 4

= (=49

oo

1 n>~+n n - i =i
=mzq4 (1= g Z (=D7q™7".
; = 4

j=—n

Thus, as was mentioned in the Introduction, the even-odd reversal transformed
the related generating functions from classical theta functions into mock theta
functions.

3 Identities of Modulus 28

Suppose now we allow some mixing of odds and evens in our Sylvester constraints.
Let us turn to identity (119) in Slater’s [16, p. 165] which we write as follows:

ol q1-|—3+----|—(2n+1)(_q2n+2;q2)

= dllyy ©

(¢:9)2n+1 b
n#0,£4,£5,49,14 (mod 28)

n=0

We directly deduce from this the following partition identity.

Theorem 6. Let H\(n) denote the number of partitions of n into parts # 0,14, 15,
£9, 14 (mod 28). Let S| (n) denote the number of partitions of n in which odd parts do
appear and without gaps while the evens larger than the largest odd part are distinct. Then
forn>1

Hy(n —1) = $i(n).

For example, the 18 partitions enumerated by H;(9) are 8 + 1,7+ 2,7+ 1+ 1,
6+3,6+2+1,6+1+14+1,3+3+3,34+34+2+1,34+34+14+1+1,3424+242,
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34242414+1,342414+14+14+1,34+14--4+1,24242424+1,2424+ 14141,
24241 4+14+14+1+1,241+14---4+1,14+14---+1, and the 18 partitions
enumerated by S;(10)are 8+ 1+ 1,6 +3+1,6+2+1+1,6 +1+1+1+1,
SH3 41+ L4 4342+ L4434+ 1+1+1L,4 42+ 1+1+14+1,3434+3+1,
4414144+ 15,343 4+2+1+L,34+34+14+14+14+1,3424+24+24+1,
342424+ 1+1+ 1,342+ 1+ 14+ 1,3+ 14+1++1L2+1+ 1+ +1,
T4+1+--+1.

When we now reverse the roles of evens and odds, we find that, instead of a mock
theta function arising, we obtain another identity of Slater’s [16]. Thus

OO 2444421 2n+1. 2 o n?+n
q (=¢™"":q%) q
; = :(—61%12)002.—_.2)
n=0 (KI’(])zn n=0 (qu)Zn( q4:9)n
oo n2+n
q
= (—KI§(]2) T T
= 2:;, (@%: 4 (q% 4"
— 1

= l_[ l_qn’

=1
n$0.:|:2.:|:10n.:t12.14 (mod 28)

by Slater [16, p. 160, Eq. (81)].
This result is then directly interpretable in the following theorem.

Theorem 7. Let H,(n) denote the number of partitions of n into parts # 0,12,
+10,£12,14 (mod 28). Let Sy(n) denote the number of partitions of n in which even
parts appear without gaps and the odd parts larger than the largest even part are distinct.
Then

Hy(n) = Sy(n).

For example, the 15 partitions enumerated by H,(9) are 9,8+ 1,7+ 1+ 1,6+ 3,
64+1+14+1,5+4,5+3+1,5+14+14+14+1,44+44+1,44+34+1+1,44+1+14---+1,
34343,3434+14+14+1,3+14+14+---4+1,1+1+4---+1, and the 15 partitions
enumerated by S,(9) are 9,7+ 2,54+3+1,5+2+2,54+2+1+1,4+3+2,
4424+1+14+1,44+24+241,34+24+24+2,34+24+24+1+1,342+14+1+141,
24242424+1,24242414+14+1,2424+14+14+--+1,2414+1+---+1.

4 Identities Stemming from Modulus 20

As is apparent by now, each section of this paper is devoted to some different
outcome when extending Sylvester’s three conditions to the interpretation of
Slater’s identities. In this section we begin with two of Slater’s formulas that,
upon inspection, suggest rather cumbersome partition identities. The modifications
necessary to reduce the awkwardness again lead us to mock theta functions.
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The identities in question are Slater’s (44) and (46) [16, p. 156] slightly rewritten:

q1+1+2+3+3+~--+(2n—1)+(2n—1)+2n+(2n+1)(_q2n+3; 7 oo
n>0 (q)Zn-l—l
= 1
= . 10
qEFW (10)
n#0,42,4£4,4:6,10 (mod 20)
and
q1+1-|—2—|-3-|—3+~~~—|—(2n—3)-I—(2n—3)+(2n—2)-|—(2n—1)+2n (_q2n+l; qZ)OO
n=>0 (Q)2n
= 1
= . 11
¢[Ii— v

=1
n;éo.iz.:lzsn.jzs.lo (mod 20)

One can interpret (10) and (11) in the Sylvester manner, but, in doing so,
condition (2) in the Sylvester constraints becomes quite complicated.

So instead we consider closely related series where the interpretations are more
natural. Let

> g =4

n=>0 n=0

141424343444 F+@n—1)+@2n—1)+2n (_q2n+l 4% oo

(Q)2n

2
q3n —+n (_q2n+1 : qz)oo

= 12
n>0 (('I)Zn ( )

and

1~|—1—|—2~|—3+3~|—4+'~'~|—2n+(2n~|—1)+(2n~|—1)(_q2n+3; 7)) oo

Z Jr(n)q" = Z 1

n=0 n=0

(q)2n+1

_ Z q3n2-|—5n—|—2(_q2n-|—3; qZ)OO (13)
<o (9)2n+1

Now J;(n) and J,(n) may be viewed as enumerating partitions that mix “parti-
tions with initial 2-repetitions” with “partitions without gaps.”

Namely, J,(n) is the number of partitions of n in which (1) all odd integers
smaller than the largest even part appear at least twice, (2) even parts appear without
gaps, and (3) odd parts larger than the largest even part are distinct.

The formulation of J,(n) is even more straightforward. J,(n) is the number of
partitions of n in which (1) each odd integer smaller than a repeated odd part is a
repeated odd part and (2) every even integer smaller than the largest repreated odd
part is a part, and (3) there are no other even parts.
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Theorem 8.
1 oo L5
2 .
> hmg" = A g =gt Y (g (14)
n=>0 q n=0 j=—L%J
and
qz 0o |.”2 IJ
2 DT
ZJz(n)q” — v Zq4n +6n(1 _q4n+4) Z (-1)/q 6j°+2j (15)
=0 =0 j=—13]
where
oo
V(g) =Y q"" V"2, (16)
n=0

Proof. Using representations (12) and (13) we see that (14) and (15) are equivalent to
the following assertions:

oo q3n2+n 1 o n242 a2 6242
= g T = g™ (=D/g™ Y
;) @*4)n(@% 49 (@747 o0 ;) |sz|5:,1
(17)
and
2
io: q3n +5n
= (@%@ g1
1

(o]
Zq4n2+6n(l _q4n+4) Z (_l)jq—sz-I—Zj' (18)
n=0

=20
(G*:9%) oo — —n<2j<nt1

Identities (17) and (18) may be reduced to Bailey pair identities following the use of
the strong form of Bailey’s Lemma [3, p. 270]. In the case of (17) we replace ¢ by ¢ in
Bailey’s Lemma and set @ = ¢>. In the case of (18) we replace ¢ by ¢ in Bailey’s Lemma
and set a = 1. If we then invoke the weak form of Bailey’s Lemma [4, p. 27, Eq. (3.33)]
we see that (17) and (18) are equivalent to the assertions (27) and (28) below.

Let

" @q), (" q)q03) 1
o 9
ai(n,q) ;) (q;q)j(q;qz)f "
)i )90) 20
im0 = 12:=1 (@:9)j—1(a:4%); -
N )
asz(n,q) = Z e . -

= (@D
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Our proof relies on proving the following three identities. This in the spirit of the
method developed at length in [6].

ai(n,q) +q"ai(n—1,q) = (1 +q"as(n,q), (22)

q"arx(n,q) — (1 —q"ai(n,q) = —(1 —g")az(n,q), (23)
0 if n is odd

Q) = 24

az(n,q) {(_1)Uq_uz ——— (24)

First we prove (22).

n _ j+1
@) —i @) =g
ay(n,q) +q"a(n—1,q) =
,;o (¢:9);(q:9%);

{1 =g =" +q"(1 =g ) (1 - ")

e (@7 9); (g )90
=
(1+q );) (q:9);(g:9%);

= (1 +4¢"as(n.q).
Next we treat (23).

"q);(q"; q)jq(’jl)
(@:9);(q:9);

a(n.q) —(1—g"a(n.q) =y . a

j=0

(A== —-gh)

N @":9);(q":q);qU3 )+
= — l—
(-4 )j; (@99,

o @007 )9 (1= (1 - g7))
- (-
(I-q )/Zz(:> @:9);(4:4%);

=—(1-q"as(n.q) + (1 —q")az(n.q),

which is equivalent to (23).
Finally we move to (24) using the notation of [8, p. 4] and invoking [8, p. 242,
Eq. II1.13].

— 1_
1 . q7".—1.927":q.q
= lim 3,
(—q2:q)n ™% g3, L
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__ L q"q g g
-1 _ %
(=97 @n»

)0 if n is odd

(—1)”9{_”2 if n = 2v,
where the final line follows from the g-analog of Kummer’s theorem [8, p. 236, Eq. (IL.9)].
From (22) to (24) it is clear that each of @, (n, q), a>(n, q) and as(n, q) is recursively

defined as a Laurent polynomial in ¢g. It is then a straightforward matter to show via
mathematical induction that

—q"a;(n—1,q) if n odd
WA= g8 S (gD i =, (25)
j=—v
L25]
an.q) = (1—g)(=1)"q® Y (~1yg /@, (26)
j=—14]

Equating (19) and (25) are equivalent to the assertion that

2

Y o D ) 2
an - (1—(12) al(n’q ) (27)
Pn = (@2:4*)n(q%:9*)n
are a Bailey pair (where ¢ — ¢? and a = ¢?) (see [3] especially Bailey’s Lemma

on page 270 and Eq.(4.1) on page 278). We note that this Bailey pair can also be
deduced from the more general Bailey pair given by Lovejoy [12, p. 1510, Egs.(2.4)
and (2.5)]. We may now insert this Bailey pair into the weak form of Bailey’s Lemma
[4, p. 27, Eq.(3.33)] with ¢ — ¢? a = ¢?], and then (25) and simplification
yields (17).

Equations (20) and (26) are equivalent to the assertion that

@ = (=1)"¢" 7" (1 + ¢*ax(n,q)

E _ qnzfn(l_ 2n) (28)
T (@2:4M)n (g% g

are a Bailey pair (with ¢ — g2, a = 1) [3, pp. 270 and 278]. We may now insert this
Bailey pair into the weak form of Bailey’s Lemma [4, p. 27, Eq. (3.33) with ¢ — ¢2,
a = 1]; then (26) and simplification yields (18). O

Notice that our starting position in this section, namely (12) and (13) (inspired
by (10) and (11)) landed us in the world of Hecke-type series immediately. So what
will happen when we reverse the roles of evens and odds? We define
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Z K" = Z q1+2+2+3+4+4+~-+2n+2n+(2n+1)(_q2n+2;q2)oo
>0 >0 (q)Zn-l—l
3n2+4n+1,_2n+2. 2
=Zq (24740 5y,

(('I)Zn—{—l

n=>0

and

14+24243+4--42n+2n 2n+2. 2
q (—g”" " q%)
E K>(n)q" := E —~

n>0 n>0 (q)Zn

3n242n ¢, 2n+2. 2
:Zq (4™ 540 (30,
(('I)Zn

n=>0

We shall not formally provide the partition-theoretic interpretations of K;(n) and
K,(n) because they are identical with those of J;(n) and J,(n) respectively where
the roles of odds and evens have been exchanged.

Theorem 9.
1 oo
K K —q)", 31
; ) = S ;0 2(1)(—9) 31)
and

Zq4nz+2n(l 4n+2) Z( l)j( q) 1(3]—1)/2 (32)

n=>0 j=—n

K n
X K’ = 5

n=>0

with §(q) = Y q"

n=—oo

Proof. Using representations (29) and (30) we see that (31) and (32) are equivalent to
the following assertions.

311 +4n+1
;(61 Don+1(=4% 4%
1 o0 oo q3n2+2n
= (=1)"(=q)"CrTI/2) - — 1 (33
(4% 9% oo (n;_:oo ,; (q:9)2n(=q% 4>
Z q3112-|—2n
=0 (@D (=474

1

(l] qz) Zq4”2+2ﬂ(1 4n+2) Z( 1)/( 9~ jGi=n/2, (34)

j=—n
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Identities (33) and (34) may be reduced to Bailey pair identities following the use of
the strong form of Bailey’s Lemma [3, p. 270]. For both (33) and (34) we replace ¢ by ¢>
in Bailey’s Lemma and set a = ¢°. If we then invoke the weak form of Bailey’s Lemma
[4, p. 27, Eq. (3.33)] we see (33) and (34) are equivalent to the assertions (45) and (46)
below.

Let
iy = 3 O o
= ; R G0
= A
A g) = X": (") 4%) 97 38)

(4:9)2;(—q*q%);

Our proof requires the following identities.

A3(n,q)—A1(n,q) =A2(n,q), (39)

A(n,q) +¢*" Ay(n — 1,9) = (1 + ¢*")Aa(n,q), (40)
-

st ) = 1. (1)

()~ O (1 + (- ")
l_l_an

Ay(n.q) = (42)

First we prove (39).
(47247, (6> % ¢%),47 T (1 - g¥ )
(@ @2j+1(=q%: 9%

As(n.q) — Ar(n.q) =Y

j=0

(4
a ZIO (q:9)2j (4% %)

—2n. 2 2n+2. 2 i242j
549" g7 g0
J J = Ay(n,q).

Next comes (40).

Ax(n.q) + ¢*" Ax(n — 1,9)

:Z(‘I

J=0

B O YR R Y V!
(q,q)z,( q%q?);
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% {(1 — (1 = gy 4 (1 — g _q2n)}

—2n. 2 2y i 2j
:(1+q2n)2(4 14%);(a*":4%)4

= @92 ,qz);

Now we treat (41) using the notation of [8, p. 4].

] (1—2}17[12114—27 —%;qz,qu
lim ¢, 3 ;
— g t—>03 q°,—q

1 q—2n’_%’_ —Zn;qZ’qZ
(4:9%)n+1 11—1903%( g2, -

by Gasper and Rahman [8, p. 242, Eq. (II1.13)]

B 1 ¢ q—2n’ _an; q2’ q2n+3
N (61;512)114-12 ! _q2

Z (q—4n 4) q(2ﬂ+3)]

@0 _ (q=®
(q;q2)11~|—1 1 _q2n-|—1’

A3("7‘1) =

T (g )n+1 (q*:q%);

where the penultimate assertion follows from [8, p. 236, Eq. (IL.7)].
Finally we treat the fourth identity (42).

—2n ,2n q.,2 2
. q 47, —7:47,.q4°T
= (L)

—q°.9
_ ; ’ (q—Zn’ —g¥ 2, q1+2n)
(4:9%)n, —-q*
by Gasper and Rahman [8, p. 241, Eq. (II1.9)]
1 n @ g%, (1 — g (1 + g2ty gia+2m

=12 T 4.
(@190 1= (g% 9%,

—4n.

1 (g~ g%, ( i(14-2n) —2n+4j(3+2n)
— — qj n +q n j n )
(4:9P)n(1 +g72") 2 (g*:9"%);

Jj=0

q2n

— 1-2n. 4 3—2n. 4
(@ +q2")<(q 4 @)
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) D) (O

- l_l_an 1 _I_q2n

0 (L+ (=9)")
1 + q2n

=(—q)"~

’

as desired.
From (39) to (42), it follows by mathematical induction that
: S
2 : i —
Ain.q) = —¢" (1" Y0 (D ()T T
j=—n

(43)

Ay(n.q) = (—1)"q" T " (=1)] (—q) IV, (44)

j==n

Let us treat (32) or rather its equivalent formulation (34) first. Identity (44) is
equivalent to the assertion that

202 (| 4n+2 . . e
o = q ((11_;12) ) Z (=1 (—q) JBi—1/2
= 45)

_ q
(43920 (—4%:q%)n

are a Bailey pair (where ¢ — ¢? and a = ¢?). It should be noted that this Bailey pair
was found earlier by A. Patkowski in [13]. Inserting this Bailey pair into the weak form of
Bailey’s Lemma, we obtain (34) by invoking (44) and simplifying.

As for (31), or rather its equivalent formulation (33), we see from (43) and (44) that

n_ o DDAt
oy = (=% (46)
ﬂ// _ qnz+2n+l

T (@ Dam+1(—q%q)n

form a Bailey pair. Furthermore

oo
Z K](I’l)qn — Zq2n2+2n'3’/1/

n=>0 n=0

2n2+2n Vi
R qz) Zq

vt [, L CD O+ g
R qz) Z ( “ 1-¢?

Z 1)y (- T,

n=—0oo

=- Z Ky(m)q" + ——5—

n=>0

(¢°
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and invoking Jacobi’s triple product identity [2, Theorem 2.8, p. 21], we see that (33) is
established. O

5 Identities of Modulus 12

As is obvious by now, we are choosing a variety of examples from Slater’s
compendium to illustrate the variety that arises when we mix parity with the
Sylvester constraints. We close our presentation with a move beyond parity to
conditions modulo 4.

Recall that evenly even numbers are numbers divisible by 4 while oddly even
numbers are numbers congruent to 2 modulo 4.

We shall examine Slater’s (53) and (55) [16, p. 157].

1 q4n2
= (47)
l;ll 1—g" ;) (q*:4%)20(@*" 15 g% oo
n==41,43,44 (mod 12) -
_ 1 N q2+2
(@:9) 0 (1 =g*>T2)(1 = ¢*) (g 4?0
q2+2~|—6+6
== (1 =91 — ¢ (% 4o
and
1
I1 — (48)
n=1 q
n==+£3,44,+5 (mod 12)
_ Z q4n2—|—4n
=@t g1 )00
_ 1 N q4+4
1= (% ¢Ho0 (1 =¢g>TH(A —g*TH (1 -3¢ ("1 4P o
q4+4+8+8
* (1 —¢g*t2)(A = g*tH (1 — g0 (1 — g3T8) (1 — ¢0F10) (g1 ¢?) o
_I_ “es

In both (47) and (48), the extended final forms are given so that the following
theorems are immediately interpreted from these forms.

Theorem 10. Let L;(n) denote the number of partitions of n into parts that are =
+1,+£3,+4 (mod 12). Let T\ (n) denote the number of partitions of n in which (1) all
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even parts must appear an even number of times, (2) each oddly even integer not exceeding
the largest even part must appear, (3) each odd part is at least 3 greater than each oddly
even part. Then for n > 0,

Li(n) = Ti(n).

For example, the 20 partitions enumerated by 7;(13) are 13, 11 +1+ 1,943+ 1,
94242, 94+ 1+ 1+ 1+ 1, 74+5+1,74+34+3,7+3+1+1+1L, 7+ 1+ 1441,
54543545+ 1+ 14+1,5434+3+ 1+ 1,543+ 14+ 1,5424+24---42,
S+14+1+4-+1L,3+343+3+L34343+14+1+14+1,34+3+1+1+--+1,
3+414+1+---+1,14+1+---+ 1, and the 20 partitions enumerated by L (13)
are 13, 11 +14+1,9+4,9+3+1,94+14+14+14+1,84+4+1,8+3+1+1,
8+1l+1+-+1,4+d4+4+1,4+44+3+1+1,44+44+1+1+---+1,4+3+3+3,
44343 +1+1+1,4+3+1+14+L4+1+1++1,343+3+3+1,
34343+ 1+1+1+1L3434+14+1++1,3+1+1++1, 1+1+-+1,

Theorem 11. Let L,(n) denote the number of partitions of n into parts that are =
43,44, £5 (mod 12). Let T,(n) denote the number of partitions of n in which (1)
all even parts must appear an even number of times, (2) each evenly even integer not
exceeding the largest even part must appear as a part, (3) each odd part is larger than 1
and at least 3 larger than the largest evenly even part. Then for n > 0,

Ly(n) = Tr(n).

For example the 10 partitions enumerated by L,(15) are 15, 9+ 3 + 3, 8 + 7,
8+4+43,7+5+3,7+44+4,5+5+55+4+3+3,4+4+4+3,34+3+3+3+3,
and the 10 partitions enumerated by 7>(15) are 15, 11 +2+2,9+3+ 3,7+ 5+ 3,
T4+44+4,74+2424+2+4+2,5+5+554+3+3+2+2,3+3+3+3+3,
34242442,

6 Conclusion

This paper is in no way meant to be exhaustive. Indeed we have chosen a handful
of Slater’s identities for consideration. The examples were chosen to illustrate the
variety of possible outcomes.

There are many further formulas in Slater’s paper [16] that can be interpreted
using the approach we have developed. Indeed this can be done for the original
Rogers-Ramanujan identities [14, pp. 133-134 (14)—(18)] and also for variants
on the Rogers-Ramanujan identities (cf. Slater’s (15), (16), (19), (20) and (25)).
Others like the modulus 6 results (Slater’s (22)—(30)) are either quite classical
(e.g. (23) is effectively due to Euler) or seem to require some alternative analysis.
The identities with modulus 27 (Slater’s (88)—(93)) seem quite distant from these
developments as do those identities like (97), or (101)—(112), or (125)-(130) that
apparently are not reducible to a single product.
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It would certainly be interesting to determine if there is an alternative to
Sylvester’s constraints that leads to explanations of further Slater identities that
could not be treated here.

It is interesting to note that in each case where a Slater identity was modified
to fit the Sylvester paradigm, the resulting infinite product was always of the nicest
form imaginable, namely

oo’/ 1
[T =
n=1

where the ’ indicates only that the n are restricted to a specified set of arithmetic
progressions.

Finally the relation of (33) to the original Rogers-Ramanujan function is striking.
Indeed one can provide an alternative proof of (33) by adding together the left-hand
sides of (33) and (34) and proving (slightly non-trivially) that the result is, in fact,
Slater’s (15) [16, p. 153] with ¢ replaced by —q.

In fact, it is possible to prove that, instead of (33),

o0 q3n2+4n+1

2

= (@ D21 (=% 47

Z 4n? —Zn(l 1211-|—6) Xn: (_l)j(_q)—j(Sj—l)/Z' (49)

j=—n

T @ qz)

In addition
oo

3112

< (q: ('I)Zn( q%.q*)n

(q q2) Zq4n (1- 8n+4) Z (_1)/(_q)—j(3j—1)/2. (50)

j=—n

If we denote the left-hand side of (50) by T'(¢), then Slater’s (19) [16, p. 154]
asserts

)= @214)00(@’: 470071 47) oo

T —
(4 (4% 9% oo

(51

Identities of this nature combined with the results in Sect. 4 suggest a variety of new
Hecke-type series results related to the Rogers-Ramanujan identities.

I want to thank J. Lovejoy, A. Patkowski and A. Sills for comments and
corrections of an earlier version of this paper.
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1 Introduction

The purpose of this note is to show how combinatorial arguments can produce
nontrivial identities between hypergeometric g-series in two variables. This will be
illustrated by using as examples

. The major index of a binary word

. The Durfee square size of an integer partition

. The number of inversions in a binary word

. The number of descents in a binary word

. The sum of the positions of the 0’s in a bitstring
. “Lecture hall” statistics on words.

AN N AW =

Let w be a word of length n over the alphabet {0, 1} (a binary word). By the
major index of w we mean the sum of those indices j, 1 < j < n — 1, for which
w; > wjyy,ie., forwhichw; = 1andw;; = 0. Let f(n,m) denote the number
of binary words of length n whose major index is m (f(0,0) = 1). In Sects.2
and 3, we find the generating function F(x,q) = Y, ,, f(n,m)x"q" in various
ways, compare it to the known Mahonian form of this function, and thereby obtain
an interesting chain of seven equalities, namely

F(x.q) = ) f(n.m)x"q" 8]

n,m>0

=y ["] X" )
n,k>0 k q

n

X
— r 3
; (X5 @)n+1 ©)
L+ (1 + (1 —2x)¢7) TCRY @
= — —2x -
~ T\ G
igit2 \?
-y <_x el ) (5)
>0 (-xsq)j-l—l
X/t +¢7)
=14y — 1 6
L G ©
=14+2x+ B+ x>+ @ +2g +2¢H)x> +.... (7

in which the [ ],’s are the Gaussian binomial coefficients.
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In Sect. 2.5 we highlight the connections between F(x, q) and some third order
mock theta functions.

Section 4 deals with words over larger alphabets. In Sect.5, a related identity
is derived by considering the positions of 0’s in a bitstring. In Sect. 6 we look at
identities arising from some novel statistics on words. In Sect.7, we consider the
process of deriving the generating function F(x,q) = Y, ;- t(n, k)x"q* when a
nice product form for the g-series Y, ., 7(n, k)g* is known. We show in this case
how F(x, q) can be expressed in terms of statistics on words.

2 The Equivalence of (1) Through (5)

For a binary word w of length n, the blocks of w are the maximal contiguous
subwords whose letters are all the same. The word w = 11011000, for example,
contains four blocks, namely 11, 0, 11, 000, of lengths 2, 1, 2, 3. The major index
of w is then the sum of the indices of the final letters of the blocks of 1’s, excepting
only a terminal block of 1’s. The word w above has major index 2+ 5 =17.

2.1 Proofof(1)=(2)

This follows from MacMahon’s result [8] that

n .
— § qma_](w)’
|:k:|q w

where the sum is over all binary words w with k ones and n — k zeroes. We refer to
(2) as the Mahonian form of F(x, q).

2.2 Proofof (3)

2.2.1 Via Generatingfunctionology

The g-binomial coefficients satisfy the recurrence

n+1 _k|n n -
Bl e
q q q
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Let’s find their vertical generating function
def nl _
Pe(t) =D 1 [k} (k=0,1,2,...).
n>0 q
We find that
(1= 1q)e(t) = 1 (1) (k = Ligo(1) = 1/(1 =1)),

and therefore

¢k
)= ———— (k=0,1,2,...).
1_[1]('=0(1 - tq])
Next, the horizontal generating function (= the Gaussian polynomial)
AGEDSIM B
Tk
k>0 q
satisfies

Ynr1(X) = ¥u(gx) + x¥u(x) (=090 = 1).

If we introduce the two variable generating function @(z,x) = > .-, [Z]qt”xk,
then we find that

D(t,x)(1 —xt) =tD(t,qgx) + 1,

which leads to

D(1, x )LZ[:L ZH, o(I—gixt)

n,k>0 n>0

as required.

2.2.2 Via g-Series

In [2, Theorem 3.3], (3) is derived from (2) using Cauchy’s Theorem [2, Theo-
rem 2.1]:

(a;q)ix* (1 —axq®)
kzzo (9:9)k 1_[ —xqk)
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n+1

witha = ¢"™', after setting n = n + k in (2). In the process we have

n+k| (1 —xg*tnthy 1
Z|: k :|q l_[ 1_qu) - . ’ ®)

k>0 (X, q)n-i—l

the g-binomial theorem.

2.3 Proofof (1) = (4)

To solve the word problem posed in Sect. 1, we split it into four cases, namely
words with an even (resp. odd) number of blocks, the first of which is a block of 1’s
(resp. 0’s). We will show all steps of the solution for the first case, and then merely
exhibit the results for the other three cases.

Let’s do the case of words w, of length n, which have an even number, 2k, say,
of blocks, the first of which is a block of 1’s, and suppose that the lengths of these
blocks are ay,as,...,ax (all a; > 1). Such a word has descents at the indices
aj,a;+ax+as,...,a; +ax+---+ ax—i, so its major index is

maj(w) = ka; + (k — 1)ax + (k — Das + -+ + ask—2 + ar—1
2k—1

S|

Let Blocks(w) be the number of blocks of w. It follows that the contribution of
all the words whose form is that of the first of the four cases is

Fi(x,q,1) = ZX\W\qmaj(w)tBlocks(w)

= Z Z x2§k=1 ujq23,;l ax—; [7/21 2k

k>1ap,...ax>1
2
quk 12k

= (1=x)(1 —qu)l_[,_l(l —xq/)?

=x2q + X7 (1°q> + 1q) + x* (1'q* + P4 + P> + Pq) + .. ..

Similarly, in the second case, where the number of blocks is even but the first
block consists of 0’s, we have
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Fy(x.q.t) = Zx|W|qmaj(W)tBlocks(W)

_Z Z zikla,q 75 an—; [Gi—1)/21 2k

k>1ai,...axy>1

qk(k 1) 2k

k>1 l_[ (1 - xqj )2
=222 +20%5° + X3+ t4qH) + @7 200 + 2%y + ..

In the third case the number of blocks is odd, say 2k + 1, with k > 0, and the
first block is all 1’s. The major index of such a word is

2k—1

maj(w) = Z Aok—j ’715—‘ .
j=1

Thus,

F; (X, q. t) — Z xlwlqma_](w)tBlocks(w)
-y ¥ xS ) g T a1/ 2k 41
k>0ay,...ax+1=1

2
x2k+l k [2k+l

B q
k_ .
= (1= xg") [T520(1 — xq/)?

=ix +1x> + X (g + 1) + x* (¢ +2q° +1)

X (¢* + @+ 2¢% +3q3 + 1) + ...

Finally, if there are 2k + 1 blocks in the word w and the first block is all 0’s, the
major index is

2%—1 ,
maj(w) = Z A2k—j [——‘,
S0
Fy(x,q,t) = lew|qmaj(w)tBlOCks(W)

+
_ } :xzikﬁ‘a,q H sy [ ] 2
k=0
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2k ghe+1)  2k+1

-0y =—1

k>0 n];=0(1 —xq/)?

tx 4+ 12 4+ 3 (Py2 1) + x4 (20 + 2y +0)

+x7 (Y 30y 20y + Py ) 4L

Now we compute the desired generating function F(x, g,t) as

4
F(x.q.0) =14 )  Fi(x.q.1)

i=1
in which the F; are explicitly shown above. If we put# = 1 we find that
D xMgmit) = 14 2x + ¥ (g +3) + x° (247 + 29 + 4)
+x* (¢* +3¢° + 4¢° + 3¢ +5)
+x° (2¢° +2¢° + 64" + 6¢° + 6¢* +4q +6) + ...

Observe that if we put g := 1, the coefficient of each x" is indeed 2".
On the other hand, the maj statistic is well known to be Mahonian, which implies
that its distribution function is

Zx\w\qmaj(w) — Z |:Z:| X",
w q

nk

in which the [Z]q are the usual Gaussian polynomials.
It follows that

n n
X
néo |:ki| q

1+ Fi(x.q.1) + Fa(x.q. 1) + F3(x.q. 1) + Fy(x.q.1)

2
0 X% gk 2k gh(k=1)

=1+

k— i k=1, i\2
2 =00 —xg) T2 = xg/)?  Z 152000 — xq7)?
K 2k+1 k2 x2k+1qk(k+1)

1 —I—(l—x)z

DY L
f— . k .
=0 (1= xgM) [T 2601 — xq/)? =0 [T5=o(1 = xg/)?

2k ,k*
xq 1—x 1)
:1+E (—+_
= i \1—xq* ~ g*
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2
N Z )C2k+lqk 1 N (1 —X)qk
© )2 1_qu (1_qu)2

kZO ('x’q)k
(1+ (1 —2x)gk) [ xkq®)
,{;) — xqk)? ((x,q)k)

as claimed.

2.4 Proof of (5)

We prove (5) in four different ways.

2.4.1 Equivalence of (3) and (5) Using the Rogers-Fine Identity

The Rogers-Fine identity is [5], [4, p. 223]:
0 . . n.n,n—n 2n
Z (@ @n Z(a,q)n(afq/ﬂ,q)nﬂ t"g" " (1 —atq™)

9
= (B Dn B Dn(T:@)nt1 ©)

n=0
Setting @ = 0, 7 = x, and 8 = xq in (9) gives

Z (xq q)n - Z

(xq; q)n(x Dn+1

Multiply through by 1/(1 — x) and use the equivalence of (1) and (3) to conclude

= (@t (X3 @)n+1

e X" S X" n2/2 2
i [
n=0

In this form the generating function appears quite similar to, but not identical with
(4), though it is of course identical. Consequently, by comparing the two forms, we
see that we have proved the small identity

3 (ﬂ) (1—2xg") = 1.

prerd (X, @r+1

We show in the following subsection how to transform (4) into (5).
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2.4.2 Direct Proof of (4) = (5)

We would like to prove:

k(%) \2 ko k22 \ 2
1+ ) (1 + (1 - 2x)¢") (L()) =Z(L2) .

= (%3 @r+1 o\ @t
Using the fact that
L+ (1-2x)¢" = =x%¢* + (1 = x¢")(1 = x¢") + ¢*,

we can transform as follows:

. ( kg ®) )2
1+ 1+ (1 -20¢" [ ——

k>0 (x’q)k‘f—l

x2k+2qk2+k X2 qkz —k Xquk
=—1- Z A

. 2
k>0 (x’q)k-i-l k>0 (x ’q)k kZO( ’q)k-l—l

2k kz—k 2k k2—k

L q x2qu2
- Z (x q)k Z 2 +Z . \2

k=1 k=0 (x sq)k k=0 (-xsq)k_l’-l

xqukZ
)2
k=0 X @iy

2.4.3 Equivalence of (1) and (5) by Recurrence

As an alternative, we can derive (5) directly from the definition of F(x,q) in terms

of binary words.

Lemma 1. Let f(n, m) denote the number of binary words of length n whose major

index is m. Then

fn,m)y=2f(n—1,m)— fmn—-2,m)+ f(n—2,m—n+1) n=2;m=>0)
(10)

with initial conditions f(0,m) = &mo, f(1,m) = 28,.0.

Proof. Let S(n, m) be the set of binary words of length #n with major index m, so
that f(n,m) = |S(n,m)|. Let “-” denote concatenation of words and observe that
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maj(w - 1) = maj(w),
maj(w - 10) = maj(w) + |w- 1|,
maj(w - 00) = maj(w - 0).

Thus

w-1eSn,m)<weSh—1,m),
w-10€e Sn,m)<>weSh—-2,m—(n—-1)),
w-00€ S(n,m)<>w-0e Sm—1,m)—S(n—-2,m) - 1.

Since every element of S(n, m) falls into exactly one of the cases above, the result
follows. O

As in (1), we define the generating function F(x,q) = ), .~ f(n,m)x"q".
Next we multiply each of the four terms in (10) by x"¢” and sum over n > 2 and
m > 0.

The first term yields F(x,q) — 2x — 1, the second gives 2x(F(x,q) — 1), the
third becomes x? F(x, q), and the fourth yields x?qF (xq, ). Therefore we have the
functional equation

1+ x%*qF(xq.q)

F(x,q) = d—x?

whose solution is

. )
x% q’

F(x.q) =)

j=0 n£=o(1 —xq")?

2.4.4 Equivalence of (2) and (5) via Partitions
We can also give a direct proof of the identity

x qJ

Z |:k]q Z (()C f]);+1)2’

n,k>0

using partitions. We’ll see the value of this after we look at inversions in Sect. 3.
We show that both sides count, for every pair (a, ), the number of partitions A in

an a x b box, where g keeps track of |A| = A; + A, + ...+ A, and x keeps track of

a+ b. The left-hand side counts all the partitions for fixed (a, ») and then sums over
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all (a, b). The right-hand side counts all the partitions with Durfee square size j,
for every (j + s) x (j + t) box containing them, and then sums over all ;.

Let P(a, b) be the set of partitions whose Ferrers diagram fit in an a x b box. Let
D(A) denote the size of the Durfee square of A. The argument above actually shows
that

Z Z qa atb D) _ Z 214}
((x;

2%
a,b,>0 A€P(a,b) >0 Q) j+1)

We’ll return to this at the end of Sect. 3.

2.5 Mock Theta Functions

It was observed in [3] that there is a connection between F(x, ¢), defined by (1)—
(7), and the following two of Ramanujan’s third order mock theta functions ([11],
cf. p. 62):

g’
= [ 11
/@ ]ZO — (1)
2j242j
oig) =Y 2 (12)

A
Specifically, appealing to (5), note that

F(-1,9) = f(q)/4 (13)
F(q.9%) = w(q). (14)

One of the goals of the paper [3] was to develop a methodology for interpreting
g-series identities in terms of families of partitions, via an appropriate statistic.
After deriving the equivalence of (5) and (3), the appropriate partition statistic was
revealed for interpreting F(x, q):

Fx,q) _ Zq\ﬂxp(x)’

1—x

where the sum is over all partitions, A, and the statistic p(4) is the sum of the
number of parts of A and the largest part of A. Note that this is equivalent to the
interpretation of F(x, ¢) in the preceding subsection. This was then combined with
the observations (13) and (14) to interpret the mock theta functions (11) and (12) as
generating functions for certain families of partitions.
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In view of (1), (13), and (14), we see that the mock theta functions (11) and (12)
can be interpreted in terms of statistics on binary words as:

fl@) =) (=ngm;

w(q) — quwl-i-Zmaj,

where the sum is over all binary words w and |w| denotes the length of w.

3 An “Inversions” View of (5) and (6)

We obtain another identity by carrying out the same sort of analysis on the inversions
of a word, rather than the major index. An inversion in a word w is a pair (i, j) such
thati < j but w; > w; and inv(w) is the number of inversions in w. The statistic
inv is also Mahonian on binary words [8], so its distribution is given by (2).

3.1 Proofof (6)

Let f(n, k, m) be the number of binary strings of length n, containing exactly k 1’s,
and with m inversions. Then evidently

fn,k,m)= fm—1,k—1,m)+ f(n—1,k,m—k),

forn > 2, with f(1,k,m) = 8x.00m.0+0k.10m.0- If we define the generating function

Z1L,KZU,

x(14+y)+xF(x,yz,2)
F(x,y,2) = —xy ,

whose solution is

x"(1 4 yz"7 Y
PO = L oy
m>111j=0 yz/)

We can now set y = 1 and find that the number of binary words of length n with m
inversions is equal to the coefficient of x"¢™ in

xm+1 (1 + qm)

=20+ B+ x>+ @ +29 +2¢)x° + ...
(X: @ m+1

m=>0
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3.2 The Equivalence of (5) and (6)

Let g(n,m) be the number of binary words of length n with m inversions.
The previous subsection showed that (6) is the generating function for

ZnZO,mZO g(n, m)anm'

Because of the equidistribution of maj and inv, g(n,m) = f(n,m), for f(n,m)
defined in Sect. 1. But supposing we didn’t know that, we show that g (n, m) satisfies
the same recurrence as f(n,m) in Lemma 1 of Sect.2.4.3, and therefore it has the
same functional equation, whose solution was shown there to be (5).

Claim. We have the recurrence
gn,m)=2gn—1,m)—gn-2,m)+gmn—-2,m—n+1) (m>2;m=>0) (15)

with initial data g(0,m) = 8,0, g(1,m) = 26,,.0.
Proof. Let R(n, m) be the set of binary words of length n with m inversions, so that
g(n,m) = |R(n,m)|. Observe that
inv(l-w-0) = inv(w) + |w| + 1,
inv(0 - w) = inv(w),

inv(w - 1) = inv(w)

Words of the form O - w - 1 fall into both of the last two classes above and all other
words fall into exactly one of the three classes above. So,

|[R(n,m)| = [1-R(n—2,m—(n—1))-0|+[0-R(n—1,m)|+|R(n—1,m)-1|—|0- R(n—2,m)-1],

and the recurrence follows. O

3.3 Revisiting (5)

Recall the notation P(a,b), D(1), and |A| from Sect.2.4.4 on partitions. View a
binary word as a lattice path, where “1” is an east step and “0” is a north step.
Then a binary word w with a 0’s and b 1’s forms the lower boundary of a partition
A € P(a,b). Itis not hard to check that

inv(w) = |A],

But also, the Durfee square size, D(A), is interesting, in the following way.
Let ¢ be Foata’s “second fundamental transformation” on words [6]. When
restricted to binary words w, ¢ (w) is a permutation of w, with

maj(w) = inv(¢(w)),
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and ¢ proves bijectively that for any a, b, maj and inv have the same distribution
over the binary words with @ 0’s and b 1’s,

Furthermore, if A is the partition defined by the lattice path associated with ¢ (w),
then it was shown in [9] that

des(w) = D(Q),

where des(w) is the number of descents of w. Thus, (maj, des) and (inv, D) have the
same joint distribution.
We can combine these observations with the identity from the end of Sect. 2.4.4:

Z Z g xet D(k)_z x¥ql’

2%
a.b,>0 A€ P(a.b) =0 ((x; Q);+1)
to get

ZJq/
((x; f]);+1)2

Z Z g xb PN

a,b,>0 AeP(a,b)

_ Zqinv(w)xlwlzl)()»(w))

w

— Z qmaj (w) X [w]| Zdes(w) )
W

Jjz0

So, “des” is something like the “Blocks” statistic used in Sect. 2.3. However, observe
that “des” gives rise to (5), whereas “Blocks” gives rise to (4).

4 Larger Alphabets

The above results were all obtained by studying binary words. Now let’s look at
words over the M -letter alphabet [M] = {0,1,2,..., M —1}.

Let f(ko,k1,...,kp—1; ) denote the number of words over [M] that contain
exactly ko 0’s, ky 1’s,...,kyy—1 M — 1’s, and which have major index . Of course
the length of such a word is N = ), k;. It is known that major index is Mahonian
on this set of words [8] and therefore its distribution is given by the g-multinomial
coefficient

Zf(ko,kl,...,kM_l;/,L)q“ = |:

N
>0 k07k17"'akM—l .
n= q
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See Sloane’s sequences A129529, A129531 for the cases M = 3,4. So, if [M]*
denotes the set of all words over [M],

F(X,C]) _ Z qmaj(w)xlwl — Z Z |:k0 ki N kM_1:| XN.
q

we[M]* N20 ko+-+ky—1=N
(16)
Rewriting the last expression and applying (8), we find
F(x,q)
= ko+ -+ ky—1 xk0+"'+kM—1
ko.ky....kpy—1=0 L ko, ... kp—1 ip
= Z k(}€+ —|]—CkM—2 xk0+"'+kM—2 Z |:k0 + k . kM—l:| ka_l
ko kyowkp—220 L 0rre EM=2 Jq kp—1>0 M—1 q
T KRl ] Il
kokt....ky—2=0 L Koo kp—2 _q(x;q)ko+~~+kM72

This generalizes the equivalence of (2) and (3) which is the M = 2 case.

We will consider a variation and get a g-difference equation.

Let f;(ko,k1,...,ky—1; 1) denote the number of words over [M] that contain
exactly ko 0’s, k1 1’s,...,ky—1 M — 1’s, and which have major index p, and whose
last letterisi (i =0,...,M —1).

Of these f;(ko, k1, ..., kym—1; ) words, the number whose penultimate letter is

jis
fj(ko,kl,...,ki—1,...,kM_1;,u—(N—1)), if j >1,
fj(k(),kl,...,ki—1,...,kM_1;,u), ifj <i.

Consequently, fori = 0..., M — 1, we have
fitkoki oo ki) = ) fikokr. oo ki = L kg = (N = 1)
j>i
+ij(k0,k1,...,k,- — 1. ke ).

J=i

Now sum both sides over all k such that kg + --- 4+ kj;—1 = N, and write F; (N, u)
for 3 4 ok =n fi(ko, k1, ... kar—1; ). We obtain

Fy(N.p) =Y Fj(N =1 p=N+1)+Y Fi(N=1p),

J>i J=i



92 G.E. Andrews et al.

with F;(1, w) = M§, 0. In terms of the generating functions

Dy; = Fi(N.wq",
n

we find that
Py =gV Z Py-1j + Z PN-1,,
j>i j=i

with @;; = 1foralli =0,..., M — 1.
Finally, if @; (x,q) = Y v+, @y, xV, we find that

Bi(x.q) =x+x) Pi(gx.q)+xY ®i(x.q). (=01...M-1)

J>i J=i

5 A Related Identity Based on the Positions
of 0’s in Bitstrings

If w is a binary string of length n, let o (w) be the sum of the positions that contain
0 bits, the positions being labeled 1,2,...,n. Thus f(10101) = 2 + 4 = 6. We

consider the generating function
F(x.q) =) xMg™,
w

the sum extending over all binary words of all lengths.

If we let T'(n, k) denote the number of words of length n for which o (w) = k,
then we have the obvious recurrence T'(n, k) = T(n—1,k) +T(n— 1,k —n). This

leads, in the usual way, to the functional equation

1+ xqF(xq,q)

F(x,q) = -

’

which in turn leads, by iteration, to the explicit expression

i
F(x.q) = Z x/q(s)

@)

On the other hand it is easy to see that

Y Tn.k)g* =[]0 +4H.
k (=1

a7)

(18)

(19)
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since each position £ in w can either be 1, which contributes £ to o (w), or 0, which
contributes nothing. Thus, we have the identity
X j (/ +l)

Yo ——— =) x H(l +4q"). (20)

j>0 (x:9))+1 >0

Note that (20) is a specialization of Heine’s second transformation (Eq.III.2 in
Appendix Il of [7] witha = —¢q, b =g, ¢ = 0, z = x).

