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Preface

This book and its companion volume, LNCS vols. 7331 and 7332, constitute
the proceedings of the Third International Conference on Swarm Intelligence
(ICSI 2012) held during June 17–20, 2012, in Shenzhen, China. ICSI 2012 was
the third international gathering in the world for researchers working on all as-
pects of swarm intelligence, following the successful and fruitful Beijing event
(ICSI 2010) and Chongqing event (ICSI 2011), which provided a high-level aca-
demic forum for the participants to disseminate their new research findings and
discuss emerging areas of research. It also created a stimulating environment for
the participants to interact and exchange information on future challenges and
opportunities in the field of swarm intelligence research.

ICSI 2012 received 247 submissions and 10 invited papers from about 591
authors in 24 countries and regions (Algeria, Australia, Brazil, China, France,
Hong Kong, India, Islamic Republic of Iran, Japan, Republic of Korea, Kuwait,
Macau, Malaysia, Mexico, Russian Federation, Saudi Arabia, Singapore, South
Africa, South Sudan, Chinese Taiwan, Tunisia, Turkey, UK, USA) across six
continents (Asia, Europe, North America, South America, Africa, and Oceania).
Each submission was reviewed by at least two reviewers, and on average 2.6
reviewers. Based on rigorous reviews by the Program Committee members and
reviewers, 145 high-quality papers were selected for publication in this proceed-
ings volume with an acceptance rate of 56.4%. The papers are organized in 27
cohesive sections covering all major topics of swarm intelligence research and
development.

In addition to the contributed papers, the ICSI 2012 technical program
included three plenary speeches by Xin Yao (The University of Birmingham,
UK, IEEE Fellow, Vice President of IEEE Computational Intelligence), Carlos
Artemio Coello Coello (NCINVESTAV-IPNl, Mexico, IEEE Fellow), and Guang-
Bin Huang (Nanyang Technological University, Singapore, inventor of Extreme
Learning Machine). Besides the regular oral sessions, ICSI 2012 had one spe-
cial session on “Data Fusion and Computational Intelligence” and several poster
sessions focusing on diverse areas.

As organizers of ICSI 2012, we would like to express sincere thanks to Shen-
zhen University, Peking University, and Xi’an Jiaotong-Liverpool University for
their sponsorship, as well as to the IEEE Computational Intelligence Society,
World Federation on Soft Computing, and International Neural Network Society
for their technical co-sponsorship. We appreciate the Natural Science Foundation
of China for its financial and logistic support.

We would also like to thank the members of the Advisory Committee for their
guidance, the members of the International Program Committee and additional
reviewers for reviewing the papers, and the members of the Publications Com-
mittee for checking the accepted papers in a short period of time. Particularly,
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we are grateful to the proceedings publisher Springer for publishing the proceed-
ings in the prestigious series of Lecture Notes in Computer Science. Moreover,
we wish to express our heartfelt appreciation to the plenary speakers, session
chairs, and student helpers. In addition, there are still many more colleagues,
associates, friends, and supporters who helped us in immeasurable ways; we ex-
press our sincere gratitude to them all. Last but not the least, we would like to
thank all the speakers, authors, and participants for their great contributions
that made ICSI 2012 successful and all the hard work worthwhile.

June 2012 Ying Tan
Yuhui Shi

Zhen Ji
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The Biological Interaction Stability Problem

Zvi Retchkiman Konigsberg
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Abstract. This paper addresses the biological interaction stability prob-
lem among organisms of the same or different species associated with the
need for a common resource that occurs in a limited supply relative to de-
mand by considering it as a discrete event dynamical system. Timed Petri
nets are a graphical and mathematical modeling tool applicable to dis-
crete event dynamical systems in order to represent its states evolution.
Lyapunov stability theory provides the required tools needed to aboard
the stability problem for discrete event dynamical systems modeled with
timed Petri nets. By proving boundedness one confirms a dominant os-
cillating behavior of both organisms dynamics performance. However,
the oscillating frequency results to be unknown. This inconvenience is
overcome by considering a specific recurrence equation, in the max-plus
algebra.

Keywords: Biological interaction, Discrete Event Dynamical Systems,
Max-Plus Algebra, Lyapunov Method, Timed Petri Nets.

1 Introduction

Consider the biological interaction stability problem among organisms of the
same or different species associated with the need for a common resource that
occurs in a limited supply relative to demand. In other words, competition oc-
curs when the capability of the environment to supply resources is smaller than
the potential biological requirement so that organisms interfere with each other.
Plants, for example, often compete for access to a limited supply of nutrients,
water, sunlight, and space. In the study of this type of problems Lotka-Volterra
models as well as evolutionary game theory concepts have been used [1,2]. This
paper proposes a new modeling and analysis methodology which consists in con-
sidering the competition as a discrete event dynamical system. Timed Petri nets
are a graphical and mathematical modeling tool applicable to discrete event
systems in order to represent its states evolution where the timing at which the
state changes is taken into consideration. Lyapunov stability theory provides the
required tools needed to aboard the stability problem for discrete event system
modeled with timed Petri nets whose mathematical model is given in terms of
difference equations [5]. Employing Lyapunov methods, a sufficient condition for
the stabilization problem is also obtained. It is shown that it is possible to re-
strict the discrete event systems state space in such a way that boundedness is

Y. Tan, Y. Shi, and Z. Ji (Eds.): ICSI 2012, Part I, LNCS 7331, pp. 1–10, 2012.
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2 Z.R. Konigsberg

guaranteed. By proving boundedness one confirms a dominant oscillating behav-
ior of both organisms dynamics performance. However, the oscillating frequency
results to be unknown. This inconvenience is overcome by considering a spe-
cific recurrence equation, in the max-plus algebra, which is assigned to the the
timed Petri net graphical model. The main contribution of the paper consists in
combining Lyapunov theory with max-plus algebra to study the biological inter-
action stability problem among organisms treated as discrete event dynamical
systems modeled with timed Petri nets. The paper is organized as follows. In sec-
tion 2, Lyapunov theory for discrete event modeled with Petri nets is addressed.
Section 3, presents Max-Plus algebra. In section 4, the stability for discrete event
dynamical systems modeled with timed Petri nets is given. Section 5, discusses
the biological interaction stability problem. Finally, the paper ends with some
conclusions.

2 Lyapunov Stability and Stabilization of Discrete Event
Systems modeled with Petri Nets

NOTATION: N = {0, 1, 2, ...}, R+ = [0,∞), N+
n0

= {n0, n0 + 1, ..., n0 + k, ...} ,
n0 ≥ 0. Given x, y ∈ Rn, x ≤ y is equivalent to xi ≤ yi, ∀i. A function f(n, x),
f : N+

n0
× Rn → Rn is called nondecreasing in x if given x, y ∈ Rn such that

x ≥ y and n ∈ N+
n0

then, f(n, x) ≥ f(n, y). Consider systems of first ordinary
difference equations given by

x(n+ 1) = f [n, x(n)], x(no) = x0, n ∈ N+
n0

(1)

where n ∈ N+
n0
, x(n) ∈ Rn and f : N+

n0
×Rn → Rn is continuous in x(n).

Definition 1. The n vector valued function Φ(n, n0, x0) is said to be a solution
of (1) if Φ(n0, n0, x0) = x0 and Φ(n + 1, n0, x0) = f(n, Φ(n, n0, x0)) for all
n ∈ N+

n0
.

Definition 2. The system (1) is said to be i). Practically stable, if given (λ,A)
with 0 < λ < A, then

|x0| < λ ⇒ |x(n, n0, x0)| < A, ∀n ∈ N+
n0
, n0 ≥ 0;

ii). Uniformly practically stable, if it is practically stable for every n0 ≥ 0.

Definition 3. A continuous function α : [0,∞) → [0,∞) is said to belong to
class K if α(0) = 0 and it is strictly increasing.

Consider a vector Lyapunov function v(n, x(n)), v : N+
n0

×Rn → Rp
+ and define

the variation of v relative to (1) by

Δv = v(n+ 1, x(n+ 1))− v(n, x(n)) (2)

Then, the following result concerns the practical stability of (1).
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Theorem 1. Let v : N+
n0

×Rn → Rp
+ be a continuous function in x, define the

function v0(n, x(n)) =
∑p

i=1 vi(n, x(n)) such that satisfies the estimates

b(|x|) ≤ v0 (n, x (n)) ≤ a(|x|); a, b ∈ K, Δv(n, x(n)) ≤ w(n, v(n, x(n))) (3)

for n ∈ N+
n0
, x(n) ∈ Rn , where w : N+

n0
×Rp

+ → Rp is a continuous function in

the second argument. Assume that : g(n, e) � e+ w(n, e) is nondecreasing in e,
0 < λ < A are given and finally that a(λ) < b(A) is satisfied. Then, the practical
stability properties of

e(n+ 1) = g(n, e(n)), e(n0) = e0 ≥ 0. (4)

imply the practical stability properties of system (1).

Corollary 1. In Theorem (1): i). If w(n, e) ≡ 0 we get uniform practical sta-
bility of (1) which implies structural stability. ii). If w(n, e) = −c(e), for c ∈ K,
we get uniform practical asymptotic stability of (1).

Definition 4. A Petri net is a 5-tuple, PN = {P, T, F,W,M0} where: P =
{p1, p2, ..., pm}is a finite set of places, T = {t1, t2, ..., tn} is a finite set of transi-
tions, F ⊂ (P ×T )∪ (T ×P ) is a set of arcs, W : F → N+

1 is a weight function,
M0: P → N is the initial marking, P ∩ T = ∅ and P ∪ T = ∅.

Definition 5. The clock structure associated with a place pi ∈ P is a set V =
{Vi : pi ∈ P } of clock sequences Vi = {vi,1, vi,2, ...}, vi,k ∈ R+, k = 1, 2, ...

The positive number vi,k, associated to pi ∈ P , called holding time, represents
the time that a token must spend in this place until its outputs enabled tran-
sitions ti,1, ti,2, ..., fire. We partition P into subsets P0 and Ph, where P0 is the
set of places with zero holding time, and Ph is the set of places that have some
holding time.

Definition 6. A timed Petri net is a 6-tuple TPN = {P, T, F,W,M0,V} where
{P, T, F,W,M0} are as before, and V = {Vi : pi ∈ P } is a clock structure. A
timed Petri net is a timed event petri net when every pi ∈ P has one input and
one output transition, in which case the associated clock structure set of a place
pi ∈ P reduces to one element Vi = {vi}

Notice that if W (p, t) = α (or W (t, p) = β) then, this is often represented
graphically by α, (β) arcs from p to t (t to p) each with no numeric label.

Let Mk(pi) denote the marking (i.e., the number of tokens) at place pi ∈ P at
time k and let Mk = [Mk(p1), ...,Mk(pm)]T denote the marking (state) of PN at
time k. A transition tj ∈ T is said to be enabled at time k if Mk(pi) ≥ W (pi, tj)
for all pi ∈ P such that (pi,tj) ∈ F . It is assumed that at each time k there
exists at least one transition to fire. If a transition is enabled then, it can fire. If
an enabled transition tj ∈ T fires at time k then, the next marking for pi ∈ P is
given by

Mk+1(pi) = Mk(pi) +W (tj , pi)−W (pi, tj). (5)
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Let A = [aij ] denote an n ×m matrix of integers (the incidence matrix) where
aij = a+ij − a−ij with a+ij = W (ti, pj) and a−ij = W (pj , ti) . Let uk ∈ {0, 1}n
denote a firing vector where if tj ∈ T is fired then, its corresponding firing
vector is uk = [0, ..., 0, 1, 0, ..., 0]T with the one in the jth position in the vector
and zeros everywhere else. The nonlinear difference matrix equation describing
the dynamical behavior represented by a PN is:

Mk+1 = Mk +ATuk (6)

where if at step k, a−ij < Mk(pj) for all pi ∈ P then, ti ∈ T is enabled and
if this ti ∈ T fires then, its corresponding firing vector uk is utilized in the
difference equation to generate the next step. Notice that if M´can be reached
from some other marking M and, if we fire some sequence of d transitions with
corresponding firing vectors u0, u1, ..., ud−1 we obtain that

M´= M +ATu, u =

d−1∑
k=0

uk. (7)

Let (Nm
n0
, d) be a metric space where d : Nm

n0
×Nm

n0
→ R+ is defined by

d(M1,M2) =

m∑
i=1

ζi | M1(pi)−M2(pi) |; ζi > 0

and consider the matrix difference equation which describes the dynamical be-
havior of the discrete event system modeled by a PN , see (7).

Proposition 1. Let PN be a Petri net. PN is uniform practical stable if there
exists a Φ strictly positive m vector such that

Δv = uTAΦ ≤ 0 (8)

Moreover, PN is uniform practical asymptotic stable if the following equation
holds

Δv = uTAΦ ≤ −c(e), c ∈ K (9)

Lemma 1. Let suppose that Proposition (1) holds then,

Δv = uTAΦ ≤ 0 ⇔ AΦ ≤ 0 (10)

Remark 1. Notice that since the state space of a TPN is contained in the state
space of the same now not timed PN, stability of PN implies stability of the
TPN.

2.1 Lyapunov Stabilization

Definition 7. Let PN be a Petri net. PN is said to be stabilizable if there exists
a firing transition sequence with transition count vector u such that system (7)
remains bounded.
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Proposition 2. Let PN be a Petri net. PN is stabilizable if there exists a
firing transition sequence with transition count vector u such that the following
equation holds

Δv = ATu ≤ 0 (11)

Remark 2. By fixing a particular u, which satisfies (11), the state space is re-
stricted to those markings that are finite.

3 Max-Plus Algebra

3.1 Basic Definitions

NOTATION: ε = −∞, e = 0, Rmax = R ∪ {ε}, n = 1, 2, ..., n. Let a, b ∈ Rmax

and define the operations ⊕ and ⊗ by: a⊕ b = max(a, b) and a⊗ b = a+ b.

Definition 8. The set Rmax with the two operations ⊕ and ⊗ is called a max-
plus algebra and is denoted by �max = (Rmax,⊕,⊗, ε, e).

Definition 9. A semiring is a nonempty set R endowed with two operations
⊕R, ⊗R, and two elements εR and eR such that: ⊕R is associative and commu-
tative with zero element εR, ⊗R is associative, distributes over ⊕R, and has unit
element eR, ∈Ris absorbing for ⊗R i.e., a⊗R ε = εR ⊗ a = a, ∀a ∈ R..

In addition if ⊗R is commutative then R is called a commutative semiring , and
if ⊕R is such that a⊕R a = a, ∀a ∈ R then it is called idempotent.

Theorem 2. The max-plus algebra �max = (Rmax,⊕,⊗, ε, e) has the algebraic
structure of a commutative and idempotent semiring.

3.2 Matrices and Graphs

Let Rn×n
max be the set of n× nmatrices with coefficients in Rmax with the following

operations: The sum of matrices A,B ∈ R
n×n
max, denoted A ⊕ B is defined by:

(A ⊕ B)ij = aij ⊕ bij = max(aij , bij) for i and j ∈ n. The product of matrices

A ∈ R
n×l
max, B ∈ R

l×n
max, denoted A⊗ B is defined by: (A ⊗ B)ik =

l⊗
j=1

(aij ⊗ bjk)

for i and k ∈ n. Let E ∈ R
n×n
max denote the matrix with all its elements equal to ε

and denote by E ∈ R
n×n
max the matrix which has its diagonal elements equal to e

and all the other elements equal to ε. Then, the following result can be stated.

Theorem 3. The 5-tuple �n×n
max = (Rn×n

max,⊕,⊗, E , E) has the algebraic structure
of a noncommutative idempotent semiring.

Definition 10. Let A ∈ R
n×n
max and k ∈ N then the k-th power of A denoted by

A⊗k is defined by: A⊗k = A⊗A⊗ · · · ⊗A, (k times), where A⊗0 is set equal to
E.
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Definition 11. A matrix A ∈ R
n×n
max is said to be regular if A contains at least

one element distinct from ε in each row.

Definition 12. Let N be a finite and non-empty set and consider D ⊆ N ×N .
The pair G = (N ,D) is called a directed graph, where N is the set of elements
called nodes and D is the set of ordered pairs of nodes called arcs. A directed
graph G = (N ,D) is called a weighted graph if a weight w(i, j) ∈ R is associated
with any arc (i, j) ∈ D.

Let A ∈ R
n×n
max be any matrix, a graph G(A), called the communication graph of

A, can be associated as follows. Define N (A) = n and a pair (i, j) ∈ n × n will
be a member of D(A) ⇔ aji = ε, where D(A) denotes the set of arcs of G(A).

Definition 13. A path from node i to node j is a sequence of arcs p = {(ik, jk) ∈
D(A)}k∈m such that i = i1, jk = ik+1, for k < m and jm = j. The path p consists
of the nodes i = i1, i2, ..., im, jm = j with length m denoted by | p |1= m. In the
case when i = j the path is said to be a circuit. A circuit is said to be elementary
if nodes ik and il are different for k = l. A circuit consisting of one arc is called
a self-loop.

Let us denote by P (i, j;m) the set of all paths from node i to node j of length
m ≥ 1 and for any arc (i, j) ∈ D(A) let its weight be given by aij then the weight
of a path p ∈ P (i, j;m) denoted by | p |w is defined to be the sum of the weights
of all the arcs that belong to the path. The average weight of a path p is given
by | p |w / | p |1. Given two paths, as for example, p = ((i1, i2), (i2, i3)) and
q = ((i3, i4), ((i4, i5) in G(A) the concatenation of paths ◦ : G(A)×G(A) → G(A)
is defined as p ◦ q = ((i1, i2), (i2, i3), (i3, i4), (i4, i5)). The communication graph
G(A) and powers of matrix A are closely related as it is shown in the next
theorem.

Theorem 4. Let A ∈ R
n×n
max, then ∀k ≥ 1: [A⊗k]ji = max{| p |w: p ∈ P (i, j; k)},

where [A⊗k]ji = ε in the case when P (i, j; k) is empty i.e., no path of length k
from node i to node j exists in G(A).

Definition 14. Let A ∈ R
n×n
max then define the matrix A+ ∈ R

n×n
max as: A+ =

∞⊕
k=1

A⊗k. Where the element [A+]ji gives the maximal weight of any path from j

to i. If in addition one wants to add the possibility of staying at a node then one
must include matrix E in the definition of matrix A+ giving rise to its Kleene

star representation defined by: A∗ =
∞⊕
k=0

A⊗k.

Lemma 2. Let A ∈ R
n×n
max be such that any circuit in G(A) has average circuit

weight less than or equal to ε. Then it holds that: A∗ =
n−1⊕
k=0

A⊗k.

Definition 15. Let G = (N ,D) be a graph and i, j ∈ N , node j is reachable
from node i, denoted as iRj, if there exists a path from i to j. A graph G is
said to be strongly connected if ∀i, j ∈ N , jRi. A matrix A ∈ R

n×n
max is called



The Biological Interaction Stability Problem 7

irreducible if its communication graph is strongly connected, when this is not the
case matrix A is called reducible.

Definition 16. Let G = (N ,D) be a not strongly connected graph and i, j ∈ N ,
node j communicates with node i, denoted as iCj, if either i = j or iRj and
jRi.

The relation iCj defines an equivalence relation in the set of nodes, and there-
fore a partition of N into a disjoint union of subsets, the equivalence classes,
N1,N2, ...,Nq such thatN = N1∪N2∪...∪Nq orN =

⋃
i∈N

[i]; [i] = {j ∈ N : iCj}.

Given the above partition, it is possible to focus on subgraphs of G denoted by
Gr = (Nr,Dr); r ∈ q where Dr denotes the subset of arcs, which belong to D,
that have both the begin node and end node in Nr. If Dr = ∅ , the subgraph
Gr = (Nr,Dr) is known as a maximal strongly connected subgraph of G.

Definition 17. The reduced graph G̃ = (Ñ , D̃) of G is defined by setting Ñ =

{[i1] , [i2] , ... [iq]} and ([ir], [is]) ∈ D̃ if r = s and there exists an arc (k, l) ∈ D
for some k ∈ [ir] and l ∈ [is].

Let Arr denote the matrix by restricting A to the nodes in [ir] ∀r ∈ q i.e.,
[Arr]kl = akl ∀k, l ∈ [ir]. Then ∀r ∈ q either Arr is irreducible or is equal to ε.
Therefore since by construction the reduced graph does not contain any circuits,
the original reducible matrix A after a possible relabeling of the nodes in G(A),
can be written as:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

A11 A12 · · · · · · A1q

E A22 · · · · · · A2q

E E A33

...
...

...
. . .

. . .
...

E E · · · E Aqq

⎞
⎟⎟⎟⎟⎟⎟⎠

(12)

with matrices Asr 1 ≤ s < r ≤ q, where each finite entry in Asr corresponds to
an arc from a node in [ir] to a node in [is].

Definition 18. Let A ∈ R
n×n
max be a reducible matrix then, the block upper tri-

angular given by (12) is said to be a normal form of matrix A.

Spectral Theory and Linear Equations

Definition 19. Let A ∈ R
n×n
max be a matrix. If μ ∈ Rmax is a scalar and v ∈

Rn
max is a vector that contains at least one finite element such that: A⊗v = μ⊗v

then, μ is called an eigenvalue and v an eigenvector.

Let C(A) denote the set of all elementary circuits in G(A) and write: λ =

max
p∈C(A)

|p|w
|p|1 for the maximal average circuit weight. Notice that since C(A) is

a finite set, the maximum is attained (which is always the case when matrix A
is irreducible). In case C(A) = ∅ define λ = ε.
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Definition 20. A circuit p ∈ G(A) is said to be critical if its average weight is
maximal. The critical graph of A, denoted by Gc(A) = (N c(A),Dc(A)), is the
graph consisting of those nodes and arcs that belong to critical circuits in G(A).

Theorem 5. If A ∈ R
n×n
max is irreducible, then there exists one and only one

finite eigenvalue (with possible several eigenvectors). This eigenvalue is equal to

the maximal average weight of circuits in G(A) λ(A) = max
p∈C(A)

|p|w
|p|1 .

Theorem 6. Let A ∈ R
n×n
max and b ∈ R

n
max. If the communication graph G(A)

has maximal average circuit weight less than or equal to e, then x = A∗ ⊗ b
solves the equation x = (A⊗ x)⊕ b. Moreover, if the circuit weights in G(a) are
negative then, the solution is unique.

3.3 Max-Plus Recurrence Equations for Timed Event Petri Nets

Definition 21. Let Am ∈ R
n×n
max for 0 ≤ m ≤ M and x(m) ∈ R

n
max for −M ≤

m ≤ −1; M ≥ 0. Then, the recurrence equation: x(k) =
M⊕

m=0
Am⊗x(k−m); k ≥

0 is called an M th order recurrence equation.

Theorem 7. The M th order recurrence equation, given by equation x(k) =
M⊕

m=0
Am ⊗ x(k − m); k ≥ 0, can be transformed into a first order recurrence

equation x(k + 1) = A ⊗ x(k); k ≥ 0 provided that A0 has circuit weights less
than or equal to zero.
With any timed event Petri net, matricesA0, A1, ..., AM ∈ N

n×N
n can be defined

by setting [Am]jl = ajl, where ajl is the largest of the holding times with respect
to all places between transitions tl and tj with m tokens, for m = 0, 1, ...,M ,
with M equal to the maximum number of tokens with respect to all places.
Let xi(k) denote the kth time that transition ti fires, then the vector x(k) =
(x1(k), x2(k), ...xm(k))T , called the state of the system, satisfies the Mth order

recurrence equation: x(k) =
M⊕

m=0
Am ⊗ x(k −m); k ≥ 0 Now, assuming that all

the hypothesis of theorem (7) are satisfied, and setting x̂(k) = (xT (k), xT (k −

1), ..., xT (k − M + 1))T , equation x(k) =
M⊕

m=0
Am ⊗ x(k − m); k ≥ 0 can be

expressed as: x̂(k + 1) = Â ⊗ x̂(k); k ≥ 0, which is known as the standard
autonomous equation.

4 The Solution to the Stability Problem for Discrete
Event Dynamical Systems Modeled with Timed Petri
Nets

Definition 22. A TPN is said to be stable if all the transitions fire with the
same proportion i.e., if there exists q ∈ N such that

lim
k→∞

xi(k)

k
= q, ∀i = 1, ..., n (13)
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This means that in order to obtain a stable TPN all the transitions have to be
fired q times. It will be desirable to be more precise and know exactly how many
times. The answer to this question is given next.

Lemma 3. Consider the recurrence relation x(k+1) = A⊗x(k), k ≥ 0, x(0) =
x0 ∈ R

n arbitrary. A an irreducible matrix and λ ∈ R its eigenvalue then,

lim
k→∞

xi(k)

k
= λ, ∀i = 1, ..., n (14)

Proof. Let v be an eigenvector of A such that x0 = v then,

x(k) = λ⊗k ⊗ v ⇒ x(k) = kλ+ v ⇒ x(k)

k
= λ+

v

k
⇒ lim

k→∞
xi(k)

k
= λ

Now starting with an unstable TPN , collecting the results given by: proposition
(2), what has just been discussed about recurrence equations for TPN at the
end of subsection (3.3) and the previous lemma (3) plus theorem (5), the solution
to the problem is obtained.

5 The Biological Interaction Stability Problem

Consider a biological interaction system whose TPN model is depicted in Fig 1.

Fig. 1. Timed Petri net model

Where the events (transitions) that drive the system are: q: resource to be con-
sumed, s1, s2: consuming starts, d1,d2: the resource has been consumed. The
places that represent the states are: A: the resource is active, P: the resource is
available to be consumed, B1, B2: the resource is being consumed, I1, I2: the or-
ganisms are idle. The holding times associated to the places A and I1, I2 are Ca
and Cd respectively, (with Ca > Cd) i.e., limited resource supply. The incidence
matrix that represents the PN model is

A =

⎡
⎢⎢⎢⎢⎣
0 1 0 0 0 0
0 −1 1 −1 0 0
0 −1 0 0 1 −1
0 0 −1 1 0 0
0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎦
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Therefore since there does not exists a Φ strictly positive m vector such that
AΦ ≤ 0 the sufficient condition for stability is not satisfied, (moreover, the PN
(TPN) is unbounded since by the repeated firing of q, the marking in P grows in-
definitely). However, by taking u = [k, k/2, k/2, k/2, k/2]; k > 0 (but unknown)
we get that ATu ≤ 0. Therefore, the PN is stabilizable which implies that the
TPN is stable. Now, let us proceed to determine the exact value of k. From the
TPN model we obtain that:

A0 =

⎛
⎜⎜⎜⎜⎝

ε ε ε ε ε
0 ε ε ε ε
0 ε ε ε ε
ε 0 ε ε ε
ε ε 0 ε ε

⎞
⎟⎟⎟⎟⎠ andA1 =

⎛
⎜⎜⎜⎜⎝

Ca ε ε ε ε
ε ε ε Cd ε
ε ε ε ε Cd
ε ε ε ε ε
ε ε ε ε ε

⎞
⎟⎟⎟⎟⎠ which implies A∗

0 =

⎛
⎜⎜⎜⎜⎝

0 ε ε ε ε
0 0 ε ε ε
0 ε 0 ε ε
0 0 ε 0 ε
0 ε 0 ε 0

⎞
⎟⎟⎟⎟⎠ ,

leading to:

Â = A∗
0 ⊗A1 =

⎛
⎜⎜⎜⎜⎝

Ca ε ε ε ε
Ca ε ε Cd ε
Ca ε ε ε Cd
Ca 0 ε Cd ε
Ca ε ε ε Cd

⎞
⎟⎟⎟⎟⎠

Therefore, λ(A) = max
p∈C(A)

|p|w
|p|1 = max{Ca,Cd} = Ca. This means that in order

for the TPN to be stable and work properly the speed at which the two organ-
isms consume has to be equal to Ca which is attained by taking k = Ca, i.e.,
the resource has to be equally shared between the two organisms.

6 Conclusions

The main contribution of the paper consists in combining Lyapunov theory with
max-plus algebra to study the biological interaction stability problem treated as
a discrete event dynamical system modeled with timed Petri nets.
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Abstract. Population-Based Incremental Learning (PBIL) is a relatively new 
class of Evolutionary Algorithms (EA) that has been recently applied to a range 
of optimization problems in engineering with promising results. PBIL combines 
aspects of Genetic Algorithm with competitive learning. The learning rate in the 
standard PBIL is generally fixed which makes it difficult for the algorithm to 
explore the search space effectively. In this paper, a PBIL with Adapting 
learning rate is proposed. The Adaptive PBIL (APBIL) is able to thoroughly 
explore the search space at the start of the run and maintain the diversity longer 
than the standard PBIL. To show its effectiveness, the proposed algorithm is 
applied to the problem of optimizing the parameters of a power system 
controller. Simulation results show that APBIL based controller performs better 
than the standard PBIL based controller. 

Keywords: Adaptive learning rate, low frequency oscillations, population-
based incremental learning, power system stabilizer. 

1 Introduction 

In the last three decades or so, there has been a growing interest in applying 
Evolutionary Algorithm (EA) to engineering optimization problems. The most widely 
used EA is Genetic Algorithms (GAs) [1]. Although GAs provide robust and 
powerful adaptive search mechanism, they have several drawbacks such as “genetic 
drift” which prevents GAs from maintaining diversity in the population. Other 
drawbacks include the difficulty to optimally select the genetic operators (e.g., 
population size, crossover and mutation rates), and the slow convergence of the 
algorithm when solving complex problems [2]-[3]. 

In the last few years, Particle Swarm Optimization (PSO) which belongs to the 
family of swarm intelligence has also been proposed as an alternative to GAs [4]-[6]. 
Recently, a novel type of Evolutionary Algorithm called Population-Based 
Incremental Learning (PBIL) [7]-[8] has received increasing attention [9]-[12].  PBIL 
is simpler and more effective than GAs. In PBIL, the crossover operator of GAs is 
abstracted away and the role of population is redefined [7]. PBIL works with a 
probability vector (PV) which controls the random bit strings generated by PBIL and 
is used to create other individuals through learning. Learning in PBIL consists of 
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using the current probability vector (PV) to create N individuals. The best individual 
is used to update the probability vector, increasing the probability of producing 
solutions similar to the current best individuals [8]-[9]. It has been shown that PBIL 
outperforms standard GAs approaches on a variety of optimization problems 
including commonly used benchmark problems [7], [8]. In [10], PBIL based power 
system stabilizers (PSSs) were compared with GA based PSSs and were found to give 
better results than GA based PSSs. In [11], it was shown that PBIL-PSS performed as 
effectively as BGA-PSS. In [12], PBIL based PSSs, were compared with several other 
population-based algorithms such as Differential Evolution based particle Swarm 
Optimization (DEPSO), Modified Clonal Selection Algorithm (MCSA), Small 
Population based Particle Swarm Optimization (SPPSO) and were found to give 
adequate performance. However, there are still some issues related to PBIL. The 
learning rate in the standard PBIL is generally fixed to a certain value. Therefore, it 
becomes difficult for the algorithm to explore and/or exploit the search space in an 
effective manner. It has been reported in [14] that PBIL suffers from diversity loss 
making the algorithm to converge to local optima. To cope with this problem, an 
adaptive learning rate first proposed in [15] is used in this paper to design power 
system controller for a simple power system. The Adaptive PBIL (APBIL) is able to 
thoroughly explore the search space at the start of the run and maintain the diversity of 
solutions longer during the search than the standard PBIL. In formualting the Adaptive 
PBIL algorithm, we have tried to use simple equations so as to keep the simplicity of 
the algorithm. To show the effectiveness of the Adaptive PBIL, the algorithm was 
applied to the problem of optimizing the parameters of a power system stabilizer 
(PSS). Simulation results show that the PSS designed based on the Adaptive PBIL 
performs better than those based on standard PBIL and the Conventional PSS (CPSS). 

2 Overview of the Standard PBIL 

PBIL is a technique that combines aspects of Genetic Algorithms and simple 
competitive learning derived from Artificial Neural Networks [7], [8]. PBIL belongs 
to the family of Estimation of Distribution Algorithms (EDAs), which use the 
probability (or prototype) vector to generate sample solutions. There is no crossover 
operator in PBIL; instead the probability vector is updated using solution with the 
highest fitness values [9]. Initially, the values of the probability vector are set to 0.5 to 
ensure that the probability of generating 0 or 1 is equal. As the search progresses, 
these values are moved away from 0.5, towards either 0.0 or 1.0.  

Like in GA, mutation is also used in PBIL to maintain diversity. In this paper, the 
mutation is performed on the probability vector; that is, a forgetting factor is used to 
relax the probability vector toward a neutral value of 0.5 [9], [10]. 

A summary of the PBIL used in this paper is given below [8]-[12]:  
  

Step 1. Initialize element of the probability vector (PV) to 0.5 to ensure uniformly-
random bit strings.  
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Step2. Generate a population of uniformly-random bit strings and comparing it 
element-by-element with the PV. Wherever an element of the PV is greater 
than the corresponding random element, a “1' is generated, otherwise a ‘0’ is 
generated. 

Step 3. Interpret each bit string as a solution to the problem and evaluate its merit in 
order to identify the "Best". 

Step 4. Adjust PV by slightly increasing PV (i) to favor the generation of bit strings 
which resemble “Best”, if  Best (i) = 1 and decrease PV(i) if Best(i) = 0.  

Step 5.  Apply the mutation and generate a new population reflecting the modified 
distribution. Stop if satisfactory solution is found. Otherwise, go to step 2. 

It should be mentioned that the probability vector guides the search, which produces 
the next sample point from which learning takes place. The learning rate determines 
the speed at which the probability vector is shifted to resemble the best (fittest) 
solution vector. If the learning rate is fixed during the run, it cannot provide the 
flexibility needed to achieve a trade-off between exploration and exploitation. The 
effect of the learning rate on the performance of the PBIL is still an active research 
topic [7]-[13]. In the next section we propose an adaptive learning rate to cope with 
this shortcoming. 

3 Overview of the PBIL with Adaptive Learning Rate 

As discussed previously, the learning rate in the standard PBIL is usually fixed to a 
specific value. This means that the user has to spend a lot of time and try several 
values of the learning rate before deciding on the “best” value to use. In addition, a 
fixed learning rate may not be adequate if the search space environment is dynamic 
and changes often as is the case in power systems. 

If the learning rate value is too high, this may lead to premature convergence and 
the algorithm could converge to local optima. If on the other hand, the learning rate is 
too small, the algorithm may be slow to converge and will require more time to find 
the optimal solution. This is computationally costly.  It is therefore critical that the 
learning rate be chosen such that a trade-off between exploration and exploitation is 
achieved.  

To develop the adaptive learning algorithm, we assume that at the start of the run, 
diversity will be needed for the algorithm to be able to explore thoroughly the search 
space. Therefore, at the start, a very small value of learning rate (LR≈ 0) is selected. 
Therefore, the emphasis at the beginning of the run is on the exploration of the search 
space as opposed to exploitation. As the run progresses and good individuals start to 
emerge, the emphasis is shifted gradually from exploration to exploitation of the 
search space. In the algorithm discussed in this paper, we increase the learning rate 
slowly (and linearly) according to the change in generation as given in the following 
equation: 

G ( i )
LR( i ) LR  .

G m ax
=  (1)
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where 

LR(i) is the learning rate at the ith generation 

LR is the final learning rate  

G(i) is the ith generation  

Gmax: is the maximum generation allowed  

The pseudocode of the APBIL is similar to that of standard PBIL except that the 
learning rate is not anymore fixed, but varies according to the generation. 

4 Problem Description and System Model 

The APBIL is now applied to a problem of controller design in power systems. The 
controller to be designed is also known as Power System Stabilizer (PSS) and is 
needed to damp low frequency oscillations ranging from 0.1 Hz to 3 Hz which occur 
in overly stressed power systems or when power is transmitted over weak 
transmission lines [16]-[17]. These oscillations are highly undesirable because they 
can lead to fatigue of machine shafts and limit the ability of the system to transfer the 
maximum power. It is therefore important that low-frequency oscillations are damped 
quickly if the security of the system is to be maintained.  

In this paper, the power system model used is a single machine connected to an 
infinite bus (SMIB) system [11], [16] as shown in Fig. 1. The generator is modelled 
using a six order differential equations. To improve the transient stability, an 
Automatic Voltage Regulator (AVR) is used. However, high gain fast acting AVR 
used in this paper also has a negative effect on the damping. This AVR was modelled 
by a first order differential equation. On the other hand, the speed governor was 
neglected. The non-linear differential equations of the system are linearized around 
the nominal operating condition as given below: 

o o

o o

x A x B u

y C x D u

= +
= + .

 (2)

where  
A is the system state matrix; B is the system input matrix; C is the system output 
matrix; D is the feed forward matrix; x is the vector of the system states; u is the 
vector of the system inputs; and y is the vector of the system outputs (i.e., speed 
variations). 

A, B, C and D are constant matrices of appropriate dimensions. The sizes and contents 
of these matrices are given in the Appendix A. 

 
Fig. 1. Power system model 
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5 Problem Formulation  

5.1 Selected Operating Conditions 

Table 1 shows the eigenvalues and damping ratios in brackets of the four operating 
conditions that are considered in this paper. In Table 1, Pe represents the electrical 
output, Xe is the system’s total transmission reactance and ζ the damping ratio. It can 
be seen that the nominal operating condition (case 1) is stable. However, all the other 
three cases are unstable as shown by the negative damping ratios in Table 1. Without 
PSS, the system is unstable and will not be able to operate adequately under these 
operating conditions. 

5.2 PSS Structure and Objective Functions  

PBIL with fixed and adaptive learning rate is applied to optimize the parameters of a 
fixed structure (Δω input) PSS of the form given in Eq. (3) 
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where, Kp is the gain, T1-T4 represent suitable time constants. Tw is the washout time 
constant needed to prevent steady-state offset of the voltage. The value of Tw is not 
critical for the PSS and has been set to 5sec. 

Therefore, five parameters are required for the optimization. 
Since most of the operating conditions considered in this paper are unstable and 

dominate the time domain responses of the system, it is expected that by maximizing 
the minimum damping ratio, one could simultaneously stabilize a set of system 
models over a wide range of operating conditions [10]-[12]. The following objective 
function was used to design the PSSs. 

( )⎟
⎠
⎞⎜

⎝
⎛= jiJ ,minmax ζ

.
 (4)

where i = 1, 2 … n, and j = 1, 2, … m 

and 
2

,
2

,

,
,

jiji

ji
ji

ωσ

σ
ζ

+

−
=  is the damping ratio of the i-th eigenvalue in the j-th 

operating condition. σij is the real part of the eigenvalue and the ωij is the frequency. 
The total number of eigenvalues is n and m denotes the number of operating 
conditions.  
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Table 1. Selected open-loop operating conditions including eigenvalues and damping ratios 

Case Pe [p.u] Xe [pu] Eigenvalue (ζ) 

1 0.40 0.25 -0.8432 ± 8.5529i (0.0981) 

2 0.80 0.80 0.3144 ± 7.9100i (-0.0397) 
3 0.80 1.00 0.3601 ± 7.4183i (-0.0485) 

4 1.04 0.80 0.7880 ± 7.9306i (-0.0989) 

5.3 Application of Standard PBIL to Controller Design 

The configuration of the standard PBIL is as follows:  
 

Length of chromosome: 15 bits 
Trial solutions (population): 50 
Generations: 600 
Learning rate (LR): 0.1 
Mutation (Forgetting factor-FF ): 0.005 

5.4 Application of APBIL to Controller Design 

The configuration of the APBIL is as follows:  
 

Length of chromosome: 15 bits 
Trial solutions (population): 50 
Generations: 800 
Initial Learning rate (LR0) = 0.00025 
Final Learning rate (LRmax): 0.2 
Mutation (Forgetting factor-FF): 0.005 

5.5 Design of the Conventional PSS 

The conventional PSS and has been designed based on the nominal operating 
condition using phase compensation technique [16]. Therefore, it is anticipated that 
the controller will not perform optimally at off nominal operating conditions. 

6 Simulation Results   

6.1 Eigenvalue Analysis 

Table 2 shows the eigenvalues and the damping ratios (in brackets) of the closed-loop 
system equipped with the CPSS, the PBIL-PSS and the Adaptive PBIL-PSSs.  

It can be seen from Table 2 that all the PSSs have improved the damping ratio of 
the system under all the cases. In particular cases 2-4 which were unstable without the 
controllers have been stabilized with the introduction of the PSSs. The APBIL-PSS 
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provides the best damping ratio for all the operating conditions considered, except for 
case 1 where PBIL-PSS’s damping ratio is about 0.8% higher than that of APBIL-
PSS. This difference is practically insignificant. 

6.2 Time Domain Simulations  

Time domain simulations for small-signal stability study were also performed by 
applying a 10% step disturbance in Vref.  The rotor speed responses of the system 
under the various cases are shown in Figs. 2-5. It can be seen from these figures that 
overall, the APBIL-PSS gives the best performance for all the operating conditions. It 
has the lowest overshoots and undershoots than the standard PBIL-PSS and the CPSS. 
The standard PBIL-PSS in turn performs better than the CPSS. 

In terms of settling time, both the APBIL-PSS and PBIL-PSS have almost the same 
settling time.  On the other hand, the responses with the CPSS have the largest 
overshoots and undershoots and the longest setting time. The performance of the 
CPSS seems to deteriorate as the system moves further from the nominal operating 
condition. This is expected as it has been designed based on a single operating 
condition using the classical control approach. 

Table 2. Closed-system eigenvalues and damping ratio 

Case CPSS PBIL APBIL 
1 -2.78±5.52i (0.45) 

 
-4.31 ±4.41i (0.70) -2.94 ±3.05i (0.69) 

2 -1.54 ±5.79i (0.26) 
 

-3.02 ±4.96i (0.52) -2.34 ±3.67i (0.54) 

3 -1.22 ±5.67i (0.21) 
 

-2.57 ±5.03i (0.46) 
 

-2.15 ±3.85i (0.49) 

4 -1.27 ±5.92i (0.21) 
 

-2.81 ±5.09i (0.48) 
 

-2.19 ±3.80i (0.50) 
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Fig. 2. Rotor speed responses for a 10% step disturbance (case 1) 
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Fig. 3. Rotor speed responses for a 10% step disturbance (case 2) 
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Fig. 4. Rotor speed responses for a 10% step disturbance (case 3) 
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Fig. 5. Rotor speed responses for a 10% step disturbance (case 4) 
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7 Conclusions 

By using adaptive learning rate we are able to achieve a better trade-off between 
exploration and exploitation as can be seen by the performance of the Adaptive-PBIL. 
Eigenvalue analysis shows that the Adaptive-PBIL based PSS provides a better 
damping to the system than the standard PBIL based PSS and the CPSS. These results 
have been confirmed by time domain simulations based on a small disturbance. Due 
to the low CPU requirements and the robustness of the representation of PBIL, this 
method is very attractive for online implementation. It is expected that the Adaptive-
PBIL will be improved in the future by introducing some feedback mechanism. 
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Abstract. As a challenging task in the structural health monitoring (SHM) field, 
structural damage detection, one of most important issues of the SHM system, 
is mathematically converted into a constrained optimization problem, which is 
then hopefully solved by a swarm intelligence (SI) based algorithm proposed in 
this paper. The performance of the proposed algorithm is experimentally 
evaluated by the measured data of four damage patterns of a building model of 
3-storey steel frame structure made in laboratory. Some illustrated results show 
that the proposed method is very suitable for the structural multi-damage 
identification, which also show that the SI-based algorithm for structural 
damage detection can provide an effective and robust tool in the SHM field. 

Keywords: Structural health monitoring, damage detection, Swarm 
intelligence, optimization problem, ant colony optimization, particle swarm 
optimization. 

1 Introduction 

In the last few decades, the structural damage detection (SDD), one of the most 
critical components of the structural health monitoring (SHM) system, has been most 
commonly investigated in many ways and algorithms [1]. Traditionally, structural 
system identification techniques have been commonly used by relating the damage to 
the change in the vibration characteristics of the structure [2-3]. However, there are a 
number of challenges to be overcome before routine applications of SHM. In essence, 
the most effective strategy should treat the SDD as a constrained optimization 
problem [4]. However, there is no universal agreement as to the optimum method for 
using measured vibration data for damage detection, location or quantification. One of 
difficulties is that the traditional gradient-based methods are easily led to local rather 
than global minimum, i.e. so called the premature convergence. Therefore, it is 
necessary to explore some new approaches for the SDD problem. 

Swarm intelligence (SI) provides a new framework for the design and implementation 
of systems made of many agents that are capable of cooperation for the solution of 
complex problems. The potential advantages of the swarm intelligence approach are 
manifold: collective robustness, individual simplicity and scalability [5]. The majority of 
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research to date has focused on demonstrating the cooperative problem solving capabilities 
of swarm intelligent systems. Very encouraging results have been obtained, especially in 
optimization applications, such as ant colony optimization (ACO) and particle swarm 
optimization (PSO), where swarms of software agents cooperate to search for good 
solutions to difficult optimization problems.  

In order to achieve a promising solution to the constrained optimization problem 
on SDD, an improved PSO is proposed to tackle the premature convergence at the last 
phase of iterations for a conventional PSO. Extending ACO to the continuous 
optimization problem on SDD is also conducted in this paper. Feasibility of the 
proposed SI-based algorithm is compared and assessed by using some measured data 
of 3-storey steel frame structure made in laboratory. Experimental verifications show 
satisfied results as well as good performance, effectiveness and robustness of the 
proposed method. 

2 Theoretical Background  

2.1 Improved Particle Swarm Optimization  

Particle Swarm Optimization (PSO). As PSO is implemented, each particle is 
determined by its position and velocity. It moves towards its best previous position, 
pbest, and towards the best position of the whole swarm, gbest, respectively. 

Supposing a swarm of p particles, the search space is d-dimensional, and then the 
position of i-th particle can be represented by a d-dimensional vector, 

1 2( , )i i i idx x x x= ， 1,2, ,i p= . The velocity of the particle can be represented by 

another vector, 
1 2( , )i i i idv v v v= . The best previous visited position of the particle is 

denoted as
1 2( , , , )i i i idpbest pbest pbest pbest= . The velocity and the position of the 

particle are updated according to the following two equations: 

1
1 1 2 2( ) ( )k k k k

ij ij ij ij j ijv w v c r pbest x c r gbest x+ = × + × × − + × × −     (1) 

1 1k k k
ij ij ijx x v+ += +                      (2) 

Where dj ,2,1= . Both 1r  and 
2r  are random numbers, which uniformly distributed 

between [0, 1]. Both 
1c and 

2c  are the positive constant, 
1c =

2c =2 [5]. w  is inertial 

weight calculated in the following form for a quick convergence and good result,  

 max min
max

max

w w
w w iter

iter

−= − ×                       (3) 

Where, 
maxw and 

minw are the inertial and final weights respectively. iter and 

maxiter are the current and maximum iteration numbers respectively. A large inertial 

weight facilitates global exploration while a small one tends to facilitates local 
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exploration. Suitable selection of the inertial weight can balance the global and local 
search. Here, PSO refers to the PSO with inertial weight w  and 

maxw =0.9, 
minw =0.4. 

Improved PSO (IPSO). At last phase of PSO calculation, as all particles move 
towards pbest and gbest, positions of all particles would be near to the pbest and 
gbest, the last two items of the Eq. (1) are also close to zero. Therefore, a so-called 
premature convergence problem will easily be caused.  

An improved PSO (IPSO) algorithm is proposed for easily exploring a global 
solution at the last stage of the PSO. When the iteration numbers of the algorithm 
reaches to some target value, e.g.,

max3.0 iteriter =  the particle position is changed to 

the following one, 

)()3( min
11

iteri
k
ij

k
ij

k
ij ffCvxx −⋅+−+= ++ αα           (4) 

)))(exp(1/(1 miniteri ff −−+=α                       (5) 

Where, α is a sigmoid function, a typical neuronal non-linear transfer function that 
helps make the outputs reachable. 

if is the fitness value of the iter number for the i-th 

set of particle, 
miniterf is the minimum fitness value. From Eq. (5), the adjustment 

coefficient α  ranges between [0, 1]. When α−=3C , the third term in Eq. (4) is 
equal to zero. The second term in Equation is less than 1+k

ijv , if α is not equal to one. 

Therefore, the new position of particle, 1+k
ijx , is forced to decrease. Meanwhile, the x 

is limited to a range between [
maxmin ,4 xxC ⋅ ], where C4 is less than one. C4=0.9, 

C3=1 are accepted in this paper [6].  

2.2 Continuous Ant Colony Optimization 

Ant Colony Optimization (ACO). In general, the ACO approach attempts to solve 
an optimization problem by iterating the following two steps: 

i) Candidate solutions are constructed in a probabilistic way by using a probability 
distribution over the search space. 

ii) The candidate solutions are used to modify the probability distribution in a way 
that is deemed to bias future sampling toward high quality solutions. 

The central component of ACO algorithms is the pheromone model which is a set of 
so-called pheromone trail parameters. The numerical values of these pheromone trail 
parameters reflect the search experience of the algorithm. They are used to bias the 
solution construction over time to regions of the search space containing high quality 
solutions. They are required to update in order to increase the pheromone values 
associated with good or promising solutions and to decrease those that are associated 
with bad ones. Usually, this is achieved by increasing the pheromone levels 
associated with chosen good solution and by decreasing all the pheromone values 
through pheromone evaporation. In general, good solutions found earlier by the ants 
are used to update the pheromone in order to increase the probability of the search by 
subsequent ants in the promising regions of the search space. 
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Continuous Ant Colony Optimization (CACO). In ACO applied to combinatorial 
optimization problems, the set of available solution components is defined by the 
problem formulation. For a continuous optimization problem, the fundamental idea 
underlying ACO is the shift from using a discrete probability distribution to using a 
continuous one, that is, a probability density function (PDF). For CACO, the general 
approach to sampling PDF P(x) is to use the inverse of its cumulative distribution 
function (CDF) D(x). However, it is important to note that for an arbitrarily chosen 
PDF P(x), it is not always straightforward to find the inverse of D(x). One of the most 
popular functions that is used as a PDF is the Gaussian function. By defining a 
Gaussian kernel )(xG i as a weighted sum of several one-dimensional Gaussian 
functions )(xg i

l as below: 
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Where, i=1,2,…,n is the number of dimensions of problem, which identifies a single 
such PDF. The )(xGi  is parameterized with three vectors of parameters: ω  is the 
vector of weights associated with the individual Gaussian functions, iμ  is the vector of 
means, and iσ  is the vector of standard deviations. The cardinality of all these 
vectors is equal to the number of Gaussian functions constituting the Gaussian kernel. 
Their definition follows the metaheuristic framework in reference [7].  

The whole process is repeated for each dimension and each time the average 
distance i

lσ  is calculated only with the use of the single dimension. This ensures that 
the algorithm is able to adapt to linear transformations of the considered problem.  

3 SI-Based Optimization Problem on Structural Damage 
Detection 

The motion equation of a system with n degrees of freedom (DOFs) can be expressed 
as follows 

0j j jλ=Κφ M φ
                         (7) 

( )
1

eN

i i
i

α
=

= =∑K K α K
                (8) 

Where K is the global stiffness matrix of a damaged structure. Since the change in 
mass matrix before and after damage is very small and always assumed to be 
unchanged in most cases, the global mass matrix of health structure 0M  is used here 
instead of its corresponding damaged one M . jλ  and jφ  are the j-th eigenvalue and 
eigenvector respectively, 1,2,..., mj N=  and mN  is the number of measured mode 
shapes. ( )2

 2j jfλ π= , and jf  is the j-th natural frequency. iK  is the i-th element stiffness 
matrix, and 1 2, , ,

e

T

Nα α α⎡ ⎤= ⎣ ⎦…α  is the stiffness reduction extent (SRE), which is specified to 
the elemental bending stiffness (EI) in this paper. eN  is the element number of the 
finite element model (FEM) of a structure. 
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Objective Function. The objective function is defined as a problem minimizing 
differences between the experimental and analytical modal results. The minimization 
of objective function is expressed as a bound-constrained nonlinear least-squares 
(BCNLS) problem as follows,  

2 2

1

1 1
min ( ) ( ) ( )

2 2Ne

N

i
R i

f r
∈ =

= = ∑
α

α r α α
                 (9) 

, : eN NR R≤ ≤ →l α u r                          

1 1 1( ) ( ) ,  ( )
m m

TT T
N f N Nϕ× × ×⎡ ⎤= ⎣ ⎦r α r α r α

                 (10) 

Where 1 2( ) ( ( ), ( ), , ( ))T
Nr r r=r α α α α… , is a N-dimensional vector-valued function,  2 m eN N N= ≥ . l, u 

are vectors of lower and upper bound, respectively. In this paper, all components of l 
and u are set to be 0 and 1 respectively for the purpose of damage detection. ( )fr α  is a 

mN -dimensional vector denoting the difference of frequency ratio before and after 
damage. ( )ϕr α  is also a vector containing the modal assurance criterion (MAC) of 
each tested mode shape with mN  dimension, where mode shapes with only measured 
DOFs are used and mode shape expansion is not required here. The formulas of ( )fr α  
and ( )ϕr α  are given as, respectively, 

( )
( ) 1

i
i a
f i
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f
r

f
= − αα

,    

2( ( ))
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( )( ( ) ( ))

iT i
i t a

iT i i T i
t t a a

rϕ = φ φ αα
φ φ φ α φ α        (11) 

Here if and iφ  are the i-th natural frequency and mode shape, 1, 2, , mi N= … , subscripts t 
and a denote tested and analytical data respectively. 

4 Experimental Verification 

In order to assess the performance of the proposed SI-based algorithm for SDD 
optimal problem, some measured data of a simple 3-storey building steel frame are 
adopted [8]. The traditional PSO and the proposed IPSO and CACO here respectively 
are used to solve the optimal problem on SDD for evaluation on their validity. 

4.1 Configuration of 3-Storey Steel Frame 

The 3-storey building frame was fabricated using three steel plates of 850×500×25 
mm3 with four equally sized rectangular columns of 9.5×75 mm2 as shown in Fig. 1 a-
b). The plates and columns were properly welded to form rigid connections. The 
building model was then welded on a steel base plate of 20 mm thickness. The steel 
base plate was in turn bolted firmly on a shaking table using a total of eight bolts of 
high tensile strength. The overall dimensions of the building were 1450×850×500 
mm3. All the columns were made of high strength steel of 435 MPa yield stress and 
200 GPa modulus of elasticity. The 9.5×75 mm2 cross-section of the column was 
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arranged in such a way that the first natural frequency of the building was much lower 
in the x-direction than in the y-direction. This arrangement restricted the building 
motion in the x-direction and thus the building was effectively reduced to planar 
building in the x-z plane. The thickness of each steel floor was 25 mm so that the floor 
can be regarded as a rigid plated in the horizontal direction, leading to a shearing type 
of deformation. The geometric scale of the building model was assumed to be 1/5. To 
do a better simulation, an additional mass block of 135 kg was placed on each floor of 
the building model. 

4.2 Structural Multi-damage Detection 

Four damage patterns considered in the experimental studies are shown in Table 1. 
Here the stiffness reduction extent (SRE) is computed based on shear build 
assumptions. They were implemented step by step by cutting the width of the 
columns, i.e., b as shown in Fig. 1 c), in the first storey to 51.30 mm (pattern i) and 
then to 37.46 mm (pattern ii) within a height of 60 mm from the bottom, followed by 
cutting the width of the columns in the second storey to 51.30 mm (pattern iii) and 
then to 37.46 mm (pattern iv) within a height of 60 mm from the second floor. The 
measured natural frequencies before and after damage for each damage pattern are 
listed in Table 2. Values in parentheses denote error (%) between measured natural 
frequencies from undamaged and damaged frames. 
 

     
a) Elevation                 b) Plan          c) Details of damaged column 

Fig. 1. Configuration of 3-storey frame model (all dimensions in mm) 

Table 1. Damage patterns of 3-storey frame model 

Storey 

No. 

undamage 
damage patterns 

(i) (ii) (iii) (iv) 

b/mm SRE b/mm SRE b/mm SRE b/mm SRE b/mm SRE 

1 75 0 51.30 11.6% 37.46 21.1% 37.46 21.1% 37.46 21.1% 

2 75 0 75 0 75 0 51.30 11.6% 37.46 21.1% 

3 75 0 75 0 75 0 75 0 75 0 
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Table 2. Measured natural frequencies (Hz) before and after damage 

Modal 

No. 
undamage 

damage patterns 

(i) (ii) (iii) (iv) 

1 3.369 3.259 (3.27%) 3.113 (7.60%) 3.076 (8.7%) 3.003 (10.86%) 

2 9.704 9.485 (2.26%) 9.302 (4.14%) 9.192 (5.28%) 9.082 (6.40%) 

3 14.282 14.209 (0.51%) 14.136 (1.02%) 13.660 (4.36%) 13.330 (6.67%) 

 

 

 
Fig. 2. Comparison on multi-damage detetion results 

Since the identification model of the 3-storey frame structure (i.e., a 3-storey 
shear-building model) is simple, the computational cost is very small by using the 
proposed SI-based SDD algorithms, i.e. traditional PSO, proposed IPSO and CACO, 
and the convergence can be quickly achieved for all damage patterns. The damage 
identification results for all four damage patterns are compared in Fig. 2. It is very 
clear that both the identified damage location and extent are very close to the true 
ones, which shows that the proposed method is very effective. 

5 Conclusions 

A swarm intelligence (SI) based algorithm is proposed for optimal problems on 
structural damage detection (SDD) in structural health monitoring (SHM) field in this 
paper, which includes an improved particle swarm optimization (IPSO) and 
continuous ant colony optimization (CACO) techniques having been applied to the 
multi-damage identification of a 3-storey building model in laboratory. Further, 
assessment on the effectiveness and robustness of the proposed algorithm has also 
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been carried out. The illustrated results show that the identified damages are 
consistent with the true damages either for single damage or for multiple damage 
patterns. Moreover, the proposed SI-based algorithm can not only locate the structural 
damages but also quantify the severity of damages, which shows that the SI-based 
algorithm is feasible and effective for the SDD optimal problem in the SHM field.  
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Abstract. In order to solve discrete optimization problem, this paper proposes a 
quantum-inspired bacterial swarming optimization (QBSO) algorithm based on 
bacterial foraging optimization (BFO). The proposed QBSO algorithm applies 
the quantum computing theory to bacterial foraging optimization, and thus has 
the advantages of both quantum computing theory and bacterial foraging 
optimization. Also, we use the swarming pattern of birds in block introduced in 
particle swarm optimization (PSO). Then we evaluate the efficiency of the 
proposed QBSO algorithm through four classical benchmark functions. 
Simulation results show that the designed algorithm is superior to some 
previous intelligence algorithms in both convergence rate and convergence 
accuracy. 

Keywords: quantum-inspired bacterial swarming optimization, bacterial 
foraging optimization, particle swarm optimization. 

1 Introduction 

The natural system that has developed so long is one of the rich sources of inspiration 
for inventing new intelligence algorithms. Some intelligence algorithms are widely 
studied for application, such as particle swarm optimization (PSO) [1]. Particle swarm 
optimization were successfully applied to solve engineering problem of discrete 
optimization [2]. Quantum information science is a result of merging physical science 
into information science. Quantum-inspired genetic algorithm (QGA) is the product of 
quantum computing theory and genetic algorithm. In QGA, qubit encoding is used to 
represent the chromosome, and evolutionary process is implemented by using quantum 
logic gate operation on the chromosomes. Now, much attention is paid to QGA because 
it has the characteristics of strong searching capability, rapid convergence, short 
computing time and small population size [3–4].Quantum particle swarm optimization 
(QPSO) is an effective swarm intelligence method for multi-user detection [5]. So the 
quantum theory is very efficient in the intelligence algorithm domain. 
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In recent years, a new and rapidly growing subject - bacterial foraging optimization 
(BFO) attracts more and more attentions. BFO has been applied to many kinds of real 
world optimization problems, such as harmonic signal estimation [6]. Although BFO 
has prominent and encouraging performance for global optimization problems as 
reported in [6], simulation results had proved that the algorithm is time-consuming. 
The BFO in literature can’t solve discrete problem. In order to design the algorithm 
that can solve discrete problem, we introduce the concept of quantum theory to the 
BFO, and adapt the process of the BFO to accelerate the convergence rate, thus we 
propose the quantum-inspired bacterial swarming optimization (QBSO) algorithm. 

The rest of the paper is organized as follows. In Section 2, we describe the process 
of the QBSO algorithm. In Section 3, we evaluate the performance of the proposed 
algorithm through several Benchmark functions. In Section 4, conclusions and future 
work are summarized. 

2 Quantum-inspired Bacterial Swarming Optimization 

The classical BFO algorithm comprises the following processes: chemotaxis, 
swarming, reproduction, elimination and dispersal. The process of the QBSO 
algorithm mainly comprises three steps: chemotaxis, reproduction and elimination-
dispersal. For simplicity, we eliminate the process of cell-to-cell communications. 
From the process of the BFO algorithm, we can see it is very complex, and simulation 
results show that it has low convergence rate and inaccurate convergence value. In 
order to solve discrete optimization problem, we design the QBSO algorithm which is 
based on the conventional BFO algorithm to get a better performance.  

First we introduce the process of the chemotaxis. In the QBSO algorithm, a number 
of different representations can be used to encode the solutions onto the quantum 
bacterium. The QBSO algorithm uses quantum coding, called a quantum bit or Q-bit, 
for the probabilistic representation that is based on the concept of quantum bit, and a 
quantum bit position is defined as a string of quantum bits. One quantum bit is 
defined as the smallest unit of information in the QBSO, which is defined as a pair of 

composite numbers ( ),
Tα β , where

2 2
1α β+ = . 

2α  gives the probability that the 

quantum bit will be found in the '0' state and 
2β  gives the probability that the 

quantum bit will be found in the '1' state. The quantum bit position of the i-th 
quantum bacterium at the thm chemotactic step of the thn reproduction loop in the 

thp elimination-dispersal event in the population of the S bacteria is defined as 

  ( ) ( ) ( ) ( )
( ) ( ) ( )

1 2

1 2

, , , , , ,
, ,

, , , , , ,

i i il
i

i i il

m n p m n p m n p
m n p

m n p m n p m n p

α α α
β β β
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

ψ            (1) 

where ( ) ( )2 2| , , | | , , | 1ij ijm n p m n pα β+ = , ( 1,2, , )j l= , l represents the 

dimension of the problem, the quantum bit position can represent 2l  states 
simultaneously. For simple and efficient design of the QBSO algorithm, we define 

( ), ,ij m n pα and ( ), ,ij m n pβ as real numbers and ( )0 , , 1ij m n pα≤ ≤ , 
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( )0 , , 1ij m n pβ≤ ≤ .Therefore, ( ) ( )( )2
, , 1 , ,ij ijm n p m n pα β= − , and equation (1) 

can be simplified as 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 2

1 2

, , , , , , , ,

, , , , , ,

i i i il

i i il

m n p m n p m n p m n p

m n p m n p m n p

α α α

ψ ψ ψ

= ⎡ ⎤⎣ ⎦
= ⎡ ⎤⎣ ⎦

ψ
       (2) 

The evolutionary process of quantum bit position is mainly completed through 
quantum rotation gate [7].  In our algorithm, for simplicity, the j-th quantum bit 

ijψ is updated as 

( ) ( ) ( )( )21 11, , abs , , cos 1 , , sint t
ij ij ij ij ijm n p m n p m n pψ ψ θ ψ θ+ +⎛ ⎞

+ = × − − ×⎜ ⎟
⎝ ⎠  

 (3) 

Where abs( )⋅ is an absolute function which makes the quantum bit in the real domain 

[0, 1], and 1t
ijθ +  is the quantum rotation angle, which can be calculated through 

equation (5), t is the iteration number of the algorithm, where 

( ) ( )1 1c c ret N n N N p m= ⋅ − + ⋅ ⋅ − + , cN represents the number of chemotaxis 

step, reN represents the number of reproduction step, edN represents the number of 

elimination-dispersal step. 

If 1 0t
ijθ + = , a quantum bit ijψ  is updated in a certain small probability by the 

operator which can be described below. 

( ) ( )( )2
1, , 1 , ,ij ijm n p m n pψ ψ+ = −                   (4) 

Quantum-inspired bacterial swarming optimization algorithm is a novel multi-agent 
optimization system inspired by social behavior metaphor of agents. Each agent, 
called quantum bacterium, forages in an l-dimensional space according to the 
historical experiences of its own and its colleagues’. There are S quantum bacteria 
that are in a space of l dimensions in a quantum swarm, the i-th quantum bacterium’s 
bit position in the space is ( ) 1 2, , [ , , , ]i i i ilm n p x x x=x , ( 1,2, ,i S= ), which is a 

latent solution. The i-th quantum bacterium’s quantum bit position at the 
thm chemotactic step of the thn reproduction loop in the thp elimination-dispersal 

event can be written as ( ) ( ) ( )1 2( , , ) [ , , , , , , , , , ]i i i ilm n p m n p m n p m n pψ ψ ψ=ψ  

and ( ) ( ) ( ) ( )1 2, , [ , , , , , , , , , ]lm n p b m n p b m n p b m n p=b is the global optimal bit 

position discovered by the whole quantum bacterium population until now. Let 

( , , )i m n px  is the position of the thi bacterium at the thm chemotactic step of the 

thn reproduction loop in the thp elimination-dispersal event in the population of the 

S quantum bacteria. The i-th quantum bacterium is updated by the following quantum 
moving equations: 
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( ) ( )( )1
1 , , , ,t

ij j ije b m n p x m n pθ + = −                       (5) 
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where ( )1,2, ,i S= , ( )1,2, ,j l= , ijρ  is uniform random number between 0 and 

1, 1c  is mutation probability which is a constant among [0,1 / ]l , [0,1]ijγ ∈  is 

uniform random number, ( )( )2
1, ,ij m n pψ +  represents the selection probability of 

bit position state. The value of e1 expresses the relative important degree of b in the 
food foraging process, we can define the value of e1 as attracting effect factor, which 
is similar to cell to cell communications.  

The fitness value of the thi quantum bacterium at ( ), ,i m n px  is represented by 

( ), ,iJ m n p . In this paper the minimum fitness value minJ  is defined as the global 

optimum.  
After cN chemotactic steps, the fitness values for the thi bacterium in the 

chemotactic loop are accumulated and calculated by: 

( )
1

1

, ,
cN

i i
health

m

J J m n p
+

=
= ∑                             (8) 

where i
healthJ  represents the degree of health of the thi  quantum bacterium. 

The smaller the i
healthJ is, the healthier the bacterium is. To simulate the reproduction 

character in nature and to accelerate the swarming speed, all the bacteria are sorted 
according to their health values in an ascending order and each of the first rS  

( / 2rS S= , for convenience S  is assumed to be a positive even integer) bacteria 

splits into two bacteria with no mutations. The characters including location and step 
length of the mother bacterium are reproduced to the children bacteria. Through this 
selection process the remaining rS  unhealthier bacteria are eliminated and discarded. 

Therefore, the number of the bacteria keeps constant in the whole process. 
After cN chemotactic steps, we adopt the reproduction process which is similar to 

the BFO algorithm, namely, the rS bacteria with the highest healthJ values die and the 

other rS bacteria with the best values split. 
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For the purpose of improving the global search ability, elimination-dispersal event 
is defined after reN  steps of reproduction. The bacteria are eliminated and dispersed 

to random positions in the optimization domain according to the probability edp . This 

elimination-dispersal event helps the bacterium avoid being trapped into local optima. 
The number of the event is denoted as edN . 

The process of the proposed QBSO algorithm can be summarized as follows: 
Initialize simulation parameters, including , , , ,c re ed edN N N S p , the quantum 

position of each bacterium and the bit position of each bacterium. 
Evaluate the performance of each bacterium. 
for 1: edp N=  

   for 1: ren N=  

      for 1: cm N=  

          Update the quantum position of each quantum bacterium according to 
equation (5) and (6), the bit position of each quantum bacterium is 
updated according to (7). 

          Update the global optimal position discovered by the whole quantum 
bacterium population until now. 

      end 
      Calculated the accumulated fitness values for each bacterium in the chemotactic 

loop, and the rS bacteria with the highest healthJ die and the other rS bacteria 

each split into two bacteria with no mutations. 
    end 
    Each bacterium is eliminated and dispersed to random bit position and quantum 

position in the optimization domain according to the probability edp . 

end 
The global bit position of the bacteria can be obtained in vector b . 

From what we have discussed above, we can see that we introduce the idea or the 
advantage of BFO to design the QBSO algorithm, and simultaneously we introduce 
the concept of quantum to accelerate the convergence rate. So our algorithm has the 
advantage of both the BFO algorithm and quantum theory. 

3 The Performance of the QBSO Algorithm 

We use four benchmark functions ( ) ( ) ( ) ( )( )1 2 3 4, , ,F F F Fx x x x to evaluate the 

performance of the QBSO algorithm. We set initial population and maximum 
generation of the four evolutionary algorithms identical. For GA, QGA, PSO and 
QBSO, the population size is set to 20, i.e., 20S =  in the QBSO algorithm. For GA, 
the crossover probability and the mutation probability are set to 0.8 and 0.02, 
respectively, and the GA is configured to replace 85% of its population each 
generation, 17 of every 20 population members. As for QGA, the rotation angle of 
quantum gates decreases linearly from 0.1 π at the first generation to 0.005 π  at the 
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last generation. In PSO, the two acceleration coefficients are equal to 2, and 

max 4V = [8]. For QBSO, we set the number of chemotaxis step =100cN , the number 

of reproduction step is 5reN = , the number of elimination-dispersal step is 

2edN = , so that the maximum generation of the problem is 1000c re edN N N⋅ ⋅ = , 

which is convenient to compare our algorithm with other classical algorithms, and, the 
attracting effect factor 1 0.12e = , 1 0.1/c l=  and 0.25edp = . 
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( ) ( )( ) ( )2
4

1

10cos 2π 10 , 5.12 5.12, 1,2,
n

i i i
i

F x x x i n
=

= − + − ≤ ≤ =∑x  

In the following simulations, we use binary-encoding, and the length of every variable 
is 15 bits. We also set 2n = for all benchmark functions, i.e. 1,2i = . All the results 
are the average of 200 times. 

The first function we use is Griewank function. x is in the interval of [ ]600,600− . 

The global minimum value for this function is 0 and the corresponding global 
optimum solution is ( ) ( )opt 1 2, , , 100,100, ,100nx x x= =x . From Figure 1, we 

can see that although classic algorithms have fast convergence rate, but they all trap 
into local convergence. The figure also presents that our algorithm has the potential to 
have a much smaller convergence value. So our algorithm overcomes the 
disadvantage of local convergence and has a more accurate convergence value. 

Fig. 1. The performance of four algorithms 
using Griewank function 

Fig. 2. The performance of four algorithms 
using Rosenbrock function 
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The second function is Rosenbrock function. x is in the interval of [ 50,50]− . 

Global minimum value for this function is 0 and the corresponding global optimum 
solution is ( ) ( )opt 1 2, , , 1,1, ,1nx x x= =x . From Figure 2, we can see that GA and 

PSO have the similar performance, while QGA outperforms GA and PSO. Our 
algorithm has a very accurate convergence value compared to the other three 
algorithms, which reaches the convergence value at 150 iterations while QGA obtains 
the same value at 1000 iterations. 

The third function is Schwefel function whose value is 0 at its global minimum 
solution ( )opt 1 2, , , (420.9867,420.9867, ,420.9867)nx x x= =x . x is in the 

interval of [ ]500,500− . The function has a second best minimum far from the global 

minimum where many search algorithms are trapped. Moreover, the global minimum 
is near the bounds of the domain. From Figure 3, we can see that although QGA has a 
fast convergence rate, it has an inaccurate convergence value; although PSO and GA 
have more accurate convergence value, they all have a slow convergence rate while 
our algorithm outperforms GA, QGA and PSO. 

The fourth function is Rastrigin function whose value is 0 at its global minimum 
solution ( ) ( )opt 1 2, , , 0,0, ,0nx x x= =x . x  is in the interval of [ ]5.12,5.12− . 

The function is based on Sphere function with the addition of cosine modulation to 
produce many local minima. The locations of the minima are regularly distributed. 
The difficult part about finding optimal solutions to this function is that an 
optimization algorithm can easily be trapped in a local optimum on its way towards 
the global optimum. From Figure 4, we can see that GA, QGA and PSO have similar 
performance, but they all trap into local convergence. Our algorithm overcomes the 
disadvantage of local convergence and has much higher convergence value. 

  

Fig. 3. The performance of four algorithms 
using Schwefel function 

Fig. 4. The performance of four algorithms 
using Rastrigin function 
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4 Conclusion and Future Work 

This paper has proposed the QBSO algorithm which is a novel algorithm for discrete 
optimization problems. Though testing classical Benchmark functions, we can see 
that our algorithm outperforms other classical evolutionary algorithms. In this paper, 
some parameters are not the best, so through changing certain parameters we can get a 
better result. On the other hand, the QBSO algorithm can only solve single objective 
problems, but can’t solve multi-objective problems.  
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Abstract. In this paper, the major goal is to show the swarm intelligence power 
in cloud based scenario. Heterogeneous environment has been configured at 
server-side network of cloud. Swarm intelligence has been adopted for 
enhancing performance of overall system network. Specific location at server-
side of network is going to be selected by swarm intelligence for accessing 
desired elements. Flexibility, robustness and self-organization have been 
considered as main features of swarm intelligence. 

Keywords: Swarm Intelligence, Distributed system, Cloud. 

1 Introduction 

Swarm intelligence (SI) is the combined behavior of decentralized, self-organized 
systems, natural or artificial. The concept is engaged in effort on artificial intelligence. 
The expression was originally initiated by “Gerardo Beni” and “Jing Wang” in 1989, 
in the perspective of cellular robotic systems [1]. 

Swarm assumption has been built-up and discussed in [2]. Swarm behavior 
involves dynamism. SI systems are typically made up of a population of ordinary 
agents cooperating locally with one another and with their environment. The 
inspiration often comes from nature, especially biological systems. The agents follow 
very simple rules, and although there is no centralized control configuration dictating 
how individual agents should act, local, and to a certain degree arbitrary, 
communications among such agents direct to emergence of “intelligent” global 
behavior, unknown to the individual agents. Natural examples of SI include ant 
colonies, bird flocking, animal herding, bacterial growth, and fish schooling [3]. 

Group occurs at all magnitudes and across a variety of sequential permanence from 
the transient congregation of midges to the mandatory regulations of herring [4]. 

Organization of rest of the paper is as follows: Section 2 presents related works 
section. Proposed approach is described in Section 3. Experimental results have been 
shown in Section 4. Section 5 concludes the paper. 

2 Related Works 

A system is a collection of machines, workstations, servers and some other resources 
connected by networks. Distributed performance computing [5] in heterogeneous 
systems employs the distributed objects as applications. These applications are 
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arranged in such a manner that the same type of user requests can be executed in 
distinct machines which are situated in different locations. Sometimes, these 
machines fall in the same group or cluster at same location [6]. Formation of 
distributed network requires transferring information in a high speed [7]. In real-time 
scenario, there may be several instances when server assignments are not appropriate. 
High performance can be achieved using cluster of workstations [8]. These 
workstations can be of similar types or distinct types in respect of configurations. 
Therefore, practical situation of the distributed network needs multi-processing power 
within the network activities to speed-up the task with synchronization. 

3 Proposed Approach 

In our proposed cloud, typically a lot of servers are being utilized to accommodate all 
users’ requests in real-time basis based on requirement of physical memory, virtual 
memory, and disk space. Cloud has some interesting behaviors like servers are 
clustered as sub-network within the network. Cooperative transport is one of the 
major points for synchronization. Hierarchical structure of servers and workstations 
are maintained by specific protocols. These characteristics are also true in swarm 
intelligence. Peer-to-peer data transfer is accomplished by direct interactions whereas 
monitoring system handles all situations in network using indirect interactions. 
Sometimes, individual system behavior modifies cloud environment, which in turn 
modifies the behavior of other individuals of the system. This can be called as local-to-
global and global-to-local transition. This indirect interaction is known as “Stigmergy” 
in swarm intelligence. Intelligent group activities are required for maintaining 
synchronization between all server machines within network. High computations are 
typically handled by the high-end cluster machines whereas small computations are 
handled by the low processors. These types of distinction of tasks are clearly visible in 
swarm activities as the division of labor and adaptive task allocation. In the proposed 
approach, nearest network and nearest server within that network has been utilized to 
execute client based programs using similarity concepts. This similarity concept is 
similar to the discovery of the shortest paths between source and destination. 
Collective behavior of swarm intelligence is visible in proposed cloud based system 
network. Feedback mechanism is used for controlling any abnormalities. It is called as 
load shifting within this paper. Random behavior in multiple interactions is also 
common in proposed cloud system and swarm system (refer Fig. 1). 

In this paper, a distributed environment has been measured. It consists of typical 
computer resources, workstations and clusters. This gathering of equipments presents 
a huge widespread computing resource including memory, cycles, storage and 
bandwidth. Proposed system has a great prospective for high performance computing 
in this approach. An important characteristic of this structural arrangement is that it 
exhibits heterogeneity of many types including hardware, operating system, file 
system, and network. Heterogeneity creates a challenge that it must be managed to 
enable the parts of the proposed system to work together. At the same time, it also 
presents an opportunity that is the variety of different resources which suggests that it 
is possible to select the best resources for a particular user request. The variety and 
amount of computing resources in the proposed system offers a great prospective for 
high performance computing.  
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Fig. 1. Implementation of Self-Organization Concept in Cloud System Network 

SimilarityN N i , N j A AN A N N A N NA AN A N N A N N . (1)

where, N(i) = ith network; 
N(j) = jth network; 
AppN() = Function of “Number of Applications of individual network”; 
AoAN() = Function of “Amount of Applications of considered networks”; 
SimilarityN() = Function of “Similarity Measurement between networks”; SimilarityS S i , S j A AS A S S A S SA AS A S S A S S . (2)

where, S(i) = ith server; 
S(j) = jth server; 
AppS() = Function of “Number of Applications of individual server”; 
AoAS() = Function of “Amount of Applications of considered servers”; 
SimilarityS() = Function of “Similarity Measurement between servers”; 

 
“SimilarityN” and “SimilarityS” are defined in Equation 1 and Equation 2 
respectively to facilitate nearest network and nearest server. Related networks would 
be responsible to execute user specific tasks. Network manager directs the user 
initiated information and data to the nearest network for carrying out assignment. 
Related server is detected to process the user request. Output information would be 
sent to user-end following counter path. 

Our system behaves as Software-as-a-Service (SaaS) providing full fledged 
implementation of network based activities with dynamic scalability, openness, 
distributive nature and transparencies. Software is customized according to users. 

Designers should provide some specific methodologies for managing flawless 
activities in dynamic scalability in real-time. Algorithm 1 explains the overall cloud 
activity for specific applications in Web services. 
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Algorithm 1: Cloud Activity in Web Services 

Input: Request from user (user application, user data with time stamp, user IP) 
Output: Network selection for program execution of user 
Step 1: Each server maintains the information of all other servers within a specific 
network. A network manager maintains the information about all other related 
networks within the Internet. 
Step 2: When a client requests for data, the information related to the user is 
broadcasted on the Web. 
Step 3: Determine nearest network (Nj) 
Step 4: Nj detects the user request and accepts it. 
Step 5: Specific server (Sk) is appointed for handling client requests (Ci). 
Step 6: After the transaction is over, Sk sends the update of Ci to each related server of 
Nj. Therefore, the information is propagated to ∑ Sk. Consider, total number of 
related servers within Nj = n. 
Step 7: Calculate access frequency of the user request for particular application by 
comparing with other applications 
Step 8: Network Nj transmits the update to other related networks. 
Step 9: Each related network updates the related servers. 
Step 10: Stop. 

 
Nearest network has been determined using a seed which has been chosen based on 

user. Another seed is chosen based on the IP address of the user location. Hash function 
is selected considering the characteristics of these seeds. Particular network is selected 
comparing the current load with the threshold load of the network (refer Fig. 2). 

 
Fig. 2. Flowchart for network selection 

There are mainly two points which have to be verified before sending the actual 
information. Higher access frequency is considered first for transmission over the 
network. Old information should be sent earlier in case of having same access 
frequencies. In similar way, information is transmitted to related servers after it is 
being reached to the specific network. 

Initially at server-side, the document for client’s Internet Protocol (IP) address has 
been stored by the Web portal system using TCP/IP connection and then further 
submitted to the interface layer to activate the proposed distributed system 
architecture. The user defined document for the input data for a specific 
program/activity should also be saved in the same procedure. I/P sender module takes 
care of these documents and prepare the required formatted materials for next level of 
processing to search for a particular sub-network within the server-side system based 
on the classified tasks using dynamic scheduling technique. Scheduler checks for an 
active server of a particular network at first, and then it checks whether the server is 
busy or free. The particular server is being selected for the user prescribed operation if 
the server is active and free at any time instance. Otherwise, another server would be 
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selected for the same operation. I/P sender module also send the required materials to 
I/P receiver module following the standardized typical communication techniques at 
port level. I/P receiver module initiate the particular application. The output files 
would be stored in a particular location of each server machines. O/P sender module 
collects the data and sends it back to the interface. O/P receiver module fetches  
the required output files coming to its direction at a particular port level and stores  
the required information to the prescribed places related to the external IP address of 
the particular user. Web portal takes care of these generated documents and sends 
them to the specific destination through TCP/IP connection (refer Fig. 3). 

 

 

Fig. 3. Interaction between Sender & Receiver modules 

Proposed system framework detects the nearest network and server for a particular 
application at any specific time instance based on the user request. 

There is one option for handling emergency situation of system crash. It is known 
as load shift. The required output would not be received by the interface, if the server 
system crashes down. Therefore, the whole system network needs a supervision to 
tackle this type of scenario. A special monitoring sub-system at interface has been 
settled for monitoring about the status of particular network as well as particular 
server(s) of that network. If the monitor detects any unusual activity within network 
and/or server, it would execute the same procedure in some other servers of the same 
or different network. If there is no response from the network and/or server, then also 
the interface does the same procedure in an alternate network and/or server. A log file 
contains external IP information, the application name, internal IP information and the 
number of files required as output of the prescribed program module. Missing link 
means information about untraceable particular program request to a specific server of 
a specific sub-network. Algorithm 2 describes the load shifting technique as follows: 
Algorithm 2: Emergency_Load_Shift 

Input: Total list for a particular task, T =  = {T1, T2, …, Ti, …, Tn} 
Output: Execute missing links to complete task 
Step 1: Wait for ‘t’ time units 
Step 2: If (All links have reached interface) {Then goto Step 5} 
Step 3: Else {Find missing links of T = } 
Step 4: Execute missing links in different servers (Sj) of sub-network (Ni) 
Step 5: Stop 
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4 Experimental Results 

All stages of proposed approach have been illustrated in this section. Fig. 4 
demonstrates dynamic activity of IP_SEND module for controlling initial client data 
preserving organization between the interface and other related server machines of 
different internal networks of the disseminated setting. It would be necessary to 
switch the fractional productions of the user’s program. 

 

Fig. 4. Presentation of IP_SEND Module 

 

Fig. 5. Presentation of IP_RECEIVE Module 
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Fig. 6. Presentation of OP_SEND Module 

 

Fig. 7. Presentation of OP_RECEIVE Module 

Fig. 5 depicts IP_RECEIVE unit accountable to carry out implementation of 
client’s program. It receives output type along with server IP, nearest network and 
nearest server. It creates a result file irrespective of output types. The downloaded 
file(s) would be stored within predefined repository of the server in a provisional 
mode. Then, the module identifies the meticulous executables at kernel level. Fig. 6 
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symbolizes an example of real-time presentation of OP_SEND module. This unit 
receives outputs of coding preferred by users and then relocates these records to 
interface. Fig. 7 represents OP_RECEIVE module at interface. It receives outputs and 
stores it inside selected index. The specific server is being released after its execution. 

5 Conclusion 

In this paper, distributed environment has been achieved using swarm intelligence. 
Synchronized system network has been formed with different types of servers. 
“Stigmergy” is successfully applied to the proposed system for enhancing swarm 
concept. Self-organizing behavior is implemented artificially in the cloud to prepare 
and control the system as swarm movement in real-time. 
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Abstract. e-Remanufacturing has nowadays become a superior option for 
product recovery management system. So far, many different approaches have 
been followed in order to increase the efficiency of remanufacturing process. 
Swarm intelligence (SI), a relatively new bio-inspired family of methods, seeks 
inspiration in the behavior of swarms of insects or other animals. After applied in 
other fields with success, SI started to gather the interest of researchers working 
in the field of remanufacturing. In this paper we provide a survey of SI methods 
that have been used in e-remanufacturing.  

Keywords: swarm intelligence (SI), ant colony optimization (ACO), artificial 
bee colony (ABC), particle swarm optimization (PSO), artificial immune system 
(AIS), e-remanufacturing. 

1 Introduction 

Remanufacturing is an end-of-life strategy that reduces the use of raw materials and 
saves energy while preserving the value added during the design and manufacturing 
processes [1]. To successfully implement remanufacturing strategy, remanufacturers 
must manage a number of product recovery activities. e-Remanufacturing, an enhanced 
version of remanufacturing, is a process that consists of a set of e-activities which are 
based on and executed through information technologies. 

2 SI in e-Remanufacturing 

This section thoroughly reviews SI-based techniques used in e-remanufacturing. The 
papers that are presented thereafter are categorized primarily according to the following 
remanufacturing process, namely, e-retrieval, e-reproduction, and e-redistribution. For 
each category, a brief background is introduced first. 

2.1 e-Retrieval  

With the rapid development of advanced information technologies, e-retrieval has 
evolved into the use of electronic technologies to streamline and enable the 
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procurement processes between the various parties. In e-remanufacturing context, the 
activities involved in e-retrieval can be further broken down into the following 
subclasses: e-collection, e-sorting, and e-logistics. 

2.1.1 SI-Based Approaches in e-Collection 
Internet of things (IoT), a novel paradigm where the pervasive presence around us a 
variety of things or objects which, through unique addressing schemes, are able to 
interact with each other and cooperate with their neighbors to reach common goals [2]. 
With the advent of IoT era, the way that how used products are collected will be 
dramatically changed. Equipped with their mobile phones, end users can trigger the 
used products return process by simply scanning the embedded information tags. The 
communications between end users and collectors will then be established through 
wireless sensor networks (WSN). In the literature, different SI techniques have been 
applied to WSN. In [3] a centralized approach to data gathering and communication for 
wireless sensor networks was introduced. The ant colony optimization (ACO) method 
is used in the based station to form a near-optimal chain. The simulation results showed 
that the proposed AntChain algorithm performs much better than other methods. In 
large-scale WSN, efficient service discovery and data transmission mechanisms are 
both essential and challenging. In [4], a novel scalable action-based service discovery 
protocol (ASDP) using ACO in WSN was introduced. The routing for WSN is also a 
key and hard problem. Inspired by some of biological systems such as ants and bees, 
the authors of [5], [6], and [7] introduced different adaptive intelligent routing scheme 
for WSN built on ACO and artificial bee colony (ABC). Interested readers please refer 
to [8] for more information about the applications of SI in routing for WSN. Apart from 
these, assuring a minimum level of security in WSN is also a hot research topic. Based 
on ACO, the authors of [9] presented a bio-inspired trust and reputation model, called 
BTRM-WSN, aiming at providing trust and reputation in WSN. We refer readers to 
[10] for more information about the applications of SI methods in this regard. 

2.1.2 SI-Based Approaches in e-Sorting 
Following the collection, and at some point in time, the inspection and sorting process 
starts [11]. After an item is inspected it is classified as either remanufacturable or 
un-remanufacturable. With the assistance of radio frequency identification (RFID), the 
life cycle information of a used product, especially its middle-of-life and end-of-life 
data is retrievable. Under these circumstances, SI-based data mining approaches play 
an important role. In [12], the authors reported the use of MAX-MIN ant systems in the 
data mining field capable of extracting comprehensible classifiers from data. A 
common problem in data mining is the presence of noise in the data being mined. The 
authors of [13] presented a study on knowledge acquirement from trained artificial 
neural networks for classification problems. The proposed method employed touring 
ant colony optimization (TACO) algorithm for extracting accurate and comprehensible 
rule from databases. In another study, an ant colony decision rule algorithm (ACDR) 
[14] was proposed to discovery classification rule in data sets of a distributed database.  
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Databases may become subject to missing values in either the data acquisition or 
data-storage process. Problems in an RFID sensor and a break in the data transmission 
line are prime examples of how data can go missing. Therefore, the author of [15] 
introduced various methods (e.g., the combination auto-associative neural networks 
with PSO, called AANN-PSO) dealing with issue. Overall the SI methods have 
achieved a tremendous success in data mining area. It is obvious that if the data patterns 
regarding used products can be recognized, the efficiency of the entire 
e-remanufacturing will certainly increase. Interested readers please refer to [16] for 
more detailed applications of SI in this regard. 

2.1.3 SI-Based Approaches in e-Logistics 
e-Logistics, in e-remanufacturing context, is applying the concepts of reverse logistics 
electronically to those aspects of business conducted via the Internet. Mediated by the 
advanced information technology, e-logistics revolutionizes the way of how used 
products are successfully remanufactured. With the aid of e-logistics, decentralized 
control becomes a possible, in which collection activities are outsourced to third-party 
or fourth party, remanufactured products are produced at remanufacturing facilities, 
while the redistribution of remanufactured products is rely on online channel. The 
unique characteristics of SI make it the most suitable for dealing with this problem. In 
[17], the author argued for self-organization of logistics systems based on principles 
derived from the foraging activities of ant colonies. Successful reverse logistics 
requires a cooperative integration between all the partners in the network. By modeling 
a generic supply chain with suppliers, logistics providers and distributors as a 
distributed optimization problem, the authors of [18] introduced ACO to deal with it. 
Lumpy demand forces capacity planners to maximize the profit of individual factories 
as well as simultaneously take advantage of outsourcing from its supply chain and even 
competitors. The study of [19] proposed an ant algorithm for solving a set of the 
addressed problems with different economic objectives and constraints of negotiating 
parties. In recent years, various multi-agent based models have been developed to 
automate buyer-seller negotiations in e-logistics applications. In [20], a hybrid 
case-based reasoning approach was presented to establish adaptive negotiation strategy 
for buyer-seller negotiations. Meanwhile a novel learning approach including such as 
PSO was introduced in a three-phase negotiation life cycle. In e-remanufacturing 
context, 4PL (i.e., forth party logistics provider) denotes those companies which 
“orchestrate” the supply chain, e.g., acquiring large sets of orders from large shippers 
and then re-distribute these orders among a set of other companies with actual transport 
capacity [21]. Therefore 4PL is often used as a return service provider in practice. In a 
recent study [22], the authors introduced a modified PSO with mutation operator 
extension to solve the problem of activity assignment of 4PL with preemptive structure.  

2.2 e-Reproduction 

Although sharing some similarities with the production of a new product, several 
additional constraints make the production of a remanufactured product more complex  
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than producing its counterpart new one. Thanks to the development of information 
technology, e-production provides a platform for remanufacturers to perform more cost 
effective and environmentally friendly remanufacturing operations than ever before. In 
e-remanufacturing context, the activities involved in e-production can be further 
broken down into the following subclasses: e-disassembly & assembly, and 
e-production planning & scheduling. 

2.2.1 SI-Based Approaches in e-Disassembly and Assembly 
The demand for product remanufacturing has forced companies to consider ease of 
assembly and disassembly during the design phase of their products. Evaluating these 
processes in a virtual environment during the early stages of design not only increases 
the impact of design modifications on the final product, but also eliminates the time, 
cost, and material associated with the construction of physical prototypes [23]. A 
disassembly or assembly sequence is considered to be optimal when it minimizes 
disassembly or assembly cost and satisfies the process constraints. The disassembly or 
assembly cost relates to disassembly or assembly operations, motions, and direction 
changes. Different SI techniques have been reported in the literature pertaining to this 
problem. In [24], an ACO method was utilized for generation of optimized robotic 
assembly sequences. The authors of [25] presented ANTBAL, an ACO algorithm for 
balancing mixed-model assembly lines. The proposed algorithm accounts for zoning 
constraints and parallel workstations and aims to minimize the number of operators in 
the assembly line for a given cycle time. Apart from this goal, ANTBAL also looked 
for solutions that smooth the workload among workstation. Another work dedicated to 
assembly line balancing is [26] in which a new mechanism to induce diversity in an 
existing multi-objective ACO algorithm for the 1/3 variant of the time and space 
assembly line balancing problem, a realistic variant often found in the automotive 
industry. In e-remanufacturing environment, sensors (e.g., RIFD) implanted into 
products during their production can address various uncertainties encountered at 
disassembly stage. A representative study can be found in [27]. To facilitate the use of 
RFID in such case, the antenna design of RFID is a critical factor that has to be taken 
into account in practice. Traditionally design engineers often construct small antennas 
using their knowledge and intuition, as there is no simple analytical solution relating 
antenna structure to performance. This, however, does not guarantee optimal results, 
particularly for larger, more complex antennas. Bear this in mind, ACO algorithm was 
employed in [28] for solving RFID antenna design problem. Computational results for 
a range of antenna sizes showed that ACO is a very effective design tool for RFID 
antennas.   

2.2.2 SI-Based Approaches in e-Production Planning and Scheduling 
Production planning and scheduling of remanufacturing is very complex in nature due 
to the presence of different uncertainties (e.g., yield of reusable parts) and under the 
consideration of the overall system’s dynamics. Therefore it should always be handled 
differently from that of normal manufacturing. With the assistance of information  
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technology, computer-aided process planning (CAPP) forms an important interface 
between computer-aided design (CAD) and computer-aided manufacturing (CAM). In 
practice CAPP is concerned with determining the sequence of individual 
manufacturing operations required to produce a product as per technical specifications 
given in the part drawing. As the complexity of the product increases, the number of 
feasible sequences increases exponentially and there is a need to choose the best among 
them. In [29], an application of ACO algorithm as a global search technique for the 
quick identification of the optimal operations sequence by considering various 
feasibility constrains was presented. Other examples of utilizing SI approaches (e.g., 
ACO and PSO) in production planning and scheduling context can also be seen from 
the following work such as [30], [31], and [32]. 

2.3 e-Redistribution 

The ultimate goal of remanufacturing is to resell remanufactured products to 
customers. Internet technology makes such remarketing more productive and more 
competitive. It allows remanufacturers to release the valuable information that resides 
within and make it available throughout the organization. The activities involved in this 
e-redistribution can be further broken down into the following subclasses, namely, 
e-auction, and e-commerce. 

2.3.1  SI-Based Approaches in e-Auction 
More recently, the developments in information technology are paving the way for an 
increasing use of the Internet for conducting auctions, popularly known as e-auction 
[33]. In [34] an online price quotation model was introduced for the purpose of 
negotiating the buy-back price and exchanging the new part with the old one. An 
enhanced PSO (EPSO) was introduced by the authors to generate a relatively good 
solution within a given time. Since agent-based technology is widely used in the area of 
e-auction, different learning strategies need to be developed. In this regard, SI 
techniques can also find a room for these applications. For example in [35], PSO is 
applied inside a co-evolutionary training environment to evolve the weights of the 
neural network for the purpose of game learning. Other instances of applying SI 
method to learning include the following example papers: [36], and [37]. 

2.3.2  SI-Based Approaches in e-Commerce 
The novel technology Web 2.0, which is defined as “the philosophy of mutually 
maximizing collective intelligence and added values for each participant by formalized 
and dynamic information sharing and creation” [38], is believed will dramatically 
changed how people buy and sell goods. In the context of e-commerce, buyers must 
incur higher search costs to locate desired products within larger and larger numbers of 
products. In terms of web intelligence, the authors of [39] introduced an ACO-based 
method for the purpose of distinguishing irrelevant information and enhancing the 
amount of the relevant information in respect to a user’s query. In another study [40],  
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an ant-based web searching algorithm called Seangàn, was presented. To evaluate the 
performance of Seangàn, the authors run several experiments with information about 
culture, history, and other curiosities from the web pages of Ireland. In 
e-remanufacturing environment, increasing business-to-customer (B2C) e-commerce 
with a variety of small internet orders may have a tremendous impact on 
remanufacturers’ warehousing system. Automated storage/retrieval system (AS/RS) is 
a valid alternative under these circumstances. In [41] the authors proposed an 
auto-access multilevel conveying device (IMCD) with three-dimensional movement is 
integrated into the AS/RS for handling B2C e-commerce logistics. In another paper 
[42], the authors employed two ACO algorithms, i.e., ant system (AS) and MAX-MIN 
ant system (MMAS), to deal with batch order picking (BOP) problem. The ant colony 
system (ACS) algorithm was employed in such study to locate near-optimal routes for 
the IMCD. In the work of [43], age artificial immune system (AAIS) was introduced for 
optimal order pickings in an AS/RS with multiple input/output stations.  

3 Conclusions 

During the past decades, with the rapid advances in information technology, a lot of 
efforts have been devoted to e-remanufacturing research. In this paper, we have 
provided an overview of the applications of SI-based approaches in such field. The 
relevant studies are clustered based on e-remanufacturing progress. Brief descriptions 
of representative papers are provided in our work. We hope this paper will be a useful 
starting point for those wishing to do future e-remanufacturing research or simply to 
keep abreast of the latest developments in this field.  
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Abstract. In order to apply grey relational analysis to the evolutionary process, 
a modified grey relational analysis is introduced in this study. Then, with the 
help of such a grey relational analysis, this study also proposed a grey-based 
particle swarm optimization algorithm in which both inertia weight and 
acceleration coefficients are varying over the generations. In each generation, 
every particle has its own algorithm parameters and those parameters may differ 
for different particles. The proposed PSO algorithm is applied to solve the 
optimization problems of twelve test functions for illustration. Simulation 
results are compared with the other three variants of PSO to demonstrate the 
search performance of the proposed algorithm. 

Keywords: Acceleration coefficients, Grey relational analysis, Inertia weight, 
Particle swarm optimization. 

1 Introduction 

Particle swarm optimization (PSO), introduced by Kennedy and Eberhart in 1995 [1]-
[2], was inspired by the social behavior of bird flocking and fish schooling. The PSO 
uses a simple mechanism that imitates their swarm behaviors to guide the particles to 
search for globally optimal solutions. Similar to other evolutionary computation 
technique, it is also a population-based iterative algorithm. Owing to its simplicity of 
implementation and ability to quickly converge to a reasonably good solution [3], the 
PSO has been successfully applied in solving many real-world optimization problems 
[4]-[6]. On the other hand, grey system theory, introduced by Deng in 1989 [7], was 
proposed to solve the system with incomplete (partial known and partial unknown) 
information. In grey system theory, one of the essential topics is grey relational 
analysis which can perform as a similarity measure for finite sequences. Studies [8]-
[9] have successfully shown that grey relational analysis can be applied to cluster 
analysis or other applications. 

How to accelerate the convergence speed and how to avoid the local optimal 
solution are two important issues in the PSO research. Generally speaking, those 
issues can be solved by controlling of algorithm parameters, i.e., the inertia weight or 
the acceleration coefficients [3]. A linearly varying inertia weight [10] and the time-
varying acceleration coefficients [11] have been widely used to improve the search 
performance of PSO. Those control schemes are based on with the corresponding 
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iteration number using linear or nonlinear rules. The change rate of the inertia weight 
or the acceleration coefficients is depended upon a predefined maximum number of 
allowable iterations. Although the time-varying control schemes could be used to 
improve the PSO algorithm, each particle uses the identical inertia weight and the 
same acceleration coefficients to update the corresponding velocity vectors in each 
generation. That is to say, they may suffer from improperly updating the parameters 
because no information on the evolutionary state that reflects the diversity of the 
population is identified or utilized. This study attempts to propose a modified grey 
relational analysis such that it can use almost the same criterion to measure the 
relational grades in the evolutionary process. Then based on the modified approach, 
this study also proposes a novel approach to determine the inertia weight and 
acceleration coefficients such that each particle has its own parameters and those 
parameters may differ for different particles. 

2 Grey Relational Analysis and Particle Swarm Optimization 

2.1 Grey Relational Analysis 

Grey relational analysis is a similarity measure for finite sequences with incomplete 
information [7]. Assume that the reference sequence is defined as x = (x1, x2, x3,…, xn) 
and the comparative sequences are given by yj = (yj1, yj2, …, yjn), j = 1, 2, 3, …, m. 
The grey relational coefficient between x and yj at the kth datum, k = 1, 2, 3, …, n, is 
defined as follows. 

 
max

maxmin),(
Δ⋅+Δ
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where Δjk = ⎪xk − yjk⎪, Δmax = maxjmaxkΔjk, Δmin = minjminkΔjk, and ξ ∈ (0, 1], which is 
a distinguishing coefficient to control the resolution between Δmax and Δmin. The 
corresponding grey relational grade is 
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where αk is the weighting factor of grey relational coefficient r(xk, yjk) and 

.11 =∑ =
n
k kα  The selection of the weighting factor for a relational coefficient reflects 

the importance of that datum. In general, we can select it as αk = 1/n for all k. The best 
comparative sequence is determined as the one with the largest relational grade. 

2.2 Particle Swarm Optimization and Its Variants 

In PSO, a swarm of particles are represented as potential solution, and each particle i 
is associated with two vectors, i.e., the velocity vector Vi = (vi1, vi2, ..., viD) and the 
position vector Xi = (xi1, xi2, ..., xiD), where D represents the dimensions of the solution 



 Grey-Based Particle Swarm Optimization Algorithm 55 

space. The velocity and the position of each particle are initialized by random vectors 
within the corresponding ranges. During the evolutionary process, the trajectory of 
each individual in the search space is adjusted by dynamically altering the velocity of 
each particle, according to its own flying experience (pBest) and the flying experience 
of the other particles (gBest) in the search space. That is, the velocity and position of 
the ith particle on dimension d are updated as 

 )()( 2211 idddididdidid xgBestrandcxpBestrandcwvv −+−+= , (3) 

 ididid vxx += , (4) 

where w is the inertia weight, c1 and c2 are the acceleration coefficients, and rand1d 
and rand2d are two uniformly distributed random numbers independently generated 
within [0, 1] for the dth dimension [10]. In (3), pBesti represents the position with the 
best fitness found so far for the ith particle, and gBest is the best position discovered 
by the whole particles. In addition, the second and third parts of (3) are known as the 
“cognitive” and “social” components, respectively. 

Except the original PSO algorithm, Shi and Eberhart in [10] proposed the PSO 
with a linearly varying inertia weight w over the generations (PSO-LVIW) to improve 
the performance of PSO. The corresponding mathematical representation is 

 
T

t
wwww )( minmaxmax −−=  (5) 

where t is the current generation number and T is a predefined maximum number of 
generations. Besides, the maximal and minimal weights wmax and wmin are usually set 
to 0.9 and 0.4, respectively. 

The PSO algorithm with time-varying acceleration coefficients (PSO-TVAC) is 
another widely used strategy to improve the performance of PSO. With a large 
cognitive component (a larger c1) and a small social component (a smaller c2) at the 
beginning, particles are allowed to move around the search space, instead of moving 
toward the population best. On the other hand, a small cognitive component and a 
large social component allow the particles to converge to the global optima in the 
latter part of the evolutionary process. This modification can be mathematically 
represented as follows [11]: 

 iif c
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t
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where c1i, c1f, c2i, and c2f are constants. 

3 Grey-Based Particle Swarm Optimization Algorithm 

While the fittest particle gBest is regarded as the reference sequence and all particles 
X’s are viewed as the comparative ones, grey relational analysis could be applied to 
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analyze the similarity between them. Then the values of both inertia weight and 
acceleration coefficients of a specific particle are determined according to the 
corresponding relational grade. Since the result of grey relational analysis may differ 
for different generations, the algorithm parameters are varying over the generations. 

3.1 Modified Grey Relational Analysis 

According to (1), grey relational coefficients between the fittest particle gBest and the 
ith particle Xi at the dth dimension can be rewritten as 
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where Δid = ⎪gBestd − xid⎪, Δmax = maximaxdΔid, Δmin = minimindΔid, and ξ ∈ (0, 1]. 
Then the corresponding relational grade is given as 
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where D represents the dimensions of the solution space. While grey relational 
analysis is applied to the evolution algorithm such as PSO algorithm, the extreme 
terms Δmax and Δmin, given in (8), seem to be in the form of “local” version. That is to 
say, the determination of the extreme terms only takes the distribution of particles in 
that generation into consideration, but does not consider the population distribution in 
other generations. Therefore this study attempts to propose a “global” version grey 
relational analysis such that it can use almost the same criterion to measure the 
relational grades in the evolutionary process. 

In the latter part of the search process, all particles will converge to the fittest 
particle. Among them, some of particles are identical to gBest. At this situation, Δmin = 
0. As far as the entire evolution process is considered, the global value of the minimal 
term Δmin therefore is 0. In other word, the minimal term Δmin can be omitted while 
computing the grey relational coefficients in the sense of “global” version. On the 
other hand, the global value of the maximal term, denoted by Δ*

max, is depended on 

the range of the search space. Assume that the search space is ∏ =
D
d dd xx1 max.min. ],[ . It 

can be seen that the upper bound of Δ*
max is maxd{xd,max−xd,min}. Rather than using the 

upper bound as the actual value of Δ*
max, this study utilizes the following updating 

rule to obtain that value. Let the initial value of Δ*
max be maxd{xd,max−xd,min}/4. Then 

the adaption rule for Δ*
max is 

If Δmax ≥ Δ*
max, then Δ*

max = Δmax; otherwise, Δ*
max remains unchanged. 

By this way, the actual value of Δ*
max can be obtained through the evolution process. 

With the help of Δ*
max, the formula of grey relational coefficient becomes as 
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As can be seen, rid ∈ [ξ/(1+ξ), 1]. The result further imply that gi ∈ [ξ/(1+ξ), 1]. 
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3.2 Grey-Based PSO Algorithm 

Shi and Eberhart in [10] proposed a linearly varying inertia weight w over the 
generations to improve the performance of PSO. They had observed that the optimal 
solution can be improved by varying the value of w from 0.9 at the beginning of the 
search to 0.4 at the end of the search for most problems. A particle with a smaller 
relational grade generally represents that it is far away from the fittest particle. That 
particle therefore can be regarded as being in the exploration state. In this study, such 
a particle should be assigned a larger inertia weight. On the contrary, a particle with a 
larger relational grade is treated as being in the exploitation state. Hence that particle 
is assigned a smaller inertia weight. To sum up, the lager the grey relational grade gi 
is, the smaller the inertia weight wi is, and vice versa. 

Owing to gi ∈ [ξ/(1+ξ), 1] and w ∈ [0.4, 0.9], the relationship between gi and wi 
can be simply represented by the following linear scaling scheme: 

 )5.09.0()1(5.0 ξξ +++−= ii gw  (11) 

For example, wi = −gi + 1.4 if ξ = 1. 
Ratnaweera et al in [11] suggested that, with a larger cognitive component and 

small social component at the beginning, particles are allowed to move around the 
search space, instead of moving toward the population best. Besides, a small cognitive 
component and a large social component allow the particles to converge the global 
optima in the latter part of the search. In this study, a particle with a larger relational 
grade is regarded as being in the exploitation state. At this situation, a larger c2 and a 
smaller c1 could allow that particle to converge to the global optimum. On the 
contrary, a particle with a smaller relational grade is assigned the acceleration 
coefficients of a smaller c2 and a larger c1 to help for exploring local optimums and 
maintaining the diversity of the swarm. To sum up, the larger the grey relational grade 
gi is, the larger the coefficient c2 is and the smaller the coefficient c1 is. 

The relationship between the relational grade and the acceleration coefficients can 
be also determined by the linear scaling scheme. Assume that the interval [cmin, cmax] 
is chosen to clamp the coefficient c2. Then, as for particle i, the relationship between 
c2i and gi used in this study is selected as 

 ])1[())(1( maxminminmax2 ccgccc ii ξξξ −++−+= . (12) 

For example, c2i = 2gi + 0.5 if ξ = 1, cmin = 1.5 and cmax = 2.5. Once c2i is determined, 
the acceleration coefficient c1i can be obtained by 

 c1i = 4.0 − c2i (13) 

The above formula is derived from the suggestion of Kennedy and Eberhart in [2], 
that is, both acceleration coefficients are fixed at the value of 2.0. 

As far as the clamping interval of acceleration coefficients is concerned, it can be 
seen that c1 is limited in [4−cmax, 4−cmin] while c2 is bounded in [cmin, cmax]. Both grey-
based acceleration coefficients therefore have the same interval width. A large 
interval width could allow use of the wide range of the search space, so as to prevent 
the premature convergence due to lack of population diversity. Due to this reason, the 
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interval width should be large at the early part of the evolutionary process. On the 
other hand, when the algorithm is converging to the optimal solution, fine-tuning of 
the solutions becomes necessary to find the global optimum efficiently. Therefore a 
small interval width could enhance convergence toward to the global optimum in the 
latter part of the search. These concerns give rise to the motivation to propose a time-
varying boundary for the acceleration coefficients as follows. 

 ,)( maxmaxfinalmax C
T

t
CCc +−=  (14) 

 ,)( minminfinalmin C
T

t
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where Cmax ≥ Cfinal ≥ Cmin, and Cfinal represents the final value of the acceleration 
coefficient c2. 

This study utilizes the grey relational grade to determine the inertia weight and the 
acceleration coefficients. During the evolutionary process, the position of each 
particle may differ for different generations. It is obvious that the relational grade may 
also differ for different generations. Hence, both inertia weight and acceleration 
coefficients are varying over the generations. In addition, with the proposed time-
varying parameters, the updating rule for the velocity of the ith particle becomes as 

 ),()( 2211 iddiididiidiid xgBestrandcxpBestrandcvwv −+−+=  (16) 

where rand1 and rand2 are two uniformly distributed random numbers independently 
generated within [0, 1]. 

4 Simulation Results 

In order to demonstrate the search performance of the proposed grey-based PSO 
algorithm, twelve test functions are used to verify it. The selected benchmark 
functions are listed in Table 1, where the first six functions are unimodal and the rest 
are multimodal. The corresponding dimensions, search spaces, global optimum 
values, and acceptance levels of the test functions are also listed in the same table. In 
this study, the results are compared with the PSO with linearly varying inertia weight 
(PSO-LVIW) [10], the PSO with linearly time-varying acceleration coefficients 
(HPSO-TVAC) [11], and the adaptive particle swarm optimization (APSO) [3]. 

For a fair comparison among all the PSO algorithms, they are tested using the same 
population size of 20, a value of which is commonly adopted in PSO [3], and the 
same number of 2×105 function evaluations, i.e., 10,000 generations, for each 
functions. Furthermore, each algorithm was run 30 independent times for each test 
function. Other parameters setting of the grey-based PSO algorithm are stated as 
follows: wmax = 0.9, wmin = 0.4, Cmax = 2.5, Cmin = 1.5, Cfinal = 1.5, and the 
distinguishing coefficient ξ is 1.0. In addition, the parameters setting for the PSO-
LVIW is wmax = 0.9 and wmin = 0.4, while the PSO-TVAC is c1i = 2.5, c1f = 0.5, c2i = 
0.5, and c2f = 2.5. 
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Table 1. Twelve test functions used in this study 

Test function D Range Global fmin Acceptance 
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All the programs coded by Matlab version R14 were executed by a personal 

computer with Intel Pentium Dual CPU @ 1.60-GHz processor, 2.0-GB RAM and 
Windows XP2 operating system. 

Table 2 lists the numerical results in terms of the mean and standard deviation of 
the solutions obtained in the 30 independent runs by each algorithm. Boldface in the 
table indicates the best result(s) among the algorithms. All the PSO algorithms can 
attain the minimum value of f5. The main reason is that it is a region rather than a 
single point in f5 that is the optimum. For the unimodal test functions, the proposed 
grey-based PSO algorithm can attain the best accuracy on functions f1, f2, f3, f5, and f6, 
and the second best on f4, whereas the APSO has the highest accuracy only on 
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functions f4 and f5. On the other hand, the grey-based PSO algorithm also could 
achieve the best result on the complex multimodal functions f9, f10 and f11, but 
performs the worst result on function f12. On functions f7 and f8, the proposed PSO 
performs worse than the APSO, but better than the PSO-LVIW and HPSO-TVAV. 

Table 3 lists the comparisons on the convergence speed of each PSO variant in 
terms of the mean number of iterations needed to reach the acceptable solution given 
in Table 1 and the corresponding mean computational time. The successful ratio of 
each algorithm for each test function is also given in the same table. The APSO 
attains the smallest mean number of iterations on nine out of twelve test functions, 
whereas the grey-based PSO only on two functions. However, a shorter evolutionary 
process can not directly imply that it uses a lesser computational time. Many existing 
PSO variants, including the APSO and grey-based PSO, have added extra operations 
that cost the computational time. In the simulations, the computational time per 
iteration required by the APSO, in average, is 1.61 times as long as that required by 
the grey PSO. As seen in Table 3, the HPSO-TVAC uses the least computational time 
on f3, f6, f7, and f12, whereas the APSO costs the shortest time only on f5. The grey-
based PSO could attain a much smaller computational time on other seven test 
functions. Besides, the PSO-LVIW generally performs the worst results on 
convergence speed as well as solution accuracy. 

Table 2. Search result comparisons on 12 test functions 

  PSO-LVIW HPSO-TVAC APSO Grey-PSO 

f1 
Mean 3.16×10−52 9.36×10−13 2.31×10−149 0 

Std. Dev. 6.11×10−52 3.62×10−12 4.95×10−149 0 

f2 
Mean 2.04×10−29 5.33×10−6 4.18×10−79 0 

Std. Dev. 4.05×10−29 9.51×10−6 9.96×10−79 0 

f3 
Mean 1.11×10−1 2.66×10−1 1.71×10−10 4.37×10−42 

Std. Dev. 1.27×10−1 6.98×10−1 2.87×10−10 5.91×10−42 

f4 
Mean 26.93 63.46 2.72 4.89 

Std. Dev. 30.33 31.25 4.03 7.35×10−2 

f5 
Mean 0 0 0 0 

Std. Dev. 0 0 0 0 

f6 
Mean 8.29×10−3 7.50×10−3 5.01×10−3 4.12×10−3 

Std. Dev. 1.74×10−3 1.86×10−2 1.19×10−3 3.41×10−3 

f7 
Mean −10243.02 −10316.36 −11259.9 −10338.75 

Std. Dev. 205.60 264.32 2.16×10−11 188.03 

f8 
Mean 40.11 37.48 7.57×10−15 1.29×10−5 

Std. Dev. 8.64 9.67 1.01×10−14 4.31×10−5 

f9 
Mean 33.17 38.20 8.86×10−16 1.67×10−21 

Std. Dev. 15.34 8.29 3.01×10−15 4.08×10−21 

f10 
Mean 1.15×10−14 9.57×10−6 1.11×10−14 8.88×10−16 

Std. Dev. 3.55×10−15 3.68×10−5 5.65×10−15 0 

f11 
Mean 2.79×10−3 3.29×10−3 2.03×10−3 0 

Std. Dev. 4.15×10−3 4.23×10−3 3.94×10−3 0 

f12 
Mean 2.28×10−3 2.76×10−2 8.24×10−40 2.23×10−1 

Std. Dev. 1.64×10−3 6.15×10−2 6.18×10−39 5.17×10−2 
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Table 3. Convergence speed and succesful rate comparisons on 12 test functions 

  PSO-LVIW HPSO-TVAC APSO Grey-PSO 

f1 

Mean Epochs 5495.4 2327.5 1065.8 1575.8 
Time (sec) 0.9119 0.5354 0.5086 0.4191 
Ratio (%) 100.0 100.0 100.0 100.0 

f2 
Mean Epochs 5289.4 2336.8 1081.0 1400.9 

Time (sec) 0.9118 0.5683 0.5293 0.3918 
Ratio (%) 100.0 100.0 100.0 100.0 

f3 
Mean Epochs 7470.5 3571.1 1996.5 5311.9 

Time (sec) 2.3859 0.8243 0.9736 1.4810 
Ratio (%) 96.67 93.33 96.67 96.67 

f4 
Mean Epochs 5193.3 2490.1 1058.3 1253.6 

Time (sec) 0.9953 0.5208 0.4565 0.3248 
Ratio (%) 100.0 100.0 100.0 100.0 

f5 
Mean Epochs 5649.2 2447.2 795.3 1783.4 

Time (sec) 1.0309 0.4535 0.3421 0.4072 
Ratio (%) 100.0 100.0 100.0 100.0 

f6 
Mean Epochs 9253.7 5589.1 4959.0 4511.8 

Time (sec) 2.9209 1.7359 3.2196 2.8259 
Ratio (%) 83.33 86.67 93.33 93.33 

f7 

Mean Epochs 3279.3 1480.8 955.8 6174.3 
Time (sec) 1.0953 0.4992 0.5601 2.1694 
Ratio (%) 63.33 66.67 76.67 73.33 

f8 
Mean Epochs 5885.5 2776.1 1087.2 1405.6 

Time (sec) 1.2939 0.6105 0.4908 0.4856 
Ratio (%) 96.67 93.33 100.0 100.0 

f9 
Mean Epochs 7715.3 3364.1 926.2 1712.8 

Time (sec) 2.2411 0.9206 0.4646 0.4635 
Ratio (%) 100.0 100.0 100.0 100.0 

f10 
Mean Epochs 5774.0 2642.7 2846.5 1783.8 

Time (sec) 1.2505 0.5511 1.3141 0.4881 
Ratio (%) 93.33 90.00 96.67 100.0 

f11 
Mean Epochs 5686.5 2430.9 1027.1 1610.5 

Time (sec) 1.5537 0.6483 0.5747 0.5127 
Ratio (%) 63.33 56.67 66.67 100.0 

f12 
Mean Epochs 5470.6 2580.9 3156.5 6861.5 

Time (sec) 1.7837 0.9268 1.8770 2.2309 
Ratio (%) 86.67 86.67 93.33 83.33 

5 Conclusions 

Based on grey relational analysis and linear scaling scheme, this paper proposes a grey-
based particle swarm optimization. By this way, each particle has its own algorithm 
parameters, which may differ in the different generation. Besides, in each generation,  
the parameters may differ for different particles. The proposed method is applied to solve 
the optimization problems of twelve test functions for illustration. Simulation results 
show that the grey-based PSO outperforms the PSO-LVIW, PSO-TVAC and APSO  
on the solution accuracy and computational time in most of the considered problems. 
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Abstract. A quantum-behaved particle swarm optimization based on border 
mutation and chaos is proposed for vehicle routing problem(VRP).Based on 
classical Quantum-Behaved Particle Swarm Optimization algorithm(QPSO), 
when the algorithm is trapped in local optimum, chaotic search is used for the 
optimal particles to enhance the optimization ability of the algorithm, avoid 
getting into local optimum and premature convergence. To those cross-border 
particles, mutation strategy is used to increase the variety of swarm and 
strengthen the global search capability. This algorithm is applied to vehicle 
routing problem to achieve good results. 

Keywords: QPSO, Chaos, Border mutation. 

1 Introduction 

Vehicle Routing Problem is an important content of physical distribution management. 
Vehicle Routing Problem means if the clients’s demands and locations are known,the 
shortest route or the minimum transportation cost of every client are assigned. VRP is 
proved to be a NP-complete  problem, as the numbers of clients increase, the solutions 
increase exponentially. So the exact algorithms are not fit for such problem. Currently 
the use of heuristic algorithms, such as: Particle Swarm Optimization algorithm, genetic 
algorithm, ant colony optimization algorithm can better solve the problem. Among 
them, the PSO (Particle Swarm Optimization, PSO) algorithm with parallel processing 
features, good robustness, ease of implementation, the larger probability to find a global 
optimal solution of optimization problems, etc, caused widespread concern in the 
majority of scholars. 

Particle Swarm Optimization algorithm is a new kind of overall evolutional 
algorithm invented by doctor Eberhart and doctor Kennedy in 1995[1].Since it has 
been proposed, many improvements of PSO version has emerged in order to improve 
algorithm performance. Shi and Eberhart introduced the inertia weight w into the 
algorithm in 1998 and suggested the w should be adjusted dynamically to insure 
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accuracy and convergence rate of this algorithm[2]. Many scholars called the 
evolution equation as Standard Particle Swarm Optimization algorithm. Clerc 
introduced  the shrinkage factor K into evolutionary equation to ensue the 
convergence of the algorithm[3], while relaxed the speed limit. Gao Ying etc 
introduced the chaos into the Particle Swarm Optimization algorithm. Making use of 
the chaos with randomness, ergodicity and extreme sensitivity to initial conditions, 
not repeated through all the state within a certain range according to its own laws and 
other characteristics, chaotic search is used for the optimal particles to avoid falling 
into local optimal solution, the maximum possible to find the global optimum[4]. 
Quantum-Behaved Particle Swarm Optimization algorithm puted forward by Sun etc 
in 2004 is a new kind of Particle Swarm Optimization algorithm based on quantum 
model. The algorithm is becoming a promising algorithm because of the characters of 
less parameters, more convenient control and more powerful global convergence 
properties[5]. 

Quantum-Behaved Particle Swarm Optimization based on Border mutation and 
Chaos for Vehicle Routing Problem is proposed in this paper based on a real vector 
encoding mode. According to document [4]and [5],Logistic chaotic sequence is 
putted into the QPSO algorithm for solving the vehicle routing problem, To those 
cross-border particles, mutation strategy is used to increase the variety of swarm and 
strengthen the global search capability. Test show that the algorithm is better to deal 
with VRP than PSO,QPSO. 

2 A Description of the Vehicle Routing Problem 

Mathematical description of VRP is as follows[6]: k-known clients and a distribution 
center, the demand of the i-th client is qi, m cars depart from the distribution center 
and finally back to distribution centers. Each car’s carrying capacity is Q, qi≤Q, an 
optimal service route (less operating costs) is need to find.  

dij means operating cost from point i to point j. (such as time, distance, cost 
,etc).The distribution center’s number is 0, each client’s number is i(i = 1, 2, ⋯k),each 
car’s number is s(s= 1, 2, ⋯m).some variables are defined as follows:  

 

                                     1   car s go from point i to point j； 

xijs
=                                              (1) 

                                     0   else； 
 

                                     1  car s service for client i； 

=y
is

                                             (2) 

                                     0   else； 

The goal to make the model is to find the least total operating cost. Operating cost is 
proportional to the routes of cars. The shorter the route of car, the less fuel 
consumption of cars, the less theworking hour of drivers, and thus the less total 
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operating cost. Therefore, the mathematical model of VRP for finding the shortest 
total routes of cars as objective function is built as follows: 
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Formula(4)shows the maximum carrying capacity limit of cars, it means each car’s 
actual carrying capacity must not exceed the car’s maximum carrying capacity. 
Formula(5)ensure each client’s task must be finished by one car. Formula(6)and 
Formula(7)means cars can service each client only once, if a car ascertains its service 
scope, the car should pass each client’s position in its service scope and pass only 
once. 

As can be seen from the model, the optimization problem contains inequality 
constraints, which is not conducive to find the solution by heuristic search. Penalty 
term is added to the object function, the modified objective function is: 
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In formula(8)penalty coefficient R is a very large positive number. All the second part 
of formula(8)is the punitive part if the car’s actual carrying capacity exceed the 
maximum carrying capacity. If the solution is not feasible to the VRP, a great fitness 
solution will be calculated, which make the search process converges to a feasible 
solution. 

3 Quantum-Behaved Particle Swarm Optimization Algorithm 

Based on Clerc’s research production about the convergence behavior of 
particles[7],Sun et presented a new Particle Swarm Optimization algorithm based on 
quantum mechanics. The model is based on DELTA potential well, and considers that 
the particles have the behavior of quantum particles, according to this model, 
Quantum-behaved Particle Swarm Optimization is proposed[8]. In the quantum space, 
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the nature of the particles to meet the aggregate state is completely different, They can 
search in the whole search space, therefore, The performance of QPSO global search 
is far better than the standard PSO algorithm. In the quantum space, the velocity and 
position of the particles can not be determined at the same time, Therefore, the wave 
function ψ (x, t) (its physical meaning: the square of the wave function is the 
probability density which a particle appears at a point in space) is used to describe the 
state of the particle, and particles’s probability density function in space of a point is 
obtained by solving the Schrodinger equation. Then the equation of the particle’s 
position gotten by Monte Carlo random simulation method is: 

( ) ( )uIn
L

Ptx 1
2

±=                            (9) 

Parameter u is random number between 0 and 1. 
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The resulting evolution equation of QPSO algorithm: 
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Finally, the position equation of the particle is: 

( ) ( )uIntxmbestptx iddidid
1)(1 ⋅−⋅±=+ β              (13) 

Among them, β is the contraction coefficient of expansion, which is the only 

parameter of QPSO algorithm ,generally take β = 1.0-iter / itermax * 0.5, iter is the 
current number of iterations, itermax represents the maximum number of iterations. M 
is the number of particles in population. D is the particle dimension. φ is random 

numbers uniformly distributed in [0, 1]. Mbest is the average position of all particles’s 
best position. The same with PSO, Pi means the best position experienced by particle 
i, Pg means the best position experienced by all particles. 

4 Quantum-Behaved Particle Swarm Optimization Algorithm 
Based on Border Mutation and Chaos 

4.1 Chaotic Motion  

Chaos is a general phenomenon in the non-linear systems given by deterministic 
equations with random state of motion. The change of chaotic variable within a 
certain range is random, ergodicity and regularity, chaotic variable use of these 
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features to refine search, make the algorithm out of local optima, to maintain 
population diversity, improve the global search performance. There is a lot of rules 
about chaos, the most classic is the logistic model [9]: 

( ) ⋅⋅⋅=−=+ ,3,2,1,141 nyyy nnn                     (14) 

Where ny  is the chaotic variable, ]1,0[∈ny . 

In the running process of Quantum particle swarm optimization algorithm, if a 
particle found a current optimal position, other particles will move closer to him 
quickly. If the position is local minima, the algorithm will fall into local optimum, so-
called premature convergence phenomenon. Experiments show that when the quantum 
particle swarm optimization is premature convergence or global convergence, particles 
in group will be a “gathering” phenomenon. Either all particles gathered at a particular 
location, or gathered in a few specific locations. According to document[10], average 
particle distance of particles and fitness variance of particles are the standards to judge 
whether the algorithm going into the premature convergence. 

In the improved algorithm, when the algorithm is the premature convergence, 

using the ergodicity of chaos, chaotic search is used for the optimal solution gp ,the 

method is[11]: 

gp is mapped to the Logistic equation to the definition of the domain [0,1]: 
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ky1 is put into Logistic equation for T iterations, ( ) ⋅⋅⋅=−=+ ,3,2,1,141 nyyy k
n

k
n

k
n  

the chaotic sequence ( )k
T

kkk yyyy ⋅⋅⋅= ,, 21  has been gotten. 

The chaotic sequence is inverse mapped back to the original solution space by the 
following equation: 
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Compute each fitness value of each feasible solution vector in feasible solution 
sequence, and retain the feasible solution vector corresponding to the best fitness 

value, denoted by k
gp* . Randomly select a particle from the current particle swarm, 

replace the selected particle’s position vector with k
gp* . 

4.2 Boundary Mutation Strategy 

In QPSO algorithm, when the particles fly over the border of the search field, the 
value of the boundary position is usually given to the particle: 
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maxmax xxxxif idid =>                     (17) 

Or 

minmin xxxxif idid =<                       (18) 

After this treatment, all the cross-border particles are gathered at the boundary, if 
there is local optimum, the particle is easy to fall into the local minima, and thus can 
not find the true optimal solution; the same time, with the boundary particles 
increases, the diversity of species will be reduced, the ability of global search of the 
algorithm will certainly be affected. Improved algorithm presented in this paper made 
the following improvements for the cross-border particles. 

()maxmax randcxxxxif idid ×−> =              (19) 

or 

()minmin randcxxxxif idid ×+< =              (20) 

Among them, minmax xxc −= .As can be seen from the above process, after the 

mutation operation on the cross-border particles, the particles will not gathered at  
the boundary, they will be re-distributed in the feasible space. Through this operation, 
the particles are in the feasible space, the shortcoming of original algorithm which is 
easy to fall into the border local optimum is overcomed, and the diversity of the 
population is increased, the algorithm's global search capability is also improved. 

4.3 Encoding and Decoding  

For the vehicle routing problem, this paper presents a encoding method based on real 
vector. This method without increasing the dimension, represent the car and the 
client's delivery order in the encoding. For the VRP problem with k clients, m cars, 
the state of the particle is represented with k-dimensional real vectors. For each 
dimension of the vector, the integer part means the car service for the clients, the 
same integer part means the same car service for the clients. Fraction means the 
delivery order of the clients serviced by the same car. 

Encoding and decoding process is as follows: 

1) K arbitrary real vectors generated randomly between 1 and m+1 represent the 
states of the particles. 

2) The integer parts of k real vectors are taken, if the integer part is same, they will 
be putted into the same group. 

3) In the same group, the client's delivery order is formed according to the order of 
the fractional part of the real vectors.  
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For example, assume there are eight clients, two cars, the codes are as follows: 

Client: 1    2    3    4     5    6    7     8 
X: 1.12  1.40  2.83  2.19  2.74  1.35  2.50  2.71 

According to the decoding method above, the x is rounded, the same integral parts are 
divided into the same group, the following two groups are obtained: 

(1.12，1.40，1.35)，(2.83，2.19，2.74，2.50，2.71)， 

Then, within each group, according to the fractional part of X arranged from small to 
large, results are as follows: (1.12,1.35,1.40), (2.19,2.50,2.71,2.74,2.83),the above 
states will be mapped to the corresponding clients, which is the distribution plan of 
this set of codes: 

The first car line: 0-1-6-2-0 
The second car line: 0-4-7-8-5-3-0 

Using this encoding method, the particle dimensions are same with the number of 
clients, ordering and rounding operation are executed only once when decoding, when 
the particle status need to update, re-adjust the state of each particle is more 
convenient, which can save the calculation time for large-scale problems. And the 
encoding method can use the rules of the standard particle swarm algorithm, so the 
inherent characteristics of the particle swarm algorithm can be played. 

