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Abstract. The exponential inertia weight is proposed in this work aiming to 
improve the search quality of Particle Swarm Optimization (PSO) algorithm. 
This idea is based on the adaptive crossover rate used in Differential Evolution 
(DE) algorithm. The same formula is adopted and applied to inertia weight, w. 
We further investigate the characteristics of the adaptive w graphically and 
careful analysis showed that there exists two important parameters in the 
equation for adaptive w; one acting as the local attractor and the other as the 
global attractor. The 23 benchmark problems are adopted as test bed in this 
study; consisting of both high and low dimensional problems. Simulation 
results showed that the proposed method achieved significant improvement 
compared to the linearly decreasing method technique that is used widely in 
literature.  

Keywords: Benchmark functions, exponential inertia weight, Particle Swarm 
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1 Introduction 

Inertia weight, w has been one of the important parameters in Particle Swarm 
Optimization (PSO) algorithm. It has been known that w plays a crucial role in 
guaranteeing the robustness of PSO. Y. Shi and R. Eberhart first introduced the 
concept of w in PSO [1]. To date, a myriad of investigations concerning this 
parameter has been carried out [2-4]. The work by Bansal et al. [3] compared 15 
inertia weight strategies available from literature. However, only 5 benchmark 
functions are employed in his work. Han et al. compares several inertia weights in his work [4]. Again, using only 3 benchmark problems is not adequate to validate the 
results obtained and conclusions made may not be true when more benchmark 
problems are considered. The improvement contributed by manipulation of w can be 
categorized into few categories, namely exploration and exploitation, mutating w and 
adaptive w.  

                                                           
*  Corresponding author.  



84 T.O. Ting et al. 

The first category, exploration and exploitation is based on the concept of 
incorporating high value of w and decreasing its value along the iteration. When w is 
high, the algorithm is capable of global search and as w decreases, the local search 
capability is more significant. This concept is implemented as linearly decreasing w as 
proposed by Shi in [1]. This technique is by far the most popular one and has been 
applied successfully in many works [5-7]. Many other variants are built upon this 
concept. Xin et al. introduced multi-stage linearly decreasing inertia weight[8]. In [9], 
instead of decreasing w from 0.9 to 0.4, the w is increased from 0.4 to 0.9. The range 
of variation of w is within 0.9 to 0.4 in his work.  

The second category of improvement via w involves manipulation of w in a 
stochastic manner. Miranda proposed mutated w in [10] for reliability calculation in 
power systems. Feng proposed the chaotic w [11-12] based on the linearly decreasing 
w and random w. The stochastic mutation of w is introduced by Li in [13]. The 
method is performed along with the linearly decreasing w. There are in fact limited 
works under this category as the stochastic strategies introduce disturbances into the 
algorithm and these may not perform well on a wide range of problems.  

Lastly, the third category implements w in an adaptive manner. This is perhaps the 
trend in many current works. Many works proposed ways to incorporate the 
information such as ranking [14], diversity [15], convergence, and swarm size[16] 
into w as this will dynamically adjust w based on the performance criteria received 
from the population. Work by Chen [16] relates the inertia weight with problem 
complexity (dimension size) and population size. If the swarm size is small, a larger 
inertia weight is employed to improve the global search capability to locate the 
global optimum. For an optimization problem on multi-dimension complex solution 
space, a larger inertia weight is employed to strengthen the ability to escape from 
local optima.  

Many works on the inertia weight has been done, however, there is not clear 
justification of how this parameter can be adjusted to improve the performance of 
PSO algorithm. Thus, we aim to investigate this property in this work. The rest of the 
paper is organized as follows. Section 2 explains the proposed method. Parameter 
settings are described in Section 3. The benchmark problems used as the test bed are 
described under this section. This is followed by results and discussions in Section 4 
and finally the conclusions in Section 5.  

