
Y. Tan, Y. Shi, and Z. Ji (Eds.): ICSI 2012, Part I, LNCS 7331, pp. 83–90, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Exponential Inertia Weight for Particle Swarm
Optimization

T.O. Ting1,* , Yuhui Shi1, Shi Cheng2, and Sanghyuk Lee1

1 Dept. Electrical and Electronic Engineering,
Xi’an Jiaotong-Liverpool University, Suzhou, China

2 Dept. Electrical Engineering and Electronics,
University of Liverpool, Liverpool, UK

toting@xjtlu.edu.cn

Abstract. The exponential inertia weight is proposed in this work aiming to
improve the search quality of Particle Swarm Optimization (PSO) algorithm.
This idea is based on the adaptive crossover rate used in Differential Evolution
(DE) algorithm. The same formula is adopted and applied to inertia weight, w.
We further investigate the characteristics of the adaptive w graphically and
careful analysis showed that there exists two important parameters in the
equation for adaptive w; one acting as the local attractor and the other as the
global attractor. The 23 benchmark problems are adopted as test bed in this
study; consisting of both high and low dimensional problems. Simulation
results showed that the proposed method achieved significant improvement
compared to the linearly decreasing method technique that is used widely in
literature.

Keywords: Benchmark functions, exponential inertia weight, Particle Swarm
Optimization.

1 Introduction

Inertia weight, w has been one of the important parameters in Particle Swarm
Optimization (PSO) algorithm. It has been known that w plays a crucial role in
guaranteeing the robustness of PSO. Y. Shi and R. Eberhart first introduced the
concept of w in PSO [1]. To date, a myriad of investigations concerning this
parameter has been carried out [2-4]. The work by Bansal et al. [3] compared 15
inertia weight strategies available from literature. However, only 5 benchmark
functions are employed in his work. Han et al. compares several inertia weights in his work [4]. Again, using only 3 benchmark problems is not adequate to validate the
results obtained and conclusions made may not be true when more benchmark
problems are considered. The improvement contributed by manipulation of w can be
categorized into few categories, namely exploration and exploitation, mutating w and
adaptive w.

* Corresponding author.

84 T.O. Ting et al.

The first category, exploration and exploitation is based on the concept of
incorporating high value of w and decreasing its value along the iteration. When w is
high, the algorithm is capable of global search and as w decreases, the local search
capability is more significant. This concept is implemented as linearly decreasing w as
proposed by Shi in [1]. This technique is by far the most popular one and has been
applied successfully in many works [5-7]. Many other variants are built upon this
concept. Xin et al. introduced multi-stage linearly decreasing inertia weight[8]. In [9],
instead of decreasing w from 0.9 to 0.4, the w is increased from 0.4 to 0.9. The range
of variation of w is within 0.9 to 0.4 in his work.

The second category of improvement via w involves manipulation of w in a
stochastic manner. Miranda proposed mutated w in [10] for reliability calculation in
power systems. Feng proposed the chaotic w [11-12] based on the linearly decreasing
w and random w. The stochastic mutation of w is introduced by Li in [13]. The
method is performed along with the linearly decreasing w. There are in fact limited
works under this category as the stochastic strategies introduce disturbances into the
algorithm and these may not perform well on a wide range of problems.

Lastly, the third category implements w in an adaptive manner. This is perhaps the
trend in many current works. Many works proposed ways to incorporate the
information such as ranking [14], diversity [15], convergence, and swarm size[16]
into w as this will dynamically adjust w based on the performance criteria received
from the population. Work by Chen [16] relates the inertia weight with problem
complexity (dimension size) and population size. If the swarm size is small, a larger
inertia weight is employed to improve the global search capability to locate the
global optimum. For an optimization problem on multi-dimension complex solution
space, a larger inertia weight is employed to strengthen the ability to escape from
local optima.

Many works on the inertia weight has been done, however, there is not clear
justification of how this parameter can be adjusted to improve the performance of
PSO algorithm. Thus, we aim to investigate this property in this work. The rest of the
paper is organized as follows. Section 2 explains the proposed method. Parameter
settings are described in Section 3. The benchmark problems used as the test bed are
described under this section. This is followed by results and discussions in Section 4
and finally the conclusions in Section 5.