5.1 A Partition Theory View

We can interpret the identity (20) in terms of partitions.

We claim that both sides of the identity count all pairs (A, n) where A is a partition
into distinct parts and n is greater than or equal to the largest part of A.

On the right-hand side, [],_,(1 + q"%) is the generating function for partitions
into distinct parts, the largest of which is < n. So, the right-hand side counts all
pairs (A, n) where A is a partition into distinct parts and 7 is greater than or equal to
the largest part of A, as claimed.

The left-hand side counts the same quantity by summing over all j the terms
x" g™ for all pairs (A,n) where A is a partition into j positive distinct parts, the
largest of which is < n. To see this, If A is a partition into j distinct positive parts,
then subtracting the staircase partition (j, j — 1, ..., 1) from A subtracts (j ;1) from
the g-weight of A and subtracts j from the largest part of A, leaving an ordinary
partition A" with at most j parts. Such A’ are counted in the left-hand-side of (20) by
1/(x;q);+1, where x keeps track of the size of the largest part of A’ plus an excess
corresponding to the number of times the “0” part is selected as the 1/(1 — x) factor
in the product.

5.2 A Generalization

Let w be a word over the K letter alphabet {0, 1, ..., K — 1} and let

o(w) = Zn:iwi.

i=1

We have 6(10101) = 1+ 3+ 5=9and 0(120301) =14+ 4+ 124 6 = 23. We
consider the generating function

Flrg) = 3 xgr,

the sum extending over all K-ary words of all lengths.
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If we let T'(n, k) denote the number of words of length n for which o(w) = k,
then we have the obvious recurrence

K—1
T(n.k)=Y Tn—1lk—in). (n>1:T0.k) =)

i=0

If we take our generating function in the form F(x,q) = Zk,nzo T (n,k)x"gk, this
leads, in the usual way, to the functional equation

F(x.q) = al

+
1—x 1—x

> 4'F(xq'.q). 1)

i=1

In the binary case (K = 2), this agrees with (17), which has the explicit expression
(18).
On the other hand, since a j in position £ contributes j{ to o (w), so

"1 Kt

T(n.k)g* = Lo gl 4 a2 4o g KD — —4 ,
Zk:(n )q !:[1(+q+q+ +q%7"Y El_q[

(22)

and in the case K = 2 we have another view of the identity (20).

We would like an explicit solution to the functional equation (21) for K > 2,
analogous to (20). Recall that (20) was a special case of Heine’s second transfor-
mation. There is no analog of Heine’s second transformation for K > 2. However,
there is an analog of the first Heine transformation that can be applied. We make use
of the following, which is Lemma 1 from [1]:

1"(@:q")(b:kn (b q)oolat; ¢ oo Zb"(C/b;q)n(t;q")n'

- 23
@5 gD (€ Doo(t:4M00 5 (@3 )n(at; g )y 29

n>0

Settinga = ¢ =0,b = x,k = K,and t = ¢ in (23) gives

A N A R A A O
F(x,q) = = _
o =2, (q:9n (@)oo 2= (@5:q%)n

n>0

6 ‘““Lecture Hall” Statistics on Words

The following statistics arose in [10] in a more general context, but we specialize
them here to words. For a K-ary word w of length n, define the following statistics:

ASC(w) ={i|i =0andw; >0 or 1 <i <nandw; <w;41};
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asc(w) = [ASC(w)];

Thp(w) = —(wi +wa -+ w)) + > Kn—i):
i€ASC(w)

It follows from Theorem 5 in [10] that

Ihp(w) y-asc(w)
n (] X
Z Z quf _ Zwe[K] ,

n — xgki
120 1€P(n.K1) [Ti=o(1 — xg*")

where [K] = {0,1,..., K —1}.
As observed in [10], the inner sum on the left is a g-binomial coefficient, so we
get the identity:

Z n+ Kt o = ZWG[K]K qlhp(w)xasc(w)
n [Tio(1—xgX7) ~

>0
Multiplying both sides by (1 — x) and then setting x = 1 gives

Z n+Krf |n+K@-1) _ 2 welky g™
n n N '
q q

=0 (@:9)n

The left-hand side above is just 1/(g; ¢),, the generating function for partitions into
at most n parts. So, simplifying,

n
Z g0 — l—[(l Fql g gk,
we[K]" =1

the same distribution as ) _, iw; from Sect. 5.2 (!) We don’t have any nice combina-
torial explanation for this yet.

Experiments indicate that when K = 2, we can actually get the following
refinement:
qZ X = n i *
120 i=0 ! Y ! 2 [Ti=o(1 = x¢*)
(24)

To prove this, from the bijective proof of Theorem 5 in [10], it would suffice to verify
that the innermost summand on the left is the generating function for partitions in
an n by 2t box with i odd parts. This was done for us by Christian Krattenthaler as
follows, thereby proving (24):
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The g-binomial coefficient [”::'LT[

n — i even parts, all of which are at most 2¢. On the other hand, the g-binomial coefficient

]qz is the generating function for partitions consisting of

[’il.J”'] is the generating function for partitions consisting of i even parts, all of which are
at most 2¢ — 2. Now add 1 to each of the i latter parts. Thereby you get i odd parts, all
of which at most 2¢. (This gives a contribution of ¢’ in the generating function.) Finally
shuffle the odd and even parts.

7 The Generating Function of the Terms
of a Closed Form ¢-Series

In trying to find the solution to a combinatorial problem, one often goes through
the procedure of finding a recurrence, then a functional equation for the generating
function, then by iteration, the solution of that functional equation, and then, with
some luck, a nice product form for the coefficients that are of interest.

Here, let’s invert that process. Suppose we have a sequence ¢ (1, k) which satisfies

k k_ . a(q/:)’
> t(n.k)q ,H:lb@f)

k>0

where a(t), b(t) are fixed polynomials in z. In other words, we suppose that the
sum on the left is a g-hypergeometric term in n. What we would like to know is the
generating function

F(x.q) =Y t(n.k)x"q".

n.k

To do this, put f(n) = > ;.t(n, k)g*, and then we have

b(g") f(n) =a(g") f(n—=1). (n=1:f(0) =1 (25)

To simplify the appearance of the following results, let R be the operator that
transforms x to xgq, i.e., Rf(x) = f(xq), and suppose our polynomials a, b are
a(t) = Y ajt) and b(t) = ), b;t’. Further, take the generating function in the
form

F(x.q) = Y_ t(n.k)x"q".

n,k>0
Now multiply (25) by x” and sum over n > 1, to find that
(b(R) —xa(gR))F(x.q) =1 (26)

is the functional equation of the generating function.
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7.1 Examples

Example 1. In the case (19) above we have a(t) = 1 + ¢ and b(t) = 1. The
functional equation (26) now reads as

(I=x(1+gR)F(x.q) =1=(1-x)F(x.q) —xqF(xq.q).

in agreement with (17).

Example 2. Consider the case of the statistic o(w) of Sect.5.2 on K-ary words
when K = 3. (This has the same distribution as the statistic lhp from Sect. 6.) Here
we have from (22) that a(t) = 1 + ¢ + ¢? and b(t) = 1. The functional equation
(26) takes the form F(x,q) = 1 + x(F(x,q) + qF(xq.q) + ¢*F(xq*.q)), i.e.,

1
Iﬂnq%=Tj;(1+qu@%q)+XfF0ﬂ?qD, 27)

in agreement with (21). We see by iteration that the solution of this equation is going
to be a sum of terms of the form
q°x"

—_— (28)
1_[?:11(1 — Xxq*)

for some collection of «, B, s; to be defined. We want to identify exactly which
terms occur. The set 7' of such terms is defined inductively by the two rules

1
1—x

(1) eT:

and

ay B

q- X
n—l—l—s.ET’
1_[,'=1(1_XC1’)

then both of the following terms must be in 7" :

(i) if

atpt1, p+l a+2f+2, f+1

! nt —, and K nt1 TN
(I=x)[[;iZ (1 —xg*h) (I =) [T/ (1 = xq%+?)

It is now straightforward to verify that the inductive rules define T to be:

7= qU(W)x‘W‘

{[]hﬂ+l(1_.xqwr+~+ww) ‘W7e{1,2}*}

i=1
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The generating function is now

Fr.g)= )

+1 e :
we{l,2}* 1_[1‘1‘1 (] — qu‘+ +W|w|)

o0 vl

Consequently we have the identity
g° ™ x vl

n
— n j 2j
Z: T WW*+W0_§:X||“+Q'+q) (29)

we{1,.2}* [Ti=1 ( n=0  j=I

We’re going to tweak the left side of (29) in the hope of making it prettier.

First we change the alphabet from {1, 2} to {0, 1}, just because it’s friendlier. To
do that, define new variables {v;}/_, by v; =w; =1 (i =1,...,n), wheren = |w|.
Then the gf becomes

qa(vv)xlvl

2

+1 N
ve{0,1}* l_[,‘”il (1 —xqvittmm)

where we have temporarily used some v’s and some w’s.
Now introduce yet another set of variables, namely

uy=wi+-4+w,=v;i+--4+v,+n—-i+1 (i=1,...,n).
Then we have
n
oW) = iwi = (Wit wa) F ot wa) ooy = g ety = D),
i=1

say. The generating function now reads as
g =l

ZW

which is now entirely in terms of the u;’s, but we need to clarify the set of vectors u
over which the outer summation extends.

Say that a sequence {t;}/2 1 of nonnegative integers is slowly decreasing if
ti+1 =0, and we have t; — ;41 = 1 or 2 forall i = 1,...,n. Then the outer
sum above runs over all slowly decreasing sequences of all lengths, i.e., it is

Z f]

u€sd 1—1 )

E(u)x\u\—l
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where sd is the set of all slowly decreasing sequences, X' (1) is the sum of the entries
of u, and |u| is the length of u (including the mandatory O at the end).

7.2 A Generalization

In the same way we derived (29), we can use the functional equation (26) to derive
the following general result.
Suppose ¢ (n, k) satisfies

k k _ . a(q/:)
>tk gb(q]),

k=0
where a(t),b(t) are fixed polynomials in ¢, a(t) = tK:_Ol a;t', and b(t) =
S K bit'. Then
|wl iw;i
n 1_[:'= (aWin ' _bwi)
F(x.q) = Y tnhx"¢"= > T —
n.k we{l2,.. K—1}* [1iZ] (bo —aoxq™ 1)

This shows how the statistics iw; on words arise naturally in g-series, with the
special case of o (w) appearing when the polynomial b is constant.

Acknowledgements We are grateful to the referees for their careful reading and helpful com-
ments. Thanks also to Christian Krattenthaler for supplying the argument to complete the proof of
the identity (24).
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Stationary Distribution and Eigenvalues
for a de Bruijn Process

Arvind Ayyer and Volker Strehl

Dedicated to the memory of Herbert S. Wilf.

Abstract We define a de Bruijn process with parameters n and L as a certain
continuous-time Markov chain on the de Bruijn graph with words of length L over
an n-letter alphabet as vertices. We determine explicitly its steady state distribution
and its characteristic polynomial, which turns out to decompose into linear factors.
In addition, we examine the stationary state of two specializations in detail. In
the first one, the de Bruijn-Bernoulli process, this is a product measure. In the
second one, the Skin-deep de Bruin process, the distribution has constant density
but nontrivial correlation functions. The two point correlation function is determined
using generating function techniques.

1 Introduction

A de Bruijn sequence (or cycle) over an alphabet of n letters and of order L is a
cyclic word of length n’ such that every possible word of length L over the alphabet
appears once and exactly once. The existence of such sequences and their counting
was first given by Camille Flye Sainte-Marie in 1894 for the case n = 2, see [10]
and the acknowledgement by de Bruijn[8], although the earliest known example
comes from the Sanskrit prosodist Pingala’s Chandah Shaastra (some time between
the second century BCE and the fourth century CE [15,25]). This example is for
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n = 2 and L = 3 essentially contains the word 0111010001 as a mnemonic for
a rule in Sanskrit grammar. Omitting the last two letters (since they are repeating
the first two) gives a de Bruijn cycle. Methods for constructing de Bruijn cycles are
discussed by Knuth [14].

The number of de Bruijn cycles for alphabet size n = 2 was (re-)proven to
be 22 ~L by de Bruijn [7], hence the name. The generalization to arbitrary
alphabet size n was first proven to be nin gL by de Bruijn and van Aardenne-
Ehrenfest. This result can be seen as an application of the famous BEST-theorem
[22-24], which relates the counting of Eulerian tours in digraphs to the evaluation
of a Kirchhoff (spanning-tree counting) determinant. The relevant determinant
evaluation for the case of de Bruijn graphs (see below) is due to Dawson and Good
[6], see also [13].

The (directed) de Bruijn graph G is defined over an alphabet X of cardinality
n. Its vertices are the words of u = uus ... u; € o, and there is an directed edge
or arc between any two nodes u = ujup...u; and v = vjv;2...vy if and only if
tw) =up...uy = vy...v,—1 = h(v), where h(v) (¢(u) resp.) stands for the head
of v (tail of u, resp.). This arc is naturally labeled by the word w = u.v;, = u;.v,
so that 1(w) = u and ¢(v) = v. It is intuitively clear that Eulerian tours in the de
Bruijn graph G correspond to de Bruijn cycles for words over X of length L + 1.
de Bruijn graphs and cycles have applications in several fields, e.g. in networking
[12] and bioinformatics [17]. For an introduction to de Bruijn graphs, see e.g. [18].

In this article we will study a natural continuous-time Markov chain on G
which exhibits a very rich algebraic structure. The transition probabilities are not
uniform since they depend on the structure of the vertices as words, and they are
symbolic in the sense that variables are attached to the edges as weights. We have
not found this in the literature, although there are studies of the uniform random
walk on the de Bruijn graph [9]. The hitting times [5] and covering times [16] of
this random walk have been studied, as has the structure of the covariance matrix for
the alphabet of size n = 2 [2] and in general [1]. The spectrum for the undirected
de Bruijn graph has been found by Strok [21]. We have also found a similar Markov
chain whose spectrum is completely determined in the context of cryptography [11].

After describing our model on G™* for a de Bruijn process in detail in the next
section, we will determine its stationary distribution in Sect. 3 and its spectrum in
Sect.4. In the last section we discuss two special cases, the de Bruijn-Bernoulli
process and the Skin-deep de Bruijn process.

2 The Model

We take the de Bruijn graph G™% as defined above. As alphabet we may take
Y =%,=1{1,2,...,n}. Matrices will then be indexed by words over X, taken in
lexicographical order. Since the alphabet size n will be fixed throughout the article,
we will occasionally drop n as super- or subscript if there is no danger of ambiguity.
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From each vertex u = wujuy...u; € XL there are n directed edges in GML
joining u with the vertices upus . ..u,.a = t(u).a fora € X.

We now give weights to the edges of the graph G"X. Let X = {x,4;a € X,
k > 1} be the set of weights, to be thought of as formal variables. We will work
over X1, the set of all nonempty words over the alphabet X (of size n). An a-block
is a word u € X' which is the repetition of the single letter a so that u = a* for
some a € X and k > 1. Obviously, every word u has a unique decomposition into
blocks of maximal length,

U= b(l)b(2)...b(m)’ (1)

where each factor 5 is a block so that any two neighboring factors are blocks
of distinct letters. This is the canonical block factorization of # with a minimum
number of block-factors.

We now define the function 8 : ¥ — X as follows:

— For a block a* we set B(a*) = xux;
— For u € ¥* with canonical block factorization (1) we set B(u) = B(b™),
i.e., the B-value of the last block of u.

An edge from vertex u € X% to vertex v € XL, so that h(v) = t(u) with v =
t(u).a, say, will then be given the weight S(v). This means that

Xa,L if B(u) = Xa,L,
() = { Xapr1 if B(u) = xu4 withk < L, 2
Xa1 if B(u) = xpx for some b # a.

Our de Bruijn process will be a continuous time Markov chain derived from
the Markov chain represented by the directed de Bruijn graph G™% with edge
weights as defined above. The transition rates are S (v) for transitions represented
by edges ending in v. We note that these rates can be taken just as variables and not
necessarily probabilities. Similarly, expectation values of random variables in this
process will be functions in these variables.

The simplest nontrivial example occurs when n = L = 2. There are four
configurations and the relevant edges are given in the Fig. 1.

Before stating our notation for the transition matrix of a continuous-time Markov
chain, our de Bruijn process, we need a general notion.

Definition 1. For any k x k matrix M, let VM denote the matrix where the sum of
each column is subtracted from the corresponding diagonal element,

YM = M — diag(1 - M), (3)

where 1; denotes the all-one row vector of length k and diag(my,...,my) is a
diagonal matrix with entries my, ..., mj on the diagonal.
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Fig. 1 An example of a de 11

Bruijn graph in two letters

and words of length 2 O
11

121

221 122
22
222

In graph theoretic terms VM is the (negative of) the Kirchhoff matrix or
Laplacian matrix of G, if M is the weighted adjacency matrix of a directed graph G.
In case M is a matrix representing transitions of a Markov chain, the column
(or right) eigenvector of VM for eigenvalue zero properly normalized gives the
stationary probability distribution of the continuous-time Markov chain.

We note that the graphs G"-* are both irreducible and recurrent, so that the
stationary distribution is unique (up to normalization). We will use M to denote
the transition matrix of our Markov chain,

M,ff = rate(u — v) = B(v). 4

VML is then precisely the transition matrix,

Bv) foru # v,
vM,ﬁ;f =<{— Z Bw) foru=wv. (5)
WE#E.L

For the example in Fig. 1, with lexicographic ordering of the states,

—X2.1 0 X1,2 0
V22 — | X2 TXu T X2o X2.1 0 ©)
X1,1 —X12 — X2 X1,

0 X22 0 —X1,1
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The stationary distribution is given by probabilities of words, which are to be taken
as rational functions in the variables x,,. It is the column vector with eigenvalue
zero, which after normalization is then given by

X1.1X12 X2,1X1,1
Pr[l,1] = — , Prll,2] = T ;
(x12 +x2.1) (x1,1 + x2.1) (x11 + x22) (X110 + x2.1)
X2,1X11 X22X2.1 7
P2, 1] 101, Pr2,2] = 272,

C (i 4 x2) (vip + x20) (x11 + X22) (X1, + x2.1)

Notice that the probabilities consist of a product of two monomials in the numerator
and two factors in the denominator, and that each factor contains two terms. Also,
notice that not all the denominators are the same, otherwise the steady state would
be a true product measure. Of course, the sums of these probabilities is 1, which is
not completely obvious.

It is also interesting to note that the eigenvalues of YM?? are linear in the
variables. Other than zero, the eigenvalues are given by

— X101 —X22, —X11—Xz21, and — Xy — X2 1. (8)

Another way of saying this is that the characteristic polynomial of the transition
matrix factorizes into linear parts.

3 Stationary Distribution

In this section we determine an explicit expression for the steady state distribution
of the de Bruijn process on G™-%. Before we do that we will have to set down some
notation.

For convenience, we introduce operators which denote the transitions of our
Markov chain. Let d, be the operator that adds the letter a to the end of a word
and removes the first letter,

0y tur>t(u).a. )

With 8 as introduced we introduce the shorthand notation

Bam = B@a") =Xam+ D Xn1. (10)

bex beX b#a

Note that 8, = Zbe 5 Xp,1 does not depend on a. We now define the valuation
w(u) foru e X+ as

B

S S T an
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Note that the restriction of x on the alphabet X is (formally) a probability

distribution. Finally, we define the valuation ji, also on >t as

L
m(u) = l—[,u(uluz o) = plu)p(uguy) - p(uguy .. ug),

i=1

12)

if u = wuyuy ... uz. The following result is the key to understanding the stationary

distribution.

Proposition 1. Forallue ¥ +

> la) = fiw).

aexy

Proof. As in (1), let us write w in block factorized form:
u=bWp@. . .pm — ﬁ.b(m),

where it = bV .. p™ =V if m > 1, and i is the empty word if m = 1.
If b = g* then

Xak  ifm = l.ie. if uis a block,
:Ba,k
u(u) = e
. ifm>1,
,Bu,k+l

and thus

I1 Xaj ifm = l.ie. if uis a block,
j=1 IBa,j
k X
(i) - L ifm > 1.
1_[ :Ba,j+1

) =

j=1

13)

(14)

15)

(16)

We will define another valuation on X+ closely related to fi, which we call p.

Referring to the factorization (14) we put

k
Xa,j . . . k :
ifm = 1,i.e., if u = a“ is a block,

pu) = {7=1 Paja

[[o@®) iftm>1.
=1

7)
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This new valuation is related to i1 by the following properties:

— For blocks u = a* we have

- Ba1 -
plah) = -~ fu(a"), (18)
IBa,k-H
— For u with factorization (14) we have
fi(u) = fi(@) - p(b™), (19)
— Which, by the obvious induction, implies
m
aw) = g™ - TTa0"). (20)
1=2

We are now in a position to prove identity (13). First consider the case where
u = a* is a block.

YA = @@t + ) b -db

bex b#a
=Z$m&+QMMﬂm
= ;”kil fi(a*) + Z ﬂbl p(a*) @1)
Xak+1 Xb,1

=7+ | A

Bak+1 Pyl Bak+1
= fi(d"),

where we used (18) in the last-but-one step.
The general case is then proven by a simple induction on m.

> @b Mp? by =" @b Vb by (b ™)

aexy aex

— A(BDBD  pmDy . 5 22)
— ’a(b(l)b(Z) o b(m))’
where we have used property (19) of p in the last step. O

As a consequence of Proposition 1, we have the following result, which is an
easy exercise in induction. The case L = 1 was already mentioned immediately
after (11).
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Corollary 2. For any fixed length L of words over the alphabet X,

D Aw) =1 (23)
wexL
Therefore, the column vector £”* = [ji(u)],cxc can be a seen as a formal

probability distribution on X*. We now look at the transition matrix M™% more
closely.

MUE = Shy=i( B(V). (24)

where §, is the indicator function for x, i.e., it is 1 if the statement x is true and
0 otherwise. Thus the matrix M™% is very sparse. It has just n non-zero entries
per row and per column. More precisely, the row indexed by v has the entry 8(v)
for the no-preimages of v, and the column indexed by u contains B(d,u) as the
only nonzero entries. In particular, the column sum for the column indexed by u is
3,5 B(d4(u)). Define the diagonal matrix A™L as one with precisely these column
sums as entries, i.e.

AL — Zaez Bau) v =u,

vu

(25)
0 otherwise.

Theorem 3. The vector i is the stationary vector for the de Bruijn process on
G"L e,

Mn,Lﬁn,L — An’Lﬁ,n’L. (26)

Proof. Consider the row corresponding to word v = vjvy ... v vy = h(v).vy in
the equation

Mu=AR. 27)

On the Lh.s. of (27) we have to consider the summation ), ... M, , (1), where
only those u € X with ¢(u).v; = v contribute. This latter condition can be written
as u = b.h(v) for some b € ¥, so that this summation can be written as

Z M, t(u) = Z My by (b h(v))

ueyL bex

= B(v) Y _b.h(v)) = B() L(h(v)).

bex

(28)

where the last equality follows from Lemma 6.
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On the r.h.s. of (27) we have for the row entry corresponding to the word v:

Avy (V) = ) B(0av) ()

aexy

=Y B(0av) - T(h(v)) w(v) = B(v) L(h(v))

aexy

(29)

in view of the inductive definition of i in (12) and the definition of w in (11). |

Let Z"L denote the common denominator of the stationary probabilities of
configurations. This is often called, with some abuse of terminology, the partition
function [4]. The abuse comes from the fact that this terminology is strictly
applicable in the sense of statistical mechanics while considering Markov chains
only when they are reversible. The de Bruijn process definitely does not fall into
this category. Since the probabilities are given by products of p in (12), one arrives
at the following product formula.

Corollary 4. The partition function of the de Bruijn process on G™* is given by

L—1 n

2"t =By [ ]] Bam- (30)

m=2a=1

Physicists are often interested in properties of the stationary distribution rather
than the full distribution itself. One natural quantity of interest in this context is the
so-called density distribution of a particular letter, say a, in the alphabet. In other
words, they would like to know, for example, how likely it is that a is present at the
first site rather than the last site. We can make this precise by defining occupation
variables. Let n°' denote the occupation variable of species a at site i : it is a random
variable which is 1 when site i is occupied by a and zero otherwise. We define
the probability in the stationary distribution by the symbol { - ). Then { 5% )
gives the density of a at site i. Similarly, one can ask for joint distributions, such as
( n**n>7 ), which is the probability that site i is occupied by a and simultaneously
that site j is occupied by b. Such joint distributions are known as correlation
functions.

We will not be able to obtain detailed information about arbitrary correlation
functions in full generality, but there is one case in which we can easily give the
answer. This is the correlation function for any letters ay,...,a;,a; at the last k
sites.

Corollary 5. Letu = ay ...aza;. Then

(e R ) = ). G1)
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Proof. By definition of the stationary state,

R ) Sy () (32)
vexLl—k
Using Proposition 1 repeatedly L — k times, we arrive at the desired result. O

In particular, Corollary 5 says that the density of species a at the last site is simply

a,L Xa,1
Y= —. 33
(n™") B (33)

Formulas for densities at other locations are much more complicated. It would be
interesting to find a uniform formula for the density of species a at site k.

4 Characteristic Polynomial of Y M ™.

We will prove a formula for the characteristic polynomial of VM- in the following.
In particular, we will show that it factorizes completely into linear parts. In order
to do so, we need to understand the structure of the transition matrices better. We
denote by y(M; A) the characteristic polynomial of a matrix M in the variable A.

To begin with, let us recall from the previous section that the transition matrices
M™L taken as mappings defined on row and column indices, are defined by

M"EXEx BE 5 X (v, u) > Shwy=rw - BV). (34)

Lemma 6. The matrix ML can be written as

M"E =AM A A ] (n copies of AT, (35)
where A™L is a matrix of size n* x n*~! given by
Ark sl grlml s X U0} : (v, u) - Spwy=u - B(V). (36)
We have
X11 AIILL—I onL=1 ... gnL-1 BiLL—l
-x2,l on-L—1 AZsL—l ... onLl-l B;LL—I
An,l — .’ , An,L — ) ) ) . = . s (37)
x);l On,'L—l On,'L—l An,.L—l Bn,'L—l

where AZ’L_I is like A”L~!, but with x; ;_; replaced by x; ;, and where 0L~ is
the zero matrix of size n/~! x nt=2. The matrices B"-L~! are square matrices of
size nL™1 x nL =1, where for each ¢ € X the matrix B is defined by
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B;”L XEx x5 x U0} (v,u) — 8ahw)=u - Bla.v). (38)

With these matrices at hand we can finally define the matrix B"L =" _. B"L of
size nt x nt, so that

B .yl x 3yt 5 xU {0} : (v, u) = Bpy=i(uy * B(ur.v). (39)

Lemma 7. M"! — B"L is a diagonal matrix.

Proof. We have
M"Ew,u) # B"L(v,u) < h(v) = t(u) and B(u;.v) # B(v) (40)
But B(u;.v) # B(v) can only happen if the last block of u;.v is different from the

last block of v, which only happens if v itself is a block, v = at, and u; = a, in
which case B(v) = x,.1 and B(u;.v) = X4 1+1. So we have

XaL+1 —Xgp fv=u= at,

(Bn,L _ Mn’L)(U, I/l) — (41)
otherwise.
0
We state as an equivalent assertion:
Corollary 8. For the Kirchhoff matrices of M and B"* we have equality:
VM)‘I,L :V Bl‘l,L. (42)

We now prove a very general result about the characteristic polynomial of a
matrix with a certain kind of block structure. This will be the key to finding the
characteristic polynomial of our transition matrices.

Lemma9. Let Py,..., Py, Q be any k X k matrices, P = Py + ---+ P, and

P+Q P - P
P, P, + Q P,
rR=| o 3)
Pm Pm Pm + Q
Then
X(R:A) = x(Q: )" x(P + Q:4). (44)

Proof. Multiply R by the block lower-triangular matrix of unit determinant shown
to get
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1 00---0 0 0 0- P
-110---0 -0 0 0- P,

R-| 0 —11 0l=| O QQ P (45)
0 00---1 0 0 O---Pm+Q

which has the same determinant as R. Now perform the block row operations which
replace row j by the sum of rows 1 through j to get

Q00 - P,

00Q0- P+ P

00 Q P1+P1+P3 (46)
000 P+0

Since this is now a block upper triangular matrix, the characteristic polynomials is
the product of those of the diagonal blocks. O

We will now apply this lemma to the block matrix

B!t —LD”’L LBf'L B{”i
Byt Byt—prt . By
M = : T : 47
Bt Byt ... Bt — D"t

where DL is the (n’ x n’)-diagonal matrix with the column sums of A”X*! on
the main diagonal.

Proposition 10. The characteristic polynomials y(YM™"; z) satisfy the recursion
X(VMn’L+l; Z) — X(—Dn'L; Z)n—l . X(VMn’L; Z)- (48)

Proof. From Corollary 8, Lemma 9, and the easily checked fact VB"-* = B"L —
D™E we get:

ACMPELR) = y (=D )" (D ges Bt — D" 2)
= x(=D""; )" " x(B"* — D"E;2)
= x(=D"E Ay (VB2
= x(=D"E )" (M),

(49)

As a final step, we need a formula for y(—D™%, ).
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Lemma 11. The characteristic polynomial of — D™ is given by

A+ Bia if L =0,

x=p"t =1,
[TITR+ B T] 0+ Barsr) ifL>o0.

m=2a€X aexy
(50)

Proof. The case L = 0 follows directly from the definition of A™! in (37). For
general L, recall that A" F! contains n copies of A"l with one factor containing
X4, removed and one factor containing x, 7 +; added instead, foreacha € X. Thus,

n L . A+ B
1(=D"E.2) = [y(=D" ' 1] E(Tﬂjzl) ey

which proves the result. O

We can now put everything together and get from Proposition 10, Lemma 11 and
checking the initial case for L = 1:

Theorem 12. The characteristic polynomial of the de Bruijn process on G™X is
given by

L
A M2 =204 p [T TGt o™ 62

m=2ag€X

5 Special Cases

We now consider special cases of the rates where something interesting happens in
the de Bruijn process.

5.1 The de Bruijn-Bernoulli Process

There turns out to be a special case of the rates x, ; for which the stationary
distribution is a Bernoulli measure. That is to say, the probability of finding species
a at site i in stationarity is independent, not only of any other site, but also of i itself.
This is not obvious because the dynamics at any given site is certainly a priori not
independent from what happens at any other site. Since the measure is so simple, all
correlation functions are trivial. We denote the single site measure in (11) for this
specialized process to be iy, and the stationary measure (12) as ji,.
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Corollary 13. Under the choice of rates x,,; = y, independent of j, the stationary
distribution of the Markov chain with transition matrix YM™" is Bernoulli with
density

p — L
Zbex Vb

Proof. The choice of rates simply mean that species a is added with a rate
independent of the current configuration. From (11), it follows that for u =
uiuy...uy,

(53)

Yur
(U) = =—— = pu,;, (54)
) =y, P

and using the definition of the stationary distribution f in (12),

L
ﬁy(”):l—[puiv (55)

i=1

which is exactly the definition of a Bernoulli distribution. O

5.2 The Skin-Deep de Bruijn Process

Another tractable version of the de Bruijn process is one where the rate for
transforming the word u = ujuy ... uy into d,u = t(u).a = uy...up.a fora € ¥
only depends on the occupation of the last site, u; . Hence, the rates are only skin-
deep. An additional simplification comes by choosing the rate to be x whena = u;
and 1 otherwise. Namely,

x forj =1,
Xaj = / (56)
1 forj > 1.

We first summarize the results. It turns out that any letter in the alphabet is equally
likely to be at any site in the skin-deep de Bruijn process. This is an enormous
simplification compared to the original process where we do not have a general
formula for the density. Further, we have the property that all correlation functions
are independent of the length of the words. This is not obvious because the Markov
chain on words of length L is not reducible in any obvious way to the one on words
of length L — 1. This property is quite rare and very few examples are known of
such families of Markov chains. One such example is the asymmetric annihilation
process [3].



Stationary Distribution and Eigenvalues for a de Bruijn Process 115

The intuition is as follows. By choosing x < 1 one prefers to add the same letter
as uy, and similarly, for x > 1, one prefers to add any letter in X' other than u; .
Of course, x = 1 corresponds to the uniform distribution. Therefore, one expects
the average word to be qualitatively different in these two cases. In the former case,
one expects the average word to be the same letter repeated L times, whereas in the
latter case, one would expect no two neighboring letters to be the same on average.
Our final result, a simple formula for the two-point correlation function, exemplifies
the different in these two cases.

We begin with a formula for the stationary distribution, which we will denote in
this specialization by fi,. We will always work with the alphabet X' on n letters.

Lemma 14. The stationary probability for a word u = wuy...u; € Xt is
given by

-1
n(l 4+ (n—Dx)L—1’

fx () = (57)

where y(u) is the number of blocks of u.

Proof. Analogous to the notation for the stationary distribution, we denote the block
function by B,. From the definition of the model,

o Jx ifk=1,
(@) = 58
Pl {1 ifk > 1. e

and thus, for any word u the value B, («) is x if the length of the last block in its
block decomposition is 1, and is 1 otherwise. The denominator in (57) is easily
explained. For any word u of length L,

I+(n—1x L>1,
nx L =1,

> Bu(t(w).a) = (59)

aexy

because for all but one letter in X, the size of the last block in #(u).a is going to be
1. The only exception to this argument is, L = 1, when ¢ (u) is empty. From (12),
we get

B () Bx(uiuz) -+ By ... ur) '

nx(1+ (n—1)x)L-1 (60)

oy (u) =

The numerator is x”), since we pick up a factor of x every time a new block starts.
One factor x is cancelled because B (1) = x. O

The formula for the density is essentially an argument about the symmetry of the
de Bruijn graph G™L.
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Corollary 15. The probability in the stationary state of G™* that site i is occupied
by letter a is uniform, i.e., for anyi s.th. 1 <i < L we have

; 1
(n"") =—(a e X). (61)
n
Proof. Indeed, by Lemma 14 the stationary distribution ft, is invariant under any
permutation of the letters of the alphabet X. Hence (%) does not dependona € X
and we have uniformity. O

Since the de Bruijn-Bernoulli process has a product measure, the density of a at
site i is also independent of 7, but the density is not uniform since it is given by p,
(53). The behavior of higher correlation functions here is more complicated than the
de Bruijn-Bernoulli process. There is, however, one aspect in which it resembles the
former, namely:

Lemma 16. Correlation functions of G™* in this model are independent of the
length L of the words and they are shift-invariant.

Proof. We can represent an arbitrary correlation function in the de Bruijn graph
G"L as

(et = Y g wQaw® Wt D aw®), (62)

wO) . i)

where we have sites 1 < i} < iy < ... < iy < L and letters a;,a,,...,a; € X,
and where the sum runs over all (W@, w® . . w®)) with wl) e Xi+1=5-1 for
s €{0,...,k}, and where we putip = 0 and ix+; = L + 1. Now note that we have
from Proposition 1 for any u € X*

D ) = jic(w). (63)

wexL

Since f[i,, as given in Lemma 14, is also invariant under reversal of words, we
also have

D fx(uw) = fic(w). (64)

weXxlL

As a consequence, we can forget about the outermost summations in (62) and get

(pi gy =

Z A (awV . owkDg) = (yhe ey, iy, (65)

W) &=
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where j; = iy —i; + 1 (1 <s < k). Shift-invariance in the sense that
(nal,il . nak,ik>L — (nal,i1+l . nak,ik-l—l)L (66)

is an immediate consequence. O

We now proceed to compute the two-point correlation function. This is an easy
exercise in generating functions for words according to the number of blocks. The
technique is known as “transfer-matrix method”, see, e.g., Sect. 4.7 in [20].

Fora,b € ¥ and k > 1 we define the generating polynomial in the variable x

applabix)y =Y X7 (67)

w€a.Xk—1p

where, as before, y(w) denotes the number of blocks in the block factorization of
w € X (so that y(w) — 1 is the number of pairs of adjacent distinct letters in w).
Note that

wa(abixy =) Ta=b (68)
x ifa #b.

The following statement is folklore:

Lemma 17. Let [, denote the identity matrix and J, denote the all-one matrix,
both of size n x n, and let K, (s,t) :== s -1, + t - I, for parameters s, t. Then

1
-1
K, (s, t) _—s(s nt) K, (s + nt,—t). (69)

Indeed, this is a very special case of what is known as the Sherman-Morrison
formula, see [19, 26].
Consider now the matrix

An(x) = [an1(a,b;%) ] pex = (1 =x) - T, + x - Jy = Ky (1 = x,x) (70)

which encodes transition in the alphabet X. Then, for k > 1, 4, (x)* is an (n x n)-
matrix which in position (a, b) contains the generating polynomial «, ¢ (a, b; x):

A () = [ (@,b;x)], pes - (71)

We can get generating functions by summing the geometric series and using
Lemma 17:
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ZA,,(x)kzk = [, —z- Ay (x)~"

k>0
= K,(1 —z+ xz,—xz)"! (72)
_ Ky(1—z—(n—1)xz,xz)
C (l—z4+x)(1—z—m—1xz)’

which means that for any two distinct letters a, b € X'

l—z—(—2)xz
1—z4+xx)(1—z—(@m—1)x2)

> anila.aix)F =

k=0
1 1 n—1 1
) l—z—(n—-1)xz + n l—z+4+xz
. (73)
Z
ani(a,b:x)? =
é & ) (1—z4+x2)(1—z—@m—1)x2)
1 1 1 1
T nl—z—(m—-1xz nl—-z4+xz
or equivalently,
1
(@ a;x) = — ((1= (= Dx)F + (n — 1)1 = x)F),
n
1 (74)
oy i la, b;x) = - (1= —1x)F = (1 -x)%).
We thus arrive at expressions for the two-point correlation functions:
Proposition 18. Fora,b € X witha #band1 <i < j <L,
P B | 1-x /™
adopd.jy —
) 2t e (1+(n—1)x) '
- (75)
. 1 1 1—x -
aibjy — — )
(™) n? n? (1+(n—1)x)

Proof. By Lemma 16 we may assume i = | and j = L. Comparing Lemma 14
with the definition of the o, x(a, b; x) in (67) we see that fora, b € X

al bLy _  Gnr—1(a,b;x)
(n“'n >_n(1+(n—1)x)L—1’ (76)

so that the assertion follows from 74. O
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The formula (75) is quite interesting because the first term, 1/n2, has a
significance. From the formula for the density in Corollary 15, we get

ety — ey ety = ( — )H (77)
n?> \1+ (n—1)x '

The object on the left hand side is called the truncated two point correlation function
in the physics literature, and its value is an indication of how far the stationary
distribution is from a product measure. In the case of a product measure, the right
hand side would be zero. Setting

1—x
0=——, (78)
1+ @m—1)x

we see that (o] < 1, and so the truncated correlation function goes exponentially to
zero as L — oo. Thus, the stationary measure [i, behaves like a product measure
if we do not look for observables which are close to each other. We can use (77) to
understand one of the differences between the values x < 1 and x > 1, namely in
the way this quantity converges. In the former case, the convergence is monotonic,
and in the latter, oscillatory.
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enumeration for any set of patterns. In the case of ELIZALDE (the “negative”
approach), these functional equations can be sometimes (automatically!) simplified,
and imply “explicit” formulas, that previously were derived by humans using ad-hoc
methods. We also get lots of new “explicit” results, beyond the scope of humans, but
we have to admit that we still need humans to handle “infinite families” of patterns,
but this too, no doubt, will soon be automatable, and we leave this as a challenge to
the (human and/or computer) reader.

Consecutive Pattern Avoidance

Inspired by the very active research in pattern-avoidance, pioneered by Herb
Wilf, Rodica Simion, Frank Schmidt, Richard Stanley, Don Knuth and others,
Sergi Elizalde, in his PhD thesis (written under the direction of Richard Stanley)
introduced the study of permutations avoiding consecutive patterns.

Recall that an n-permutation is a sequence of integers # = ;... m, of length
n where each integer in {1, ...,n} appears exactly once. It is well-known and very
easy to see (today!) that the number of n-permutations is n! := [[/_, i.

The reduction of a list of different (integer or real) numbers (or members of
any totally ordered set) [i1,i2,...,i], to be denoted by R([i1,i2,...,ik]), is the
permutation of {1,2,...,k} that preserves the relative rankings of the entries. In
other words, p; < p; iff g < ¢q;. For example the reduction of [4,2,7,5] is
[2, 1,4, 3] and the reduction of [r, e, y, ¢] is [4, 3, 1, 2].

Fixing a pattern p = [pi,..., px], a permutation & = [my,...,7w,] avoids the
consecutive pattern p if for all i, 1 < i < n — k + 1, the reduction of the list
[, i1, ..., TWitk—1] i8S not p. More generally a permutation 7 avoids a set of

patterns P if it avoids each and every pattern p € P.

The central problem is to answer the question: “Given a pattern or a set of
patterns, find a ‘formula’, or at least an efficient algorithm (in the sense of Wilf
[12]), that inputs a positive integer n and outputs the number of permutations of
length n that avoid that pattern (or set of patterns)”.

Human Research

After the pioneering work of Elizalde and Noy [4], quite a few people contributed
significantly, including Anders Claesson, Toufik Mansour, Sergey Kitaev, Anthony
Mendes, Jeff Remmel, and more recently, Vladimir Dotsenko, Anton Khoroshkin
and Boris Shapiro. Also recently we witnessed the beautiful resolution of the
Warlimont conjecture by Richard Ehrenborg, Sergey Kitaev, and Peter Perry [3].
The latter paper also contains extensive references.
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Recommended Reading

While the present article tries to be self-contained, the readers would get more out
of it if they are familiar with [13]. Other applications of the umbral transfer matrix
method were given in [5, 14-16].

The Positive Approach vs. the Negative Approach

We will present two complementary approaches to the enumeration of consecutive-
Wilf classes, both using the Umbral transfer matrix method. The positive approach
works better when you have many patterns, and the negative approach works better
when there are only a few, and works best when there is only one pattern to avoid.

Outline of the Positive Approach

Instead of dealing with avoidance (the number of permutations that have zero
occurrences of the given pattern(s)) we will deal with the more general problem of
enumerating the number of permutations that have specified numbers of occurrences
of any pattern of length k.

Fix a positive integer k, and let {¢, : p € S} be k! commuting indeterminates
(alias variables). Define the weight of an n-permutation = = [ny,..., 7], to be
denoted by w(rr), by:

n—k+1
i=1

For example, with k = 3,

w([2,5,1,4,6,3]) := tr@2.51) ER(5.1.4) ER(1.4.6) LR(4.6,3) =
_ _ 2
= I31831201231231 = h123153,1312.

We are interested in an efficient algorithm for computing the sequence of polynomi-
als in k! variables

Potike. o tienn) = ) w(m),

TES,

or equivalently, as many terms as desired in the formal power series

o0
Fr({tp. p € Si}iz) = Z P,Z".
n=0
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Note that once we have computed the P, (or Fy), we can answer any question
about pattern avoidance by specializing the #’s. For example to get the number of
n-permutations avoiding the single pattern p, of length k, first compute P,, and then
plug-in7, = 0 and all the other t’s to be 1. If you want the number of n-permutations
avoiding the set of patterns I (all of the same length k), setf, = O forall p € P and
the other t’s to be 1. As we shall soon see, we will generate functional equations for
Fy, featuring the {z,,} and of course it would be much more efficient to specialize the
t,’s to the numerical values already in the functional equations, rather than crank-out
the much more complicated P, ({t,})’s and then do the plugging-in.

First let’s recall one of the many proofs that the number of n-permutations, let’s
denote it by a(n), satisfies the recurrence

an+1) =+ Dan).

Given a typical member of S, let’s call it ¥ = 7y ... 7,, it can be continued in 7 + 1
ways, by deciding on 7, 4. If m,4+; = 7, then we have to “make room” for the new
entry by incrementing by 1 all entries > 7, and then append i . This gives a bijection
between S, x [1,n 4+ 1] and S,,+ and taking cardinalities yields the recurrence. Of
course a(0) = 1, and “solving” this recurrence yields a(n) = n!. Of course this
solving is “cheating”, since n! is just shorthand for the solution of this recurrence
subject to the initial condition a(0) = 1, but from now on it is considered “closed
form” (just by convention!).