2 Proposed Exponential Inertia Weight, w 

The idea of adaptive w in this paper originated from the work by Ao and Chi in [17]. 
In this reference, the author proposes an Adaptive Crossover Rate, ACR for 
Differential Evolution (DE) algorithm. This ACR is defined as: 
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where CR0 is the initial crossover rate = 0.8 or 0.85, g is the current generation 
number, G is the maximum number of generations, a = 2, b = 2 or 3. The adaptive 
function for the crossover rate is simply crafted based on the logic of high CR at the 
early of run to prevent premature convergence and low CR at the end of run to 
enhance the local search. This concept is exactly the same for the case of inertia 
weight, w in PSO. Thus, the ACR is converted to adaptive w as follows: 
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whereby w0 is set to 0.9 in our work here. This value is chosen as an initial value in 
many works [5-8]. Further, two graphs are plotted, depicting the characteristics of 
parameters a and b. These are plotted in Figs. 1 and 2 below. From Fig. 1, by 
increasing a from 0 to 3 with a step of 0.5, it has the ability to push down the value of 
w, resulting in a curvilinear curve along the iterations. Thus, we name the parameter a 
as local search attractor. Note that when a=0, the inertia weight becomes a static value 
of 0.9 as the initial value w0 is set to 0.9. In the same diagram, take note that the third 
curve (a=1.0) starts from 0.9 and ends at approximately 0.32; almost similar to 
linearly decreasing w.  

 

Fig. 1. Characteristics of local search attractor, a varies from 0 to 3 step 0.5 while b is set to 1 

On the other hand, the parameter b has the opposite characteristic. When b is 
increased, it has the ability to pull up the curve resulting in higher value of w at the 
early run along the iterations. Hence, b is called global search attractor in this context. 
Again, note that when b=0, it is in fact a static w with the value approximate to 0.32. 
The third curve from below (b=1) is exactly the same as the curve (a=1) in Fig. 1 as 
both has the same numerical values (a=1, b=1). 
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Fig. 2. Characteristics of global search attractor, b varies from 0 to 3 step 0.5 while a is set to 1 

Generally, the ability of pulling up and pushing down the value of w using (2) 
makes the propose method ideal in PSO. Implementing this operator into any program 
is just a simple task and it does not add significant additional computational cost to 
the PSO algorithm. 

3 Parameter Settings 

The following settings are adopted in the PSO algorithm applied in this work. The 
population size is set to 20, acceleration coefficients; c1 and c2 are both set to 2.0. A 
dimensional value is reinitialized upon violation of either upper or lower boundaries. 
No maximum velocity, Vmax is imposed in this setting. The results of linearly 
decreasing inertia weight are applied as standard comparison for the exponential w. 
The setting for exponential w is tabulated in Table 1.  

Table 1. Setting for for exponential w 

Method Setting Method Setting 
A a=1, b=0.5 F a=0.5, b=1 
B a=1, b=1.0 G a=1.0, b=1 
C a=1, b=1.5 H a=1.5, b=1 
D a=1, b=2.0 I a=2.0, b=1 
E a=1, b=2.5 J a=2.5, b=1 

 
The widely known 23 benchmark problems [18] are adopted as test bed to validate 

the effectiveness of exponential w proposed in this work. All the parameter settings 
applied are similar. Results recorded as mean and standard deviation from 50 trials. 
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4 Results and Discussions 

Results above are the summary of the performance of each method compared to the 
results of standard PSO. A shaded cell is visible when the mean obtained is better or 
equal to the standard PSO’s. Otherwise, the cell is left empty instead of 0 for better 
readability. The total number of results that outperform the standard PSO is depicted 
in the last row of the table. The numerical values of the mean are available in Table 3.  