2 Proposed Exponential Inertia Weight, w

The idea of adaptive w in this paper originated from the work by Ao and Chi in [17].
In this reference, the author proposes an Adaptive Crossover Rate, ACR for
Differential Evolution (DE) algorithm. This ACR is defined as:

 0

bg
a

GCR CR e
⎛ ⎞− ⎜ ⎟
⎝ ⎠= ⋅ (1)

 Exponential Inertia Weight for Particle Swarm Optimization 85

where CR0 is the initial crossover rate = 0.8 or 0.85, g is the current generation
number, G is the maximum number of generations, a = 2, b = 2 or 3. The adaptive
function for the crossover rate is simply crafted based on the logic of high CR at the
early of run to prevent premature convergence and low CR at the end of run to
enhance the local search. This concept is exactly the same for the case of inertia
weight, w in PSO. Thus, the ACR is converted to adaptive w as follows:

 0

b
g

a
Gw w e

⎛ ⎞− ⎜ ⎟
⎝ ⎠= ⋅ (2)

whereby w0 is set to 0.9 in our work here. This value is chosen as an initial value in
many works [5-8]. Further, two graphs are plotted, depicting the characteristics of
parameters a and b. These are plotted in Figs. 1 and 2 below. From Fig. 1, by
increasing a from 0 to 3 with a step of 0.5, it has the ability to push down the value of
w, resulting in a curvilinear curve along the iterations. Thus, we name the parameter a
as local search attractor. Note that when a=0, the inertia weight becomes a static value
of 0.9 as the initial value w0 is set to 0.9. In the same diagram, take note that the third
curve (a=1.0) starts from 0.9 and ends at approximately 0.32; almost similar to
linearly decreasing w.

Fig. 1. Characteristics of local search attractor, a varies from 0 to 3 step 0.5 while b is set to 1

On the other hand, the parameter b has the opposite characteristic. When b is
increased, it has the ability to pull up the curve resulting in higher value of w at the
early run along the iterations. Hence, b is called global search attractor in this context.
Again, note that when b=0, it is in fact a static w with the value approximate to 0.32.
The third curve from below (b=1) is exactly the same as the curve (a=1) in Fig. 1 as
both has the same numerical values (a=1, b=1).

86 T.O. Ting et al.

Fig. 2. Characteristics of global search attractor, b varies from 0 to 3 step 0.5 while a is set to 1

Generally, the ability of pulling up and pushing down the value of w using (2)
makes the propose method ideal in PSO. Implementing this operator into any program
is just a simple task and it does not add significant additional computational cost to
the PSO algorithm.

3 Parameter Settings

The following settings are adopted in the PSO algorithm applied in this work. The
population size is set to 20, acceleration coefficients; c1 and c2 are both set to 2.0. A
dimensional value is reinitialized upon violation of either upper or lower boundaries.
No maximum velocity, Vmax is imposed in this setting. The results of linearly
decreasing inertia weight are applied as standard comparison for the exponential w.
The setting for exponential w is tabulated in Table 1.

Table 1. Setting for for exponential w

Method Setting Method Setting
A a=1, b=0.5 F a=0.5, b=1
B a=1, b=1.0 G a=1.0, b=1
C a=1, b=1.5 H a=1.5, b=1
D a=1, b=2.0 I a=2.0, b=1
E a=1, b=2.5 J a=2.5, b=1

The widely known 23 benchmark problems [18] are adopted as test bed to validate

the effectiveness of exponential w proposed in this work. All the parameter settings
applied are similar. Results recorded as mean and standard deviation from 50 trials.

 Exponential Inertia Weight for Particle Swarm Optimization 87

4 Results and Discussions

Results above are the summary of the performance of each method compared to the
results of standard PSO. A shaded cell is visible when the mean obtained is better or
equal to the standard PSO’s. Otherwise, the cell is left empty instead of 0 for better
readability. The total number of results that outperform the standard PSO is depicted
in the last row of the table. The numerical values of the mean are available in Table 3.