4.4 Specific Processes of Algorithm  

(1) Particle Swarm is initialized. Parameters are initialized, the maximum number of 

the iterations maxiter , the number of particles N, chaos search iterations T are 

set. Arbitrary real vectors of k randomly generated between 1 and m+1 represent 
the states of the particles. 

(2) The distribution plan is got in accordance with Section 4.3 which provides 
encoding and decoding methods. 

(3) The fitness values of the particles are calculated, and the personal best value 

p
i
and the global optimum p

g
are updated. 

(4) If the stop condition (usually the default computing precision or the number of 
iterations)is reached, the search is stopped, output the result, or else go to step 5. 

(5) According to the average distance of particles and fitness variance of particles to 
judge whether the algorithm go into premature. If the algorithm goes into the 
premature and go to step (7), otherwise go to step (6). 

(6) The next positions of particles are calculated in accordance with formula (11) 
(12) (13). If the particles have crossed the border, the particle position should be 
modified in accordance with the contents of section 4.2. Go to step (3). 

(7) The optimal particle is selected for chaotic optimization according to the 
contents of section 4.1. Go to step (3). 
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5 Simulation and Analysis 

The experimental environment: Pentium (R) Dual-Core 3. 00GHz CPU, 2G RAM, 
Windows7 OS, Microsoft VC++6.0 programming software. 

Test instances in document [12] is used, clients are known to 8 points and a 
distribution center, each client’s demand q = [1 2 1 2 1 4 2 2] (in tonnes). There are 
two cars in distribution center to service, each car's maximum load is 8 tons, the 
distance (in km) between each client and distribution center are known as shown in 
Table 1 (The distribution center’s number is 0): 

Table 1. The distance between each client and distribution center  

dij 0 1 2 3 4 5 6 7 8 

0 0.0 4.0 6.0 7.5 9.0 20.0 10.0 16.0 8.0 

1 4.0 0.0 6.5 4.0 10.0 5.0 7.5 11.0 10.0 

2 6.0 6.5 0.0 7.5 10.0 10.0 7.5 7.5 7.5 

3 7.5 4.0 7.5 0.0 10.0 5.0 9.0 9.0 15.0 

4 9.0 10.0 10.0 10.0 0.0 10.0 7.5 7.5 10.0 

5 20.0 5.0 10.0 5.0 10.0 0.0 7.0 9.0 7.5 

6 10.0 7.5 7.5 9.0 7.5 7.0 0.0 7.0 10.0 

7 16.0 11.0 7.5 9.0 7.5 9.0 7.0 0.0 10.0 

8 8.0 10.0 7.5 15.0 10.0 7.5 10.0 10.0 0.0 

 
To illustrate the effectiveness of the algorithm proposed in this paper, six kinds of 

algorithms were used to solve the VRP problem ,which are PSO algorithm, QPSO 
algorithm, SPSO algorithm, GWPSO algorithm, GCPSO algorithm and the algorithm 
proposed in this paper, known the optimal solution is 67.5 (km), the optimal solution 
line is: 

The first car line: 0-4-7-6-0 
The second car line: 0-1-3-5-8-2-0 

The number of particles of six kinds of algorithms N is 20; the maximum number of 
the iterations itermax is 500; In PSO,SPSO algorithms, w=1,c1=c2=1.4;In GCPSO 
algorithms, c1=c2=2.05;In  GWPSO algorithms, c1=c2=1.4,wmax=0.9,wmin=0.4; 
the number of the chaotic iterations T of the algorithm proposed in this paper is 20. 

The experimental results for 20 times by six algorithms according to the above 
parameters shown in Table 2: 
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Table 2. The optimal solution values for 20 times experiments by six algorithms 

number of 
experiment 

PSO 

/km 

SPSO 

/km 

GWPSO 

/km 

GCPSO 

/km 

QPSO 

/km 

The 
proposed 
algorithm 

/km 

1 70.0 72.5 73.0 75.5 70.0 70.0 

2 71.0 75.0 69.5 72.5 71.0 70.0 

3 77.0 76.0 71.5 71.0 77.0 67.5 

4 71.0 84.5 71.5 70.0 71.0 70.0 

5 73.5 73.0 69.0 70.0 73.5 71.5 

6 72.0 76.0 71.5 77.5 72.0 71.0 

7 73.0 78.0 70.0 69.0 73.0 72.5 

8 72.5 77.0 70.0 73.5 72.5 70.0 

9 71.5 78.0 70.0 78.0 71.5 69.0 

10 72.0 78.0 69.5 70.0 72.0 69.5 

11 67.5 75.0 70.0 72.5 67.5 70.0 

12 75.5 70.0 72.5 70.0 75.5 70.0 

13 70.0 74.5 73.0 75.0 70.0 69.5 

14 74.5 83.5 72.5 73.5 74.5 70.0 

15 69.0 73.0 70.0 69.0 69.0 67.5 

16 73.0 74.5 74.0 71.5 73.0 69.0 

17 70.0 72.0 71.0 70.0 70.0 71.0 

18 70.0 72.0 71.5 74.0 70.0 67.5 

19 69.0 70.0 69.0 74.0 69.0 70.0 

20 70.0 71.0 71.5 69.0 70.0 69.0 
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The comparison of experimental results of six algorithms shown in Table 3: 

Table 3. The comparison of experimental results of six algorithms 

algorithms The average 
solution/km 

The standard 
deviation of 
the solution 

Optimal 
solution/km 

The number   
of Optimal 

solution 

PSO 71.35 2.38 67.5 1 

SPSO 75.18 3.83 70.0 0 

GWPSO 71.02 1.42 69.0 0 

GCPSO 72.28 2.71 69.0 0 

QPSO 71.60 2.29 67.5 1 

The proposed 
algorithm 

69.73 1.25 67.5 3 

 
As can be seen from table 3, the proposed algorithm is more accuracy, better 

stability than other five algorithms. 

6 Conclusion 

Optimized for the vehicle routing problem, this paper presents an improved quantum 
particle swarm optimization algorithm. The proposed algorithm based on the QPSO 
algorithm uses Real vector-based encoding, when the algorithm is trapped in local 
minima, Chaotic search is used on the best particle to enhance the ability of the 
algorithm optimization and avoid getting into local optimum and premature 
convergence. At the same time for cross-border particles, the mutation strategy is 
used to improve the population diversity, enhance the global search capability. Tests 
show that the algorithm is the best to deal with VRP Compared with other five 
algorithms. 
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Abstract. For multi-objective optimization algorithms, the maintenance policy 
of external archive has a great impact on the performance of convergence and 
solution diversity. Considering the dilemma of large population and external 
archive, an improved strategy of external archive maintenance based on 
crowding distance is proposed, which requires less particle numbers and smaller 
archive size, resulting in the computation cost reduction. Furthermore, the 
information entropy of gbest is analyzed to emphasize the diversity 
improvement of non-dominant solutions and well-distribution on the Pareto-
optimal front. Numerical experiments of benchmark functions demonstrate the 
effectiveness and efficiency of proposed multi-objective particle swarm 
optimization. 

Keywords: Multi-objective optimization, Particle Swam Optimizer, Pareto-optimal 
front, information entropy. 

1 Introduction 

The multi-objective optimization problem (MOP) is a class widespread optimization 
problem with several hard-solving characteristics, such as high-dimensional, 
discontinuous, non-convex, multimodal, and/or NP-complete, etc. Different from 
those deterministic methods, swarm intelligence optimization techniques offer a series 
of efficient algorithms, e.g. particle swarm optimization [1] (PSO), genetic 
algorithm (GA) and evolutionary algorithm (EA), etc. 

The information sharing mechanism in PSO is significantly different with GA and 
EA. Hu and Eberhart [2] designed a dynamic neighborhood MOPSO. At each 
iteration, a particle finds the nearest particles as neighbors, based on the distance 
which is calculated in the fitness space of the first fixed objective function. The 
dynamic neighborhood encourages the information sharing of pbest and not 
concentrates on a single gbest or pbest. As a further study, combined with the 

                                                           
*  Supported by: National Natural Science Foundation (60903005). 
** Corresponding author. 



 An Improved MOPSO with a Crowding Distance 75 

dynamic neighborhood strategy, Hu [3] introduce an external repository, so as to 
improve particles uniformly distributed along the Pareto frontier and enhance the 
diversity.  

V. L. Huang [14] etc. presents an approach to incorporate Pareto dominance into 
the differential evolution (DE) algorithm in order to solve optimization problems with 
more than one objective by using the DE algorithm. This algorithm uses an external 
archive to store non-dominated solutions. In this paper, authors propose a new 
harmonic average distance to measure the crowding degree of the solutions more 
accurately. 

Parsopoulous and Vrahatis apply each object in the update equations of particle’s 
velocity for double objective optimization problems in [4] and [5]. CMOPSO, one of 
the earliest methods to use external archive to store non-dominant solutions, adopt 
grid method in [6] and [7], which partitions the objective space to several hypercube. 
In [8], Comprehensive Learning PSO (CLPSO) with external archive, making use of 
other particle’s position to update personal velocity, is applied to solve MOP. Li [9], 
adopting the method of NSGA-II to maintain external archive, proposes a non-
dominated sort PSO (NSPSO). A modified MOSPO [10] updates global optimum 
based on descending order of the particle’s crowding distance, moreover brings in 
small probability variation mechanism to enhance the global optimization ability and 
to control the number of Pareto-optimal solutions. The crowding distance based 
maintenance strategy is also applied to the dynamic MOPSO [11] and NSGA-II [12]. 

In this paper, an improved crowding distance for external archive maintenance is 
discussed in the 3-rd section. Furthermore, the information entropy is introduced to 
evaluate the gbest archive and swarm diversity in the 4-th section. Four benchmark 
functions which are ZDT1, ZDT2, ZDT3, and ZDT6 are tested in the numerical 
experiments section. 

2 Strategy of External Archive Maintenance 

A multi-objective problem with n decision variable and m sub-objectives is described 
as follows: 

( ) ( ) ( ) ( ) ( )
( )
( )
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min maxF x x x x x x x x
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x

 

(1)

Where, x is n dimensions decision space. y is m dimensions objective space. F(x) 
defines m mapping functions which is from decision space to objective space. 

In the case of a MOPSO algorithm, it is required to guarantee the solutions which 
are not only the Pareto optimal, but are also uniformly distributed in the Pareto front. 
Especially, the gbest have to be selected form several non-dominated pbest set; and 
the relationship between pbest and the current particles need to differentiate and 
manage. 
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2.1 General Framework for External Archive Maintenance 

At each iteration, the non-dominant solutions are stored in the external archive. 
General operations includes: removing the dominated members of external archive; 
adding the non-dominant solutions into external archive; ranking the non-dominant 
solutions according to a certain objective value; removing several non-dominant 
solutions with some maintenance policy when the external archive size exceeds, e.g. 
crowding distance, diversity, etc. 

2.2 External Archive Maintenance Improvement 

According to the abovementioned framework, nothing will be operated when the size 
of external archive is less than the defined size. It puts up a question that: if the 
diversity of non-dominant solutions in the external archive is poor, it will result in 
particles, following the “direct” of these non-dominant solutions, “flock” together 
around a certain region of the Pareto-optimal front.  

The non-dominant solutions in the external archive at some time distributes as  
Fig. 1 shown. Round dot corresponds to non-dominant solution. Obviously, non-
dominant solutions B, C, and D are quite close and have more selected probability if 
the algorithm chooses gbest stochastically. As time wore on, the diversity will 
become worse. 

 

Fig. 1. The distribution of the non-dominant 
solutions at certain time 

Fig. 2. The flow chat of the improved strategy 
of external archive maintenance 

In view of the above, an improvement is descripted as follows: In each iteration, no 
matter the size of external archive outnumber the defined size, the distances between 
each non-dominant solution and adjacent non-dominant solution are 
calculated first, and then compared with a metric dis, defined in Eq.(2); those 
non-dominant solution whose distances are all less than dis are removed and the 
distances matrix are updated again. Where, n is the number of non-dominant 
solutions, fi is the (i)th non-dominant solution. Fig. 2 shows the flow chat of the 
improved strategy of external archive maintenance. 
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3 Analysis of Information Entropy and Multi-objective Particle 
Swarm Optimization 

3.1 Analysis of gbest’s Information Entropy 

The information entropy [13], defined as the information probabilistic measurement 
in Eq.(3), is introduced to analyze the proposed improvement.  

2 1

1
( ) (log ) ln

k

i ii
i

H x E p p
p =

= = −∑  
(3)

Supposed X is a certain event, and the result has various probabilities, recording as x1, 
x2, … , xk. And its homologous probability is p1, p2, …, pk. H(x) is the information 
entropy of x. It means the average information content of n stochastic information. 
The information entropy increase implies a wider choice of gbest that benefits the 
Pareto optimal front distribution.  

It is assumed that the size of external archive is less then a setting value in the 
original gbest maintenance scenario, as Fig.1 shown. The non-dominant solutions are 
classified into several R-region (R1, R2,…RN) with a distance R. With the roulette 
wheel selection method for gbest, the non-dominant solutions in the external archive 
are chosen by probability equally. So the selected probability of every R-region 
depends on the number of non-dominant solutions in the area. The state space is 
defined as S={R1，R2…，RN}, and the corresponding probability p(Ri) is calculated 
as following: 

( ) , 1, 2,....,i
i

m
p R i N

N
= =

 
(4)

Where, mi is the number of non-dominant solutions in Ri-region. N is the total number 
of the non-dominant solutions of external archive. Then, the entropy of X can be 
represented: 

2 21 1
( ) log log

k k i i
i ii i

m m
H x p p

N N= =
= − = −∑ ∑  (5)

For the original gbest maintenance scenario, there is no operation when the external 
archive size is less than the defined size, moreover, the number of non-dominant 
solutions in every Ri-region are quiet different. According to the maximum entropy 
property, information entropy achieve the maximum value, only if X is equal to  
{R1，R2，…，Rk} for equal probability. That is: 

2 2 21 1

1 1
( ) log log log

k ki i

i i

m m
H x k

N N k k= =
= − ≤ − =∑ ∑  (6)

The decrease of information entropy reduces the gbest diversity, so that it will 
attenuate the explosion ability and the swarm may entrap in local region. Yet the 
strategy in section 2.2 sets up gbest located in each R-region with equal probability. 
Furthermore, according to the same analysis and calculation procedure as above, the 
maximum of entropy will be obtained, which provides a more homogenic selection 
mechanism for non-dominant solutions. 
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An example is taken to explain the information entropy analysis. In the scenario 
(with 9 non-dominant solutions) plotted in Fig. 1, the entropy of X with the original 
maintenance method could be calculated as following. 

1 2 2 2 2 2 2 21
1 1

1 1 3 2 1 1 1 1 2 2 1 1
( ) log ( log log log log log log ) 2.4194

9 9 9 9 9 9 9 9 9 9 9 9

n i i

i

m m
H x

N N=
= − = − ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =∑  

As another scenario plotted in Fig. 3, the improved strategy of maintenance is applied. 
C and G are removed which means the number of non-dominant solution is 7 (N2=7), 
and R-region is reclassified that R2-region is divided into R21-region and R22-region. 
The entropy of X is: 

2 2 21 1
2 2

1 1
( ) log log 2.8074

7 7

n ni i
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m m
H x

N N= =
= − = − =∑ ∑  

Compared H1(X) and H2(X), it is obviously that H1(X) < H2(X) and indicates that the 
potential gbest could be selected more widely. It is in favor of the even distribution of 
non-dominant solutions in the Pareto-optimal front and promotes the optimizing 
process. 

 

Fig. 3. Improved maintenance 

3.2 Procedure of DISMOPSO 

Combined MOPSO algorithm with the proposed maintenance method, a Distance 
based MOPSO (DISMOPSO) is proposed, the procedure is described as follows: 

Step1  Initialize a swarm. 
Step2  Evaluate all particles, and add new non-dominant solutions in the eternal 

archive. 
Step3  Maintain the external archive with the proposed method. 
Step4  Select gbest and pbest for each particle. 
Step5  Update velocity and position for each particle. 
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(7)

Step6 If the termination conditions are achieved, output the result, otherwise go to 
Step2. 
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4 Numerical Experiments and Discussion 

4.1 Experiments Design 

Four multi-objective benchmark functions (ZDT1, ZDT2, ZDT3 and ZDT6) are 
examined. Every function has two objects and the variable is 30 dimensions. 
Experiments results of DISMOPSO are compared with CMOPSO [7][8] and 
MOCLPSO [9]. The parameter settings of the three algorithms are listed in Table 1.  

Table 1. Settings of Parameter 

Parameter CMOPSO MOCLPSO DISMOPSO 

w 0.4 0.4 0.4 
c1,c2 2 2 2 
Vmax 0.5 0.5 0.5 
Swarm Size 20 20 20 
Dimension 30 30 30 
External Archive Size 20 20 20 
Max iteration 2000 2000 2000 
Grid Size 30 —— —— 
Study Probability P1 —— 0.1 —— 
Elite probability Pe —— 0.4 —— 

 
Generation distance (GD) in Eq.(8) and diversity index (△) in Eq.(9) are adopted 

to evaluate the optimization performance. 
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Where, disti is the shortest distance between the i-th non-dominant solution and the 
real Pareto-optimal front; hi is the distance between adjacent two points; h’ is the 
mean of hi; hf and h1 is the distance between boundary solution of algorithm and its 
corresponding extreme solution respectively.  

4.2 Experimental Result and Data Analysis 

The four benchmark function results of three algorithms are plotted in Fig.4 to Fig.7.  
It is illustrated in Fig.4 and Fig.5 the advantage of DISMOPSO. When the size of 

population and external archive are both 20, the solutions of DISMOPSO 
approximate the Pareto-optimal front is best, and they distribute evenly on the 
Pareto-optimal front which can approximate the whole of Pareto-optimal front.  
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Fig. 4. The testing of ZDT1 Fig. 5. The testing of ZDT2 
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Fig. 6. The testing of ZDT3 Fig. 7. The testing of ZDT6 

Table 2. Results of three algorithms 

Algorithm 
DISMOPSO CMOPSO-1 MOCLPSO-2 

GD △ GD △ GD △ 

ZDT1 

Min 1.89×10-4 0.119 1.36×10-4 0.625 1.24×10-4 0.244 
Max 9.57×10-4 0.217 4.83×10-4 0.753 6.77×10-4 0.458 
Mean 4.00×10-4 0.167 2.28×10-4 0.677 2.63×10-4 0.325 
Std. 2.08×10-4 0.026 9.57×10-5 0.038 1.43×10-4 0.053 

ZDT2 

Min 1.44×10-4 0.123 1.74×10-4 0.505 1.27×10-4 0.222 
Max 7.68×10-4 0.188 2.20×10-4 0.65 2.22×10-4 0.544 
Mean 3.40×10-4 0.157 1.92×10-4 0.578 1.74×10-4 0.337 
Std. 1.89×10-4 0.022 1.26×10-5 0.039 2.35×10-4 0.077 

ZDT3 

Min 2.34×10-4 0.123 2.16×10-4 0.382 2.21×10-4 0.175 
Max 3.26×10-4 0.244 5.80×10-4 0.699 5.85×10-4 0.436 
Mean 2.76×10-4 0.164 3.44×10-4 0.536 3.09×10-4 0.292 
Std. 2.91×10-4 0.033 1.26×10-4 0.09 9.32×10-5 0.062 

ZDT6 

Min 0.10×10-3 0.101 0.20×10-3 0.254 0.20×10-3 0.163 
Max 0.83×10-2 0.434 0.30×10-1 0.595 0.15×10-1 0.563 
Mean 0.17×10-2 0.295 0.40×10-2 0.402 0.24×10-2 0.318 
Std. 0.59×10-2 0.089 0.74×10-2 0.087 0.44×10-2 0.101 
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The solutions of MOCLPSO can also reach the Pareto optimal front, but distribute 
partial area in the Pareto optimal front and the diversity of the solution is not good. As 
for CMOPSO, the solutions can only reflect a part of Pareto-optimal front. Moreover 
the distribution of them is not homogeneous. Figure 6 and figure 7 present the same 
result. According to these figures, the property of DISMOPSO is the best, and 
CMOPSO is the worst. 

The metric GD and △, averaged by 20 independent experiments, are analyzed in 
Table 2, All GD values of three algorithms are very small, except the results of ZDT6. 
It suggests that almost all the three algorithms can approximate the Pareto-optimal 
front with high precision. The result of △ of DISMOPSO is the best among the three 
algorithms, which indicates a good diversity performance is maintained by 
DISMOPSO.  

5 Conclusions 

In this paper, the idea of crowding distance of NSGA-II is referred. With that, an 
improved maintenance strategy for external archive is proposed. When the size of 
external archive is less than the setting value, the maintenance can also take effect. 
Furthermore, the information entropy of gbest is analyzed, which indicate the 
improved maintenance method increases the information entropy so that the algorithm 
can select gbest more widely and benefit the even distribution of non-dominant 
solutions in the Pareto-optimal front. The result of experiment also proves that the 
improved algorithm is effective with smaller size of population and eternal archive. In 
the future work, the performance of DISMOPSO is expected to be improved and it 
will be applied to those multi-objective benchmark function with constrains.  
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Abstract. The exponential inertia weight is proposed in this work aiming to 
improve the search quality of Particle Swarm Optimization (PSO) algorithm. 
This idea is based on the adaptive crossover rate used in Differential Evolution 
(DE) algorithm. The same formula is adopted and applied to inertia weight, w. 
We further investigate the characteristics of the adaptive w graphically and 
careful analysis showed that there exists two important parameters in the 
equation for adaptive w; one acting as the local attractor and the other as the 
global attractor. The 23 benchmark problems are adopted as test bed in this 
study; consisting of both high and low dimensional problems. Simulation 
results showed that the proposed method achieved significant improvement 
compared to the linearly decreasing method technique that is used widely in 
literature.  

Keywords: Benchmark functions, exponential inertia weight, Particle Swarm 
Optimization. 

1 Introduction 

Inertia weight, w has been one of the important parameters in Particle Swarm 
Optimization (PSO) algorithm. It has been known that w plays a crucial role in 
guaranteeing the robustness of PSO. Y. Shi and R. Eberhart first introduced the 
concept of w in PSO [1]. To date, a myriad of investigations concerning this 
parameter has been carried out [2-4]. The work by Bansal et al. [3] compared 15 
inertia weight strategies available from literature. However, only 5 benchmark 
functions are employed in his work. Han et al. compares several inertia weights in his work [4]. Again, using only 3 benchmark problems is not adequate to validate the 
results obtained and conclusions made may not be true when more benchmark 
problems are considered. The improvement contributed by manipulation of w can be 
categorized into few categories, namely exploration and exploitation, mutating w and 
adaptive w.  
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The first category, exploration and exploitation is based on the concept of 
incorporating high value of w and decreasing its value along the iteration. When w is 
high, the algorithm is capable of global search and as w decreases, the local search 
capability is more significant. This concept is implemented as linearly decreasing w as 
proposed by Shi in [1]. This technique is by far the most popular one and has been 
applied successfully in many works [5-7]. Many other variants are built upon this 
concept. Xin et al. introduced multi-stage linearly decreasing inertia weight[8]. In [9], 
instead of decreasing w from 0.9 to 0.4, the w is increased from 0.4 to 0.9. The range 
of variation of w is within 0.9 to 0.4 in his work.  

The second category of improvement via w involves manipulation of w in a 
stochastic manner. Miranda proposed mutated w in [10] for reliability calculation in 
power systems. Feng proposed the chaotic w [11-12] based on the linearly decreasing 
w and random w. The stochastic mutation of w is introduced by Li in [13]. The 
method is performed along with the linearly decreasing w. There are in fact limited 
works under this category as the stochastic strategies introduce disturbances into the 
algorithm and these may not perform well on a wide range of problems.  

Lastly, the third category implements w in an adaptive manner. This is perhaps the 
trend in many current works. Many works proposed ways to incorporate the 
information such as ranking [14], diversity [15], convergence, and swarm size[16] 
into w as this will dynamically adjust w based on the performance criteria received 
from the population. Work by Chen [16] relates the inertia weight with problem 
complexity (dimension size) and population size. If the swarm size is small, a larger 
inertia weight is employed to improve the global search capability to locate the 
global optimum. For an optimization problem on multi-dimension complex solution 
space, a larger inertia weight is employed to strengthen the ability to escape from 
local optima.  

Many works on the inertia weight has been done, however, there is not clear 
justification of how this parameter can be adjusted to improve the performance of 
PSO algorithm. Thus, we aim to investigate this property in this work. The rest of the 
paper is organized as follows. Section 2 explains the proposed method. Parameter 
settings are described in Section 3. The benchmark problems used as the test bed are 
described under this section. This is followed by results and discussions in Section 4 
and finally the conclusions in Section 5.  

2 Proposed Exponential Inertia Weight, w 

The idea of adaptive w in this paper originated from the work by Ao and Chi in [17]. 
In this reference, the author proposes an Adaptive Crossover Rate, ACR for 
Differential Evolution (DE) algorithm. This ACR is defined as: 

 0

bg
a

GCR CR e
⎛ ⎞− ⎜ ⎟
⎝ ⎠= ⋅  (1) 
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where CR0 is the initial crossover rate = 0.8 or 0.85, g is the current generation 
number, G is the maximum number of generations, a = 2, b = 2 or 3. The adaptive 
function for the crossover rate is simply crafted based on the logic of high CR at the 
early of run to prevent premature convergence and low CR at the end of run to 
enhance the local search. This concept is exactly the same for the case of inertia 
weight, w in PSO. Thus, the ACR is converted to adaptive w as follows: 

 0

b
g

a
Gw w e

⎛ ⎞− ⎜ ⎟
⎝ ⎠= ⋅  (2) 

whereby w0 is set to 0.9 in our work here. This value is chosen as an initial value in 
many works [5-8]. Further, two graphs are plotted, depicting the characteristics of 
parameters a and b. These are plotted in Figs. 1 and 2 below. From Fig. 1, by 
increasing a from 0 to 3 with a step of 0.5, it has the ability to push down the value of 
w, resulting in a curvilinear curve along the iterations. Thus, we name the parameter a 
as local search attractor. Note that when a=0, the inertia weight becomes a static value 
of 0.9 as the initial value w0 is set to 0.9. In the same diagram, take note that the third 
curve (a=1.0) starts from 0.9 and ends at approximately 0.32; almost similar to 
linearly decreasing w.  

 

Fig. 1. Characteristics of local search attractor, a varies from 0 to 3 step 0.5 while b is set to 1 

On the other hand, the parameter b has the opposite characteristic. When b is 
increased, it has the ability to pull up the curve resulting in higher value of w at the 
early run along the iterations. Hence, b is called global search attractor in this context. 
Again, note that when b=0, it is in fact a static w with the value approximate to 0.32. 
The third curve from below (b=1) is exactly the same as the curve (a=1) in Fig. 1 as 
both has the same numerical values (a=1, b=1). 
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Fig. 2. Characteristics of global search attractor, b varies from 0 to 3 step 0.5 while a is set to 1 

Generally, the ability of pulling up and pushing down the value of w using (2) 
makes the propose method ideal in PSO. Implementing this operator into any program 
is just a simple task and it does not add significant additional computational cost to 
the PSO algorithm. 

3 Parameter Settings 

The following settings are adopted in the PSO algorithm applied in this work. The 
population size is set to 20, acceleration coefficients; c1 and c2 are both set to 2.0. A 
dimensional value is reinitialized upon violation of either upper or lower boundaries. 
No maximum velocity, Vmax is imposed in this setting. The results of linearly 
decreasing inertia weight are applied as standard comparison for the exponential w. 
The setting for exponential w is tabulated in Table 1.  

Table 1. Setting for for exponential w 

Method Setting Method Setting 
A a=1, b=0.5 F a=0.5, b=1 
B a=1, b=1.0 G a=1.0, b=1 
C a=1, b=1.5 H a=1.5, b=1 
D a=1, b=2.0 I a=2.0, b=1 
E a=1, b=2.5 J a=2.5, b=1 

 
The widely known 23 benchmark problems [18] are adopted as test bed to validate 

the effectiveness of exponential w proposed in this work. All the parameter settings 
applied are similar. Results recorded as mean and standard deviation from 50 trials. 
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4 Results and Discussions 

Results above are the summary of the performance of each method compared to the 
results of standard PSO. A shaded cell is visible when the mean obtained is better or 
equal to the standard PSO’s. Otherwise, the cell is left empty instead of 0 for better 
readability. The total number of results that outperform the standard PSO is depicted 
in the last row of the table. The numerical values of the mean are available in Table 3.  

Table 2. Results of simulation using different settings of a and b 

 
f Function name 

SPSO  
(mean) 

δ a is fixed at 1.0 b is fixed at 1.0 
A B C D E F G H I J 

H
ig

h 
D

im
en

si
on

al
 f 

f1 Sphere 6.61E-05 0.00           
f2 Schwefel 2.22 4.19E-06 0.00           
f3 Schwefel 1.2 35.98 25.84           
f4 Schwefel 2.21 5.34 1.93           
f5 Rosenbrock 26.69 31.27           
f6 Step 8.00E-01 1.11           
f7 Quartic 3.73E-02 0.01           
f8 Schwefel -7303.35 1132.26           
f9 Rastrigin 24.36 6.42           
f10 Ackley 0.23 0.53           
f11 Griewank 1.55E-02 0.02           
f12 Penalized P8 4.00E-01 0.59           
f13 Penalized P16 1.65E-01 0.52           

L
ow

 D
im

en
si

on
al

 f 

f14 Foxholes 1.18 0.62           
f15 Kowalik 3.07E-04 0.00           
f16 Six-hump Camel-Back -1.0316280 0.00           
f17 Branin 4.02E-01 0.01           
f18 Goldstein-Price 3.0000001 0.00           
f19 Hartman-3 -3.8622 0.00           
f20 Hartman-6 -3.2500 0.09           
f21 Shekel-5 -5.89 3.48           
f22 Shekel-7 -6.78 3.57           
f23 Shekel-10 -7.80 3.57           

Total improvements, ∑ 16 19 16 7 5 4 17 16 19 17 

 
Results from the simulation above show that the use of proposed w is effective in 

tackling global optimum as generally majority of the methods outperform linearly 
decreasing method. This is true for methods A, B, C, G, H, I, J whereby 15 and above 
benchmark functions are solved with improvement. From left to right for methods A-
E, as the global attractor, b is increased, the algorithm lack convergence capability. 
This is due to the reason that as b increases, the value of w increases and thus the 
algorithm is capable of global optimum and lack convergence capability. Note that f21, 
f22 and f23 favor higher w to find the global optimum more accurately. Again, 
numerical values for these results are tabulated in Tables 3. 

To ease our analysis, methods A-J are grouped into three categories, namely 
global, balance and local categories: 

 

Global search (b > a)  :  Methods C, D, E and F 
Balance search (a = b)  :  Methods B and H 
Local search (a > b)  :  Methods A, H, I and J 
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The grouping of the methods above is based on the concept that when the global 
attractor is greater than the local attractor (b>a), the PSO algorithm is capable of 
global search. Similarly, the algorithm tend to be local searcher when the local 
attractor is greater than the global attractor (a>b). The balance group has the same 
value for both attractors. Results for each of these groups are recorded in Table 3. For 
each numerical value, the shading denotes the degree of the results obtained for each 
benchmark problem among all participating methods. Hereby, brighter background 
shading denotes better results. 

At a glance of Table 3, it is easy to come to a conclusion that the local category 
methods are favored in this case as in this category majority of the mean recorded are 
above average (brighter shading). However the drawback of local category is the 
danger of being trapped in local optima. This is true for the case of f21, f22 and f23. For 
simplicity, we would propose the use of balance method (B and H). Note that B and H 
are both the same as a and b are both set to unity. In this category, there is a balance 
between global exploration and local exploitation.  

Table 3. Results using global search methods (Methods C, D, E, F and G) 

 Global Search Methods Balance Local Search Methods 
f C D E F B / H A H I J 
f1 2.21E-06 1.44E-04 1.44E-03 4.63E-01 4.50E-10 2.09E-15 6.93E-14 1.82E-16 1.66E-14 
f2 5.35E-07 1.39E-04 1.10E-04 3.43E-03 1.34E-09 1.32E-10 4.39E-08 1.50E-06 9.14E-06 
f3 11.98 45.96 108.88 828.6 1.98 0.03 0.1 0.08 0.25 
f4 3.76 4.91 6.68 14.81 2.28 0.55 0.87 1.06 1.38 
f5 20.78 18.02 19.35 20.35 12.13 12.72 20.65 18.86 24.33 
f6 8.80E-01 2.40E+00 3.26E+00 3.68E+00 3.20E-01 4.80E-01 2.56E+00 5.60E-01 6.80E-01 
f7 2.97E-02 4.24E-02 4.90E-02 7.18E-02 2.31E-02 1.84E-02 2.14E-02 2.07E-02 2.35E-02 
f8 -8434.94 -8053.32 -7777.45 -4931.8 -8948.23 -9007.49 -8764.27 -8834.95 -8908.41 
f9 27.24 26.93 28.48 24.55 27.08 29.13 27.52 29.35 31.68 
f10 0.64 0.6 0.88 1.21 0.38 0.51 1.05 1.09 1.22 
f11 1.88E-02 1.80E-02 1.69E-02 7.88E-02 1.52E-02 1.73E-02 1.95E-02 1.51E-02 1.34E-02 
f12 1.88E-01 8.18E-01 1.24E+00 5.15E+00 2.34E-01 1.89E-01 2.12E-01 1.50E-01 2.66E-01 
f13 1.25E-01 1.87E-01 1.62E+00 1.19E+01 3.19E-02 7.67E-03 3.47E-02 6.67E-02 2.04E-01 
f14 1.36 1.22 1.41 1.24 1.3 1.43 1.38 1.29 1.1 
f15 3.07E-04 3.08E-04 3.08E-04 3.12E-04 3.07E-04 3.07E-04 3.07E-04 3.07E-04 3.07E-04 
f16 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 
f17 3.99E-01 4.02E-01 4.05E-01 4.09E-01 3.99E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 
f18 3 3.000001 3.000005 3.000032 3 3 3 3 3 
f19 -3.8627 -3.8623 -3.8613 -3.8609 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628 
f20 -3.2374 -3.2222 -3.2482 -3.2224 -3.2662 -3.2555 -3.2691 -3.2668 -3.2744 
f21 -6.35 -6.64 -6.2 -6.43 -6.1 -5.38 -5.51 -6.8 -6.59 
f22 -7.27 -7.84 -7.67 -7.14 -7.43 -6.35 -6.63 -7.5 -6.43 
f23 -7.33 -8.53 -8.12 -7.88 -7.68 -6.45 -8.28 -5.92 -6.31 

 
We then apply method A (a=1, b=0.5) to half of the population and the other half 

uses setting D (a=1, b=2). Note that method A is capable of local search (a>b) and 
method D is capable of global search (b>a). The result came to be as expected; 19 out 
of 23 functions are solved with improvement compared to linearly decreasing w. 
Nevertheless, for convenience, we recommend the setting of a=1 and b=1 for general 
purposes. Besides, we also run two additional simulations. The first one involve 
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choosing either method A or D in a random manner. In the second simulation, we 
apply a switch from D to A after half of the total generation. Both simulations have 
the same conclusion as mentioned above with 19 and 18 improvements as compared 
to the linearly decreasing w. 

5 Conclusions 

In this work, we proposed the exponential inertia weight, w to improve the search 
quality of Particle Swarm Optimization (PSO) algorithm. This exponential w has 
simple mathematical term shown by Eq. (2). The mathematical term originated from 
the work of Ao and Chi in [17] that is based on the concept of adaptive crossover rate 
used in Differential Evolution (DE) algorithm. The same formula is adopted and 
applied to inertia weight, w. We further investigate the characteristics of the adaptive 
w graphically and careful analysis showed that there exist two important parameters 
in the equation for adaptive w; one acting as the local attractor, a and the other as the 
global attractor, b. We further analyze that the algorithm is capable of global search 
and local search when (b>a) and (a>b) respectively. Simulation results showed that 
the proposed method has better performance in comparison to the linearly decreasing 
inertia weight that is used widely in many significant works. Among all ten methods, 
A to J; seven methods (A, B, C, G, H, I, J) managed to obtained better results for 15 
and above benchmark problems as compared to linearly decreasing w. For 
convenience, we recommend the setting of both local and global attractors to unity 
values (a=b=1.0). The proposed technique is reliable as 23 benchmark problems are 
adopted to validate the robustness of the exponential w. Further works should 
investigate and relate information such as convergence, diversity, swarm size, number 
of dimensions etc. to either local attractor, a or global attractor, b. Once an effective 
relationship is found, a and b will be adjusted automatically and hence resulting in an 
adaptive w. This remains as an important work for future.  
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Abstract. This paper presents a coevolutionary memetic particle swarm 
optimizer (CMPSO) for the global optimization of numerical functions. 
CMPSO simplifies the update rules of the global evolution and utilizes five 
different effective local search strategies for individual improvement. The 
combination of the local search strategy and its corresponding computational 
budget is defined as coevolutionary meme (CM). CMPSO co-evolves both CMs 
and a single particle position recording the historical best solution that is 
optimized by the CMs in each generation. The experimental results on 7 
unimodal and 22 multimodal benchmark functions demonstrate that CMPSO 
obtains better performance than other representative state-of-the-art PSO 
variances. Particularly, CMPSO is shown to have higher convergence speed. 

Keywords: Particle swarm optimization, coevolution, coevolutionary meme, 
local search strategies. 

1 Introduction 

Inspired by the collective behavior of natural creatures, the swarm intelligence (SI) 
algorithms are wildly applied in solving complex real world problems. Two crucial 
issues determine the convergence performance of the SI algorithms:  

• Effectiveness: The fitness improvement obtained by the algorithm in each 
generation. Particularly, effectiveness refers to how well the algorithm can adapt 
its searching behavior in different stages of the optimization, so that the fitness 
improvement of each generation is maximized. 
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• Attainableness: The goodness of the solutions found by the algorithm. For 
instance, in a minimization problem, the smaller the fitness value is obtained by 
the algorithm, the better the Attainableness it is. 

An ideal SI algorithm has the highest Effectiveness and the best Attainableness, so 
that it is able to obtain the optimal solution with minimal number of generations. But 
these two issues are commonly conflicting. Individuals of the worst fitness values are 
more likely to obtain the largest fitness improvement in each evolutionary generation. 
Contrarily, individuals near the global optima, which have the best fitness values, are 
usually fine-tuning in the optimum region, and therefore attain smaller or even none 
fitness improvement. To accelerate the convergence of SI algorithms, the balance 
between Effectiveness and Attainableness should be well maintained. 

Traditional SI algorithms like the particle swarm optimization (PSO) [1] normally 
utilize permanent parameters settings and update strategies throughout the search. 
Their Effectiveness is deteriorated for not able to adjust the searching behavior along 
with the optimization process. To overcome this defect, some “adaptive” algorithms 
are proposed. For instance, J. J. Liang et al. [2] proposed a comprehensive learning 
particle swarm optimizer (CLPSO) for the global optimization of multimodal 
functions. CLPSO employs a novel comprehensive learning strategy whereby all 
particles historical best information is involved in position update. It is shown to work 
well on complex multimodal functions. Z. H. Zhan et al. [3] adjusted the conventional 
PSO by introducing orthogonal experimental design (OED) in position learning. The 
algorithm, namely OLPSO, achieves promising results on both unimodal and 
multimodal problems. M. A. M. de Oca et al. [4] proposed the Tuned IPSOLS by 
introducing six local search strategies in the global evolution process of PSO. The 
algorithm is shown to obtain high performance on large-scale optimization problems. 
Z. Y. Yang et al. [5] proposed a new generalized adaptive differential evolution 
optimizer (GaDE) by employing novel generalized adaptation scheme in parameters 
selection. Experimental results demonstrate that the GaDE is competitive in both 
performance and scalability aspects. However, the contradiction between 
Effectiveness and Attainableness still remains in these algorithms. 

 

Fig. 1. Schematic diagram of the CMPSO 

In this paper we propose a coevolutionary memetic particle swarm optimizer 
(CMPSO). Particularly, CMPSO utilizes simplified PSO update equations for global 
evolution. Five effective local search strategies, including the Davidon, Fletcher and 
Powells Quasi-Newton Strategy (DFP) [6], the Davies, Swann, and Campey with 
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Gram-Schmidt orthogonalization (DSCG) [7], the chaos particle swarm optimizer 
(CPSO) [8], the random walks in Dirichlet environment (RWDE) [9], and the 
simulated annealing (SA) [10] are employed for individual learning. These strategies 
are effective in optimizing the problems on different stages of the search. The 
combination of the local search strategy and its corresponding computational budget 
is defined as coevolutionary meme (CM). CMPSO co-evolves a single position vector 
and the CMs, as shown in Fig. 1. The position vector P, namely the candidate solution 
vector of the problem, records only the historical best solution and represents the 
Attainableness of the algorithm. All CMs are performed on P in each generation and 
adjusted according to their Effectiveness. Thereby the confliction between 
Effectiveness and Attainableness is harmonized. Experimental results on 7 unimodal 
and 22 multimodal benchmark functions demonstrate that CMPSO is capable of 
attaining better performance than other representative PSO improvements. 

The remainder of this paper is organized as follows. Section 2 describes the 
procedure of CMPSO. Section 3 presents the experimental results of CMPSO and 
other representative algorithms on the benchmark functions. Finally the conclusion is 
given in Section 4. 

2 Coevolutionary Memetic Particle Swarm Optimizer 

2.1 Coevolutionary Meme 

In CMPSO, the DFP, DSCG, CPSO, RWDE, and SA are utilized as the local search 
strategies. These strategies are effective in optimizing different problems [6-10]. The 
strengths of these strategies are summarized in Table 1. 

Table 1. Strengths of the local search strategies 

Index Strategy Effective in 
1 DFP Unimodal problems 
2 DSCG Unimodal problems 
3 CPSO Unimodal and simple multimodal problems 
4 RWDE Complex multimodal problems 
5 SA Unimodal and multimodal problems, less effective 

 
The Effectiveness of the CMPSO is promoted by selecting proper local search 

strategies and their corresponding computational budgets for particular searching 
stages. As shown in Fig. 2, when the search position is near the global optima, the 
DFP or DSCG strategy could be employed to accelerate the convergence speed [11]. 
Contrarily, the selection of RWDE strategy allows the solution vector to explore in a 
large region and escape from local optima. SA is less effective compared to other 
strategies, but it can keep drilling down in the fitness landscape on both unimodal and 
multimodal problems. The computational budget of a local search strategy denotes the 
certainty of selecting this strategy. Larger budget indicates the strategy is believed to 
be able to obtain higher fitness improvement in the current generation, and CMPSO 
allocates sufficient computational resources to it. On the contrast, smaller budget 
means the CMPSO is just having a trial on an uncertain strategy. 
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     (a) Accelerate the convergence speed        (b) Prevent premature convergence 
  by utilizing DFP and DSCG                 by utilizing RWDE and SA 

Fig. 2. Adapting local search strategies to particular searching stages 

The selection of local search strategies and their computational budgets determines 
the overall Effectiveness of the algorithm. To optimize the selection, we introduce a 
novel coevolutionary framework of PSO. In this study, the combination of a local 
search strategy and its corresponding computational budget is defined as a 
coevolutionary meme (CM). Coined by R. Dawkins, the word ‘meme’ represents the 
transmissible and replicable unit information stored in brain that serves as instruction 
for carrying out behavior [12]. In the context of memetic algorithm, meme is also 
interchangeable with local search strategy [11]. Here, the CM is defined as: 

 Mi = [Si,Ci ] (1) 

in which Si denotes the type index of the local search strategy, taking value in RS = {1, 
2, 3, 4, 5}. For instance, Si = 1 indicates to select DFP for individual learning, Si = 2 
denotes the selection of DSCG, and so on. Variable Ci is the computational budget 
defined in terms of number of fitness evaluations (FEs). Ci is set in the range RC = 
[100, 1000]. In CMPSO, the CMs are optimized in the global search of PSO and all 
the individual learning processes are performed on the same solution vector P. 

2.2 Tabu Vector and Reinitialization Operation 

To prevent premature convergence, a tabu vector and a reinitialization operation are 
introduced in CMPSO. The fitness improvement of each CM is denoted as follows: 

 δ = fitness _ old − fitness _ new  (2) 

where fitness_old and fitness_new are the fitness values obtained by the local search 
strategy before and after the individual learning process respectively. If the fitness 
improvement on the kth generation is k = 0, the computational budget used in the 
individual learning is added to a tabu vector: 

 T[Sk ] = T[Sk ]+Ck  (3) 



 A Coevolutionary Memetic Particle Swarm Optimizer 95 

where Sk and Ck is the local search strategy index and its computational budget 
selected in the kth generation evolution. 

The values in the tabu vector record the total computational budget a local search 
strategy takes without gaining any fitness improvement. When all the values in the 
tabu vector reach the upper bound of the computational budget range RC, indicating 
that no individual learning strategy can optimize the current solution vector P within 
the maximum FEs budget, the reinitialization operation is performed by randomly 
sampling the solution vector P in range RP = [Rmin, Rmax]. Variable Rmin and Rmax are 
the lower and upper bound of the solution space, respectively. 

Algorithm 1. Procedure of the CMPSO 

1: BEGIN 
2: Initialize a particle swarm ps of CMs by randomly sampling each particle 

position Mi in RS ⊗ RC; 
3: Set the global best position Mgbest = M1, the fitness improvement of Mgbest i.e., 

gbest = 0; 
4: Randomly sample the candidate solution vector P in RP; 
6: Initialize the tabu vector T by setting all the values to 0; 
7: while stopping criterion is not satisfied do 
8:     for each particle psi in the swarm do 
9:        Update particle velocity Vi and position Mi based on (4) and (5); 
10:        Select local search strategy Si and computational budget Ci based on Mi;  
11:        fitness_old = f (P); 
12: Perform individual learning with strategy Si using computational budget 

Ci on P; 
13:        fitness_new = f (P); 
14:        Calculate the fitness improvement i based on (2); 
15:        if i > gbest then 
16:            Mgbest = Mi; 
17:            gbest = i; 
18:       end if 
19:        if i = 0 then 
20:            Update the tabu vector T based on (3); 
21:            if all values in T reach the upper bound of RC then 
22:                Perform reinitialization operation of P; 
23:            end if 
24:        end if 
25:     end for 
26: end while 
27: END 

2.3 The CMPSO Algorithm 

CMPSO utilizes simplified update equations to optimize the particle swarm. Unlike 
conventional PSOs, in CMPSO the particle positions in the global evolution are not 
the solutions of the objective problem, but the CMs. The update equations of the 
global evolution are illustrated as follows: 
 



96 J. Zhou et al. 

 )(2
1 k

i
k
gbest

k
ik

i r MMVV −×+=+
 (4) 

 

 Mi
k+1 = Mi

k + Vi
k+1

 (5) 

where Vi
k and Mi

k are the velocity and position (CM) vector of the ith particle on the kth 
generation, respectively. Vector Mgbest is the global best CM that obtains the largest 
fitness improvement in its corresponding individual learning. Procedure of the CMPSO 
is demonstrated in Algorithm 1, in which f (·) denotes the fitness function. 

By using global evolution to optimize the coevolutionary meme, the CMPSO is 
able to adapt the individual learning process to different stages of the optimization, 
thereby improving the overall Effectiveness. By performing all the individual learning 
processes on the same solution vector P, the Attainableness of the algorithm is 
optimized. 

3 Experimental Results 

7 unimodal and 22 multimodal benchmark functions from [13], [3], [14], and [15] are 
chosen to evaluate the performance of CMPSO. Four representative state-of-the-art 
PSO variances, including the PSOw [1], CLPSO [2], local OLPSO (OLPSO-L) [3], 
and global OLPSO (OLPSO-G) [3] are selected for comparison study. The parameter 
settings of all the algorithms are summarized in Table 2. The 29 benchmark functions 
are summarized in Table 3. 

Table 2. Parameter settings of the algorithms 

Algorithm Parameters 
PSOw |ps| = 20, w = 0.5, c1 = c2 = 2.0 
CLPSO |ps| = 20, w0 = 0.9, w1 = 0.7, c = 1.49445, m = 8 
OLPSO-L |ps| = 40, w = 0.9, c = 2.0, G = 5 
OLPSO-G |ps| = 40, w = 0.9, c = 2.0, G = 5 
CMPSO |ps| = 20 

 
To ensure fair comparisons, all the algorithms are given the same maximum 

number of 1E+05 FEs. The mean results and the variances of the fitness values 
obtained by all algorithms over 50 runs are reported in Table 4. 

The results in Table 4 show that CMPSO obtains better performance compared to 
other PSO variances on both unimodal and multimodal benchmark functions. 
Particularly, CMPSO obtains the best mean values on 25 benchmark functions and the 
smallest variances on 22 functions. The CMPSO is competitive in performance and 
more stable than the other state-of-the-art PSOs. It is also worth noting that the 
CMPSO is easy to use for taking only one parameter, i.e. the swarm size |ps|. 
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Table 3. Twenty-nine benchmark functions used in the experiment 

 Type Description Dimension Range Ref. 
F1 

Unimodal 

Sphere Model 30 [-100, 100] [13] 
F2 Schwefel’s Problem 2.22 30 [-10, 10] [13] 
F3 Schwefel’s Problem 1.2 30 [-100, 100] [13] 
F4 Schwefel’s Problem 2.2 30 [-100, 100] [13] 
F5 Generalized Rosenbrock's Function 30 [-30, 30] [13] 
F6 Step Function 30 [-100, 100] [13] 
F7 Quartic Function 30 [-1.28, 1.28] [13] 
F8 

Multimodal 

Generalized Schwefel’s Problem 2.26 30 [-500, 500] [13] 
F9 Generalized Rastrigin’s Function 30 [-5.12, 5.12] [13] 
F10 Ackley’s Function 30 [-32, 32] [13] 
F11 Generalized Griewank Function 30 [-600, 600] [13] 
F12 Generalized Penalized Function 1 30 [-50, 50] [13] 
F13 Generalized Penalized Function 2 30 [-50, 50] [13] 
F14 

Rotated and 
Shifted  
Multimodal 

Rotated Schwefel 30 [-500, 500] [3] 
F15 Rotated Rastrigin 30 [-5.12, 5.12] [3] 
F16 Rotated Ackley 30 [-32, 32] [3] 
F17 Rotated Griewank 30 [-600, 600] [3] 
F18 Shifted Rosenbrock 30 [-100, 100] [3] 
F19 Shifted Rastrigin 30 [-5, 5] [3] 
F20 

Composition 
Multimodal 

Composition function 1 10 [-5, 5] [14] 
F21 Composition function 2 10 [-5, 5] [14] 
F22 Composition function 3 10 [-5, 5] [14] 
F23 Composition function 4 10 [-5, 5] [14] 
F24 Composition function 5 10 [-5, 5] [14] 
F25 Composition function 6 10 [-5, 5] [14] 
F26 Hybrid  

Composition 
Multimodal 

Hybrid Composition Function F15 10 [-5, 5] [15] 
F27 Rotated Hybrid Composition Function F18 10 [-5, 5] [15] 
F28 Rotated Hybrid Composition Function F21 10 [-5, 5] [15] 
F29 Rotated Hybrid Composition Function F24 10 [-5, 5] [15] 

 
The average convergence traces of all the algorithms over 50 runs on the 

benchmark functions F1, F8, F14, F20, and F27, which are representatives of the five 
function groups, are illustrated in Fig. 3. To present the convergence trace more 
clearly, the vertical axis (Y-axis) is using the natural logarithmic scale. 

The results in Fig. 3 show that with properly selected CM for individual learning, 
the convergence speed of CMPSO is faster than other PSO variances. At the late stage 
of the search, when the other algorithms are almost stagnant, CMPSO keeps drilling 
down in the fitness landscape. The CMPSO is capable of preventing the premature 
convergence. 
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Table 4. Average results and variances obtained by the algorithms over 50 runs 

 F1 F2 F3 F4 F5 F6 
PSOw 1.60E+03 

± 1.74E+07 
3.76E+01 

± 3.06E+02
1.62E+04 

± 9.02E+07
1.48E+00 

± 1.02E+00
2.02E+05 

± 1.59E+11
1.78E+03 

± 2.23E+07 
CLPSO 1.52E-06 

± 1.56E-12 
3.92E-05 

± 3.39E-10 
8.90E+03 

± 6.53E+06
2.52E+01 

± 6.94E+01
1.95E+02 

± 6.66E+03
0.00E+00 

± 0.00E+00 
OLPSO-L 1.96E+02 

± 2.70E+04 
1.02E+01 

± 5.90E+01
1.34E+04 

± 1.11E+07
3.94E+01 

± 3.30E+01
7.03E+06 

± 6.14E+13
8.29E+01 

± 1.00E+04 
OLPSO-G 3.16E-03 

± 3.06E-06 
3.15E-03 

± 1.52E-06 
1.26E+03 

± 5.83E+05
3.32E+00 

± 9.38E-01 
1.69E+02 

± 9.74E+03
0.00E+00 

± 0.00E+00 
CMPSO 0.00E+00 

± 0.00E+00 
1.13E-157 

± 0.00E+00
1.59E+04 

± 3.07E+08
3.34E-20 

± 5.43E-38 
1.65E+01 

± 1.39E+01
0.00E+00 

± 0.00E+00 
 F7 F8 F9 F10 F11 F12 
PSOw 1.35E+01 

± 2.92E+01 
3.44E+03 

± 5.15E+05
1.27E+02 

± 1.12E+03
1.02E+01 

± 6.23E+01
2.17E+01 

± 1.48E+03
1.72E-01 

± 1.11E-01 
CLPSO 9.92E+00 

± 1.61E-01 
4.93E+02 

± 9.37E+04
1.68E+00 

± 2.36E+01
3.59E-01 

± 6.25E+00
7.58E-05 

± 2.22E-08 
4.04E-08 

± 1.45E-15 
OLPSO-L 1.15E+01 

± 6.68E-01 
3.67E+03 

± 2.03E+05
8.58E+01 

± 3.30E+02
6.05E+00 

± 3.01E+00
2.69E+00 

± 2.29E+00
2.05E+03 

± 3.38E+07 
OLPSO-G 9.44E+00 

± 2.97E-01 
4.88E+02 

± 4.07E+04
7.19E+00 

± 7.38E+00
9.69E-03 

± 1.45E-05 
1.64E-02 

± 1.68E-04 
1.25E-02 

± 1.56E-03 
CMPSO 8.77E+00 

± 1.67E-01 
1.57E+02 

± 7.86E+05
4.50E+00 

± 4.86E+02
2.85E-08 

± 0.00E+00
0.00E+00 

± 0.00E+00
3.02E-17 

± 4.16E-54 
 F13 F14 F15 F16 F17 F18 
PSOw 2.78E-02 

± 1.58E-02 
8.44E+03 

± 5.05E+05
2.63E+02 

±6.11E+03 
2.09E+01 

± 8.11E-03 
2.53E+02 

± 3.70E+04
5.22E+09 

± 1.80E+19 
CLPSO 1.46E-06 

± 3.38E-12 
8.58E+03 

± 2.29E+05
2.31E+02 

± 1.36E+03
2.02E+01 

± 4.17E-03 
2.70E+00 

± 3.08E+00
2.50E+02 

± 5.61E+03 
OLPSO-L 3.58E+04 

± 8.69E+09 
8.70E+03 

± 8.65E+04
2.56E+02 

± 1.24E+03
2.06E+01 

± 4.42E-01 
7.76E+01 

± 1.14E+03
1.91E+08 

± 3.43E+16 
OLPSO-G 2.44E-03 

± 1.81E-05 
8.50E+03 

± 2.72E+05
1.46E+02 

± 1.74E+03
1.98E+01 

± 1.22E+01
1.24E+00 

± 8.53E-02 
2.66E+02 

± 1.08E+05 
CMPSO 2.88E-17 

± 1.71E-53 
7.84E+03 

± 1.72E+05
5.41E+00 

± 9.56E+02
6.42E+00 

± 8.62E+01
0.00E+00 

± 0.00E+00
1.70E+01 

± 2.08E+01 
 F19 F20 F21 F22 F23 F24 
PSOw 1.53E+02 

± 1.58E+03 
2.00E+02 

± 1.38E+04
2.58E+02 

± 1.27E+04
3.41E+02 

± 1.93E+04
5.68E+02 

± 2.66E+04
2.22E+02 

± 2.88E+04 
CLPSO 1.79E+00 

± 1.36E+01 
3.22E+01 

± 4.23E+03
9.93E+01 

± 1.23E+04
1.73E+02 

± 1.02E+04
3.49E+02 

± 7.40E+03
3.33E+01 

± 6.07E+03 
OLPSO-L 1.19E+02 

± 6.19E+02 
8.76E+00 

± 5.76E+02
5.96E+01 

± 2.00E+03
2.04E+02 

± 4.41E+03
3.61E+02 

± 1.82E+03
1.98E+01 

± 1.92E+02 
OLPSO-G 9.50E+00 

± 1.51E+01 
4.80E+01 

± 4.09E+03
4.60E+01 

± 5.69E+03
1.66E+02 

± 4.58E+03
3.33E+02 

± 4.66E+03
4.87E+01 

± 4.76E+03 
CMPSO 9.48E+01 

± 1.82E+02 
1.13E-22 

± 9.71E-44 
1.34E+01 

± 9.18E+01
1.38E+02 

± 4.23E+02
3.03E+02 

± 1.43E+02
1.38E+01 

± 2.82E+01 
 F25 F26 F27 F28 F29  
PSOw 8.48E+02 

±1.82E+04 
5.37E+02 

±4.19E+04 
9.88E+02 

±1.84E+04 
1.15E+03 

±4.31E+04 
1.07E+03 

±1.26E+04 
 

CLPSO 6.83E+02 
±3.37E+04 

1.00E+02 
±1.09E+04

7.64E+02 
±1.86E+04 

5.62E+02 
±4.22E+04 

2.22E+02 
±1.34E+04 

 

OLPSO-L 5.35E+02 
±3.82E+03 

1.41E+02 
±2.33E+03 

7.37E+02 
±1.74E+04 

5.88E+02 
±6.00E+04 

2.53E+02 
±1.09E+04 

 

OLPSO-G 7.07E+02 
±3.78E+04 

1.49E+02 
±2.74E+04 

7.23E+02 
±3.29E+04 

6.32E+02 
±1.13E+05 

2.80E+02 
±3.08E+04 

 

CMPSO 5.05E+02 
±5.10E+02 

1.70E+02 
±9.86E+02 

6.14E+02 
±3.40E+03 

4.44E+02 
±6.32E+03 

2.00E+02 
±2.13E-25 
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    (a) Benchmark function F1                 (b) Benchmark function F8 

       
          (c) Benchmark function F14                    (d) Benchmark function F20 

 
(e) Benchmark function F27 

Fig. 3. Average convergence traces over 50 runs 

4 Conclusion 

A novel coevolutionary memetic particle swarm optimizer (CMPSO) was proposed in 
this paper. CMPSO defines a single solution position P and five coevolutionary 
memes (CMs) characterized with different local search strategies and computational 
budget are introduced in optimized the solution. CMPSO co-evolves both CMs and P 
in the way that CMs are updated like PSO particles but with specific rules, and P is 
updated by undergoing the individual refinement defined in each CM. By performing 
all the individual learning processes on the same solution vector P, the confliction of 
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Effectiveness and Attainableness is alleviated. Experimental results on 7 unimodal and 
22 multimodal benchmark functions demonstrate that the CMPSO attains better 
performance than other state-of-the-art PSO variances. CMPSO is capable of attaining 
higher convergence speed wile preventing the premature convergence. 
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Abstract. In this study, we present a novel particle swarm optimizer,
called Gender-Hierarchy Based Particle Swarm Optimizer (GH-PSO), to
handle multi-objective optimization problems. By employing the con-
cepts of gender and hierarchy to particles, both the exploration ability
and the exploitation skill are extended. In order to maintain an uniform
distribution of non-dominated solutions, a novel proposal, called Recti-
linear Distance based Selection and Replacement (RDSR), is also pro-
posed. The proposed algorithm is validated by using several benchmark
functions and metrics. The results show that the proposed algorithm
outperforms over MOPSO, NSGA-II and PAES-II.

Keywords: Gender, Hierarchy, Particle Swarm Optimizer,
Multi-objective Optimization, Rectilinear Distance.

1 Introduction

As one of the most successful paradigms of Swarm Intelligence (SI), Particle
Swarm Optimization (PSO), has been used widely in many practical optimiza-
tion scenarios since it was proposed firstly in 1995, and the extended PSOs
also show their competitive abilities on multi-objective optimization problems
(MOP)[1,2,3,4,5,6,7]. In this paper, we will present a proposal, called GH-PSO,
which is designed to handle multi-objective optimization problems with a small
iteration because, in practice, the objective function evaluations are a time-
consuming and computational resource consuming task. We revise and improve
our previous study which was reported in [8] to deal with multi-objective opti-
mization problems. A repository (also called Archive) incorporates to keep the
non-dominated solutions which are found in runs, and in order to maintain an
uniform distributed non-dominated solutions, a novel mechanism for the most
crowded non-dominated solutions replacement, called rectilinear distance (also
be named as Manhattan distance) based replacement approach, is also presented
in this study.

Y. Tan, Y. Shi, and Z. Ji (Eds.): ICSI 2012, Part I, LNCS 7331, pp. 101–108, 2012.
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GH-PSO is validated using several test functions and compared against NSGA-
II, PAES-II and MOPSO on multi-objective optimization since these algorithms
represent the state-of-the-art of the PSOs.

The remainder of this paper is organized as follows. In Sect. 2, we review
some basic concepts of PSO. And, we present our proposed algorithm in Sect.
3. In Sect. 4 and Sect. 5, the experimental results, discussions and conclusions
are presented respectively.

2 Basic Concepts

2.1 A Brief Description of Particle Swarm Optimization

A basic version PSO, gBest PSO, it was proposed firstly by Kennedy and Eber-
hart with the following equations:

vk+1
i = ω ∗ vki + φ1 ∗ (gk − xk

i ) + φ2 ∗ (lki − xk
i ) (1)

xk+1
i = xki + vk+1

i (2)

where
φ1 = γ1 ∗ ag, φ2 = γ2 ∗ at, γ1, γ2 → U(0, 1) ∈ R (3)

V = [ν1, ν2, . . . , νn],X = [x1, x2, . . . , xn (4)

Concerning about the gBEST PSO, we observer that it consists of two compo-
nents: social part (gk − xk

i ) and recognition part (lki −xk
i ). In the social part, all

particles learn from the best particle, and thus shift to a fittest position, which
is a metaphor as human beings do. In the recognition part, the particle learns
from its own best previous position, thus the particle moves towards the best
position experienced so far in the search space. It is a self-study procedure. After
several iterations, then, the PSO obtains the optimal solutions or exits.

3 Description of the Proposed Approach

3.1 Gender-Hierarchy Based PSO

Before presenting our algorithm, some terms used by our algorithm will be stated
as following. Gender usually is used to describe the exploration and exploitation
ability [8]. In the initial phase, each particle is randomly assigned a gender. It is
given to indicate search ability of the female and the male respectively. Hierarchy,
In human beings and other sophisticated societies, they all have a hierarchy. the
hierarchy depicts the social rank, the more higher rank it have and the more
power is obtained in society. Each particle has a hierarchical level, also called
grade. In our proposed algorithm, it can be observed that the social part and
the recognition part are both modified in order to accelerate the convergence by
multiplying a new coefficient, ωparticle i. Thereby, we can choose the different
values of c1 and c2 to keep the balance between the impact of gender and the
impact of grade.
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3.2 Gender-Hierarchy Based PSO for Multi-objective Optimization

Using GH-PSO to handle a multi-objective optimization problem, an external
repository is incorporated to maintain the non-dominated solutions found in
generations. In order to maintain an uniform distribution non-dominated solu-
tion set, a metric, called rectilinear distance (usually be called as Manhattan
distance), is employed to GH-PSO to maintain the spread of non-dominated
solutions. Now that, we will present our proposed algorithm Gender-Hierarchy
Based PSO for Multi-Objective Optimization (GH-PSO) in details. In fact, we
also can apply the punishment policy [8], which is a different proposal used here,
to the particles when the particles move out of the search boundaries.

A. The Proposed Algorithm: The algorithm of GH-PSO is the following.

1. Initialize the populations of GH-PSO, Pop.
2. Initialize the personal best of each particle in Pop.
3. For i = 0 to MAX PARTICLES NUMBER
4. Pbests[i] = Pop[i]
5. End For
6. Evaluate the objective function values of the particles in Pop.
7. Maintain the particles which are the non-dominated found in Pop and store

them into the external repository REP.
8. While not finished
9. For each particle in Pop
10. Designate a global guider GBEST randomly from the external reposi-

tory.
11. Calculate ωparticle, ωsi, and Xaverage.
12. Update the velocity and position of particle.
13. If a particle flies out of the boundaries the it is reset to the range of

[-MAX POS,MAX POS] again and its velocity is set to the oppsite direction
by multiplying -1 so that the particle searches the oppsite space.

14. End For
15. Use RDSR approach to update the non-dominated solutions in external

repository.
16. Update the personal best of each particle in Pop with PBESTS[i] = Pop[i]

if the current PBESTS dominates the position stored in its memory.
17. If the terminal conditions are satisfied, then set the finished condition to

true.
18. End of While.
19. Output the optimal solution, Non-dominated solutions found.

B. External Repository: Compared to single objective optimization prob-
lems, one of the main goals in MOP is to obtain a well distributed solutions
throughout the whole Pareto front. Therefore, a mechanism, called Rectilin-
ear Distance based Selection and Replacement (RDSR), is employed to obtain
a well distributed non-dominated solutions. The metric, rectilinear distance, is
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used to describe the sum of the (absolute) differences of their coordinates be-
tween two points. The definition of rectilinear distance is presented formally
as: RD(P,Q) = ‖P − Q‖1 =

∑n
i=1 |pi − qi|. where, P =(p1, p2, · · · , pn) and

Q=(q1, q2, · · · , qn). And, from the definition of spacing, we observe that the
spacing metric uses statistical rectilinear distance to evaluate the distribution
of the non-dominated solutions. Therefore, we propose a novel approach, which
is based on the metric of rectilinear distance, so as to obtain a well distributed
non-dominated solutions throughout the whole Pareto front.

1. If Reposity.size < MAX REPOSITY SIZE then
2. Add the new found non-dominated solution to repository.
3. Else
4. For i=0 to num of nondominated solutions.
5. Calculate the rectilinear distance, RDi

6. End for
7. Sort the rectilinear distance, RDi, in ascending order.
8. Calculate the rectilinear distance of the new found non-dominated solu-

tion, RDnew.
9. Select a non-dominated solution which has the smallest value of rectilinear

distance in repository, RDsmallest

10. If RDnew > RDsmallest then
11. Replace a non-dominated solution which has the smallest value of rec-

tilinear distance in repository with the new found non-dominated solution.
12. End If
13. End If

4 Experiments and Discussions

4.1 Experimental Settings

In the following experiments, NSGA-II, PAES-II and MOPSO, are employed so
as to assess and validate the performance of GH-PSO [2,11,12]. The crossover
rate, mutation rate and the depth of adaptive grid adopted the same value used in
[2,11,12]. All of the algorithms maintained a population size of 100 and an archive
size of 100. In all the following experiments, we report the results obtained from
conducting 30 independent runs of each algorithm compared. The algorithms all
conducted on Freebsd 7.0 system platform with GUN C++ compiler 4.2.1 and
1G RAM.

4.2 Performance Metrics

When we optimize a multi-objective problem, three aspects of the algorithm
should be take into consideration. Firstly, the distance between the true Pareto
front and the front generated by the proposed algorithm; secondly, the distribu-
tion of the front we produced; lastly, the number of the obtained non-dominated
solutions, which does not belong to the true Pareto set. Therefore, we choose
Generation Distance (GD), Spacing (SP), and Error ration (ER) as our perfor-
mance metrics.
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4.3 Experimental Results

Test Function 1: SCH2. Test function SCH2 is proposed by Schaffer [9]. SCH2
has two objective functions, and the decision variable of SCH2 is at the range of
[-5,10]. The Pareto front of SCH2 is a dis-continuous front, and its contain two
branches. One branch the decision variables is located in the range of [1, 2]; the
another branch the decision variable is at the interval of [4, 5].

SCH2 : min

{
f1(X) = g(X)

f2(X) = (x− 5)2, otherwise
(5)

where, g(X) = −x | (x ≤ 1), x−2 | (1 < x ≤ 3), 4−x | (3 < x ≤ 4), x−4 | (x > 4)
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Fig. 1. Pareto fronts for the SCH2 test function
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Fig. 2. Pareto fronts for the SCH2 test function

In this case, with respect to GD, the SP and the ER under consideration, the
GH-PSO runs the first place. The results of error ratio shown in Tab. 1 state
that the GH-PSO out-performs all others in three algorithms on spacing metric
because the GH-PSO approximates closer to the true Pareto front than that
of the others did. Although the GH-PSO falls slightly behind the MOPSO on
the standard deviation metric, in Tab. 2, the GH-PSO is in leading place with
respect to the average generation distance.
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Table 1. The results of the ER of the SCH2

ER GH-MOPS MOPSO NSGA-II PAES-II

Beset 1.00000E-02 1.00000E-02 3.00000E-02 7.14286E-02
Worst 1.00000E-01 7.00000E-02 1.00000E-01 2.30769E-01
Average 5.96667E-02 5.96667E-02 6.36667E-02 1.13919E-01
Median 6.00000E-02 7.00000E-02 6.00000E-02 7.14286E-02
Std. Dev. 2.54929E-02 1.51621E-02 1.88827E-02 7.04631E-02

Table 2. The results of the GD of the SCH2

GD GH-MOPS MOPSO NSGA-II PAES-II

Beset 2.10338E-04 2.37592E-04 2.79421E-04 1.69986E-04
Worst 3.04970E-04 2.46704E-04 3.50361E-04 6.47535E-03
Average 2.39720E-04 2.44127E-04 3.05900E-04 2.97332E-03
Median 2.37280E-04 2.45577E-04 3.02141E-04 1.69986E-03
Std. Dev. 3.83869E-06 3.63869E-06 1.62701E-05 2.11180E-03

Table 3. The results of the SP of the SCH2

SP GH-MOPS MOPSO NSGA-II PAES-II

Beset 2.04568E-02 5.44174E-02 2.24919E-02 5.77608E-01
Worst 3.06099E-02 5.76094E-02 3.10069E-02 7.42050E-01
Average 2.59036E-02 5.63695E-02 2.72376E-02 6.21459E-01
Median 2.56108E-02 5.62590E-02 2.75936E-02 5.77608E-01
Std. Dev. 2.75954E-03 1.22825E-03 2.15617E-03 7.27189E-02

G. Test Function 2: KUR. Our second multi-objective test function was
proposed by Kursawe [10]. It has three decision variables and two objective
functions, all of the decision variables are at the interval of [-5, 5]. The true
Pareto front of KUR is a dis-continuous and non-convex line.

KUR : Min

{
f1(X) =

∑n−1
i=1 (−10exp(−0.2

√
x2
i + x2

i+1))

f2(X) =
∑n

i=1(|xi|0.8 + 5sin(xi)
3), n = 3

(6)

In Fig. 3 and Fig. 4, the graphical results state that only the GH-PSO and
the MOPSO cover the whole true Pareto front. The Pareto front produced by
the NSGA-II only is a part of the true Pareto front. The Pareto front obtained
by the NSGA-II reflects that the NSGA-II only explores the center part of the
search space, the margin of the search space does not be explored. The PAES-
II meets the same issue on KUR function. Our statements are confirmed by
the numerical results shown in Tab. 4 and Tab. 5. With respect to ER and
GD, the GH-PSO is in the first place followed by the MOPSO. Although the
NSGA-II also has an uniform Pareto front distribution and a smaller generation
distance, in fact, the Pareto front produced by the NSGA-II does not distribute
throughout the entire true Pareto front. Therefore, we draw the conclusion that
the GH-PSO has the best performance on KUR function.
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Fig. 3. Pareto fronts for the KUR test function
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Fig. 4. Pareto fronts for the KUR test function

Table 4. The results of the ER of the KUR

ER GH-MOPS MOPSO NSGA-II PAES-II

Beset 7.90000E-01 7.60000E-01 6.40000E-01 1.00000E+00
Worst 9.50000E-01 9.00000E-01 8.40000E-01 1.00000E+00
Average 8.84646E-01 8.33000E-01 7.51667E-01 1.00000E+00
Median 8.90000E-01 8.30000E-01 7.600000E-01 1.00000E+00
Std. Dev. 3.66424E-02 3.03480E-02 5.45334E-02 0.00000E+00

Table 5. The results of the GD of the KUR

GD GH-MOPS MOPSO NSGA-II PAES-II

Beset 2.79945E-03 3.15058E-03 1.00850E-03 1.74499E+00
Worst 3.77302E-03 7.39038E-03 8.29315E-03 1.92665E+00
Average 3.22489E-03 5.05637E-03 2.45549E-03 1.75104E+00
Median 3.19809E-03 4.97383E-03 1.92209E-03 1.74499E+00
Std. Dev. 2.19689E-04 1.23526E-03 1.45383E-03 3.26099E-02

Table 6. The results of the SP of the KUR

SP GH-MOPS MOPSO NSGA-II PAES-II

Beset 7.90221E-02 5.97845E-03 3.85658E-02 7.64514E-02
Worst 1.04721E-01 1.18247E-01 2.03283E-02 2.81594E-01
Average 8.63365E-02 8.83308E-02 7.43422E-02 8.32895E-02
Median 8.61962E-02 9.03928E-02 5.51238E-02 7.64514E-02
Std. Dev. 6.67407E-03 1.93582E-02 4.07817E-2 3.68243E-02
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5 Conclusions

In this study, we present a approach, called GH-PSO which is an extended version
of our previous work, to deal with MOP with a small iteration number, and the
proposed algorithm was validated on benchmark functions. The GH-PSO has
competitive performance with respective to the well-known algorithms, MOPSO,
NSGA-II and PAES-II. We studies also indicate that the proposed approach is
suit for the resource limited circumstance compared to NSGA-II and PAES-II.

Next, to solve constrained multi-objective optimization problems and dynamic
multi-objective optimization problems and their parallelization are underway.
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Abstract. To study how the different number of particles in clustering affect the 
performance of two-layer particle swarm optimization (TLPSO) that set the global 
best location in each swarm of the bottom layer to be the position of the particle in 
the swarm of the top layer, fourteen configurations of the different number of 
particles are compared. Fourteen benchmark functions, being in seven types with 
different circumstance, are used in the experiments. The experiments show that 
the searching ability of the algorithms is related to the number of particles in 
clustering, which is better with the number of particles transforming from as little 
as possible to as much as possible in each swarm of the bottom layer when the 
function dimension is increasing from low to high. 

Keywords: Particle swarm optimization, hierarchy, cluster. 

1 Introduction  

The particle swarm optimization (PSO) algorithm is based on the evolutionary 
computation technique. And it has been used increasingly as a novel technique for 
solving complex optimization problems. Many researchers have expanded on the 
original ideas of PSO, and some improving approaches such as the idea of hierarchy 
and cluster have been reported. In [1], a dynamically changing branching degree of 
the tree topology was proposed for solving intractable large parameter optimization 
problems. In [2], the particles have been clustered in each iteration and the centroid of 
the cluster was used as an attractor instead of using the position of a single individual. 
In [3], a new method named MSSE-PSO (master–slave swarms shuffling evolution 
algorithm based on PSO) was proposed. In [4], the population was partitioned into 
several sub-swarms, each of which was made to evolve based on the PSO. In [5], the 
PSO approach that used an adaptive variable population size and periodic partial 
increasing or declining individuals in the form of ladder function was proposed so that 
overall performance of the PSO was enhanced. In [6], a two-layer particle swarm 
optimization (TLPSO) was proposed for unconstrained optimization problems.  

                                                           
* This paper is supported by the National Natural Science Foundation of China No. 61062005. 
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The main content of this article discusses the influence on the ability to search 
function optimization among the configurations of the different number of particles in 
clustering, and looks for the general rule of the different configurations compared in 
various benchmark function with all kinds of circumstance. In this article, the main 
idea of [6] has been used in the updated algorithms for the comparison. Through the 
experiment, it has come to the conclusion that a good efficiency of searching ability is 
related to the number of particles transforming from as little as possible to as much as 
possible in each swarm of the bottom layer when the function dimension is increasing 
from low to high.  

The rest of this article is organized as follows. Section 2 describes the main idea of 
[6] and three classifications about the fourteen benchmark functions quoted from [7]. 
In Section 3, the basic process of the updated algorithms idea is presented and the 
seven more detailed classifications for the function are described for the following 
main content. In section 4, fourteen configurations of the different number of particles 
in clustering are compared in the benchmark functions existing in the seven types. 
Finally, section 5 draws conclusions about the comparison among the fourteen 
configurations of the different number of particles testing in the seven types. 

2 TLPSO and the Benchmark Function 

In [6], a two-layer particle swarm optimization (TLPSO) was proposed for 
unconstrained optimization problems. In the TLPSO approach, there were two layers 
of the structure: top layer and bottom layer, and M swarms of particles and one swarm 
of particles were generated in the two layers, respectively. Each global best location 
in each swarm of the bottom layer was set to be the position of the particles in the 
swarm of the top layer so that the global best location in the swarm of the top layer 
influenced the particles of each swarm in the bottom layer indirectly. Furthermore, a 
mutation operation was added into the particles of each swarm in the bottom layer. 
Consequently, the diversity of the population in the TLPSO increased so that the 
TLPSO has the ability to avoid trapping into the local optimum. 

In [7], fourteen benchmark functions (
1 14f f− ) were divided into three types, which 

were simple unimodal function from 
1f  to 

3f , highly complex multimodal function 

with many local minima from 
4f  to 

9f , and multimodal function with few local 

minima from 
10f  to 

14f .  

3 Algorithms and Classification  

3.1 Basic Process of the Updated Algorithms Idea 

In the updated algorithms, there will be two layers: the top layer and the bottom layer. 
The total number of particles is set to be one hundred and twenty, and there will be 
fourteen different classifications about the total number of particles. The 
classifications with the fourteen different configurations are shown in Table 1, where 



 The Comparative Study of Different Number of Particles in Clustering 111 

M means the total number of swarms in the bottom layer and N stands for the average 
number of particles in clustering. 

Table 1. The number of particles in clustering 

M 2 3 4 5 6 8 10 12 15 20 24 30 40 60 

N 60 40 30 24 20 15 12 10 8 6 5 4 3 2 

 

Fig. 1. The flow of the algorithmic thinking 

The total number of swarms (M) is corresponding to the average number of 
particles (N) in clustering in the bottom layer. According to the fitness contrasting 
among the particles in the dth swarm of the bottom layer, d=1,2,…,M, the global best 
location of the dth swarm is determined. Then the global best location of each swarm 
is set to be in the top layer, that is to say the number of particles in the top layer has 
also been determined, which is M. And then, the global best location of the swarm in 
the top layer will be determined according to the fitness contrasting among M 
particles in the top layer. The specific flow of the algorithmic thinking is shown in 
Fig.1. 

3.2 Computation Cost Analysis among the Fourteen Configurations  
of the Number of Particles in Clustering 

Suppose the computation cost of one particle in the algorithms is c, then the total 
computation cost of the algorithms for one generation is MNc+Mc, where MNc stands 
for the computation cost of the bottom layer and Mc stands for the computation cost 
of the top layer. Therefore, it can be obtained from the analysis that the computation 
cost is increasing along with the increasing of the number of swarms, in other words, 
it corresponds to the decreasing of the number of particles in clustering.  
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3.3 Detailed Classification and Main Work 

In this section, the three types about the fourteen benchmark functions [7] will be 
expanded to seven types:  

• type 1. Unimodal function in two dimensions;  
• type 2. Unimodal function in ten dimensions;  
• type 3. Unimodal function in one hundred dimensions;  
• type 4. Highly complex multimodal function with many local minima in two 

dimensions;  
• type 5. Highly complex multimodal function with many local minima in ten 

dimensions;  
• type 6. Highly complex multimodal function with many local minima in one 

hundred dimensions;  
• type 7. Multimodal function with few local minima in two or four dimensions. 

The main content of this article discusses the influence on the ability to search 
function optimization among the fourteen configurations of the different number of 
particles in clustering, and looks for the general rule of the fourteen configurations 
compared in the seven types. The next section will emulate and present the results of 
the comparison.  

4 Experiments   

In this section, seven types of the functions are employed to examine the efficiency of 
searching function optimization with the fourteen configurations of the different 
number of particles shown in Table 1, respectively. The maximum iteration times and 
operation cycle times for each function in different dimensions are listed in Table 2.  

The simulation results about the fourteen configurations of the different number of 
particles in clustering testing in the seven types are shown from Fig.2 to Fig.8, 
respectively. In the figures, the horizontal coordinate stands for the different number 
of particles in clustering and the vertical coordinate stands for the average value of all 
the global optimum values except for the maximum and the minimum values. 

According to the results comparison shown from Fig.2 to Fig.8, respectively, it 
comes to the conclusion shown as follows: 

In the circumstance of unimodal function, Fig.2 reveals that the searching ability 
will become better with the less number of particles in clustering in two dimensions 
and Fig.4 reveals the opposite that the more number of particles in clustering in one 
hundred dimensions shows better efficiency.  

In the circumstance of multimodal function, Fig.5 and Fig.8 reveal the same results 
that the better searching ability is corresponding to the less number of particles in 
clustering in two or four dimensions, and Fig.7 reveals the same result as Fig.4 in one 
hundred dimensions.  

As in Fig.3 and Fig.6 simulated from unimodal and multimodal function in ten 
dimensions, there will be a conjecture that the searching ability will become better 
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along with the number of particles in clustering transforming from as little as possible 
to as much as possible. 

Table 2. Iteration times and operation cycle times for each function in different dimensions 

2 or 4 dimensions 10 dimensions 100 dimensions 
Func
-tion 

Iteratio-
n times 

Operatio
-n cycle 
times 

Func
-tion 

Iteratio-
n times 

Operatio
-n cycle 
times 

Func
-tion 

Iteratio-
n times  

Operatio
-n cycle 
times 

1f  

2f  

3f

4f

5f

6f

7f

8f

9f

10f

11f

12f

13f

14f  

10 
10 
10 
15 
10 
10 
10 
5 
5 
5 
5 
10 
10 
10 

30000 
30000 
30000 
30000 
30000 
30000 
30000 
30000 
30000 
30000 
30000 
30000 
30000 
30000 

1f

2f

3f

4f

5f

6f

7f

8f

9f  

20 
80 
1000 
2200 
100 
20 
40 
20 
20 

10000 
10000 
500 
200 
10000 
10000 
10000 
10000 
10000 
 

1f  

2f

3f

4f

5f

6f

7f

8f

9f  

200 
15000 
20000 
100000 
15000 
300 
200 
100 
200 

30 
30 
30 
30 
30 
30 
30 
30 
30 
 

 

Fig. 2. Fourteen configurations of the different number of particles compared in type 1 

 

Fig. 3. Fourteen configurations of the different number of particles compared in type 2 
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Fig. 4. Fourteen configurations of the different number of particles compared in type 3 

 

Fig. 5. Fourteen configurations of the different number of particles compared in type 4 

 

Fig. 6. Fourteen configurations of the different number of particles compared in type 5 

 
Fig. 7. Fourteen configurations of the different number of particles compared in type 6 

 

Fig. 8. Fourteen configurations of the different number of particles compared in type 7  

5 Conclusion 

In this article, fourteen configurations of the different number of particles in 
clustering have been compared in the fourteen benchmark functions existing in 
different circumstance, respectively. According to the simulation results of the seven 
types, it can reach three general conclusions listed as follows: 

1. The less number of particles in clustering, the better searching ability for the 
function in low dimension. 
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2. The searching ability is better with the number of the particles transforming from 
as little as possible to as much as possible in clustering when the function 
dimension is increasing from low to high. 

3. The more number of particles in clustering, the better searching ability for the 
function in high dimension. 
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Abstract. An improved wavelet-based mutation particle swarm optimization 
(IWMPSO) algorithm is proposed in this paper in order to overcome the classic 
PSO’s drawbacks such as the premature convergence and the low convergence 
speed. The IWMPSO introduces a wavelet-based mutation operator first and then 
the mutated particle replaces a selected particle with a small probability. The 
numerical experimental results on benchmark test functions show that the 
performance of the IWMPSO algorithm is superior to that of the other PSOs in 
references in terms of the convergence precision, convergence rate and stability. 
Moreover, a pattern synthesis of linear antennas array is implemented 
successfully using the algorithm. It further demonstrates the effectiveness of the 
IWMPSO algorithm.  

Keywords: particle swarm optimization, wavelet mutation, synthesis. 

1 Introduction 

The PSO algorithm, which was firstly developed by Kennedy and Eberhart[1], is a kind 
of evolutionary computational technology based on intelligent behavior of organisms. Its 
basic idea is originally from artificial life and evolutionary computation[2][3]. As a kind 
of the general global research algorithm, the PSO is able to solve problems in real number 
field with few adjusted parameters. It is simple, easy to implement and efficient to 
compute. Therefore, the method has been widely used in many fields, such as neural 
network training, function optimization, fuzzy control system, etc [4]. Unlike the other 
heuristic techniques, the PSO has a flexible and well-balanced mechanism to enhance the 
global and local exploration abilities. At present, as a robust global optimal method, the 
PSO is also utilized in electromagnetic field [5][6][7], such as the design of absorbing 
material, antenna design, solving complex transcendental equations and so forth. 

The PSO algorithm is based on the search of all particles and their own experience 
toward the direction of optimal solution. In the evolutionary process, especially in the 
late period of evolution, the convergence speed gets slow significantly due to the lack 
of particle diversity. Moreover, the optimization cannot continue effectively when the 
algorithm converges to a certain precision. Therefore, the accuracy of algorithm is low. 
In view of the fact, this study injects mutation operation into the PSO algorithm to 
improve its performance. Reference [8] proposed a hybrid wavelet-based PSO 
algorithm with mutation operation. The wavelet theory enhances the PSO in exploring 
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the solution space more effectively. Numerical experiments show the proposed method 
significantly outperforms the existing methods in terms of convergence speed, solution 
quality and solution stability. This study proposes an IWMPSO algorithm with 
wavelet-based mutation operation based on the reference [8]. The IWMPSO applies a 
wavelet mutation operator to the current best solution of swarm.. After that, the best 
mutated solution replaces the selected particle with a small probability. The IWMPSO 
algorithm can increase the search probability of all particles, which means the 
algorithm can search in global area more effectively.   

2 The Particle Swarm Optimization Algorithm 

The PSO simulates the behaviors of bird flock[2][3]. Assuming a group of birds is 
randomly searching food in an area. There is only one piece of food being searched in 
the area. These birds do not know where the food is but they know how far the food is. 
So what is the best strategy to find the food? The effective one is to follow the bird that 
is nearest to the food. The PSO learns from the scenario and uses it to solve the 
optimization problems. In the PSO, each single solution is a “bird” in the search space. 
We call it “particle”. All of particles have fitness values that are evaluated by the fitness 
function to be optimized, and have velocities that direct the flying of the particles. The 
particles are "flown" through the problem space by following the current optimum 
particles. The PSO is initialized with a group of random particles (solutions) first and 
then is searched for optima by updating generations. In every iteration, each particle is 
updated by the following two “the best” values. The first one is the best solution 
(fitness) it has achieved so far. This value is called pbest. The other that is tracked by 
the particle swarm optimizer is the best value, which is obtained so far by any particle 
in the swarm. This value is the global best and called gbest.  

After finding the two best values, the particle updates its velocity and position with 
following formulas: 

( ) ( ) ( ) ( )1
, , 1 , , 2 ,
k k k k k k
i d i d i d i d d i dv v c rand pbest x c rand gbest xω+ = ⋅ + ⋅ ⋅ − + ⋅ ⋅ −

 
(1)

1 1
, , ,
k k k
i d i d i dx x v+ += +  (2)

where ω  is inertia weight that controls the PSO’s exploitation ability and exploration 

ability. 1c  and 2c  are learning factors, and usually 1 2 2c c= = . ( )rand  is a 

random number between (0, 1).  ,
k
i dv  and ,

k
i dx  are velocity and position of particle i 

in dth dimension and kth iteration, respectively, and they are limited to a scope.  
The inertia weight in this work adopts linearly decreasing manner. Suppose the 

scope of inertia weight is [ ]min max,ω ω , the maximum iteration number is num. 

Therefore, the kth inertia weight is given by [9] 

max min
maxk k

num

ω ωω ω −= − ×  (3)
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3 The PSO with Wavelet-Based Mutation Operation and Its 
Improvement  

The reference [8] proposed a wavelet-based mutation particle swarm optimization 
(WMPSO) algorithm with a wavelet-based mutation operation that changes the 
selected particle slightly. Let the mutation probability of the mutation operator 
is [0,1]p ∈ , whose value is decided by the dimension of particles. Suppose 

( )1 2, , ,k k k k
i i i ijx x x=x  is the ith mutated particle in the kth iteration, k

ijx  is the 

particle of the jth dimension, and max ipx  and min ipx  are the upper limitation and 

lower limitation of the particle in the search area, respectively. Therefore, the mutation 
function is given by 

( )
( )

max

min

, 0
( )

, 0

k k
ij i ijk

ij k k
ij ij i

x px x
mut x

x x px

σ σ

σ σ

⎧ + × − >⎪= ⎨
+ × − ≤⎪⎩

 (4)

where ( )k
ijmut x  is k

ijx  after mutation operation, and σ  is the wavelet value. Here, 

if the Morlet wavelet is considered, σ  is defined as [10] 

2

21
cos 5ae

aa

φ φσ
⎛ ⎞−⎜ ⎟
⎝ ⎠ ⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (5)

where the range of φ  is [ ]2.5 ,2.5a a− . The computing function of a is given by 

( )
( )

ln 1

ln

mk
g

numa e g

ζϖ⎛ ⎞− × −⎜ ⎟
⎝ ⎠= +  

(6)

where mωξ  is shape parameter of the monotonic increasing function, g is the upper 

limitation of the parameter a, k is iteration number, and num is maximum iteration 
number. 

Now, the wavelet mutation function in (4) is improved and defined by  

( )
( )

max

min

, 0
( )

, 0

k k
D i Dk

iD k k
D D i

gb px gb
mut x

gb gb px

σ σ

σ σ

⎧ + × − >⎪= ⎨
+ × − ≤⎪⎩

 (7)

where k
Dgb  is the current best in swarm in kth iteration, and the meanings of max ipx , 

min ipx , and σ  are the same as (4). 

The significant difference between function (7) and function (4) is that in function 
(4), the particle is selected to mutate according to certain probability. After mutation, 
the mutated particle may lie near the local maximum, and it cannot find the global 



 Improved Particle Swarm Optimization with Wavelet-Based Mutation Operation 119 

maximum. Whereas in function (7), the mutated particle is the current best. After 
mutation, using the mutated particle replaces a particle selected by certain probability. 
Therefore, the improved algorithm can search effectively near the best particle. This 
will lead the particle to the direction of global optimum, and decrease the probability of 
trapping in local optimum.  

4 Numerical Experiments 

4.1 Benchmark Test Functions 

Some numerical experiments are taken in order to validate the performance of the the 
IWMPSO. The standard PSO hereafter is named as SPSO. Six benchmark test 
functions are used, involving Sphere, Rosenbrock, Schwefel, Rastrigrin, Griewank, and 
Ackly. The expressions of these functions are tabulated in Table 1. 

Table 1. Benchmark test functions 

Test function Domain range  Optimal point 
30

2
1

1

( ) i
i

f x x
=

=∑  100 100ix− ≤ ≤  ( )1 0f =0  

30
2 2 2

2 1
1

( ) 100( ) ( 1)i i i
i

f x x x x+
=

⎡ ⎤= − + −⎣ ⎦∑  2.048 2.048ix− ≤ ≤ ( )2 0f =1  

3030

3
1 1

( ) i i
i i

f x x x
= =

= +∑ ∏  10 10ix− ≤ ≤  ( )3 0f =0  

30
2

4
1

( ) 10cos(2 ) 10i i
i

f x x xπ
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2

5
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1 1
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i i
i i

f x x x

e

π
= =

⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
+ +

∑ ∑ 32 32ix− ≤ ≤  ( )6 0f =0  

 
Above six benchmark test functions can be divided into two categories. The first one 

is the category of the unimodal function including 1f , 2f  and 3f . The second one is 

the category of the multimodal function including 4f , 5f  and 6f . 
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4.2 Simulation Results and Analysis 

The parameters in this study are as follows. The number of particles is 50, both the learning 

factors 1c  and 2c  are 2.05, the scope of linearly decreasing inertia weight is [1.2, 0.1], and 

the mutation probability is 0.1 in the IWMPSO and the WMPSO. In the IWMPSO, 

0.5mωξ =  and 1000g = . And in the WMPSO, 5.0mωξ =  and 100000g = .  

Table 2. Comparison between different PSO methods for benchmark test functions 
(Rk: 1- best, 3- worst) 

Function Index IWMPSO WMPSO SPSO 

Unimodal function 
 

1f  

Mn 9.4668e-41 2.2628e-007 1.3578 

Bt 1.5110e-045 9.0028e-013 4.1700e-001 

Sd 1.0164e-041 3.0715e-008 6.8235e-002 

Rk 1 2 3 

 

2f  

 

Mn 9.5877e-013 3.6921e-001 63.9907 

Bt 5.2954e-016 5.3459e-004 35.1379 

Sd 1.0367e-013 4.9791e-001 1.0195 

Rk 1 2 3 

 

3f  

 

Mn 1.4485e-018 9.5425e-004 5.2183 

Bt 9.5482e-23 1.1099e-006 2.0290 

Sd 2.0635e-019 1.9951e-005 2.8460e-001 

Rk 1 2 3 

Multimodal function 

4f  

Mn 9.8528e-014 8.8337e-002 2.7785e+002 

Bt 0 4.1768e-005 1.6493e+002 

Sd 7.4109e-15 1.2961e-002 7.4000 

Rk 1 2 3 

5f  

Mn 3.9968e-004 3.9304e-003 86.9011 

Bt 0 1.0842e-006 72.4321 

Sd 5.7097e-005 7.0126e-004 1.14326 

Rk 1 2 3 

6f  

Mn 2.2204e-014 5.7506e-004 16.9971 

Bt 8.8818e-016 1.1266e-006 1.7414 

Sd 3.0452e-015 7.8779e-005 2.1099 

Rk 1 2 3 
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The numerical experiments are performed according to above-mentioned 
parameters. 50 times runs are taken in each function. For all of the benchmark test 
functions, the computing results are listed in Table 2, where Mn presents the best mean 
fitness in the 50 times runs, Bt presents the best fitness in the 50 times runs, and Sd 
presents standard deviation of fitness function in the 50 times runs. Mn, Bt, and Sd are 
used to show the performance of the algorithms.  

From Table 2, it can be seen that to all of the six benchmark test functions, Mn, Bt, 
and Sd of the IWMPSO are superior to that of the WMPSO and the SPSO. Furthermore, 
to all of the test functions, the optimal results of the IWMPSO are close to the global 
optima. Compared to the WMPSO and the SPSO, the IWMPSO leads to the effective 
evolution direction. Its capability to leave the local optimum is good. Therefore, the 
convergence and stability of the IWMPSO are better than that of the WMPSO and the 
SPSO.  

Figure 1 shows the mean best fitness in the 50 times runs of different PSO 
algorithms with different initialized swarm, where the abscissa presents iteration 
numbers and y-axis presents mean best fitness. The figure implies that the IWMPSO 
generally get global optima when less than 200 times iterations, and obviously, its 

convergence speed is better than that of the WMPSO and the SPSO. Except 5f , the 

convergence accuracy of the IWMPSO is superior to the WMPSO and the SPSO more 
than 1010. This means the convergence accuracy of the IWMPSO is better than that of 
the WMPSO and the SPSO, which proves the feasibility and validity of the IWMPSO. 
In a word, the performance of the IWMPSO is superior to both the WMPSO and the 
SPSO. 

5 Synthesis of Linear Array 

5.1 Basic Concept of Synthesis 

Synthesis of array is to design the array parameters when expected pattern or main lobe 
width and side lobe level are given. It is an optimal problem with multi-dimensional 
non-linear characteristics. Considering an equal distance non-uniform linear array with 
2N elements, the distance of elements is half wavelength, and the amplitude of current 
is symmetry. Suppose the phase of every element is zero, the pattern beam of the array 
is given by 

( )

1 1 3 3
cos cos cos cos

2 2 2 2
1 2

2 1 2 1
cos cos

2 2

1

( ) ( ) ( )

( )

1
2 cos 2 1 cos

2

j kd j kd j kd j kd

N N
j kd j kd

N

N

i
i

F A e e A e e

A e e

A i kd

θ θ θ θ

θ θ

θ

θ

− −

− −−

=

= + + + +

+ +

⎡ ⎤= −⎢ ⎥⎣ ⎦
∑

 (8)

where θ  is direction angle of incident signal to array axial.  
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Fig. 1. Optimal processes of different PSO algorithms 

The object function is defined by 

2
1 )(1)( BWMBWSLVLMSLVLf −−+−= ）（ ηη  (9)

where MSLVL is the maximum side lobe level, SLVL is the designed side lobe level, 
MBW is the beam width at zero power, BW is the designed beam width at zero power, 
and η is weight. In this work, η=0.8. 
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5.2 Example of Synthesis 

In this example, the design indexes are 2N=20, SLVL=－40 dB, d=λ/2, beam width at 
zero power 2θ0=20°, the range of current amplitude is [0,1], and the number of particles 
is 100. The patterns are drawn in Figure 2 (a) and Figure 2 (b) when the iteration 
number is 100 times runs and 500 times runs, respectively, and their current amplitudes 
are listed in column 2 and column 3 of Table 3. 
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（b） 

Fig. 2. Pattern after synthesized (Dashed line presents the result of reference [11] whereas solid 
line presents the result of this work) 

Table 3. Current amplitude after optimized 

Number of element 100 times runs 500 times runs 
1，20 0.8880 0.9553 
2，19 0.8467 0.9117 
3，18 0.7690 0.8292 
4，17 0.6716 0.7168 

5，16 0.5472 0.5871 
6，15 0.4224 0.4525 
7，14 0.3072 0.3255 
8，13 0.2022 0.2143 

9，12 0.1223 0.1265 
10，11 0.0693 0.0752 

 
Figure 2(a) is the pattern after 100 times runs, beam width is 20° at zero power, and 

maximum side lobe level is －43.5016 dB. Figure 2(b) is the pattern after 500 times 
runs, and the beam width is 20° at zero power, the side lobe level is almost equal, the 
maximum side lobe level is decreased to － 44.4797dB. In reference [11], the 
maximum side lobe level is －39.5996 dB after 1000 times runs, and beam width at 
zero power is same with this study. However, the maximum side lobe level after 100 
times runs in this study is 3.9020dB lower than reference [11]. Also, it turns out in 
Figure 2 that the optimal result after 500 times runs is obviously not better than that 
after 100 times runs, which means 100 times runs is almost enough in array synthesis. 
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6 Conclusion 

Targeting at easy premature convergence, trapping local optimum, and low 
convergence accuracy, this work proposes an improved wavelet-based mutation 
particle swarm optimization algorithm. The performances of the IWMPSO, WMPSO 
and SPSO are compared by benchmark test functions. The computing results show that 
the IWMPSO can increase the diversity of swarm and avoid local optimum. 
Meanwhile, the IWMPSO algorithm has some advantages, such as high convergence 
accuracy, good stability, small iteration number, and fast computing speed. Moreover, 
a pattern synthesis of linear antennas array is implemented successfully using the 
algorithm. It further proves the feasibility and effectiveness of the IWMPSO algorithm.  
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Abstract. Standard particle swarm optimization (PSO) introduced in 2007, here 
called 2007-sPSO, is chosen as a starting algorithm in this paper. To solve the 
problems of the swarm’s velocity slowing down towards zero and stagnant 
phenomena in the later evolutionary process of 2007-sPSO, elastic boundary for 
PSO (EBPSO) is proposed, where search space boundary is not fixed, but 
adapted to the condition whether the swarm is flying inside the current elastic 
search space or not. When some particles are stagnant, they are activated to 
speed up in the range of the current elastic boundary, and personal cognition is 
cleared. Experimental results show that EBPSO improves the optimization 
performance of 2007-sPSO, and performs better than comparison algorithms. 

Keywords: particle swarm optimization, boundary, search space, personal 
cognition, optimization performance. 

1 Introduction 

Particle swarm optimization (PSO) [1] proposed in 1995 by Kennedy and Eberhart is a 
powerful evolutionary optimization algorithm which is inspired by social behaviors of  
fish schooling and bird flocking. In almost two decades, the fast developments and 
performance improvements of PSO in different ways have been achieved, although 
little work is reported on search space boundary control in PSO algorithm. EI-Abd [2] 
introduced a PSO-Bounds method for building a probabilistic model of the promising 
regions in the search space; Galan [3] presented floating boundaries for the search 
space, where floating boundaries’ positions are moved depending on the number of 
particle hits; in CSV-PSO algorithm [4], the ranges of both search space and velocity 
of the swarm are contracted dynamically with the evolution of PSO algorithm; and 
Kitayama presented ARPSO [5] algorithm, where search domain range is determined 
by the mean and standard deviation of each design variable, and both of the best 
position and the side constraints are considered. The above mentioned studies are 
several representatives of formal reports, and are verified to be effective.  

In this study, a novel elastic boundary for PSO (EBPSO) algorithm is proposed, 
where the elastic boundary is pressed, extended, or reset according to the range of the 
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swarm’s distribution. In EBPSO, the search space is not fixed, and all particles fly in 
a promising space surrounded by the elastic boundary. The experimental results 
illustrate the proposed EBPSO algorithm is superior to comparison algorithms. 

2 Stagnation Phenomena in 2007-sPSO Algorithm 

In this study, 2007-sPSO is chosen as a starting reference algorithm, and its 
mathematical description is given as follows: 

)(~)(~ω 211 tttttt+ -xnc+-xpc+v=v  (1)

11 t+tt+ +v=xx  (2)

Where t is current time step, xt and vt are the position and velocity of particle i at t, 
respectively; pt is personal best position of particle i, and nt is its local best position 
found by its neighbors; 1

~c  , 2
~c are random number drawn from the uniform 

distribution on [0, c], c=1.193, and ω=0.721. The values given in 2007-sPSO come 
from more complete analysis, and more features about 2007-sPSO can be found in 
[6], [7]. However, like any other optimization algorithm, 2007-sPSO sometimes 
works well on a complex problem and sometimes not so well on another.  

Fig. 1 is an example of the evolutionary process of 2007-sPSO on function 
Rastrigin, where (a), (b), and (c) are curves of fitness value, velocity and position of 
the swarm, respectively. It is clear that the convergence speed is fast as shown in 
Fig.1 (a), and the swarm’s velocity drops quickly, and the swarm gathers together as 
shown in Fig.1 (b) and (c). The efficient optimization occurs at the beginning of 
evolutionary process. In the later of the evolutionary process, observed Fig. 1(b) and 
(c), the swarm sinks into some area, and the velocity is slowing down towards zero, 
and their positions are still running to steadiness. The global best of 2007-sPSO hasn’t 
updated for several steps as shown in Fig. 1(a). This phase is named as stagnation [8]. 

 

     (a) convergence curve                (b) velocity                    (c) position                 

Fig. 1. An example for the evolutionary process of 2007-sPSO    

In PSO, particles change their positions in search space to test whether the new 
position is better. Therefore stagnation doesn’t benefit for the optimization performance. 
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3 The Proposed EBPSO Algorithm 

It seems that, as a rule, search space is always fixed through the whole evolutionary 
process. When particles gather into a mass, most of search space is given up. If the 
optimum solution is just there, it is no doubt that the amazing optimization will be 
achieved. But unlucky the optimum often hides outside some area where particles 
mass. Therefore, it is desirable to determine a valid search range for particles. 

For this purpose Elastic boundary for PSO algorithm (EBPSO) is proposed in this 
paper, which is simple and easy to understand. Fig. 2 is the pesudocode of EBPSO 
algorithm, and step 2-4 are the same processes as 2007-sPSO.  

1. for each iteration t 
2.    calculate the fitness 
3.    Update the best value; 
4.    Update the position and velocity; 
5.    for each dimension d 
6.       if ERl(d) <    
7.          reset the left elastic boundary EBl(d); 
8.       else 
9.          if Ol(d) =1 
10.             Outspread EBl(d); 
11.          else 
12.             Constrict EBl(d); 
13.          end if 
14.       end if 
15.       if ERr(d) <    
16.          reset the right elastic boundary EBr(d); 
17.       else 
18.          if Or(d) =1 
19.             Outspread EBr(d); 
20.          else 
21.             Constrict EBr(d); 
22.          end if 
23.       end if 
24.     end for 
25. end for 
26. activate velocity; 
27. clear personal cognition; 

Fig. 2. Pseudocode for EBPSO algorithm 

The main characters of EBPSO algorithm is described as follows: 

1. Track the Swarm 
The particles’ distribution is recorded by checking whether some particle is flying 
outside the current elastic boundary [EBl(d), EBr(d)] on dimension d using (3) and (4).  
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If Ol(d)=0, it means that all particles fly inside the left elastic search space on 
dimension d, or else Ol(d) =1. Similarly, we can get the value of Or(d) using (4),  
[EBl,  EBr]

D is initialized to the predefined search space [xmin, xmax] D.   

⎩
⎨
⎧ <

=
otherwise

EBif

,0

)()(,1
)(

ddx
dO li

l  (3)

⎩
⎨
⎧ >

=
otherwise
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,0

)()(,1
)(

ddx
dO ri

r  (4)

2. EB Strategy  
Elastic boundary (EB) strategy is a new way to adjust the search boundary on 
dimension at each iteration step. The scope between the left and right elastic boundary 
is elastic region, named ER in short. In each dimension, ER(d) is divided into two 
segments by the global best. For convenient, let ERl =| gt-xmin | denotes the left part, 
and ERr=| xmax-gt | denotes the right part. In Fig. 2 step 9-13 controls the left elastic 
boundary EBl , which is calculated on dimension as below: 

bltl rddgd ×= )()()( ER-EB  (5)

Step 18-22 controls the right elastic boundary EBr on dimension as below: 

brtr rddgd ×+= )()()( EREB  (6)

Where gt is the global best, rb ∈[a, b] is scale factor with a<1 and b>1. when rb∈[1,b], 
EB is pushed away from the global best, so ER is expanded; if rb∈ [a, 1], EB is pulled 
nearer to the global best, and ER is reduced. In general, let a<b-1, so that the speed of 
approach is slower than that of rebound off the swarm. EB strategy gives the swarm 
enough search scope, and doesn’t tighten and disturb the swarm behaviors. 

The above operations on boundary control are under the condition of ER is more 
than the threshold ε. if false, i.e. ERl <ε or ERr <ε, then EBl or EBr is reset randomly 
in the range of [gt, xmin] or [xmax, gt] using step 7 or 16. 

3. Activate the Swarm 
When EB is reset, we activate some particles’ velocities by adding random values. 
Four different methods for setting velocity are given as follows: 

─ Uniform distribution, set v=U(EBl- EBr, EBr-EBl); 
─ Hammersley, set v=U(EBl, EBr)-x; 
─ improved Hammersley, set v=0.5*(U(EBl, EBr)-x); 
─ distance, set v=x’-x, where x’ is another particle’s position, chosen at random. 

Based on the experience results obtained from different methods, it shows that 
improved Hammersley method has better performance in general. 

4. Clear Personal Cognition  
For example, as shown in Fig. 3, the point fmin is the actual optimum. Based on the 
principle of PSO algorithm, particle i may move to the point xi’ under the action of 
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three force, so it flies from the right to the left of the optimum. If the personal best 
position of particle i is just xi, without its personal cognition pi, it may move closer to 
the optimum point. To alleviate the effect of personal cognition and improve the 
ability to escape from stubborn local optima, some particles’ personal cognition is 
clear in EBPSO algorithm when the current boundary is reset.  

 

Fig. 3. Effect of cognition to particle’s movement 

4 Experiment Evaluation  

4.1 Experiment Setup  

Table 1 shows four benchmark functions [9] employed in this section, which are 
widely used in evaluating performance of PSO. The source codes for these functions 
are consulted from http://www.ntu.edu.sg/home/EPNSugan/. To validate the proposed 
EBPSO algorithm, the performance of EBPSO is compared with PSO-Bounds [2], 
CSV-PSO [4], ARPSO [5], and 2007-sPSO [6], where the first three are selected as 
comparisons based on the related work about search space boundary control, and their 
parameters setting can be found in the corresponding literatures. The last is used as a 
starting reference algorithm of our study. The parameters of EBPSO are set the same 
as 2007-sPSO. For each comparison test, the following values are used: problem 
dimension D is 30 and swarm size ps is 50; the number of independent runs is 100, 
and each run with the maximum of 10000 iteration steps. A run is terminated if either 
the required accuracy or the maximum of iteration steps is reached. 

Table 1. Four CEC’2008 benchmark functions employed in this study 

Name Function Bounds Global Optimum 
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4.2 Experimental Results 

Convergence curves between EBPSO and other comparison algorithms for four test 
functions are illustrated in Fig. 4. It can be seen that PSO-Bounds and CSV-PSO are 
easy to trap into local optima, and they have similar optimization performance. 
EBPSO, 2007-sPSO, and ARPSO have better ability to escape from local optima than 
PSO-Bounds and CSV-PSO, especially, EBPSO algorithm achieves outstanding 
performance for multimodal function Rastrigin. The convergence speed of EBPSO 
and 2007-sPSO is faster than the others. 

 

Fig. 4. Convergence curves between EBPSO and other comparison algorithms 

For fair comparison, we use box-plots to evaluate the optimization performance 
between EBPSO and the other PSO algorithms, as shown in Fig. 5, where y-axis is 
fitness value. Box-plots offer much of information in a compact way. On each box, 
the box itself contains the middle 50% of 100 optimization results obtained by each 
comparison algorithm, the bottom and top of the box are the lower and upper 
quartiles, and the line in the box indicates the median value of 100 optimization 
results, the whiskers extend to a maximum of 1.5 times the inter-quartile range, and 
any data not included between the whiskers is plotted as an outlier with a cross. 

In Fig. 5, for function shifted Rastrigin, it is clear that PSO-Bounds performs better 
than 2007-sPSO, ARPSO, and CSV-PSO, except of this, it is worse than the rest 
comparison algorithms. It is worth noting that the proposed EBPSO algorithm is 
obviously superior to all of comparison algorithms for function Rastrigin. Though 
2007-sPSO and ARPSO are significantly inferior to EBPSO for function Rastrigin, 
their optimization abilities are similar to EBPSO for the other test functions. 
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For further comparison between EBPSO, 2007-sPSO and ARPSO, the success 
rates and mean values over 100 independent runs for EBPSO, 2007-sPSO and 
ARPSO are presented in Fig. 6 and Table 2, respectively. 

 

Fig. 5. Boxplots of EBPSO and the other comparison algorithms 

 

Fig. 6. Success rates for EBPSO and comparison algorithms 

Table 2. Mean values for EBPSO and comparison algorithms 

 shifted Sphere shifted Griewank shifted Rastrigin shifted Rosenbrock 
EBPSO 5.05E-31 5.26E-03 3.98E-01 2.85E+00 
2007-sPSO 1.77E-30 5.49E-03 6.08E+01 3.93E+00 
ARPSO 1.09E-28 1.84E-02 4.92E+01 5.12E+01 

 
In Fig. 6, the success rate of ARPSO is zero for both of function Rastrigin and 

Rosenbrock, that is, ARPSO can’t obtain the predefined accurate solution for the two 
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test functions. Though 2007-sPSO has also zero success rate and the mean value of 
2007-sPSO is inferior to ARPSO for function Rastrigin as shown in Table 2, the 
success rate and mean value of 2007-sPSO is better than ARPSO for most of test 
functions. In particularly, the 2007-sPSO algorithm has 26% success rate, however 
the success rate of ARPSO is zero. So that 2007-sPSO is an admiring optimization 
algorithm.  Among these comparison algorithms, the performance of 2007-sPSO is 
similar to the proposed EBPSO algorithm, although they are different. From Fig. 4 to 
Fig. 6, and Table 2, they all prove that EBPSO performs better than 2007-sPSO. 

In conclusion, the optimization performance of EBPSO is more stable, and 
performs better than other comparison algorithms, especially for multimodal function 
Rastrigin, EBPSO achieves amazing performance. 

5 Conclusion and Future Work 

Aim at the problems of swarm’s velocity falling towards zero and stagnant 
phenomena in the later evolutionary process of 2007-sPSO, we proposed EBPSO to 
adjust the search space boundary and alleviate the local minima. Experiments indicate 
that PSO equipped with elastic boundary provides stable convergence and a better 
probability of success. In future, we will study a more efficient method to deal with 
the violate particles instead of the simple way used in this paper. 
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Abstract. In this paper, a new algorithm is presented for the locations of wind 
turbine in the distribution systems. Technical constraints such as feeder capacity 
limits, bus voltage, and load balance are considered. The Particle Swarm 
Optimization(PSO) is applied to solve this problem. To enhance the 
performance of the new algorithm, a load flow program with Equivalent 
Current Injection (ECI) is used to analyze the load flow of distribution systems. 
Based on ECI load flow model, a constant Jacobian matrix is determined to 
improve the existing power-based model by using the Norton Equivalent 
Theorem. Example of IEEE 69-bus system is adopted to illustrate the efficiency 
and feasible of the proposed algorithm. Test results show that with proper site 
selections of wind turbines can be used to reduce system losses and maintain 
the voltage profile.  

Keywords: Particle Swarm Optimization, Equivalent Current Injection, Wind 
Turbine, Distribution System. 

1 Introduction 

Distribution system planner must ensure that there is adequate substation capacity and 
feeder capacity to meet the load growth within the planning horizon year. In the past 
few years, the utilities has faced many challenges in a competitive market due to 
increased investment cost and required the high level of reliability in a system. They 
have the obligation for customers to supple the service reliability by planning, 
operation, construction, and maintenance. Due to advance in small wind energy 
technologies, utilities began to integrate the Wind Turbines(WTs) in the distribution 
system for reducing the system loss and improving service reliability. WTs are mostly 
installed in demand system and directly connected to distribution networks. 
Appropriate location of the WTs will become an important problem[1-5].  

Optimal locations of the WTs are gaining interests in the electricity industries. 
Some import factors such as rating, location, and operating power factor have to be 
carefully considered in the planning process. A load flow algorithm is illustrated that 
inappropriating locations of WTs may lead to greater system loss[6]. [7] shows the 
optimal placement and sizing of capacitor in a distribution system to reduce system 
loss. Both WTs and capacitors may reduce power loss and improve voltage profiles 
but overall efficiency can be improved using WTs only. [8] used Genetic 
Algorithm(GA) for the placement of WTs to reduce the system loss. Some approaches 
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are introduced for placement of WTs on the basis of loss reduction[9-12]. Tabu 
Search(TS) is used to determine the location and size of the WTs by minimizing the 
system loss[13]. [14] used the Liner Programming(LP) to find optimal location of 
embedded generation in distribution networks. However, the penetration of WTs in 
the distribution system is increasing, and it is important to place the WTs in such an 
optimal way that it will reduce system loss and improve the voltage profiles. 

In this paper, a Particle Swarm Optimization(PSO) based approach is presented to 
optimally incorporate WTs into a distribution system. The proposed algorithm 
combines PSO with load flow algorithm to find the best combination of locations. To 
enhance the performance of the new algorithm, a load flow model with Equivalent 
Current Injection (ECI) [15] is used to analyze the load flow. The objective function 
is to minimize the distribution network loss while satisfying the operational 
constraints. This problem is formulated as a mixed-integer non-linear optimization 
problem. The IEEE 69-bus distribution system[16] is used to validate the proposed 
method.  Numerical results are also provided to show its effectiveness. 

2 Mathematical Formulation 

The objective function can be expressed as 

  Min [ ]∑ ∑
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Where,  

lossP :the total line loss 

ijY :the admittance of branch ji −    

Re :the real part of complex quantity 
NB :the total number of branches in the system 

iV :The voltage of thi −  bus 

jiij θθθ −= :the angle of voltage 

From the Equation (1), the line loss could be reduced by lowering the branch currents 
in the distribution network. In order to reduce the current in certain parts of the 
network, WTs is introduced to the distribution network. 

The constraints considered are described as follows 

1. The equality constraints are the load flow equations in the radial distribution 
system as follows. 
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2. The inequality constraints are the voltage limits imposed on the radial 
distribution system. 

|||| || maxmin VVV iii ≤≤  (4)

3. Line flow constraints from bus i  to bus j . 

SijijS max≤  (5)

4. The inequality constraints with the WTs real power output 

PP iwindiwindiwindP max
,,

min
, ≤≤  (6)

5.  Pitch angle limit of WTs at bus  

maxmin
ii θθθ ≤≤  (7) 

ijδ  : the angle of branch i-j element of the admittance 

ijS :The line flow in the branch i-j 

max
ijS :the upper line flow in the branch i-j 

min
,iwindP  , max

,iwindP :the lower and upper real power generation of WT at i-th bus 

iwindP , :the real power generation for WT at i-th bus 

iwindQ , :the reactive power generation of WT at i-th bus 

diP :the real power demand at i-th bus 

diQ :the reactive power demand at i–th bus 

The turbine mechanical power of the turbines is described by Equations (8)(9)[17]. 

35.0 windpwind VACP ρ=  (8)
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γωλ *=  (9)

Where ρ =air density, A=rotor swept area, pC =power coefficient function, windV = 

wind speed. In this paper, pC  are assigned as follows. 
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3 Load Flow Model with Equivalent Current Injection  

Two major load flow techniques used in the industrial application are Gauss-Seidel 
and Newton-Raphson based algorithms. The Gauss-Seidel algorithm is a slow 
convergence and uses a full matrix which directly defines the problem to be solved 
and can not be altered. The Newton-Raphson algorithm is a gradient technique where 
the line parameters are stored in the Jacobian matrix. [15] presented a bi-factorized 
complex Y-admittance matrix Gauss-Seidel method which is based on the Equivalent 
Current Injection, and the power components can be modeled in the Y matrix or 
converted into ECI. In this paper, the load flow with Newton-Raphson method is 
proposed based on ECI. 

For the power-based Newton-Raphson method, the mismatch function can be 
written in the rectangular form as 
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Where, calischii PPP ,, −=Δ , calischii QQQ ,, −=Δ  

diiwindschi PPP −= ,, , which is the net real power at i-th bus, includes the real 

power demand ( diP ) and WT’s power generation ( iwindP , ). caliP ,  is the real power, 

which is calculated by load flow analysis. diiwindschi QQQ −= ,, , which is the net 

reactive power at i-th bus, includes the reactive power demand ( diQ ) and WT’s 

reactive power generation ( iwindQ , ). caliQ ,  is the reactive power, which is calculated 

by load flow analysis.  The reactive power generation of WTs is calculated based on 
the pre-specified power factor. The Jacobian matrix is given by 
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The ECI-based load flow uses current instead of power. The mismatch function can 
be re-written by  
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ircaleqv IjIIII Δ+Δ=−=Δ and  fjeV Δ+Δ=Δ  are the real and imaginary 

components of currents and voltages, respectively. calI  is obtained from load flow 

analysis. eqvI  is given by 
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P , Q , and V  are the constant real power, imaginary power, and voltage at a 

specified bus. P  and Q  are also the net power at a specified bus, which include the 

WT’s power generations and load demands. 
From the equation (13), a constant Jacobian matrix can be obtained, which has the 

same matrix dimension as the based Newton-Raphson algorithm. The constant 
Jacobian matrix can be written by 

⎥
⎦

⎤
⎢
⎣

⎡ −
=

GB

BG
J  (15)

Where, G and B are the conductance matrix. 

4 The Proposed Methodology 

In a PSO system, Birds (particles) flocking optimizes a certain objective function. 
Each particle knows its current optimal position ( pbest ), which is analogy of 

personal experiences of each particle. Each particle also knows the current global 
optimal position( gbest ) among all particles. PSO can have several solutions at the 

same time, and particles have a cooperative relationship for sharing messages. 
Through specific equations, each particle adjusts its position and determines the 
search direction according to its search memory. In other words, it tries to reach 
compatibility between local search and global search. The search memory of a 
particle is the objective function and the optimum position found by the particle. 

In this paper, PSO with Constriction Factor(PSO-CF)[18] was selected to trace the 
pbest  and gbest . PSO-CF is used a constriction factor to control the trajectory of 

particles without considering the velocity of particles. There are more possibilities to 
promote the convergent rapid and the searching performance. Using the PSO-CF, the 
velocity can be represented in the PSO algorithm. Using the Equation (16), a certain 
velocity can be calculated due to the position of individuals gradually close to pbest  

and gbest . The current position can be modified by Equation (17).  
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Where,  

ccc
K

42

2

2 −−−
=    ,  421 >+= cccc ，  

1c , 2c : acceleration constant, In this paper, 05221 .cc ==  

),(rand 10 : uniform random value with a range of [0,1] 
j
diP , : dimension d of the position of particle i  at iteration j  

j
diV , : dimension d  of the velocity of particle i  at iteration j  

j
dipbest , : dimension d  of the own best position of particle i  at iteration j  

jgbest : dimension d of the best particle in the swarm at iteration j  

The proposed methodology can be summarized in the following steps. 

(a) Randomly initialize 30 particle(WTs) with feasible position in the system buses. 
(b) Randomly assign velocities ( windV ) and pitch angles(θ ) of WTs to each particle. 

By using Equation (11), the power output of WTs can be calculated. If the power 
output is less 100KW, the velocities and pitch angles of WTs are re-generated.  

(c) Perform the load flow model with ECI to calculate the system losses. 
(d) Determine the best particle dependent upon the system losses of entire particles. 
(e) Update velocity and position vectors according to (16) and (17) for each particle. 
(f) The terminating condition is maximal number of iterations. If the preset target is 

not yet attained, then go back to Step (a) and repeat operation. 

5 Case Study 

The proposed algorithm is applied to solve the 69-bus distribution system[16].  The 
numerical computations were performed using the Matlab language on a PIV-2.6GHZ 
computer with 512MB RAM. The PSO parameter used in this paper is 30 particles. 
500 generations is set as the stopping criteria. The power output of WTs ranges from 
100KW to 200KW dependent upon the pitch angle and wind speed. The number of 
WTs are located in the buses to find the optimal system losses. Table 1 shows the 
simulated results. It is clear from the obtained results that the number of WTs has 
significantly improved the system loss. The loss reduction ranges from 0% to 40.98% 
due to the WTs are added in the distribution system. Figure 1 shows the voltage 
profiles before and after the WTs installed. From the Figure 1, it can be shown that 
the voltage profile is clearly improved after the WTs installed, becoming almost 
satisfy the voltage limits. Figure 2 is the convergent characteristics of the proposed 
method. The convergent generation is about 250 generation.  
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6 Conclusion 

This paper presented a PSO for the locations of WTs in the distribution systems in 
order to minimize the system losses. Technical constraints such as feeder capacity 
limits, bus voltage profile, and load balance are considered. To enhance the 
performance of the new approach, a load flow model with ECI is used to analyze the 
load flow of distribution systems. The effectiveness of the proposed algorithm is 
tested on IEEE 69-bus distribution system. Results show that incorporating the WTs 
in the distribution system can reduce the system losses and maintain the voltage 
profile. In addition, the results show that the different locations of WTs could also 
produce multi-solutions to achieve the real global or nearly global solution. 

Table 1. The simulated results 

The No. 
of WTs 

Location  Bus The output of 
WTs (KW) 

Loss 
(KW) 

Reducti
on (%) 

0 *** *** 86 0 
1 62 131 79.4 7.67 
2 61,69 262 76.6 10.93 
3 61,62,63 393 67.535 21.47 
4 24,61,63,64 523 64.2 25.38 
5 55,59,61,63,64 654 62.1 27.79 
6 43,53,57,61,63,64 786 61.4 28.60 
7 8,59,61,62,63,68,69 915 58 32.56 
8 15,18,19,24,25,27,61,63 1042 56.4 34.42 
9 12,20,37,42,58,61,62,64,65 1179 53.4 37.91 
10 17,27,54,56,57,58,61,62,63,66 1309 50.761 40.98 

 

Fig. 1. The voltage profiles before and after the WTs installed 
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Fig. 2. The convergent characteristics of the proposed method 

References 

1. Yasin, Z.M., Rahman, T.K.A., Musirin, I., Rahim, S.R.A.: Optimal sizing of distributed 
generation by using quantum-inspired evolutionary programming. In: 2010 4th 
International Power Engineering and Optimization Conference (PEOCO), pp. 468–473 
(2010) 

2. Celli, G., Ghiani, E., Mocci, S., Pilo, F.: A Multi-objective approach to maximize the 
presentation of distributed generation in distribution networks. In: International 
Conference on Probabilistic Methods Applied to Power Systems, pp. 1–6 (2006) 

3. Ghosh, S., Ghoshal, S.P.: Two analytical approaches for optimal placement of distributed 
generation unit in power systems. In: International Conference on Power Systems, pp. 1–6 
(2009) 

4. Singh, A.K., Parida, S.K.: Optimal placement of DGs using MINLP in deregulated 
electricity market. In: 2010 Proceedings of the International Conference on Energy and 
Sustainable Development: Issues and Strategies (ESD), pp. 1–7 (2010) 

5. AlHajri, M.F., AlRashidi, M.R., El-Hawary, M.E.: Hybrid Particle Swarm Optimization 
Approach for Optimal Distribution Generation Sizing and Allocation in Distribution 
Systems. In: Canadian Conference on Electrical and Computer Engineering, pp. 1290–
1293 (2007) 

6. Yan, G.G., Yuan, T.F., Zhang, Z.Q., Mu, G., Zhang, C.X., Xu, F.: Optimal allocation of 
wind turbine with DFIG for minimizing network losses in distribution systems using 
sensitivity analysis method. In: International Conference on Sustainable Power Generation 
and Supply, pp. 1–5 (2009) 

7. Rau, N.S., Wan, Y.H.: Optimum location of resources in distributed planning. IEEE Trans. 
On Power Systems 9(4), 2014–2020 (1994) 

8. Grainger, J.J., Lee, S.H.: Optimum size and location of shunt capacitors for reduction of 
losses. IEEE Trans. on Power Apparatus and Systems PAS 100(3), 1105–1118 (1981) 

9. El-Ela, A.A., Allam, S.M., Shatla, M.M.: Maximal optimal benefits of distributed 
generation using genetic algorithms. Electric Power Systems Research 80(7), 869–877 
(2010) 



 Optimization Locations of Wind Turbines with the Particle Swarm Optimization 141 

10. Tuba, G.M., Hakan, H.: An analytical method for the sizing and siting of distributed 
generators in radial systems. Electric Power Systems Research 79(6), 912–918 (2009) 

11. Sudipta, G., Ghoshal, S.P., Saradindu, G.: Optimal sizing and placement of distributed 
generation in a network. International Journal of Electrical Power and Energy Systems 32, 
849–856 (2010) 

12. Andrew, K., Haiyang, Z.: Optimization of wind turbine energy and power factor with an 
evolutionary computation algorithm. Energy 35(3), 1324–1332 (2010) 

13. Kumar, A., Gao, W.: Optimal distributed generation location using mixed integer non-
linear programming in hybrid electricity markets. IET Generation, Transmission, and 
Distribution 4(2), 281–298 (2010) 

14. Nara, K., Hayashi, Y., Ikeda, K., Ashizawa, T.: Application of tabu search to optimal 
placement of distributed generators. IEEE PES Winter Meeting 2, 918–923 (2001) 

15. Keana, A., Malley, M.: Optimal allocation of embedded generation on distributed 
networks. IEEE Trans. on Power Systems 20(3), 2014–2020 (2005) 

16. Lin, W.M., Teng, J.H.: Phase-decoupled load flow method for radial and weakly-meshed 
distribution networks. IEE Proceedings-Generation, Transmission and Distribution 143(1), 
39–42 (1996) 

17. Baran, M.E., Wu, F.F.: Optimal capacitor placement on radial distribution systems. IEEE 
Transactions on Power Delivery 4(1) (1989) 

18. Hui, J., Bakhshai, A.: A new adaptive control algorithm for maximum power point 
tracking for wind energy conversion systems. In: IEEE Power Electronics Specialists 
Conference, pp. 4003–4007 (2008) 

19. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of the IEEE 
International Conference on Evolutionary Computation Anchorage, pp. 69–73 (1998) 
 

 



Y. Tan, Y. Shi, and Z. Ji (Eds.): ICSI 2012, Part I, LNCS 7331, pp. 142–147, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

A PSO-Based Algorithm for Load Balancing in Virtual 
Machines of Cloud Computing Environment 

Zhanghui Liu and Xiaoli Wang 

College of Mathematics and Computer Sciences, Fuzhou University. Fuzhou, China 
yuhcaolong@126.com, fzugwz@163.com 

Abstract. It is possible for IT service providers to provide computing resources 
in an pay-per-use way in Cloud Computing environments. At the same time, 
terminal users can also get satisfying services conveniently. But if we take only 
execution time into consideration when scheduling the cloud resources, it may 
occur serious load imbalance problem between Virtual Machines (VMs) in 
Cloud Computing environments. In addition to solve this problem, a new task 
scheduling model is proposed in this paper. In the model, we optimize the task 
execution time in view of both the task running time and the system resource 
utilization. Based on the model, a Particle Swarm Optimization (PSO) – based 
algorithm is proposed. In our algorithm, we improved the standard PSO, and 
introduce a simple mutation mechanism and a self-adapting inertia weight 
method by classifying the fitness values. In the end of this paper, the global 
search performance and convergence rate of our adaptive algorithm are 
validated by the results of the comparative experiments.   