When we do weighted counting with respect to the weight w with a given pattern-
length k, we have to keep track of the last k — 1 entries of 7:

[ﬂn—k+2 .. ﬁn],

and when we append 7,4+ = i, the new permutation (let ¢’ = a if a < i and
a=a+1ifa>1i)

/ /.
T jan e T,

has “gained” a factor of #p,’ /i1 to its weight.
[y — ka7l

This calls for the finite-state method, alas, the “alphabet” is indefinitely large, so
we need the umbral transfer-matrix method.

We introduce k — 1 “catalytic” variables x, xz, ..., Xx—;, as well as a variable
7 to keep track of the size of the permutation, and (k — 1)! “linear” state variables
Algq] for each g € Sji_i, to tell us the state that the permutation is in. Define the
generalized weight w'(r) of a permutation 7 € S, to be:

w(m) = w(n)xlj‘x{2 ... x]g"__llz”A[q],

where [j1,..., ji—1], (1 < j1 < jo < -+ < jx—1 < n) is the sorted list of the last
k — 1 entries of 7, and ¢ is the reduction of its last k — 1 entries.



Automatic Generation of Theorems and Proofs on Enumerating Consecutive- . . . 125

For example, with k = 3:

w([4,7,1,6,3,5,8,2]) = taitaintinntsintinats X x5 2 A21] =
= t123tl32t2231t§12x12x§zsA[Zl].
Let’s illustrate the method with k& = 3. There are two states: [I,2],[2,1]
corresponding to the cases where the two last entries are jj j, or j,j; respectively

(we always assume j; < j»).
Suppose we are in state [1, 2], so our permutation looks like

7 =1[...J1, 2],

and w'(r) = w(n)xl x2 27" A[1,2]. We want to append i (1 <i < n + 1) to the
end. There are three cases.

Casel: 1<i<j.
The new permutation, let’s call it o, looks like

o=[..i+1, 4+ 1il

Its state is [2, 1] and w/(0) = w(m)tzxix T 7t 42, 1],
Case2: ji+1<i<j.
The new permutation, let’s call it o, looks like

o=1[..j1, 2+ LIl

Its state is now [2, 1] and w'(0) = w(n)t132x’ix£2+lz"+1A[2, 1].
Case3: jp+1<i<n+1
The new permutation, let’s call it o, looks like

o=1[..J1 il
Its state is now [1,2] and w'(0) = w(rm)t123x]> xiz" TLA[1, 2]

It follows that any individual permutation of size n, and state [1, 2], gives rise to
n + 1 children, and regarding weight, we have the “umbral evolution” (here W is
the fixed part of the weight, that does not change):

Wxl' xJ7" A[1,2] = WinizA[2,1] (Zx' ““)zn

i=l1

+WitinzA[2,1] Z xixéﬁl
i=j1+1

n+1
+Witi23zA[L, 2] Z x| 2
i=j,+1
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Taking out of the >_-signs whatever we can, we have:

J1
Wx{lxézznA[l, 2] — W12312A[2, 1] (Z Xll) xél‘Hzn

i=1

J2
FWhnzAR ][ YD x| 5P

i=j1+1

n+1 )
+Wita3zA[l, 2] Z xh | X2

i=j+1

Now summing up the geometrical series, using the ancient formula:

b . Zu_zh-{—l
YLt
1-Z7

i=a

we get

.. _ Lt )
Wxi'x322" A1, 2] — Wiy1zA[2,1] (%) N

Kt et -
FWiinzAR ] [ A — | 12t

1— X1
2+l n+2
X — X i
FWiinszA[12) (4) 2,
1— X2

This is the same as:

Ja+1 Ji+1_ja+1
i i X1 X — X X
Wx{‘xgzz"A[l,Z]—>Wtz31zA[z,1]< 72 [ )z"

l—xl

s I . )

1—)C1

Jit+1_ja2+1 Jat+1__ja2+1
+Wti1324[2, 1]( ) 1

J2 2+l J2 .n+2
X717 X — X7 X
+Wt123zA[1,2](1 2 172 )z".
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This is what was called in [13], and its many sequels, a “pre-umbra”. The above
evolution can be expressed for a general monomial M (x, x3, z) as:

M 1, 5 - M £ ’
M(xl,xz,Z)A[lsz]—>12312A[2,1](xm2 (a9~ ol 22 Z))

1—X1

X1xoM(x1,%2,2) — x1%:M(1, x1x2,
+1132ZA[2,1](12 (x1, X2, 2) — X102 M( 121))

1—X1

xoM(1, x1x2,2) — x%M(l,xl,sz))

+1123ZA[1,2]( I
— X2

But, by linearity, this means that the coefficient of A[l, 2] (the weight-enumerator
of all permutations of state [1, 2]) obeys the evolution equation:

17 3 - ) )
Ji2(x1, x2,2) A[1, 2] — 103124[2, 1] (XIXqu( X2:2) ~ Xixaialdn, X2 Z))

1—X1

XX X1,X2,2) — X1X 1, X%, 2
+h3zA[2, 1]( 1% f12 (X1, X2, 2) — x1%2 fi2(1, X102 ))

l—xl

x2 fi2(1, x1x2, 2) — x5 fia (1, x1, xzz))

+t123zA[1, 2] ( I~

Now we have to do it all over for a permutation in state [2, 1]. Suppose we are in
state [2, 1], so our permutation looks like

7 =1[...Jj2, j1l,

and w' () = w(n)x{‘x{zz"A[Z, 1]. We want to append i (1 < i < n + 1) to the
end. There are three cases.

Casel: 1<i<j.
The new permutation, let’s call it o, looks like

o=1[..+1,+11i]
Its state is [2, 1] and w/(0) = w(m)toxix) 741412, 1]
Case2: ji+1<i <.
The new permutation, let’s call it o, looks like

o=[..o+1 j1i]

Its state is now [1, 2] and
w (o) = w(m)tx] x5z 1AL, 2].
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Case3: jp+1<i<n+1.
The new permutation, let’s call it o, looks like

o=1[..J,J1,1]

Its state is [1,2] and w/(0) = w(m)ta3x] xiz" T A[L, 2).

It follows that any individual permutation of size n, and state [2, 1], gives rise to
n + 1 children, and regarding weight, we have the “umbral evolution” (here W is
the fixed part of the weight, that does not change):

Wxl' xP2 A2, 1] > WinzA[2, 1] (Zx’ ““) 7"

i=1

+Wi312zA[1, 2] Z x{‘x’2 n
i=j+1

n+1

+Wi3zA[1, 2] Z x'xh | 2.
i=j+1

Taking out of the >_-signs whatever we can, we have:

Wxl' xP2 A2, 1] > WinzA[2, 1] (le) PR

i=1

+WiznzA[l, 2] Z x|«
i=ji1+1

n+1
+Wi3zA[1, 2] Z x| 2
i=j+1

Now summing up the geometrical series, using the ancient formula:
b a _ Zb-l—l

i Z
ZZ_ 1-z

i=a
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we get

P _ il )
Wxi'x?Z' A[2, 1] - WizzA[2, 1] (xll#) Xt
X

K et )
+Wits12zA[1, 2] (4) xflz”

K2t 2 )
+Wt3zA[1, 2] 2 72 x{lz”.

This is the same as:

jitl il it
. XX, —Xp X
Wx{'x3? 2" A2, 1] = Wiz zA[2, 1]( = 1 )lc 2 )Zn
— Al

Jr 1+l J1 2+l
X7 X — X7 X
+Wt312zA[1,2](1 2 12 )z”

1—)C2

Ji,J2+1 J1_n+2
X1 X — X7 X
+Wt3zA[1, 2] ( 172 172 )Zn.
1— X2

The above evolution can be expressed for a general monomial M (x, x3, 7) as:

M ,1, - M 715
M(xl,xzaz)A[zsl]—>I3212A[2,1](Xlxz (2, 1,9) = xixaMxixs Z))

1—X1

XoM(x1x2,1,2) — xoM(x1, X2,
+t312zA[1,2](2 (x1x2,1,2) — x2 M (x; zz))

1—x2

M » X2,3) — 2M 1,
—+—Z213ZA[1,2]()62 (1, X2,2) — x3 M (x; xzz)).

1—x2

But, by linearity, this means that the coefficient of A[2, 1] (the weight-enumerator
of all permutations of state [2, 1]) obeys the evolution equation:

,1,2) — .1,
So(x1,x2,2)A[2, 1] — t32124[2, 1] (XIXZfZl(xz 9~ fn (o Z))

1—.X1

’ 15 - s s
+Z312ZA[1’2] (x2f21(xlx2 1Z)_ x';CZfZ](XI X2 Z))

— x2 1,
+113zA4[1, 2] (x2f21(X1,xz,zi izfm()ﬂ, xzz)) '
— X2
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Combining we have the “evolution”:

Ji2(x1, x2,2) A[1, 2] + fo1(x1, x2,2)A[2,1] —

x1x2 f12(1, X2, 2) — x1x2 f12(x1, X2, Z))
1—X1

131zA[2, 1] (

x1X2 fi2 (X1, X2, 2) — X1%2 fi2 (1, X1 X2, 2
+113224[2, 1]( 1%2 f12(x1, %2, 2) — x1x2 fi2 (1, X122 ))

1—.X1

x2 fi2(1, x1x2, 2) — x5 fia (1, x1, xzz))

+1123zA[1, 2] ( p——

x1X2 fo1(x2,1,2) — x1x2 for (x1x2. 1, 2
+13212A[2, 1]( 1%2 f21 (%2, 1,2) — X102 fo1 (1 X2 ))

1—.X1

X x1x2, 1,2) —x X1, Xa,
+t312zA[1,2]( 221 (x1x2, 1,2) — X2 fo1(x1, X2 z))

1—XZ

x2 fo1(x1, X2,2) — x5 for (1, 1, le))

+113zA[1, 2] ( p——

Now the “evolved” (new) fi2(x1,x2,z) and f51(xy, x2,z) are the coefficients of
A[1,2] and A2, 1] respectively, and since the initial weight of both of them is
by lx%zz, we have the established the following system of functional equations:

fia(x1,x2,2) = x137°

X2 f12(1, X1X2,2) — X3 fi2(1, X1, X22)
+11232

1—)62

(Xzfm(xlxz, 1,2) — x2 f1(x1, X2, Z))
+13122

1—)62

x2 fo1 (X1, X2,2) — X3 for (x1, 1, x22)
+1132 —x ,
— X2

and

far(x1,x2,2) = x1x37%

x1x2 f1a(1, x2,2) — x1%2 f12(x1, X2, 2)
+1312

1—X1

x1x2 f12(x1, X2, 2) — x1x2 f12(1, X1 x2,2)
+1322 —x
— Al

x1x2 f21(x2,1,2) — x1x2 for (x1x2, 1, 2)
+1312 = .
— X1
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Let the Computer Do It!

All the above was only done for pedagogical reasons. The computer can do it all
automatically, much faster and more reliably. Now if we want to find functional
equations for the number of permutations avoiding a given set of consecutive
patterns I, all we have to do is plug-int, = O for p € Pand ¢, = 1 for p & P.
This gives a polynomial-time algorithm for computing any desired number of terms.
This is all done automatically in the Maple package SERGI. See the webpage of this
article for lots of sample input and output.

Above we assumed that the members of the set P are all of the same length, k.
Of course more general scenarios can be reduced to this case, where k would be the
largest length that shows up in P. Note that with this approach we end up with a set
of (k — 1)! functional equations in the (k — 1)! “functions” (or rather formal power

series) f).

The Negative Approach

Suppose that we want to compute quickly the first 100 terms (or whatever) of the
sequence enumerating n-permutations avoiding the pattern [1,2,...,20]. As we
have already noted, using the “positive” approach, we have to set-up a system of
functional equations with 19! equations and 19! unknowns. While the algorithm is
still polynomial in n (and would give a “Wilfian” answer), it is not very practical!
(This is yet another illustration why the ruling paradigm in theoretical computer
science, of equating “polynomial time” with “fast” is (sometimes) absurd).

This is analogous to computing words in a finite alphabet, say of a letters,
avoiding a given word (or words) as factors (consecutive subwords). If the word-to-
avoid has length k, then the naive transfer-matrix method would require setting up a
system of a*~! equations and a*~! unknowns. The elegant and powerful Goulden-
Jackson method [6,7], beautifully exposited and extended in [11], and even further
extended in [9], enables one to do it by solving one equation in one unknown. We
assume that the reader is familiar with it, and briefly describe the analog for the
present problem, where the alphabet is “infinite”. This is also the approach pursued
in the beautiful human-generated papers [2] and [8]. We repeat that the focus and
novelty in the present work is in automating enumeration, and the current topic of
consecutive pattern-avoidance is used as a case-study.

First, some generalities! For ease of exposition, let’s focus on a single pattern p
(the case of several patterns is analogous, see [2]).

Using the inclusion-exclusion “negative” philosophy for counting, fix a pattern
p. For any n-permutation, let Patt, () be the set of occurrences of the pattern p in
7. For example
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Part153(179234568) = {179, 234, 345, 456, 568},
Pattys; (179234568) = {792},
Patt315(179234568) = {923},
Patt3,(179234568) = Patty13(179234568) = Pattz(179234568) = 0.

Consider the much larger set of pairs
{[z,S]| w € Sy, S C Patt, ()},
and define
weight [, S] = (t — l)m,
where | S| is the number of elements of S. For example,

weight,,3[179234568, {234,568}] = (t — 1),
weight,5;[179234568, {179} = (t — 1)! =1 —1,
weight,,3[179234568,0] = (t — 1)° = 1.

Fix a (consecutive) pattern p of length k, and consider the weight-enumerator of
all n-permutations according to the weight

W(]t) = Z#nccurrencex of pattern p in JT7
let’s call it P, (). So:

Pn(l) = Z t\Parrp(nH'

TES,

Now we need the crucial, extremely deep, fact:
t=0—-1)+1,

and its corollary (for any finite set S):

Bl=@-n+DS=TJc-D+n=> -

SES TCS

Putting this into the definition of P, (¢), we get:

P,(t) := Z fPartp (o)l — Z Z (t — l)m'

TES, 7 €Sy T CPatt ()
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This is the weight-enumerator (according to a different weight, namely (r — 1)) of
a much larger set, namely the set of pairs, (v, T'), where T is a subset of Patt,(x).
Surprisingly, this is much easier to handle!

Consider a typical such “creature” (7, T'). There are two cases

Casel: The last entry of m, m, does not belong to any of the members of
T, in which case chopping it off produces a shorter such creature, in the set
{1,2,...,n}\{m,}, and reducing both 7 and T to {1, ...,n — 1} yields a typical
member of size n — 1. Since there are n choices for 7z, the weight-enumerator
of creatures of this type (where the last entry does not belong to any member of
T)isnP,_(¢).

Case II:  Let’s order the members of 7" by their first (or last) index:

[S1,82,...,8p]

where the last entry of 7, m,, belongs to s,. If s, and s,—; are disjoint, the
ending cluster is simply [s,]. Otherwise s, intersects s,—1. If 5,1 and s, » are
disjoint, then the ending cluster is [s,—1, 5,]. More generally, the ending cluster
of the pair [, [s1, ..., s,]] is the unique list [s;, ..., 5,] that has the property that
s; intersects s; 41, i+ intersects s; 42, ..., §p,—1 intersects s,, but s;—; does not
intersect s;. It is possible that the ending cluster of [, 7] is the whole 7.

Let’s give an example: with the pattern 123. The ending cluster of the pair:
[157423689, [157, 236,368, 689]]

is [236, 368, 689] since 236 overlaps with 368 (in two entries) and 368 overlaps with
689 (also in two entries), while 157 is disjoint from 236.

Now if you remove the ending cluster of 7" from 7 and remove the entries
participating in the cluster from 7, you get a shorter creature [n’, T’] where 7’
is the permutation with all the entries in the ending cluster removed, and 7" is what
remains of 7" after we removed that cluster. In the above example, we have

[z, T"] = [1574, [157]].

Suppose that the length of 7’ is r.

Let C,(t) be the weight-enumerator, according to the weight (r — 1)!7!, of
canonical clusters of length n, i.e., those whose set of entries is {1,...,n}. Then
in Case II we have to choose a subset of {1, ..., n} of cardinality n — r to be the set
of entries of [7/, T'] and then choose a creature of size n — r and a cluster of size r.
Combining Cases I and II, we have, Py(t) = 1, and forn > 1:

Py(t) = nP,—1 (1) + Z (j) Py (1)Cr(2).
r=2
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Now it is time to consider the exponential generating function

o

F(z,t) := Z P:;—(!t)z".

n=0

We have

F(z.t):=1 +ZP”—O) =
0 P, 00 n
=1+ %Z" + Z’% (Z_: (j) Pn—r(t)cr([)) 4
- n!
i (12:; mPn_r(t)Cr(t))Zn

o0 n 1 .
— 7+ Z( r!(n—_r)!Pn_,(t)C,(t)) z
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e
N

Il
_I_
Al
|
R
_|_
P

o~ Pier () ) = CO)
2; T )(Z r! Z)’

r=0

since Co(t) = 0, C(¢) = 0, and this equals
=14zF(z,t)+ F(z,t)G(z,1),

where G(z, t) is the exponential generating function of C,, (¢):

G(z,t) := Z C’;(!t)z".

n=0

It follows that
F(z,t) =14 zF(z,t) + F(z,t)G(z, 1),

leading to

1
F(iz,t) = ————.
@) 1-z-G(z1)
So if we had a quick way to compute the sequence C, (¢), we would have a quick
way to compute the first whatever coefficients (in z) of F(z,t) (i.e., as many P,(¢)
as desired).
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A Fast Way to Compute C,(¢)

For the sake of pedagogy let the fixed pattern be 1324. Consider a typical cluster
(13254768, [1325,2547, 4768]].
If we remove the last atom of the cluster, we get the cluster
[132547,[1325,2547]],
of the set {1,2,3,4,5,7}.Its canonical form, reduced to the set {1,2,3,4,5, 6}, is:
[132546, [1325,2546]].

Because of the “Markovian property” (chopping the last atom of the clusters and
reducing yields a shorter cluster), we can build-up such a cluster, and in order to
know how to add another atom, all we need to know is the current last atom. If the
pattern is of length k (in this example, k = 4), we need only to keep track of the last
k entries. Let the sorted list (from small to large) be i} < --- < i, so the last atom of
the cluster (with r atoms) is s, = [ip,,...,1, ], Wherel <ij <ip <--- <ip <nis
some increasing sequence of k integers between 1 and n. We introduce k catalytic
variables xp, ..., xx, and define

Weight([s1, ..., Sr—1, [ip1s - ip]]) 1= 2"(t — 1) X}t xjE.
Going back to the 1324 example, if we currently have a cluster with r atoms,

whose last atom is [iy,i3,I2,i4], how can we add another atom? Let’s call it
[j1, /3, J2, j4]- This new atom can overlap with the former one in two possibilities.

(a) If the overlap is of length 2:
Ji1=1l2 J3=1s,
but because of the “reduction” (making room for the new entries) it is really
Ji=1ly jz=is+1,

(and j, and j; can be what they wish as long as iy < j, <is + 1 < js < n).
(b) If the overlap is of length 1:

J1=14

(and j,, j3, j4 can be what they wish, provided that iy < j, < j3 < ja < n).
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Hence we have the “umbral-evolution”:

2 — 1) I PR = e - 1) E xi'xy’xy x !
I=ji=i2<ja<j3=ig+1<ji=<n
+Zn+3(l _ l)r § : x{‘xézxfxf.

1<j1=i4<j2<j3<js=n

These two iterated geometrical sums can be summed exactly, and from this “pre-
umbra” the computer can deduce (automatically!) the umbral operator, yielding a
functional equation for the ordinary generating function

oo
Ct.zixt.....xi) =Y Cultixr,....x0)2",

n=0
of the form
Clt,z;x1,...,xk) = (t — 1)zkx1x§...x’,§+
+ g Ra(xr, o oxis 1, 2)€(, s MY, M),
where {a} is a finite index set, M{, ..., M are specific monomials in xp, ..., Xk,

z, derived by the algorithm, and R, are certain rational functions of their arguments,
also derived by the algorithm.

Once again, the novelty here is that everything (except for the initial Maple
programming) is done automatically by the computer. It is the computer doing
combinatorial research all on its own!

Post-processing the Functional Equation

At the end of the day we are only interested in C(¢,z;1,...,1). Alas, plugging
inx; = 1,x; = 1,...,xx = 1 would give lots of 0/0. Taking the limits, and
using L’Hopital, is an option, but then we get a differential equation that would
introduce differentiations with respect to the catalytic variables, and we would not
gain anything.

But it so happens, in many cases, that the functional operator preserves some of
the exponents of the x/s. For example for the pattern 321 the last three entries are
always [3, 2, 1], and one can do a change of dependent variable:

e(tv Zs -xls CREE ] x3) = xl'x%x::;’g(z; t)’
and now plugging in x; = 1,x, = 1,x3 = 1 is harmless, and one gets a

much simpler functional equation with no catalytic variables, that turns out to be
(according to S.B. Ekhad) the simple algebraic equation
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gz t)=——DZ— -1+ 2)g(1),

that in this case can be solved in closed-form (reproducing a result that goes back
to [EN]). Other times (like the pattern 231), we only get rid of some of the catalytic
variables. Putting

C(t,z;x1, ..., x3) = X1X38(x3, 53 1),

(and then plugging in x; = 1, x, = 1) gives a much simplified functional equation,
and now taking the limit x3 — 1 and using L'Hopital (that Maple does all by
itself) one gets a pure differential equation for g(1, z;¢), in z, that sometimes can
be even solved in closed form (automatically by Maple). But from the point of view
of efficient enumeration, it is just as well to leave it at that.

Any pattern p is trivially equivalent to (up to) three other patterns (its reverse, its
complement, and the reverse-of-the-complement, some of which may coincide). It
turns out that out of these (up to) four options, there is one that is easiest to handle,
and the computer finds this one, by finding which ones gives the simplest functional
(or, if in luck, differential or algebraic) equation, and goes on to handle only this
representative.

The Maple Package ELIZALDE

All of this is implemented in the Maple package ELIZALDE, that automatically
produces theorems and proofs. Lots of sample output (including computer-generated
theorems and proofs) can be found on the webpage of this article:
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/auto.html.
In particular, to see all theorems and proofs for patterns of lengths 3 through 5 go to
(respectively):
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oEP3_200,
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oEP4_60,
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oEP5_40.
If the proofs bore you, and by now you believe Shalosh B. Ekhad, and you only want
to see the statements of the theorems, for lengths 3 through 6 go to (respectively):
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oET3_200,
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oET4_60,
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oET5_40,
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oET6_30.

Humans, with their short attention spans, would probably soon get tired of even
the statements of most of the theorems of this last file (for patterns of length 6).

In addition to “symbol crunching” this package does quite a lot of “number
crunching” (of course using the former). To see the “hit parade”, ranked by size,
together with the conjectured asymptotic growth for single conSeciitive-pattern


http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/auto.html
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oEP3_200
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oEP4_60
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avoidance of lengths between 3 and 6, see, respectively, the output files:
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oE3_200,

http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oE4_60,

http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oE5_40,

http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oE6_30.

Enjoy!
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Watson-Like Formulae for Terminating
3F>-Series

Wenchang Chu and Roberta R. Zhou

Abstract Several closed formulae are established for terminating Watson—like
hypergeometric 3 F,-series by investigating, through Gould and Hsu’s fundamental
pair of inverse series relations, the dual relations of Dougall’s formula for the very
well-poised 5 F4-series.

1 Introduction and Preliminaries

Following Bailey [1], the classical hypergeometric series, for an indeterminate z and
two nonnegative integers p and ¢, is defined by

ap, dy, -+, a 2\ (ao)k(@)i -+ (@pk 4
F Pz| =
14p q[ bl,---,bq‘z} ]; KB (by)k <

where the rising shifted—factorial reads as
(x)o=1 and (x), =x(x+1)---(x+n—-1) for neN

with its multi—-parameter form being abbreviated as

|:057 ,37"'7)’:| _ (O()n(lg)n()/)n
A B, C| T @B (O
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When one of numerator parameters {a;} is a negative integer, then the
hypergeometric series becomes terminating, which reduces to a polynomial in z.

Around 15 years ago, Chu [3, 4] devised a systematic approach “inversion
techniques” to prove terminating hypergeometric series identities. The method is
based on a fundamental pair of the inverse series relations discovered by Gould
and Hsu [9, 1973]. For its extensions and further applications, the interested reader
may refer to the papers [2,5,6]. In order to facilitate the subsequent application, we
reproduce Gould and Hsu’s inversions as follows. Let {ax, by }x>0 be two sequences
such that the ¢-polynomials defined by

n—1

e(x;0) =1 and o¢(x;n) = H(ak + xby) with neN (1)
k=0

differ from zero for x, n € Ny. Then there hold the inverse series relations

fmy =Y =0F (7 )otk:mg b @)
k=0
g(m) = Z(— () B pn. o)

Among numerous summation formulae for hypergeometric series, Dougall’s
theorem [8, 1907] (cf. Bailey [1, §4.4]) for the very well-poised 5 Fs—series has
been very useful. One of its terminating version can be expressed as

F|:u,l+L2—‘,%+u—v, =, I_Tm ‘1] |:1+2u,vi|
514 1 24 1+ =1
3 v ut SR ut R ;g tu2v],

By investigating, through the inversion machinery, linear combinations of the last

5 Fy-series with different parameter settings for u, v and m, we shall evaluate the
following terminating 3 F,—series

“)

Wa,&(mlu,v) = 3F2|:_m7m+2u, v ) i|

+5, §+2v

where ¢ and § are integers. They can be considered as terminating variants of
Watson’s 3 F»-series (cf. Bailey [1, §3.3 and §3.4] and [14])

. | L Meth Ly dmash oy
3072 l+a+b 1+a  1¥b  1Za 15
2 =5 5 5 te, 5+t

because when terminating by ¢ = —m and b = m + 2u, this series can be restated
equivalently as Watson’s original expression [15]
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1 1
5y 5t uU—v
20 2 .
—m,m+2u, v 1 1 :| . m=2n;
F }1 = |:—+u, >4
32|: u—i—%, 2 i| 2 2 n

0, m=2n+ 1.

This identity results in the dual formula of the Dougall sum via Gould and Hsu’s

inversion pair (2) and (3). To illustrate our approach, this can be confirmed briefly
as follows. Write equivalently the foregoing s Fy-series in terms of a binomial sum

2u,v m 2u + 4k wu—v—+ 1 (2k)!
D, wv)=| MY | = T 2| 2L s
(M U) |:M+%,2Ui| g(%) (2u+m)2k+1|: U+% :|k k! ( )

m

Observe that the last equation can be obtained from (3) by specifying

as well as
2k)! — 1
fory = Bt fwu—v+ 3l 0 fok+1) =0,
k! v+ 2 k

We have the dual relation corresponding to (2) as follows

m 2n)! u,u—v+%
ok (™) uk 2u,v _ I | . m = 2n;

e e i e I R

k=0

0, m=2n+ 1.

In terms of hypergeometric series, this becomes Watson’s original identity.

This example encourages us to explore further identities for the 3F,-series
displayed in (4). In the next section, nine identities for W, s (m|u, v) will be shown
in detail by applying the Gould—Hsu inversions (2) and (3) to linear combinations
of ®,,(u, v) displayed in (5). The same approach can be employed to demonstrate
further identities with 22 selected ones being tabulated in the third section, which
cover the formulae for W, s (m|u, v) with ¢ and § being small integers.

Fifteen years ago, Lewanowicz [13] succeeded in determining analytical formu-
lae for generalized Watson series, which have further been improved by Chu [7]
recently. However, the formulae derived in these both papers are too involved
in double sum expressions. Compared with the method utilized in [7, 13], the
approach employed here is totally different and more direct as it leads to finding
several elegant formulae expressed in terms of factorial quotients by treating directly
with the terminating series W, s(m|u, v). To our knowledge, most of the identities
proved in this paper do not seem to have explicitly appeared previously except for
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Theorem 5 whose particular case has been found by Larcombe and Larsen [12]
recently. In order to assure the accuracy of mathematical computations, we have
appropriately devised a Mathematica package to check all the displayed formulae.

2 Nine Identities and Their Proofs

By utilizing Gould and Hsu’s inversion pair (2) and (3) to linear combinations
of ©,,(u,v) displayed in (5), this section will demonstrate nine identities for
W, s(m|u, v), which are divided into nine subsections with subsection headers being
labeled by (e, §) parameters.

21 e=0andé =0

For the following Dougall sum

:Dm(u + %s U)

2u,v _ 2u+2m
u,2v m_ 2u+m

we can write it explicitly as

2 4k + 1 Loy 2k)!
[2”’v:| :(2u+2m)z<m)_u+ - [IH_TM 1U+1:| ( |)'.
u,2v ] = 2k | Qu 4+ m)a+2 v+ 3 . k!

According to the two—term relation

Qu+m + 2k + D)Qu+4k)  (m — 2k)(2u + 4k + 2)

2t 2m =
it am 2ut dk + 1 2t ak + 1

we get correspondingly the expression of two binomial sums

|:2u,vi| _Z m (2u+4k)f(2k)_z m Qu+4k +2)f2k + 1)
w2v| 2k ] Qu+ m)y4 2k +1 (2u + m)og 42

k=0 k=0

where f(k) is given explicitly by

QN Tu+tu—v+1
2k) = —2 2
J(2k) k! v+% .
Ck+D!'Tu+iu—v+1
bk +1)=—2 8 2 .
f@k+1) k! v—i—% i
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Comparing the last equation with (3) under the specifications

2u,v

¢m) = [ )

i| and @(x;n) = Qu+ x),

we find the following dual relation corresponding to (2)

- 2n), m = 2n;
1)k m 5 +km|:2u,v:| _ S
k2=(:)( ) (k)( ! ) u,2v |, f@2n+1), m=2n+1.

In terms of hypergeometric series, this yields the following identity.

Theorem 1 (Terminating series identity).

1
S U — 1
|:2,M v-i— i|’ m=2n:
—m, m+2u, v wv+5 o],
3F2 2 )1 -
“, v %,u—v—}—l -1
—, m=2n+1.

u—i—l,v—}—% n2’4

22 e=2andé =0

The following Dougall sum

2u,v 2u
; = ®m +l7
|:u+1,2v:|m 2u+m (t3.0)

can analogously be restated as the equality

2u,v m\2u+4k+1 [u+tu—v+17 2k
PP S) i) E-nhi ety K S ol
u—+ 1, 2v m >0 2k (ZM + m)2k+2 v+ 2 k k!
Inserting the expression

_2u+m+2k+1 m — 2k
T Qu+4dk+1 2u+ 4k + 1
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into the binomial sum, we can reformulate it as

[ 2u, v } _Z m\ Qu + 4k) f(2k)
u+1,2v _kZO 2k | QQu+ m)yi

m

Sy (L Qu + 4k +2) f2k + 1)
2k +1 Qu+ m)op 42

k>0

where f(k) is given explicitly by

N Tu+ L u—v+1 u
2%k) = —= 2 :
1@ = v+3 LUt 2k

f(2k+1):(2k+1)!|:u+%,u—v+l:| u

k! v+ U2+
This equation matches exactly (3) under the following specifications

2u, v

g(m) = |:u+ 1.2v

:| and @(x;n) = Qu+ x),.

Then the dual relation corresponding to (2) reads as

" f(2n), m = 2n;
—DFk m 2 +km|: 2u,v :| _
k2=(:)( ) (k)( o u+1.2v ], f@n+1), m=2n+1.

In terms of hypergeometric series, this gives the following identity.

Theorem 2 (Terminating series identity).

1
Lou— 1
7, U v—i— u ’ m = 2n:

—m, m+2u, v u,v+ 5 nu+2n

3Fz[ ’ ’ ‘1:|=
utl, 2v %,u—v-ﬁ-l 1
—— m=2n+1.

u+1,v+% n2(u+2n+1)
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23 e=0andé =1

According to the linear combination

2u, v _4(u—v) |
|:u,2v+1:|m = 2uim otz

2w —2v)2v+m+1)
 Qu+mQu+1)

D, (U + % v+ 1)
there holds explicitly the following equality
2u,v _Z m\ 2u+ 4k + 1 u+%,u—v (2k)!
w20 +1], = \2k | Qu+m)us v+3 ] k!

8 du—v+k)2v+2k+1)—2m—2v)Qv+m+1)
2v + 1 '

Reformulating the fraction displayed in the last line

Qu+m + 2k + 1)(2u + 2k + 1)Q2u + 4k)  (m — 2k)Qu + 4k + 2)(2u — 2v + 2k)
Qu + 4k + 1)(2v + 1) Qu + 4k + 1)(2v + 1)

we have correspondingly the binomial sum expression

2u,v .
I:u,2v+1:| N Z

m k>0

m\ Qu + 4k) f (k)
2k ) Qu A+ m)yy

Sy (L Qu + 4k +2) f2k + 1)
2k +1 Qu+ m)op 42

k>0

where f'(k) is given explicitly by

@ Tu+tu—v
re =S [ L

k= SEED s 3] 22 e
k

k! v+ 3 2v+1
This equation fits in well with (3) under the following specifications

2u, v

glm) = |:u 2w+ 1

i| and @(x;n) = Qu+ x),.
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Then the dual relation corresponding to (2) results in

” 2n), m = 2n;
1)k m 5 +km|: 2u,v :| _ S(
k2=(:)( ) (k)( ! ) u, 20 + 1 J f@2n+1), m=2n+1.

In terms of hypergeometric series, this becomes the following identity.

Theorem 3 (Terminating series identity).

—m, m + 2u,
3Fz[

v )1 .
u, 2v+1 lr: -
2 . , m=2n+1.
wv 3,4,
24 e=1andé =1
From the linear combination
2u,v D, (1. v) 2um Dyt Lo+ 1)
= YmU,v) — m—1(U , U
u+%,2v+1 ” Qu+m)Qu+1) !

we can write it explicitly as the following equality

[ 2u,v :| _Z m 2u + 4k I:u,u—v+%:| (2k)!
ut+ .20+ 1], ZN\2%k)QuAtmyen L vty 1 k!

2um Z m—1 2u+ 4k +2 u+1lu—v+ 37 (2k)!
QQu~+m)2v + 1) 2k | Qu+m+ ) v+ 3 L kU

k>0

This can be reformulated, in turn, as the binomial sum expression

|: 2u, v :| _Z m \ Qu+4k) f(2k)
u+i,2v0+1 m_kzo 2k | Qu+ m)as

B m \Qu+4k+2) f(2k+1)
S

2k+1 Qu + m)og+2
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where f'(k) is given explicitly by

_CO' Tuyu—v+ 1
f(Zk)_k_![ v+1 2i|k’

fQk+1) =

Gt D! ut Lu—v 4 4] 20
k! v+% k2v+1'

Comparing the last equation with (3) specified by

2u,v

glm) = |:u+%,2v+1

i| and @(x;n) = Qu+ x),

we can write down the dual relation corresponding to (2) as
3 m 2u, f(2n), m = 2n;
S (o], 5] -
k=0 k Utz 2v+1], f@n+1), m=2n+1;

which is equivalent to the following hypergeometric series identity.

Theorem 4 (Terminating series identity).

1., 1
|:2’u1v+211|’ m = 2n;
F|:—m,m+2u, v ‘1:| uts vty ],
3172 1 =
u+5, 2v+1 %,u—v-i—% 1
, m=2n+1.
u+lo43| 2v+1
2’ 24,

25 e=2andd =1

Taking into account of linear combination

204+ m +1

2u+1,v 1
Dm >, 1
|: o1 (u+s3v+1)

=20, (u+ 5.v) —
u+1,2v+1:|m +2.0)

we have explicitly the following binomial equality
2u+1,v _Z m 2u+ 4k + 1 u+%,u—v (2k)!
u+1,2v+1 m_M 2k | QuA+m 4+ oqy v+ 3 k!

9 2—v+k)Ruv+2k+1)—(u—v)Ruv+m+1)
w—v)Qu+1) '
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Reformulating the fraction displayed in the last line

Qu+m+2k+1)2u+2k+1)(u—v+2k) (m—2k)(u+v+2k+1)2u—2v+2k)
Qu+ 4k + D(u—v)2v + 1)  Qutdk+ D—v)u+1)

we have correspondingly the binomial sum expression

[ 2u, v } _Z m \ 2u + 4k) f(2k)
u+1,2v+1 m_kzo 2k | Qu+ m)ysi

. m \ Qu+ 4k +2)f2k +1)
> ()

2k +1 Qu + m)ak+2

where f'(k) is given explicitly by

_(Zk)! u+3iu—v u(u —v + 2k)
f(Zk)_T[ v2+% :|k(u—v)(u+2k)’

Fok 1) = (2k+1)!|:u+%,u—v+1:| 2u(u+v +2k + 1)

k! v+ 3 L QU+ D@+2k+1)
The last equation can be obtained from (3) under the specifications

2u, v

gm) = [u+1,2v+1

i| and @(x;n) = Qu+ x),.

Then the dual relation corresponding to (2) reads as

- f(Q2n), m = 2n;
o™\ +km[ 2u, v :| _
k2=(:)( ) (k)(u : u+l,2v+1], f@2n+1), m=2n+1.

In terms of hypergeometric series, this can be stated as the identity.

Theorem 5 (Terminating series identity).

%,u—v u(u—v + m)
—_— m = 2n;
|:—m m+ 2u, v i| v+ 5 | (= v)u+m)
347 =
u+1,2v+1 |:%,u—v+1:| (u+v+m)

——— m=2n+1.
u—i—l,v—}—% n(2v+1)(u+m)
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Whenu =1,v = % and m = 2n — 1, this theorem becomes the following identity

1 _ ltdnTLl L
3F2|:2,1+2n,1 2n‘1}=u[2,2} for > 1.
2, 2 2n [1.1])

Larcombe and Larsen [12] proved recently its equivalent binomial sum

2o (N (I ([ ok o\’
n k _
w3 ()6 =)

which has been the primary motivation for us to investigate W, s(m|u, v).
Further different proofs of the last identity can be found in the papers by
Gessel-Larcombe [10] and Koepf-Larcombe [11], where generating function
approach and computer algebra have respectively been employed.

26 e€=0andé = -1

The linear combination

2u,v v+m—1
’ —4——D 3.0—1
[u,zv—lL zugm Dty

2w —2v+2)Rv+m—1)
Qu+m)u—1)

:Dm(u + %s U)

is equivalent to the following binomial equality

2u, v _Z m\2u+d4k+1Tu+tu—v+1] 2k)!
u,2v — 1 m_k>0 2k | Qu 4 m)ap 12 v+ 1 . k!

X% 4(v+m—1)(u—v+k+1)2v+2k—1) + 2(u—2v+2)(2v+m—1) }
(u—v+1)(2v—1) 2v—1 :

Reformulating the fraction inside the braces as

Qu+m+2k +1)Qu+4k)Qv + 2k — D(u—v +2k + 1)
Qu+4k+Du—v+1)QR2uv-1)
2m —=2k)Qu+ 4k +2)(u+v+2k)u—v+k+1)
Qu+4k+Dw—v+1)Q2uv—1)
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we have correspondingly the binomial sum expression

[ 2u,v } -y m \ (2u + 4k) f (2k)
u,2v —1 m_kzo 2k | Qu+ m)y

Cy (o Qu + 4k +2) fQk + 1)
2k +1 Qu + m)og 42

where f(k) is given explicitly by

1 _
£(2k) = (Zk) [u+5,u—lv+1} u v+2k+1’
v—3 e u—v+l
Ck+D!'Tu+Lt u—v+27 2u+2v+4k
2k +1) = —= 2 - .
fek+h="—p O AT

This equation matches exactly (3) under the following specifications

2u, v

g(m)=[ 1} and  @(x;n) = Qu+ x),.

u,2v —
Then the dual relation corresponding to (2) give rise to
2n), m = 2n;
Z( e (2u+k)m[ 2u. v } _ e
w2o—=11 |l f@n+1), m=2n+1;

which leads to the following hypergeometric series identity.

Theorem 6 (Terminating series identity).

—m,m + 2u, v
F ’ !
“[ u, 2v—1 }

%,u—v—i—l_ u—v—+2n+1
. _ = 2n;
u’v_i M—U+1
— -n

| _

S, U— 2 +v+2n

[z" i Y
wv—3z JTUTT
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2.7 e=1landé = -1

For the linear combination

2u, v 2um
; =©m ) -1) - gm— 17
|:u+%,2v—li|m =) = = et L)

we can state it explicitly the following equality

[ ZM,U i|—Z m 2M+4k |:u’u—v+%i|(2k)‘
wt 3,20 =11 7 £\ 2k | Qu+ m)oess v—3 1, k!

2um Z 2u+ 4k +2 I:u+l,u—v+%:|(2k)!
(2u+m)(1—2v) Qu+m+ )og+1 v+ L kU

This is, in turn, equivalent to the binomial sum expression

2u,v _ Z M\ Qutak) f2k) Z m Qu+4k+2) f(2k+1)
u+iow—1| 2k | Qutmt 2%k + 1 QuA-m)ag+2
2 m k>0 k>0

where f'(k) is given explicitly by

(Zk) uu—v+ 3
f(2k) = N
2 k
Ck+)Tu+1l,u—v+3 2u
2k+1)= ——— ’ 2 _—
Jek+h="—5 S

Comparing this equation with (3) specified by

g(m) = [ Zlu, v i| and ¢@(x;n) = Qu+ x),
u —+ E,ZU — 1 m

we get the dual relation corresponding to (2)

f(@2n), m = 2n;
¥ 2 +k,,,[ 2u, v } =
Z( )( )(M ) u+%,2v—1 k f@n+1), m=2n+1;

which results in the following hypergeometric series identity.
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Theorem 7 (Terminating series identity).

|:%,u—v+

— M+l,v—

B m,m—+2u, v )1 _ 2
20—1

1
Utz %,u—v—}—
u+ 3.0+

Ol— Rl NI—= W

28 e=2andd§ = -1

The following Dougall sum

2u(2 —1
[ 2u, v } v tm=1) o 11

u+1,20—-1] ~ Qutm)@v—1)
can be expressed in terms of binomial sum

2u,v _ 2uv+m-—1)
u+120-1] —  2v—1

XZ mY\ 2u+ 4k +1 |:u+%,u—v+1:|(2k)!'
= 2k

(2M + m)2k+2 v+ % k k!
Substituting the linear factor

Qu+m+2%k+ D)o +2k 1) 20m=2K)(—v+k+1)
2u+ 4k + 1 2u+ 4k + 1

into the binomial sum, we get
|: 2u,v :| _ Z m \ (2u + 4k) f(2k)
u+1,2v—1 m prep 2k | Qu 4+ m)ag41

B m Qu+4k+2)f2k +1)
b

204m—1=

2k +1 Qu + m)op42
where f'(k) is given explicitly by

F2k) = (Zk')! I:u+%,u—v+1:| u

k! v—% LU+ 2k

Ck+D!'Tu+tu—v+1 2uu—v+k+1)
2k 4 1) = D U .
f@k+1D ol v+l | 020w+ 2k+ 1)
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This equation fits in well with (3) under the following specifications

2u, v

gm) = [u+l,2v—l

i| and ¢(x;n) = Qu+ x),.

Then the dual relation corresponding to (2) becomes

“ f(2n), m =2n;
—_1)k m ) +km[ 2u,v i| _
kz=;)( : (k)(u : u+1.2v—1], f@n+1), m=2n+1.

In terms of hypergeometric series, this reads as the following identity.

Theorem 8 (Terminating series identity).