Table 2. Results of simulation using different settings of a and b

f Function name

SPSO
(mean)

δ a is fixed at 1.0 b is fixed at 1.0
A B C D E F G H I J

H
ig

h
D

im
en

si
on

al
 f

f1 Sphere 6.61E-05 0.00
f2 Schwefel 2.22 4.19E-06 0.00
f3 Schwefel 1.2 35.98 25.84
f4 Schwefel 2.21 5.34 1.93
f5 Rosenbrock 26.69 31.27
f6 Step 8.00E-01 1.11
f7 Quartic 3.73E-02 0.01
f8 Schwefel -7303.35 1132.26
f9 Rastrigin 24.36 6.42
f10 Ackley 0.23 0.53
f11 Griewank 1.55E-02 0.02
f12 Penalized P8 4.00E-01 0.59
f13 Penalized P16 1.65E-01 0.52

L
ow

 D
im

en
si

on
al

 f

f14 Foxholes 1.18 0.62
f15 Kowalik 3.07E-04 0.00
f16 Six-hump Camel-Back -1.0316280 0.00
f17 Branin 4.02E-01 0.01
f18 Goldstein-Price 3.0000001 0.00
f19 Hartman-3 -3.8622 0.00
f20 Hartman-6 -3.2500 0.09
f21 Shekel-5 -5.89 3.48
f22 Shekel-7 -6.78 3.57
f23 Shekel-10 -7.80 3.57

Total improvements, ∑ 16 19 16 7 5 4 17 16 19 17

Results from the simulation above show that the use of proposed w is effective in

tackling global optimum as generally majority of the methods outperform linearly
decreasing method. This is true for methods A, B, C, G, H, I, J whereby 15 and above
benchmark functions are solved with improvement. From left to right for methods A-
E, as the global attractor, b is increased, the algorithm lack convergence capability.
This is due to the reason that as b increases, the value of w increases and thus the
algorithm is capable of global optimum and lack convergence capability. Note that f21,
f22 and f23 favor higher w to find the global optimum more accurately. Again,
numerical values for these results are tabulated in Tables 3.

To ease our analysis, methods A-J are grouped into three categories, namely
global, balance and local categories:

Global search (b > a) : Methods C, D, E and F
Balance search (a = b) : Methods B and H
Local search (a > b) : Methods A, H, I and J

88 T.O. Ting et al.

The grouping of the methods above is based on the concept that when the global
attractor is greater than the local attractor (b>a), the PSO algorithm is capable of
global search. Similarly, the algorithm tend to be local searcher when the local
attractor is greater than the global attractor (a>b). The balance group has the same
value for both attractors. Results for each of these groups are recorded in Table 3. For
each numerical value, the shading denotes the degree of the results obtained for each
benchmark problem among all participating methods. Hereby, brighter background
shading denotes better results.

At a glance of Table 3, it is easy to come to a conclusion that the local category
methods are favored in this case as in this category majority of the mean recorded are
above average (brighter shading). However the drawback of local category is the
danger of being trapped in local optima. This is true for the case of f21, f22 and f23. For
simplicity, we would propose the use of balance method (B and H). Note that B and H
are both the same as a and b are both set to unity. In this category, there is a balance
between global exploration and local exploitation.

Table 3. Results using global search methods (Methods C, D, E, F and G)