Table 2. Results of simulation using different settings of a and b 

 
f Function name 

SPSO  
(mean) 

δ a is fixed at 1.0 b is fixed at 1.0 
A B C D E F G H I J 
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f1 Sphere 6.61E-05 0.00           
f2 Schwefel 2.22 4.19E-06 0.00           
f3 Schwefel 1.2 35.98 25.84           
f4 Schwefel 2.21 5.34 1.93           
f5 Rosenbrock 26.69 31.27           
f6 Step 8.00E-01 1.11           
f7 Quartic 3.73E-02 0.01           
f8 Schwefel -7303.35 1132.26           
f9 Rastrigin 24.36 6.42           
f10 Ackley 0.23 0.53           
f11 Griewank 1.55E-02 0.02           
f12 Penalized P8 4.00E-01 0.59           
f13 Penalized P16 1.65E-01 0.52           

L
ow

 D
im
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 f 

f14 Foxholes 1.18 0.62           
f15 Kowalik 3.07E-04 0.00           
f16 Six-hump Camel-Back -1.0316280 0.00           
f17 Branin 4.02E-01 0.01           
f18 Goldstein-Price 3.0000001 0.00           
f19 Hartman-3 -3.8622 0.00           
f20 Hartman-6 -3.2500 0.09           
f21 Shekel-5 -5.89 3.48           
f22 Shekel-7 -6.78 3.57           
f23 Shekel-10 -7.80 3.57           

Total improvements, ∑ 16 19 16 7 5 4 17 16 19 17 

 
Results from the simulation above show that the use of proposed w is effective in 

tackling global optimum as generally majority of the methods outperform linearly 
decreasing method. This is true for methods A, B, C, G, H, I, J whereby 15 and above 
benchmark functions are solved with improvement. From left to right for methods A-
E, as the global attractor, b is increased, the algorithm lack convergence capability. 
This is due to the reason that as b increases, the value of w increases and thus the 
algorithm is capable of global optimum and lack convergence capability. Note that f21, 
f22 and f23 favor higher w to find the global optimum more accurately. Again, 
numerical values for these results are tabulated in Tables 3. 

To ease our analysis, methods A-J are grouped into three categories, namely 
global, balance and local categories: 

 

Global search (b > a)  :  Methods C, D, E and F 
Balance search (a = b)  :  Methods B and H 
Local search (a > b)  :  Methods A, H, I and J 



88 T.O. Ting et al. 

The grouping of the methods above is based on the concept that when the global 
attractor is greater than the local attractor (b>a), the PSO algorithm is capable of 
global search. Similarly, the algorithm tend to be local searcher when the local 
attractor is greater than the global attractor (a>b). The balance group has the same 
value for both attractors. Results for each of these groups are recorded in Table 3. For 
each numerical value, the shading denotes the degree of the results obtained for each 
benchmark problem among all participating methods. Hereby, brighter background 
shading denotes better results. 

At a glance of Table 3, it is easy to come to a conclusion that the local category 
methods are favored in this case as in this category majority of the mean recorded are 
above average (brighter shading). However the drawback of local category is the 
danger of being trapped in local optima. This is true for the case of f21, f22 and f23. For 
simplicity, we would propose the use of balance method (B and H). Note that B and H 
are both the same as a and b are both set to unity. In this category, there is a balance 
between global exploration and local exploitation.  

Table 3. Results using global search methods (Methods C, D, E, F and G) 