1
U U+11 u+n’ m = 2n:
—m,m + 2u, v ”+1’U_Enu+2n
3F2|: o 2u, 1}:
u+1,2v—1 %,u—v+l u+n+1
- | wwansr ML
ut1lv—3 n+1

29 e=3andé = -1

This is the hardest case we have ever encountered in this research which cannot be
treated directly by inverting combinations of Dougall’s sum ®,, (1, v). Therefore we
have to consider the rational function defined by

l—v—1)n 3/2+u—v) =z
h(t):—( L) :P(t)—}——( / )
u+t4+1/2 u+t+1/2
where P(t) is polynomial of the degree L’”T_zj, the greatest integer < ’”T_z By
means of the induction principle, it is not hard to compute its m-th differences

(B/24+u-— U)L%J _ (_l)mm!(3/2+ u— U)L%J

A"h(z) = A" = .
) u+t+1/2 w+t+1/2)ps1

Recalling the Newton—Gregory formula

A"h() = zm:(—l)’"+k (’Z)h(c +k)
k=0



154 W. Chu and R.R. Zhou
we get the following interesting binomial formula

m!(u—v+3/2)L%J _ " k™ (1—v—k)|_%J
U+ 1/2)mi _1;)( D (k) u+k+1/2°

This equation can be identified to (2) with the connecting polynomial being given
by (x;n) =(1—v— x)L%J- The dual relation corresponding to (3) reads as

2 _ m (2k)! (u—v+3/2)
2u+2m + 1 _kz 2k ) (1 —v—m)r (u+1/2)2+1

>0

B Z m (—v—k)QRk+ 1) (u—v+3/2)
—\2k+1) (I—v—mht1 (u+1/us2

Putting the last two binomial sums together and then applying the relation

2Qu+4k +3)1 —v—m+ k) +4(m—2k)(v + k)
= Qu+4k +3)2—m —2v) — (m — 2k)Q2u — 4v + 3)

we obtain the expression

1

. 2u+2m+12 (—m)ak (u—v+3/2)
8 = (I —v—mp1 (4 1/2)x+2

x {(2u 4k +3)2—m —2v) — (m — 2k) Qu— 4v + 3)}
which can be rewritten in terms of hypergeometric 4 F3-series as

= .F 5 3 5‘ Qu+2m+1)Q2uv+m—2)
2—v-m5+3.5+30 | Qu+DQ2v+2m-2)

+ 4F;

1, m 2—_’”,u—v+% ‘1_ mQu+2m + 1)2u — 4v + 3)
2—v—m b +3, 4+ 17 Qu+1)Qu+3)Q2v+2m—2)°

According to the Whipple transformation (cf. Bailey [1, §4.3]), expressing both
balanced 4 F3-series in terms of well-poised 7 Fg-series, we can reformulate the last
equation as
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2u+ 1,v
u+%,2v—l m

1 1 3 1= -
F[u,1+§,§ paitpu-vts 55 S )1]
=71Fs
w5 w3 1 14m 24m
3 2Tty Vo3 ut o ut T

mQu—4v + 3)2u +2)
T i m )2 —Du+3)

+1, 3+u’
X 7F6 |:I/l

3 2—m 1—m
u=vti S 3 }]

3
+Z
5 1 2+m 3+m
+3. v+, u+ T w40

4>|\| 4>|>—=
[SIERNIN

+
_l’_

[SIESSTES

which can further be stated equivalently as the following binomial sums
2u,v _ Z m \ (2u + 4k) f(2k)
u+3.20-1] _M 2k ] QuA+ m)y

—Z m Qu+4k+2)f2k+1)
peers 2k +1 Qu + m)og42

where f'(k) is given explicitly by

(2k) wu—v+3 Qu—1)Qu+1)
S k) = [ v—3 2:|k(2u+4k—1)(2u+4k+1)’
kD' Tu+lLu—v+3
raks = SR [ ]

» 2uu 4+ 1)2u — 4v + 3)
QQu + 4k + 1)QQu + 4k + 3)(1 —2v)

This equation matches exactly (3) under the following specifications

2u, v
g(m):[qu%l,le—lL and  @(x;n) = 2u+ x),.

Then the dual relation corresponding to (2) reads as

u f(@2n), m = 2n;
¥ 2 +km[ 2u, v }:
Z( )<)(u ) ut3.20—1], f@n+1), m=2n+1.

In terms of hypergeometric series, this yields the following identity.
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Theorem 9 (Terminating series identity).

F |:—m,m+2u,v 1i|

3

u+%,2v—1

%,u—v—}—% Qu—1)Qu+1)
) " , m = 2n;
u+v—13 n(2u+4n—1)(2u+4n+1)
N 3 3
E,ul—v+? Qu+1)Q2u—4v + 3) Com=2n4l.
u+3v+1 n(2u+4n+1)(2u+4n+3)(1—2v)

Further Hypergeometric Series Identities

Following the same procedure exhibited in the last section, we have systematically
examined W, s(m|u, v) for small ¢ and § parameters with —5 < g,§ < 5. It turns
out that further 22 formulae have relatively good product expressions. They are tabu-
lated in the two previous pages in order for the reader to have an easy access to them.
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Balls in Boxes: Variations on a Theme of Warren
Ewens and Herbert Wilf

Shalosh B. Ekhad and Doron Zeilberger

To Herbert Saul Wilf (b. June 13, 1931), on his 80-th birthday

Abstract We discuss, from an experimental mathematics viewpoint, a classical
problem in epidemiology recently discussed by Ewens and Wilf, that can be
formulated in terms of “balls in boxes”, and demonstrate that the “Poission
approximation” (usually) suffices.

Keywords Epidemiology ¢ Computer-generated recurrences * Poisson process

Preface

There are r boys and n girls. Each boy must pick one girl to invite to be his date
in the prom. Although each girl expects to get R := r/n invitations, most likely,
many of them would receive less, and many of them would receive more. Suppose
that Nilini, the most “popular” girl, got as many as m + 1 prom-invitations, is she
indeed so popular, or did she just “luck-out”?

Each one of r students has to choose from » different parallel Calculus sections,
taught by different professors. Although each professor expects to get R := r/n
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students signing-up, most likely, many of them would receive less, and many of
them would receive more. Suppose that Prof. Niles, the most “popular” professor
got as many as m + | students, is Prof. Niles justified in assuming that she is more
popular than her peers, or did she just “luck-out™?

It is Saturday night, and there are r people who have to decide where to dine,
and they have n restaurants to choose from. Although each restaurant expects to get
R := r/n diners, most likely, many of them would receive less, and many of them
would receive more. Suppose that the Nevada Diner, the most “popular” restaurant,
got as many as m + 1 diners, can they congratulate themselves for the quality of
their food, or ambiance, or location, or can they only congratulate themselves for
being lucky?

Each one of r cases of acute lymphocitic leukemia has to choose one of n towns
(artificially made all with equal-populations) where to happen. Although each town
expects to get R := r/n cases, most likely, many of them would receive less, and
many of them would receive more. Suppose that the Illinois town Niles had m + 1
cases of that disease, do its people have to be concerned about their environment, or
is it only Lady Luck’s fault?

Of course all these questions have the same answer, and typically one talks about
r balls being placed, uniformly at random, in n boxes, where the largest number
of balls that landed at the same box was m + 1. Yet another way: A monkey is
typing an r-letter word using a keyboard of an alphabet with » letters, and the most
frequent letter showed-up m + 1 times. Does the typing monkey have a particular
fondness for that letter, or is he a truly uniformly-at-random monkey who does not
play favorites with the letters?

Asking the Right Question

As Herb Wilf pointed out so eloquently in his wonderful talk at the conference W80
(celebrating his 80th birthday) (based, in part, on [2]), using the depressing disease
formulation, the right questions are not:

What is the probability that Nilini would get so many (m 4+ 1 of them) prom-invitations?
What is the probability that Prof. Niles would get so many (m + 1 of them) students?
What is the probability that the Nevada Diner would get so many (m + 1 of them) diners?
What is the probability that Niles, IL would get so many (2 + 1 of them) cases of acute
lymphocitic leukemia?

Even though this is the wrong question (whose answer would make Nilini, Prof.
Niles and the Nevada Diner’s successes go to their heads, and would make the real-
estate prices in Niles, IL, plummet), because it is so tiny, and seemingly extremely
unlikely to be “due to chance”, let’s answer this question anyway.

The a priori probability of Nilini getting m 4 1 or more prom-invitations, using
the Poisson Approximation is:
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Y =Ry T = 1Ry T

i=m+1 i=0 i=0

indeed very small if m is considerably larger than R.

But a priori we don’t know who would be the “lucky champion” (or the unlucky
town), the right question to ask is:

The Right Question: Given r, n, and m, compute (if possible exactly, but at least
approximately):

P(r,n,m) := the probability that every box got < m balls.

Getting the Right Answer to the Right Question,
as Fast as Possible

In [2], Ewens and Wilf present a beautiful, fast (O (mn)), algorithm for computing
the exact value of P(r,n,m), that employs a method that is described in the
Nijenhuis-Wilf classic [3] (but that has been around for a long time, and redis-
covered several times, e.g. by one of us [5], and before that by J.C.P. Miller, and
according to Don Knuth the method goes back to Euler. At any rate, [2] does not
claim novelty for the method, only for applying it to the present problem).

The specific real-life examples given in [2] were:

1. (Niles, IL): r = 14,400,n = 9,000, (so R = 8/5), m = 7. Using their method,
they got (in less than 1 s!) the value

P (14,400, 9,000, 7) = 0.0953959131671303999971555481626. . .,

meaning that the probability that every town in the US, of the size of Niles,
IL, would get no more than 7 cases is less than 10%. So with probability
0.904604086832869600002844451837, some town (of the same size, assuming,
artificially that the US has been divided into towns of that size) somewhere, in
the US, would get at least eight cases. There is (most probably) nothing wrong
with their water, or their air-quality, the only one that they may blame is Lady
Luck!

For comparison, the a priori probability that Niles, IL. would get eight or more
cases is roughly:

.
1.6
1—e7H03 " 22 = 0.00026044. ..
1.
i=0

a real reason for (unjustified!) concern.
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2. (Churchill County, NV): r = 8,000,n = 12,000, (so R = 2/3), m = 11. Using
their method, they got (in less than 1 s!) the value

P(8,000,12,000,11) = 0.999999895529647647310726013392.. . .,

so itis extremely likely that every district got at most 11 cases, and the probability
that some district got 12 or more cases is indeed small, namely

1 — P(8,000, 12,000, 11) = 0.104470- 107°,

so these people should indeed panic.
For comparison, the a priori probability that Churchill County, NV, would get
12 or more cases is roughly:

11 i
2/3)
172 # = 0.870586315- 107",
L
i

in that case people would have been right to be concerned, but for the wrong
reason!

The Maple Package BallsInBoxes

This article is accompanied by the Maple package BallsInBoxes available from:
http://www.math.rutgers.edu/~zeilberg/tokhniot/BallsInBoxes.

Lots of sample input and output files can be gotten from:
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/bib.html.

How to Compute P(r,n, m) Exactly?

Easy! As Ewens and Wilf point out in [2], and Herb Wilf mentioned in his talk,
there is an obvious, explicit, “answer”

1 r!
P(r,n,m)=—,.§ P E—
n ryirp ry:

where the sum ranges over the set of n-tuples of integers

A(ron,m) :={(ri,r2,...,1) |0O<r,....rp, <m,ri+r,+---+r,=r}

So “all” we need, in order to get the exact answer, is to construct the set A(r,n,m)
and add-up all the multinomial coefficients.


http://www.math.rutgers.edu/~zeilberg/tokhniot/BallsInBoxes
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/bib.html
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Of course, there is a better way. As it is well-known (see [2]), and easy to see,
writing

! 1
P(r,n,m) = _rr E R
n

rilrtl. ot
(F1yeestn )EA(r,n m) 1:12 n

the ) is the coefficient of x” in the expansion of

>4
o l!

so all we need is to go to Maple, and type (once r,n, and m have been assigned
numerical values)

r!/nx+r+coeff (add (x++1/1i!,1i=0..m)**n,x,r) ;.

This works well for small » and r, but, please, don’t even try to apply it to the
first case of [2], (r = 14,400,n = 9,000, m = 7), Maple would crash!

Ewens and Wilf’s brilliant idea was to use the Euler-Miller-(Nijenhuis-Wilf)-
Zeilberger-. .. “quick” method for expanding a power of a polynomial, and get an
answer in less than a second!

[We implemented this method in Procedure Prnm (r, n, m) of BallsInBoxes].

While their method indeed takes less than a second (in Maple) for r =
14,400,n = 9,000 (and 7 < m < 12), it takes quite a bit longer for
r = 144,000,n = 90,000, and we are willing to bet that for r = 108, 7 = 108 it
would be hopeless to get an exact answer, even with this fast algorithm.

But why this obsession with exact answers? Hello, this is applied mathematics,
and the epidemiological data is, of course, approximate to begin with, and we make
lots of unrealistic assumptions (e.g. that the US is divided into 9,000 towns, each
exactly the size of Niles, IL). All we need to know is, “are that many diseases likely
to be due to pure chance, or is it a cause for concern?”, Yes or No?, Ja oder Nein?,
Oui ou Non?, Ken o Lo?.

Enumeration Digression

It would be nice to get a more compact (than the huge multisum above) (symbolic)
“answer”, or “formula”, in terms of the symbols r,n and m. This seems to
be hopeless. But fixing, positive integers a,b and m, one can ask for a “for-
mula” (or whatever), in n, for the quantity P(an,bn,m) that can be written as
B(a,b,m;n)/(an)™ where

1
B(a,b,m;n) := (an)! Z -
rilm!. o,
(1seeesrn) EA(an,bnym)
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the cardinality of the natural combinatorial set consisting of placing an balls in bn
boxes in such a way that no box receives more than m balls. Equivalently, all words
in a bn-letter alphabet, of length an, where no letter occurs more than m times. For
example, when @ = b = m = 1, we have the deep theorem:

B(1,1,1;n) =n!.

Equivalently, e(n) = B(1,1, 1;n) is a solution of the linear recurrence equation
with polynomial coefficients

e(n+1)—(n+ De(n) =0,(n=0),

subject to the initial condition e(0) = 1.

It turns out that, thanks to the not-as-famous-as-it-should-be Almkvist-Zeilberger
algorithm [1] (an important component of the deservedly famous Wilf-Zeilberger
Algorithmic Proof Theory), one can find similar recurrences (albeit of higher order,
so it is no longer “closed-form”, in n) for the sequences B(a, b, m; n) for any fixed
triple of positive integers, a, b, m.

(See Procedures Recabm and RacabmV in the Maple package BallsInBoxes).

Indeed, since B(a, b, m;n) is (an)! times the coefficient of x*" in

(m xi)bn
>e)
i=0l'

it can be expressed, (thanks to Cauchy), as

7w gy dz, (Cauchy)

m bn
(an)! 95 ()
lzl=1
and this is game for the Almkvist-Zeilberger algorithm, that has been incorporated
into BallsInBoxes. See the web-book
http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes2
for these recurrencesfor 1 <a,b <3and1 <m <6.

Asymptotics

Once the first-named author of the present article computed a recurrence, it can go
on, thanks to the Birkhoff-Trzcinski method [4,6], to get very good asymptotics! So
now we can get a very precise asymptotic formula (in n) (to any desired order!) for
P (an, bn,m), that turns out to be very good for large, and even not-so-large n, and
for any desired a, b, m. Procedure Asyabm in our Maple package BallsInBoxes


http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes2
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finds such asymptotic formulas. See
http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes

for asymptotic formulas, derived by combining Almkvist-Zeilberger with AsyRec
(also included in BallsInBoxes in order to make the latter self-contained.)

This works for every m, and every a and b, in principle! In practice, as m gets
larger than 10, the recurrences become very high order, and take a very long time to
derive.

But as long as m < 8 and even (in fact, especially) when n is very large, this
method is much faster than the method of [2] (O (mn) with large » is not that small!).
Granted, it does not give you an exact answer, but neither do they (in spite of their
claim, see below!).

But let’s be pragmatic and forget about our purity and obsession with “exact”
answers. Since we know from “general nonsense” that the desired probability

C(a,b,m;n) := P(an,bn,m) (= B(a,b,m;n)/(an)™)
behaves asymptotically as
C(a,b,m;n) < u"(co + O(1/n)),

for some numbers i and ¢y, all we have to do is crank out (e.g.) the 200-th and 201-
st term and estimate u to be C(a, b, m;201)/C(a, b, m;200), and then estimate ¢
to be C(a, b, m;200)/u>?. Using Least Squares one can do even better, and also
estimate higher order asymptotics (but we don’t bother, enough is enough!).

Procedure AsyabmEmpir in our Maple package BallsInBoxes uses this
method, and gets very good results!

For example, for the Niles, IL, example, in order to get estimates for
P (14,400, 9,000, m), typing

evalf (subs (n=1800, AsyabmEmpir (8,5, m,200,n))) ;

form =7,8,9,10, 11, 12 yields (almost instantaneously)

m = 7:0.09540287131 ... (the exact value being: 0.095395913167...),

m = 8:0.664971462304 ... (the exact value being: 0.66495441 .. .),

m = 9:0.9378712268719. .. (the exact value being: 0.93786433...),

m = 10: 0.990845139... (the exact value being: 0.9908433...),

m = 11: 0.998789295 ... (the exact value being: 0.99878892861 .. .).

The advantage of the present approach is that we can handle very large n, for
example, with the same effort we can compute

evalf (subs (n=180000,AsyabmEmpir (8,5, m,200,n)))
getting that P (1,440,000, 900,000, 11) is very close to 0.88554890636027. The
method used in [2] (i.e. typing
Prnm(1440000,900000,11) ;
in BallsInBoxes) would take forever!


http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes1
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Caveat Emptor

There is another problem with the O(mn) method described in [2]. Sure enough, it
works well for the examples given there, namely P (14,400, 9,000, m) for 6 <m <
12 and P(8,000, 12,000, m) for 4 < m < 8.

This is corroborated by our implementation of that method, (Procedure
Prnm(r,n,m) in
BallsInBoxes).

Typing (once BallsInBoxes has been read onto a Maple session):

tO0:=time () : Prnm(14400,9000,9) , time()-tO0;

returns

0.937864339305858219725360911354, 0.884

that tells you the desired value (we set Digits to be 30), and that it took 0.884 s
to compute that value.

But now try:

tO0:=time () : Prnm(1000,100,15), time()-tO0;

and get in 0.108 s (real fast!)

—0.728465229161818857989128673465 - 10°°.

“Something is rotten in the State of Denmark!” We learned in kindergarten that a
probability has to be between 0 and 1, so a negative probability, especially one with
50 decimal digits, is a bit fishy. Of course, the problem is that [2]’s “exact” result is
not really exact, as it uses floating-point arithmetic.

Big deal, since we work in Maple, let’s increase the system variable Digits
(the number of digits used in floating-point calculations), and type the following
line:

evalf (Prnm(1000,100,15),80) ;

getting 5.71860506564981 . . ., a little bit better! (the probability is now less than
six, and at least it is positive!), but still nonsense.

Digits:=83 still gives you nonsense, and it only starts to “behave” at
Digits:=90.

Now let’s multiply the inputs, r and n by 10, and take m = 22 and try to evaluate
P(10,000, 1,000, 22). Even Digits: =250 still gives nonsense! Only Digits:=310
gives you something reasonable and (hopefully) correct.

The way to overcome this problem is to keep upping Digits until you get
close answers with both Digits and, say, Digits+100. This is implemented
in Procedure PrnmReliable (r,n,m,k) in BallsInBoxes, if one desires
an accuracy of k decimal digits. This is reliable indeed, but not exact,
and not rigorous, since it uses numerical heuristics. The exact answer is a
rational number, that is implemented in Procedure PrnmExact (r,n,m) of
BallsInBoxes.
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The Cost of Exactness

If you type
t0:=time () : PronmExact (14400,9000,7): time()-t0;

you would get in 42 s (no longer that fast!) a rational number whose numerator
and denominator are exact integers with 54,207 digits.
See http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes7a for the outputs (and
timings) of PrnmExact (14400,9000,m); for m between 6 and 12 and
see http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes7b for the outputs (and
timings) of PrnmExact (8000,12000,m) ; for m between 4 and 8. No longer
fast at all! (2,535 and 248 s respectively).

Let’s Keep It Simple: An Ode to the Poisson Approximation

At the end of [2], the authors state:

A Poisson Approximation is also possible but it may be inaccurate, particularly around the
tails of the distribution. Our exact method is fast and does not suffer from any of those
problems.

Being curious, we tried it out, to see if it is indeed so bad. Surprise, it is terrific!
But let’s first review the Poisson approximation as we understand it.

The probability of any particular box (of the n boxes) getting < m ball is,
roughly, using the Poisson approximation (R := r/n):

m .
_ R
e R E -—.

i!
i=0

Of course the n events are not independent, but let’s pretend that they are. The
probability that every box got < m balls is approximated by

m R,' n
o(r,n,m) = (e_RZF) .

i=0

(Q(r,n,m) is implemented by procedure PrnmPA (r,n, m) in BallsInBoxes.
It is as fast as lightning!)

Ewens and Wilf are very right when they claim that P(r,n,m) and Q(r,n,m)
are very far apart around the “tail” of the distribution, but who cares about
the tail? Definitely not a scientist and even not an applied mathematician. It
turns out, empirically (and we did extensive numerical testing, see Procedure
HowGoodPAl (RO,NO, Incr,M0,m, eps) inBallsInBoxes), that whenever
P(r,n,m) is not extremely small, it is very well approximated by Q(r,n,m), and
using the latter (it is so much faster!) gives very good approximations, and enables


http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes7a
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one to construct the “center” of the probability distribution (i.e. ignoring the tails)
very accurately. See
http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes4,
and
http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes5, for comparisons (and tim-
ings!, the Poisson Approximation wins!).

In particular, the estimates for the expectation, standard deviation, and even the
higher moments match extremely well!

Another (empirical!) proof of the fitness of the Poisson Approximation can be
seen in:
http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes
where the (rigorous!) asymptotic formulas derived, via AsyRec, from the recur-
rences obtained via the Almkvist-Zeilberger algorithm are very close to those
predicted by the Poisson Approximation (except for very small m, corresponding
to the “tail”).

The Full Probability Distribution of the Random Variable
“Maximum Number of Balls in the Same Box”

It would be useful, for given positive integers a and b, to know how the probability
distribution “maximum number of balls in the same box when throwing an balls into
bn boxes” behaves. One can “empirically” construct (without arbitrarily improbable
tail) the distribution of the random variable “maximum number of balls in the
same box” when an balls are uniformly-at-random placed in bn boxes (Let’s call
it X,,(a, b), and X, for short) using

Pr(X, = m) = P(an,bn,m) — P(an,bn,m — 1).

First, and foremost, what is the expectation, p,, of this random variable? Second,
what is the standard deviation, o, ?, skewness?, kurtosis?, and it would be even
nice to know higher a-coefficients (alias moments of Z, = (X, — u,)/0,), as
asymptotic formulas in 7.

For the expectation, p,, Procedure AveFormula (a,b,n,d, L, k) uses the
more accurate “empirical approach” and Maple’s built-in Least-Squares command,
to obtain the following empirical (symbolic!) estimates for the expectation.

a=1,b=1:evalf (AveFormula(l,1,n,1,300,1000,10),10);
yields that u, is roughly 2.293850526 + (0.4735983525) - logn

a=2,b=1:evalf (AveFormula(2,1,n,1,300,1000,10),10);
yields that w,, is roughly 3.963420618 + (0.5834252496) - logn

a=1,b=2:evalf (AveFormula(l,2,n,1,300,1000,10),10);
yields that u, is roughly 1.640094145 + (0.3873602232) - log n.


http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes4
http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes5
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Note that fora = 1,5 = 1, the approximation to i, can be written 2.293850526 +
(1.090500507) - log;y 1, so a “rule-of-thumb” estimate for the expectation when n
balls are thrown into n boxes is a bit more than 2 plus the number of (decimal)
digits.

Procedure NuskhaPAl (R, n, K, d) uses the Poisson Approximation to guess
polynomials in log n of degree d fitting the average, standard deviation, and higher
moments, as asymptotic expressions in #, for nR balls thrown into n boxes, where
R is now any (numeric) rational number. Even d = 1 seems to give a fairly good
fit, so they all seem to be (roughly) linear in log n.

Procedure SmallestmPA

Procedure SmallestmPA (r,n, conf) gives you the smallest m for which, with
confidence conf, you can deduce that the high value of m is not due to chance
(using the Poisson Approximation). For example

SmallestmPA (14400,9000, .99) ;

yields 10, meaning that if a town the size of Niles, IL got 10 or more cases, then
with probability >0.99 it is not just bad luck. If you want to be %99.99-sure of
being a victim of the environment rather than of Lady Luck, type:

SmallestmPA (14400,9000, .9999) ;

and get 13, meaning that if you had 13 cases, then with probability larger than
0.9999 it is not due to chance.

The Minimum Number of Balls that Landed in the Same Box,
Procedure LargestmPA

An equally interesting, and harder to compute, random variable is the minimum
number of balls that landed in the same box, but the Poisson Approximation handles
it equally well. Analogous to SmallestmPA, we have, in BallsInBoxes,
Procedure LargestmPA (r,n, conf) that tells you the largest m for which you
can’t blame luck for getting m or less balls.

For example, if there are 10,000 students that have to decide between 100
different calculus sections,

LargestmPA(10000,100, .99) ;

that happens to be 66, tells you that any section that only has 66 students or
less, with probability >0.99, it is because that professor (or time slot, e.g. if it is an
8:00 a.m. class) is not popular, and you can’t blame bad luck.

LargestmPA(10000,100,.9999) ;

that outputs 57, tells you that anyone who only had <57 students enrolled is

unpopular with probability >%99.99, and can’t blame bad luck.
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On the other end, going back to the original problem,
SmallestmPA(10000,100, .99);
yields 139, telling you that any section for which 139 or more students signed
up is probably (with prob. >0.99) due to the popularity of that section, while
SmallestmPA(10000,100,.9999) ; yields 151.

Final Comments

1. One can possibly (using the saddle-point method) get asymptotic formulas from
the contour integral (Cauchy), but this is not our cup-of-tea, so we leave it to
other people.

2. Another “back-of-the-envelope” “Poisson Approximation” is to argue that since
the probability of any individual box getting strictly more than m balls is roughly
(recall that R = r/n)

3

i

. 4 moo
ek Z %l:e_R(eR—Z%l)zl—e_RZI;—!,
i=m+1

i=0 i=0

by the linearity of expectation, the expected number of lucky (or unlucky if the
balls are diseases) boxes exceeding m balls is roughly

m .
Ri
n (1 —e_R E —') .
l:
i=0

In the case of Niles, IL, the expected number of towns that would get eight or
more cases is:

7 .

1.6)!

9,000 (1 —e 16 Z g) = 2.343961376410372,

1!
i=0

so it is not at all surprising that at least one town got as many as eight cases.
On the other hand, in the other example r = 8,000,n = 12,000,m = 12, the
expected number of unfortunate counties is:

12 ;

2/3)

12,000 (1 — e § #) = 0.533706802-107%,

!
i=0

so it is indeed a reason for concern.



Balls in Boxes: Variations on a Theme of Warren Ewens and Herbert Wilf 173
Conclusion

We completely agree with Ewens and Wilf that simulation takes way too long, and is
not that accurate, and that their method is far superior to it. But we strongly disagree
with their dismissal of the Poisson Approximation. In fact, we used their ingenious
method to conduct extensive empirical (numerical) testing that established that the
Poisson Approximation, that they dismissed as “inaccurate”, is, as a matter of fact,
sufficiently accurate, and far more reliable, in addition to being yet-much-faster! It
is much safer to use the Poisson Approximation than to use their “exact” method
(in floating-point arithmetic), and when one uses #ruly exact calculations, in rational
arithmetic, their “fast” method becomes anything but.

Even when the floating-point problem is addressed by using multiple precision
(PrnmReliable discussed above), their fast algorithm becomes slow for very
large r and n, while the Poisson Approximation is almost instantaneous even for
very large r and n, and any m.

So while we believe that the algorithm in [2] is not as useful as the Poisson
Approximation, it sure was meta-useful, since it enabled us to conduct extensive
numerical testing that showed, once and for all, that it is far less useful then the
latter.

Additional evidence comes from our own symbolic approach (fully rigorous for
m < 9 and semi-rigorous for higher values of m), that establishes the adequacy of
the Poisson Approximation for symbolic n.

Finally, as we have already pointed out, since the data that one gets in appli-
cations is always approximate to begin with, insisting on an “exact” answer, even
when it is easy to compute, is unnecessary.

Coda: But We, Enumerators, Do Care About Exact Results!

Our point, in this article, was that for applications to statistics, the Poisson
Approximation suffices. But we are not statisticians. We are enumerators, and
we do like exact results! The approach of [2] enables us to know, for exam-
ple, in less than 1s the exact number of ways that 1,001 balls can be placed
in 1,001 boxes such that no box received more than 7 balls. Just type (in
BallsInBoxes)(1001x%1001) *PrnmExact (1001,1001,7) ; and get a
beautiful exact integer with 3,004 digits!

Typing (1001+%1001) *PrnmPA(1001,1001,7); will give you something
fairly close (the ratio being 0.9997852 .. .) but for a pure enumerator, this is very
unsatisfactory. So long live exact answers!, but not in statistics.
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Beating Your Fractional Beatty Game
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to Your Answer?
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What was to be a celebratory volume unfortunately turned into
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since Herb’s heritage lives on, spreads its roots and continues
to bear rich fruit.
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1 Prologue

Preliminary Thoughts. Subtraction games, also called take-away games, are
games on m piles of tokens, where each of two players playing alternately, selects
one or more piles and removes from them a number of tokens according to the
specified game rules.! In this paper we consider impartial subtraction games.

A game is impartial if for every game position, all moves one player can do also
the opponent can do, unlike the partizan chess, where the black player cannot touch
a white piece and conversely.

A P-position in a game is a position such that the player moving from it loses
whatever his move is; an N -position is a position from which a player has a winning
move. Notice that every move from a P-position lands in an N -position; from an
N position there is a (winning) move to a P-position. In normal play the player
making the last move wins; in misére play the player making the last move loses.
Throughout we are concerned solely with normal play.

Nim is a subtraction game played on a finite number of tokens. A move consists
of selecting a (nonempty) pile and removing from it any positive number of tokens,
up to and including the entire pile (a Nim move). Wythoff is a subtraction game
played on two piles of tokens. There are two types of moves: a Nim move or taking
the same number of tokens from both piles. The latter is a Wythoff move.

For m > 2, the P-positions of games typically split the positive integers into
m disjoint sets A',..., A" U A" = Zs, AN A = @foralli # j for
Wythoff-like games. Two of many examples: [3, 6]. There are only a few studies
where this splitting does not hold. In [2] and [8] the Nim move is restricted to
taking any positive multiple of b tokens from a single pile, where b is an a priori
given positive integer parameter (and there is a restricted Wythoff move in [8]).
The P-positions there constitute b pairs of integers and there are omissions and
repetitions of integers in some of the pairs. Sequences that jointly cover every
positive integer precisely m times for any given m > 1 were given by O’Bryant
[17] using a generating function approach; and Graham and O’Bryant [11] used
them for generalizing a conjecture about splitting sets. They were constructed by
elementary means by Larsson and applied there to combinatorial game theory [15].
More recently, Gurvich [12] considered a generalization of Wythoff’s game where,
form =2, 4' N A> = @, but |Z>; \ (A' U A%)| = co. In [10] games are analyzed
for which both A' N 42 # @ and |Z>; \ (A' U A%)| = oo. But exceptions they
are.

In the present paper we consider a case, also for m = 2, apparently a first of its
kind, where the P -positions constitute a single pair (4!, A%) of integers, |A'NA?| =
00, but A'U A% = Z for a Wythoff-like game. The easy part is to construct A', 42
with such properties; the hard part is to formulate appropriate succinct game rules

'They can equivalently be modeled as games played on a collection of nonnegative integers, which
are reduced by the players to 0 according to the game rules.
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Table 1 Excerpts of the first few terms of the sequences A and B

n 0123456 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
a, 0123456 7 8 9 1011 12 14 15 16 17 18 19 20 21 22 23 24 25 26 28 29
b, 01356381012 13 15 17 19 20 22 24 26 27 29 31 33 34 36 38 40 41 43 45 47

n 28 35 36 37 38 39 40 41 49 50 51 52 60 61 62 63 64 65 66 67 68
a, 30 37 38 39 40 42 43 44 52 53 55 56 64 65 66 67 69 70 71 72 73
b, 48 61 62 64 66 68 69 71 85 87 89 90 104 106 108 109 111 113 115 116 118

for a game whose P-positions are such non-complementary sequences. We seek a
question for a given answer!

2 The Game, Main Theorem and Examples

Denote by ¢ = (1 4+ +/5)/2 the golden section. Then ¢> = (3 + +/5)/2, and
¢~ + 972 = 1. Multiplying by 3/2, we get

ol + B =3/2, (1)
where

20 14+4/5
= — = ——
3 3

and f—a = 2/3.Forn > 0,leta, = |na], b, = |nB]. These are Beatty sequences:
the floor of the multiples of a positive number. For o > 0 irrational, the two Beatty
sequences are complementary if and only if «=' + B~! = 1. Complementarity
means that every positive integer appears exactly once in exactly one of the two
sequences. Let

20> 3445

=1.0786893..., B="—
3 3

= 1.745356... ,

A= Unzoan, B = Unz()bn, T = Unzo(an,bn), a, € A, bn € B.

We denote by T = Zs\ T the complement of T, that is, all pairs (x, y) € Z>oxZso
not in 7. The first few terms of A and B are displayed in Table 1.

In the game FREAK there are two piles of finitely many tokens. We denote the
piles by the number of tokens they contain, i.e.,

(x,y),with0 < x < y. 2)

Two players alternate in reducing the piles. Play ends when the piles are empty.
Recall that the player first unable to move loses and the opponent wins (normal

play).

Remark 1. In a move from a position (x, y) subject to (2) where x is unchanged,
buty — y —¢ with# > 0, we may have x < y —f or y —t < x. To be consistent
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with (2) we write (x, y) = (x,y — ¢) in the former case, and (x,y) — (y —t,x)
in the latter case.

The P-positions of FREAK are given, namely P = T. What are succinct game
rules of FREAK such that it has precisely these P-positions? We chose this particular
set T since it seems like the simplest case in which the two Beatty sequences are not
complementary.

We claim that at each stage a FREAK player has the choice of making one of the
following two types of moves:

(D) (Restricted Wythoff move.) (x,y) — (x —t,y —¢) forevery ¢t € {1,...,x},
except that this move is blocked if t € {1,2,3}and x € Aand y € B.
(II) (Restricted Nim move.)

(@ (x,y) > (x—t,y)forany 0 <t < x;or

(b) (x,y) > (x,y—t)forany0 <t < y;or

(©) (x,y) > (y —t,x) forany 0 < ¢ < y, except that this move is blocked if
x€ANBandy € B.

Theorem 1. For the game FREAK, P = T.
Example 1. We refer the reader to Table 1.

¢ The moves from T to T(4,6) — (3,5), (12,20) — (11, 19) are blocked because
4,12 € Aand 6,20 € B ((I),t = 1).

¢ Similarly, the moves (14, 22) — (12, 20), (28, 45) — (26, 43) are blocked ((I),
t=2).

e Also (14,22) — (11,19), (43, 69) — (40, 66) are blocked ((I), t = 3).

e (12,20) — (7,12) and (19,31) — (11, 19) are blocked by (II)(c), since 12 €
ANB,19€¢ AN B;and 20,31 € B.

e Forevery s > 13, (13,5) — (8, 13) is not blocked by (II)(c), since 13 & A.

+ Notice that moves from the complement T to T such as (15,34) — (15,24),
(15,22) — (14,22) or (10, 17), (11, 16) — (8, 13) are not blocked.

It should be clear that a winning strategy for FREAK can be effected by means
of the P-positions. Given any game position (x, y) subject to (2), we have only to
find out to which sequence, A or B, x and y belong. The complexity of the implied
computation will be discussed later on.

3 Preliminaries

For proving Theorem 1, we begin by collecting a few facts about the sequences A
and B.
For any number r € R.g and n € Zsg, let Alnr| = |(n + 1)r| — |nr].

Lemma 1. (i) Each of the sequences A and B is strictly increasing.
(ii) Foreveryn >0, Alna] =2 — A|nB| =2.
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Proof. Notethat 1 < a < B < 2. These inequalities imply:
Alna] € {1,2}, AlnB] €{1,2} foralln € Zs,. 3)

Also note that A|na| = 2ifandonly if (n+ 1) = i + 146, na = i —§, for some
integeri = i(n),and 0 < 81,8, < @ — 1 < 0.08. For such n we have, (n + 1) =
m+D(a+2/3)=i+1+6+2n+1)/3;:n8 =n(e+2/3) =i -5 +2n/3.
Putn =3k +i,i €{0,1,2}. Then(n + )8 =i + 1+ 61 +2k+2@( +1)/3,
nB =i — 8, + 2k + 2i/3. We consider three cases:

1.i =0.ThenAnB] = (G +2k+1)— (G —-1+4+2k)=2.

2.i=1.Then AlnB| = (i +2k+2)—({ +2k)=2.

3.i =2.Then AnB| = (i +2k+3)— (i +2k+1) =2.Thus Alna] =2 =
A|nB]| = 2. This implies,

[nB| — |na] is a nondecreasing function of . “)

The properties (3) immediately imply (i). Let |na| = K, |[nf] = L.If A|lna| = 2,
then |(n + D] = K+ 2, [(n+ 1)B] = L + 6, where § € {1,2} by (3). Now
nB| —|lne] = L—-K,|(n+ DB| —|(n+ Da] = L—-K+35—2.By(4),
L—K+8§-2>L—K,s08>2.By(3),5 =2, establishing (ii). O

Corollary 1. Foreveryn >0, Alnf] =1 = Alna| = 1.
Proof. In view of (3), this is the contrapositive statement of Lemma 1(ii). |
Lemma 2. We have,

(i) AU B = Zs¢ (every nonnegative integer appears in A U B).
(ii) Every nonnegative integer N is assumed at most twice in AU B. If N appears
twice, it appears once in A and once in B.
(iii) by, =a, = m <n.
(iv) |[AN B| = oo.

Proof. (i) It is convenient to put £ = o~ !, & = B~'. Consider the sequence
¢ ={a,B,20,28,3w,38,...}. It suffices to show that if M > 1 is any integer
and there are Ny, members of { < M, then Ny;41 > Ny + 1. The number
of n > 0 satisfying nae < M is [ M &, and the number of n > 0 satisfying
nB < Mis |[M&].So Ny = |[M& | + |[M&]. Now

M§1—1<|_M§1J<M§1, M§2—1<LM§2J<M§2.

Adding, B3M/2)—2 < Ny <3M/2.1f M = 2t iseven,then3t —2 < Ny <
3t,s0 Nyy = 3t — 1,and then 3t — 1/2 < Ny41 < 3t +3/2,50 Nyj41 €
{3t,3t + 1}. Thus Npyy4+1 — Ny € {1,2}. 1M =2t + 1, M +1 =2t + 2,
we obviously also get Ny 4+ — Ny € {1, 2}, proving (i).

(i) Since each of A and B is strictly increasing, N can appear at most once in
each.

(iii) Follows immediately from the fact that o < S.
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(iv) We have to show that Ny;+; — Ny = 2 is assumed for infinitely many M €
Zso.If Nyy41— Ny = 1 forall large M then a simple density argument shows
that £, + & = 1, a contradiction. O

Lemma 3. A|nf] = 1 implies
Al(n=2)p] = Al(n =B = Al(n + D] = Al(n +2)B] = 2.

Proof. We have A|nf| = lifandonlyif N <nf < N+1 < (n+ 1) <
N + 2 forsome N € Zs. Since the fractional parts {nf},> are dense in the reals
(Kronecker’s Theorem), this inequality holds for infinitely many pairs of integers
(n,N). Since 1.74 < < 1.75, wethenhave N +3 < (n +2) < N + 4 <
N+5<n+3)B<N+6.Then A|{(n+1)] = Al(n+2)B]| = 2. We also have
Alnp] =lifandonlyif N—1> n—-1)>N-2>N-3>n-2)> N —4,
so Al(n —=2)B] = Al(n—1)B] =2. O

Lemma 4. [f Alna| =2, then Al(n +i)x| = 1 foratleastalli € {1,...,11}.

Proof. Follows from the fact that [{a}~'| = 12, where {x} denotes the fractional
part of x. O

Definition 1. For any real number x and any n € Zso, A|nx] is called an x-
difference.

Lemma 5. Forn,r € Zsy, let

L(n +r)B] —nB] = [(n + r)a] — [na] =1. 5)
Thenr <2,t <3;andr =2 witht = 3 is achieved.

Proof. We wish to maximize r. If any two consecutive B-differences are 2, then
the corresponding «-differences cannot be 2 by Lemma 4. So one of the two
consecutive B-differences must be 1. The corresponding «-difference is then also 1
by Corollary 1. The next 8-difference is then necessarily 2 (Lemma 3), and the next
a-difference can be 2. Then the next B-difference is still 2, but the corresponding
a-difference is 1. Thus r < 2,¢ < 3;and r = 2 with t = 3 in (5) is achieved, for
example forn = 11. O

Lemma 6. Let (a,,b,) € T. Then (a, —t,b, —t) = (@m, b)) € T fornot > 3.

Proof. Follows immediately from Lemmas 3 to 5. O

4 Proof of the Main Theorem

We need to show P = 7. Since FREAK is acyclic, it suffices to show two things:
Any move from any position in T results in a position in T; and from any position
in 7, there exists a move to a position in 7.
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We precede these two aspects with a notation and a proposition.
Notation 1. Foreveryn € Z> 0,letd, := b, — a,.

Lemma 7. (i) Foreveryn € 2> 0, d,+1 —d, € {0, 1}.
(ii) d, is a nondecreasing function of n.
(iii) Upsody = Zo.

Proof. (i) We have, d,4+1 — d, = A|nB| — Alna]. By 3), A|lna| € {1,2}.
If Alna] = 1, then A|nfB| € {1,2}. If Alna| = 2, then A[nf] = 2 by
Lemma 1.

(ii) It follows immediately from (i) that d, is nondecreasing.

(iii) The fact that the multiset U,>0d, contains every nonnegative integer also
follows immediately from (i). O

Any move from any position in T results in a position in T. Let (a,, b,) € 7,
n > 1. We have to show that (a,,b,) — (am,bn) € T fornom > 0. Fort €
{1,2,3}, (an, b,) = (a, —t,b, —t) is blocked by (I). For t > 3, (a, —t,b, —t) —
(am, bm) is impossible (Lemma 6). Since A and B are strictly increasing, a move of
type B cannot lead from 7 to 7.

From any position in T, there exists a move to a position in 7. Suppose
(x,y) € T,0 < x < y. We first deal with the case x = y := . Fort = 1,
(t,t) = (1,1)isin T; (2,2) — (0,0) is not blocked since 2 & B. Also (3,3) —
(2,3) € T is not blocked: it is a move of the form (II)(a). For ¢ > 3, taking (¢, ¢) is
never blocked. Moreover, (0, y) — (0,0) and (1, y) — (1, 1) are not blocked. We
may thus assume 1 < x < y. Then x = a, = by, implies n > m, since § > «, so
B increases at least as fast as A (CF Lemma 2(iii)).

Since A, B cover the nonnegative integers (Lemma 2(i)), we have either (i) x =
ay or (ii) x = b, for some n € Zs¢. Of course Lemma 2(iv) implies that x = a,, =
b,, for infinitely many n > m > 1.

(1) x € B,say x = by,.
(il) x ¢ A. Then the Nim move y — a,, is a non blocked move of the form
(ID(c).
(i2) x € A,say x = a,. Wehave 1l <m < n.
(i21) y > b,. Then do y — b,. This move is of the form (II)(b). It is not blocked,
since b, > x = a,.
(i22) y < b,. We consider two cases.
1. y € B,say y = by. Then k < n, so can make the (I)(a) move x — a.
2. y € B. Then move y — Xx,,. It is an unblocked move of the form (IT)(c).
(ii) x € A, say x = a,. The case where also x € B, say x = b,,, was dealt with
in (i2) above, so we may assume x ¢ B.
(iil) y > by,. Then move y — b,. This Nim move is not blocked, since b, > a, =
x. The move is of the form (IT)(b).
(ii2) y < b,.If y € B, say y = by, then we have k < n, so we can move x — ay,
as in (122)1. So we may assume y € B. Wehave | < a, = x <y < b,. Let
d:=y—x=y—a, <b,—a, = d, By Lemma 7(iii), there exists k < n
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such that dy = d, thatis, by —ay = y —a,,s0y — by = a, —ay :=t. Then
the Wythoff move (x,y) — (a, —t,y —t) = (ax,bx) € T is not blocked,
evenifr € {1,2,3},since y & B. O

5 A Linear Winning Strategy

Given any game position (x, y) of FREAK subject to (2), it obviously suffices to
know whether x € A,_x € B,y € A, y € B. The proof of Theorem 1 then enables
us to win if (x, y) € 7.

Theorem 2. The computations to determine whether or not any of x € A, x € B,
y € A, ¥y € B holds is linear in the succinct input size logx + logy = logxy of
any input game position (x,y), 1 <x < y.