Keywords: Cloud Computing, VMs, Load Balancing, Task Scheduling, PSO. 

1 Introduction 

Nowadays, Cloud Computing has become a very popular commercial computing 
paradigm. Then the whole Cloud Computing system can provide services to users 
with virtual machine as the resources unit [1-2]. For users, all of the bottom resources 
are transparent. In theory, every job submitted by terminal users owned an 
independent virtual machine. The computing cells and memory cells for the jobs are 
in the situations of mutual isolation [3]. In Cloud Computing environment, each 
physical host can load one or more virtual machines, so that you can ensure users’ 
applications run independently. So, the task scheduling in Cloud Computing happens 
between the virtual machines actually. Keep load balances of the VMs is the ongoing 
work in Cloud Computing systems. 

It is an NP-hard combinational optimization problem to establish the mappings 
between jobs submitted by terminal users and dynamical resources encapsulated in 
the virtual machines. For such problem, researchers have put forward a variety of 
static, dynamic and mixed scheduling strategies [4-9]. Static scheduling algorithms 
are: ISH algorithm [10], MCP algorithm and ETF algorithm [10]. All of these 
algorithms are based on BNP (Bounded Number Processors), and very suitable for 
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high performance networks in distributed environment. But the application 
requirements in Cloud Computing VMs are more complicated, and service costs are 
also required according to usages amount, those algorithms can not pay key roles. 
Currently, the swarm intelligence algorithms are well used for resolving these kinds 
of problems[11-12]. PSO is a global search optimization technique proposed by 
Kennedy and Eberhart in 1995[13]. But when the problem continues to expand there 
scales, Simple heuristic algorithm seem to be not so effective [14]. In this paper, a 
kind of improved PSO algorithm to solve the problem of virtual machines load 
balance is proposed, so as to establish corresponding relations between the tasks and 
the virtual machines effectively. Aiming at finding an optimal or nearly optimal 
scheduling solution, not only makes the task execution time the shortest, and can 
make the virtual machines of resource utilization the highest. The simulation results 
show that the algorithm has fast convergence speed, high efficiency, and has practical 
application significance. 

2 Problem Description and Task Scheduling Model 

In VMs of Cloud Computing environments, the jobs submitted by terminal users can 
be classified two kinds, which are independent ones and interrelated ones. The 
interrelated jobs can be divided into small separate tasks that can run without 
interferences, so we just study how to balance the workload of VMs with independent 
tasks. The objectives of our model are to achieve the minimum execution time of 
tasks and the maximum VMs resource utilization. 

For simplicity, we assume that the virtual machine is resource unit of Cloud 
Computing environment. And for different virtual machines, the resource demands of 
any task are the same. The models can be represented as follows. 

There are m  virtual machines which are interconnected by network. The VMs 

can be represented by the set ),,,( 21 mvvvV = , in which iv means the 

maximum resource capacity that virtual machine i  can provide, where ],1[ mi ∈ .  

2.1 Task Model 

There is a task sequence ),,,( 21 ntttT = , in which jt  means the task which is 

number j , where ],1[ nj ∈ , and n  is the length of this sequence. Task model is 

defined as ),( edresourceNetimeNeedt j , in which timeNeed denotes the task’s 

execution time, and edresourceNe  denotes the resource requirements of the task. 

2.2 Objective Model 

We use one-zero matrix A  to represent the mapping relationships between tasks and 

VMs. There has 1
1

, =∑
=

m

i
jia , and ],1[],,1[ njmi ∈∈ . 
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Which is can be described:     

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nmmm

n

n

aaa

aaa

aaa

A

,2,1,

,22,21,2

,12,11,1

,,,

                    

,,,

,,,

. 

Based on the above models, we have the equations as follows. 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

×
=

⎥
⎦

⎤
⎢
⎣

⎡
×=

∑
∑

∑

=

=

==

)

.

(

).(max

1

1
,

1
,

1

m

i i

n

j
jji

n

j
jji

m

i

v

edresourceNeta

ionVRutilizat

timeNeedtaVTime

. (1) 

where we use VTime  to denote the execution time of VMs for executing all of  

the tasks, and ionVRutilizat  to denote the resource utilization of VMs during the 
process of running the tasks. So, the objective function of the task scheduling  
model is: 

⎩
⎨
⎧

)(

)(

ionVRutilizatMax

VTimeMin
. (2) 

3 Optimization Algorithm Description 

Resource allocations and scheduling strategies are combined to realize the mappings 
from tasks to VMs. In this paper, we introduce mutation operator and self-adaptation 
of inertia weight to the standard PSO algorithm aiming at virtual machines 
assignment for the user tasks.  

3.1 Fitness Function 

In order to measure how well the particle’s position, the fitness function can be 
defined: 

).( ionVRutilizat
VTimeMinf =  (3) 
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3.2 Define the Positions and Velocities of Particles 

Suppose there is a N-dimension particle ),,,( 21 nxxxX = , 

where ]),1[( nixi ∈ is the serial number of virtual machine on which the number i  

task is processed. At the same time, an N-dimension velocity ),,,( 21 nvvvV =  

is defined, where ]),1[( nivi ∈  means the velocity of ix . And 

.
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where maxv  denotes the maximum velocity component of particle. In this paper, 
we set the mv =max [15]. But, it always leads to precocity. We introduce a simple 
mutation mechanism: When overflow occurs, the position will get random value from 
the solution space. 

3.3 Self-adapting Inertia Weight and Updating Positions and Velocities 
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where, there has: w  inertia weight,  if  the fitness value of particle i , ip  the 

previous best fitness value of particle i , fg  the global best fitness value, ix  the 

position of particle i , ivx  the velocity of particle i , 21,cc  the coefficients which 

are set as 2.05 in this paper. 
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4 Experimental Results and Analysis 

The optimization process is simulated by MATLAB in this paper, where has 80 
virtual machines and 120 tasks, and with 200 iterations. 

To validate the improvement of our algorithm(MAPSO), we compared it with non-
adapting standard PSO which has the invariable inertia weight. Fig1 shows that both 
convergence speed and robustness of MAPSO algorithm are better than those of 
SPSO.   

 

Fig. 1. Comparison of fitness values SPSO and MAPSO 

5 Conclusions 

Nowadays, from both scheduling flexibility and application scale, there is much work 
should be done on the past studies. this paper works to solve the load balancing 
problem in VMs of Cloud Computing environment. Based on the development of 
virtualization and distributed technology, we put forward MAPSO tasks scheduling 
algorithm  by improving standard PSO. In addition, because of this experiment with 
simulation environment, some specific questions need to be overcome in specific 
actual cloud environment, such as restrictions from bandwidth, problems in job 
decomposition, energy costs of cloud datacenters etc. 
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Abstract. This paper proposes a novel method for training the parameters of an 
adaptive network based fuzzy inference system (ANFIS). Different from 
previous approaches, which emphasized on the use of gradient descent (GD) 
methods, we employ a method based on. Quantum-behaved Particle Swarm 
Optimization (QPSO) for training the parameters of an ANFIS. The ANFIS 
trained by the proposed method is applied to nonlinear system modeling and 
chaotic prediction. The simulation results show that the ANFIS-QPSO method 
performs much better than the original ANFIS and the ANFIS-PSO method. 

Keywords: Particle swarm optimization, quantum-behaved particle swarm 
Optimization, training algorithm, evolutionary fuzzy systems. 

1 Introduction 

Fuzzy systems (FSs) have been successfully applied in many areas, such as system 
modeling and control. To ease the design and improve system performance, many 
neural or statistical learning approaches that automatically generate fuzzy rules have 
been proposed [5]. Also, evolutionary fuzzy systems, which use evolutionary 
algorithms to design fuzzy systems, have been a research focus in recent years. The 
adaptive network based fuzzy inference system (ANFIS) [4] is a popular one of the 
representatives. The TSK [9] is a fuzzy system with crisp functions and has been 
found to be efficient complex applications [1]. It has been proved that with proper 
number of rules, a TSK system could approximate every plant. As such, the TSK 
systems are widely used in the ANFIS, which has the advantage of good applicability 
as it can be interpreted as local linearization modeling and conventional linear 
techniques for state estimation and control. 

The ANFIS has both the advantages of neural networks and fuzzy systems. 
However, training of ANFIS parameters is one of the main issues encountered when it 
is applied to the real-word applications. The most of the training methods for ANFIS 
are based on gradient descent (GD) approach, and calculation of gradient in each step 
is tractable since the chain rule used may cause many local minima of the problem. 
The gradient method is known as a local search method and its performance generally 
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depends on initial value of parameters, which makes it difficult to find the global 
optimal learning rate. Here, we propose a method which trains the parameters using 
quantum-behaved particle swarm optimization (QPSO). The QPSO algorithm is a 
variant of the particle swarm optimization (PSO) method and was inspired by 
quantum mechanics [10, 11]. In terms of convergence properties, QPSO is very 
different from PSO in that it has been proved to be global convergent [2, 12]. Many 
empirical studies show that QPSO has stronger global search ability when solving 
many continuous optimization problems.  

The rest of the paper is organized as follows: In Section 2, we provide a review of 
ANFIS. In Section 3, the PSO and QPSO algorithms are reviewed. The proposed 
method is descried in Section 4. Section 5 presents how to use the proposed method 
for nonlinear system modeling and chaotic prediction. The paper is concluded in 
Section 6. 

2 ANFIS Modeling 

2.1 Overview of ANFIS Architecture  

This section introduces the basics of ANFIS network architecture. A detailed coverage 
of ANFIS can be found in [4]. The ANFIS network is a neuro-fuzzy network that was 
proposed by Jang in 1993. For simplicity, the above mentioned system is supposed to 
have two inputs and one output. The rule base contains two TSK fuzzy if-then rules. 
The TSK fuzzy model was proposed by Takagi, Sugeno and Kang [9] in an effort to 
formalize a systematic approach to generate fuzzy rules from an input-output data set. 
A typical TSK fuzzy model with two rules may be stated as: 

Rule 1: if x is 1A and y is 1B then 1111 ryqxpf ++= . 

Rule 2: if x is 2A and y is 2B then 2222 ryqxpf ++= . 

where x and y are the inputs of ANFIS, iA and iB are the fuzzy sets, and if is a first 

order polynomial and represents the outputs of the first order TSK fuzzy inference 
system. In the above rules, ip , iq and ir are the parameters set, referred to as the 

consequent parameters. 

 

Fig. 1. The ANFIS architecture [2] 
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The architecture of ANFIS is shown in Fig. 1, and the nodes’ function in each layer 
is described below.  

Layer 1: This layer contains adaptive nodes with node functions described as: 

)(1 xO
iAi μ=  (1)

where x is the input to node i, and iA is the linguistic label (small , large, etc.) 

associated with this node function. In other words, 1
iO  is the membership function of 

iA , and it specifies the degree to which the given x satisfies the quantifier iA . Usually 

we choose )(x
iAμ  to be bell-shaped with maximum equal to 1 and minimum equal to 

0, such as 
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where ia , ib and ic are the parameter set. The bell shaped functions vary as the values of 

this parameter are changing. These parameters are called the premise parameters. 

Layer 2: Every node in this layer is a circle node labeled ∏ which multiplies the 
incoming signals and sends the product out. For instance, 

2,1)()(2 =⋅== iforyxO BiAiii μμω  (3)

Each node output represents the firing strength of a rule. 

Layer 3: Every node in this layer is a fixed node, marked by a circle and labeled N, 
with the node function to normalize the firing strength by calculating the ratio of the 
ith node firing strength to the sum of all rules’ firing strength. 

2,1
21

13 =
+

===
∑

iforO
i

i
ii ωω

ω
ω

ωϖ  (4)

Layer 4: Every node in this layer is an adaptive node, marked by a square, with the 
node function: 

2,1)(4 =++=⋅= iforryqxpfO iiiiiii ϖϖ  (5)

Layer 5: Every node in this layer is a fixed node, the overall output can be expressed 
as a linear combination of the consequent parameters.  
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2.2 Hybrid Learning Algorithm 

It can be seen that there are two modifiable parameter sets, },,{ iii cba called the 

premise parameters, and },,{ iii rqp called the consequent parameters. The aim of the 

training algorithm for this architecture is to tune the above two parameter sets to make 
the ANFIS output fit the training data. Each epoch of this hybrid learning procedure is 
composed of two passes: a forward pass and a backward pass. In the forward pass, 
premise parameters are fixed and the least squares estimation (LSE) is applied to 
identify consequent parameters. When the optimal parameters are found, the 
backward pass starts with the consequent parameters fixed, the error rate of output 
node back-propagates from output end towards the input and the premise parameters 
are updated by using the gradient descent (GD) method.  

Popular methods update the premise parameters by using GD or Kalman filtering 
and appear to be prone to trap into the local optima. In this paper, we employ the 
QPSO algorithm to train the parameters of the ANFIS for the purpose of obtaining the 
global optimal solution. 

3 The PSO and the QPSO 

3.1 Particle Swarm Optimization 

In the original PSO proposed by Kennedy and Eberhart [7], each particle flies in a D-
dimensional space in light of its own historical experience and of other particles in the 
swarm. The position of the i-th particle is represented as )....,( 21 iDiii xxxX =  Each 

particle maintains a memory of its previous best position )...,( 21 iDiii pppP = , known 

as the personal best position. The best personal position among all the particles in the 
population is represented as )...,( 21 DGGGG = and called the global best position. The 

velocity of each particle is represented as )....,( 21 iDiii vvvV =  In each iteration, the 

velocity along each dimension is adjusted according to equation (7), and a new 
position of the particle is determined using that velocity as shown by equation (8).  

)()( 2211 iddidididid xGrcxPrcwvV −+−+=  (7)

ididid vxx +=  (8)

The first part of equation (7) represents the inertia of the previous velocity; the second 
part is the cognition part and it tells us about the personal thinking of the particle; the 
third part represents the cooperation among particles and is therefore named as the 
social component; 1c , 2c are known as acceleration constants, 1r , 2r are uniformly 

generated random numbers between 0 and 1; w is the inertia weight and is described 
in [3, 8]. 
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3.2 Quantum-Behaved Particle Swarm Optimization 

In the quantum model of PSO, the state of a particle is depicted by the wave function 
),( txψ , instead of the position and the velocity. The dynamic behavior of the particle 

is very different from that of the particle in traditional PSO systems in that the exact 
values of x and v cannot be determined simultaneously. We can only learn the 
probability of the particle’s appearing in position x from the probability density 

function 
2

),( txψ , the form of which depends on the potential field the particle lies in. 

The particles in QPSO move according to the following iterative equation: 

)1,0()()1ln()()()1( UtuutXtCPtX idididdidid ～⋅−⋅±=+
−

α  (9)

where  
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)(tCd is defined as the mean value of all particles’ personal best position, u andϕ are 

random number distributed uniformly on [0,1], respectively, and α  called 
Contraction- Expansion Coefficient, is the only parameter in QPSO algorithm. 

4 ANFIS Parameter Learning by QPSO 

This section presents how to employ the QPSO algorithm for updating the ANFIS 
parameters. The ANFIS has two types of parameters which need training, that is, the 
premise parameters{ ia , ib , ic }and the conclusion parameters{ ip , iq , ir }. The premise 

parameters are updated by the QPSO algorithm and the least squares estimation (LSE) 
is applied to identify the consequent parameters. The fitness is defined as the root 
mean squared error (RMSE) between the actual output and the desired output, which 
can be described by: 

n

ifif
fitness

n

i
∑

=
−

= 1

2
0 ))()((

 

Where )(if  is the actual output and )(0 if  is the desired output, n is the number of 

the output. 

The ANFIS-QPSO algorithm is outlined below: 

Step1: Initialize particles with random position; set the best position of each particle 
as )0()0( ii XP = . and set t=0. 
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Step2: Set the position of each particle )0(iX  as the premise parameters { ia , ib , ic } 

and identify consequent parameters{ ip , iq , ir }with LSE. Then, calculate the fitness 

value of each particle and set each particle’s personal best position as ).0()0( ii XP =  

Step3: Find out the mean value of all particles’ personal best position )(tCd  
by using 

equation (11).  
Step4: For every particle ( )Mii ≤≤1  implement steps 5 to 7. 
Step5: Calculate each particle’s fitness value ))(( tXfitness i , and then compare it with the 

fitness of its personal best position, ))1(( −tPfitness i .If ))(( tXfitness i < ))1(( −tPfitness i  
 
, 

then )()( tXtP ii = ; otherwise )1()( −= tPtP ii . 

Step6: Compare the fitness value of each particle’s personal best position 
))(( tPfitness i   with that of the global previous best position, ))1(( −tGfitness . If 

))(( itPfitness < ))1(( −tGfitness
 
, then )()( tPtG i= ; otherwise )1()( −= tGtG . 

Step7: Update the position of each particle )(tX i  by using equations (9) to (10). 

Step8: If the termination condition is met, exit; otherwise go to Step 2, and set t=t+1. 
 

     

                    (a)                                           (b)     

Fig. 2. Errors between the actual output and the desired output by using ANFIS-QPSO (a) the 
results of example 1. (b) the results of example 3. 

5 Simulations 

To investigate the efficiency of the proposed method, three examples are tested. The 
first two examples are on the identification of nonlinear systems, and the 3rd one is on 
the prediction of future values of a chaotic time series. The test results are compared 
with the results of the original ANFIS and the ANFIS-PSO method. For the PSO and 
QPSO, 50 particles were used with each run lasting for 10 training epochs, as listed in 
Table 1.  

Example 1: Nonlinear single-input-single-output (SISO) System modeling [6]. 
In this example, the nonlinear plant described by: 

)5sin(2.0)3sin(8.0)sin( xxxy πππ ++=  (12)
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where x is the only input, and we choose 100 input data randomly generated between 
-1 and 1. Fig. 2(a) shows the results using the ANFIS-PSO for identification. 

Example 2: Nonlinear multiple-input-single-outpu(MISO)System modeling [6]. 

)sin(5.0)2sin(3.0)3sin(2.0

)5sin(1.0)4sin(6.0)2sin(6.0

)5sin(2.0)3sin(8.0)sin(

332

221

111

xxx

xxx

xxxy

πππ
πππ

πππ

++
+++

+++=
 (13)

Equation (13) describes a three input nonlinear function. From the grid points of the 
range ]1,1[]1,1[]1,1[ −×−×− within the input space of the above function, 500 data 

pairs were generated. 

Example 3: Prediction of future values of a chaotic time series. 

)(1.0
)(1

)(2.0
)(

10
tx

tx

tx
tx −

−+
−=

τ
τ  (14)

Equation (14) is also known as the chaotic Mackey-Glass differential delay equation. 
The initial conditions for x(0) and τ are 1.2 and 17 respectively. We use four past input 
data for this prediction. And the fuzzy system is generated as: 

[x(t-18), x(t-12), x(t-6), x(t): x(t+6)]. 

When t was varying from 118 to 1117, we generated 1000 data pairs for our data, and 
applied the first 500 data pairs for training, the last 500 data pairs for prediction. Fig.2(b) 
shows the errors between actual output and desired output by using ANFIS-QPSO. 

In Table 1, we summarize the related parameters for the training/checking data. In 
order to investigate the performance statistically, the proposed method was run for 10 
times independently. The RMSE for training (T-RMES) and checking(C-RMES) data 
of ANFIS-QPSO method are listed in Table2, and the RMSE of the original ANFIS 
and the ANFIS-PSO method are also listed for performance comparison. From the 
simulation results, we can see that ANFIS-PSO performs much better than the 
original ANFIS. But the method we proposed ANFIS-QPSO is more effective. 

Table 1. Parameters of the 3 examples 

Example 
No. of 
Inputs 

No. of  
MFs for 

each input 

Training 
epochs 

Population 
 size in 

PSO/QPSO 

No. of  
Training/ Testing 

 data 
1 1 5 10 50 50/50 
2 3 5 10 50 250/250 
3 4 2 10 50 500/500 

Table 2. Simulation results for the 3 examples 

Example 
ANFIS ANFIS-PSO ANFIS-QPSO 

T-RMES C-RMES T-RMES C-RMES T-RMES C-RMES 
1 1.665e-2 1.675e-2 9.796e-3 9.905e-3 6.301e-3 7.620e-3 
2 3.351e-3 3.351e-3 1.711e-3 1.716e-3 1.052e-3 1.055e-3 
3 2.550e-3 2.502e-3 2.073e-3 2.043e-3 1.870e-3 1.777e-3 
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6 Conclusion 

In this paper, we proposed a novel method for training the parameters of an ANFIS 
network by using the quantum-behaved particle swarm optimization (QPSO) for 
updating the premise parameters and the LSE approach for updating the conclusion 
part parameters.  

The effectiveness of the proposed ANFIS-QPSO method was verified by applying 
it to nonlinear system identification and to the prediction of a chaotic system. The 
simulation results show that the proposed ANFIS-QPSO method has better 
performance than the ANFIS-PSO and the ANFIS trained with the gradient decent 
method, due to the stronger global search ability of the QPSO algorithm. 
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Abstract. The paper establishes a decision-making model of the commercial 
bank's loans portfolio optimization based on complex risk weight in view of the 
loan enterprise's credit graduation situation and so on. It is more similar with 
the actual operation. In order to solve this model that is a non-linear 0-1 
fractional integer programming question, we present a adaptive particle swarm 
optimization (APSO) algorithm. It is shown with the numerical result that this 
algorithm is effective for solving commercial bank's loans portfolio decision-
making problem. The algorithm can solve the middle-scale question and the 
given model is reasonable. 

Keywords: Loans portfolio optimization, Risk weight, Non-linear 0-1 
fractional programming, Adaptive particle swarm optimization (APSO). 

1 Introduction 

With the development of market economy, the enterprise’s risk is gradually increased 
during the business process. The largest corporate creditors –bank, its risk will 
increase. For the bank, an effective loan decisions can reduce risk and increase 
income in a way [1]. The credit portfolio decision-making discussed in the paper is 
based on the modern property portfolio theory and selects a group of appropriate loan 
objects from the multitudinous application loan objects by comprehensively 
considering loan income-risk and enterprise’s credit graduation information as well as 
makes use of the optimization techniques. 

At present, for the domestic and foreign commercial bank, the choice between risk 
and income under the indefinite investment condition is approximately divided into 
two kinds[2]: One kind makes use of control principle to choose; Two kind makes use 
of Sharp Index method to choose. However two methods both exist in certain 
limitations, therefore to cause people to seek one more feasible method to studies it. 
According to the decision-making model of loan portfolio optimization[3]and[4] 
based on the unit risk income biggest principle and fully considering of enterprise's 
credit graduation situation, the paper gives a decision-making model of loans 
portfolio optimization based on composite risk weight.    
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The proposed model is essentially a non-linear 0-1fraction integer programming 
problem. The problem can be easily solved in small scale by the enumeration method. 
But with the scale increasing, its computation quantity presents index growth and the 
general traditional methods will be unable to solve it. So in the paper, we propose an 
adaptive particle swarm optimization. The simulation experiment indicates that the 
algorithm has a very good effect to solve the decision-making problem of loans 
portfolio optimization, no matter seeking the superior ability, or the computational 
speed and the stability property. 

2 Decision-Making Principle of Loans Portfolio Optimization  

Commercial bank’s management objective is the enhancement of economic 
efficiency. Therefore, in view of loans portfolio, we need consider the following 
several basic principles[3]and[5]: 

(1) Comprehensive risk bearing capacity principle. One, the loan decision-making 
must make bank withstand risk reasonably. Two, the loan decision-making must 
consider the size of loans portfolio risk. 

(2) The smallest principle of loan surplus resources.  0-1integer programming 
question is a good modelling method to enable the resources to be used fully. 

(3) Comparability and uniform principle. Using the total net present value method 
may realize this principle well.  

(4) Single loan limitation principle. The bank provides the single loan limit amount 
to avoid more money loan to a single enterprise.  

3 A New Decision-Making Model of Loans Portfolio Optimization 

Suppose that m is the application loan enterprise's number; ( 0, , )iTPNV i m= …  is the 

total net present value of thi enterprise’s newly built project; jX  is a 0-1 variable, 

0iX = expresses ith  loan enterprise is not selected, 1iX =  expresses the loan 

enterprise is selected; TPNV  is the total benefit of loans portfolio. According to the 
risk recognition situation of the bank in the actual operation, the risk size is mainly 
related with the loan object (expressed by the enterprise's credit rank) and the loan 
way, and the loan deadline as well as the loan shape. Its risk weight follows: 

thi risk weigh of loan object = credit rank coefficient ×way risk coefficient ×  
deadline risk coefficient× shape risk coefficient, Namely: 

4

1
i ij

j
W W

=
= ∏  

Supposeσ for the standard deviation of loans portfolio, and it weighs the total risk of 
loans portfolio. ( , )i i i j j jCov WTNPV X W TNPV X presents the covariance between 

thi loan object and thj loan object, namely their portfolio risk ( 0iX = , namely as  
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Table 1. Loan risk adjustment weight 

Credit rank Wi1 loan way Wi2 Loan deadline Wi3 loan shape Wi4 
AAA     0.1 national debt pawns 0.05 ≤0.25      1.00 normal    1.0 

AA      0..2 
this bank business regular
deposit slip pawns         0.1 >0.25       1.05 

and≤0.5 
attention   1.2 

A        0.3 
A level financial organ 
guarantee   0.2 >0.5and≤1  1.10 secondary  1.8 

BBB      0.5 
foreign capital or Chinese-
foreign joint venture bank 
credit 

0.3 >1 and≤3   1.3 Suspicious 2.2 

BB        0.6 
state-owned commercial
bank guarantees       0.4 >3 and≤5  1.40 Loss     2.5 

B         0.6 
house and other building
mortgage 0.6 >5        1.60  

CCC      0.8 
he domestic market
customer  guarantee 0.7   

CC         1 
company share mortgage
above A level 0.8   

C          1 
special-purpose 
mechanical    device 
mortgage 

0.9   

D          1 credit loan 1.0   

Note: the data in table 1 come from Reference [5],[6],[7] 

 
the thi loan object is not selected, the covariance is 0 between it and thj loan 

object).Therefore the total risk of loans portfolio is: 

1/ 2

1 1
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The total expected income of loans portfolio is: 

1

m

i i
i

TNPV TNPV X
=

= ∑  

then, the objective function is: 

max         
TNPV

σ
 

Let the used loan cash L ; In order to satisfy the principle (2), suppose the lowest 

bank ’s loan amount is aL ; iL is the loan money sum applied by the thi loan object. 

Then the restraint function follows as: 

1

m

a i i
i

L L X L
=

≤ ≤∑  
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Therefore, the loans portfolio optimization decision-making model is: 

1

th

th

max         

s.t.      

0,       company is not selected
         

1       company is selected

m

a i i
i

i

TNPV

L L X L

i
X

i

σ

=
≤ ≤∑

⎧= ⎨
⎩ ，

 (1)

4 The Description of Adaptive Particle Swarm Optimization 
Algorithm 

Suppose that N is the number of a particle swarm, m is the number of enterprise, so 
let m be the dimension of binary code, 1( , , )i i imx x x= is noted as the current 

position of the thi particle of swarm. Different position ix  corresponding to different 

individual fitness function if  (fitness function is objective function in this paper)that 

related to optimized objective function. 
In view of the upper and lower bound’s constraints of the model, for the loans 

portfolio that surpass the upper or the lower bound’s constraint, for principle (4),  
we will make the following transformation and turn them into the feasible  
solution. （ⅰ）When the total loans surpass the redundancy loan cash L , we make 

1
0ijx = , 

1ijx express the loan enterprise with biggest amount. If it till surpass, we 

make
2

0ijx = ,
2ijx express the loan enterprise with second big amount, and so no, until 

it satisfies L ;（ⅱ）When the total loans have not achieved the lowest loan amount 

aL ,we make 
1

1ikx = ,
1ikx express the loan enterprise with smallest amount in the 

enterprises that have not been loaned. If it till not achieve, we make 

2
1ikx = ,

2ikx express the loan enterprise with second small amount, and so no, until it 

satisfies aL . Do this, we may avoid massive loans concentrate in few enterprises and 

make loans disperse to many enterprises. It conforms to the bank’s requirement of 
diversification of risk. 

Each particle’s position vector ix corresponds with a loan portfolio, for thi particle 

of swarm, 1 2 1[ , , , ]i i i mx x x x= ( {0,1},ijx ∈  1,2, , , 1, 2, , )i N j m= = is particle’s 

position vector, and 1 2[ , ]pi pi pi pimx x x x= is noted as the best position by which it has 

ever visited. g is noted as the index of best particle among the particles in the 
population. 1 2[ , , , ]g g g gmx x x x= is noted as the best position by which the swarm have 

ever visited, the rate of the velocity is represented as 1 2[ , , ]i i i imv v v v= . In discrete 

PSO algorithm, the particles are manipulated according to the equation: 
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( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2( ) ( )t t t t t t t t t

ij ij ij pij ij ij gj ijv v cr x x c r x xω+ = + − + −  (2)

( 1)

( 1)

( 1)

0, ( )

1, ( )

t
ijt

ij t
ij

sig v
x

sig v

ρ
ρ

+
+

+

⎧ ≤⎪= ⎨ >⎪⎩
 (3)

Where t expresses the tht iteration; ( )
1

t
ijr and ( )

2
t
ijr are random numbers uniformly 

distributed in the range[0,1] ; 1c and 2c are positive constants, called the cognitive and 

social parameter respectively, both equal to [0,2] in general cases; ( )sig ⋅  expresses 

Sigmoid function, in this paper, let ( ) 1/[1 exp( )]sig x x= + − ;let the upper limit of the 

velocity of particle be 
max 6v = ， ( )

max max
t

ijv v v− ≤ ≤ ,so ( )0.0025 ( ) 0.9975t
ijsig v≤ ≤ ; ( )tω is 

called inertia weight, we will use a kind of dynamically changing inertia weight. 
A kind of dynamically changing inertia weight [7]. The inertia weight is decided by 

the fitness value aggregation degree and space position aggregation degree of the 
particle swarm. The inertia weight ω should increase along with the fitness value 
aggregation degree increase, and reduce along with the space position aggregation 
degree reduce, It may express: 

ini s hs hω ω ω ω= + −  (4)

Where iniω is the initial solution of ω , 1iniω =  in general cases; the fitness value 

aggregation degree
2

2
2
max

ts
σσ

σ
= = , 2 2

1

( )
N

t t
t i avg

i

f fσ
=

= −∑ , 2 2
max

1
max{ }j

j t
σ σ

≤ ≤
= ; the space position 

aggregation degree

0
max( )

t
E

t
E

k t

D
h D

D
≤ ≤

= = , ( ) ( )

1 ,
1

max ( )
m

t t t
E aj bj

a b N
j

D x x
≤ ≤ =

= −∑ , [0,1], [0,1]s h∈ ∈ , 

therefore [ , ]ini h ini hω ω ω ω ω∈ − − . 

Algorithm 1  Adaptive Particle Swarm Optimization (APSO)  

Step1 Initialize a population of particles
NX  with 

random position vector ix and the velocity vector iv , and 

inspect every position vector whether satisfies in the 
constraint conditions, if not, we can use the 
transformation (ⅰ)、(ⅱ)to change it, and make it satisfy 
the constraint conditions. 
Step2 Calculate the particle’s fitness, let 1 2[ , ,pi pi pix x x=  

]pimx is the thi  particle’s optimal position, 
1 2[ , , , ]g g g gmx x x x=  is 

the global optimal position.  
Step3 Calculate the dynamically changing inertia 

weightω based on equation (4). 
Step4 Renew the position and velocities of particles 

based on equation (2) (3). 
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Step5 Inspect the new position vector whether satisfies 
in the constraint conditions if not, we can use the 
transformation (ⅰ)、(ⅱ)to change it, and make it satisfy 
the constraint conditions. 
Step6 Calculate the particle’s fitness and renew every 

particle’s optimal position and the global optimal 
position. 
Step7 (Termination examination) If the termination 

criterion is satisfied, namely, satisfy the iterations or 
the error band, then output he global optimal position 
and its fitness value. Otherwise, Loop to step 3. 

5 Numerical Test and Analysis 

5.1 Case 

L is noted as the loan cash of some bank newly built project, the loan cash L is 3 

million Yuan, the lowest loan task bL  is 2.7 million. There are ten enterprises 

applying for the new loan and the loan money sum is 70% of its total investment. 
Moreover, each enterprise loan project is the feasible plan after. Table 2 shows 
additional information. Now determine the bank decision-making of loans portfolio, 
so as to decide to provide the loan for which enterprises. 

Table 2. Plan selected of loans portfolio   

project 1 2 3 4 5 6 7 8 9 10 
total 

investment 
50 40 57 45 80 37.5 90 30 35 16 

bank 
investment 

35 28 39.9 31.5 56 26.25 63 21 24.5 11.2 

Total net 
77.18 65.22 95.40 96.19 102.45 76.77 146.76 79.67 82.09 39.76 
47.18 45.22 5.40 76.19 12.45 6.77 126.76 39.67 30.09 27.76 
17.18 25.22 -24.60 46.19 -47.55 -21.23 16.76 9.67 18.09 -0.24 

mean total 
net 

47.18 45.22 25.40 72.86 22.45 20.77 96.76 43.01 43.42 22.42 

Table 3. Covariance matrix of total net present valueTNPV  

 1 2 3 4 5 6 7 8 9 10 
1 600 4000 12000 500 1500 980 1300 700 640 400 
2 400 266.7 800 333.3 1000 653.3 866.7 466.7 426.7 266.7 
3 1200 800 2600 966.7 3100 2100 2300 1433.3 1411.7 746.7 
4 500 333.3 966.7 422.2 1233.3 793.3 1133.3 577.8 511.1 342.2 
5 1500 1000 3100 1233.3 3800 2520 3100 1766.7 1666.7 973.3 
6 980 653.3 2100 793.3 2520 1698.7 1913.3 1166.7 1138.7 616 
7 1300 866.7 2300 1133.3 3100 1913.3 3266.7 1466.7 1186.7 946.7 
8 700 466.7 1433.3 577.8 1766.7 1166.7 1466.7 822.2 768.9 457.8 
9 640 426.7 1411.7 511.1 1666.7 1138.7 1186.7 768.9 771.6 391.1 
10 400 266.7 746.7 342.2 973.3 616 946.7 457.8 391.1 280.9 
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By using the Matlab soft to compile this procedure and solve to the above question, 
we may obtain the optimal within the accepted time, this example’s result is:         

1 2 3 4 5 6 7 8 9 10( , , , , , , , , , )X X X X X X X X X X )1,1,1,1,0,1,1,0,1,1( =  

The total loan money sum is: L =270.2 ten thousand Yuan. The unit risk income rate 
considering of synthesis risk achieves maximum value: / 0.0534TNPV σ = . 

5.2 Analysis 

In order to carry on the further confirmation to the algorithm 4.1, based on the prime 
data of loans portfolio’s plan to be prepared to choose in table 2, we form the different 
loans portfolio which enterprise scale is from 20 to 80 and separately carry on the 
operation to it, this result likes table 4: 

Table 4. Operation results of different loans scales 

Scale Optimal solution 
Loan 

money 
sum 

Particle 
number

Iteration 
times 

Computin
g time 

(second) 
10 1,1,0,1,1,0,1,1,1,1 270.2000 30 1000 20 
20 1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,0,1,0,1,1 543.2000 50 1000 50 

30 
1,1,1,1,0,0,1,1,1,1,1,1,1,1,0,0,1,1,1,1,
1,1,1,1,1,0,1,1,1,1 

818.3000 70 2000 154 

40 
1,1,1,1,0,0,1,1,1,1,1,1,0,1,1,0,1,1,1,1,
1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,0,1,1,1,1 

1088.500
0 

90 2000 288 

50 
1,1,1,1,0,0,1,0,1,0,1,1,1,1,1,0,1,1,1,1,
1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,0,1,1,1,1,
1,1,1,1,0,0,1,1,1,1 

1350.300
0 

110 3000 649 

60 

1,1,1,1,0,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,
1,1,1,1,0,0,1,1,1,1,1,1,1,1,0,0,1,1,1,1,
1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,0 ,1,1,1,1 

1623.000
0 

130 3000 927 

6 Conclusion 

Through the actual computation process to the example, we know that the paper gives 
a better model and a feasible algorithm to solve the question, namely: 

1. Consider the risk coefficient. On the one hand, because at present our country 
commercial bank mainly considers risk weight and income size in processing loan 
business. The prime model considers the relations between income and risk and 
only uses income variance to express the risk and neglects risk weight, for example: 
the original method does not consider the original loan situation to the loan 
enterprise and neglects the loan mortgage situation and so on. Therefore these 
reasons inevitably cause the commercial bank to make the wrong appraisal to loans. 
On the other hand, the consideration of risk weight may cause our research to unify 
well with commercial bank's actual operation and applies it more conveniently.  
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2. It is known through the analysis of the upper case that the proposed algorithm is 
feasible and computational time can be accepted and the algorithm can adapt to 
the middle or large-scale question. At the same time, in order to confirm its 
stability, we operate 50 times to the identical group data and obtain the optimal 
solution every time. As a result, when we use the algorithm to solve the loans 
portfolio optimisation question, we gain good effect no matter in the solution 
time or in the stability. 

In summary, the decision-making model of loans portfolio optimisation based on 
composite risk weight and the hybrid genetic algorithm with greedy transformation 
proposed in the paper may help the commercial bank to carry on the quota macro-
scientific policy-making in the loan business. 
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Abstract. Particle Swarm Optimization (PSO), proposed by Dr. J. Kennedy and 
Professor R. Eberhart in 1995, attracts many attentions to solve for a lot of real 
uni-modal/multi-modal optimization problems. Due to its simplicity of parameter-
setting and computational efficiency, PSO becomes one of the most popular 
algorithms for optimization search. Since 1995, many researchers provide 
different algorithms to set parameters for convergence, explosion and exploitation 
potential of PSO. Most of the proposed methods are to find a general PSO (called 
Standard PSO, SPSO) for most of the benchmark problems. However, those may 
not be suitable to a specified problem, for example, Shaffer or Rosenbrock 
problems; especially the dimension of the problem is high. On the contrary, with 
to the difficult problem such as, Rosenbrock, a more proper specified PSO is 
needed for this high-dimension problem. Therefore, for each problem after more 
understanding the characteristic of the problem, a SPecified PSO (SPPSO) is 
proposed. Apply this idea to 5 benchmark problems, such as sphere, quatric, 
Rosenbrock, Griewank, and Rastrigin functions, four different SPPSO algorithms 
are proposed with good results in the end.  

Keywords: Genetic algorithms, particle swarm optimization, mutation, 
optimization. 

1 Introduction 

Since 1955, J. Kennedy and professor R. Eberhart introduced the brand new 
optimization idea called Particle Swarm Optimization (PSO); optimization algorithms 
are more advanced and efficient than that before [1], [2]. Take an example, Genetic 
Algorithm (GA) is another optimization one based on evolution principle with high 
computational burden [6]. Stagnation to the local optimum is frequently occurred in 
the GA optimization search. 

Adjustments on parameters of SPSO (Standard PSO) are under studying by many 
researchers all around the world since correct parameters setting is essential to PSO 
efficiency. As mentioned in [7], [8], many Improved PSOs (IPSOs) have been promoted 
to enhance the capability of original PSO, but fail to find the optimal solution when the 
dimensionality of the problem is high. In [7], [8], arithmetic mutation borrowed from 
GA with low mutation rate can improve efficiency of SPSO. In [10], forced mutation 
can further solve Shaffer problems in medium-high dimension. In this paper, it is found 
that Rosenbrock function is the most time-consuming and difficult problem if the PSO 
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algorithm is not properly prepared. The rest four functions—Sphere, Quatric, Griewank, 
and Rastrigin ones [11] are more easily to solve with less parameters to be determined. 

In section 2, SPSO equations are outlined and explained first with Rosenbrock 
function. After that in section 3, SPPSO (SPecified PSO, suggested in the article) and 
other problems are discussed. Sample examples with this five functions and results 
are outlined in section 4. The last section is the conclusions. 

2 The General Formulae for PSO Algorithm 

The formulae recommended by [1] and the others are listed in equation (1) and (2). 
 V k 1 ω V k c φ P Pbest P k  c φ P Gbest P k  .                      (1) P k 1 ω P k V k 1  .                (2) 

 

Where V stands for velocity with dimension D, P stands for particle/position,  
P(Pbest) is the best parameter in the i-th generation, and P(Gbest) is the best solution 
particle array from beginning to the present generation so far. φ1 and φ2 are two 
uniform random numbers from 0 to 1. i is the generation number and k is the time 
step. In the original SPSO, c1=c2=2, ω=1, ωp=1, or ω is decreasing from 0.9 to 0.4 
linearly with iteration (generation) number or ω=0.5*(1+rand) or c1=c2=2.05, 
χ=0.7298 [14]. P has its own lower and upper bound. Vmax can be the same as Pmax. In 
[7], [8], the best settings of parameters for modified PSO with a mutation rate of 
0.0035 are c1=c2=1.9, ω=0.763, ωp=1. Many other modified PSO algorithms can be 
found in [3], [4], [5], [9], [11], [12], [13].  

It is interesting to find that for medium-high dimension Rosenbrock problems, 
mutation attached to SPSO is not a good choice in order to improve the shortcomings 
of SPSO. However, when the dimension is over 300, the GA mutation is required 
then. With a special mutation mechanism called one-variable mutation, SPPSO can 
lead the optimization process to jump out the local optima. 

Rosenbrock benchmark optimization problem is described first in eq. (3). 

                        f X ∑ 100 x x 1 xD                      (3) 

Where X=[x1, x2,…, xD], D≧2.  Because xi and xi+1 are tied together in values, each 
xi must be closed enough to one; otherwise, f(X) cannot reach the minimum value. So 
for an arbitrary X value, the tendency of xi+1 must approach xi in order to minimize 
f(X). The steps to revise next ΔX are many but ΔX is not allowed too large. The 
objective is to minimize f(X) in a large range of 100 x 100, i=1,2,…,D. The 
global minimum is zero at x 1 for i 1,2, … , D.  For a high-dimension 
Rosenbrock, it has a narrow valley from the perceived local optima to the global 
optimum [12]. Fig. 1 shows the landscape near the global minimum with local 
minima around. 

For high-dimension Rosenbrock problems, some phenomina must be investigated 
vastly before the determination of a proper algorithm for them. It is found that if there is 
no mutation added to PSO, most of the time, the optimization process will be stucked if 
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only PSO parameters are presented in PSO algorithm. For this reason, a particular 
mutation called one-variable mutation mechanism has been selected in SPPSO. 

One-tenth of total population particle (position) are selected to do the mutation 
randomly. Only one variable can undergo the mutation process with a random value 
in the allowable ranges is taken place the original one. The mutation rate is fixed to 
0.1. One-variable mutation is activated every 500 generations and lasted for 100 
generations. This mutation has the opportunity to let positions jump out of the stuck 
points to newly located positions. It has been tested to find out that it is necessary for 
the algorithm to regain the activity to adjust mildΔX to the global optimum. Besides 
that in the very first pass, ω=0.5, ωp=1. For this setting, locations for Gbest and Pbest 
are appropriately distributed in the high-dimension solution space. Fitness 
Evaluations (FEs) value can go down quickly from a high value to a moderate one in 
a short time. After some e.g., 1,000 generations, we set ω=1, ωp=0.5 (in the second 
pass or phase). In that way, with one variable mutation together, the best FE value 
(RED) can go down possibly. 

 

Fig. 1. Rosenbrock function plot near global optimum 

In order to compare the results using SPPSO in this paper to [9], the results in [9] 
and the following statements are quoted here for Rosenbrock problems: 

When solving the 10-D problems, the population size is set at ten and the maximum 
fitness evaluations (FEs) is set at 30,000 (generations). When solving the 30-
dimensional (30-D) problems, the population size is set at 40 and the maximum FEs is 
set at 200,000. All experiments will run 30 times. The mean values and standard 
deviations of all results are presented in Table 1 as well. CLPSO and FDR are cited 
and referred in [9]. 

The range for this problem is arranged into two.  

Range #1, -2.048≤xi≤2.048,  
Range #2, -100≤xi≤100.  
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Besides that the population size is increased to 100, the maximum FEs is set at 
200,000 too for dimension D≥10, for the Range #2 case. 

Detailed SPPSO algorithm will be included in section 3.  

Table 1. Optimization results of Rosenbrock function without shift 

Number of variables 
(dimension n), [ave. FEs],  
(Success Rate) and ranges 

  
Algorithm 

Mean  
(standard deviation) 

10, [30,000], Range #1 CLPSO 2.460(1.70) 

10, [30,000], Range #1 PSO-cf 0.698(1.46) 
10, [722], Range #1 SPPSO 8.54e-7(1.78e-7) 
10, [723], (30/30),Range #2 SPPSO 8.75e-7(1.20e-7) 
30, [200,000], Range#1 CLPSO 21  (2.98) 
30, [200,000], Range #1 FDR 5.39 (1.76) 
30, [14,220(6,193)], 
(30/30), Range #1 

SPPSO 9.98e-7(4.120e-09) 

30, [  4,678(1,555)], 
(30/30), Range #2 

SPPSO 9.88e-7(1.31e-08) 

50, [17,133(6,272)],  
(30/30), Range #2 

SPPSO 9.98e-7(2.63e-09) 

100, [29,362(4,512)], (30/30), 
Range #2 

SPPSO 9.54e-7(1.23e-07) 

200, [58,803(9,890)], 
(30/30), Range #2 

SPPSO 9.78e-7(1.14e-07) 

400, [1.17e+5(2.06e+4)], (28/30), 
Range #2 

SPPSO 9.99e-7(1.70e-09) 

 
From Table 1, the suggested PSO (SPPSO) shows its great capability to find the 

optimal solution of high-dimension Rosenbrock problems with better results. Using 
SPPSO, the dimension of Rosenbrock function can be as high as 400. The utimate FEs 
value or goal is 1e-6. It [11] has included another five high-dimension optimization 
problems with dimension D= 30, 100, 400 respectively.  This will be discussed in the 
next section. Algorithm so defined above is called SPPSO in this paper.  

3 Sample Examples and Related SPPSO Algorithms 

In order to compare the performances of SPPSO, five more benchmark problems in [11] 
are chosen. Algorithm #1 is used for Sphere and Quatric functions, algorithm #2 is for 
Rastrigin and Griewank functions, algorithm #3 is for Rosenbrock function only. 
Algorithm #4 is used for shifted Sphere function. The resolution or goal for each 
problem is set to 1e-6 (10-6). One run will be treated as failed if the goal is not matched. 

The basic sequences for SPPSO algorithm are 

(1). Set c1 and c2 to 1.9 respectively. 
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(2). Renew ω and ωp if necessary. 
(3). Update vel using eq. (1). 
(4). Check vel with position bounds [Pmin, Pmax]. 
(5). Update par using eq. (2). 
(6). Do one-variable mutation process. 
(7). Check par with position bounds [Pmin, Pmax]. 
(8). Fitness evaluation and data recording including Pbest and Gbest update. 

Algorithm #1 for Sphere and Quatric function: 

(1). ω=0.763, c1=1.9, c2=1.9, and ωp=0. Use eq. (1). 
(2). When the final vel is totally updated already, check it with position bounds. If 

vel is outside of position bounds, randomize a new vel in bounds to replace the 
outbound vel instead.  

(3). Use eq. (2) to update par first. Use one-variable mutation process to do some 
disturbances to partial par. 

One-variable mutation process: 
10% of total population is chosen for mutation. Only one random variable is 

selected for mutation in the single par vector. This new variable value will be closed 
to Gbest location with a small tolerance. 

(4). When the final updated par is obtained, check it with its own position bounds. 
If par is outside of bounds, randomize a new par in bounds to replace the outbound 
par. Also set the related vel to zero. 

Algorithm #2 for Rastrigin and Griewank function: 

(1). ω=0.763, c1=1.9, c2=1.9. 
For every 10 iterations set ωp=0, otherwise ωp=rand. (Note that rand is a uniform 
random number between 0 and 1). 

(2). The same as (2) in Algorithm #1. 
(3). The same as (3) in Algorithm #1. 
(4). The same as (4) in Algorithm #1. 

Algorithm #3 for Rosenbrock function: 

(1). c1 is decreasing from 2.4 to 1.5, c2=3.8-c1. 
(2). In the first phase, ω=1, ωp=0.5.  

In the second phase, ω=0.5, ωp=1.  
Phase is changed after one-third of total generations (FEs). 
(3). The same as (2) in Algorithm #1. 
(4). The same as (3) in Algorithm #1. 
(5). The same as (4) in Algorithm #1. 

Algorithm #4 for shifted-Sphere function: 

(1). In the first pass, ω=0.5, c1=1.9, c2=1.9, ωp=1. After some proper generations, 
the second pass starts with ω=1, and ωp=0.5. 

(2). The same as (2) in Algorithm #1. 
(3). The same as (3) in Algorithm #1. 
(4). The same as (4) in Algorithm #1 

Table 2 specifies the search range and initialization range as in [11]. It is recited here 
for convenience. 
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Table 2. Search range and initialization range 

Function Search range Range of initial 
population 

Sphere [-50,50]D [25,40]D,      
D=Dimension 

Quatric [-20,20]D [10,16]D,         

SR=Success Ratio 
Rosenbrock [-100,100]D [50,80]D 
Griewank [-600,600]D [300,500]D 
Rastrigin [-5.12,5.12]D [1,4.5]D 

Table 3. Sphere function result using SPPSO (population size=50) 

Dimension FEs 
Mean & Std. Dev 

Fitness value 
Mean & Std. Dev 
Goal=1e-6 /10-6 

SR 

30 2.776000e+001 
(6.531973e-001) 

7.436449e-007 
(1.172610e-007) 

100/100 

100 3.188000e+001 
(3.265986e-001) 

7.178680e-007 
(1.033474e-007) 

100/100 

400 3.500000e+001 
(0.000000e+00) 

7.099101e-007 
(3.224467e-008) 

100/100 

1,000 3.700000e+001 
(0.000000e+00) 

6.430027e-007 
(1.763238e-008) 

100/100 

 
Table 3 lists the simulation results of testing Sphere function with different 

dimensions.  The results are very good. 
Table 4 lists the simulation results of testing Quatric function with different 

dimensions.  The results are also very good. 
Table 5 lists the simulation results of testing Rosenbrock function with different 

dimensions. SPPSO algorithm proposed is good at finding the true optimum of 
Rosenbrock function but with handful FEs and relatively long simulation time. 
However, good results can be expected if the setting of parameters and one-variable 
mechanism work properly. For a dimension of 400 for example, it will consume about 
half an hour (depends on computer system used, PC) to reach the desired goal. 

Table 4. Quatric function result (population size=50) 

Dim. FEs Fitness value 
Goal=1e-6 

SR 

30 1.681000e+001 
(4.860685e-001) 

5.745019e-007 
(1.889986e-007) 

100/100 

100 1.685000e+001 
(4.351941e-001) 

5.695947e-007 
(1.851827e-007) 

100/100 

400 1.693000e+001 
(4.083720e-001) 

5.673559e-007 
(1.971024e-007) 

100/100 

1,000 2.458000e+001 
(4.960450e-001) 

6.108190e-007 
(3.072196e-007) 

100/100 
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Table 5. Rosenbrock function result (population size=100) 

Dim. FEs Fitness value 
Goal=1e-6 

SR 

30 1.649143e+004 
(7.292718e+003) 

9.157303e-007 
(2.255262e-007) 

100/100 

100 2.927773e+004 
(5.153857e+003) 

9.228321e-007 
(2.138867e-007) 

100/100 

400 1.087893e+005 
(2.797335e+004) 

9.003438e-007 
(2.123913e-007) 

30/30 

600 1.762305e+005 
(2.038327e+004) 

9.996882e-007 
(3.687322e-010) 

6/6,  
1.33 hours 

1000 3.418955e+005 
(2.202567e+004) 

9.993987e-007 
(7.226745e-010) 

2/2, 
5.81hours 

 
Table 6 lists the simulation results of testing Griewank function with different 

dimensions. The results are good. 
If there is an arbitrary shift of the desired Sphere function, does the Algorithm #1 

still working or not. The answer is no. Algorithm #1 is required to be modified and 
becomes Algorithm #4 as shown above. From Table 7, two things can be investigated: 

(1). Average FEs is significantly increased for each run. 
(2). Dimension is decreased slightly since more execution time is required for each 

run. Parameter settings might not be the best so far. 

Algorithm #1 is okay to the Sphere function without any shift. With shift, the SPPSO 
will be more complicated and the finding of global optimum of each run becomes 
difficult if parameters are not setting correctly. Comparing Table 3 to Table 7, it 
seems that complicated SPPSO is required to overcome the difficulty of the shift of 
the final optimum point in Sphere function. 

Table 8 lists the simulation results of testing Rastrigin function without shift with 
different dimensions. Although there are a bunch of local minima everywhere inside, 
SPPSO algorithm is easy to trace the global optimum in relatively few generations. 

Table 6. Griewank function result (population size=50) 

Dim. FEs Fitness value 
Goal=1e-6 

SR 

30 5.438000e+001 
(1.845758e+001) 

5.443579e-007 
(2.820364e-007) 

100/100 

100 5.054000e+001 
(2.132596e+001) 

5.198004e-007 
(2.854481e-007) 

100/100 

400 5.470000e+001 
(4.068765e+001) 

5.772870e-007 
(2.776276e-007) 

100/100 

1000 7.281000e+001 
(9.976859e+001) 

5.105688e-007 
(2.682491e-007) 

100/100 

4 Conclusions 

Finding a standard PSO (SPSO, for example, SPSO-2011 in [12]) for all benchmark 
optimization functions is not an easy task. Even such an algorithm exists; the 
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resolution for solving each problem varies with each characteristic of problem. On the 
other hand, specified SPPSO established for each problem after some investigation on 
its property of the problem will be a good approach to find optimum of each function 
with different dimension.  

Table 7. Result of Sphere function with arbitrary shift 

Dim./ 
Popula- 

tion 
Size 

FEs Fitness value 
Goal=1e-6 

SR 

5/50 2.301700e+002 
(2.717733e+001) 

7.137398e-007 
(2.088383e-007) 

100/100 

10/50 3.558000e+002 
(1.968138e+002) 

8.511339e-007 
(1.351048e-007) 

100/100 

30/50 3.197041e+003 
(6.421664e+003) 

9.441585e-007 
(5.186717e-008) 

97/100 

50/50 7.531540e+003 
(8.194308e+003) 

9.588646e-007 
(4.822870e-008) 

100/100 

100/100 1.185577e+004 
(2.430991e+003) 

9.772421e-007 
(2.943015e-008) 

92/100 

200/100 3.127266e+004 
(5.668451e+003) 

9.825248e-007 
(3.316641e-008) 

98/100 

300/100 4.057310e+004 
(1.288369e+004) 

9.737880e-007 
(4.292352e-008) 

10/10 

500/100 6.276250e+004 
(7.023671e+003) 

9.958272e-007 
(4.405973e-009) 

10/10 

600/100 7.200833e+004 
(1.616333e+004) 

9.986374e-007 
(1.244765e-009) 

9/10 

700/100 9.488929e+004 
(1.189994e+004) 

9.985731e-007 
(1.758570e-009) 

7/10 

Table 8. Rastrigin function result (population size=50) 

Dim. FEs Fitness value 
Goal=1e-6 

SR 

30 8.385000e+001 
(1.573934e+002) 

5.511544e-007 
(2.726850e-007) 

100/100 

100 5.997000e+001 
(1.493451e+001) 

5.586667e-007 
(2.668969e-007) 

100/100 

400 6.603000e+001 
(2.138746e+001) 

5.158390e-007 
(2.851966e-007) 

100/100 

1000 8.120000e+001 
(6.027596e+001) 

5.661843e-007 
(2.767283e-007) 

100/100 

 
Without any shift on some function such as Sphere, Rastrigin, and Rosenbrock, the 

test is good for high dimension. In [11], high-dimension (e.g., 30, 100, and 400) 
benchmark problems and rotated PSO was suggested to solve five functions such as, 
Sphere, Quatric, Rosenbrock, Griewank and Rastrigin functions. Frankly speaking, 
the only difficult problem is the Rosenbrock function, the resolution was about 1e+3 
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with D=400, FEs=2.5e+4 in [11]. With enough FEs, SPPSO algorithm can match the 
goal of 1e-6 using specified two-phase ω and ωp setting plus one-variable mutation 
mechanism. Different PSO parameter–setting for different property of each 
optimization problem might be a truly way to solve specified problems in the future 
instead of finding a generalized PSO (SPSO, for example) for all problems. As for 
functions with shifts, the original SPPSO won’t work easily for each problem. Due to 
the time constraint of the paper, only shifted Sphere function is completed under 
investigation with some partial result as shown in Table 7. The success rate decreases 
with increasing dimension, the execution time is more than expected. Further study is 
apparently required in the future for shifted optimization problems. 
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Abstract. Traveling Salesman Problem (TSP) is a kind of typical NP problem 
and has been extensively researched in combinatorial optimization. For solving 
it more effectively, candidate set is used in many algorithms in order to limit the 
selecting range when choosing next city to move, such as in Ant Systems, or to 
initialize a local optimum solution, such as in Lin-Kernighan Heuristic (LKH) 
algorithm. A novel simple method for generating candidate set is proposed in 
this paper and applied into MAX-MIN Ant System (MMAS) for symmetric 
TSP problem. Experimental results show that it has better performance than 
other Ant Systems including MMAS. Moreover, this method can be used in 
other algorithms for symmetric TSP problem. 

Keywords: Symmetric TSP, Ant Colony Optimization, MMAS, Candidate Set. 

1 Introduction 

The TSP is to find an optimal solution which has the shortest tour over n given cities 
and each city can only exist in the tour once. It is a well-known NP-hard problem and 
extensively studied in combinatorial optimization. Many methods have been presented 
in these years such as Genetic Algorithm (GA), Neural Network, Particle Swarm Opti-
mization (PSO), Ant Colony Optimization Algorithm (ACO)[1], Lin-Kernighan Heuris-
tic Algorithm (LKH), etc. ACO is an efficient method for solving TSP, which is based 
on the pheromone communication by ants. When using ACO, a problem may occur that 
the unwilling long routes may turn out to lay useless pheromone, so a Give-up Ant Sys-
tem (GAS) is proposed in [2], it lets the ant only can move to the cities under a fixed 
radius near current city. But it will not work well in the case that some cities distribute 
very densely while other some distribute very sparsely. 

Another problem of ACO is that its computational complex since it contains much 
float computation when calculating the probability, so candidate set methods are em-
ployed. Most commonly used is nearest-neighbors (NN) method[5], which always limits 
an ant moves to several nearest cities around it. Recently, [10] presented that a dynamic 
size of candidate set should be used according to the number of cities. But these methods 
can’t fit the situation of somewhere dense and other somewhere sparse well. 

In the LKH algorithm, a candidate set method called α-measure is employed to 
generate a local optimum at start[7]. Given the cost of a minimum 1-tree, the α-value 
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of an edge is the increase of the cost of a minimum 1-tree. The α-value provides a 
good estimate of the edge’s chance to belong to an optimum tour, but using this can-
didate set as a searching strategy is not inferred in LKH. There are several other can-
didate set methods including: 1). Delaunay distance[11] , 2). Quadrant distance[5], 
etc. Of these candidate set methods, few are introduced to ACO’s searching process 
except nearest-neighbors and fixed distance radius[2] as known to our limited know-
ledge.  

In order to define a better limited range for ants’ path selection, and investigate the 
further usage of candidate set method in ACO, we propose a simple candidate set me-
thod and apply it into MAX-MIN Ant System (MMAS) in this paper. First we introduce 
a new distance measure we call it Priority Value (PV), which represents a measure of 
linking probability of two cities, it means that the ant can only move onto the edges that 
have the best PV values. Then we apply the PV into MMAS and get a new ant system 
called PVMMAS. In this paper, we verify the validity of the new candidate method, the 
PV method, by experiments with the PVMMAS and compare it with other Ant Systems. 
Note that we only discuss within the scope of symmetric TSP. 

The paper is organized as follows: In section 2, we have a review on Ant System 
(AS) and MAX-MIN Ant System (MMAS). In section 3, we propose the new distance 
measure PV, describe the main principals of PVMMAS. In section 4, Experimental 
results and analysis are given. Finally, concluding remarks are placed in Section 5. 

2 Ant Colony Optimization 

2.1 Ant System  

Ant System is a meta-heuristic algorithm[1], it takes the advantage of real ants phero-
mone mechanism. An ant always selects the way according to the pheromone laid on it 
by predecessors and the distance of it. The transition probability k

ijP  from city i to city 

j for the kth ant is defined as: 
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where                        ijij d/1=η                              (2) 

is the visibility information generally taken as the inverse of the distance between city 
i and city j. allowedk is the cities that the kth ant can move to. τij represents the amount 
of pheromone on the edge between city i and city j. Two real positive values α and β 
are adjustable parameters that control the relative weights of pheromone intensity and 
inter-city distance. 

After every ant completes its tour, the pheromone trails of each path are updated 
according to the formulas: 
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where ρ(0<ρ<1) represents an evaporation rate of pheromone, k
ijτΔ  is the pheromone 

which is laid on edge (i,j) by ant k, m is the total number of ants, and Q is a constant. 
Detail steps of AS algorithm can be found in [1]. 

2.2 MAX-MIN Ant System (MMAS) 

MAX-MIN ant system[5] is the most widely used ACO algorithm with the limit of 
pheromone trail, which introduces four main modifications in AS. They can be briefly 
summarized as follows: 

1. When updating pheromone, deposition is only allowed by the iteration best ant or 
by the best-so-far ant; 

2. To avoid the early convergence to a suboptimal solution, the algorithm limits the 
pheromone trail values in the range [τmin,,τmax]. The value of τmin and τmax is con-
ducted in [5]; 

3. The pheromone trails are initialized to upper pheromone trail limits at the start of 
the search, and a small evaporation rate is used; 

4. When no better tour is found in a predefined number of steps, all pheromone trails 
are set to τmax. 

3 Proposed Method: PV and PVMMAS  

In this section, we firstly propose a new distance measure, then generate candidate set 
and make the limitation for ants’ selecting range according to the new distance meas-
ure. Furthermore, a new path probability calculation method is introduced in this sec-
tion. These two improvements compose the new algorithm PVMMAS. 

3.1 A New Simple Candidate Set Criterion 

During solving symmetric TSP with ACO, an ant usually considers that the shorter 
distance between the candidate city and current city is, the more likely that city is to be 
selected as the target. But actually, it does not seem so. Because the tour can be re-
versed, suppose if an ant is at the other end of the chosen edge and looking for a city to 
move, it is not certain that the result will be the same edge. For instance, consider the 
case Fig. 1, in which the edge (A,B) is a long path of city A comparing with its neigh-
bors, according to ACO, ant at A will hardly select this edge to go, especially when dAB 
is much larger than dAC. But actually, it's the shortest path of city B, so these two cities 
are very likely to connect at this aspect. Hence, it's necessary to consider a new crite-
rion on selecting target city. 
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Fig. 1. Case of path selection between city A and city B 

Thinking forward, consider two cities: A and B. We found that if A is the shortest 
city near B, and B is also the shortest city near A, then they are very likely to link 
together. Extending this relationship, we get a new criterion called Priority Value 
(PV). First, let Ti be the sorted sequence of distances between city i and other cities by 
sorting distances ascend, and then PV value between city i and city j is defined as: 

( ) ( )
1

min ,
max ,

ij ij ji

ij ji

PV I I
I I

= −  (6)

where Iij is the city j's index in Ti. 
It can be concluded that actually PV represents a sense of mutual selective priority 

measure between two cities, the smaller it is, the more probably the two cities are 
linked together. The smallest value of PV is 0, which means the two cities are most 
likely to be connected. 

A new candidate set can be organized by choosing the smallest PV values in unvi-
sited cities for every ant. The maximum selection range here we define it an integer 

U, which is a small integer and its value is analyzed later. For ant k, let k

iu  be an 

integer within range [1 U], it represents the selection of ant k at ith step in the U unvi-

sited cities that have smallest PV values. Obviously, in an optimal tour, k

iu  is more 

usually a lower number than larger ones. Examples are shown in Table 1, here we 
take the best-known solution of instance eil51 and kroA100 for analysis.  

Table 1. Examples Of 
k

iu ’s Value in Best-known Solution 

Instance Occurrence time of 
k
iu  

1 2 3 4 5 6 7 8 
eil51 38 10 2 0 1 0 0 0 
kroA100 84 8 2 2 0 1 0 1 

3.2 The Maximum Selection Range U and Maximum PV Limitation 

The value of U can be set as belowing some constant, some kind like the number of 
neighbors in NN, but the difference is that the former can obtain a dynamic size of 
candidate set, since some candidates may have the same PV value. 

An optional parameter Pmax is defined here, to limit the upper bound of the PV  
value. That is, if the edge has larger PV than the predefined threshold, it will not be 
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added to the candidate set. The value of Pmax is related to the cities’ distribution, not 
the number of cities, practically we can set Pmax a common constant. 

The commonly used value of U and Pmax can be inferred by some best-known solu-
tions. Note that, if the total number of cities is n, then an route can be represented by 2n 
different ways, according to different origin cites and different directions. By analyzing 
each of the 2n sequences infered from the best-known solution, examples of the range of 
U and the value of Pmax in some instances are listed in Table 2. The value of U can be 
set to its lower bound, but it will have few chance to obtain best solution, so we set it a 
larger value, generally, equals to or above 8 is reasonable. In this paper, we set it equals 
10 as default, which has enough probability to obtain best solution, as well as fast speed 
to converge. Although some instances’ best-known solution has a larger Pmax like d198, 
by our experience, we can set Pmax as 15 by default, observing that it can lead a fast 
convergence speed and better performance rather than setting it larger.  

Table 2. Examples of Value Range Of U and Value Of Pmax in Best-known Solutions 

Instance Range Of U Pmax 
eil51 [3,6] 5.83 

kroA100 [4,18] 13.96 

d198 [6,36] 30.99 
lin318 [5,19] 14.95 

3.3 A New Visibility Information 

In Ant Systems for symmetric TSP, the probability for path selection is related to the 
path’s distance, but according to our analysis above, this is not very reasonable. The 
probability should consider the both cities’ side on the edge, so we have a 
modification for the visibility information, let the eq.(2) be:  

1
i j

ij jiI I
η =

⋅
 (7)

In the new visibility information equation, the distance are replaced with the sorted 
index on both side of the edge, so it can make the differences between densely distri-
buted cities larger.  

3.4 PVMMAS 

We propose a new method called PVMMAS, which applies the PV modal into MAX-
MIN Ant System. Based on MMAS in [5], the main modifications and their reasons 
are listed as below: 

1. After initialized, all PV values are calculated according to eq. (6), and form a 
sorted list for every city; 

2. On every step, when an ant selects its target city to move, only no more than U 
cities in its unvisited list that have smallest PV values as well as having less PV 
values than Pmax can be added into the candidate set. If no city is added, then select 
the edge that has largest total information to move. After the candidate set is build, 
use the probability equation modified below instead of eq. (1): 
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where the U_PVk is the candidate set of the kth ant. 
And the total information is: 

( ) ( )ij ijT t tα βτ η=  (9)

3. Use the modified visibility information eq. (7) for ηij in eq. (8). 

4 Experimental Results and Analysis  

The proposed method was applied to several instances opened by TSPLIB[6], they are 
eil51, kroA100, d198 and lin318, as the same as [4-5], and st70, tsp225, as the same as 
[2], in order to compare with these algorithms respectively. Meanwhile, Initial cities are 
randomized to get statistical results. Maximum number of tour constructions is 2500n, 
here n is the number of cities, average over 20 runs. All the programs are modified on 
the base of Thomas Stützle's ASOTSP software package version 1.01[12]. 

4.1 Determination of Parameters 

In PVMMAS, all the common parameters and settings are set as the same as MMAS 
in [5] by default, that is α=1, β=2, Q=1, m=n, τ0=τmax, where m is the number of ants. 
Updating the pheromone by the iteration best, and the global best every 25 iterations. 
When tour is not improved more than 250 iterations, it starts the reset of pheromones 
to τmax. For the two new parameters, we set U=10, Pmax =15 as default.  

4.2 Comparison with Other Ant algorithms 

In this section, we compare the performance of the PVMMAS with some other algo-
rithms for some symmetric TSP instances. 

The computational results in Table 4 show that PVMMAS outperforms MMAS 
and NMMAS, with lower average results and smaller percentage deviations from the 
optimal tour length. All results for MMAS and NMMAS are taken from [4] and [5].  

Table 3. Experimental Results With NMMAS and MMAS 

Instance 
Average Results 

PVMMAS NMMAS MMAS 

eil51 426.25(0.07%) 427.2(0.28%) 427.6(0.38%) 
kroA100 21292.4(0.03%) 21298.2(0.08%) 21320.3(0.18%) 

d198 15885.7(0.60%) 15924.4(0.92%) 15972.5(1.22%) 
lin318 42320.0(0.69%) ---- 43082.0(0.75%) 

 
Then we compare PVMMAS with GAS and ASelite, the computational results is 

shown in Table 5. It can be seen that PVMMAS also outperforms the other two on 
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both average results and percentage deviations. All results for GAS and ASelite are 
taken from [2]. 

Table 4. Experimental Results With GAS And ASelite 

Instance 
Average Results 

PVMMAS GAS ASelite 

eil51 426.3(0.07%) 428.7(0.63%) 434.1(1.9%) 

st70 675.35(0.05%) 696.10(3.07%) 701.55(3.93%) 
tsp225 3932.55(0.27%) 4042.35(3.23%) 4061.45(3.71%) 

4.3 Comparison with α-Measure Candidate Set Method 

The α-value of an edge is the increase of the cost of a minimum 1-tree as described in 
[7], it’s adopted by LKH algorithm to generate an initial optimal solution. We apply 
this candidate set method into MMAS just like PVMMAS, in this case, the method 
that uses the new visibility information is noted MMASα, and with the old visibility 
information is noted MMASβ. The comparison results are listed in Table 6. It shows 
that a-measure based MMAS can’t access better result than PVMMAS. This is due to 
the quality of the candidate set method in PVMMAS is more suitable. 

Table 5. Computational Results With Other Candidate Set 

Instance 
Average Results 

PVMMAS MMASα MMASβ 

kroA100 21292.4 21316.15 21498.4 
d198 15885.7 16062.3 16330.5 

4.4 Average Convergence Curve 

The average length of PVMMAS tours was compared with MMAS. The result is show 
in Fig. 2, experimented on instance d198. The solid line in this figure shows the aver-
age length of PVMMAS, the dotted line shows the average length of MMAS. Since 
PVMMAS tries to limit search space within a reasonable candidate set, it usually con-
structs a better initial tour. On the other hand, it has faster convergence speed than  
 

 
Fig. 2. Average Convergence Curve Comparison on d198 
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MMAS, which means it costs fewer time to get its optimal solution. MMAS converges 
at about t=500, while PVMMAS converges at about t=150. 

4.5 Analysis 

The running time cost compared with MMAS can be composed of two parts:  

1. Extra computation. Since a mapping table can be established for eq. (6), the initial 
PV table calculation will only take extra computaional time O(n2log2n)*T(comp), 
and sorting will take extra computaional time nO(nlog2n)*T(comp), where n is the 
number of cities, T(comp) is time cost of one comparison operation. 

2. Saved computation. Since a mapping table can be established for      , so totally 
n2NM*(T(div)+T(exp)) time cost is saved, where T(div) is time cost of one division 
operation, T(exp) is time cost of one exponential operation, N is the number of 
neighbors in NN method, M is the number of circles. 

Put these two parts together, we can see that the PVMMAS can be more efficient than 
nearest-neighbors MMAS due to the significant saved time in part 2. 

From the results of experiments and analysis, it can be seen the PVMMAS gets 
better performance than other Ant Systems in both speed and quality of solution. 

About the parameters Pmax or U, if they are not large enough, the PVMMAS may 
by little chance be stagnant in local optimal. However, increase the Pmax and U 
doesn’t guarantee to get global best solution neither, because it will get slower to 
converge. Hence, for most instances, the common settings can be adopted. 

5 Conclusions  

A novel candidate set method is proposed in this paper called Priority Value (PV), 
which takes the mutual selective priority for two cities’ distance measure, then applied 
into the MMAS algorithm, called PVMMAS. The advantages can be listed as follows:  

1. The quality of solution is more notable than other Ant Systems. 
2. Easy to implement. 
3. The PVMMAS converges earlier than NN based MMAS.  
4. Running speed is faster than NN based MMAS. 

Two parameters are added in PVMMAS: the selecting range U and the maximum PV 
value Pmax. By analyzing the already known best resolutions, the common settings can 
be set as U=10 and Pmax =15 for all instances.  

Moreover, PV measure can be applied into ohter kinds of Ant System, to get better 
performance. How to improve the performance and apply it with other algorithms is 
the next work to do. 
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Abstract. Ant colony optimization algorithms have been successfully applied 
to solve many problems. However, in some large scale optimization problems 
involving large amounts of data, the optimization process may take hours or 
even days to get an excellent solution. Developing parallel optimization 
algorithms is a common way to tackle with this issue. In this paper, we present 
a MapReduce Max-Min Ant System (MRMMAS), a MMAS implementation 
based on the MapReduce parallel programming model. We describe 
MapReduce and show how MMAS can be naturally adapted and expressed in 
this model, without explicitly addressing any of the details of parallelization. 
We present benchmark travelling salesman problems for evaluating MRMMAS. 
The experimental results demonstrate that the proposed algorithm can scale 
well and outperform the traditional MMAS with similar running times.  

Keywords: Ant colony optimization, MMAS, Parallel MMAS, Travelling 
salesman problem, MapReduce, Hadoop.  

1 Introduction 

Max-Min Ant System [1] is an optimization algorithm that was inspired by the 
behavior of real ants. This evolutionary algorithm has become popular and has been 
found to be effective for solving NP-hard combinatorial problems like travelling 
salesman problem (TSP). However, as the city number grows, the algorithm often 
takes a very long time to obtain the optimal solution. Efficient parallel Ant Colony 
Optimization (ACO) [2] algorithms and implementation techniques are the key to 
meet the scalability and performance requirements entailed in such cases. So far, there 
are several parallel implementations of ACO algorithm [3,4]. In the PACS [3] 
method, the artificial ants are firstly generated and separated into several groups, and 
ACS is then applied to each group and the communication between groups is applied 
according to some fixed cycles. [4] proposed two parallel strategies for the ant 
system: the synchronous parallel algorithm and the partially asynchronous parallel 
algorithm. And all of the above methods need the programmers to design and 
implement the detailed parallelization on different processors.  
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MapReduce [5] is a programming model and an associated implementation for 
parallel processing large dataset. Users only specify the computation in terms of a 
map and a reduce function, and the underlying runtime system automatically 
parallelizes the computation across the cluster of machines.  

In this paper, we adapt MMAS algorithm in MapReduce framework and present a 
MRMMAS to make the method applicable to dealing with large scale problems. 
MRMMAS is simple, flexible, and scalable because it is designed in the MapReduce 
model. Considering TSP is the most typical application of MMAS, we present our 
MRMMAS method for solving TSP and conduct comprehensive experiments to 
evaluate its performance on some TSP benchmark problems.  

The rest of the paper is organized as follows. In Section 2, we present preliminary 
knowledge including MapReduce overview and introduction of standard MMAS. 
Section 3 describes how MMAS can be cast in the MapReduce model and shows the 
map function and reduce function of MRMMAS in detail. Experimental results in 
Section 4 demonstrate that the proposed algorithm can scale well through the 
computer cluster. Finally, we offer our conclusions in Section 5.  

2 Preliminary Knowledge 

2.1 MapReduce Overview 

MapReduce, as the framework showed in figure 1, is a simplified programming 
model which is well suited to parallel computation [6]. Under this model, programs 
are automatically distributed to a cluster of machines. In MapReduce, all data are 
organized in the form of keys with associated values. For example, in a program that 
counts the frequency of occurrences for different words, the key could be set as a 
word and its value would be the frequency of that word. 

As its name shows, map and reduce are two basic stages in the model. In the first 
stage, the map function is called once for each input records. At each call, it may 
produce intermediate output records with the form of key-value pair. In the second 
stage, these intermediate outputs are grouped by key, and the reduce function is called 
once for each key. Finally, the reduce function will output some reduced results. 

More specifically, the map function is defined as a function that takes a single key-
value pair and outputs a list of new key-value pairs. For each call, it may produce any 
number of intermediate key-value pairs. It could be formalized as: 

Map: (Key1, Value1)  list((Key2, Value2)) 

In the second stage, these intermediate pairs are sorted and grouped by key, and the 
reduce function is called once for each key. The reduce function reads a key and a 
corresponding list of values and outputs a new list of values for the key. 
Mathematically, this would be written: 

Reduce: (Key2, list(Value2))  Value3 

The MapReduce model provides sufficient high-level parallelization. Since the map 
function only takes a single record, all map operations are independent of each other 
and fully parallelizable. And also the reduce function can be executed in parallel on 
each set of intermediate pairs with the same key.  
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Fig. 1. Overview of the MapReduce execution framework 

2.2 Max-Min Ant System (MMAS) 

Ant Colony Optimization (ACO) metaheuristic is a population based approach inspired 
by the behavior of ant colony in real world. In ACO, solutions of the problem are 
constructed within a stochastic iterative process, by adding solution components to 
partial solutions. This process, together with the pheromone updating rule in ACO, 
makes the algorithm efficient in solving combinatorial optimization problems.  

Initially, each ant was randomly positioned on a starting node. Then each ant applies 
a state transition rule to incrementally build a solution. Finally, all of the solutions are 
evaluated and the pheromone updating rule was applied until all the ants have built a 
complete solution. The framework of ACO algorithm could be represented as follows: 

 
Procedure: ACO algorithm for static combinatorial problems 
 

1． Initialize parameters and pheromone trails; 
Loop /* at this level each loop is called an iteration */ 

2．       Put each ant in a random starting node; 
         Loop  

3．            /*Construct solutions*/ 
Each ant applies a state transition rule to choose a next city to visit; 

Until all ants have built a complete solution 
4．       Pheromone updating rule is applied; 

Until end condition is satisfied, usually reach a given iteration number 
     
Max-Min Ant System [1] is one of the best implementation of ACO algorithm. It 

combines an improved exploitation of the best solutions with an effective mechanism 
for avoiding early search stagnation. It differs from Ant System (AS) mainly in the 
following three aspects: (1) Only one single ant adds pheromone after each iteration; 
(2) The range of possible pheromone trails on each solution component is limited to an 
interval min max[ , ]τ τ ; (3) The initial pheromone trails are set to maxτ . 
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3 MapReduce Based Parallel Max-Min Ant System  

In this section, we present the main design for MapReduce Max-Min Ant System 
(MRMMAS). Firstly, we point out how MMAS be naturally adapted to MapReduce 
programming model and present the general idea of MRMMAS. Then we explain 
how the computations can be formalized as map and reduce operations in detail.  

3.1 The Analysis of MMAS from Serial to Parallel  

The whole procedure of MMAS is an iteration process. In every round of the 
iteration, the ant colonies construct feasible solutions through two rules: state 
transition rule and pheromone updating rule. And in MMAS, the pheromone updating 
rule is applied only when all ants have built a complete solution. In another word, the 
pheromone level keeps constant during the process of solution construction.  

In MMAS, the most intensive calculation to occur is the calculation of solution 
construction. In each iteration, every ant would require a lot of computations to decide 
which city to visit from its current city. Fortunately, the pheromone updating rule in 
MMAS does not require the communications among the ants in the same iteration but 
only deliver the information to the ants in the following iterations through the 
updating of the pheromone. It is obviously that the computation of constructing a 
solution for one ant is irrelevant with the construction of another ant in the same 
iteration. Therefore, the solution construction process could be parallel executed. 
After this phase, all the constructed solutions are summed up and pheromone updating 
rule is carried out. The updated pheromone level will be send to each ant and play a 
role in the following iteration.  

3.2 MMAS Based on MapReduce  

In an iteration of MMAS, each ant in the swarm locates at a starting node, chooses a 
next city to visit step by step, and evaluates its solution. All of these actions are 
completed independently of the rest of the swarm. As the analysis above, MRMMAS 
algorithm needs one kind of MapReduce job. The map function performs the 
procedure of constructing a solution for one ant and thus the map stage realizes the 
solution construction for all the ants in a parallel way. Then, the reduce function 
performs the procedure of updating the pheromone. For each round of the iteration, 
such a job is carried out to implement the whole process of MMAS. The procedure of 
MRMMAS is shown in the following. 

 
Procedure: MapReduce MMAS for static combinatorial problems 
 

1． Initialize parameters and pheromone trails; 
Loop /* for each iteration, a MapReduce job is carried out */ 

2．       /* Map stage */ 
3．           /* a map function realizes the behavior of an ant */ 
4．           The ant is randomly put in a starting node; 
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5．           The ant applies a state transition rule to choose a next city to visit until a 
complete solution has been built. /* solution construction */ 

6．           Calculate the fitness of the solution. /* solution evaluation */ 
7．       /* Reduce stage */ 

Pheromone updating rule is realized by a reduce function; 
Until end condition is satisfied, usually reach a given iteration number 

 
Map Function: Firstly, the pheromone values, heuristic information, and all of the 
parameters used in the state transition rule are transmitted into the map function from 
the main function of the MapReduce job. The MRMMAS map function, shown as 
function 1, is called once for each ant in the population. The input dataset is stored on 
HDFS as a sequence file of <key, value> pairs, each of which represents a record in 
the dataset. The number of the record is set as the number of the ant population. So 
the map function would be carried out m  times, where m  is the population of the 
ant swarm. The dataset is split and globally broadcasted to all mappers. Consequently, 
the process of solution construction for the ants is parallel executed. For each map 
task, one ant constructs one solution according to the state transition rule. Then, the 
solution is evaluated and expressed as an output <key, value> pair.  
 

Function 1: MRMMAS Map  
def  mapper(key, value): 

  /* get [ ][ ]n nη , [ ][ ]n nτ , ,α β  from MapReduce job */ 

  /* initialize tabuList */ 
for i=1 to n do 

tabuList[i] = false; 

  /* randomly put the ant in a starting node */ 
  currentPosition = randomInit(n); 
  solution[1] = currentPosition; 
  tabuList[currentPosition] = true; 

  /* construct the solution through state transition rule */ 
for i=2 to n do 

/* calculate the visited probability of each city */ 
for (int j=0; j<city; j++) {  

if (list[j] == false)  { product[j] = , ,*currentPosition j currentPosition j
α βτ η ;} 

       else { product[j] = 0;} 
   }  
     /* randomly select a city to visit according to the probabilities */ 
     currentPosition = randomSelect(product);  
     solution[i] = currentPosition; 
     tabuList[currentPosition] = true; 

/* solution evaluation */ 
  fitness = Fit(solution); 
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  /* output the solution in a <key’, value’> pair */ 
key’= “Solution”;  /* a string “Solution” */  

  Take fitness+solution as vaule’; 
output <key’，value’> pair; 

 

In the above procedure, the constructed solution and its fitness are outputted by a 
<key’, value’> pair. All of the mappers have the same key’, so all of the solutions will 
be summed up together in the reduce step. And the information of different solution is 
expressed in different vaule’. Suppose a TSP solution is [1-2-3-4-5-6-7-1] and its path 
length is 123.45, then vaule’ is a string “123.45+1,2,3,4,5,6,7”.  

Reduce Function: The input of the reduce function is the intermediate <key, value> 
pairs obtained from the map function of each host. As described in the map function, 
each pair includes a solution and its fitness. In the reduce function, we can sum up all 
the solutions constructed in the map step and obtain the best solution in the iteration 
and the best solution from the beginning. Then we can update the pheromone 
according to the pheromone updating rule in MMAS. These results are outputted by a 
<key, value> pair and will be transmitted to all the mappers in the following iteration. 
The pseudo code for MRMMAS reduce function is shown in function 2.  
 

Function 2: MRMMAS Reduce  
def  reducer(key, value_list): 

/* get [ ][ ]n nτ , ρ  and global best solution gBest from MapReduce job */ 

    /* Of all of the solutions, find the best record in the current iteration */ 
    for value in value_list:  
        fitness = getFitness(value);  solution = getSolution(value); 
        if (iBest is null) or (fitness > iBest)  
            iBest = fitness;  iBestSolution = solution; 

    /* update the global best solution */ 
if (iBest > gBest)  { gBest = iBest;} 

    /* pheromone updating */ 
(1 )*τ ρ τ= − ; 

    for all edges(i,j) in iBestSolution 
        best

ij ij ijτ τ τ= + Δ ; 

    /* range pheromone into min max[ , ]τ τ  */ 

    for all edges(i,j) 
        if ( maxijτ τ> )  { maxijτ τ= ;} 

        if ( minijτ τ< )  { minijτ τ= ;} 

  /* output the results in a <key’, value’> pair */ 
Take gBest+gBestSolution as key’;   

  Take [ ][ ]n nτ  as vaule’; 

output <key’，value’> pair; 
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4 Experiments  

In this section, we evaluate the performance of MRMMAS. Experiments were run on 
a cluster of computers, each of which has two 2.8 GHz cores and 4GB of memory. 
Some generally available and typical TSP data sets were used as the test material.  

Considering that MRMMAS performs the same calculations as a serial 
implementation of MMAS, MRMMAS and serial MMAS will achieve the same level 
of accuracy with the same parameter setting. We have compared the quality of 
solutions and thus verified the correctness of MRMMAS. Thereby, the following 
experiments mainly focus on the efficiency of MRMMAS. We will check the average 
execution time per iteration because it shows whether the parallel implementation is 
an improvement. The first iteration of each run was excluded from averages because 
it often ran slightly faster or slower than the rest of the runs due to the initialization.  

Figure 2 shows the average execution time of MRMMAS on the data set kroA100. 
The number we reported is averaged after five runs of MRMMAS, and each run has 
50 iterations of MMAS. From the results, we can see that the running time could be 
effectively reduced as the number of processors grows.  

We use speedup as a measure of scalability. Speedup is defined as the ratio of the 
serial runtime of the sequential time for solving a problem to the time taken by  
the parallel algorithm to solve the same problem on p processing elements [7]. Thus, 
the speedup with p processors is: 1 /p pS t t= . To measure the speedup, we increase 

the number of computers in the system. The perfect parallel algorithm will 
demonstrate linear speedup: a system with p times the number of computers yields a 
speedup of p. However, linear speedup is difficult to achieve because the 
communication cost among the cluster of computers.  

Figure 3 shows the speedup performance of MRMMAS on different test set. From 
the results, we can see that MRMMAS scales well through 32 processors. However, 
the improvement becomes gradually undramatic as the number of processors grows. 
That is because the implementation and communication overhead hindered further 
improvement. Moreover, the speedup performance on large-scale TSP is better than 
those of smaller TSP due to the higher computation proportion.  

 
Fig. 2. Execution times per iteration for MRMMAS on kroA100 
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Fig. 3. Speedup for MRMMAS on different test data set 

5 Conclusions  

Although ACO algorithm has successfully been applied to solve many problems, its 
long running time is always an issue when dealing with large scale problems. This 
paper presents a parallel MMAS algorithm based on MapReduce, which will be 
widely embraced by both academia and industry. In our implementation, the process 
of solution construction will be carried on in different processors. The MapReduce 
system can balance the load dynamically and automatically. We have presented that 
MMAS can be naturally adapted to the MapReduce programming model and the 
experimental results show that it scales well through the computer cluster.  
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Abstract. Hadoop is a distributed system infrastructure of cloud computing. 
Based on the characteristics of ant-based clustering algorithm, the paper 
implements the parallelization of this algorithm using MapReduce on Hadoop. 
The Map function calculates the average similarity of the object with its 
neighborhood objects. The Reduce function processes the objects with the Map 
outputs and updates related information of both ants and the objects to get ready 
for the next job. Results on the Hadoop clusters show that our method can 
significantly improve the computational efficiency with the premise of 
maintaining clustering accuracy.  

Keywords: Ant-based Clustering, Parallelization, Hadoop, MapReduce model. 

1 Introduction 

With the rapid development of information technology, vast amounts of data are 
created throughout the various fields and make the traditional data analysis techniques 
a challenging problem. Clustering as an important topic in data mining can find the 
internal relationships in data without supervision and mine the valuable information 
for further utilizing. However, the sharp growth of data brings the time and space of 
dual challenges to clustering and on the other hand, so the traditional clustering 
algorithms are serially calculated by uniprocessors, the conventional approaches can’t 
cluster data successfully under the limited space and time. Parallel computing 
technology can eliminate the bottleneck of serial clustering task by dividing the data 
sets into several subsets and arranging each subset to each calculation node 
respectively; after the clustering processing by each local node, some merge strategies 
are used to get the final clustering results by collecting clustering results from local 
nodes. MPI (Message Passing Interface) and MapReduce are the most representative 
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calculation model of parallel computing techniques. MPI is the early parallel 
computing model and the realization is very complicated. MapReduce proposed by 
Google is a concise and easy control distributed computing model which has been 
successfully applied to many computing tasks. Hadoop is one of the open source 
project of Apache and it provides a computing framework of MapReduce and a 
distributed file system HDFS which is similar to Google’s GFS; and Hadoop has been 
successfully applied to many fields such as image mining, genome sequence, machine 
translation, grid data analysis, text mining, image analysis and astronomy etc.  

In this paper the parallel ant-based clustering algorithm oriented to MapReduce in 
Hadoop platform is designed, then some datasets are chosen for experiments and the 
results show that the proposed approach improves the performance. 

The rest of this paper is organized as follows. Section 2 states background. Section 
3 introduces the parallel strategy based on MapReduce. Section 4 demonstrates the 
experimental results. Conclusion is drawn in section 5. 

2 Background 

2.1 MapReduce 

MapReduce is a programming model and software framework for developing 
applications that rapidly process massive datasets in parallel on large clusters of 
compute nodes. A MapReduce job is composed of Map function and Reduce 
function, Map automatically partitions the input dataset into a set of splits or shards 
and takes an input pair to the Map function and finally produces a set of intermediate 
key-value pairs. Reduce partitions the intermediate key space into pieces using a 
partitioning function and finally output the summary results. Fig. 1 shows the overall 
flow of the MapReduce operation. 

 

Fig. 1. Flow of MapReduce Operation 
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A Map task firstly reads the contents of the corresponding data split and parses 
key-value pairs out of the input data and finally passes each pair to the user-defined 
Map function. The intermediate key-value pairs produced by the Map function are the 
input of Reduce function which iterates over the sorted intermediate data and for each 
unique intermediate key encountered, it passes the key and the corresponding set of 
intermediate values to the Reduce function. The output of the Reduce function is 
appended to a final output file for this reduce partition. 

2.2 Ant-Based Clustering Algorithm 

The self-organization, distribution, communication with pheromone and cooperation 
between ants are some important features of swarm intelligence. Ant colony 
algorithm can solve many complex problems with simulating this intelligent behavior 
of ants. It is mainly used in communication networks, combinatorial optimization and 
robotics, etc. The Ant Colony Optimization algorithm and Ant Routing algorithm are 
two successful algorithms in swarm intelligence area. Researchers design the ant-
based clustering algorithms by simulating the behavior of ants carrying body and 
foraging. In this paper we use the algorithm proposed by Yang and Kamel in [7] 
which can get better results by improving the basic ant-based clustering algorithm 
through the following method: 

1) Using both Euclidean distance and Cosine distance to measure the distance 
because they can compensate each other. The average similarity of object oi 
with its neighborhood is given by 

2
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where dij denotes the new measurement of distance between oi and oj, and the 
distance is defined by 

0 1( , ) (1 ) ( , ) ,ij euc i j sim i jd d o o d o o εε ε < <= + −  (2)

where ( , )euc i jd o o  denotes the Euclidean distance, and ( , )sim i jd o o  

denotes the Cosine distance. 
2) Used the sigmoid function as the probability conversion function since it is 

nonlinear, it can help to solve linearly inseparable problems. The dropping 
probability for a randomly moving loaded ant to deposit an object is given by 

( ( ))d iP Sigmoid f o=  (3)

and the picking-up probability for a randomly moving ant that is currently 
not carrying an object to pick up an object is defined by 

1 ( ( ))p iP Sigmoid f o= −  (4)
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where 
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3) Increasing the value of c in Eq. (5) to solve the problem that the outliers are 
hard to be dropped by the ants. By this way the convergence of algorithm is 
sped up.  

 
Finally the author [7] used the hypergraph method based on the improved ant-based 
algorithm with different speed of ants to ensemble clustering results. 

3 Parallel Strategy Based on MapReduce 

Given a dataset O = {o1, . . . , on}, O is randomly projected onto a plane without 
replacement, and each object in O is marked by a two-dimensional coordinate Crd(oi). 
For each ant in ant colony A, we assign the location Crd(ai) to be (0,0), and the loading 
state Sta(ai) to be false. Initialize the number of ants: n_ant, maximum number of 
iteration: L, side length of local region: s, and other parameter: ɛ, c, etc. Fig. 2 shows the 
parallel implementation procedure of Ant-based Clustering algorithm. 

Split-1

Split-2

...

Split-k

Controller

Map-1

Map-2

Map-k

...

Reduce-1

Reduce-2

Reduce-p

Map3Split-3

Data Set Updated 
Coordinates

LOOP<L, start the next MapReduce job

LOOP>L,exit

 

Fig. 2. Parallel implementation procedure of Ant-based Clustering algorithm based on 
MapReduce 

Controller is a global phase to initialize parameters and manage the projection 
task. Before each loop of MapReduce job, Controller updates the location Crd(ai) to 
make ai move to another position (if loaded: moving to a free site; if unloaded: 
moving to another site occupied by any object without ant). After L times of 
MapReduce job the Controller can access the updated coordinates of ants. If an 
object is isolated, or the number of its neighbor is less than a given constant, then 
label it as an outlier, else give this object a cluster sequent number and recursively 
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label the same sequent number to those objects who is the neighbors of this object 
within local region. 

At the Map phase processor gets each line data from the split text as the input of 
Map function. With the identifier and coordinate of each ant and object, processor 
computes the similarity of an object within a local region s by formula (1). The < ID, 
fl(oi) > key-value pair is as the output of map procedure, ID is the identify number of 
oi and fl(oi) is the similarity within its local region. 

At the Reduce phase processor computes the global average similarity from 
outputs of map phase. It is computed as: 

'

1

1
( ) ( )

k

i l i
l

f o f o
k =

= ∑ . 
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Then ants pick up or drop the object with the probability calculated from Eq. (3) and (4), 
the processor updates the location Crd(oi) and the state Sta(ai) of ant oi. After completion 
of Reduce tasks, global controller turns into the next round of MapReduce job. 

4 Experiment Results and Analysis 

Experimental environment consists of one server(DELL PowerEdge R710, CPU: Xeon 
X5560 2.8GHz, RAM:8GB, NetCard:1000Mbps) and seven PCs(DELL V260D-566, 
CPU: Intel Pentium DualCore 2.7GHz, RAM:2GB, NetCard: 1000Mbps), the server is 
the master to be designated as NameNode and JobTracker, and the PCs is the slaves and 
datanodes. The ant-based clustering algorithm is tested with both traditional method and 
MapReduce programming model. With the datasets of different domains the 
effectiveness of the algorithm is evaluated according to the experimental results. In our 
experiments we firstly used three datasets Iris (150 instances, 3 classes, 4 attributes), 
Ecoli (336 instances, 8 classes, 8 attributes) and Letter (20,000 instances, 26 classes, 17 
attributes) from UCI to test the strategy, and then we apply the Reuters-21578 collection 
to our experiments which is a standard corpus with 21,578 news. We only sampled 5 
different document collections each consisting of 1000 documents. After the 
preprocessing and normalization of all datasets the Controller initializes some 
parameters that ɛ=0.2, c=0.95, L=1000. And for the important parameter s, we give a 
simple test on each data set with the step 2 in the area [10,50] and apply the value 
obtaining the best clustering result to s. According to [7] the parameter α from Eq. (1) is 
to adjust the dissimilarity between objects, it can determine the number of clustering and 
speed of convergence. And the bigger α makes less clusterings and faster algorithm 
converges, the smaller α, otherwise. The same as [7] our experiment uses a coefficient 
β=0.05 to replace for parameters α, v and s. 

4.1 Evaluation  

To compare the quality of clustering an external evaluation criterion called F-measure 
is used here. The F-measure of cluster j and class i is defined by 

2 ( , ) ( , )
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where 

( , ) ij
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where Nij is the number of class i in cluster j, Nj is the number of members of cluster j 
and Ni is the number of members of class i. 

4.2 Experiment Results 

We compare the average F-measure of traditional method with MapReduce model on 
the dataset, and Fig. 3 shows the details of F-measure in our experiment with different 
number of ants. 
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Fig. 3. The value of F-measure from traditional method and MapReduce model 
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As shown in Fig. 3 there is no obvious advantage between the traditional method 
and MapReduce model on the datasets, it is a crossing in the shape of wave form. 
Taken as a whole, clustering precision cannot be significantly improved. 

Hadoop can improve the global algorithm efficiency through multiple slaves. In 
our experiment we also run the parallel Ant-based Clustering algorithm with different 
number of slaves, and we change the number of slaves from 1 to 8 with step 1. The 
experimental result is shown in Figure 4, it clearly shows that algorithm gets a better 
performence when 4 slaves are used, and the execution time is decreasing when more 
slaves from 1 to 4 are used. 
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Fig. 4. Speedup of Ant-based Clustering algorithm with different slaves on Hadoop 

Moreover, with the comparison of experimental results from Fig. 4, it shows that 
the Hadoop cannot reduce the execution time on the small datasets Iris and Ecoli 
when the number of slaves is more than 4. On the other hand Hadoop can get less 
execution time with the larger dataset Letter and Reuter-21578 when the slaves 
increase. It also notes that the number of slaves is not proportional to the 
computational efficiency, and there will be different optimal number of slaves for 
various datasets. The communication procedure will take the most of the execution 
time on the small datasets, however the larger datasets can work well because the 
network communication time can be neglected. 

5 Conclusion 

In this paper we briefly introduce the principal of MapReduce and Ant-based 
Clustering algorithm, the parallel method for Ant-based Clustering algorithm is 
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proposed on the Hadoop platform. The experimental results show that the algorithm 
can save the global execution time of algorithm with no obvious fluctuations of 
accuracy when using the proposed method. In addition it is shown that the larger 
dataset is more suitable for running on Hadoop because the network communication 
time will take a small proportion of the global execution time. 
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Abstract. Considering the complete process of surgery including the 
preoperative and postoperative stages, multiple resource constraints involved and 
the integration of surgical upstream and downstream resources, surgery 
scheduling was described as an extended multi-resource constrained flexible 
job-shop scheduling problem and an optimization approach was proposed based 
on an improved ant colony algorithm. A resource selection rule and strategy of 
overtime judging and adjusting was designed, and the scheduling process with 
the ant colony algorithm was realized. The case study shows that the improved 
ant colony algorithm proposed in this paper achieved good results in shortening 
total time and allocating resources for surgery scheduling. 

Keywords: surgery scheduling, ant colony algorithm, multi-resource 
constrained job-shop, flexible job-shop. 

1 Introduction 

As the cost and income center of a hospital, the operating room has a significant impact 
on the profitability of the whole hospital [1]. Hence, an efficient surgery scheduling 
system is in demand so as to maximize the operating room efficiency, increase the 
number of operations performed daily, and achieve appropriate resource allocation. 
From the review of current literature, some researchers evaluated the surgery 
scheduling by employing a simulation [2]. Most studies describe surgery scheduling as 
a combinatorial optimization problem, and the commonly used technique is 
mathematic programming such as goal programming [3], Branch-and–price [4], and 
column generation [5]. Since surgery scheduling is regarded as an NP-hard problem, it 
can be modeled by the classical shop scheduling models, such as the Job-shop [6] and 
flow-shop scheduling problems [7, 8]. However, the limitation of that research lies in 
the fact that either the multi-resource constraints are not considered or are limited 
among a few fixed modes. Recently, meta-heuristic algorithms have been recognized as 
useful methods for solving scheduling problems. Among the various meta-heuristic 
algorithms used in surgery scheduling, Genetic algorithm (GA) is used most, with the 
simulated annealing algorithm (SA) [9] and Tabu search algorithm (TA) [10] also 
frequently employed. They perform well in solving the deterministic NP-hard 
problems. Due to the kinds of uncertainties endemic in operating room management 
such as the arrival of an emergency and temporary cancellation, or postponement etc., 
surgery scheduling should be regarded as a dynamic scheduling problem. The ant 
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colony algorithm, successfully applied to the traveling salesman problem (TSP) by 
Dorigo et al, is distinguished by positive feedback and self-organizing, making it more 
capable to apply in complex scheduling problems with uncertainties. However, so far 
no researcher has applied the Ant colony algorithm to attempt to solve the surgery 
scheduling problem. 

In this paper, surgery scheduling is represented as an extended multi-resource, 
constrained flexible job-shop scheduling problem and is solved by an improved Ant 
colony algorithm. The remainder of the paper is organized as following: Section 2 
presents the surgery scheduling problem description; Section 3 proposes the improved 
Ant colony algorithm for surgery scheduling; Section 4 is the case study which 
compares our algorithm with other surgery scheduling research, and the final section is 
the Conclusion.   

2 Surgery Scheduling Problem  

Surgery scheduling is described as an extended multi-resource constrained flexible 
job-shop scheduling problem. We assume that there are M resources (including 
operating rooms, nurses, etc.), S surgeons, and N surgeries to be performed in an 
operating system. Every surgery has three stages (the pre-operative stage, the 
peri-operative stage, and the post-operative stage) and their sequence has been 
determined in advance Different types of surgeries have different resource constraints. 
Whether each stage can start successfully is restricted not only by the variety of 
resources, but also by the performance of each previous stage. Each surgery can be 
performed by several surgeons, and its operating time varies by surgeon. The 
scheduling goal is to select the best resources and surgeons, determine the various 
surgeries’ operating sequences, and get the shortest makespan, considering the 
variation of types and quantity of resources and the mutual constraint of their available 
time. Several assumptions are listed as following: 

1. One resource (including surgeons) can only be allocated in one surgery at a 
time. 

2. The operating sequence of three stages must be followed completely and in 
subsequent order. 

3. All the surgeries are ready to be performed at a moment’s notice. 
4. A stage cannot be interrupted or stopped, once it has started. 
5. The operating time of a surgery performed by a specific surgeon has been 

determined before the scheduling. 
6. All surgeries have the same priority. 
7. There is no order constraint between stages of different surgeries. 
8. The transferring time between stages in the same surgery can be neglected. 

3 Ant Colony Algorithm for Surgery Scheduling 

An improved ant colony algorithm is proposed to solve the extended multi-resource 
constrained flexible job-shop scheduling problem. 
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3.1 Algorithm Description 

Surgery scheduling can be signified by a disjunctive graph including nodes and arcs to 
make the problem more operable with ant colony algorithm. Each node represents a 
stage in a surgery and a surgery always has three nodes. Directed arcs are used to 
indicate an operating order that stages in one surgery must be in accordance with. Ants 
move and search in the graph, through traversing all nodes to generate the full problem 
solution. The surgery scheduling problem thus can be transformed into the problem of 
searching best path in the graph.  
 

 

Fig. 1. Algorithm flow chart 

The flowchart of the proposed ant colony algorithm for surgery scheduling is shown 
in Fig.1. Compared to the general ant colony algorithm, several additional processes 
like resource selection and overtime adjustment are further proposed to realize the 
multi-resource constrained flexible job-shop scheduling problem.  

3.2 Resource Selection Rule 

Different types of surgeries may have different resource requirements, and the 
operating time of surgeries vary with each surgeons’ experience and skill. Each stage of 
a surgery involves multiple resources, so the starting time of a stage is not only affected 
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by the performance of the former stage but also influenced by the required resource 
constraints at this stage. Thus, an optimal resource allocation can improve the quality of 
the whole scheduling and minimize the makespan. 

Heuristic rules have the advantage of low computation complexity and are selected 
to allocate resources. Our resource selection rule is called “ASAP” (as soon as 
possible), i.e., choosing those resources that allow the stage to start as soon as possible. 
The starting time of this stage is determined after finishing its resource allocation. EXij 
is the finishing time of the predecessor stage of stage j of surgery i, thus if this stage is 
the first stage of the surgery, EXij=0; Rijmk denotes the earliest releasing time of resource 
k of kind m needed by stage j of surgery i at the virtual scheduling moment t. If at the 
moment the resource is not to be utilized, Rijmk=0. STij is the starting time of stage j of 
surgery i.  

max{ , max{min{ }, }}
ijij ij ijmkST EX R m L= ∈ （O） . (1)

3.3 The State Transition Rule 

Ants build solutions using a probabilistic transition rule. In the searching process, ants 
calculate the state transition probability according to the amount of pheromone and 
heuristic desirability. The probability that the ant will choose node j from node i is 
denoted as Pij(t): 

( )
( ) ( )

( ) ( )
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0
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ij is is
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t t
,     if j S

P t t t

                           otherwise
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α β

τ η
τ η

⊂

⎧ ∗
∈⎪= ∗∑⎨

⎪
⎩

 . (2)

where S0 is the feasible nodes set, including nodes to be scheduled whose pioneers have 
been completed; τij(t) is the pheromone intensity between node i and j; ηij(t) is a 
problem-specific function, representing the visibility from node i to node j; α and β are 
two parameters which determine the relative influence of the pheromone trail and the 
heuristic information.  

To minimize the makespan, we construct the visibility function (i.e. ηij(t)) based on 
the earliest starting time of the nodes. STj is the earliest starting time of node j: 

( ) 1  ,    1 0
t j SSTij j

η = ∈+  . (3)

The next node to be chosen is based on the probability Pij(t) with a roulette wheel 
mechanism used to make the selection. 

3.4 Overtime Adjustment 

Generally speaking, hospitals institute an eight-hour working day system. To make the 
scheduling results closer to actual situation, we should judge and adjust the starting 
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time of operation to guarantee that surgeries can be finished within the working time as 
much as possible. The working time interval of a particular day k is defined as [TSk,TEk], 
then the next working time interval is [TS(k+1),TE(k+1)]. 

If the earliest starting time of a surgery is out of the working time interval, to avoid 
working overtime, we will adjust the starting time to the next neighboring working time 
interval, i.e.: 

If [ ]1 2( ) ( )max{ } ,
IJ IJi i L ij L Sk EkST T T T T+ + + ∉ , then 1 ( 1)i S kST T +=  . (4)

Notably, we restrict the peri-operative stage in every surgery performed within the 
working time interval to reduce overtime costs and to help manage the workload of 
medical workers, i.e.: 

If [ ]2 2( ) ,
IJi i L Sk EkST T T T+ ∉ , then 2 ( 1)i S kST T +=  . (5)

3.5 The Pheromone Update Rule 

A pheromone local update rule and a pheromone global update rule are used in this 
improved Ant colony algorithm to deal with the residue pheromone. 

In the searching process of each ant, the ant updates the pheromone after visiting 
each node: 

( ) ( ) ( ) 01ij ijt n tτ ρ τ ρ τ+ = − ∗ + ∗  . (6)

Where ρ denotes the pheromone evaporation rate; τ0 is the initial pheromone value. By 
local pheromone updating, the possibility of ants crawling through the same path 
decreases, thus it can effectively avoid the algorithm falling into stagnation. 

After all the ants finish traversing the nodes, the ant with the best schedule in the 
iteration updates the trails as follows, 

( ) ( ) ( ) ( )1ij ij ijt n t tτ ρ τ τ+ = − ∗ + Δ  . (7)

( )
0,

ij k

Q
,    if ant k goes through(i,j) in this iteration

t L
                                                  otherwise  

τ
⎧⎪Δ = ⎨
⎪⎩  . 

(8)

Where Δτij(t) is the incremental pheromone on the edge (i,j); Q is a adjustable 
parameter; Lk is the makespan of a solution. 

4 Case Study 

The ant colony algorithm in this paper is coded in MATLAB in the running 
environment of MATLAB 7.11.0 and Windows 7.The program is run on a PC with an 
Intel Core i3 CPU.  
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The instance from Pham of [6] is used to compare and prove the performance of the 
algorithm. The test instance contains 10 surgeries. One nurse is needed at the 
preoperative stage of each surgery, and resources utilized during the perioperative stage 
include operating room (OR), surgeon, nurse and anesthetist. A PACU bed or ICU bed 
is needed at the postoperative stage. In all, there are two operating rooms, three nurses, 
three surgeons, two anesthetists, one PACU and one ICU. 

In the article of Pham et al, Every OR is staffed with one nurse and one anesthetist, 
and a preoperative nurse works only for the preoperative preparation stage. They 
allocate resources in a fixed resource mode, and formulate the problem as a mixed 
integer linear programming model, the scheduling result as shown in Fig.2. The Gantt 
chart actually includes the scheduling arrangement of 9 surgeries. Data in the literature 
[6] show that 10 surgeries were not arranged wholly within the working time of two 
days. Surgery 4 was delayed to the third working day and finished 3 hours after the 
third working day started. 

Ensuring resource demand of stages and the number of all the resources in 
correspondence with literature [6], we release the fixed resource modes and make every 
resource available to combine with any other resources at the right time. Meanwhile in 
view of integration of resources, nurses can be allocated free. With the parameters 
setting shown in Table 1, the improved ant colony algorithm proposed above is used to 
solve this instance and the corresponding Gantt is shown in Fig.3. 

As shown in the Gantt chart of our scheduling result, 10 surgeries were arranged 
reasonably within two working days and there was no delay. When all the 10 surgeries 
were finished, there was 2.5h left until the second working day end. 

To further verify our algorithm’s effectiveness, we experiment with an actual 
instance from the affiliated hospital of Ningbo University. The operating theater 
comprises ten operating rooms and twenty surgeons and there are severally five beds in 
ICU and PACU. Thirty-eight surgeries are scheduled in one day. The experimental 
results are showed in Table 2, compared with actual scheduling. Standard deviation 
(STDEV) is used to measure the balance of resources’ utilization. 

 

Fig. 2. Gantt chart of Pham’s scheduling result 

Table 1. Parameters setting of ant colony algorithm 

Max Iterations Quantity of ants Evaporation rate Q α β 
100 30 0.5 100 1 1 
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Fig. 3. Gantt chart of our scheduling result 

The majorities of departments in hospital have more than one surgeon available in a 
day, so surgeries should be equally allocated to surgeons in a department as far as 
possible. The value of STDEV of surgeons’ working time in a department can reflect 
the balance of surgeons’ utilization in a scheduling. Fig.4 compares the condition of 
each surgeon’s utilization in actual scheduling and our scheduling. 

From the Table 2 and Fig.4, we see that both the makespan index and the balancing 
utilization index of our scheduling are better than those of actual scheduling. The 
experiment results show that the improved ant colony algorithm proposed in this paper 
has good performance on shortening total time and allocating resources for surgery 
scheduling.  

Table 2. Computational results compared with actual scheduling 

 Makespan 
(min) 

Overtime 
(min) 

STEDV of OR’s 
working time 

STEDV of nurse’s 
working time 

Actual 
scheduling 

561 81 73.4 87.3 

Our 
scheduling 

473 0 57.3 69.4 
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5 Conclusion 

In this paper, we present an improved ant colony algorithm to solve surgery scheduling 
problem. In consideration of a complete process of surgery including preoperative and 
postoperative stages, multiple resource constraints involved and the integration of 
surgical upstream and downstream resources, surgery scheduling is treated as an 
extended multi-resource constrained flexible job-shop scheduling problem. To get an 
optimal resource allocation and minimize the makespan, we apply a resource selection 
rule called “ASAP” (as soon as possible), and to make the scheduling results closer to 
reality, a strategy of overtime judging and adjusting is added to our algorithm. 
Experimental results on both the test instance from literature [6] and the actual instance 
from a hospital show that the algorithm can solve the surgery scheduling problem 
effectively. It performs well in shortening total time and allocating resources for 
surgery scheduling.   
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Abstract. One of the obstacles in applying ant colony optimization (ACO) to 
the combinatorial optimization is that the search process is sometimes biased by 
algorithm features such as the pheromone model and the solution construction 
process. Due to such searching bias, ant colony optimization cannot converge to 
the optimal solution for some problems. In this paper, we define a new type of 
searching bias in ACO named feedback bias taking the k-cardinality tree 
problem as the test instance. We also present a method for avoiding the 
feedback searching bias. Convergence analysis of our method is also given. 
Experimental results confirm the correctness of our analysis and show that our 
method can effectively avoid the searching bias and can ensure the convergence 
for the problem. 

Keywords: ant colony optimization, deceptive problems, K-cardinality tree 
problem, solution convergence. 

1 Introduction 

Ant colony optimization (ACO) [1-4] is a popular method for hard discrete 
optimization problems. Due to its strong ability of optimization, ACO has been 
applied to solve problems in many areas. Numerous publications in a large variety of 
fields, particularly the combinational optimization problems, demonstrate the broad 
applicability and the excellent performance of ACO.  

One of the obstacles in applying ACO to the combinatorial optimization is that the 
search process is sometimes biased by algorithm features such as the pheromone 
model and the solution construction process. The performance of ACO algorithms 
may decrease over time, depending on the pheromone model and the problem 
instance tackled. This behavior caused by the bias is clearly undesirable, because in 
general it worsens the probability of finding better solutions over time. Blum and 
Sampels [5,6] studied the application of ACO algorithms to shop scheduling 
problems. They discovered the bias in the search process. In a similar line of work, 
Merkle and Middendorf [7,8] studied the bias of a simple ACO by analyzing the 
dynamics of its model when applied to permutation problems. They discovered that in 
                                                           
* Corresponding author. 
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ACO applied to the permutation problem, the latter decisions of the construction 
process are entirely biased by the earlier one. Montgomery et al.[9,10] studied the 
searching bias of ACO on the assignment problem, and attributed search bias to 
different algorithmic components. They defined two types of searching bias in ACO, 
namely representational bias and construction bias. Due to such searching bias, the 
search process of ACO is sometimes misled. Ant colony optimization cannot 
converge to the optimal solution for some problems which are called deceptive 
problems. To achieve high optimization performance of ACO on such problems, it is 
important to find an effective method to avoid such searching bias in the process of 
optimization.  

In this paper, we define a new type of searching bias in ACO named feedback bias. 
We prove the existence and influence of feedback bias in ACO taking the  
k-cardinality tree problem as the test instance. We also present a method for avoiding 
the feedback searching bias. Convergence analysis of our method is also given. Our 
experimental results confirm the correctness of our analysis and show that our method 
can effectively avoid the searching bias and can ensure the convergence the  
problem.  

2 Feedback Bias in ACO and the k-Cardinality Tree Problem 

ACO is designed for solving constrained optimization problems. In the search space S 
of an optimization problem, let Xi, i = 1,…,n be the n decision variables, where Xi can 

take values from the set },...,,{ ||11 iD
iiii CCCD = . A variable assignment is written 

as ),...,2,1( niCX j
ii == . A complete assignment to all Xi gives a solution 

instantiation. The set of all such complete assignments is denoted as S. We also 

denote the set of all solution components as }||,...,1,,...1{ i
j

i DjniCR === .  

A feasible solution s* is a global optimum if its fitness f(s*) ≥ f(s) for all s∈S.  
 

Definition 1. For a solution component j
iC , we use j

iG to denote the set of solutions 

whose j-th component is j
iC  , namely, }|),...,,{( 21

j
iin

j
i csSsssG =∈= . We 

define the expected fitness of solution component j
iC  as the summation of the fitness 
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iG  : ∑

∈

=
j

iGs

j
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Definition 2. Given a constrained optimization problem P, let its optimal solution be 
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*
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nxxxx = . Suppose solution component ik

iC  has the highest fitness in 

n
iii ccc ,...,, 21 . The solution 1 2
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Definition 3. Given a constrained optimization problem, let its optimal solution be 

),...,,( **
2

*
1

*
nxxxx = . Let 

maxc  be the expected solution of the problem. ACO 

algorithm applied to a given constrained optimization problem is said to have a 

feedback bias if 
max

* cx ≠ . 

From the definition, we can see that 
maxc  is the solution consists of the components 

with the highest expected fitness. Therefore, if feedback bias occurs in ACO, the 
search process is likely misled to 

maxc , instead of the real optimal solution x*. Due to 

such feedback bias, ant colony optimization cannot converge to the optimal solution 
for some problems. For instance, when ACO is applied to the k-cardinality tree 
problem, feedback bias occurs and makes it a deceptive system [2]. 

For understanding how the feedback bias affects the performance of ACO, we 
study this issue on the k-cardinality tree (KCT) problem, which is a generalization of 
the well-known minimum spanning tree problem . It is defined as follows:  

Given is an undirected graph G=(V,E), where |V|=n, |E|=m, with edge-weights 

EeNew ∈∀∈ + ,)( . The set of all trees in G with exactly k edges is henceforth 

denoted by kΓ . The goal is to find a solution kkS Γ∈  that minimizes 

∑
∈

=
kSe

k ewSW )()( . We assign a binary decision variable se to each edge Ee∈ . If 

se =1 then e is part of the k-cardinality tree that is built. We consider the problem of 
solving 2-cardinality tree as shown in Figure 1. 

 

Fig. 1. Instance of 2-cardinality tree problem 

The weight settings for this instance are w1=w4=1, w1=w4=2. We denote a 
solution using a vector S=(s1,s2,s3,s4). It is obvious that the possible solutions are 
S1=(1,1,0,0), S2=(0,1,1,0), and  S3=(0,0,1,1,). We define the fitness of the edge e 
with weight w(e) as f(e)=20-w(e), and the fitness of a solution Sk as 

)()( ∑
∈

=
kSe

k efsf . Fitness of the solutions are listed in Table 1.  

Table 1. Fitness of the solutions 

solution s1 s2 s3 s4 W(Sk) f(Sk) 
S1 1 1 0 0 3 0.3 
S2 0 1 1 0 4 0.25 
S3 0 0 1 1 3 0.3 
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From the table, we can see that f(S1)=0.3, f(S2)=0.25, f(S3)=0.3. Obviously, the 
global optimum is S1=(1,1,0,0) and S1=(0,0,1,1).  

To solve the 2-cardinality tree problem, we use m ants in the algorithm. Each ant is 
represented by a bit vector S=(s1,s2,s3,s4), here sj=0,1, j=1,2,3,4.  In each iteration, an 
ant sequentially fixes the j-th bit of S in order of  j = 1, 2,3,4. For the j-th bit, the ant 

has two choices 0
jc  and 1

jc , corresponding to setting the j-th bit to 0 and 1 

respectively. The pheromone of 0
jc  and 1

jc  are 0
jτ and 1

jτ  respectively. 

Define the set { }1 2 3 4( , , , ) | , 0,1k
j jG s s s s S s k k= ∈ = =  where sj is the value 

of the j-th bit. Hence, k
jG  is the set of binary numbers whose j-th bit is k. We define 

the function ∑
∈

=
k
jGs

k
j sfGF )()(  as the summation of the fitness of all the numbers 

in k
jG . 

For the instance in Table 1, we have 55.0)( 0
1 =GF , 3.0)( 1

1 =GF , 

3.0)( 0
2 =GF , 55.0)( 1

2 =GF , 3.0)( 0
3 =GF , 55.0)( 1

3 =GF , 

55.0)( 0
4 =GF , 3.0)( 1

4 =GF . Since )()( 1
1

0
1 GFGF > , )()( 0

2
1
2 GFGF > , 

)()( 0
3

1
3 GFGF > , )()( 1

4
0
4 GFGF > , the expected solution of the problem is 

)0,1,1,0(max =c , which is not the real optimal solution of the problem. Feedback 

bias may occur in classical ACO solving 2-cardinality tree problem.  

3 The Algorithm for Avoiding the Feedback Bias in ACO 

To avoid the feedback searching bias in the ACO, we present an algorithm named 
BA-ACO (Bias-Avoiding ACO). We illustrate the algorithm taking the KCT problem 
as an instance.  

Denote the bits of an KCT as G={bit1,bit2,…,bitn}. In algorithm BA-ACO, the artificial 
ants travel on a digraph DG where the j-th vertex is labeled by bitj as shown in Figure 2. 

There are two arcs named 0
jC and 1

jC linking two adjacent vertexes bitj and bitj+1. If an 

artificial ant at bitj selects arc 0
jC  (or 1

jC ), a bit '0' (or '1') is assigned to bitj. When an ant 

completes the search from bit1 to bitn+1 , the arcs on its trace form a solution. In algorithm 

BA-ACO, ants at node bitj has two paths 0
jC  and 1

jC  to reach the next node bitj+1.  

We use )(tPk
j  defined in (10) to denote the probability for an ant on node bitj  to choose 

the path k
jC  (k = 0,1): 
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Here, )(tk
jτ  is the pheromone on the arc k

jC  between nodes bitj and bitj+1 at time  

t, and it reflects the potential tend for bitj  being assigned k (k=0,1). This forms a 
positive feedback conducting the ants’ searching towards the optimal solution. We set 

the initial value of k
jτ  as )()0( k

j
k
j GF=τ , and set the value of k

jη as )( k
jGF ,  

(k = 0,1). 

 

Fig. 2. The digraph  

We use a fitness function to measure the quality of a scheme of bisecting. We 
assume that the subset of the k-th ant search is: G={X1,X2,X3,X4....Xn}. We can get the 
fitness of this solution from Table1. 

In every iteration, algorithm BA-ACO updates the pheromone value on each arc 

according to formulas (2) and (3). Obviously, the more ants choose k
jC  on bitj, the 

more increment of pheromone should be assigned on the arc k
jC  so that the ants 

could select the arc k
jC  with higher probability in the next iteration. Therefore, in 

each iteration, the pheromone on arc k
jC  is updated as follows.  

)()()1( ttt k
j

k
j

k
j τρττ Δ+=+

 
(2) 

Here, 

∑
∈

=Δ
k
jSs

k
j

k
j sf

S
t )(

||

1
)(τ  (3) 

In (3), k
jS  is the set of solutions generated at the t-th iteration with k

jC  as the  

j-th bit.  
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In each iteration, algorithm BA-ACO updates the pheromone value by the best ant 
so far, the formula as follows: 

)1()1()1( +++=+ tQtt k
j

k
j

k
j ττ  (4) 

Here, 

⎪⎩

⎪
⎨
⎧ ∈

=
−

otherwise

scGF
tQ best

k
j

jb
jk

j
0

)(
)(

)(1

 (5) 

In (5), sbest is the best solution found so far, and  Q is a positive constant.  
We set up a threshold Nc to be the maximum number of iterations. The iterations 

should be ended when the number of iterations goes beyond Nc. 

4 Convergence Analyses of the Algorithm BA-ACO 

In this section we prove that the BA-ACO algorithm can converge to the optimal 
solution and can effectively avoid the searching bias for the KCT problem. First we 
give the following Lemmas. 

Lemma 1. The pheromone in the t-th iteration of BA-ACO satisfies:  

[ ] )1,0,,...,2,1()(
1

1
)( ==+

−
≤ knjQGFt k

j
k
j ρ

τ  (6) 

 
Lemma 2. The pheromone in the t-th iteration of BA-ACO satisfies  

),...,2,1,10()(
1

1
)( 0

!
0 njGFt j

t

j =<<
−

−≥
+

ϕϕ
ρ

ρτ  (7) 

Lemma 3. For any integer n and real number )1,0(∈ρ , there exists a positive 

integer t0 such that n
t

t
11

1

1 −+

>
−

−
ρ

ρ
 for any 0tt > . 

Proofs of Lemmas 1 to 3 are omitted due to the limited space.  

From Lemmas 2 and 3, we see that when t is large enough, )()( 0
1

0
j

n
j GFtt ϕτ

−
≥ . 

We set )(),( 0
1

0
min j

n GFttj ϕτ
−

= . Since the value of )( 0
jGF is independent  

of j, we can denote )( 0
jGF  as )( 0GF , and ),(0

min tjτ  as )(0
min tτ ,  
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namely: )()( 0
1

0
min GFtt nϕτ

−
= . We define =)(max jkτ [ ]QGF k

j +
−

)(
1

1

ρ  
)1,0,,...,2,1( == knj . Since the value of )( k

jGF is independent of j, we 

define [ ]QGF kk +
−
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1

1
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τ , and },max{ 1
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0
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Theorem 1. At least one ant in the BA-ACO algorithm can reach the optimum 

solution *s . 
 
Proof. Although there are multiple ants, we need only to prove that one ant can reach 

the optimum solution *s  in order to establish the result. Let P(t) be the probability 

that the ant can find the optimal solution *s  in the t-th iteration, and 1-P(t) be the 
probability that it cannot find the optima in this iteration. From Lemma 3 and  
Lemma 4, we know that for t>t0 : 
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Here, t0 is as defined in Lemma 4. Therefore we have 
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Let )(TPsucc and )(TPfail , respectively, be the probabilities that the ant does and 

does not find S* in the first T iterations, then we have 
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We know 0)1(lim
|1|

=−∏
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∞>−

T

t
T tγ

γ
,  therefore 0)(lim =

∞→
TPfail

T
, and thus 

1)(lim =
∞→
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T

 . 

                                          Q.E.D. 
From Theorem 1, we can see that BA-ACO algorithm can converge to the optimal 
solution, namely, at least one ant can reach the global optimal solution in the process.     

5 Experimental Results and Analysis 

To test the effectiveness of our method, we implement the BA-ACO algorithm on the 
KCT problem on Pentium IV, Windows XP, P1.7G, using V C++ 6. 0. 

In our experiments, we set evaporation rate ρ = 0.9, the number of ants m=20. 
We set different fitnesses of S0 and S2 form 0.26 to 0.33 to test the convergence  
of the algorithm on KCT problem. We make 1000 trials, and record the 
percentage of the trials which reach the optimal solution. The test results are 
shown in Table 3.  

Table 2. The test results of the algorithm BA-ACO and the ACO 

f（Sx）
(x=0,2) 

ACO BA_ACO 
S0 S1 S2 S0 S1 S2 

0.26 25 946 29 433 103 464 
0.27 32 930 38 446 110 454 
0.28 54 893 53 465 93 452 
0.29 57 880 63 452 95 453 
0.3 72 866 62 441 107 452 

0.31 69 850 81 370 111 529 
0.32 80 831 89 412 106 482 
0.33 90 810 100 510 90 400 

 
From Table 3, we can see that algorithm BA-ACO has high probability to reach  

the optimal solution on the KCT problem. We also test classical ACO to compare the 
percentage of trials reaching the optimal solution with BA-ACO. Figure 3 shows the 
comparison of the results.  

We define 
)(

)(
)(

)(

)(1

t

t
tw

jb
j

jb
j

τ
τ −

= . It is obvious that if the value of )(tw  approximates 0 

in the iterations of an ACO algorithm, the pheromone will concentrate on the paths of the 
optimal solution, and the ACO can converge to the optimal solution. Figure 4 shows the 
value of )(tw  in each iteration of BA-ACO.  
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Fig. 3. Comparison of the percentage of trials reaching the convergence of solution by  
BA-ACO and classical ACO  

 

Fig. 4. The value of )(tw in each iteration of BA-ACO  

From Figure 4 we can see that the value of )(tw decreases after iterations and convergences  

to 0. This confirms that 0
)(

)(
lim

)(
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⎥
⎥
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⎤

⎢
⎢
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⎡ −
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t
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j
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t τ
τ

 in BA-ACO, and show that BA-ACO can 

converge to the optimal solution in solving the KCT problem. 

6 Conclusions 

Due to the searching bias, ant colony optimization cannot converge to the optimal 
solution for some problems. We define a new type of searching bias of ACO named 
feedback bias in addition to the other existing types of biases of ACO. We prove the 
existence and influence of feedback bias in ACO taking the k-cardinality tree problem 
as the test instance. We also present a method for avoiding the feedback searching  
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bias. Convergence analysis of our method is also given. Our experimental results 
confirm the correctness of our analysis and show that our method can effectively 
avoid the searching bias and can converge to the optimal solution.    
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Abstract. Mathematical models of biogeography inspired the development of 
the biogeography-based optimization algorithm. In this article we propose a 
binary version of biogeography-based optimization (BBO) for the Knapsack 
Problem. Two new mutation operators are proposed to extend the 
biogeography-based optimization algorithm to binary optimization problems. 
We also demonstrate the performance of the resulting new binary 
Biogeography-based optimization algorithm in solving four Knapsack problems 
and compare it with that of the standard Genetic Algorithm. The simulation 
results show that our new method is effective and efficient for the Knapsack 
problem.  

Keywords: Knapsack Problem, Biogeography-based optimization, Migration 
operator, mutation operator. 

1 Introduction 

Knapsack problems have been widely studied not only because of their immediate 
application in industry and financial management, but also more pronounced for 
theoretical reasons. Many industrial problems such as resource allocation, investment 
decision-making, and hold loading can be modeled as Knapsack problems.  
The Knapsack problem can be described as follows. Given a set of items, each with a 
value iv and a weight iw , determine how often each item should be included in a 

collection so that the total weight is less than or equal to a given limit ( W ) and the 
total value is as large as possible. The most common formulation of the problem is the 
0-1 Knapsack problem, where each item can either be included one time or not at all, 
which can be mathematically formulated as: 

 
(1)
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Recently, many exact algorithms and nature-inspired algorithms have been proposed 
to cope with the Knapsack problem [1-8]. However, several methods of them often 
can only provide locally optimal solutions. 

The biogeography-based optimization algorithm is a new nature-inspired 
computation technique proposed by Simon in 2008 [9]. It is originally designed for 
unconstrained integer programming problems. In this paper, we propose a novel 
binary BBO for Knapsack problems. To the best of our knowledge, this is the first 
application of BBO to the Knapsack problem. 