 Global Search Methods Balance Local Search Methods 
f C D E F B / H A H I J 
f1 2.21E-06 1.44E-04 1.44E-03 4.63E-01 4.50E-10 2.09E-15 6.93E-14 1.82E-16 1.66E-14 
f2 5.35E-07 1.39E-04 1.10E-04 3.43E-03 1.34E-09 1.32E-10 4.39E-08 1.50E-06 9.14E-06 
f3 11.98 45.96 108.88 828.6 1.98 0.03 0.1 0.08 0.25 
f4 3.76 4.91 6.68 14.81 2.28 0.55 0.87 1.06 1.38 
f5 20.78 18.02 19.35 20.35 12.13 12.72 20.65 18.86 24.33 
f6 8.80E-01 2.40E+00 3.26E+00 3.68E+00 3.20E-01 4.80E-01 2.56E+00 5.60E-01 6.80E-01 
f7 2.97E-02 4.24E-02 4.90E-02 7.18E-02 2.31E-02 1.84E-02 2.14E-02 2.07E-02 2.35E-02 
f8 -8434.94 -8053.32 -7777.45 -4931.8 -8948.23 -9007.49 -8764.27 -8834.95 -8908.41 
f9 27.24 26.93 28.48 24.55 27.08 29.13 27.52 29.35 31.68 
f10 0.64 0.6 0.88 1.21 0.38 0.51 1.05 1.09 1.22 
f11 1.88E-02 1.80E-02 1.69E-02 7.88E-02 1.52E-02 1.73E-02 1.95E-02 1.51E-02 1.34E-02 
f12 1.88E-01 8.18E-01 1.24E+00 5.15E+00 2.34E-01 1.89E-01 2.12E-01 1.50E-01 2.66E-01 
f13 1.25E-01 1.87E-01 1.62E+00 1.19E+01 3.19E-02 7.67E-03 3.47E-02 6.67E-02 2.04E-01 
f14 1.36 1.22 1.41 1.24 1.3 1.43 1.38 1.29 1.1 
f15 3.07E-04 3.08E-04 3.08E-04 3.12E-04 3.07E-04 3.07E-04 3.07E-04 3.07E-04 3.07E-04 
f16 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 
f17 3.99E-01 4.02E-01 4.05E-01 4.09E-01 3.99E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 
f18 3 3.000001 3.000005 3.000032 3 3 3 3 3 
f19 -3.8627 -3.8623 -3.8613 -3.8609 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 
f20 -3.2374 -3.2222 -3.2482 -3.2224 -3.2662 -3.2555 -3.2691 -3.2668 -3.2744 
f21 -6.35 -6.64 -6.2 -6.43 -6.1 -5.38 -5.51 -6.8 -6.59 
f22 -7.27 -7.84 -7.67 -7.14 -7.43 -6.35 -6.63 -7.5 -6.43 
f23 -7.33 -8.53 -8.12 -7.88 -7.68 -6.45 -8.28 -5.92 -6.31 

 
We then apply method A (a=1, b=0.5) to half of the population and the other half 

uses setting D (a=1, b=2). Note that method A is capable of local search (a>b) and 
method D is capable of global search (b>a). The result came to be as expected; 19 out 
of 23 functions are solved with improvement compared to linearly decreasing w. 
Nevertheless, for convenience, we recommend the setting of a=1 and b=1 for general 
purposes. Besides, we also run two additional simulations. The first one involve 
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choosing either method A or D in a random manner. In the second simulation, we 
apply a switch from D to A after half of the total generation. Both simulations have 
the same conclusion as mentioned above with 19 and 18 improvements as compared 
to the linearly decreasing w. 

5 Conclusions 

In this work, we proposed the exponential inertia weight, w to improve the search 
quality of Particle Swarm Optimization (PSO) algorithm. This exponential w has 
simple mathematical term shown by Eq. (2). The mathematical term originated from 
the work of Ao and Chi in [17] that is based on the concept of adaptive crossover rate 
used in Differential Evolution (DE) algorithm. The same formula is adopted and 
applied to inertia weight, w. We further investigate the characteristics of the adaptive 
w graphically and careful analysis showed that there exist two important parameters 
in the equation for adaptive w; one acting as the local attractor, a and the other as the 
global attractor, b. We further analyze that the algorithm is capable of global search 
and local search when (b>a) and (a>b) respectively. Simulation results showed that 
the proposed method has better performance in comparison to the linearly decreasing 
inertia weight that is used widely in many significant works. Among all ten methods, 
A to J; seven methods (A, B, C, G, H, I, J) managed to obtained better results for 15 
and above benchmark problems as compared to linearly decreasing w. For 
convenience, we recommend the setting of both local and global attractors to unity 
values (a=b=1.0). The proposed technique is reliable as 23 benchmark problems are 
adopted to validate the robustness of the exponential w. Further works should 
investigate and relate information such as convergence, diversity, swarm size, number 
of dimensions etc. to either local attractor, a or global attractor, b. Once an effective 
relationship is found, a and b will be adjusted automatically and hence resulting in an 
adaptive w. This remains as an important work for future.  
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