Proof. Since « is irrational and 1 < o < 2,

b x+1 x+1
x=|ne| < x<na<x+1 << —<n< —=
o o

= 2]+
o
Therefore either x = |no| = a,, wheren = [(x + 1)/«], or else, by Lemma 2(i),
x = [nf| = b,, wheren = |(x + 1)/8].
Since also 1 < B < 2, we can compute the same way whether y = |nf],
together with the multiplier n and/or whether y = |n«| with its multiplier n. These
computations require that ¢ and  be computed to a precision of only O(logy)

digits. Once we made these linear computations, we make the appropriate move
prescribed in sub-steps of (i) or (ii) of the proof of Theorem 1. |

6 An Alternate Linear Winning Strategy

We now present a strategy that depends on two exotic numeration systems. Recall
that any positive irrational « can be expanded in a simple continued fraction:

1
@=a)+ —— = lao,a1,a2,a3...],
a + T
az+‘/l3

where ag € Z>o, a; € Z>1,1 > 1. The convergents of the continued fraction are
the rationals p,/q, = [ao, ..., a,], and they satisfy the recurrences (see e.g., [13],
Chap. 10):

P-1=1, po=ao, pp =aupu-1+ pr—a @0 =1),
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g-1=0,q =1, ¢g» = anqu—1 + qn— (n>1).

For the case ap = 1 (then 1 < o < 2), one of the numeration systems, the p-
system, is spawned by the numerators of the convergents (see [5,9]): Every positive
integer N can be written uniquely in the form

N =2 s5ipi, 0<s <at1, sit1 =diya = 5, =0 (i 20).

i>0

Denote by S, 7', the numeration systems based on the numerators of the
convergents of the simple continued fraction expansion of ¢, B, respectively. For
any positive integer N, let Rg(N), Ry (N) denote the representations of N in the
S, T numeration systems, respectively. We say that N is S-vile, T-vile if Rg(N),
R7(N) respectively ends in an even number (possibly 0) of 0s. Analogously, N is
S-dopey, T-dopey if Rs(N), Rt (N) respectively ends in an odd number of Os.

Note 1. The names “evil” and “dopey” are inspired by the evil and odious numbers,
those that have an even and an odd number of 1’s in their binary representation
respectively. To indicate that we count Os rather than 1s, and only at the tail end,
the “ev” and “od” are reversed to “ve” and “do” in “vile” and “dopey”. “Evil” and
“odious” were coined by Elwyn Berlekamp, John Conway and Richard Guy [1].

‘We notice that
a=1[1,12,1,2,2,2,a], B=][1,1,2,q].

The periodicities are of course a manifestation of Lagrange’s Theorem ([13,
Chap. 10]). For « we have po = 1, p1 = 13, p» = 14, p3 = 41, ps = 96,....
ForB,po=1,p1 =2, pop =5 p3s =7, ps =89,....Alsosp <a; = 1,s0
5o € {0, 1} for both numeration systems. In Table 2 we exhibit Rg(N) on the left-
hand side and R7 (V) on the right-hand side for the first few positive integers N.

Comparing Tables 1 and 2, notice that, at least for the range n € [1,20]:n € A
if and only if n is S-vile; n € B if and only if n is T -vile. This property holds in
general — see [5], Sect. 5. It follows immediately that the game rules of FREAK, in
terms of the S- and 7' -numeration systems, can be stated as follows:

(D) (Restricted Wythoff move.) (x,y) — (x —t,y —¢) forevery ¢t € {1,...,x},
except that this move is blocked if the following three conditions hold: (a) ¢t €
{1,2,3}, (b)xis S-vile, (c)yis T-vile.

(II) (Restricted Nim move.)

(@ (x,y) > (x—t,y)forany 0 <t < x;or

®) (x,y) > (x,y—t)forany0 <t < y;or

(©) (x,y) > (y —t,x) forany 0 < ¢ < y except that this move is blocked if
x is both S-vile and T-vile and y is T-vile.
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Table 2 Representation of

1 <n < 15in the S- (left) 4 13 1 n 7 5 2 1
and T -system (right) 0 0 1 1 0 0 0 1
0 0 2 2 0 0 1 O
0 0 3 30 0 1 1
0 0 4 4 0 0 2 O
0 0 5 5 0 1 0 O
0 0 6 6 0 1 0 1
0 0 7 7 1 0 0 O
0 0 8 8§ 1 0 0 1
0 0 9 9 1 0 1 O
0 0 10 10 1 0 1 1
0 0 1 1 1 0 2 0
0 0 12 12 1 1 0 O
0 1 o 13 1 1 0 1
1 0 0O 14 2 0 0 O
1 0 1 15 2 0 0 1
1 0 2 16 2 0 1 O
1 0 317 2 0 1 1
1 0 4 18 2 0 2 O
1 0 5 19 2 1 0 O
1 0 6 20 2 1 0 1

The computation whether x or y is S-vile or 7T-vile can obviously be done in
linear-time in the input size logxy of any game position (x, y). It follows that
also the winning strategy based on the two numeration systems is linear. It has the
advantage of avoiding the floor function and division, both of which are needed for
our first winning strategy.

7 Epilogue

Preliminary Thoughts. We presented two linear winning strategies for a game on
m = 2 piles of tokens for which the P-positions constitute a single pair of integers
(A', A?) (in contrast to [2] and [8]), (A", A?) satisfy |A'NA?| = oo, but |[A'UA?| =
Z>,. It appears to be a first such case for a Wythoff-like game.

FREAK, the name of the game, derives from FRactional BEAtty game. The
terminology “vile” and “dopey” is inspired by the evil and odious numbers,
those that have an even and an odd number of 1’s in their binary representation
respectively. To indicate that we count Os rather than 1s, and only at the tail end,
the “ev” and “od” are reversed to “ve” and “do” in “vile” and “dopey”. “Evil”
and “odious” were coined by Elwyn Berlekamp, John Conway and Richard Guy
while composing their famous book Winning Ways [1]. Urban Larsson suggested
the particular values of «, 8 used in this work. A “fractional Beatty theorem” was
recently proved by Peter Hegarty [14] (following a suggestion of mine). In previous
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Table 3 The first few terms of the P-positions (a,, b,)

n 01234 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

a, 0012 3 45 6 6 7 8 91011121313 14 1516 17 18 19 19 20 21 22 23
b, 0258 11 14 17 20 22 25 28 31 34 37 40 43 45 48 51 54 57 60 63 65 68 71 74 77

papers we have shown that a judicious choice of numeration systems can improve
the efficiency of winning strategies of various games, much as data structures in
Computer Science. In the present paper, numeration systems are the tool used
uniformly for both formulating and analyzing FREAK.

Further questions

(1) Extend the above results to an infinite set of fractional Beatty games, for
example, for @ = Lp/(2k + 1), B = £p?/(2k + 1), k, £ any fixed positive
integers.

(2) Are there “simpler” game rules for the same set of P-positions considered here?

(3) Amove R = (ry,...,rm) # (0,...,0) in an m-pile subtraction game is
invariant if R can be made from every game position (sy,...,s,) for which
si —r; > 0fori = 1,...,m. An m-pile subtraction game is invariant if all its
moves are invariant. Otherwise the game is variant. The move rules for FREAK
are obviously variant. Duchéne and Rigo [4] conjectured that for m = 2, given
any two complementary Beatty sequences A, B, there exists an invariant game
with (A4, B) U {(0,0)} as its P-positions. This conjecture was proved in [16]. Is
there an invariant game with the P-positions presented in Sect. 2 above?

(4) More generally, can the invariance theorem proved in [16] be extended in
the following sense: Is there a nontrivial subset of non-complementary Beatty
sequences A, B, for which there always exists an invariant game with (A4, B) U
{(0,0)} as its P-positions?

(5) Let r,t € R.y. The equation @' + (a + #)~! = r has the positive solution
o = (2r ' =1+ /12 + 4r=2)/2. For every set of values (r,7) € R?  for which
« is irrational one can define, in principle, an (r, f)-Beatty game. So there is
a continuum of such games. If r and ¢ are restricted to be rational we get a
denumerable number of games. (One can even consider such games when « is
rational, see [7].) For example, for r = 3/2,t = 2, a = (/13 —1)/3 (so
2/3 <a < 1),and B = a +2 = (/13 + 5)/3. It may be of interest to
formulate game rules for a game whose P-positions are U,>o(ay, b,), where
a, = |na], by, = |nB]. In this game there are infinitely many integers that are

repeated (at most twice) in {a, },>0, in addition to |4 N B| = oo. But there is
the nice property that b, = a, + 2n for all n > 0, as can be seen in Table 3
below.

(6) Investigate the Sprague-Grundy function of fractional Beatty games in an
attempt to give a poly-time winning strategy for playing them in a sum.

(7) Consider take-away games on m > 2 piles, where the m sequences A', ..., A™
constituting the P-positions do not split Zx ;.



186 A.S. Fraenkel

(8) Consider partizan take-away games where the P-positions do not split Zx .
(9) Investigate Fractional Beatty games for misere play.

Acknowledgements Thanks to Urban Larsson, for his useful comments at the beginning of this
work.
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WZ-Proofs of “Divergent” Ramanujan-Type
Series

Jesus Guillera

Dedicated to the memory of Herb Wilf, who was part of the
commitee of my PhD thesis

Abstract We prove some “divergent” Ramanujan-type series for 1/7 and 1/
applying a Barnes-integrals strategy of the WZ-method. In addition, in the last
section, we apply the WZ-duality technique to evaluate some convergent related
series.

Keywords Hypergeometric series * WZ-method * Ramanujan-type series for
1/m and 1/72 » Barnes integrals

1 Wilf-Zeilberger’s Pairs

We recall that a function A(n, k) is hypergeometric in its two variables if the
quotients
A(n + 1,k) An,k +1)
——— and ———
A(n, k) A(n, k)
are rational functions in n and k, respectively. Also, a pair of hypergeometric

functions in its two variables, F(n,k) and G(n, k), is said to be a Wilf and
Zeilberger (WZ) pair [13, Chap. 7] if

F(n+ 1,k)— F(n,k) = G(n.k + 1) — G(n. k). (1)
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In this case, H. S. Wilf and D. Zeilberger [17] have proved that there exists a rational
function C(n, k) such that

G(n, k) = C(n,k)F(n,k). )

The rational function C(n,k) is the so-called certificate of the pair (F,G). To
discover WZ-pairs, we use Zeilberger’s Maple package EKHAD [13, Appendix A].
If EKHAD certifies a function, we have found a WZ-pair! We will write the
functions F(n,k) and G(n,k) using rising factorials, also called Pochhammer
symbols, rather than the ordinary factorials. The rising factorial is defined by

x(x+1)--(x+n-1), neZt,

(x)n = 1. n=0,

3)
or more generally by (x); = I'(x +t)/I'(x). Fort € Z — Z~, this last definition

coincide with (3). But it is more general because it is also defined for all complex x
and ¢ such that x +¢ € C — (Z—7ZV).

2 A Barnes-Integrals WZ Strategy

If we sum (1) over all n > 0, we get

Y Gn.k)y=Y Gk +1)= —F(0.k) + lim F(n.k) 4)
n=0 n=0

whenever the series above are convergent and the limit is finite. D. Zeilberger was
the first to apply the WZ-method to prove a Ramanujan-type series for 1/ [4].
Following his idea, in a series of papers [5,6,9,10] and in the author’s thesis [8], we
use WZ-pairs together with formula (4) to prove a total of 11 Ramanujan-type series
for 1 /7 and 4 Ramanujan-like series for 1/72. However, while we discovered those
pairs we also found some WZ-pairs corresponding to “divergent” Ramanujan-type
series [12], like the following pair:

Fony = a0 (F) Gk = s ()

rm+1)\9 rn+1)\ 9
where
A, k) = U(n,k)#]:i)l), B(n, k) = U(n, k)(5n + 6k + 1),

and

(), G+ 5), G+3), (6
A+0,(0+20, (1}

Un, k)=
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We cannot use formula (4) with this pair because the series is divergent and the limit
is infinite, due to the factor (—16,/9)". To deal with this kind of WZ-pairs we will
proceed as follows: First we replace the factor (—1)" with I"(n+1)I"(—n). By doing
it we again get a WZ-pair, because (—1)" and I'(n 4 1)I"(—n) transform formally
in the same way under the substitution n — n + 1; namely, the sign changes. To fix
ideas, the modified version of the WZ-pair above is

s

F(s,t) = A(s,t)(—s) (1—96) G(s,t) = B(s.1)["(—s) (1—96) .

Then, integrating from s = —ioco to s = ioco along a path P (curved if necessary)
which separates the poles of the form s = 0,1,2... from all the other poles,
we obtain
1 ioco ' o 2
— B(s.0I (=s)(=2)'ds = Y B(n.0)=., |z| <1, (5)
270 J_i0o = n!

where we have used the Barnes integral theorem, which is an application of
Cauchy’s residues theorem using a contour which closes the path with a right side
semicircle of center at the origin and infinite radius. The Barnes integral gives the
analytic continuation of the series to z € C — [1, 00). Integrating along the same
path the identity G (s, 7 + 1) — G(s,1) = F(s + 1,1) — F(s, 1), we obtain

/ G(s,t + l)ds—/ G(s,t)ds:/ F(s + l,t)ds—/ F (s, t)ds

—ioo —ioo —ioo —ioo
(6)

1+ioo 100
:/ F(s,z)ds—/ F(s,t)ds:—/ F (s, t)ds,
1 C

—ioo —ioo

where C is the contour limited by the path P, the same path but moved one unit to
the right, and the lines y = —oo and y = +o00. As the only pole inside this contour
is at s = 0 and the residue at this point is zero, the last integral is zero and we have

/‘ G(s,z)dsZ/_ G(s.t + 1)ds. (7

This implies, by Weierstrass’s theorem [16], that
1 100 5 1 100 ~ 1 100 ~
— G(s,t)ds = lim — G(s,t)ds = —/ lim G(s,t)ds
1—00 2 270 J oo 1®

270 J—ico I'J—ico

1 [i®3 /1 3
L [T 2() o=
2 b4

270 J_joo T ]
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where the last equality holds because

: ,-00(1) Fesearas=3 Do o Ly
A = —S)(—2) ds = S b s
271 Jioo \ 2/ =0 (D V1—z
implies that
1 [/ 1
— =) r(=s)(—2)'ds = , zeC—[l,00).
27i J_joo \2 /4 1—z

Hence, we have

LG G+3)G+35) 6,6, Yl Y3
270 Joioo (1 1) (14 20) (1)? Gs+6r+ DI s)( ) =

or equivalently

1 GG E+S)
21 Joieo (L4 1)(1 + 20),

V32
7 () (3),

4 2s
S(5s+6t+1)I"(—s) (5) ds =

Finally, substituting ¢ = 0, we see that

Lo~ (GG Q)

X 2s ﬁ
Py i ()2 Gs+ )I(— s)( ) ds = e ®)

It is very convenient to write the Barnes integral in hypergeometric notation.
By the definition of hypergeometric series, we see that for —1 < z < 1, we have

0 =), _ (s 1 -
3 e =M

and

> l (S)n(l_s)n 3 1+ 2 —
ngnz —s(l—s)Z3F( 27S 2s

)

where the notation on the right side stands for the analytic continuation of the series
on the left. Hence, we can write (8) in the form

L1316\ 5 3
= ( I T)‘53F2 (

N &l

7
g
2

. .

3)-1
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If, instead of integrating to the right side, we integrate (8) along a contour which
closes the path P with a semicircle of center s = 0 taken to the left side with an
infinite radius, then we have poles at s = —n — 1/2,ats = —n — 1/4 and at
s=—-n—-—3/4forn =0,1,2,..., and we obtain

3 2n
(201 + 1)(=1)" (Z)

= Q) %
- Z o, (%)n (%)n (20n 4+ 11)(-1) (Z) =1.

which is an identity relating three convergent series.

3 Other Examples

In a similar way we can prove other identities of the same kind, for example,

. 1 3 1 2
1 pice (3+1) (3 5 5 5 4 (1)}
— ———— B (1057 + 65 + 1 4 L4st + 4> + 40) [ (—5)27ds = — —17,
(%)
2 t

270 J oo (14 1)3(1 + 20)

1 /"°° (3), G+

Ly

7 (3),

S (3s + 2t + DNIM(—s)2%ds =
277 oo (1 20), 8 T2 DI(E9)20ds

and
1 (5), (5 +20) (5 +1), G +0)
i Jioo (34 3), (14 5), (1 + 1)
2
LU+ 425+ 1) +1(33s + 16)F(—s)225ds _ 3vV3 1 (1)

TEEN T 50,0,

In the two last examples the hypothesis of Weierstrass theorem fail and hence
we cannot apply it, but we obtain the sum using Meurman’s periodic version of
Carlson’s theorem [2, p. 39] which asserts that if H(z) is a periodic entire function of
period 1 and there is a real number ¢ < 27 such that H(z) = O(exp(c|Im(z)|)) for
all z € C, then H(z) is constant [1, Appendix] and [11, Theorem 2.3]. In the second
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and third examples we determine the constants 1/ and 3+/3/x taking t = 1/2

and t+ = —1/3 respectively. Substituting # = 0 in the above examples, we obtain
respectively
, 5
1 1o (%)s 2 2. 4
— —=-(10 65 + 1)I(—s)2%ds = —, 9
ol (1)34( 5=+ 65 + 1) (—s)27ds p 9)
4 3
LG T
— —=(3 DI(—s)2%ds = —, 10
7t ) G DI = (10)
and

ﬂ. (11)
T

1 foo (%)s (%)s (%)s 2s _
i e (1—)3(159 + 4 (—s)2%ds =

Using hypergeometric notation, we can write (9), (10) and (11) respectively in the
following forms:

33 333 4
(M35
111 333 1
SR SR
and
sr(* 7] ) - et ] ) -

Related applications of the WZ-method for Barnes-type integrals are for example in
[3, Sect.5.2] and [14].

4 The Dual of a “Divergent” Ramanujan-Type Series

The WZ duality technique [13, Chap. 7] allows to transform pairs which lead to
divergences into pairs which lead to convergent series. To get the dual G(n, k) of
G(—n, —k), we make the following changes:

(1) n(=1)" (D)t k(1)
A=a, W7 ~m, - @~ azgs W= =g

(@)—n—
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4.1 Example 1

The package EKHAD certifies the pair

2n? 6n%+2n +k + 4nk
F(n, k)= U(n,k)m, G(n,k) =U(n,k) Py , (12)
where
2
Un. k) = (), (1+3),G+5), Gl o _ @)L+ 1
’ M2 +Kk2 Ik nkl(n + k)2 16745

We cannot use this WZ-pair to obtain a Ramanujan-like evaluation because, as
z > 1, the corresponding series and also the corresponding Barnes integral are both
divergent. However, we will see how to use it to evaluate a related convergent series.
What we will do is to apply the WZ duality technique. Thus, if we take the dual of
G(—n,—k) and replace k with k — 1, we obtain

1 202k — 1)(2n + k)
Uln. k) n2(n + k)2(n + k — 1)2

Gn. k) = (6n> —6n + 1 —k + 4nk),

and EHKAD finds its companion

1 —2Qn+k)@2n+k—1)2n—1)
Un,k) nt(n +k)2(n + k —1)?2

F(n k) =

Applying Zeilberger’s formula

Y (Fn+1n)+Gmn)=> G j)

n=j n=j
with j = 1, we obtain
o0

> [16)" (1)} 1n—3 1 (1)23n—1
> () mom Sl e

n=1 n=1

The series in (13) are dual to Ramanujan-type “divergent” series, and in [7, p. 221]
we proved that the series on the right side is equal to 7%/2. Hence

> (16" 3 1in—3 5
i = 8rx2. 14
> (3) mrige e o

n=1 3

3

Formula (14), as well as other similar formulas, was conjectured in [15, Conjec-
ture 1.4] by Zhi-Wei Sun.
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4.2 Example 2

The package EKHAD certifies the pair
64n3
Qk+1)2n -2k +1)°

2n + 1)?(11n + 3) — 12k(2n? + 3nk +n + k)
(2n + 1)? ’

F(n,k)y =U(n,k)

G(n,k) =U(n,k)

where

G0, G40 (), (), (27Y"
Y oo )

Taking the dual é(n,k) of G(—n,—k), replacing n with n + x and applying
Zeilberger’s theorem

o0 o0 o0
nZ::OG(n +x,0) = klglolor;G(n + x,k) +1§)F(x,k),

where F (n, k) is the companion of é(n, k), we obtain

o

N LA
=G +x), G +x),G+x), \27 (n + x)3
k (% — )k '

), (G —x
(3 +);

_ 6(3x—1DB3x-2) i (3

x32x—1) =

Taking x = 1 we again obtain (14).
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Smallest Parts in Compositions

Arnold Knopfmacher and Augustine O. Munagi

Dedicated to Herbert Wilf on the occasion of his 80-th birthday.

Abstract By analogy with recent Work of Andrews on smallest parts in partitions
of integers, we consider smallest parts in compositions (ordered partitions) of
integers. In particular, we study the number of smallest parts and the sum of smallest
parts in compositions of n as well as the position of the first smallest part in a random
composition of n.

1 Introduction

A composition of an integer n > 0 is a representation of n as an ordered sum of
positive integers n = a; + a» + -+ + a. It is well known that there are 2n=1
compositions of n, and (Z:}) compositions of n with exactly k summands or parts,
which will also be referred to as k-compositions.

The subject of integer compositions has engaged the attention of Herbert Wilf on
several occasions (see for example [3] and [5]).

In this note we undertake an enumerative study of compositions with respect to
the smallest summand. Our inspiration came mostly from the work of G. Andrews
which considered smallest parts in integer partitions [2]. He proved that the number
spt(n) of smallest parts in partitions of 7 is given by

1
spt(n) = np(n) — ENz(n),
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where p(n) is the number of partitions of n and N,(n) is the second Atkin-Garvan
moment of ranks.

We will consider both the number and sum of smallest parts in all compositions.
It turns out that, in the case of compositions, we are availed of both elementary
and advanced techniques for discussing the two statistics. We will compute explicit
formulas, and asymptotic estimates, for the total number of smallest parts in all
compositions of n, and for the sum of smallest parts in all compositions of .

In this context we find the following sequence in the Encyclopedia of Integer
Sequences:

Total number of smallest parts in compositions of n > 1 ([6, A097941]):
1,3,6,15,31,72, 155, 340, 738, 1,595, 3,424, 7,335, 15,642, 33,243, 70,432, 148,808, . . .

In Sect.2 we use elementary constructive arguments to derive the necessary
exact formulas. Then in Sect.3 we use generating function techniques to obtain
the formulas, leading naturally to asymptotic enumeration of compositions for large
n. The final section is devoted to the enumeration of compositions with respect to
the first position of the smallest parts.

2 Constructive Proofs

We will need the following known result (see for example [1, p. 63]):

Lemma 1. The number of k-compositions of [n] in which each part > m is given by

n—(m-—1k—1
k—1 '
Letcj(n,k,r) & humber of k-compositions of n with smallest part j such that

J appears r times in each composition.
Then

Proposition 1. Ifn = kj thenc;(n,k,r) = 8, and

k —jk—1
q(n,k,r):(r)(’;_Jr_l), n >k, )

where §;; is the Kronecker delta.

Proof. The case n = jk gives the unique composition (3

s--.» 7). So we assume
n > jk and construct a composition enumerated by c; (n, k, r).
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Fix any r of the k positions to hold the j’s, in (]:) ways. Then the remaining
k — r positions can be filled with a composition of n — rj, into k — r parts, each
> j + 1, such that the i th part occupies the i th available position, from left to right.
The number of such compositions, by Lemma 1, is ("_rjk_i f,k__lr)_l) = (’};’r]‘:ll)
Hence

K\ (n—jk—1
cj(n,k,r)=<r)<’]1_Jr_1). 0

Corollary 1. The number c;(n, k) of k-compositions of n with smallest part j is

given by
—(G—-Dk-1 —jk—1
Cj(n’k):<n Y )_(n e ) *

Proof. If compositions with parts > j 4 1 are deleted from the set of compositions
with parts > j, we obtain the set of compositions with smallest part j. Now apply
Lemma 1. O

2.1 The Number of Smallest Parts

Corollary 2. The number f;(n,k) of all occurrences of a fixed smallest part j
among all k-compositions of n is given by.

3

k) _k<n—(j—1)k—2)
J 5 - .

k—2

Proof. Since there are c;(n, k,r) k-compositions of n with smallest part j such
that j appears r times in each composition, the frequency f;(n,k,r) of j among
all compositions in which it appears r times is given by f;(n,k,r) = rc;(n,k,r).

Thus
k\[n—jk—1
/ 7k5 == j 7k5 == bl
filnk,ry=rcj(n,k,r) r(r)(k—r—l)

and

k\ (n—jk—1
fin k) =Y fin.k.r) =Zr<r) (I;C—Jr—l>

r>1 r>1
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n—1

Then we apply the rule %(Z) = (k:l), and note that the Vandermonde convolution

gives:
Z k—1\[(n—jk—1\ [n—( —Dk-2
r—1)\k—-r—1) k-2 '
r>1
O
Since the set of smallest parts among all k-compositionsofnis{1,2,...,|n/k]},

we can use Corollary 2 to obtain:

Corollary 3. The number sp(n, k) of smallest parts among all k-compositions of n
is given by

Ln/k] .
n—((—-—1)k—-2
sp(n,k):kjg1 ( o ) )

It is easily verified that the sum )_sp(n,k), n > 0, agrees with the Sloane
k

sequence [6, A097941] mentioned earlier.

2.2 The Sum of Smallest Parts

The following corollaries are immediate consequences of Corollaries 2 and 3.

Corollary 4. The sum s(n,k, j) of all copies of a fixed smallest part j among all
k-compositions of n is given below.

&)

—(— k-2
s(n,k,j):jk<" (Jk_z) )

Corollary 5. The sum s(n, k) of all smallest parts among all k-compositions of n
is given below.

Ln/k) .
. fn—(( —Dk-2
s(n,k)—k;]( P ) (6)

The sequence for the sum of smallest parts in all compositions of an integer n > 0
is not yet in Sloane [6]:

Zs(n,k), n>0,:1,4,8,20,37,56,173,372,788, 1,680, 3,550, 7,554, . ..
k
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3 An Approach via Generating Functions

3.1 The Number of Compositions of n with Smallest Part j

Let ¢; (n, m) denote the number of compositions of n with m parts and with smallest
part j and let ¢;(n) denote the number of compositions of n with smallest part ;.
We use the following decomposition of the set C; of compositions of 7 with smallest

part j.

C; = {a composition with all parts > j + 1}

x {a part equal to j} x {a composition with all parts > j}. @)

Translating to generating functions in the style of Wilf [7], where z marks the
size of a composition and y marks the number of parts, gives

J
Ci(ey) = (n.m)2y" = N
iz y ’;mzzjlc]nm y (1_%)(1_},?,_t1)

y(z—1)%/

TP =D 1)
Setting y = 1 the generating function for compositions with smallest part j is

. (z—1)%¢/
ch(n)z @Az 1)

n>1

The generating function for ¢;(n) is a rational function of z and the asymptotic
growth of the coefficients will depend on the smallest positive zero p of the
denominator polynomials z/ + z — 1 and z/ ! + z — 1. Since p < 1, it satisfies
the equation 1 — p — p/ = 0. By singularity analysis

(p—1)%p/

¢jln) ~ [Zn](jpf—l D =D E=p)

After some simplification this leads to the asymptotic estimate

ij—n—l
(I=p) Gp/~"+ 1)

cj(n)w



202 A. Knopfmacher and A.O. Munagi

In the case j = 1 we have the exact result ¢ (n) = 2"~ _ F, where F, is the n-th
Fibonacci number with Fy = 0 and F; = 1. Consequently almost all compositions
of n have smallest part 1.

For j = 2 we find p = %(ﬁ—l) = 0.618034... and for n = 50 our

asymptotic estimate for ¢,(50) is 7,778,742,049 as compared the exact value
7,739,952,337. Similarly, For j = 3 we find p = 0.682327803... and for n = 50
our asymptotic estimate for ¢3(50) is 38,789,712 as compared the exact value
37,287,157.

For a fixed number m of parts we can obtain explicit formulas for ¢; (n, m) in the
spirit of Sect. 1. We can write

© k_(GG+DE\ Lk _jk
. Zz Z
Ci(z.y) =y (E Y ) E Y
k=0

(1—2f J = (1—2)*
Then
TRl . .
[ym]cj(Z, y) _ (1 _Zz)m_l ];)Z(]-I—l)kzj(—k-l—m—l) — (1 _ Z)—m (Z/m _ Z(]-I—l)m) )
Consequently
—(i—Dm—-1 —jm—1
¢ n.m) = ( v )un > jmi] - (” m )[[n = (j + ]
and hence
- —(—-m-1 —jm—1
=3 ((” v )[[n = jmi] - (" m )[[n =+ l)mn),

where the Iverson notation [[ P]] takes the value 1 if the condition P is satisfied and
0 otherwise.

3.2 The Number of Smallest Parts in Compositions of n

Again we use the decomposition (7). We mark with « all the smallest parts, getting
the bivariate generating function for the number of smallest parts of compositions
of n with smallest part j as

uz’/ u(z —1)%/

(1_z1f+1)(1_w —Zlfi) T A= T =g (= DI —ugd —z+ 1)’
—Z —Z
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Summing over j we find that the generating function for compositions of n
according to number of smallest parts is

u(z —1)%z/

= ; (=T =9 (- D —ugd —z+ 1)’

In particular, the total number of smallest parts in compositions of n has generating
function

Sen=y LD Rk

Za —z—7)*
We find this is

24372 + 62 + 152% + 312 + 7220 + 15577 + 3407° + 7387° + 159570 + 34247

+73352'2 4 1564273 + 332437'% + 704322" + 148808z'° + 31357177 + O[7]'®.

The coefficients are sequence A097941 in Sloane. For asymptotic purposes the
dominant pole comes from the j = 1 term whose coefficient is 273" (2 + n).
Thus the average number of smallest parts in compositions of n is % +

o((LH)").

3.3 The Sum of Smallest Parts in Compositions of n

We mark with u/ all the smallest parts, getting the bivariate generating function for
the sum of smallest parts of compositions of # with smallest part j as

Wizl _ w (z— 1)/
(1 _ z/+1) (1 — i — ﬂ) A=zt =) (W — D —wiz/ —z4 1)
1—z

1—z

Summing over j we find that the generating function for compositions of n
according to the sum of smallest parts is

_ u (z— 1)/
S2et) = D T (@ — DT =W =% 1)

jz1
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In particular, the total sum of smallest parts in compositions of n has generating
function

s2e =Y ET DY (z— 1)211’

== — )"
We find this is

7+ 47% + 87 + 207" + 377 + 862° + 17377 + 3727° + 7887° + 1680z7'° + 35507!"

+75542'% 4 159947"% + 33820z'* + 71374z" + 1503762'° 4 316151z"7 + O[7]'S.

The coefficients are sequence A097940 in Sloane. For asymptotic purposes the
dominant pole again comes from the j = 1 term whose coefficient is 273" (2 4 n).
Thus the average sum of smallest parts in compositions of n is % +

O((@)H). We can make this more precise by considering the j = 2 term
more carefully. From this we find that
the total sum of smallest parts in compositions of n exceeds the total number of
smallest parts in compositions of n by

n
1 1 /5
o (—25 + 1345 + (35— 15\/5) n) (5 + 7) asn — oo.
For example, for n = 50 the exact difference is 43,618,840,751 and the asymptotic
result is 43,351,455,601.

4 First Position of Smallest Parts

In this section we consider the related idea of counting compositions with respect to
the first position of their smallest parts. We denote the result of Lemma 1 by

1K)z = (” —m ke 1),

thus making the notation c¢(n, k), clear as well.

Let w(n, k, p) denote the number of k-compositions of n in which the smallest
parts occur for the first time in the p-th position, and let w,(n, k, p) be the number
of compositions enumerated by w(n, k, p) such that the smallest partis s, 1 < p <
k<n, 1<s<n.Thusw(n,k, p) =  ws(n,k,p).
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Then the following special values are immediate
ws(n,k, 1) =c(n—s,k —1)s5; ws(n,k,k) =cn—s,k — 1)
Thus
wy(n,k,1) =81 = wy(n, k., k).

In general, when 1 < p < k, a composition enumerated by w; (1, k, p) consists of
the concatenation of three strings namely:

((p — 1)-composition of m with parts > s),(s),((k — p)-composition of n — m
with parts > ),
wherel <m <n-—s—1.

Hence Lemma 1 gives, for 1 < p <k,

ws(nk, p) =Y c(m,p—1)ss-1-c(n —s—m, k= p)ss,

m

that is,

el k. p) = Z(m—s;p_—zl)—1)(n—s—m;&v;_l)l(k—p)—1)’ ®)

and when 1 <s <n, k > 1, we have

ws(n, k, 1) = (n—s—(sk—_l)z(k—l)—l)’ wy(n, k. k) = (n—s—l:(icz—l)—l)

4.1 First Position of Smallest Parts via Generating Functions

Let vj(n,m,!/) denote the number of compositions of n with m parts and with
smallest part j and / positions prior to the first smallest part. As previously we
use the decomposition (7) of the set C; of compositions of n with smallest part ;.

Translating to generating functions, where z marks the size of a composition, y
the number of parts and x the number of positions prior to the first smallest part,
gives

Vi(z,y,x) = Z Z Zvj(n,m,l)zny’"xi _ ( - )ygi - xyz”‘)

n>1m=>14£>0 e

1—z 1—z

_ Y@ —1)>
Oz +z—=1) (yz/ T +z2-1)°
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Setting y = 1 the generating function for compositions with smallest part j and /
positions prior to the first smallest part is

(z— 1)/
@ +z—=D) @ +z-1)

Vi(z, 1,x) =

Summing over j and differentiating with respect to x gives

Vi@ 1.1) = Z (z—1)2% !

TU—z=) @ -1
This is

2427 +77 41520+ 3677 +802° +1747° + 37120 + 7872 + 164472 + 34107"3

+70312" + 144237"% + 294557'¢ + 599482'7 + 0 (%),

which is not in Sloane. The dominant pole again comes from the j = 1 term, with
[2"]V'(z,1,1) ~ 2"~1 It follows that the average position of the first smallest part
is 2.

We can also determine the asymptotic distribution of the position of the first
smallest part. The generating function for compositions in which the first smallest
part occurs in position k is

JHINETL i = 1 kj+k—1
oo =Y (1) Y- >

_ — _ k-2 —
= 1—z 1—z—2/ (1-2) jzll z—27/

The dominant pole again comes from the j = 1 term, with [¢"]Vix)(z) ~ 27¥2"~1.
Thus the position of the first smallest part follows a geometric distribution with
parameter 1/2. In particular, asymptotically half of all compositions of n will have
the first smallest part in position 1.

4.2 The First Position of the Part Equal to k

The distribution of part sizes in a random composition is well known to be
geometric with parameter 1/2 as discussed for instance in [4]. In the same spirit
we briefly consider the average position of the first part equal to k, any fixed k, in
a composition of n. We use the following decomposition of the set of compositions
of n with at least one occurrence of k.

{a composition with no k} x {k} x {any composition}.
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We mark with x the positions to the left of the first £ obtaining the generating
function

1 Z (1 —2)?

1—x(1%z—zk)1—22 S l—z—xz+x(1—2)

Differentiating with respect to x gives

FA=22z-70 -2
(1 =22)(1 =2z 4+ ZK(1 = 2))*"

From the dominant pole at z = 1/2 we find that the coefficient of 7" is asymptotic
to (2F — 1)2"~1,

Asymptotically almost all compositions of n have one or more parts k, so the
average position of the first part equal to k is therefore 2%, as is to be expected from
the essentially geometric distribution of the part sizes.
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Abstract We prove that the generalised non-crossing partitions associated with
well-generated complex reflection groups of exceptional type obey two different
cyclic sieving phenomena, as conjectured by Armstrong, and by Bessis and Reiner.
The computational details are provided in the manuscript “Cyclic sieving for
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1 Introduction
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non-crossing partitions associated with reflection groups due to Bessis [7] and Brady
and Watt [11] into one uniform framework. Bessis and Reiner [10] observed that
Armstrong’s definition can be straightforwardly extended to well-generated complex
reflection groups (see Sect.2 for the precise definition). These generalised non-
crossing partitions possess a wealth of beautiful properties, and they display deep
and surprising relations to other combinatorial objects defined for reflection groups
(such as the generalised cluster complex of Fomin and Reading [13], or the extended
Shi arrangement and the geometric multichains of filters of Athanasiadis [5,6]); see
Armstrong’s memoir [3] and the references given therein.

On the other hand, cyclic sieving is a phenomenon brought to light by Reiner,
Stanton and White [29]. It extends the so-called “(—1)-phenomenon” of Stembridge
[35, 36]. Cyclic sieving can be defined in three equivalent ways (cf. [29, Propo-
sition 2.1]). The one which gives the name can be described as follows: given a
set S of combinatorial objects, an action on S of a cyclic group G = (g) with
generator g of order n, and a polynomial P(q) in ¢ with non-negative integer
coefficients, we say that the triple (S, P, G) exhibits the cyclic sieving phenomenon,
if the number of elements of S fixed by g* equals P (e*>'¥/™). In [29] it is shown that
this phenomenon occurs in surprisingly many contexts, and several further instances
have been discovered since then, see the recent survey [32].

In [3, Conjecture 5.4.7] (also appearing in [10, Conjecture 6.4]) and [10, Conjec-
ture 6.5], Armstrong, respectively Bessis and Reiner, conjecture that generalised
non-crossing partitions for irreducible well-generated complex reflection groups
exhibit two different cyclic sieving phenomena (see Sects.3 and 7 for the precise
statements).

According to the classification of these groups due to Shephard and Todd [33],
there are two infinite families of irreducible well-generated complex reflection
groups, namely the groups G(d,1,n) and G(e,e,n), where n,d,e are positive
integers, and there are 26 exceptional groups. For the infinite families of types
G(d,1,n) and G(e, e, n), the two cyclic sieving conjectures follow from the results
in [19].

The purpose of the present article is to present a proof of the cyclic sieving
conjectures of Armstrong, and of Bessis and Reiner, for the 26 exceptional types,
thus completing the proof of these conjectures. Since the generalised non-crossing
partitions feature a parameter m, from the outset this is not a finite problem. Con-
sequently, we first need several auxiliary results to reduce the conjectures for each
of the 26 exceptional types to a finite problem. Subsequently, we use Stembridge’s
Maple package coxeter [37] and the GAP package CHEVIE [14,27] to carry out
the remaining finite computations. The details of these computations are provided
in [21]. In the present paper, we content ourselves with exemplifying the necessary
computations by going through some representative cases. It is interesting to observe
that, for the verification of the type Eg case, it is essential to use the decomposition
numbers in the sense of [17,18,20] because, otherwise, the necessary computations
would not be feasible in reasonable time with the currently available computer
facilities. We point out that, for the special case where the aforementioned parameter
m is equal to 1, the first cyclic sieving conjecture has been proven in a uniform



Cyclic Sieving for Generalised Non-crossing Partitions Associated with. . . 211

fashion by Bessis and Reiner in [10]. The crucial result on which this proof is based
is (14) below, and it plays an important role in our reduction of the conjectures for
the 26 exceptional groups to a finite problem. A—non-uniform—proof of cyclic
sieving for non-crossing partitions associated with real reflection groups under the
action of the so-called Kreweras map—a special case of the second cyclic sieving
phenomenon discussed in the present paper—is given by Armstrong, Stump and
Thomas in [4]. Just recently, Rhoades proposed a uniform approach to prove the
first cyclic sieving conjecture for real reflection groups (but for generic m), see [30,
Theorem 3.7].

Our paper is organised as follows. In the next section, we recall the definition
of generalised non-crossing partitions for well-generated complex reflection groups
and of decomposition numbers in the sense of [17, 18, 20], and we review some
basic facts. The first cyclic sieving conjecture is subsequently stated in Sect. 3.
In Sect. 4, we outline an elementary proof that the g-Fu—Catalan number, which
is the polynomial P in the cyclic sieving phenomena concerning the generalised
non-crossing partitions for well-generated complex reflection groups, is always a
polynomial with non-negative integer coefficients, as required by the definition of
cyclic sieving. (Full details can be found in [21, Sect. 4]. The reader is referred to
the first paragraph of Sect.4 for comments on other approaches for establishing
polynomiality with non-negative coefficients.) Section 5 contains the announced
auxiliary results which, for the 26 exceptional types, allow a reduction of the
conjecture to a finite problem. In Sect.6, we discuss a few cases which, in a
representative manner, demonstrate how to perform the remaining case-by-case
verification of the conjecture. For full details, we refer the reader to [21, Sect. 6]. The
second cyclic sieving conjecture is stated in Sect. 7. Section 8 contains the auxiliary
results which, for the 26 exceptional types, allow a reduction of the conjecture
to a finite problem, while in Sect.9 we discuss some representative cases of the
remaining case-by-case verification of the conjecture. Again, for full details we refer
the reader to [21, Sect. 9].

2 Preliminaries

A complex reflection group is a group generated by (complex) reflections in C”.
(Here, a reflection is a non-trivial element of GL,(C) which fixes a hyperplane
pointwise and which has finite order.) We refer to [24] for an in-depth exposition of
the theory complex reflection groups.

Shephard and Todd provided a complete classification of all finite complex
reflection groups in [33] (see also [24, Chap. 8]). According to this classification,
an arbitrary complex reflection group W decomposes into a direct product of irre-
ducible complex reflection groups, acting on mutually orthogonal subspaces of the
complex vector space on which W is acting. Moreover, the list of irreducible com-
plex reflection groups consists of the infinite family of groups G(m, p,n), where
m, p,n are positive integers, and 34 exceptional groups, denoted Gy, Gs, ..., G37
by Shephard and Todd.
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In this paper, we are only interested in finite complex reflection groups which
are well-generated. A complex reflection group of rank # is called well-generated it
it is generated by n reflections.! Well-generation can be equivalently characterised
by a duality property due to Orlik and Solomon [28]. Namely, a complex reflection
group of rank n has two sets of distinguished integers d; < d, < --- < d,, and
df >dy >--->dY, called its degrees and codegrees, respectively (see [24, p. 51
and Definition 10.27]). Orlik and Solomon observed, using case-by-case checking,
that an irreducible complex reflection group W of rank n is well-generated if and
only if its degrees and codegrees satisfy

di +d* = d,

forall i = 1,2,...,n. The reader is referred to [24, Appendix D.2] for a table
of the degrees and codegrees of all irreducible complex reflection groups. Together
with the classification of Shephard and Todd [33], this constitutes a classification of
well-generated complex reflection groups: the irreducible well-generated complex
reflection groups are

— The two infinite families G(d, 1,n) and G(e,e,n), where d,e,n are positive
integers,

— The exceptional groups G4, Gs, Gg, Gs, Go, G9, G14, G16, G17, G13, G2, Go1 of
rank 2,

— The exceptional groups Go3 = H3, G, Gas, Gog, Go7 of rank 3,

— The exceptional groups Gog = Fy, Ga9, G3g = Hy, G3; of rank 4,

— The exceptional group G33 of rank 5,

— The exceptional groups G4, G35 = E¢ of rank 6,

— The exceptional group Gz¢ = E7 of rank 7,

— And the exceptional group G3; = Eg of rank 8.

In this list, we have made visible the groups H3, F4, Hy, E¢, E7, E3 which appear
as exceptional groups in the classification of all irreducible real reflection groups
(cf. [16]).

Let W be a well-generated complex reflection group of rank n, and let 7 € W
denote the set of all (complex) reflections in the group. Let {7 : W — Z denote the
word length in terms of the generators 7. This word length is called absolute length
or reflection length. Furthermore, we define a partial order <r on W by

u<rw ifandonlyif £r(w)=Lr(u)+ Lr@u'w). (1)

This partial order is called absolute order or reflection order. As is well-known and
easy to see, the equation in (1) is equivalent to the statement that every shortest
representation of u by reflections occurs as an initial segment in some shortest
product representation of w by reflections.

'We refer to [24, Definition 1.29] for the precise definition of “rank.” Roughly speaking, the rank
of a complex reflection group W is the minimal n such that W can be realized as reflection group
on C".
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Now fix a (generalised) Coxeter element’ ¢ € W and a positive integer m. The
m-divisible non-crossing partitions NC" (W) are defined as the set

NC"(W) = {(Wo: Wi, ..., Wn) I Wowi -+ Wy, = ¢ and

£r(wo) + Lr(wi) + -+ + Lr(ww) = Lr(0)}.
A partial order is defined on this set by
woswi, .o, wy) < (uosuy,...,uy,) ifandonlyif u; <pw;forl <i <m.

We have suppressed the dependence on ¢, since we understand this definition up to
isomorphism of posets. To be more precise, it can be shown that any two Coxeter
elements are related to each other by conjugation and (possibly) an automorphism
on the field of complex numbers (see [34, Theorem 4.2] or [24, Corollary 11.25]),
and hence the resulting posets NC" (W) are isomorphic to each other. If m = 1,
then NC' (W) can be identified with the set NC(W) of non-crossing partitions for
the (complex) reflection group W as defined by Bessis and Corran (cf. [9] and [8,
Sect. 13]; their definition extends the earlier definition by Bessis [7] and Brady and
Watt [11] for real reflection groups).