The rest of the paper is organized as follows. Section 2 gives an overview of BBO. 
A novel Binary BBO with two mutation operators for the Knapsack problems is 
presented in section 3. Four Knapsack Problems with different sizes are used to 
compare the performance of the Binary BBO with that of the Genetic Algorithm in 
section 4. Section 5 concludes this paper. 

2 Biogeography-Based Optimization Algorithm 

2.1 Mathematical Model of BBO 

Biogeography studies the migration, speciation, and extinction of species from one 
island to another. With the mathematical models in the Biogeography, Simon (2008) 
proposed the BBO algorithm [9], which is an example of how a natural process can be 
modeled to solve general optimization problems. Islands that are well suited as 
habitats for biological species are said to have a high habitat suitability index (HSI). 
Islands with a low HSI have a small number of species, whereas islands with a high 
HSI have many species that emigrate to nearby islands because of the accumulation of 
random effects on its large populations. Emigration occurs as animals ride flotsam, 
fly, or swim to neighboring islands [10, 11]. 

Suppose that we have some problem, and that we also have several candidate 
solutions. A good solution is analogous to an island with a high HSI, and a poor 
solution is like an island with a low HSI. High HSI solutions are more likely to share 
their features with other solutions, and low HSI solutions are more likely to accept 
shared features from other solutions. This approach to problem solving is called 
biogeography-based optimization. 

2.2 Migration Operator 

In biogeography, species may migrate between islands. In BBO, the solution features 
may affect each other between islands. For the sake of simplicity, we set IE =  and 
two solutions are given in Figure 1. Figure 1 illustrates the migration curves along 
with two solutions. 1S  represents a poor solution and 2S  represents a good solution. 
The immigration rate for 1S  will therefore be larger than the immigration rate for 2S , 
and the emigration rate for 1S  will be smaller than the emigration rate for 2S . 
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Fig. 1. Illustration of two solutions 

The BBO uses the migration rates of each solution to probabilistically share features 
between solutions. The migration operator in the BBO is as follows. The immigration 
curve is used to probabilistically decide each feature whether or not to immigrate in 
each solution. If a given solution feature is selected to be immigrated, then the 
emigrating island is selected probabilistically. The pseudo code of the migration 
operator is presented in Figure 2. 

 

 

Fig. 2. Migration Operator 

2.3 Mutation Operator 

Cataclysmic events can drastically change the HSI of a natural habitat. An island 
habitat’s HSI can therefore change suddenly due to apparently random events.   
In the BBO, a mutation operator can be derived from this.  The species count  
 

rate

E=I

λ μ

smaxs1 s2
species

 // NP is the size of population, D is the dimension size 
1：For i=1 to NP 
2：Select the iH  with probability iλ  
3：If iH  is selected, then 
    For j=1 to D 
4：Select the jH  with probability iμ  
5: If jH  is selected, then 
6:  to generate a random integer ],1[ Dk ∈  
7: let jkik HH =   
8：endfor 
9: endfor 
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probabilities are used to determine mutation rates. The mutation rate is given in formula 
(2) [10].  

)
1

()(
max

max P

P
mSm s−=

 

.

 

(2) 

where maxm  is a user-defined parameter.  

The mutation operator is given in figure 3. 

 // NP is the size of population, D is the dimension size 
1：for i=1 to NP 
2 ： Using the formula (2)to calculate mutation 

probability iP   
3：select SIV in )( jH i  with probability )( jPi  
4：if )( jH i  is selected, then  
5：Replace the )( jH i  with a random generated SIV 
6: endfor 

 

Fig. 3. Mutation Operator 

2.4 Elitism 

In order to achieve global convergence, similar to the common practice in GAs, 
elitism is incorporated into BBO. The best solution in the current population is 
preserved from one generation to the next. 

3 Binary Biogeography-Based Optimization Algorithm  
for Knapsack Problem 

The traditional BBO uses an integer coding scheme. The Knapsack Problem is a 
constrained zero-one programming problem. The migration operator in the 
conventional BBO is inherited in the binary BBO and two new mutation operators 
were used as well. 

3.1 Migration Operator 

The migration operator in the BBO is used in the binary BBO as is. 

3.2 Binary Mutation Operator 

The mutation operator in binary BBO, defined in Figure 4, uses formula (2) to decide 
the probability of each bit number in the population to flip. 
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 // NP is the size of population, D is the dimension size 
1：for i=1 to NP 
2： Using the formula (2) to calculate mutation 

probability iP   
3：select SIV in )( jH i  with probability )( jPi  
4：if )( jH i  is selected, then  
5：Replace the )( jH i  with  1- )( jH i  
6: endfor 

 

Fig. 4. Binary Mutation Operator 

3.3 Greedy Mutation Operator for the Infeasible Solutions 

During the optimization process in BBO, infeasible solutions may occur. An 
additional greedy mutation operator was defined in binary BBO to repair these 
infeasible solutions. Firstly, it sorts the items according to ii wv /  in ascending order. 

Then, when an infeasible solution is found, it flips the features if they are ones in 
order of ii wv /  until the solution becomes feasible. 

4 Numerical Experiments 

In this section, we investigate the performance of binary BBO solving Knapsack 
Problems of different scales. Four benchmark problems from [5-8] (thereafter they are 
denoted by Kp1, Kp2, Kp3 and Kp4 respectively) were used to compare the binary 
BBO to the standard Genetic Algorithm (GA). 

4.1 Results 

The parameter setting of the binary BBO for each problem is presented in table 1.  

Table 1. Parameters of the binary BBO 

Problems E I 
Population 

size maxm  
Elitism 

size 
Maximum 
Generation 

Kp1 1 1 100 0.005 2 100 
Kp2 1 1 250 0.005 2 100 
Kp3 1 1 250 0.005 2 100 
Kp4 1 1 250 0.005 2 100 

 

For comparison, the standard GA with single point crossover with a crossover 
probability 0.8, and a mutation probability of 0.05 is used. In the GA, we deal with 
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the infeasible solutions using the same greedy mutation operator from the binary  
BBO. The population size and the maximum generation number of the GA are the 
same as that of the binary BBO for each problem. 

For each of the four Knapsack Problems, 100 runs have been conducted and the 
best results (Best), average results (Avg), worst results (Worst), standard deviations 
(Dev) and the success rate (SR) of the binary BBO are shown in Table 2. 

Table 2. Compared results between binary BBO and GA 

Examples Algorithms Best Avg Worst Dev SR 

Kp1 
Binary BBO 1042 1041.1 1037 1.9714 81% 

GA 1042 1040.2 1037 2.4121 64% 

Kp2 
Binary BBO 3119 3118.5 3113 1.4530 82% 

GA 3116 3090.4 3060 13.6569 0% 

Kp3 
Binary BBO 26559 26554 26534 9.4814 80% 

GA 25435 2432.2 23076 534.8347 0% 

Kp4 
Binary BBO 5375 5361.9 5343 13.1674 25% 

GA 5326 5298.5 5269 11.3649 0% 

Figures 5 and 6 present the compared average convergence of the 100 independent 
trials for the four Knapsack Problems. They clearly show that the average 
convergence speed of binary BBO is superior to that of the GA for each benchmark 
problem. 

 

  

Fig. 5. Convergence speed of binary BBO versus GA for Kp1 and Kp2 
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Fig. 6. Convergence speed of binary BBO versus GA for Kp3 and Kp4 

5 Conclusion 

In this article, a binary version of BBO has been proposed for the solution of Knapsack 
Problems in this paper. A binary mutation operator was used to improve the exploration 
ability of the algorithm and a greedy mutation operator was used to handle infeasible 
solutions of the Knapsack Problem. Simulation results show that the performance of the 
binary BBO is superior to that of the standard GA. Application of this binary BBO to 
other combinatorial optimization problems will be our future work. 
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Abstract. In this paper, an approach of cruise missile hierarchical path planning 
based on Voronoi diagram and Biogeography-Based Optimization (BBO) is 
proposed. First, based on Voronoi diagram, we establish the threat model to 
describe the planning environment and generate the initial paths and navigation 
nodes. Then the Biogeography-Based Optimization (BBO) is utilized to search 
the optimal path. In order to improve the performance of BBO, we adopt an 
integer priority-based encoding, analyze and discuss the migration rate model 
and design the migration, mutation and elite operator. Finally, the simulation 
results show that this approach is effective in cruise missile path planning. 

Keywords: Cruise missile, path planning, BBO, Voronoi diagram. 

1 Introduction 

In recent years, cruise missile has become the main arm in modern warfare. The 
purpose of cruise missile path planning is, under certain given conditions, to find out 
the optimal path between start point and target point with the information of terrain and 
battlefield. Typically, because of complex constraint conditions and extensive planning 
area, cruise missile path planning is a nonlinear global optimization problem. It is 
difficult to be solved effectively by general optimization algorithm. 

By studying the laws of nature, the establishment of bionic algorithm to solve 
engineering problems has been an important research embranchment of intelligent 
optimization algorithm. There have been a series of intelligent algorithms such as ACO 
[1], ES [2], GAs [3], PSO [4], etc. Biogeography-Based Optimization (BBO) [5] is a 
new global optimization algorithm, it applies the biogeography theory in solving global 
optimization problems. BBO uses biological habitat to simulate the solution to problem 
and depends on the migration of species between different habitats to exchange 
information. BBO improves the habitat suitability index (HSI) and gets the solution by 
adjusting the migration and mutation strategies. 

We propose a Voronoi diagram and BBO-based approach of path planning based on 
hierarchical planning. Firstly, the threat model is established under the base of Voronoi 
to describe the planning environment and the initial paths and navigation nodes are 
generated. Then, BBO is utilized to search the optimal path.  
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2 Cruise Missile Path Planning Model 

2.1 Planning Environment Description Based on Voronoi Diagram 

Voronoi diagram was put forward by Russian mathematician G. Voronoi first in 1908. 
In two-dimensional plane, Voronoi diagram is composed of many polygons that are 
composed of perpendicular bisector between every two adjacent points. 

We regard enemy radars as threat points to build Voronoi diagram, establish the 
threat model and generate the initial paths and navigation nodes. Fig. 1 illustrates a 
Voronoi diagram which has 30 threat points. In this graphic, the node is navigation 
node pi(i=1,2,…,N) and the edge is the path segment whose threat is the least when 
cruise missile get through two adjacent threat points. We connect start and target point 
to four nodes which are closest to them, evaluate the cost weight for each edge based on 
cost function. In this case, the Voronoi diagram equals a weighted graph. 

 

Fig. 1. Planning Environment Description Based on Voronoi Diagram 

2.2 Path Description  

The purpose of path planning is to search out a path start from start point, along with the 
edges of Voronoi diagram and pass through some navigation nodes sequentially, 
eventually reach target point. It can be described as P={start,p1,p2,…,pN,target}. 

2.3 Constraint Conditions 

In path planning, we must consider some constraint conditions such as the way through 
the target area, speed, mobility, required arrival time and so on [6]: 

The Shortest Direct Flight Distance lmin. The distance of path segment li must not be 
less than the shortest direct flight distance lmin : li ≥ lmin. 

The Longest Missile Range Lmax. The total distance L of the path must be less than the 
missile range Lmax: L≤Lmax. 
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The Maximum Number of Navigation Nodes Nmax. The number of navigation nodes 
of the path which is set pre-launch must be less than the maximum: N ≤ Nmax. 

The Maximum Turning Angle Φmax. During the cruise missile attitude adjustment in 
navigation node pi, the turning angle Φi must be less than the maximum Φmax. If the 
coordinates of navigation node pi are (xi,yi), the vector of the ith path segment is 

),( 11 −− −−= iiiii yyxxr . Thus, the turning angle Φi should satisfy with 
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Environment Constraints of the Battlefield. Cruise missile flight also should subject 
to some other constraint conditions such as avoid zone or no-fly zone, geographical 
environment, the direction of enter the target, etc. 

2.4 Cost Function  

Evaluating the path P={start,p1,p2,…,pN,target} to survival of the fittest is the key to 
guide the algorithm. There are two aspects to be considered: 

The first one is fuel cost. The fuel of the cruise missile must be enough to ensure 
missile reach the target point along with the pre-planned path and particular speed. 
Assuming a constant speed cruise flight, fuel cost is equivalent to distance cost. 

The second one is threat cost. The threat cost is the total threat one missile suffered 
from each threat point tj(j=1,2, …,M). As radar’s detection capability and the fourth 
power of the distance Rj(x) between missile position x and radar point tj are inversely 
proportional. So that, we have 

)(/)( 4 xRKxf jjTAj =  (2)

where Kj is the strength of the threat point tj. We assume that all of the threat points are 
same and their strength is K. In order to make the calculation more accurate, we 
calculate 1/10, 3/10, 1/2, 7/10 and 9/10 five points of each path segment: 
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where d1/10,i,j is the distance between tj and the 1/10 position of the path segment li. 
In a word, we have the cost function as follows: 
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where ω is the weight parameter, it expresses the relationship between fuel cost and 
threat cost. It is determined by tactical requirement or commander’s decision. 
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2.5 The Mathematical Model of Cruise Missile Path Planning 

In summary, path planning can be expressed as following optimization model:  
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3 Biogeography-Based Optimization 

Biogeography was proposed by Alfred Wallace [7] and Charles Darwin [8] in the 19th 
century, until the 1960s, Robert MacArthur and Edward Wilson [9] perfected it and 
formed an independent discipline. BBO was formally proposed by Dan Simonin 2008. 
As can be seen from the performance of BBO applied for 14 benchmarks and compared 
with several other algorithms, it has good convergence and stability [5]. 

3.1 Encoding and Decoding of Suitability Index Vector (SIV)  

In BBO, each habitat corresponds to a solution to the problem. Whether the habitat is 
suitable for living or not is described by habitat suitability index (HSI). There are 
several natural factors are related to HIS such as temperature, humidity, rainfall, etc. 
We call them suitability index variables (SIVs). The composition of these SIVs is 
named as suitability index vector (SIV), this SIV is the solution to the problem. 

In this paper, we adopt integer priority-based encoding to encode the SIV. The 
coding sequence {xi1,xi2,…,xiN} is the SIV of habitat i, each encoded bit j of it 
corresponds to a navigation node pj, the value of xij is an integer and xij∈[1,N], xij≠xik. 
Start point and target point are not involved in encoding process but in decoding. In the 
decoding process, start from the start point, find out the highest priority node from its 
adjacent nodes and add it to the path sequence, loop until the target point is added into. 
During the decoding process, in order to avoid duplicate choosing, the priority of the 
selected nodes should be adjusted to the lowest and the priority of the target point is the 
highest always. An example of decoding is shown in Fig. 2.  
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Fig. 2. Decoding of suitability index vector 



 Path Planning Based on Voronoi Diagram and Biogeography-Based Optimization 229 

3.2 Biogeography Migration Rate Model 

MacArthur and Wilson [9] adopted a linear migration rate model which is shown in 
Fig. 3. The abscissa S is the species count of habitat and the ordinate is the rate of 
migration, λ and μ are the immigration rate and emigration rate. 

E

I
λ

μ

0S maxS
 

Fig. 3. A simple linear biogeography migration rate model [9] 

We define PS as the probability of the species count. It is calculated as follows [5]:  
PS changes from time t to time (t+△t) as follows: 

tPtPtttPttP SSSSSSSS Δ+Δ+Δ−Δ−=Δ+ ++−− 1111)1)(()( μλμλ  (6)

where λS and μS are immigration and emigration rates when there are S species. We 
assume that △t is small enough to ignore the probability of immigration or emigration. 
We define P=[P0,P1,…,Pn]

T, n=Smax. From (6) we have 
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Now, we can arrange the above equations into a single matrix equation: P’=AP. 
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For the simple linear migration rate model given by Fig.3, we have μk=Ek/n and 

λk=I(1-k/n), and the k is the species count of the habitat. If E=I, we have λk+μk=E and 

the probability of each species count is given by 
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3.3 Operation of BBO 

Migration. Whether the habitat i is selected to be modified or not depends on the 
global migration probability Pmod∈[0,1]. If it is selected to be modified, we use its 
immigration probability λ(Si) to determine which suitability index variable 
xij(j=1,2,…,D) is selected to be modified. If xij is selected to be modified, then we use 
the emigration rates μ(Sk)(k≠I,k∈[1,n]) of other habitats to determine which habitat is 
selected to emigrate SIV to xij. 

1ix 2ix
3ix iNx

1jx 2jx 3jx jNx

1ix
3ix iNx

1jx 2jx 3jx jNx

2jx

 

Fig. 4. Migration operation 

Mutation. Whether SIV xi of habitat i will mutate into a new form or not based on the 
probability PS(i), i∈[1,n] of species count of habitat i. How to calculate the mutation 
probability m(xi) is the key of mutation operation. Mutation probability m(xi) and the 
probability PS(i) is inversely proportional, the function [5] is given in (11): 
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where mmax is the largest mutation probability and Pmax is the maximum of PS(i). 
In order to ensure the encoding priority of the SIV to maintain the uniqueness of 

each other, we randomly select two encoding bits j and k from xi and exchange them 
according to probability m(xi). Fig.5 illustrates the process of mutation operation. 
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3ix iNx

3ix 2ix 1ix iNx

)( ixm

 

Fig. 5. Mutation operation 

Elite Operator. We sort all the suitability index vectors by their HIS and retain z 
suitability index vectors of maximum HIS. These vectors do not participate in 
immigration and mutation operation. In this case, the number of elite z is defined during 
the initialization phase of the algorithm. 

3.4 Algorithm Description 

Generally, the approach of cruise missile hierarchical path planning based on Voronoi 
diagram and BBO can be described as follows: 

Step 1: Initialize the planning environment. 
Step 2: Initialize these parameters of BBO. 
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Step 3: Encode the SIV and generate the initial populations. 
Step 4: Calculate each HIS f(xi),i=1,2,…,n, species count Si, immigration rates λ(Si) 

and emigration rates μ(Si). Then sort of HIS and retain the elite individuals. 
Step 5: Perform the migration operation and recalculate f(xi). 
Step 6: Update the probability of the species count and perform the mutation 

operation, then recalculate each f(xi);  
Step 7: Whether reach the termination condition? Yes to Step 8, no to Step 4. 
Step 8: Output of the algorithm results. 

4 Simulation 

We simulate the algorithm and compare it with Dijkstra. The planning zone is 1000 km 
× 1000 km. We randomly generate some threat points in the zone, the radius of no-fly 
zone around the threat point is 20km. The coordinates of start point is (0,0) and the 
target point is (900,900). The population of BBO is 50 and run for 100 generations. 
ω=0.6, z=2, Pmod=1, mmax=0.01, I=E=1. The simulation results as follows: 

Table 1. Results of simulation 

 
The number of 
threat points 

The value of objective function f 
fDijkstra fBBO △f △f /fDijkstra(%) 

1 30 533.5884 533.5884 0 0 
2 30 560.9514 560.9514 0 0 
3 30 560.8053 560.8053 0 0 
4 50 559.6701 570.5437 -10.8736 -1.94286 
5 50 557.8746 557.8819 -0.0073 -0.00131 
6 50 556.3643 556.3643 0 0 
7 70 544.2603 564.5483 -20.288 -3.72763 
8 70 565.5556 579.829 -14.2734 -2.52378 
9 100 571.3041 628.8392 -57.5351 -10.0708 
10 100 577.0269 614.1059 -37.079 -6.42587 

 

 

Fig. 6. The result of path planning and the trend of cost function value of BBO changes with the 
number of generations. In this test, the number of threat points is 50. 
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Simulation results show that the approach could work out a good path effectively. 
When the number of the threat points is small, BBO could work out the theoretical 
optimal path. However, the error of BBO increases with the increase of the number of 
treat points. We conclude that the reason of it includes two aspects: 

1. The length of the SIV will increase with the increase of problem scale. 
2.  In this paper, the biogeography migration rate model in BBO is a simple linear 

model. It couldn’t describe the natural situation accurately. 

5 Conclusion 

This paper studied the application of BBO on cruise missile path planning. First, we 
established the threat model to describe the planning environment and generated the 
initial paths and navigation nodes. Then we encoded the SIV based on priority and 
established the migration rate model, designed the migration, mutation and elite 
operator. Finally, we demonstrated the performance of BBO. Overall, judging from the 
simulation results, BBO has a good performance and the approach of cruise missile 
hierarchical path planning is effective. However, as the development time is short, 
many aspects of BBO are still not perfect such as SIV code, migration rate model, etc. It 
is still looking forward to more research in-depth.  
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Abstract. Many metaheuristic methods are based on the ability of systems in 
Nature to optimize on aspects of their performance. One such system is the 
human brain with its capacity for optimizing towards a general state of mental 
balance. The Theory of Psychoanalysis propounded by Sigmund Freud is 
generally recognized as an account of the mechanisms involved in 
psychological processes. It is possible to draw an analogy between the practice 
of psychoanalysis and the treatment of optimization problems. The proposed 
new Unconscious Search (US) method shares in some features with the 
procedure attempted in psychoanalysis to elicit the suppressed contents of the 
subject’s mind. One bounded and several unbounded benchmark problems have 
been solved using the proposed algorithm; the results were satisfactory when 
compared against earlier results obtained using other known methods. 

Keywords: Unconscious Search, Psychoanalysis, Metaheuristic, Optimization. 

1 Introduction 

“Metaheuristics, in their original definition, are solution methods that orchestrate an 
interaction between local improvement procedures and higher level strategies to 
create a process capable of escaping from local optima and performing a robust search 
of a solution space” [1]. Some of the most well-known metaheuristics include Genetic 
Algorithm [2], [3], Simulated Annealing [4], Tabu Search [5], [6], Ant Colony [7], 
[8], and Particle Swarm Optimization [9]. 

Since the original conceptualization that led to the development of metaheuristics 
and the inspired deployment of the probabilistic process entailed in the ‘survival of 
the fittest’ as proposed by the Darwinian Theory of Evolution, further research has led 
to analogies with systems in new domains, in all of which the emphasis is on rules by 
which the state of the domain shifts towards improvement. Among such systems a 
less explored area is psychology and psychoanalysis [10]. This paper will draw an 
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analogy between concepts in psychoanalytic psychotherapy and optimization 
problems and will use the analogy as the basis for the introduction of a new search 
algorithm termed Unconscious Search (US). 

The remainder of this paper is organized as follows. Section 2 is devoted to a brief 
discussion of the Theory of Psychoanalysis. Section 3 contains an analogy between 
psychoanalysis and optimization. In Section 4 Unconscious Search is proposed based 
on the analogy in the previous section. In Section 5 one bounded and six unbounded 
benchmark continuous optimization problems are solved and the results are compared 
with existing best solutions in literature and a parameter analysis is carried out to 
observe the behavior of the proposed algorithm. Section 6 states the conclusion. 

2 Psychoanalysis 

“Psycho-analysis is the name of 1) a procedure for investigating mental processes 
which are almost inaccessible in any other way, 2) a method (based upon that 
investigation) for the treatment of neurotic disorders and 3) a collection of 
psychological information obtained along those lines, which is gradually being 
accumulated into a new scientific discipline” [11]. 

In psychoanalysis there are two basic concepts: ‘the conscious’ and ‘the 
unconscious’. “Consciousness is the subject’s immediate apprehension of mental 
activity” [12]. The unconscious contains basic instincts and repressed impulses [13]. 
According to Sigmund Freud, the founder of psychoanalysis, conscious thinking is 
directed at protecting the self, while the unconscious drives the self towards 
attainment of objects of desire, often despite resistance by the conscious mind. An 
extreme instance of such resistance can cause a mental disorder. 

In psychoanalytic psychotherapy the therapist breaks down any resistance in the 
conscious mind of the patient against emergence of unconscious impulses. 
Breakdown of resistance is achieved through Free Association, patient's free verbal 
responses to words, images and topics evoked by the psychoanalyst. Two forms of 
resistance have been noted: Displacement and Condensation [14]. Displacement is 
substitution of a thought expressed verbally with a more ‘acceptable’ one. 
Condensation occurs when two or more thoughts are ‘condensed’ into one symbol in 
the course of free association. 

The steps involved in treatment of patient consist of psychoanalyst's encouraging 
free association by patient and detecting instances of displacement and condensation 
resistances, making informed guesses about the contents of the unconscious, feeding 
these guesses back to the patient and encouraging a fresh course of free association. 
This cycle continues, every time bringing the therapist closer to uncovering the root 
cause of the mental disorder which is lodged in the unconscious, till the unconscious 
is revealed to both therapist and patient. At this point the patient has lost resistance in 
his consciousness against unconscious impulses and is considered cured. 

3 Analogy between Optimization Problems and Psychoanalysis 

Let us start with a question. Why do we search for an optimum solution? At first 
glance the answer seems simple enough: because the optimum solution is the best 
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possible solution. However, from the point of view, not of optimum solution, but of 
the search, the answer would be different. An optimum solution seems never readily 
available. The search must eliminate the occurring non-optimum solutions in order to 
lead to the optimum solution. As such, it is part and parcel of optimization. Likewise, 
the unconscious is never readily accessible; there is always a need to surmount the 
obstacles – the resistance – set in the path of the analyst trying to reach the 
unconscious. If the complex resistance patterns were non-existent, the psychoanalyst 
would not need to make a distinction between the conscious and the unconscious. 

In psychoanalysis, resistance in the form of displacement or condensation needs to 
be surmounted by the analyst. Such patterns can be formulated in optimization. For 
example, in a continuous ‘knapsack’ problem with n continuous items of various 
degrees of desirability to be packed into a knapsack of a fixed capacity, the objective 
in loading up the knapsack with the right amount of every item is to achieve 
maximum desirability. Optimally, items with a greater desirability to volume ratio 
tend to take a greater proportion of the total capacity. Just as packing an item with a 
low desirability to volume ratio can cause a reduction in the amount of a high-ratio 
item, making the final composition of the knapsack less than optimum, so condensing 
two thoughts expressed as lingual symbols into an encoded one creates a resistance in 
the path of the analyst/therapist who is attempting to access the unconscious.  

Also in an optimum situation in a continuous knapsack problem, a right proportion 
exists for each item relative to the total capacity of the knapsack. However, if the 
solution is not optimal, then for every amount wrongly chosen a corresponding 
resistance is generated that can be construed as a displacement type of resistance.  

We may conceive of two types of adaptive memory, namely ‘condensational’ and 
‘displacement’ memories, in optimization. These memories check and calculate every 
instance of resistance during solution-finding. All instances are gradually removed 
from newly generated solutions by continual comparison of generated solutions 
against a ‘memorized’ set of sorted best solutions collected in the ‘measurement 
matrix’. Analyst, too, retains a list of associations considered closest to the contents of 
the unconscious. Free association is a process similar to construction of new feasible 
neighbour solutions used to update contents of condensational and displacement 
memories. Analyst removes instances of resistance by revealing their nature to the 
patient, after which it is possible to construct the next free association exercise. 

Based on the analogy established above between the search space in an 
optimization problem and the human psyche, the former may reasonably be conceived 
of as having ‘unconscious’ optimum or near-optimum solution(s) which need to be 
searched for, beginning with ‘conscious’ feasible solution(s). Approaching the 
contents of the unconscious in the course of the treatment of a mental patient towards 
a complete cure resembles approaching and finally reaching optimum or near-
optimum solution(s) and improving the value of the objective function. The method of 
free association consists of extracting instances of resistance from among the patient’s 
verbal allusions. This is imitated in optimization in the form of searching the 
neighbour solutions and evaluating the desirability of a solution with the aid of the 
condensational and displacement memories. Table 1 lists the features of 
psychoanalysis and cites the equivalent element of optimization for every feature. 
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Table 1. Common features of optimization problems and psychoanalysis 

OptimizationPsychoanalysis 
Search spaceMental space, the unconscious, the conscious

Feasible solution The consciousness, verbal exchange
Near-optimum and optimum solution(s) The unconscious 

Construction of neighbour solutions Free association 
Local optimums and search path Resistance 

Objective function value improvement Psychological condition improvement

 
In designing a search algorithm based on psychoanalytic psychotherapy the steps 

are matched with their corresponding steps in optimization; in this way a framework 
for the algorithm is constructed. The steps are: 

a) Analyst describes the analysis conditions, asking subject to describe the problem 
and encouraging free association. Patient generates a set of speech components 
containing information. The speech components resemble the feasible solutions in 
optimization that make up a set. 
b) Analyst provides subject with a starting point based on what is speculated to have 
been corrupted by the existence of built-in resistances. Free association hovers around 
this starting point. In optimization the choice of starting point is likewise made 
through condensational and displacement memories and is based on the behavior of 
resistance observed within the search space. 
c) Analyst’s focus is on the metaphorical character of speech produced by subject 
during free association. Analyst identifies and evaluates instances of resistance. 
Similarly, local search yields values for displacement and condensational memories 
and leads to an updated set of feasible solutions. The solutions are used to update the 
values in the two memories through a determination of the values of the resistances. 
d) Analyst again provides subject with a point to begin to freely associate from a point 
evaluated as closer to the unconscious. In optimization, updating memories leads to 
construction of a new starting point for a local search. The process described above is 
repeated till a good solution is reached and the termination criteria is met. 

4 Unconscious Search 

Considering the analogy between psychoanalysis and optimization in Section 3, we 
propose Unconscious Search (US). An optimization problem can be represented in the 
following form:      :  , , ∈    

The objective function  may be linear or nonlinear. Functions  and  
are constraints of vector  where  is the set of decision variables, and condition ∈    restricts components of  to continuous ranges of values. For solving 
optimization problem  we follow the same steps mentioned in Section 3 above.  

Initially, a set of feasible solutions , , … , | |  is generated. | | is 
the size of the measurement matrix  in which the sorted set of the best feasible 
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solutions, i.e. those nearest to the optimum solution that are visited during search 
process, are held.  can be defined as follows: 

   | , 1,2, … , | |  (1)

The solutions kept in  are used to measure the resistance, and are ranked by 
means of a ‘translation function’ according to the value of their resistance. The 
translation function maps the value of the objective function of any solution  (i.e. a 

solution that belongs to ) into a range , 1  for ∈ 0,1  where ∈ .  
Any solution that does not belong to  and for which the objective function is 

greater than the worst solution within , is assigned a scalar penalty value ∈ .  
The translation function  is defined as follows: 

 11 , ∈ . (2) 

In (2) above,  is a sigmoid function and is used to calculate the proximity of 
solutions in  to the optimum solution.  and  are the parameters of  and are 
calculated in every iteration throughout the search. 

The best member  of measurement matrix is assigned the value 1 , the 
worst member  the value , by the translation function. For any solution lying 
outside  for which objective function is greater than the worst solution in , 
there is a penalty value  assigned to that solution. Evaluating resistance level in 
solutions is performed by translation function  and by displacement and 
condensational memories.  measures quality of solutions while displacement and 
condensational memories memorize the resistance patterns in the solutions. 
Displacement memory, Π, memorizes the displacement pattern of resistance in the 
solutions, i.e., dividing the possible range (considering that ∈ ) of every solution 
component into | |  equal parts, it assigns the output of  to the 
corresponding part. In other words, Π determines how much resistance will occur if a 
specified range of  is assigned to solution component . Π is defined as follows: 
 Π  Π , Π | 1,2, … , | | . (3) 

in which, 
 Π  π  | 1,2, … , , 1,2, … , | | , (4) 

 Π  π  | 1,2, … , , 1,2, … , | | . (5) 

and  is the number of decision variables.  and  are defined as follows: 
 , ∈ , ∈ , 1,2, … , | |,MS 1,2, … , | |, 1,2, … ,  

(6) 

 ∑ , for solutions with an objective function greater than the 
worst solution in , 1,2, … , | |, 1,2, … ,  

(7) 
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in which ∈ 0  is the Memory Size that shows the  last performed 
iterations of algorithm that are memorized.  represents the jth subinterval of . 

 is worst solution in ,  is value of  th decision variable in solution . 
By means of the displacement memory Π, a new solution can be constructed. This 

solution is denoted by . The th solution component   will be assigned to one 
of the possible ranges  in solution space with a probability defined as follows: 
 ∈ ∑| |  (8) 

in which  is the probability function and  is a predefined constant. When the 
solution component  is assigned to , it will choose a number in  at random. 
The larger the value of , the higher the probability of ∈ ; the larger the 
value of , the less the probability of ∈ . 

Once a displacement-free solution (DFS) has been reached, condensational memory 
Π  is used to eliminate the condensational resistance pattern. Displacement memory Π is 
used to construct a new DFS, while condensational memory Π  is used to improve the 
solution constructed with the help of Π, making it a condensation-free solution (CFS). 

Condensational memory Π  is defined as follows: 
 Π Π , Π | 1,2, … , , (9) 

in which, 
 Π , | 1,2, … ,  (10) 

 Π , | 1,2, … , , (11) 

where, 
 ∑ , 1,2, … , | |, 1,2, … , |  is 

increased with respect to its previous value in first iteration of local 
search  

(12) 

 ∑ , for solutions with an objective function greater than 
worst solution in , 1,2, … , | th decision variable is increased 
with respect to its previous value in the first iteration of local search  

(13) 

 ∑ , 1,2, … , | |, 1,2, … , |  is 

decreased with respect to its previous value in first iteration of local 
search  

(14) 

 ∑ , for solutions with an objective function greater than the 
worst solution in , 1,2, … , | th decision variable is decreased 
with respect to its previous value in the first iteration of local search  

(15) 

Note that, since in the beginning of the first iteration of US, we do not perform a local 
search, we have no information with which to update  Π ; thus equations 9~15 are 
applied from the second iteration onwards. 

Once  is constructed, Π  determines whether  is to be decreased or 

increased by calculating two values  and  and generating a 
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random number  in the range 0, . If , the value of  will be 
increased by as much as a predefined number δ ∈ 0 ; otherwise, the value of 

 will be decreased by the same amount δ. Decreasing or increasing the value of 
 will be repeated until limits of  are reached with the solution still 

remaining feasible.  
Having constructed , the first solution in an iteration known as the ‘mother 

solution’, by using memory Π , solutions , , … are generated from . Solution  
is DFS, while solutions , , … are CFSs derived from mother solution . The best 
solution among , , , …, denoted by , is the starting point in the local search. 

Memories Π and Π  help to appoint the region where the mother solution should 
be located and the direction along which the mother solution is to be moved by 
increments of δ in order for the solutions , , … to be generated.  

After obtaining the solution , a local search is conducted with  as the starting 
point. If the result of the search is , . In the process of reaching , 
more resistance patterns are revealed and Π and Π  are updated using . Notice 
that  is updated only if objective function value of   is better than objective 
function value of , in which case  is updated so that the following 
inequality holds: 
 

 
(16) 

in which  and  are the members of  before  is augmented. In order for  
above inequality to always hold,  should remain sorted through every update. If 

 is changed,  must be corrected to match the new , i.e. the coefficients  
and  must be adjusted. Denoting the new coefficients by and , we have: 

 
 and  (17-18) 

US is a multi-start metaheuristic which contains three main phases: construction, 
construction review, and local search. The first phase consists in constructing a 
displacement-free, or ‘mother’, solution. The second phase is that of constructing 
condensation-free solutions derived from the mother solution in Phase 1. The third 
phase corresponds to recognition of resistance patterns by exploring the search space. 

5 Performance Evaluation and Parameter Analysis 

To demonstrate the performance of the Unconscious Search algorithm, a benchmark 
bounded and six benchmark unbounded continuous engineering optimization 
problems have been solved and the results tabulated against solutions reached using 
established heuristic and metaheuristic methods. The computer on which the tests 
were run was a 1.5 GHz Intel Centrino. 

5.1 Pressure Vessel Design 

In this problem there are four decision variables:  (= , shell thickness),  (= , 
spherical head thickness),  (= , radius of cylindrical shell) and  (= , shell 
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length). The thicknesses are integer multiples of 0.0625 in. and  and  have 
continuous values within the constraints 40 80 . and 20 60 . The 
mathematical expression is as follows: , , , 0.6224 1.7781 3.1611 19.84   ,  , , , 0.0193 0,  , , , 0.00954 0, , , , 750.0 1728.0 0,  , , ,240.0 0, , , , 1.1 0, , , , 0.6 0. 

 

The results in Table 2 below are reproduced from the literature [15] on harmony 
search and also from test runs made using the US algorithm. The US results, with 
their run time of approximately 2 seconds, are better than the best found solution. 

Table 2. Numerical results for pressure vessel design 

Variables Optimal 
Value Sandgren Wu and Chow HS US 

1.125 1.125 1.125 1.125 

0.625 0.625 0.625 0.625  48.97 58.1978 58.2789 58.2900  106.72 44.2930 43.7549 43.6934 

Cost ($) 7980.894 7207.494 7198.433 7197.737 

 
The number of iterations needed for the US algorithm to lead to the optimum 

solution in the pressure vessel design problem is 360 in the best case, with the value 
of 7197.737 for the objective function. To analyze effect of parameter  we consider 
the average number of necessary iterations in 100 runs in which 75  and | | 30 for different values of , given that objective function is 7200.00.  

As  increases, the average number of iterations tends to decrease for values of 0.3. The reason is that US behaves more prohibitively towards inferior solutions 
as regards their inclusion in  with increase in value of . For values of 0.3, 
solutions entered in  are so close to each other in terms of their corresponding 
objective function values as to reduce ability of algorithm to escape local optima; this 
weakens diversification of algorithm causing average number of iterations to rise.      

To appraise the effect of | | and  on convergence in pressure vessel design 
problem, value of  was kept at 0.3 and the two parameters were given 10 different 
values (to produce 100 combinations). US was run 100 times for each combination 
and average number of iterations for each combination calculated and taken as the 
response variable. Using Minitab software, a two-way variance analysis with alpha 
level 0.05 was carried out. The analysis showed no meaningful change in response 
variable (average number of iterations) as objective function tended to 7200.00. 

It may be inferred from the results of the analysis that for the pressure vessel design 
problem values of | |  and  do not considerably affect convergence of US 
algorithm. This low sensitivity to changes in parameters | | and  constitutes an 
important advantage of US algorithm in the adjustment of its parameters.  
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5.2 Other Benchmark Problems 

To further test effectiveness and robustness of US algorithm, six unbounded functions 
were solved for global minimum in each instance. The functions, also tested by 
harmony search [15], are as follows: 

-   Rosenbrock function: ,  100 1  
- Goldstein and cost function 1: ,  1 1 19 143 14 6 3 30 2 3 18 32 12 4836 27  

- Goldstein and cost function 2: , 4 32 10  

-  Eason and Fenton’s gear train inertia function: ,  12
 

- Wood function: , , ,   100 1 901 10.1 1 1 19.8 1 1  
- Powell quartic function: , , ,  10 52 10  

 

The results of parameter analysis in these problems led us to consider the following 
values for the algorithm parameters: | | 10, 75 and 0.3. A similar 
variance analysis for appraisal of sensitivity produced similar results to those obtained 
in the pressure vessel design problem, with the conclusion that US algorithm has the 
advantage in adjustment of its parameters. Results obtained by US (in Table 3) point 
to global optimum in each instance, while running time never exceeds one second. 

Table 3. Numerical results in unbounded function minimization 

Function Optimum value HS US 

Rosenbrock 1,1  0 5.6843418860 10 0.1 15 
Goldstein I 0, 1  3 0.3000000000 01 3 0.955 13  
Goldstein II 3,4  1 0.1000000000 01 1 0.289 13  
Easton and 

Fenton 
1.7435,2.0297 1.74 1.74415 1.744152 

Wood 1,1,1,1  0 4.8515 09 0.14959 9 
Powell 
quartic 

0,0,0,0  0 0.1254032468 11 0.156201 8 
6 Conclusion 

In this paper a new search algorithm, Unconscious Search (US), was proposed based 
on analogy between optimization and human psyche as it is described in Freud’s 
Theory of Psychoanalysis. Concepts of ‘free association’ and ‘resistance analysis’ in 
psychoanalysis were simulated and incorporated in US algorithm as three main phases 
of Construction, Construction review and Local search. 
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In construction phase, using the displacement memory, displacement patterns of 
resistance are analyzed to construct a displacement-free solution (DFS). In 
construction review phase, considering DFS and condensational memory we analyze 
condensation patterns of resistance and construct a set of condensation-free solutions 
(CFS). Finally, in local search, simulating free association, we improve the best 
solution found in the construction and the construction review phases. 

The results of the benchmark problems and parameter analysis demonstrate that 
Unconscious Search is robust, a validated optimization method for solving continuous 
hard problems, and easy to use. The proposed Unconscious Search algorithm has been 
coded by using C++.The continuous benchmark problems attempted were Pressure 
vessel design which is bounded in character and several unbounded benchmarks. The 
solution obtained for the pressure vessel design was ever best one. 
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Abstract. Brain Storm Optimization algorithm is inspired from the hu-
mans’ brainstorming process. It simulates the problem-solving process of
a group of people. In this paper, the original BSO algorithm is modified
by amending the original BSO. First the step-size is adapted according
to the dynamic range of individuals on each dimension. Second, the new
individuals are generated in a batch-mode and then selected into the next
generation. Experiments are conducted to demonstrate the performance
of the modified BSO by testing on ten benchmark functions. The exper-
imental results show that the modified BSO algorithm performs better
than the original BSO.

Keywords: Brain Storm Optimization, Adaptive step-size, Selection.

1 Introduction

Brain Storm Optimization algorithm (BSO) is one type of swarm intelligence al-
gorithms introduced by Shi in 2011 [3]. Similar to many other swarm intelligence
algorithms, such as particle swarm optimization (PSO) [5], ant colony optimiza-
tion (ACO) [2], artificial immune system [1], firefly optimization algorithm [7],
etc., BSO is a population-based algorithm.

BSO algorithm simulates the human brainstorming process in which there are,
generally speaking, three roles i.e.a facilitator, a group of people, and problem
owners. The facilitator should facilitate the brainstorming process to help the
brainstorming people to come up as many diverse ideas as possible, rather than
generate ideas by himself/herself [6]. The brainstorming group of people should
better have as diversified backgrounds and knowledge as possible. Under this
circumstance, the ideas coming from these people will be diverse and affluent.
After one round of an idea generation process, the problem owners will pick up
some better ideas from all generated ideas for solving the problem in this round.
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For a picked-up idea, it will then have a higher probability to be treated as a
clue to further generate more ideas in the next round of the idea generation
process. This process is repeated for many times until a sufficiently good idea
emerges or time runs out [3]. The above repeated brainstorming processes serve
as a foundation for the BSO algorithm.

In a BSO algorithm, there are four general steps, which are initialization,
clustering, generation, and selection. The last three steps are repeated iteration
over iteration until a terminal condition is met.

The rest of the paper is organized as follow. Section 2 introduces the original
BSO algorithm and the modified BSO algorithm. Ten benchmark functions are
utilized for testing the modified BSO algorithms and comparing it with the orig-
inal BSO in Section 3. Finally, Section 4 explains the reasons for modifications
of the original version of BSO algorithm and analyzes the experimental results,
followed by conclusions in Section 5.

2 BSO Algorithms

2.1 Original Version of BSO Algorithm

The general procedure of BSO algorithm is given in [4]. Based on the original
BSO algorithm published in the paper, new individuals are generated by adding
Gaussian noise. The formulas for generating new individuals are given as follows,

Xd
new =Xd

RP + ξ ×N(μ, σ) (1)

ξ = log sig

(
0.5×max iteration− current iteration

k

)
× rand() (2)

where Xd
RP is the dth dimension of the chosen reference point, which is used for

creating a new individual;Xd
new is the dth dimension of a new individual; N(μ, σ)

denotes Gaussian random function with mean μ and standard derivation σ; ξ is a
coefficient called step-size, affecting the contribution of the Gaussian noise, and
is updated according to equation (2); log sig is a logarithmic sigmoid transfer
function; max iteration is the maximum iteration number for one execution
of BSO program; max iteration is the number of current iteration in a BSO
program; k is a coefficient and rand() denotes a random variable with a uniform
distribution between 0 and 1.

2.2 New Version of BSO Algorithm

Three parts of the modified BSO algorithm are different from the original one.
Firstly, the step-size for the new version is adaptive and is updated concurrently
according to the current range of all individuals on each dimension. Secondly,
the method of new individuals’ generation is modified. The program creates
more individuals to fully exploit each reference point rather than creates the
same number of individuals as the population size. Finally, a selecting strategy
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is utilized to form the new population of individuals in the next generation. The
procedure of the modified BSO is given in Table 1 below.

In the modified BSO, the generation step and selection step is modified. The
step-size, which weights the influence of Gaussian noise,is different in the modi-
fied BSO from that in the original BSO. The new step-size is updated as follows.

ξcenteri =k1 × (xn max,i − xn min,i) (3)

ξindividuali =k2 × (xn max,i − xn min,i) (4)

where ξcenteri and ξindividuali are the values of step-size in ith dimension, and
ξcenteri is used in step 3.1 and 3.2 while ξindividuali is used in step 3.3; k1 and

Table 1. Procedure of new version of BSO algorithm



246 D. Zhou, Y. Shi, and S. Cheng

k2 are two coefficients; xn max,i and xn min,i are maximum value and minimum
value among the entire population in ith dimension, respectively.

Therefore, according to equation (3), (4), the values of step-size are adaptive
according to the dynamic range of the population of individuals. If all individu-
als in the population are dispersively distributed, the value of step-size will be
relatively large. If all individuals in the population are aggregated, the value of
step-size will be relatively small. The step-size is updated automatically in every
generation.

3 Experimental Results

3.1 Benchmark Functions

Ten benchmark functions are used for testing the performance of BSO algo-
rithms. All ten benchmark functions and their dynamic ranges are from [8].
Among the ten functions, function f1, f2, f3, f4, and f5 are uni-modal func-
tions, while function f6, f7, f8, f9, and f10 are multi-modal functions. Each
benchmark function has its unique minimum value. The performance of two
BSO algorithms will be compared by using these benchmark functions.

3.2 Results

A better BSO algorithm should have a capacity of finding optimum values with
little number of generations compared with its ‘rivals’. The experimental results
of two versions of BSO algorithms will be provided and discussed in this sec-
tion. Parameters used for the original BSO is the same as that in [3], whereas
parameters for the modified BSO are listed in Table 2.

Table 2. Parameters of the modified BSO

n m P1 k1 k2 max iteration μ σ
50 5 0.4 0.15 0.13 1000 0 1

Where n is the population size; m is the number of clusters; μ and σ are two
parameters used in Equation (1); P1 is the constant used in Table 1. k1 and k2
are two coefficients in Equations (3), (4). max iteration denotes the maximal
number of iterations for one execution of BSO algorithm.

The purpose of the experiment is to test the performance of the modified BSO
algorithm, and compare it with the original BSO with regards to the ten bench-
mark functions, each of which has dimension set to be 10, 20, and 30,respectively.
For both BSO algorithms, they will be run 50 times for each benchmark function
with each different dimension.Maximum generation number is 1000 for each run.
Minimum, median, and maximum function values in the 50 runs for each func-
tion are recorded in addition to variance. Tables 3 and 4 show the experimental
results.
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Table 3. Results of uni-modal functions

Uni-modal Function Version Dimension Best Median Worst Variance

Sphere Original
10 7.58E-23 2.29E-22 5.37E-22 5.65E-45
20 7.95E-22 1.48E-21 2.83E-21 1.54E-43
30 3.53E-21 5.29E-21 1.88E-20 6.25E-42

f1 New
10 2.8E-139 1.52E-68 8.33E-36 1.52E-72
20 1.15E-56 2.42E-36 4.01E-19 3.15E-39
30 1.75E-27 3.25E-20 4.06E-10 3.22E-21

Schwefel’s P221 Original
10 5.51E-12 8.67E-12 1.29E-11 2.7E-24
20 4.21E-11 2.74E-06 0.001695 5.99E-08
30 0.008452 0.045602 5.677727 1.368525

f2 New
10 3.03E-36 2.2E-20 1.72E-11 5.82E-24
20 3.26E-05 0.070197 1.621416 0.11648
30 0.160679 4.096068 13.11929 9.345655

Step Original
10 0 0 0 0
20 0 0 0 0
30 0 0 0 0

f3 New
10 0 0 0 0
20 0 0 0 0
30 0 0 0 0

Schwefel’s P222 Original
10 2.37E-11 3.63E-11 5.43E-11 4.13E-23
20 1.07E-10 1.41E-10 3.28E-05 2.11E-11
30 5.81E-06 0.0056 0.086858 0.000359

f4 New
10 9.42E-47 2.39E-30 3.08E-17 1.85E-35
20 4.36E-40 9.32E-21 3.84E-14 3.09E-29
30 4.97E-22 1.11E-13 4.78E-09 4.58E-19

Quartic Noise Original
10 0.000525 0.022042 0.077237 0.000314
20 0.003682 0.025093 0.105127 0.000356
30 0.013142 0.043104 0.134042 0.000856

f5 New
10 0.009694 0.03714 0.076704 0.000236
20 0.022794 0.051455 0.141916 0.000747
30 0.042362 0.084453 0.146334 0.000684

The experimental results for uni-modal functions are given in Table 3. From
the results, it can be observed that the modified BSO algorithm performs better
for f4. Smaller values can be obtained under all 10, 20 and 30 dimensions. The
results for f3 and f5 for both versions of BSO are comparable. However, for
f1 and f2, new version performs better in low dimensions rather than in high
dimensions. The fitness values, obtained by new BSO, for ten and twenty dimen-
sional f1 and for ten dimensional f2 are much smaller than the values obtained
by the original BSO.

In Table 4, the experimental results are for multi-modal functions. In this case,
the superiority of new version of BSO algorithm is apparent. For f6C f10 in all
dimensions, the best fitness values, obtained by the modified BSO, are much
better than the values obtained by the original BSO. In addition, the results of
the new algorithm, including the best value, median, worst value, average, and
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Table 4. Results of multi-modal functions

Uni-modal Function Version Dimension Best Median Worst Variance

Ackley Original
10 1.14E-11 1.8E-11 2.41E-11 9.77E-24
20 2.33E-11 3.54E-11 4.47E-11 1.91E-23
30 3.83E-11 5.49E-11 1.41E-10 2.35E-22

f6 New
10 8.88E-16 4.44E-15 4.44E-15 2.02E-30
20 4.44E-15 4.44E-15 6.48E-14 7.68E-29
30 2.14E-13 2.1E-07 2.118958 0.36697

Rastrigin Original
10 0.994959 4.974795 9.949586 3.617645
20 9.949586 19.89917 36.81344 22.33305
30 26.86387 36.81346 69.64694 81.57233

f7 New
10 0 2.984877 4.974795 1.475016
20 4.974795 8.954632 16.91429 8.984319
30 6.964713 19.40169 29.84875 25.5901

Rosenbrock Original
10 2.420121 6.697281 221.531 907.624
20 16.59699 18.06682 103.1998 735.3692
30 26.1446 28.46412 903.5095 16515.81

f8 New
10 1.184153 4.955994 8.191643 1.381576
20 3.074479 16.40247 155.6893 1003.395
30 8.737314 79.83059 477.6855 6378.183

Schwefel’s P226 Original
10 1026.504 1608.895 2428.527 114655.8
20 2210.907 3583.748 4603.574 253207.3
30 3752.177 5567.439 7051.786 628155.3

f9 New
10 0.000127 473.7535 952.058 38179.77
20 473.7536 1176.791 2118.222 145664.8
30 1304.339 2037.75 3702.03 214829.6

Griewank Original
10 0.598233 2.048943 4.069798 0.54909
20 0 0.022141 1.028908 0.025973
30 9.44E-05 1.266122 4.229146 1.047128

f10 New
10 0 0.012321 0.04433 0.000142
20 0 0 0.046483 0.000108
30 0 0.013547 0.210806 0.00189

variance, are smaller for f7, f9 and f10 in all dimensions. However, only for f6
and f8 in high dimensions, the medians and worst values obtained by the original
BSO are better than that by the modified one.

According to the experimental results in the above tables, there are three
main observations. The first one is that the new algorithm performs much better
for multi-modal functions compared with the original version. Testing functions
with many local minima are real challenges for optimization algorithms, because
algorithms are easy to trap into poor local minima for multi-modal functions.
Therefore, a good algorithm should have an ability of fleeing poor local minima
and finding near-global minima [8]. Secondly, the best values obtained by the
new version in 50 runs are better than that by the original one for almost all
testing functions, except for f2 and f5 with regards to some dimensions. It can
be concluded that the modified BSO has an ability to find much smaller function
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values. However, the experimental results for the modified BSO from Table 3 and
4 are not consistent. This phenomenon mainly occurs for uni-modal functions,
for example, f1 and f2 as well as f6 with respect to high dimensions. This is the
third feature for the modified BSO algorithm.

4 Analyses and Discussions

In the modified BSO algorithm, the step-size is updated according to the dy-
namic range of the individuals, and generation and selection strategy are also
different. The modifications give the new version of BSO algorithm a capacity
of escaping from poor local minima and fast convergence on one point. The step
size in the new version is adaptive to facilitate the convergence of the algorithm,
while generation and selection strategy keeps the diversity for the whole popu-
lation. The functionalities of new step-size and new individuals’ generation and
selection are analyzed as follows.

4.1 Original Step Size

From Equation (2), the step-size is independent from the dynamic range of
population. It only relates to the number of generations. With the increment
of iterations, the step-size tends to decrease. Due to the random variable in
Equation (2), the step-size values for individuals are different. Therefore, we use
an average value to exhibit the trend of step-size. The following figure shows
the average values of step-size in a logarithmic scale against the number of
generations for two testing functions, which are ten-dimensional sphere function
f1 and ten-dimensional Rastrigin function f7, respectively.

According to Figure 1, the step-size trends for two functions are almost the
same. The step-size is not adaptive with the dynamic range of population. If
the number of generations is large, the step-size will be quite small. The new
individuals created from previous generation will be adjacent to their ‘parents’,
due to a small step-size. Hence, it is difficult for the algorithm to escape from
local minima in this case, especially at the late stage of the algorithm’s running.
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Fig. 1. 10 dimensional function: (a) sphere, (b) rastrigin
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4.2 Modified Step-Size

Based on the Equation (3) and (4), the step-size adjusts according to the dynamic
range of values in each dimension. At the beginning of a program, individuals
on each dimension are randomly assigned some values in the specified range, for
instance, [−100, 100] for f1. Therefore, the values of step-size on each dimension
are quite large initially. After several generations, the population will aggregate
around the optimal value or local minimum values. The range of all individuals
on each dimension will be much smaller than the initially specified range. Hence,
the step-size will become increasingly smaller with the increasing number of iter-
ations. However, there are some mutations occurring during the process of new
individuals’ generation and selection. These mutations have significant impact
on the step-size. If some mutations occur, the values of step-size, as well as the
dynamic range of individuals, may become large again. This gives the algorithm
a chance to jump out of local minima.

Two benchmark functions, Sphere function f1 and Rastrigin function f7, are
used for illustration in this section. The values of step-size in logarithm against
the number of generations are displayed in the following figure for the two func-
tions with dimension 10.

It can be observed from the Figure 2 that the magnitude of step-size reduces
dramatically. However, it will increase abruptly due to some mutations. Based on
Equation (3) and (4), the step-size is used as a coefficient to multiply a Gaussian
noise. When the step-size is small, it means the population is converging and
each individual in the program has a low ‘speed’ to move. It is impossible for
individuals to escape a local minimum in this case. Conversely, when the step-
size becomes large, the speed of moving for each individual is fast, and escaping
becomes possible. Hence, the step-size in the modified BSO algorithm is adaptive,
and can avoid individuals being trapped into local minima.
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4.3 New Individuals’ Generation and Selection

The new step-size can adjust according to the dynamic range of population.
However, in some cases, the population converges too fast through using the
step-size. This will result in the disappearance of population diversity. Based on
the experimental results of f2 and f3 on high dimensions, the algorithm performs
poorly if only the step-size is modified. For example, the best, the median and the
worst values for 30-dimension f2 are 5.79, 11.07 and 18.24, and for 30-dimension
f3 are 0, 2 and 34. The results are much worse than the results in Table 3.
Therefore, a new generating method and a selecting strategy are utilized in the
modified BSO algorithm.

In the new version, ‘parents’, which are individual in the current generation,
will generate their offspring, which form the next generation. Some of the in-
dividuals are created by adding Gaussian noises to cluster-centers. Others are
generated by adding Gaussian noises to arbitrary individuals from current gen-
eration. Part of the ‘parents’ and their ‘offspring’ will be selected into the next
generation in accordance with a selecting strategy. In the selecting process, all
individuals (‘parents’ and ‘offspring’) are divided into n groups, where n is the
population size. The individual with the best fitness value in each group is se-
lected as the one into the next generation. The new version does not directly
select n good individuals from all ‘parents’ and ‘offspring’. The purpose of this
selecting strategy is to keep the diversity of the population, and to promote
influence of mutations.

5 Conclusions

A modified BSO algorithm was introduced in this paper. In the modified BSO,
an adaptive step-size is utilized to gain the ability of escaping local minima for
the algorithm. The generation and selection strategy in the new version is also
different from the original one. The selection strategy will maintain the diver-
sity of the population and promote the influence of mutations in the algorithm.
Therefore, the modified BSO algorithm is suitable to deal with benchmark func-
tions with many local minima. For uni-modal functions, new version performs
better for functions with low dimension, for example, ten-dimensional function
or twenty-dimensional function. These conclusions are illustrated by experimen-
tal results in this paper. Other generation methods and selection strategies will
be applied to BSO algorithm in future research to obtain better BSO, which is
our near-future research work.
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Abstract. This paper presents the application of a group search opti-
mizer (GSO) to solve a power system economic dispatch problem, which
is to reduce the fuel cost and transmission line loss in the power system.
GSO is inspired by animal searching behavior and group living theory.
The framework of GSO is mainly based on the cooperation of producer,
scroungers and rangers, which play different roles during the search. GSO
has been successfully applied to solve a wider range of benchmark func-
tions [1]. This paper investigates the application of GSO to resolve the
power system economic dispatch problem with consideration of minimiz-
ing the objectives of fuel cost and transmission line loss. The performance
of GSO has been compared with that of genetic algorithm (GA) and par-
ticle swarming optimizer (PSO), and the simulation results have demon-
strated that GSO outperforms the other two algorithms. The application
is also extended to determine the optimal locations and control parame-
ters of flexible AC transmission system (FACTS) devices to achieve the
objective. Simulation studies have been carried out on a standard test
system and better results have been obtained by GSO.

Keywords: group search optimizer, animal searching behavior, eco-
nomic dispatch, FACTS devices.

1 Introduction

Evolutionary Algorithms (EAs), which stem from the study of adaptation in
natural and artificial systems [2], have been investigated comprehensively in last
decades. Particle Swarm Optimization (PSO) [3], Genetic Algorithm (GA) [4]
and other population-based optimization techniques [5] have been applied widely
for problem solving. Recently, group search optimizer (GSO) was proposed by
He et al. [6], inspired by animal behavior in nature. GSO employs the theory of
group living, which is a widespread phenomenon in the animal kingdom. GSO
especially concerns animal searching behavior and utilizes Producer-Scrounger
(PS) biological model [7], which assumes group members search either for ‘find-
ing’ (producer) or for ‘joining’ (scrounger) opportunities. In both searching pat-
terns, GSO employs animal scanning mechanism. The performance of GSO is
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not sensitive to other parameters such as maximal pursuit angle, which makes it
particularly attractive for real-world applications. An extensive discussion and
intensive analysis of GSO can be found in [1], in which comprehensive com-
parison between GSO and other EAs on a range of single-objective benchmark
functions is reported.

Power system economic dispatch has received attention for a long time [8].
It aims at finding a solution to an optimal control of a power system with
an objective to reach. The objective is commonly concerned with Summer fuel
cost in power plants and Summer power loss in transmission lines. This paper
investigates the application of GSO in solving this economic dispatch problem.
Although GSO has been applied to solve economic dispatch problem considering
valve loading effects [9], the problem concerned in this paper is different. GSO
is evaluated for a an optimization problem considering fuel cost and transmis-
sion loss, in simulation studies on IEEE 14-bus system, in comparison with GA
and PSO respectively, to demonstrate the capability of GSO for finding better
solutions. GSO is also applied to incorporate the co-ordinated control of FACTS
devices for solving the power system dispatch problem. FACTS control has been
regarded as a promising approach to improve power system stability and dis-
patch economy [10], and lower operational cost without introducing additional
cost [11][12]. Besides, FACTS devices can be controlled flexibly and rapidly. By
placing FACTS devices in optimal locations and setting optimal control param-
eters, the power flow can be controlled so that more stable and efficient power
system operation can be achieved. Based on a preliminary study of the optimal
placement of FACTS devices [13], GSO is evaluated for coordinated control of
FACTS devices, by simulation studies on the IEEE 14-bus system, in comparison
with GA and PSO. The results will be presented to show that GSO outperforms
GA and PSO in terms of finding accurate solutions.

2 Group Search Optimizer

GSO has a population called a group which hasm individuals and each individual
in the group is called amember. Each member has its own position and the fitness
values of all objective functions. The process of calculating the fitness values of
all objective functions associated with each member is called an iteration, in
which the group search behavior performs once with change in the position of
each member. According to the biological PS model, a group consists of three
kinds of members:

– A producer is the leader of the group, who searches the food and shares
information with the rest of the group. In each iteration, the producer is
renewed by selecting the best member from the group.

– Scroungers follow the producers, and search resource uncovered by other
scroungers. Aside from the producers, 80% of the rest members are randomly
selected as scroungers and the scroungers are renewed in each iteration as
well.
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– The remainder members are rangers. They walk randomly in the searching
space. This behavior allows the group to discover resources far away.

In an n-dimensional searching space, the ith member at the kth iteration, has a
current position Xk

i ∈ R
n, a head angle ϕk

i = (ϕk
i1, ..., ϕ

k
i(n−1)) ∈ R

n−1 and a

head direction Dk
i (ϕ

k
i ) = (dki1, ..., d

k
in) ∈ R

n which can be calculated from ϕk
i via

a Polar to Cartesian coordinates transformation:

dki1 =
n−1∏
v=1

cos(ϕk
iv)

dkij = sin(ϕk
i(j−1)) ·

n−1∏
v=1

cos(ϕk
iv), 2 ≤ j ≤ n− 1

dkin = sin(ϕk
i(n−1)). (1)

The searching behavior of the producer Xk
p is carried out in such a way that

firstly, it selects three positions in the scanning field [14]. Aside from the pro-
ducer, a large percent of the rest members in the group are selected as scroungers.
The scroungers keep searching for opportunities to locate the resources around
the producer, which means a scrounger moves towards the producer and searches
in a small area around it. Besides producers and scroungers, the rest members
are rangers. The range behavior is an initial phase of a searching behavior that
starts without cues leading to a specific resource [15]. The searching strategies
used by rangers include random walk and systematic searching strategies, which
help to locate resources efficiently [16]. The detail introduction to the behavior
of producer, scrounger and ranger can refer to [1].

3 The Application of GSO in Economic Dispatch
Problems

3.1 Problem Formulation

In the power system economic dispatch problem, we need to optimize control
variables of the power system towards the target of minimizing fuel cost and
transmission line loss. Control variables are generator real power outputs PG

expect at the slack bus PG1 , generator voltages VG, transformer tap setting
T , and reactive power generations of VAR sources Qc. Suppose there are NG

generator buses in the system and denote the control variables by a vector u.
Aside from control variables, there also exist the so-called dependent variables,
x, which involve slack bus power PG1, load bus voltage VL, generator reactive
power outputs QG and apparent power flow S. Suppose there are NL load buses
and NE transmission lines in the system.

In simulation studies, u acts as the ‘position’X of the members and is updated
by GSO. Obviously, the problem has a dimension of NG × 2− 1. The values of x
are calculated from u by solving the power flow, i.e., the inequality constraint of
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(6), using Newton-Raphson method. Both u and x are involved in the evaluation
of the fitness values.

The objective function is concerned with the power loss which includes the
fuel cost of power plants and the transmission line loss, which is expressed as:

F (x,u) =

NG∑
i=1

fi + λPL(x,u), (2)

where fi is the fuel cost ($/h) of the ith generator:

fi = ai + biPGi + ciP
2
Gi, (3)

ai, bi, and ci are the fuel cost coefficients, PGi is the real power output generated
by the ith generator, λ is the coefficient between the fuel cost and transmission
line loss, which is set to be 5.1 × 105. By adjusting λ, the feasible range of fuel
cost is equal as the feasible range of transmission line loss. PL stands for the
transmission line loss, which is expressed as:

PL(x,u) =

NE∑
i=1

Pi (4)

where and Pi is the real power loss representing the fuel cost in line i calculated
from QG and S.

Equality Constraints. The equality constraints are that the input and output
reactive power at each bus should be equal as well. Therefore, g(x,u) can be
formulated by nonlinear power flow equation as follows:

QGi = QDi + Vi

Ni∑
j=1

Vj(Gij sin θij −Bij cos θij) (5)

i = 1, · · · , NPQ

where QDi is demanded reactive power at bus i; G and B are the real and
imaginary part of the admittance matrix of the system, respectively; Ni is the
number of buses adjacent to bus i including bus i; NPQ and N0 are the number
of PQ buses and total buses excluding slack bus, respectively. Using the Newton
method mentioned before, x can be solved from these power flow functions.

Inequality Constraints. The inequality constraints h(x,u) are limits of con-
trol parameters. Reactive power QG and voltage VG are restricted by their limits
as follows:

QG
min
i ≤ QGi ≤ QG

max
i i = 1, · · · , NG

VG
min
i ≤ VGi ≤ VG

max
i .

(6)

The constraints of voltage at load buses VL and apparent power flow S are
represented as:

VL
min
i ≤ VLi ≤ VL

max
i i = 1, · · · , NL

|Si| ≤ Smax
i i = 1, · · · , NE.

(7)
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In the simulation studies, if the values of control variables exceed their limits,
they are restricted to the boundary. If the values of dependent variables are
beyond the range, the fitness functions will have large values; hence, the corre-
sponding u is rejected by GSO.

3.2 Simulation Results

Simulation studies are carried out on IEEE 14-bus system, which consists of 20
branches, 5 generator buses and 11 load buses. The total system loads are 259
MW and 81.3 MVar. The single-line diagram of the system can be found in [13].

Two EAs, GA [17] and PSO [18], are employed to compare with GSO in the
simulation studies. In all the studies, for GA and PSO, the population size and
the maximal number of iterations are set to 50 and 1000, respectively. As for
GSO, the population size and the maximal number of iterations are set to 47 and
1000, respectively The average and best results, calculated from 30 trial runs of
these algorithms respectively, are given in Table 1. The fitness value obtained
by GSO can be minimized to 8079.4218 $/h. Among the three algorithms, GSO
obtains the best result in both terms of average and minimum. The results of
the three algorithms is also measured statistically by Kruskal-Wallis test. The
obtained P-value is 0.003, which suggests that the results are not significant.

Table 1. The optimization results on the IEEE 14-bus system

F Optimization algorithms
($/h) GSO PSO GA

Summer 8079.4218 8079.6003 8079.8315

Average 8079.8992 8079.9408 8080.5937

4 Application of GSO in Economic Dispatch with FACTS
Devices Involved

4.1 Problem Formulation

FACTS Devices. FACTS represents a recent technological development of
electric power systems. The adoption of FACTS devices increases the stability
of transmission lines, improves the security of the system and the power flow
can be controlled by adjusting the their control variables.

Four FACTS devices in four different types are to be placed to control power
flow. The optimal placement of these four devices in four different locations and
the determination of their control parameters are required. The first is Thyristor
Controlled Series Capacitor (TCSC), which permits the modification of trans-
mission line reactance. The second is Thyristor Controlled Phase Shifting Trans-
former (TCPST), which controls the phase-angle between the bus voltages at the
two ends of a branch. Thyristor Controlled Voltage Regulator (TCVR) is also
selected to act principally on the magnitude difference between the bus voltages
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at the two ends of a branch. Static Var Compensator (SVC) is used as the fourth
type of FACTS devices to absorb or inject reactive power at the bus which is
chosen to place an SVC.

The TCSC may have one of the two possible characteristics: capacitive or
inductive, corresponding to decreasing or increasing the reactance of the line,
XL, respectively. The value of the capacitance or inductance of the TCSC, XS,
is limited to:

− 0.8XL < XS < 0.2XL (8)

The TCPST acts by adding a quadrature component to the prevailing bus volt-
age in order to adjust its angle. The model used for this device is an ideal phase
shifter which has series impedance equal to zero. It is inserted in series in a
transmission line and may take a value of angle: θP, which is bounded by:

− 5◦ < θP < 5◦ (9)

The TCVR operates by inserting an in-phase voltage to the main bus voltage
so as to change its magnitude. An ideal tap-change transformer without series
impedance is used to model this controller. The value of the turns ratio TV is
chosen in the following range:

0.9 < TV < 1.1 (10)

The SVC has two different characteristics as well: inductive or capacitive. In
the first case it absorbs reactive power while in the second the reactive power
is injected. The value of reactive power injected or absorbed, QS, is limited
between:

− 100 MVar < QS < 100 MVar (11)

Control Variables. Placing FACTS devices in the power system means more
control variables are to be optimized aside from those listed in the previous
section. New control variables include the locations of the FACTS devices L and
their control parameters XS, θP, TV and QS. Suppose NF FACTS devices are
installed in the system, which includes N1 TCSC, N2 TCPST, N3 TCVR and N4

SVC. The dependent variables and objective function are the same as explained
in subsection 3.1.

Inequality Constraints. The setting parameters of multi-type FACTS devices
are restricted by their limits as follows:

XS
min
i ≤ XSi ≤ XS

max
i i = 1, · · · , N1

θP
min
i ≤ θPi ≤ θP

max
i i = 1, · · · , N2

TV
min
i ≤ TVi ≤ TV

max
i i = 1, · · · , N3

QS
min
i ≤ QSi ≤ QS

max
i i = 1, · · · , N4

(12)

The limits of control parameters for the FACTS devices are given in subsection
4.1.
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4.2 Simulation Results

In the following simulation study, four FACTS devices with one device of each
type needing to be installed in the IEEE 14-bus system. GSO is compared with
PSO and GA respectively. The optimization results of 30 trial runs are listed
in Table 2. Comparing between Table 1 and 2, it can be seen that with the
placement of FACTS devices, the system can achieve a much smaller fitness
value, no matter which optimization algorithm is adopted. The results given in
Table 2 again show that GSO obtains the best optimization result among the
three algorithms. The best solution for the optimal placement of the FACTS
devices found by GSO is listed in Table 3, including the locations and control
parameters.

Table 2. The optimization results on the IEEE 14-bus system with placement of
FACTS devices

F Optimization algorithms
($/h) GSO PSO GA

Summer 8072.9411 8073.0517 8073.4958

Average 8073.1704 8073.5277 8073.9002

Table 3. The placement of FACTS devices obtained by GSO on IEEE 14-bus system

FACTS devices Location Control parameters Values

TCSC Branch 7-8 XS -0.1974

TCPST Branch 3-4 θP -1.4663

TCVR Branch 4-9 TV 0.9000

SVC Bus 6 QS 56.4143

5 Conclusion

In this paper, a promising optimization algorithm, group search optimizer (GSO),
has been applied to solve the economic dispatch problem, which is to reduce the
fuel cost and transmission loss in power system. Simulation studies have been
carried out on a standard test systems, and GSO have been compared with two
popular EAs, PSO and GA. The simulation results have demonstrated that GSO
outperforms GA and PSO in terms of finding accurate solutions. GSO has also
been applied to solve the dispatch problem when FACTS are involved. Simu-
lation studies have shown that GSO is capable of optimizing the locations and
control parameters of FACTS devices accurately. With the optimal placement
of FACTS devices, the fuel cost and transmission line loss can be significantly
improved.
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Abstract. Inspired by the transmission of beans in nature, a novel swarm intel-
ligence algorithm-Bean Optimization Algorithm (BOA) is proposed. In the area 
of continuous optimization problems solving, BOA has shown a good perform-
ance. In this paper, an improved BOA is presented for solving TSP, a typical 
discrete optimization problem. Two novel evolution mechanisms named popu-
lation migration and priori information cross-sharing are proposed to improve 
the performance of BOA. The improved BOA algorithm maintains the basic 
idea of BOA and overcomes the shortcoming that BOA with continuous distri-
bution function can not be applied to solve the discrete optimization problems. 
The experimental results of TSP show that the improved BOA algorithm is suit 
for solving discrete optimization problems with high efficiency. 

Keywords: swarm intelligence, Bean Optimization Algorithm, TSP, population 
migration, priori information, discrete optimization. 

1 Introduction 

The traveling salesman problem (TSP) is a kind of NP-hard problems in combinatori-
al optimization area. Given a list of cities and their pairwise distances, the task is to 
find a shortest possible tour that each city is exactly visited once. The TSP has several 
applications even in its purest formulation, such as planning, logistics, and the manu-
facture of microchips. Slightly modified, it appears as a sub-problem in many areas, 
such as robot path plan. In many applications, additional constraints such as limited 
resources or time windows make the problem considerably harder.  

Swarm intelligence optimization algorithm is a kind of modern optimization  
methods which imitate or refer to the acts of nature biological swarm systems. The 
typical algorithms include ant colony optimization (ACO) [1], particle swarm optimi-
zation (PSO)[2]. Inspired by the transmission mode of seeds, a novel swarm intelli-
gence optimization algorithm named Bean Optimization Algorithm (BOA) is  
proposed. It is the combination of nature evolutionary tactic and limited random 
search. BOA can be used to solve complex optimization problems by simulating the 
adaptive phenomenon of plants in the nature. BOA has stable robust behavior on ex-
plored tests and stands out as a promising alternative to existing optimization methods 
for engineering designs or applications [3]. 
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At present, based on the basic BOA algorithm, a variety of improved BOA algo-
rithms have been proposed, such as BOA based on normal distribution, BOA based 
on negative binomial distribution. BOA algorithm has been successfully used to solve 
many continuous optimization problems [4] [5]. In the discrete domain, the researches 
and applications of BOA are still limited. Only in the reference [6], combined with 
ant colony optimization algorithm, BOA solved TSP successfully. In this paper, an 
improved BOA is proposed to solve discrete optimization problems and achieves 
good results. 

2 Introduction of Traveling Salesman Problem 

Traveling Salesman Problem (TSP) was proposed by K. Menger in 1932. Since then, 
it has been a concern of many researchers. It is one of the most intensively studied 
problems in optimization and is used as a benchmark for many optimization methods. 
TSP is to find the shortest way of visiting all of the cities and returning to the starting 
city. Though the rule of TSP is simple, with the increase of the number of travel ci-
ties, the difficulty of solving TSP will grow rapidly and there will be index explosion. 
Now many mathematicians try to find an efficient algorithm to solve TSP. There are 
$1000 Prize for solving the TSP problem of mona-lisa100K[7]. 

According to the definition of traveling salesman problem, its mathematical de-
scription is: 
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In the above description, dij is the distance between city i and city j. 0ijx =  means 

that route i j→  has not been chosen. 1ijx =  means that route i j→  has been 

chosen. The first two constraints guarantee that each city will be passed through once. 
The third constraint guarantees that the answer does not loop in any city subset. Vari-
able S is the subset of cities in city set. 

3 An Improved BOA for Solving TSP  

3.1 Introduction of Bean Optimization Algorithm  

Inspired by the transmission mode of beans, we propose a swarm intelligence algo-
rithm namely Bean Optimization Algorithm (BOA) which can be used to solve com-
plex optimization problems by simulating the adaptive phenomenon of plants in the 



 An Improved Bean Optimization Algorithm for Solving TSP 263 

nature. Now the algorithm has been used in function optimization, scheduling, etc. 
In BOA, the position of a individual bean is expressed with real number vector like 

1 2 3{ , , , . . . , }nX x x x x= ,               (2) 

where n is determined by the scale of problem to be resolved. The bean group is com-
posed of a large number of beans. And the size of the bean group can be adjusted 
according to the practical situations. In addition, beans are sown to the region which 
is defined by the problem. Father beans are those beans whose fitness values are larg-
er than most of others. In BOA, the number and distribution of descendant beans will 
be set according to their father bean’s fitness value. The basic equation of BOA is 
shown as following: 

[ ], if [ ] is a father bean
[ ]

Distribution( ) f [ ] is not a father beanmb mb

X i X i
X i

X X A X i

⎧
= ⎨ + ×⎩ ，i

       (3) 
In the above equation, X[i] is the position of bean i.  Xmb is the position of the father 
bean. Distribution(Xmb) is the a random variable with a certain distribution of father 
bean in order to get the positions of its descendants. Parameter A can be set according 
to the range of the problem to be resolved. 

In addition, the distribution of some beans does not follow the equation discussed 
above. They choose random positions in order to reinforce the global optimization 
performance. 

When the descendant beans finished locating, their fitness values are to be eva-
luated. The beans with most optimal fitness value will be selected as the candidates of 
father beans in the next generation. The candidates of father beans should also satisfy 
the condition that the distance between every two father beans should be larger than 
the distance threshold. This condition assures that the father beans can have a fine 
distribution to avoid premature convergence and enhance the performance of the 
BOA for global optimization. If all the conditions can be satisfied, the candidate can 
be set as the father bean of next generation. 

3.2 Core Operation of the Improved BOA 

BOA algorithm uses population evolution mechanism to find the optimal solution. 
Because most of the population evolution models are continuous, they are difficult to 
solve discrete optimization problems, such as TSP. To this end, an improved BOA for 
solving discrete optimization problems is proposed by taking advantage of the cros-
sover idea of genetic algorithm. The algorithm design is shown as follows. 

1) Code individual beans 
According to the definition of TSP, the dimension n of location of individual beans is 
set to be the number of cities. Each element of a bean’s position vector represents a 
city and they are not repeated. The position vector of a individual bean is set as X = 
(x1, x2, ..., xi, ...,. xj, ..., xn). That means there is a route as x1 → x2 → ... → xn and xi ≠ xj 
(i ≠ j). 
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2) Population migration 
In the process of population migration, at least two populations should be initialized. 
The best individual (father bean) in each population will be involved in cross-species 
operation through the interaction between populations in order to promote the pros-
perity of populations. 

3) Cross-sharing of a priori information 
In order to keep the priori information of the father beans, there are cross operations 
between the father beans and the individual beans to produce new offspring individu-
als. The specific operation is shown as follows. 

(1) Select a random position in the vectors of a father bean f and an individual bean s 
separately as a cross-region. 
(2) Exchange cross-region between f and s. Then delete the duplicate elements in f 
and s separately. Two new offspring individuals a and b will be generated. 

For example: Let n = 5. The vector of father bean f = (1 2 | 34 | 5). The individual 
bean s = (5 4 | 3 2 | 1). The cross-region randomly selected is the sections: 34 and 32. 
The offspring individuals after cross operation are a = (1 4 3 2 5) and b = (5 2 3 4 1). 

4) Algorithm design 
The sketch diagram of population migration for TSP solving is shown as follows. 

 

Fig. 1. Sketch diagram of population migration 

According to the principle of BOA, the population should be initialized firstly (let 
the size of population be m). According to the fitness values of individual beans, se-
lect the father beans (let the number of father beans be 3): f1, f2, f3. (m-3) / 3 individu-
als will be screened as sub-populations 1 according to the Euclidean distance between 
individual beans and f1. Use the same method, sub-populations 2 and sub-population 3 
will also be generated. Then let f2 be the cross father bean of sub-population 3 and 
cross operations will be carried out between f2 and individual beans in sub-population 
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3. Select the offspring with the best fitness value to displace the former individual 
bean in sub-population 3. Let f3 be the cross father bean of sub-population 1 and cross 
operations will be carried out between f3 and individual beans in sub-population 1. 
Select the offspring with the best fitness value to displace the former individual bean 
in sub-population 1. Let f1 be the cross father bean of sub-population 2 and cross op-
erations will be carried out between f1 and individual beans in sub-population 2. Se-
lect the offspring with the best fitness value to displace the former individual bean in 
sub-population 2. Repeat the above process until the termination condition is met. The 
position vector of the bean with the minimal fitness value is the optimal solution. The 
pseudocode of BOA for solving TSP is described as follows: 

Table 1. Pseudocode of BOA 

Set the number of iterations be q.  
Randomly generate m initial beans. 
Calculate the fitness value of the initial beans and select z 
father beans.  
Generate z sub-populations by clustering algorithm. 
While(the number of iterations<q) 

For  i=1:z 
For  j=1:m 

           Cross operations are carried out between Xj and 
f(i+1); 
The bean with the best fitness value is recorded as Xj1; 

          Xi=Xj1; 
End 
Father beans update; 

End 
End 
Output the optimal solution. 

4 Experiment and Analysis  

4.1 Introduction of TSP Experiment  

We select five typical TSP problems and show them in table 2. 

Table 2. Introduction of TSP Experiment 

     Parameters 
TSP  

Number 
of Cities Optimal Route Length Type of

Distance 

ULYSSES22 22 75.31 

Euclidean Distance 

BAYG29 29 9074.15 

OLIVER30 30 423.74 

EIL51 51 426 

BERLIN52 52 7542 
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4.2 Parameter Settings of BOA  

The parameters of BOA algorithm are set in table 3. 

Table 3. Parameters of BOA 

   Parameters of  
BOA 

TSP  

Population 
Scale 

Number of 
Sub-populations 

Number of 
Father Beans 

Number of 
Iterations 

ULYSSES22 50 3 3 200 

BAYG29 50 3 3 200 

OLIVER30 50 3 3 200 

EIL51 100 3 3 1000 

BERLIN52 100 3 3 1000 

4.3 Experimental Results  

The experiments were carried out on a PC with a T8100 2.10-GHz Intel Processor and 
2.0-GB RAM. The operating system was Microsoft Windows XP. All the programs 
were written and executed in MATLAB 2010a except Max-Min AS[8] which is in the 
open source software OAT [9]. We compared BOA with Cross-PSO [10] and Max-
Min AS and each experiment was done 30 times.  The maximum scale of cross-
region is 8. The experimental results are shown in table 4 and following figures.  

Table 4. TSP Experimental Results 

 Experimental 
Results 

 
TSP  

the Best Result the Worst Result the Everage Number of 
Iterations 

BOA 
Cross-
PSO 

Max-
Min 
AS 

BOA 
Cross-
PSO 

Max-
Min 
AS 

BOA 
Cross-

PSO 

Max-
Min 
AS 

ULYSSES22 75.31 75.88 77.00 76.08   77.51 77.00 68.67 146.17 89 

BAYG29 9074.15 9213.89 9081.43 9166.28 10769.39 9081.43 131.73 169.45 147 

OLIVER30 423.74 497.06 433.14 424.69   457.94 433.14 89.23 195.67 169 

EIL51 434.46 468.09 427.80 447.11   472.38 427.80 317.53 898.07 631 

BERLIN52 7542.30 7916.41 7542.00 7835.04  8353.52 7542.00 232.45 766.86 415 

4.4 Experimental Results Analysis  

We can see from the above results that the improved BOA can effectively solve TSP. 
The performance of the algorithm is mainly reflected in the two aspects: final solution 
and average number of iterations. The performance of Cross-PSO algorithm is the 
worst compared with improved BOA and Max-Min AS both in the two aspects of the 
performance. The improved BOA gets the best solutions (also the optimal solutions) 
when solving the TSP problems: ULYSSES22, BAYG29 and OLIVER30. When 
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solving EIL51 and BERLIN52, Max-Min AS got the best final solution. The results 
show that Max-Min AS is more suitable for solving combinatorial optimization prob-
lems than other two algorithms. But the average number of iterations of Max-Min AS 
is bigger than that of BOA. That means BOA has better convergence rate. When solv-
ing BERLIN52 problem, BOA also got an approximate optimal solution. 

5 Conclusions  

In the area of continuous optimization problems solving, BOA has shown a good 
performance. In this paper, an improved BOA is presented for solving TSP, a typical 
discrete optimization problem. Two new evolution mechanisms named population 
migration and priori information cross-sharing are proposed to improve the perfor-
mance of BOA. The improved BOA algorithm maintains the basic idea of BOA and 
overcomes the shortcomings that BOA with continuous distribution function can not 
be applied to solve the discrete optimization problems. The TSP experimental results 
show that the improved BOA algorithm is suit for solving discrete problems with high 
efficiency. In the future, we will explore more effective optimization mechanism to 
improve BOA and focus on large-scale TSP problems to test it. 
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Abstract. For the problems of solving difficult problems in evolutionary 
algorithms such as easily falling into local optimum, premature convergence 
because of selective pressure, a complex and larger calculation and a lower 
accuracy of the solution, this paper proposes cloud droplets evolutionary model 
on reciprocity mechanism (CDER). The main idea of CDER is to simulate the 
phase transition of the cloud in nature which has vapor state, liquid state and 
solid state, and to combine the basic ideas of evolutionary computation to 
realize the population evolution. The condensation growth and collision growth 
of cloud droplets correspond to the competitive evolution and reciprocal 
evolution of species in nature. Experiments on solving the function optimization 
problems show that this model can enhance the individual competition and 
survival ability, guarantee the population diversity, accelerate the convergence 
speed and improve the solution precision through the iterative process of 
competition mechanism and reciprocity mechanism. 

Keywords: reciprocity mechanism, competition mechanism, cloud droplets, 
evolutionary algorithms, phase transition. 

1 Introduction 

One of the typical characteristics of intelligent computing is to learn and simulate 
various forms of intelligent behavior in nature so that we can explore many ways and 
means to solve the problems. Cloud theory which brings forward by Academician Li 
Deyi is a method combining fuzzy and randomness [1-2], the model has the character 
of uncertainty with certainty, stability with variation in knowledge representation. 
Therefore, it reflects the basic principles of species evolution in nature. Zhang [3] 
proposes an evolution algorithm based on cloud model. The algorithm is called CEBA 
in this paper. The algorithm is simple and easy to realize. It has been achieved good 
results on uncertainty and ambiguity problems appeared in the process of the 
evolution. However, the algorithm still has some shortcomings. Firstly, in order to 
achieve rapid refinement in local exploitation, the algorithm reduces the evolutionary 
range. Therefore the population diversity and the exploration ability will fall, and the 
algorithm may converge prematurely because of selective pressure. Secondly, the 
algorithm adopts a mutation strategy to solve the premature convergence problem, but 
the mutation strategy simply enlarges the parameters. Therefore, the algorithm will 
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have much unnecessary search and reduce the efficiency of the search. Finally, in the 
evolutionary process, the algorithm only emphasizes the survival of fittest while 
ignores another evolutionary strategy, reciprocal evolution. Therefore, the algorithm 
has lower exploitation capacity, slower convergence in the later stage of evolution, 
and lower convergence accuracy. For these problems, learn from the formation of 
cloud droplets in nature, especially inspired by the reciprocal evolutionary strategy, 
this paper puts forward the cloud droplets evolutionary model on reciprocity 
mechanism. 

2 Cloud Droplets Variation and Evolutionary Mechanism 

2.1 Cloud Droplets Variation 

Cloud formation is the phase transition process. When the water vapor is saturated 
and stayed at some hygroscopic cloud condensation nuclei, the initial cloud droplet is 
condensed by heterogeneous nucleation. Cloud droplets constantly absorb water 
vapor to make themselves to condense and sublimate. When the cloud droplets move 
close to each other, larger cloud droplets are formed by colliding and coalescing 
between cloud droplets. When the temperature is below 0℃, ice phase is produced 
and a large number of supercooled water droplets are existed in the clouds. Through 
the sublimation of water vapor, ice crystals quickly grew up into snow crystal. The 
precipitation particles are eventually formed by way of the Bergeron process. If a lot 
of supercooled water droplets participate in the collision, snow crystals are 
transformed into spherical snow pellets. If they fall into the warm area where the 
temperature is above 0℃, they will melt into rain.  

2.2 Cooperative Evolutionary Mechanism 

Darwin has pointed out in “Origin of Species” that the evolution of biological 
organisms is the result of competition, which explained many natural phenomena 
successfully [4]. Martin Nowak from Harvard University ranks the cooperation as the 
third important factor of the species evolution, alongside of mutation and natural 
selection. Evolution is a unity of the cooperation and the opposition [5]. Every gene, 
every cell and every organism of the individual should strengthen its own 
evolutionary process at the expense of beating its rivals. Therefore, individuals often 
conflict with each other because of limited resources [6]. However, cooperation is 
existed in the evolution. Therefore, Nowak summarizes the cooperation evolution in 
five mechanisms, kin selection, direct reciprocity, indirect reciprocity, network 
reciprocity, and group selection. 

J. B. S. Haldane puts forward that the altruism was existed in the evolution [7]. 
From the study of the social insect, Hamilton [8] proposed kin selection. Direct 
reciprocity refers if I help you now, you may help later. More classical game strategy 
is tit for tat, TFT [9]. Indirect reciprocity is a kind of more prevalent reciprocity form. 
Indirect reciprocity refers to helping someone to establish a good reputation, which 
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will be rewarded by others later. Indirect reciprocity will favor the cooperation 
evolution [10] if the probability, q, of someone’s reputation exceeds the cost-to-
benefit ratio of the altruistic act, namely q>c/b. Network reciprocity is a new form of 
reciprocity. Cooperation can form network clusters so that they can help each other. 
Group selection is a minimalist stochastic model [11]. The population is divided into 
several groups. Cooperators help others in their own group while defectors do not 
help.  

In a word, collaborative is a most basic feature in all biological systems. In view of 
the cooperation and competition relation in the biological evolution, the algorithm 
realizes population evolution by cloud phase transformation, the competition and 
reciprocal evolution. 

3 Cloud Droplets Evolutionary Model on Reciprocity 
Mechanism 

Thermodynamic theory points out that if the various parts of the object do not change 
in status without any influences of outside conditions for a long time, it is called 
equilibrium state. Metastable equilibrium state is stable for infinitely small changes, 
and is an unstable state for large disturbance. If an object has different properties in 
different parts, it is called the non-uniform system or heterogeneous system. Each part 
is called a phase. From the cloud formation process it can be seen that the cloud has 
three phase, gaseous (water vapor), liquid (water droplets) and solid (snow crystal, 
snow pellets). 

 

Fig. 1. Cloud vapor phase 

Firstly, there are 10 populations, each population has 50 individuals. We use the 
cloud generator to generate 500 individuals, and each individual is called the cloud 
droplets. At this time, cloud droplets throughout the search space, such state is called 
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cloud vapor phase (as shown in Fig. 1). According to the laws of species evolution, 
the competition is in dominant while reciprocity is in disadvantaged in the search 
process. The populations realize the survival of the fittest in competitive evolution, 
good cloud droplets win and survive, and the system is in an unstable state. For 
reciprocal evolution, cloud droplets adapt to each other, strengthen the viability and 
reproductive ability of populations and maintain the orderly and diversity of the 
ecosystem. The system is in metastable equilibrium. 

In the formation and development stage of cloud in nature, the cloud droplets can 
grow by condense (or sublimation). In addition, the big cloud droplets will collide 
with the small cloud droplets because of the different size and gravity. Then the 
collision growth phenomenon is happened. In this model, the condensation and 
collision growth of the cloud droplet corresponds to the cloud liquid phase (as shown 
in Fig. 2). 

  

            Fig. 2. Cloud liquid phase                    Fig. 3. Cloud solid phase 

As the temperature continues to decrease, water vapor transfers to the ice crystals 
and ice crystals grow up. Ice crystals can quickly grow up from the snow crystal by 
condensation, and ultimately formed the precipitation particles. In this model, the 
formation of ice crystals, snow crystals corresponds to the cloud solid phase (as 
shown in Fig.3). It indicates that the population has found the current optimal solution 
area in the cloud solid phase. The population is in the local exploitation phase. In the 
exploitation process, if the number of successful evolution is more than a certain 
threshold, then the algorithm finds the optimal solution. The cloud is in the solid 
phase and the system is in steady state. If the failure evolutionary number exceeds a 
certain threshold, the cloud is changed from solid phase into liquid phase. The 
population search in a wider range. In cloud liquid phase, if the failure evolutionary 
number exceeds a certain threshold, the cloud is changed from liquid phase into vapor 
phase. Cloud droplets make the phase transition according to the degree of evolution 
until they find the optimal solution (as shown in Fig.4). 

This algorithm uses indirect reciprocity mechanism as the cooperation model. The 
rule is that the populations will favor the cooperation evolution if the probability, q, of 
population’s reputation exceeds the cost-to-benefit ratio of the altruistic act. 
Otherwise, it will favor the competitive evolution.   
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Fig. 4. Optimization process of CDER model 

From the view of mathematics, CDER can be abstracted as a 5-tuple model CE = 
(VP, LP, SP, CR, A). CE represents the cloud droplets evolutionary system on 
reciprocal mechanism. The system is composed of five parts, cloud vapor phase VP, 
cloud liquid phase LP, cloud solid phase SP, competitive and reciprocal evolution CR, 
and the algorithm A. The core idea of the algorithm is as follows: cloud droplets carry 
out mutual phase transitions among cloud vapor phase, cloud liquid phase and cloud 
solid phase and according to the degree of evolution in every evolutionary generation. 
In the phase transition process, the cloud droplets realize adaptive competitive and 
reciprocal evolution. The algorithm is finished as soon as it converges to the optimal 
solution or very close to the optimal solution. 

The cloud droplets are produced by cloud generator in CDER model. The cloud 
digital features are expressed by Expectation (Ex), Entropy (En) and Hyper-entropy 
(He). Ex is the expectation of all cloud droplets distributed in the domain. En is the 
uncertainty measure of the qualitative concept. He is the discrete degree of entropy. 
(The concept of Ex, En and He are derived from literature [1]). 

4 CDER Model for Function Optimization 

In order to test the performance of the proposed algorithm, a set of 10 benchmark 
functions [12] are selected. The comparison is taken among the CDER algorithm, opt-
aiNet algorithm [13] and CEBA algorithm. The benchmark functions are listed in 
Table 1. The computer of experiment is Acer notebook 2.0GHz frequency and 1.5GB 
memory. The software is Matlab 7.0. We carry out experiments from the search 
space(S), the convergence speed (CS), the computation time (CT), the function 
evaluation number (FEN) and the best global optimum (BGO). Each experiment 
independently run 50 times. 
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Table 1. Comparison with opt-aiNet and CEBA 

F Name of the Problem 
f1 Sphere model 
f2 Axis parallel hyperellipsoid 
f3 Schwefel’s problem 1.2 
f4 Step function 
f5 Rastrigin’s function 

 

F Name of the Problem 
f6 Griewangk’s function 
f7 Shekel’s Family(m = 5) 
f8 Shekel’s Family(m = 7) 
f9 Shekel’s Family(m = 10) 
f10 Easom function 

There are single-mode functions and multi-mode function of the selected functions. 
One function is 2-D function (f10). Others are high-dimensional functions. These 
functions can be divided into two categories according to the location of the global 
optimal solution. One category is the geometric center position in the domain, and the 
other is not. We can draw some conclusions from experimental results, see Table 2. 

(1) Better convergence. Convergence analysis has become an index sign which 
usually evaluate the algorithm performance. In the tested functions, CDER can 
converge to the optimal solution that the algorithm has found within the limited 
number of function evaluations, while the other two functions have a gap between 
their solution and the optimal solution. This indicates that the algorithm opt-aiNet and 
algorithm CEBA have general effect on premature convergence problem while 
algorithm CDER can effectively ensure the diversity of the population by adaptive 
competitive and reciprocal evolution and avoids premature convergence.  

(2) Convergence speed. Convergence rate are measured from three aspects. The 
first index sign is the convergent generations of the algorithm or it satisfied other 
termination conditions. In the 10 tested functions, CDER algorithm has fewer 
generations than opt-aiNet algorithm and CEBA algorithm. The data (see f1) show 
that CDER algorithm requires about 37 generations to converge, opt-aiNet algorithm 
needs about 144 generations to converge, while CEBA algorithm requires about 41 
generations to converge. The second index sign is program running time. We can see 
from Table 2 that the time CDER algorithm spent is less than opt-aiNet algorithm and 
CEBA algorithm in tested functions. Take function f2 as example, the time of CDER 
algorithm spent is equivalent to 22% of opt-aiNet algorithm, and is equivalent to 60% 
of CEBA algorithm. Therefore, we can think that CDER algorithm not only saves 
more time but also converges quickly and more satisfies the engineering 
requirements. The third index sign is the number of function evaluation. The function 
evaluation times of CDER algorithm are less than opt-aiNet algorithm and CEBA 
algorithm, for example (f1), evaluation times of CDER algorithm is 31% of opt-aiNet 
algorithm and 87% of CEBA algorithm. In addition, the accuracy of the optimal 
solution found by CDER algorithm is higher than opt-aiNet algorithm and CEBA 
algorithm. 

(3) Robustness. We have chosen various test functions in our experiment. They 
are representative and widely used. The test scale is so large that it can eliminate the 
influence of algorithm brought by the subjective and objective conditions. We have 
found that the performance indexes variance of the CDER algorithm is generally 
smaller than the opt-aiNet algorithm and CEBA algorithm after analyzing the table 2 
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comprehensively. This fully shows that CDER algorithm has stable performance, 
strong robustness, less susceptible to the influence of the function features and 
initialized population. The algorithm has a wide range of application. 

Table 2. Comparison with opt-aiNet and CEBA 

Fun Algorithm
S CS CT (s) FEN BGO 

ave ave SD ave SD ave SD ave SD 

f1 

opt-aiNet 90000 144 41 0.248 0.037 61278 18646 2.035e-008 2.123e-008 

CEBA 30000 41 2.03 0.946 0.142 21990 959 9.427e-034 2.810e-033 
CDER 20000 37 1.53 0.071 0.019 19120 718 1.045e-060 5.520e-060 

f2 

opt-aiNet 90000 140 42 0.258 0.022 61960 19764 3.744e-008 5.085e-008 
CEBA 20000 39 2.38 0.099 0.195 19250 1126 3.477e-033 1.251e-032 
CDER 20000 37 1.56 0.059 0.017 19150 735 9.864e-061 4.447e-060 

f3 

opt-aiNet 90000 121 52 0.248 0.019 50443 22433 5.264e-013 8.839e-013 

CEBA 20000 37 2.50 0.098 0.019 19010 1197 1.068e-030 3.964e-030 
CDER 20000 37 1.57 0.065 0.018 19000 738 2.221e-058 9.308e-058 

f4 

opt-aiNet 150000 100 96 0.340 0.050 60000 20906 3.120e-005 2.649e-004 
CEBA 12500 18 0.91 0.070 0.047 1400 459 0 0 
CDER 12500 17 0.34 0.044 0.015 1360 170 0 0 

f5 

opt-aiNet 90000 78 8.07 0.454 0.017 8170 4080 2.706 2.362 

CEBA 12500 20 1.59 0.059 0.016 10620 799 0 0 
CDER 12500 11 0.98 0.046 0.016 5900 479 0 0 

f6 

opt-aiNet 100000 87 48 0.287 0.049 18466 3611 1.800 1.770 
CEBA 30000 24 2.42 0.179 0.030 24800 2416 0 0 
CDER 30000 12 1.28 0.103 0.018 12960 1414 0 0 

f7 

opt-aiNet 108000 148 9.44 3.287 1.008 88800 22080 -9.1268 1.417e-004 

CEBA 30000 45 7.48 2.892 0.872 22500 3350 -9.7265 4.427e-005 
CDER 20000 35 5.65 1.103 0.116 17650 2656 -10.1532 9.104e-007 

f8 

opt-aiNet 108000 154 11.30 3.462 0.512 92400 11030 -9.4498 1.473e-002 
CEBA 30000 43 9.24 2.761 0.312 21500 3210 -9.7472 2.638e-003 
CDER 20000 32 7.35 1.083 0.027 16475 2596 -10.4029 3.546e-005 

f9 

opt-aiNet 108000 132 8.56 3.848 1.326 79200 10100 -9.0512 2.742e-004 

CEBA 30000 48 7.84 2.982 0.904 24000 3240 -9.2538 2.104e-004 
CDER 20000 36 5.5 1.205 0.112 18075 2586 -10.5364 3.203e-006 

f10 

opt-aiNet 108000 119 27.81 0.568 0.021 68790 22626 -9.902e-01 2.310e-003 
CEBA 40000 19 16.1 0.212 0.029 20140 15727 -9.996e-01 3.705e-004 
CDER 40000 13 2.46 0.145 0.018 13540 2467 -1 0 

5 Conclusion and Outlook 

This paper discusses cloud droplets evolutionary model for function optimization 
problems after deeply researching the cloud formation in nature and two typical 
evolutionary paths in evolution. The model simulates the survival strategy and 
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evolutionary path of the population evolution with mutual transformation of vapor, 
liquid, solid of cloud to solve the function optimization problems. The performance of 
CDER algorithm is relatively better compared to opt-aiNet algorithm and CEBA 
algorithm. Theoretical analysis and simulation results show that the algorithm is 
better in global convergence, solution quality and so on. 

The cloud droplets evolutionary model which combines the cloud phase with 
reciprocal ideas has a more wide range of applications. However, the settings of 
expectations, entropy and hyper-entropy have a certain impact on CDER algorithm. 
Thus, how to set up scientific and effective parameters is one of the key factors affecting 
the algorithm efficiency. In addition, the optimization problems involved in the project 
are mostly multi-objective optimization problems. People often want to achieve the 
optimal goal with a small price. For example, investment questions, people often want 
to put the funds as little as possible, bear minimal risk and get the maximum benefit. 
Therefore, these issues will be the direction for us to make a future research. 
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Abstract. Slab Rehandling Problem is a new style of warehousing problem 
stemmed from Material Preparation Area in slab yard in steel industry which is 
essential to the operations efficiency of the slab yard and also coordination 
between continuous-casting and hot-rolling stages. SRP is to reassign storage 
locations of slabs in MPA under the constraint of no further shuffles during the 
retrieving process, with the objective of minimizing the number of rehandles in 
reassigning process and maximizing the empty stacks cleared up. Few 
literatures studied exactly the same problem as SRP. For its combinatorial and 
dynamic nature, a basic heuristic and a cut strategy-embeded filter & fan 
algorithm are proposed to solve it separately. Experiments on real data collected 
from steel industry proved the effectiveness and efficiency of the algorithm 
proposed. A lower bound of the problem is also proposed as a measurement of 
the algorithm proposed. 

Keywords: Steel Industry, Slab Rehandling Problem, Filter & Fan. 

1 Introduction 

This paper studies the Slab Rehandling Problem (SRP) in the slab yard, which is a 
key logistics problem between the slab storage stage and the hot rolling mill in steel 
industry. In slab yard, slabs produced from continuous-casting are stored in it before 
sent into the furnace for hot-rolling process. Slabs which are chosen in hot rolling 
plan (rolling plan for short, which is a sequence of slabs with precedence relationships 
defined between them according to customer demands and hot-rolling rules) will be 
sent to MPA first and then carried onto the conveyor connected to furnace by the 
precedence sequence defined by rolling plan (Fig. 1). As a material preparation buffer 
between storage area of slab yard and the furnace, MPA plays a key role in 
coordinating the slab-preparation-pace and slab-heating-pace. 

As slab yard receives the rolling plan, chosen slabs which always stacked in 
different sub-yards of the slab yard are sent to MPA. For no further shuffles when 
retrieving them onto the conveyor, any slab sent to MPA will be assigned to a stack 
which is of the same rolling plan and on top of later retrieved slabs. If no such stack 
exists in MPA, then open a new stack for it. Based on such stacking strategy, many 
unnecessary stacks are occupied in MPA. The slabs in MPA are sent into furnace one 
by one, according to the precedence relationships, and one plan after another. But 
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since furnace is a kind of high energy-consumption facility in steel industry, which 
should be timely fed on slab and full filled for unnecessary energy consumption. So 
such unnecessary stacks mentioned above should be reassigned and some of them 
should be emptied to storage more slabs of different plans so as to avoid any vacancy 
in furnace. Slab Rehandling Problem (SRP) is to aggregate such unnecessary stacks 
into a minimum number of stacks, aiming at least rehandles in the whole rehandling 
process under the restriction of no further shuffling during retrieving them into 
furnace. A proper rehandling scheme can empty more stacks within a shorter time. 
And more slabs will be stored in MPA which can help match feeding frequency of 
furnace, decreasing energy consumption and also smooth the coordination between 
storage yard and hot-rolling process. 

 

Fig. 1. Schematic Diagram of the Slab Yard 

Rehandling problems have been addressed in container yard a lot. The container 
rehandling problem is to rehandle the export containers within the yard in advance, so 
that no extra re-handles will be needed during the loading operation onto the ship and 
the optimization goal is usually to minimize the number of container movements 
during the rehandling process [2,6]. Since the buffer of container yard is relatively 
larger than that of slab yard, operations of emptying stacks during the rehandling 
process is not considered in the above problem. The stacking problem in Königet al. 
[1] is actually a pre-marshalling problem in which all incoming slabs are first stored 
in temporary stacks, and then marshaled to target stacks so that the slabs can be 
retrieved later from the target stacks without further shuffling.  Precedence relations 
are defined among target stacks, a given target stack can not be disposed until its 
precedence target stacks having been disposed, and no shuffles permitted in target 
area. Slab Stack Shuffling (SSS) problem is to choose appropriate slabs for a 
sequence of rolling items in a hot rolling plan, from their respective candidate slab 
sets (families) with a view to reducing the resulting shuffling workload[3,4]. After the 
decision of SSS, slabs which are chosen in hot rolling plan are sent to MPA of the 
slab yard. And the SRP in this paper is to decide the locations of these slabs in MPA 
with the objective of emptying more stacks within minimum number of rehandles, 
under the constraints of no further shuffles during the retrieving process.  

The SRP problem studied in this paper consists of three major properties 
distinguished from the previous warehousing or container terminal problems. (1) The 
rehandling object of SRP is only the slabs stored in MRP, and any rehandle must obey 
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the precedence relations defined between them. (2) The crane can move at most two 
slabs at a time. (3) SRP is a combinational optimization problem since the objective 
function takes both the number of shuffles and the number of emptied stacks into 
consideration. (4) With the huge number of possible options and later ones depending 
on earlier decisions, SRP has astronomical number of states during the whole 
rehandling decision process. Such features and complexity of SRP motivated us to 
develop a Filter & Fan based heuristic to solve the problem approximately. 

The rest of the article is organized as follows: Section 2 describes the SRP and 
proposes two theorems about the properties of the optimal solution of SRP. Section 3 
proposes a basic heuristic and Sections 4 presents a Filter & Fan based heuristic for 
SRP separately. Sections 5 gives the lower bound of the problem and Section 6 
reports the experiment result on the real data collected from steel industry. Finally, 
Section 7 concludes the study.  

2 Problem Description  

In MPA, slabs are stacked according to the precedence relationships defined by 
rolling plan. A rolling plan includes several priority groups. The slabs which are of 
smaller priority index have higher priority to be retrieved, which is to say a slab 
indexed as 1 will be retrieved firstly. Slabs of the same priority group are always of 
the same width, weight and steel grade, and they can be sent to furnace at an arbitrary 
sequence. Slabs of the same plan are stacked together, separately from slabs of other 
plans. Slabs of a hot-rolling plan and the configuration of related stacks in MPA are 
shown as follows in Fig. 2. 

1 2 2 2 3 4 5 6 6 7 8 81
2
2
2
7

3
4
6

1
1
6

5
8
8

 

Fig. 2. A hot-rolling plan and its stacking configuration in MPA 

In Fig. 2, slabs are stacked according to the priority index. For each stack in MPA, 
slabs of smaller priority index are stacked on higher tier which for no further shuffles 
occur when retrieving them on to the conveyor.  

Once all slabs of a plan have been sent and stacked in MPA, none of slabs from 
other plans can be stacked on top of these occupying stacks, and the whole rehandling 
process considered in SRP is carried out in a plan. And also, from perspective of 
production safety in practice, aggregation process should be finished before retrieving 
process. Any slab can not be sent to furnace until the rehandling process is over. So 
any dynamic sent-in or sent-out slab is not in consideration of this paper. 

For illustrating the rehandling (aggregation) process, an example of 4 stacks 
configuration is given in Fig. 3. There are 14 slabs staked in 4 stacks, each slab 
represented by a square. The containers are retrieved in ascending order of their 
priority index marked on the squares. The series of Figs. 3(a)–3(e) gives one way  
to rehandle the stacks. There are 6 rehandles: slab 3 and 4 from stack b to stack d 
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(Fig. 3a to 3b), two slab 2 from stack a to stack d, one slab 2 from stack a to stack d, 
two slab 1 from stack c to stack d (Fig. 3b to 3d), and last twice rehandles for slab 6 
from stack b and c to stack a separately (Fig. 3d to 3e). Certainly, the initial 
configuration and the scale of priority index both affect the total number of rehandles 
and final vacancy stacks move out. Given an initial configuration, different moves 
will definitely bring out different final configurations, different number of vacancy 
stacks and number of rehandles.  

 
Fig. 3. A rehandling process of SRP 

For a given configuration of MPA, Slab Rehandling Problem (SRP) is to aggregate 
the underused stacks, aiming at the minimum number of stacks finally taken and also 
the number of rehandles during the whole rehandling process. Each rehandle 
movement is operated by crane. For given initial and final configurations, the crane 
which can hold at most two slabs once will finish the rehandles more quickly than the 
crane which can only hold one slab at a time. But it also makes the SRP more difficult 
since the number of slabs that the crane should carry on for each movement becomes 
decision variables too. 

Three assumptions mentioned below generally hold during the operations of 
rehandling moves in SRP. 

Assumption 1: Restrictions on stacks that the rehandled slabs moved on: any 
rehandled slab should be stacked on top of later departing ones. In other words, in a 
stack, the higher slab ranks smaller than any lower one. Based on such restriction, we 
would like to assign the rehandled slabs to the best storage slots such that the 
possibilities of more stacks would be emptied is maximized. 
Assumption 2: Restrictions on two slabs moved together by crane: two slabs can be 
moved together by crane iff they have the same source stack and destination stack, 
and the below one should rank smaller than the slab which is on top of the destination 
stack. This assumption ensures no more shuffles occur.  
Assumption 3: Restrictions on the emptied stacks: since empty stacks in MPA is 
precious and will be more useful for other rolling plans to take, any rehandling move 
should not occupy any vacancy stack, even the new emptied ones.  

As innocent as the problem posed, the problem is hard for its astronomical number of 
states. With the huge number of possible options and later ones depending on earlier 
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decisions, even the modeling of the stack emptying process is hard. The objective 
function is as follows:  

                min stacks+1/k rehandles.                            (1) 

where stacks denotes the number of stacks in the final configuration of MPA, 
rehandles denotes the number of rehandles taken from the initial configuration to the 
optimized final configuration (the whole rehandling process) . k is a parameter, k∈Z+, 
which can be set according to different practical requirement. Since the main purpose 
of SRP is to aggregate existing stacks, resulting in more empty stacks for other plans 
to take, then item of stacks is more important to its objective function. The 
introduction of rehandles is to keep rehandling process in a reasonable time.  

Based on descriptions above, two theorems are proposed for the optimal solution 
of SRP.  

Theorem 1: if there are n consecutive slabs of the same original stack and about to 
move to the same destination stack. Then in the optimization solution, such 
movements should be rehandled within ⎡ ⎤/ 2n times. 

Proof: for n consecutive moves, minimum rehandles occur only if the crane takes two 
slabs in each movement until no or one slab left, which is ⎡ ⎤/ 2n times.                           □ 

Theorem 2: if a stack contains all the slabs which marked with the highest index, in 
the optimization solution such stack could not be emptied. 
Proof: Because of the precedence relationships defined in stacking process, any slab 
must stack on the one whose index is no smaller than it. Then slabs with the highest 
index cannot stack on any slabs except the slab of the same index. Since all the slabs 
of the highest index are in a same stack and such slabs cannot move on other stacks, 
so such stack cannot be emptied.                                                                                   □ 

3 A Basic Heuristic  

Consider S(1,2,…j…,S) slabs stored in D(1,2,…i…,D) stacks. pj is priority index of 
slab j and hi is height of stack i. Without loss of generality, slabs are ranked from 1 to 
r ( pj∈{1,2,…,r}, since different slabs may be of the same priority, so r ≤ S) with 
smaller rank retrieved earlier. Define C as the set of stacks in which top one or two 
slabs can be moved onto other stacks. See Fig. 4 as an example.  

 

Fig. 4. An example of configuration in MPA  

Top slab of stack a is indexed as 1, the highest priority, can be moved to any top of 
other stacks. The top slabs of stack b is indexed as 2 or 3, can be moved to stack c 
since 2 or 3 is less than 5. Top slabs of tack c is indexed as 5 or 6, larger than any 
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other stacks, so stack c cannot be moved to any other stacks. Then C={a,b} and c∉C. 
The process of the heuristic method is followed: 

Step 1: Initialization. Set Iteration = 0, max_Interation.  
Step 2: Feasible rehandles check. Check C, if C = ∅ there is no feasible rehandle 

can be taken, go to Step e; else index the stacks in descending order of Pi 
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j i
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p h i C
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If more than one stack have the same max value, then choose the one with 
bigger priority index of the top slab. If more than one stack can be chosen, 
then choose an arbitrarily stack among them. 

Step 4: Destination-stack decision. Evaluate candidate stacks ides ∈ C\i’
 by       

pdes - pori + |hmax - hi
des’|, in which pdes denotes the index of the top slab of ides, 

pori denotes the larger index of slabs of the origination stack, and hi
des’ the 

updated height of ides.  Choose the stack with the minimum evaluation 
function value and take the move (a rehandle movement includes an 
origination stack, a destination stack and also the number of slabs should be 
moved), update the configuration of MPA, iteration = iteration + 1; 

Step 5: If Iteration < max_Interation, go to Step b;  
Step 6: Stop. 

4 A Filter and Fan-Based Algorithm 

Since a feasible solution of SRP is a sequence of moves, and later scenarios 
depending on earlier scenarios, which resulting in an astronomical number of states. 
A filter & Fan (FF) approach is developed to explore the neighborhood space for 
finding a near-optimal solution. The F&F model can be illustrated by means of a 
neighborhood tree where branches represent submoves and nodes identify solutions 
produced by these moves. The neighborhood tree is explored breadth-first, and then 
depth. We associate each node of neighborhood tree with a possible configuration of 
MPA, and define the neighborhood of a node as the set of all configurations that can 
be constructed from this node by one feasible move. Suppose S(0) (scenario 0) is the 
initial configuration of the stacks in MPA, S(1) are the set of n1 best scenarios based 
on S(0) after taking a move. For each node in S(1), n2 best nodes S(2) are then 
generated by taking a move based on scenario S(1). Then the best n1 scenarios from 
n1*n2 nodes are selected for the following generation process. Figure 6 shows an 
example of FF process. 

The method incorporates two fundamental components: a local search to identify a 
local optimum and a filter and fan search to explore larger neighborhoods in order to 
overcome local optimality. Any time a new local optimum is found in one search 
strategy the method switches to the other strategy and keeps alternating this way until 
the filter and fan search fails to improve the current best solution. 
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For the astronomical number of states in the neighborhood tree, a cut strategy is 
proposed to accelerate the search process. Based on the solution gained from basic 
heuristic, any node in the neighborhood satisfies any of the following condition will 
be cut off: 

1. For the same number of emptied stacks, the node which takes more than l1 (l1 > 1) 
times moves of initial solution will be removed; 

2. For the same number of rehandles, the node which empties less than l2 (l2 = 1, 
2, …) stacks of the initial solution emptied. 

Cut strategy cuts the descendants of such nodes mentioned above and keep the tree an 
appropriate size and also accelerate finding a near-optimal solution as a result. 

5 A Lower Bound of SRP 

A lower bound on the optimal objective function value of SRP is proposed as follows. 
For S slabs in MPA, the minimum number of stacks occupied in the final 
configuration is

maxS h⎡ ⎤⎢ ⎥ , and coordinately, the minimum number of reshuffles for 

this final configuration equals to empty the 
max

q M S h= − ⎡ ⎤⎢ ⎥  lowest stacks. Suppose the 

height of q stacks is 1 2, , ..., qh h h′ ′ ′  separately, then the minimum shuffles is 

1

2
q

i
i

h
=

′⎡ ⎤⎢ ⎥∑ . The lower bound of SRP Zlow is as follows: 

                      max
1

1    2
q

low
i

i

Z S h hk
=

′= +⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥∑                              
(2) 

It is worth to mention that the initial configuration of MPA has a great effect on both 
the performance of the algorithm proposed and also lower bound. In most conditions, 
this lower bound is too tight to be achieved only if an MPA has an initial 
configuration that all slabs can be moved onto first 

maxS h⎡ ⎤⎢ ⎥  highest stacks directly 

without shuffling.  

6 Computational Experiments 

Experiments on real data collected from Steel Enterprise are tested on an Intel Dual 
Core of 2.5 G Hz and 1.94G RAM. The experiment results are shown in table 1. 

Table 1. Computational Experiments (k = 8, l1 = 1.2, l2 = 2) 

Index 
Basic 
Heuristic 

FF 
Lower 
Bound 

Improvement (%) 
(BH_FF) 

Gap (%) 
(FF_LB) 

CPU Time(s) 
(FF) 

1 1.750 1.750 1.75 0 0 1.43 
2 2.250 1.375 1.25 38.8 12.5 0.23 
3 4.375 3.000 2.25 31.4 33.3 2.74 
4 6.500 4.375 3.50 32.7 25.0 2.03 
5 8.125 6.750 3.75 16.9 80.0 5.18 

Average 4.600 3.450 2.50 25.0 30.16 2.322 
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Experiment results show that FF algorithm makes a relatively large improvement 
comparing to the basic heuristic by 25% of SRP. Inevitably, FF algorithm takes a 
relatively longer runtime for 2.322 seconds, compared to average running time on 
basic heuristic (0.1s). Actually, time consuming on a movement taken by crane is 
much longer (2 or 3 minutes) than that of spent on FF algorithm, so FF algorithm is 
acceptable in practice.  

Based on the experiment results above, both the effectiveness of the basic heuristic 
algorithm and the lower bound are affected by the initial configuration of MPA quite 
a lot. Except for test index 1, lower bounds for other 4 tests can not be achieved for 
some realistic reasons, such as no enough slot for rehandling, given stack can not be 
emptied and so on. Initial configuration-oriented algorithm should proposed to solve 
SRP more effectively and of better pertinence. 

7 Conclusions 

SRP is originally stemmed from MPA of slab yard in steel industry which is to 
accumulate stacks in MPA under the constraint of precedence relationships defined 
among them and also no further rehandles during the retrieving process, aiming at 
maximizing the empty stacks cleared up and minimizing the rehandles. For its 
astronomical number of states, combinatorial and dynamic nature, a basic heuristic 
and a FF based algorithm are proposed to solve it separately. In FF based algorithm, a 
cut strategy is developed to keep the neighborhood tree an appropriate size and also 
accelerate the search process. The experiment results with practical data show that 
solutions of FF have an improvement of 25% comparing the solutions obtained by 
basic heuristic on average.  
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Abstract. This paper proposed an improved artificial immune recognition 
system (IAIRS) based on the average scatter matrix trace (ASMT) criterion. In 
essence, the artificial immune recognition system (AIRS) is an evolving 
algorithm. Through clonal expansion, affinity maturation, resource competition 
and immune memory etc, a set of new samples (memory cells) is produced. The 
ASMT of memory cells will be decreased and the minimized ASMT can be as 
the optimal criterion of AIRS. The IAIRS algorithm is demonstrated on a 
number of benchmark data sets effectively.    

Keywords: artificial immune recognition system, scatter matrix trace, pattern 
classification. 

1 Introduction 

In 2001 year, Timmis at al. [1] proposed a resource limited artificial immune system 
(AIRS) based on clonal selected theory adopts the conception of artificial recognition 
balls (ARBs). Comparison with linear and nonlinear classifiers, it was be 
demonstrated on a number of benchmark data sets effectively [2-3]. It has shown to 
be successful for the area of remote sensing [4]. Its basic idea can be developed to 
evolve multiplayer neural networks [5]. 

In essence, AIRS is an evolving algorithm. Through clonal expansion, affinity 
maturation, resource competition and immune memory etc., a set of new samples: 
memory cells (MC) will be produced. Replacing the training samples with MC, the 
data will be classified more effectively by k-NN algorithm. From a machine learning 
point of view, AIRS algorithm is what provides for the data reduction capabilities and 
generalizations since the evolved memory cells in the system are not necessarily 
identical to any training samples. 

Scatter matrix trace (SMT) is one of the simplest and most widely used criterions 
for clustering [6]. From a geometry point of view, vectors in feature space draw from 
a normal population tend to fall in a single cloud. The within-cluster scatter matrix is 
used to measure the compactness of these clouds. The smaller the scatter matrix trace, 
the higher the density of the clouds and the better the classification performance. 
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This paper proposed an improved artificial immune recognition system (IAIRS) 
based on the average scatter matrix trace (ASMT) criterion. The ASMT value of 
evolved memory cells will be decreased through training and the minimized ASMT 
can be as the optimal criterion of IAIRS. IAIRS algorithm is demonstrated on a 
number of benchmark data sets effectively. 

2 AIRS Algorithm 

AIRS algorithm [2][4] includes the following five steps: 

2.1 Normalization and Initialization  

All training samples (antigens, ags) are firstly normalization such that the distances 
among them are in the range [0, 1]. Secondly, calculate the affinity threshold (AT) 
which is the average affinity over-all training samples. 
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Where n is the number of all training samples.The final step is the seeding of memory 
cells and initial ARB population. This is performed by randomly choosing training 
antigens to be added to the set of memory cells (MC) and to the set of ARBs (AB).  

2.2 ARB Generation 

1. Find mcmatch 
mcmatch=arg max stimulation (ag,mc), mc∈MC, mcmatch.c=ag.c 
Where stimulation(x,y)=1-affinity(x,y). 

2. Hyper clonal expansion 
The mcmatch generates new ARBs to place into the AB set by hyper clonal 

expansion.The number of hyper clones, NClones is defined as: 
NClones=hyperClonalRate*clonalRate*stimulation(ag, mcmatch)  

2.3 Competition for Resources and Nomination of Candidate Memory Cell 

2.3.1 Normalization ARBs Stimulation Level and Calculation the Resources 
1. Find the maximum stimulation max.stim and minimum stimulation min.stim 

among all the ARBs. 
2. For each ABab ∈ , normalize its stimulation, ab.stim. 

3. For each ABab ∈ , calculate ab’s resources, ab.resources and the resources of 
all ARBs, ResAlloc. 

4. Metadynamics of ARBs 
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Comparing ResAlloc with TotalNumRes which is defined as the total numbers of 
resources allowed, if ResAlloc>TotalNumRes, then resources are removed from the 
weakest ARBs until ResAlloc in the system returns to TotalNumRes. 

2.3.2 Stopping Criterion for Training Procedure 
Calculate the average stimulation level for each ARB class group, Si. If each 

),2,1( ciSi = is less than a given stimulation threshold (ST), the process moves to 

step 2.3.3, otherwise, jump to step 2.3.5. 

2.3.3 Clonal Expansion and Affinity Maturation 
For each ABab ∈ , allow each ab in AB the opportunity to produce mutated 
offspring. The number of clones, NClones=clonalRate*stimulation(ag,ab).  

2.3.4 Re-judging Stopping Criterion 
Calculate each Si, if these are less than ST, the process repeats from step 2.3.1 until 
the stopping criterion is met. 

2.3.5 Developing the Candidate Memory Cell  
Select the highest affinity ab of the same class as the training ag from AB set, as 

candidate memory cell, mccandidate. 

2.4 Evolving MC Pool 

If ),(),( matchcandidate mcagnstimulatiomcagnstimulatio >   

then candidatemcMCMC +←  
(2)

If ATSATmcmcaffinity candidatematch *),( <   

then matchmcMCMC −←  
(3)

Equation (2) is the necessary condition for mccandidate to be added into MC pool, if 
both equation (2) and equation (3) are satisfied, the mcmatch shall be replaced by the 
mccandidate. 

The training on this particular ag is completed until now. The next ag in the 
training set is selected and the training process proceeds from step 2.2 to step 2.4. 
This process continues until all ags have been trained in the proposed algorithm. 

2.5 Classification 

Replacing training samples with MC set, the tested samples can be classified by k-NN 
algorithm. 
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3 Average Scatter Matrix Trace (ASMT) Criterion 

Let vectors in the feature space D are divided into c subsets. D={D1∪D2…∪Dc} 
The scatter matrix Si of the ith class feature vectors is defined as: 

∑
∈

−−=
iDx

t
iii mxmxS ))((  (4)

Where mi is the mean vector of the ith class vector x 
Within cluster scatter matrix is defined as: 

∑
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The simplest scalar measure of a scatter matrix is its trace (the sum of its diagonal 
elements), and definition of scatter matrices (Eqs.4 and 5) yield the equation (6) as 
follows: 
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Thus the Scatter matrix trace criterion is nothing more or less than the sum of 
squared-error criterion. 

Because of the number of memory cells is usually changed for different training, it 
is necessary to introduce the average scatter matrix trace. For each class group i, 

iiri nStS /= , Where ni is the number of the ith class mc cells. 

The total average scatter matrix trace S is defined as ∑
=

=
c

i

iSS
1

 

The essence of AIRS algorithm is the process of evolving memory cells from ARBs 
and replacing the training samples with MC. The evolving algorithm results in more 
density of feature vectors in MC so that S  is decreased. Thus the minimized ASMT 
can be as the optimum criterion of AIRS. 

The IAIRS algorithm has been improved as follows: 

1. In step 2.1, replacing AT with ATi  
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Where ni is the number of the ith class antigens, i =1, 2 … c.  

2. In step 2.4, replacing AT with ATi which has the same class as the training ag. 
3. Let m represent the number of epochs, ATS0 represents ATS initial value, 

ATSΔ represents an increment of ATS, θ represents criterion threshold. 
Doing step 2.1 to step 2.4 represent an evolving epoch. After an epoch, 
calculate S , mm SSS −=Δ + 1 , and ATSm+1= ATSm + ATSΔ . Repeat step 2.1 

to step 2.5 until stopping criterion of multi-training θ<Δ S  is met. 
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4. Find the best MC from multi-loop training. The best MC has both relatively 
good accuracy and data reduction capability. 

4 Experiments and Discussion 

Iris, Ionosphere and Diabetes data are come from website (http://archive.ics.edu/ml) 
Vowel data are come from MLT Lincoln Laboratory (http: //www.ll.mit.edu/IST/ 
lnknet). Their main characters of the data organized as following table 1. 

Table 1. The main characters for Iris, Ionosphere, Diabetes and vowel  

Data sets Size of samples classes feature dimensions 

Iris 150 3 4 
Ionosphere 350 2 34 
Diabetes 750 2 8 
Vowel 300 10 2 

 
According to m-fold cross-validation, all samples are randomly divided into five 

sets. The classifier is trained five times, each time with different set hold out as a 
validation set and other sets for training. The test accuracy is an average of five runs. 

In AIRS algorithm, hyperClonalRate=2, clonalRate=10, mutationRate=0.1, 
TotalNumRes=200. ST=0.6~0.9, ATS=0.1~0.6, k=3~7 (depends on classified data). 

In IAIRS algorithm, θ =0.001, ATS0=0.1, ATSΔ =0.1, other parameters are the 
same as AIRS. 

Table 2 is the performance comparison of classifiers for Iris, Ionosphere, Diabetes 
and Vowel. 

Table 2.The performance comparison of classifiers for Iris, Ionosphere, Diabetes and Vowel  

Data sets 
AIRS IAIRS 

Accuracy Memory cells Accuracy Memory cells 

Iris 95.4 60.8/(43%) 96.0 64.4/(46%) 

Ionosphere 84.0 104.0/(63%) 85.7 132.0/(53%) 

Diabetes 71.6 349.6/(42%) 72.6 192.4/(68%) 

Vowel 67.7 113.4/(53%) 68.6 123.4/(49%) 

Where accuracy (allscore)=((n-miss)/n)*100%, n is the number of tested samples, 
miss is the number of misclassified points.  

As seen from Table 2, the overall classification accuracy of IAIRS is better than 
AIRS for Iris, Ionosphere, Diabetes and Vowel. In data reduction capabilities, the 
IAIRS matches the AIRS comparatively. 

Comparing IAIRS with AIRS, the evolving mechanism adopting artificial immune 
algorithm is the same. Their different is the determinant criterion Equation (3). The 
IAIRS algorithm employs ATi which has the same class as the training ag, not AT 
which is calculated overall training ags. It results in more reasonable mccandidate 
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replacing mcmatch to be added into MC pool. On the other hand, the criterion (Eq.3) is 
affected by the product of ATS and AT. The larger the product, the higher the 
opportunity of mccandidate replacing mcmatch , the stronger the data reduction capabilities 
while the generalization would be worse probably. Through multi-training which the 
ATS is adjusted automatically, IAIRS can find the best MC individual with optimal 
equilibrium between data reduction capabilities and system classified accuracy.  
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 Fig. 1. The affect of altering ATS on accuracy   Fig. 2. The affect of altering ATS on data   
                                                   reduction 
 

Fig.1and Fig.2 show the affect of altering ATS on classification accuracy and data 
reduction in IAIRS respectively. The test results that the number of mc cells is 
descent monotonously with increase of the ATS in the training epochs are consistent 
with analysis above. The tested accuracy of the four data changes relatively small 
while ATS changes from 0.1 to 0.5. Observed from the both figures, the evolving MC 
can get the best equilibrium between data reduction capabilities and system 
generalization while ATS is ranged from 0.3 to 0.5.  
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Fig. 3. The change of ASMT on different epoch 

As seen from Fig. 3, the value of ASMT is descent monotonously with increase of 
the epochs for all data as well as the number of mc cells. The minimum of ASMT is 
consistent with the classifier’s performance improvement(classified accuracy and data 
reduction capability) in the range of 1 to 5 epochs. Thus, it is reasonable that the 
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minimum of ASMT can be regarded as the stopping criterion of the multi-training. 
After 6th epoch, though the value of ASMT is still descent, and the data reduction 
capability is stronger, but the classification accuracy is getting worse because the 
SMT criterion is assumed that the samples form c groups fairly well separated clouds 
of points, which result in limitation of using SMT criterion. [6].  