 Global Search Methods Balance Local Search Methods
f C D E F B / H A H I J
f1 2.21E-06 1.44E-04 1.44E-03 4.63E-01 4.50E-10 2.09E-15 6.93E-14 1.82E-16 1.66E-14
f2 5.35E-07 1.39E-04 1.10E-04 3.43E-03 1.34E-09 1.32E-10 4.39E-08 1.50E-06 9.14E-06
f3 11.98 45.96 108.88 828.6 1.98 0.03 0.1 0.08 0.25
f4 3.76 4.91 6.68 14.81 2.28 0.55 0.87 1.06 1.38
f5 20.78 18.02 19.35 20.35 12.13 12.72 20.65 18.86 24.33
f6 8.80E-01 2.40E+00 3.26E+00 3.68E+00 3.20E-01 4.80E-01 2.56E+00 5.60E-01 6.80E-01
f7 2.97E-02 4.24E-02 4.90E-02 7.18E-02 2.31E-02 1.84E-02 2.14E-02 2.07E-02 2.35E-02
f8 -8434.94 -8053.32 -7777.45 -4931.8 -8948.23 -9007.49 -8764.27 -8834.95 -8908.41
f9 27.24 26.93 28.48 24.55 27.08 29.13 27.52 29.35 31.68
f10 0.64 0.6 0.88 1.21 0.38 0.51 1.05 1.09 1.22
f11 1.88E-02 1.80E-02 1.69E-02 7.88E-02 1.52E-02 1.73E-02 1.95E-02 1.51E-02 1.34E-02
f12 1.88E-01 8.18E-01 1.24E+00 5.15E+00 2.34E-01 1.89E-01 2.12E-01 1.50E-01 2.66E-01
f13 1.25E-01 1.87E-01 1.62E+00 1.19E+01 3.19E-02 7.67E-03 3.47E-02 6.67E-02 2.04E-01
f14 1.36 1.22 1.41 1.24 1.3 1.43 1.38 1.29 1.1
f15 3.07E-04 3.08E-04 3.08E-04 3.12E-04 3.07E-04 3.07E-04 3.07E-04 3.07E-04 3.07E-04
f16 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163
f17 3.99E-01 4.02E-01 4.05E-01 4.09E-01 3.99E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
f18 3 3.000001 3.000005 3.000032 3 3 3 3 3
f19 -3.8627 -3.8623 -3.8613 -3.8609 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628
f20 -3.2374 -3.2222 -3.2482 -3.2224 -3.2662 -3.2555 -3.2691 -3.2668 -3.2744
f21 -6.35 -6.64 -6.2 -6.43 -6.1 -5.38 -5.51 -6.8 -6.59
f22 -7.27 -7.84 -7.67 -7.14 -7.43 -6.35 -6.63 -7.5 -6.43
f23 -7.33 -8.53 -8.12 -7.88 -7.68 -6.45 -8.28 -5.92 -6.31

We then apply method A (a=1, b=0.5) to half of the population and the other half

uses setting D (a=1, b=2). Note that method A is capable of local search (a>b) and
method D is capable of global search (b>a). The result came to be as expected; 19 out
of 23 functions are solved with improvement compared to linearly decreasing w.
Nevertheless, for convenience, we recommend the setting of a=1 and b=1 for general
purposes. Besides, we also run two additional simulations. The first one involve

 Exponential Inertia Weight for Particle Swarm Optimization 89

choosing either method A or D in a random manner. In the second simulation, we
apply a switch from D to A after half of the total generation. Both simulations have
the same conclusion as mentioned above with 19 and 18 improvements as compared
to the linearly decreasing w.

5 Conclusions

In this work, we proposed the exponential inertia weight, w to improve the search
quality of Particle Swarm Optimization (PSO) algorithm. This exponential w has
simple mathematical term shown by Eq. (2). The mathematical term originated from
the work of Ao and Chi in [17] that is based on the concept of adaptive crossover rate
used in Differential Evolution (DE) algorithm. The same formula is adopted and
applied to inertia weight, w. We further investigate the characteristics of the adaptive
w graphically and careful analysis showed that there exist two important parameters
in the equation for adaptive w; one acting as the local attractor, a and the other as the
global attractor, b. We further analyze that the algorithm is capable of global search
and local search when (b>a) and (a>b) respectively. Simulation results showed that
the proposed method has better performance in comparison to the linearly decreasing
inertia weight that is used widely in many significant works. Among all ten methods,
A to J; seven methods (A, B, C, G, H, I, J) managed to obtained better results for 15
and above benchmark problems as compared to linearly decreasing w. For
convenience, we recommend the setting of both local and global attractors to unity
values (a=b=1.0). The proposed technique is reliable as 23 benchmark problems are
adopted to validate the robustness of the exponential w. Further works should
investigate and relate information such as convergence, diversity, swarm size, number
of dimensions etc. to either local attractor, a or global attractor, b. Once an effective
relationship is found, a and b will be adjusted automatically and hence resulting in an
adaptive w. This remains as an important work for future.