The following result has been proved by a collaborative effort of several authors
(see [8, Proposition 13.1]).

Theorem 1. Let W be an irreducible well-generated complex reflection group, and
letdy <dy <---<d, beits degrees and h := d,, its Coxeter number. Then

n

INC" (W) =T ]

i=1

mh + d,‘

_ 2
i (2

Remark 1. (1) The number in (2) is called the Fufi—Catalan number for the
reflection group W.

(2) If ¢ is a Coxeter element of a well-generated complex reflection group W of
rank 7, then £7(c) = n. (This follows from [8, Sect. 7].)

2An element of an irreducible well-generated complex reflection group W of rank # is called a
Coxeter element if it is regular in the sense of Springer [34] (see also [24, Definition 11.21]) and
of order d,,. An element of W is called regular if it has an eigenvector which lies in no reflecting
hyperplane of a reflection of W. It follows from an observation of Lehrer and Springer, proved
uniformly by Lehrer and Michel [23] (see [24, Theorem 11.28]), that there is always a regular
element of order d, in an irreducible well-generated complex reflection group W of rank n. More
generally, if a well-generated complex reflection group W decomposes as W = W) xW, X - -X W,
where the W;’s are irreducible, then a Coxeter element of W is an element of the form ¢ =
cicy -+ ¢k, where ¢; is a Coxeter element of W;,i = 1,2,..., k. If W is a real reflection group,
that is, if all generators in 7" have order 2, then the notion of generalised Coxeter element given
above reduces to that of a Coxeter element in the classical sense (cf. [16, Sect. 3.16]).
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We conclude this section by recalling the definition of decomposition numbers
from [17, 18,20]. Although we need them here only for (very small) real reflection
groups, and although, strictly speaking, they have been only defined for real
reflection groups in [17, 18, 20], this definition can be extended to well-generated
complex reflection groups without any extra effort, which we do now.

Given a well-generated complex reflection group W of rank n, types
T\, T5,...,T; (in the sense of the classification of well-generated complex
reflection groups) such that the sum of the ranks of the 7;’s equals n, and a
Coxeter element ¢, the decomposition number Ny (T1,T5,...,T,) is defined as
the number of “minimal” factorisations ¢ = cjc;---cg, “minimal” meaning that
Lr(c1) +Lr(ca) + -+ Lr(cqg) = Lr(c) = n, such that, fori = 1,2,...,d, the
type of ¢; as a parabolic Coxeter element is 7;. (Here, the term “parabolic Coxeter
element” means a Coxeter element in some parabolic subgroup. It follows from
[31, Proposition 6.3] that any element ¢; is indeed a Coxeter element in a unique
parabolic subgroup of W .3 By definition, the type of ¢; is the type of this parabolic
subgroup.) Since any two Coxeter elements are related to each other by conjugation
plus field automorphism, the decomposition numbers are independent of the choice
of the Coxeter element c.

The decomposition numbers for real reflection groups have been computed in
[17,18,20]. To compute the decomposition numbers for well-generated complex
reflection groups is a task that remains to be done.

3 Cyclic Sieving 1

In this section we present the first cyclic sieving conjecture due to Armstrong [3,
Conjecture 5.4.7], and to Bessis and Reiner [10, Conjecture 6.4].
Let ¢ : NC" (W) — NC" (W) be the map defined by

1

Woswi, ..., wy) ((cwmc_l)wo(cwmc_l)_ sewme L wi,wa, . ,wm_l).

3)

It is indeed not difficult to see that, if the (m 4+ 1)-tuple on the left-hand side is an
element of NC™ (W), then so is the (m + 1)-tuple on the right-hand side. Form = 1,
this action reduces to conjugation by the Coxeter element ¢ (applied to w;). Cyclic
sieving arising from conjugation by ¢ has been the subject of [10].

3The uniqueness can be argued as follows: suppose that ¢; were a Coxeter element in two parabolic
subgroups of W, say U; and U,. Then it must also be a Coxeter element in the intersection U; N U,.
On the other hand, the absolute length of a Coxeter element of a complex reflection group U is
always equal to tk(U), the rank of U. (This follows from the fact that, for each element u of U,
we have {7 (u) = codim(ker(u — id)), with id denoting the identity element in U; see e.g. [31,
Proposition 1.3]). We conclude that £7(c;) = tk(U;) = tk(U,) = tk(U; N U,), This implies that
U 1 = U2.
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It is easy to see that ¢”" acts as the identity, where / is the Coxeter number of
W (see (10) and Lemma 6 below). By slight abuse of notation, let C; be the cyclic
group of order mh generated by ¢. (The slight abuse consists in the fact that we
insist on C; to be a cyclic group of order mh, while it may happen that the order of
the action of ¢ given in (3) is actually a proper divisor of mh.)

Given these definitions, we are now in the position to state the first cyclic sieving
conjecture of Armstrong, respectively of Bessis and Reiner. By the results of [19]
and of this paper, it becomes the following theorem.

Theorem 2. For an irreducible well-generated complex reflection group W and
any m > 1, the triple (NC"(W),Cat™(W;q),Cy), where Cat™(Wq) is the
q-analogue of the Fuf;—Catalan number defined by

Cat"(W;q) = l_[ mh + dily

T il 4
% @

i=1

exhibits the cyclic sieving phenomenon in the sense of Reiner, Stanton and White
[29]. Here, n is the rank of W, dy, ds, . . ., d, are the degrees of W, h is the Coxeter
number of W, and [o], := (1 —q*)/(1 —q).

Remark 2. We write Cat™ (W) for Cat™ (W; 1).

By definition of the cyclic sieving phenomenon, we have to prove that
Cat™(W;q) is a polynomial in ¢ with non-negative integer coefficients, and that

| FixNC’”(W) (¢p)| = Catm(W; q)’q:eZUip/mhv (5)

for all p in the range 0 < p < mh. The first fact is established in the next section,
while the proof of the second is achieved by making use of several auxiliary results,
given in Sect.5, to reduce the proof to a finite problem, and a subsequent case-
by-case analysis. All details of this analysis can be found in [21, Sect.6]. In the
present paper, we content ourselves with discussing the cases where W = G4 and
where W = G37; = Es, since these suffice to convey the flavour of the necessary
computations.

4 The g-Fusz—Catalan Numbers Cat™ (W ; q)

The purpose of this section is to provide an elementary and (essentially) self-
contained proof of the fact that, for all irreducible complex reflection groups W, the
q-FuB—Catalan number Cat™ (W; g) is a polynomial in ¢ with non-negative integer
coefficients. For most of the groups, this is a known property. However, aside from
the fact that, for many of the known cases, the proof is very indirect and uses deep
algebraic results on rational Cherednik algebras, there still remained some cases
where this property had not been formally established. The reader is referred to the
Theorem in Sect. 1.6 of [15], which says that, under the assumption of a certain rank
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condition [15, Hypothesis 2.4], the ¢g-FuB—Catalan number Cat™ (W; gq) is a Hilbert
series of a finite-dimensional quotient of the ring of invariants of W and also the
graded character of a finite-dimensional irreducible representation of a spherical
rational Cherednik algebra associated with W. At present, this rank condition has
been proven for all irreducible well-generated complex reflection groups apart from
G17,Gig, Gyo, G33, G3g; see [25, Tables 8 and 9, column “rank™] and the recent
paper [26], which establishes the result in the case of G3;.

In the sequel, aside from the standard notation [o], = (1 —¢%)/(1 — gq) for
q-integers, we shall also use the g-binomial coefficient, which is defined by

m | {1’ ifk =0,
k q K, k=11, ifk > 0.

We begin with several auxiliary results. The first of these (Proposition 1) is well-
known (and follows, for example, from [1, Egs.(3.3.3) and (3.3.4)], or from [1,
Theorem 3.1]). The second (Proposition 2) follows by replacing n by mn + 1 and
j by n in Theorem 2 of [2].

Proposition 1. For all non-negative integers n and k, the q-binomial coefficient
(%1, is a polynomial in g with non-negative integer coefficients.

Proposition 2. For all non-negative integers m and n, the q-Fufs—Catalan number
of type Ay,

1 |:(m + n + 1:|
[(m + Dn + 1], n . ’

is a polynomial in g with non-negative integer coefficients.

The purpose of the next lemma is to lay the basis for the proof of the positivity
of coefficients in the polynomial in Corollary 1.

Lemma 1. [fa and b are coprime positive integers, then

lab],
[aly [D]y

is a polynomial in q of degree (a — 1)(b — 1), all of whose coefficients are in
{0, 1, —1}. Moreover, if one disregards the coefficients which are 0, then +1’s and
(—1)’s alternate, and the constant coefficient as well as the leading coefficient of the
polynomial equal +1.

(6)

Proof. Let @,(q) denote the n-th cyclotomic polynomial in ¢g. Using the classical
formula

1—q" = l—[%@),

dln
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we see that
(1—q)(1—q*")
— = Daa,(q),
1= g%)(1 = g? 1_[ 142
(1—=¢g*)(1—-q°) il di£1
dala, dy#1

so that, manifestly, the expression in (6) is a polynomial in g. The claim concerning
the degree of this polynomial is obvious.

In order to establish the claim on the coefficients, we start with a sub-expression
of (6),

(1—q“?) (b_l m) ( C jb) - k
- T = = Ciq”, 7
=g =g ~ (21 ,Zzoq ;; “ "

say. The assumption that ¢ and b are coprime implies that 0 < C; < 1 for k <
(a — 1)(b — 1). Multiplying both sides of (7) by 1 — g, we obtain the equation

[ab] (a—1)(b—1) 00
[a] [Z] =(1-9q) Z quk +(1—¢q) Z quk' ®)
q 1Olq pard

k=(a—1)(h—1)+1

By our previous observation on the coefficients Cy with k < (a — 1)(b — 1), it is
obvious that the coefficients of the first expression on the right-hand side of (8) are
alternately +1 and —1, when 0’s are disregarded. Since we already know that the
left-hand side is a polynomial in ¢ of degree (¢ — 1)(b — 1), we may ignore the
second expression.

The proof is concluded by observing that the claims on the constant and leading
coefficients are obvious. O

Corollary 1. Let a and b be coprime positive integers, and let y be an integer with
y > (a — 1)(b — 1). Then the expression

[ylq lab]y
[a]q [b]q

is a polynomial in g with non-negative integer coefficients.

Proof. Let

[ab]q (a=1)(b—1) .
= Dirq”.
lal, 1B], ; K

We then have

(a—1)(b—1)+y—1 N

[)’]q [ab]q_ N
e, - 2= 2 D ®

N=0 k=max{0,N—y+1}
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If N < y — 1, then, by Lemma 1, the sum over k on the right-hand side of (9)
equals1 —1+1—1 4 .-+, which is manifestly non-negative. On the other hand, if
N > y — 1, then we may rewrite the sum over k on the right-hand side of (9) as

N (@=1)(b—1) (@=1)(b—1)+y—1—N
Z Dy = Z Dy = Z D a—1yp-1)—k-
k=max{O,N—y+1} k=N—y+1 k=0

Again, by Lemma 1, this sumequals 1 — 1 + 1 —1 4 ---, which is manifestly non-
negative. O

The next lemma collects positivity results for coefficients in polynomials given
by rational function expressions of special form.

Lemma 2. Let o and B be positive integers. The following expressions are polyno-
mials in g with non-negative integer coefficients:

[72],13], (4] )
(a) (o], [Blys m foroa > 6and f > 8;

[15], [72],[3],14] .
(b) o], [Bls [3]q[5q]q m fora >=26and 8 > 8,

(c) [olys [Blys mttle for o > 18 and B = 3;

151,161, 1914
[90] 3],
(d) le], [Bly BT [g] oL fora = 20and B > 18;
[15] [12] 3 )
(e) [y gy, o, Jore = 26
[1s],  [6l;3

) ey grey ety forez 14
() lel, [B] UL 30 and > 20;

7> [, 6], [7],
[105]
(h) [, [B, B, f7] foro > 24 and B > 68;
[70],

(i) [O{] [IB]q [2] B, [7] fOVO[ > 24 and,B > 34;

. [30] [2] [3] [5]
() ledg2 [Blys W fora >4andf > 2;

[14], 130}, 21, 31,15 .
(k) [l 1Blys prr i, Jore = 14and =2,

[35], [30]4[2],3]4(5] )
(D) e, [Bly [S]q[;]q [6]2[1(;]],,[1‘]5]/ foro > 32and B > 12;

[60], (21, [3],15]
(m) ol [Blys W fora>16and B > 2;

(351, _ l60], (2], B3], 5] .
(n) [o), (B2 B0t oo, f,. Jor e = S6and B> 4,

(14], [60],(2],[3],(5] .
(0) [a] [lg]q [2]‘1[7111‘1 [lofq[lg]q[‘iS]: fOrot > 38 andﬁ > 2,

[126],[3]

(p) e, [Bl, [6]q[7j’ [gf fora > 30and B > 26;
[252],13]

(q) [a]q [lg]q3 [7]4[9]1[12‘7]‘1 fora > 66 and B > 54;

[140],[2]
(r) [, Bl @y, fore = 54.and B > 34.
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Proof. All these assertions have a very similar flavour, and so do their proofs.
In order to avoid repetition, proof details are only provided for items (a) and (j);
the proofs of items (b)—(i) and (p)—(r) follow the pattern exhibited in the proof of
item (a), while the proofs of items (k)—(o) follow that of the proof of item (j). Full
details are found in [21, Sect. 4].

In order to establish item (a), we start with the factorisation

[72], 3], [4,

(81, [9], [12],
==+ =g+ ™0 —g* + ¥ — g2+ ¢ — g2+ ¢* — ¢+ ¢).
It should be observed that both factors on the right-hand side have the property that
coefficients are in {0, 1, —1} and that (41)’s and (—1)’s alternate, if one disregards
the coefficients which are 0. If we now apply the same idea as in the proof of
Corollary 1, then we see that [a],s times the first factor is a polynomial in g with
non-negative integer coefficients, as is [],+ times the second factor. Taken together,

this establishes the claim.
Now we turn to item (j). We have

301, (2], [3], [5],

=1+q9-¢—4¢' ¢ +q" +4"
[6], [10], [15],

If we multiply this expression by [«],2, then, for @ = 4 we obtain
14 g+—q5—q® +q2+q" + 4",
for ¢ = 5 we obtain
14 g+ - +q8—q" + g%+ 4% + 4",
and, for ¢ > 6, we obtain
144+ =5+ a5 +q" 4 pi(q) + ¢ 4 g2 2 —ga+l  gratt | g2uk5 4 joak6
where p;(q) is a polynomial in g with non-negative coefficients of order at least 11

and degree at most 2 — 5. In all cases it is obvious that the product of the result and
[Blys, with B > 2, is a polynomial in ¢ with non-negative coefficients. O

We are now ready for the proof of the main result of this section.

Theorem 3. For all irreducible well-generated complex reflection groups and
positive integers m, the q-Fuf3—Catalan number Cat™ (W ;q) is a polynomial in ¢
with non-negative integer coefficients.
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Proof. First,let W = A, . In this case, the degrees are 2, 3,...,n + 1, and hence

megoon_ L T+l
Cat™(A,;q) = [(m + Dn + 1],1 |: n i|q ’

which, by Proposition 2, is a polynomial in g with non-negative integer coefficients.
Next, let W = G(d, 1, n). In this case, the degrees are d,2d, ..., nd, and hence

Cat"(G(d,1,n);q) = [(m * Un} ,
n d
q
which, by Proposition 1, is a polynomial in g with non-negative integer coefficients.
Now, let W = G(e, e, n). In this case, the degrees are ¢, 2e, ..., (n — 1)e, n, and
hence

Cat"(G(e,e,n);q) =

[m(n — 1)e +n, l—[ [m(n —1)e + ie],

i=l1 le]q

_ |:(m +1)(n— 1):| + el |:(m +1)(n — 1):| ’
q° q°

n—1 n

which, by Proposition 1, is a polynomial in ¢ with non-negative integer coefficients.

It remains to verify the claim for the exceptional groups.

For the groups W = Gg, Go, G4, G17, G21, and partially for the groups W =
G, Gaz, Gag, G3o, G33, G35, G3g, G37 (depending on congruence properties of the
parameter m), polynomiality and non-negativity of coefficients of the corresponding
q-Fufl—Catalan number can be directly read off by a proper rearrangement of the
terms in the defining expression; for example, for W = G,; (with degrees given by
12, 60) we have

[60m + 12], [60m + 60],

Cat"(Ga:q) = [12], [60],

= [5m + l]qlz [m + 1]qeo,

which is manifestly a polynomial in ¢ with non-negative integer coefficients.

For the groups Gs, G1o, G13, G26, G27, G29, G34, the terms in the defining expres-
sion of the corresponding g-Fu3—Catalan number can be arranged in a manner
so that a g-binomial coefficient appears; polynomiality and non-negativity of
coefficients then follow from Proposition 1. For example, for W = Gj4 (with
degrees given by 6, 12, 18, 24, 30, 42) we have

Cat"(G34:9)

_[42m + 6], [42m + 12], [42m + 18], [42m + 24], [42m + 30], [42m + 42],
B (6], [12], [18]4 [24], [30], [42]4

7m—|—5]
5 qﬁ’

— -+ 1l |
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which, written in this form, is obviously a polynomial in ¢ with non-negative integer
coefficients.

On the other hand, for the groups G4, Gg, Gi6, G2s, G32, the terms in the defining
expression of the corresponding g-Fuf8—Catalan number can be arranged in a manner
so that a g-Fuff—Catalan number of type A appears and Proposition 2 applies; for
example, for W = G3, (with degrees given by 12, 18, 24, 30) we have

[30m + 12], [30m + 18], [30m + 24], [30m + 30],
[12], [18]q [24]4 [30]4

_ 1 [Sm + 6i|
[5m + 6]q6 5 46 ’

which indeed fits into the framework of Proposition 2 and, hence, is a polynomial
in g with non-negative integer coefficients.

In the other cases, the more “specialised” auxiliary results given in Corollary 1
and Lemma 2 have to be applied. For the sake of illustration, and in order for the
reader to get a feeling for the utility of Corollary 1 and the 18 assertions in Lemma 2,
we exhibit one example of application for each of them below, with full details being
provided in [21, Sect. 4]. In general, the idea is that, given a rational expression
consisting of cyclotomic factors, as in the definition of the g-Fu8—Catalan numbers,
one tries to place denominator factors below appropriate numerator factors so that
one can divide out the denominator factor completely. For example, if we were to
encounter the expression

Cat™ (G32; q) =

[30m + 12], - (other terms)
[12], - (other terms)

and know that m is even, then we would simplify this to

(2] . (other terms)
2 Ign2

(other terms)’

where [5’"—2“],112 is manifestly a polynomial in ¢ with non-negative integer coeffi-
cients. On the other hand, in a situation where two denominator factors “want” to
divide a single numerator factor, we “extract” as much as we can from the numerator
factor and compensate by additional “fudge” factors. To be more concrete, if we
encounter the expression

[14m + 14], - (other terms)
[6], [14], - (other terms)

and we know that m = 2 (mod 3), then we would try the rewriting

[21],2 (other terms)

5 3142 [7],2 [2]

3

, (other terms)’



222 C. Krattenthaler and T.W. Miiller

with the idea that we might find somewhere else a term [2c],, which could be
combined with the term [2]; in the denominator into [2a],/[2]; = [a],>, and then
apply Corollary 1 to see that

o] [21],2
alp——r—

3] 2 [7](12

is a polynomial in ¢ with non-negative integer coefficients (provided « is at least
12), with ["’T”Ll]q42 being such a polynomial in any case.

In situations where three denominator factors “want” to divide a single numerator
factor, one has to perform more complicated rearrangements, in order to be able to
apply one of the assertions from Lemma 2.

For example, for W = G4, the degrees are 4, 6, 14, and hence

[14m + 4], [14m + 6], [14m + 14],
[4], [6]4 [14], '

Cat"(Ga; q) =

We have

[MT’" + 1]q6 [m + 1]q14 s if m = 0 (mod 6),
[7552] 0 [752] o Tm + 1 if m =1 (mod 6),
[+ 10 Tm 4312 [25] o g i =2 (mod )
7m+ 22 (2 + 1,0 [25] ot

2520y gl [+ 3l b+l = 4 od
21 2

[Tm + 2],12 [7m2+3]q4 [mT_H]q“Z Bl207],2°

Cat"™ (G q) =
at™ (G q) if m = 3 (mod 6),

if m = 5 (mod 6),

which, by Corollary 1, are polynomials in ¢ with non-negative integer coefficients
in all cases.
For W = G3p = Hy, the degrees are 2, 12, 20, 30, and hence

[30m + 2], [30m + 12], [30m + 20], [30m + 30],

Cal”(Hy ) = 2], [12], [20], [30],

If m is odd, then we may write

[30],2 [2],2 3], [5],2
@ 6]y [10],2 [15],2

Cat" (Hy; q) = [B24E] , [5m + 2),0 [3m + 2] 0 2]

which, by Lemma 2.(j), is a polynomial in ¢ with non-negative integer coeffi-
cients.
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For W = G35 = Eg, the degrees are 2, 5,6, 8,9, 12, and hence

[12m + 2]y [12m + 5] [12m + 6y [12m + 8]y [12m + 9] [12m + 124
[2]q [51q (6] [8]¢ [91q [12]4

Cat"(Eg:q) =

If m = 5 (mod 30), then we have

Cat" (Egiq) = [6m + 1]2[ P55 ] s[2m + 1]6

[72], 3], [4],

B+ 2pldm + 3] [28] g

which, by Lemma 2.(a), is a polynomial in g with non-negative integer coefficients.
If m = 7 (mod 30), then we have

Cat" (Ee:q) = [#5] u[12m + 5], [#53H] o

[6],+

90
[ ] 13 ] 4 ]q [3m +2]q4[4m +3]q3[ LMW’
q* LPlg*

* 5], 161, 19,

which, by Corollary 1 and Lemma 2.(c), is a polynomial in ¢ with non-negative
integer coefficients.
If m = 8 (mod 30), then we have

Cat"(Eg: q) = [6m + 1],2[12m + 5], [2m + 1]616[%]q8

[12],:
Bl

15
% [4m5+3]q15 [3[]q [];1] [ 1]

which, by Lemma 2.(e), is a polynomial in g with non-negative integer coefficients.
If m = 13 (mod 30), then we have

(61,5
" 121,531,

[15]q[ 1] (6],
4" [3], [5], 2], Bl

Cat"(Es; q) = [6m + 1] 2[12m + 5], [2m+1]

X [3m + 2] 4 [25]
which, by Lemma 2.(f), is a polynomial in ¢ with non-negative integer coefficients.

If m = 22 (mod 30), then we have

[90],[3],
" [5], 161491,

Cat" (Ee: q) = [6m + 1],2[12m + 5], [ 24 ]

X [3m+2] s[4m + 3] 3[m + 1],
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which, by Lemma 2.(d), is a polynomial in ¢ with non-negative integer coefficients.
If m = 23 (mod 30), then we have

Cat™(Ee;q) = [6m + 1],2[12m + 5],[2m + 1] 6

kg 02,03, 14
Bl B, " ¢ s, P, 02,

x [3m + 2],4[#53]

which, by Lemma 2.(b), is a polynomial in ¢ with non-negative integer coefficients.
For W = G3¢ = E7, the degrees are 2, 6, 8, 10, 12, 14, 18, and hence

[18m + 2], [18m + 6], [18m + 8], [18m + 10],
2], [6]4 [8]4 [10]4

| [18m + 12], [18m + 14], [18m + 18],
(12], [14], [18]4

Cat"(E7;q) =

If m = 18 (mod 140), then we have
[15],2
3], 5,2

841, [2],2
4,2 [6],2 [7),2

Cat" (Ey:q) = [9m + 1],2[ 254 ]

x [2552] L 19m + 5] [ Y532 ] [9m + 7] 2[m + 1] s,

which, by Corollary 1 and Lemma 2.(g), is a polynomial in ¢ with non-negative
integer coefficients.
If m = 23 (mod 140), then we have

[105]qz
' [3]q2 [S]qz [7]112

Cat"(E;;q) = [9'"+1]qg[3";5+1] [9m + 4] 2[9m + 5] 2

[6] 6

X [3m +2],6[9m + 7] [ 25 ]q%m

which, by Corollary 1 and Lemma 2.(h), is a polynomial in g with non-negative
integer coefficients.
If m = 54 (mod 140), then we have

[70],12

Cat"(Er:q) = [9m + 1 [3m + o [P35 | s
q*121g2 1M 1g?

[9m + S]qz

. [6],4
<o Tl
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If one decomposes [9m + 7], as [97’" + 4]4 + q2[97m + 3],+, then one sees that,
by Corollary 1 and Lemma 2.(i), this is a polynomial in ¢ with non-negative integer
coefficients.

For W = G37 = Eg, the degrees are 2, 8, 12, 14, 18, 20, 24, 30, and hence

[30m + 2], [30m + 8], [30m + 12], [30m + 14],
214 (84 [12]4 [14]4
. [30m + 18], [30m + 20], [30m + 24], [30m + 30]
[18]q [20], [24]4 [30]4

Cat"(E7;q) =

If m = 3 (mod 84), then we have
[6]q6
€ 246 3]0

[60]q2 [2]q2 [3]q2 [S]qz
@ 110],2 [12],2 15,2

Catm(Eg;q) — I:15)1;+1:|(]4[15}7;-{—4][]14 [5m + 2]q6[1572+7]q8[5m6+3]

X [3m + 2] u0[5m + 4] o[ 2]

which, by Corollary 1 and Lemma 2.(m), is a polynomial in ¢ with non-negative
integer coefficients.
If m = 8 (mod 84), then we have

[126],2[3],
> [6] 2[7] 2[9] 2

[15m + 7] [Sm + 3] [3m+2]q20[5m4+4] 24[m + 1] 30,

Cat"(Ex; ) = [15m + 1] [ 12552], [52]

which, by Lemma 2.(p), is a polynomial in ¢ with non-negative integer coefficients.
If m = 11 (mod 84), then we have

]q“ [15m + 4]42[5m3+2]q18 [ 15’1}1+7]q8[5m2+3]q12

[60],2 [2],2 [3],2 [5],2
*10],2 [12],2 [15],2

Catm(Eg,q) — [1511;4-1

” [35],2 m
Pl g B el

which, by Corollary 1 and Lemma 2.(n), is a polynomial in g with non-negative
integer coefficients.
If m = 16 (mod 84), then we have

Cat" (Es; q) = [15m + 1], [15m+4]qg[5m2+2]412[15m + 71,2[5m + 3] 6

\ [ . 252],2 3],
71,2 91,2 [12],

ol R e vl

m + 1]q30,

which, by Lemma 2.(q), is a polynomial in ¢ with non-negative integer coefficients.
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If m = 18 (mod 84), then we have

Cat"(Es:q) = [15m + 1[5 ] [252] Ll15m + 7)o [252] s

[3m +2 [140],2(2],2

Sm+4
78 ]qzso [4](12 [7]q2[10]q2 [ 5 ]qlz[m + 1](]30’

which, by Lemma 2.(r), is a polynomial in ¢ with non-negative integer coefficients.
If m = 21 (mod 84), then we have
[14],2
12,2 7],
[30],2[2],2[3] 2[5] 2
[6],2[10],2[15] 2 '

[5m+3]

72

Cat" (Eg; q) = [”m“] s[15m + 4] 2[5m + 2] o[ 225 .

5 [12]46
[3]46 [4]4

[3m + 2]q10[5m + 4]q6 [mT—H]qeo

which, by Corollary 1 and Lemma 2.(k), is a polynomial in g with non-negative
integer coefficients.
If m = 25 (mod 84), then we have

Cat™(Eg; q) = [M] s[15m + 4] 2[5m + 2] ;o[ 22 7]q4[5mf4+3]qz4

sua] | o] [30],2[2],2 (31,2 [5),
¢ 2 40 6] 2[10],2[15],2

[3m+2] [35],2
7S] 7], R

which, by Lemma 2.(1), is a polynomial in g with non-negative integer coefficients.
If m = 27 (mod 84), then we have

[14],2
2] [7] 2

Car" (B ) = [B352] ptl(15m 4l + 2,257 [ 2],

[6]116

8 [60]q2 [2]q2 [3](12 [S]qz
2146 3146

[10],2 [12],2 [15],»

[3m + Z]ql() [5m + 4]q6[m2—1]q120

which, by Corollary 1 and Lemma 2.(0), is a polynomial in g with non-negative
integer coefficients.
All other cases are disposed of in a similar fashion. O

S Auxiliary Results I

This section collects several auxiliary results which allow us to reduce the problem
of proving Theorem 2, or the equivalent statement (5), for the 26 exceptional groups
listed in Sect. 2 to a finite problem. While Lemmas 4 and 5 cover special choices of
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the parameters, Lemmas 3 and 7 afford an inductive procedure. More precisely, if
we assume that we have already verified Theorem 2 for all groups of smaller rank,
then Lemmas 3 and 7, together with Lemmas 4 and 8, reduce the verification of
Theorem 2 for the group that we are currently considering to a finite problem; see
Remark 3. The final lemma of this section, Lemma 9, disposes of complex reflection
groups with a special property satisfied by their degrees.

Let p =am + b,0 < b < m. We have

" (Wos Wi . ... wm))

— (*;Ca+1Wm_b+1C_u_1,Ca+l

Winpt2e o e e

a

.a — ,a —a
cwieT L WY,

(10)

where * stands for the element of W which is needed to complete the product of the
components to ¢.

Lemma 3. [t suffices to check (5) for p a divisor of mh. More precisely, let p be a
divisor of mh, and let k be another positive integer with gcd(k,mh/p) = 1, then
we have

Catm(W’q)| Catm(W;q)|q:elnikp/mh (11)

q:elnip/mh =
and

| Fixnenwy (¢7)] = | Fixnenwy (¢*7)]. (12)
Proof. For (11), this follows immediately from

limﬁz % ife=B8=0 (modd), (13)
a—t [Blg 1 otherwise,

where ¢ is a primitive d-th root of unity and «, § are non-negative integers such that
a=pf (mod d).

In order to establish (12), suppose that x € Fixyenw)(¢?), thatis, x € NC"(W)
and ¢?(x) = x. It obviously follows that ¢*7(x) = x, so that x € Fixyen ) (¢*7).
To establish the converse, note that, if gcd(k, mh/p) = 1, then there exists k' with
k'k = 1 (mod ’"Tfl). It follows that, if x € Fixycmw) (¢*P), that is, if x € NC™(W)

and ¢*7 (x) = x, then x = ¢¥'*7(x) = $”(x), whence x € Fixyen ) (p?). O
Lemma 4. Let p be a divisor of mh. If p is divisible by m, then (5) is true.
Proof. According to (10), the action of ¢# on NC™ (W) is described by

7 ((wos Wi, ..o wm)) = (% Py emPim c”/’”wmc_]’/’").
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Hence, if (wg;wy,...,wy,) is fixed by ¢?, then each individual w; must be fixed
under conjugation by ¢?/".
Using the notation W’ = Centy (c?/™), the previous observation means

that w; € W', i = 1,2,...,m. Springer [34, Theorem 4.2] (see also [24,
Theorem 11.24(iii)]) proved that W’ is a well-generated complex reflection group
whose degrees coincide with those degrees of W that are divisible by m#h/ p. It was
furthermore shown in [10, Lemma 3.3] that

NC(W)NW' = NC(W'). (14)

Hence, the tuples (wo;wi,...,wy) fixed by ¢? are in fact identical with the
elements of NC™ (W'), which implies that

| Fixyen o) (¢7)] = INC™(W')]. 15)

Application of Theorem 1 with W replaced by W' and of the “limit rule” (13) then
yields that

h+d;

e = ] mh+ di

I<i<n '

%W;‘

= Cat"(W:q)| (16)

q:eZm'p/mh .
1

Combining (15) and (16), we obtain (5). This finishes the proof of the lemma. 0O
Lemma 5. Equation (5) holds for all divisors p of m.
Proof. Using (13) and the fact that the degrees of irreducible well-generated

complex reflection groups satisfy d; < h for all i < n, we see that

1 ifm=
Cat”(W:q)| mad mm=p,

—p2nip/mh = .

g=e? 1 ifm # p.
On the other hand, if (wo; wy,...,wy,) is fixed by ¢?, then, because of the action
(10), we must have wi = Wyt = - = Wy—pq1 and Wi = CWy—ppic L

In particular, w; € Centy (c). By the theorem of Springer cited in the proof of
Lemma 4, the subgroup Centyy (c) is itself a complex reflection group whose degrees
are those degrees of W that are divisible by /. The only such degree is # itself,
hence Centy (c) is the cyclic group generated by c¢. Moreover, by (14), we obtain
that w; = ¢, the identity element of W, or w; = c. Therefore, for m = p the
set Fixycm(w)(¢?) consists of the m + 1 elements (wo; wy, ..., w,,) obtained by
choosing w; = ¢ for a particular i between 0 and m, all other w;’s being equal to ¢,
while, for m # p, we have

Fixyerny (@) = {(c:e,... . €)},

whence the result. O



Cyclic Sieving for Generalised Non-crossing Partitions Associated with. . . 229

Lemma 6. Let W be an irreducible well-generated complex reflection group all of
whose degrees are divisible by d. Then each element of W is fixed under conjugation
by chld.

Proof. By the theorem of Springer cited in the proof of Lemma 4, the subgroup
W' = Centy (c"/?) is itself a complex reflection group whose degrees are those
degrees of W that are divisible by d. Thus, by our assumption, the degrees of
W’ coincide with the degrees of W, and hence W' must be equal to W. Phrased

differently, each element of W is fixed under conjugation by ¢"/?, as claimed. O

Lemma 7. Let W be an irreducible well-generated complex reflection group of
rank n, and let p = myhy be a divisor of mh, where m = mym, and h = hih,.
Without loss of generality, we assume that gcd(hy, m,) = 1. Suppose that Theorem 2
has already been verified for all irreducible well-generated complex reflection
groups with rank < n. If hy does not divide all degrees d;, then Eq. (5) is satisfied.

Proof. Letus write hy =amj + b, with 0 < b < mj. The condition gcd(hy, my) =1
translates into gcd(b, m;) = 1. From (10), we infer that

7 ((Wos wi, ... wm))

— (*; Ca+le—m1b+lc_a_ls Ca+le—m1b+2C_a_ls o C,a+lwmc—a—l,
cwicT L Wi pe ).
A7)
Supposing that (wo; wi, ..., wy,) is fixed by ¢”, we obtain the system of equations
w; = c“+1wi+m_mlbc_“_l, i=1,2,...,mb,
wi = cWimpe ™, i=mb+1,mb+2,...,m,
which, after iteration, implies in particular that
w; = Pt DHem—bay, —blath—m=ba _ by o=hi 10 g
It is at this point where we need gcd(bh,m;) = 1. The last equation shows that
each w;, i = 1,2,...,m, and thus also wy, lies in Centy (c’”). By the theorem of

Springer cited in the proof of Lemma 4, this centraliser subgroup is itself a complex
reflection group, W' say, whose degrees are those degrees of W that are divisible
by h/h; = hy. Since, by assumption, /1, does not divide all degrees, W' has rank
strictly less than n. Again by assumption, we know that Theorem 2 is true for W',
so that in particular,

I FiXNCm(W’) (¢]7)| = Catm (W/’ q) iq:eZ”ip/Mh .
The arguments above together with (14) show that

Fixyemw) (¢7) = Fixyemwry (7).
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On the other hand, using (13) it is straightforward to see that
Catm(W’ CI) |q=€21rip/mh = Catm(W/; CI) |q=€21rip/mh .

This proves (5) for our particular p, as required. O

Lemma 8. Let W be an irreducible well-generated complex reflection group of
rank n, and let p = mhy be a divisor of mh, where m = mim, and h = hyh,. We
assume that gcd(hy,my) = 1. If my > n then

Fixyenwy(@7) = {(cie,....8)}.

Proof. Let us suppose that (wo; wi, ..., wn) € Fixycmw)(¢?) and that there exists
a j > I suchthatw; # e. By (17), it then follows for such a j that also wy # & for
allk = j —Imb (mod m), where, as before, b is defined as the unique integer with
hy = am, + b and 0 < b < my. Since, by assumption, gcd(b, m,) = 1, there are
exactly m; such k’s which are distinct mod m. However, this implies that the sum
of the absolute lengths of the w;’s, 0 <i < m, is at least m, > n, a contradiction to
Remark 1.(2). |

Remark 3. (1) If we put ourselves in the situation of the assumptions of Lemma 7,
then we may conclude that Eq. (5) only needs to be checked for pairs (2, h2)
subject to the following restrictions:

my > 2, gcd(hy,my) =1, and h; divides all degrees of W. (18)

Indeed, Lemmas 4 and 7 together imply that Eq. (5) is always satisfied in all
other cases.

(2) Still putting ourselves in the situation of Lemma 7, if m, > n and myh, does
not divide any of the degrees of W, then Eq. (5) is satisfied. Indeed, Lemma 8
says that in this case the left-hand side of (5) equals 1, while a straightforward
computation using (13) shows that in this case the right-hand side of (5) equals
1 as well.

(3) It should be observed that this leaves a finite number of choices for m, to
consider, whence a finite number of choices for (m,m», h;, hy). Altogether,
there remains a finite number of choices for p = hym to be checked.

Lemma 9. Let W be an irreducible well-generated complex reflection group of
rank n with the property that d; | h fori = 1,2, ...,n. Then Theorem 2 is true for
this group W.

Proof. By Lemma 3, we may restrict ourselves to divisors p of mh.

Suppose that e27?7/" is a d;-th root of unity for some i. In other words, mh/ p
divides d;. Since d; is a divisor of & by assumption, the integer mh/ p also divides .
But this is equivalent to saying that m divides p, and Eq. (5) holds by Lemma 4.

Now assume that mh/ p does not divide any of the d;’s. Then, by (13), the right-
hand side of (5) equals 1. On the other hand, (c;e,...,¢) is always an element of
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Fixyemwy (¢7). To see that there are no others, we make appeal to the classification
of all irreducible well-generated complex reflection groups, which we recalled in
Sect. 2. Inspection reveals that all groups satisfying the hypotheses of the lemma
have rank n < 2. Except for the groups contained in the infinite series G(d, 1,n)
and G(e,e,n) for which Theorem 2 has been established in [19], these are the
groups Gs, Gg, Go, G1g, G4, G17, G1g, G21. We now discuss these groups case by
case, keeping the notation of Lemma 7. In order to simplify the argument, we
note that Lemma 8 implies that Eq. (5) holds if m, > 2, so that in the following
arguments we always may assume that m, = 2.

CASE Gs. The degrees are 6, 12, and therefore Remark 3.(1) implies that Eq. (5)
is always satisfied.

CASE Gg. The degrees are 4, 12, and therefore, according to Remark 3.(1), we
need only consider the case where h, = 4 and m, = 2, thatis, p = 3m/2. Then
(17) becomes

¢>P((w0;w1, W)

_ _ _ _ _ (19)

= (czw%Hc 2,czw%+zc 2w ewieTh L ,cwne h.
If (wo;wi,...,wy) is fixed by ¢ and not equal to (c;e,..., ), there must exist
. . . m — — _ _1
an i with 1 < i < 7% such that {r(w;) = KT(W%_H) = Lwgy = cwic™,
wiwn g = wiewic™! = ¢, and all w;, with j # i,% + i, equal &. However, with

the help of the GAP package CHEVIE [14,27], one verifies that there is no w; in
G such that

Lr(wi) =1 and wicwie h=¢

are simultaneously satisfied. Hence, the left-hand side of (5) is equal to 1, as
required.

CASE Gy. The degrees are 8, 24, and therefore, according to Remark 3.(1), we
need only consider the case where s, = 8 and m, = 2, thatis, p = 3m/2. This is
the same p as for Gg. Again, CHEVIE finds no solution. Hence, the left-hand side
of (5) is equal to 1, as required.

CASE Gyo. The degrees are 12,24, and therefore Remark 3.(1) implies that
Eq. (5) is always satisfied.

CASE G4. The degrees are 6, 24, and therefore Remark 3.(1) implies that Eq. (5)
is always satisfied.

CASE Gy7. The degrees are 20, 60, and therefore, according to Remark 3.(1), we
need only consider the cases where 1, = 20 or &, = 4. In the first case, p = 3m/2,
which is the same p as for Gg. Again, CHEVIE finds no solution. In the second
case, p = 15m/2. Then (17) becomes

A ((Woswi, ... wm))

= (k1w Ewa e A TwieT L waeT).
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By Lemma 6, every element of NC(W) is fixed under conjugation by ¢?, and, thus,
on elements fixed by ¢”, the above action of ¢? reduces to the one in (19). This
action was already discussed in the first case. Hence, in both cases, the left-hand
side of (5) is equal to 1, as required.

CASE Gys. The degrees are 30,60, and therefore Remark 3.(1) implies that
Eq. (5) is always satisfied.

CASE Gy;. The degrees are 12, 60, and therefore, according to Remark 3.(1), we
need only consider the cases where h, = 12 or h, = 4. In the first case, p = 5m/2,
so that (17) becomes

d”((Woswi, ... wm))
2 2 2)

= (*;c3w%+1c_3,c3w%+zc_3,...,c3wmc_3,czwlc_ o Ciwae

If (wo; wy, ..., wp) is fixed by ¢ and notequal to (c; ¢, . .., &), there must exist an i
with 1 <i < 7 such that £7(w;) = 1 and w;c?w;c™? = c. However, with the help
of the GAP package CHEVIE [14,27], one verifies that there is no such solution
to this equation. In the second case, p = 15m/2. Then (17) becomes the action in
(20). By Lemma 6, every element of NC(W) is fixed under conjugation by ¢, and,
thus, on elements fixed by ¢?, the action of ¢ in (20) reduces to the one in the first
case. Hence, in both cases, the left-hand side of (5) is equal to 1, as required.

This completes the proof of the lemma. O

6 Exemplification of Case-by-Case Verification of Theorem 2

It remains to verify Theorem 2 for the groups G4,G3,Gi16,G2, G2z =
H3,G24,G25,G26,G27, Gos = Fi,G29,G30 = H4,G3, G33,G34,G35 = E6,Gie =
E;7,G3; = Eg. All details can be found in [21, Sect. 6]. We content ourselves with
illustrating the type of computation that is needed here by going through the case
of the group G4, and by discussing some of the arguments needed for the group
G37 = Eg.

In the sequel we write ¢, for a primitive d-th root of unity.

6.1 CASE Gy

The degrees are 4, 6, 14, and hence we have

[14m + 14], [14m + 6], [14m + 4],

Cat" (G q) = [14], [6], [4],




Cyclic Sieving for Generalised Non-crossing Partitions Associated with. . . 233

Let ¢ be a 14m-th root of unity. In what follows, we abbreviate the assertion that “¢
is a primitive d -th root of unity” as “¢ = {;.” The following cases on the right-hand
side of (5) occur:

;1_{11{ Cat" (Ga; q) =m+1, if{=7~{4,8, (22)
lim Cat”(Gasiq) = B i =86, 83, 3 | m, (23)
lim Cat"(Gaiiq) = IE2 i =84 2| m, (24)
;i_lg Cat”(Gyy; q) = Cat"(Gy), if¢=—-lor¢ =1, (25)
;i_rg Cat"(Go4; q) =1, otherwise. (26)

We must now prove that the left-hand side of (5) in each case agrees with the
values exhibited in (22)—(26). The only cases not covered by Lemma 4 are the ones
in (23), (24), and (26). (In both (22) and (25) we have d | h.)

We first consider (23). By Lemma 3, we are free to choose p = 7m/3if ¢ = (g,
respectively p = 14m /3 if { = {3. In both cases, m must be divisible by 3.

We start with the case that p = 7m /3. From (10), we infer

" (Wos Wi . ... wm))

= (*;c3w%+lc_3,c3w%+2c_3,...,c3wmc_3,czwlc_2, ) ..,czw%c_z).
Supposing that (wo; wi, ..., wy,) is fixed by ¢”, we obtain the system of equations
wi =CwaweT i=12,08, 27
wi =cwine?, i=% 4+ 1,542, ,m. (28)

There are two distinct possibilities for choosing the w;’s, 1 < i < m: either all
the w;’s are equal to &, or there isani with 1 <i < % such that

br(wi) = br(wipn) = Lr(w; om) = 1.
Writing ¢4, 1, t3 for w;, Wi, Wiy om, respectively, the Egs. (27) and (28) reduce to

Hh = C3Z3C_3, 29)
Hh = C211€_2, (30)

t; = e 2. (31)
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One of these equations is in fact superfluous: if we substitute (30) and (31) in
(29), then we obtain ¢; = ¢’t;c™7 which is automatically satisfied due to Lemma 6
withd = 2.