5 Conclusion 

This paper proposed an improved artificial immune recognition system (IAIRS) based 
on the average scatter matrix trace (ASMT) criterion. The IAIRS algorithm modifies 
the criterion employed by AIRS which the mccandidate replacing mcmatch into MC pool. 
The improved algorithm, which takes multi-training that the ATS is modified 
automatically instead of one shoot for all antigens by AIRS, employs the minimum 
average scatter matrix trace as a stopping criterion while the variation of classification 
accuracy is in a reasonable range. The IAIRS algorithm can find the best MC 
individual which replaces the training samples and gets the better classification 
performance. IAIRS algorithm has been demonstrated on the benchmarked data 
effectively. The tested results show that the IAIRS possesses better classification 
accuracy and data reduction capabilities. 
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Abstract. This paper proposes a danger feature based negative selec-
tion algorithm (DFNSA). The DFNSA divides the danger feature space
into four parts, and reserves the information of danger features to the
utmost extent, laying a good foundation for measuring the danger of a
sample. In order to incorporate the DFNSA into the procedure of mal-
ware detection, a DFNSA-based malware detection (DFNSA-MD) model
is proposed. It maps a sample into the whole danger feature space by us-
ing the DFNSA. The danger of a sample is measured precisely in this way
and used to classify the sample. Eight groups of experiments on three
public malware datasets are exploited to evaluate the effectiveness of the
proposed DFNSA-MD model using cross validation. Comprehensive ex-
perimental results suggest that the DFNSA is able to reserve as much
information of danger features as possible, and the DFNSA-MD model is
effective to detect unseen malware. It outperforms the traditional nega-
tive selection algorithm based and the negative selection algorithm with
penalty factor based malware detection models in all the experiments for
about 5.34% and 0.67% on average, respectively.

Keywords: danger feature, negative selection algorithm, feature extrac-
tion, malware detection, artificial immune system.

1 Introduction

With the development of immunology, more and more immune mechanisms have
begun to be applied in computer security. Forrest et al. first proposed a negative
selection algorithm (NSA) to detect the abnormal modification on protected
data [1] and later to monitor the UNIX process [2]. Furthermore, they proposed
some design principles for computer immune system, such as anomaly detection,
diversity and adaptability [3].

The traditional NSA (TNSA) generates a detecting feature library, in which
any feature does not match any self, by deleting all the features matching self. It
assumes that all the self are harmless and all the non-self are harmful. However,
some self are harmful, for example, cancer cells, and some non-self are harmless,
taking food as an example.
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In order to overcome the drawback of the TNSA in defining the harmfulness
of self and non-self, the danger theory (DT) was proposed [4]. According to the
DT, the immune system reacts to danger, instead of reacting to non-self, and
the internal conversation between tissues and the cells of the immune system
controls immunity. The DT explains the autoimmune reaction perfectly.

Based on the DT, Aickelin et al. proposed the danger zone to translate the
DT into the field of computer security [5]. From then on, many artificial immune
models are proposed, for details, please refer to [6] [7] [8] [9] [10].

Pengtao Zhang et al. proposed a negative selection algorithm with penalty fac-
tor (NSAPF) based malware detection (NSAPF-MD) model [11]. The detecting
feature library of this model consists of all the non-self danger features, where
the features matching self are punished using a penalty factor. It performed well
in their experiments. However, this model needs to select a proper penalty fac-
tor. What is more, it merely takes advantage of non-self danger features, instead
of all the danger features extracted in a training set.

In this paper, a danger feature based negative selection algorithm (DFNSA)
is proposed, which reserves the information of danger features to the utmost
extent, laying a good foundation for measuring the danger of a sample. On this
basis, a DFNSA-based malware detection (DFNSA-MD) model is proposed. It
makes use of all the danger features and maps a sample into the whole danger
feature space by using the DFNSA. In this way, the proposed DFNSA-MD model
measures the danger of a sample precisely and archives good performance.

The remainder of the paper is organized as follows. In Section 2, we introduce
the DFNSA. In Section 3, the DFNSA-MD model is presented in detail. Section
4 gives the detailed experimental setup and results. Finally, we conclude the
paper with a detailed discussion.

2 Danger Feature Based Negative Selection Algorithm

2.1 Danger Feature

Definition: A danger feature is a feature with dangerous properties, which are
able to identify its corresponding dangerous operations. It is the basic element for
an immune system to decide whether an immune response should be produced.

In the malware detection field, a danger feature is a code segment which
executes a dangerous operation, such as formatting diskette, self-replicating.

There are many expressions for a danger feature. For example, we could use
binary string, sequences of assembly codes to express a danger feature in the
malware detection field. Generally speaking, a danger feature could appear in
both non-self and self. It is the foundation of measuring the danger of a sample.

The danger features can be classified into four categories: (1) danger features
only appearing in non-self; (2) danger features appearing in both non-self and
self, but tending to appear in non-self; (3) danger features appearing in both non-
self and self, but tending to appear in self; (4) danger features merely appearing
in self.
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2.2 DFNSA

The flow chart of the DFNSA is shown in Fig. 1, where the NCDFL denotes
the non-self candidate danger feature library, which is taken as non-self, and the
SCDFL means the self candidate danger feature library, which is self.

Fig. 1. The flow chart of the DFNSA

Based on the matching of non-self and self, the DFNSA splits the non-self
features, which do not match any self, into the non-self danger feature library
1 (NDFL1), and the other non-self features, which match self, into the NDFL2.
According to the class tendency of danger features, the NDFL2 is further divided
into the NDFL21 and NDFL22, in which the features tend to appear in non-self
and self, respectively. The features in the NDFL22 are extracted from non-self,
but tend to appear in self, so they are considered to be invalid and deleted.

The measure of the class tendency of a feature is defined as T (f, C) = P (f, C),
where P (f, C) denotes the proportion of feature f appearing in class C. if
T (f, CN) > T (f, CS), then f is considered to tend to appear in non-self, other-
wise self. The CN and CS denote the classes of non-self and self, respectively.

In a similar way, the SCDFL is firstly split into the SDFL1 and SDFL2 by
the DFNSA. Then the SDFL2 is further divided into the SDFL21 and SDFL22.
The SDFL22 is deleted with the same reason as the NDFL22.

Definition: if a danger feature f1 matches a danger feature f2, the two features
are equivalent to each other, written as f1 = f2.

According to the above definition, since NDFL21 = SDFL22 and NDFL22
= SDFL21, deleting the NDFL22 and SDFL22 merely deletes redundant in-
formation, without losing any information of danger features. The proof about
NDFL21 = SDFL22 and NDFL22 = SDFL21 is given below.
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Proof. ∵ ∀fS ∈ SDFL2, ∃fN ∈ NDFL2, fS = fN
∴ T (fS, CS) = T (fN , CS) = P (fS, CS) and T (fS, CN) = T (fN , CN ) = P (fN , CN)
∴ if T (fS, CS) >= T (fS, CN), then fS ∈ SDFL21 and fN ∈ NDFL22,
if T (fS, CS) < T (fS, CN ), then fS ∈ SDFL22 and fN ∈ NDFL21

∴ ∀f ′
S ∈ SDFL21, ∃f ′

N ∈ NDFL22, f
′
S = f

′
N

and ∀f ′
S ∈ SDFL22, ∃f ′

N ∈ NDFL21, f
′
S = f

′
N ,

Similarly , ∀f ′
N ∈ NDFL21, ∃f ′

S ∈ SDFL22, f
′
N = f

′
S

and ∀f ′
N ∈ NDFL22, ∃f ′

S ∈ SDFL21, f
′
N = f

′
S

∴ NDFL21 = SDFL22, NDFL22 = SDFL21

The DFNSA divides the danger feature space into four parts, and reserves the
information of danger features to the utmost extent, laying a good foundation
for measuring the danger of a sample. The four categories of danger features are
stored in the NDFL1, NDFL21, SDFL21 and SDFL1, respectively.

Comparing to the NSAPF, the DFNSA does not need to optimize a penalty
factor, dramatically dropping down the training time of the DFNSA, and takes
full advantage of all the danger features extracted in a training set.

3 DFNSA-Based Malware Detection Model

In this paper, a danger feature is defined as a code segment which executes a
dangerous operation, and expressed as a binary string. The malware and benign
programs are taken as non-self and self, respectively.

3.1 Danger Feature Extraction

Malware Instruction Library. This paper defines an instruction as a binary
string of length 2 bytes. The class tendency of an instruction i to malware is
measured using Eq. 1. The top P% instructions with the highest tendency value
make up the malware instruction library (MIL).

Ii =
Iin/In

Iin/In + Iis/Is
, F i =

F i
n/Fn

F i
n/Fn + F i

s/Fs
, T i =

√
(Ii)2 + (F i)2 (1)

where Iin and Iis denote the instruction frequencies of an instruction i in non-self
and self, respectively, and F i

n and F i
s are the document frequencies of i in non-self

and self. In and Is indicate the number of instructions in the non-self and self,
respectively. Fn and Fs are the number of samples in non-self and self. Ii and
F i measure the tendency of i to the non-self in the perspectives of instruction
frequency and document frequency. T i is the tendency of i to the non-self.

Since the instructions in the MIL tend to appear in malware, they are danger-
ous. If the length of a binary string constructed by these instructions exceeds a
threshold R bytes, we believe the binary string contains enough danger informa-
tion and is a danger feature. All the danger features make up the danger feature
space.
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NCDFL and SCDFL. On the basis of the MIL, the NCDFL and SCDFL are
generated by traversing all the malware and benign programs in a training set,
respectively. The way to traverse a sample is described below.

A sliding window of length 2 bytes is used to traverse a sample to extract
candidate danger features. It moves forward 1 byte at a time. When the window
encounters an instruction contained in the MIL, it begins to generate a feature. If
the instructions in two adjacent windows do not belong to the MIL, the current
feature is terminated as the next feature would not connect with it. If the length
of the current feature exceeds R bytes, it is taken as a candidate danger feature.
The sliding window keeps on moving to the end of the sample.

This paper sets R = 4. The length of a candidate danger feature would be
adjusted based on the specific sample and MIL as described above, so R would
not affect the result significantly. The frequency of a feature is taken as its weight.

Detecting Feature Library. Taking the NCDFL and SCDFL as the inputs
of the DFNSA, four danger feature libraries are generated: NDFL1, NDFL21,
SDFL1 and SDFL21, which make up the detecting feature library (DFL) of the
proposed DFNSA-MD model. The features in the DFL are the basic elements
to construct the danger feature vector of a sample.

3.2 Danger Feature Vector

In this paper, a sample is expressed as a danger feature vector to measure the
danger of the sample. The danger feature vector is defined as

<
MNDFL1

LNDFL1
,
MNDFL21

LNDFL21
,
MSDFL1 +MSDFL21

LSDFL1 + LSDFL21
>

where Mi denotes the matching value of a sample and a library i, and Li is the
sum of weights of features in a library i, i =NDFL1, NDFL21, SDFL1, SDFL21.

The r-bit continuous matching is taken as the feature matching criteria. Here
r = R ∗ 8, i.e., the matching part of two features is also a danger feature. The
matching value of a sample and a danger feature library is the sum of weights
of the features in the library which match any feature of the sample.

The danger feature vector maps a sample into the whole danger feature space,
and characterizes a sample efficiently and completely, making the DFNSA-MD
model perform well. Every sample in a training set is expressed as a danger
feature vector, which is taken as the input of a classifier.

4 Experiments

4.1 Datasets

The experiments in this paper are conducted on three public malware datasets:
CILPKU08, Henchiri and VXHeanvens datasets. The three datasets and their
composition documents can download from www.cil.pku.edu.cn/resources/.

The benign program dataset used here consists of files of Windows XP and a
series of applications, which are the main paunching bag of malware.



296 P. Zhang and Y. Tan

Table 1. Experimental platform

CPU Core 2 Duo 3.00 GHz

RAM 8 GB

Operating system Win 7 64-bit

4.2 Experimental Setup

The support vector machine (SVM), realized in LibSVM [12], is taken as the
classifier of the proposed DFNSA-MD model, and the area under the receiver
operating characteristic curve (AUC) is utilized as the performance evaluation
criteria. The information of the experimental platform is shown in Table 1.

In the experiments of Section 4.4, eight groups of experiments are taken on
the three public malware datasets using 5-fold cross validation, and the 95%
confidence intervals are computed to look into the stability of the proposed
DFNSA-MD model. Both the CILPKU08 and Henchiri datasets mainly consist
of computer viruses, so two experiments are carried on in the two datasets di-
rectly, ignoring the categories of malware. The VXHeavens dataset contains 7128
malware which fall into six categories, so we split this dataset into six smaller
datasets: backdoor, constructor, miscellaneous, trojan, virus and worm. The mis-
cellaneous includes DoS, Nuker, Hacktool and Flooder, while the malware in the
other five smaller datasets, respectively, fall into a category. Six experiments are
taken in the six smaller datasets.

In all the experiments, there is no overlap between a training set and a test set.
That is to say, to a training set, the malware in a test set are unseen malware.
This setting increases the reliability of the experiments.

The TNSA-based malware detection (TNSA-MD) model and the NSAPF-
based malware detection (NSAPF-MD) model are imported for comparison.

4.3 Selection of Parameters

This section selects the instruction proportion: P% used in the MIL, using liner
search, where P = 0.5, 1.0, ..., 10.0. We do not try larger P, since when P =
10, the MIL contains 6553 instructions and already covers a huge danger feature
space. The experimental results are shown in Fig. 2.

Fig. 2 illustrates that, with the growth of P, the performance of the DFNSA-
MD model shows steady downward trend as the MIL contains more and more in-
structions with unremarkable tendencies to malware. When P = 1, the DFNSA-
MD model obtains the optimal AUC = 0.9039.

Generally speaking, the instruction proportion P% varies with different
datasets. Hence we just set the optimization interval of P as [0.5, 3] in the
rest of experiments, instead of setting P = 1. In the rest of experiments, the P,
which makes the DFNSA-MD model perform best in a training set, is set as the
optimal P.
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Fig. 2. The experimental results of the selection of parameters

Table 2. Experimental results

TNSA-MD model NSAPF-MD model DFNSA-MD model

CILPKU08 0.9684 ± 0.00568 0.9688 ± 0.00907 0.9761 ± 0.00781

Hechiri 0.9634 ± 0.00755 0.9679 ± 0.01404 0.9808 ± 0.00428

Backdoor 0.8100 ± 0.02060 0.8190 ± 0.01764 0.8247 ± 0.01024

Constructor 0.9095 ± 0.03120 0.9202 ± 0.01545 0.9244 ± 0.01213

Miscellaneous 0.8243 ± 0.01603 0.8255 ± 0.01912 0.8394 ± 0.01028

Trojan 0.7901 ± 0.01332 0.8729 ± 0.01897 0.8735 ± 0.01714

Virus 0.6275 ± 0.01738 0.8746 ± 0.01187 0.8774 ± 0.01784

Worm 0.8252 ± 0.03697 0.8430 ± 0.04788 0.8489 ± 0.04101

4.4 Experimental Results

The experimental results of the proposed DFNSA-MD model are listed in Table
2. The experimental results of the TNSA-MD and NSAPF-MD models are also
given in Table 2 for comparison.

From Table 2, the NSAPF-MD model is 4.67% better than the TNSA-MD
model in all the experiments on average by making advantage of danger features
extracted from malware. The detailed analysis will be given in Section 5.

The DFNSA-MD model outperforms the TNSA-MD and NSAPF-MD mod-
els for about 5.34% and 0.67% in all the experiments on average, respectively,
without any losing in any experiment. The DFNSA-MD model makes use of all
the danger features extracted from a training set, regardless of their categories.
Hence the DFNSA-MD model is considered to be able to measure the danger of
a sample more precisely, and achieves the best performance.
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Table 3. The composition of the DFLs of the three models

Detecting feature library

TNSA-MD model NDFL1

NSAPF-MD model NDFL1, NDFL21, NDFL22

DFNSA-MD model NDFL1, NDFL21, SDFL1, SDFL21

The 95% confidence intervals of the three models are relatively small from
Table 2, indicating that the results of these models are very stable and believable.

5 Discussions

5.1 Comparison of Detecting Feature Library

Table 3 lists the composition of the DFLs of the TNSA-MD, NSAPF-MD and
DFNSA-MD models. It is easy to see that the DFL of the TNSA-MD model
is the smallest DFL, consisting of NDFL1, i.e., the features merely appearing
in non-self. Since the TNSA discards lots of danger features which are believed
helpful, the performance of the TNSA-MD model is relatively bad.

The DFL of the NSAPF-MDmodel consists of NDFL1, NDFL21 and NDFL22,
i.e., all the danger features appearing in non-self. The NSAPF reserves the non-
self danger features which match self danger features by punishing these features,
and obtains a larger DFL. Based on this DFL, the NSAPF-MD model detects
malware by measuring the danger of a sample, and achieves good results.

The DFNSA-MD model owns the largest DFL which consists of all the danger
features extracted from a training set. The DFNSA divides the danger feature
space into four parts, and reserves the information of danger features to the
utmost extent. It makes the danger feature vector of a sample contain as much
information as possible and measure the danger of a sample better. In this way,
the DFNSA-MD model outperforms the TNSA-MD and NSAPF-MD models in
all the experiments.

5.2 Comparison of Detecting Time

The detecting time of a sample is proportionate to the number of the features in
a DFL. We analyze the average detecting time of the three models for a sample
in the virus dataset, in which the average size of a sample is 104 KB.

– The DFL of the TNSA-MD model is the smallest DFL, so it is faster than the
other two models to detect a sample, just assuming 0.05 seconds on average.

– The size of the DFL of the NSAPF-MD model lays between that of the
TNSA-MD and DFNSA-MD models, taking 0.12 seconds on average for
detecting a sample.

– The DFNSA-MD model has the largest DFL, which consists of all the danger
features extracted in a training set, so its detecting time is the longest, 0.15
seconds on average, basically meeting the demand of a real-time system.
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6 Conclusions

In this paper, the DFNSA has been proposed and applied to detect malware.
The DFNSA divides the danger feature space into four parts, and reserves the
information of danger features to the utmost extent. Comprehensive experimen-
tal results suggest that the DFNSA is able to reserve as much information of
danger features as possible, and the DFNSA-MD model is effective to detect un-
seen malware by measuring the danger of a sample precisely. It outperforms the
TNSA-MD and NSAPF-MD models for about 5.36% and 0.67%, respectively.

In future work, we want to find a better way to measure the danger of a
sample by importing the danger theory and text categorization methods.

Acknowlegements. This work is supported by the National Natural Science
Foundation of China under grants No. 61170057 and 60875080.
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Abstract. Alpha matting refers to the problem of softly extracting the 
foreground from an image.To solve the matting problem initialized with a 
trimap (a partition of the image into three regions: foreground, background and 
unknown pixels), an approach based on artificial immune network is proposed 
in this paper.The method firstly uses Artificial Immune Network(aiNet) to map 
the color feature for unknown region, attaining the color subset both on the 
foreground and background color distributions,then estimate the alpha matte for 
unknown region, and finally apply guided filter to improve the matting results. 
Experiments on several different image data sets show that the proposed 
method produces high-quality matting results. 

Keywords: alpha matting, Artificial Immune Network, feature map. 

1 Introduction 

Matting and compositing were originally developed for film and video production. In 
1984, Porter and Duff [1] introduced the digital analog of the matte—the alpha 
channel—and showed how synthetic images with alpha could be useful in creating 
complex digital images. The most common compositing operation is the over 
operation, which is summarized by the compositing equation: the alpha matting 
model may be stated as 

I =α F +(1−α )B                                 (1) 

where α varies between [0,1] and represents the blending coefficient between the 
foreground object, F, and the background object, B. Theα value has been variously 
interpreted as a probability that the pixel belongs to the foreground object, a partial 
differential equation solution, or as an interpolation between the known foreground 
and background objects. If we constrain the alpha values to be either 0 or 1 in Eq.1, 
the matting problem degrades to another classical problem: binary image/video 
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segmentation, where each pixel fully belongs to either foreground or background. In 
addition, the matting problem is highly ill-posed, because the number of unknowns 
(F, B, and α ) is much larger than the number of equations. Therefore, a user-
specified trimap which indicates the known foreground /background and the unknown 
pixels is often required. 

In this paper we present a new approach for extracting the alpha matte from a 
natural image. From information processing perspective, aiNet ,as a artificial immune 
system, which is a highly distributed, adaptive, and self-organizing information 
processing system, together with its learning, memory, feature extraction, and pattern 
recognition features, and offers rich metaphors for its artificial counterpart [17]. The 
proposed method firstly map the color feature on both the foreground and background 
color distributions with Artificial Immune Network(aiNet) attaining the color subset 
for each pixel in unknown region ,then estimate the alpha matte by the color subset,in 
final,apply guilded filter smoothing to further improve the matting results. A variety 
of experiments show that our method produces both visually and quantitatively high-
quality matting results. 

In the following, we introduce and analyze the related work in section 2. Section 3 
describes our approach to alpha matting using feature map network in details, Section 
4 gives an experimental comparison, Conclusion and future works are given in 
Section 5. 

2 Related Work 

Recently, various matting techniques and systems have been proposed to efficiently 
extract high quality mattes from both still images and video sequences [3]. 
Currently existing matting methods can be categorized as sampling-based or 
affinity-based.  

Sampling-based methods firstly estimate the foreground and background color and 
then compute the alpha matte. Although the concept sounds simple, implementing 
such an algorithm that works well for general images is difficult. Some approaches 
[4], [6], [7], [8] ignore some of these difficulties by making ad hoc assumptions, and 
some [5]try to solve them in mathematical ways.These methods perform well in 
condition that the true foreground and background color are in the sample set. 
However, the true foreground/background colors are not always covered, because 
these methods only collect samples near each unknown pixel, and the number of 
samples is rather limited. 

Unlike Sampling-based methods, affinities in affinity-based approaches are always 
defined in a small neighborhood, usually between immediately connected pixels or 
pixels in a 3 × 3 window. In such a small window, the pixel correlations are usually 
strong, thus the local smoothness assumption typically holds, even for moderately 
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complex images [9], [10], [11], [13].On the other hand, the defined affinities  
regularize the resulting matte to be locally smooth, thus fundamentally avoid matte 
discontinuities [12], [14]. However,there are two possible drawbacks of affinity-based 
approaches. Firstly, most approaches focus on first estimating alpha values, and only 
then estimate true foreground colors for unknown pixels based on pre-computed 
alphas, rather than estimating hem jointly for an optimal solution. Secondly, the alpha 
matte is estimated in a propagation fashion, from known pixels to unknown ones, thus 
small errors could be propagated and accumulated to produce bigger errors.  

Both Sampling-based methods and affinity-based approaches have their own 
advantages and disadvantages. Sampling-based methods work better when dealing 
with distinct foreground and background color distributions along with carefully 
specified trimaps, but tend to generate large errors when their underlying assumptions 
are violated. On the other hand, affinity-based approaches are relatively insensitive to 
different user inputs and always generate smooth mattes. However, they tend to 
produce inaccurate results for images containing long and furry foreground structures. 
By combining these two methodologies through an optimization process, an advanced 
system can be developed, which achieves good trade-off between accuracy and 
robustness. But it is slow for mega-pixel images and not applicable for predrawn 
trimaps. More efficient method for high quality matting is still demanded. 

3 The Proposed Algorithm for Matting 

There are three major parts of our alpha matting algorithm: feature map network, 
alpha estimation and post-processing.we firstly map the pixels in unknown region into 
known foreground region and background region separately by feature map network, 
attaining the color subset both on the foreground and background color 
distributions;then estimate the alpha matte for unknown region through Theoretical 
Derivation ; and finally apply guided filter to improve the matting results.Details of 
feature map network is presented in the following . 

3.1 Artificial Immune Network for Feature Map 

The most remarkable roles of immune system are the protection of the organism 
against the attack of antigen. The primary problem the immune system faced with is 
the recognition of these antigen. After recognizing (identifying) an antigen, the 
immune response arises to avoid or block the antigen, and immune memory which is 
the feature map of the antigen is memorized in immune system[18].  

In Immune feature map network, antigen refers to data in region Ω , and final 

antibody refers to data in resulting color subspace iΨ handling by aiNet[19]. The 

aiNet workflow is shown in Fig.1 :  
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Fig. 1. The workflow of Artificial Immune Network 

As an example of each pixel in Ω mapping to FΩ , several key steps of aiNet are 

described in details as follows: 

Affinity Definition: the affinity of antigen ( )iAg i ∈Ω and antibody ( )j FAb j ∈Ω is 

computed according to Eq. (2).  

     
)),(d1/(1a jiij AbAgff +=

                             (2) 

where d(.) denotes the color space distance between iAg and jAb .  

Clonal Expansion: an initial weight value jw is given to each activated antibody, 

and keeping the total weight value of activated set unchangeable. Then clone each 
antibody activated antibodies according to Eq.(3)and eliminate those antibodies 
whose weight value are lowest; 

Step 1. Initialization: create an initia.l random population of network antibodies 

in region Ω ; 
Step 2. Antigenic presentation: for each antigenic pattern, run the following 
steps.  

Antibodies activation: for each network element, determine its affinity 
with the antigen presented. Select a number of antibodies whose affinity 
with the antigen are more than a pre-specified threshold(activating 
threshold) as activated set; save the remaining antibodies in a unactivated 
set. 
Clonal expansion: reproduce (clone) activated antibodies proportionally 
to their affinity; eliminate the antibodies whose clones is less than a pre-
specified threshold(selecting threshold); 
Affinity maturation: select a number of highest affinity antibodies in 
activated set and place them into a memory set. Mutate each clone of the 
remaining activated antibodies inversely proportional to affinity; 
Clonal suppression: by incorporating memory antibodies with mutated 
antibodies, reconstruct the memory set, and then determine the 
concentration of each antibodies; eliminate antibodies whose 
concentration is more than a pre-specified threshold; 
Network construction: incorporate the clonal memory set with 
unactivated antibody set, reconstruct the antibody population. 
Network suppression: eliminate all network antibodies whose activated 
counting numbers are less than a pre-specified threshold(living threshold); 

Step 3. Cycle: repeat steps 2 until a pre-specified number of iterations is 
reached. 
Step 4. Output: the resulting data are output, and afforded to be sample data for 
further application. 
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Where 0w is the initial weight value of antibody; actN is the total number of 

activated antibodies.                        

Affinity maturation: the main function of this step is to mutate the antibodies in order 
to improve the affinities of these antibody, and activated antibodies are mutated 
according to Eq.(4)  

)(b kikk AbAgAbA −+= β
                           (4) 

Where β is the mutation rate, and 
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1-

e
ij

act

aff

Nβ = is inversely proportional to 

antibody's  affinity. 
Clonal suppression: the concentration of antibody is evaluated according to Eq(5) 
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; jkAb is the affinity of jAb and 

kAb  andη is the concentration suppression threshold. 

Network suppression: at the beginning of algorithm, initialize each activated antibody 
with an activated counting number 0. During the iterations, the activated counting 
number is plus 1 whenever the antibody is activated. If the activated counting number 
is less than a pre-specified number, the antibody will be eliminated from the antibody 
population. 

3.2 Alpha Matte Estimation 

Matting algorithms typically assume that each pixel iI in an input image is a linear 

combination of a foreground color iF and a background color iB  in the compositing 

equation (1).In this work，we define FΩ , BΩ and Ω as “definitely foreground”, 

“definitely background” and “unknown” regions respectively, we all kown that 
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Then we deformation the equation (1) by simple operation as follow: 
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Here, iI  is a certain value, and we consider iF  and iB  as the variables in function 

(1) . In order to get an approximate gradient field of matte, we take the partial 
derivatives on equation (1): 
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Where ( , )
F B

∂ ∂Δ =
∂ ∂

 is the gradient operator. This is the differential form of the 

matting equation, for R, G, B channels individually. Owing to 

                    ( , ) ( , )i i iF F B B F Bα α αΔ ≈ + Δ + Δ −                   (8) 

we can get the approximate matting equation: 
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Then the above formula may be rewritten as: 
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        (10) 

It means that the matte is estimated for each pixel, given the values of 

iF , iB , iFΔ and iBΔ .So we map each pixel iI  to FΩ  and BΩ respectively with 

aiNet(Aritifical Immune Network) to attain the color subspace F
iψ and 

B
iψ respectively,which is the feature map of iI individually.  

Then we try to find the most likely eatimation for iF and iB by feature map 

network. Each pixel ( )iI i ∈Ω is mapped to FΩ ,We got the color 

subspace { | 1, 2,..., }F
i k k mψ ϕ = , F

iψ stands for the characteristic of iI in color 

space FΩ ,using it to express the value of iF and iFΔ  as follows: 
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We use analogues term to that of region BΩ and got the color 

subspace { | 1,2,..., }B
i k k nψ ϕ = , 
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Then in Eq.(10),we substitute the Eq.(11), Eq.(12), Eq.(13) and Eq.(14),then we can 
attain the rough alpha matte. 

3.3 Post-Processing 

To refine the result of alpha matting based on feature map network ,we apply a kind 
of post-processing(smoothing) by considering neighboring pixels can further 
improving the matting results. We adopt the fast guided filter proposed in [15], the 
filtering output on pixel I is expressed as a weighted average: 

                        ( )out ij i
j

W Iα α=∑                             (15) 

where i and j are pixel indexes. The filter kernel ijW is a function of the guidance 

image I and independent of α .This filter is linear with to α . The kernel weights 

2 2
:( , )

( )( )1
( ) (1 )

| | k

i k j k
ij

k i j w k

I I
W I

w

μ μ
σ ε∈

− −
= +

+∑ can be explicitly expressed by:  

          2 2
:( , )

( )( )1
( ) (1 )

| | k

i k j k
ij

k i j w k

I I
W I

w

μ μ
σ ε∈

− −
= +

+∑                (16) 

Here, kμ  and 2
kσ  are the mean and variance of I in a window kw , | |w  is the 

number of pixels in kw ,ε  is a regularization parameter. 

4 Experimental Results 

To evaluate the performance of the proposed approach, we compare it with the 
Robust matting, Closed-form matting and Shared matting by MSE, using eight test 
Image sets of Levin et al. Here, MSE is the absolute color differences comparing 
approximate alpha matte with true alpha matte,The mean squares error (MSE) curves 
are illustrated in Fig.2. 

As shown in Fig.2, our approach with feature map network model produces better 
(for some degree) results than other approaches: lower MSE value are obtained on 
almost 8 test image sets except the test image set 2 and the test image set 7; besides, 
our algorithms estimate better mattes with lower MSEs than Shared Matting, 
especially the image with hair curls and small holes as shown in Fig.4. The first eight 
rows in Table 1 shows the detailed MSE values for each test dataset, and the last row 
shows the average MSE. Results in table 1 demonstrate that our algorithm have 
advantages not only in accuracy, but also in robustness and efficiency. 
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Fig. 2. MSE curves for 8 test image sets 

Table 1. The MSE values for all algorithms on all the test images along with the average MSE 

MSE    Robust   Close-form   Shared  Our mehold 
   T1       0.6         0.5         1.1        0.5 
   T2       0.7         0.3         0.7        0.5 
   T3       0.3         0.3         0.3        0.3 
   T4       0.2         0.1         0.1        0.1 
   T5       0.5         1.2         0.5        0.5 
   T6       0.4         0.8         0.5        0.4 
   T7       3.0         2.6         1.5        1.9 
   T8       1.3         1.3         1.9        1.0 

   Ave      0.878      0.893      0.825      0.656 
  

  Fig.3 and Fig.4 show the results of mattes with different algorithms on one test 
image.Specially, partial mattes are extracted in region with red border by Robust 
matting, Closed-form matting, Shard matting and our algorithm, respectively in Fig.3. 
Our approach produces high accurate results because the more color characters can 
handled by feature map network.  

  
       (a)               (b)               (c)                 (d)                 (e)  

Fig. 3. (a). Original image. Following images show partial matte extracted in region with red 
border by (b). Robust matting. (c). Closed-form matting. (d).Shard matting(e). Our algorithm. 
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Fig. 4. Nature image Matting.these four image mattes are extracted by Robust matting, Closed-
form matting ,Shard matting and Our algorithm respectively 

5 Conclusions and Future Work 

By applying artificial immune network to feature map color model, we propose a new 
matting approach. It can easily learn more general color model in both linear and 
nonlinear cases. The proposed method inspire us that works in the area of neural 
network learning,such as RBF network or other supervised learning methods, might 
also be implemented in the matting problem. 
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Abstract. The price with large random fluctuation in mineral market has made 
it very difficult to do an accurate forecast. To overcome this problem, a 
multidimensional grey metabolism Markov forecasting method is proposed 
based on the theories of Grey forecast and Stochastic process. The forecasting 
effect of the model is tested through a case study and analysis with MATLAB 
software. The research results indicate that the forecasting precision of the 
proposed method is high and not limited to forecasting step length. So the 
method can be used to do a long term forecasting for mineral commodity prices 
without considering economic crisis.  

Keywords: Mineral commodity, Price forecasting, Multidimensional grey, 
Metabolism, Markov chain. 

1 Introduction 

The prices of mineral commodity have an important significance for guiding mineral 
produce and adjusting mineral industrial structure. The international mineral market is 
affected by many factors. It is very difficult to know clearly about the action 
mechanism of the factors for mineral prices. All of these lead that the investment for 
mineral market has a great uncertainty. The uncertainty mainly expresses in the 
difficulty for price prediction. Moreover, because of the particularity of mineral 
market, mineral commodity prices fluctuate widely and mining investment can not be 
controlled effectively. So it is critical for us to forecast the prices by using proper 
theories and methods.  

The prediction of mineral commodity prices is an systemic problem with big 
uncertainty. To overcome this complex problem, many researchers have made a great 
effort to improve forecasting techniques by using plenty of methods and models, such 
as Grey-Markov models [1], time series ARIMA models [2][3] and [4], BP neural 
network [5] and [6], nonlinear regression models [7], AFINS [8], and other methods 
[9][10] and [11]. However, the forecasting performance of the techniques are not so 
satisfactory that it should be improved. The reason is that grey forecasting models has 
a good extrapolation capability, but their fitting effect is not so well. Time series 
                                                           
* Corresponding author. Tel.:+86 13810948239. 
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ARIMA models, BP neural network, nonlinear regression models and AFINS fit the 
actual values well but their extrapolation capability is limited to forecasting step 
length greatly. So in this paper, we attempt to use a multidimensional metabolism 
method to do mineral commodity price forecasting research based on GM(1,1) model 
and Markov chain.  

2 Theories and Methodology 

2.1 Grey Forecasting Theory and GM(1,1) Model 

Deng(1982) proposed grey theory which is a multidisciplinary and generic theory for 
dealing with the systemic problems with poor, incomplete or uncertain messages [12]. 
Based on the theory, The accumulated generation operation (AGO) is defined as 
Eq.(1) by assuming the original data sequence by X(0)=(x(0)(1), x(0)(2),…, x(0)(n)). 
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Then the first-order difference equation can be expressed as Eq.(2):  
(1)

(1)dx
ax b

dt
+ =

                                  
 (2)

 
Where a is a development coefficient, b is a grey action coefficient. Therefore, the 
solution of Eq. (2) can be obtained as Eq.(3) by using the least square method. 
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Then grey forecasting function can be defined as Eq.(4): 

(1) (0)( 1) [ (1) ] ( 1,2, , )akb b
x k x e k n

a a
−+ = − + =

          
   (4)

 
Where x(1)(0)=x(0)(1). Finally we can get the forecasting sequence X(f) by restoring 
computation with Eq.(5): 

( ) (1) (1)( ) ( 1) ( ) ( 1,2, , )fx k x k x k k n= + − =               (5) 

2.2 Markov Chain and Probability Matrix 

Assuming an original data series X(0)={x(0)(1), x(0)(2),…, x(0)(n)} is a discrete 
stochastic process, if it satisfies the following conditions:  
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(1) For each t (t = 1,2,…,n), the state space of X(0) is a set of integers (denoted by Ι); 
(2) For any r +1 non-negative integers t1, t2, ..., m (0 <t1 <t2 <...< tr <m<n) and any 
positive integer k, and the state i1, i2, i, ..., ir, i, j ∈Ι. Then 
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Thus the series X(0) is a Markov Chain[13][14] and [15]. P{x(0)(m+k)=j| x(0)(m)=i} is 
the transition probability when the state shifts from i at time m to state j at time m+k. 
The transition probability can be denoted by Pij (m, m+k) and it has the following 
properties. 
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Where, I is the state space of X(0), Nij(m,m+k) is the times when the state shifts from 
state i at time m to state j at time m+j, Ni(m) is the number of state i at time m. The 
matrix consisting with Pij(m, m+k) as elements is the k step transition probability 
matrix of X(0). We denote it by P(k). 
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2.3 Prediction Algorithm Description 

With the original sequence X(0)=X(0)(1)={x(0)(1),x(0)(2),…,x(0)(n)}, multidimensional 
grey fitting calculation is carried out based on grey forecasting model. At first, the 
first set of fitting values is computed based on X(0). Then taking out the first data  
of X(0)(1), we get a new data sequence X(0)(2)=(x(0)(2),…, x(0)(n)), and the second set  
of fitting values is obtained based on X(0)(2). With repeating this work, many sets of 
sequence X(0)(λ)=(x(0)(λ), x(0)(λ+1)…, x(0)(n)) (λ=1,…,n) are finished till the length of 
the new sequence is no less than 4(n-λ≥4)[12]. Based on X(0)(λ), a cluster of fitting 
sequence can be calculated and denoted by X(f)(λ)={x(f)(λ), x(f)(λ+1),…, x(f)(n)}. Here 
n-λ is the dimension of the sequence X(f)(λ). Then the mean absolute errors(MAE) of 
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the fitting values and original values are calculated by using Eq.(8). With comparing 
the values of MAE, the best value of n-λ can be determined and noted by τ. Hence 
X(f)(n-τ) is the best fitting sequence of the sequence cluster X(f)(λ), and its curve fits the 
actual curve best.  
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With treating the best fitting curve as a baseline and a given value d, a set of state 
intervals can be divided as following: 
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Where, ɸ is a state interval set, α is the number of intervals below the baseline, β is 
the number of intervals above the baseline. The values of d, α and β are decided by 
actual data sequence. If the state space I=ɸ={ɸ1, ɸ2,…, ɸα+β}, P(k) will be a (α+β)-
order matrix. Assuming the initial state vector of a stochastic time series is S0=(S1, 
S2,…, Sα+β), the state vector after one step transition can be denoted by S* and 
computed with Eq.(10). 
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Then the prediction interval can be computed based on the values of S0 and S*. With 
assuming the prediction interval is [ɸh-1, ɸh](h=1,2,…, α+β), final prediction value Yt 
is the mean value of ɸh-1 and ɸh, namely Yt=( ɸh-1+ ɸh)/2. we take out the old data of 
x(0)( n-τ) and set x(0)(n+1)= Yt for constructing a new data sequence{x(0)( n-τ+1), x(0)( 
n-τ+2),…, x(0)(n+1)}. With repeating this work for continuing to do next step 
forecasting, we can achieve our forecasting objective. 

3 A Case Study 

In order to demonstrate the effectiveness of the proposed method, the historical price 
records of international copper market from 1990 to 2011 are used as our research 
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data. we use the data from 1990 to 2007 to forecast the four price values of 2008-2011 
and test the forecasting effect with actual price values of 2008-2011. First we use the 
data from 1990 to 2007 to calculate the best fitting sequence. With MATLAB 
software as a tool, the results of multidimensional grey fitting calculation are shown 
in Table 1 and Fig. 1. It is clear that the best value of dimension is τ=15. This 
indicates that the fitting sequence with 15 dimension fits the actual prices best and its 
curve can reflect copper price changing trend. 

Table 1. MAE for multidimensional grey fitting calculation 

Items λ Data sequences Dimensions MAE 
1 2001 2001～2007 7 4700.4 

2 2000 2000～2007 8 3772.7 

3 1999 1999～2007 9 2689.8 

4 1998 1998～2007 10 2017.9 

5 1997 1997～2007 11 1521.8 

6 1996 1996～2007 12 1216.4 

7 1995 1995～2007 13 1042.4 

8 1994 1994～2007 14 1030.5 

9 1993 1993～2007 15 1027.0 

10 1992 1992～2007 16 1052.9 

11 1991 1991～2007 17 1101.6 

12 1990 1990～2007 18 1145.8 

 

Fig. 1. The curve cluster of multidimensional grey fitting calculation 

With the 15 dimension fitting curve of sequence(1993-2007) as a baseline, the 
initial state intervals and vectors of the sequence (1993-2007) are determined by using 
Eq.(9), state transaction matrixes are computed by using Eq.(6) and Eq.(7), and the 
new vectors after one step transaction are computed according to Eq.(10). Based on 
the new vectors, we find the forecasting interval. The middle point value of the 
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forecasting interval is the final forecasting value of 2008. With taking out the first 
data of sequence(1993-2007) and adding the forecasting value of 2008 to the end of 
sequence(1993-2007), a new sequence(1994-2008) is constructed. Then we can obtain 
the forecasting value of 2009 by repeating the above forecasting calculation steps. 
With repeating the above work again and again. The other two sequences (1995-2009, 
1996-2010) and two forecasting values of 2010 and 2011 can be obtained. The 
forecasting process is shown in Fig. 3, Fig. 4, Fig. 5, Fig. 6 and Table 2 is the 
forecasting results. 

 

 Fig. 2. Copper price forecasting(2008)      Fig. 3. Copper price forecasting(2009) 

  

 Fig. 4. Copper price forecasting(2010)        Fig. 5. Copper price forecasting(2011) 

Table 2.   Multidimensional grey metabolism Markov forecasting results(2008-2011) 

Year Number of intervals Forecasting intervals Forecasting values 
2008 4(d=950) [6230.9,7180.9] 6706.4 
2009 4(d=950) [6260.6,7210.6] 6733.1 
2010 3(d=1180) [6923.2,8103.2] 7513.2 
2011 4(d=1050) [8670.8,9720.8] 9195.8 

4 Analysis and Evaluation 

The four forecasting values and intervals are shown in Table 2. It is obvious that the 
actual values of 2008, 2009, 2010 are all in the corresponding forecasting intervals 
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except the value of 2009. However, considering the world economic crisis in 2009, 
the forecasting results can also be accepted. 

In order to evaluate the forecasting effect of the proposed method further, we 
compared the method with ARIMA model. The actual price values, the forecasting 
price values of the two methods and their corresponding relative errors are shown in 
Table 3. A plot of the price values appears in Fig. 6. It is clear that the forecasting 
curve of our proposed method fits with the original curve much better than ARIMA 
model but the value of 2009. Moreover, the relative errors of our proposed method are 
4.59%, 30.22%, 0.95% and 1.36% while the errors of ARIMA model are 6.18%, 
22.97%, 13.46% and 20.29%. As is shown in Fig. 7, the relative errors of the 
proposed method are much lower than ARIMA model except the error value of 2009. 
Hence we get the conclusion that the proposed method performs excellently and not 
limit to forecasting step length in mineral copper price prediction.  

Table 3. Forecasting price values and relative errors (2008-2011) 

Year Actual values 
Multidimensional grey 

metabolism Markov 
RE(%) ARIMA model RE(%) 

2008 7029.4 6706.4 4.59 7464.0 6.18 
2009 5170.5 6733.1 30.22 6358.3 22.97 
2010 7585.6 7513.2 0.95 6564.8 13.46 
2011 9072.3 9195.8 1.36 7231.5 20.29 

 

  

Fig. 6. Graph of actual and forecasting values      Fig. 7. Graph of forecasting relative errors 

5 Conclusions 

The multidimensional grey metabolism Markov forecasting method has been 
proposed based on grey forecasting model and stochastic process theory in this paper. 
With the international copper prices as a data sequence, the method is successfully 
applied to predict the four copper prices of 2008-2011. According to the forecasting 
values and relatives errors, our proposed method performs much better than ARIMA 
model in mineral copper price forecasting. Hence we get the conclusion that our 
proposed method not only performs an excellent forecasting effect but also is not 
limited to the forecasting steps in mineral market. Multidimensional grey metabolism 
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Markov forecasting method is proposed as a precisely and satisfactorily method for 
long term forecasting for mineral commodity prices. However, the influence of 
economic crisis for price forecasting can not be eliminated in our research. 
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Abstract. Automated software refactoring is one of the hard combinatorial 
optimization problems of search-based software engineering domain. The idea 
is to enhance the quality of the existing software under the guidance of software 
quality metrics through applicable refactoring actions. In this study, we 
designed and implemented a web-service that uses discrete version of Artificial 
Bee Colony (ABC) optimization approach in order to enhance bytecode 
compiled Java programming language codes, automatically. The introduced 
service supports 20 different refactoring actions that realize intelligent ABC 
searches on design landscape defined by an adhoc quality model being an 
aggregation of 24 object-oriented software metrics. 

Keywords: Discrete Artificial Bee Colony Optimization, Search-Based 
Software Engineering, Software Quality, Web-Services. 

1 Introduction 

Artificial bee colony (ABC) search is a popular, population based metaheuristic search 
algorithm inspired from the collective intelligent behavior of honey bees [1]. The 
algorithm has been designed to work for unconstrained and constrained numerical 
optimization problems [2]. The basic idea is to refer each solution within the solution 
space as a food source. While using a population of food sources and various bee types 
(including employed, onlooker and scout) to search for better food sources (i.e. 
solutions), ABC mimics the behavior of honey bees on a search space.  

Automated software refactoring is known to be one of the hardest problems of 
optimization oriented software engineering [3][4]. The difficulty is mainly due to 
candidate solution representation, objective function description and necessity of 
functional behavior preservation of software. In [5], the problem is formulated as a 
combinatorial optimization problem whose objective function is characterized by an 
aggregate of object-oriented metrics or pareto-front solution description. Efficient 
problem formulation; realistic individual representation and applicable change operator 
description are three basic factors that affect the performance of possible optimization 
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effort. In automated software refactoring literature, metaheuristic-based direct/indirect 
optimization techniques including simple hill climbing (HC), simulated annealing 
(SA), multiple first ascent hill climbing (MFAHC) and genetic algorithms (GA) have 
been studied [6]. A multi-level design exploration approach to the problem has been 
introduced in [7]. In our recent empirical study [8], performance results of alternative 
search algorithms including pure random (RND), steepest descent (SD), multiple first 
descent (MFD), simulated annealing (SA), multiple steepest descent (MSD) and 
artificial bee colony (ABC) searches have been reported by the authors of this paper. In 
this study, we have concluded that MSD and ABC algorithms are the most suitable 
approaches for efficient solution of the problem. In our next study, we showed that 
different from MSD search, population-based, scalable and being suitable for parallel 
execution characteristics of ABC search [9] makes it a good choice for designing and 
implementing a high performance, highly scalable web-service. Detailed comparative 
performance results between ABC and other above mentioned approaches (including 
classical MSD) can be found in [8] and [9]. 

In the light of the above observations, the authors designed and implemented a web-
service for automated software refactoring problem using ABC optimization as 
suitable optimization choice. To the best of our knowledge, the proposed solution 
introduces the first web-service on the automated refactoring problem domain. Note 
that, a fixed demand to the number of nodes to be expanded at each generation makes 
ABC algorithm a good choice for the web-service implementation. Furthermore, the 
quality gain is increased steadily against increasing population sizes while the required 
computation time per run increases only in the order of food source size and number of 
generations. The intended users of the system are software developers who aim to 
improve their code-quality through such automated service that can be made an 
extended part of their development environment. In Section 2, we give information 
about developed web-service including the assumptions and limitations. Domain 
specific considerations and application details of the applied ABC optimization 
technique can be found in Section 3. Finally, the conclusions are in Section 4. 

2 The Refactoring Web-Service 

There are two basic ingredients for the formulation of search-based optimization 
problems [10]: The way we represent candidate solutions and the way we measure 
fitness (or quality) of the solution. These ingredients also shape the proposed web-
service solution in which better candidate design solutions are found under the guidance 
of predefined aggregate quality/fitness metric, in parallel manner. Selection of suitable 
refactoring actions and applying them at the design level enables the design space 
movement while taking care about functional behavior preservation of the input Java 
bytecode under analysis. Simply, we create web-service that delivers software 
refactoring features over web to compatible clients using standard web-services.  

2.1 Basic Features  

A Web-service is a specific kind of service that is identified by a URI which uses the 
XML-based standards, WSDL (Web-services Description Language) and UDDI 
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(Universal Description, Discovery and Integration) open Internet standards in order to 
form a software system designed to support interoperable client and service provider 
interaction over a network [11]. XML offers a widely adopted standard way of 
representing text and data in a format that can be exchanged across different operating 
systems, languages, and applications [12]. 

The proposed solution uses XML-RPC based web-services on the server side of the 
cloud service. It provides necessary client library to use Java for programming the web-
service with XML-RPC, the data serialization methods are powerful enough to transfer 
data related to the design and to refactoring processes. Note that the XML-RPC based 
solution can easily be adapted and run in multiple environments and operating systems. 
The architecture of the web-service that serves software refactoring component features 
over web to clients is designed as a client/server communication model. At the server 
side of the web-service architecture, there is a standalone refactoring component 
instance from the client side. That component’s instance waits for clients’ requests over 
XML-RPC web-service technology and a design (any zip file containing the bin folder 
of any Java project) can be sent through Internet. When a design is received from a 
client by the server, server reads the design and creates a “context” for it. Context has a 
unique ID number. From this point, client has to notify the server with that ID number 
while establishing any communications and by this way among requests state can be 
maintained. The web-service provides all methods for extracting the design information, 
starting the refactoring phase and obtaining the results of the refactoring process. At the 
client side of the web-service architecture, all these methods can be called and the 
related information, according to user actions, can be obtained from the server. Then, 
the related information results are displayed (reflected) to user via graphical user 
interface during communication. The architecture is fully compatible with known cloud 
computing methods. Because the cloud computing providers supply virtual servers that 
can elastically be increased or decreased, multiple servers can be used. However, we do 
not create a cloud based solution at this point. Our implementation creates a basis for 
service oriented architecture. 

2.2 Supported Functionalities 

The client side of the web-service based refactoring engine provides a graphical user 
interface to interact with the remote server. So, we have decided to create a web site 
using PHP, Java Script, and HTML for implementation and CSS is used for design of 
the web application interface. A summary of the proposed web-service functionalities 
and related details as given below:  

• All predefined and necessary methods for serving refactoring component 
features to clients can be called from the server with sending XML-RPC 
requests for PHP including related method names and parameters. 

• Connection is initiated with the server when a user starts a session. At the 
beginning, server creates a unique context id for each user, and then this 
context id is stored for future use of the client demands.  

• Any Java based software (a zip file containing all the compiled “.class” files 
of the Java project) for refactoring can be uploaded in order to start 
refactoring process at the initial page of web-service client. We used “base 
64 encoding” for sending the uploaded design in order to encode the binary 



 A Web-Service for Automated Software Refactoring Using ABC Optimization 321 

 

data and ensure that it remains interaction without modification during 
transport. It is the most critical part since XML-RPC encapsulates the data to 
XML during transport so that the server can read the design incorrectly. 
Also, client’s e-mail address is asked in order to send a notification about 
completion of the refactoring process and a link that client can see the results 
of the refactoring process details.  

• Metrics table that gets predefined available metrics from the server can be 
shown in order to choose and keep the needed ones for refactoring process 
from the metric page. Moreover, each metric description can be seen when 
mouse is on the related metric information icon. 

• Actions table that gets predefined available actions from the server can be 
shown in order to choose and keep needed ones for refactoring process from 
the action page. Moreover, each action description can be seen when mouse 
is on the related action information icon. Following the configurations of 
metrics & actions, Artificial Bee Colony parameters are fixed to desired 
values. After that, a unique “run id” is given to the client and it is placed in 
the “past/current runs” table with its starting “date”, parameter values & run 
“status”. Client can select more than one search requests which are queued as 
the next refactoring process. Each time the client start new refactoring, a new 
unique “run id” is given for the same client.  

• Finally, when a refactoring process is finished an e-mail is sent to client’s 
account showing (also, a “result button” appears in the “past/current runs” 
table when the refactoring is completed as its status) the details of the 
refactoring process such as run info, time taken, expanded designs, initial 
metric score, final metric score, quality gain, applied refactoring actions, a 
line chart for run progress of the refactoring action over time and a column 
chart for the change in metrics after the run. Note that if the connection 
cannot be established while initiating a connection to the server, an error 
page is shown to inform the client. 

2.3 Assumptions and Limitations 

The proposed web-service solution uses a Java bytecode manipulation and analysis 
framework ASM [13]. The framework is being used to evaluate compiled Java code 
in bytecode level, in order to extract design information from arbitrary Java software. 
Since ASM is operating in bytecode level, it is possible to extract high level design 
information, such as classes, methods, packages etc. along with low level 
implementation details like call dependencies, visibilities, method bodies and such. 
All abstract design representations of given benchmark programs has been 
constructed using ASM framework. The utilized design representation schema favors 
look-ups over modifications in terms of performance. The implemented 20 refactoring 
actions are: Move Up Method, Move Down Method, Move Method, Move Up Field, 
Move Down Field, Instantiate Method, Freeze Method, Make Class Abstract, Make 
Class Final, Make Class Non-Final, Inline Method, Remove Class, Remove Interface, 
Remove Method, Remove Field, Introduce Factory, Increase Method Security, 
Decrease Method Security, Increase Field Security and Decrease Field Security. The 
reversibility of the refactoring actions provides both bad and good design space 
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movements that lead to change in the quality of the design based on the results of the 
metrics evaluation. The reversible actions include Move-Up Method & Move-Down 
Method; Move-Up Field & Move-Down Field; Increase Method Security & Decrease 
Method Security; Increase Field Security & Decrease Field Security; Make Class 
Final & Make Class Non-Final. 

Each refactoring action type has a checker function that can evaluate a given 
design to find all appropriate actions of the given type that can be applied to the 
design. In order to preserve the functionality of a given design, the checker has to 
iterate over all possible operations that looks possible at the first pass and performs a 
static analysis to ensure the action is legal in the source programming language and 
the run time behavior is guaranteed to be preserved. The static analysis method 
consists of several condition checks on a possible refactoring action that results in a 
filtering over actions. The service uses an aggregate of 24 object-oriented metrics 
selected from various sources including [14] and [15]. The aggregate does not 
consider any weight over adopted metrics and the related search is done on 
normalized metric values. Widely accepted software engineering practices suggests 
low complexity in order to increase maintainability [14]. As a consequence, we need 
to minimize complexity related metrics during the search for better design. On the 
other hand, we cannot say that increase in static methods of a class is good (or bad) to 
improve overall design quality. Since the optimization process cannot rely on 
subjective opinions, objectives for such metrics can be regarded as “unknown”. As a 
consequence, we categorize each considered metrics either as “minimized” or 
“unknown” (see Table 1). Furthermore, those metrics that require value maximization 
are also treated as minimized metrics by their negated values. 

In the normalization schema, instead of setting precise objectives for unknown 
metrics, we prefer to use the calculated metric values of a predetermined ideal design 
set as a feedback mechanism. The design under evaluation is compared against the 
norm of a supposed optimum design set and the distances are used as a metric score to 
be minimized during search. As the idea is to approach to the norm of optimum 
design set for unknown metrics, their distances are calculated against the mean value 
of the standard normal distribution. On the other hand, minimized metric distances are 
required to be calculated against the absolute 0. To achieve this, for such metrics, the 
normalized value of absolute 0 is used as the objective and the distance is calculated 
accordingly. Given metrics M1, M2,…,Mk, ideal design set D1, D2,…, Dn and current 
design Dcur. The Distance function is defined as 

 

Dist(Mi, Dcur) = |NormVal(Mi(Dcur), i) – NormVal(0, i)|, Mi ∈Min. 
          |NormVal(Mi(Dcur), i)|,                             Mi ∈Un.                       (1) 

where Min. stands for the set of minimizing metrics, Un. stands for the set of 
unknown metrics and NormalVal calculates the normalized value of x against the 
values of ith metric in the ideal design set such that 

NormVal(x, i) = Norm0-1(Mi(D1), Mi(D2), …, Mi(Dn) )x          (2) 

The overall evaluated metric score of Dcur is defined as 

Eval(Dcur) = ∑
=

k

i

curi DMDist
1

),(                               (3) 
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Besides from describing objective function, we need to describe the constraints that 
apply to the problem domain. They are the requirements of behavior preservation of 
the bytecode design under optimization. Simply, each of different functional 
requirements implemented over the code defines a constraint. Note that the state 
variables do not take their values from a continuous domain but from a set which is 
described by possible discrete refactoring actions through the search process, 
dynamically.    

Table 1. List of considered metrics 

Minimized Unknown 

Number of fields in a 
class; Number of methods 
in a class; Average 
number of the field 
visibility of a class; 
Average number of 
methods visibility of a 
class; Nesting level of a 
class; Number of methods 
of a class in a package; 
Number of classes in a 
package; Number of 
interfaces in a package. 

 

 
Number of constant fields in a class; Number of 
setter methods in a class; Number of getter 
methods in a class; Average number of the static 
methods of a class; Number of interfaces a class 
implements; Number of children of a class; 
Number of descendants of a class; Number of 
ancestors of a class; Number of elements on 
which this class depends; Number of elements 
that depend on this class; Number of times the 
class is externally used as attribute type; Number 
of attributes in the class having another class or 
interface as their type;  Number of times the class 
is externally used as parameter type; Number of 
parameters in the class having another class or 
interface as their type; Nesting level of a 
package; Ratio of abstract classes in a package. 

3 Application of ABC Search to the Domain 

The software refactoring domain requires the usage of not continuous but discrete 
variation of ABC (i.e. DABC). As a consequence, in our implementation, we applied 
the discrete version of the algorithm designed for solving combinatorial optimization 
problems. Mathematical description of the known DABC search procedure can be 
found in [16]. However, our domain specific implementation requires the below 
adaptations:  

• Initial food sources are being generated from the initial design by applying 
random refactoring actions. For each food source, a predefined number of 
random actions are carried out iteratively to generate pseudo random solutions. 
Note that the original algorithm creates random food sources within the 
boundaries of search space. 

• In the algorithm, the depleted food sources are required to be replaced by 
random sources. However, our application requires producing a random 
solution while keeping the design functionality of the input program. Two 
possible solutions to this problem are, either creating a random food source 
from the initial design, or to consider the current best design. Using the current 
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best design as a starting point for creating random solutions has been decided 
to be more effective and the replacement approach has been implemented 
based on this assumption. Just like the initial population generation, all 
depleted food sources are replaced by pseudo random food sources, which are 
created from best solution by carrying out a predefined number of random 
refactoring actions on it. 

• In its discrete search space, our solution finds the neighboring food sources by 
applying a single refactoring action to the current food source. Therefore, each 
random change represents a movement within search space onto a nearby food 
source. 

While the adaptation is influenced by the discrete version, it was not possible to 
directly implement the given algorithm in refactoring domain. The DABC algorithm 
applies a preliminary local search to mutated food sources during employed and 
onlooker bee phases. Even though this nectar boosting procedure can be implemented 
in theory, it causes significant performance problems in refactoring domain, due to 
complexity and vast numbers of mutation possibilities of each solution. Another 
difference from the DABC algorithm is related to probabilistic selection of food 
sources by onlooker bees. While the original algorithm performs individual 
probability checks on each food source, the discrete version utilizes a tournament 
selection procedure by choosing two random food sources. However, it has been 
decided to adopt the original algorithm where possible, therefore, our solution 
performs individual probability checks for food source selection. Apart from these 
differences, the required modifications for discretization (such as initialization of food 
sources, mutations, using mutants from current best etc.) have been based on the 
DABC algorithm. 

4 Conclusions 

The study realized an automated software refactoring web-service based on parallel 
implementation of discrete artificial bee colony optimization technique. Due to the 
added parallelism, we were able to investigate different regions of design space defined 
by the proposed objective function. All searches were executed at the design level of 
abstraction and realized at the design space. The service supports 20 different 
refactoring actions that realize ABC searches on design landscape that are defined by 
an adhoc quality model being aggregation of 24 object-oriented software metrics. It 
produces a sequence of recommended refactoring actions together with code 
improvement history. For the time being, the design under evaluation is compared 
against the norm of a supposed optimum design set defined by 4 packages from base 
Java library.  In future, the optimum design set can be enhanced by alternative choices. 
Finally, the input programs under consideration were limited in terms of number of 
classes and line of codes. This is mainly due to the high performance requirement of 
the problem under study. It is clear that some lightweight and efficient design 
representation still leads to design improvements for more complex and bigger input 
programs in terms of number of classes to handled. 
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Abstract. Artificial Bee Colony (ABC) algorithm is a novel bio-inspired swarm 
intelligence approach which is competitive with other population-based 
algorithms and has the advantage of using fewer control parameters. However, 
basic ABC is easy to be prematurely convergent and be trapped into local 
optimum. In the later iteration, algorithm has low convergent speed and 
population diversity seriously decreases. In this paper, Gaussian mutation and 
chaos disturbance are introduced into ABC to overcome the shortcomings above. 
Applications of improved ABC algorithm on four benchmark optimization 
functions show marked improvement in performance over the basic ABC. 

Keywords: Artificial Bee Colony (ABC) algorithm, Gaussian mutation, Chaos 
disturbance. 

1 Introduction 

Nowadays, there is a trend in the scientific community to model and solve complex 
optimization problems by employing swarm intelligence in nature. Artificial Bee 
Colony (ABC) algorithm is one of the most recently defined algorithms by Karaboga 
in 2005, motivated by the intelligent behavior of honey bees [1]. It is as simple as 
Particle Swarm Optimization (PSO) and Differential Evolution (DE) algorithms, and 
uses only common control parameters such as colony size and maximum cycle 
number. ABC algorithm is very simple and very flexible, compared to the existing 
swarm intelligence algorithms [2]. 

Due to its simplicity and easy implementation, ABC algorithm has captured much 
attention and has been applied to solve many practical optimization problems. 
Mustafa applied ABC algorithm for the truss structures optimization problems [3]. T.-
J. Hsieh et al. presented an integrated system where wavelet transforms and recurrent 
neural network (RNN) based on ABC algorithm are combined to forecast stock 
markets [4]. ABC algorithm was also applied in clustering [5, 6], Chunfan Xu 
proposed an ABC algorithm with edge potential function to visual target recognition 
for aircraft at low altitude [7]. Singh applied ABC algorithm for the Leaf-Constrained 
Minimum Spanning Tree (LCMST) problem [8]. Karaboga N. used ABC algorithm to 
design Infinite Impulse Response (IIR) filters [9]. 
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As a new search algorithm, a lot of researches have gone into improving the 
performance. Bao Li and Haijun Ding used tournament selection [10] and boltzmann 
selection [11] to instead of roulette wheel selection of ABC algorithm, a hybrid 
version of the algorithm [12] has also been proposed. Chunfang Xu proposed an 
improved ABC optimization algorithm based on chaos theory to solve the 
Uninhabited Combat Air Vehicle (UCAV) path planning in various combat field 
environments [13].These methods reduce the possibility of local optimum to some 
extent. 

In this paper, an improved ABC algorithm has been proposed. In the local search, 
Gaussian mutation is carried out for improving the searching efficiency and precision. 
Considered the characteristics of ergodicity and randomness of chaotic variables, 
chaos disturbance is introduced into basic ABC, which is helpful for bees to jump out 
of local optimum and increases the population diversity. 

2 Basic ABC Algorithm 

In ABC, the colony of artificial bees contains three groups of bees: employed bees 
associated with specific food sources, onlooker bees watching the dance of employed 
bees within the hive to choose a food source, and scout bees searching for food 
sources randomly. Both onlookers and scouts are also called unemployed bees. 
Initially, all food source positions are discovered by scout bees. Thereafter, the nectar 
of food sources are exploited by employed bees and onlooker bees, and the continual 
exploitation will ultimately cause them to become exhausted. Then, the employed bee 
which was exploiting the exhausted food source becomes a scout bee in search of 
further food sources once again. In ABC, the position of a food source represents a 
possible solution to the problem and the nectar amount of a food source corresponds 
to the quality (fitness) of the associated solution. The number of employed bees is 
equal to the number of food sources (solutions) since each employed bee is associated 
with one and only one food source. The details can be described as follows [14]. 

min  ( )f f x= , 1 2( , ,..., )mx x x x S= ∈ , [ , ]iL iHS x x=  . (1)

where, f represents the objective function, x is m -dimensional variable, 

[ , ]iL iHx x indicates the upper and lower bounds of the i th-dimensional variable.  

Suppose that the number of the employed bees and onlooker bees all is N . The 
main steps of the algorithm are given below:  

a) Initialization 
Produce 2N  locations randomly, evaluate them and move the employed bees onto 
the N  food sources with the more nectar amounts.  

b) Employed bees explore new food sources around themselves by the (2) 

( )ij ij ij ij kjV x R x x= + −  . (2)

where ijV  is a new location, ijR  is a random number in the range [-1,1], 

{1,2,3,..., }k N∈  and k i≠ . 
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c) Mark the N  food sources with more nectar amounts from the candidate food 
sources between a) and b).  

d) Onlookers explore new food sources  
The onlookers are placed on food sources selected in the roulette wheel selection 
method. Then each onlooker bee explores the neighborhood of food source ix  as (2). 

Probability iP  is calculated as follows: 

1
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i
i

fit
P

fit
=

=
∑
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here, ifit  is calculated using the following equation: 
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where, if  is the fitness value of the solution. 

e) If a solution cannot be improved for “limit” trials, it will be abandoned. The 
scout randomly produces a solution to replace the old one.  

f) Select the N  better solutions between candidate solutions generated in step c) 
and step d).  

g) Record the best solution obtained till now and repeat step b) to f) until the max 
iterations. 

3 Improved ABC Algorithm 

Basic ABC algorithm is a simple, robust, and easily be controlled algorithm. 
However, as a random optimization algorithm, ABC algorithm has slow convergence 
characteristics and easily gets stuck on local solutions. In this paper, basic ABC 
algorithm is modified to get better optimization value. 

3.1 Gaussian Mutation  

Gaussian mutation consists in adding a random value from a Gaussian distribution to 
each element of an individual’s vector to create a new offspring. This technique 
employs the following equation:  

( ) *(1 (0,1))mutation x x N= +  . (5)

x  is a numerical value which each object has. (0,1)N  is a random value extracted 

from a Gaussian (normal) distribution. ( )mutation x  is the new value after Gaussian 

mutation for an individual. 
The individuals are selected at the predetermined probability and their positions are 

determined at the probability under the Gaussian distribution. Wide-ranging searches 
are possible at the local search stage and searching efficiency is improved at the final 
stage by using Gaussian mutation in improved ABC algorithm. 
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3.2 Chaos Disturbance 

When the bees trap into local optimum, chaos disturbance is introduced to help them 
overcome the prematurity. 

Chaos is a common nonlinear phenomenon in our lives. The dynamic properties of 
chaos can be shown as following: (1) Chaos is highly sensitive to the initial value. (2) 
Certainty: Chaos is produced by the certain iterative formula. (3)Ergodicity: Chaos 
can go through all states in certain ranges without repetition.   

Chaos is similar to randomness. But experimental studies assert that the benefits of 
using chaotic signals instead of random signals are often evident even though a 
general rule cannot be formulated [15]. So the performance of chaotic search is better 
than random search. Due to the easy implementation and special ability to avoid being 
trapped in local optima, chaos has been a novel optimization technique and chaos-
based searching algorithms have aroused intense interests [16]. 

Chaos optimization is realized through chaos variables which can be obtained by 
many ways. Here the Tent Mapping method [17] is selected. The equation of Tent 
Mapping is shown as follows: 

2*

2*(1 )
d

d
d

x
X

x

⎧
= ⎨ −⎩

  
0 1/ 2

1/ 2 1
d

d

x

x

≤ ≤
≤ ≤

 1, 2,...,d D=  . (6)

dX  is the d-th dimensional chaos variable; dx is a random uniformly distributed 

variable, [ ]0,1dx ∈ . 

Chaos disturbance includes the following major steps: 

(1) Produce chaotic variables using chaotic mapping. 
(2) The chaotic variable is mapped back to the solution space. 

min (max min )*d d d d dnewX X= + −  . (7)

maxd  and mind  are the maximum and minimum value of the d-th dimensional 

variable, respectively. 
(3) Chaos disturbance is carried out by the following formula: 

' ( ' ) / 2newX X newX= +  . (8)

'X is the individual which needs to be chaos disturbed; newX  is the chaos 
disturbance variable, 'newX  is the new individual which has been chaos disturbed. 

3.3 Flow of Improved ABC Algorithm  

Improved ABC algorithm with Gaussian mutation and chaos disturbance can be 
summarized as follows: 

Step1. Generate the initial population (positions of food source). 
Step2. Employed bees depend on the formula (2) to explore new food sources called 

offspring. 



330 X. Cheng and M. Jiang 

 

Step3. Compare the fitness value of every food source with its corresponding 
offspring and mark location of the better performance. 

Step4. Onlookers depend on roulette wheel selection method to choose food source 
obtained in Step3 and explore new position around it, called offspring population. 

Step5. Select the better performance food sources between marked locations and 
offspring population as true food sources, move employed bees to these locations.  

Step6. Calculate the mean fitness value of all food sources. For all bees, if its fitness 
value is superior to the mean fitness value, Gaussian mutation is carried out 
for the corresponding bee; otherwise, chaos disturbance is applied. 

Step7. Judge whether the terminating condition is satisfied. If not, go to Step2, 
otherwise output the optimal solution and end. 

4 Function Optimization Experiments 

In order to evaluate the performance of improved ABC algorithm, a series of 
experiments on four classical benchmark functions are carried out to compare 
improved algorithm with basic ABC algorithm. The benchmark functions used in the 
experiments are listed in Table 1. 

Table 1. The benchmark functions 

Function Formulation Range 
Griewank 

2
1 1

21 1

1
cos( ) 1

4000

dd
i

i
i i

x
f x

i= =

= − +∑ ∏  
[-100, 100] 

Rastrigin 
2

2
1

[ 10cos(2 ) 10]
d

i i
i

f x xπ
=

= − +∑  
[-100, 100] 

Rosenbrock 1
2 2 2

3 1
1

[100( ) ( 1) ]
d

i i i
i

f x x x
−

+
=

= − + −∑  
[-100, 100] 

Sphere 
2

4
1

d

i
i

f x
=

=∑  
[-100, 100] 

 
In the experiments, the Dimension was set to 100, the number of population (NP) 

was 20, the value of the limit parameter was 100 and the maximum cycle number 
(MCN) was 2500. Looking for the minimum of four test functions is the content of 
experiments. In theory, the minimum is all 0. Each experiment was repeated 10 times, 
and the mean best function values are presented in Table 2. In order to show the 
performance and convergent speed of the algorithms more clearly, Fig. 1-4 indicate 
the progress of the mean best function values in 600 iterations. 

As shown in Table 2, for four test functions, the optimal function value of 
improved ABC is better than basic ABC. The convergent speed is an important 
indicator to the algorithm. From Fig. 1-4, it is shown that the improved ABC has the 
higher convergent speed.  

For basic ABC, bees search depends on the equation (2) in the neighborhood, 
which evolved step by step. However, in improved ABC, after one iteration 
completed at the beginning, superior bees improve by Gaussian mutation and inferior 
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Table 2. The mean best function values 

Function The optimal value 
 Basic ABC Improved ABC 
Griewank 61.6 10−×  0 

Rastrigin 8.6457 0.00187 
Rosenbrock 225.84 98.9884 
Sphere 73.1 10−×  83.0 10−×  
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Fig. 1. The convergence curve of Griewank Function 
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Fig. 2. The convergence curve of Rastrigin Function 

bees change by chaos disturbance. It is salutatory and fast. So the convergent speed of 
improved ABC progresses very rapidly in the first period. Moreover, the better results 
can be obtained at the final stage. 
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Fig. 3. The convergence curve of Rosenbrock Function 
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Fig. 4. The convergence curve of Sphere Function 

5 Conclusions 

In this paper, Artificial Bee Colony (ABC) algorithm was studied. Observing basic 
ABC algorithm’s shortcomings, an improved ABC algorithm with Gaussian mutation 
and chaos disturbance has been proposed. Simulation results on a set of benchmark 
functions indicate that the searching properties including searching efficiency and 
precision of improved ABC algorithm are obviously better than that of basic ABC 
algorithm. 



 An Improved ABC Algorithm Based on Gaussian Mutation and Chaos Disturbance 333 

 

Acknowledgments. This work is supported by the Natural Science Foundation of 
Shandong Province (No. ZR2010FM040), Shandong Provincial key project 
( No.2009ZHZX1A0108, No.2010ZHZX1A1001). 

References 

1. Karaboga, D.: An Artificial Bee Colony (ABC) Algorithm for Numeric Function 
Optimization. In: IEEE Swarm Intelligence Symposium, pp. 181–184. IEEE Press, Indiana 
(2006) 

2. Jiang, M., Yuan, D.: Artificial Fish Swarm Algorithm and Its Applications. Science Press, 
Beijing (2012) 

3. Sonmez, M.: Artificial Bee Colony Algorithm for Optimization of Truss Structures. 
Applied Soft Computing Journal 10, 195–197 (2010) 

4. Hsieh, T.J., Hsiao, H.F.: Forecasting Stock Markets using Wavelet Transforms and 
Recurrent Neural Networks: an Integrated System Based on Artificial Bee Colony 
Algorithm. Applied Soft Computing Journal 10, 156–162 (2010) 

5. Karaboga, D.: A Novel Clustering Approach: Artificial Bee Colony (ABC) Algorithm. 
Applied Soft Computing 11, 652–657 (2011) 

6. Zh, C., Ouyang, D., Ning, J.: An Artificial Bee Colony Approach for Clustering. Expert 
Systems with Applications 37, 4761–4767 (2010) 

7. Chunfan, X.: Artificial Bee Colony (ABC) Optimized Edge Potential Function (EPF) 
Approach to Target Recognition for Low-altitude Aircraft. Pattern Recognition Letters 31, 
1759–1772 (2010) 

8. Singh, A.: An Artificial Bee Colony Algorithm for the Leaf-constrained Minimum 
Spanning Tree Problem. Applied Soft Computing 9, 625–631 (2009) 

9. Karaboga, N.: A New Design Method Based on Artificial Bee Colony Algorithm for 
Digital IIR Filters. Journal of the Franklin Institute 346, 328–348 (2009) 

10. Li, B., Zeng, J.: Self-adapting Search Space Chaos-artificial Bee Colony Algorithm. 
Application Research of Computers 27, 1331–1335 (2010) 

11. Ding, H., Feng, Q.: Artificial Bee Colony Algorithm Based on Boltzmann Selection 
Policy. Computer Engineering and Applications 45, 53–55 (2009) 

12. Kang, F., Li, J., Xu, Q.: Structural Inverse Analysis by Hybrid Simplex Artificial Neural 
Networks. In: 15th IEEE Proc. Signal Processing and Communications Applications,  
pp. 1–4. IEEE Press, SIU (2007) 

13. Xu, C.: Chaotic Artificial Bee Colony Approach to Uninhabited Combat Air Vehicle 
(UCAV) Path Planning. Aerospace Science and Technology 26, 156–162 (2010) 

14. Kang, F., Li, J., Li, H.: An Improved Artificial Bee Colony Algorithm. In: 2nd 
International Workshop on Intelligent Systems and Applications, pp. 15–21. IEEE Press, 
Wuhan (2010) 

15. Bucolo, M., Caponetto, R., Fortuna, L., Frasca, M., Rizzo, A.: Does Chaos Work Better 
than Noise? Circuits and Systems Magazine 2, 4–19 (2002) 

16. Wang, L., Zheng, D., Lin, Q.: Survey on Chaotic Optimization Methods. Comput. 
Technol. Automat. 20, 1–5 (2001) 

17. Li, C., Zhang, X.: Design of Pseudo-random Sequence Generator Based on Chaos Anti-
control Tent Map. Journal of Computer Applications 28, 48–51 (2008) 



 

Y. Tan, Y. Shi, and Z. Ji (Eds.): ICSI 2012, Part I, LNCS 7331, pp. 334–341, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

An Artificial Bee Colony Algorithm Approach  
for Routing in VLSI 

Hao Zhang1,2 and Dongyi Ye1,2 

1 Center for Discrete Mathematics and Theoretical Computer Science, Fuzhou University,  
Fuzhou 350003, China 

2 College of Mathematics and Computer Science, Fuzhou University,  
Fuzhou 350108, China 

{zhanghao,yiedy}@fzu.edu.cn 

Abstract. This paper presents an approach that applies the Artificial Bee 
Colony algorithm to the Two-Terminals-Net-Routing（TTNR） problem in 
VLSI physical design and compares its performance with the maze algorithm 
variant known as the state-of-the-art global routing algorithm. An effectively 
encoding method is described in this paper to solve the TTNR problem. In order 
to improve the convergence speed of the algorithm, some guiding solutions are 
employed as the initial solutions. The experimental results demonstrate that 
Artificial Bee Colony algorithm can find the less cost routing paths for TTNR 
problems than the maze algorithm. 

Keywords: Artificial Bee Colony Algorithm, VLSI physical design, Global 
Routing, Two-Terminals-Net-Routing. 

1 Introduction 

Since design of Integrated Circuits went into nanometer regime, the challenges of 
very/ultra large scale integrated circuits (VLSI/ULSI) physical design have been 
escalating. Routing of the interconnects plays a more critical role in design cycle that 
arranges the routes of nets physically. Routing a two terminals net (TTNR), i.e., 
finding a right angle polyline in the routing region with minimal wirelength is a 
fundamental problem. TTNR is usually employed in the global routing and detail 
routing. Depending on the application background, the TTNR issue is divided into 
three categories: obstacle-free, weighted-path and obstacle-avoiding. In this paper, we 
focused our attention on the weighted-path routing.  

Various routing algorithms have been proposed to solve this problem. Pattern 
routing is the simplest routing algorithm with the smallest number of bends, the 
fastest runtime, and the shortest wirelength. Pan et al. (2007) proposed Monotonic 
routing in [1], which can find the more complex paths than pattern routing. Maze 
routing algorithm is a kind of the slowest approach and is the most effective way for 
the extremely complex routing problem. Multi-source multi-sink maze routing (Pan 
2007) and adaptive multi-source multi-sink maze routing [2] (Chang 2008) are the 
latest variants of mazing routing algorithm which consider the resource sharing in 
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multi terminals net global routing. Heuristic and meta-heuristic algorithms such as 
boxed A*-search [3], the particle swarm optimization approach [4], the ant colony 
optimization based algorithm [5] and the genetic algorithm have also been presentd to 
solve this issue.  

Artificial bee colony algorithm is a kind of bee swarm algorithm described by 
Karaboga (2005) which simulates the nectar behavior of honeybee swarm [7]. The 
performance of the ABC (standard version) is better than or similar to the standard 
versions of genetic algorithm, particle swarm optimization algorithm, and differential 
evolution algorithm and evolution strategies for multi-dimensional numeric problems 
[8]. To the best of our knowledge, none of these studies can achieve minimum 
wirelength with acceptable runtime for TTNR when the bend cost is considered. The 
primary focus of the present paper is on proposing an advanced Artificial Bees Colony 
optimization algorithm to improve the efficiency and wirelength with bend cost.  

The rest of the paper is organized as follows: TTNR in VLSI is presented in Section 
2. The overview of Artificial Bee Colony algorithm is introduced in the third section. 
Section 4 discusses the problem modeling and algorithm procedure of ABC-TTNR. 
Section 5 presents the simulation results and finally section 6 concludes this paper.  

2 Two Terminals Net Routing (TTNR) Problem of Global 
Routing in VLSI 

Weighted-path routing of two terminals net is a basic problem in global routing of 
VLSI physical design which is used to connect to two terminals with the least 
congestion cost and overflows-free path in the grid weighted graph. Not only every 
edge in the grid graph of global routing is weighted, but also the bends in the path are 
weighted for minimizing both wirelength between tiles and via usage between layers. 
So that the cost of a path is the sum of the edges’ cost and the bends’ cost. In this 
paper, we used the congestion cost function proposed in NTHU-2.0[9] to assign cost 
for every edge and bend. Expression (1) shows the full cost of the path P. 

( ) cos *
P

e be E
Cost P t num c

∈
= +∑

 
(1)

where PE  represents the edges set of the path P. cos et denotes the congestion cost of 

the edge e. num  is the number of the bends which are employed in path P. bc  is a 

constant that expressed the cost of each bend.  

3 Meta-Heuristic Algorithm of Artificial Bee Colony 

Inspired by the collective behavior of the insect colonies, the swarm intelligence 
model of artificial bee colony was proposed by KARABOGA in [7]. Food sources 
around the hive represent the solutions in the solution space. The quantity of the food 
source indicates the quality (fitness) of the solution. The artificial bee colony contains 
three groups of artificial bees: employed bees, onlookers and scout bees. The job of 
the scouts in the algorithm is finding the stochastic solutions in the solution space. 
Employed bees recommend the present solutions to each onlooker which can chose a 
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solution based on the fitness and search the neighborhood of this solution for a better 
one. If a present solution cannot get improvement and the searching time has 
exceeded the bounding number, the solution is exhausted. Size of the population 
which is denoted by SP. SN is the number of the employed bees which the half of the 
SP and the other half of the population is consisted of onlookers. Each employed bee 
is associated with a solution (food source) and the number of present solutions is SN 
too. A bounding number of searching each solution's neighborhoods is set as limit. 
MCN is the maximum cycle number of the algorithm for an optimization problem. 
Fitness is defined as the quality of the solution which is closely related to the 
objective function. The number of the scout bees is set one in the algorithm.  

The scout bee plays a global stochastic search role. Global search strategy is 
generating random solutions in solution space. Random function rand (0, 1) is invited 
which can generate a random real value in the open interval range of zero to one. The 
j th entry j

iz of a random solution iz which can be calculated by Equation (2). 

min max min(0,1)*( ),   j {1,2,...,D},  {1,2..., }j j j j
iz z rand z z i SN= + − ∈ ∈  (2)

The onlooker and employed bee play a local search role around the relative present 
solution. Local search strategy is according to the associated solution iz  of the 

employed bee and the solution associated a random employed bee kz . The j th entry 
j

iv  of the neighborhood solution iv  can be calculated by Equation (3). If the entry 

exceeds the bound, the bound value is accepted as the entry value. In this process, iz  

is the position of the employed bee, | kz - iz | is defined as the visual range around iz . 

( 1,1)*( ),    j {1,2,...,D},  , {1,2..., }j j j j
i i i kv z rand z z i k SN= + − − ∈ ∈  (3)

The attractiveness probability of every present solution to the onlookers is calculated 
as Equation (4) where ifit  is the fitness of i th solution. 

1

i
i SN

n
n

fit
p

fit
=

=
∑

 

(4)

According to the above description, it is clear that ABC algorithm contains a few 
parameters which are used to control the size and characteristics. Furthermore, the 
global search capacity of ABC is especially excellent. In addition, ABC can be easily 
adopted to solve various optimization problems with a little adjustment. 

4 ABC Algorithm for TTNR (ABC-TTNR) 

4.1 Modeling in ABC 

In order to adapt the ABC algorithm for solving TTNR problem, several parts of ABC 
should be altered such as: 1) Coding for the TTNR optimization problems, 2) The 
strategy of the initializing solutions set, 3) The local searching operator, 4) The 
dynamic attractiveness probability, 5) Discretization algorithm method. 
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A sequence encoding method is employed in ABC-TTNR, which divides the 
solutions of the problem into two parts: the row-based solutions and the column-based 
solutions. For example, the grey path belongs to a row-based solution, and the 
sequence can be expressed as (1, sy , 1sy + , 1sy + , 1sy + , 3sy + ). The entries in the 

sequence are the y-coordinates of the used horizontal edges in the solution path except 
the first entry, which is a flag for distinguishing the row-based or column-based 
solution. The length of the sequence of the row-based solution is the difference of the 

ty  and sy which denote with constant R (constant C for column-based solution) in 

expression (8). EXT denotes a constant of the range for extending the routing 
bounding box. The column-based solution is encoded in the same way.  

 

Fig. 1. Encoding for the ABC 

The row-based solutions and column-based solutions are defined in expression (5). 
The present solutions set is consisted of the row-based solutions set and the column-
based solutions set which sizes are denoted with rSN  and cSN respectively. 

1 2 max(1, , ) , , [ , ] , [1, ]n
ri i i iR t s i z r zz a a a Z R x x a EXT y EXT i SN= ∈ = − ∈ − + ∈……

1 2 max(0, , ) , , [ , ] , [1, ]n
cj j j jC t s j z c zz b b Z C y y b EXT x EXT j SN= ∈ = − ∈ − + ∈……b

*r

R
SN SN

C R
=

+
，        2*( 2* )r cSN SN SN C R EXT= + = + +  

(5) 

Pattern routing ways are involved in the initializing solutions set in the initialization 
phase, which are nearby good solutions for the problem. Half of the initializing 
solutions are generated by pattern routing. The other half of the solutions set is 
produced stochastically in the solution space. The novel initializing strategy can 
improve the probability of finding the optimal solution and reduce the convergence 
time. 

Local searching operator is replaced with a sequence operation which is divided 
into three steps. Firstly, an auxiliary solution is randomly chosen in the present 
solutions set except the current solution (the employed bee associated) which is  
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selected for searching. The auxiliary solution is the same base with the current 
solution. Secondly, a random entry number m of the sequence is chosen. The 
auxiliary solution and current solution are split into front part and behind part. Two 
new solutions are generated by exchanging the two front part sequences or behind 
part sequences. Finally, the greedy selection process is used to select the best solution 
among the new solutions and current solution as the updated current solution. 

1 2(0, , , , )m C
currentz a a a a= … … ，    1 2(0, , , , )m C

auxiliaryz b b b b= … …  
1 2

1 (0, , , , )m C
newz a a b b= … … ，     1 2

2 (0, , , , )m C
newz b b a a= … …  

(6)

A dynamic attractiveness probability is designed in expression (7) for adjusting the 
positive feedback of this algorithm during the different stages. At the beginning, the 
differences among the attractiveness probabilities of the present solutions are small 
which can avoid that all the onlookers are attracted by the best present solution and 
prevent from the algorithms premature. In latter stage, the differences among the 
attractiveness probabilities of the present solutions could be widened out which can 
help to convergence to the optimal solution in a short time. Fitness function ifit  in 

TTNR problem is defined as the reciprocal of the cost of the solution path. 

max

*( 1) 1i
i

fit
p

fit
α= − + ，   20.6*( ) 0.3

cycle

MCN
α = +  (7)

The global search operator should be lightly adjusted to meet the needs of discrete 
optimization problem. The entries of a sequence denote a coordinate which should be 
integers and an operation of taking integers downwardly is employed in the global 
search operator which is showed in Equation (8). 

min max min(0,1)*( ) ,   j {1,2,...,D},  {1,2..., }j j j j
iz z rand z z i SN⎢ ⎥= + − ∈ ∈⎣ ⎦  (8)

4.2 Processes of ABC-TTNR 

Detailed pseudo code of ABC-TTNR: 

Load sample for routing 
Initialize the population of row-based and column-based 
solutions , , 1... , 1...ri cj r cz z i SN j SN= =  
Evaluate the fitness population 
cycle=1 
repeat 
    for each employed bee { 
      Produce two new solutions by using (6) 
      Calculate the fitness values of the new solutions 
      Apply greedy selection process } 
    Calculate the probability value ip  for the present 
solutions by using (7) 
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    for each onlooker bee { 
      Select a current solution iw  depending on ip  
      Produce two new solutions by using (6) 
      Calculate the fitness values of the solutions 
      Apply greedy selection process } 
    If there is an abandoned solution for the scout then 
replace it with a new solution which will be randomly 
produced by (8) with the same base 
Memorize the best solution so far 

1cycle cycle= +  
until cycle MCN=  

5 Simulation Results 

Eight TTNR problems with congestion costs are selected randomly which are 
generated in NTHU2.0. We cannot find the least cost paths for these examples with 
the variant of maze algorithm AMMMR and less cost paths can be found by the ABC-
TTNR. Two simulation results are shown in Fig.2. “pin 1” and “pin 2” represent the 
coordinates of the two terminals in the net. “Cost” represents the congestion cost of 
the solution path, “Distance” represents the Manhattan distance of the solution path 
and “Bendnum” represents the number of the bends in the solution path. As shown in 
Fig.2. , the pins and bends are denoted by the solid squares. The interconnection 
schemes found by the AMMM are represented by the grey dotted lines. The schemes 
found by the ABC-TTNR are represented by the black lines. The coding sequences of 
the solutions are shown in Table.1, the numbers in the bracket represent the times of 
related parameter in the sequence. The comparison between solutions’ cost of ABC-
TTNR and AMMM are showed in Table. 1.  

The parameter EXT of ABC-TTNR is set to 20. Limit is the product of SN and the 
maximum of the C and R. Each example setting was manipulated for 100 runs. The 
minimum costs found by ABC-TTNR for examples are shown in Table.1. 

We can see from Fig.2.  that the ABC-TTNR can get better solutions than maze 
algorithm.  

Table 1. The Solution Sequences of ABC-TTNR and Comparison with AMMM 

Example ID Solution of ABC-TTNR 
Cost of  
ABC-TTNR 

Cost of 
AMMMR  

37825 (1,201[10],274[88]) 180.7 194.6 
148514 (0,327[38],350[40]) 163.6 172.6 
37826 (1,199[9],266[88]) 170.1 180.0 
148630 (0,327[42],350[33]) 161.4 164.2 
168454 (0,387[110]) 120.0 129.8 
148665 (0,308[37],307[38],340) 154.6 158.2 
148743 (0,308[32],307[43]) 158.0 177.4 
136630 (0,308[32],307[67]) 136.0 147.8 
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Table.1.

Example ID Solution of ABC-TTNR

Fig. 2

 

Fig. 2. Simulation Results of Examples 

6 Conclusion 

In this paper, we have designed and implement an artificial bee colony algorithm 
ABC-TTNR to solve the TTNR optimization problems. We have compared our 
approach against a variant of maze search approach AMMMR. Our approach can get 
less cost paths for the problems than that found by AMMMR. The experiment 
demonstrates the capability of artificial bee colony algorithm in solving a routing 
problem in VLSI. Our future research project is to solve the multi-terminal net  
routing problem in the weighted grid graph with an improved artificial bee colony 
algorithm. 
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Abstract. In this paper, the DEC (Differentiating Evolutionary Computation) 
algorithm is presented for solving a zero-one multidimensional knapsack 
problem. It has three new improvements. They are the use of a chromosome 
bank for elitism, the use of the superior clan and the inferior clan to improve 
exploitation and exploration, and the use of genetic modification to enable 
faster convergence. The experimental results have shown that the DEC 
algorithm is better than a greedy algorithm and a generic genetic algorithm. It 
can find solutions very close to those found by the algorithm proposed by Chu 
& Beasley.   

Keywords: multidimensional knapsack problem, evolutionary computation, 
genetic algorithm, DEC algorithm. 

1 Introduction and Related Work 

Optimization problems are encountered in many real-world situations in many fields. 
These problems should be solved within a reasonable amount of time and the 
solutions should be as precise and close to the optimum solution as possible in order 
to be practical. The Knapsack problem is a well-known combinatorial optimization 
problem with many real-life applications in areas such as business, finance, capital 
investments, and budget allocation. The problem of allocating funds to independent 
R&D projects in Motorola Inc. in 1966 [1] is one of the earliest knapsack problems. 

The knapsack problem has different variants. Among them, the zero-one 
multidimensional knapsack problem (MDKP) is an NP-hard problem which has no 
known algorithms to solve it efficiently. Nevertheless, optimal solutions to it can 
greatly assist a decision making process to arrive at a good decision. 

In general, the MDKP is a problem to select the most valuable items from a pool  
of candidate items to be put into a knapsack. The knapsack has multiple dimensions 
and a distinct capacity associated with each dimension. Each candidate item possesses 
a value and has a cost associated with each of the knapsack's dimensions. The goal  
is to choose a certain number of items to put into the knapsack in order to achieve  
the maximum total value, while respecting the capacity of the knapsack in each 
dimension.  
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If we have an m-dimensional knapsack with its j-th dimension having a capacity of 
cj and there are n number of items to choose from, the MDKP can be formulated with 
equations (1) and (2).  xi is used to indicate whether the i-th item has been put into 
the knapsack. The i-th item possesses the value of vi and a cost or weight of wij 
associated with the j-th dimension of the knapsack, 

maximize   ,   where 0 1 ; 1, 2, . . . , ;  (1)

subject to where 1, 2, . . . , . (2)

The focus of this research work is to find a better approach to solve the MDKP. Our 
proposed algorithm is called the DEC (Differentiating Evolutionary Computation) 
algorithm. It is a genetic algorithm with three new improvements.  The 
improvements are (1) the use of a superior clan and an inferior clan, (2) the use of a 
chromosome bank and (3) the use of an operation named genetic modification. 

Chu & Beasley [2] proposed in 1998 a genetic algorithm which used a repairing 
operator to solve the MDKP. The operator can convert infeasible solutions (those that 
have violated the knapsack capacities) to feasible ones instead of rejecting them 
outright. It works in two phases, a drop phase and an add phase. In the drop phase, 
chromosomes are examined in increasing order of a proposed measure called pseudo-
utility and their genes are changed from 1 to 0 until feasibility is obtained. Pseudo-
utility is a ratio which indicates how suitable an item i is to be put into the knapsack. 
In the add phase, chromosomes are examined in decreasing order of pseudo-utility 
and their genes are changed from 0 to 1 as long as feasibility is not violated. The 
operator contributes to the improvement of the quality of the solutions and can 
introduce very fit new chromosomes to a population. The genetic modification 
operator in the DEC algorithm is an improvement based on the repair operator. 

An algorithm named SPEA2 (the Strength Pareto Evolutionary Algorithm) was 
introduced by Zitzler, Laumanns, and Thiele in 2001 [3]. Although this algorithm was 
developed for multi-objective optimizations (e.g. multi-objective knapsack problem), 
it has some good features that are adaptable to single objective problems. One of them 
is a feature called environmental selection which maintains an archive which contains 
the best solutions encountered in addition to the main population. In that way, the 
dominant solutions can survive for many generations. The same feature was also used 
in NSGA-II [4]. Since preserving the most valuable solutions have a great impact on 
the quality of the solutions and results in a steady convergence, a similar feature 
named chromosome bank has been adopted for our algorithm. 

An improved roulette wheel selection strategy was used by Shao, Xu and Yin in 
2009 [5] to select individuals to participate in crossover. This strategy not only tries to 
keep diversity but also reduces the required computation. Under this strategy, the 
individuals in a population are first sorted with respect to their fitness. Then 2/5 of the 
best individuals and, by random, 1/3 of the remaining 3/5 of the population are chosen 
to take part in mating. Crossover is more suitable for individuals of higher fitness as 
this encourages the propagation of their good characteristics to their children.  
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Mutation is more suitable for individuals of lower fitness as it can mutate the bad 
characteristics in them. 

In [6], a procedure named schema replacement was proposed.  It is a procedure 
used to improve individuals of low fitness faster in a population. In this procedure, the 
population is divided into two clans, the superior can and the inferior clan. An 
individual named excellent schema is produced based on the superior clan and each 
individual in the inferior clan are mated with the excellent schema to generate new 
individuals.  

From the concepts presented in [5] and [6], a new concept of dividing the 
population into two clans and utilizing them in new ways to make crossover and 
mutation operations more effective has been developed for the DEC algorithm.  

2 The DEC Algorithm 

The DEC algorithm works with an initial randomly generated population of feasible 
chromosomes. The population size is 10 times the number of candidate items. A cycle 
of operations of the DEC algorithm is illustrated in Fig. 1. The improvements 
introduced in each operation are elaborated from section 2.1 to section 2.4.  

 

 

Fig. 1. A cycle of operations of the DEC Algorithm used for MDKP 

2.1 Superior Clan and Inferior Clan 

Before any operations, the population is sorted based on the individuals' fitness values 
and divided into two halves named the superior clan and the inferior clan. 

Since the individuals in the superior clan have higher fitness values, they are more 
suitable to be selected as parents for crossover in order to promote exploitation. An 
individual with a lower fitness value has less number of genes set to 1. Considering 
that the goal is to maximize the number of 1s in an individual, the inferior clan is 
more suitable to be selected for mutation. This is because in a mutation operation on 
an individual from the inferior clan, it is likely that more 0’s will be turned into 1’s 
than 1’s into 0’s.  In other words, mutation for the inferior clan promotes more 
exploration of the search space than mutation on the whole population without any 
discrimination. 

New 
Generation 

Sort and 
Divide into 

Clans 

Populate 
Chromosome 

Bank 

Crossover Mutation Genetic 
Modification 



 A DEC Approach for the Multidimensional Knapsack Problem 345 

 

2.2 Chromosome Bank 

The DEC algorithm uses the chromosome bank to store a number of the fittest 
individuals found in different generations since the first generation and use them  
more often for crossover to promote elitism. Part of the chromosome bank also 
provides candidates for mutation as mutation on individuals with the highest  
fitness values can help the algorithm to escape from local maxima. The chromosome 
bank is kept alongside the main population and its size is set as 1/5 of the main 
population size. 

2.3 Crossover and Mutation 

Crossover operations are performed on a pool of parents selected using tournament 
selection from the superior clan and the chromosome bank. The pool size is half the 
size (5n) of the main population (10n). 2/5 of the pool's individuals are selected from 
the chromosome bank and the rest are selected from the superior clan. A uniform 
crossover with a ratio of 0.5 is used. In this operation, two parents produce two 
children. The children produced are stored as individuals in a population called 
children population. 

The mutation operation (mutation ratio is 0.01) is performed on a pool of 
individuals where 2/3 of this pool's individuals are selected from children population 
while the remaining 1/3 are selected (using tournament selection) from both the whole 
inferior clan and 1/5 of the chromosome bank. Similar to the number of children 
produced from crossover, the total number of individuals produced from mutation is 
also half the size (5n) of the main population (10n). Together, they make up 10n new 
individuals in a new generation.  

2.4 Genetic Modification 

Genetic modification is an operation in the DEC algorithm which makes the 
infeasible chromosomes feasible and increases the fitness values of feasible 
chromosomes. It comprises two phases: the drop phase and the add phase. 

In the drop phase, an infeasible chromosome is made feasible by dropping, from 
the knapsack, items that are imposing the greatest costs (weights) to the violated 
dimensions and at the same time have the least values. To identify a violated 
dimension, we first sum up the cost of a dimension from every chromosome. If the 
sum exceeds the capacity of the dimension, the dimension has been violated. Only the 
violated dimensions are considered for the dropping of items. After the drop phase, 
the add phase attempts to add items which have the least costs and the greatest values 
into the knapsack to make the chromosome fitter. 

The main difference between the genetic modification and the repair operator from 
[2] is that there is no linear programming (LP) relaxation process involved in 
computing the pseudo-utility ratio. The following pseudo-code presents the genetic 
modification procedure.  



346 M.M. Fard, Y.-T. Bau, and C.-L. Goh 

 

// The genetic modification of a chromosome 
BEGIN 
//The DROP Phase 
for every gene i of chromosome { 
   effectiveWeight = 0 
   for every violated dimension dim { 
      effectiveWeight =  
      effectiveWeight + (chromosome[i]× wi,dim π cdim) 
  }  
  pseudoUtilityi = effectiveWeight π vi 

} 
Set chromosome[i]= 0 in the descending order of 
pseudoUtilityi  until the chromosome becomes feasible 
 
//The ADD Phase 
for every gene i of chromosome {  
   effectiveWeight = 0 
  for every dimension j of knapsack {  
     effectiveWeight = effectiveWeight + (wi,j π cj) 
  } 
  pseudoUtilityi = effectiveWeight π vi 
} 
Set chromosome[i]= 1 in the ascending order of 
pseudoUtilityi  while the chromosome is feasible 
END 

3 Experiments and Results 

For evaluating the effectiveness of the DEC algorithm, it has been compared with a 
generic genetic algorithm and a greedy algorithm called primal effective capacity 
heuristic (PECH) [8]. The generic genetic algorithm and the DEC algorithm uses the 
same parameters for crossover, mutation and tournament selection. 

PECH, the generic genetic algorithm and the DEC algorithm have been tested 
using selected large datasets introduced in [2] which have 100, 250 and 500 items. 
Three datasets from each 100-item, 250-item, and 500-item datasets with different 
tightness ratios [2] have been chosen. Since the optimal solutions for the datasets are 
unknown, for each dataset, the gaps between the best solutions found by the three 
algorithms and the optimal value of LP relaxation presented in [9] have been used to 
measure the qualities of the solutions. The solution quality is expressed in equation 
(3). The results of this experiment are shown in Table 1. A problem named, for 
example, mknapcb7-100-30-10, is the 10th problem in mknapcb7 from [9] with 100 
items and 30 dimensions. The generic GA and the DEC algorithm have both been run 
10 times on each dataset for 250 generations. 
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 % 100  (3)

From Table 1, it can be seen that the DEC algorithm is clearly better than PECH and 
the generic GA in terms of closeness to the optimal solution. In addition, we  can see 
that it converges at a solution faster than the generic genetic algorithm if we compare 
the average best generation numbers between them. 

Table 1. Computational results for Greedy, Generic Genetic Algorithm (250 generations) and 
the DEC Algorithm (250 generations). The smaller the Best % Gap the better the result. 

Problem 
Greedy 

Algorithm 
Generic Genetic 

Algorithm 
The DEC 
Algorithm 

Problem Set 
Name 

Items 
# Dim. 

Best % 
Gap 

Best 
% 

Gap 

Average 
Best 

Generation 
Number 

Best 
% 

Gap 

Average 
Best 

Generation 
Number 

mknapcb7-
100-30-00 

100 30 10.93 3.86 208 2.80 81 

mknapcb7-
100-30-10 

100 30 5.70 2.67 200 1.69 151 

mknapcb7-
100-30-29 

100 30 4.11 1.12 226 0.93 149 

mknapcb8-
250-30-00 

250 30 7.64 7.52 191 1.39 138 

mknapcb8-
250-30-10 

250 30 4.31 4.09 209 0.66 157 

mknapcb8-
250-30-29 

250 30 1.59 2.17 221 0.41 154 

mknapcb9-
500-30-00 

500 30 7.02 9.50 185 0.96 187 

mknapcb9-
500-30-10 

500 30 2.12 5.79 228 0.36 161 

mknapcb9-
500-30-29 

500 30 1.80 3.07 214 0.23 210 

 
Table 2 shows the best solutions found by the DEC algorithm after 1,000 

generations and the best solutions found by the algorithm proposed by Chu and 
Beasley [2] (written as C&B GA for simplicity). In terms of quality, the DEC 
algorithm has achieved very close results when compared to those found by C&B 
GA, despite using heuristics instead of the superior but more complex method based 
on mathematical programming foundation such as LP relaxations used by  C&B GA.  

In order to probe the effectiveness of the three new improvements introduced by 
the DEC algorithm, three experiments have been conducted where one of the 
operations is disabled in each experiment. The dataset used is mknapcb9-500-30-00 
which has 500 items and a tightness ratio of 0.25. Fig. 2 shows the experiment results 
where genetic modification has been disabled.  Results similar to Fig. 2 have been 
obtained when the superior clan and the inferior clan or the chromosome bank is 
disabled. All the results have shown that the values of the solutions decrease when 
any one of the improvements is disabled. Therefore, it can be concluded that together, 
they can integrate well to achieve good results. 
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Table 2. Computational results for the DEC algorithm after 1000 generations when compared 
with the results of Chu & Beasley. The higher the value the better the solution. 

Problem 
The DEC 
Algorithm C&B GA 

Problem Set Name Items # Dim. Value of the 
Best Solution 

Value of the 
Best Solution 

mknapcb7-100-30-00 100 30 21946 21946 

mknapcb7-100-30-10 100 30 40637 40767 

mknapcb7-100-30-29 100 30 60574 60603 

mknapcb8-250-30-00 250 30 56693 56693 

mknapcb8-250-30-10 250 30 107638 107689 

mknapcb8-250-30-29 250 30 149536 149572 

mknapcb9-500-30-00 500 30 115771 115868 

mknapcb9-500-30-10 500 30 217857 217995 

mknapcb9-500-30-29 500 30 300341 300460 

 

 
  

4 Conclusion 

The proposed DEC algorithm for solving a zero-one multidimensional knapsack 
problem has three new improvements. They are the use of a chromosome bank for 
elitism, the use of the superior clan and the inferior clan to improve exploitation and 
exploration, and the use of genetic modification to enable faster convergence.  

Fig. 2. Value of the best individual if genetic modification is disabled 
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The validity of the DEC algorithm has been verified through experiments based on 
established datasets. The results have shown that the DEC algorithm is better than a 
greedy algorithm such as PECH and the generic genetic algorithm in terms of the 
closeness to the optimal solution, and can search for a solution more effectively than 
the generic genetic algorithm. The DEC algorithm has also achieved very close results 
when compared with those from C&B GA, despite using heuristics instead of the 
superior but more complex method based on mathematical programming foundation 
such as LP relaxations. 

The heuristics used in the DEC algorithm is still not a perfect mechanism to 
prevent the search from being trapped in local maxima. Therefore, to improve the 
search for the maximum value, more effort is needed to find ways to explore the 
search space more extensively with even better heuristics.  
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Abstract. Multi-modal Optimization refers to finding multiple global and local 
optima of a function in one single run, so that the user can have a better 
knowledge about different optimal solutions. Multiple global/local peaks generate 
extra difficulties for the optimization algorithms. Many niching techniques have 
been developed in literature to tackle multi-modal optimization problems. 
Clearing is one of the simplest and most effective methods in solving multi-modal 
optimization problems. In this work, an Ensemble of Clearing Differential 
Evolution (ECLDE) algorithm is proposed to handle multi-modal problems. In 
this algorithm, the population is evenly divided into 3 subpopulations and each of 
the subpopulations is assigned a set of niching parameters (clearing radius). The 
algorithms is tested on 12 benchmark multi-modal optimization problems and 
compared with the Clearing Differential Evolution (CLDE) with single clearing 
radius as well as a number of commonly used niching algorithms. As shown in 
the experimental results, the proposed algorithm is able to generate satisfactory 
performance over the benchmark functions. 

Keywords: Differential evolution, evolutionary computation, multi-modal 
optimization, niching. 

1 Introduction 

In recent decades, evolutionary algorithms (EAs) have been proven to be effective in 
solving difficult practical optimization problems. In practical optimization problems, it 
is often desirable to simultaneously locate multiple global and local peaks of a given 
objective function, such as classification problems in machine learning 1 and inversion 
of teleseismic waves 2. These problems are known as multi-modal optimization 
problems. The original forms of most EAs are designed for locating single global 
solution, which is not effective for multi-modal optimization. To overcome this 
problem, various techniques that commonly known as “niching” methods are proposed 
and incorporated in EAs to enhance the algorithm with the ability of maintaining 
multiple stable subpopulation which target on locating different peaks. 
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Niching is a generic term referred to as the technique of finding and preserving 
multiple stable niches, or favorable parts of the solution space possibly around 
multiple solutions, so as to prevent convergence to a single solution 3. A niching 
method generally modifies the behavior of a classical EA in order to maintain 
multiple groups within a single population in order to locate multiple optima. The 
earliest niching approach was proposed by Cavicchio 4. Some other representative 
methods are crowding 5-6, restricted tournament selection 7, clearing 8, fitness 
sharing 9 and speciation 10. 

Differential evolution is a powerful global optimization technique. Niching 
techniques have also been incorporated into DE variants to enhance the ability of 
handling multimodal optimization 11-14. In this paper, an Ensemble of Clearing 
Differential Evolution (ECLDE) algorithm is proposed to overcome the problem of 
selecting suitable niching parameters. 

The remainder of this paper is organized as follows. Section 2 gives a brief 
interlocution of differential evolution, and Clearing Differential Evolution (CLDE). In 
Section 3, the proposed ECLDE is introduced. The problem definition and results of the 
experiments are presented in sections 4. Finally, the paper is concluded in sections 6. 

2 Differential Evolution and Clearing 

2.1 Differential Evolution 

The differential evolution (DE) algorithm was first proposed by Storn and Price 15. 
Although the idea of DE is simple, it is very effective in solving global optimization 
problem. Similar to other EAs, DE is also a population based searching algorithm. 
The individuals will compete with others inside the population. Four major steps are 
involved in DE known as, initialization, mutation, recombination and selection 16.  

2.2 Clearing and Clearing DE 

Clearing 8 is one of the most widely used niching methods. It removes bad 
solutions/individuals and keeps only the fitness individual in each niche. In this  
 

 

Table 1. ECLDE algorithm 

Step 1 Use standard DE to produce NP (population size) offspring. 
Step 2 Combine parents with the newly generated offspring 
Step 3 Sort the combined population in descending order.   
Step 4 Apply clearing method on the combined population using the user 

predefined clearing radius Rs. 
Step 5 If the remained population size > NP  
      Remove the rest individuals and left with only  

     top NP individuals. 
Else 
     Contiue 
Endif 

Step 6 Stop if the termination criteria are met otherwise go to step 1. 
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technique, the population is first sorted in descending order according to the objective 
value. Then it picks one individual at a time from the top and eliminate all the rest 
individuals that falling within the specified clearing radius. The process will be 
repeated until all individuals are processed. Clearing is able to maintain the diversity 
of the population by removing similar individuals. The niching parameter (clearing 
radius) is used as a dissimilarity threshold and the performance of clearing algorithm 
is highly depended on this user defined parameter. The complexity of clearing can be 
calculated as O(cN), where c is the number of niches maintained during each 
generations and N is the number of individuals in the population. 

Clearing DE (CLDE) incorporates DE with the clearing technique for handling 
multi-modal optimization problems. The main steps of CLDE are shown in Table 1. 

 

 

Fig. 1. The flowchart of ECLDE 
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3 Ensemble of CLDE 

Although clearing is an effective niching method in solving multimodal optimization 
problems, selection of a suitable clearing radius generally is difficult if no prior 
information is available about the problem. The performance of CLDE is closely 
related to the parameter Rs (clearing radius). According to “No free lunch” theorem 
17, it is unlikely to find one parameter that can outperform all other parameters, since 
different parameter is suitable for different problems. In recent years, ensemble ideas 
are commonly used to handle parameter/method selection problem 18-20. Motivated 
by these observations, an Ensemble of Clearing Differential Evolution (ECLDE) 
algorithm is proposed. 

In ECLDE, the algorithm divides the initial population into three equal 
subpopulations. Each of the subpopulation is assigned a different clearing radius. In 
this way, the algorithm makes use of three different parameters and exchange 
information among different subpopulation during the selection process. The 
flowchart of ECLDE is shown in Fig. 1. Note that the three clearing radiuses are 
chosen as Rs1 =0.005*the search range of the problem; Rs2 =0.01*the search range of 
the problem; Rs3 =0.05*the search range of the problem. 

4 Experiment Preparation 

4.1 Test Functions and Compared Algorithms 

To assess the performance of the proposed algorithm, twelve commonly used 
multimodal optimization benchmark test functions with different characteristics are 
used. The details of these test functions are shown in Table 2. 

Table 2. Test Functions 

Test Function 
Peaks 

Global/local 
Test Function 

Peaks 
Global/local 

F1:Central Two-Peak 
Trap  

1/1 
F7: 1D Inverted Vincent 

function 21 
6/0 

F2:Five-Uneven-Peak 
Trap 
[9] 

2/3 
F8: 2D Inverted Vincent 

function 21 
36/0 

F3: Waves 1/9 F9: CF1 22 8/0 
F4:2D Inverted Shubert 

function [9] 
18/many F10: CF2 22 6/0 

F5:3D Inverted Shubert 
function [9] 

81/many F11: CF3 22 6/0 

F6:4D Inverted Shubert 
function [9] 

324/many F12: CF4 22 6/0 

4.2 Experimental Setup 

In this experiment, Matlab 7.1 is used as the programming language. The configurations 
of the computer are Intel Pentium® 4 CPU, 4 Gb of memory. The population size, 
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maximum number of FEs and level of accuracy are listed in Table 3. 25 independent 
runs are conducted for each of the algorithms. 

4.3 Performance Measures 

A level of accuracy need to be specified in order to assess the performance of 
different algorithms. An optimum is considered to be found if there exists a solution 
in the population within the tolerated distance to that optimum. When doing the 
comparison, following to criteria are used: 

1. Success Rate  
2. Average number of optima found.  

Table 3. Level of accuracy used in this experiment 

Test 

Function 

Popula

tion Size 

Max 

No. of FEs 

Level of 

accuracy 

Test 

Function

Popula

tion Size 

Max 

No. of FEs 

Level of 

accuracy 

F1 60 12000 0.0005 F7 60 12000 0.001 

F2 150 30000 0.005 F8 600 200000 0.001 

F3 240 36000 0.001 F9 600 300000 0.5 

F4 180 72000 0.05 F10 600 300000 0.5 

F5 600 200000 0.2 F11 600 300000 0.5 

F6 900 400000 0.2 F12 600 300000 0.5 

5 Experiment Results 

5.1 Success Rate 

ECLDE is first compared with the three original CLDE with single clearing radius 
and the success rate is presented in Table 4. Note that the success rates for function 
F9-F12 are all zero and they are not presented in Table 4. The rank of each algorithm 
is presented in the parentheses while total ranks (summation of all the individual 
ranks) are listed in the last row of the table. As can be seen from the table, the  
 

Table 4. The success rate 

Test Function CLDE1 CLDE2 CLDE3 ECLDE 

F1 0 (3) 0 (3) 0.04 (2) 0.16 (1) 

F2 0 (2) 0 (2) 0 (2) 0.16 (1) 

F3 0 (3) 0 (3) 0.04 (1) 0.04 (1) 

F4 0 (3) 1 (1) 0 (3) 1 (1) 

F5 0 (2) 0 (2) 0 (2) 1 (1) 

F6 0 (1) 0 (1) 0 (1) 0 (1) 

F7 1 (1) 0.84 (3) 0.76 (4) 1 (1) 

F8 0.8 (3) 1 (1) 0 (4) 1 (1) 

Total Rank 18 16 19 8 
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ECLDE always performs the best among all the tested algorithms. The superior 
performance is due to the exchanging information among different subpopulations which 
use different niching parameter. Note that the success rate obtained is highly related to 
the user defined parameter level of accuracy (demonstrated in following section). 

5.2 Number of Optima Found 

Besides success rate, number of optima found is another important criterion to access 
multi-modal optimization algorithms. The number of optima found by the four 
compared algorithms for each of the test functions are shown in Table 5. The mean 
value is highlight in bold face. In order to determine the statistical significance of the 
advantage of ECLDE, t-test is applied. The results are presented in the last row of 
each test functions. The numerical values 1, 0 represent that other methods are 
statistically inferior to, equal to ECLDE. From the t-test summary, we can see 
ECLDE performs either better or similar to other algorithms.  

Table 5. The number of optima found 

Test Function  CLDE1 CLDE2 CLDE3 ECLDE 

F1 
Mean 1.00 1.00 1.04 1.16 
Std 0.00 0.00 0.20 0.36 

t-test 1 1 0 - 

F2 
Mean 2.84 2.60 2.68 3.16 
Std 0.62 0.71 0.56 1.11 

t-test 0 1 1 - 

F3 
Mean 4.60 4.72 6.36 6.96 
Std 0.76 1.06 1.15 1.24 

t-test 1 1 0 - 

F4 
Mean 13.16 18.00 9.12 18.00 
Std 2.37 0.00 0.33 0.00 

t-test 1 0 1 - 

F5 
Mean 52.10 51.08 19.93 81.00 
Std 4.89 6.28 4.80 0.00 

t-test 1 1 1 - 

F6 
Mean 226.40 195.70 0.00 301.40 
Std 26.31 39.07 0.00 3.37 

t-test 1 1 1 - 

F7 
Mean 6.00 5.84 5.76 6.00 
Std 0.00 0.37 0.44 0.00 

t-test 0 1 1 - 

F8 
Mean 35.80 36.00 20.40 36.00 
Std 0.42 0.00 1.90 0.00 

t-test 1 0 1 - 

F9 
Mean 1.00 0.00 0.00 1.50 
Std 0.00 0.00 0.00 0.53 

t-test 1 1 1 - 

F10 
Mean 1.00 1.00 0.00 1.00 
Std 0.00 0.00 0.00 0.00 

t-test 0 0 1 - 

F11 
Mean 1.00 1.00 0.00 1.20 
Std 0.00 0.00 0.00 0.42 

t-test 1 1 1 - 

F12 
Mean 1.00 0.10 0.00 1.00 
Std 0.00 0.32 0.00 0.00 

t-test 0 1 1 - 

t-test summary 
Worse 0 0 0 - 
Similar 4 3 2 - 
Better 8 9 10 - 
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5.3 Comparison with Other Algorithms  

In this section, ECLDE is compared with some popular multimodal optimization 
algorithms proposed in literature. The results (average number of optima found) are 
presented in Table 6. As can been seen from the results, ECLDE performs the best 
over the compared algorithms (total rank).  

Table 6. Comparison with other algorithms (average number of optima found) 

Test 
Function 

CDE 13 
R2PSO 
21 

FERPSO 
21 

SPSO 
21 

R2PSOLHC 
21 

SDE 
23 

ECLDE 

F1 
1.08 
(2) 

0.08 
(7) 

0.20 
(6) 

0.80 
(5) 

1.00 
(4) 

1.36 
(1) 

1.08 
(2) 

F2 
2.52 
(4) 

0.80 
(7) 

1.64 
(6) 

2.08 
(5) 

3.08 
(3) 

4.00 
(1) 

3.16 
(2) 

F3 
5.72 
(2) 

3.80 
(4) 

1.08 
(7) 

2.52 
(6) 

4.32 
(3) 

2.68 
(5) 

6.96 
(1) 

F4 
17.80 

(2) 
12.60 

(5) 
15.84 

(3) 
9.64 
(7) 

13.60 
(4) 

10.80 
(6) 

18.00 
(1) 

F5 
53.76 

(2) 
0.80 
(6) 

21.60 
(3) 

1.40 
(5) 

0.64 
(7) 

9.76 
(4) 

81.00 
(1) 

F6 
1.12 
(4) 

0.00 
(5) 

7.40 
(2) 

0.00 
(5) 

0.00 
(5) 

3.72 
(3) 

301.40 
(1) 

F7 
5.60 
(5) 

5.64 
(4) 

5.60 
(5) 

6.00 
(1) 

5.68 
(3) 

5.20 
(7) 

6.00 
(1) 

F8 
33.84 

(2) 
21.76 

(7) 
23.60 

(4) 
25.68 

(3) 
23.08 

(5) 
22.84 

(6) 
36.00 

(1) 

F9 
0.00 
(4) 

0.00 
(4) 

1.08 
(3) 

0.00 
(4) 

0.00 
(4) 

1.79 
(1) 

1.50 
(2) 

F10 
1.20 
(2) 

0.00 
(5) 

2.00 
(1) 

0.00 
(5) 

0.00 
(5) 

1.20 
(2) 

1.00 
(4) 

F11 
0.70 
(4) 

0.00 
(5) 

2.50 
(1) 

0.00 
(5) 

0.00 
(5) 

1.50 
(2) 

1.20 
(3) 

F12 
0.00 
(2) 

0.00 
(2) 

0.00 
(2) 

0.00 
(2) 

0.00 
(2) 

0.00 
(2) 

1.00 
(1) 

Total Rank 35 63 43 53 50 40 20 

6 Conclusion 

In this paper, an ensemble of clearing differential evolution (ECLDE) algorithm for 
multi-modal optimization is introduced to overcome the difficulty of choosing niching 
parameter. The proposed algorithm is compared with the original clearing DE as well as 
some other commonly used multi-modal optimization algorithms. The experiments 
show that ECLDE is able to generate satisfactory performance over the tested 
benchmark functions. 
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Abstract. In this paper, an improved memetic differential evolution algorithm 
with generalized fitness (MDEGF) is proposed for vehicle routing problem with 
time windows (VRPTW). A generalized fitness strategy is designed to evaluate 
the quality of source-individuals, which incorporates three simple local search 
techniques and helps to improve the convergent performance. Experimental 
results show that the novel algorithm can solve the VRPTW and obtain better 
solution in short time. 

Keywords: Vehicle Routing Problem, Optimization, Differential Evolution, 
Local Search. 

1 Introduction 

The vehicle routing problem (VRP) was proposed by Dantzig and Ramser[1] in 1959. 
As a well-known combinatorial optimization problem， the VRP has several 
variations. The most extensively studied is the vehicle routing problem with time 
windows (VRPTW). Actually, many real-life problems can be modeled as the 
VRPTW, such as the post office delivery, the route scheduling of trains and so on. 

Many heuristic algorithms have been proposed to solve the VRPTW. Solomon [2] 
described several heuristics for the VRPTW and introduced 56 benchmark problems. 
Those heuristics were widely studied and improved by later scholars [3, 4]. In [3], a 
hybrid genetic algorithm was proposed with adaptive diversity management for a 
large class of VRPTW. The authors introduced new move evaluation techniques and 
developed geometric and structural problem decompositions to address efficiently 
large scale problems. In [5], a new genetic algorithm based hybrid algorithm was 
presented, which incorporates with the greedy randomized adaptive search procedure, 
the expanding neighborhood search strategy and particle swarm optimization. 

Differential Evolution (DE) falls into the evolutionary algorithms family and is 
regarded as a stochastic global optimizers. It employs a real-value encoding scheme 
and makes use of the differentiation information among individuals to find the global 
optimum in the continuous search space. It has been applied with remarkable success 
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on large quantities of numerical optimization problems outperforming other more 
popular meta-heuristics such as the genetic algorithms for its fast, robust, and efficient 
global search heuristics of current interest. Nevertheless, DE may occasionally suffer 
from the problem of stagnation and premature convergence. The combination of local 
search with DE which comes from the idea of memetic algorithms (MAs) is an 
appropriate strategy to improve the convergence performance. MAs are hybrid 
algorithms which combine a population-based global algorithm with local search[6]. 
Paper [7] presents a memetic algorithm based on DE to improve the performance of 
evolutionary algorithms for job shop scheduling. 

In this paper, an improved memetic differential evolution algorithm with generalized 
fitness is presented for VRPTW. We define the source-space in VRPTW and design a 
generalized fitness strategy to evaluate the quality of source-individuals. The source-
individuals are mapped to solution-individuals of VRPTW. The generalized fitness 
strategy is presented to convert the continuous values of individuals from DE to discrete 
ones in VRPTW and to reserve the potential solutions. 

The remainder of this paper is organized as follows: Section 2 briefly describes the 
mathematical model for VRPTW. Section 3 presents the proposed memetic 
differential evolution with generalized fitness. The experimental results and analysis 
are reported in Section 4 follow by the conclusion in Section 5. 

2 Mathematical Model for VRPTW 

A typical VRPTW consists of a central depot with a fleet of M identical vehicles with 
capacity limit Q and K customers locating at different sites. Each customer 
i(i=1,2,…,K) has a varied demand di, a service time Ti and a pre-defined time window 
[ei, li], where ei is the earliest arrival time and li  the latest arrival time. Vehicles must 
service each customer within its time window. If the arriving time of a vehicle is 
earlier than ei, a waiting time will be incurred. It is obvious that the arriving time can 
never be later than li. In addition, each route must start from and end at the central 
depot within the depot time window [e0, l0]. Each customer must be serviced once by 
one vehicle. The VRPTW aims to service all the customers using the minimum costs 
so that the following constraints are satisfied: 1) The time window constraints is 
observed; 2) The capacity limit is satisfied and  3) Each route satisfies the depot time 
window constraint. The mathematical formulation for the VRPTW is as follows and a 
detailed description of the VRPTW model can be found in[3].    (1)

  1, … ,  (2)

 01 1, … ,  (3)
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      0, … , 1, … ,  (4)

     0, … , 1, … ,  (5)

0, …  (6)

where  states the transportation cost of vehicle m from customer i to customer j 
and  is the time of vehicle arrived at customer i. If customer i is serviced by vehicle 
m, then  equals 1, otherwise it equals 0.  If edge (i, j) is used by vehicle m,  
is set to 1, or 0 otherwise. 

The objective function in eqn (1) is devoted to minimize the total travel distance if 
the number of vehicles is determined. Eqn (2) satisfies the vehicle capacity constraint. 
Eqn (3) guarantees that each vehicle starts from and ends at the central depot, and 
each customer is serviced only once. Eqns (4) and (5) are flow constraints requiring 
that each customer must be assigned to the appointed vehicle exactly. Eqn (6) gives 
the time window constraints for each customer and the depot. 

3 Differential Evolution 

DE was introduced by Storn and Price in 1995[8]. It is one of the novel evolutionary 
algorithms for continuous optimization problems with simple theoretical framework 
and easy computation. Basically, differential evolution is a population-based 
evolution algorithm which starts with the random initialization of individuals and 
works on the cooperative and competitive behaviors of the individuals in the 
population. According to the difference of the individuals, DE searches the global 
optimum by employing the distance and direction information. Similar to the popular 
GA, it has three basic operations: selection, mutation and crossover. 

Let , … , 1,2, . . , denotes the ith individual in the K-
dimensional search space at generation t. The DE basic mutation scheme, which is 
denoted as DE/rand/1/bin [7], can be described as: ·  (7)

Where NP is the size of the population. , ,  are randomly chosen from the 
current population which are mutually different and also different from the current 
individual . ∈ 0,2  is the scaling factor and    is the base vector to be 
perturbed. 

The crossover operator is applied to each target individual after the mutation phase. 
Thus, a trial vector , … ,  is generated by the following equation:  ,          ,         1, … ,  (8)
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Where rand(j) is the jth evaluation of a random number uniformly distributed in the 
range of [0,1], CR ∈[0,1] is the crossover parameter which controls the diversity of 
the population, randn(i) is a randomly chosen index from the set {1,2,…,K}. 

The selection operation simply chooses the better individual between the trial 
vector  and the current target individual . ∈ ,  (9)

f is the fitness function and  is the individual of the new population. 

4 Memetic Differential Evolution Algorithm 

The basic DE algorithm cannot be directly used for VRPTW since it is based on the 
real valued operators. Though there are modified differential evolutions proposed for 
combinatorial optimization problems in [9, 10], for the sake of simplicity, this paper 
prefers to use the real-valued DE. Two spaces are defined, the real-valued source-
space suitable for DE, and the feasible integer-valued solution-space for VRPTW. 

4.1 Source-Space and Solution-Space 

Definition 1. For the VRPTW with K customers, , … , , … ,  ∈ 0,1  is 
defined as the source-individual of VRPTW, and the set of all source-individuals is 
called source-space. 

Definition 2. For the VRPTW with K customers, , … , … ,  0 1 0,1, … , 2,3, … , 1 (10)

is defined as the solution-individual, and the set of all solution-individuals constructs 
the solution space. 

It is worth noting that in eqn(10) 0 stands for the central depot and may be repeated 
in the individual X, while the value of xi denotes the sequence number of customers, 
each of which appears only once in a specific solution-individual X. The coding 
length of solution-individual N associated with the number of vehicles varies from 
time to time in the evolution of the optimization. For instance, 0 can be inserted in an 
appropriate position when a sub-path is overload or timeout to produce a feasible 
solution, or successive 0s can be replaced by a single 0. 

4.2 Generalized Fitness Strategy 

In this paper, differential evolution is iterated in real-valued source-space. However, 
VRPTW is a discrete combinatorial optimization problem. The key problem of using 
DE algorithm for VRPTW is how to evaluate the quality of source-individual. 
Therefore, the generalized fitness of source-individual is defined. In the generalized 
fitness strategy, for arbitrary source-individual Si, there is a corresponding feasible 
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solution-individual Xi in solution space. The fitness of Xi is defined as the generalized 
fitness of Si, denoted by GF(Si). To calculate the generalized fitness, we take the 
following steps: 

For an arbitrary source-individual Si ∈ [0,1]K, sort the elements  in ascending 
order. The ascending-order sequence numbers of Si construct the discrete source-
individual Sd. Then, convert Sd to solution-individual Xi by inserting appropriate zeros 
into Sd. The insertion of the zeros are implemented in such a way that the sub-path 
between two zeros is feasible (satisfies the capacity and time demands) with as many 
customers as possible. This feasible solution-individual   Xi is optimized by three 
local search algorithms including Or-opt, 2-opt* and λ-interchange in exhaustive 
manner, and the resulting new local-optimum solution-individual Ylocal is obtained. 
The fitness for Ylocal, defined as eqn(10)  is the resulting generalized fitness for Si. 
Since the solution-individual has varied length, the local search algorithms employed 
may simultaneously minimize the total distance and the number of vehicles. 