References

1. Shi, Y., Eberhart, R.: A Modified Particle Swarm Optimizer. In: IEEE World Congress on
Computational Intelligence Evolutionary Computation Proceedings, 1998, pp. 69–73
(1998)

2. Hussain, Z., Noor, M.H.M., Ahmad, K.A., et al.: Evaluation of Spreading Factor Inertial
Weight PSO for FLC of FES-Assisted Paraplegic Indoor Rowing Exercise. In: 2011 IEEE
7th International Colloquium on Signal Processing and its Applications (CSPA), pp. 430–
434 (2011)

3. Bansal, J.C., Singh, P.K., Saraswat, M., et al.: Inertia Weight Strategies in Particle Swarm
Optimization. In: 2011 Third World Congress on Nature and Biologically Inspired
Computing (NaBIC), pp. 633–640 (2011)

4. Han, W., Yang, P., Ren, H., et al.: Comparison Study of several Kinds of Inertia Weights
for PSO. In: 2010 IEEE International Conference on Progress in Informatics and
Computing (PIC), vol. 1, pp. 280–284 (2010)

90 T.O. Ting et al.

5. Mekhamer, S.F., Moustafa, Y.G., EI-Sherif, N., et al.: A Modified Particle Swarm
Optimizer Applied to the Solution of the Economic Dispatch Problem. In: 2004
International Conference on Electrical, Electronic and Computer Engineering, ICEEC
2004, pp. 725–731 (2004)

6. Zhu, Z., Zhou, J., Ji, Z., et al.: DNA Sequence Compression using Adaptive Particle
Swarm Optimization-Based Memetic Algorithm. IEEE Transactions on Evolutionary
Computation 15, 643–658 (2011)

7. Seo, J.-H., Im, C.-H., Heo, C.G., et al.: Multimodal Function Optimization Based on
Particle Swarm Optimization. IEEE Transactions on Magnetics 42, 1095–1098 (2006)

8. Xin, J., Chen, G., Hai, Y.: A Particle Swarm Optimizer with Multi-Stage Linearly-
Decreasing Inertia Weight. In: International Joint Conference on Computational Sciences
and Optimization, CSO 2009, vol. 1, pp. 505–508 (2009)

9. Zheng, Y.-L., Ma, L.-H., Zhang, L.-Y., et al.: Empirical Study of Particle Swarm
Optimizer with an Increasing Inertia Weight. In: The 2003 Congress on Evolutionary
Computation, CEC 2003, vol. 1, pp. 221–226 (2003)

10. Miranda, V., de Magalhaes Carvalho, L., da Rosa, M.A., et al.: Improving Power System
Reliability Calculation Efficiency with EPSO Variants. IEEE Transactions on Power
Systems 24, 1772–1779 (2009)

11. Feng, Y., Teng, G.-F., Wang, A.-X., et al.: Chaotic Inertia Weight in Particle Swarm
Optimization. In: Second International Conference on Innovative Computing, Information
and Control, ICICIC 2007, p. 475 (2007)

12. Feng, Y., Teng, G.-F., Wang, A.-X.: Comparing with Chaotic Inertia Weights in Particle
Swarm Optimization. In: 2007 International Conference on Machine Learning and
Cybernetics, vol. 1, pp. 329–333 (2007)

13. Li, H.-R., Gao, Y.-L.: Particle Swarm Optimization Algorithm with Exponent Decreasing
Inertia Weight and Stochastic Mutation. In: Second International Conference on
Information and Computing Science, ICIC 2009, vol. 1, pp. 66–69 (2009)

14. Mahor, A., Prasad, V., Rangnekar, S.: Scheduling of Cascaded Hydro Power System: A
New Self Adaptive Inertia Weight Particle Swarm Optimization Approach. In:
International Conference on Advances in Recent Technologies in Communication and
Computing, ARTCom 2009, pp. 565–570 (2009)

15. Zhan, Z.-H., Zhang, J., Li, Y., et al.: Adaptive Particle Swarm Optimization. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39, 1362–1381
(2009)

16. Dong, C., Wang, G., Chen, Z., et al.: A Method of Self-Adaptive Inertia Weight for PSO.
In: 2008 International Conference on Computer Science and Software Engineering, vol. 1,
pp. 1195–1198 (2008)

17. Ao, Y., Chi, H.: An Adaptive Differential Evolution to Solve Constrained Optimization
Problems in Engineering Design. Scientific Research 2, 65–77 (2010)

18. Yao, X., Liu, Y., Lin, G.: Evolutionary Programming made Faster. IEEE Transactions on
Evolutionary Computation 3, 82–102 (1999)

	Exponential Inertia Weight for Particle Swarm Optimization
	Introduction
	Proposed Exponential Inertia Weight,
	Parameter Settings
	Results and Discussions
	Conclusions
	References