Since (wo; wi, ..., wy) € NC"(Ga4), we must have ¢1£,t3 = ¢. Combining this
with (29)—(31), we infer that

t (cztlc_z)(c4tlc_4) =c. (32)

With the help of CHEVIE, one obtains seven solutions for #; in this equation, each
of them giving rise to m/3 elements of Fixycm (g, (¢7) since i (in w;) ranges from
1tom/3.

In total, we obtain 1 + 7% = 7’”3—+3 elements in Fixycm (g, (¢7), which agrees
with the limit in (23).

The case where p = 14m/3 can be treated in a similar fashion. In the end, it
turns out that we have to solve the same enumeration problem as for p = 7m/3,
and, consequently, the number of elements of Fixycm (G, (¢7) is the same, namely
7’”3+3 , as required.

Our next case is (24). Proceeding in a similar manner as before, we see that there
is again the trivial possibility (c;e,...,¢), and otherwise we have to find #; with
£r(t;) = 1 satisfying the inequality

ti(c*te™3) <rc. (33)

With the help of CHEVIE, one obtains 7 solutions for #; in this relation, each of
them giving rise to m/2 elements of Fixycm(g,,) (¢7) since i (in w;) ranges from 1

tom/2.
In total, we obtain 1 + 7% = 22 elements in Fixycn (g,,) (¢7), which agrees

with the limit in (24). ’

Finally, we turn to (26). By Remark 3, the only choices for 4, and m, to be
considered are h, = 1 and my = 3, h, = mp = 2, and h, = 2 and m, = 3. These
correspond to the choices p = 14m /3, p = Tm/2, respectively p = Tm/3, all of
which have already been discussed as they do not belong to (26). Hence, (5) must
necessarily hold, as required.

6.2 CASE G3; = Eg

The degrees are 2, 8, 12, 14, 18, 20, 24, 30, and hence we have
[30m + 30], [30m + 24], [30m + 20], [30m + 18],
[30], [24], [20], [18],
o [30m + 14], [30m + 12], [30m + 8], [30m + 2],
[14], [12], (8], (2], '

Cat"(Es;q) =
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Let ¢ be a 30m-th root of unity. The cases occurring on the right-hand side of (5)
not covered by Lemma 4 are:

lim Cat” (Es: q) =ML =L, 4| m, (34)
q—>

lim Cat™(Es; q) =ML =l 2| m, (35)
q—=>¢

lim Cat" (Eg: ) = M ¢ = G5, 8, 3| m, (36)
. m . _ 15m+7 : _

(}I_IZlECat (Eg; q) ==, if & =814,87, 7| m, (37)
lin}Cat’”(Eg;q) = GntdOndd) - if =, 2 | m, (38)
q—>

limECatm(Eg;q) = w, if{ = {5, 4| m, (39)
q—)

hn}Catm(ES’q) — (Sm+4)(3m+2)6(fm+2)(15m+4)’ lfg — ;4’ 2 I m, (40)
q—>
limECatm(Eg;q) = Cat"(Eg), if¢=-lor¢=1, 41
q—

lin} Cat"(Es; q) =1, otherwise. (42)
q—>

We now have to prove that the left-hand side of (5) in each case agrees with the
values exhibited in (34)—(42). Since the corresponding computations in the various
cases are very similar, we concentrate here only on the cases (39) and (40), these
two being representative of the types of arguments arising. As before, we refer the
reader to [21, Sect. 6] for full details.

Let us consider the case in (39) first. By Lemma 3, we are free to choose p =
15m /4. In particular, m must be divisible by 4. From (10), we infer

¢"((w0;w1, e wm))

= (*;c4w%+1c_4,c4w%+zc_4, o™ Bwie3 L ,c3w%c_3).
Supposing that (wo; wy, ..., wy,) is fixed by ¢7, we obtain the system of equations
_ 4 -4 3
wi =ctwegcTt, =1,2,..., 7, (43)
wi=cw_pme =L 2 m. (44)

There are several distinct possibilities for choosing the w;’s, 1 < i < m, which
we summarize as follows:

(i) All the w;’s are equal to ¢ (and wy = ¢),
(ii) Thereisani with1 <i < % such that
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U< Lr(w) = Cr(wign) = br(wipam) = br(w ) <2, (49)

and the other w;’s, 1 < j < m, are equal to ¢,
(iii) Therearei; andi, with 1 <i; <i, < % such that
Cr(wi) = Lr(wiy) = br(wi 4 n) = Ly (Wip4m)
= eT(Wi1+27’") = ET(WI'2+%) = eT(W,‘1+3T'") = KT(“’Q-{-%) =1,
(46)
and all other w; are equal to €.

Moreover, since (wo; wi, ..., wy) € NC™(Eg), we must have
WiWi s W; 2w W am =T C,
or
Wilwizwil-f—%wiz-l—%wil+%Wi2+%wi1+3%wiz+3% =c.
Together with Eqgs. (43), (44), (45), and (46), this implies that

wi = cPwie™® and wy (c”w,-c_l1)(c7wic_7)(c3wic_3) <rec, @7

or that

wi = clswilc_ls, wi, = clswizc_ls, and
wilwiz(c“w,-lc‘“)(c“wizc_“)(c7w,-lc_7)(c7w,-2c_7)(c3w,-lc_3)(c'3wi2c_3) =c.
(48)

Here, the first equation in (47) and the first two equations in (48) are automatically
satisfied due to Lemma 6 with d = 2.

With the help of Stembridge’s Maple package coxeter [37], one obtains 30
solutions for w; in (47) with £7(w;) = 1, 45 solutions for w; with £7(w;) = 2
and w; of type A% (as a parabolic Coxeter element; see the end of Sect.2), and
20 solutions for w; with £7(w;) = 2 and w; of type A,. Each of them gives rise to
m/4 elements of Fixycm (gg)(¢p?) since i ranges from 1 to m /4.

The number of solutions in Case (iii) can be computed from our knowledge of the
solutions in Case (ii) according to type, using some elementary counting arguments.
Namely, the number of solutions of (48) is equal to

45-2+20-3 = 150,

since an element of type A% can be decomposed in two ways into a product of two
elements of absolute length 1, while for an element of type A this can be done in 3
ways.
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In total, we obtain 1 + (30 + 45 + 20)7 + 150(’"2/4) = (5m+4)1(615’"+4) elements

in Fixycm (gg) (@7), which agrees with the limit in (39).
Next, we discuss the case in (40). By Lemma 3, we are free to choose p =

15m /2. In particular, m must be divisible by 2. From (10), we infer
¢p((W0;Wls---sz))
— (e Sy o8 a8 =8 -8 7, =7 T om o7
= (ks cPwa 0 Pwn e ™ L Ewne ™ TwieT L T wae )-

., wp) is fixed by ¢?, we obtain the system of equations

Supposing that (wo; wy, . .
wi =ctwn g™, i=1,2,....%, (49)
wp = c7wi_%c_7, i=24+1.%2+2....m (50)
There are several distinct possibilities for choosing the w;’s, 1 <i < m:
(i) All the w;’s are equal to ¢ (and wy = ¢),
(ii) Thereisani with1 <i < % such that
1< lr(wi) =Lr(wiyn) =4, (51
and the other w;’s, 1 < j < m, are equal to ¢,
(iii) There are i; and i with 1 <i; < i < % such that
oi=Lrwi) =Llr(wi+2) =1, L= Lr(wy,) = Lr(wi42) = 1,
and ¢ +4{, <4, (52)

and the other w;’s, 1 < j < m, are equal to ¢,
(iv) There are i1,i,i3 with 1 <i; < i, <i3 < 5 such that
b =Ly (wi,) = br(wi2) = 1,

b= Lr(wi) = br(wi+2) = 1,
(53)

{3 = ET(WB) = ZT(W,‘3+%) >1, and ¢ +04+403<4,

and the other w;’s, 1 < j < m, are equal to ¢,
(v) There are iy, is,i3,i4 With 1 < i < iy < i3 < iy < Z such that

ET(WH) = ZT(Wiz) = ET(WB) = ZT(WM)
=Lr(wit+z) =Lrwintz) =Lr(wiypn) = Lr(wiz) =1, (54)

and all other w;’s are equal to &.
.,wm) € NC™(Eg), we must have wiwitn <r C,

Moreover, since (wg;wy, ..
respectively wi, wi,w;, + mwj, 4 <r ¢, respectively
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Wiy Wiy Wis Wi+ 8 Wiy y Wiy <7 C,
respectively

Wiy Wiy Wis Wiy Wi + 2 Wiy + 2 Wiz 2 Wi, 44 = C.

Together with Egs. (49), (50), and (51)—(54), this implies that

wi = cPwie™ and  w;(c’wicT7) <7 ¢, (55)
respectively that
wi, = cPwie™ wi, = cPwie™ and o wywi, (T wi ¢ (T wieTT) <1 e,
(56)
respectively that
wi, = CISW,-IC_IS, wi, = CISW,-ZC_IS, Wiy = CISW,-3C_15,

and wilwizw,-3(c7w,-1c_7)(c7w,-zc_7)(c7w,-3c_7) <rc, (57

respectively that

15 —15 15 —15 15 —15 15 —15
Wi, =C "WwW;, C s Wi, =C "W;,C s Wiy = C " Wj;C s Wi, =C "W, C s

and wilwizw;3w;4(c7wilc_7)(c7wizc_7)(c7wi3c_7)(c7wi4c_7) =c. (58)

Here, the first equation in (55), the first two in (56), the first three in (57), and the
first four in (58), are all automatically satisfied due to Lemma 6 with d = 2.
With the help of Stembridge’s Maple package coxeter [37], one obtains

— 45 solutions for w; in (55) with £7(w;) = 1,

150 solutions for w; in (55) with £7(w;) = 2 and w; of type A2,

— 100 solutions for w; in (55) with £7(w;) = 2 and w; of type A,,

75 solutions for w; in (55) with £7(w;) = 3 and w; of type A3,

165 solutions for w; in (55) with £7(w;) = 3 and w; of type A * A,
— 90 solutions for w; in (55) with £7(w;) = 3 and w; of type A3,

— 15 solutions for w; in (55) with £7(w;) = 4 and w; of type A% * Ay,
— 45 solutions for w; in (55) with £7(w;) = 4 and w; of type A * As;
— 5 solutions for w; in (55) with £7(w;) = 4 and w; of type A2,

— 18 solutions for w; in (55) with £7(w;) = 4 and w; of type A4,

— 5 solutions for w; in (55) with £7(w;) = 4 and w; of type Dy.

Each of them gives rise to m /2 elements of Fixycm g, (¢7) since i ranges from 1 to
m/2. There are no solutions for w; in (55) with w; of type A7.

Letting the computer find all solutions in cases (iii)—(v) would take years.
However, the number of these solutions can be computed from our knowledge of
the solutions in Case (ii) according to type, if this information is combined with
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the decomposition numbers in the sense of [17, 18,20] (see the end of Sect.2) and

some elementary (multiset) permutation counting. The decomposition numbers for

Ay, Az, A4, and D4 of which we make use can be found in the appendix of [18].
To begin with, the number of solutions of (56) with £; = £, = 1 is equal to

ny = 150-2 4100 NAz(AlvAl) = 600,

since an element of type A% can be decomposed in two ways into a product of two
elements of absolute length 1, while for an element of type A, this can be done in
N4, (A1, A1) = 3 ways. Similarly, the number of solutions of (56) with £; = 2 and
£, = 1isequal to

nay i=75-34165-(1 4+ N4y (A1, A1) +90- Ny, (A2, A)) = 1,425,
the number of solutions of (56) with £; = 3 and £, = 1 is equal to
nyp =152+ Na, (A1, A1) +45- (1 + Nay (A2, A1) + 5 (2N 4, (A1, A1)
+18-(Na, (A3, A1)+ Ny (A1%As, A1) +5-(Np, (A3, A1)+ Np, (A7, A1) = 660,
the number of solutions of (56) with £; = £, = 2 is equal to
Ny = 15-(2 42Ny, (A1, A))) +45- (2N 4, (A2, A1) +5- 2 + Nay (A1, 41)%)

+ 18- (N4, (A2, A2) + Na (A7, A]) + 2N 4, (A2, A)))
+5-(Np,(As, A2) + 2Np,(Az, A3)) = 1,195,

the number of solutions of (57) with £; = £, = {3 = 1 is equal to
ni1 = 75-3!4+165- (3NA2(A1, Al)) =+ 9ONA3(A1, Ay, Al) = 3,375,
the number of solutions of (57) with £; = 2 and £, = {3 = 1 is equal to

np11 =152+ Ngy (A1, A1) +2-2- Nyy(Ar, Ar))
+ 45 (2N4y(A2. A1) + Nay(A1. A1 A1) + 5 (2N, (A1, A1) 4 2N, (A1 A))?)
+ 18 (N, (A2, A1, A1) + Nuy (A7, A1, Ay))
+5-(Np,(A2. Ay, Ay) + Np, (A7, Ay, Ay)) = 2,850,

and the number of solutions of (58) is equal to

niia = 15-(12N4, (A1, A1) +45- (4N 4, (A1, A1, A1) +5- (6NA2(A1,A1)2)
+ 18- NA4(A1’ Ay, Al,Al) +5- N]_)A(Al, Al,Al,Al) = 6,750.
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In total, we obtain

1+(45+150+100+75+165+90+15+45+5+18+5)%

m/2 m/2
+ (n1g + 2n21 + 203, +n2,2)( 2/ ) +(niig + 3”2,1,1)( 3/ )

m/2 Gm+4)(Bm +2)(5m + 2)(15m + 4)
+ni 4 = )

elements in Fixycm (k) (¢7), which agrees with the limit in (40).

7 Cyclic Sieving 11

In this section we present the second cyclic sieving conjecture due to Bessis and
Reiner [10, Conjecture 6.5].
Let ¢ : NC"(W) — NC™ (W) be the map defined by

Wo; Wiy« oo W) > (ewme ™ 5 wo, Wiy, Wit (59)

For m = 1, we have wy = cwl_l, so that this action reduces to the inverse of the
Kreweras complement K, as defined by Armstrong [3, Definition 2.5.3].

It is easy to see that "+ D" acts as the identity, where / is the Coxeter number
of W (see (61) below). By slight abuse of notation as before, let C, be the cyclic
group of order (m + 1)h generated by .

Given these definitions, we are now in the position to state the second cyclic
sieving conjecture of Bessis and Reiner. By the results of [19] and of this paper, it
becomes the following theorem.

Theorem 4. For an irreducible well-generated complex reflection group W and
any m > 1, the triple (NC"(W),Cat"(W;q),C,), where Cat™(W;q) is the
q-analogue of the Fuf3—Catalan number defined in (4), exhibits the cyclic sieving
phenomenon.

By definition of the cyclic sieving phenomenon, we have to prove that
| Fixxen ) (U7)] = Cat™ (Wi )|, _ sy (60)

for all p inthe range 0 < p < (m + 1)h.
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8 Auxiliary Results II

This section collects several auxiliary results which allow us to reduce the problem
of proving Theorem 4, respectively the equivalent statement (60), for the 26
exceptional groups listed in Sect. 2 to a finite problem. The corresponding lemmas,
Lemmas 10-15, are analogues of Lemmas 3-5 and 7-9 in Sect. 5.

Let p=a(m+ 1)+ b,0 <b <m + 1. We have

Y2 (o Wi ... W)

— (Cu+l a—1. ,a+1 a—1 a+1 —a—1

Win—b+1C ~ 5C° T Wp—p42C " .., C T WiyC ,

c“woc™ L Wmepe ™). (61)
Lemma 10. It suffices to check (60) for p a divisor of (m + 1)h. More precisely, let
p be a divisor of (m + 1)h, and let k be another positive integer with gcd(k, (m +
1)h/p) = 1, then we have

Cat"(W;q) |q=€21rip/(m+l)h = Cat™(W;q) |q=€27rikp/(m+l)h (62)

and

| Fixnen awy (¥7)| = | Fixnern ) (Y7 (63)

Proof. For (63), this follows in the same way as (12) in Lemma 3.

For (62), we must argue differently than in Lemma 3. Let us write { =
e?7ir/m+Dh For a given group W, we write S;(W) for the set of all indices i such
that £%~" = 1, and we write S»(W) for the set of all indices i such that {4 = 1.
By the rule of de I’Hospital, we have

Cat"(W;q) iq=62711p/(m+1)h

0 if [Si(W)] > [S2(W)],

[ies, ) mh+d) [igs ) (1= =) . . (64)
Hilesz(W) d; nielsz(W)(l_{d") s if |SI(W)| - |S2(W)|

Since, by Theorem 3, Cat™ (W g) is a polynomial in g, the case |S|(W)| < |S2(W)|
cannot occur.

We claim that, for the case where |S1(W)| = |S2(W)|, the factors in the quotient
of products

[Tigs, o) (1 =47
[Tigs,om (1 = &%)
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cancel pairwise. If we assume the correctness of the claim, it is obvious that we
get the same result if we replace ¢ by ¢, where ged(k, (m + 1)h/p) = 1, hence
establishing (62).

In order to see that our claim is indeed valid, we proceed in a case-by-case
fashion, making appeal to the classification of irreducible well-generated complex
reflection groups, which we recalled in Sect. 2. First of all, since d,, = h, the set
S1(W) is always non-empty as it contains the element n. Hence, if we want to have
[S1(W)| = |S2(W)], the set S,(W) must be non-empty as well. In other words,
the integer (m + 1)h/p must divide at least one of the degrees di,d>, ..., d,. In
particular, this implies that, for each fixed reflection group W of exceptional type,
only a finite number of values of (m + 1)/ p has to be checked. Writing M for
(m+1)h/ p, what needs to be checked is whether the multisets (that is, multiplicities
of elements must be taken into account)

{(di—h)ymod M :i ¢ S;(W)} and {d; modM :i ¢ SH(W)}

are the same. Since, for a fixed irreducible well-generated complex reflection group,
there is only a finite number of possibilities for M, this amounts to a routine
verification. O

Lemma 11. Let p be a divisor of (m + 1)h. If p is divisible by m + 1, then (60) is
true.

We leave the proof to the reader as it is completely analogous to the proof of
Lemma 4.

Lemma 12. Equation (60) holds for all divisors p of m + 1.
Proof. We have

0 ifp<m+1,

m .
Cat"(W; q)iq:eb'!ip/(m+l)h = m+1 ifp=m+1.
Here, the first case follows from (64) and the fact that we have S;(W) D {n} and
S (W)y=0ifp|(m+1)and p <m + 1.

On the other hand, if (wo;wy,...,wy,) is fixed by Y7, then one can apply an
argument similar to that in Lemma 5 with any w; taking the role of wi, 0 < i < m.
It follows that if p = m + 1, the set Fixycm ) (¥7) consists of the m + 1 elements

(wo; Wi, ..., wy,) obtained by choosing w; = ¢ for a particular i between 0 and
m, all other w;’s being equal to €. If p < m + 1, then there is no element in
Fixyern ) (¥7). o

Lemma 13. Let W be an irreducible well-generated complex reflection group of
rank n, and let p = mhy be a divisor of (m 4+ 1)h, where m + 1 = mym; and
h = hyhy. We assume that gcd(hy, my) = 1. Suppose that Theorem 4 has already
been verified for all irreducible well-generated complex reflection groups with rank
< n. If hy does not divide all degrees d;, then Eq. (60) is satisfied.
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We leave the proof to the reader as it is completely analogous to the proof of
Lemma 7.

Lemma 14. Let W be an irreducible well-generated complex reflection group of
rank n, and let p = mhy be a divisor of (m 4+ 1)h, where m + 1 = mym; and
h = hihy. We assume that gcd(hy,my) = 1. If my > n then

Fixyenw) () = 0.

We leave the proof to the reader as it is analogous to the proof of Lemma 8.

Remark 4. By applying the same reasoning as in Remark 3 with Lemmas 7 and 8
replaced by Lemmas 13 and 14, respectively, it follows that we only need to check
(60) for pairs (my, hy) satisfying (18) and m, < n. This reduces the problem to a
finite number of choices.

Lemma 15. Let W be an irreducible well-generated complex reflection group of
rank n with the property that d; | h fori = 1,2,...,n. Then Theorem 4 is true for
this group W.

Proof. Proceeding in a fashion analogous to the beginning of the proof of Lemma 9,
we may restrict to the case where p | (m + 1)h and (m + 1)h/p does not divide
any of the d;’s. In this case, it follows from (64) and the fact that we have S (W) 2
{n} and S,(W) = @ that the right-hand side of (60) equals 0. Inspection of the
classification of all irreducible well-generated complex reflection groups, which we
recalled in Sect. 2, reveals that all groups satisfying the hypotheses of the lemma
have rank n < 2. Except for the groups contained in the infinite series G(d, 1, n) and
G(e, e, n) for which Theorem 2 has been established in [19], these are the groups
Gs, Gg, Go, G, G4, G17, G13, G21. The verification of (60) can be done in a similar
fashion as in the proof of Lemma 9. We illustrate this by going through the case of
the group Gg. In analogy with the earlier situation, we note that Lemma 14 implies
that Eq. (60) holds if m, > 2, so that in the following arguments we may assume
that m, = 2.

CASE Gg. The degrees are 4, 12, and therefore, according to Remark 4, we need
only consider the case where i, = 4 and m, = 2, thatis, p = 3(m + 1)/2. Then
the action of 7 is given by

Y2 (o Wi ... W)

= (C2Wm+l c_z; CWnts c_z, .. ,czwmc_z, cwoc_l, cees CWast c_l). (65)
2 2

If (wo; wi, ..., wy) is fixed by ¥ 7, there must existan i with 0 <i < ’"T_l such that
Lr(wi) =1, wiew;e~! = ¢, and all wi,j #1, mTH + 1, equal . However, with the
help of CHEVIE, one verifies that there is no such solution to this equation. Hence,
the left-hand side of (60) is equal to 0, as required.

This completes the proof of the lemma. O
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9 Exemplification of Case-by-Case Verification of Theorem 4

It remains to verify Theorem 4 for the groups Gu, Gs,Gig, Goo, Gz =
Hs3, G4, Gos, Gos, G27,Gas = Fu, Gy, Gzg = Hy, G32,G33,G34, G35 =
E¢, Gz = E7,G3z; = Ejs. All details can be found in [21, Sect.9]. We content
ourselves with discussing the case of the group G4, as this suffices to convey the
flavour of the necessary computations.

In order to simplify our considerations, it should be observed that the action
of ¥ (given in (59)) is exactly the same as the action of ¢ (given in (3)) with m
replaced by m + 1 on the components wy,ws, ..., wy41, that is, if we disregard
the O-th component of the elements of the generalised non-crossing partitions
involved. The only difference which arises is that, while the (m + 1)-tuples
(Wo; Wi, ..., wyy) in (59) must satisfy wow; ---w,, = ¢, for wi,wy, ..., W4 in
(3) we only must have wyw,---wy,4+; =<r c. Consequently, we may use the
counting results from Sect. 6, except that we have to restrict our attention to those
elements (Wo; Wi, . .., Wy, Wma1) € NC"TH(W) for which wiw, -+ - wp41 = c, or,
equivalently, wy = ¢.

9.1 CASE Gy

The degrees are 4, 6, 14, and hence we have

[14m + 14], [14m + 6], [14m + 4],

Cat"(Gas; q) = [14], (6], [4]4

Let ¢ be a 14(m + 1)-th root of unity. The following cases on the right-hand side of
(60) occur:

l}i_)mgCatm(GM;q) =m+1, if{=7{14,8, (66)
lim Cat” (Gaaig) = #5551 E = L6 L5 3] (m + 1), (67)
;i_>m§ Cat”(Ga4;q) = Cat™(Gyy), if¢=—lorl =1, (63)
;i_lg Cat"(G24;q) =0, otherwise. (69)

We must now prove that the left-hand side of (60) in each case agrees with
the values exhibited in (66)—-(69). The only cases not covered by Lemma 11 are
the ones in (67) and (69). On the other hand, the only cases left to consider
according to Remark 4 are the cases where i, = 1 and m; = 3, h, = 2 and
my = 3, and hy = m, = 2. These correspond to the choices p = 14(m + 1)/3,
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p = 7(m + 1)/3, respectively p = 7(m + 1)/2. The first two cases belong to (67),
while p = 7(m + 1)/2 belongs to (69).
In the case that p = 7(m + 1)/3, the action of {7 is given by

Y2 ((wor Wi, ... wm))

= (c3Wzm+z 6_3; Wams c_3, . ,c3wmc_3, czwoc_z, R C2W2n13—1 c_z).
3 3
Hence, for an i with 0 < i < mT—z’ we must find an element w; = f;, where f;
satisfies (32), so that we can set w, | g1 = 2, Wi gy = c*tic™, and all
3 3

other w;’s equal to &. We have found seven solutions to the counting problem (32),
and each of them gives rise to (m + 1)/3 elements in Fixycm (g, (¥?) since the
index i ranges from O to (m — 2)/3.

On the other hand, if p = 14(m + 1)/3, then the action of ¥ 7 is given by

Y2 ((wos Wi, ... wm))

= (War1 ¢ EWnaac 2 wpe ™, ctwoe”
3 3

4, e ,C4Wm—2 C_4).
3

By Lemma 6, every element of NC(W) is fixed under conjugation by ¢’, and, thus,
the equations for 7, in this case are the same as in the previous one where p =
T(m +1)/3.

Hence, in either case, we obtain 7’"T+1 =
which agrees with the limit in (67).

If p = 7(m + 1)/2, the relevant counting problem is (33). However, no element
(Wo; Wi, ..., Wp) € FiXncm(G,,)(Y7) can be produced in this way since the counting
problem imposes the restriction that £7(wg) +£7(wy) +- - -+ L7 (wy,) be even, which
contradicts the fact that £7(c) = n = 3. This is in agreement with the limit in (69).

Tm+7 : .
5 elements in FiXyem (G, (WP),
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Set Partitions with No m-Nesting

Marni Mishna and Lily Yen

Abstract A partition of {1, ..., n} has an m-nesting if it contains at least m disjoint
blocks, and a subset of 2m points i} < ip < *++ < iy < ju < Jjm=1 < -+ <
J1, such that i; and j; are in the same block for all 1 < [ < m, but no other
pairs are in the same block. In this note, we use generating trees to construct the
class of partitions with no m-nesting, determine functional equations satisfied by
the associated generating functions, and generate enumerative data for m > 4.

Keywords Set partition ¢ Nesting ¢ Pattern avoidance ¢ Generating tree
Algebraic kernel method e Coefficient extraction * Enumeration

1 Introduction

Graphic representations of set partitions can contain various patterns and shapes.
One particular pattern, known as an m-nesting, resembles a rainbow, for example. In
this work we address the enumeration of set partitions that avoid m-nestings. These
results are in the context of recent studies of other combinatorial objects that avoid
similar or related patterns. We are particularly motivated by the study of protein
folding [7] where such patterns arise in the molecular bonds and their presence has
strong consequences on the geometry of the protein.

Our strategy parallels a recent generating tree approach used by Bousquet-Mélou
to enumerate a family of pattern avoiding permutation classes [3]. A novel feature
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of this approach is that the length of the label in the generating tree is related to
the length of the pattern avoided. Thus, the resulting expressions for generating
functions are generic, and expressed in terms of m. The generating tree permits
direct access to new enumerative data for set partitions avoiding m-nestings for
some m > 4, and we present the equations as a starting point for further analysis.

1.1 Notation and Definitions

A set partition 7 of [n] := {1,2,3,...,n}, denoted by = € [I1,, is a collection of
nonempty and mutually disjoint subsets of [r], called blocks, whose union is [n].
The number of set partitions of [r] into k blocks is denoted S(n, k), and is known
as a Stirling number of the second kind. The total number of partitions of [r] is
the Bell number B, = ), S(n,k). We represent 7 by a graph on the vertex set
[n] whose edge set consists of arcs connecting elements of each block in numerical
order. Such an edge set is called the standard representation of the partition m, as
seen in [6]. For example, the standard representation of

112568|37/4

is given by the following graph with edge set {(2, 5), (5, 6), (6,8), (3,7)}:

With this representation, we can define two classes of patterns: crossings and
nestings. An m-crossing of 7 is a collection of m edges (i1, j1), (i2, j2), --+» (ms jm)
such that i} < ip < -+ < @, < j1 < Jo < +++ < jp. Using the standard
representation, an m-crossing is drawn as follows:

i i im J 2 Jm

Similarly, we define an m-nesting of m to be a collection of m edges (i1, ji),

(i2, j2)s --» (im, jm) suchthati| <ip < -+ <ipy < jm < jm—1 < --- < ji. Thisis
drawn:
//f\x\
i 153 o im jn1 e j2 J1

A partition is m-noncrossing if it contains no m-crossing, and it is said to be
m-nonnesting if it contains no m-nesting.
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1.2 Context and Plan

Chen, Deng, Du, Stanley and Yan in [6], and independently Krattenthaler in [8],
gave a non-trivial bijective proof that m-noncrossing partitions of [n] are equinumer-
ous with m-nonnesting partitions of [r], for all values of m and n. A straightforward
bijection with Dyck paths illustrates that 2-noncrossing partitions (or simply,
noncrossing partitions) are counted by Catalan numbers. Bousquet-Mélou and Xin
in [4] showed that the sequence counting 3-noncrossing partitions is P-recursive,
that is, satisfies a linear recurrence relation with polynomial coefficients. Indeed,
they determined an explicit recursion, complete with solution and asymptotic
analysis. They further conjectured that m-noncrossing partitions are not P-recursive
for all m > 4. Certainly, the limit as m goes to infinity is not D-finite, since Bell
numbers are well known not to be P-recursive because of the composed exponentials
in the generating function B(x) = e* ~! (see Example 19 of [2]). If it turns out that
m-noncrossing partitions do have a D-finite generating function, then we have a
very interesting refinement of a non-D-finite class.

Since m-noncrossing partitions of [#] and m-nonnesting partitions of [n] are
equinumerous, we study m-nonnesting partitions in this paper and show how to
generate the class using generating trees, and how to determine a recursion satisfied
by the counting sequence for m-nonnesting partitions.

Our approach is an adaptation of Bousquet-Mélou’s recent work on the
enumeration of permutations with no long monotone subsequence in [3]. She
combined the ideas of recursive construction for permutations via generating trees
and the algebraic kernel method to determine and solve functional equations with
multiple catalytic variables.

In Sect.2, we employ Bousquet-Mélou’s generating tree construction to find
functional equations satisfied by the generating functions for set partitions with no
m-nesting. The resulting equations, though similar to the equations arising in [3],
have a key structural difference which resists a similar treatment of the algebraic
kernel method followed by a constant term extraction as used by Bousquet-Mélou
in [3]. However, the process does yield the result for nonnesting set partitions
counted by the Catalan numbers. We refer interested readers to [9] for the processing
of functional equations in the spirit of [3].

Using our constructions we generate new enumerative data for m > 4, discuss
the limiting factors in data generation, and assess the current state of recurrences
and explicit forms.

2 Generating Trees and Functional Equations

The generating tree construction for the class of m-nonnesting partitions is based on
a standard generating tree description of partitions, and the constraint is incorporated
using a vector labelling system. The generating tree construction has an immediate
translation to a functional equation with m-variate series.



252 M. Mishna and L. Yen
2.1 A Generating Tree for Set Partitions

Let 7 be a set partition. Define ne(rr) to be the maximal i such that 7 has an i-
nesting, also called the maximal nesting number of m, and let 1'1,5’”’ be the set of
partitions of [n] for n > 0 (where n = 0 means the empty partition) with ne(rr) <
m, thus (m + 1)-nonnesting. We define the union 170" = U, 1™,

Note that an arc over a fixed point is not a 2-nesting, but a 1-nesting:

. T

i J k

We next describe how to generate all set partitions via generating trees in the
fashion of [2]. First, order the blocks of a given partition, r, by the maximal element
of each block in descending order.

Example 1. The first block of 1]12568|3 7|4 is 256 8; the second block is 3 7; the
third block is singleton 4; and 1 is the last block. Using the standard representation,

?

wW— &
N —
—

I
4

Block:

[y

we number the blocks in descending order (from the right to the left) according to
the maximal element in each block (that is, the rightmost vertex of each block).

With the order of blocks thus defined, we warm up by generating all set partitions
without nesting restriction first. Figure 1 contains the generating tree for all set
partitions, in addition to the generating tree for the number of children of each node
from the tree of set partitions to indicate how enumeration can be facilitated.

1. Begin with @ as the top node of the tree. It has only one child, so the
corresponding node in the tree for the number of children is labelled 1.

2. To produce the n + 1st level of nodes, take each set partition at the nth level, and
either add n + 1 as a singleton, or join n 4 1 to block j foreach 1 < j < k if
the set partition has k blocks.

Summarizing the description above in the notation of [2], we recall that the
rewriting rule of a generating tree is denoted by:

[(s0), {(k) — (e1x)(e2k) ... (exi)}],

where sy denotes the degree of the root, and for any node labelled k, that is, with k
descendants, the label of each descendent is given by (e; ;) for 1 < j < k. Thus,
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Fig. 1 Generating tree for set
partitions and its
corresponding generating tree

of the number of children T
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A

2
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wc\»—

the class of set partitions has a generating tree of labels given by [(1) : (k) —

(k + D)(k)].

2.2 A Vector Label to Track Nestings

The generating tree of set partitions generates all set partitions = graded by n, the
size of m, but it does not keep track of nesting numbers. Also note that the number
of children of 7 is one more than the number of blocks of m. Let us now address
nestings.

Fix m. In order to keep track of nesting numbers, we need to define the /abel of
7w € IT'™. To identify the position of a nesting, we consider the relative position
of the smallest vertex incident to the nesting. Thus, the rightmost j-nesting is the
set of j edges forming a j-nesting pattern such that its minimal incident vertex is
greater than, or equal to the minimal vertex incident to all the other j-nestings. If
one vertex is common to two j-nestings, we consider the second smallest incident
vertex, and so on. Roughly, our labels keep track of the number of blocks to the
right of a j-nesting that might potentially become a j-nesting based on how the
next edge is added. Any edge added that affect nestings to the left of the right most
j-nesting, will necessarily create a j + 1 nesting because it will create an arc overtop
of the rightmost j -nesting.

Definition 1. Define the label of a partition, L(w) = (a;(x),ax(xw),...,a,(xw)),
or in short, L(7) = (ay,az,...,a,) as follows. For 1 < j <m,

1+ number of blocks in =, if 7 is j-nonnesting,
a;(mw) =
’ 1+ number of blocks ending to the right of

. . . . otherwise.
the smallest vertex in the rightmost j-nesting

Example 2. To continue the example, let 7 = 1|25 6 8|3 7|4 and suppose m = 3.
Then L(1|12568|37|4) = (3,4,5) for the following reasons. The rightmost
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1-nesting is the edge with largest vertex endpoint: (6, 8). Hence, a; () = 3 because
blocks 1 and 2 end to the right of vertex 6. The rightmost 2-nesting is the set of
edges {(5,6), (3,7)} hence a, () = 4 because 3 blocks end to the right of vertex 3.
Finally, as(w) = 5 because the diagram has no 3-nesting, and is comprised of
4 blocks. Note that in this convention, the empty set partition has label (1,1, ..., 1),
since it has no nestings and no blocks.

A set partition in 7" always has a,, children. This is one more than the number
of blocks, if there is no m-nesting (and hence there is no risk that adding an edge will
create an m + 1-nesting). Otherwise, it indicates more than the number of blocks
to which you can add an edge without creating an m + 1-nesting. The label of a
set partition is sufficient to derive the label of each of its children, and this process
is described in the next proposition. Also, remark that the label is a non-decreasing
sequence, since the rightmost j-nesting either contains the rightmost j — 1 nesting
or is to the left of it.

Proposition 1 (Labels of children). Let 7 be in 1], ™ the set of set partitions on
[n] avoiding m + 1-nestings, and suppose the label of w is L(xw) = (a1, az, ..., am).
Then, the labels of the a,, set partitions of H;'_T_)l obtained by recursive construction
via the generating tree are

(ar+lLax+1,....,an+ 1) (Add n + 1 as a singleton to 1)

and
( 2, a, as,..., Am—1,0m) (Add n + 1 to block 1)
( 3, a, as,..., Am—1,0m) (Add n + 1 to block 2)
( ai, a, as,..., Am—1,0m) (Add n + 1 to blockay — 1)
(ar+1,a; +1, asz,..., Am—1,0m) (Add n + 1 to block ay)
(ay +1,a; +2, asz,..., Am—1,0m) (Add n + 1 to block a1 + 1)
(ar+la+lay+1,..., Am—1,0m) (Add n + 1 to block ay)
(a+lLa+1laz+1,....am—1 + 1, apy—1 + 1) (Add n + 1 to block an,—1)
(ar+1l,a+l,a3+1,..., am—1+ 1,am) (Add n + 1 to block a;, — 1)
Proof. By careful inspection. O

Example 3. Consider the following partition from Hé’” . The reader can refer to
its arc diagram in Example 1 which shows that it is 3-nonnesting, thus also
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4-nonnesting. The partition 1|25 6 8|3 7|4 with label (3, 4, 5) has five children and
their respective labels are:
b/d L(m)

112568|37|4|9 (4,5, 6)

1125689|37]4 (2,4,5)

112568|379]4 (3,4,5)

112568[37|49 (4,4,5)

19]2568|37|4 (4,5,5)

Example 4. As we mentioned before, 2-nonnesting set partitions are counted by
Catalan numbers. The generating tree construction given in Proposition 1 restricted
to this case is given by

(1) : (k) = (k + 1DH(2)3) ... (k)]

which is the same construction for Catalan numbers given in [2]. The generating
tree for 3-noncrossing partitions is given by

(LD):Gj)H)—>G0+1,j+D2, j)H)GB )G HE+1L,i+D)E+1,i+2)...(G0+1, ))).

2.3 A Functional Equation for the Generating Function

The simple structure of the labels in Proposition 1 permits a direct translation from
the generating tree to a functional equation.

Letus define F (uy, ua, . . ., t) to be the ordinary generating function of partitions
in 7" counted by the statistics ay, a», ..., a,, and by size,

F(”ls”Zs---sum;Z) = Z u‘;l(”)u;ﬂ”),..uz;”(”)llnl

el m

= Z Fa()u us? .. ulm,

ar,az,....dm

where Fa(t) is the size generating function for the set partitions of I7"") with the
label a = (a;,as, ..., a;). For example, when m = 2,

Fu;1) = wyus + uup’t + (u13u23 + u12u22) 2+ (u14u24 +2uus’ 4wy + u12u23) I

Proposition 1 implies
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Fuy,..., Upil) = Uiy .. Uy + tugUy Uy F Uy, U, 5 1)
ai
r ax ajs a a
+1 E Fa(t)uy’us’ .. uyr E us
ay,az....am oa=2

m aj
r ai+1 a)+1 aj—1+1 o aj+1 a
4+t E F,(t) E Z PR oS A 1 R

ap.az.....am J=2a=aj—1+1

We can simplify the expression using the finite geometric series sum formula to
rewrite this as the following expression.

Proposition 2. The ordinary generating function of partitions in IT" counted
by the statistics a, a, ..., a,, and by size, denoted F(ui,uy,...,upy;t), or
simply F (u; t) satisfies the following functional equation:

F(u;t) =u1...um+tu1u2...umF(u;t)

o (F(u;r)—ulF”(Luz,...,um;r))

I/ll—l

m - -
Fut)— F(uy,...,uj—,uj—qui, Luivr, ..., umt
+Z‘E uluz...uj< ( ) ( / / / it o ) .
—

Mj—l

1)

3 Computing Series Expansions

Notice that in Eq. (1), if one has a series expansion of F (u; ) correct up to #*, then
substituting this series into RHS of Eq. (1) yields the series expansion of F correct
to t**1 because the RHS of Eq. (1) contains a term free of ¢; otherwise, the degree
of ¢ is increased by 1. We have iterated Eq. (1) to get enumerative data for up to
m=09.

For 3-nonnesting set partitions, an average laptop running Maple 15 can produce
70 terms in a reasonable time (less than 24 h). For m = 4, only 38 terms; m = 5,27
terms; m = 6, 20 terms; m = 7, 16 terms, m = 8§, 12 terms; and finally m = 9, 12
terms. The limitation seems memory space due to the growing complication in the
functional equation when m gets larger (Table 1).

4 Conclusion

The generating tree approach permits a direct translation to a functional equation
involving an arbitrary number of catalytic variables satisfied by set partitions
avoiding m + I-nestings for any positive integer m. We avoid passing through
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vacillating lattice walks or tableaux. The functional equation can be iterated to
generate series data for m + 1-nonnesting set partitions, but ideally we would like
to solve the equations, or find some other format from which more information
can be obtained. For example, perhaps under further scrutiny one can decide if the
generating functions are D-finite or not.

One possible route to a proof of non-D-finiteness is to use our expressions to
determine bounds on the order and the coefficient degrees of the minimal differential
equation satisfied by the generating function. Though a tantalizingly simple idea, the
limitation is the lack of series data for large m.

The generating tree studied is for m + 1-nonnesting set partitions. The authors
have tried to study a generating tree for m 4 1-noncrossing set partitions in the
hope of reproving the result of Chen et al. in [6] by tree isomorphism. However, the
authors were unable to generate m + 1-noncrossing set partitions.

Finally, our generating tree approach is limited only to the non-enhanced case.
For a more general treatment of the subject involving enhanced set partitions and
permutations, both enhanced and non-enhanced, we refer the reader to [5] by Burrill,
Elizalde, Mishna, and Yen.
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The Distribution of Zeros of the Derivative
of a Random Polynomial

Robin Pemantle and Igor Rivin

Abstract In this note we initiate the probabilistic study of the critical points of
polynomials of large degree with a given distribution of roots. Namely, let f be a
polynomial of degree n whose zeros are chosen IID from a probability measure u
on C. We conjecture that the zero set of f’ always converges in distribution to p as
n — oo. We prove this for measures with finite one-dimensional energy. When u
is uniform on the unit circle this condition fails. In this special case the zero set of
[’ converges in distribution to that of the IID Gaussian random power series, a well
known determinantal point process.

Keywords Gauss-Lucas theorem ¢ Gaussian series * Critical points * Random
polynomials

1 Introduction

Since Gauss, there has been considerable interest in the location of the critical points
(zeros of the derivative) of polynomials whose zeros were known — Gauss noted that
these critical points were points of equilibrium of the electrical field whose charges
were placed at the zeros of the polynomial, and this immediately leads to the proof
of the well-known Gauss-Lucas Theorem, which states that the critical points of a
polynomial f lie in the convex hull of the zeros of f (see, e.g. [18, Theorem 6.1]).
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There are too many refinements of this result to state. A partial list (of which several
have precisely the same title!) is as follows: [1,3,5-9,12,14,16,17,19,20,22-26]).
Among these, we mention two extensions that are easy to state.

« Jensen’s theorem: if p(z) has real coefficients, then the non-real critical points of
p lie in the union of the “Jensen Disks”, where a Jensen disk J is a disk one of
whose diameters is the segment joining a pair of conjugate (non-real) roots of p.

* Marden’s theorem: Suppose the zeroes zi, z2, and z3 of a third-degree polynomial
p(z) are non-collinear. There is a unique ellipse inscribed in the triangle with
vertices 21, 22, z3 and tangent to the sides at their midpoints: the Steiner inellipse.
The foci of that ellipse are the zeroes of the derivative p’(z).

There has not been any probabilistic study of critical points (despite the obvious
statistical physics connection) from this viewpoint. There has been a very extensive
study of random polynomials (some of it quoted further down in this paper), but
generally this has meant some distribution on the coefficients of the polynomial,
and not its roots [4]. Let us now define our problem:

Let p be a probability measure on the complex numbers. Let {X,, : n > 0}
be random variables on a probability space (£2,F,P) that are IID with common
distribution u. Let

i@ =]]Gc-X))

j=1
be the random polynomial whose roots are X1, ..., X,. For any polynomial f we
let Z( f) denote the empirical distribution of the roots of f, for example, Z( f,,) =

1
;Z’}=18Xj'

The question we address in this paper is:
Question 1.1. When are the zeros of f,/ stochastically similar to the zeros of f,?
Some examples show why we expect this.

Example 1.1. Suppose p concentrates on real numbers. Then f, has all real zeros
and the zeros of f, interlace the zeros of f,. It is immediate from this that the
empirical distribution of the zeros of f, converges to ; as n — co. The same is
true when p is concentrated on any affine line in the complex plane: interlacing
holds and implies convergence of the zeros of f, to ut.! Once the support of u is not
contained in an affine subspace, however, the best we can say geometrically about
the roots of f,,’ is that they are contained in the convex hull of the roots of f,,; this is
the Gauss-Lucas Theorem.