4.3 Memetic Differential Evolution 

In the framework to solve VRPTW, a modified DE is designed with three popular 
local search techniques which are embedded in the generalized fitness strategy. The 
proposed memetic differential evolution algorithm based on generalized fitness 
(MDEGF) is described as follows: 

Randomly generate NP source individuals Si  
Evaluate the generalized fitness GF(Si) for all. repeat 
for i=1 to NP do 
    //Mutation 
    select three individuals Sr1, Sr2 and Sr3  
          compute ·   
    // Crossover with rate CR, obtain  
    //Selection  
    if   (   
       save index for replacement     

    end if 
end for 
perform replacement 
until best solution not improved for Gmax iterations 

The flowchart for MDEGF is the same as the classical DE except the generalized 
fitness strategy is employed. In the framework for MDEGF, F is a scale factor 
controlling the rate at which the population evolves, which typically takes values 
between 0 and 2. CR is the crossover rate which mentioned before complements the 
differential mutation search strategy. The mutation strategy is the popular 
DE/rand/1[7] . Other parameters used in the algorithm are Gmax which represents the 
maximum allowed iterations the best solution without improved and NP the 
population size. 
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Table 1. Computational results on problem set C1 

Problem 
Best solutions 
published[11] 

Literature 
[5] 

MDEGF 
Algorithm 

Average 
Length 

Length Relative 
Error(%) 

Average 
CPU(s) 

C101 827.3/10 831.97/10 828.94/10 828.94 0.20 60.6633 
C102 827.3/10 829.97/11 828.94/10 828.94 0.20 83.9063 
C103 828.06/10 831.97/11 828.06/10 828.06 0.00 81.9977 
C104 824.78/10 831.97/10 828.09/10 837.64 0.40 84.2132 
C105 828.94/10 831.97/11 828.94/10 828.94 0.00 60.8821 
C106 827.3/10 831.97/10 828.94/10 828.94 0.20 69.0328 
C107 827.3/10 831.97/11 828.94/10 828.94 0.20 62.7977 
C108 827.3/10 837.97/10 828.94/10 828.94 0.20 87.2367 
C109 828.94/10 840.42/11 828.94/10 828.94 0.00 61.1805 

Table 2. Computational results on problem set C2 

Problem Best solutions 
published[11]  

Literature  
[5] 

MDEGF 
Algorithm 

Average 
Length 

Length Relative 
Error(%) 

Average 
CPU(s) 

C201 591.56/3 604.37/3 591.56/3 591.56 0.00 65.2813 
C202 591.56/3 591.78/3 591.56/3 591.56 0.00 69.5633 
C203 591.17/3 591.34/4 591.17/3 593.09 0.00 86.7586 
C204 590.60/3 591.11/3 591.17/3 604.21 0.09 73.0844 
C205 588.88/3 589.4/3 588.88/3 588.88 0.00 80.9883 
C206 588.49/3 589.13/3 588.49/3 588.49 0.00 88.2071 
C207 588.29/3 589.21/4 588.29/3 588.29 0.00 78.3046 
C208 588.32/3 595.32/4 588.32/3 588.32 0.00 65.0828 

6 Conclusion 

In this paper, an improved MDEGF is proposed for VRPTW. The generalized fitness 
strategy is employed to evaluate the quality of source-individuals and has greatly 
increased the universal performance of DE algorithm. This method has shown to be 
very efficient in solving the clustered data (problem set C) VRPTW. For customers up 
to 100, the proposed algorithm can find the nearly best results in short time. 
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Abstract. Differential evolution (DE) is a powerful evolutionary optimization 
algorithm with many successful scientific and engineering applications. This 
paper presents a survey of DE for solving multiobjective optimization problems 
(MOPs). It provides several prominent variants of the DE for solving MOPs. 
Then it presents an overview of the most significant engineering applications of 
DE. Finally, it points out the potential future research directions. 
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1 Introduction 

There are two goals in multiobjective optimization problems (MOPs): (ⅰ) to discover 
solutions as close to the Pareto front as possible and (ⅱ) to find solutions as diverse 
as possible in the obtained nondominated front. The MOPs can be stated as follow. 

1 2

1 2

F(x)=( (x), (x), , (x))

. . G(x)=( (x), (x), , (x)) 0
m

m

min f f f

s t g g g

⋅ ⋅ ⋅
⋅ ⋅ ⋅ ≥

 (1)

where x is a decision vector ( 1, , nx x⋅ ⋅ ⋅ ), F(x) is an objective vector, and G(x) 

represents constraints. 
Differential evolution (DE) was designed to optimize problems over continuous 

domain by K. Price and R. Storn [1]. DE is a branch of evolutionary algorithms (EAs) 
for optimization problems over continuous domains. Like other EAs, DE is a 
population-based stochastic search algorithm. Therefore they can generate a number 
of Pareto solutions in a single run. DE algorithms have been proposed in the literature 
to overcome the drawbacks of traditional approaches to MOPs. Since DE algorithms 
deal with a group of candidate solutions, it seems natural to use them in MOPs to find 
a group of optimal solutions. Indeed, DE algorithms have proved very efficient in 
solving MOPs.  

The rest of this paper is arranged as follows. The main steps of the DE algorithm 
are given in Section 2. Section 3 provides an overview of DE for solving MOPs. 
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Several prominent variants of DE are provided in Section 4. Section 5 provides an 
overview of the most significant engineering applications. Section 6 points out the 
potential future research directions. Section 7 concludes this paper. 

2 Differential Evolution (DE) 

DE algorithm creates new candidate solutions by combining the parent individual and 
several other individuals of the same population. A candidate replaces its parent only 
if it has better fitness. This is a rather greedy selection scheme that often outperforms 
traditional EAs [2]. Pseudocode for DE is described as follows. 

 

Step 1. Initialize and evaluate population P 
Step 2. While stopping criterion not met, do: 

 Step 2.1. For each individual P i from P , repeat: 
        Step 2.1.1. Create candidate C from parent P i 

            Step 2.1.2. Evaluate the candidate 
        Step 2.1.3. If the candidate is worse than the parent, the candidate is discarded. Otherwise the 

candidate replaces the parent. 
Step 2.2. Randomly enumerate the individual in P . 

Fig. 1. The DE algorithm 

3 DE for Solving MOPs 

Many DE algorithms were formulated by the researchers to tackle MOPs in the past 
years. Abbass et al. [6] proposed a pareto-frontier DE (PDE) approach, and it was the 
first to apply DE to MOPs. The PDE employed DE to create new individuals and 
keep only the nondominated ones as the basis for the next generation. Compared to 
the strength Pareto evolutionary algorithm (SPEA) [7] on two test problems, PDE was 
found to outperform it. However the crossover rate of PDE was found to be very 
sensitive to the solutions. Xue et al. [8] proposed a multiobjective DE (MODE). The 
fitness of an individual was firstly calculated using Pareto-based ranking and then 
reduced with respect to the individual’s crowding distance value in MODE. Yao et al. 
[9] presented a multi-objective DE algorithm, which takes the selection by the non-
dominated sorting and crowding distance. The experimental results reported by Yao 
indicated that the algorithm was better than the nondominated sorting genetic 
algorithms II (NSGA-II) [10] both in convergence and in diversity. Li and Zheng [11] 
proposed an improved multiobjective DE algorithm, which incorporated non-
dominated sorting and crowding distance to improve the convergence. 

Some researchers proposed approaches that use non-Pareto based multiobjective 
concepts like combination of functions, problem transformation, and so on. Li et al. 
[12, 13] proposed a multiobjective DE algorithm based on decomposition (MOEA/D-
DE) for continuous MOPs with variable linkages. The DE/rand/1/bin scheme is used for 
generating new trial solutions, and a neighborhood relationship among all the sub-
problems generated is defined, such that they all have similar optimal solutions. In [12], 
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they introduced a general class of continuous MOPs with complicated Pareto set shapes 
and reported the superiority of MOEA/D-DE over NSGA-II with DE type reproduction 
operators. Summation of normalized objective values with diversified selection 
approach was used in [14] without the need for performing non-dominated sorting. 

4 Important Variants of DE for Solving MOPs 

In this section, we shall undertake an in-depth discussion of the most important DE-
variants for MOPs. 

4.1 DE with Adaptive Parameter Control 

DE algorithms have been successfully applied to solve MOPs. However, it is need to 
choose the suitable parameters to ensure the success of the algorithms. It may lead to 
demanding computational costs because of the time-consuming trial-and-error 
parameter and operator tuning process. There are three crucial control parameters in 
DE algorithms: (ⅰ) the population size NP, (ⅱ) the mutation scale factor F, and (ⅲ) 
the crossover rate Cr. 

Self-adaptation allows an evolution strategy to adapt itself without any user 
interaction [15]. Adaptive parameter control can enhance the robustness of the 
algorithm by dynamically adapting the parameters to the characteristic of different 
fitness landscapes [16]. Some researchers developed DE algorithms with adaptation 
strategy. Abbass [18] proposed a self-adaptive Pareto DE (SPDE) algorithm for multi-
objective optimization. The SPDE algorithm self-adapted the crossover rate Cr for 
MOPs. Zaharie and Petcu [17] proposed an adaptive Pareto DE (APDE) algorithm for 
multiobjective optimization and analyzed its parallel implementation. The numerical 
tests suggest the APDE algorithm is competitive in solving MOPs on continuous 
domains when is compared with SPEA and SPDE.  

The concept of self-adaptive DE has been extended to handle MOPs recently. Wu 
et al. [19] proposed a multiobjective self-adaptive DE (MOSADE) algorithm for the 
simultaneous optimization of component sizing and control strategy in parallel hybrid 
electric vehicles. The MOSADE adopted an external elitist archive to retain 
nondominated solutions that were found during the evolutionary process. And the 
MOSADE employed a progressive comparison truncation operator based on the 
normalized nearest neighbor distance to preserve the diversity of Pareto optimal 
solutions. Huang et al. [20, 21] proposed a multiobjective self-adaptive DE with 
objective-wise learning strategies to solve numerical optimization problems with 
multiple conflicting objectives. Zamuda et al. [22] proposed a DE for multiobjective 
optimization with self-adaptation (DEMOwSA) algorithm. Xue et al. [23] used a 
fuzzy logic controller to adjust the parameters of the multiobjective DE algorithm 
dynamically. The fuzzy logic controlled multiobjective DE (FLC-MODE) was 
applied to a suite of benchmark functions proposed in [24]. Compared with those 
results obtained by using MODE with constant parameter settings, the results that the 
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FLC-MODE obtained were better in 80% of the testing examples. Qian and Li [5] 
proposed a new adaptive DE algorithm (ADEA) for MOPs. 

4.2 DE Based on Opposite Operation 

The concept of opposition-based learning (OBL) was original introduced by Tizhoosh 
[3]. The idea of OBL is the simultaneous consideration of an estimate and its 
corresponding opposite estimate in order to achieve a better approximation for the 
current candidate solution.  

Dong et al. [4] proposed a multiobjective DE algorithm based on opposite 
operation. The proposed algorithm incorporated opposite operation in two procedures: 
population initialization and generation operating with opposition. Before discussing 
the algorithm, we give the definition of the opposite number. 

4.3 Hybrid DE Algorithms 

Hybridisation primarily refers to the process of combining the best features of more 
algorithms together, to form a new algorithm that is expected to outperform its 
ancestors over application-specific or general benchmark problems [25]. 

Deb et al. [26] proposed a hybrid methodology evolutionary and local search 
approaches. Local search approaches primarily explore a small neighborhood of a 
candidate solution in the search space until a locally optimal point is found. Niu et al. 
[27] proposed a chaotic DE for multiobjective optimization (CDEMO). In the 
CDEMO, chaotic sequences are used in the initialization of the evolutionary 
population and chaotic population candidate is created with chaotic variables to be 
used in substitution operation. Wang et al. [28] proposed a multi-objective chaotic DE 
algorithm with grading second mutation. Grading second mutation and chaotic theory 
are combined into standard DE. By testing benchmarks functions, the algorithm is 
superior to standard DE in keeping balance between diversity and convergence. 

Chang and Wu [29] investigated the optimal multiobjective planning of large-scale 
passive harmonic filters using the hybrid DE (HDE) method. Simulation results show 
that the HDE offers a good method for multiobjective optimal filter planning of 
multibus systems. Gujarathi and Babu [30] proposed a hybrid strategy of multiobjective 
DE (hybrid-MODE) algorithm for the multiobjective optimization of an industrial 
adiabatic styrene reactor. The hybrid-MODE is consisted of an evolutionary algorithm 
for global search and a deterministic algorithm for local search. 

4.4 DE Based on Multi-populations 

Santana-Quintero and Coello Coello [31] presented the ε- MyDE algorithm. This 
approach keeps two populations: the main population which is used to select the 
parents and a secondary population, in which the concept of ε- dominance is adopted 
to retain the nondominated solutions found and to distribute them in a uniform way. 
Meng et al. [32] presented the DE based on double populations for Constrained 
MOPs. One population is for the feasible solutions found during the evolution, and 
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the other is for infeasible solutions with better performance, which are allowed to 
participate in the evolution with the advantage of avoiding difficulties such as 
constructing penalty function and deleting infeasible solutions directly. Wu et al. [33] 
presented a pseudo parallel DE algorithm with dual subpopulations (DSPPDE). The 
DSPPDE employs the ideal of isolated evolution and information exchanging in 
parallel DE algorithm by serial program structure. 

5 Engineering Applications of DE for Solving MOPs 

Due to the rapidly growing popularity of DE as a simple and robust optimizer, 
researchers from several domains of science and engineering have been applying DE to 
solve MOPs arising in their own fields. For the sake of space economy, we summarize 
only the major applications in Table 1. 

Table 1. Engineering applications of DE for solving MOPs 

 Sub areas and details 
Types of DE applied and 
references 

Signal 
processing 

Digital filter design Hybrid DE [29] 

Microwave filter design Generalized DE [34] 

Micro-Array Data Analysis Multiobjective DE [35] 

Chemical 
engineering 

Optimization of adiabatic styrene 
reactor 

Hybrid -MODE [30] 

Optimization of chemical process Improved DE [36] 

Control system 
PID regulator design 

DE based on double 
populations[37] 

Multi-objective robust PID controller Multi-objective DE [38] 

Electrical power 
system 

Reactive power optimization 
considering voltage stability 

Self-adaptive MODE [39] 

Economics 
Economic environmental dispatch Multiobjective DE [40] 

Portfolio optimization DEMPO [41] 

6 Future Work with DE for Solving MOPs 

Like all other metaheuristics to solve MOPs such as particle swarm optimization, DE 
also has some disadvantages. DE has a high convergence rate, but it has difficulties to 
reach the true Pareto front. This seems to indicate that multiobjective DE approaches 
require additional mechanisms to maintain diversity such as crowded-based operators 
or good mutation operators [42].  

The theoretical studies about DE for solving MOPs are still scarce. Not much 
research has so far been devoted to theoretically analyze the search mechanism. And 
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the timing complexity analysis of DE for solving MOPs has been reported scarcely. 
Convergence properties analysis is still a challenging field of future search. 

Parameter adaptation is a promising path for future research. Online adaptation 
attempts are still scarce in multi-objective DE. Novel schemes to adapt the key 
parameters like “F”, „Cr‰ or even the number of differences for the mutation operator 
are promising topics for future research. 

7 Conclusions 

This paper provides an overall picture of the state-of-the-art research on and with DE 
for solving MOPs. This paper provides several prominent variants of the DE for 
solving MOPs. And it provides an overview of the most significant engineering 
applications. Finally, it points out the potential future research directions. This paper 
indicates the fact that DE for solving MOPs will continue to remain an active and 
challenging field in the years to come. 
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Abstract. The mutant vector has significant influence on the perfor-
mance of Differential Evolution (DE). Different mutant vector always
generates different result, one outstanding mutant vector for a specify
problem perhaps achieve unbearable bad result for another question.
There still no one perfect mutant vector can solve all problems excel-
lently. In this situation, mixed strategy method is proposed to improve
the performance of DE by combining multi-effective mutant vectors to-
gether. This paper proposes a fast mixed strategy DE (FMDE). The new
method uses two best mutant vectors selected from the mutant vector
pool and applies a fast mixed method to generate better result without
increase computing expense. The FMDE is evaluated by 27 benchmarks
selected from Congress on Evolutionary Computation (CEC) competi-
tion. The experiment result shows FMDE is competitive, stable and com-
prehensive. abstract environment.

Keywords: Differential Evolution (DE), mutant vector, mixed strategy,
fast method.

1 Introduction

DE is proposed by Storn and Price [1] at 1995. At first it is proposed as a new
kind of mutant vector that perturbs the population by calculating the difference
between two individuals. But with further study of DE, it is accepted widely
because of the simple and effective scheme. So even if DE is a case of evolu-
tionary algorithm, it is already distinguished as an independently algorithm and
attracted many scientists devoting to it. Ferrante Neri and Ville Tirronen[2] has
summed the development of DE and concluded the optimization of DE into two
classes: integrating extra component and modify structure of DE. Swagatam Das
and P.N. Suganthan [3] conducts a survey of the state-of-art of DE, in which
introduces DE’s difference to normal EA and the performance of DE in pre-
vious CEC competition. It also discussed the applications of DE on discrete,
constrained, multi-objective and dynamic problems. This paper concludes the
development trend of DE accurately.
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So far, many mutant vectors have been proposed and currently some of them
are widely used because of their excellent performance on specific problem. Even
the mutant vectors make up a big family, none of them can solve all problems
perfectly at the same time. Therefore the mixed method or composite method
is proposed. A. K. Qin, V. L. Huang, and P. N. Suganthan proposed a mixed
method and proposed an adaptive mixed method with a mutant vector pool
at [4].Yong Wang, Zixing Cai and Qingfu Zhang proposed a composite method
CoDE[5] with a random method.

This paper proposed a fast mixed method. A mixed strategy would be applied
for every several generations. In the mix operation each mutant vector candidate
would be used and finally the best one will be used in the succeeding generation.
This strategy is effective and need not apply the mix operation in each gener-
ation, so the computing expense is smaller than other mixed strategy and the
performance is better than other predict methods.

This paper is organized as follows, 2.1 gives a brief description of classic DE,
2.2 introduces the fast mixed method, and 2.3 proposes the mutant vector used in
the FMDE. Part 3.1 provides detail of experiment benchmarks and 3.2 presents
the setting of the algorithm, and then the result of experiments and analysis
consist in 3.3. Lastly conclusion is given in part 4.

2 Fast Mixed DE

2.1 Classic DE

Classic DE is used to find the minimum value of objective function f(x). To sym-
bolize individuals as X = [x1, x2, . . . , xNP ], and randomly initial the population
in search space S. We would use the benchmark test suite to find xmin ∈ S.

The framework of DE:

a) Initialization
Generate NP individuals with D dimension at G generation xi = {xG

i1, x
G
i2, . . . ,

xG
iD}, The individuals are randomly distributed in the prescribed minimum

and maximum parameter bound

xmax = {xG
1max, x

G
2max, . . . , x

G
Dmax},

xmin = {xG
1min, x

G
2min, . . . , x

G
Dmin}.

b) Mutation operator
The evolution process begins with application of the mutant vector. The
mutant vector perturbs individuals in the search space randomly. The classical
vector could be expressed as

V G
i = xG

r1 + F (xG
r2 − xG

r3) (1)
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r1, r2, r3 are integers randomly selected in the range [1, NP].
c) Crossover
The crossover operator is used to increase the diversity of the population ag-
ain. It is useful to optimize the performance of DE on multimodal problems
[6]. Currently two kinds of crossover operators are widely used: exponential
and binomial. This paper uses binomial operator. The binomial operator can
be described as:

uG
i,j =

{
vGi,j , if(randj [0, 1) ≤ CR)or(j = jrand)
xG
i,j , otherwise j = 1, 2, . . . , D.

(2)

The operation would generate a trial vector UG
i = [uG

1i, u
G
2i, . . . u

G
Di],.

d) Select
In this step the select operation would determine the trail vector otherwise
the target would be used to generate offspring. It can be defined as

xG+1
i =

{
UG
i , iff(UG

i ) ≤ f(xG
i )

xG
i , otherwise.

(3)

b)c)d)would be repeated until certain criterion is met.

2.2 Fast Mixed DE Algorithm

In the first part various mixed method is mentioned. All these mixed method
achieved better performance by calculating the performance of various mutant
vectors. The mix method can be concluded into two classes: 1) calculate the result
of each mutant vector and select the best result. If one of the vectors can achieve
a good result, it will be inherited and used in following generation.2) Construct
a selection model to predict which mutant vector in use in each generation. In
general the best mutant vector would be selected in most generation.

While, the performance of the second method highly rely on the accuracy of
the modal used to predict the mutant vector, obviously. The predefined model
perhaps performs poorly on new problem. Although employing the first method
could find the best method from the mutant vector pool, the computing expense
rises. When adding one more vector to the mutant pool, the computing expense
will stably increase by fixed amount. To avoid the error of the prediction and save
the computing expense, this paper proposed the fast mixed method (FMDE).

The FMDE method is based on the first mix method that combines various
mutant vectors together. In the mixed process all the mutant vectors will be
calculated and all the result will be stored to get into the crossover operation. In
the crossover process, all the results of these mutant vectors would be compared
with the parent individuals, and the best one would get into next generation.
This method also optimized the mutant vector pool, less but more effective
mutant vectors are selected into the pool. To save the computing expense, FMDE
decides to decrease the frequency of the mix operation. It means the algorithm
need not mix these vectors in each generation. In this paper we set the mix
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operation applies on every 5 generation. Since after the mix operation only the
best mutant vector would in use in next 4 generations, the computing expense
would only slightly more than a single mutant vector algorithm.

Although the new method decreased the mix frequency, this fast method
would not decrease the performance of DE. In the process of the mixed method,
mostly it is one of the mutant vectors achieves best result, so the mix method
need not be applied in each generation. In some rare situation if two or more
mutant vectors achieve best result at the same time, the mixed method would not
influence the result, too, because the mixed operation would select the current
best mutant vector and applied in next 4 generations. If the method was wrong
to choose other mutant vector, the selection would be corrected in next mix
operation -just several generations dose error apply. In the long iteration process
the influence of the second best mutant vector is small.

2.3 Selection of the Mutant Vector

The DE mutant vector family is huge. Paper [4] has concluded many DE mutant
vectors. [3] giving the naming notation of the mutant vector, while this paper
expend these mutant vectors and have a test of the performance of these mutant
vectors independently. With the experiment of the mutant vector family bench-
marks, it is easy to find the most effective mutant vector. This paper select two
mutant vector:

1.DE/rand/1: V G
i = xr1 + F (xG

r2 − xG
r3)

2.DE/best/2: V G
i = xbest + F (xG

r2 − xG
r3) + F (xG

r4 − xG
r5)

The first one performs best on unimodal problems and rotated problems. The
second performs best on multimodal problems. To current test suite, this two
mutant vectors have achieved mostly best result, so the FMDE vector pool just
select this two mutant vector. When the new method encounters some other
new functions or problems, the mutant pool can add other outstanding mutant
vector into the pool or delete bad mutant vector. Above all the FMDE has a
good expansibility and flexibility.

3 Experiment Studies

3.1 Benchmark Functions for Global Optimization

Test suite of CEC2005, CEC2008 would be carried out to compare the perfor-
mance of the new DE algorithm with other DE mutant algorithms. The unimodal
functions, multimodal functions could be seen at paper [6], rotated functions
could be found at paper [7] and noise functions could be found at paper [8]and
[9]. The performance of the modified method would be measured by mean value
and standard deviation over 50 independent runs.

This paper uses 23 benchmarks to compare these algorithms. f1-f6 are uni-
modal functions, f7-f13 are multimodal functions with many local minima, f14-
f20 are multimodal functions with a few local minima, f18-f20 are multimodal
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functions with deceiving, above functions are seen in [6]. f21-f23 are rotated func-
tions. These rotated functions are f7,f10,f11 multiply an orthogonal matrix. They
can be found at [7]. Restricted by the length of the paper, partly experiment
result is listed.

3.2 Adaptive Method and the Parameter Setting

The DE algorithm is highly simplified than other Evolution Algorithm (EA).
It has only three control parameters F, CR and NP. We NP left for the user
to define, this adaptive method focus on parameters F and CR. Parameter F
is the mutation scale factor which can be found at (1). F is highly related to
the convergence speed. CR is a constant value in the crossover operator. CR is
sensitive to different problems. The effects of them are well studied at [6] and
[10], respectively.

Table 1. Selected Benchmark Functions

Test Functions D S fmin

f1(x) =
∑D

i=1 x
2
i 30 [−100, 100]D 0

f2(x) =
∑D

i=1 |xi|+ΠD
i=1|xi| 30 [−100, 100]D 0

f3(x) =
∑D

i=1(
∑i

j=1 xj)
2 30 [−100, 100]D 0

f4(x) = maxi {|xi|, 1 ≥ i ≤ D} 30 [−100, 100]D 0

f5(x) =
∑D−1

i=1 [100(xi+1 − x2
i )

2 + (xi − 1)2] 30 [−100, 100]D 0

f6(x) =
∑D

i=1(�xi + 0.5�)2 30 [−100, 100]D 0

f8(x) =
∑D

i=1 −xisin(
√|xi|) 30 [−100, 100]D 0

f9(x) =
∑D

i=1[x
2
i − 10cos(2πxi) + 10] 30 [−100, 100]D 0

f10(x) = −20exp(−0.2
√

1
D

∑D
i=1 x

2
i )− exp( 1

D

∑D
i=1 cos2πxi) + 20 + e 30 [−100, 100]D 0

f11(x) =
1

4000

∑D
i=1 x

2
i −ΠD

i=1cos(
xi√
i
) + 1 30 [−100, 100]D 0

f14(x) = [ 1
500

+
∑25

j=1
1

j+
∑

2
i=1(xi−a6

ij)
]−1 30 [−100, 100]D 0

f21(x) = −∑5
i=1(

∑4
j=1(xj − aij)

2 + ci)
−1 30 [−100, 100]D 0

f22(x) = −∑7
i=1(

∑4
j=1(xj − aij)

2 + ci)
−1 30 [−100, 100]D 0

f23(x) = −∑10
i=1(

∑4
j=1(xj − aij)

2 + ci)
−1 30 [−100, 100]D 0

f26(x) =
1

4000

∑D
i=1 y

2
i −ΠD

i=1cos(
yi√
i
) + 1, y = M ∗ x 30 [−100, 100]D 0

f27(x) =
∑D

i=1(y
2
i − 10cos(2πyi) + 10), y = M ∗ x 30 [−100, 100]D 0

To ensure all DE performance are in the same conditions, this paper set
NP=100, dimension=30 as constant value, F=0.5 and CR=0.9. The parameter
F in FMDE is nearly normal distribution. Iteration number of each function is
given in TABLE1. Previous researches find that if the parameter F maintains in
small value at the exploitation and large value at exploration state, the algorithm
would achieve better performance. Various state of the search process can be
found at paper [10]. This paper uses the primary adaptive method proposed by
[6] to assure this setting. The parameter would increase or decrease based on
the evolution state, and the size of the various is decided by multiply a random
number.
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3.3 Analysis of the Experiment Result

This part we compare the result between FMDE with other excellent DE. Re-
stricted by the length of the paper, we select part of the experiment from the
test suite.

Here we conclude the performance of these algorithms of various benchmarks:

Table 2. Experiment Result of compared algorithms over 50 Independent Runs

benchmark generation FMDE ADE DE ADE(Rand/1) ADE(Best/2)

f1 1500 Mean 3.63e-065 2.51E-28 7.62E-10 2.71e-19 5.56e-49
Std.Dev 9.56e-065 1.91E-28 4.42E-014 1.79e-19 9.11e-49

f2 2000 Mean 2.28e-044 1.50E-24 2.70E-10 4.18e-013 3.53e-34
Std.Dev 2.25e-044 1.03E-21 2.56E-010 2.59e-013 4.11e-34

f3 5000 Mean 3.81e-065 1.45e-048 6.80E-11 1.74e-016 8.72e-49
Std.Dev 8.94e-065 1.35E-07 3.82E-011 1.25e-016 1.52e-48

f4 5000 Mean 8.51e-005 3.15E-03 1.80E-03 5.74e-001 1.58e-07
Std.Dev 4.29e-004 5.31E-4 0.91 1.245e+00 2.69e-07

f6 1500 Mean 0 0 0 0 0
Std.Dev 0 0 0 0 0

f10 1500 Mean 4.141e-15 6.90E-15 5.61E-08 1.24e-010 6.07e-01
Std.Dev 0 79.94E-16 2.96E-08 4.91e-011 7.59e-01

f11 2000 Mean 0 0 0 0 9.22e-03
Std.Dev 0 0 1.38E-3 0 1.13e-02

f14 100 Mean 9.98e-001 0.99892 0.998004 9.98e-001 1.15e-001
Std.Dev 0 1.71E-3 3.60e-003 0 0

f21 100 Mean -5.13e+00 -1.000 -1.015 -2.73e-01 -4.19e+0
Std.Dev 3.46e+00 1.04 1.19E-007 7.84e-002 3.29e-001

f22 1500 Mean -5.378e+0 -1.040 -1.040 -2.69e-01 -4.11e+0
Std.Dev 3.52e+000 2.92E-7 3.9E-7 6.07e-002 2.25e-001

f23 3000 Mean -5.143e+0 -1.054 -1.040 -2.74e-01 -4.51e+0
Std.Dev 3.47e+000 3.15E-07 1.19E-007 6.91e-002 2.70e+00

f26 1500 Mean 0 3.61e-03 2.09e+001 0 1.13e-02
Std.Dev 0 5.853-03 1.88e-002 0 1.09e-02

f27 2000 Mean 1.49e+01 1.044e+01 1.536e+02 1.55e+002 3.72e+01
Std.Dev 5.44e+001 4.0476 9.982 1.063e+01 1.28e+01

To f1-f6 unimodal functions, FMDE achieves best result, and the second best
DE is DE with Best/2 mutant vector. This means the mixed algorithm can
optimize the performance than single mutant vector.

To f7-f13 multimodal functions with many local minima, FMDE also achieves
best result, but it does not outperform other algorithms from a distance.

To f13-f23 multimodal functions with few local minima, FMDE achieves best
meanvalue,butthestandarddeviationFMDEdoesnotbeatenotherDealgorithms.

To the rotated benchmarks, FMDE is the best algorithm, however it does not
mean it solves rotated problem well. In general all the algorithms perform weak
on rotated problem.

Conclusion and analysis of the experiment result: FMDE outperforms other
DE algorithms used to compare at most situation. The experiment result shows
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the mix method can optimize the performance of DE. The mean value and
standard deviation of FMDE is smaller than any other DE with only one mutant
vector. It means the mix operation help the algorithm optimized the search
ability. This optimization could be seen at the mean value of FMDE at each
kind of problems.

However, the standard deviation of FMDE at multimodal function with few
local optima is large than other DE with only one mutant vector. The reason
is the mix strategy lack operation which helps individuals out of local optima.
This problem awaits further study. In a word, FMDE is a simple but effective
method to solve various problems.

4 Conclusion

The FMDE modifies classic DE framework, adds a mix operation at the crossover
operation for every several generation. It also solves the shortcoming of tradi-
tional mix strategies which increased the computing expense and lost accuracy
in the prediction process. The fast mix strategy also optimizes the performance
better than single mutant vector does. On the other side, the fast method lost
excellent stability in multimodal functions with few local optima, and this short-
coming worth further study. Above all the FMDE method is more competitive
than other DE algorithms and easy to modify and expand.
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Farooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops 2009. LNCS, vol. 5484,
pp. 715–724. Springer, Heidelberg (2009)

9. Liu, B., Zhang, X., Ma, H.: Hybrid differential evolution for noisy optimization.
In: Proc. IEEE Congr. Evol. Comput., vol. 2, pp. 1691–1698 (2005, 2009)

10. Zhan, Z., Zhang, J., Li, Y., Chung, H.S.: Adaptive Particle Swarm Optimization.
IEEE Trans. On Systems, Man, and Cybernetics 39(6), 1362–1381 (2009)



Differential Annealing for Global Optimization

Yongwei Zhang, Lei Wang, and Qidi Wu

College of Electronics and Information Engineering
Tongji University, Cao’an Road 4800, Shanghai 201804, P.R. China

yongwzhang@gmail.com

Abstract. This paper propose a hybrid stochastic approach called dif-
ferential annealing algorithm. The algorithm integrated the advantages
of differential evolution and simulated annealing. It can be considered
as a swarm-based simulated annealing with differential operator or dif-
ferential evolution with the Boltzmann-type selection operator. The pro-
posed algorithm is tested on benchmark functions, along with simulated
annealing and differential evolution. Results show that differential an-
nealing outperforms the comparative group under the same amount of
function evaluations.

Keywords: Swarm Intelligence, Differential Evolution, Simulated An-
nealing, Stochastic Search; Selection Operator, Global Optimization.

1 Introduction

Among all swarm-based algorithms, differential evolution (DE) [1,2] is one of
the most succinct algorithms which integrated neighborhood generation and in-
formation exchange into to one operation. But the population diversity of DE
drops fast with the decreasing of individual distance, resulting in premature
convergence.

Compared with swarm-based optimization, simulated annealing (SA) [3] is
a representative stochastic algorithm based on single state or point. But more
importantly, it introduced a stochastic acceptance criterion. Unlike the greedy
criterion that rejects all inferior states; stochastic criterion enables some inferior
state to act as a bridge to the betters.

To exploit the advantages of differential operator and stochastic acceptance
criterion, many efforts have been made [4,5,6,7]. However, most of these meth-
ods either simply add Metropolis acceptance criterion into DE framework or
introduce a stochastic local search operator. This block-type integration does
not fully develop the potential of DE and SA because 1) the inferior solutions
introduced by stochastic acceptance may affect the memory of populations of
search space; 2) inferior states may drift far away from best history record. For
overcoming these drawbacks and closely integrating DE and SA, we developed
a two stage algorithm with trace mechanism called Differential Annealing (DA).
The method is shown to be better on an eight-function test bed.

Y. Tan, Y. Shi, and Z. Ji (Eds.): ICSI 2012, Part I, LNCS 7331, pp. 382–389, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 Simulated Annealing and Differential Evolution

A D-dimension unconstrained minimization problem is defined as follow.

minfobj(x),x = [x1, · · · , xD] (1)

where D is the dimension of the problem or the number of parameters to be
optimized, x is a solution of the problem, ximin ≤ xi ≤ ximax.

2.1 Simulated Annealing

The framework of SA is consisted by three parts: 1) neighborhood generation;
2) annealing schedule and 3) acceptance probability. Despite many variants of
these parts, we chose the most common form to define a simple SA algorithm.

Neighborhood Generation. SA uses Metropolis algorithm to draw samples
form the neighborhood of current state xt. In most cases, the samples are draw
from probability distribution P (xt), which can be symmetric or not. Here a
Gaussian distribution

x′ ∼ N(xt, σ
2I) (2)

is used to give samples x′ centered on the current state xt with variance σ2I.

Annealing Schedule. The annealing schedule is decided by initial temperature
Tini, final temperature Tfinal and temperature function Tk = f(Tini, Tfinal, k),
where k is the index of the schedule and Tk is the current temperature. Note
that k = t as the current state may change serval times at one temperature.

Acceptance Probability. In SA, the new state x′ will be accepted by proba-
bility P [C(x′), C(xt), Tk], where C(·) is the cost function or the energy of state.
In our work, the evaluation of object function fobj is used as cost function. The
formal definition of SA’s acceptance criterion is as follow:

xt+1 =

{
x′ if C(x′) < C(xt) ∨ exp(−ΔC

Tk
) > rand

xt else
(3)

whereΔC equals to C(x′)−C(xt). Eq. (3) states that the acceptance probability
of x′ will be 1 if it is better and be exp(−ΔC/Tk) if worse, otherwise the state
will not change.

2.2 Differential Evolution

Storn defined many variants of DE[1], but practically only one form is broadly
used:

x′d
i =

{
xd
i + F · (xd

r1 − xd
r2) if rand < CR

xd
i else

, r1, r2 ∈ [1, · · ·N ] ∨ r1 = r2 = i

(4)



384 Y. Zhang, L. Wang, and Q. Wu

where xd
i is d-th element located in i-th individual of the population, N is the

number of population, CR is crossover probability and F is a real and constant
factor which controls the amplification of the differential variation (xd

r1 − xd
r2).

The standard DE uses a greedy acceptance criterion.

3 Differential Annealing Algorithm

SA draws samples from a stochastic distribution centered on the current state,
which restrains most trials in a small area. This feature facilitates local search
of SA, but weakened the global convergence speed.

Since our goal is to design a hybrid algorithm that integrates the advantages
of SA and DE, three issues need to discuss first: 1) neighborhood diameter, 2)
annealing schedule, 3) integration with DE.

3.1 Neighborhood Diameter

As we stated in section 2, the new state can be draw from a Gaussian distri-
bution centered on current state, here we define the variance of the Gaussian
distribution as the diameter of neighborhood, which can be a measure of the cov-
erage of local search. Clearly the neighborhood diameter needs to be adjusted
according to the searching space. Here the neighborhood diameter σ is defined
as: max(Xu −Xl)/L, where Xu and Xl is the upper and lower feasible bounds
of state vector x. L is the granularity of local search, usually within [10,1000],
which controls the precision of local search.

3.2 Annealing Schedule

Once the initial and final temperatures are decided, the annealing schedule be-
comes a function of change index of temperature k. Normally in evolution algo-
rithm, k is the index of generation. This function describes how the temperature
drops from the initial to the final. Among various annealing schedules, the fol-
lowing is the most common one: Tk+1 = Tk · α, where α ∈ (0, 1] controls the
dropping rate of temperature. Since initial and final temperatures are decided
beforehand, α can be decided by α = (Tfinal/Tini)

1/NG , where NG is the total
number of generations, and the k-th temperature can be decided by Tk = Tini·αk.

3.3 Integration with DE

If we build a population upon the scheme of SA, the annealing will have mul-
tiple starts and parallel processes. To communicate with individuals and share
information of searching space is the goal of introducing differential operator.
In the original DE, the differential is used directly on individuals. Because of
the existence of greedy criterion, individual itself is the best record. But in our
approach, some inferior states can be accepted due to (3), we have to introduce
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a best record mechanism and make the differential operator works on the best
records. The simplified differential operator in our approach is as follow:

x′d
i,best =

{
xd
i,best + xd

r1,best − xd
r2,best if rand < CR

xd
i,best else

d ∈ [1, D] ∧ i, r2, r3 ∈ [1, N ] ∧ r1 = r2 = i

(5)

where xd
i,best denotes the d-th parameter in the best record of xi. The crossover

is conducted on every state vector and other two randomly selected vectors. The
greedy criterion is used to ensure the best state is recorded.

3.4 Trace Mechanism

As discussed in section 3.3, a record of the best individuals is maintained and
the differential operator works directly on it. This scheme does not influence
the true states of the system, which leaves a potential drawback that a state
may continually drift to higher energy state. To avoid this, a trace mechanism
is introduced as follow:

xi ← xi,best if C(xi) > E · C(xi,best) (6)

where E ≥ 1 is overflow coefficient of energy. Eq. (6) states that xi will be
restored to its history best if its cost function (or energy) is larger than its
history best multiples E, i.e., a state will be drag back if it is too far away from
the best energy state. This mechanism ensures that the local search is conducted
around xi,best. When E = 1 the search rejects all states that have higher energy
than xi,best. An example of controlling state through trace mechanism is showed
at Fig. 1. The fourth step (S4) has higher energy state than history best, if
the trace mechanism is not work, the higher energy state will probably been
accepted as the left subfigure. With trace mechanism, state will be draw again
centered on its history best. The pseudo code of proposed approach is showed
at Algorithm 1, here we use maximum number of function evaluation FEmax as
the terminal criterion.

1.0

1.1
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1.3

1.0

1.1
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Without Trace With Trace

Initial State
Optimum

Searching States

S1 S1

S2 S2

S3 S3

S4 S4

S5

S5

S6

S6

Fig. 1. Trace Mechanism
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Algorithm 1. Differential Annealing

Cost function C(x) = fobj(x),x = (x1, · · · , xD)
Initialize N start points xi(i = 1, 2, · · ·N), evaluate points and record xi,best

T0 ← Tini; k = 0; FE ← N
while FE < FEmax do

for each state xi do
Search neighborhood according to (2); Accept new position according to (3)
Restore xi according to (6); FE ← FE + 1

end for
for each record xi,best do

for each element xd
i,best do

Crossover by (5)
end for
Update xi,best; FE ← FE + 1

end for
Tk+1 ← Tk · α; k ← k + 1

end while
Post process results and visualization

4 Validation Experiments

To verify the proposed algorithm, numerical experiments are conducted. The
performance of DA is compared with SA and DE. The parameter are set as
follow: L = 100, F = 1, Tini = 10e + 300, Tfinal = 10e − 10, FEmax = 2e5,
CR = 0.15, N = 30, α = 0.8670.

For SA, detecting the equilibrium of system at each temperature will cause
additional computing costs, sometime the costs will exceed the cost of evaluating
problem. To avoid this dilemma, we change temperature in a same pace in SA
and DA, i.e., the temperature of DA will change in every generation (every 2N
evaluations) and the temperature of SA will change after every 2N evaluations.
This means that SA has the Markov chain of length 2N in every temperature.

4.1 Benchmark Functions

The benchmark functions are usually used as standard test bed for optimiza-
tion algorithms, which are listed at Table 1. To avoid the unintentional attrac-
tion of zeros, the benchmark functions are shifted with a displacement d =
(d1, d2, · · · dD) according to following formula:

z = x− d
C(x) = fobj(z)

(7)

To test the overall performance of proposed algorithm, we try to cover all kinds
of test functions. As the characteristic showed at Table 1, three functions are
unimodal and five are multimodal. Meanwhile, five functions are separable and
three are non-separable. The parameters of Shekel’ problem can be find in [8].
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Table 1. Benchmark Functions. D: Dimension, F: Feasible Bounds, C: Characteristic,
U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable, R: Regular, I: Irregular.

Name Equation D F C d

Sphere f1 =
∑D

i=1 x
2
i 30 [-100, 100] USR 25D

Sum of Differ-
ent Power

f2 =
∑D

i=1 |xi|i+1 30 [-1, 1] USI 0.25D

Schwefel 1.2 f3 =
∑D

i=1(
∑i

j=1 xj)
2 30 [-65.536,

65.536]
UNR 16.384D

Michalewicz f4 = −∑D
i=1 sin(xi)

[
sin(ix2

i /π)
]20

30 [0, π] MSR 0D

Rastrigin f5 =
∑D

i=1

[
xD
i − 10 cos(2πxi) + 10

]
30 [-5.12, 5.12] MSR 1.28D

Non-
continuous
Rastrigin

f6 =
∑D

i=1

[
yD
i − 10 cos(2πyi) + 10

]
yi =

{
xi |xi| < 1

2
round(2xi)

2
|xi| ≥ 1

2

30 [-5.12, 5.12] MSI 1.28D

Griewank f7 = 1
4000

∑D
i=1 x

D
i −∏D

i=1 cos(
xi√
i
) + 1 30 [-600, 600] MNR 150D

Shekel f8 = −∑10
i=1(

∑D
j=1(xj − aij)

2 + ci)
−1 4 [0, 10] MNR 0D

4.2 Simulation Results

Convergence Test. To show the benefit that information sharing brings to
individual states, we tested SA and DA under same conditions of temperature
and amount of function evaluations. The states of two algorithms are showed
at Fig. 2. The test is carried on with 2-D Non-continuous Rastrigin function.
The population size of DA is 6, and the temperature is changed from 1000 to
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Fig. 2. States of DA and SA

600. The first point of curve is the initial energy of every state, the second point
is the energy of temperature 1000, then 900 and so forth. The curve of SA is
the change of one state in six stages: initial, temperature 1000 to 600. As we
can see, in SA the energy level of state go up and down repeatedly, although
it has accessed the lower energy state in the initial level, it still end up with a
relatively high energy when temperature drops to 600. But in DA, six parallel
states present a decrease tendency of almost monotonous.
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Table 2. Comparison of Three Algorithms

Function f1 f2 f3 f4 f5 f6 f7 f8

ε 1.00e-8 1.00e-8 1.00e-8 1.00e-4 1.00e-7 1.00e-6 1.00e-6 1.00e-8

DA

Best 0.00 0.00 0.00 -9.66 3.19e-8 3.74e-7 5.60e-8 -10.54
Median 0.00 0.00 1.14e-8 -9.66 6.81e-8 1.00 2.30e-7 -10.54
Worst 0.00 0.00 2.40e-8 -9.66 2.19e-7 3.00 1.53e-6 -10.54
Mean 0.00 0.00 1.18e-8 -9.66 7.85e-8 0.73 3.35e-7 -10.54
Std 0.00 0.00 0.00 0.00 4.16e-8 0.81 3.12e-7 4.34e-8
Scr 100.0% 100.0% 38.0% 100.0% 76.0% 14.0% 96.0% 94.0%

SA

Best 39.97 1.86e-8 250.16 -7.99 141.23 143.11 1.39 -10.53
Median 56.86 5.94e-7 343.78 -6.30 228.26 229.15 1.51 -4.41
Worst 69.39 1.52e-6 540.73 -5.11 313.38 322.07 1.65 -2.63
Mean 55.40 6.07e-7 348.49 -6.37 227.85 227.79 1.51 -5.64
Std 6.45 3.58e-7 61.91 0.70 40.20 42.70 0.06 2.82
Scr 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

DE

Best 0.00 0.00 0.00 -9.66 15.69 32.67 0.0 -10.54
Median 0.00 0.00 0.00 -9.45 83.48 81.43 0.0 -10.54
Worst 0.00 0.00 0.00 -7.89 133.97 118.62 7.40e-3 -2.42
Mean 0.00 0.00 0.00 -9.36 84.25 81.25 1.48e-4 -8.37
Std 0.00 0.00 0.00 0.32 27.56 22.97 0.001 2.95
Scr 100.0% 100.0% 100.0% 0.0% 0.0% 0.0% 98.0% 64.0%

Benchmark Test. To further demonstrate the effectiveness of proposed algo-
rithm, 50 runs are conducted for each algorithm, and the results are summarized
at Table 2. If the cost function value Cbest satisfy |Cbest − f∗| < ε, where f∗
is the global minimum of object function, a success run is recorded. For each
benchmark function, the best, median, worst, mean, standard deviate (Std) and
success (Scr) rate of 50 runs are listed. We can conclude from Table 3 that SA
failed all test under corresponding accuracy, and did not find an even close so-
lution in six functions. This proves that SA lacks of efficiency in high dimension
problems. Compared with SA, DA has steady performance in all test problems.
In the first two unimodel functions, DA and DE have same results. In the third
unimodel function, Schwefel 1.2 problem, DA has lower success rate. But note
that solutions obtained by DA are very close to the limit of tolerance, the result
is in fact satisfactory. In the rest five multi-model functions, DA outperforms DE
in four except function 7. In function 7, Griewank’s problem, the success rate of
DA is slightly lower than DE (2%), but the mean value and standard deviate
of DA are lower for three magnitude level, indicating that DA has more stable
performance. Especially for function 5 and 6, DE stuck in local minima, but DA
still find optimum with high accuracy.

Overall, the proposed differential annealing algorithm has stable performance
for either unimodel or multi-model problems. For high dimension multi-model
problems, results showed that DA outperforms SA and DE.
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5 Discussion and Conclusion

The heuristics of classic optimization algorithms continually inspires researchers
to develop high-efficiency hybrid algorithms. In order to successfully integrate
SA into proposed algorithm, we managed to solve an important issue concerning
to information sharing between annealing states. By using the set of best records
of searching history, the searching progress of single annealing state won’t be in-
terrupted until it exceeds the upper limit of energy. By introducing the trace
mechanism, the Gaussian distribution and acceptance criterion act as a stochas-
tic local search operator. Results show that the DA approach has achieved follow
goals: 1) control the search progress of states, 2) synthesize the information ac-
quired in search and 3) increase the diversity of population.
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Abstract. With the rapid development of MP2P network, high network
security is required. However, the existing intrusion detection scheme for
network security does not perform well enough. Aiming at the character-
istics of MP2P, this paper proposes an intrusion detection method based
on the genetic algorithm, which selects the initial population from the
known attack data, extracts data attack characteristics by reproducing,
crossover, and mutating themselves, and thus changes from passive de-
fense to active detection. Research results verify that, the application
of genetic algorithm could enhance intrusion detection in terms of the
dynamic monitoring of internal and external network attacks, and thus
gains real-time protection for MP2P networks.

Keywords: MP2P, genetic algorithm, intrusion detection, eigenvector,
network security.

1 Introduction

With the development of wireless network communication technology, MP2P
(Mobile Peer-to-Peer)network as the actual application of the relevant technol-
ogy production gets extensive research and application with its characteristic
gradually[1].

MP2P network is consisted by several communication nodes which with com-
puting power, wireless communication ability, and limited power consumption.
The advantages of MP2P are mobility, high signal noise ratio, and dynamic,
therefore, it’s a self-organizing network with the scalable framework structure[2].
However, these characteristics of MP2P network also resulted in its face two fol-
lowing problems:

(1) MP2P network is prone to be attacked by Wormhole, False Routing Infor-
mation, Sybil, Sinkhole, hello Flooding Attacks and Selective ForwardingAttacks,
etc., which is due to the characteristics of the wireless network communication.

� Project supported by the National Natural Science Foundation of China (No.
61073042) and the special funds of basic scientific research business expenses for
central university (No. 100606, HEUCF).
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(2) The volume of mobility nodes are restricted, therefore, the performance
of power, computing power and storage space are limited. In this case, intrusion
detection algorithm should spend less overhead and get more effect, therefore,
efficiency is considered when choosing detection algorithm.

According to these defects, an intrusion detection mechanism is presented in this
paper, which based on genetic algorithm, the purpose is to improve the detection
accuracy, reduce the storage space, limit the power consumption, and take on
the role of the protection measures, and thus the robustness of MP2P network
could be increased.

2 Related Technology

Invasion is defined as a series of act which is unauthorized access or harmful to
resource’s integrity, usability and privacy. The intention of the invasion, which
attempts to destroy the network security protocol, is to capture information, or
make normal communication operation of the system in disorder[3].

It is important to establish secure channel inMP2P.MP2Pas a self-organization
network need to establish secure communication channel due to the characteristics
of working environment. But the wireless network, which is exposed to the mobile
environment, is more vulnerable to be attacked and give out important informa-
tion. The purpose of Intrusion Detection (ID) is to monitor if there are unusual
events in the network traffic and make analysis, and then to take effective action
against the invasion[4].

The intrusion detection is classified into two categories: misuse detection and
anomaly detection[5]. The information transferred in the network is taken to
match with the intrusion pattern, and then judge whether intrusion in the misuse
detection. The anomaly detection can statistics the intrusion characteristic based
on the known models.

3 Frame-Based Intrusion Detection Model

The cluster management idea is adopted in this paper and the MP2P network
is divided into a number of regions. The mobile agent technology is also brought
in to enhance the defense of intrusion detection system, by which the defects of
static components are overcome.

The system framework includes the following sections: agent management
module, intrusion detection system module and information capture module.
The framework of intrusion detection is shown in Fig. 1.

The bottom layer of the intrusion detection framework in the MP2P network
is information capture module. It is composed of the sniffer and ’honey pot’. The
’honey pot’ is designed as a trap to track the invaders, thus, the invaders can be
located and cracked down by defensive strike. The components of information
capture module is show as fllows:
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Management agent

Mobile Agent Plantform

Rule set BASE Analyse
agent

IDS(GA)

Honey pot Sniffer

 
Fig. 1. The framework of intrusion detection

(1)Some nodes are used as ’honey pot’ agents, who capture the attack infor-
mation real-time, and the database model of network intrusion detection can be
updated. Then according to the known regular pattern of the intrusion model,
some suspicious behaviors of unknown intrusion can be detected by statistic
method.

(2)The sniffers on the rest of agent nodes are used to capture the abnormal
packets.

In generally, the intrusion detection module is realized in two steps: the first step
is the misuse detection, and the second is the anomaly detection. Some of the
nodes in every area are selected as cluster heads which can detect the intrusion
in the global perspective.

When an abnormal event is monitored by the capture module, such as timing
abnormal in communication, the abnormal data would be submitted to detect.
The intrusion detection is executed through misuse detection and anomaly de-
tection, and then it is confirmed that whether an intrusion event has happened.
If the detection can detect the abnormal events, it would deal with them, or it
transfers the relevant data to the agent management module to make further
analysis and updates the database.

Agent management module as the kernel part, are responsible for the data
analysis, database update and cluster domain partition. The database analysis
module selects population from the database, predicts the attack characteris-
tic by genetic algorithm and then the attack data would be transferred to the
intrusion detection module through agent management module. The agent man-
agement module is mobile and can transfer data when the management module
suffers devastating attacks, and the irreversible results can be avoided.

4 Intrusion Detection Based on Genetic Algorithm

The MP2P network should not only improve in the network structure, but also
bring in new excellent intrusion detection algorithm[6] in order to deal with the
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unknown intrusion better. The misuse detection just only matches the data in
the limited intrusion database. However the efficient algorithm should have the
ability of self-study and active defense. Therefore, firstly, the database should
be updated by widely collecting suspect data. Secondly, the possible intrusion
pattern can be detected based on the known information by the best search
algorithm which can simulate the nature evolution, such as genetic algorithms.

4.1 The Choice of Intrusion Detection Algorithm

Game playing algorithms, Markov models and Genetic algorithms are the com-
mon methods in intrusion detection. After comparison, the genetic algorithm
is superior to others in the aspect of getting the global optimal solution, and
improving the detecting precision. The compared results is shown in table 1.

Table 1. Comparison of three common algorithms in intrusion detection

Intrusion
detection
algorithm

Detection
mode

Search content Conclusion

Game
play-
ing

Algorithms

defense
source address,

destination address,
connection time,

bytes sent num and
status

The self-study and self-control is
poor. In the case of artificial

interference, it can make a good
response to the intrusion.

Resources occupation is reasonable

Markov
Model

anomaly
source address,

destination address,
connection time,

bytes sent num and
status

Because of the limits of the
algorithm, the false rate is very

high. The self-study ability is low.
But because the algorithm is

simple, the resource overhead is
low.

Improved
genetic
algorithm

anomaly,
misuse

source address,
destination address,
connection time,

bytes sent num and
status

With high self-study ability and
self-adaptability. When the

detection accuracy is improved,
the resources consumption would

cost more.

4.2 Improved Genetic Algorithm

GA (Genetic Algorithm)[7] establishes the calculation model based on the prin-
ciples of evolution and natural selection, which transforms the specific areas’
problems to the similar data structure type of chromosome, thus the selection-
reproduction, crossover, and mutation are used to calculate. The genetic algo-
rithm is shown in Fig. 2.

In the flow diagram, i: stands for the number of generations; ai: stands for the
individual fitness, A: stands for the threshold of fitness.



394 L. Li et al.

Begin

End

Initialize the
population;

Evaluate
Fitness

Functions A;

Crossover;
Mutation

ai < A

Evaluate
Individual

Fitness
Functions
ai

Y
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Fig. 2. The flow diagram of Genetic algorithm

Genes Coding. The concrete content have been transformed into genes in the
paper, which can be network address of information flow, the network port, the
length and number of packets, transmission time, protocol type, the connection
attribution and so on. The selected attribution (genes) number maybe increased
temporarily in order to improve the accuracy. In consideration of the content
diversity and space occupied, binary floating-point coding is chosen to repre-
sent content. The attributions that are liable to detect the intrusion are chosen
as genes, such as source address with high risk, the destination address, the
connection time, transmit bytes, connection status and so on.

Population Initialization. In the initial population, the chromosomes, which
are composed of the population, should be typical and cover the entire solu-
tion space, so it’s easy to choose the optimal solution, and avoid the situation
of local convergence. In this paper, the MP2P network is divided into several
cluster domains for easily managing. Therefore, the corresponding chromosome
should be analyzed synthetically. All the chromosomes in different zones form
the population matrix, and the initial population can be selected from the origi-
nal population matrix. The genes that constitute the chromosome can be showed
by equation (1) :

M(t) = [m1(t),m2(t), · · · ,mn(t)] (1)

The eigenvector mi(t) is the gene attribution, which is at the position i of the
population t, equation (1) is a row vector in the matrix. The chromosomes se-
lected in the same region form a population matrix. In this matrix, the simi-
larity of each pair chromosomes is contrasted by the hamming distance analysis
method:

dq = |mp×q −ml×q| (2)
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In the equation (2), the p × q and l × q is the p-th row, the q-th colum and
the l-th row, the q-th colum, that is to compare the genes in the same column
which corresponds different rows. When dq < Dq, it means the genetic diversity
degree a is 0, otherwise a is 1(Dq is similarity threshold which is set according to
different genes). The final value is accumulated by counter A automatically:A =∑

(a) .
After the two vectors compared, if A > N × 90% (N is the number of gene in

the chromosome encoding), then the two chromosomes is consider very similar.

Crossover, Mutation and Reproduction. When the initial population has
been finalized, the three operators of crossover, mutation, and reproduction
should be optimized continually, in order to achieve the global optimal solution.

(1) Crossover algorithm: Multi- chromosome multi-point cross Crossover is an
exchange process from the parent chromosomes, in order to re-form a new genera-
tion for improving the search capability. However, the traditional restructuring of
crossover algorithm is executed in two chromosomes; the evolution of subspace is
limited by just simple reorganization. Therefore, Multi-chromosome multi-point
cross as a new improving method is adopted to expand the searching space. In
consideration of the increased diversity and the computing overhead brought in
by multi-point loop cross, this paper chooses three chromosomes as the parent
generation ultimately, and two gene fragments are chose to cross randomly. The
operation is shown in Fig. 3.

crossover point crossover point

Parent X

Parent Y

Parent Z    

crossover point crossover point

Offspring
X

offspring
Y

offspring
Z  

 
Fig. 3. Crossover algorithm

Thus, the probability of getting optimal solution could be increased with the
extending of searching space.

(2) mutation algorithm: Poisson distribution
Mutation operator references to the phenomenon of gene mutation which is
generated in the evolution process of the biology, in order to generate some new
individuals to expand the search space.

Poisson distribution algorithm is adopted in this paper to determine the poly-
morphic, the genes with more frequently abnormal could be found by Poisson

distribution which appear in a certain period: P (x = k) = e(−λ)·λ·k
k! .

In which, K is the abnormal times in a certain period and in the same cluster.
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Then sort the result in descending order according to the probability. The
gene with the highest abnormal rate is selected to mutate. Improved mutation
operator changes the polymorphic according to different time periods, which is
different from the traditional random mutation. The search space is defined more
clearly and the unnecessary waste of resources is controlled. The probability of
mutation is controlled between 0.0001− 0.1.

(3) Copy-preferred protection
In each new generation of chromosomes, it should calculate the individual fitness
of the chromosomes. When the fitness of individual reaches the certain thresh-
old, the individual could be directly copied to the next generation without the
operation of mutation. It is a protection to the chromosomes which have good
genes, and the calculation of time and space also could be reduced, so as to fully
use of the resources.

(4) Fitness function Each new generation of chromosomes should be filtered,
the excellent individual will be incorporated into the next populations continue
to do optimization calculation. And this screening scale is decided by fitness.
The individual with higher fitness is chosen as the alternative, and the lower is
directly eliminated. Therefore, the choice of fitness directly affects the accuracy
of the algorithm and the global convergence of the situation. Fitness function:
F = a

A − b
B .

In the above function, F represents the value of fitness function,; a is the
number of detected attacks, A is the total number of attacks; b is the wrong
number of attack detection, B is the total number of errors detected[8].

5 Experiment

In this paper, VC++ language is adopted to achieve the above proposal, and
the experiment is based on the network connection data set of KDDCUP99[9].
Because of KDDCUP99 contains a lot of simulated attack records, part of the
intrusion records are adopted by this paper as the basic experimental data.
Meanwhile, the improved genetic algorithm is adopted by the intrusion detection
of MP2P network, the results from real-time intrusion detection is shown in
Fig.4, in which the horizontal axis represents the iterations number of genetic
algorithm, vertical axis indicates the percentage, the blue line represents the
detection rate, and the false alarm rate is expressed by the red line. Research
results verify that, the detection rate could be improved and false alarm rate
could be reduced as the iterations number of genetic algorithm increases when
the structure of the MP2P network adopts cluster management and the improved
genetic algorithm is chosen as a means of intrusion detection.

5.1 Results and Analysis

The improved genetic algorithm is adopted by this paper in the MP2P network,
in order to improve the searching capabilities of intrusion detection. For the
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problem of poor self-updating, low accuracy rate, and other issues in intrusion
detection, this paper re-plans the architecture of MP2P network. Firstly, improve
the information management and searching. Secondly, the three operators of
genetic algorithm are optimized to do better in searching abnormal of MP2P
network, thus the searching space and the global optimal solution is improved,
the limited computing and storage resources are not excessively wasted. Research
results verify that, the propose of intrusion detection scheme in this paper could
reduce the false alarm rate, and is effective in strengthening the capability of
intrusion detection for the MP2P network, thereby the robustness of MP2P
network is enhanced.
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Abstract. Traditional role-oriented process modeling seems to be sub-
jective in identifying roles. To solve the problem, the similarity of activi-
ties is used in this paper. Sub-processes with high similarity are recognized
as the process undertaken by a certain role. In this way, a relatively objec-
tive role identification approach is proposed, which determines the interac-
tion between roles and establishes the role-activity diagram. Furthermore,
by analyzing the interaction between roles, genetic algorithm is used to
introduce multiple factors to optimize the identification. Therefore, an op-
timized role-oriented process modeling approach is established and an ex-
ample is presented to show the feasibility of this approach.

Keywords: Process Mining, Role-Activity Diagram, Role Identifica-
tion, Genetic Algorithm.

1 Introduction

Business process management has continued to attract attentions of both aca-
demics and industry. Process modeling is fundamental to BPM. Generally, there
are mainly two kinds of modeling methods: activity-based and role-oriented pro-
cess modeling. In the activity-based process model, a business process consists
of activities and their dependence [1,2]. But there are some problems when de-
scribing the relation between process roles and other elements. Thus, some re-
searchers proposed the role-oriented process modeling, which highlights process
participants and their interactions.

Role-oriented workflow models are supposed to be extended from activity-
based workflow models. The social network analysis proposed in [3] has drawn
more attention in the domain of process mining. As participants are the basic
elements of organization structure, some researchers use the participant inter-
actions to evaluate their social relations and identify the social network among
them [4,5]. In role engineering, roles are identified from permission assignments
because participants have the corresponding privilege when they play certain
roles [7]. Jurgen performs clustering analysis of permission assignments to build
a hierarchy of permission clusters and finally the role hierarchy [8]. RolEnact
describes processes using roles, states, activities and events [9]. Role activity di-
agram (RAD) is another typical role-oriented process modeling approach, which
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uses sub-processes to describe process roles’ responsibility and highlights the in-
teraction between them. In role engineering, the bottom-up aggregation method
identifies role hierarchy by activity similarity among participants. But as each
clustering step randomly selects sub-roles, the result is uncertain.

The approaches discussed above analyze the relation between roles from dif-
ferent aspects, but lack of objective role identification. In this paper, a more
objective role identification approach is proposed. It identifies roles by regarding
the activities with high similarity as a sub-process corresponding to a certain
role. Then we determine the interaction between roles by participants’ interac-
tion and generate the role-activity diagram. Furthermore, as participants who
play the same role should have similar interaction with other roles, we use ge-
netic algorithm to combine these two factors and finally develop a role-oriented
process modeling approach based on process mining.

The remainder of this paper is organized as follows: section 2 describes the con-
cepts of activity dependence. Section 3 presents two steps of the basic modeling.
Section 4 shows how genetic algorithm can be used to optimize role identification.
Section 5 draws conclusions.

2 Basic Concepts

Dependence between activities can be determined by analyzing process logs. In
this paper, we use definitions in [10] to describe the dependence between activi-
ties. The set of all activities in process logs is denoted as A = {a1, a2, . . . , am},
where m = |A| is the number of activities contained in the log. The set of all
participants in workflow logs is denoted as P = {p1, p2, . . . , pn}, where n is the
number of participants. I is the set of all process instances, and for any instance
i ∈ I, i = (a1, a2, . . . , ak), ai ∈ A, where i records the execution ordering of
activities in the instance. The activity set of instance i is denoted as AS (i).

Definition 1. Dependence a > b ⇔ ∃i = (a1, a2, ..., ak), i ∈ I, u ∈ {1, 2, ..., k −
1}, a, b ∈ A, where au = a, au+1 = b.

Definition 2. Direct dependence a → b ⇔ a > b, and ∀i ∈ I,¬∃b > a.

Definition 3. Activity set with direct dependence

DEP = {(a, b)|a, b ∈ A, a → b}

Definition 4. Adjacent activity set

adjAS(Av, S) = {a|a, b ∈ Av, a /∈ S, b ∈ S, a > b or b > a, S ⊆ Av}

3 Role-Activity Diagram Modeling

Process logs contain a lot of information about participants and their activities.
In this paper, we establish a more objective and reliable role identification ap-
proach in terms of the similarity of activities undertaken by participants as the
measurements for role identification using process mining.
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3.1 Diversity Degree of Activity Set

Definitions in [10] are used here to illustrate the diversity degree of sub-processes.
Higher diversity degree means more difference between participants in responsi-
bilities, while lower diversity degree implies more similarity between participants.

Definition 5. Activity execution frequencyof aparticipantp,R(p, a) = times(p,a)
times(p) ,

where times(p, a) is the times p executes a and times(p) is the times p executes all
activities.

Definition 6. Activity execution vector
S(p,Au) = (R(p, a1), R(p, a2), ..., R(p, ak)), aj ∈ Au, 1 ≤ j ≤ k, where k is the
total number of activities in Au.

Definition 7. Average execution vector of activity set

AG(Au) =
S(p

1
, Au) + S(p

2
, Au) + ...+ S(pm, Au)

|PS(Au)|
, pi ∈ PS(Au), 1 ≤ i ≤ m.

m = |PS(Au)|, where PS(Au) is the set of all participants who execute activities
in Au.

Definition 8. Diversity degree of activity set

D(Au) =

m∑
i=1

|S(pi , Au)−AG(Au)|

|PS(Au)|
, pi ∈ PS(Au),m = |PS(Au)|

3.2 Generation of Role-Oriented Process Model

There are two steps in this phase. Firstly, identify roles based on the concept of
diversity degree of activity set. Then, determine the interaction between roles
according to the dependence between participants.

(1) Role Identification
In this paper, the sub-process whose diversity degree is less than a threshold
is considered as the process corresponding to a certain role. We use the similar
algorithm as ”Mining activity set taken by each role” in [10] to discover the
activity sets in which activities are executed by participants playing the same
role. Given a threshold TH , the algorithm first finds a remainder activity which
has dependence relationship with the current activity set and then combines
them into a new activity set until the diversity degree is larger than TH . The
process designer may set a reasonable TH value according to their experience:
The larger TH is set, the fewer roles will be generated. Note that TH should
be higher than the minimum diversity degree of single-activity sets. Therefore,
a new role corresponding to the combined activity set is generated.

(2) Role Interaction mining
Sub-processes can be determined by identifying roles and their corresponding ac-
tivity sets, while interactions between roles can be determined by the relationship
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between participants. In this paper, we determine interactions between roles by
establishing a social network of participants using similar approach proposed in
[7]. Here we use definitions in [10] to identify interactions between participants.

Definition 9. Dependence activity pairs between participants
rel(p1, p2) = {(a, b)|i ∈ I, i = (a1, a2, ..., a, b, ..., ak), p1, p2 ∈ P, p1 executes a,
p2 executes b and a → b}

Then we can generate the activity set that connected related roles, which demon-
strates the interaction between roles.

4 Role Identification Optimization Based on Genetic
Algorithm

In section 3, the role is identified according to participants with similar activities.
But this approach performs unsatisfactorily in determining the role interaction
because it does not take the participant interaction into account when roles
are identified. Based on process mining, through the analysis of the interaction
between participants, we consider both the activity diversity and the interaction
diversity degree. This idea comes from the fact that the participants playing the
same role should have similar interaction. By using genetic algorithm to combine
these two factors, an optimized role identification approach is proposed.

4.1 Activity Interaction between Participants

Definition 10. The activity dependence occurrence times

Exi(p1, p2, a) =
t∑

u=1

Exi(p
1
, p

2
, a, iu), where

(1) p
1
, p

2
∈ P ;

(2) iu ∈ I, iu = (a1, a2, ..., as), ∃k ∈ {1, 2, ..., s − 1}, ak = a, (ak, ak+1) ∈
rel(p1, p2) ∪ rel(p2, p1);
(3) t is the number of instance iu in I which satisfies (2);
(4) Exi(p1, p2, a, iu) is the occurrence of a dependence activity pair between p1
and p2 in iu.

In (2), rel(p1, p2)∪ rel(p2, p1) means that when a modeler considering the de-
pendence between two participants, both the two direction dependence should
be considered, i.e. p1 depends on p2, or p2 depends on p1. Exi(p1, p2, a, iu) de-
scribes the activity dependence occurrence times. For example, in the instance
i1 = (a, b, c, b, c, e), b executed by p1 appears twice, c is executed by p2 and
b → c, then Exi(p1, p2, b, i1) equals 2.

Definition 11. Activity interaction vector between participants

R1(p1, p2)=(Exi(p1, p2, a1), Exi(p1, p2, a2), ..., Exi(p1, p2, an)), n = |A|
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The activity interaction vector describes the activity interaction between p1 and
p2. Assume the activity set is {a1, a2, a3} and R1(p1, p2) = (2, 3, 0). In this case,
a1 appears twice, a2 appears three times in the interaction between p1 and p2.

Definition 12. Activity interaction vector between participants and roles

R2(p, r) =

k∑
i=1

R1(pi
, p)

where pi plays r, and k is the total number of participants who play r.

Similarly, the activity interaction vector between roles is defined as the sum of
all interaction vectors between one role and participants who play other roles.
Thus, the average activity interaction vector between r2 and r1 is denoted as

R3(r1, r2) =

l∑

i=1
R2(pi,r2)

l , where pi plays r1 and l is the total number of partici-
pants who play r1.

Definition 13. Activity interaction diversity degree of role

R4(r) =

k∑
i=1

m∑
j=1

| R2(pi,rj)
|R2(pi,rj)|−

R3(r,rj)
|R3(r,rj)| |

k ×m

where rj = r, k is the total number of participants who play r, and m is the
number of all roles except r itself.

Lower activity interaction diversity degree means more similarity between par-
ticipants, while larger degree indicates more difference.

4.2 Role Identification Optimization

In this section, the main steps of genetic algorithm to optimize role identification
are analyzed.

A typical genetic algorithm requires a suitable representation of solution do-
main. Herein, the upper triangular matrix represents the following: If pi and pj
play the same role, then Mij equals 1, otherwise 0; If i = j and Mij = 1, then pi
plays the role. A representation is generated by combining all the row bit strings
in sequence.

The fitness function is defined as f(R) = (1− λ)
q∑

i=1

R4(ri) + λ
q∑

i=1

D(AC(ri))

where R is the set of roles, q is the number of roles, and AC(ri) is the activity
set which role ri is in charge of. The function f(R) consists of two parts: the
first part describes the diversity degree of participant activity execution and the
second part means the diversity degree of interactions between participants. λ
is a weight parameter of f(R). The activity execution similarity of participants
who play the same role and the interaction similarity of them with other roles are
both considered, thus f(R) is a more comprehensive role identification measure.
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(1)Selection: The population is sorted by descending fitness values and each
generation selects the constant number of best individuals.

(2)Crossover: a genetic operator is used to vary the coding of a chromosome
or chromosomes from one generation to the next. The probability of two parents
mixing is called crossover probability. As the initial solution set is large in the

paperthe crossover probability pc is defined as pc =
C1(fmax−fm)
fmax−favg

+C2,where C1,

C2 are constants, fmax is the maximum fitness value of current solutions set while
favg is the average fitness value and fm is a large fitness value in the current
solution. The solution with lower fitness value has a higher crossover probability
while the solution with higher fitness value has a lower crossover probability.
Thus, it can speed up genetic algorithm.

(3)Mutation: the mutation probability of each solution is defined as 1 −
(1− pm)L where pm is the crossover probability and L is the size of the so-
lution set. When the mutation conditions are satisfied, one bit is changed from
the previous solution, making an NOT operation at a specified position. The

mutation probability pm is defined as pm = C3(fmax−fm)
fmax−favg

+C4, where C3 and C4

are constants. The purpose of mutation is to preserve and introduce the diver-
sity. With the crossover probability defined in (2), this mutation probability can
accelerate the search.

5 Case Study

The matrix R generated from a clothing production process log subsumes times
of the activities performed by the participants and denotes the percentage of the
activities executed by each participant.

a b c d e f g h

R =

p101
p105
p106
p107
p114
p115
p120

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5
0
0
0.4
0
0
0

0.3
0
0

0.35
0
0.185
0

0
0.154
0

0
0.1
0.111
0.385

0
0.385
0

0
0.4
0.185
0

0
0.461
0

0
0.3
0.148
0

0
0
0

0
0.1
0
0.615

0
0
1

0
0.1
0.037
0

0.2
0
0

0.25
0
0.334
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1) Role identification
To identify roles, assume TH = 0.25 and the identification result is shown here.
p101, p107 and p115 are planning dept. managers, p101, p107 and p115 are delivery-
men, p105, p114, p115 and p120 are technicians, p106, p114 and p115 are workers.

(2)Role-oriented process modeling
Fig. 1 shows the mined role-activity diagram and the text between roles describes
the interaction between roles.
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Prototype
Design

Fabric
outbound

Fabric
acquisition

Fabric
resupply

Technician
Contract
Signing

Fabric
Manufac
-turing

Worker

Inquiry
and

quotation

Contract
Signing

Plan Dept. Manager

7

Fabric
outbound

Prototype
Design

Clothing
Delivery

Delivery man

Fabric Fabric
Manufacturing

Fig. 1. The role-activity diagram of clothing production process

(3) Role identification optimization using genetic algorithm
The matrix Mr shows the role identification results using genetic algorithm, in
which ’-’ implies no value. The representation is generated by combining all the
row bit strings in sequence, i.e. 0001010000101100000010001000.

p101 p105 p106 p107 p114 p115 p120

Mr =

p101
p105
p106
p107
p114
p115
p120

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−
−
−
−
−
−

0
0
−
−
−
−
−

0
0
1
−
−
−
−

1
0
0
0
−
−
−

0
1
0
0
0
−
−

1
0
0
1
0
0
−

0
1
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Table 1. Genetic Algorithm - Participants and their Roles

Participant Role

p101 Panning Dept. Manager
p105 Technician
p106 worker
p107 Panning Dept. Manager
p114 Technician
p115 Panning Dept. Manager
p120 Technician

Table 1 expresses the participants and their corresponding roles. Each par-
ticipant is related to only one role and the interaction between participants are
simpler. For example, p115 plays three roles in the first result, but only one role
in Table 1. Furthermore, the activities which one role is in charge of can be
disconnected. For example, p101 , p107 and p115 are Planning Dept. Managers
and the corresponding activity set is {a, b, h} where activity a, b and h are not
connected. In contrast to this, the general role identification approach will re-
gard the activity h as a single role. By comparison, it seems that the genetic
algorithm can get a better and more objective result.
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6 Conclusions

In this paper, we present a role identification approach by analyzing the similar-
ity of activities undertaken by participants based on process logs. On this basis,
we use the interaction between participants to further determine role interac-
tions, which allows us to mine the role activity diagram. Furthermore, we use
information contained in process logs to determine the interaction consistency
between participants and other roles. Also, genetic algorithm is used to achieve
a more objective role identification approach. However, how to determine a rea-
sonable threshold TH , how to achieve more reasonable role identification and
how to deal with the complexity of process structures need further researches.
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dation of China (No. 71071038).
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Abstract. Color and shape information have been two important im-
age descriptors in Content Based Image Retrieval (CBIR) systems. The
focus of this research is to find a method representing images with color
and shape information in the way of human visual perception. The im-
age retrieval approach proposed here depends on the color and shape
features extracted by color Vector Quantization (VQ) and the Digital
Curvelet Transform (DCT), respectively. The extracted color and shape
features were combined and weighted by Genetic Algorithm (GA), then
used for image similarity measurement. Experimental results show that
the GA combined features can bring about improved image retrieval
performance.

Keywords: Image retrieval, color vector quantization, curvelet trans-
form, genetic algorithm.

1 Introduction

As one of the most important applications of image analysis and understanding,
CBIR ( Content-Based Image Retrieval) has received more and more attention.
The tremendous growth of the quantities and sizes of digital image and video
require powerful tools for searching in image and video databases. Since a lot
of image databases are poorly indexed or annotated, there is a great need for
developing automated, content-based systems to help users to get images they
want.

There have been a large number of CBIR systems developed in the recent
years such as IBM’s QBIC project [5], VisualSeek [15], PicSOM [13], PicToSeek
[7] and a lot more. When facing with a query, the system extracts features from
the query, compares them to that of the images stored in the database, the
distance between the query image and each image in database is evaluated ac-
cording to the similarity of features. Sometimes the searching result can be quite
different from user’s expectation because of the ’semantic gap’, the main reason

Y. Tan, Y. Shi, and Z. Ji (Eds.): ICSI 2012, Part I, LNCS 7331, pp. 406–413, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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of semantic gap is the extracted visual features mismatch human’s judgements
on similarity. The focus of our research1 is mining image features which can
represent images in the way of human visual perception.

In human visual perception system, humans use a combination of features
(color and shape) to recognize objects and do not rely on any one individual
feature [10]. In our research, the color vector quantization is selected for image
color feature representation; digital curvelet transform is used to extract shape
information in images. Genetic Algorithm was then used to optimize weights for
all the curvelet and color features of each image category. The combined and
weighted features were used for similarity measurement. Experimental results
show that the combined and weighted features can bring about good retrieval
performance in terms of precision and recall.

2 Image Feature Extraction by Vector Quantization

2.1 Color Vector Quantization

When processing color data in images, one is always faced with the problem
that color information on the one hand needs to be quantized as compactly as
possible and on the other hand must be represented with sufficient accuracy.

Vector Quantization can take into account the actual color distributions for
quantization by exploiting training images from the database. That is, a set of
representative color components from training images can be determined and
each representative color component serves as a color histogram bin [17,11].

Although there are various color scalar quantization (SQ) methods, they have
apparent drawbacks when using them in image retrieval work. Since they do
not consider the spatial relationship between pixels, as we can see from Fig.1 ,
VQ can provide a way of better exploiting the spatial information to generate
different histograms in such case.

(a) Two different images
have same numbers of two
colors

(b) Histogram of the left
image. Left: SQ. Right: VQ

(c) Histogram of the right
image. Left: SQ. Right: VQ

Fig. 1. Comparison of histograms generated by SQ and VQ

1 This work is supported by the Key Laboratory of Ethnologic Education Informati-
zation and Chunhui Planning Grant Z2009-1-65001 of Ministry of Education, China.
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2.2 Color Spatial Pattern Codebook Generation and Training

G.Qiu has developed a Colored Pattern Appearance Model (CPAM)[8], which
has two channels capturing the characteristics of the chromatic and achromatic
spatial patterns. This model is working in Y CbCr color space. In CPAM , the
visual appearance of a small image block is modeled by three components: the
stimulus strength (S), the spatial pattern (P ) and the color pattern (C).

The P channel of CPAM captures the achromatic spatial pattern of the input
colored image pattern. The C channel captures the chromatic spatial pattern.
The P and C channels are called Achromatic Spatial Pattern (ASP ) and Chro-
matic Spatial Pattern (CSP ), respectively.

A specific neural network training algorithm, the Frequency Sensitive Com-
petitive Learning(FSCL) algorithm[1] is used here to design our codebook. Ac-
cording to [9], FSCL is insensitive to the initial choice of codewords, and the
codewords designed by FSCL are more efficiently utilized than those designed
by methods such as the LGB algorithm. The FSCL VQ design algorithm is:

1. Initialize the codewords, Ci(0), i = 1, 2, . . . , I, to random numbers and set
counters associated with each codeword to 1, i.e., ni(0) = 1.

2. Present the training sample, X(t), where t is the sequence index, and calcu-
late the distance between X(t) and the codewords, Di(t) = D(X(t), Ci(t),
and modify the distance according to D̂i(t) = ni(t)Di(t).

3. Find j, such that D̂j(t) ≤ D̂i(t) for all i, update the codeword and counter
Cj(t+ 1) = Cj(t) + a

[
X(t)− Cj(t)

]
nj(t+ 1) = nj(t) + 1
where 0 < a < 1 is the training rate.

4. Repeat by going to 2.

3 Curvelet Transform and Image Spatial Feature
Extraction

3.1 The Discrete Curvelet Transform(DCT)

Curvelet Transform [6] is one of the latest developments in non-adaptive trans-
forms. Compared to the wavelet transform, the curvelet transform provides a
more sparse representation of an image, with improved directional elements and
better ability to represent edges and other singularities along curves. Sparse rep-
resentation usually offers better performance with its capacity for efficient signal
modeling.

In the curvelet transform, fine-scale basis functions are long ridges; the shape
of the basis functions at scale j is 2−j by 2−j/2 so the fine-scale bases are skinny
ridges with a precisely determined orientation. The curvelet coefficients can be
expressed by

c(j, l, k) := 〈f, ϕj,l,k〉 =
∫
R2

f(x)ϕj,l,k(x)dx (1)

where ϕj,l,k denotes the curvelet function, and j, l and k are the variables of
scale, orientation, and position, respectively.
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In the last few years, several discrete curvelet transforms have been proposed.
The most influential approach is based on the Fast Fourier Transform (FFT)
[3]. The DCT decomposes the frequency space into dyadic rectangular coronae,
each of which is divided into wedges, the number of wedges doubles with every
second level.

3.2 Spatial Feature Extraction through Curvelet Transform

Once the curvelet coefficients have been obtained from DCT, the standard de-
viation of the curvelet sub-bands is computed as the shape features for the
curvelet, since this feature has shown good capability in description of wavelet
and curvelet sub-bands [2,16].

In consideration of computational complexity, not all levels of curvelet coef-
ficients are used. Only level 2 and level 5 sub-bands coefficients are selected for
feature extraction in a 6 levels decomposition of images. The coefficients at level
5 are in ‘finer’ details of an image, they can be used as the texture description of
the image, and coefficients at level 2, on the contrary, in a ‘coarser’ level, they are
suitable for describing the edges in an image. Some statistics can be calculated
from each of these curvelet sub-bands. The mean and standard deviation of the
first half of the total subbands for level 2 and level 5 were calculated since the
curvelet at angle θ produces the same coefficients as the curvelet at angle (θ+π)
in the frequency domain. These subbands are symmetric in nature.

The total features for each image I then can be described as:

F (I) =
{
μI
1, σ

I
1 , μ

I
2, σ

I
2 , C

I
}
, (2)

where μ1 and μ2 are mean values of level-2 and level-5 curvelet coefficients; σ1

and σ2 are standard deviation of level-2 and level-5 curvelet coefficients; CI is
the color histogram. According to curvelet transform, there are 16 sub-bands
and 32 sub-bands in level-2 and level-5 respectively, thus, the dimensionalitie of
μ1 and σ1 are 8, the dimensionalitie for μ2 and σ2 are 16, and the dimensionality
of CI is 512 as we have explained in Section 2.

4 Genetic Algorithm Based Weights Assignment for
Image Categories

4.1 In-class Distance and Between-class Distance

For an image category K in the image database T , the in-class distance ICD is
defined as:

ICDK = {Di,j |Di,j = EuDis(Ki,Kj), i = j} (3)

whereEuDis(·, ·) is the weighted Euclidean distance between the five features(see
equation 2) of two imagesKi andKj, which are belong to the same image category
K. the EuDis of Ki and Kj is calculated as

EuDis(Ki,Kj) =

√√√√ 5∑
l=1

(wl × Fl(Ki)− wl × Fl(Kj))2 (4)
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where Fl(·) is the lth feature of an image, and wl is the weight assigned to Fl(·).
Thus, the in-class distance of an image categoryK is a set of distances between

any two images Ki and Kj in the same category. Note that Di,j = Dj,i.
For an image category K in the image database T , the between-class distance

BCD is defined as:

BCDK = {D(Ki, R
c
i )|D(Ki, R

c
i ) = EuDis(Ki, R

c
i )} (5)

where Rc
i represents an image Ri which belongs to any image category c, c = K

in the image database T . If we totally have C image categories and each category
has M images, then, the number of elements in a BCD set is (C − 1)×M . For
example, if we have 10 image categories and each category has 60 images, then
the number of elements in a BCD set is 540.

4.2 GA-Based Weights Assignment

A chromosome in our GA is defined as:

c = (w1, w2, . . . , wi, . . . , wn), (6)

where wi is the weight assigned to feature vector i and n is the dimensionality
of the image feature vector set, which is 5 in our current implementation. A
population P is defined as:

P = {c1, c2, . . . , ci, . . . , cPopSize} (7)

where PopSize is the number of individuals in the population and ci is a chromo-
some. In our work, the PopSize = 100. The selection method, Roulette wheel,
proposed by Holland[12] was used. The simple crossover and uniform mutation
were employed in our implementation[4]. The crossover and mutation probabil-
ities are 0.75 and 0.05, respectively.

Given an image category K with a set of weights w, if the in-class distance
set ICDK has M elements and the between-class distance set BCDK has N
elements, then the fitness function sorts all the distance elements from both
ICDK and BCDK , counting the smallest N1 elements which come from the
in-class set ICDK , we wish to let N1 → N on the selection of proper w.

After GA weights training, each image category K,K = 1, 2, . . . , 10 in the
image database can obtain a proper weight vector

{
wK

i

}
, i = 1, . . . , 5 as listed

in Table 1.

4.3 Automatic Weight Selection

The mean values of features for training images in each image category were
firstly defined as:

FK =
{
f i

}
(8)

where i = 1, . . . , 5 and f i is the mean value of the ith feature of all the training
images belong to category K. When a query image Q comes in, the features of
Q were extracted first, form a feature vector F (Q) = {fqi} , i = 1, . . . , 5, then,
use the following strategy to decide which weight should Q use.
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Table 1. Weights obtained by GA

Image Category w1 w2 w3 w4 w5

1 0.0777 0.06967 0.0891 0.0551 0.7514

2 0.8895 0.2420 0.4849 0.8722 0.4156

3 0.1323 0.0277 0.9768 0.8184 0.4156

4 0.2578 0.3026 0.8575 0.4278 0.6938

5 0.4518 0.7859 0.9949 0.1289 0.9108

6 0.9172 0.2591 0.9363 0.0369 0.5882

7 0.1174 0.7958 0.9783 0.8305 0.1062

8 0.4067 0.1181 0.9989 0.3282 0.5810

9 0.5104 0.5978 0.6298 0.1858 0.4478

10 0.5508 0.3120 0.1137 0.2070 0.5160

1. For each weight vector, WK(K = 1, 2, . . . , 10)(Table. 1), calculate FQK ={
fqi × wK

i

}
, i = 1, . . . , 5 .

2. For the mean feature vector of categoryK,K = 1, 2, . . . , 10, FK(Equation 8),
calculate its Euclidean Distance with FQK , find out the minimum distance
and the corresponding category R.

3. Use a uniform weight vector like {1, 1, 1, 1, 1} to do things in step 1 and 2
again, finding another minimum distance and its corresponding category R1.

4. If R = R1, the weights assigned to the query image Q is WR. Otherwise, a
uniform weight {1, 1, 1, 1, 1} vector will be assign to Q.

4.4 Experiments and Results

We used two metrics to measure retrieval performance of the image retrieval
system: recall and precision [14]. In general, precision and recall are used together
in a graph so that they can show the change of precision values with respect to
the recall values. Every image in the image database has been used for testing
the precision and recall.

The methods we compared were the proposed VQ and curvelet combined
method; sole VQ retrieval method in[9]; uniform weighting image retrieval; and
Gauss Mixture VQ retrieval method in [11]. The retrieval result can be seen
in Fig. 2. Traditional quantization methods such as SQ were not included in
the comparison because the research works in [9] and [11] have already done
the comparison, their results have proved the VQ methods have much better
performances in image retrieval than SQ-based methods.

As we can see from the result curves, our proposed method performs the
best in the compared methods. The combination of curvelet features and VQ
has improved the precision. The GMVQ has nearly the same results with our
method when recall ≤ 40, but the precision of GMVQ retrieval method drops
quickly after the recall > 40, this is the reason why we did not chose GMVQ as
our VQ method, the proposed retrieval method is able to provide more correlated
images for users.
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Fig. 2. Comparison of different image retrieval methods(1000 images’ average)

5 Conclusion

In this paper, we have introduced a GA-based method to combine curvelet trans-
form and color vector quantization for image retrieval. The Genetic Algorithm
was employed for training the weights of features for each image category, an
automatic weights selection strategy is also explained. Through the experiments,
we demonstrated that the proposed scheme can achieve better retrieval perfor-
mance than some state-of-art image retrieval techniques. The future work will
include studying the proposed method in huge amount image database . The
other optimization tools such as particle swarm optimization (PSO) will also be
considered to be used in the future research.
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Abstract. For genetic algorithms, new variants of the uniform crossover opera-
tor that introduce selective pressure on the recombination stage are proposed. 
Operator probabilistic rates based approach to genetic algorithms self-
configuration is suggested. The usefulness of the proposed modifications is 
demonstrated on benchmark tests and real world problems. 
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1 Introduction 

Evolutionary algorithms (EA), the best known representatives of which are genetic 
algorithms (GA), are well known optimization techniques based on the principles of 
natural evolution. Although GAs have been successful in solving many of real world 
optimization problems, their performance depends on the selection of the GA settings 
and tuning their parameters. GAs usually use a bit-string solution representation, but 
other decisions have to be made before the algorithms execution. The design of a GA 
consists of choosing of variation operators (e.g. recombination and mutation) that will 
be used to generate new solutions from the current population and the parent selection 
operator (to decide which members of the population are to be used as inputs to the 
variation operators), as well as a survival scheme (to decide how the next generation 
is to be created from the current one and outputs of the variation operators). Addition-
ally, real valued parameters of the chosen settings (the probability of recombination, 
the level of mutation, etc.) have to be tuned. 

The process of setting choice and parameter tuning is known as a time-consuming 
and complicated task. Much research has tried to deal with this problem. Some ap-
proaches attempted to determine appropriated setting by experimenting over a set of 
well-defined functions or through theoretical analysis. Another approach, usually 
applying terms such as "self-adaptation" or "self-tuning", tries to eliminate the setting 
process by adapting settings through the algorithm execution.  

There exist much research devoted to "self-adapted" or "self-tuned" GAs and au-
thors of corresponding papers determine similar ideas in very different ways, all of 
them aimed at reducing the human expert role in algorithms designing.  
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In this paper, we follow the definitions given by Gabriela Ochoa and Marc Schoe-
nauer, organizers of the workshop "Self-tuning, self-configuring and self-generating 
evolutionary algorithms" (Self* EAs) within PPSN XI [1]. According to this defini-
tion, "… The following 3 general paths toward automated heuristic design will be 
distinguished: 1) tuning: the process of adjusting the control parameters of the algo-
rithm; 2) configuring: the process of selecting and using existing algorithmic compo-
nents (such as variation operators); 3) generating: the process of creating new  
heuristics from existing sub-components borrowed from other search methods…". 
The main idea of the approach proposed here relies on automated "selecting and using 
existing algorithmic components". That is why these algorithms might be called self-
configuring ones. Within this, some parameters, namely the probabilities of the genet-
ic operator use, are subject to automated tuning, this allows us to say that the  
algorithms are partially self-tuning ones.  

In order to specify our algorithms more precisely, one can say that according to the 
classification in [2], we use dynamic adaptation on the population level ([3]). The 
probabilities of applying genetic operators are changed "on the fly" through the algo-
rithm execution. According to the classification given in [4], we use centralized con-
trol techniques (central learning rule) for parameter settings with some differences 
from the usual approaches. Operator rates (the probability to be chosen for generating 
off-spring) are adapted according to the relative success of the operator during the last 
generation independently of the previous results. This is how our algorithm avoids the 
problem of high memory consumption typical for centralized control techniques [4]. 
Operator rates are not included in individual chromosomes and they are not subject to 
the evolutionary process. All operators can be used during one generation for produc-
ing off-springs one by one.  

Having conducted numerical experiments, we found the proposed approach posi-
tively impacts an algorithms' performance and deserves special attention and further 
investigation.  

The rest of the paper is organized as follows. Section 2 explains the idea of selec-
tive pressure during the stage of individual crossover in GA and describes the results 
of the algorithm performance investigation. Section 3 describes the proposed method 
of GA self-configuring and its testing results. Section 4 describes the results of the 
numerical experiments comparing the performance of the proposed approach in solv-
ing real-world problems, and in the Conclusion section we discuss the results.  

2 Uniform Crossover Operators with Selective Pressure  

The uniform crossover operator is known as one of the most effective crossover oper-
ators in conventional genetic algorithm [5, 6]. Moreover, from nearly the beginning, it 
was suggested to use parameterized uniform crossover operators and it was shown 
that by tuning this parameter (the probability for a parental gene to be included in an 
off-spring chromosome), one can essentially improve "The Virtues" of this operator 
[6] such that it can emulate other crossover operators. Nevertheless, in the majority of 
cases using uniform crossover the mentioned possibility is not adopted and the proba-
bility for parental gene to be included in an off-spring chromosome is given probabili-
ty equal to 0.5 [7, 8].  
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This is why it seemed interesting to modify the uniform crossover operator with 
the purpose of improving its performance. Having a desire to avoid real number pa-
rameter tuning, we suggest introducing selective pressure during recombination [9] 
making the probability of parental gene to be taken for off-spring dependent on parent 
fitness values. Like the usual GA selection operators, fitness proportional, rank-based 
and tournament-based uniform crossover operators have been added to the conven-
tional operator which we now call the equiprobable uniform crossover.  

The performance of the conventional GA with three additional uniform crossover 
operators has been evaluated on the usual GA test problems [10]. Results are given in 
the first six rows of Table 1 below.  

Table 1 contains the average, minimal and maximal reliability of the algorithms 
averaged over 14 test problems from [10], each solved 1000 times. The reliability is 
the portion of the algorithm runs that gives satisfactorily precise solutions. In Table 1, 
row headers "1-point, 2-point, UE, UT, UP, UR" indicate the type of crossover, re-
spectively, 1-point, 2-point, uniform equiprobable, uniform tournament-based, uni-
form fitness proportional and uniform rank-based crossovers.  

"Average" means the reliability of an algorithm averaged over all settings of  
the other operators (selection, mutation, population control). "Min" ("Max") means 
the reliability of the worst (best) setting variant for the corresponding crossover. The 
numbers in brackets demonstrate the variance in these indicators. The first number in 
brackets is the minimal value among the 14 tests, the second number in brackets is the 
maximal value among the 14 tests. The last number is the corresponding indicator 
averaged over the 14 test functions.  

Table 1. Results of GAs performance evaluation 

Crossover Average Min Max 
1-Point  [0.507,0.915] / 0.760 [0.411,0.856] / 0.696 [0.591,0.978] / 0.822 

2-Point  [0.132,0.821] / 0.479 [0.000,0.754] / 0.413 [0.167,0.871] / 0.534 

UE [0.442,0.953] / 0.819 [0.589,0.887] / 0.780 [0.669,0.999] / 0.878 

UT [0.354,0.967] / 0.627 [0.299,0.917] / 0.587 [0.380,1.000] / 0.697 

UP [0.276,0.935] / 0.647 [0.232,0.888] / 0.622 [0.300,0.976] / 0.718 

UR [0.598,0.974] / 0.833 [0.578,0.935] / 0.771 [0.635,0.999] / 0.888 

SelfCGA-1  [0.678,0.998] / 0.880 

SelfCGA-2 [0.830,1.000] / 0.928 

 
After multiple runs and statistical processing of the numerical results, the following 

observations were found (in terms of algorithm reliability). The best variants are new 
rank-based and conventional (equiprobable) uniform operators. Tournament-based 
crossover seems to be weak, but it is because the number of parents that is set equal to 
2 in these experiments. In this case tournament-based crossover just copies the better 
parent and results to population diversity loss. The last observation suggests examin-
ing multi-parent recombination with the new uniform crossover operators.  

The performance of GAs with additional uniform crossover operators and multi-
parent recombination has been evaluated on the same test optimization problems. We 
observed that with one exception the best number of parents is 7 and the second best 



 Self-configuring Genetic Algorithm with Modified Uniform Crossover Operator 417 

 

is the conventional 2. In the case of tournament-based crossover we observed that "the 
more parents the better". This operator again seems to be weak on average, but it is 
the only operator having maximum reliability of 100% on some test problems where 
other operators fail. In our further investigations we used 3 and 7 parents for tourna-
ment-based uniform crossover and 2 and 7 for all others. One can also establish that 
we shouldn't exclude any crossover operator type from consideration because all of 
them can be useful. 

Although the proposed new operators give higher performance than conventional 
operators, at the same time it increases the number of algorithm setting variants and 
complicates algorithm adjusting for the end user. That is why we have to suggest a 
way to avoid this extra effort for adjustment.  

3 Self-configuring Genetic Algorithm Based on Operators' 
Rates 

As mentioned in the Introduction, we apply dynamic adaptation on the level of popu-
lation with centralized control techniques to the operator probabilistic rates. In order 
to avoid real parameter precise tuning, we used setting variants, namely types of se-
lection, crossover, population control and level of mutation (medium, low, high). 
Each of these has its own probability distribution, e.g., there are 5 settings of selection 
– fitness proportional, rank-based, and tournament-based with three tournament sizes. 
During the initialization phase all probabilities are equal to 0.2 and they will be 
changed according to a special rule through the algorithm’s execution in such a way 
that the sum of the probabilities should be equal to 1 and no probability could be less 
than a predetermined minimum balance. The list of crossover operators includes 11 
items, i.e., 1-point, 2-point and four uniform crossovers all with two numbers of par-
ents (2 and 7). The "idle crossover" is included in the list of crossover operators to 
make a crossover probability of less than 1 that is used in conventional algorithms to 
model a "childless couple".  

When the algorithm has to create the next off-spring from the current population, it 
firstly must configure settings, i.e. form the list of operators with the use of probabili-
ty operator distributions. Then the algorithm selects parents with the chosen selection 
operator, produces an off-spring with the chosen crossover operator, mutates this off-
spring with the chosen mutation probability and puts it into an intermediate popula-
tion. When the intermediate population is complete, the fitness evaluation is executed 
and the operator rates (probabilities to be chosen) are updated according to the opera-
tor’s productivity. Then the next parents’ population is formed with the chosen sur-
vival selection operator. The algorithm stops after a given number of generations or if 
termination criterion (e.g., the given error minimum) is met. 

Productivity of an operator is the ratio of the average off-spring’s fitness obtained 
with this operator and the off-spring population average fitness. A successful operator 
having maximal productivity increases its rate obtaining portions from other opera-
tors. There is no necessity in extra computer memory to remember past events and the 
reaction of updates are more dynamic (that can be both a plus and a minus). 
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Below in Table 2 one can find the result comparing the proposed self-configuring 
GA (SelfCGA) with the best single algorithms having the best performance on the 
corresponding problem. Saying "single" algorithm, we mean the group of algorithms 
with the same crossover operator but with all variants of other settings. The average 
reliability of this "single" algorithm is averaged over all possible settings.  

Table 2. Comparison results of SelfCGA and problem best single algorithms 

No Crossover Average Min Max No Crossover Average Min Max 
1 UE 0.818 0.787 0.894 8 UR 0.741 0.667 0.800 

SelfCGA 0.886 SelfCGA 0.830 
2 UE 0.841 0.808 0.903 9 UT 0.967 0.917 0.983 

SelfCGA 0.866 SelfCGA 0.987 
3 UE 0.901 0.887 0.921 10 UE 0.853 0.803 0.891 

SelfCGA 0.901 SelfCGA 0.884 

4 UR 0.925 0.877 0.959 11 UR 0.821 0.734 0.888 

SelfCGA 0.976 SelfCGA 0.892 
5 UT 0.950 0.901 1.00 12 UR 0.833 0.765 0.881 

SelfCGA 1.000 SelfCGA 0.897 
6 UE 0.953 0.861 0.999 13 UR 0.956 0.902 0.998 

SelfCGA 1.00 SelfCGA 1.000 
7 UT 0.897 0.832 0.927 14 UR 0.974 0.935 0.999 

SelfCGA 0.878 SelfCGA 1.000 

 
Analyzing Table 2, we can see that in four cases (1, 2, 3, 10 – numbers are given in 

italics) SelfCGA demonstrates a reliability better than the average reliability of the 
single best algorithm for the corresponding problem but worse than the maximal one. 
In one case (7th problem), the best single algorithm (with tournament-based uniform 
crossover) gives better average performance than SelfCGA. In the 9 remaining cases 
(numbers are given in bold) SelfCGA outperforms even single algorithm with max-
imal reliability.  

Having described our results, one can conclude that proposed GA self-
configuration not only allows one to avoid the time consuming efforts for determining 
the best settings but also can give a performance improvement even in comparison 
with the best known settings of conventional GAs. 

The described approach can be used in many EA techniques, in particular with con-
ventional GA. That is why we compared GA self-configuration based on three conven-
tional crossovers (1-point, 2-points, uniform) and GA self-configuration based on all 6 
crossover operators. We call the first algorithm SelfCGA-1 and the second SelfCGA-2.  

The results of the self-configuring GAs performance evaluation averaged over the 
same 14 test optimization problems are given in the last two rows in Table 1 above.  

This provides the evidence that SelfCGA-1 works better than all three single algo-
rithms combined within it. It permits us to say that GA self-configuring itself in-
creases the algorithms' performance. Also one can see that SelfCGA-2 outperforms 
SelfCGA-1 in all indicators, i.e. it has greater average performance and better vari-
ance edges. This implies that the proposed types of uniform crossover with selective 
pressure play a positive role in the interaction of the GAs with different settings, giv-
ing a hope for better results in real world problem solving.  
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4 Numerical Experiments with Real World Problems 

Having seen positive result when applying the algorithms on benchmark test 
optimization problems, there is a need to test them on real world optimization 
problems. The developed algorithms were applied to two classification machine 
learning credit scoring problems often used to compare the accuracy with various 
classification models from UCI repository [11]: 

- Credit (Australia-1) (14 attributes, 2 classes, 307 examples of the creditworthy 
customers and 383 examples for the non-creditworthy customers); 

- Credit (Germany) (20 attributes, 2 classes, 700 records of the creditworthy 
customers and 300 records for the non-creditworthy customers).  

Both classification problems were solved with artificial neural network (ANN) based 
classifiers having fixed structure (one hidden layer perceptron with 3 or alternatively 
5 hidden neurons, one output neuron and 14 or 20 input neurons). These ANNs have 
to be trained on 70% of the data base instances and validated on the remaining 30% of 
the examples. The results of validations (portion of correctly classified instances from 
validation sets) are given in table below.  

From the optimization view point, training ANNs with 3 or 5 hidden neurons re-
quires tuning from some tens till hundred real value weight coefficients. With preci-
sion to 0.01 and interval [-5; 5] this gives from 550 till 1050 bits in chromosome. This 
seems to be a challenge for optimization techniques.  

We first conducted a comparison with alternative optimization techniques, namely 
standard error back propagation, conventional GA, modified GA with our new uni-
form crossover operators with selective pressure, and SelfCGA-2. As we have ob-
served, both algorithms proposed in this paper demonstrate high workability on both 
classification tasks. 

We then conducted the comparison of our ANN-based classifier with alternative 
classification techniques. Results for the alternative approaches have been taken from 
the scientific literature. In [12] the performance evaluation results for these two data sets 
are given for the authors' two-stage genetic programming algorithm (2SGP) as well as 
for the following approaches taken from other papers: conventional genetic program-
ming (GP), multilayered perceptron (MLP), classification and regression tree (CART), 
C4.5 decision trees, k nearest neighbors (k-NN), linear regression (LR). We have taken 
additional material for comparison from [13] which includes evaluation data for the 
authors' automatically designed fuzzy rule based classifier as well as for other ap-
proaches found in the literature: Bayesian approach, boosting, bagging, random sub-
space method (RSM), cooperative coevolution ensemble learning (CCEL). The results 
obtained are given in Table 3. As one can see from Table 3, both proposed algorithms 
demonstrate competitive performance, taking 2nd and 3rd places on the easier Australian 
credit problem and 7th and 8th of 15 places on the harder German credit task.  

We understand the limitations of this comparison, e.g. there is no information on 
indicators' variation or on computational efforts for compared methods. Some results 
are the best for the given method, others are averaged. Moreover, it is clear that 2SGP 
and fuzzy classifier are much more useful for decision makers as they give not only a 
computational expression but also human expert understandable production rules. 
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Table 3. The comparison of classification algorithms 

Classifier Australian 
credit 

German 
credit 

Classifier Australian 
credit 

German 
credit 

SelfCGA-2 0.9013 0.7617 C4.5 0.8986 0.7773 

MGA 0.8997 0.7604 LR 0.8696 0.7837 

2SGP            0.9027 0.8015 CCEL 0,8660 0,7460 

GP 0.8889 0.7834 k-NN 0.7150 0.7151 

Fuzzy classifier 0,8910 0,7940 CART 0.8744 0.7565 

Bayesian approach 0,8470 0,6790 MLP 0.8986 0.7618 

Boosting 0,7600 0,7000 RSM 0,8520 0,6770 

Bagging 0,8470 0,6840    

 
Our intention was to make it clear whether our approach could give results compet-

itive to alternative techniques without attempting to develop the best tool for bank 
credit scoring. This is why we did not use a larger ANN and limited computational 
resources to 500 generations (rather than 1000 as, e.g., in [12]), etc.  

We conclude that the self-configuring genetic algorithm proposed in this paper can 
produce competitive results, it has the usual drawbacks of any general-purpose tech-
nique losing to the problem specific algorithms on corresponding problems but has 
the advantage of requiring no algorithm adjustment.  

5 Conclusions 

In this paper, special kind of uniform crossover operator that introduces selective pres-
sure on the recombination stage for GA is proposed. They are fitness proportional, tour-
nament-based and rank-based uniform crossover operators similar to the well known 
selection schemes of evolutionary computations. It is demonstrated on the benchmarks 
that the use of these operators gives positive impact on GA performance. In particular, 
the rank-based uniform crossover is the best among all types of crossover operators.  

Then we presented a modified approach to probability based operator rate assign-
ments for the automated configuration of algorithms that assumes the probabilistic 
choice of operators for every next off-spring and updates rates after every generation. 
This modification also turned to be useful as was demonstrated with test problems.  

And at last, we checked our GA modifications using them in training ANN-based 
classifiers for solving two hard classification problems that demonstrated the useful-
ness and perspectiveness of the proposed modifications.  

Acknowledgment. The research is partially supported through Governmental con-
tracts № 16.740.11.0742 and № 11.519.11.4002.  

References 

1. Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.): PPSN XI. LNCS, vol. 6238. 
Springer, Heidelberg (2010) 

2. Angeline, P.J.: Adaptive and self-adaptive evolutionary computations. In: Palaniswami, 
M., Attikiouzel, Y., Marks, R., Fogel, D., Fukuda, T. (eds.) Computational Intelligence: A 
Dynamic Systems Perspective, pp. 152–163. IEEE Press, Piscataway (1995) 



 Self-configuring Genetic Algorithm with Modified Uniform Crossover Operator 421 

 

3. Meyer-Nieberg, S., Beyer, H.-G.: Self-Adaptation in Evolutionary Algorithms. In: Lobo, 
F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithm. 
SCI, vol. 54, pp. 47–75. Springer, Heidelberg (2007) 

4. Gomez, J.: Self Adaptation of Operator Rates in Evolutionary Algorithms. In: Deb, K., et 
al. (eds.) GECCO 2004, Part I. LNCS, vol. 3102, pp. 1162–1173. Springer, Heidelberg 
(2004) 

5. Syswerda, G.: Uniform crossover in genetic algorithms. In: Schaffer, J.D. (ed.) Proc. of the 
3rd International Conference on Genetic Algorithms, pp. 2–9. Morgan Kaufmann (1989) 

6. Spears, W., De Jong, K.A.: On the Virtues of Parameterized Uniform Crossover. In: Be-
lew, R.K., Booker, L.B. (eds.) Proceedings of the 4th International Conference on  
Genetic Algorithms, pp. 230–236. Morgan Kaufmann (1991) 

7. Haupt, R.L., Haupt, S.E.: Practical genetic algorithms. John Wiley & Sons, Inc., Hoboken 
(2004) 

8. Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing. Springer, Heidelberg 
(2003) 

9. Semenkin, E.S., Semenkina, M.E.: Application of genetic algorithm with modified uni-
form recombination operator for automated implementation of intellectual information 
technologies. Vestnik. Scientific Journal of the Siberian State Aerospace University named 
after academician M.F. Reshetnev. 3(16), 27–32 (2007) (in Russian, abstract in English) 

10. Finck, S., et al.: Real-parameter black-box optimization benchmarking 2009: Presentation 
of the noiseless functions. Technical Report 2009/20, Researh Center PPE (2009) 

11. Frank, A., Asuncion, A.: UCI Machine Learning Repository. Irvine, CA: University of 
California, School of Information and Computer Science (2010),  
http://archive.ics.uci.edu/ml 

12. Huang, J.-J., Tzeng, G.-H., Ong, C.-S.: Two-stage genetic programming (2SGP) for the 
credit scoring model. Applied Mathematics and Computation 174, 1039–1053 (2006) 

13. Sergienko, R., Semenkin, E., Bukhtoyarov, V.: Michigan and Pittsburgh Methods Combin-
ing for Fuzzy Classifier Generating with Coevolutionary Algorithm for Strategy Adapta-
tion. In: IEEE Congress on Evolutionary Computation. IEEE Press, New Orleans (2011) 



 

Y. Tan, Y. Shi, and Z. Ji (Eds.): ICSI 2012, Part I, LNCS 7331, pp. 422–427, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Fitness Function Based on Binding and Recall Rate  
for Genetic Inductive Logic Programming 

Yanjuan Li1,2 and Maozu Guo1 

1 School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China 
2 School of Information and Computer Engineering,  

North-East Forestry University, Harbin, China 

Abstract. The key of using genetic inductive logic programming (GILP) 
algorithm to learn first-order rules is how to precisely evaluate the quality of 
first-order rules. That is, the fitness of rules should rightly score their quality 
and effectively guide GILP algorithm to be close to the target rule. In this 
paper, a new fitness function is proposed. By adopting the concept of binding, 
the new fitness function can adequately utilize the information hidden in 
background knowledge and training examples. By considering recall rate of 
rules, the new fitness function can avoid generating over-specific rules. 
Experiments on benchmark data set show that comparing with the common 
fitness function based on amount of examples covered by rules, the new fitness 
function can measure quality of first-order rules more precisely and enhance 
predictive accuracy of GILP. 

Keywords: machine learning, inductive logic programming, genetic inductive 
logic programming, genetic algorithm. 

1 Introduction 

The field of inductive logic programming (ILP) has matured enough in recent years so 
that researchers in this field now tackle real world problems, such as web page 
classification [1], gene regulation prediction [2], metabolic networks [3] and grammar 
rules of building parts [4]. One strength of ILP lies in the fact that a first-order 
representation is employed. Such a representation makes ILP overcome the two main 
limitations of classical machine learning techniques: 1) the use of a limited 
knowledge representation formalism (essentially a propositional logic), and 2) 
difficulties in using substantial background knowledge in the learning process [5]. 

ILP system can be formulated as a search problem in a hypotheses space of logic 
programs [6]. Various approaches [7], [8] in ILP systems are mainly different in the 
search strategy and the heuristics which are used to guide the search. The search space is 
extremely large, so strong heuristics are required. Greedy search strategy is used in most 
systems. These systems generate a sequence of logic programs from general to specific 
(or from specific to general) until a consistent program is found. Each program in the 
sequence is obtained by specializing (or generalizing) the previous one. For example, 
FOIL [9] applies a hill climbing search strategy guided by an information-gain heuristic 
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to search programs from general to specific. CLAUDIEN [10] uses a measure that takes 
into account the length of the clause. But these strategies and heuristics are not always 
applicable because the systems may become trapped in local maxima. In order to 
overcome the problem of local maxima, non-greedy strategies such as genetic 
algorithms are adopted. Genetic algorithms [11] are alternative search strategies which 
perform an implicitly parallel search. An inductive logic programming system that 
employs genetic algorithm to search the whole candidate is called as genetic inductive 
logic programming (GILP). GILP employs genetic algorithm for searching the space of 
candidate clauses, and the stochastic search method can overcome the problem of local 
optima of deterministic search. Therefore, GILP approaches become an attractive topic 
in inductive logic programming. 

GA-SMART [12] is the first GILP system in which the individuals are fixing 
length binary strings encoding formula, and the size of an individual grows with the 
number of predicates appearing in it. QG/GA [13] carries out a random-restart 
stochastic bottom-up search which efficiently generates a consistent clause on the 
fringe of the refinement graph search without needing to explore the graph in detail, 
then uses a genetic algorithm to evolve and re-combine the generated clauses. PGA 
[14], [15] uses a multiple level encoding structure that can represent three different 
types of relationships between two numerical data. However, the common fitness 
function used in GILP is based on the number of examples covered by rules, which 
can not adequately utilize the information hidden in background knowledge and 
training examples and is apt to generating over-specific hypotheses. By adopting the 
concept of binding and considering the recall rate of rules, a new fitness function is 
proposed. An analysis and contrastive experiment demonstrate that the new fitness 
function can more effectively guide the search direction of algorithm and enhance 
predictive accuracy of GILP algorithm. 

2 Fitness Function 

In this section, we firstly introduce the common fitness function based on the number 
of examples covered by rules and analyze its weakness. Then, a new fitness function 
is proposed. By adopting the concept of binding, the new fitness function can 
adequately utilize the information hidden in background knowledge and training 
examples. By considering the recall rate of rules, the new fitness function can avoid 
generating over-specific rules. 

2.1 Common Fitness Function and Its Weakness 

The common fitness function used in genetic inductive logic programming algorithm 
is based on the number of examples covered by rules and is defined as: 

( )
TP

fitnesscommon H
TP FP

=
+

 (1)

Where H is an individual, that is a hypotheses(rule); TP=|{e | e∈E+∧B∪H|=e}|, the 
number of the set of true positive examples, i.e., the number of the set of positive 
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examples that are covered by the hypotheses H; FP=|{ e | e∈E-∧B∪H|=e}|, the 
number of the set of false positive examples, i.e., the number of the set of negative 
examples that are covered by the hypotheses H. 

Fitness function fitnesscommon is only decided by the ratio of the true positive 
examples to the false positive example, and does not consider the exact number of 
true positive examples. There are three weaknesses for the common fitness function 
defined in Eq. (1) as follows. 

(1) It does not distinguish equivalence rules. Let H1 and H2 be two rules 
(hypotheses), if H1 and H2 have same TP and FP value, then H1 and H2 are 
equivalence rules. According to Eq. (1), two equivalence rules have same fitness. 
Therefore, the common fitness function does not distinguish equivalence rules. 

(2) It does not distinguish the two hypotheses that they have the same ratio of the 
true positive examples to the false positive examples but have different number 
of true positive examples. According to Eq. (1), if two hypotheses have the same 
ratio of the true positive examples to the false positive examples, then the two 
hypotheses have same fitness. For example, H1, H2 are two hypotheses, TP of H1 
is 1, FP of H1 is 0, TP of H2 is 100, FP of H2 is 0. According to Eq. (1), both the 
fitness of H1 and the fitness of H2 are equal to 1. That is H1 and H2 have same 
fitness. In fact, the performance of H2 is obviously better than H1. 

(3) It is biased to generate over-specific hypotheses. For example, H1, H2 are two 
hypotheses, TP of H1 is 1, FP of H1 is 0, TP of H2 is 500, FP of H2 is 1. According 
to Eq. (1), the fitness of H1 is higher than that of H2, thus GILP algorithm employing 
fitnesscommon as fitness function is apt to generate over-specific hypotheses. 

2.2 New Fitness Function 

To overcome the weaknesses of fitness function fitnesscommon, a new fitness 
function fitnessnew is proposed. Before giving the definition of the new fitness 
function, we firstly induce the concept of binding [16] and recall rate [17]. A 
substitution θ={Xp1/tp1,…, Xpn/tpn, Xq1/tq1,…, Xqm/tqm, Xr1/tr1,…, Xri/tri} maps all 
variables of rule R=p(Xp1,…,Xpn):-q(Xq1,…,Xqm), r(Xr1,. . . ,Xri) into the constants in 
data. 

Definition1. Let R be a rule (hypotheses), if under a substitution θ, the condition of 
rule R is true, then the substitution θ is called as a binding of rule R. Let θ be a 
binding of rule R, if under the binding θ, the conclusion of rule R is also true, i.e. 
there is a corresponding positive example in data, then the binding θ is called as a 
positive binding of rule R, otherwise, it is a negative binding of rule R. 

The concept of binding considers various cases under which the condition of rules is 
true, so it can thoroughly utilize the information hidden in background knowledge and 
examples to measure the quality of rules. 

Definition2. Given a hypotheses (rule) H and an example E. If the example is positive 
and it is covered by H, it is counted as a true positive; if it is not covered by H, it is 
counted as a false negative. Given a hypotheses H and a set of examples, the recall 
rate of H is equal to the ratio of the number of true positive examples to the sum of 
true positive examples and false negative examples. 
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By adopting the concept of binding and considering the recall rate of hypotheses, a 
new fitness function is defined as: 

( )
*

TB
RR FS

TB FBfitnessnew H
RR TB

else
FS TB FB

⎧ >⎪⎪ += ⎨
⎪
⎪ +⎩

 (2)

Where H is a hypotheses, the definitions of TP and FP are same as those in Eq. (1); 
TB is the number of positive binding of hypotheses H; FB is the number of negative 
binding of hypotheses H; RR is the recall rate of H; FS is a real number and FS∈[0,1].  

The new fitness function can overcome the three weaknesses of fitnesscommon. In 
detail, for weakness (1), H1 and H2 are equivalence rules, that is H1 and H2 have same 
TP and FP. but H1 and H2 have different TB and FB. Therefore, according to Eq. (2), 
H1 and H2 have different fitness, that is new fitness function overcomes the weakness 
(1) of the common fitness function; for weakness (2), let H1 and H2 have same ratio of 
the true positive examples to the false positive examples but have different number of 
true positive examples. According to Eq. (2), the fitness of H1 is different to the 
fitness of H2; for weakness (3), because fitnessnew considers the recall rate of rules, 
fitnessnew can avoid generating over-specific hypotheses. 

3 Experiment 

3.1 Date Set 

Four benchmark data sets [18] are used in the experiments. Information on these data 
sets is tabulated in Table 1, where “Bk relation” presents the number of predicates in 
background knowledge, “size” presents the number of examples, “class” presents the 
number of category, “pos/neg” presents the percentage of positive examples against 
that of negative examples. For each data set, about 25 percent of the data are kept as 
test examples to evaluate the performance of the learned hypothesis, while the rest are 
used as training examples. In principle, the pos/neg ratio on training set and test set 
are identical to that on the original data set. 

Table 1. Benchmark data sets used in experiments 

dataset Bk relation size class pos/neg 
Alzheimer amine 20 686 2 50%/50% 
Alzheimer toxic 20 886 2 50%/50% 
Alzheimer acetyl 20 1326 2 50%/50% 

Alzheimer memory 20 642 2 50%/50% 

3.2 Results 

The details of the coding, crossover and mutation operator of GILP algorithm are 
given in the reference [19, 20]. We respectively test the common fitness function 
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defined in Eq. (1) and the new fitness function defined in Eq. (2). Table 2 shows the 
experiment results of fitnesscommon and fitnessnew. The column |h| in table 2 
presents the number of learned hypotheses, the column Iterations Num. presents  
the iteration number when the algorithm is over, the column trainacc presents the 
accuracy of hypotheses on the training data set, the column testacc presents the 
accuracy of hypotheses on the test data set. For each data set row, the highest 
predictive accuracy on test data has been boldfaced. 

Table 2. The experiment result of GILP adopting two different fitness functions 

dataset 
fitnessnew fitnesscommon 

|h| Iterations Num. trainacc testacc |h| Iterations Num. trainacc testacc 
amine 9 43 0.8158 0.8117 67 204 0.9244 0.7352 
toxic 12 16 0.9157 0.9045 43 196 0.9519 0.8954 
acetyl 46 167 0.8483 0.7606 92 388 0.8534 0.7454 
memory 10 38 0.7219 0.7187 56 124 0.7966 0.6750 
Average 19.2 66 0.8254 0.7989 64.5 228 0.8816 0.7627 

 

Table 2 shows that the Iterations Num. of fitnessnew is lower than that of 
fitnesscommon. This fact proves that fitnessnew has a rapid convergence compared 
with fitnesscommon. It is shown in table 2, on all data set, the hypotheses number and 
training accuracy of fitnesscommon are higher than the ones of fitnessnew, while the 
test accuracy of fitnesscommon is lower than that of fitnessnew. This fact proves that 
fitnesscommon learned over-specific hypotheses. The predictive accuracy of 
fitnessnew is higher than that of fitnesscommon on all dataset, this proved that the 
performance of fitnessnew is higher than fitnesscommon. 

4 Conclusion 

The key of using genetic inductive logic programming (GILP) algorithm to learn first-
order rules is how to precisely evaluate the quality of first-order rules. A new fitness 
function is proposed. By adequately utilizing the information hidden in background 
knowledge and training examples and considering the recall rate of rules, the new 
fitness function not only measures the quality of first-order rules precisely, but also it 
can avoid generating over-specific rules. Experiments on benchmark dataset 
demonstrate that the new fitness function can more effectively guide the search 
direction of algorithm and enhance predictive accuracy of algorithm. 
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Abstract. This paper deals with the problem on Lagrange stability of Cohen-
Grossberg neural networks (CGNNs) with both mixed time delays and general 
activation functions. By virtue of Lyapunov functional and Halanay delay 
differential inequality, several criteria in linear matrix inequality form for 
Lagrange stability of CGNNs are obtained. Meanwhile, the limitation on the 
activation functions being bounded, monotonous and differentiable is released 
and detailed estimation of the globally exponentially attractive sets are also 
given out. Finally, concluding remark is given. 

Keywords: Cohen-Grossberg neural networks, Lagrange stability, Globally 
exponentially attractive set, Time-varying and finite distributed delays. 

1 Introduction 

Cohen-Grossberg neural networks (CGNNs) [1] have been extensively studied in 
recent years, and they have been found many applications in solving a number of 
problems in various scientific disciplines. Such applications very much depend on the 
dynamical behavior [2-3], especially Lyapunov stability analysis [4-7]. However, 
these conclusions are not appropriate in the multistable dynamics which have multiple 
equilibria and some of them are unstable. In this case, it is worth mentioning that 
Lagrange stability refers to the stability of the total system which does not require the 
information of equilibrium points. So, it is important to study Lagrange stability. But 
until now, only a part of works have studied the Lagrange stability for neural 
networks with time-delays [8-12]. For instance, in [9], the authors studied the globally 
exponentially stability (GES) in the Lagrange sense for recurrent neural networks 
basing on [12], and then [10] continued to extend the Lagrange stability to CGNNs 
based on three kinds of specific activation functions. Similarly, basing on the results 
of [8], [11] further searched the GES in the Lagrange sense for neutral type recurrent 
neural networks. However, in allusion to the case of general activation functions, the 
Lagrange stability analysis for CGNNs by means of Linear Matrix Inequality (LMI) 
does not appear. 

Motivated by the above discussion, our objective in this paper is to study the global 
exponential stability in the Lagrange sense for the addressed CGNNs. Firstly, section 
2 describes some preliminaries, including some necessary notations, definitions, 
assumptions and lemmas. And then on the basis of the general activation functions 



 LMI-Based Lagrange Stability of CGNNs with General Activation Functions 429 

 

and Linear Matrix equality technique, main results are obtained in Section 3. Finally, 
concluding remark is given in Section 4. 

2 Model Description and Preliminaries 

Considering the following CGNNs: 

t

t- (t)
x(t)=- (x(t))[Dx(t)-Ag(x(t))-Bg(x(t- (t)))-C g(x(s))ds+U].

σ
α τ ∫  (1)

Where T
1 nx(t)=(x (t), ,x (t)) and ( )ix t  is the state variable associated with the 

neuron; 1 1 n n(x(t))=diag{ (x (t)), , (x (t))}α α α and iα is an appropriately 

amplification function. 1 nD=diag{d , ,d } , and id denotes the behaved function. 
T T

1 1 n n 1 1 1 n n ng(x(t))=(g (x (t)), ,g (x (t))) ,g(x(t- (t)))=(g (x (t- (t))), ,g (x (t- (t)))) .τ τ τ
The activation function jg shows how the neurons respond to each other. 

1

t t t T
1 1 n nt- (t) t- (t) t- (t)

g(x(s))ds=( g (x (s))ds, , g (x (s))ds) .
nσ σ σ∫ ∫ ∫ The time-varying 

delay T
1 n(t)=( (t), , (t))τ τ τ satisfies i i0 (t)≤ τ ≤ τ , and the finite distributed 

delay T
1 n(t)=( (t), , (t))σ σ σ satisfies i i0 (t)≤ σ ≤ σ . Here iτ and iσ are 

constants. n n
ij ij ijA=(a ), B=(b ),C=(c ) R ×∈ tell us how the neurons are connected 

in the network. T
1 nU(t)=(U (t), ,U (t)) and iU is the input. Function iα is 

continuous and satisfies - +
i i i0< ( ) .α ≤ α ⋅ ≤ α  Here, let 1  i  n i=max { },≤ ≤τ τ  and 

1  i  n i=max { }.≤ ≤σ σ  C[X,Y] is a class of continuous mapping set from the 

topological space X to the topological space Y. Especially, nC  [[-h, 0],R ],  
where h=max{ , }.τ σ  For any initial function 0 0(s) C, s [t -h, t ],∀ϕ ∈ ∈  the 

solution of (1) that starts from the initial condition ϕ will be denoted by 0x(t,t , )ϕ  or 

simply ( )x t  if no confusion should occur.  

Throughout this paper, the symbols nR and n mR × stand for the n -dimensional 

Euclidean space and the set of all n m× real matrices, respectively. TA and -1A  
denote the matrix transpose and matrix inverse. A>0 or A<0 denotes that the 
matrix A is a symmetric and positive definite or negative definite matrix. Meanwhile, 

A<B indicates A-B<0 and i is the Euclidean vector norm. Moreover, in symmetric 

block matrices, we use ∗  as an ellipsis for the terms that are introduced by 
symmetry. 
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Assumption 1. There exist two diagonal matrices 1 nL=diag{L , ,L }  and 

1 nF=diag{F , ,F } such that for any x, y R∈ and x y,≠  the following 

inequalities hold: i i
i i

g (x)-g (y)
L  F.

x-y
≤ ≤  

Remark 1. It should be noted that as pointed out in [6-7], the constants i iL , F , i R∈  

in assumption 1 are allowed to be positive, negative or zero. So, the assumption 1 of 
this paper is weaker than the literatures [2-3], [10-12]. 

Remark 2. In the literature [4-5] and [9-12], the results were obtained under the 
condition that time-varying delays were continuously differentiable, of which the 
derivative was bounded and smaller than one, limiting activation functions being 
bounded and monotonically non-decreasing. We like to point out that, in our paper, 
the presented results do not need the conditions mentioned above. 

Definition 1. [12] If there exists a radially unbounded and positive definite Lyapunov 

function ( ( )),V x t which satisfies ( ( )) x ,V x t
β≤ where >0β is a constant, and 

constants >0, >0,ς β  such that for 0 0V(x(t ))> , V(x(t))> , t  t ,ς ς ≥ the inequality 

0 0( ( )) ( ( ( )) ) exp{ ( )}V x t V x t t t− ζ ≤ − ζ −β − always holds. Then, 

{ | ( ( )) }x V x t ≤ ζ is said to be a globally exponentially attractive set of (1), where 

0 0( ( )) ( ( ))V x t V x t≥ and 0( ( ))V x t is a constant. 

Definition 2. CGNNs (1) with globally exponentially attractive set is said to be 
globally exponentially stable in the Lagrange sense. CGNNs (1) with globally 
attractive set is said to be ultimately bounded.  

Lemma 1. For any vectors , na b R∈ , the inequality 12 T T Ta b a Y a b Yb−± ≤ +  
holds, in which Y is any matrix with 0.Y >   

Proof: Since 0Y > , we have 

1 1/2 1/2 1/2 1/22 ( ) ( ) 0.T T T Ta Ya a b b Y b Y a Y b Y a Y b− − −± + = ± ± ≥  

From this, we can easily obtain the above inequality of Lemma 1. 

Lemma 2. (Jensen's Inequality [13]) For any constant matrix ,n nP R ×∈  

0, 0,TP P= > γ >  vector function :[0, ] nRω γ → such that the integrations 

concerned are well defined, then  

0 0 0
( ( ) ) ( ( ) ) ( ) ( ) .T Ts ds P s ds s P s ds

γ γ γ
ω ω γ ω ω≤∫ ∫ ∫  
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Lemma 3. (Schur Complement [14]) The LMI 0
T

P R

R Q

⎛ ⎞
<⎜ ⎟

⎝ ⎠
with 

,T TP P Q Q= = is equivalent to one of the following conditions: 
1(1) 0, 0;TQ P RQ R−< − <  1(2) 0, 0.TP Q R P R−< − <  

Lemma 4. (Halanay Inequality [15]) Assume there exist 1 2 0r r> > and a nonnegative 

continuous quantity function ( ),x t which satisfies 1 2( ) ( ) ( ),D x t r x t r x t+ ≤ − +
 
for all 

0 0[ , ],t t h t∈ −  then 0 0( ) ( ) exp( ( ))x t x t t tλ≤ − − holds for 0 ,t t∀ ≥ where 

( ) sup ( ), 0,
t h s t

x t x s h
− ≤ ≤

= ≥ and λ is the unique positive root of equation 

1 2 .hr r eλλ = −   

Lemma 5. Given constant matrices 1 2 3 1 2 3, , , , , ,n nA A A B B B R ×∈ and appropriate 

reversible matrices X, Y, Z, let 

3 31 1 2 21 1 1
1

3 31 1 2 2

1

1 2 3 1 2 31
2

1 2 3 1 2 31

,

0 0

0 0

0 0

.

TT T

T

A AA A A A
X Y Z

B BB B B B

X
A A A A A A

Y
B B B B B B

Z

− − −

−

−

−

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
Σ + + ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞

⎛ ⎞ ⎛ ⎞⎜ ⎟Σ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠

 

Then 1 2.Σ = Σ  

Proof: Making use of the rule of the product of matrices, we can obtain the results 
easily. So, the course of relate proof is omitted here. 

3 Main Results 

Theorem 1. Assume that assumption 1. holds, then the CGNNs system (1) is globally 
exponentially stability in the Lagrange sense if there exist five positive diagonal 

matrices P, Q, R, S, T and a positive definite matrix n nH R ×∈ such that the 
following LMIs hold: 

0,0 0

0

T

PA LQA DQ PB LQB PC LQC P LQ

QA A Q R QB QC Q

S

T

H

Θ − − − − −⎛ ⎞
⎜ ⎟∗ + −⎜ ⎟
⎜ ⎟ <∗ ∗ −
⎜ ⎟∗ ∗ ∗ −⎜ ⎟
⎜ ⎟∗ ∗ ∗ ∗ −⎝ ⎠  

(2)
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.WSW P≤  (3)

Where 
1 2( ( )) 2 ( ) ,P Q F L PD DP LQD W R T Wα σ−Θ = + − − − + + +

1 1 1diag{ , , }, diag{ , , }, diag{ , , },n n nW w wα α α α α α− − + += … = … = …
1max{| |, | |}, 1, , . { ( ) ( ) / }n T T

i i iw L F i n x R x t Px t U HUα ε−= ∀ = … Ω = ∈ ≤∣
 

is a globally exponentially attractive set of (1), where 0 1.ε<  

Proof: We consider the following radially unbounded and positive definite Lyapunov 

functional with the given positive definite diagonal matrix 1diag{ , , }nP p p= …  

and positive diagonal matrix 1diag{ , , },nQ q q= …  

( ) ( )

0 0
1 1

1
( ( )) 2 2 ( ( ) ) .

( ) ( )
i i

n nx t x t

i i i i
i ii i

s
V x t p ds q g s l s ds

s sα α= =

= + −∑ ∑∫ ∫  (4)

Calculating the derivative of ( ( ))V x t along the positive semi-trajectory of (1), we 

can obtain 

(1)

( )

( ( ))
| 2( ( ) ( ( )) ( ) )( ( ) ( ( )))

2( ( ) ( ( )) ( ) ) ( ( ( ))) 2( ( )

( ( )) ( ) ) ( ( )) 2( ( ) ( ( ))

( ) ) .

T T T

T T T T

tT T T T

t t

T

dV x t
x t P g x t Q x t LQ Dx t Ag x t

dt

x t PB g x t QB x t LQB g x t t x t PC

g x t QC x t LQC g x s ds x t P g x t Q

x t LQ U

σ

τ

−

≤ + − − + +

+ − − + +

− + +

−

∫
 

(5) 

From assumption 1, for given positive diagonal matrix R we derive 

2( ( ) ( ( )) ( ) )( ( ) ( ( )))

( ) 2 ( )

( ( )) ( ( ))

T T T

T

T

x t P g x t Q x t LQ Dx t Ag x t

x t PD DP LQD WRW PA LQA DQ x t

g x t QA A Q R g x t

+ − − + ≤

− − + + − −⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟∗ + −⎝ ⎠ ⎝ ⎠⎝ ⎠  

(6) 

By using assumption 1, Lemma 1 and Lemma 2, we know that there exist two 
positive diagonal matrices S, T and a positive definite matrix H such that the 
following inequalities hold. 

1

2( ( ) ( ( )) ( ) ) ( ( ( )))

( ) ( ) ( ) ( )

( ( )) ( ( ))

( ( )) ( ( )),

T T T

T T

T

x t PB g x t QB x t LQB g x t t

x t P LQ B P LQ B x t
S

g x t QB QB g x t

x t t WSWx t t

τ

τ τ

−

+ − − ≤

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
+ − −

(7)
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( )

1

2

2( ( ) ( ( )) ( ) ) ( ( ))

( ) ( ) ( ) ( )

( ( )) ( ( ))

( ) ( ),

tT T T

t t

T T

T

x t PC g x t QC x t LQC g x s ds

x t P LQ C P LQ C x t
T

g x t QC QC g x t

x t WTWx t

σ

σ

−

−

+ − ≤

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
+

∫

 (8)

1

2( ( ) ( ( )) ( ) )

( ) ( )
.

( ( )) ( ( ))

T T T T

T T

x t P g x t Q x t LQ U U HU

x t P LQ P LQ x t
H

g x t Q Q g x t
−

+ − ≤ +

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (9)

Based on Lemma 5 and (5)-(9), we have 

(1)

( ) ( ) ( ) ( )( ( ))
|

( ( )) ( ( )) ( ( )) ( ( ))

( ( )) ( ( )) ,

T T

T T

x t x t x t x tdV x t

g x t g x t g x t g x tdt

x t t WSWx t t U HUτ τ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞≤ Π + Λ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+ − − +

 (10)

Where 
22 ( )

,
T

PD DP LQD W R T W PA LQA DQ

QA A Q R

σ⎛ ⎞− − + + + − −
Π = ⎜ ⎟∗ + −⎝ ⎠

 

1

1

1

0 0
( ) ( )

0 0

0 0

( ) ( )
.

T

S
P LQ B P LQ C P LQ

T
QB QC Q

H

P LQ B P LQ C P LQ

QB QC Q

−

−

−

⎛ ⎞
− − −⎛ ⎞⎜ ⎟Λ = ⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟
⎝ ⎠

− − −⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Following from (2), there exists 0 1ε<  such that 

0,0 0

0

T

PA LQA DQ PB LQB PC LQC P LQ

QA A Q R QB QC Q

S

T

H

⎛ ⎞Θ − − − − −
⎜ ⎟∗ + −⎜ ⎟
⎜ ⎟ <∗ ∗ −
⎜ ⎟

∗ ∗ ∗ −⎜ ⎟
⎜ ⎟∗ ∗ ∗ ∗ −⎝ ⎠

 

Where 1 2(1 ) ( ( )) 2 ( ) .P Q F L PD DP LQD W R T Wε α σ−Θ = + + − − − + + +  
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In the light of Lemma 3, one gets -1diag{(1+ ) (P+Q(F-L)),0}+ 0.ε αΠ + Λ <  

Therefore, combining (3) and (10), we could derive that 

1
(1)

0

( ( ))
| (1 ) ( ) ( ( )) ( )

( ( )) ( ( )) , .

T

T T

dV x t
x t P Q F L x t

dt

x t t Px t t U HU t t

ε α

τ τ

−≤ − + + −

+ − − + ≥
 (11)

From assumption 1 and the formula (4), one has 

1
0( ( )) ( ) ( ( )) ( ), .TV x t x t P Q F L x t t tα −≤ + − ≥  (12)

According to (11) and (12), we obtain 

(1) 0

( ( ))
| (1 ) ( ( )) ( ( )) , ,TdV x t

V x t V x t U HU t t
dt

ε≤ − + + + ≥  (13)

Where ( ( )) sup ( ).
t h s t

V x t V s
− ≤ ≤

=  

On the basis of (13), when ( ( )) , ( ( )) ,V x t V x tη η> >  one gets 

(1) 0

( ( ( )) )
| (1 )( ( ( )) ) ( ( ( )) ), ,

d V x t
V x t V x t t t

dt

η ε η η− ≤ − + − + − ≥  

Where .
TU HUη
ε

=  According to Lemma 4, we are able to derive 

( ( ( )) ) (( ( )) ) exp( ),V x t V x t tη η λ− ≤ − −  where λ  is the unique positive root 

of (1 ) .heλλ ε= + −  And judging by [16], it is easy to prove that there exists a 

constant β  such that ( ( )) .V x t x β≥‖ ‖  In terms of Definition 1 and noticing 

1( ( )) ( ) ( ),TV x t x t Px tα −≥  then 1{ ( ) ( ) }
T

n T U HU
x R x t Px tα

ε
−Ω = ∈ ≤∣  is a 

globally exponentially attractive and positive invariant set of system (1). Hence, the 
CGNNs system (1) is globally exponentially stable in the Lagrange sense via the 
Definition 2. So, the proof of Theorem 1 is completed. 
 

Corollay 1. Assume that assumptions 1 holds and let - -
1 ndiag{ , , },α α α= …  

+ +
1 n=diag{ , , }, (t)=0.α α α σ… The CGNNs (1) is globally exponentially stability 

in the Lagrange sense if there exist four positive diagonal matrices P, Q, R, S and a 

positive definite matrix n nH R ×∈ such that the following LMIs hold: 
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0,
0

T

PA LQA DQ PB LQB P LQ

QA A Q R QB Q

S

H

Ξ − − − −⎛ ⎞
⎜ ⎟∗ + −⎜ ⎟ <
⎜ ⎟∗ ∗ −
⎜ ⎟∗ ∗ ∗ −⎝ ⎠

 (14)

.WSW P≤  (15)

Where 1( ( )) 2 ,P Q F L PD DP LQD WRWα −Ξ = + − − − + + similarly, 

1 n i i idiag{w , , w }, w = max{|L |,|F |}, i=1, ,n.W = … ∀ …  What’s more, the set 
1{ ( ) ( ) / }n T Tx R x t Px t U HUα ε−Ω = ∈ ≤∣ is a globally exponentially attractive 

set of (1), where 0 1.ε<  

Proof: The course of proof is almost parallel to that of Theorem 1, except for getting 
rid of the inequality (8) in the theorem 1. So the process of the proof is omitted in 
here. 

Remark 3. When considered ( ) 1tα ≡  in corollary 1, its conclusion will turn to the 

main result of Theorem 1 in [7]. 

4 Conclusion 

In this paper, the Lagrange stability problem for CGNNs with both general activation 
functions and time-varying and finite distributed delays is investigated. By utilizing a 
new Lyapunov-Krasovskii functional, the Halanay inequality and Linear matrix 
inequality technique, a set of novel sufficient conditions are obtained to ensure the 
globally exponentially stability in the Lagrange sense of CGNNs. Obviously, the 
results show that globally exponentially attractive set does contribute to the Lagrange 
stability. 
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Research of Triple Inverted Pendulum Based on Neural 
Network of Genetic Algorithm 

Xiaoping Huang1,Ying Zhang1, and Junlong Zheng2 
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Abstract. In the topic, I carried out the simulation of triple inverted pendulum 
system by intelligent control, which was combinated of neural network and 
genetic algorithm. Neural network oriented genetic algorithm was put forward 
and discussed its realization, it overcomed the shortcoming of slow convergent 
speed, immature convergence and lots of iterations. 

Keywords: Triple inverted pendulum, Neural network(NN), Genetic 
Algorithm(GA). 

1 The Model of Triple Inverted Pendulum 

The triple inverted pendulum system was made up of control object, guide, motor, 
pulley, belts and electrical measurement device. The Controlled object was composed 
by dolly, pendulum 1, pendulum 2 and pendulum 3. Pendulum 1, pendulum 2 and 
pendulum 3 were connected by bearing, and the bearing can be rotated freely in 
vertical plane of the parallel guide. Three potentiometers were installed in joint 
respectively to measure the relative drift angle               . 

Assumptions: The upper, the medium, the hem and the small car are all rigid 
bodies. There was no relative sliding between belt pulleys and driving band. There 
was no elongation phenomenon for the transmission belt. It was direct ratio between 
the car driving force and the input of direct current amplifier, and it has no lag. 
Ignored the armature inductance of motor, the car movement from the friction was 
directly proportional to the speed of the car, the pendulum of the friction torque and 
the relative speed (angular velocity) becomed direct ratio. The motion analysis of the 
system diagram was shown in Fig.1. 

 

Fig. 1. The triple inverted pendulum system 

3 2 2 1 1, , , ,θ θ θ θ θ− −
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Set Lagrange function:           , according to the Euler-Lagrange equation: 
 
 
 
 

Among them:    —Generalized force,    —Generalized coordinates. Then we can 

obtain the nonlinear equations of triple inverted pendulum system as follows: 

 
 
 
 
 
 

Among the equation: 

 

             
 

 

                
 
 

 
 

2 The Control Simulation of the Inverted Triple Pendulum 

Selected the S-function(System-function) of SIMULINK in MATLAB to realize the 
simulation, the S-function included three parts: mdlInitializeSizes, mdlDerivatives 
and mdlOutputs. Then we could obtain the results as below. 
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   Fig. 2. The state response of   Fig. 3. The state response of 

3 Used Genetic-Neural Network to Realize the Control of the 
Inverted Triple Pendulum 

Used the genetic algorithm that based on the neural network to train the neural 
network weights, to design the genetic neural network controller of the inverted 
pendulum. I realized this algorithm of data structure in the C language, program 
diagram and part of the important function. in the end. 

3.1 The Steps of the Genetic Algorithm That Faces to Neural Network  

① Structured the chromosomes to meet the constraint condition. Because the 
genetic algorithm (GA) could not directly deal with the solution of space. So we 
expressed the solution of appropriate chromosome through the code. There had a 
variety of encoding of chromosomes of the actual problem, the selection of 
chromosome should be meet problem constraint as far as possible, otherwise it 
would affect the computing efficiency. 

② Determined the control parameters of genetic algorithm(GA), such as the number 
of chromosomes, chromosome length, etc. 

③ Generated the initial population by random.The initial population was to search a 
group chromosome of the initiatory, the amount should be appropriate,we should 
make the initial population of individuals in the solution space on evenly 
distributed, in order to search the optimal solution rapidly. 

④ Calculated the fitness of each chromosome. Fitness was the only index to reflect 
the fulu of the chromosome.GA was used to find the biggest fitness chromosomes. 

⑤  Used duplicate, crossover and mutation calculate to generate the son group. The 
three operators were the basic operator of GA, the copy reflected the laws of 
nature survival for the fittest.Cross embodied the thought of sexual reproduction, 
variation reflected the gene mutations in the process of evolution. copy, 
crossover and mutation were used to the method of this section. 

⑥ Repeated the“step ③” ,the“step ④” and the“step ⑤” ,until it fitted the 
termination conditions. 

 
 

321 ,,, θθθr
321 ,,, θθθr
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3.2 The Neural Network（NN）Controller of Triple Inverted Pendulum 

In the control system, I appointed the level state variables of triple inverted 
pendulum: 

1 2 3 1 2 3( , , , , , , , )θ θ θ θ θ θ=x r r  

Taked sample,   was the input vector,it should be contained all the input value of the 
maximum and minimum value, here was for: 
 

 
t was the objective vector,and t=Kx, K was the feedback gain. Designed a three layers 
network of BP neural,then trained it. 

 

Fig. 4. The structre of NN controller of the triple inverted pendulum 

The network layer was made up of the input, the hidden layer and output layers. 
The number of the input layer nodes was 8, I/0 function was tansig function. The 
number of the nodes hidden layer was 8, I/0 function was tansig function. There was 
only one node in output layer, its I/0 function was purelin function. The following 
datum were the training program of Back-Propagation network: 

  
 
 
 

 
disp_fgre=l；      % indicates that frequency in training process 

max_epoch=1000； % the maximum number of training 
err_goal=0.0001；  % Error index 

tp=[disp_fgre max_epoch err_goal] 
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3.3 The Diagram of Training NN Weights with Neural Network of Genetic 
Algorithm (NNOGA) 

 

Fig. 5. The basic flow chart of NNOGA 

3.4 Trained the Data Structures of NN Weights with NNOGA 

This mainly data structure of procedure is the population(population). 

# define POPULATION_SIZE 30      /*The number of group */ 
# define WEIGHT_NUM 31           /*Connection power number*/ 
# define SAMPLE_NUM 500          /*Sample logarithm*/ 
# define FIRST 4                       /*The points of NN input layer */ 
# define SECOND 5                    /*The points of NN hidden layer*/ 
# define CHROM_LENGTH 31        /*Length of string*/ 
# define K 1.5                          /*Adjustment factor of adaptive value 

for string length*/ 
# define P 0.8                          /*Selectional parameters*/ 
FILE *fp； 

   int generation；                        /*The number of producing offspring */ 
int selected[POPULATION_SIZE]； 
struct population 
{ 

double value[WEIGHT_NUM]；     /*Network weights*/ 
double string[CHROM_LENGTH]； /*The string of Chromosome*/ 
double fitness；                      /*Adaptive value*/ 

} 
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3.5 System MATLAB Simulation of NN Control 

Used the mathematical model that had been built foward, we carried out the 
simulation of the triple inverted pendulum neural network control system in figure 6. 
Get the response of the system state variables as Fig.6. 

 

 

   Fig.6. The state response of     Fig.7. The state response of           

In the above image of Fig.6, ‘—’、‘――’、‘—·’、‘——’respectively stands on 
the state response curve of         , the dooly was nearby in the balance position, 
swinging rod angle tends to 0 degree. 

In the above image of Fig.7, ‘—’、‘――’、‘—·’、‘——’respectively standed on 
the state response curve of            ,the small car translation speed and swinging 
rod speed were tend to be 0.   

4 Conclusion 

Inverted pendulum device was typical nonlinear object.I used the improved genetic 
algorithm-facing neural network of genetic algorithm (NNOGA) to train network 
weights, and realize the control of the inverted pendulum. This algorithm was based 
on the global scope search, it could avoid the local minimum faults that used the 
traditional BP algorithm. In addition, the algorithm demanded little required for the 
objective function and constraints, it could complete training of the multilayer neural 
network for the non- excitation funceion of nerve. From results of the experiment, the 
control effect of the inverted pendulum was good. 

Innovation points: Put forward neural network to the genetic algorithm (NNOGA), 
and realized the control to the triple inverted pendulum with the implementation of 
algorithm. 
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Abstract. Accurately rainfall–runoff forecasting modeling is a challeng-
ing task. Recent neural network (NN) has provided an alternative ap-
proach for developing rainfall–runoff forecasting model, which performed
a nonlinear mapping between inputs and outputs. In this paper, an ef-
fective hybrid optimization strategy by incorporating the jumping prop-
erty of simulated annealing (SA) into Genetic Algorithm (GA), namely
GASA, is used to train and optimize the network architecture and con-
nection weights of neural networks for rainfall–runoff forecasting in a
catchment located Liujiang River, which is a watershed from Guangxi of
China. This new algorithm incorporates metropolis acceptance criterion
into crossover operator, which could maintain the good characteristics of
the previous generation and reduce the disruptive effects of genetic op-
erators. The results indicated that compared with pure NN, the GASA
algorithm increased the diversity of the individuals, accelerated the evo-
lution process and avoided sinking into the local optimal solution early.
Results obtained were compared with existent bibliography, showing an
improvement over the published methods for rainfall–runoff prediction.

Keywords: Genetic Algorithm, Simulated Annealing, Neural Network,
Rainfall–runoff, Forecasting.

1 Introduction

Forecasting rainfall–runoff process is always a especially difficult task in simu-
lation of the whole hydrological cycle, because the rainfall–runoff relationship
is one of the most complex hydrologic phenomena to comprehend due to the
tremendous spatial and temporal variability of watershed characteristics and
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precipitation patterns, and the number of variables involved in the modeling
of the physical processes [1]. In recent years, neural network (NN) have been
successfully applied in hydrological forecasting [2] [3], mainly because of NN’s
ability of nonlinear mapping mechanisms. As neural network approaches want of
a rigorous theoretical support, effects of applications are strongly depend upon
operator’s experience. If carelessly used, it can easily learn irrelevant informa-
tion (noises) in the system (over-fitting). In the practical application, researchers
determine appropriate net- work architecture and values of different parameters
with trial and error due to short of prior knowledge [4] [5].

Recently some investigations into neural network training using genetic algo-
rithm (GA) have been successfully employed to overcome the inherent limita-
tions of the NN [6][7]. Genetic algorithms have been used with neural network
to search for input variables or to determine the number of nodes or connections
in the network. Because GA search from not only a single point but a large
population of points, many researchers have actively exploited the combining of
multiple NN’s which have evolved in the last generation. However, these NN’s
tend to be too similar to each other because in each case, the individual with the
highest fitness has prevailed even after certain generations. This phenomenon is
known as premature convergence towards a local minimum [8].

Different from the previous work in this paper, one of the main purposes is to
develop an effective hybrid optimization strategy by incorporating Simulated An-
nealing (SA) into Genetic Algorithm (GA) for NN training, namely NN–GASA,
to overcome the weaknesses of GA and to avoid premature convergence towards
a local minimum. GASA is used to train and optimize the network architecture
and connection weights of neural networks for rainfall–runoff forecasting in a
catchment located Liujiang River, which is a watershed from Guangxi of China.
The rainfall–runoff data of Liuzhou in Guangxi is predicted as a case study
for our proposed method. An actual case of forecasting monthly runoff is illus-
trated the improvement in predictive accuracy and capability of generalization
achieved.

The organization of the paper is as follows. Section 2 describes the proposed
GASA, ideas and procedures. For further illustration, this work employs the
method set up a prediction model for rainfall-runoff forecasting in Section 3.
Discussions are presented in Section 4 and conclusions are drawn in the final
Section.

2 Methodology

2.1 Genetic Algorithm and Simulated Annealing Algorithm

Genetic Algorithm is heuristic optimization algorithms based on principles in-
spired from the genetic and evolution mechanisms observed in natural systems
and populations of living beings [9] [10]. The algorithm mimics the evolution of
a population of computer representations of the solutions by iteratively applying
genetic operators, such as recombination and mutation, to the solutions that have
the highest fitness in the population. Their basic principle is the maintenance of



446 H. Ding, J. Wu, and X. Li

a population of solutions to a problem (genotypes) as encoded information indi-
viduals that evolve in time. Readers interested in a more detailed introduction
about GA implementation are referred to the related literature [11].

Simulated Annealing (SA) was a metanephritic which has been considered a
good tool for complex nonlinear optimization problems [12] [13]. The basic idea
of the standard SA is that it tries to avoid being trapped in local minima by
making uphill move with the probability p = exp(−ΔE/T ), where ΔE is the
amount of increase in the objective value caused by the uphill move and T is
a parameter referred to as “annealing temperature”. To avoid accepting large
uphill move in the later stage of the search, the parameter T could be decreased
over time by a schedule which is called “the cooling schedule”. More detailed
introduction about SA algorithm are referred to the related literature [14].

2.2 Evolving Neural Network Using Hybrid GASA

The most widely used neural network model is the multi–layer perception (MLP),
in which the connection weight training is normally completed by a back–
propagation (BP) learning algorithm based on gradient descent. In addition,
lots of issues are based on n-dimensional curve surfaces, which makes BP algo-
rithm to converge slowly and fall in a local minima easily [15]. The network used
in this paper consists of an input layer, one hidden layer, and an output layer as
shown in Fig. 1.

x1

x2

xn-1

xn

y

Input Layer Output LayerHidden Layer

wij

wjk

C on e cti on  we i gh t
m arti ce s

Fig. 1. Architecture of the neural network model used in this paper

Referring to Fig. 1, each neuron in the network computers by using the sum of
its weighted inputs and passing the result through a nonlinear activation function
(transfer function). In this paper the tangent function is used to transfer the
values of the input layer nodes to the hidden layer nodes, whereas the linear
transfer function is adopted to transfer the values from the hidden layer to the
output layer. Each hidden neuron’s output is calculated using Eq. (1), while the
output neurons output is calculated using Eq. (2)

Xi = tanh(

n∑
i=1

xiωij + ωj0) (1)
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ŷi =

m∑
i=1

Xjωjk + ωk0 (2)

This paper evolving neural networks by using GASA consists of two major
phases: (i) using global searching ability of GASA to find an appropriate net-
work architecture and connection weights; (ii) using BP algorithm to search
peak value(s) in detail; Mathematically, optimization problems of GASA-neural
network can be described as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

minE(ω) = 1
n

n∑
i=1

[yi − ŷi]
2

ŷi =
m∑
i=1

Xjωjk + ωk0

Xi = tanh(
n∑

i=1

xiωij + ωj0)

(3)

The fitness function is defined as follows:

f(ω) = 1/(1 +minE(ω)) (4)

The major steps of the proposed algorithm are as follows:

1. Initialize the variables of GA and SA. The hidden nodes are encoded as
binary code string, 1 with connection and 0 without connection. The
connection weights are encoded as float string, randomly generated within
[−1, 1].

2. Creating an initial population by randomly generating a set of feasible
solutions (chromosomes).

3. Computing each chromosome by running the load runoff data.
4. Apply the crossover operator, the child chromosomes are accepted

according to eq. 8,

P =

{
1 if f∗ ≤ f

exp( f−f∗

T ) if f∗ > f
(5)

where f∗ and f are the fitness values of parent and child chromosomes,
respectively, T is the temperature.

5. Apply the mutation operator to the new population.
6. Let the current population be the new population.
7. If the convergence criterion is satisfied, stop. Otherwise go to step 3.

Obtain the appropriate network architecture and connection weights.
8. Apply the Back–Propagation Algorithm training Neural Network.

Fig.2 shows flowchart of the proposed algorithm. Selection of chromosomes for
applying various GA operators is based on their scaled fitness function in ac-
cordance to the roulette wheel selection rule. The roulette wheel slots are sized
according to the accumulated probabilities of reproducing each chromosome.
Crossover and mutation operators are carried with the pre-specified probabili-
ties, but the resultant chromosomes of crossover operator are accepted according
to step5 in the proposed algorithm steps.
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Fig. 2. Flowchart of algorithm

3 Experimental Results and Discussion

3.1 Study Area and Data

Data used in this paper are from the Liujinag basin, located in in the southwest
of China and is the most important sub–catchment of Xijiang basin drainage.
The data contains information for a period of 68 years (1941–2009). Furthermore,
data from 1941 to 2004 constitute the training set and the 5 remaining data is
used in the testing phase.

3.2 Evaluation of Model Performances

Three different types of standard statistical performance evaluation criteria were
employed to evaluate the performance of various models developed in this pa-
per. These are average absolute relative error (AARE), root mean square error
(RMSE), and the correlation coefficient (CC)which be found in many paper [16].

For the purpose of comparison, we also built the other two prediction models
for fitting and forecasting, such as Simple Moving Average (SMA) model and
Autoregressive Integrated Moving Average (ARIMA) model. Simple moving av-
erage model could be expressed as

ŷt+1 =
1

N
(yt + · · ·+ yt−N+1), t = N,N + 1, · · · , T (6)

where ŷt+1 is prediction valuer, yT are observation sequence, N is the number of
moving average terms, N < T . The valuer of N is 5 by the least sum of square
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error. Through calculating autocorrelation function, partial correlation function
and AIC, The ARIMA model is as follows:

−BXt = (1 + 0.8732B − 0.26B2)εt (7)

3.3 Analysis of the Results

In the process of determining model inputs, the nine lags was chosen as the
NN–GASA models inputs by trying different lags with the best performance.
This paper GA parameters are set as follows: the iteration times are 1000, the
crossover probability is 0.9 and mutation probability is 0.05. Fig.3 shows the
curve of fitness of training NN in the learning stage for GASA approach arising
from the generation number. One can see that the maximum, average and the
minimum fitness are tending towards stability with increase of iteration number.
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Fig. 3. Fitness in GASA approach
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Fig. 4. Comparison predicted results

Fig.4 shows the comparison between predicted and measured runoff values at
training and testing phases by three different models model using the maximum
annual runoff data from the Liuzhou catchment. In Fig.4 the output of the NN–
GASA model, simulated with test data, shows a good agreement with the target.

For the total of annal runoff for Liujing river forecasting, the performance
of three model is summarized in Table 1. From the graphs and table, we can
generally see that the forecasting results are very promising in the rainfall–
runoff forecasting under the research where either the measurement of fitting
performance is goodness of fit, such as AARE, RMSE and PRC, where the
forecasting performance performance.

In this paper, a new forecast method NN–GASA, by us is proposed. The
NN–GASA method adopts neural network combined with a goal-search genetic
algorithm and simulated annealing and is found to be able to exploit all the origin
methods’ advantages. The proposed method is next applied to runoff forecasting,
as an example test, in an actual Liujiang river and demonstrates an encourag-
ing degree of accuracy superior to other commonly used forecasting methods in
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Table 1. Performance statistics of the three models for runoff fitting and forecasting

Model
Training data Testing data

NN–GASA ARIMA SMA NN–GASA ARIMA SMA

AARE 0.085 0.149 0.160 0.085 0.123 0.102
RMSE 41.746 69.521 75.843 47.091 51.240 53.953
PRC 0.926 0.661 0.575 0.806 0.632 0.456

several time-period cases reported in this paper. The forecasting results are tab-
ulated and partially converted into figure for evaluation and comparisons, the
results indicate the NN–GASA is a very efficient and robust model.

4 Conclusion

In this paper, the advantages and the key issues of the Genetic Algorithm and
Simulated Annealing evolved Neural Network has been presented to model the
rainfallCrunoff relationship in Liujiang catchment. Our methodology adopts a
real coded GASA strategy and hybrid with back-propagation algorithm. The
GASA operators are carefully designed to optimize the neural network, avoiding
problems premature convergence , permutation and escaping from local optima.
The experiment with real rainfall–runoff data have showed that the predictive
performance of the proposed model is better than that of the traditional model.
So the NN–GASA ensemble forecasting model can be used as an alternative tool
for monthly rainfall forecasting to obtain greater forecasting accuracy and im-
prove the prediction quality further in view of empirical results, and can provide
more useful information, avoid invalid information for the future forecasting.
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Abstract. This paper is about multistep fuzzy classifier forming method with 
cooperative-competitive coevolutionary algorithm. Cooperative-competitive 
coevolutionary algorithm automatically allows avoiding the problem of genetic 
algorithm parameters setting. This approach is included in a new method 
combining Michigan and Pittsburgh approaches for fuzzy classifier design. The 
procedure is performed several times. After each step classification efficiency is 
increased and standard deviation of values is decreased. Results of numerical 
experiments for machine learning problems from UCI repository are presented. 

Keywords: fuzzy classifier, coevolutionary algorithm, classification. 

1 Introduction 

A fuzzy classifier [1] is a classification algorithm based on fuzzy rules extraction 
from numerical data. Superiority of this method upon other classification algorithms 
(for example, neural networks) is provided by fuzzy rules which are linguistic 
expressions and are available for humans understanding. Thus fuzzy classifier is one 
of the data mining methods for knowledge discovery.  

Fuzzy classifier forming can be considered as an optimization problem. In this case 
we need to find the best fuzzy classifier. Fuzzy classifier forming includes two 
problems. The first one is a rule base generating and the second one is membership 
functions tuning. It should be noted that the first problem is more sophisticated due to 
huge dimension and discrete variables. So in this paper we present only fuzzy rule 
base generating problem. 

As fuzzy rule base generating is a complicated computational problem, the popular 
method of its solving is genetic-based machine learning [2, 3]. There are two basic 
ways for genetic algorithm applying to get fuzzy rule base: Michigan-style and 
Pittsburgh-style. In Michigan approach [3] chromosomes are individual rules; and a 
rule set is represented by the entire population. In Pittsburg method [3] chromosomes 
are rule sets at whole. The problem in the Michigan approach is the conflict between 
individual rule fitness and performance of fuzzy rule set. Pittsburgh-style systems 
require a lot of computational efforts. So a combination of Michigan and Pittsburgh 
methods is a promising approach. In [4] the hybridization of both approaches by using 
Michigan method as a mutation operator in Pittsburgh-style algorithm is presented.  
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A new method of Michigan and Pittsburgh approaches combination for fuzzy 
classifier rule base design with coevolutionary algorithms was developed in [5]. Fuzzy 
classifier rule base design consists of two main stages excepting initial population of 
fuzzy rules forming using a-priori information from a learning sample. At the first stage 
Michigan method is used for fuzzy rules search with high grade of certainty. At the 
second stage Pittsburgh method is applied for searching subset of rules with good 
performance and given number of rules. Constraint for number of rules is used at the 
second stage of fuzzy classifier generating. This method requires less computational 
efforts than multiobjective optimization for fuzzy rules extraction. Besides this method 
has some advantages that were showed by numerical experiments. 

Another problem with genetic algorithm applying is the algorithm parameters 
setting. This problem is especially essential for optimization problems with high 
computational complexity such as fuzzy rule base generating. There are some 
methods for GA parameter setting. We suggest special procedure named cooperative-
competitive coevolutionary algorithm for this problem solving [6]. This method 
combines ideas of cooperation and competition among subpopulations in the 
coevolutionary algorithm. We have tested this algorithm for some computationally 
simple problems for proving its efficiency and then we used it for fuzzy rule base 
forming. Coevolutionary algorithm for unconstrained optimization is applied at the 
first stage (Michigan approach) and coevolutionary algorithm for constrained 
optimization is used at the second stage (Pittsburgh approach). 

This method for fuzzy classifier rule base design was applied for some machine 
learning problems from UCI repository [7]. Some statistical investigations were 
performed. So we got a set of fuzzy classifiers for each classification problem. 

The next idea is the multistep procedure. After multiple fuzzy classifiers forming 
we got a set of fuzzy classifiers for each classification problem. The natural step is 
collective forming fuzzy rule base using a set of classifiers that were generated with 
our approach. For collective forming of fuzzy classifier cooperate-competitive 
coevolutionary algorithm can be applied again. Thus we can repeat this procedure 
more times. So we formulated multistep procedure of fuzzy classifier forming. We 
have implemented this method and got good results for all classification problems 
mentioned above. 

The details of the cooperative-competitive coevolutionary genetic algorithm for 
strategy adaptation are described in Section 2. The development of the new Michigan 
and Pittsburgh method combination for fuzzy classifier rule base design and details of 
multistep procedure are discussed in Section 3. The machine learning problems from 
UCI repository and the results of numerical experiments are presented in Section 4. 
Conclusions are listed in Section 5.  

2 Cooperative-Competitive Coevolutionary Algorithm 

One of the most complicated problems for genetic algorithm application is the 
algorithm parameters setting. Conventional genetic algorithm has at least three 
methods of selection (proportional, tournament, and rank) and three methods of 
recombination (one-point, two-point, and uniform). Mutation probability requires 
tuning as well. It is necessary to choose constraint handling method for constrained 
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optimization problems. A number of various combinations can be estimated at tens. 
Exhaustive search of combinations requires a lot of time and computational efforts. 
Parameters combination selection by chance is also a bad idea as algorithm efficiency 
for the same problem can differ very much for different parameters setting. 

In [8] strategy adaptation by competing subpopulations has been suggested. Each 
subpopulation has its own search strategy (algorithm parameters combination). 
Resource redistribution provides domination of the subpopulation with the best search 
strategy for the problem-in-hand. This method can be considered as an example of 
coevolutionary genetic algorithm. 

We have developed slightly different approach [6] that uses both competition and 
cooperation of individual genetic algorithms each having its own parameters setting. 
There are resource redistribution and migration operators simultaneously. 
Cooperation of individual conventional genetic algorithms is provided by migration 
of the best solutions to all the individual genetic algorithms. So, coevolutionary 
algorithm efficiency can increase due to the positive effect of subpopulations 
interacting. This cooperative-competitive coevolutionary genetic algorithm needs no 
tuning of special parameters. The details of the algorithm one can read in [6]. 

Cooperative-competitive coevolutionary genetic algorithm for unconstrained 
optimization has been tested on typical set of GA-community unconstrained 
optimization test problems. The reliability of optimum point catching has been used as 
the efficiency criterion. The common result of those investigations was the observation 
that coevolutionary algorithm competing with some dozens individual algorithms was 
mostly the second or third best ones among them and it is always more effective than 
individual genetic algorithm with average effectiveness. It seems to be close to success 
as coevolutionary algorithm has demonstrated its ability to provide effective problem-
in-hand solving procedure without extra efforts for setting GA parameters.  

The main idea of the coevolutionary algorithm adaptation for constrained optimization 
is using different methods of constraint handling (“death” penalty, dynamic or adaptive 
penalty function [9]) in search strategies of individual genetic algorithm. A migration 
method was modified for algorithm adaption for constrained optimization.  

Cooperative-competitive coevolutionary genetic algorithm for constrained 
optimization has equal or better reliability than the best conventional genetic algorithm. 
Also coevolutionary algorithm has a better convergence rate than the best conventional 
genetic algorithm. These effects are provided by competitive cooperation between 
subpopulations in coevolutionary algorithm. Besides, coevolutionary genetic algorithm 
is a very appropriate tool for parallel computing with multiprocessors. 

3 Multistep Fuzzy Classifier Forming 

For the first step of fuzzy classifier forming combination of Michigan and Pittsburgh 
is used [5]. Michigan method is used for fuzzy rules with a high grade of certainty 
determination. Pittsburgh method is applied to determine of rules subset with good 
performance. Constraint for number of rules is used at the second stage of fuzzy 
classifier generating. 
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A prior to main stages of our method there are two important preparatory steps of 
fuzzy classifier generating: attribute fuzzification (fuzzy number semantic setting) and 
initial population of fuzzy rules forming for Michigan approach using a priori 
information from a learning sample. 

Michigan-style stage. The chromosomes are fuzzy rules. Chromosome length is 
equal to the number of attributes; each gene is an index for the corresponding fuzzy 
number. Fitness function is certainty grade of the fuzzy rule calculated by a learning 
sample [1]. Genetic algorithm for unconstrained optimization is applied. New 
population forming method is modified. After generation performing, parents and 
children are combined to common array. Different fuzzy rules with the best values of 
fitness function for each class are selected to the next generation. This new population 
forming method provides diversity of rules for each class and diversity of classes in 
population. For each generation classification performance is calculated for 
population at whole. Population with the best value of classification performance is 
used for the next stage of fuzzy classifier generating. Cooperate-competitive 
coevolutionary genetic algorithm for unconstrained optimization is applied. 

Pittsburgh-style stage. Chromosomes are the fuzzy rule sets. Chromosome length 
is equal to the population size for Michigan-style stage. Chromosome genes are 
binary. Value “1” means using the corresponding rule in the set, value “0” means not 
using the corresponding rule. Fitness function is classification performance. 
Constraint for number of rules is used. This value is specified by researcher. The 
constraint is used because it is better to have small number of rules in the final rule 
base. Cooperate-competitive coevolutionary genetic algorithm for constrained 
optimization is applied. New generation forming method is standard. 

After multiple fuzzy classifiers forming we got a set of fuzzy classifiers for each 
classification problem. The natural step is collective forming fuzzy rule base using a 
set of classifiers that were generated with our approach. In this case Pittsburgh-style 
stage of fuzzy classifier forming is performed again. A set of fuzzy rule base is analog 
of fuzzy rule base generated after Michigan-style stage. We also use constraint for 
feasible number of rules. For collective forming of fuzzy classifier cooperate-
competitive coevolutionary algorithm can be applied again. Thus we can repeat this 
procedure more times. So we formulated multistep procedure of fuzzy classifier 
forming. We have implemented this method and got good results for some 
classification problems from UCI repository. 

4 Test Problems and Numerical Experiments 

The developed method of fuzzy classifier rule base design has been applied for a 
number of classification machine learning problems from UCI repository [7]: 

- Credit (Australia-1) (14 attributes, 2 classes); 
- Credit (Germany) (24 attributes, 2 classes); 
- Liver Disorder (6 attributes, 2 classes); 
- Iris (4 attributes, 3 classes); 
- Yeast (8 attributes, 10 classes); 
- Glass Identification (9 attributes, 7 classes); 
- Landsat Images (4 attributes, 6 classes). 



456 R. Sergienko and E. Semenkin 

Some statistical investigations were performed for all problems. For each problem 
classification performance values (correctly classified part of test sample) for each 
stage and other parameters are presented in Tables 1-7. We can see classification 
efficiency values and standard deviation values after multiple performing of the 
algorithm for one-step and for two-step fuzzy classifier forming. There is feasible 
number of rules in brackets. For the first three problems comparison with alternative 
classification methods has been performed (Table 8). These algorithms are Bayesian 
approach, multilayer perceptron, boosting, bagging, random subspace method (RSM), 
and cooperative coevolution ensemble learning (CCEL).  

Table 1. Results of Fuzzy Classifier Forming for Credit (Australia-1) 

Parameter One-step fuzzy classifier 
forming 

Two-step fuzzy 
classifier forming 

Maximum 
performance 

0,870 (10) 
0,890 (20) 
0,891 (30)

0,891 (10) 
0,919 (20) 
0,926 (30)

Average 
performance 

0,827 (10) 
0,861 (20) 
0,873 (30)

0,888 (10) 
0,918 (20) 
0,924 (30)

Minimum 
performance 

0,758 (10) 
0,841 (20) 
0,854 (30)

0,886 (10) 
0,910 (20) 
0,922 (30)

Standard deviation 0,02482 (10) 
0,01231 (20) 
0,01035 (30)

0,00174 (10) 
0,00269 (20) 
0,00171 (30) 

Table 2. Results of Fuzzy Classifier Forming for Credit (Germany) 

Parameter One-step fuzzy classifier 
forming 

Two-step fuzzy 
classifier forming 

Maximum 
performance 

0,767 (50) 
0,794 (80) 

0,795 (50)
0,821 (80) 

Average 
performance 

0,762 (50) 
0,790 (80) 

0,791 (50)
0,815 (80) 

Minimum 
performance 

0,755 (50) 
0,784 (80) 

0,783 (50)
0,809 (80) 

Standard deviation 0,00357 (50) 
0,00296 (80)

0,00431 (50) 
0,00534 (80) 

Table 3.  Results of Fuzzy Classifier Forming for Liver Disorder 

Parameter One-step fuzzy classifier 
forming 

Two-step fuzzy 
classifier forming 

Maximum 
performance 

0,687 (10) 
0,710 (15) 
0,725 (20)

0,713 (10)
0,739 (15) 
0,757 (20)

Average 
performance 

0,666 (10) 
0,682 (15) 
0,692 (20)

0,705 (10)
0,731 (15) 
0,748 (20)

Minimum 
performance 

0,632 (10) 
0,655 (15) 
0,655 (20)

0,699 (10)
0,719 (15) 
0,739 (20)

Standard deviation 0,01500 (10) 
0,01669 (15) 
0,01731 (20)

0,00449 (10) 
0,00608 (15) 
0,00554 (20) 
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Table 4. Results of Fuzzy Classifier Forming for Yeast 

Parameter One-step fuzzy classifier 
forming 

Two-step fuzzy 
classifier forming 

Maximum 
performance 

0,598 (20) 
0,606 (30) 
0,626 (60)

0,609 (20)
0,641 (30) 
0,674 (60)

Average 
performance 

0,573 (20) 
0,586 (30) 
0,593 (60)

0,605 (20)
0,633 (30) 
0,668 (60)

Minimum 
performance 

0,540 (20) 
0,555 (30) 
0,542 (60)

0,602 (20)
0,625 (30) 
0,662 (60)

Standard deviation 0,01801 (20) 
0,01710 (30) 
0,02207 (60)

0,00241 (20) 
0,00431 (30) 
0,00429 (60) 

Table 5. Results of Collective Fuzzy Classifier Forming for Iris 

Parameter One-step fuzzy classifier 
forming 

Two-step fuzzy 
classifier forming 

Maximum 
performance 

0,947 (3) 
0,973 (4) 
0,987 (5) 
0,987 (6)

0,980 (3)
0,980 (4) 
0,987 (5) 
0,993 (6)

Average 
performance 

0,908 (3) 
0,951 (4) 
0,971 (5) 
0,975 (6)

0,980 (3)
0,980 (4) 
0,987 (5) 
0,993 (6)

Minimum 
performance 

0,767 (3) 
0,900 (4) 
0,940 (5) 
0,933 (6)

0,980 (3)
0,980 (4) 
0,987 (5) 
0,987 (6)

Standard deviation 0,05643 (3) 
0,02623 (4) 
0,01303 (5) 
0,01073 (6)

0,00000 (3) 
0,00000 (4) 
0,00000 (5) 
0,00211 (6) 

Table 6. Results of Collective Fuzzy Classifier Forming for Glass Identification 

Parameter One-step fuzzy classifier 
forming 

Two-step fuzzy 
classifier forming 

Maximum 
performance 

0,757 (20) 
0,827 (30) 

0,836 (20)
0,874 (30) 

Average 
performance 

0,737 (20) 
0,781 (30) 

0,824 (20)
0,861 (30) 

Minimum 
performance 

0,706 (20) 
0,757 (30) 

0,813 (20)
0,827 (30) 

Standard deviation 0,01388 (20) 
0,01831 (30)

0,00737 (20) 
0,01354 (30) 
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Table 7. Results of Collective Fuzzy Classifier Forming for Landsat Images 

Parameter One-step fuzzy classifier 
forming 

Two-step fuzzy 
classifier forming 

Maximum 
performance 

0,849 (10) 
0,857 (15) 
0,857 (20)

0,851 (10)
0,861 (15) 
0,864 (20)

Average 
performance 

0,838 (10) 
0,847 (15) 
0,849 (20)

0,850 (10)
0,859 (15) 
0,863 (20)

Minimum 
performance 

0,821 (10) 
0,836 (15) 
0,835 (20)

0,848 (10)
0,856 (15) 
0,862 (20)

Standard deviation 0,00783 (10) 
0,00416 (15) 
0,00546 (20)

0,00107 (10) 
0,00144 (15) 
0,00090 (20) 

Table 8. The Classification Performance Comparing for Different Algorithms 

Algorithm 
Credit 

 (Australia-1)
Credit (Germany) Liver Disorder 

Collective method of fuzzy classifier 
forming 0,928 0,821 0,757 

Basic method of fuzzy classifier forming 0,891 0,794 0,725 
Bayesian approach 0,847 0,679 0,629 

Multilayer perception 0,833 0,716 0,693 
Boosting 0,760 0,700 0,656 
Bagging 0,847 0,684 0,630 

Random Subspace meethod 0,852 0,677 0,632 
Cooperative Coevolution Ensemble 

Learning 
0,866 0,746 0,644 

 
We can see that classification efficiency is increased and standard deviation of 

values is decreased for two-step fuzzy classifier forming. 

5 Conclusions 

The main result of our work is collective fuzzy classifier forming method. Having 
generated some fuzzy classifiers we are able to construct more effective classifier 
from previous classifiers using again cooperative-competitive coevolutionary 
algorithm. A number of using fuzzy rules isn’t increasing with this method. The 
approach of multistep fuzzy classifier forming has the following features: 

1) The method improves classification performance without increasing number of 
rules. 

2) The method reduces diversity of performance values for multiple algorithm runs, 
i.e. the method has higher statistical stability. 

3) The method is more effective for more complicated classification problems (more 
attributes and classes). 

For following investigations we should test our approach for more steps. Essential 
question is convergence of the method. Besides it may be not only convergence of 
classification efficiency value but also convergence of linguistic fuzzy rules. 
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Fuzzy classifier forming methods comparison with alternative classification 
methods by performance value demonstrates that both fuzzy classifier forming 
methods have better efficiency that present-day classification algorithms. 
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Abstract. A numerous industries need to the applications of a variable speed 
underneath a high quality controller, in recent years the ac drive has been one of 
the most important strategies in speed control due to a high reliability of 
induction motor and the development in power electronic field, this paper 
proposed the Fuzzy Logic Controller (FLC) to get a superior behavior over a 
wide range of speed variation. Fuzzy logic is a robust controller for linear and 
non-linear system, but adjusting fuzzy controller parameters is a challenging 
problem, it depends on operator’s experience. (Nowadays, many intelligent 
techniques are used for this task). In this work Particle Swarm Optimization 
(PSO) algorithm is utilized to adapting centers and width of triangle 
membership functions, this method deal with a simulation of a complete 
mathematical model of an induction motor and its inverter. The simulation 
results demonstrate that the proposed PSO-FLC speed controller realizes a good 
dynamic behavior of the I.M compared with conventional FLC and PID 
controller. 

Keywords: Particle Swarm Optimization PSO, Fuzzy Logic Control FLC, 
Voltage Source Inverter VSI, Induction Motor IM. 

1 Introduction 

Ac drive is a widespread application of poly phase inverters to adjusting speed motor. 
The typical inverter drives are voltage source inverter producing Pulse Width 
Modulated (PWM) signals with a sinusoidal fundamental to get a lower scale of 
harmonics. The controller of this system must be designed for the specified 
performance. The conventional control systems are normally based on the 
mathematical model of a plant as long as it is available with ac motor parameters 
(stator flux orientation) [1]. However, the nonlinear dependencies with stator flux 
must be developed. A highly nonlinear system is difficult to obtain an exact 
mathematical model. Such procedures are tedious and time-consuming, in addition to 
its complexity. Fuzzy logic control (FLC) or Fuzzy Inference System (FIS) are a 
powerful controller tool, even if system is non-linear and ill-defined and accurate 
mathematical model is unavailable. But, fuzzy controller suffers from the drawback of 
tuning of parameters (number of membership functions and its type, rules number, 
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and formulating rules). The tuning of scaling factors for this parameter done either 
interactively by trial and error or human expert [2]. Therefore, the tunings of the FLC 
parameters are necessitated to an effective method for tuning. Nowadays, several new 
intelligent optimization techniques have been emerged, such as Genetic Algorithms 
(GA), exploiting the ideas of Darwinian evolution, Simulated Annealing (SA), Ant 
Colony Optimization (ACO) and Bacteria Foraging Optimization (BFO) among these 
nature-inspired strategies the Particle Swarm Optimization (PSO) algorithm is 
relatively novel [3], PSO has received great attention in a control system as such as 
the search of optimal PID controller. In this paper, generating fuzzy controller 
parameters are based PSO proposes as a modern intelligent algorithm. 

2 Modeling and Simulation of Three Phases I.M. 

One of the most popular induction motor models derived from its equivalent circuit is 
Krause’s model is based on a transformation of the stator’s currents and of the 
magnetic fluxes of the rotor to the reference frame “d−q” which rotates together with 
the rotor [4].  While, axis transformation is applied to transfer the three-phase 
parameters (voltage, current and flux) according to (d-q axes stationary frame), then 
coupling coefficients between the stator and rotor phases change continuously with 
the change of rotor position can be solved. Which stator and rotor parameters rotate at 
synchronous speed, and all simulated variables in the stationary frame can consider 
d.c quantities [5].The per-phase equivalent circuit diagrams of an I.M. in two-axis 
synchronously rotating reference frame are illustrated in figure (1). 

 

Fig. 1. I.M equivalent circuit is d-q axes components 

Where: “ ” d-q axes components stator 
voltage, rotor voltage, stator current and rotor current respectively. 

 d-q axes components flux linkage of the stator and rotor. “ ” 
Stator and rotor winding resistance. ( ) Stator and rotor inductance.  
Magnetizing inductance.  Rotor speed. “ ” Synchronous speed. From the circuit 
diagram the following equations can obtained: 

( )
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(1)

(2)

The development torque can be obtained by interaction of air gap flux and rotor 
current  and solve the variables into dq-axes stationary frame to get the equation (3): 

 
(3)

The dynamic torque equation of the rotor is formed in (4). Where, J is the rotor’s 
inertia, and  is the external load torque [6]. 

 (4)

The previous differential equations and dynamic torque were simulated using 
MATLAB / SIMULINK. The dynamic and static performance of the drive system 
under different load was tested.  

3 SPWM Inverter Simulation 

The Sinusoidal Pulse Width Modulation (SPWM) is the most popular usage in A.C 
drives. So; its performance should be a Voltage Source Inverter (VSI) and have a stiff 
source at the input [7]. A practical (VSI) consists of power bridge devices with three 
outputs; each one consists of two power switches and two freewheeling diodes. The 
inverter is supplied from D.C. voltage source via LC filter. In SPWM, the three output 
legs considered as three independent push-pull amplifiers as shown in fig. (2). 

 

Fig. 2. A three phase (VSI) with three phase rectifier 

ᴪ ᴪ



 Particle Swarm Optimize Fuzzy Logic Memberships of AC-Drive 463 

 

SPWM inverter can be simulated by MATLAB/SIMULINK, firstly generate a 
carrier triangle signal and the three modulating signals to obtain the angular speed 
( ), secondly compared the two signal sets to generate the switching signals of 
three push-pull devices. The output of the switches gives  then the three 
phases to load neutral  can be achieved by implementing equation (5). 

(5)

4 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a computation technique first proposed in 1995 by 
Kennedy and Eberhart [8,9]. This method has been found to be a robust method in 
solving non-linearity or non-differentiability problems, PSO algorithm didn’t use 
evolutionary operators (mutation or crossover to manipulate algorithms). However, it 
simulates a dynamically population behavior (fish swarm or bird flocks), where social 
sharing of information takes place and individuals can profit from the discoveries and 
previous experience of all the other companions during the search for food. Thus, each 
companion is called particle and the population is called swarm it is assumed to fly in 
many directions over the search space in order to meet the demand fitness function [10, 
11, 12]. For n-variables optimization problem, a flock of particles are put into the n-
dimensional search space with randomly chosen velocities and positions knowing their 
best values, so far (Pbest) and the best position in the n-dimensional space. The velocity 
of each particle, adjusted accordingly to its own flying experience and the other particles 
flying experience. For the ith particle and n-dimensional space can be represented as 
equation (6), the best previous position of its particle is recorded as equation (7): 

                                                (6) 

                                        (7) 

The velocity is an essential part of how PSO work [13] so as modified velocity and 
position of each particle can be calculated using the current velocity and distance 
from ( ) to ( ) as shown in equations. (8, 9): 

           (8) 
 

                                                (9) 

Where 

i=1, 2,…, Number of particles. 
m=1, 2,…, Dimension. 
It.: Iterations pointer. 
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: Velocity of particle no. i at iteration It. 
W: Inertia weight factor. 

, c2: Acceleration constant. 
r: Random number between( 0-1). 

 : Current position of particle i at iteration It. 
 : Best previous position of ith particle. 
: Global best particle among all the particles in the population.    

5 PSO Implementation Adapts FLC       

As mentioned before the selection of Membership Functions (MFs) for the input and 
output variables and the determination of fuzzy rules are not available so there 
designing are very difficult, especially for one don't have experience of the system 
behavior. The conventional method (trial-and-error method) can be used in such 
situations [14]. There is no formal framework for the choice of the parameters of FLC 
and hence the means of tuning them and learning models in general have become an 
important subject of fuzzy control. The function of the fuzzy controller is to observe 
the pattern of the speed loop error signal and correspondingly updates the control 
signal, there are two input signals to the fuzzy controller: error (E) and change of 
error (CE), CE means derivative of error (dE/dt). A simple fuzzy logic controller of 
two inputs and one output can be designed; a seven triangle member-ships for each 
inputs, and nine memberships for output and forty nine "if" statement rules are used. 
PSO was utilized off line to design positions of triangle shape for input/output 
memberships. The completely system simulation using MATLAB/SIMULINK 
program are presented including IM model, inverter and FLC block sets. But, the 
optimization algorithm is implemented by using MATLAB/m-file program and linked 
with the system simulation program MATLAB/SIMULINK the performance of the 
system must be examined in each iteration and particles position during the 
optimization algorithm. Therefore, to check the system performance in each iteration 
and optimize position of the two inputs (E, CE) memberships. Fig (3) shows the 
simulation of AC drive based to fuzzy logic control. The optimization criteria 
(Integrated of Time Weight Square Error ITSE) equation (10) is used to evaluate 
accuracy performance of the fuzzy controller. 

                                       (10) 

The objective function is to minimize the fitness function FF. the PSO algorithm 
process can be summarized in the flowchart shown in figure (4).  A set of good 
control parameters can yield a good step response that will result in performance 
criteria minimization in the time domain; this performance criterion is called Fitness 
Function (FF) can be evaluated in the variable (e) shown in fig(3). 
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6 Simulation Result 

A comparison performance between the proposed Fuzzy PSO method, the ordinary 
FLC and PID controller are illustrated for step response and an arbitrary speed desired 
in figure (5) and figure (6) respectively. Figure (7) shows the speed desired with 
deferent loud. Figure (8) shows fuzzy surface of the two inputs and one output 
designed by the proposed method. Figure (9) shows the fuzzy controller membership 
functions designed using PSO. 

 

Fig. 3. Simulation of AC-derive with FLC 

 

Fig. 4. Flowchart of PSO algorithm 

7 Conclusions 

A successfully generation of FLC parameters by PSO is demonstrated in this paper. It 
is adopted method to give a higher robust controller for this system (perfect speed-
tracking and non-sluggish), figure (5) and figure (6) show the optimized FLC is more 
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closely with desired input speed and also figure(7) shows a strongly controller of 
speed with loud variation. For a complex systems the easy implementation 
SIMULINK-MATLAB can used in step “fitness function” of PSO algorithm. 
Increasing number of particles in PSO is more effective access than increasing 
number of iteration to optimize the system for a proposed method. 

 

Fig. 5. IM speed step response of PID controller, ordinary FLC and optimized FLC (Fuzzy 
PSO)   

 

Fig. 6. An arbitrary speed between (1.1pu and 0.7pu) shows that the optimized FLC 
(Fuzzy_PSO) is closed with desired speed and its performance is the best compared with 
ordinary FLC and PID controller 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time /sec

sp
ee

d/
(p

u)

 

 

Desiered speed

PID
Fuzzy

 
PSO

Fuzzy

0 5 10 15 20 25 30 35 40 45 50
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time /sec

sp
ee

d/
(p

u)

 

 

Desiered speed

PID
Fuzzy

 
PSO

Fuzzy



 Particle Swarm Optimize Fuzzy Logic Memberships of AC-Drive 467 

 

 

 

Fig. 7. Deferent loud derived by optimized FLC 

 

Fig. 8. Two inputs and output fuzzy surface designed using PSO method 

 

0 2 4 6 8 10
0

0.5

1

time /sec

to
rq

ue
/(

pu
)

 

 

0 2 4 6 8 10
0

0.5

1

time /sec

sp
ee

d/
(p

u)

 

 

Desiered speed

motor speed

load torque

motor torque



468 N.K. Bachache and J. Wen 

 

Output variable

Membership function plots

Membership function plots

Input variable “input1”

Membership function plots

Input variable “input2”  

Fig. 9. Optimized F-variable triangle Memberships designed by PSO algorithm where “input1” 
is FLC (error (E)) and “input2” FLC (change of error (CE)) and “output1” signal  FLC     
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Abstract. The premature problem is always being a hot topic in the swarm 
intelligence research field. PSO could easily fall into local optima because the 
particles could quickly get closer to the best particle. To this end, this paper 
proposes a new hybrid PSO named HGC-PSO to solve this problem. The 
mutation mainly considers the 1m +  particles which have the better fitness 
values. Firstly, we add the Gauss mutation to the current global optimal. 
Secondly, we use the Cauchy mutation to change the rest of the 1m +  
particles. The purpose of this method is to increase the population diversity and 
avoid the PSO fall into local optima. Finally, HGC-PSO is applied to path 
planning problem in 3D space for robot in this paper. The experiment of results 
prove that the proposed algorithm has higher convergence speed and precision, 
besides a path without collision is found. 

Keywords: PSO, Path Planning, Mutation Operator, Cauchy Mutation. 

1 Introduction 

Particle swarm optimization (PSO) was come up in 1995 and soon became popular 
until now. The premature convergence is normal to the Global optimization 
algorithm, including PSO. While dealing with complex multi-modal searching 
problem, it is easy for the original PSO algorithm to fall into premature convergence. 

Some research has been done to tackle this problem. One reason for PSO to 
converge to local optima is that particles in PSO can quickly converge to the best 
position once the best position has no change in a local optimum. Another is the 
diversity problem. 

This paper presents a hybrid intelligent algorithm (HGC-PSO) to the premature 
convergence problem. Using the mutation operator of genetic algorithm, we can 
change the position of the particles. Thus, the proposed algorithm can get rid of the 
premature convergence and increase the diversity of the population.  

                                                           
*  This paper is partially sponsored by National Natural Science Foundation of China Grant 

(51179039), and by grant from the PH. D. Programs Foundation of Ministry of Education of 
China (20102304110021). 

** Corresponding author. 
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2 Particle Swarm Optimization Algorithm 

PSO, which is originated from the birds and fish group behavior, is one represent of 
swarm intelligence algorithm.  

PSO is applied in an extensive filed, such as the path planning, combinational 
optimization Problem. According to the three-dimensional space in the path planning 
problem, has adopted the method of artificial potential field method, A * search 
method , Visibility graphic method and so on. But these algorithms have some 
limitations. However, the path obtained from standard PSO is not the shortest. Thus, 
PSO often needs modified by the mutation operators. 

3 Mutation Operator 

3.1 Gauss Mutation 

The one-dimensional Gauss density function centered at the origin is defined by: 

2
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( )

2
1

( ) , .
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x
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The traditional Gauss mutation thought: On the individual 1 2( , , , )i i i inX X X X=  in 

accordance with the following formula manipulation  

* (0,1),ij ijX X Gη= +   (1)

where 1,2, ,j n…=  and η  is a constant which could control the variation of the step 

size, (0,1)G is standard Gauss distribution.  

3.2 Cauchy Mutation 

The one-dimensional Cauchy density function centered at the origin is defined by: 
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The traditional Cauchy mutation thought: If the individual 1 2( , , , )i i i inX X X X=  

satisfied 0 0x =  and 1γ =  are called the standard Cauchy distribution (0,1)C . We 

can see it as follows: 

* (0,1)ij ijX X Cη= +  (2)

where 1,2, ,j n…=  and η  is a constant which could control the variation of the step 

size.  
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4 HGC-PSO Algorithm and Numerical 

According to, the convergence of PSO can be judged through the fitness variance. 
The definition of the fitness variance is given as follows.  

∑
=

−
=

n

i

avgi

f

ff

1

22 )(σ   (3)

where n  is the particle population of the PSO, the fitness value of the i  particle 

is if , The current average fitness was
1

1 n

avg i
i

f f
n =

= ∑ , f is a normalized scaling factor 

which limit to the size of 2σ and can be expressed as 

{ }{ }avgi fff −= max,1max [1, ].i n∈  

No matter the PSO converges to the global optimum or local optimum, the particles 
will gather to one or more position of the global extremum. If the location is not a 
global optimum, the algorithm will fall into a premature convergence.  

In this section, to solve the premature problem we propose a new hybrid algorithm 
by adding mutations. 

4.1 HGC-PSO Algorithm 

This paper considers the 1m +  particles which have the better fitness values. Firstly, 
according to (1) we add the Gauss mutation on the current global optimal bestg . The 

rate of the mutation mp  is given. 

2 2, ( )
,

0,
d d

m

k andf gBest f
p

others

σ σ⎧ < >⎪= ⎨
⎪⎩

 (4)

where k  is a random number independently generated from 0.1 to 0.3. 
Secondly, we use the Cauchy mutation to change the rest of the 1m +  particles. 

According to the fitness function, we can find the better adaptive values of the 
m particles. And corresponding to the particles, we generate the m  random 
numbers , 1, 2, ,ir i m= . ir  distributed in [0,1]. If i mr p< , according to (2) we will 

produce the new location of the particles, and then enter into the next iteration.  

4.2 Numerical Examples 

In our Numerical examples, we choose the two test functions in table 1, where n  is 
the dimension of the functions, minf  is the minimum values of the function, and 

nx R⊆  is the search space. 
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The minimum values of the functions are desired. The population size is 40.  
The average values of the minimum values are obtained under ten times recycles. 
Then the comparisons between for the two functions are shown in Fig.1 and Fig.2, 
respectively. 

Table 1. Test Functions 

 n
nx R⊆  minf  

Unimodal 
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1
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i i
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Fig. 1. The Unimodal Function of HPSO versus HGC-PSO 

5 Simulation 

5.1 Modeling 

The purpose of this simulation is to find the path without obstacles. The starting point 
and finish point of the path are S and D , respectively. In order to make it close to the  
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underwater work environment, we indicate the obstacle by the spheres 

1 2, , , kO O O ( ){ }, 1, 2, , ,i io r i k=  where io  is the position of the centre of the 

sphere and ir  is the rad. 
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Fig. 2. The Multi-modal Function of HPSO versus HGC-PSO 

The change of coordinates from Fig.3 to Fig.4 is as follows, 

cos cos cos

cos cos cos

cos cos cos

x y z

x y z

x y z

x x

y y

z z

α α α
β β β
γ γ γ
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⎜ ⎟⎜ ⎟ ⎜ ⎟′= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ ′⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

Constructing a cube area ABCDEFGH , the path planning environment cube-space 
model is established. The surface ABCE of the cube is in the surface O X Y′ ′ . Take 

SD for ( )n 1+ equal portions, over each decile points, perpendicular to the z′ -axis 

for the n  plane ( 1,2, , )i i n∏ = . 

The path of the submersible from the S  point to the point D  make up with the 
various hierarchical point of connection components. Divided SD  into n pieces 
equally, and draw planes through each point of division perpendicular to z-axis. By 
this way, the path from point S  to  point P of AUV is formed by the path points of 
each layer between them. 
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The submersible start from the point S  to reach the plane 1∏ , then find a point 
1

1 1( , )P k j . Similarly, in order to find 1
1 1( , )n

n nP k j−
− − in the plane 1n−∏ , connecting 

these points will form a path from S  to D . The path length is: 

1
1 2 1 2 1 2

0

( ) ( ) ( ) .
n

i i i i i i
SD kj kj kj kj kj kj

i

L x x y y z z
+

+ + +

=

= − + − + −∑  

5.2 Simulation Results 

The start and target points coordinate respectively [0, 0, 0] and [200, 175, 140].  
The submersible moves from point S to D. The three-dimensional space environment 
is [0，200;0，200;0，150]. 

In this space there are six obstacles. Their coordinates as: [30, 60,25],  [50, 100, 
80], [75，40，45]， [110，80，90]， [140，145，120]，[50，50，120] and 
radius respectively 20, 14, 20, 18, 20, 10. Using the HGC-PSO algorithm, we select 
40 particles. The found path is shown in Fig.5-Fig.7 from different perspectives. 

This path is a collision free from the starting point to the end and satisfies  
the requirements. The simulations verify the feasibility of the algorithm is available. 
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Fig. 5. Simulation results (visual angle A) 
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Fig. 6. Simulation results (visual angle B) 
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Fig. 7. Simulation results (visual angle C) 
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6 Conclusion 

The idea of HGC-PSO is to use Gauss and Cauchy mutation operators to help PSO 
avoid local optima. After changing the direction of the particles by Gauss mutation, 
the diversity has been increased though Cauchy mutation. Compared to standard PSO, 
the proposed can find better solutions than PSO. Simulation experimental results have 
obtained a global collision-free path to validate the HGC-PSO. A simulation under 
known environment of the three-dimensional path planning is given. 
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Abstract. This paper proposes a three-dimensional Gabor feature ex-
traction for pixel-based hyperspectral imagery classification using a
memetic algorithm. The proposed algorithm named MGFE combines
3-D Gabor wavelet feature generation and feature selection together to
capture the signal variances of hyperspectral imagery, thereby extract-
ing the discriminative 3-D Gabor features for accurate classification.
MGFE is characterized with a novel fitness evaluation function based
on independent feature relevance and a pruning local search for elimi-
nating redundant features. The experimental results on two real-world
hyperspectral imagery datasets show that MGFE succeeds in obtaining
significantly improved classification accuracy with parsimonious feature
selection.

Keywords: Memetic Algorithm, Gabor Feature Extraction, Hyperspec-
tral Imagery Classification.

1 Introduction

Hyperspectral imaging captures an image of objects with wavelengths ranging
from the visible spectrum to the infrared region. The technology has allowed
more elaborate spectral-spatial models for more accurate image classifications,
object discrimination, and material identification. Hyperspectral imagery data
usually contains tens and thousands of images simultaneously collected from
various spaced spectral bands [1]. One key issue of hyperspectral imagery clas-
sification is how to deal with the high dimensionality and improve the class
separability.
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Many dimensionality reduction techniques including feature selection and fea-
ture extraction have been used to address the problem. Feature selection [2,3],
also known as band selection in the context of hyperspectral imagery classifica-
tion, selects relevant bands and removes irrelevant/redundant ones in original
feature space. Feature extraction techniques [4], transforms the given spectral
bands to generate a new set of features possessing high information packing
properties compared with the original bands. The most discriminative informa-
tion is concentrated to relative small number of selected new features with which
superior classification accuracy is permitted.

In this paper, we propose a novel memetic 3-D Gabor feature extraction
called MGFE for pixel-based hyperspectral imagery classification. Particularly,
MGFE conducts 3-D Gabor feature generation and selection simultaneously in
a memetic algorithm (MA) framework [5]. The hyperspectral imagery cube first
undergoes 3-D Gabor wavelet transformation and new 3-D Gabor features are
generated. Afterward, the discriminative features are picked out as desirable
signatures for final classification. The evolutionary search mechanism of MA is
responsible for optimizing both the parameter settings of 3-D Gabor wavelet
transformation and the selection of feature subset. MGFE is characterized with
a novel feature subset evaluation measure based on independent relevance and
a pruning local search, which is efficient for eliminating redundant features. The
performance of MGFE is evaluated using the real-world hyperspectral imagery
data of Kennedy Space Center (KSC) [6] and Indian Pine AVIRIS [7]. Compar-
ison studies with other state-of-the-art dimensionality reduction methods show
that MGFE succeeds in obtaining superior classification accuracy with compact
feature subset.

The remainder of this paper is organized as follows. Section 2 describes the 3-D
Gabor wavelet feature generation and the proposed memetic 3-D Gabor feature
extraction algorithm. Section 3 presents the experimental results of MGFE and
other compared algorithms on two real-world hyperspectral imagery datasets.
Finally the conclusion is given in Section 4.

2 Methodology

2.1 Three-Dimensional Gabor Wavelet Feature Generation

Gabor wavelet is a power tool proposed to maximize joint time/frequency and
space/frequency resolutions for signal analysis [8]. Gabor wavelet has been suc-
cessfully used to extract features for texture classification [9], face recognition
[10], medical image registration [11], etc. In this study, we apply 3D Gabor
wavelet [11] in hyperspectral image cube to reveal the signal variances in space,
spectrum, and joint spatial/spectral domains. Let V be a hyperspectral image
cube of an X × Y region captured in B spectral bands. V (x, y, b) is the signal
information of an area at sampled spatial location (x, y) which is captured in
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Fig. 1. Three-dimensional Gabor feature extraction for hyperspectral imagery classifi-
cation

spectral band b. The circular 3-D Gabor wavelets in spatial-spectrum domain
(x, y, b) is defined as follows:

Ψf,θ,ϕ(x, y, b) =
1

S
× exp(j2π(xu + yv + bw))

× exp(
(x− xc)

2 + (y − yc)
2 + (b − bc)

2

−2σ2
)

(1)

where u = f sinϕ cos θ, v = f sinϕ sin θ, and w = f cosϕ. Variable S is a
normalization scale, f is the central frequency of the sinusoidal plane wave, ϕ
and θ are the angles of the wave vector with w-axis and u− v plane in frequency
domain (u, v, w) (as shown in Figure 1), and σ is the width of Gaussian envelop
in (x, y, b) domain. (xc, yc, bc) is the position for signal analysis.

The response of signal to wavelet Ψf,θ,ϕ(x, y, b) represents the strength of
variance with frequency amplitude f and orientation (ϕ, θ). The response of
V (x, y, b) to Ψf,θ,ϕ(x, y, b) is represented as:

Θf,θ,ϕ(x, y, b) = |(V ⊗ Ψf,θ,ϕ)(x, y, b)| (2)

where ⊗ is the convolution operation. Θf,θ,ϕ(x, y, b) reveals the information of
signal variances around location (x, y, b) with center frequency f and orientation
(θ, ϕ) at joint spatial and spectral domain. In the following text, we refer the
response of the whole image region to a Gabor wavelet, i.e., Θf,θ,ϕ(x, y, b), as a
3-D Gabor feature which is characterized with f , θ, ϕ, and b.

With appropriate selections of f , θ, ϕ, and b, a 3-D Gabor feature is capable of
capturing the desirable signatures of pixel-based terrains/objects classification
from a specific aspect. The key issue is what kinds of 3-D Gabor features should
be generated for achieving satisfactory classification accuracy. By searching the
space of f , θ, ϕ, and b, one can find the solution with optimal classification accu-
racy. In the following subsection, we introduce the proposed memetic algorithm
for searching the optimal 3-D Gabor feature subset. The procedure of 3-D Gabor
feature generation and selection is illustrated in Fig. 1.
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2.2 Memetic Algorithm for 3-D Gabor Feature Optimization

Memetic algorithm (MA) [5], a most well-known paradigm of memetic computing
[12], is widely recognized as a form of population-based hybrid global evolution-
ary algorithm coupled with with individual learning or local search heuristic.
Taking advantage of both global and local search, MAs succeeds in obtaining
better performance than their conventional counterparts in various real-world
applications. In this study, we propose a genetic algorithm (GA) [13] based MA
namely MGFE for optimizing the 3-D Gabor feature extraction. The procedure
of the MGFE algorithm is outlined in Algorithm 1.

Algorithm 1. MA Based 3-D Gabor Feature Extraction

1: BEGIN
2: Randomly initialize a population of chromosomes encoding candidate 3-D Gabor

feature parameters;
3: While stopping criteria are not satisfied do
4: Generate 3-D Gabor features of the 4-tuples encoded in each chromosome based

on (1) and (2);
5: Evaluate the fitness of each feature subset encoded in the population based on

(5);
6: Perform Pruning Local Search on each chromosome to eliminate redundant

features;
7: Update the population based on selection, crossover and mutation operations;
8: End While
9: END

Chromosome Encoding: At the beginning of MGFE, a population of chromo-
somes is generated randomly with each chromosome encoding a candidate 3-D
Gabor feature subset. A chromosome (as shown in Fig. 2) is designed as a string
of n 4-tuples (b,f ,θ,ϕ) which each can be used to generate a corresponding 3-D
Gabor feature based on (1) and (2). The number of features n is constrained in
[1, 1000].

Fig. 2. A 3-D Gabor feature chromosome

In each 4-tuple, the band number b is an integer in [1, B], f is in [0, 0.5], θ
and ϕ take real values in [0, π]. Without any constraints, the search space of
3-D Gabor features is infinite. In fact, features with similar wavelet parameters
are redundant with each other for capturing similar signatures. Therefore, we
could sample f , θ, and ϕ in certain intervals to reduce redundancy in the feature
extraction, and meanwhile cutting down the size of the search space significantly.
Particularly, the frequency f takes the values of [0.5, 0.25, 0.125, 0.0625] with
orientations θ and ϕ set as the values of [0, π/4, π/2, 3π/4]. Since the frequency
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vector points to the same direction with different θ when ϕ = 0, there are in total
52 wavelets available for feature extraction. Let B denotes the total number of
bands. Each pixel at (x, y) can be represented with 52B 3-D Gabor features and
the complexity of searching the optimal feature subset is 252B. Since B usually
ranges from hundreds to thousands, the feature space is challenging for most of
search algorithms.

Fitness Evaluation: After the initialization, the chromosome population un-
dergoes a loop of evolution until the predefined stopping criteria are satisfied.
The stopping criteria could be a convergence to the global optimal or a maximum
computational budget is reached. In each evolution generation, the goodness of
the 3-D Gabor feature subset encoded in each chromosome should be evaluated
based on a certain fitness function.

Since the ultimate objective is accurate classification of the pixels, the clas-
sification accuracy should be the first choice for chromosome fitness evaluation
(FE). However, the evaluation of classification accuracy based on a classifier
could be very time consuming especially when evolutionary algorithms like GA
and MA need thousands of FEs to evolve a satisfying solution. Instead of us-
ing classification accuracy, MGFE evaluates the chromosome fitness based on
non-redundant relevance, also named independent relevance, of the encoded fea-
tures to the class labels. The independent relevance, whose evaluation is efficient,
approximates the classification accuracy fairly well.

Before introducing the definition of independent relevance, we present some
preliminary knowledge on feature relevance and redundancy. Let Cxy be the class
labels of all pixels on the image, and Θi = Θfi,θi,ϕi(x, y, bi) be the ith feature
encoded in a chromosome X. The relevance of Θi to Cxy is measured by the
symmetrical uncertainty [14]:

Su(Θi, Cxy) = 2

[
IG(Θi|Cxy)

H(Θi) +H(Cxy)

]
(3)

where IG(Θi|Cxy) denotes the information gain between Θi and Cxy, H(Θi) and
H(Cxy) represent the entropies of Θi and Cxy, respectively.

The redundancy between two features is measured using approximatedMarkov
blanket (AMB) [15]. Given two features Θi and Θj encoded in X, if and only if
Su(Θi, Cxy) ≥ Su(Θj , Cxy) and Su(Θi, Θj) ≥ Su(Θj , Cxy), Θi is said to be an
AMB of Θj . Thereby Θj is redundant to Θi, and Θj gives no more discriminatory
information of Cxy in the existence of its AMB Θi.

Based on the definition of feature relevance and redundancy, the independent
relevance of an encoded 3-D Gabor feature IR(Θi) is defined as:

IR(Θi) =

{
Su(Θi, Cxy), if Θi has no AMB in X
0, otherwise

(4)
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The relevance of a feature is counted only if it is not redundant with any other
features. The fitness of chromosome X is evaluated based on independent rele-
vance:

Fitness(X) =

|X|∑
i=1

IR(Θi) (5)

where |X| denotes the number of features encoded in X.

Pruning Local Search. Since only the relevance of non-redundant features
contribute to the fitness of a chromosome, the redundant 3-D Gabor features
encoded in each chromosome can be removed for the sake of reducing compu-
tation complexity. After the fitness evaluation, each chromosome undergoes a
local search to get rid of the redundant features. The procedure of local search
is outlined in Algorithm 2, where features are checked pairwise and the one re-
dundant to the other is removed. In practical, the identification of redundant
features has been done during fitness evaluation, so the result can be saved and
reused in local search.

Algorithm 2. Local Search

1: INPUT: a chromosome X
2: BEGIN
3: For i = 1 to |X| − 1 do
4: For j = i+ 1 to |X| do
5: If Su(Θi, CXY ) ≥ Su(Θj , CXY ) and Su(Θi, Θj) ≥ Su(Θj , CXY ) then
6: Remove Θj ;
7: Else If Su(Θj , CXY ) ≥ Su(Θi, CXY ) and Su(Θi, Θj) ≥ Su(Θi, CXY ) then
8: Remove Θi and continue line 3.
9: End If
10: End For
11: End For
12: END

Fig. 3. An example of crossover
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Evolutionary Operations. Following the fitness evaluation and local search,
the population is evolved using evolution operators including linear ranking se-
lection, uniform crossover, and mutation. Here, it is notable that the uniform
crossover is performed on each 4-tuple, rather than each element, to ensure the
consistency of the encoded 3-D Gabor features. Moreover, because the length
of a chromosome is variable, a specific appending operation is used to make
the normal crossover work on chromosomes of different lengths. For example,
as shown in Figure 3, given two parent chromosomes of five and three 4-tuples
respectively, two dummy 4-tuples are appended to the shorter one so that the
two parent chromosomes have equal length. Afterward, the uniform crossover is
applied on each 4-tuple and then the dummy 4-tuples are taken out, resulting in
two children each of four 4-tuples. The mutation operation randomly changes an
element in a chromosome to another value that falls in the corresponding range.

3 Experimental Results

The performance of MGFE is evaluated on two hyperspectral imagery datasets:
Kennedy Space Center (KSC) [6] and Indiana pines AVIRIS (Indiana) [7]. The
KSC data was acquired over the KSC, Florida, on March 23, 1996 using NASA’s
airborne visible infrared imaging spectrometer (AVIRIS). In the original 224
bands, 48 bands are identified as water absorption and low SNR bands, leaving
176 spectral bands for classification. Eight classes representing various land cover
types were defined. The Indian data is a section of a scene taken over northwest
Indiana’s Indiana Pines by the AVIRIS sensor in 1992. It contains 10366 pixels,
220 bands, and 16 classes. The information of the datasets is summarized in
Table 1.

Table 1. The information of the two hyperspectral imagery datasets

Data #Samples(pixels) #Bands #Classes

KSC 1379 176 8
Indiana 10366 220 16

For comparison study, we consider six computation efficient dimensionality
reduction methods including ReliefF [16], Symmetrical Uncertainty (Su) based
filter ranking method [17], Principle Component Analysis (PCA) [4], GA and
MA based band selection, and also the counterpart GA based 3-D Gabor feature
extraction (GGFE), i.e., MGFE without pruning local search. The MA and GA
based band selection are directly applied to the original data by simplifying the
4-tuple in each chromosome to encode only a single band number b. GA, MA,
GGFE, and MGFE use the same parameter settings with population size = 50,
crossover probability = 0.6, and mutation rate = 0.1. All these four evolutionary
algorithms are stopped when a maximum iteration number of 100 or a search
convergence is reached. Unlike MA and GA, which automatically determine the
number of selected features, ReliefF and Su need predefined number of selected



486 Z. Zhu et al.

features. To make fair comparison, the selected feature size of ReliefF and Su
are set according to that of MGFE. For PCA, the dimensionality reduction is
accomplished by choosing enough eigenvectors to account for 95% percentage of
the variance in the original data.

On each dataset, all algorithms are trained with 5% of randomly sampled
pixels and tested on the remaining unseen 95% using 3-Nearest-Neighbor (3NN)
and Support Vector Machine (SVM) [18] classifiers. SVM uses one-vs-one strat-
egy to handle the multiclass problem. The experiment on each dataset is in-
dependently run for 30 times and the classification accuracy and the number
of selected bands/3-D Gabor features are reported. The average classification
accuracy using all bands is also provided as the baseline performance.

(a) Classification using 3NN. (b) Classification using SVM.

Fig. 4. Classification accuracy of all algorithms on KSC data

(a) Classification using 3NN. (b) Classification using SVM.

Fig. 5. Performance of all algorithms on Indiana data

The performance of all algorithms on KSC and Indiana datasets is depicted
in Fig. 4 and Fig. 5, respectively. The classification accuracies of 30 runs are
presented using box plot and the corresponding average numbers of selected
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bands/pricinple components/3-D Gabor features are labeled around the box. It
is shown that MGFE and GGFE obtain significant better classification accuracy
with both 3NN and SVM than the other algorithms, which suggest the 3-D Gobor
feature extraction does capture or even enhance the desirable signatures for
pixel-based classification. The performance of MGFE and GGFE is competitive
but MGFE manages to attain slightly better average accuracy with much more
compact 3-D Gabor feature subset than GGFE. The pruning local search used in
MGFE plays an key role for eliminating redundant features. The band selection
algorithms, including Su, ReliefF, GA, and MA, fail to improve the classification
accuracy with respect to the baseline performance of all bands. The classification
accuracy of PCA is inferior to the other algorithms.

Comparing the classification accuracy of 3NN and SVM, we can see that
some algorithms are sensitive to the classifier used. GGFE and MGFE show
good robustness with both 3NN and SVM, which suggests that the indepen-
dent relevance introduced for 3-D Gabor feature subset evaluation is of good
generality when cooperating with different classifiers.

4 Conclusion

A 3-D Gabor feature extraction based on memetic algorithm (MGFE) was pro-
posed for hyperspectral imagery classification in this study. Particularly, MGFE
first applies 3-D Gabor wavelets to capture the signal variances, i.e., the 3-D
Gabor features, in spatial-spectrum domain, and then a memetic algorithm is
introduced to search the desirable 3-D Gabor features. The experimental results
on the real-world hyperspectral imagery datasets demonstrate that MGFE is
capable of revealing the information of signal variances efficiently, thereby re-
sulting in significantly improved classification accuracy. With a novel feature
subset evaluation measure based on independent relevance and a pruning local
search, MGFE succeeded in identifying relevant features and eliminating redun-
dant ones efficiently.
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Abstract. The Particle Swarm Optimization (PSO) algorithm is a population 
based evolutional search strategy, which has easer implementation and fewer 
presetting parameters. But the most difficulty of PSO having to encounter with 
is premature convergence. This is due to a decrease of diversity during the 
evolutional process that leads to plunging into local optimum and ultimately 
fitness stagnation of the swarm. In order to maintain appropriate diversity, a 
simple and effective immune PSO (IPSO) algorithm is proposed in the paper. 
IPSO takes advantage of immune operators to update the particles when the 
algorithm fails to converge to a given threshold. The most difference of IPSO 
here among other optimization algorithms with immunity is that Gaussian 
mutation is executed before selecting particles from immune memory library. 
So the diversity of population is extended adequately, and the risk of trapping 
into local optimum is depressed effectively. Testing over the benchmark 
problems, the experimental results indicate the IPSO algorithm prevents 
premature convergence to a high degree and has better convergence 
performance than Standard PSO algorithm.  

Keywords: Particle Swarm Optimization, immune system, immune memory, 
clonal selection, global search, diversity. 

1 Introduction 

Particle Swarm Optimization (PSO) is an evolutionary computation technique 
inspired by social behavior observable in nature, such as bird flocking and fish 
schooling, proposed by R. Eberhart and J. Kennedy in 1995 [1], [2]. The fundament 
for the development of PSO is hypothesis that a potential solution to an optimization 
problem is treated as a bird without quality and volume, flying through a D-
dimensional space, adjusting its position in search space according to its own 
experience and that of its neighbors. Compared with other evolutionary algorithms, 
such as genetic algorithm (GA), PSO is easy in implementation and there are few 
parameters to adjust. So PSO has gained much attention and wide applications in 
many application areas, including electric power system [3], [4], robot [5], automatic 
system [6], [7] and other areas. But in real applications, premature convergence and 
low intelligence have become a bottleneck of PSO algorithm. This is due to a 
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decrease of diversity in search space that leads to a total implosion and ultimately 
fitness stagnation of the swarm [8]. 

Inspired by the theory of immunology, various optimization methods, algorithms 
and technology were developed in recent years [9], [10], [11]. These optimization 
algorithms with immunity are based on immune memory, so the diversity during the 
process of evolution is maintained and the convergence of global optimization is 
guaranteed. Considering aforesaid merits, many researchers develop a hybrid 
algorithm based on PSO and immune principles to improve the precision and 
convergence of evolutional optimization algorithm [12], [13], [14]. 

A simple and effective Immune PSO algorithm (IPSO) based on immune memory 
and clonal selection is established in this paper in order to improve the performance 
of diversity and convergence. This new algorithm can improve global search ability to 
avoid falling into local optimum especially under the high dimension situation of 
optimization with small population size, and the characteristic of easy implementation 
is maintained in IPSO algorithm. 

The rest of the paper is organized as follows. Section 2 describes the Standard PSO 
algorithm (SPSO). The basic conceptions of immune operator and the method of 
IPSO are expatiated in detail in Section 3. Some experimental results and the 
comparison analysis are presented in Section 4. Finally, Section 5 concludes some 
remarks. 

2 Standard PSO 

Assume that the search space is D-dimensional and a particle swarm consists of M 
particles. The ith particle is represented as Xi = (xi1,xi2,…,xiD) in D-dimensional space, 
where xid∈[ld,ud], d∈[1,D], ld, ud are the lower and upper bounds of the dth 
dimension. The velocity of ith particle is represented as Vi = (vi1,vi2,…,viD), which is 
clamped to a maximum value Vmax, specified by users. The particles’ position and 
velocity updating rule is given by: 

1 1
( 1) ( ) [ ( ) ( )]

id id id id
v t v t c rand p t x tω+ = + −

2 2
[ ( ) ( )]

gd id
c rand p t x t+ −  (1)

( 1) ( ) ( 1)
id id id

x t x t v t+ = + +  (2)

where i = 1,2,…,M, d = 1,2,…,D. c1 and c2 are non-negative constants, generally 
assigned to 2.0. rand1 and rand2 are two independent random numbers uniformly 
distributed in the range of [0, 1]. Pi = (pi1,pi2,…,piD) is the previous best position of 
the ith particle. Pg = (pg1,pg2,…,pgD) is the best previous position among all the 
particles in iteration t (memorized in a common repository). ω , named the inertia 
weight, usually decreases linearly from 0.9 to 0.4 during a run. This method, 
presented by Y. Shi and R. Eberhart [15], is called Standard Particle Swarm 
Optimization (SPSO) or Linearly Decreasing Weight Particle Swarm Optimization 
(LDW-PSO). 
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3 Immune Operator and IPSO 

3.1 Immune Operator 

Immune memory cell evolution refers to the partial cells are compartmentalized by 
the antibody to be joined into the memory library as the memory cell, the same and 
similar memory cells are eliminated. Its introduction not only provides the 
opportunity to effectively solve the similar question, but also provides the essential 
preparation for local search of the algorithm, thus improve the rate that the algorithm 
seek the superior solution. Immune memory cells are obtained through preserving Pg 
of each generation, and the size of immune memory is fixed as Nl (Nl =2M) in the 
paper. 

Clonal selection only chooses the antibodies with higher affinity to reproduce and 
mutate. But the antibodies with lower affinity still exist in immune system and are 
gradually driven out. This makes the particle with better fitness value to be definitely 
chosen to participate in evolution, thus speeds up the search rate. In this paper, we 
choose particles (antibodies) with lower fitness (higher affinity) value from the 
current generation. 

Inspired by immune theory that the antibodies (particles) which have higher 
density and lower appetency (higher fitness) are restrained and the antibodies 
(particles) which have lower density and higher appetency (lower fitness) are 
promoted. The algorithm ensures population diversity through selection probability of 
density base on above theory. The formula that the density and the selection 
probability of the ith particle is as follows [16]: 

1
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( ) ( )
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i lN
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where Density(xi) is density of the ith particle, p(xi) is selection probability of the ith 
particle and f(xi) is fitness value of the ith particle. Note that the optimal problem 
discussed in this paper is minimization problem. 

3.2 Arithmetic Flow of IPSO 

IPSO algorithm can be summarized in the following steps: 

Step1: Initialize the state of each particle; 
Step2: Evaluate the fitness value of each particle. Set Pi as the best current position 

of each particle, and Pg as the best current of whole population; 
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Step3: Update the velocity and position of particle according to equation (1) ~ 
equation (2); 

Step4: If Vi >Vmax or Vi <Vmin, set Vi =Vmax or Vi =Vmin; if Xi >Xmax or Xi <Xmin, set Xi 

=Xmax×rand or Xi =Xmin×rand, where rand stands for a random number uniformly 
distributed in the range of [0, 1]; 

Step5: If necessary, update and store the individual best position and individual 
best fitness of each particle, update and store the global best position and global best 
fitness of whole population; 

Step6: Generate immune memory particles (antibody). Each particle’s fitness of 
the current population is evaluated. Set Pg as immune memory particles (antibody) to 
store in the immune memory library. If stopping condition is satisfied go to Step8. 
Otherwise, go to Step7; 

Step7: If the algorithm fails to converge to a given Threshold, particles (antibody) 
are updated as following ways: 

(1) Nm particles (antibody) with higher fitness (lower affinity) will be discarded, 
and coordinative number new particles (antibody) are generated randomly; 

(2) Some particles (antibody) are selected randomly from memory library to 
execute Gaussian mutation according to equation (5), and then N0 particles are 
picked up according to equation (3) ~ equation (4). The number of mutated 
particles is equal to αN0 (0<α<1), sign N0/M=β; 

(3) Clonal selection. Nc particles (antibody) with lower fitness (higher affinity) 
will be cloned (reproduced) from the current population to join in a new 
generated population. 

Go to Step2, after a new population is generated; 
Step8: Give the global best position Pg and global best fitness of whole population. 

Stop evolution. 
Gaussian mutation operation is showed as the following equation: 

(1 )
g g

PP η= +′  (5)

whereη  is a random number generated from a standard normal distribution (mean = 
0, variance = 1). 

4 Simulations 

4.1 Experimental Settings 

A set of well-known benchmarks, which are commonly used in literatures, are used to 
evaluate the performance both in terms of solution quality and convergence rate of the 
proposed algorithms. The benchmark problems used are a set of four non-linear 
functions, as minimization problems, which present different difficulties to the 
algorithms to be evaluated. These benchmark functions are shown as follows: 
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Rosenbrock is a unimodal function, which has a global minimum of 0 at the point 
(1,…,1), it is usually used to test the local exploitation ability of algorithms. 
Rastrigrin, Griewank and Ackley are multimodal functions that have a large number 
local minima, and they have a global minimum of 0 when the vector is (0,…,0). The 
search space and initialization range for each test function are listed in Table 1. 

Table 1. Search space and initialization range 

F Domain Ini. Range Xmax Vmax 

f1(x) [-100,100] (15,30)n 100 100 

f2(x) [-10,10] (2.56,5.12)n 10 10 

f3(x) [-600,600] (300,600)n 600 600 

f4(x) [-30,30] (15,30)n 30 30 

For all the test functions, three different dimension sizes are tested: 10, 20 and 30. 
The maximum number of generations is set as 1000, 1500 and 2000 corresponding to 
the dimensions 10, 20 and 30, respectively. In order to eliminate stochastic 
discrepancy, a total of 100 runs for each experimental setting were conducted. The 
population size, M, is only 20, inertial weight ω decreases linearly from 0.9 to 0.4 
during a run. Set Nm=0.05M to mimic the extinct ratio of population during the 
process of clonal selection in immunology. The value of Nc is subject to N0+Nc=M. 
Other presetting parameters of IPSO algorithm are listed in Table 2. 

It is difficult to make a theoretical case for choosing the values of α and β, their 
presetting values in the algorithm are investigated experimentally. 

Table 2. Presetting parameters in IPSO 

F α β Threshold 

f1(x) 0.5 0.8 10-1

f2(x) 0.5 0.8 10-1

f3(x) 0.3 0.5 10-4 

f4(x) 0.3 0.5 10-4 
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4.2 Experimental Results and Discussions 

Table 3 lists the mean fitness values of the best solutions achieved by two algorithms 
on Rosenbrock, Rastrigrin, Griewank and Ackley functions with each experimental 
setting. The results of each algorithm were averaged over 100 trial runs respectively. 
Figure 1 shows the evolution of logarithmic average fitness of 30-dimensional test 
functions for SPSO and IPSO. 

Table 3. Experimental values for benchmark functions 

F D 
SPSO IPSO 

Mean Std.Dev Mean Std.Dev 

f1(x) 

10 49.0190 111.6057 5.4337 1.0910 

20 104.7374 177.2478 15.2165 0.2138 

30 174.3933 223.4577 25.2243 0.2136 

f2(x) 

10 5.7908 2.6987 0.7175 1.8094 

20 23.1010 7.6722 0.0439 0.1843 

30 47.6659 10.9323 0.0240 0.1425 

f3(x) 

10 0.1051 0.0863 0.1036 0.0649 

20 0.0344 0.0361 0.0234 0.0224 

30 0.0180 0.0245 0.0044 0.0058 

f4(x) 

10 0.4005 2.8178 2.73e-11 4.47e-11 

20 1.0596 4.4753 0.0373 0.2145 

30 2.4599 6.3899 0.0749 0.3416 

 

Fig. 1. Performance on 30-dimensional functions: (a) f1(x), (b) f2(x), (c) f3(x) and (d) f4(x) 
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From the results listed in Table 3, we can see that not only the mean values of 
fitness are better but also the standard deviations are lower, i.e. the stochastic 
influence on evolution algorithm is abated in IPSO algorithm with immune operators. 
The experimental results indicate that IPSO algorithm exhibits good performance. It 
outperforms SPSO distinctly on all mentioned benchmark problems, in other words, 
IPSO algorithm has not only good local exploitation ability but also favorable global 
exploration ability. Figure 1 showing the process of iterations indicates that the 
evolutionary rate of convergence, especially during the latter phase of iterations, is 
also improved remarkably in IPSO algorithm. 

5 Conclusions 

Standard PSO is a simple, stochastic and global optimization technology. But its 
population diversity becomes worse and worse gradually with the search carrying on. 
So the algorithm is susceptible to falling into local optimum. Immune memory and 
clonal selection are introduced to update the particles when the algorithm fails to 
converge to a given threshold. The immune memory is used to retain the diversity of 
population and enhance global search capacity, and the clonal selection is adopted to 
accelerate the search. The results of simulation indicate that IPSO algorithm proposed 
in this paper improves precision of optimal solution; moreover it ensures the better 
convergence performance. Undoubted IPSO is an effective algorithm. The parameters 
that are introduced to the algorithm have effect on search performance to a certain 
extent, but the influence is not prominent. Further research would investigate and 
incorporate the mechanism of immune system, such as vaccination into PSO 
algorithm to increase its intelligence of search. 
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Abstract. Multiple traveling salesmen problem is a NP-hard problem. The 
method for solving the problem must arrange with reason all cities among 
traveling salesman and find optimal solution for every traveling salesman. In 
this paper, two-level hybrid algorithm is put forward to take into account these 
two aspects. Top level is new designed genetic algorithm to implement city 
exchange among traveling salesmen with the result clustered by k-means. 
Bottom level employs branch-and-cut and Lin-kernighan algorithms to solve 
exactly sub-problems for every traveling salesman. This work has both the 
global optimization ability from genetic algorithm and the local optimization 
ability from branch-and-cut. 

Keywords: multiple traveling salesmen problem, two-level hybrid algorithm, 
crossover operator, chromosome encoding. 

1 Introduction 

The multiple traveling salesman problem (mTSP) is a generalization of the well-
known traveling salesman problem (TSP) [1-3]. It is more capable to model real life 
applications than TSP, since it handles more than one salesman. It is obvious that it is 
NP-hard problem also because of the fact that TSP belongs to the classical NP-
complete problem. 

In general, mTSP can be defined as follows: given a set of cities, let there be m 
salesmen located at a single or m depot cities. The remaining cities to be visited are 
called intermediate cities. Then, the mTSP consists of finding tours for all m 
salesmen, who all start and end at the depot city, such that each intermediate city is 
visited exactly once and the total cost of visiting all cities is minimized. The cost 
metric can be defined in terms of distance, time, cost, etc. Therefore, the problem 
solution consists of two levels. The first level is to determine the optimal sub-division 
of cities into some groups. The second level is to find the minimum length cycle for 
each group. Solving methods have been mostly heuristic approaches due to the 
complexity of the models. These methods could be classified into two broad groups, 
the “transformation-based” and the “direct” heuristics [2].  
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One of two main “transformation-based” methods converts a mTSP to a classical 
TSP through appending some virtual cities, and then using those methods used to 
solve TSP to tackle it. Paul Oberlin, Sivakumar Rathinam, Swaroop Darbha (2009) 
[4] and Moustapha Diaby (2010) [5] utilized this method to solve unmanned aerial 
vehicles problem. The other method is dividing the cities into clusters and allotting 
each cluster to each salesman. Aristidis Likas, Nikos Vlassis, Jakob J.Verbeek (2002) 
[6] and LIN Dong-mei, WANG Dong, LI Ya (2010) [7] suggested clustering cities by 
using k-means clustering. The original mTSP would be divided into some sub-
problems, and the complexity of mTSP is highly degenerated since these sub-
problems could be tackled using various algorithms for TSP. 

The “direct” methods tackle the problem in its natural form. Arthur. E. Carter, 
Cliff. T. Ragsdale (2007) proposes new set of chromosomes and related operators and 
compares theoretical properties and computational performance of the proposed 
technique [8]. Ding Chao, Cheng ye, He Miao (2007) have developed a two level 
genetic algorithm which favors neither intra-cluster path or inter-cluster path. The set 
of cities which are given in the graph were portioned into clusters and now this 
problem is converted to a cluster TSP [9]. Hannes Schabauer, et.al. (2005) have 
worked on to solve TSP heuristically by the parallelization of self-organizing maps on 
cluster architectures [10]. Klaus Meer (2007) has worked on the simulated annealing 
methodologies and has proved that this algorithm outperforms any metropolis or 
standard algorithm [11]. 

As we know, it is an effective method to combine meta-heuristic algorithms with 
heuristic or approximate algorithms for TSP. In this paper, we established a new two 
level hybrid algorithm for multi-depot and fixed-destination mTSPs. In the new 
hybrid algorithm, we employed k-means algorithm, genetic algorithm, branch-and-cut 
algorithm and Lin-kernighan algorithm. The new algorithm could find better solutions 
of those mTSP whose city number of each group is less than 200 cities. 

2 Hybrid Solving Strategy and Algorithm 

2.1 Research Gap 

As mentioned above, we found that it is difficult to exchange the cities among the 
groups in both the “transformation-based” heuristic and the “direct” heuristic. In the 
“transformation-based” heuristics, the work to balance the number of cities visited by 
traveling salesman is too complex while appending some “virtual cities” and in the 
meanwhile the complexity of problems is increased because of new “virtual cities”, 
and the clustering method losses the global superiority due to blocking the city 
exchange among traveling salesman. In the “direct” heuristics, the global superiority 
of these algorithms is better than most of “transformation-based” heuristics because 
all cities in problems are to be optimized as a whole, but some complicated strategies 
must be established to control the exchange of cities among traveling salesmen.  

Our work proposed that different algorithms are employed to tackle different 
problems existing in different phase while solving a mTSP. We can receive good 
results if combining the global search capability for the problems and the local 
optimum search capability for sub-problems. 
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2.2 Hybrid Solving Strategy 

The new hybrid solving strategy in this paper includes two levels also. The top level 
includes two stages, utilizing k-means algorithm to initialize the group of cities for 
each traveling salesman and using genetic algorithm to complement the city exchange 
among traveling salesmen according to evolutionary strategy. The bottom level 
mainly uses branch-and-cut algorithm to solve sub-problems which could be solved as 
TSP. Lin-kernighan algorithm is used also in the bottom level to improve the 
efficiency of the branch-and-cut algorithm and to expand the solution scale of the 
algorithm. The flow chart of new hybrid strategy is as Fig. 1. 

 

Fig. 1. The flow chart of new hybrid strategy 

3 Hybrid Solving Algorithm 

3.1 Genetic Algorithm in New Strategy 

In the new solving strategy, the genetic algorithm located at top level is as the main 
framework for exchanging the cities among traveling salesman, so new evolutionary 
strategy and genetic operators must be redesigned to fit for our work.  
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Chromosome encoding: In order to provide equal opportunities for every traveling 
salesman, individual encoding is implemented based on traveling salesmen. Each 
traveling salesman is encoded by integer, starting at 0. The length of chromosome is 
equal to the number of traveling salesmen and each gene represents a traveling 
salesman code. 

Selection operator: If using normal selection operator of genetic algorithm, we 
would get two individuals in population, but we can not ensure that the two traveling 
salesmen are adjacent in space. Therefore, the operator is designed as randomly 
selecting an individual pi from the population {p1,p2,…,pn}, n is the population 
number, and selecting randomly a traveling salesman t1 from pi, remarking C(t1) as 
the city set of t1, and then selecting randomly a city c1 from C(t1), finally selecting 
randomly an adjacent city c2 according to the adjacency matrix and c2∉C(t1). 

Crossover operator: Assumed that c2∈C(t2), t2∈pj, pj∈{p1,p2,…,pn}, the crossover 
operation is C(t1)∪{c2}→C1 and C(t2)-{c2}→C2. 

Evolutionary strategy: Assumed that L[C(t)] is the optimal length of C(t), replacing 
C(t1) with C1 and C(t2) with C2 if (L[C1]+L[C2])<(L[C(t1)]+L[C(t2)]). 

There is no mutation operator in new genetic algorithm because the operation could 
provide very small probability to improve the solution just exchanging two cities 
between two selected traveling salesmen. 

3.2 Two-Level Hybrid Solving Algorithm 

Improved branch-and-cut algorithm is used to improve its performance [12], so new 
algorithm must establish the dataset of each sub-problem and branch-and-cut works 
on a subset of the problem. The new algorithm is as follows. 

Algorithm name: Two-level hybrid algorithm for mTSP 
Input: The number of traveling salesmen m and a mTSP dataset 
Output: All cycles of traveling salesmen 
Begin 

1. Initialize 
1.1 Generate neighborhood matrix NM for all cities 
1.2 Clustering all cities according to m using k-means algorithm, and get a 

partition {p1, p2, … , pm} 
1.3 Initialize the population of genetic algorithm 

1.3.1 Allocate the space of population 
1.3.2 Initialize randomly individuals (Section 3.1: chromosome encoding) 

2. Loop to termination condition, do 
2.1 Perform selection operation (Section 3.1: selection operator) 

2.1.1 Select randomly an individual p from the population 
2.1.2 Select randomly a traveling salesman t1 from p 
2.1.3 Select randomly a city c1 from t1 
2.1.4 Select randomly another city c2 by NM 

2.2 Perform crossover operation (Section 3.1: crossover operator) 
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2.3 Perform evolutionary strategy (Section 3.1: evolutionary strategy) 
2.3.1 Construct two sub-problem datasets C1 and C2 
2.3.2 Simplify two initial edge-sets of C1 and C2 
2.3.3 Call branch-and-cut to compute L(C1) and L(C2) 
2.3.4 Replace C(t1) with C1 and C(t2) with C2 if (L[C1]+L[C2])<(L[C(t1)] 

+L[C(t2)]) 
3. Return all cycles of traveling salesmen 

End. 

4 Experimental Simulation and Analyze 

The experimental environment is Intel T8300 2.39 GHz microprocessor, 4GB RAM, 
Microsoft Windows XP operating system. Experimental datasets are from TSPLIB95 
[13]. Each of the datasets is repeated for 30 times, and is computed average values of 
the best tour length, because k-means algorithm is a kind of random algorithm also. In 
the new algorithm, the probability of crossover is 0.35, the number of population is 
10, and the generation of evolution is 10. The compared algorithm is from [7] because 
the results are better than other similar algorithms. The algorithm includes two levels 
also, k-means algorithm at its top level and branch-and-cut algorithm at bottom level. 
The experimental results are shown in Table 1 and Table 2.  

Table 1. Group 1 of two algorithms comparison experiment 

Dataset 

Name 
Cities 

Traveling 

Salesmen 

Algorithm from [7] New algorithm 

Best Average Time Best Average Time 

pr76 76 5 117 313 117 656 0.341s 115 390 116 414 4.500s 

pr152 152 5 64 226 64 266 6.903s 64 226 64 226 105.311s 

pr226 226 5 82 533 82 533 4.908s 82 533 82 533 88.281s 

pr299 299 5 51 462 52 500 2.144s 50 492 51 225 40.037s 

pr439 439 5 112 569 113 087 4.330s 112 196 112 910 77.806s 

pr1002 1 002 5 264 558 264 558 9.462s 262 428 262 836 213.263 

Table 2. Group 2 of two algorithms comparison experiment 

Dataset 
Name 

Cities 
Traveling 
Salesmen 

Algorithm from [7] New algorithm 
Best Average Time Best Average Time 

eil51 51 
2 434 435.40 0.235s 432 432.43 4.917s 
3 447 448.60 0.234s 441 443.00 4.099s 
4 457 458.00 0.222s 448 449.50 2.563s 

eil76 76 
2 558 559.10 0.378s 555 555.00 12.731s 
3 563 569.30 0.316s 552 556.50 5.201s 
4 565 566.40 0.313s 559 560.50 4.198s 

eil101 101 
2 651 651.90 0.633s 644 644.00 24.188s 
3 644 651.90 0.486s 640 644.83 11.391s 
4 655 665.40 0.485s 650 653.33 9.193s 



502 Q. Yu et al. 

We can know from the experimental results according to Table1 and Table2. 

1) Although new algorithm spends more time than the algorithm from [7] because 
new algorithm adapts the framework of genetic algorithm and the algorithm from 
[7] computes all sub-problems after clustering, new algorithm could find higher-
quality solutions. The convergence performance analyze is shown in Figure 2. 

 
Fig. 2. Convergence performance analyze of pr76 from TSPLIB95 

2) These are two special datasets with the classification stability, pr152 and pr226, so 
the clustering results for each time are the same. In the meanwhile, No city 
exchange could improve the quality of solutions, therefore the optimal solution 
does not change. 

3) It also reveals that there is a certain space to improve the solution after clustering. 
The main reason is that it is difficult for clustering algorithms to take into account 
the global superiority of mTSP. 

5 Conclusions 

Our work mainly attempts to establish a kind of genetic algorithm used for 
exchanging cities among traveling salesmen. The new genetic algorithm utilizes the 
clustering results from k-means algorithm and uses new operators and strategy to 
implement the exchange function. For every single traveling salesman, the branch-
and-cut and Lin-kernighan algorithms are employed to exactly solve, just as TSP. The 
experimental results show that new algorithm can find higher-quality solutions. The 
next work could focus on establishing genetic operators or evolutionary strategy to 
increase the genetic algorithm global search capability. 
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Abstract. Multiobjective Optimization (MOO) refers to optimization
problems that involve two or more objectives. Unlike in the single ob-
jective optimization, a set of solutions representing the tradeoff among
the different objects rather than an unique optimal solution is sought in
MOO. How to measure the goodness of solutions and the performance of
algorithms is important in MOO. In this paper, we first review the perfor-
mance metrics of multiobjective optimization and then classify variants
of performance metrics into three categories: set based metrics, reference
point based metrics, and the true Pareto front/set based metrics. The
properties and drawbacks of different metrics are discussed and analyzed.
From the analysis of different metrics, an algorithm’s properties can be
revealed and more effective algorithms can be designed to solve MOO
problems.

Keywords: Multiobjective Optimization, Performance Metrics, Pareto
Front/Set, Reference Point.

1 Introduction

An optimization problem in R
n, or simply an optimization problem, is a map-

ping f : Rn → R
k, where R

n is termed as decision space (or parameter space,
problem space), and R

k is termed as objective space. Optimization problems can
be divided into two categories based on the value of k. If k = 1, the problems are
called Single Objective Problems (SOPs); if k > 1, problems are called Multi-
objective Problems (MOPs), and specially, problems are called Many Objective
Problems when k is large than 2 or 3 [1].

One of the main differences between SOPs and MOPs is that MOPs constitute
a multidimensional objective space. In addition, a set of solutions representing
the tradeoff among the different objectives rather than an unique optimal so-
lution is sought in Multiobjective optimization (MOO). How to measure the
goodness of solutions and the performance of algorithms is important in MOO.
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Although many articles have discussed metrics on multiobjective optimization
[5,8,14], there is no one metric that can overwhelm others. It is necessary to have
more analyses and discussions. In this paper, we classify variants of performance
metrics into three categories: set based metrics, reference point based metrics,
and the true Pareto front/set based metrics. The properties and drawbacks of
different metrics are discussed and analyzed. From the analyses of the metrics,
more effective algorithms can be designed to solve multiobjective problems.

This paper is organized as follows. Section 2 reviews the basic definitions
of multiobjective optimization. Section 3 introduces set based metrics, which
include outperformance relations, C measure, and M3 measure. Section 4 intro-
duces a reference point based metrics, which include S measure (hypervolume)
and D measure. Section 5 introduces the true Pareto front/set based metrics,
which include inverted generational distance metric, hypervolume difference met-
ric and spacing Δ metric. Section 6 concludes with some remarks and future
research directions.

2 Multiobjective Optimization

A general multiobjective optimization problem can be described as a vector func-
tion f that maps a tuple of n parameters (decision variables) to a tuple of m
objectives. Without loss of generality, minimization is assumed throughout this
paper.

minimize f(x) = (f1(x), f2(x), · · · , fm(x))

subject to x = (x1, x2, · · · , xn) ∈ X

y = (y1, y2, · · · , ym) ∈ Y

where x is called the decision vector, X is the decision space, y is the objective
vector, and Y is the objective space, and f : X → Y consists of m real-valued
objective functions.

Let u = (u1, · · · , um), v = (v1, · · · , vm) ∈ Y, be two vectors, u is said to
dominate v (denoted as u � v), if ui ≤ vi, ∀i = 1, · · · ,m, and u = v. A point
x∗ ∈ X is called Pareto optimal if there is no x ∈ X such that f(x) dominates
f(x∗). The set of all the Pareto optimal points is called the Pareto set (denoted
as PS). The set of all the Pareto objective vectors, PF = {f(x) ∈ X |x ∈ PS},
is called the Pareto front (denoted as PF ).

In a multiobjective optimization problem, we aim to find the set of optimal
tradeoff solutions known as the Pareto optimal set. Pareto optimality is defined
with respect to the concept of nondominated points in the objective space.

The optimization goal of an MOP consists of three objectives: (1) The distance
of the resulting nondominated solutions to the true optimal Pareto front should
be minimized; (2) A good (in most cases uniform) distribution of the obtained
solutions is desirable; (3) The spread of the obtained nondominated solutions
should be maximized, i.e., for each objective a wide range of values should be
covered by the nondominated solutions.
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3 Set Based Metrics

In multiobjective optimization, a set of solutions representing the tradeoff among
the different objectives rather than an unique optimal solution as sought. It’s a
straightforward way to measure solutions on set based metrics. These metrics
are a kind of quality measures, which are difficult to measure the goodness of
solutions.

3.1 Outperformance Relations

Three kinds of outperformance relations are introduced in [4] to express the
relations between two sets of internally nondominated objective vectors. The
relations are as follow:
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Fig. 1. Examples of outperformance relations, • ∈ A, and ∗ ∈ B: (a) A weak outper-
formance B, (b) A strong outperformance B, (c) A complete outperformance B

– Weak outperformance: ND(A∪B) = A and A = B. A weakly outperforms
B if all solutions in B are contained in A and there is at least one solution
in A that is not contained in B, e.g. Fig. 1 (a).

– Strong outperformance:ND(A∪B) = A and B\ND(A∩B) = ∅.A strongly
outperforms B if all solutions in B are equal to or dominated by solutions in
A and there exists at least one solution in B that is dominated by solutions
in A, e.g. Fig. 1 (b).

– Complete outperformance: B ∩ND(A ∪B) = ∅. A completely outperforms
B if each solution in B is dominated by solutions in A, e.g. Fig. 1 (c).

where ND() denotes the set includes all nondominated solutions.

3.2 C Measure

The C measure indicates the coverage of two sets [13]. This measure compares
two sets of solutions and calculates the proportion of solutions in the second set
for which there are solutions at least as good in every objective in the first set.

The definition of C measure is as follows: Let A,B ⊆ X be two sets of decision
vectors. The function C maps the ordered pair (A,B) to the interval [0, 1]:

C(A,B) := |{b ∈ B | ∃a ∈ A : a � b}|/|B| (1)
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The value C(A,B) = 1 means that all decision vectors in B are at least weakly
dominated by A. The opposite, C(A,B) = 0, represents the situation when none
of the points in B are weakly dominated by A. Note that always both directions
have to be considered, since C(A,B) is not necessarily equal to 1− C(B,A).

The C measure has some drawbacks: (1) It cannot measure the subset relation.
In Fig. 2. (a), Set A includes Set B, however, values of C measure are both zero;
(2) If solutions in set A not dominated by solutions in set B, while vice versa,
the value of C measure is zero, e.g., Fig. 2. (b); (3) The magnitude of solutions is
not considered. In Fig. 2. (c), the result of C measure is not obeyed the intuition.
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Fig. 2. Drawbacks of C measure: (a) Set B is a subset of set A: C(A,B) = 0, C(B,A) =
0; (b) A �≺ B and B �≺ A: C(A,B) = 0, C(B,A) = 0; (c) Different number of element
in each set: C(A,B) = 0, C(B,A) = 1/5

The above metrics are a kind of quality measure. It shows the relations of
two sets, however, in most cases, two solutions both have part of non-dominated
solutions. The set based metrics are difficult to utilize in that situation.

3.3 Function M3

The function M3 is a spread metric, which measures the spread of the solutions
set A in decision space or the spread of the obtained nondominated solutions U
in objective space [13].

M3(A) =

√∑n

i=1
max{‖ai − bi‖ |a,b ∈ A} (2)

M∗
3(U) =

√∑n

i=1
max{‖ui − vi‖ |u,v ∈ U} (3)

The function M3 ignores the magnitude of solutions.

4 Reference Point Based Metrics

The reference points based metrics are mostly used in multiobjective optimiza-
tion. Through these metrics, the goodness of solutions is measured by a single
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scalar. These metrics are easy in concept and efficient in calculation, however,
these metrics are sensitive to the choice of the reference point, and a solution in
different part of Pareto front plays different role in the scalar calculation.

4.1 S Measure (Hypervolume)

A favored metric is hypervolume, also known as the S measure [13] or Lebesgue
measure. The hypervolume is a measure of how much of the objective space is
weakly dominated by a given nondominated set. i.e., it measures the size of the
portion of objective space that is dominated by these solutions collectively.
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Fig. 3. The relative value of the S metric depends upon an arbitrary choice of reference
point zref . Two nondominated sets are shown, A and B, in Fig. (a) and (b) S(A) =
S(B), in Fig. (c) and (d) S(A) > S(B), and in Fig. (e) and (f) S(A) < S(B). The
same sets have a different ordering in S caused by a different choice of zref .

Generally, hypervolume is favored because it captures in a single scalar both
the closeness of the solutions to the optimal set and, to some extent, the spread
of the solutions across objective space. Hypervolume also has nicer mathemati-
cal properties than many other metrics; although it is difficult to calculate the
accurate value of hypervolume, many fast algorithms are proposed to get an ap-
proximate scalar [10,11]. Also, it has been proved that hypervolume is maximized
if and only if the set of solutions contains only Pareto optima.

Hypervolume has some nonideal properties:

– It is sensitive to the choice of reference point. Fig. 3 displays that the same
sets have a different ordering in S caused by a different choice of zref [5, 6].
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– Extreme points play an important role than points in the middle of the
Pareto front. For example, in Fig. 3 (a), z3 is more important than z2, and
in Fig. 3 (b). z′1 is worth more than z′2.

– Hypervolume is expensive to calculate, an approach needs to be designed to
approximate it within a reasonable error [11].

4.2 D Measure

The D measure indicates the coverage difference of two sets [13]. This measure
combines the C measure and hypervolume measure.
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Fig. 4. The comparison between C measure and D measure. (a) the C measure:
C(A,B) = C(B,A) = 1/2; (b) The D measure: D(A,B) = α, D(B,A) = β, and
D(A,B) > D(B,A).

The definition of D measure is as follows: Let A,B ⊆ X be two sets of decision
vectors. The function D is defined by

D(A,B) := S(A +B)− S(B) (4)

and gives the size of the space weakly dominated byA but not weakly dominated
by B (regarding the objective space).

As shown in Fig. 4, (a) is for C measure, (b) is for D measure. There is the
area of size α that is covered by front 1 but not by front 2; and area of size β
that is covered by front 2 but not by front 1. The dark-shaded area (of size γ) is
covered by both front in common. It holds that D(A,B) = α, and D(B,A) = β.

In this example, D(B,A) > D(A,B) which reflects the quality difference
between the two fronts in contrast to the C metric. In addition, the D measure
gives information about whether either set entirely dominates the other set, e.g.,
D(A,B) = 0 and D(B,A) > 0 means that A is dominated by B.

The D measure is based on the hypervolume calculation. It is sensitive to
the choice of reference point. Fig. 5 displays that the same sets have a different
ordering in D caused by a different choice of zref .
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Fig. 5. The relative value of the D metric depends upon an arbitrary choice of reference
point zref . In Fig.(a) D(A,B) = D(B,A), (b) D(A,B) < D(B,A), (c) D(A,B) >
D(B,A).

5 True Pareto Front/Set Based Metrics

True Pareto front based metrics compares the distribution of Pareto front found
by the search algorithm and the true Pareto front. This kind of metrics is only
utilized on benchmark problems, because the true Pareto front is unknown for
real-world problems. However, utilizing these metrics, the search efficiency of
different algorithms can be compared.

5.1 Inverted Generational Distance (IGD)

One frequently used metric is Inverted generational distance (IGD) [7, 12] also
known as reverse proximity indicator (RPI) [2, 9], or the convergence metric
γ [3]. It measures the extent of convergence to a known set of Pareto-optimal
solutions.

The definition of this metric is as follows: Let P ∗ be a set of uniformly dis-
tributed Pareto-optimal points in the PF (or PS). Let P be an approximation
to the PF (or the PS). The IGD metric is defined as follows:

IGD(P∗,P) =
∑

v∈P∗ d(v,P)/|P∗| (5)

where d(v,P) is the minimum Euclidean distance between v and all of the points
in the set P; and |P∗| is the cardinality of P∗. In this metric, the number of
solutions in P should be large enough to obtain an accurate result.

The IGD metric can be utilized both in solution space and objective space.
In objective space, P∗ is a set of points in the PF and d(v,P) is the minimum
distance between fitness values of solutions and the Pareto front. While in deci-
sion space, P∗ is a set of points in the PS and d(v,P) is the minimum distance
between solutions and the Pareto set.
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5.2 Hypervolume Difference (I−
H) Metric

The Hypervolume difference I−H metric is defined as

I−H(P∗,P) = IH(P∗)− IH(P) (6)

where IH(P∗) is the hypervolume between the true Pareto front P∗ and a refer-
ence point, and IH(P) is the hypervolume between the obtained Pareto front P
and the same reference point. The hypervolume difference measure is also based
on the hypervolume calculation. The result may be different by the choice of
reference point.

Both the IGD metric and the I−H metric measure convergence and diversity.
To have low IGD and I−H values, P must be close to the PF (or PS) and cannot
miss any part of the whole PF (or PS) [12].

5.3 Spacing Δ Metric

The spacingΔmetric measures the extent of spread achieved among the obtained
solutions [3]. The following metrics is utilized to calculate the nonuniformity in
the distribution:

Δ =
df + dl +

∑|P|−1
i=1 |di − d̄|

df + dl + (|P| − 1)d̄
(7)

where di is the Euclidean distance between consecutive solutions in the obtained
nondominated set of solutions P , df and dl are the distances between the
extreme solutions in true Pareto front and the boundary solutions of P. d̄ is the
average of all distance di, i ∈ [1, |P| − 1].

6 Conclusions

Multiobjective Optimization refers to optimization problems that involve two or
more objectives, and a set of solutions is obtained instead of one. How to measure
the goodness of solutions and the performance of algorithms is important in
multiobjective Optimization.

In this paper, we reviewed variants of performance metrics and classified them
into three categories: set based metric, reference point based metric, and the true
Pareto front/set based metric. The properties and drawbacks of different metrics
are discussed and analyzed.

A proper metric should be chosen under different situations, and on the con-
trary, an algorithm’s ability can be measured by different metrics. An algorithm’s
properties can be revealed through different metrics analysis on different prob-
lems, then different algorithms can be utilized in an appropriate situation. From
the analysis of different metrics, an algorithm’s properties can be revealed and
more effective algorithms can be designed to solve MOO problems.
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Abstract. In this paper, a novel multi-objective optimization algorithm based on 
the brainstorming process is proposed(MOBSO). In addition to the operations 
used in the traditional multi-objective optimization algorithm, a clustering 
strategy is adopted in the objective space. Two typical mutation operators, 
Gaussian mutation and Cauchy mutation, are utilized in the generation process 
independently and their performances are compared. A group of multi-objective 
problems with different characteristics were tested to validate the effectiveness 
of the proposed algorithm. Experimental results show that MOBSO is a very 
promising algorithm for solving multi-objective optimization problems. 

Keywords: Brain Strom Algorithm, Multi-objective Optimization, Clustering 
Strategy, Mutation Operator. 

1 Introduction 

In recent years, multi-objective optimization problems have gained much attention. the 
optimum solution for a multi-objective optimization problem is not unique but a set of 
solutions. The solutions in the set are equally important, that is, no solution is better 
than any other one with regards to all objectives. 

Many kinds of evolutionary computation methods, such as genetic algorithm (GA) 
[1], evolutionary algorithm (EA) [2], particle swarm optimization (PSO) [3], cultural 
algorithms (CA) [4], ant colony optimization (ACO) [5], differential evolution (DE) 
[6], bacterial foraging optimization (BFO) [7], etc., have been modified to solve 
multi-objective problems. Researches indicated that most of these algorithms can 
improve the convergence and distribution of the Pareto-front more or less.  

In swarm intelligence algorithm, the individuals, such as birds in PSO, ants in ACO, 
bacteria in BFO, etc., moving cooperatively and collectively toward the better and 
better areas in the solution space, represent only simple objects. Human beings are the 
most intelligent in the world. Being inspired by this human idea generation process, Shi 
[8] proposed a novel optimization algorithm - brain storm optimization algorithm 



514 J. Xue et al. 

(BSO). In this paper, the BSO is further developed to solve multi-objective 
optimization problems. 

The remaining paper is organized as follows. Section 2 describes multi-objective 
BSO (MOBSO) in detail. Section 3 contains the simulation results and discussion. 
Section 4 provides the conclusions and some possible paths for future research.   

2 Multi-objective Brain Storm Optimization Algorithm 

BSO algorithm is designed based on the brainstorming process [9]. In the 
brainstorming process, the idea generation obeys the Osborn’s original four rules. The 
people in the brainstorming group will need to be open-minded as much as possible and 
therefore generate more diverse ideas. The procedure of BSO algorithm is shown in [8]. 

The proposed MOBSO algorithm contains six parts, three of which are specific to the 
BSO. They are clustering strategy, generation process, and updating global archive. 
The other three are common to other evolutionary (or swarm intelligence) algorithms.  

2.1 Clustering Strategy 

Using clustering strategy in the objective space is one of the main novelties of the 
approach. we use the k-means cluster algorithm [10] to cluster the population into k 
clusters based on each objective. The process is shown in Algorithm 1. The 
Archive_set contains the non-dominated solutions, the Elite_set and the Normal_set 
are two temporary sets which are obtained by the clustering in each iteration.  

 

2.2 Generation Process 

After the clustering step, the new individuals will be generated according to the 
choosing process, dispersal step, mutation operator and selection operator. The 
procedure is shown in Algorithm 2. 

Algorithm 1. Progress of clustering strategy 

1. Initialize Elite_set =φ , Normal_set =φ ; 

2. Evaluate the population and update the Archive_set according to the Pareto 

dominance; 

3. Initialize the cluster centers based on the fitness value of M objective; 

4. For each objective mf : cluster the population into k clusters, and choose one 

cluster with the best fitness value as the Elite_clusterm ; 

5. For each individual: if the individual is in any of Elite_clusterm , then add the 

individual into the Elite_set;else, add the individual into the Normal_set. 
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where p is the number of individuals, P1, P2, P3 are the pre-determined probability 

values; selectedX is the individual selected to generate the new individual and newX is the 

new individual generated by the selectedX . 

In the dispersal step, a randomly generated individual is chosen as the selectedX , the 

Mutation operator: get the newX by applying the mutation operator to the selectedX ; 

Selection operator: select the Pareto optimal one from ( , )selected newX X as the new 
individual in next generation. 

2.3 Mutation Operator 

Mutation generates new solutions from the current ones. Gaussian mutation is usually 
adopted in the classical evolutionary algorithms. The step of the generation can be 
represented as follows: 

N( , )d d
new selectedx x ξ μ σ= + ∗                          (1) 

 ξ = logsig((0.5 - )/ ) rand()max_iternation current_iteration K∗ ∗  

where d
selectedx is the d-th dimension of the individual selected to generate new individual;

d
newx is the d-th dimension of the individual newly generated; N( , )μ σ is the Gaussian 

random function with meanμ andσ ; ξ is a coefficient that weight the contribution of 

the Gaussian mutation; logsig() is a logarithmic sigmoid transfer function, 
max_iteration and current_iteration are the maximum iteration and the current 

Algorithm 2. Generation procedure 

if  rand() < P1 

   if  rand() < P2 

if  rand() < P3 

          randomly choose an individual from the Elite_set as the selectedX ; 

        else, randomly choose  the selectedX from the Normal_set; 

        end if 

     else, choose an individual as the selectedX from the Archive_set, randomly; 

     end if 

else, dispersal step: randomly generate an individual as the selectedX ;  

end if 
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iteration number, K is for changing logsig() function’s slope, and rand() is a random 
value within (0,1).  

Another important mutation operator is Cauchy mutation. Cauchy mutation has a 
higher probability of making longer jumps than Gaussian mutation due to its long flat 
tails [11]. The results in [11] show that Cauchy mutation is an efficient search operator 
for a large class of multimodal function optimization problems. In this paper, the 
Cauchy mutation operator is also utilized to generate new individual as follow: 

 ' 'C( , )d d
new selectedx x ξ μ σ= + ∗                          (2) 

where ' 'C( , )μ σ is the Cauchy random function with mean 'μ and variance 'σ ; d
newx ,

d
selectedx and ξ are defined as in 2.1. In this paper, both mutations will be employed and 

compared. 

2.4 Selection Operator 

Selection operator is used to decide whether any newly generated solution should 
survive to the next generation. The selection is based on Pareto dominance. For the 
selected individual selectedX and the mutated individual newX , the selection rules are as 

follows: if newX dominates selectedX , then newX survive; if selectedX  dominated newX , 

then selectedX  survive; if newX and selectedX are not dominated by each other, then 

randomly choose one from newX   and selectedX as the new individual. 

2.5 Global Archive 

In each generation, the Global Archive is updated by the new non-dominated solutions. 
The best solution is preserved into the Global Archive the size of which is limited 
within the size Max_Archive. To update the Global Archive, each new non-dominated 
solution obtained in current iteration will be compared with all members in the Archive. 
The crowded-comparison operator [12] is adopted to guide the points toward a 
uniformly spread-out Pareto-optimal front.    

3 Experiments and Discussions 

3.1 Test Problems and Parameter Setting  

In order to evaluate the performance of MOBSO, five benchmark test problems are 
used [13]: ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6. Each problem has two objectives 
and no constraints. The parameter settings for all of the problems are listed in Table 1 
below. All of the algorithms are implemented in MATLAB using a real-number 
representation for decision variables. For each experiment, 30 independent runs were 
conducted to collect the statistical results.  
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In this paper, we use the metric ϒ and metric Δ [13] to measure the performance of 
the MOBSO algorithm. The metric ϒ measures the closeness of solutions to the true 
Pareto front.  

 1
( , )ii

d
=ϒ = ∑
P

P TF

P
                             (3) 

where 500 uniformly spaced solutions from the true Pareto-optimal front are selected to 
form the true Pareto front set TF; P is the Pareto front that has been found; d is the 
minimum Euclidean distance of iP and to all of the points in the set TF; and |P| is the 

size of the set P .The metric Δ measures the nonuniformity in the distribution. 

 

1

1

( 1)

f l ii

f l

d d d d

d d d

−

=
+ + −

Δ =
+ + −

∑ P

P
                        (4) 

where, the Euclidean distances fd and ld are calculated the same as in [13]; id is the 

Euclidean distance between the i-th pair of consecutive solutions in the set P; d is the 
average of all distances id . 