'Even in this case there are interesting probabilistic questions concerning the distribution of critical
points of f, close to the edge of the support of 1, see [15]
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Fig. 1 Critical points of a polynomial whose roots are uniformly sampled inside the unit disk

Example 1.2. Suppose the measure p is atomic. If u(a) = p > 0 then the
multiplicity of a as a zero of f, is n(p + o(1)). The mulitplicity of a as a zero of f,
is one less than the multplicity as a zero of f,,, hence also n(p + o(1)). This is true
for each of the countably many atoms, whence it follows again that the empirical
distribution of the zeros of f,’ converges to u.

Atomic measures are weakly dense in the space of all measures. Sufficient
continuity of the roots of f’ with respect to the roots of f would therefore imply
that the zeros of f, always converge in distribution to ; as n — oo. In fact we
conjecture this to be true.

Example 1.3. Our first experimental example has the roots of f uniformly
distributed in the unit disk. In the figure, we sample 300 points from the uniform
distribution in the disk, and plot the critical points (see Fig. 1). The reader may or
may not be convinced that the critical points are uniformly distributed.

Example 1.4. Our second example takes polynomials with roots uniformly
distributed on the unit circle, and computes the critical points. In Fig.2 we do
this with a sample of size 300. One sees that the convergence is rather quick.

Remark 1. The figures were produced with Mathematica. However, the reader
wishing to try this at home should increase precision because Mathematica
(and Maple, Matlab and R) do not use the best method of computing zeros of
polynomials.
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Fig. 2 Ceritical points of polynomial whose roots are uniformly sampled on the unit circle

Conjecture 1. For any u, as n — oo, Z( f’) converges weakly to .

There may indeed be such a continuity argument, though the following coun-
terexample shows that one would at least need to rule out some exceptional sets of
low probability. Suppose that f(z) = z* — 1. As n — oo, the distribution of the
roots of f converge weakly to the uniform distribution on the unit circle. The roots
of f,/ however are all concentrated at the origin. If one moves one of the n roots of
f» along the unit circle, until it meets the next root, a distance of order 1/n, then
one root of f,’ zooms from the origin out to the unit circle. This shows that small
perturbations in the roots of f can lead to large perturbations in the roots of f”. It
seems possible, though, that this is only true for a “small” set of “bad” functions f.

1.1 A Little History

This circle of questions was first raised in discussions between one of us (IR) and the
late Oded Schramm, when IR was visiting at Microsoft Research for the auspicious
week of 9/11/2001. Schramm and IR had some ideas on how to approach the
questions, but were somewhat stuck. There was always an intent to return to these
questions, but Schramm’s passing in September 2008 threw the plans into chaos.
We (RP and IR) hope we can do justice to Oded’s memory.
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These questions are reminscent of questions of the kind often raised by Herb
Wilf, that sound simple but are not. This work was first presented at a conference in
Herb’s honor and we hope it serves as a fitting tribute to Herb as well.

2 Results and Notations

Our goal in this paper is to prove cases of Conjecture 1.

Definition 2. We definite the p-energy of u to be

1 1/p
&= ([ [ oy dn@dnen)

Since in the sequel we will only be using the 1-energy, we will write € for &;.

By Fubini’s Theorem, when p has finite 1-energy, the function V,, defined by

V(o) = / Z_#Wdu(w)

is well defined and in L'(u).

Remark 2. The potential function V), is sometimes called the Cauchy transform of
the measure (. Commonly it is implied that p is supported on R or on the boundary
of a region over which z varies, but this need not be the case and is not the case for
us (except in Theorem 2).

Theorem 1. Suppose | has finite 1-energy and that
piz: Vu(z) =0} =0. 1)

Then Z( f,)) converges in distribution to [t as n — oo.

A natural set of examples of p with finite 1-energy is provided by the following
observation:

Observation 1. Suppose 2 C C has Hausdorff dimension greater than one, and |
is in the measure class of the Hausdorff measure on 2. Then [ has finite 1-energy.

Proof. This is essentially the content of [11][Theorem 4.13(b)]. O

In particular, if u is uniform in an open subset (with compact closure) of C, its
1-energy is finite.

A natural special case to which Theorem 1 does not apply is when u is uniform
on the unit circle; here the 1-energy is just barely infinite.

Theorem 2. [f i is uniform on the unit circle then Z( f,,) converges to the unit circle
in probability.
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This result is somewhat weak because we do not prove Z(f,) has a limit in
distribution, only that all subsequential limits are supported on the unit circle. By the
Gauss-Lucas Theorem, all roots of f,, have modulus less than 1, so the convergence
to u is from the inside. Weak convergence to p implies that only o(n) points can
be at distance @ (1) inside the cirle; the number of such points turns out to be @(1).
Indeed quite a bit can be said about the small outliers. For 0 < p < 1, define
B, := {z : |z| < p}. The following result, which implies Theorem 2, is based on a
very pretty result of Peres and Virag [21, Theorems 1 and 2] which we will quote in
due course.

Theorem 3. Forany p € (0,1), asn — oo, the set 2(g,) N B, of zeros of g, on B,
converges in distribution to a determinantal point process on B, with the so-called
Bergmann kernel 7' (1 — z;Z;)?. The number N(p) of zeros is distributed as the
sum of independent Bernoullis with means p**, 1 < k < oo.

2.1 Distance Functions on the Space of Probability Measures

If u and v are probability measures on a separable metric space S, then the
Prohorov? distance |;t — v|p is defined to be the least € such that for every set
A, w(A) < v(A°) + € and v(A) < u(A) + €. Here, A€ is the set of all points
within distance € of some point of A. The Prohorov metric metrizes convergence in
distribution. We view collections of points in C (e.g., the zeros of f;) as probability
measures on C, therefore the Prohorov metric serves to metrize convergence of zero
sets. The space of probability measures on S, denoted P(S), is itself a separable
metric space, therefore one can define the Prohorov metric on P(S), and this
metrizes convergence of laws of random zero sets.

The Ky Fan metric on random variables on a fixed probability space will be of
some use as well. Defined by K(X,Y) = inf{e : P(d(X,Y) > €) < €}, this
metrizes convergence in probability. The two metrics are related (this is Strassen’s
Theorem):

lw—vlp =inf{K(X,Y): X ~pu, Y ~v}. 2)

A good reference for the facts mentioned above is available on line [13]. We
will make use of Rouché’s Theorem. There are a number of formulations, of
which the most elementary is probably the following statement proved as Theorem
10.101n [2].

Theorem 4 (Rouché). If f and g are analytic on a topological disk, B, and |g| <
| f| on OB, then f and f + g have the same number of zeros on B.

2 Also known as the Prokhorov and the Lévy-Pro(k)horov distance
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3 Proof of Theorem 1

We begin by stating some lemmas. The first is nearly a triviality.
Lemma 1. Suppose u has finite 1-energy. Then
(i)

1
t-]P’(|X0—X1|§;)—>O.

(ii) forany C > 0,

C
]P’(mm |Xj—Xn+1|§—)—>O;
n

I<j=n

Proof. For part (i) observe that limsup? - P(|Xo — X;| < 1/t) < 2limsup2/ -
P (|X0 - X1 = Z_f) as t goes over reals and j goes over integers. We then have

00 > E(p)

1
E——
| Xo — X1l

v

1 .
EE Z 2/ 1|X'0—X1 |<2—/
jez

1 . .
= Eszzp>(|X0—X1| <27)
J

and from the finiteness of the last sum it follows that the summand goes to zero.
Part (i) follows from part (i) upon observing, by symmetry, that

C C
P(min |Xj_Xn+1|§—)SnP(|X0—X1|§—). |
1<j<n n n

Define the nth empirical potential function V, , by

1 1
Vll,n(z) = ; Z _X.
j=1 e

which is also the integral in w of 1/(z — w) against the measure Z( f,). Our next
lemma bounds V), , (z) on the disk B := Bcn (Xy+1)-



266 R. Pemantle and I. Rivin

Lemma 2. Forall € > 0,

P (sup V. @)= en) -0
ZEB '

asn — oo.
Proof. Let G, denote the event that mini<;<, |X; — X,41| > 2C/n. Let S, :=
sup.eg |V, ,(2)|. We will show that

ES,1¢, = o(n) 3)

as n — 0o. By Markov’s inequality, this implies that P(S,1¢, > en) — 0 for all
€ > 0 asn — oo. By part (ii) of Lemma 1 we know that P(G,) — 1, which then
establishes that P(S,, > en) — 0, proving the lemma.

In order to show (3) we begin with

IV’()I—li —1 <12”: 1
N,nz - nj:l (Z_X])2 —nj:l |Z_X]|2

Therefore,

4

RS 1 1 ¢
Silg, < — g, <) ———v5la. @
"o ’112221(|Xn+1—Xj|—C/n)2 ¢ an::1|Xn+l_Xj|2 ¢

where we have used the triangle inequality, thus:
lz = X;| = (z = Xut1) + (Xut1 — X)) = [ Xpp1 — Xj| = [z = Xut1] -

Since we are in B, we know that |z — X,,4+1| < C/n, and since we are in G,,, we
know that C/n < | X, 41 — X]|/2

Because S, is the supremum of an average of n summands and the summands are
exchangeable, the expectation of S,1¢, is bounded from above by the expectation
of one summand. Referring to (4), and using the fact that G, is contained in the
event that | X,,+1 — X;| > 2C/n, this gives

4

ESy1g, < Emlan+l—X1|22C/n :

A standard inequality for nonnegative variables (integrate by parts) is

t
EW 1y < 5/ 2sP(W > s)ds.
0
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When appliedto W = |X,,+1 — X|~" and t = n/(2C), this yields

n/(2C) 1
]ESIHE/ 2sP(—>s)ds.
"o 0 | Xo — X1

The integrand goes to zero as n — oo by part (i) of Lemma 1. It follows that the
integral is o(n), proving the lemma. O

Define the lower modulus of V' to distance C/n by

Vi@ = inf n\VW,(w)|.

wilw—z|<C/
This depends on the argument u as well as C and n but we omit this from the

notation.

Lemma 3. Assume p has finite 1-energy. Then as n — oo, the random variable
Kf (Xn41) converges in probability, and hence in distribution, to |V, (X,11)|.

In the sequel we will need the Glivenko-Cantelli Theorem [10, Theorem 1.7.4].
Let Xi,..., X,,... be independent, identitically distributed random variables in
R with common cumulative distribution function F. The empirical distribution
function F, for Xy, ..., X, is defined by

R = = Y I (X))

i=1

where I¢ is the indicator function of the set C. For every fixed x, F,(x) is a
sequence of random variables, which converges to F(x) almost surely by the
strong law of large numbers. Glivenko-Cantelli Theorem strengthen this by proving
uniform convergence of I, to F.

Theorem 5 (Glivenko-Cantelli).

| Fo — Flloo = sup | Fy(x) — F(x)| — 0 almost surely.
x€R

The following Corollary is immediate:

Corollary 1. Let f be a bounded continuous function on R. Then

lim denszdF, almost surely.
R R

n—00

Another immediate Corollary is:

Corollary 2. With notation as in the statement of Theorem 5, the Prohorov distance
between F,, and F converges to zero almost surely.
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Proof of Lemma 3. 1t is equivalent to show that V¢ — [Vu(Xp41)] — 0 in
probability, for which it sufficient to show

sup |Vu,n(u) - VM(Xn+l)’ —0 (5)

u€B

in probability. This will be shown by proving the following two statements:

sup |Vu,n W) = Vin (Xn+1)| — 0 in probability ; (6)
u€B

|Viin (Xn11) = V(X 11)| = 0 in probability . (7)
The left-hand side of (6) is bounded above by (C/n) sup,cp | V;i,n (u)|. By Lemma 2,
for any € > 0, the probability of this exceeding Ce goes to zero as n — oo. This
establishes (6).

For (7) we observe, using Dominated Convergence, that under the finite 1-energy
condition,

1
ey = [ [ i di@) dutn) 0

as K — oo. Define ¢ by

|z —wl

53 (w) =

z—wmax{|z—w|,1/K}

in other words, it agrees with 1/(z —w) except that we multiply by a nonegative real
so as to truncate the magnitude at K. We observe for later use that

() -

IIZ—W\*IZK

1 )
=
|z —w]| |z —w]|

so that

/1

We now introduce the truncated potential and truncated empirical potential with
respect to ¢pX:

¢F*(w) — Flw’ du(z)du(w) < €¥(u) — 0. ®)

VE() = / 65 (w) dyu(w)

VK (@) = / 6520 d2(f)(w) .
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We claim that
E [V (Ko = VaXasn)| = €5 ). ©

Indeed,

VX = VEe = [ ( —¢K~Z(Xn+1)) dn

Z— An+l

so taking an absolute value inside the integral, then integrating against the law of
X, 41 and using (8) proves (9). The empirical distribution V), , has mean p and is
independent of X, 41, therefore the same argument proves

E |V, (X)) = Vin (X)) | < €5 (1) (10)

independent of the value of n.

We now have two thirds of what we need for the triangle inequality. That is, to
show (7) we will show that the following three expressions may all be made smaller
than e with probability 1 — €.

Vu,n(Xn+l) - V,fn(Xn-i-l)
VK Xug) = VE(Xa1)

VMK(Xn+1) — Vu(Xnt1)

Choosing K large enough so that EX (i) < €2, this follows for the third of these
follows by (9) and for the first of these by (10). Fixing this value of K, we turn
to the middle expression. The function ¢X* is bounded and continuous. By the
Corollary 1 to the Glivenko-Cantelli Theorem 5, the empirical law Z( f,;) converges
weakly to ¢, meaning that the integral of any bounded continuous function ¢ against
Z(f,) converges in probability to the integral of ¢ against . Setting ¢ := ¢*=
and z := X4 proves that V;fn (Xn+1) — VMK (X,+1) goes to zero in probability,
establishing the middle statement (it is in fact true conditionally on X, 4+;) and
concluding the proof. O

Proof of Theorem 1. Suppose that V¢ (X,+,) > 1/C. Then for all w with |w —
Xu+1| < C/n, we have

o
B =" —— = V) = =
J

=1
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and hence
A0 = [Viewn)]| = 0 (K) = =

To apply Rouché’s Theorem to the functions 1/f, and z — X,,+; on the disk B :=
Bc/n(Xyn41) we note that [1/f)] < C/n = |z — X,41| on 0B and hence that
the sum has precisely one zero in B, call it g, 4. Taking reciprocals we see that
@y+1 is also the unique value in z € B for which f,(z) = —1/(z — X,+1). But
f1@ +1/(z— Xuy1) = f,11(2), whence f, | has the unique zero a, 4+ on B.

Now fix any § > 0. Using the hypothesis that u{z : V,,(z) = 0} = 0, we pick a
C > 0 such that P(|V,(X,+1)| < 2/C) < §/2. By Lemma 3, there is an 1y such
that for all n > ny,

P (KC(Xn+1) < é) <5,

It follows that the probability that £, | has a unique zero a,+ in B is at least 1 — §
for n > ng. By symmetry, we see that for each j, the probability is also at least
1 — & that f, | has a unique zero, call it a;, in the ball of radius C/n centered at
X ;; equivalently, the expected number of j < n + 1 for which there is not a unique
zero of f ., in Bc/,(X ;) is at most 8n for n > ny.

Define x; to equal a; if f, , has a unique root in Bc/,(X;) and the minimum
distance from X; to any X; withi < n + 1 andi # j is at least 2C/n. By
convention, we define x; to be the symbol A if either of these conditions fails.
The values x; other than A are distinct roots of f,,, and each such value is
within distance C/n of a different root of f,4+;. Using part (ii) of Lemma 1 we
see that the expected number of j for which x; = A is o(n). It follows that
P(Z( fu+1) — Z2(f,/ )P > 28) — 0 as n — oo. But also the Prohorov distance
between Z( f,+1) and pu converges to zero by Corollary 2. The Prohorov distance
metrizes convergence in distribution and § > 0 was arbitrary, so the theorem is
proved. O

4 Proof of Remaining Theorems

Let § = Z?‘;o Y;z/ denote the standard complex Gaussian power series where
{Y;(w)} are IID standard complex normals. The results we require from [21] are as
follows.

Proposition 1 ([21]). The set of zeros of G in the unit disk is a determinantal point
process with joint intensities

1
se.szy) =7 "det| ——— | .
Pl ) [(1 —z,-z,»)z}
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The number N(p) of zeros of G on B, is distributed as the sum of independent
Bernoullis with means pzk, 1<k <oo

To use these results we broaden them to random series whose coefficients are
nearly IID Gaussian.

Lemma 4. Let {g, := ) .2, anrZ } be a sequence of power series. Suppose

(i) For each k, the k-tuple (a1, ...,anx) converges weakly as n — oo to a
k-tuple of IID standard complex normals;
(ii) Elan,| < 1foralln andr.

Then on each disk B,, the set Z(g;) N B, converges weakly to Z(5) N p.

Proof. Throughout the proof we fix p € (0,1) and denote B := B,. Suppose an
analytic function 4 has no zeros on dB. Denote by ||g — /||p the sup norm on
functions restricted to B. Note that if 7, — h uniformly on B then Z(h,) N B —
Z(h) N B in the weak topology on probability measures on B, provided that & has
no zero on 3B. We apply this with 1 = G := 322 ¥;z/ where {Y;(w)} are IID
standard complex normals. For almost every w, i(w) has no zeros on dB. Hence
given € > 0 there is almost surely a §(w) > 0 such that ||g — G||p < § implies
|Z(g) — 2(9)|p < €. Pick §p(¢) small enough so that P(§(w) < 8p) < €/3; thus
|lg — Sl < 8o implies |Z(g) —Z(9)| < € for all G outside a set of measure at most
€/3.
By hypothesis (ii),

k+1
=

00
E anrZ

r=k+1 I=p

Thus, given € > 0, once k is large enough so that p**1/(1 — p) < €8y(€)/6, we

see that
o0
8o (€) €
P nr d =<z
(| 2 o] = 552 <5
r=k+1

For such a k(e) also | Y72, Y,2"| < €/3. By hypothesis (i), given € > 0 and
the corresponding §(¢) and k(€), we may choose ny such that n > nq implies
that the law of (a1, ..., a,k) is within min{e/3, 8¢(¢)/(2k)} of the product of k
IID standard complex normals in the Prohorov metric. By the equivalence of the
Prohorov metric to the minimal Ky Fan metric, there is a pair of random variables
g and h such that g g ~ gy and h ~ G and, except on a set of of measure €/3, each of
the first k coefficients of g is within §p/(2k) of the corresponding coefficient of .
By the choice of k(¢), we then have

o~ 2¢
P(|g — hllz = 80) < 3
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By the choice of §y, this implies that
P(2(3) = 2(h)p 2 €) <e.

Because g ~ g, and h ~ G, we see that the law of Z(gn) N B and the law of

Z(9) N B are within € in the Prohorov metric on laws on measures. Because € > 0

was arbitrary, we see that the law of Z(g,) N B converges to the law of Z(G) N B.
O

Proof of Theorem 3. Let p < 1 be fixed for the duration of this argument and denote
B := B,. Let

_ A 5 ]
@) =2 =0 g

j=1

Because | X ;| = 1, the rational function 1/(z—X;) = —Xj_l/(l — Xj_lz) is analytic
on the open unit disk and represented there by the power series — > oo X j_’_lzr. It
follows that —g,, / /7 is analytic on the open unit disk and represented there by the
power series —g,(2)/ /1 = Y oo anrz” Where

n
any =n"1"? E Xj_"_l.
—

The function —g,/+/n has the same zeros on B as does f,, the normalization by
—1/+/n being inserted as a convenience for what is about to come.

We will apply Lemma 4 to the sequence {g, }. The coefficients a,,; are normalized
power sums of the variables {X}. For each r > 0 and each j, the variable Xj_"_1
is uniformly distributed on the unit circle. It follows that Ea,, = 0 and that
Eay @y = n”"! Zij Xi_r_IX_j_r_l
(Ela,-|*)"/? = 1, satisfying the second hypothesis of Lemma 4. For the first
hypothesis, fix k, let §; = Arg(X;), and let v/) denote the (2k)-vector (cos(6;),
—sin(6;), cos(26;), —sin(26;), ..., cos(kd;), —sin(k6,)); in other words, v\/) is
the complex k-vector (Xj_l, X ]._2, cees Xj_k ) viewed as a real (2k)-vector. For each
1 <s.t <2k wehave Ev’v\) = (1/2)8;;. Also the vectors {v/)} are independent
as j varies. It follows from the multivariate central limit theorem (see, e.g., [10,

Theorem 2.9.6]) that u™ := p~1/2 > v(/) converges to 1/+/2 times a standard

(2k)-variate normal. For 1 < r < k, the coefficient a,, is equal to ul" | + iul".

Thus {a,, : 1 < r < k} converges in distribution as n — oo to a k-tuple of IID
standard complex normals. The hypotheses of Lemma 4 being verified, the theorem
now follows from Proposition 1. O

=n"! Zij 8;; = 1. In particular, E|a,,| <
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On the Distribution of Small Denominators
in the Farey Series of Order NV

C.L. Stewart™

In memory of Professor Herb Wilf

1 Introduction

Let N be a positive integer. The Farey series of order N is the sequence of rationals
h/k with h and k coprime and 1 < h < k < N arranged in increasing order
between 0 and 1, see [1]. There are ¢(k) rationals with denominator k in Fy and
thus the number of terms in Fy is R where

R=RN)=¢p(1)+¢Q2)+---+¢(N) = %NZ + O(NlogN) (1)

(see Theorem 330 of [3]). Let
N
S(N)=> g
i=1

where ¢g; denotes the smallest denominator possessed by a rational from Fy which
lies in the interval (% ’ﬁ] . In [4] Kruyswijk and Meijer proved that

N3? « S(N) « N*? (2)

*Research supported in part by the Canada Research Chairs Program and by Grant A3528 from
the Natural Sciences and Engineering Research Council of Canada.

C.L. Stewart (2<)
Department of Pure Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
e-mail: cstewart @uwaterloo.ca

LS. Kotsireas and E.V. Zima (eds.), Advances in Combinatorics, 275
DOI 10.1007/978-3-642-30979-3_15, © Springer-Verlag Berlin Heidelberg 2013


mailto:cstewart@uwaterloo.ca

276 C.L. Stewart

and they remarked that the function S(N) is connected with a problem in
combinatorial group theory. In particular, C. Schaap proved that for any prime p,
S(p) = p>— p + 1 — L(p) where L = L(p) is the largest integer for which there
is a sequence of integers a;,...,ay with1 <a; <a; <:--- <ap < p—1for
which a; 4+ -+ 4+ a; # 0(mod p) for I < j < L. An examination of Kruyswijk
and Meijer’s proof shows that the implied constants in (2) may be made explicit
and that #N 32 < §(N) < 96N3/? for N sufficiently large. They conjectured

that limy_.o S(N)/N3/? exists and is equal to (%)2 = 1.62.... Numerical
work seems to be in agreement with this conjecture. In the report [5] we gave an
alternative proof of (2) and in fact showed that

1.20N%? < S(N) < 2.33N3/?
for N sufficiently large. We are now able to refine this estimate.
Theorem 1. For N sufficiently large

1.35N*? < S(N) < 2.04N3/2

Our proof of Theorem 1 depends on two results of R.R. Hall [2] on the
distribution and the second moments of gaps in the Farey series.

2 Preliminary Lemmas

Let N be a positive integer and let Fy = {x;,...,xg} where 0 < x| <--- < xgp =
1.Putf; = xyand £, = x, — x,— forr = 2,..., R so that the £;’s correspond to
gaps in the Farey series with the points 0 and 1 identified.

Lemma 1. There is a positive number Cy such that for N > 2,

R
> 2 < (CologN)/N>.
r=1
Proof. This follows from Theorem 1 of [2]. |

For each positive real number ¢ and each positive integer N we define oy (¢) to
be the number of gaps ¢, for which £, > t/N?. Thus

R
on(t)= Y L

r=1
t<N2¢,

We also define §y (1) by

Sn(t) = on(1)/R(N).
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Then §y(¢) is a distribution function and Hall [2] proves that §y (7) tends to a limit
as N tends to infinity.

Lemma2. If4 <t < N and w = w(t) is the smaller root of the equation w* =

t(w—1) then
Sn(t) =27 (1 —w+2logw) + Ot "N log N + N73/?).
If1 <t <4then
Sn(t) =217 (1 +logt — %) + O(N 7 'log N).
Proof. The first assertion follows from Theorem 4 of [2] together with (1). The

second assertion follows from (1.2) of [2]. O

Let us define f(¢) for1 <t by

2(1 +1logt — £ forl <t <4
fy = 2 loer =3) 3)
2(1 —w+2logw) ford <t
where
t 4\ 12
w=-=[1—-|1-- for4 < t.
2 t
Observe that
lim f()/(2/1) = 1. “)
—>00

Lemma 3. For4 <t < N we have

24(2log2 — 1) { N\? N
UN(I)f#(T) +0(T10gN+N1/2).
T

Proof. Since oy (1) = R(N)dy(¢) it suffices, by (1) and Lemma 2 to show that for
t > 4, g(t) is a decreasing function of ¢ where

g(1) = t(2logw(r) — (w(r) — 1)).

Since

w(t) = (t —1(1 —4/1)1/2) /2
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we find that
g't) =2logw— (w—1) + ((2/w) — Dtw'(¢)
)
g'(t) =2logw — 2w + 2.

On observing that log(1 + x) < x for x > 0 and putting x = w — 1 we conclude
that

g <2w—1)—-2w+2=0

whenever w > 1. Since, fort > 4,
O=1+142 4494
w = —_ —_— oo — e
r 2 tn

where the ¢, are positive numbers we see that w > 1 for # > 4 hence for t > 4.
Thus g(¢) is a decreasing function of ¢ as required. O

3 Further Preliminaries

For each positive integer M we define 8(M ) to be the number of ¢;’s in the sum
giving S(N) which are larger than M. Thus

N
M) =" 1.

i=1
qi>M

For positive integers j and M let ¥(j) (= ¥u(j)) denote the number of gaps ¢,
in Fys of size larger than # Accordingly we have

R(M)

y()= ) L

r=1
Z,>ﬁ

~ N] with

1 <h < N.O(M)is the total number of intervals (%!, %] which are properly
contained in gaps of Fj,. Thus

OM) <y () + Q) +---.

A gap £, in Fyy with £, < L + properly contains at most ] intervals (

Similarly a gap €, in Fys with £, > 1 properly contains at least j intervals of the
form (h—Nl, N] . Therefore
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v(2)+ v+ < 0(M).

Since ¥ (j) = oum (M) , it follows that

N
ijg (JE) < Q(M) < Xv:g (Jﬂz) 5)
= M N = _j=1 M N )

where v (= v(M)) satisfies
<v+1 (6)

Let u; be the number of rationals % with (h,k) = land 1 < h <k < JN.
Then by (1)

3
U = FN + O(N'*10gN) (7

and the sum S, of the denominators of these rationals is

Si= Y ke(k).
k=N

By Abel summation and (1) we find that
2 3/2
S| = —2N 4+ O(N logN). ®)
b4

Observe that if ¢ is an integer with 1 < g < VN then each rational p/q with p
positive and coprime with ¢ contributes a term ¢ to S(N). Thus S is the sum of the
u; smallest terms in the sum giving S(N). Put

uy =N —u 9

and let S, be the sum of the u; largest ¢’s which appear in the sum for S(N). Then

S(N) = S; + S». (10)

4 The Upper Bound in Theorem 1

In order to establish an upper bound for S (V) we shall establish an upper bound for
S and then appeal to (8) and (10).
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For any positive integer M with M < N we have
Sy <Muy +60(M)+60(M + 1) +---+ O(N). (11)

Put A = 1.38 and M; = [AN'/?]. Since A(1 — 3/7?) < 0.96054 and 6(M,) < N,
it follows from (7), (9) and (11) that

Sy < 0.96054N3/% + O(My + 1) + (M, +2) +---+ O(N) (12)

for N sufficiently large. Next, put

Ss= Y  O(M) and Sy= > 6(M).

M;<M<N3/5 N3/5<M<N
Thus, by (12),
S, < 0.96054 N3 4+ S5 + S,. (13)

Let us first estimate S4. To that end recall that 8(M ) is the number of ¢;’s in the
sum S(N) which are larger than M. Thus there are 6(M ) intervals (’N;l, #] which

contain no element of Fjs. In particular there must exist differences £, , ..., ¢, in
Fy for which we can find positive integers ki, ..., ks with £,, > k; /N fori =
1,...,s and such thatk; + --- 4+ k; > 6(M). Thus we certainly have

- 6(M)
d o= e (14)
i=1
On the other hand, by Lemma 1,
R(M)
>4 < CoM " log M. (15)

r=1
A comparison of (14) and (15) reveals that
NZ
For N3 < M < N we have log M < log N hence

NodMm

> 6(M) < CoN*logN —
N3/5—1 M2

N3/5<M<N

SO

S4 <2CoN"°log N. (16)
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Next we estimate S3. By (5)

v 2 g2
Ss= Y o= ZGM(]%) (17)

My <M <N3/5 My <M <N3/5 j=1

For M < N3/5 we see from (6) that v + 1 is at least N2/, which in turn exceeds
10* for N sufficiently large. Then, by Lemma 3,

L V), E e 2 ()

Mj<M<N3/510*<j<v M;<M<N3/5 104<j <00 J

1

—472
<107'N% Y —
Mi<M<N3/5

<107*N3/2, (18)
for N sufficiently large. Accordingly by (17) and (18)

104

.M2
Sy < 107N 37 3 ou (’7) (19)

My<M<N3/5 j=1

Let £ > 0. For N sufficiently large in terms of ¢
3 2
RM)<|\—+e|M
b4

hence

A f2 Aq2 Af2
oM (’%) = R(M)Sy (J%) < (% - s) M8y (J%)

jM? 3 N (jM? iM?
()< () 5 (o (%) o

It follows from Lemma 2 and (3) that for j < 10*and M < N 3/5

jM? M\ (jMP log N
NSM(N)_f(N +0 N )

and so
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Thus, by (4), for N sufficiently large in terms of &

M (M M’

For each integer j with 1 < j < 10* we find from (20) and (21) that
> M (24 (1+ )N oo f M (22)
oy | — — +e¢ &)— — .
MAN 72 j N
My <M <N3/5 M<M<N3/5

The function f is continuous and it is increasing on (1, 4) and decreasing on (4, co).
Accordingly, with A = 1/log N, we have

/(%)

My<M<N3/5

j(M; + k[AV/N])? VN
< 3 f( N )[A«/N] +0(—10gN)
1<k <(N3/5—M;)/[A~/N]

which is, for N sufficiently large,

<( 5 f(j(A\/N+0(1)+k(Aﬁ+0(1)))2)(Aﬁ+O(l)))+0(\/N).

|<k<N1/5 N log N

Therefore, for N sufficiently large in terms of ¢,

Z y (1%2) <(1—|—8)N1/2 Z f(j(k+kA)2+0(k2N_l/2))'A

Mi<M<N3/5 1<k<N/>

<(1+e)?N2 / = it (23)
A

Thus, by (22) and (23),
104

x, ()

J=1 M <M<N3/5

104
3 1 [
< (—2 + s) (1+e’N>>" —,/ Frdr.
T i=1d I

(24)
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Evaluating with MAPLE we find that

104 1 [
> - / F(iP)dr < 2.8640. (25)
=1 J Ja

Therefore, by (24) and (25), for N sufficiently large,

104 Ve
> Y ou (JT) < 0.8706 N3/, (26)

J=1M;<M<N3/5
By (19) and (26)
S5 < 0.8707 N3/? (27)
for N sufficiently large. Further, by (13), (16) and (27),
S, < 1.8313 N3/2

for N sufficiently large. Our result now follows from (8) and (10).

5 The Lower Bound in Theorem 1

The value of the smallest g; in S, exceeds +/N and so
Sy = [VN]uz + O(WN)) + O(VN] + 1) + - + O(N)

hence, by (7) and (9),
Sy > (1 - %) N32 4 O(NlogN) + 60(VN)) +---+06(N).  (28)

Certainly

O(VND +---+0N)= > 6(M)

N12<M<N3/5

and for M with M < N3/ we see from (6) that v + 1 is at least N2/>. Therefore,
by (5), for N sufficiently large

104

Yoo o> ZoM(j%z)

N1/2<M<N3/5 NY2<M<N3/5j=2
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and so, by (28),

10* a2
3 3/ M
SZ>(1—;)N/ +OWNIogN)+Y Y ou (T) (29)

J=2NV2<M<N3/5

We shall now estimate the double sum in (29). Let ¢ > 0. For N sufficiently large
in terms of ¢

R(M) > (i2 — 5) M?
s

hence

iM>? iM? 3 iM?
o () = mam (557 ) = (55 ) s (557
iM? 3 N (jM? M?
o ()= (o) 5 (o () G

It follows from Lemma 2 and (3) that for j < 10*and M < N3/°
jM? M\ (jMP log N
I Sm ( N )= f N + 0 N .

Thus, by (4), for N sufficiently large in terms of &

M’ m? i’

and so

For each integer j with 2 < j < 10* we find from (30) and (31) that
> on(Br
MAN

NYV2<M<N3/5
3 N M?
>(p—5)(1—8)—. > f(T)

N2<M<N?3/5

(32)

The function f is continuous and it is increasing on (1, 4) and decreasing on
(4, 00). Accordingly, with A = 1/log N, we have
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jM?
> I\
N12<M<N3/5

JUVN] + k[AVN])? VN
- Z f ( ¥ ) [A\/N] +0 (@)
1<k <(N35=N1/2)/[A/N]

which is, for N sufficiently large,

. ( N, (j(ﬁ+ O(1) + k(AN + 0(1)))2) UV + 0(1))) +0 (ﬂ)

1<k<N1/10 N log N

Therefore, for N sufficiently large in terms of ¢,
jM? 1/2 , 2 2 07—1/2
> f ~ )= (-oN > S +kA?+ O NT2)) - A
N2<M<N3/5 I<k < N1/10

> (1 —¢)’N/? / - F(i?)dt. (33)
1

Thus, by (32) and (33),

104

£ ox e

J=2 NV2<M<N3/5

(34)
3 10° 1 poo
> (_2 - 8) (1)’ N2y —./ fydr.
i —J
j
Evaluating with MAPLE we find that
104 1 [
Z —./ f(]'tz)dt > 1.5098. (35)
=N

Therefore by (34) and (35), for N sufficiently large

104

.Mz
> Y ou (]T) > 0.4589 N2, (36)

J=2NV2<M<N3/5
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By (8), (10), (29) and (36) we see that
1
S(N) > (1 - =+ 0.458) N3? > 135N3?
b

for N sufficiently large and the result now follows.
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Abstract We explain the use and set grounds about applicability of algebraic
transformations of arithmetic hypergeometric series for proving Ramanujan’s for-
mulae for 1/ and their generalisations.

Keywords s ¢ Ramanujan * Arithmetic hypergeometric series ¢ Algebraic trans-
formation * Modular function

The principal goal of this note is to set some grounds about applicability of algebraic
transformations of (arithmetic) hypergeometric series for proving Ramanujan’s for-
mulae for 1/7 and their numerous generalisations. The technique was successfully
used in quite different situations [7, 16, 18-20] and was dubbed as ‘translation
method’ by J. Guillera, although the name does not give any clue about the method
itself. In theory, one could think of the method as a way to reduce (rather than
translate) the identity in question to a simpler one, but the simpler identity may
be much more involved than the original in many perspectives. (Also, “Lost in
reduction” sounds menacingly.)
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Consider the following problem: Show that

(4n)! 1 49
3+40n = —. 1
;) S (o) - S = (1)

Step 0. It comes as a useful rule: prior to any attempts to prove an identity
verify it numerically. The convergence of the series on the left-hand side of (1)
is reasonably fast (more than three decimal places per term), so you shortly
convince yourself that the both sides are

3.001679541740867825117222046370611403163548615329487998574326 . .. .

Step 1. Series of the type given in (1) should be quite special. With a little search
you identify

(4n)! 113
—.F(% 23
g nt* 256 U0

a hypergeometric series, where the notation (a), (Pochhammer’s symbol or
shifted factorial) stands for I'(a + n)/I'(a) = a(@a + 1)---(a + n — 1).
A generalised hypergeometric series

a, az, ..., am . 2\ (@)n(@)n - (@m)n x"
’”F’”‘l( x) o ; (b2)y -+ (bp)a 1!

by, ..., by
is an object of intensive study since Euler [2, 17]; one of its important properties
is the linear differential equation

d\ (. d Sl d
((xa)]l_[:z(xa+bj—l)—le:[l(xa+aj))F=0 3)

satisfied by the series. The required identity (1) can be therefore transformed to
the more conceptual form
x = .
) x=1/74 33w
“)

> (1),(3),(3), 3+40n d 113
Z_: 4 n|3 (4) 74n (3+40x x)3F2( 121
Step 2. Convince yourself that identities of the wanted type are known in the
literature. In fact, they are known for almost a century after Ramanujan’s
publication [15]; identity (1) is Eq. (42) there. Ramanujan did not indicate how
he arrived at his series but left some hints that these series belong to what is
now known as ‘the theories of elliptic functions to alternative bases’. The first

2 @,0,0), v
LR @

49
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proofs of Ramanujan’s identities and their generalisations were given by the
Borweins [5] and Chudnovskys [8]. Those proofs are however too lengthy to
be included here. Note that Ramanujan’s list in [15] does not include the slowly
convergent example

)

which was shown to be true by G. Bauer [3] already in 1859. Bauer’s proof
makes no reference to sophisticated theories and is much shorter, although
does not seem to be generalisable to the other entries from [15]. In fact,
D. Zeilberger assisted by his automatic collaborator S.B. Ekhad [9] came up
in 1994 with a short proof of (5) verifiable by a computer. The key is a use
of a simple telescoping argument (this part is completely automated by the
great Wilf—Zeilberger (WZ) machinery [14]) and an advanced theorem due to
Carlson [2, Chap. V]; the proof is reproduced in [21]. Quite recently, J. Guillera
advocated [10-13] the method from [9] and significantly extended the outcomes;
he showed, for example, that many other Ramanujan’s identities for 1/ can be
proven completely automatically. Note however that (1) is one of “WZ resistant’
identities. To overcome this technical difficulty, below we reduce the identity
to the simpler one (5). (There is no warranty, of course, for (5) to exist. The
comments below address this issue up to a certain point.)

Step 3. Use your favourite computer algebra system (CAS) to verify the hyperge-

ometric identity
y) (6)

ZLx2 4+ 0(x3)

o0

Z

d 111 2
+4 )( l)n_ 1+4X— 3F2 20202 = —, (5)
dx 1 b4

x=-—1

where y = y(x) = l024x S+0Handr =r(x) =1+ fx+ 25
are algebraic functions determined by the equations

512

(x2 = 194x + 1)*y*
+ 16(4833x% + 2029050x° + 47902255x* — 92794388x*
+ 47902255x2 + 2029050x + 4833)xy’
— 96(3328x° — 623745x° + 3837060x* — 6470150x>
+ 3837060x2 — 623745x + 3328)xy>

+ 256(1024x% — 1152x° + 225x* — 2x* + 225x% — 1152x + 1024)xy + 256x* =0
and
(x2 —194x + 1) 4+ 4(61x* + 25798x + 61)(x — 1)r®
+ 486(41x% — 658x 4 41)r* + 551124(x — 1)r? + 531,441 = 0.
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To do this you (and your CAS) are expected to use the linear differential
equations (3) for the involved hypergeometric functions and generate any-order
derivatives of y and r with respect to x by appealing to the implicit functional
equations. To summarise, you have to check that both sides of (6) satisfy the same
(third order) linear differential equation in x with algebraic function coefficients
and then compare the first few coefficients in the expansions in powers of x.
Note that x = —1 correspondsto y = 1/7* (cf. (5) vs. (4)), and this is the reason

behind considering the sophisticated functional identity (6).
The task on this step does not look humanly pleasant, and there is a (casual) trick
to verify (6) by parameterising x, y and r:

__4p-pU+p’e=p?* _16p°0=p] U+ p@—p)d—2p)
(1=2p)° Y (1=2p +4p> = 2p")’

(1—2p)°
r= .
1—2p+4p3—2p*

Choosing p = (1 — V45 — 18+/6)/2 we obtain x = —1 and y = 1/7*. (The
modular reasons behind this parametrisation can be found in [4, Lemma 5.5 on
p- 111] where our p is the negative of the p there.)

Step 4. By differentiating identity (6) with respect to x and combining the result
with (6) itself we see that

d 3303
" )2 2
(“+ xdx)3 2( 11

again, the derivatives dy/dx and dr/dx are read from the implicit functional
equations. An alternative (but simpler) way is using the parametrisations x(p),
y(p) and r(p). Takinga = 1, b = 4 and x = —1 in (7) you recognise the
left-hand side as the familiar Bauer’s (WZ easy) identity (5), while the right-hand
side is nothing but the series in (4).

dr rx dy d 1 13
- [ Ry N s AU NN O I S5 A
o) = (a0 ooy ) o

Comments. The story exposed above is general enough to be used in other situations
for proving some other formulae for 1/7. The setup can be as follows. Assume we
already have an identity

=/“L’

X=X0

(a + bx%)F(x)

where a, b, xo and p are certain (simple or at least arithmetically significant)
numbers, and F(x) is an (arithmetic) series. Furthermore, assume we have a
transformation F(x) = rG(y) with r = r(x) and y = y(x) differentiable at
X = Xo. Then

. d
(a + by@)G(y) =u,

Y=Yo
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where

N d
, b:bg—y , and y = yy.
y dx

X=X0

There is, of course, no magic in this result: it is just the standard ‘chain rule’.

The applicability of this simple argument heavily rests on existence of trans-
formations like (6). This in turn is based on the modular origin [5, 6, 8, 21] of
Ramanujan’s identities for 1/7: any such identity can be written in the form

(a + bx%)F(x)

where F(x) is an arithmetic hypergeometric series [23] satisfying a third order
linear differential equation. In other words, for a certain modular function x = x(t)
(not uniquely defined!) the function F(x(t)) is a modular form of weight 2. The
theory of modular forms provides us with the knowledge that any two modular
forms are algebraically dependent; thus, whenever we have another arithmetic
hypergeometric series G(y) and a related modular parametrisation y = y(7),
the modular functions y(t) and G(y(r))/F(x(r)) are algebraic over Q[x(7)].
Another warrants of the theory is an algebraic dependence over Q of x(r) and
x((At + B)/(Ct + D)) forany (& 8) € SL,(Q). On the other hand, there is no
other source known for such algebraic dependency; the functions x(7) and x (A7),
A > 0, are algebraically dependent if and only if A is rational.

The above arithmetic constraints impose the natural restriction on 1y from the
upper half-plane Rer > 0 to satisfy x(rp) = xo in (8). Namely, 7o is an
(imaginary) quadratic irrationality, 7y € Q[+/—d] for some positive integer d. But
then (Ao + B)/(Cty + D) belongs to the same quadratic extension of Q for any
(é 5 ) € SL>(Q), so whatever transformation F(x) = rG(y) (of modular origin)
we use, the modular arguments of x(r) and y(t) have to be tied by an SL,(Q)
linear-fractional transform. In the examples (4) and (5) we have both arguments
belonging to Q[+/—2], therefore an algebraic transformation must exist, and this is
confirmed by (6) mapping the corresponding x (7o) = —1 into y(379) = 1/7* where
70 = (1 + +/=2)/2. There is however no way known to ‘translate’ identities (4)
and (5) to either

=—, a,b,c,x€Q, ®)

X=X0

o0 3
(2), !
> ;!3 (1+6n) - =

n=0

ENINN

or

00 1 1 5
(5).(3), (), = _ 3
2; T (13591409 + 545140134n) - 533607 — 3 o005
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as the corresponding modular arguments lie in the fields Q[+/—3] and Q[v/—163],
respectively. We refer the interested reader to [6] for exhausting lists of ‘rational’ (in
the sense of x() identities which express 1/7 by means of general hypergeometric-
type series; the details of the modular machinery are greatly explained there.

In a sense, to make the ‘translation method’ work we first should carefully
examine the underlying modular parametrisations. On the other hand, there are
situations when we know (or can produce [1]) the algebraic transformations without
having modularity at all. These are particularly useful in the context of similar
formulae for 1/ 72 recently discovered by Guillera [10, 11, 13].

There is a p-adic counterpart of the Ramanujan-type identities for 1/ and 1/7>
which we review in [22]. It seems likely that the algebraic transformation machinery
is generalisable to those situations as well but, for the moment, no single example
of this is known.
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