Table 1. Parametric setup of MOBSO 

d P P1 P2 P3 k K μ  σ  'μ  'σ  Max_Archive Max_iteration 

5(10) 200 0.8 0.6 0.9 5 40 0 1 0 1 100 1000(2000) 

3.2 Discussion of the Results 

For all the test problems, the metric ϒ and metric Δ have been calculated and recorded.  

Table 2. The best value and mean value of the convergence metric ϒ for Run 30 

Function ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

d value G C G C G C G C G C 

5 

best 0.0041 0.0037 0.0027 0.0030 0.0022 0.0019 0.0022 0.0015 0.0054 0.0050 

mean 0.0132 0.0138 0.0117 0.0075 0.0099 0.0051 0.2318 0.1118 0.0067 0.0079 

10 

best 0.0166 0.0134 0.0196 0.0128 0.0116 0.0064 0.7075 0.2490 0.0157 0.0111 

mean 0.0295 0.0184 0.0403 0.0193 0.0175 0.0089 1.9838 1.0964 0.0212 0.0131 



518 J. Xue et al. 

Table 3. The best value and mean value of the diversity metric Δ for Run 30 

Function ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

d value G C G C G C G C G C 

5 

best 0.6967 0.6573 0.6868 0.6277 0.7462 0.9254 0.7771 0.7820 0.8509 0.8019 

mean 0.8391 0.8143 0.8302 0.7634 0.8651 0.9511 0.9190 0.8851 0.8919 0.8612 

10 

best 0.7057 0.7029 0.7372 0.7124 0.7666 0.7954 0.8534 0.9354 0.8981 0.8529 

mean 0.8010 0.7790 0.8159 0.7921 0.8404 0.8491 0.9264 0.9668 0.9247 0.9118 

(In Table 2 and Table 3, d means the dimension, G and C means the MOBSO with Gaussian and Cauchy mutation, respectively) 

Table 2 shows the best and mean values of the convergence metric ϒ obtained using 
MOBSO-G (MOBSO with Gaussian mutation) and MOBSO-C (MOBSO with Cauchy 
mutation). The diversity metric Δ about the test problems are listed in Table 3.  

The results given in Table 2 indicate that the convergence of the MOBSO-C is 
slightly better than the MOBSO-G in test functions with low dimensional. However, 
for the function with high dimensional solution space, the MOBSO-C always 
overwhelms the MOBSO-G on all test functions. While the Table 3 shows that the 
MOBSO-C has a better diversity on the test functions ZDT1, ZDT2 and ZDT6. The 
data in Table 3 also indicates that the convergence of the MOBSO declined when the 
dimension of the solution space extended from five to ten. Because test function ZDT4 
has totally 921 local segments [13], MOBSO has a little difficulty in converging toward 
the true Pareto front for the function with high dimensional solution spaces. 

Combining the results in Table 2-3, we can conclude that MOBSO can be a 
promising algorithm for solving multi-objective optimization problems. 

4 Conclusions 

In this paper, we developed a novel multi-objective optimization algorithm based on 
the brainstorming process. The using of the clustering strategy guides individuals to 
move toward the better and better areas. The two different mutation operators have 
been utilized to generate new individuals and two performance metrics have been used 
to compare the MOBSOs with the above two different mutations. Simulation results 
illustrated that both MOBSO-G and MOBSO-C can be a good optimizer for solving 
multi-objective optimization problems. Adaptive and mixing mutations based on 
niching techniques should also be investigated. Another interesting area is to exploit 
the MOBSO for solving multi-objective optimization problems with constraints and for 
solving many-objective problems. 
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Abstract. Multi-objective particle swarm optimization (MOPSO) is an 
optimization technique inspired by bird flocking, which has been steadily 
gaining attention from the research community because of its high convergence 
speed. However, faced with multi-objective problems, adaptations are needed. 
Deeper researches must be conducted on its key steps, such as guide selection, 
in order to improve its efficiency in this context. This paper proposes an 
modified multi-objective particle swarm optimizer named MMOPSO, for 
dealing with multi-objective problems. we introduce some ideas concerning the 
guide selection for each particle. The proposed algorithm is compared against 
four multi-objective evolutionary approaches based on particle swarm 
optimization on four benchmark problems. The numerical results show the 
effectiveness of the proposed MMOPSO algorithm.  

Keywords: multi-objective optimization, particle swarm optimization, 
modified operator, guide selection. 

1 Introduction 

Particle Swarm Optimization (PSO) is a heuristic search technique that simulates the 
movements of a flock of birds which aim to find food, which was proposed by 
Kennedy and Eberhart in 1995[1,2]. The relative simplicity of PSO and the fact that is 
a population-based technique have made it a natural candidate to be extended for 
multi-objective optimization. Such as Coello Coello CA, Pulido GT and Lechuga MS 
proposed MOPSO, the algorithm introduced external populations of adaptive network 
system, which require variation for particle and particle scope, variation scale is 
proportional to evolution algebra[3]. Tsai et al. proposed an improved multi-objective 
particle swarm optimization algorithm[4]. Mostaghim S and Teich proposed Sigma 
method that decided gbest for each particle and introduced disturbance factor[5]. Ono, 
S.,Nakayama, S. proposes an algorithm using multi-objective Particle Swarm 
Optimization (MOPSO) for finding robust solutions against small perturbations of 
design variables[6].Dun-wei Gong, Jian-hua Zhang present a global path planning  
approach based on multi-objective particle swarm optimization[7]. Q-K Pan, L Wang 
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and Qian B. presents a novel multi-objective particle swarm optimization (MOPSO) 
algorithm for solving no-wait  flow shop scheduling problems with makespan and 
maximum tardiness criteria. in the algorithm, particles are represented as job 
permutations and updated directly in the discrete domain[8]. S.Z.Zhao, 
P.N.Sunganthan proposed two-lbests based multi-objective particle swarm 
optimizer[9]. This approach emphasizes the global best (gbest) or local best (lbest) of 
every particle in state-of-the-art multi-objective particle swarm optimization 
(MOPSO) implementations is selected from the non-dominated solutions in the 
external archive. 

2 Basic Concept of MOP  

The multi-objective optimization problem can be mathematically described as: 

min    ( )
Dx R

f x
∈

   (1)

where 1 2( , , , )Dx x x x= …  is the D decision variables, and 1 2( ) , , ,f x f f=(  

)Mf  are the M objectives to be minimized. 

There are two basic concepts which are often used in multi-objective optimization: 

Definition 1(Pareto dominate): A vector 1 2( , , , )Du u u u= …  is said to dominate  

1 2( , , , )Dv v v v= …  (denoted by u v ) if and only if 

0 00  ( {1, , }, ) ( {1, , }, )i i i ii D u v i D u v∀ ∈ ≤ ∧ ∃ ∈ ≤  

Definition 2(Pareto optimal solution): A point * Dx R∈ is Pareto optimal if there is 

not another Dx R∈ satisfies with *( ) ( )f x f x . 

3 Standard Particle Swarm Algorithm 

Particle swarm algorithm optimization is a stochastic, population-based and global 
evolutionary algorithm proposed by Kennedy and Eberhart in 1995. With the standard 
particle swarm optimization, each particle of the swarm adjusts its trajectory 
according to its own flying experience and the flying experiences of other particles 
within its topological neighborhood in a D-dimensional space S. The velocity and 

position of particle i are represented as 1 2( , , , )i i iDv v v v=  and 

1 2( , , , )i i i iDx x x x=  respectively. Its best historical position is recorded as 

1 2( , , , )i i i iDp p p p= , which is also called bestp . The best historical position that 
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the entire swarm has passed is denoted as bestg . The velocity and position of particle 

i on dimension j(j= 1,2,. . . ,D) in iteration t + 1 are updated as follows:  

1
1 1 2 2( ) ( )t t t t t t

ij ij ij ij ij ijv wv c r pbest x c r gbest x+ = + − + −    (2)

1 1  t t t
ij ij ijx x v+ += +    (3)

Where 1c  and 2c denote constant, which is called the acceleration coefficients, 1r  

and 2r  are elements from two uniform random sequences in the range of [0,1], w  is 

the inertia weight which decent by linear decrease. 

4 Modified Multi-Objective Particle Swarm Optimization 
Algorithm  

4.1 Modified Operator  

According to the searching behavior of PSO, the gbest will be an important clue in 
leading particles to the global optimal solution, but it is unavoidable that the solution 
would fall into the local minimum while particles are trying to find better solutions. In 
order to allow the solution exploration in the area to produce more potential solutions 
and to explore un-searched solution space, we introduces a modified operation, 
modified operator is given as below:  

1
1 1 2 2

1 1

1

( ) ( )

  

( , ) (1 ) ( ( , ) ( , ))

t t t t t t
ij ij ij ij ij ij

t t t
ij ij ij

t t t t
ij

If r < 0.5  

v wv c r pbest x c r gbest x

x x v

Else

x p opti rr j p opti rr j x i j

End

+

+ +

+

= + − + −

= +

= × + − × −

 

   

   

   

   (4)

where the random number r is a uniform distribution form zero to one, the same of p , 

( )topti rr is the member chosen randomly from the external repository. 

4.2 Guide Selection  

In single-objective problems there is only one existent gbest. In multi-objective 
problems, more than one conflicting objectives must all need be optimized. The 
number of non-dominated solutions which are located on/near the Pareto front will be 
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more than one. Therefore, each non-dominated solution can be the gbest and provides 
its position information to current particles. According to particle searching behavior 
in multi-objective problems, the pbest of a particle will usually be its current position.    

Therefore, the pbest is useless for guiding particles toward to find new solution in 
most situations, the same as gbest.we will propose a method to solve the useless 
guiding problem. and is described as follow: 

1

1
1 2 3

  

( , ) ( ( , ) ( , ))

t t
ij ij

t t t t
ij

If r < 0.5

pbest x

Else

pbest x r j rand x r j x r j

End

+

+

=

= + × −

 

   

   

   (5)

      

1

1
4 5 6

  

( , ) ( ( , ) ( , ))

t t
ij ij

t t t t
ij

If  r < 0.5

    gbest x

Else

      gbest opti r j rand opti r j opti r j

End

+

+

=

= + × −
   (6)

where the random number r is a  uniform  distribution  form zero to one, the same 

of rand , 1( )tx r , 2( )tx r , 3( )tx r are the members chosen randomly from evolutionary 

population. 4( )topti r , 5( )topti r , 6( )topti r are the members chosen randomly 

from the external repository. 

4.3 The Pseudo Code of MMOPSO  

Begin 
Initial particle’s velocity, position, global best particle(gbest), past best 

particle(pbest), external repository. 
While stopping criterion is not met 

For each Particle  
1. Update particle’s position and according to (4). 
2. Update the external repository using dominate. 
3. Assign pbest to each particle using the members in the evolutionary 
population according to (5). 

4. Assign gbest to each particle using the members in the external repository 
according to (6). 

 End For 
End While 
End 
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5 Experimental Results 

5.1 Tests Problems  

Different sets of classical test problems suggested in the MOEA literature are used to 
estimate the performance of the MMPSO. In this paper, we choose four tests 
problems: ZDT1, ZDT2, ZDT3 and ZDT6, which is defined in [10]. 

5.2 Performance Measures 

To validate our approach, we used the methodology normally adopted in the 
evolutionary multi-objective optimization literature. we use two metrics that have 
been used in these studies. They represent both convergence metric and diversity 
metric. 

(i) Convergence metric(γ ) 

This metric is defined as [10]: 

1

n

i
i

d

n
γ ==

∑
 

  (7)

where n is the number of non-dominated vector found by the algorithm being 

analyzed and id  is the Euclidean distance between the obtained non-dominated front 

Q and the nearest member in the true Pareto front P. It measures the distance between 
the Q and P. 

(ii) Diversity metric ( Δ ) 
It measures the extent of spread achieved among the obtained solutions and is defined 
as:    
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,the parameter fd  and id are the Euclidean distances between 

the extreme solutions and the boundary solutions of the obtained non-dominated set. 

The parameter 
_

d  is the average of all distances id , 1, 2, , ( 1)i s= −… , assuming 

that there are s solutions on the best non-dominated front. 
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5.3 Comparison and Discussion 

In order to verify MMOPSO performance of the algorithms, which numerical 
experiments are compared with MOPSO[3], OMOPSO[11], EMMOPSO[12], 
SMOPSO[13], NSPSO[14]. To match the settings of the algorithms used for 
comparison, the population size is set 100 and the algorithm is run for 200 
generations, the maximum size of external elitist archive  is set 100. Results on four 
test functions, in relation to the convergence metric and diversity metric, are 
presented in Table I-IV, the mean and variance of the values are averaged over 30 
runs. As we can see, MMOPSO is able to make better both on the convergence metric 
and diversity metric in all problems.  

Table 1. Statistics of results on  ZDT1 

Algorithm Convergence ± Variance Diversity ±  Variance 

MOPSO  
OMOPSO 
EMMOPSO 
SMOPSO 
NSPSO 

0.098 ± 6.17e-04 
0.069 ± 4.12e-05 
0.005 ± 6.82e-07 
0.089 ± 5.61e-04 
0.139 ± 4.17e-03 

0.66 ± 7.23e-03 
0.59 ± 6.36e-03 
0.39 ± 1.57e-04 
0.64 ± 3.31e-04 
0.68 ± 6.23e-03 

MMOPSO 0.001 ± 1.48e-08 0.22 ± 2.24e-04 

Table 2. Statistics of results on  ZDT2 

Algorithm Convergence ± Variance Diversity ±  Variance 

MOPSO 
OMOPSO 
EMMOPSO 
SMOPSO 
NSPSO 

0.273 ± 5.77e-02 

0.007 ± 4.63e-04 

0.005 ± 6.83e-08 

0.076 ± 5.94e-04 

0.099 ± 5.21e-03 

0.87 ± 4.75e-02 

0.59 ± 5.63e-03 

0.27 ± 5.77e-06 

0.59 ± 4.64e-03 

0.63 ± 6.18e-03 

MMOPSO   0.001 ± 7.46e-08    0.21 ± 7.88e-04 
 

Table 3. Statistics of results on  ZDT3 

Algorithm Convergence ± Variance Diversity ±  Variance 

MOPSO  
OMOPSO 
EMMOPSO 
SMOPSO 
NSPSO 

0.189 ± 3.51e-03 
0.159 ± 1.45e-03 

 0.0073 ± 6.80e-06 
0.174 ± 1.59e-03 
0.231 ± 1.97e-02 

0.51 ± 1.16e-03 
0.59 ± 2.56e-03 
0.57 ± 1.29e-03 
0.54 ± 5.12e-03 
0.51 ± 8.65e-03 

MMOPSO 0.005 ± 4.39e-08 0.45 ± 1.78e-04 
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Table 4. Statistics of results on ZDT6 

Algorithm Convergence ± Variance Diversity ±  Variance 

MOPSO  

OMOPSO 

EMMOPSO 

SMOPSO 

NSPSO 

0.447 ± 5.28e-02 

0.010 ± 5.76e-06 

0.006 ± 4.66e-07 

0.115 ± 6.37e-02 

0.215 ± 4.37e-02 

0.87 ± 6.32e-02 

0.69 ± 7.25e-05 

0.64 ± 7.52e-05 

0.65 ± 5.78e-02 

0.68 ± 5.48e-02 

MMOPSO 0.002 ± 6.86e-08  0.202 ± 1.61e-04 

6 Conclusion 

In order to enhance wide-ranged exploration ability and explore un-searched space 
ability of particle swarm optimization ,this paper will introduce modified operator and 
guide selection into the particle swarm optimization. Experimental results show that 
MMOPSO is an effective multi-objective particle swarm optimization. 
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Abstract. This paper proposes a new optimization model for mapping IP cores 
onto a new Network-on-Chip (NoC) topology, Emesh. Since competition for one 
port of the router in Emesh is violent, network competition is considered in our 
model, in addition to energy and communication cost. To solve this optimization 
model, the authors present a new application specific multi-objective mapping 
algorithm onto Emesh topology based on the idea of the crossover and mutation 
of genetic algorithm. The experimental results show that, compared to traditional 
heuristic genetic algorithm, the proposed algorithm has lower energy 
consumption, lower communication cost and less network competition. 

Keywords: Network-on-Chip (NoC), Emesh, mapping, energy consumption, 
network competition, communication cost.  

1 Introduction 

With the advances in integrated circuits and semiconductor technology, hundreds of 
Intellectual Property (IP) cores are allowed to be put on a single chip. These IP cores 
can be general-purpose processors, coprocessors, DSPs, application specific hardware, 
memory blocks, I/O blocks, etc. The use of standard hardwired buses to interconnect 
these cores is not scalable. To solve this problem, Network-on-Chip (NoC) has been 
proposed and used for interconnecting the cores [1] [2]. The use of on-chip 
interconnection network has several advantages, including better structure, 
performance and modularity. Therefore, the network on chip is going to be a promising 
architecture for future complex SoCs.  

The 2D-mesh topology has become the most commonly used choice in NoCs owing 
to its regularity. However, the diameter of network will be increased rapidly with the 
network size. Therefore, Saneei etc. introduce Cluster-Mesh (CM) into NoC that 
reduces the power consumption and the area overhead. However, this structure is easy 
to be blocked because a router in the CM topology connects 4 IP cores at most. 
Therefore, in this paper, we employ a better structure which is called Emesh.  
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In NoC design, mapping a specific application to the NoC platform is an important 
step, which significantly affects the system power consumption, latency, and etc. NoC 
mapping is an NP-complete problem. It is hard to obtain the optimal solution by 
exhausting search due to the complexity of time and space. There are many important 
metrics that impact network performance, like power consumption, delay, and 
throughput etc. Moreover, some of these metrics are more important for certain 
applications than others and it is easier to consider single metric. Therefore, researchers 
tried to optimize the NoC architecture for the most important metric, assuming other 
metrics as constraints [3] [4] [5]. However, NoC-based systems usually have 
conflicting metrics. Therefore, the challenging problem is to optimize the on-chip 
networks for more than one metric. In this paper, at most 4 IP cores may be connected 
to a router. Therefore, it will cause more serious competition in the network, in other 
words, we need to consider the problem of network competition. Moreover, in order to 
reduce system overhead, the traffic transmitted by the routers should be as little as 
possible, that is to say, the communication cost needs to be optimum. As a result, we 
target a three-objective optimization problem, including energy consumption, 
communication cost and network competition.  

This paper is organized as follows. The multi-objective optimization problem is 
introduced in Section 2. Section 3 presents our proposed mapping algorithm. Section 4 
presents experimental results for two applications. Finally, we draw our conclusions 
and give ideas for future work in Section 5.  

2 Related Work 

There are various mapping algorithms which have been proposed to map an application 
onto different topologies. Different topologies have different advantages and problems. 
Regarding the application specific mapping optimization, the mapping and routing 
allocation for the tile based architectures have been addressed in [6]. In [7], a branch 
and bound algorithm has been proposed that maps cores onto a tile based NoC 
architecture satisfying the bandwidth constraints and minimizing the total energy 
consumption. Lei and Kumar [8] present an approach that uses genetic algorithms to 
map an application onto a mesh-based NoC architecture. The algorithm finds a 
mapping of the vertices of the task graph on the available cores so as to minimize the 
execution time. De Micheli addresses the problem under the bandwidth constraint with 
the aim of minimizing communication delay by exploiting the possibility of splitting 
traffic among various paths in [9]. In [10], a multi-objective genetic algorithm 
(GAMAP) has been proposed that solves the problem of topological mapping of 
IPs/cores in a mesh-based NoC architecture. This approach explores the mapping space 
and finds the Pareto mappings that optimize performance and power consumption. And 
the experiments confirm the efficiency, accuracy and scalability of the approach. In 
[11], a multi-objective genetic algorithm (MGAP) has been proposed that solves the 
mapping problem in two systematic steps. These two steps are task assignment and 
core-tile mapping respectively. According to simulation results, the proposed algorithm 
saves more than 15% link bandwidth and 15%-20% (on average) of energy 
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consumption as compared to PMAP and PBB. In order to minimize energy and 
maximum bandwidth requirements, Rabindra etc propose a multi-objective genetic 
algorithm [12]. This approach considers “many-many” mapping between switch and 
cores instead of “one-one” mapping. In [13], a new mapping algorithm is proposed 
based on Artifical Bee Colony model to solve the problem of energy aware mapping 
optimization in NoC design. The comparison of the proposed algorithm with Genetic 
Algorithm and Max-Min Ant System based mapping algorithm shows that the new 
algorithm has lower energy consumption and faster convergence rate.  

3 Problem Definition 

A Core Graph (CG) is a directed graph, ( , )G V E , where each vertex iv V∈  

represents an IP core, each directed arc ,i je E∈  represents communication between 

the IP core iv  and jv , and the weight of edge ,i jw W∈  signifies the volume of data 

flowing through the edge.  
An Architecture Characterization Graph (ACG) is a directed graph, ( , , )G N R P′ , 

where each vertex in N∈  represents a tile in the architecture, each node iR ∈R  

represents the i-th router in the architecture, k
ir  represents the k-th port of the i-th 

router, where {0,1,2,3}k ∈  and 0, 1, 2, 3 represent the North, East, South, West port 

of the router, respectively, and each directed arc ,i jp P∈  represents the routing path 

from the tile in  to jn .  

3.1 Architecture  

The network under consideration is composed of m n×  tiles and ( 1) ( 1)m n− × −  

routers interconnected according to the Emesh topology. Fig. 1 shows an Emesh NoC  
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Fig. 1. 4×4 Emesh NoC architecture 
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architecture which has 16 tiles and 9 routers (nodes). Each IP core can be located in a 
tile. The router is connected to the four neighboring routers and its local IP core(s) via 
channels. A 8×8 crossbar switch is used as the switching fabric in the router. In this 
architecture, an IP core can be connected to a router around it. Therefore, 4 IP cores 
may be connected to the same router.  

3.2 Energy Model 

We use the energy consumption model proposed in [14]. The average energy 
consumption for sending one bit of data from tile in  to can be calculated as follows  

, ( 1)i jn n

bit hops Sbit hops LbitE n E n E= × + − ×  (1) 

where SbitE  and LbitE  represent the energy consumed by the switch inside the 

switching fabric and on the links between routers, respectively, and hopsn  is the 

number of routers the bit traverses from tile in  to jn .  

Then, the average energy consumption for total network is 

( )
,

( ), ( )
,

i j

i ji j

map v map v

v v bite
E w E

∀
= ×∑  (2) 

where ( )imap v  represents the mapping result of IP core iv .  

3.3 Communication Cost Model 

In order to improve system performance and reduce system overhead, the traffic 
transmitted by routers should be as little as possible. Hence, the communication cost 
between IP core iv  and jv  is given by  

,

, ,( )
k i j

i j k i j
R p

t f R w
∈

= ×∑  
(3) 

where  

,1 ( ( ))
( )

0
k i j

k

if R s p
f R

else

      ≠⎧⎪= ⎨
     ⎪⎩

 (4) 

where ,( )i js p  is the source router of path ,i jp .  

Then, the total communication cost of the network is given by  

( )
,

,

i j

i j
e E

T t
∀ ∈

= ∑  (5) 

3.4 Network Competition Model 

In Emesh topology, since the number of IP cores a router connected to may be up to 4, 
the problem of network competition is that 4 IP cores may compete for the same output 
port. Hence, the competition of the k-th port of the i-th router is given by  
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( )( ) ( )
k

ic rk k
i ig r c r e= ×  (6) 

where ( )k
ic r  represents the number of input ports which compete for current port.  

Then, the total competition of the network is given by  
3

0

( )k
i

i k

C g r
=

=∑∑  (7) 

3.5 Optimization Model 

With the model mentioned above, the optimal mapping problem can be described as 

{ }0 1 2min α α α′ ′ ′+ +E T C  
(8) 

. .s t  

, ( ) .i iv V map v N∀ ∈ ∈  (9) 

, ( ) ( ) .i j i jv v V map v map v N∀ ≠ ∈ ≠ ∈  (10) 

where ′E , ′T  and ′C  are the normalized energy, communication cost and network 
competition costs. The normalization is necessary due to the potential large difference 
between the absolute values of the three cost components. The parameters 0α , 1α  and 

2α  are weight factors. Conditions (9) and (10) mean that each IP core should be 

mapped onto one tile and no tile can host more than one IP core.  

4 Emesh Based Mapping Algorithm 

The traditional heuristic approaches are likely to trap into local optimal solutions, we 
present a new application specific multi-objective mapping algorithm (MOMA) based 
on Emesh topology, a new structure, for NoC design. This algorithm draws on the idea 
of the crossover and mutation of genetic algorithm.  

Define the population size and the number of IP cores as Npop and Ncore,  
respective- ly. Then, the following pseudo code will describe the proposed algorithm in 
detail: 

const COUNT; // limiting parameter of inner iterations 
        max_iter; // maximum outside iterations 
begin 
  iterout = 1; 
  repeat 
    generate a population randomly whose size is 2Npop; 
    choose the better Npop individuals to make up the 

initial population; //optimize the initial population 
    cnt = 1; // the generation of new population 
    iterin = 1; 
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    repeat 
      if iterin is odd 
        i = 1; 
        repeat 
          generate rand01 randomly // 0≤rand01≤(Ncore -1) 

          exchange the rand01

th IP core of ith and (i+1)th 
          individuals // generate 2 new individuals 
          i = i + 2; 
        until i = Npop /2 -1 // first part of population 
        i = Npop /2 + 1; 
        repeat 
          generate rand02 randomly // 0≤rand02≤(Ncore -1) 

          change the rand02

th IP core information of the 
          ith individual // generate a new individual 
          i = i + 1; 
        until i = Npop // last part of population 
      if iterin is even 
        i = 1; 
        repeat 
          generate rand01 randomly // 0≤rand01≤(Ncore -1) 

          change the rand02

th IP core information of the 
          ith individual // generate a new individual 
          i = i + 1; 
        until i = Npop /2 // first part of population 
        i = Npop /2 + 1; 
        repeat 
          generate rand02 randomly // 0≤rand01≤(Ncore -1) 

          exchange the rand01

th IP core of ith and (i+1)th  
          individuals // generate 2 new individuals 
          i = i + 2; 
        until i = Npop -1 // last part of population 
      apply roulette wheel selection to select 
      individuals // generate the next generation 
    iterin = iterin + 1; 
      if find a better mapping result 
        cnt  = 1; 
      else cnt  = cnt + 1; 
        until cnt  = COUNT // exit inner iteration 
    iterout = iterout + 1; 
  until iterout = max_iter 
end. 

5 Experiments and Results 
In order to show the performance of the proposed mapping algorithm, we use Genetic 
algorithm (GA) [7] and Multi-Objective Mapping Algorithm (MOMA) based mapping 
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to different benchmarks, respectively. The simulations are running with VC++6.0 in 
windows XP OS.  

As is shown in Fig. 2, they are two application specific communication core graphs 
used in most of simulations in application specific NoC design. Fig. 2(a) is a Video 
Objective Plane Decoder (VOPD) application core graph will be mapped onto 4×4 
Emesh topology [5]. The MPEG-4 decoder application core graph is shown in Fig. 2(b) 
with 12 IPs [5] which will be mapped onto 3×4 Emesh topology.  
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Fig. 2. The benchmark of application specific traffic: (a) VOPD communication core graph 
(Mb/s); (b) MPEG-4 decoder communication core graph (Mb/s) 
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Fig. 3. The performance of different methods in VOPD and MPEG-4 communication graph 

Fig. 3 shows the optimal solution derived by GA and MOMA based mapping 
respectively. From Fig 3, the multi-objective optimal mapping results of MOMA save 
76.7% in VOPD and 39.9% in MPEG-4 than GA based mapping at most. The 
corresponding energy, communication cost and network competition are also shown in 
Fig 3. The mapping results are varied as the weight factors. In the case of α0=0.1, 
α1=0.1 and α2=0.8, respectively, the energy, communication cost and network 
competition of MOMA based mapping are 6507 (mJ), 1405 (Mb/s) and 0 in VOPD, and 
8549 (mJ), 2559 (Mb/s) and 104 of GA based mapping. According to the calculation 
analysis, MOMA based mapping has lower energy consumption, lower communication 
cost and less network competition than GA based mapping.  
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6 Conclusions and Future Work 

In this paper, we proposed a new multi-objective mapping algorithm (MOMA) for 
application specific Emesh NoC design. This algorithm draws on the idea of the 
crossover and mutation of genetic algorithm. According to the simulation results, 
MOMA is an effective mapping algorithm. In the future, more work needs to be done in 
order to improve network performance, considering the constrained problems.  
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Abstract. A method of predicting Pareto dominance in multi-objective 
optimization using binary nearest neighbor classification (BNNC) is proposed. It 
encodes real value feature variables into binary bit strings with the same length. 
The similarity of two feature variables is directly measured by weighted sum of 
the binary bits. The analysis shows that when the orders of magnitude for various 
feature variables differ from each other, the similarity measured by scaled feature 
variables is able to more uniformly reflect the contribution of each feature 
variable to Pareto dominance relationship, and BNNC has computational 
complexity of O(N). Experiments results show that, in addition to remarkably 
increasing classification accuracy rate, it is more efficient and robust than the 
canonical nearest neighbor rule and Bayesian classification when used to classify 
those problems with unbalanced class proportions and feature vectors no less 
than 2 dimensions.  

Keywords: multi-objective optimization, Pareto dominance, pattern 
classification, binary nearest neighbor classification.  

1 Introduction 

In recent years, there is an increasing interest in applying evolutionary algorithms to 
solve multi-objective optimization problems [1], [2]. A number of well-known 
multi-objective optimization evolutionary algorithms (MOEAs) have been proposed, 
such as NSGA-II [3], SPEA-II [4], PAES [5], MOPSO [6]. The common characteristic 
is that these algorithms determine the Pareto dominance of two candidate solutions by 
computing and comparing their objective vectors, and then iteratively identifies all the 
non-dominated solutions in the evolutionary populations. As the number of 
evolutionary generation is increasing, the frequently updated non-dominated set 
asymptotically converges to the Pareto front. 

However, for the complicated structure design optimization problems [7], [8], 
evaluation of the objective vectors or constraint functions is no more than computing 
values of simple functions. It is a time consuming procedure often taking hours or days. 
It is simply referred to the curse of computation cost. For the overwhelming expense 
evaluating objective vectors, the current popular MOEAs are almost not competent to 
large scale complicated multi-objective optimization tasks. 

To reduce the computation expense evaluating objective vectors, GUO [9] proposed 
a method of predicting Pareto dominance using pattern recognition. For a 
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multi-objective optimization problem, the method combines decision vectors of two 
candidate solutions into a feature vector determining their Pareto dominance. The 
Pareto dominance relation non-dominated, dominated and incomparable of two 
candidate solutions is predicted by pattern classification algorithm. No need of 
modeling fitness estimation and fitness inherit for objective functions of a MO 
problem, the predicted Pareto dominance can be used in any MO algorithms based on 
Pareto dominance concept, thus providing an efficient approach for relieving the curse 
of computation cost in solving complicated MO problems.  

Based on the assumption that class-conditional probability follows normal 
distributions, GUO preliminarily implemented a kind of Bayesian classifiers by 
minimizing the classification error rate and minimizing the average risk respectively. 
The classifier obtained acceptable prediction accuracy on SCH [10] function. However, 
as the complexity of the test problems increases, the shortcoming of Bayesian classifier 
is evident. In most complex MO problems, the distribution of class-conditional 
probability is unknown a prior, the assumption of normal distribution consequently 
causes a number of predicting errors. 

This paper proposes a method of using binary nearest neighbor classification to 
predict Pareto dominance. The method is used in test problems with multi-dimensional 
objective space and unbalanced class proportion. The rest of the paper is organized as 
follows. Section 2 gives the Pareto optimality concept briefly. Section 3 proposes and 
analyzes the binary nearest neighbor classification in detail. Section 4 presents and 
compares the experimental data. And the conclusions are summarized in Section 5. 

2 Outlines of Pareto Optimality 

A general multi-objective optimization problem can be described as a vector function F 
that maps a space of n-dimensional decision vectors to a space of m-dimensional 
objective vectors. Formally:  

1 2

1 2

1 2

m in  ( ) ( ( ), ( ), , ( ))  ,

. .  ( , , , )  ,

      ( , , , )  .

m

n

m

f f f

s t x x x X

y y y Y

= =
= ∈
= ∈

y F x x x x

x
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Where, x denotes decision vector, X decision space, y objective vector, and Y objective 
space. 

Since the objectives in (1) are often conflicting with each other and 
incommensurable, it is impossible to optimize all objectives simultaneously. Therefore, 
there only exists a set of Pareto-optimal solutions. 

Pareto Dominance: For every vector u=(u1, u2,…,um)∈Y, v=(v1, v2,…,vm)∈ Y, iff 
i∀ ∈{1,2,...,m}: ui ≤ vi ∧ j∃ ∈{1,2,...,m}: uj < vj , u is called to dominate v, denoted as 

u≺ v; or v dominated by u, denoted as u≺ v. Otherwise, u and v are incomparable, 
denoted as u~v. 

Pareto Optimum: x∈X is referred as to a Pareto optimal solution (namely Pareto 
non-dominated solution or non-inferior solution), iff ' ',  ( ) ( )X¬∃ ∈ = =x v F x u F x≺ . 
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Pareto Optimal Set: The set of all Pareto optimum in the decision space X is referred 
as to Pareto optimal set, and the set of the corresponding objective vectors is referred as 
to Pareto front or Pareto optimal surface. 

3 Binary Nearest Neighbor Classification of Pareto Dominance  

3.1 Prediction Model of Pareto Dominance  

According to Pareto-optimality concept, Pareto dominance relation of two candidate 
solutions (u, v) is classified into three categories: u≺ v, u v, u ~v. Where, for the sake 
of convenience, u and v respectively represent n-dimensional decision vectors of the 
candidate solutions. Regarding a couple (u, v) as a 2n-dimensional feature vector of a 
pattern, the Pareto dominance relation can be regarded as the category of the pattern, 
namely Pareto dominance class. Each category is labeled with class ωi, where i=1~3. 
ω1, ω2 and ω3 respectively represent Pareto dominance relation u≺ v, u v, u ~ v.  

For a MO problem, assuming two candidate solution sets with size p, q respectively 
are generated randomly in the decision variable domain, each sample s(x1, x2) of Pareto 
dominance class is constructed as the way that x1 is selected randomly from the p 
solutions and x2 from the q solutions. Then p+q candidate solutions can be be used to 
construct a Pareto dominance sample set with size p q⋅ . The class label j

iω  of the 

sample sj 1 2( , )j jx x is determined by computing and comparing the objective vectors of 

the candidate solutions 1 2 and j jx x , where i=1~3, j=1~ p q⋅ . Given a sample set 

{( , )}j
j iS s ω=  with appropriate size, by using the classifier structure shown in Fig.1 

and utilizing an efficient learning algorithm, it is possible to predict the Pareto 
dominance class of any decision variable u and v. 

Fig. 1. Pareto dominance classifier structure: each sample consists of a decision vector couple (u, 
v) and a known class label ωi. u, v are n-dimensional decision vectors of two candidate solutions 
respectively 

 
Pareto dominance 
class sample set 

 
classifier learning 
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u1, … ,  un,   v1, …, vn 
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3.2 Binary Nearest Neighbor Classification 

For a MO problem, each dimension of the decision vector is encoded as a binary string 
with length l bits {0,1}l

ix ∈ , where i=1~n. The value of the encoded binary string xi is 

calculated by 

1

1
( ) 2

.
2 1

l k
i i ikk

i i l

b a x
x a

−
=

− × ×
= +

−
∑  (2) 

Where, [ai, bi] is the domain of xi. 
Given two binary strings xi and yi with length l, the distance di(xi, yi) between the 

strings xi and yi is calculated by 

1

=1
( , ) ( ) 2  .

l k
i i i ik ikk

d x y x y −= ⊕ ×∑  (3) 

Where, ⊕ is the logical exclusive or operator. Then the similarity ( , )δ x y of two 

decision vectors x and y is measured by 

1
( , ) ( , ), 1 ~ .

n

i i ii
d x y i nδ

=
= =∑x y   (4) 

Given decision vector set X ={x1,…,xN}, the Pareto dominance class label C(u, v) of 
arbitrary decision vector couple (u, v) is assigned by the binary nearest neighbor 
classification algorithm described as follows: 

Step1. Find out xi, i=
=1~

arg min δ( , )i
i N

u x ; 

Step2. Find out xj, j=
=1~

arg min δ( , )j
j N

v x ; 

Step3. Let C(u,v)=C(xi,xj), where C(xi,xj)∈{ω1, ω2, ω3}. 

The reason of adopting encoded binary string in BNNC is that the weighted sum of 
binary bits reflects the similarity of two feature variables more accurately than 
Euclidian distance of real value space, especially for problems in which the domains of 
feature variables differs in orders of magnitude. 

Taking the following problem for consideration: 

2
1 1 2 1 2 1 2

1

1 2

1
m in  ( , ) ,   ( , ) ;

      0 0 .1 5,  0 1 5  .

+
= =

≤ ≤ ≤ ≤

x
f x x x f x x

x

x x

 (5) 

The values of feature variables of two groups of samples (a, b, c) and (x, y, z) and the 
corresponding encoded binary strings are shown in Table 1. The Pareto dominance 
class label of the couple (c, z) will be determined by prediction.  
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Table 1. The samples and their encoded binary strings  

Selected samples 
Feature vectors The encoded binary strings 

x1 x2 x1 x2 

a 0.01 10 0001 1010 
b 0.12 3 1100 0011 
c 0.15 7 1111 0111 
x 0.01 11 0001 1011 
y 0.11 4 1011 0100 
z 0.07 11 0111 1011 

 
By real-value nearest neighbor classification (RNNC) rule, the similarity rδ  

depends on the Euclidean distances between samples. A few simple computation 
gives ( , ) 3.003,rδ =a c ( , ) 4.000,rδ =b c ( , ) 0.060rδ =x z  and ( ), 7.000rδ =y z . It shows 

that c is closer to a, and z is closer to x. Then c z≺ is obtained from C(c,z)= C(a,x), 
where C(a,x) is obtained by evaluating and comparing the objective vectors of a and x . 
In fact, the evaluated Pareto dominance relation is c~z. 

However, the similarity measured by the weighted sum of binary bits are 
( , ) 27,bδ =a c ( , ) 7,bδ =b c ( , ) 6bδ =x z and ( , ) 27.bδ =y z  According to BNNC 

algorithm, the actual Pareto dominance relationship c~z can be derived from C(c,z)= 
C(b,x).  

0 4 8 12 16 20
0

0.04
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0.12

0.16

0.2

a (0.01,10)

b (0.12,3)

c (0.15,7)

x2

x1

 

Fig. 2. The locations of sample a, b and c in the transformed coordinate system, where the height 
of domain of x1 is enlarged to the same as the width of x2. It is the similar case as x1 and x2 
are encoded to binary strings with the same length. 
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In RNNC, Euclidean distance is calculated on original coordinate scale, the value is 
inclined to be dominated by the feature variable x2 with greater interval [0,15], the 
contribution of the feature variable x1 with smaller interval [0,0.15] is almost neglected 
on extreme cases. Consequently, the similarity measured by Euclidean distance gives 
the result that a is closer to c than b.  

However, regarding the similarity of Pareto dominance, the contribution of each 
feature variables to the similarity computation must be identically considered. The 
intention can be implemented by using transformed coordinate scales as adopted in 
BNNC. In the transformed coordinate system, the fact b is closer to c than a is evident 
as visualized in Fig.2. Therefore, the weighted sum of binary string used in BNNC 
more appropriately represents the similarity of feature space.     

3.3 Time Complexity 

For Pareto dominance prediction of MO problems, when the canonical nearest 
neighbor rule[11] is used, the candidate solution sample set of size N is constructed to 
candidate solution couple sample set of size N2. Therefore, the time complexity of 
finding out the nearest neighbor for any observed sample (x1, x2) is O(N2). But it is no 
need to construct candidate solution couple sample set to implement BNNC. For any 
observed sample x1 and x2, BNNC directly finds out the nearest neighbors from the 
candidate solution sample set of size N respectively. It is clear that the total time 
complexity is O(N). 

4 Experimental Results 

We used BNNC and RNNC to predict the Pareto dominance for the problem in (5). The 
only difference is that RNNC uses real-value representation of feature variables but 
BNNC binary bit strings. In experiments, x1 takes the fixed domain [0,0.1], but x2 takes 
three kinds of domains [0,5], [0,50] and [0, 500].  

Table 2. The average accuracy rates of BNNC and RNNC classifying the 1600 observed data 
over 100 sample sets. Each sample set consists of 10000 randomly generate candidate solutions. 
The rows correspond to the three different domain combination of feature variable x1 and x2.  

Average class proportion 
in sample data (%) 

Average accuracy of BNNC 
predicting observed data (%)

Average accuracy of RNNC 
predicting observed data (%) 

ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3 
11.12  11.39 77.49 71.51   70.84 93.40 61.30   70.16 90.15 
13.85  14.33 71.82 76.07   78.76 91.53 50.63   42.54 78.80 
14.07 14.96 70.97 80.51 78.26 89.46 38.41 39.08 73.92 

 
For each group domain of x1 and x2, 10000 sample candidate solutions are randomly 

generated. The Pareto dominance relationships between samples are determined by 
evaluating and comparing the objective vectors. Each sample set is used to classifying 
the same set of randomly generated 1600 observed data. The average class proportion 
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over 100 random sample sets and the average accuracy rate classifying the 1600 
observed data are listed in Table 2. 

It shows that the classification accuracy of RNNC decreases as the difference 
between domains of feature variables increases. But BNNC is not sensitive to the 
intervals of feature variables besides the overall stronger competence in classification 
accuracy.  

For testing the robustness of BNNC, we performed additional classification tests on 
problems as listed in (6)~(8), which are the popular benchmark [10], [12], [13] in 
testing multi-objective optimization algorithms. 

 

2 2
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In the experiments, BNNC and Bayesian classifier based on the criterion minimizing 
the error rate and the assumption that class condition probability density follows 
normal distribution, are compared. As to the size of the sample set and the observed 
data, we adopted the same testing conditions as described above. For each algorithm 
and problem, the classifying trial is performed 100 runs on varied sample set.    

The average class proportion of the sample sets and the average classification 
accuracy rate of the two methods are shown in Table 3. The resulting data in first to 
third row respectively corresponds to problem (6)~(8). It indicates that the 
classification accuracy of Bayesian classifier evidently depends on the dimension of the 
feature vectors, especially the unbalanced degree of class proportion in samples. For 
the samples of problem (6) with 2 objectives has relatively balanced class distribution, 
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both methods are able to get satisfying classification result, but BNNC averagely 
obtains higher prediction accuracy rate approximate to 98% for each class. 

For the class proportions in the samples of the problem (7) and (8) with 2 feature 
variables are extremely unbalanced, the Bayesian classifier are almost unable to 
recognize the classes with miner proportion, no matter how we adjust the algorithm 
parameters and the size of samples. But BNNC is able to obtain acceptable 
classification accuracy rate about 66~75% for miner classes. 

Table 3. The average class proportions over 100 sample sets, and the average classification 
accuracy rates of BNNC and Bayesian classifier. The rows correspond to problems (6)~(8) 
respectively. 

Sample classes (%) BNNC (%) Bayesian (%) 
ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3 

34.06 33.52 32.42 97.48 97.67 97.91 82.31 86.75 91.95
14.76 15.22 70.03 66.96 70.46 87.45 20.67 22.22 94.76
15.05 15.37 69.58 74.55 72.46 90.42 33.95 30.40 98.79

5 Conclusions 

Multi-objective optimization based on Pareto optimality needs to identify Pareto 
dominance among the candidate solutions. For extremely complicated optimization 
problems, population-based evolutionary algorithm may be confronted with the curse 
of computation cost for evaluating and comparing a large number of objective vectors. 
This study proposes a kind of method predicting Pareto dominance among the 
candidates by binary nearest neighbor classification. The algorithm encodes each 
feature variable into a binary string with fixed length. The similarity of two candidate 
solutions is measured by weighted sum of binary bits. The analysis and experiments 
shows that the method is able to predict Pareto dominance efficiently. In addition to get 
the higher classification accuracy, it is more robust than real value nearest neighbor and 
Bayesian classification when used in MO problems, in which the orders of magnitude 
of feature variable domains differ from each other and the class proportions of the 
samples are unbalanced. 
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Abstract. In view of the unsatisfactory search performance of binary crossing 
operator as well as the elitist-preserving approach’s influence on the 
population’s diversity, an algorithm of multi-objective based on layer strategy 
and self-adaptive crossing distribution index is put forward on the basis of 
research and analysis on NSGA-Ⅱ algorithm. The algorithm will be applied to 
the ZDT series test functions. The experiment results show that the improved 
algorithm maintains the diversity and distribution of population. Compared with 
NSGA-Ⅱ, the Pareto front we get is much closer to the true Pareto optimal 
front.  

Keywords: Multi-objective Evolutionary Algorithm, NSGA-Ⅱ, Pareto optimal 
Front, Layer Strategy.  

1 Introduction 

In the practice of science and engineering, many problems have multi-objective 
nature. They are expected to meet several different objectives, which often conflict 
with each other. Such problems are called multi-objective optimization problem 
(MOP). Unlike single objective optimization problem (SOP), the solution to MOP is 
an optimal solution set instead of a unique answer. All the elements in the solution set 
are known as Pareto optimal solution, which cannot be compared with each other  
concerning all objects. 

Unlike SOP, multi-objective optimization solution aims at achieving two goals:  

(1) Approaching to the Pareto optimal front;  
(2) Maintaining the diversity of the population. 

In order to achieve these two goals, researchers have proposed many methods to solve 
MOP, one of the methods is using the classical optimization methods, which apply  
the counter measure weighing principle to the relative importance of target to handle 
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MOP before a single objective optimization can be formed. The solution to MOP has 
some defects: it is very sensitive to the shape of the Pareto optimal front, and it cannot 
handle the front of the recess; moreover the heuristic knowledge concerning 
application background is frequently unavailable, thus preventing the implementation 
of optimization. Another method is to use evolutionary algorithms and other random 
search algorithms. A large number of studies have shown that the evolutionary 
algorithm is very suitable for solving the MOP because during the evolution 
populations may parallel search many objectives, the Pareto optimal solutions will be 
finally achieved through the community evolution. 

Evolutionary algorithms based on multi-objective optimization methods have got 
more and more attention. Having done lots of researches and proposed a variety of 
treatment strategies, domestic and foreign scholars have formed a number of effective 
multi-objective evolutionary algorithms (MOEA): such as Corne's PESA [1] and 
PESA-II [2], Knowles and Corne's PAES [3], Horn et al.'s NPGA [4], Zitzler and 
Thiele proposed SPEA [5] and SPEA2 [6], and Deb's NSGA-II [7]. These algorithms 
have their own advantages, but also have flaws. In the process of MOEA development 
and application, it is still necessary to constantly improve and refine existing multi-
objective evolutionary algorithm and invent new optimization methods in order to 
provide more valuable research methods and tools for evolutionary algorithm to solve 
optimization problems. 

Among the MOEA, having both a good distribution and the fast convergence rate, 
Deb’s NSGA-II is one of the best multi-objective optimization algorithms so far, 
which has been widely cited by scholars from domestic and abroad. But the NSGA-II 
algorithm also has its own disadvantages. For example, the adaption of simulated 
binary crossover operator results in poor search performance, and its elitist-preserving 
approach affects population diversity, and the remaining infeasible solutions caused 
by the imperfect crowding mechanisms reduce the efficiency of evolution. Aiming at 
the above issues, this paper does improving study of NSGA-Ⅱ algorithm in order to 
increase the search capabilities and maintain the population diversity much better. 

2 Analysis and Improvement of Algorithm  

2.1 Analysis and Improvement of Crossover Operator 

What NSGA-Ⅱ  uses is a simulated binary crossover algorithm (SBX)[8] which 
simulates the working principle of single-point crossover operator on binary strings. 
Two parent chromosomes produce two children chromosomes through crossover 
operation, and leave the parent mode of information about the chromosomes protected 
in the offspring. There is a cross-distribution function in SBX operator. The cross-
distribution function contains a parameter that can be any non-negative real number: 
cross-distribution index ηc. The index influence on the production of offspring 
solution has the following characteristics: If a large value of ηc is chosen, the resulting 
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offspring solutions are close to the parent solutions; On the other hand, for a small 
value of  ηc, solutions are likely to stay away from parents. 

According to the feature of ηc , fixed ηc will be no longer used in the process of 
evolution , instead we determine ηc in view of the current generation of the evolution.  
In the initial period of evolution, smaller ηc is used for dispersion search, which helps 
explore unknown space information and maintain the diversity of solutions. In the 
process of evolution, the individual solution tends to converge, increasing ηc gradually 
and adopting small-scale centralized search to improve the convergence rate. As a 
result, using time-related logistic function designs gradually change cross distribution 
index ηc. 

Logistic function has the following characteristics: when time t is very small, it 
grows exponentially, and when t increases, the growth rate declines; until a certain 
value is approached. 

In this function, the ηc value is calculated using the following equation: 

2
01.0

1

3
te

c
−+

=η  (1) 

where t is the current evolution generation and ηc gradually increases from 2 to 3 
during the evolutionary process. 

2.2 Analysis and Improvement of Parent Individual Choice 

It’s well known that the quality of the parent individual plays an important role in 
generating high-quality offspring individuals. In early search, excellent individuals 
are few, a lot of repeated individuals among parent individuals are generated by 
binary tournament selection method. It is more likely to be stuck in local optimum, 
and be an obstacle to the maintenance of individual diversity. So, it is necessary to 
limit the number of the individuals' copy to ensure that the selected parent individuals 
are different from each other. 

2.3 Analysis and Improvement of Elitist Preserving Mechanism 

Although elitist preserving mechanism is helpful to maintain excellent individuals and 
improve the overall evolution level of population, there are still shortcomings in the 
NSGA-II elitist preserving approach. When the number of individuals in non-
dominated front whose order value is 1 exceeds initial population size, individuals 
selected by the elitist preserving mechanism are all in this front, and then the 
dominant solution (inferior solution) cannot play the role fully, which possibly 
prevents some partial areas from being searched in Pareto optimal front. So it is not 
conducive to the protection of individual diversity. In order to make individuals in the 
current Pareto front spread to the whole Pareto front and distribute as evenly as  
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possible, a new elitist preserving mechanism is proposed. The new method adopts 
layered scanning the destination space to achieve the elite individual choice.  

Specific methods are as follows: in the destination space, selecting an objective 
function as an indicator, dividing the target space into several sub-spaces evenly, and 
individual quantity in each selected sub-space is calculated using the following 
equation:  

⎡ ⎤i
Nm =                              (2) 

where N is the number of the selected population, i is the number of divided space , m 
is the individual quantity in each selected sub-space.  

According to dominance relations, a series of non-dominated Pareto solution set in 
each sub-space is obtained in the order of F1, F2, ....and so on. The level of F1 is the 
highest. If the individual quantity in F1 is larger than m, the individual in F1 needs the 
crowding sort method. Individual with large crowding distance gets preferentially 
access to next generation Pt +1. Otherwise, if the individual quantity in F1 is less than 
m, all members will be chosen into the next generation Pt+1.  Remaining members of 
Pt +1 will be selected among F2, F3,...until individual quantity approaches to m. 

If the number of individuals in a sub-space is less than m, the surplus individual 
will be selected from the neighboring upper sub-space. The number of surplus 
individual is equal to m minus the individual quantity which has already been selected 
in current layer. If all selected individual quantity is less than population size, the 
random method will be adopted to select individual from the initial data set in order to 
achieve population size. 

Layer strategy is different from the original strategy. In original strategy order 
value of individual in population are continual digits starting from 1, but with layer 
strategy, order value of individual in sub-space may not be continuous, and the 
smallest order value is not necessarily 1. For example, in the sub-space, only 2, 4 of 
the order value emerge, instead of a continual digit 1,2,3,4. So the strategy of 
individual selection is: first to read the value and then achieve individual choice in the 
same order value individuals. 

3 Simulation Results 

3.1 Test Functions and Performance Measures 

In this section, five typical multi-objective test functions [9] of ZDT series are 
selected to compare the performance of the improved version algorithm proposed in 
this paper. These multi-objective optimization optimal fronts are convex, concave, 
continuous, discontinuous, uniform and non-uniform. All test functions have two 
objective functions. None of these functions has any constraint. 

In the experiment, parameters are set: population size of 100, a real number 
encoding, the crossover probability 0.9, mutation probability of 1 / n (n is the number 
of decision variables), the evolution of generation 1000. 
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To demonstrate the effectiveness of the algorithm and compare with algorithms 
from the other literatures, this paper will adopt performance metrics of convergence 
and diversity proposed by Deb and others to evaluate the performance of the 
algorithm [7]. 

(1) Convergence:  measured by calculating the average minimum distance 
between the obtained solution and the nearest member of the Pareto optimal front. 
This metric is defined as :             

}||,min{|| ***1 Pppp
Pp

N ∈−= ∑
∈

γ                (3) 

where N is the number of  non-dominated  solutions, P* is the Pareto optimal front 
and P is obtained non-dominated solutions. 

(2) Diversity: proposed as follows:  
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=                          (4) 

where di is the Euclidean distance of adjacent solutions in Pareto solutions, d  is the 
mean value of these distance, df and dl are the Euclidean distances between the 
extreme solutions and the boundary solutions of the obtained non-dominated set . 

Δ measures whether getting a set of solutions that evenly spread the entire Pareto 
optimal region. A lower value implies a better variety. 

3.2 Experiment Results and Analysis 

Fig.1 to 5 show typical simulation results of the test functions ZDT1, ZDT2, ZDT3, 
ZDT4 and ZDT6. All non-dominated solutions obtained from the improved algorithm 
and the Pareto optimal front are shown in the same figure. This figure demonstrates 
the abilities of algorithm in converging to the true front and in finding diverse 
solutions in the front.  
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                   Fig. 4.  ZDT4                      Fig. 5.  ZDT6   

As it is shown from the figure, the obtained non-dominated solutions and the true 
Pareto front almost coincide, and the solution is also more evenly distributed on 
ZDT1, ZDT3, ZDT6, but distribution of the solutions is not very uniform in some 
local areas. On ZDT2, this problem has a non-convex Pareto optimal front, where the 
solution is fairly distributed evenly, but in some partial areas obtained non-dominated 
solutions slightly deviated from the true Pareto optimal front. On ZDT4, the obtained 
non-dominated solutions not only are quite close to the true Pareto optimal front, but 
also have a good diversity and distribution. 

 In order to show how layer strategy enhances the performance of the algorithm, 
we perform simulation experiments on five typical multi-objective test functions of 
the ZDT series and run each configuration 10 times in each problem independently.  
The obtained results of convergence and diversity are shown respectively in Table 1 
and Table 2. In each row of these tables, the upper cell contains the mean and the 
lower one contains the variance. Moreover, the first column represent the number of 
level by the setting L=1, L=N/5, L=N/2 or L=N.  

 

Table 1. Mean and Variance of the 
convergence metric γ 

Table 2. Mean and Variance of the diversity 
metric Δ 

 

The 

Number  

of 

Layer(L) 

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

  L=1 
0.0041 

0.0000 

0.0089 

0.0000 

0.0060 

0.0000 

1.0095 

0.1881 

0.0041 

0.0000 

L=N/5 
0.0047 

0.0000 

0.0050 

0.0000 

0.2730 

0.1094 

0.9124 

0.0688 

0.0048 

0.0000 

L=N/2 
0.0056 

0.0000 

0.0067 

0.0000 

1.4065 

0.0200 

0.8309 

0.1412 

0.0044 

0.0000 

L=N 
0.0084 

0.0000 

0.0108 

0.0000 

1.6502 

0.0012 

0.3811 

0.0520 

0.0046 

0.0000 

The 

Number  

of 

Layer(L) 

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

L=1 
0.7048 

0.0015 

0.7705 

0.0139 

1.2899 

0.0028 

0.8877 

0.0011 

0.8899 

0.0002 

L=N/5 
0.6511 

0.0011 

0.6422 

0.0000 

1.2348 

0.0095 

0.8840 

0.0007 

0.8325 

0.0001 

L=N/2 
0.5855 

0.0028 

0.5491 

0.0023 

1.1209 

0.0036 

0.8372 

0.0079 

0.7992 

0.0005 

L=N 
0.3690 

0.0001 

0.3300 

0.0002 

0.7931 

0.0000 

0.6041 

0.0184 

0.6371 

0.0000 
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As indicated from the tables, the layer strategy got the lowest mean for both 
metrics in all problems. Furthermore, in 4 of 5 problems with the increase of the 
number of layer, convergence is gradually becoming larger and larger, while the 
diversity has gradually become smaller. But for ZDT4, convergence and diversity are 
both gradually becoming smaller with the increase of layer. 

4 Conclusions 

This paper has designed an adaptive cross distributed index and improved NSGA-Ⅱ 
elitist preserving approach. A multi-objective evolutionary algorithm is proposed 
based on adaptive crossover and layer strategy. Having run the improved algorithm on 
five different problems, we compared the results with NSGA-Ⅱ. The experimental 
results have shown that the improved algorithm outperformed NSGA-Ⅱ in 
convergence to the Pareto optimal front and in diversity of the final non-dominated 
solutions. However, during the experiment we have found that it is also necessary to 
discuss further about how to effectively balance the convergence and diversity to 
make the algorithm more practical.  
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Abstract. In this paper, we designed and developed three new model related to 
task assignment in robotics. The aim is to allocate all the robots to all the 
available tasks such that all tasks are finished with minimum total cost and 
minimum time taken. The first model is completely based on priority but waits 
for robots and allocates task only to the most suitable robots (highest bid robots). 
The second model completes the task in such a way that it allocates best robots 
that are currently available to the task without waiting for the most suitable 
robots to be free. The third and final model uses heuristics based approach with 
auction algorithm to identify the non-performing slow robots and eliminate them 
from the list of available robots. This helps in increasing the efficiency of the 
whole system and helps to reduce the total cost of performance for the system. 
The work aims at providing a best suitable algorithm for completing all the tasks 
with minimum overhead and maintaining a specific order for the completion of 
the tasks. Further it also rejects the slow working robots so that the total time 
taken for completion can be reduced. 

Keywords: Priority, Multi Robot, Task Assignment, Heuristics.  

1 Introduction 

The problem of task allocation in multi-robot systems has received significant amount 
of interest in the research community. Researchers build, cooperate and design the 
multi-robot systems with great complexities but one question always remains in their 
mind i.e. “Which robot should be selected for a task?”[1] 

Multi robot systems are one of the most complex and hard to interpret systems in 
today’s AI systems. It consists of many parameters to optimize and is generally 
multi-objective so as to provide best result. Some of the complexities in the multi-robot 
system are: 

Area Exploration: First and foremost part of any practical implementation of multi 
robot system is to explore the area or the grid in which we are working. We have to find 
where are the obstacles, which parts are designated location (goal points) and what are 
the limits for the system. It is in itself an area of research for exploring the grid via 
multiple robots. 

Task Assignment: After the area is explored we have to examine the number of tasks 
and number of robots in the grid so that we could allocate the robots to the task [4][5]. It 
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is also one of the most thoughtful areas of research because we have to optimally select 
the sequence and priority of the task to be completed via multiple robots. It is done by 
considering various aspects of conflict resolution, minimization of the total cost, types 
of robots, etc [9][13]. 

Path Planning: After the area exploration and task assignment, we have to find the best 
suitable path from current position of the robot to the destined position of the task. It is 
done keeping in mind that the robots do not collide into the obstacles or into other robots 
and finding the minimum distance between the two positions [3]. Coordination and 
collaboration: After the completion of all the above three steps, the final step of 
coordination and collaboration comes into picture. In this, robots have to align 
themselves to complete the task they are assigned to with min resource utilization and 
max efficiency. It is however one of the least explored areas in robotics as it is very 
difficult to collaborate multiple robots to do a single job at once [21][22][23]. 

2 Gaps in the Existing Literature s 

The available literature guides us through various available techniques for task 
assignment used in modern AI research viz. set-precedence [1], bidding [11], dynamic 
perception [14][12], etc. But all these solutions are best up to a certain limit and have one 
common flaw in their architecture i.e. to identify the difference between the robots 
ability and importance of a task. Currently, all the techniques available use some random 
variable or some mathematical model to formulate a relationship between the robots and 
tasks, but fail to examine the importance of the tasks and which robot is most suitable for 
a given task. We tried to solve this problem using priority concept with heuristics and 
successfully implemented our model using auction algorithm.  

3 Problem Statement 

Suppose there are ‘n’ robots (r1, r2,..,rn) and m tasks (t1,t2,...,tm) in a grid of size 
(max_size_w, max_size_h) and for each task, ‘x’ robots are required (x1,x2,...,xm) to 
complete it successfully with each task having an assigned priority ‘p’  (p1,p2,...,pm). 
We further sub divide ‘n’ robots into sub-groups ‘n1’,’n2’… which will perform the 
tasks in a simultaneously such that available robots is less than or equal to the number of 
robots required for next task j. Each of the robots is assigned a cost factor ‘C’ which 
denotes the total cost for performing the task (in this case, it is the linear sum of the 
distance travelled) and a bid value ‘B’ which denotes the ability of robot to perform the 
task (in this case, it is the mathematical relationship between the distance of the roboti 
and taskj). Now the objective of the problem is to complete all the tasks assigned to the 
robots with min total cost Cij and min time (excluding the waiting time) where, 

4 Methodology 

The following flowchart gives a brief idea as to how our algorithm assigns task to 
various robots: 
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Fig. 1. Select a task and assigning required robots that can executes the task 

Task assignment is a continuous process of selecting a task ‘j’ from a set of 
available tasks and then assigning robots ‘xj’ robots to complete the task. It is a 
rigorous process to examine and monitor the changes in the current system and 
counter it with new formulation and identification for an important task. Task 
assignment is one of the key factors in order to determine the total cost for completion 
of whole project because the order in which the tasks are to be performed if not done 
properly constitutes to an extra much larger burden than any other part of robotics. Let 
us assume the tentative cost for performing the taskj by a roboti is Cij that is defined as 
the cost to reach that task and some attribute to identify and quantify the cost incurred 
in performing the task. Now, the second part is to calculate the bid for auctioning that 
could be defined as the expectancy of a roboti to perform the taskj. 

Cost: Cost method is defined as the expected number of blocks to be travelled by the 
roboti  to the taskj. It is assumed that the cost to travel a single block is unity and 
translation is only in horizontal and vertical directions [6][7]. 

Function 2.1 Cost_Method ( Roboti,Taskj ) 

Cij= | Robot[i].posi –Task[j].posj |;  

0 <= i < n;0 <= j < m 
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Bid: Bid function is defined as an expectancy of roboti to opt for the taskj. Consider a 
scenario of auctions, the clients (roboti) bid on a specific item (taskj). If a roboti bid on 
a taskj, it does not guarantee that the taskj is to be assigned to the roboti. However, it 
provides an opportunity for the roboti to complete the taskj. 

Mathematical formulation of bidding is as follows: 
Function 2.2  Bid_Method(Robot[i].posi,Task[j].posj) 

 

Fig. 2. Calculate the bid value 

The representation is one of the most suitable formulations as it clearly and easily 
represents the relation between the distance and the bids. 

Heuristics: Heuristics are termed as an experience based techniques that are primarily 
used for learning, discovery and problem solving [10]. It is used to find a satisfactory 
solution in minimum. 

Time: where brute-force approach is impractical. We undertook heuristics in a 
different sense to monitor and identify different types of robots and task. It is 
implemented in order to get an in-depth knowledge about the limits of a particular 
robot and then help this knowledge as an addition factor in selecting the robot for a 
particular task [17]. 

Heuristics are initialized with a value to zero and then updating its value periodically 
based on the time taken to complete the task by the robot. 

5 Algorithm 

Assumptions: The first part of any algorithm is to find out the bounds and initialize the 
variables with respect to those bounds. The independent variables in our approach are: 

I. Number of tasks: m 
II. Number of robots: n 
III.  Number of robots for a task: rj, 0 <= j < m 
IV.  Size of the grid: (sizew, sizeh)  
V.   SPriority of each task: pj, 0 <= j < m 
VI.  Velocity of each robot: vel 

Now based on the above variables we calculate our dependent variables viz.:  
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a)   Position of the task: post (xt, yt) : 0<= xt<sizew, 0<= yt<sizeh 
b)   Position of the robots: posr(xr,yr); 0<= xr<sizew, 0<= yr<sizeh 
c)   for all j =0 to m completedj = 0 
d)   for all i = 0 to n busyi=0 
e)   for all i=0 to m  

for all j = 0 to n 
Cij= cost_method(roboti,taskj) 

f)   for all i=0 to m  
for all j = 0 to n 

Bij= bid method (roboti,taskj) 

Note that in the heuristics based approach we also initialized the Hij variable to ‘zero’. 

 

Fig. 3. Thread to explain how exactly the busy robots are set to free 

Models: We devised three different models to understand the basics of task allocation 
using priority in auction algorithm. Let’s understand the key points in each of the three 
models 

Model – I: It assigns only the maximum bid robot to the highest priority task. 
Advantage: Higher priority task completed first 
Disadvantages: 

Huge amount of waiting time for completion of all the tasks 
Objective function is much larger than expected 

Model – II: It assigns maximum bid available robots to the highest priority task. 
Advantages: 
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Reduce waiting time in the system as compared to Model – I.  
Reduce the total cost in completion of the task. 

Disadvantages: 
Do not consider the faulty or incapable robots. 
Time lagged during non-performance not considered. 

Model – III: It assigns maximum bid and minimum heuristics available robots to the 
highest priority task. 

Advantages: 
Robots non-performing or slow in performance would be barred from 

performing the task by considering heuristics. 
Only efficient robots perform the entire task. 

Robot Allocation: After the task selection process is complete, we have to allocate 
robots for the selected task. We have examined various approaches and concluded on 
two most suitable techniques that are implemented in Model – I and Model – II. In 
Model – I, task is allocated only to the xe highest bid robot irrespective of their 
availability i.e. if that robot is not available or performing another task then the system 
waits for it to be free and doesn’t allocate the task to any other available robots 
Whereas in Model – II the task is allocated to highest bid available robots. Hence 
clearly we can see that in the second model waiting time is reduced drastically but 
efficiency to perform the task better is more in Model – I. After close examination of 
the truthfulness of the above statement, we came to a conclusion that in the Model – III 
we would be implementing the approach discussed in Model – II. 

Objective Function: Objective function ‘D’ is defined as the total cost incurred by all 
the robots in performing all the tasks. The cost here is defined as the exact cost of the 
robot in moving from current position to the destined position and the time taken to 
perform the task.[15] Objective function gives us an idea of the amount of movement 
the robots have to do in order to complete all the tasks. This is very much essential 
when implementing the system in robotics as it gives us an estimated idea of how 
much movement the robotics arm has to go through in order to complete the tasks. 
Hence not only improving the system efficiency but also providing an estimate time for 
quality checking and up gradation of the system. 

6 Testing 

Maximum Resource Utilization: One of our prime goals is to maximize the resource 
utilization i.e. not allowing any robots to be sitting idle. This was achieved in Model – 
II by allocating the tasks to available robots rather than waiting for most suitable 
(highest bid) robot to be free. 

Waiting Time: The waiting time is termed as the time lost in waiting for the robots to 
be available and the time lost in waiting for the tasks to be completed. We cannot 
control the waiting time for tasks to be completed because we don’t know when the 
task is to be completed.[19] But the factor that we could control is the waiting time for 
the robots. In the Model – II where we do not wait for the robots to be available we 
reduced the waiting time for robots by nearly half. 
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Thereby completing all the tasks in minimum duration it helps in improving the 
overall efficiency of the system. The Model – II can be justified in a sense that if task 
has to wait for a robot that has the highest bid on it, then most certainly it is either 
performing a task or is malfunctioned. If that robot is performing a task, then the task it 
is performing must have the priority higher than the current task hence, making it more 
intriguing that robot should perform that task with more efficiency and a small amount 
of error can be accounted for in the lower priority tasks.[16] In the second case when 
it is malfunctioned, it is best not to wait for that robot and allow other robots to 
perform the tasks because the repairing cost would be too much higher than the total 
cost of the system. 

7 Results 

Priority Based MRTA without Heuristics: First we fixed the number of robots and 
analyzed the pattern by varying number of tasks. It however provides us with random 
positions of robots and tasks, but the overall value of both the objective function and 
the time required to complete all tasks (calculated via monitoring system time) lie in 
the same region. It is to be noted that as the number of tasks increases, the value 
of objective function increases and reaches to a stable position. 

When considering the time required for completing all the tasks, it however starts 
with low value but increases drastically. This shows that as the number of tasks 
increases the cost (all robots considered) increases but will be nearly stable for large 
number of tasks but the time required for completing all the tasks would be increasing 
in an exponential fashion. Hence, there should be an equal balance when considering 
large number of tasks. 

Table 1. Results of Priority based multi robot task assignment without heuristics considering 
number of robots as fixed and number of tasks as variable 

No. of Robot No. of Task 
Objective 

Function Value 
Time required to 

complete all tasks (ms) 

4 5 14.0 321074 
4 10 42.0 267431 
4 15 54.0 84697
4 20 56.0 70500

 
Priority Based MRTA with Heuristics: This approach basically eliminates time 
taking robots from the task selection process i.e. robots which are not able to complete 
the task in a specific time updates their Hi value by a factor (which we took unity in 
our case) and then re-bids to calculate their new Bij.[18] The Table 2 gives us an idea 
as how the Hi value is useful, the objective function is increasing in nature but the 
steps of increase is much lower than those of without heuristics. Also, the time 
required completing all the tasks is much less in heuristics based approach as when 
comparing with earlier approach. This shows that robots that are more suitable for 
performing a task should be given the responsibility of completing the task. Hence 
making it certain that this approach is better than earlier without heuristics one. 
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Table 2. Results of Priority based multi robot task assignment without heuristics considering 
number of robots as variable and number of tasks as fixed 

No. of Robot No. of Task 
Objective Function 

Value 
Time required to complete all tasks 

(ms) 

5 5 12.0 28109 

5 5 16.0 48038 

5 5 18.0 19118 

5 5 20.0 25426 

8 Discussion 

Priority Based MRTA: There are many scenarios in real world where a specific task 
is more important than other tasks on in a way that we have to follow a specific order in 
completing all the tasks. If we don’t want any ordering of tasks in our system then we 
can have same priority to multiple tasks and the system would select a task at random 
making it work like a normal process. 

Applications of priority based multi robot task assignment: construction business, 
etc. 

Priority Based MRTA with Heuristics: Priority based MRTA with heuristics could 
be useful in scenarios where robots fail frequently and robot which are not able to 
perform up to a required expectancy are to be rejected or removed so as to keep 
minimum efficiency of the system. This approach deals with all the constraints related 
to robot and its failure rate to perform the tasks. Even if a robot performs the tasks, this 
approach takes care of the efficiency by which the robot completing the task. Hence 
making the system aware of the quality and minimizing the total time by removing all 
non-useful robots. 

Applications of priority based multi robot task assignment with heuristics: Research 
facilities, scientific laboratories, astronomical. 

Why better than previous techniques: Following are few of the key points by which 
our designed technique is better than previous available techniques: 

1. Ordering of task considered. 
2. Robots are allocated based on bidding and distance between the current position 

and destined position. 
3. Quality of tasks performed by a robot is considered. 

All robots are able to perform the tasks and follow divide and rule approach. Hence 
reducing the overall cost of the system. 

9 Conclusion and Future Scope 

After the implementation of our algorithm and analyzing the test results we came to the 
following conclusions. 
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Model – I is useful only when we need specific robot to complete a task else in other 
cases it introduces huge amount of waiting time which is harmful for the system. 

Model – II is useful when we have to finish all the tasks quickly with an optimum 
quality. We are not concerned about how well and how fast a robot is performing a task. 
Rather we are interested in whether the robot is able to perform the task or not. 

Model – III is useful when we have to consider not only the robots completing the 
task but also 

This project could be extended much further to help collaborate and coordinate 
multiple robots such that a task could be divided into segments and each segment is to 
be completed by different sets of robots. Moreover, optimization techniques like PSO 
could be used which not only help the system reduce its total cost but also provide an 
optimal solution for completing all the tasks. 
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Abstract. Swarm robotics system has been a particularly active topic of 
robotics in recent years due to the increasing deepening of research on robotics 
technology and application. This paper gives a survey of swarm robotics system 
research from such aspects as theoretical basis and physical research, simulation 
platform, distributed control information fusion and communications system. 
Some problems that need to be solved about swarm robotics system research in 
IOT (Internet of Things) environment are also raised, such as co-adaptation, 
distributed control and self-organization, resource scheduling management. 
Finally, the ant colony algorithm and particle swarm optimization are applied to 
the swarm robotics system. 

Keywords: Swarm Robotics, Swarm Intelligence, Distributed Control.  

1 Introduction 

Modern research on robotics began in 1948 when the Institute of Atomic Commission 
Argonne of United States developed mechanical master-slave manipulator. The main 
founder of Robotics Academy in China is Prof. Xinsong J, who gave the system 
definition and research on various areas of robotics from the controlling point [1]. 
Single robot is limited in information processing capability and many other aspects, 
thus the cooperation of multi-robot are needed to complete the task in an efficient way, 
which results in the birth of multi-robot systems. 

Multi-robot researches began in the late 1980s, the previous researches mainly 
concentrated in three areas [2]: 1) assembly robot system; 2) multi-robot motion 
planning; 3) multi-robot cooperation framework. In recent years, research on 
multi-robot systems have make great progress and achieve great success in many areas 
[3]. Cooperative multi-robot system depends on the individual robot very much, for 
further enhancing the robustness and scalability of the system, swarm robotics system 
was born.  

The swarm robotics research began in the late 1990s. The project of Swarm-bots [4] 
chaired by the inventor of the ant colony algorithm Professor Marco Dorigo [5] began 
in 2000 marked that the studies on swarm robotics came into a new period of 
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development. Swarm robotics Professor Erol Sahin [6], one of the founders, gave a 
definition of swarm robotics [7]: it studies that how to make lots of robots with 
relatively simple physical structure show the expected overall behavior through the 
local interactions among robots and between the robots and the environment. The 
characteristics of various robot systems are shown in Figure 1. 

 
Fig. 1. The characteristics of various robot systems 

2 Research Background 

The research inspiration of swarm robotics comes from observing the behavior of 
insects, such as ants, termites, wasps and bees. Swarm robotics system is dynamic 
self-organization and has good fault tolerance, the task of robot is not pre-allocated and 
single invalid robot will not affect the operation of the system. Meanwhile, the whole 
system will not be collapsed by the failure of control center because it adopts 
distributed controlled. The research of swarm robotics has attracted many researchers 
for its high robustness and scalability. 

The journal “Autonomous Robots” published a special issue of swarm robotics [5] in 
September 2009, which was edited by the expert of swarm intelligence Marco Dorigo 
and Erol Sahin. The special issue pointed out a clear standard to distinct the researches 
similar with swarm robotics, such as Collective Robotics, Distributed Robotics, and 
Robot Colonies. The standard includes four aspects: 1) large quantities and scalability; 
2) roughly the same structure in each robot team; 3) need to rely on each other to 
complete the task; 4) individual robot has the capability of local sensing and local 
communications.  

Subsequently, the academic Journal “Swarm Intelligence” published a special issue 
of swarm robotics [6] in 2008 which divided the study into three levels: system design 
& algorithms, research tools and modeling & analysis. 

2.1 Theoretical Basis and Progress of Physical Research 

Swarm intelligence theory provides important theoretical basis for swarm robotics 
research and includes [8]: ACO, PSO, OT and GT, etc. 

In 1989, Beni and Wang [9] first proposed the swarm intelligence concept when 
studied the distributed mobile robot. In the early 1990s, the ASO (Ant Colony 
Algorithm) first proposed by Macro Dorigo, etc [10] has laid a foundation to the swarm 
intelligence theory. Ant colony algorithm is a new heuristic algorithm based on bionics 
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that attracted more and more scholars for its distributed concurrency, positive feedback, 
robustness, fast convergence, easy access to the global optimum solution, etc. Since 
2000 several development and controlling of swarm robotics research plans have been 
developed, for example the Commission of the European Communities (CEC) 
emerging technology program to support the swarm robotics study. Representative 
swarm robotics systems are shown in Figure 2. 

 

Fig. 2. Representative swarm robotics systems 

Domestic research of swarm robotics started in the beginning of this century, and is 
still at the initial stage. The research content of swarm robotics was proposed by Prof. 
Tan [11] in 2001 is the earliest research about swarm robotics. Subsequently, many 
domestic research institutes also started relative research on swarm robotics such as: 
the research of conformation expression and reconstruction optimization of 
reconfigurable swarm robot in Shenyang Institute of Automation [12], the research on 
self-assembly modular swarm robot hosted by the robotics institute of Beijing 
University of Aeronautics & Astronautics [13], etc.  

2.2 The Progress of Simulation Platforms 

The research of swarm robot system needs lots of physical robots, which makes it hard 
to afford for many research institutions. Usually a good simulation platform will 
achieve a multiplier effect. Some commonly-used simulation platforms [14] are 
Player/Stage, TeamBots, Gazebo, USARSim, Swarmbot3d, Swarmanoid Simulator, 
etc. Player/Stage is the representative simulation platform and developed by Robotics 
Research Laboratory in University of Southern California in 1999, it can provide 
internal interface and simulation environment for multi-robot systems. See Fig.3. 

 

Fig. 3. The simulation scene 
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2.3 Progress on Distributed Control of Swarm Robotics 

Both distributed and centralized approach [15] can be used in the multi-robot control 
system, but the swarm robotics system generally adopts the distributed control. The 
research of Distributed control is divided into three areas: movement and formation 
control, distributed learning, and coordination & task allocation. Among them, the 
movement and formation control include: method based on behavior and rules, 
Leader-Follower method, method based on graph theory. 

Method based on behavior and rules: providing the robots with some expected 
behaviors including collision avoidance, obstacle avoidance, and formation maintain, 
etc. According to the inputs of sensors, the robot responds and output the response 
vectors as expected response of the behavior.  

Leader-Follower method: designing a robot as leader in the group of swarm robot, 
the rest are followers which track the location and direction of the leader in a certain 
distance interval and achieve collaboration by sharing status information of the leader 
robot.  

Method based on graph theory: representing the dynamics or kinematics of robot by 
the graph nodes, the edge between nodes indicates the constraints between the robots 
and then according to the graph theory and control theory analyzing the stability of the 
formation which indicated by graph [16]. The main advantages and disadvantages of 
these four methods are shown in Table 1. 

Table 1. Compare between movement and formation control methods 

Methods Advantages Disadvantages 

Behavior-based 
control method 

parallelism, distribution and 
real-time, good adaptive for 
many competing objectives 

Group behavior cannot be clearly 
defined, cannot guarantee the stability 
of formation 

Leader-Follower 
method 

The behavior of swarm robot 
can be easily controlled by the 
behavior or track of leader  

No clear formation feedback, if the 
leader fails, the entire formation will 
not maintain 

method based on 
graph theory 

Use maps can represent any 
formation, a mature theory of 
graph theory as a basis 

Largely confined to a small number of 
robot control, and more complex to 
achieve 

 
Distributed learning includes [13]: group reinforcement learning and individual 

reinforcement learning. Group reinforcement learning use combination actions, the 
action to be taken by all other robots should be taken into account when a robot 
determine their own actions, which can be seen as a tightly coupled distributed 
reinforcement learning system.  

Independent reinforcement learning can be seen as a loosely coupled distributed 
reinforcement learning system. For example: in the experiment of pushing and pulling 
the stick, the number of sticks and robots can be changed by adjusting the robot's 
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waiting time [17]. The independent reinforcement learning is more suitable for the 
characters of swarm robotics system.  

2.4 The Progress of Research in Swarm Robotics Information Fusion 

In the unstructured environments, robot can make the correct decision just by obtaining 
a variety of information. The core of the development of robots in unstructured 
environments is the multi-sensor system and information fusion [18]. The research of 
information fusion technology received more attention from scholars in the early 
1980s. In 1984, America set up Data Fusion Subpanel (DFS), in 1988 “Integration, 
Coordination and Control of Multi-sensor Robot Systems” written by Durrant-Whyte, 
laid the foundation for the research of multi-sensor information fusion. LUO [19] 
proposed the four advantages of fusion: redundancy, complementary, timeliness and 
information cost.  

Information fusion technology is the high level of key technology which common 
concerned by multi-disciplinary and multi-field. The information fusion research 
focused on man-machine interaction and path planning two aspects.  

2.5 Progress of Research on Swarm Robotics Communication System 

Communication is a basis for information exchange between robots and achieving 
collaboration which can strengthen the link between robots so that the robot system use 
more advanced strategies to coordinate, thus improving the ability to complete complex 
tasks [20]. Robot communication system mainly includes communication, 
communication language, and communication network architecture and 
communication protocol [21]. 

Communication methods include explicit communication and implicit 
communication, for swarm robotics system it is generally implicit communication, 
there is no global rules and way to achieve transfer of information with specific 
meaning among robots. 

SWARMORPH-script [22] is the communication language for swarm robotics in 
Swarm-bots project which accurately describe the rules of the form growth in the 
self-assembly process of the robot. In addition, the robot system communication 
language can also use: Agent Communication Language, Knowledge Query and 
Manipulation Language.  

Currently Robot communication network mainly uses: Wi-Fi network, GPRS 
communication, Ad hoc networks [21] and wireless sensor networks. The wireless 
sensor network with the advantages of high robustness and self-organization is applied 
to network platform of swarm robotics.  

3 The Simulation Scene of Swarm Robotics 

The self-organizing of ant colony in nature have attracted the attention of entomologist 
long time ago, Deneubourg [23] et al. developed a study on the foraging behavior of ant 
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colony by “double bridge experiment”. The symmetric double-bridge (the two bridges 
have same length) A, B will be separated from the nest and food source, ants can moved 
from the nest to the food source freely, shown in Fig. 4.  

  g  

 

 

Ant nest Food source

 

Fig. 4. The symmetric double-bridge model 

In the early stage, there is no pheromone in two bridges, every ant will choose bridge 
A and bridge B at the same probability, so the pheromone left in two bridges is equal. 
After a period of time, the most ants choose bridge A for some random fluctuations, 
resulting bridge A attracts more ants with more pheromone left on it. As time goes by, 
the number of ants who choose bridge A will be more and more, and bridge B just the 
opposite. 

Based on the symmetric double-bridge model, the asymmetric double-bridge 
experiment has been developed in the Player/Stage, as shown in Fig. 7. There are ten 
robots in the left and two ways can be chose, the black area represent obstacles, the 
starting point of robots is the nest and the destination is the food source in the right. One 
way in the above named bridge A and the other is bridge B, obviously the length of 
bridge A is longer than bridge B. Taking path length and pheromone two factors into 
account, the probability of the m-th robot choose bridge A is 
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The probability of the m-th robot choose bridge B is ( ) 1 ( )B Ap m p m= − , 
AL  and 

BL  denote the lengthen of bridge A and bridge B. The values of parameter k, h are set 

to k=20, h=2 [24], and 2A BL L= . 

The algorithm flow is as follows: 

Step1: initialize the robot, the robot moves to the path bifurcation junction; 
Step2: generate a random number t from 0 to 1; 
Step3: calculate the probability that choosing the bridge A p(A), and compared with 

t, if t>p(A), then choose the bridge B, or choose the bridge A; 
Step4: robot reaches the destination.  

The result shown in Fig. 5, firstly the robot move from the start region to the path 
bifurcation junction, and then randomly selected path to move. Without the effect of  
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pheromone, the probability of robot choose bridge A is similar to the probability of 
robot choose bridge B, so the number of robot choose bridge A is equal to the number 
of robot choose the bridge B. When under the joint influence of the pheromone and the 
length of path, the robot will tend to choose the bridge B until there is no robot chooses 
the bridge A.  

 

    

    (a) The initial stage    (b) The early stage     (c) The medium stage   (d) The late stage 

Fig. 5. Asymmetric double-bridge experiment 

It can be seen through the test: asymmetric and symmetric double-bridge 
experiments have the same mechanism, that is the expansion of the initial fluctuations, 
the ants will often choose the shortest path, which makes the short branch has more 
pheromone to induce the nest companions choose the short branch. In other words, 
through the expansion of the initial fluctuations, the probability of final choice a short 
branch is growing with the increase of the two branches length. 

4 Conclusion 

Through ten years of research, the related theory and practice studies of swarm robotics 
have make much progress, such as self-assembly [25], self-organization [26], task 
allocation [27] and other aspects already have some of the more in-depth studies. But 
there is still a big gap between the expectations of swarm robotics, always mainly 
restricted to Kinematics behavior analysis, Synchronization problems, Collaborative 
self-organizing, etc.  
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Abstract. Training agents in a virtual crowd to achieve a task can be
accomplished by allowing the agents to learn by trial-and-error and by
sharing information with other agents. Since sharing enables agents to
potentially reach optimal behavior more quickly, what type of sharing is
best to use to achieve the quickest learning times? This paper categorizes
sharing into three categories: realistic, unrealistic, and no sharing. Real-
istic sharing is defined as sharing that takes place amongst agents within
close proximity and unrealistic sharing allows agents to share regardless
of physical location. This paper demonstrates that all sharing methods
converge to similar policies and that the differences between the methods
are determined by analyzing the learning rates, communication frequen-
cies, and total run times. Results show that the unrealistic-centralized
sharing method – where agents update a common learning module – is
the most effective of the sharing methods tested.

Keywords: cooperative learning, multi-agent reinforcement learning,
crowd simulation, 2D virtual world, inter-agent communication.

1 Introduction

Single-agent reinforcement learning (RL) has been widely studied over the past
few decades [4]. Its extension to multiple agents that share a common environ-
ment is called multi-agent reinforcement learning (MARL) [1]. In the recent years
MARL has been studied and adapted to work in the crowd simulation domain
[8,2]. The overarching goal of crowd simulation is to realistically emulate the
outward behaviors of its constituents, or agents, for the purposes of replicating
physical actions and their resultant effects in an environment. Its applications
include architectural and urban planning, evacuation planning, and video game
and movie domains. The reason for adapting MARL to work within the crowd
simulation domain is simple: since people learn and consequently adapt to sit-
uations using a form of reinforcement learning, why not apply this technique
to train simulated computer agents to learn how to behave in a crowd? Natu-
rally, because the agents are surrounded by other agents, it is logical to assume
that they will come into contact with one another during simulation. The agents
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could benefit from communicating what they have learned to others. This pa-
per focuses on the concept of inter-agent sharing within the crowd simulation
domain for an evacuation scenario. It seeks to understand the impact that var-
ious methods of sharing have on the effectiveness of the agents’ learning while
exploiting the benefits of using a layered MARL architecture. Effectiveness is
defined by resultant navigational behavior and total training time. Ultimately,
this research serves as a case study to explore the most efficient ways to scale up
to larger crowds in larger environments. Before delving into the specifics of the
research, this paper will briefly discuss further reasoning for the necessity of this
study followed by the essential background material relevant to understanding
MARL, inter-agent sharing, and layered MARL. This paper attempts to explore
how the intersection of these three domains and their application to the crowd
simulation domain results in a previously unstudied research void.

2 Related Work and Motivation

RL is good at capturing individuality, or diversity, in an agent because each agent
learns based on its own experiences within an environment. These experiences
shape the decisions made by an agent, causing them to appear as if they have
their own unique personality as they navigate through the environment. In the
real world, people not only learn from trial-and-error exploration but also from
each other through observational and/or verbal communication.

For purposes of this paper, realistic sharing is defined as taking place amongst
agents within close proximity to one another. Other literature on sharing meth-
ods within the RL domain follow a trend in which inter-agent sharing is done
via sharing across all agents, independent of agent location [7,3,9]. These pa-
pers use unrealistic methods of sharing and claim to be able to train the agents
using fewer numbers of episodes, which is indicative of faster learning rates. It
is important to note that faster learning rates do not necessarily imply faster
total run times for agent training. For example, one learning rate could be faster
than another but have a much higher communication overhead associated with
it. During training this communication overhead could prove to dominate the
total simulation training time. This type of method would therefore prove to be
much more ineffective, computationally-wise, than a method that has a slower
learning rate but a smaller communication overhead. This raises questions about
the differences in the resultant navigational behavior between learning with re-
alistic, unrealistic, and independent (no sharing) methods. This paper also seeks
to identify viable, potentially faster, methods for training agents in the crowd
simulation domain.

Tan [7] includes discussions on the communicational overhead associated with
unrealistic and independent sharing methods. However, these discussions are
limited in that the author analyzed communication overhead from a theoreti-
cal perspective only and discussed learning rate separately from communication
overhead. As the realistic sharing methods presented in this paper allow agents
to share on an inconsistent basis, we cannot perform static, theoretical analysis.
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Instead performance tests measure learning rate, actual communication overhead
and total running time for each sharing method. Learning rate and communica-
tion overhead need to be analyzed in conjunction with one another in order to
classify the effectiveness of a method more accurately. Total method run time
sufficiently captures the effectiveness of a method.

3 Background Concepts

3.1 Multi-agent Reinforcement Learning

RL is a bottom-up programming methodology that imbues agents with the abil-
ity to generalize learned information and extract salient environmental cues on-
line. RL relies on the concept of Markov decision processes (MDP) to model
how an agent moves around in the environment. An MDP is a 4-tuple taking
the form (S,A, P a

ss′ , R
a
ss′) where S is the state space, A is the action set, P

is the transition function where P a
ss′ represents the probability of transitioning

from state s to state s′ via action a, and R is the reward function where Ra
ss′

represents the expected value of the reward achieved when an agent moves from
state s to state s′ via action a. As an agent explores its environment, it updates
its policy function π that maps each state s ∈ S and action a ∈ A(s) to π(s, a)
which represents the probability of taking action a in state s. Agents define an
action-value function for policy π by Qπ(s, a) which indicates the expected re-
turn given that the agent takes action a in state s and then applies policy π.
The agent attempts to maximize the expected total sum of rewards gained over
time to converge to an optimal policy π∗ (of which there can be multiple). For
this paper, we use a simple and popular form of RL called Q-learning: a type of
temporal-difference (TD) learning. TD learning is a learning technique in which
an agent will update its previously estimated state values using the differences
between its current and former values. This effectively propagates more accurate
estimates of the state values as learning continues. Q-learning represents an off-
policy form of TD control which, for the one-step case used in this paper, takes
the following form:

Q(st, at) ← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
. (1)

where t is the time step parameter, α is the learning rate parameter, and γ is the
discount rate parameter. In this paper, the single-agent form of RL is applied
to each agent in a multi-agent environment. Essentially, this means that agent
learning takes place simultaneously and agents treat each other as independent,
dynamic forces acting within the same environment.

3.2 Layered MARL Architecture

By default, RL and its extension to MARL, use one learning module to cap-
ture the learned policy of an agent. In a layered MARL architecture, an agent
will use multiple learning modules to capture the learned policy of an agent [5].
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Takahashi et al. [6] state that decomposing the control structure into smaller
chunks, or learning modules, allows for the module policies to be transportable
and applicable to new situations. To understand this, think about how an agent
views a state in their state space. States are composed of multiple state param-
eters – any environmental information that the programmer wants the agent to
consider when learning needs to be encoded in a state variable. For instance, a
state variable could represent a position on the grid described by Cartesian coor-
dinates or a facing direction described by a cardinal direction. Learning modules
can be designed in such a way as to split up and group states’ parameters for the
purposes of decomposing the problem into separate logical units. These logical
units can then be used to train separate learning modules within an agent. The
learning modules work together to decide an appropriate action for the agent to
take in a given state. This is advantageous because by decomposing the state
parameters into logical components, learned behaviors can become more general-
ized and less dependent on other state parameters that may have no correlation.
This helps reduce the total state space necessary to navigate, increases learning
efficiency, and allows for sharing at the module level where data is less coupled
by design.

3.3 Inter-agent Sharing

People can learn based on consciously or subconsciously observing and/or com-
municating various types of information based on the situation. Tan and Ribiero
et al. [7,3] show that inter-agent sharing of sensation, policies and/or episodes
decreases the steps necessary to reach optimal or good convergence points when
compared to agents that did not share. This paper explores inter-agent shar-
ing methods and classifies each as either realistic, unrealistic, or independent.
With regard to this paper, sharing between two agents is classified as realistic
only when the agents are sharing within communication distance of one another.
This communication distance represents the range at which an agent is able to
physically see or talk to another agent in the environment. Within this range,
sharing would imitate realistically how people learn based on observing others
or by verbally communicating information they might have learned.

When sharing using MARL, agents share learned information – for instance,
in the form of Q-Values – from their policies and incorporate new information
being shared with them into their existing policies. Unrealistic sharing indicates
the broad range of sharing methods that are not based on reality as we have de-
fined it above. In this case, sharing may not necessarily take place when agents
are within one another’s communication fields. The sharing method described
earlier in which agents share regardless of their location on the map is an exam-
ple of this. Another example of unrealistic sharing that will be encountered in
this paper is centralized sharing. Centralized sharing enables agents to share a
single Q-Value table and collectively contribute to and use its learning knowledge
to make policy decisions. Note that realistic sharing methods are always local-
ized sharing methods, but localized sharing methods are not exclusively realistic
sharing methods.
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4 Problem Statement

This paper will address the following questions: How do the sharing methods
affect an agent’s resultant navigational behavior? How do the sharing methods
affect the learning rates of convergence, the communication overhead, and the
overall training time for an agent? Can the layered MARL architecture be used
to enable agents to successfully navigate both static and dynamic obstacles in
the environment, in addition to finding and arriving at a goal location?

5 Approach

5.1 Agents, Environment, and Task

To explore the problems presented, a small-scale environment in which a simple
evacuation simulation will take place was created. Agents attempt to evacuate
to a common location using the most optimal path while encountering obstacles
along the way. Agents traverse a discrete environment consisting of 7 x 7 cells.
At each agent’s turn, or step, agents are able to move Up, Right, Down, Left, or
Stay in the current spot. There are two types of obstacles in the environment:
walls (static) and other agents (dynamic). No two agents may be in the same
cell as another, so if an agent attempts to move into an occupied cell, it will
stay where it is. Similarly, if an agent attempts to leave the map or move into
a space blocked by a wall, it ’bounces’ off the map edge or wall and stays in
place. Agents attempt to navigate to the same goal location and therefore are
homogeneously oriented.

Testing occurs on 3 maps that are designed not only to explore the effec-
tiveness of the sharing methods but also to investigate whether layered MARL
is a feasible architecture within the crowd simulation domain. To do this, the
three maps test dynamic obstacle avoidance, static obstacle avoidance, and a
combination of the two, respectively. Map 1 tests dynamic obstacle avoidance
because it contains no walls and focuses on agents learning to reach the goal in
cell (6,3) while avoiding the other agents. Map 2 tests static obstacle avoidance
because it contains a randomized placement of walls and disables agent-agent
collisions. Map 3 tests both static and dynamic obstacle avoidance by reusing
the same randomized map from Map 2 but turns agent-agent collisions back on.
For all three maps, agents start in an assigned location. Agents 1, 2, and 3 start
in positions (0,1), (0,3), and (0,5), respectively.

5.2 Sharing Methods

The following descriptions provide detail regarding the four variations of sharing
methods that will be used in testing: (1) Independent (No Sharing): Agents do
not share any information with one another. (2) Realistic-Localized Sharing: For
realistic-localized sharing, agents share the Q-values in their policies with other
agents when they are within one another’s communication fields. An agent’s
communication field is determined by the communication field size, where the
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size corresponds to the depth of cells directly surrounding the agent. A field size
of 1, for instance, would indicate that all cells directly around the agent’s cell are
part of the communication field. A cell C in a communication field must have an
unobstructed line-of-sight, free of walls, to the agent the field emanates from; oth-
erwise the agent will not be able to communicate with another agent that may be
in C at the time. For both the realistic-localized and unrealistic-localized sharing
methods, sharing is performed by using the frequency of state-action visitation to
determine which agent has the most experience with that particular state-action
pair. When this is determined, the Q-value for that particular state-action pair
is synchronized to this best Q-value across all agents who are participating in the
share. This continues for each possible state-action pair for both of the learning
modules every time a share event occurs. Variables that are adjusted for testing
this method are communication field size (CFS) and sharing step size (SS), where
SS represents the minimum frequency, in terms of steps, with which an agent is
allowed to share with another agent. (3) Unrealistic-Localized Sharing: Similar to
realistic-localized sharing, except that sharing takes place uniformly at defined
step sizes by all agents at once. Only the SS variable will be adjusted for test-
ing this method as CFS is not applicable. (4) Unrealistic-Centralized Sharing :
Agents update a shared, central Q-Value table and no explicit sharing occurs.

5.3 Layered MARL Implementation Details

This paper uses a simple two-module layered architecture: the pathfinder (P)
and collision-avoidance (CA) learning modules. The pathfinder learning module’s
purpose is to find a path from the initial starting position to the goal position.
The pathfinder module’s set of actions are AP={Up, Right, Down, Left, Stay}.
The module’s set of states SP represent each cell position (x,y) on the map and
therefore |SP| = n ×m where n is the number of cells in the vertical direction
and m is the number of cells in the horizontal direction. The collision-avoidance
learning module’s purpose is to avoid colliding with obstacles in the environment.
The collision-avoidance module’s set of actions are ACA={Up, Right, Down,
Left, Stay}. The module’s set of states SCA are represented by each unique
permutation of the 8 cells directly surrounding the agent where each cell can
be either empty (= 0) or not empty (= 1) for a total of 28 = 256 states. These
two learning modules work together because the pathfinder module determines
an action and passes it to the CA module. Based on both the surrounding
obstacles and the action suggested by the pathfinder module, the CA module
then determines an action to take and instructs the agent to take that action.
The pathfinder’s module defines rewards as follows: QP: (SP × AP) → IR where
all actions that lead to a non-goal state receive a reward of -0.005 and all actions
that lead to a goal state receive a reward of 1.0. The CA’s module defines rewards
as follows:QCA: (SCA × ACA)→ IR where an action in agreement with the action
A chosen by the pathfinder module receives a reward of 0.005. An action that,
oriented with respect to A, points to the side (left or right) receives a reward
of -0.005. An action that, oriented with respect to A, points backwards receives
a reward of -0.1. An action that, when A was any action but stay, was stay
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receives a reward of -0.005. Finally, an action that, when A was stay, was any of
the other actions other than stay, receives a reward of -0.005.

5.4 Experimental Setup

In this paper, agents operate using a discrete MDP in an environment conducive
to episodes. Each episode is defined with an initial starting state and spans until
a terminal, or goal, state is reached for each agent. A series of episodes define a
simulation run. 150 simulation runs were tested for each sharing method in order
to generate dependable data averages. An agent’s learned policy was carried over
from one episode to the next within a run, so ideally this results in convergence
to an optimal policy as the agent learns more about the state-action space. In
order to equally test the sharing methods we used an ε-greedy exploitation-
exploration method with ε = 0.05. The simulation was run until each sharing
method converged to the same number of steps per episode – meaning that a path
convergence point had been reached. The CFS parameter for realistic-localized
sharing will vary and take the values of 1, 2, 3, and 4 where 1 represents a very
limited communication field and 4 represents a fairly wide communication field.
The SS parameter for both realistic and unrealistic-localized sharing will vary
and take the values of 1, 5, 10, and 15. A SS value of 1 corresponds to agents
being able to share their policies after a minimum of every step and a SS value
of 15 indicates that sharing will occur less often, after a minimum of every 15
steps. The values for the simulation are set as follows: αP = 0.9, γP = 0.8, αCA

= 0.2, γCA = 0.8.

6 Results and Contributions

Results were gathered across the 3 maps for the 3 agents. The resulting trends
associated with Maps 1 and 2 were the same as the trends associated with Map 3,
therefore only the findings from Map 3 will be presented. Similarly, overall data
trends amongst agents agreed and only the findings for agent 1 will be shown.
Results from the path convergence testing measure learning rate (in average
steps per run), communication frequency, and total run time (in seconds) for
each sharing method. Communication frequency measures every time a Q-table
is shared with another agent – for example, sharing both a pathfinder and a CA
Q-table count as two communication units because two Q-tables are shared.

Table 1 provides a detailed table containing results from all variations of the
sharing methods used. Recall that faster learning rates (indicated by smaller
learning rate numbers) signify that an agent has reached convergence in a fewer
number of episodes. As expected, the methods that share the most have the
lowest learning rates. Figure 1 illustrates differences in learning rates across a
run for the variations of the four unique sharing methods with the best learning
rates. The figure shows that the unrealistic-centralized sharing method signifi-
cantly outperforms the other methods. This is understandable as the frequency
of sharing, uniformity of sharing, and quality of sharing all increase as we move
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from independent sharing to unrealistic-centralized sharing. To determine the
overall computational differences between the sharing methods, especially with
the realistic-localized method, we had to consider both learning rate and com-
munication frequency in conjunction, which most clearly translated to a total
run time.

Table 1. Learning rate, communication frequency, and total run time for the sharing
methods

Sharing Method Learning Rate Communication Total Run
(avg. steps) Frequency Time (s)

Independent 95.88 0.00 0.01
Realistic-Localized:
CFS = 1, SS = 1 61.31 361.13 0.75
CFS = 1, SS = 5 62.68 135.93 0.30
CFS = 1, SS = 10 63.79 98.71 0.22
CFS = 1, SS = 15 65.36 83.31 0.18
CFS = 2, SS = 1 59.87 829.76 1.59
CFS = 2, SS = 5 60.80 259.55 0.54
CFS = 2, SS = 10 62.51 166.60 0.36
CFS = 2, SS = 15 63.95 134.47 0.29
CFS = 3, SS = 1 59.07 1060.96 1.86
CFS = 3, SS = 5 60.33 321.05 0.61
CFS = 3, SS = 10 61.58 202.08 0.38
CFS = 3, SS = 15 62.18 158.24 0.30
CFS = 4, SS = 1 57.03 1166.88 1.99
CFS = 4, SS = 5 58.32 364.44 0.69
CFS = 4, SS = 10 60.55 233.88 0.43
CFS = 4, SS = 15 61.40 177.40 0.33
Unrealistic-Localized:
SS = 1 49.53 8641.49 7.06
SS = 5 50.96 1776.64 1.48
SS = 10 51.29 852.56 0.72
SS = 15 52.78 577.79 0.50
Unrealistic-Centralized 45.01 0.00 0.01

Performance timing for the total run times provides a general picture of how
effective each method is with regard to one another. Figure 2 depicts the differ-
ences in time per episode across a run for the variations of the four sharing meth-
ods with the fastest total times. Both the independent and unrealistic-centralized
sharing methods performed equally well as no sharing takes the same amount of
time that implicit sharing does.

The realistic-localized and unrealistic-localized methods perform much more
poorly, on the order of 19x and 51x more slowly, respectively. Overall, with re-
spect to both learning rate and total run time, the unrealistic-centralized sharing
method is the most effective method tested in this experiment. Realistic sharing
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limits the rate at which learning can take place because sharing takes place less
frequently and less uniformly. Localized sharing in general does not allow for
policy information to be as readily absorbed as it is with centralized sharing –
not to mention the explicit communication overhead present that overwhelms
the training time for the agent. It is important to mention that while central-
ized sharing is the best choice for the purpose of efficiency, simulations that
study communication flows in crowds, for example, must be done using realistic-
localized methods. This type of method preserves communication fidelity and
ensures accurate inter-agent communication patterns.

7 Conclusions and Future Work

This paper demonstrates that all sharing methods converge to the same policies.
The differences between realistic, unrealistic, and independent sharing methods
are determined by analyzing the learning rates, communication frequencies, and
total run times. The unrealistic-centralized sharing method proved to be the
most effective of the sharing methods tested. Finally, testing showed that agents
successfully navigated both static and dynamic obstacles in the environment,
in addition to finding and arriving at a goal location. This research opens up
the possibility to study more detailed problems concerning applying a layered
MARL architecture within the crowd simulation domain. For instance, how does
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adding more learning modules to each agent affect the complexity of the state-
action space? Additionally, how well do the sharing methods presented in this
paper port to the GPU in order to support the simulation of more agents in a
more finely discretized environment?
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Abstract. In a multi-Agent system, agents should keep negotiation and 
cooperation to get a resolution when dealing with an issue. Consequently, 
negotiation becomes a key point to run the system successfully. This paper 
firstly proposed an Agent structure model suitable for this field according to the 
traits of tourism service system. According to the characteristics of the Agent 
negotiate mechanism, made some researches about multi-issue problems, utility 
function, negotiation protocol, negotiation strategy and so on during negotiation 
process, and then designed a negotiation model for tourism field, and used the 
test data to show that the availability of this model.   

Keywords: Agent structure model, Negotiation, Negotiation model, MAS 
(multi-Agent system). 

1 Introduction 

Agent is an autonomous entity which has skills of making decisions independently, 
cooperating mutually and some intelligence. It has an independent expert knowledge 
and resources and can independently control its own actions. Just like Shoham[1] said 
that Agent is a software entity which is able to learn in a specific environment and run 
by itself, it usually works with other Agent to solve problems. When use agent to 
achieve some function of a system, a single agent is often unable to complete all 
needs. At this time, we must rely on a group of Agent work together to achieve their 
goals.  

The field of tourism is a service network consisting of the scenery spots, 
transportation, hotel, shopping, etc. In today's highly competitive environment, 
whether the transportation or hotel and so on, visitors who have a lot of choice. Use 
Agent technology to design the appropriate Agent for each node of the field of 
tourism to represent their behaviors. Each Agent are autonomous and self-interested, 
their goal is to pursue their own best benefits. So whether the releaser or the receiver 
of task, they all hope that through the cooperation between agents to complete tasks 
and achieve a win-win situation in their respective interests. Negotiation is an 
effective way to solution the conflict and to achieve cooperation. Negotiation between 
the Agents is to reach a mutually beneficial agreement on certain issues.  
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2 The System Framework Based on the Multi-Agent Negotiation 

MAS is to obtain a better overall performance by negotiation between agents. The 
MAS uses layered hierarchical structure, there is a central negotiation service Agent 
which is used to collect the information of this layer and the lower layer to undertake 
the unity decisions, manage multiple lower executions Agent, assign tasks and issue 
the command. 

 

Fig. 1. Framework of multi-Agent intelligent travel information service system  

As can be seen from the system framework shown in Figure 1, there is an 
intermediate Travel Agent, which acts as the role of the Service Agent, it is 
independent of the various resource-based Agents, and it has its own negotiation 
strategy and innovation mechanism. Travel Agent's work is mainly to decompose the 
task (tourists request), and will be distributed these tasks to the below Agent. When 
Travel Agent receives a new task, firstly, it will search result in the Ontology base, if 
it can find results then directly return the results to tourists. Otherwise, it will request 
other Agents to negotiate and cooperate to complete the task by the way of broadcast. 
In this framework, the Service Agent will be assigned service to the Agent of the 
corresponding sub-areas. Each agent maintains its own knowledge base, and through 
it to do reasoning and decision-making. Because of the interdependent relationship 
between Agents, when an agent encountered can’t solve tasks, it will initiative take 
the way of communication to consult other relevant Agents and will feedback the 
negotiation results to Travel Agent. Travel Agent will push the learned new 
knowledge into the Ontology. Once again encountered a similar request, Travel Agent 
will directly return results to tourists, so as to provide tourists with faster, more 
accurately and more personal service. 

3 Agent Structure Model 

In MAS, especially in large complex systems, the first wanted to be solved problem is 
that the Agent uses what kind of structure is more conductively to communicate and 
cooperate between agents. Bratman[2] proposed BDI (Belief-Desire-Intention)  
theory which is recognized as one of the basic theories of DAI. Lots of researchers 
put forward their own views about Agent-structure model. Among them, Cohen [3], 
Levesque [3] and Weyns [4], etc. have made outstanding contributions in this area. 
Combined with previous theoretical perspective and this system characteristic, this 
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paper mainly studied the mixed-Agent[6] and presented an Agent structure model 
which is more suitable for the application of this system, as shown in figure 2. 

The agent structure model is consisted of the perception modules, strategy 
modules, decomposition module, execution module and communication modules. The 
perception module is to receives information from the outside world, and to change 
perceive content into Agent’s own faith; The Strategy module by querying the 
knowledge base and choosing the appropriate negotiation strategy to better address 
the negotiation issues; The decomposition module is decomposed the initial target 
into sub-goals by querying the plan library, and then each sub-goal is assigned to the 
corresponding Agent; The execution module is to describe the Travel Agent who 
wants to achieve specific goals (sub-goals) that actions need to be taken; 
Communication module can be divided into internal communication and external 
communications, the communication between Agents are through the message 
transfer schemes of communication model, while we use shared memory (i.e. 
blackboard structure) to exchange information between the execution modules within 
Travel Agent. 

 

Fig. 2. Agent structure model for the field of tourism 

4 Negotiation Model MMN(Multi-Agent Multi-issue Negotiation) 

In many cases, Agent needs to interact with other agents constantly and work together 
to accomplish a task ultimately. The domestic and foreign researchers have proposed 
some models, at present, the main negotiation model with contract net model (CNM), 
"blackboard" model and multiple services Agent planning model. The agent in these 
models will automatically achieve cooperative to solving large complex problems. In 
order to definite the negotiation model more formally, it firstly need to understand the 
negotiation process. 
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4.1 Negotiation Process 

A negotiation involves two kinds of Agents: the proposer and the participator, the 
proposer is a negotiation launched Agent, while the participator is a negotiation 
involved Agent. T represents the negotiation period, and t represents the negotiation 
time. The negotiation process can be shown in Figure 3. 

 

Fig. 3. Negotiation process 

(1) Proposer Agent issues the negotiation request to other agent by broadcasting, 
and sends the CFP (call for proposal) message. 

(2) The participator Agent decided to response the negotiation request after analysis. 
(3) Both sides negotiate Agents begin to prepare the negotiation work, and t is set 0. 
(4) In each round of negotiation, the proposer Agent issued a proposal to the 

participator Agent. 
(5) The participator Agent receives the proposer’s proposal, and uses its own utility 

function to evaluate the proposal. 
(6) After evaluation by the utility function, if participator Agent agrees with other’s 

proposal then send the agree message and generate results, turn (8). Otherwise, 
the participator Agent need to put forward the reverse proposal and send the 
propose message, turn (7). 

(7) The Agent who receive the propose message need to make a decision whether 
should make concession for the next round of negotiation. If this time t < T turn 
(4), or turn (9). 

(8) Reach an agreement and negotiation is ended. 
(9) Negotiation fails, and negotiation is ended. 

By the negotiation process, it is known that the interaction process of negotiation may 
be reactive, also may be repeated interaction. In order to limit the unrestricted 
negotiation, used time T to limit the time of negotiation.  

4.2 Negotiation Model 

Defined:  Negotiation Model ::= <Ag, D, K, T, X, V, P, S>, of which: 

(1) Ag: the set of agents involved in negotiation, Ag={A1, A2, …}. Each negotiation 
involves two kinds of Agent: proposer and participator. 
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(2) D: the set of negotiation issues, D={D1, D2 , …}, n is the number of issues has 
been involved in negotiation. 

(3) K: the tendency value of negotiation issues, which is reflecting the importance 
degree of the issue. K={Ki

d｜i∈Ag，d∈D}, Ki
d is the Agent Ai’s tendency value 

of the issue d, which reflects the preference degree of Agent Ai on the issue d, the 
greater the higher the preferences degree. In order to make the negotiation unified 
management and compared with each other, we can make Agent Ai on all issues 
tendency value, and the sum is 1. That is 1 1n d

d iK=∑ =  (n is the number of the 

issue). 
(4) T: the order of the natural number system clock, T= {t1, t2, t3…}, the both sides 

agreed in accordance with the serial execution. 
(5) X: the set of proposed value in negotiation. X={ it

m nx → ｜ti∈T，m∈Ag，n∈Ag}, 

m, n represents the both sides involved in negotiation. it

m nx →  shows that Agent An 
receive a proposed value which is send from Agent Am at time ti. 

(6) V: the utility functions on a single issue or multiple issues. Agent will use this 
function to make an overall assessment with the all proposed value in the 
negotiation. The utility evaluation mechanism is mainly used to evaluate each 
other's proposed value and give a support to its feedback. 

(7) P: the negotiation protocol. The both sides in negotiation must act the negotiation 
protocol as guidelines. 

(8) S: the negotiation strategy. Negotiation strategy is the main factor to affect 
whether the negotiation is successful or not. This paper uses time-based thrift 
negotiation strategy in this negotiation model. In the early negotiation, the 
proposed value with both sides will changes slowly, and in later period, in order 
to get an outcome of the negotiations rather than ineffective negotiation, it has 
taken rapid change. So that the both sides of negotiation can reach an agreement 
within a specified period of time. Also set a different tendency values to each 
issue. We use the symbol Ki

d to represent it. 

4.2.1 Utility Function 
Negotiation mainly refers to the multi-issue negotiation. The both sides of negotiation 
often need to make a favorable choice in numerous choices. In order to get the 
maximum utility, the both sides of negotiation need to do an overall evaluation with 
the proposal. In the study of single-issue negotiation, the utility function is quite 
simple. P.Faratin[5] proposed the following calculation method.  

Formula (1) is a monotonically increasing function, Vi 
represents the utility value 

for the issue Di 
, it

b ax → represents the currently proposed value of the issue d, xmin 
and 

xmax respectively represents the issue’s minimum and maximum proposed value. 
When the value of it

b ax →  increasing, the value of Vi will increase too. So, the 

function can be used to assess the expected proposed value of the participator (hotel). 

min

max

i

i

t
b a

i t
b a

x x
V

x x
→

→

−=
−

                      (1) 
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Similarly, we can give a utility function to the proposer agent, such as formula (2), 
this formula is a monotonically decreasing function, and this function can be used to 
evaluate the expected proposed value of the proposer (tourists). 

max

max min

it
b a

i

x x
V

x x
→−=

−
                                (2) 

Said above, the function is the single-issue negotiation utility function. When the 
negotiations with many issues, we can take advantage of the knowledge of probability 
and statistics to solve the utility value V. The problem of multiple issues can be 
transformed into a single-issue problem. 

                  1
n d
d i dV K V== ∑                     (3) 

Above this, Ki
d is the Agent Ai’s tendency value of the issue d, Vd 

represents the utility 
value for the issue d, V represents the total utility value of agent A on all issues. The 
large the value of V, the proposer Agent is more close to its expectations. The utility 
value of the utility function is used to determine the next proposal is accepted or 
rejected. 

4.2.2 Negotiation Protocol 
Negotiation protocol is a group of interact protocol sets that the negotiation Agent 
need to fellow in the negotiation process. Any Agent in negotiation will be bound to 
it. This set of rules includes all possible negotiation participants, negotiation action 
(for example, proposal, reverse proposal, negotiation termination) and negotiation 
event handling. Negotiation protocol is shown in figure 4. 

 

Fig. 4. Negotiation protocol 

4.2.3 Negotiation Judgment 
When the other’s proposal come, the receive Agent need use the formula (4) to 
determine the received proposed value is accept or reject.  

1

1

1

1

( )

( , ) ( ( ) ( ))

( )

i i i

i

i

t t t
i m n m n n m

t
n m

reject t T

P t x accept V x V x

x

+

+

+

+ → → →

→

>⎧
⎪= >=⎨
⎪
⎩ r evr al  pr oposal

               (4) 

The tendency value of each issue (Ki
d) must be initialized by the user. According to 

the negotiation strategy, the proposed value of single issue can use the following 
formula to calculate. 
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( ) ( ) ( ) ( )min max min( ) ( )it ni
m n b b bd d dd

t
x x x x

T→ = + − ×   n>=2          (5) 

( ) ( ) ( ) ( )max max min( ) ( )it ni
n m s s sd d dd

t
x x x x

T→ = − − ×  n>=2          (6) 

Above this， ( )it
m n d

x → ， ( )it
n m d

x → represents the currently proposed value of the issue d 

respectively offer by tourists and hotels at time ti 
, (xbmin)d 

, (xbmax)d 
, (xsmin)d , (xsmax)d respectively represents the minimum and maximum proposed value of issue d, T 

represents the negotiation period. 

5 System Instance 

Negotiation in tourism system is mainly used to implement two functions of the line 
query and hotel checking. The line query is mainly focuses on time (first element) and 
price (second elements), while the hotel checking mainly considers about the hotel 
price and hotel quality (overall quality). The system makes Travel Agent by 
registering after acquiring the data from visitors. Travel Agent will decompose the 
task into multiple sub-goals by the Agent internal planning, such as scenery 
information, transportation lines, hotels, etc. Those sub-goals will communicate with 
other Agent and return the negotiation results to Travel Agent. 

It’s assumed that Agent A is a Travel Agent. Now, Agent A requirements includes 
the line query and the hotel checking. There are also some other service Agents 
including Hotel Agent B, Hotel Agent C, Line Agent E, Line Agent F. Those Agents 
will communicate with Agent A. The following instance is to show the negotiation 
with the hotel proposal. The Agent’s private information is shown in figure 5 and 
figure 6. 

 

Fig. 5. The private information with Agent A, B, C 

  

Fig. 6. Agent A can accept the hotel price with different quality 

Considering an easy discussion, we think that the negotiation contributes to 
visitors. That is, visitors are the target, and they can decide when to negotiate. We set 
2 as a negotiation coefficient for an easy calculating. Agent A thinks 80% about the 
price of the hotel and 20% about the quality. Agent B stands for a hotel whose quality 
is 2-star. Agent C stands for 3-star. Figure 7 is the process of Negotiation and bid. 
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From the negotiation strategy, Agent B and Agent C keep decreasing their proposed 
values according to formula 6, while Agent A keeps increasing its proposed value 
according to formula 5. When Agent A received the proposed values of Agent B and 
C, firstly it will calculate its utility value through formula 2, and then judge whether 
to reach the agreement through formula 4. If not, Agent A will propose a reversal 
proposal instead, and then Agent B and C should judge whether this proposed value 
succeed according to formula 1 and 4. This negotiation process is required to cycling 
before reaching an agreement. Agent A, B and C will finally get a conclusion in the 
limited time. Obviously, neither side is profitable until the two almost have the same 
proposed value. If Agent A has two tentative agreements separately with Agent B and 
C, it will find the corresponding maximum and minimum according to the hotel level 
through figure 6. If the proposed value is bigger than the maximum, then rejects, if 
not, then accept it a priority. In this case, after calculating, Agent A finds it can accept 
the proposed values in the preliminary agreement. Then it will estimate the two issues 
- price and quality - separately through the utility function of formula 2. Finally it will 
get the corresponding overall utility value from the proposed values given by Agent B 
and C according to the two issue’s tendency value and formula 3. Agent A get the 

total utility value from Agent C is: 150 116.25 150 116.25
80% * 20% * 0.50

150 60 150 116

− −+ ≈
− − , and Agent A 

get the total utility value from Agent B is: 150 115 116 115
80% * 20% * 0.32

150 60 116 90

− −+ ≈
− −

. It's clear 

that Agent A will reach an agreement with Agent C for getting a higher utility value 
from Agent C's total utility value. Agent A chooses a higher level hotel by paying a 
little more. This seems more reasonable for user's behavior habits. 

 

Fig. 7. The process of negotiation and bid 

6 Conclusion 

MAS is composed by multiple independent Agent, which relies on each other or 
conflict with each other and it is an important research field in DAI (distributed 
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artificial intelligence). Negotiation is the key to accomplish the task in MAS. The 
main work of the paper: 

(1) Have deeply researched the MAS technology and Agent negotiation techniques, 
and introduced the ontology mechanism into Agent system on the basis of the above 
research. 

(2) Constructed an Agent structure model for the tourism service system. 
(3) Established a multi-agent multi-issue negotiation model by a detailed research 

with the negotiation process and negotiation strategies. 
(4) Use the JADE platform to implement the tourism service system which is based 

on Multi-agent and Ontology. According to visitor’s request, the system will 
automatically to select suitable tourism tour route and suitable hotel by negotiation 
between agents. The experiments prove that the negotiation between agents is able to 
solve a complex problem. 
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Abstract. This paper addresses a distributed model predictive control
(DMPC) scheme for multi-agent systems with communication distance
constraints. Firstly, the communication distance constraints are dealt as
non-coupling constraints by using the time varying compatibility con-
straints and the assumed state trajectory. Obviously, the control per-
formance for all system is influenced by the time-varying compatibility
constraints. Secondly, the deviation punishment is involved in the local
cost function of each agent to penalize the deviation of the computed
state trajectory from the assumed state. The value of the time-varying
compatibility constraints is set according to the deviation of previous
sample time. The closed-loop stability is guaranteed with a large weight
for deviation punishment. A numerical example is given to illustrate the
effectiveness of the proposed scheme.

Keywords: distributed control, model predictive control, time-varying
compatibility constraint.

1 Introduction

Due to the computational advantages and the convenience of communication,
distributed MPC(DMPC) is recognized as a nature technique to address trajec-
tory optimization problems for multi-agent systems.

One of the challenges for distributed control is to ensure that local control
actions keep consistent with the actions of others agents [1] and assure cou-
pling constraints such as communication distance constraints. [2] proposes a
distributed MPC with a fixed compatibility constraint to restrict the deviation.
When the bound of this constraint is sufficiently small, the closed-loop system
state enter a neighborhood of the objective state. [3] and [7] give an improve-
ment over [2] by adding deviation punishment term to penalize the deviation of
the computed state trajectory from the assumed state trajectory. Closed-loop
exponential stability follows if the weight on the deviation function term is large
enough.
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A contribution in this paper is to propose an idea to deal the communication
distance constraint by time-varying compatibility constraint and deviation pun-
ishment term. At each sample time, the value of compatibility constraint is set
as the maximum value of the deviation of the previous sample time. We give the
stability condition to guarantee the exponential stability of the global closed-
loop system, which is obtained by dividing the centralize stability constraint as
the manner of [6]. The effectiveness of the scheme is also demonstrated by a
numerical example.

Notations. xi
k is the value of vector xi at time k. xi

k,t is the value of vector xi at
a future time k + t, predicted at time k. |x| = [|x1|, |x2|, ..., |xN |] is the absolute
value for each component of x. For a vector x and positive-definite matrix Q,
‖x‖2Q = xTQx.

2 Problem Statement

Consider a system which is composed of Nv agents. The dynamics of agent i is

xi
k+1 = f i(xi

k, u
i
k), (1)

where ui
k ∈ R

2, xi
k ∈ R

4 and f i : R
4 × R

2 �→ R
4 are the input, state and state

transition function of agent i, respectively. xi
k = [qik, v

i
k]. q

i
k = [qi,xk , qi,yk ]T, qi,xk

and qi,yk are positions in the horizontal and vertical directions, respectively. vik =

[vi,xk , vi,yk ]T, vi,xk and vi,yk are velocities in the horizontal and vertical directions,
respectively. The sets of feasible input and state of agent i are denoted as U i ⊂ R

2

and X i ⊂ R
4, respectively, i.e.,

ui
k ∈ U i, xi

k ∈ X i, k ≥ 0. (2)

The communication region of agent i is a disc ‖q − qi‖ ≤ r̄i, r̄i is the commu-
nication radius of agent i. At each time k, the control objective is to minimize

Jk =

∞∑
t=0

[
‖ xk,t ‖2Q + ‖ uk,t ‖2R

]
(3)

with respect to uk,t, t ≥ 0, where x = [(x1)T, · · · , (xNv )T]T, u = [(u1)T, · · · ,
(uNv)T]T; xi

k,t+1 = f i(xi
k,t, u

i
k,t), x

i
k,0 = xi

k; Q = QT > 0, R = RT > 0. u ∈ R
m,

m = 2 ∗Nv and x ∈ R
n, n = 4 ∗Nv. Then,

xk+1 = f(xk, uk), (4)

where f = [f1, f2, · · · , fNv ]T, f : R
n × R

m �→ R
n. (xi

e, u
i
e) is the equilibrium

point of agent i, and (xe, ue) is the corresponding equilibrium point of all agents.
X = X 1×X 2×· · ·×XNv . U = U1×U2×· · ·×UNv . The models for all agents are
completely decoupled. The coupling between agents arises due to the situation
that they operate in the same environment, and that the “cooperative” objective
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is imposed on each agent by the cost function. Hence, there are the coupling cost
function and coupling constraints such as commutation distance constraints.

The control objective for all system is to cooperatively asymptotically stabilize
all agents to an equilibrium point (xe, ue) of equation (4) and assure the com-
mutation distance constraints. In this paper we assumed that the (xe, ue) =
(0, 0), f(xe, ue) = 0. The corresponding equilibrium point for each agent is
(xi

e, u
i
e) = (0, 0), f i(xi

e, u
i
e) = 0. Assumption f i(0, 0) = 0 is not restrictive,

since if (xi
e, u

i
e) = (0, 0), one can always shift the origin of the system to it.

The resultant control law for minimization of (3) can be implemented in a
centralized way with high communication cost. Hence, by means of decomposi-
tion, Jk is divided as J i

k’s such that the minimization of (3) is implemented in
distributed manner, with

J i
k =

∞∑
t=0

[
‖ zik,t ‖2Q̄i

+ ‖ ui
k,t ‖2R̄i

]
, Jk =

Nv∑
i=1

J i
k, (5)

where zik,t = [(xi
k,t)

T (x−i
k,t)

T]T; x−i
k,t includes the states of the neighbors’. The

set of neighbors’ of agent i is denoted as Ni. x
−i
k = {xj

k|j ∈ Ni}, x−i
k ∈ R

n−i

,
n−i =

∑
j∈Ni

4. For each agent i, the control objective is to stabilize it to the

equilibrium point (xi
e, u

i
e). Q̄i = Q̄T

i > 0, R̄i = R̄T
i > 0. Q̄i is obtained by

dividing Q using the technique of [6]. For the agents have decoupled dynamics,
the couplings of control moves for all system are not considered. R is a diagonal
matrix and R̄i is directly obtained. Under the networked environment, it is thus
appropriate to allow agents to exchange information only once in each sampling
interval [6].

In the receding horizon control manner, a finite-horizon cost function is ex-
ploited to approximate J i

k. According to the (5), the evolution of the control
moves with predictive horizon for agent i is based on the estimation of the state
trajectories x−i

k,t, t ≤ N of the neighbors’, which are substituted by the assumed

state trajectories x̂−i
k,t, t ≤ N as [6]. The connectivity of the inter-agent com-

munication network is guaranteed by the communication distance constraints
where agent i have to ensure the neighbor agent j (j ∈ Ni) in its communication
region.

‖qjk,t − qik,t‖ ≤ r̄i, ∀t ≤ N. (6)

r̄i is the communication radius of agent i. Obviously, if qjk,t is substituted by qjk,t
within the (6), the connectivity of communication is not assured. Hence, (6) is
modified as non-coupling constraint (26) by using the assumed state trajectory
and compatible constraint.

Define

ui
k,t = Fi(k)x

i
k,t, ∀t ≥ N. (7)

Fi(k) is the gain of distributed state feedback controller.
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Consider

J̌ i
k =

N−1∑
t=0

[ ‖ ẑik,t ‖2Q̄i
+ ‖ ui

k,t ‖2R̄i
+ ‖ xi

k,t− x̂i
k,t ‖2T̄i

]
+

∞∑
t=N

[ ‖ xi
k,t ‖2Qi

+ ‖ ui
k,t ‖2Ri

]
.

(8)

Where ẑik,t = [(xi
k,t)

T (x̂−i
k,t)

T]T, x̂i
k,0 = xi

k. x̂
−i includes the assumed states of

the neighbors. Qi = QT
i > 0 and Ri = RT

i = R̄i satisfy

diag{Q1, Q2, . . . , QNv} ≥ Q, diag{R1, R2, . . . , RNv} = R. (9)

Obviously, Qi is designed to stabilize the agent i to the local equilibrium point,
independently. Q̄i is designed to stabilize the agent i to the local equilibrium
point with neighbor agents, cooperatively. T̄i is the weight on the deviation
punishment term.

At each time k, the optimization problem for distributed MPC is transformed
as :

min
Ūi

k,Fi(k)
J̌ i
k, s.t.(1), (2), (6), (7), (8). (10)

Ū∗i
k = [(u∗i

k,0)
T, (u∗i

k,1)
T, . . . , (u∗i

k,N−1)
T]T, only u∗i

k = u∗i
k,0 is implemented, and

the problem (10) is solved again at time k + 1.

3 Feasibility and Stability of Distributed MPC

The stability of distributed MPC by simply applying the procedure as in the
centralized MPC will be discussed. The compact and convex terminal set Ωi is
defined by

Ωi = {xi ∈ R
4|(xi)TPix

i ≤ αi} (11)

where Pi > 0, αi > 0 are specified such that Ωi is a control invariant set. So
using the idea of [4] and [5], one simultaneously determines a linear feedback
such that Ωi is a positively invariant under this feedback.

Define the local linearization at the equilibrium point

Ai =
∂f i

∂xi
(0, 0), Bi =

∂f i

∂ui
(0, 0) (12)

and assume that (Ai, Bi) is stabilizable. When xi
k,N+t, t ≥ 0 enters into the

terminal set Ωi, the local linear feedback control law is assumed as ui
k,N+t =

Fi(k)x
i
k,N+t = Kix

i
k,N+t. Ki is a constant which is calculated off line as follows.

3.1 Design of the Local Control Law

The following equation follows for achieving closed-loop stability.

‖xi
k,N+t+1‖2Pi

− ‖xi
k,N+t‖2Pi

≤ −‖xi
k,N+t‖2Qi

− ‖ui
k,N+t‖2Ri

, t ≥ 0. (13)
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Lemma 1. Suppose there exist Qi > 0, Ri > 0, Pi > 0, which satisfy the
Lyapunov-equation

(Ai +BiKi)
TPi(Ai +BiKi)− Pi = −κiPi −Qi −KT

i RiKi (14)

for some κi > 0. Then, there exists a constant αi > 0 such that Ωi defined in
(11), satisfies (13).

Remark 1 . Lemma 1 is directly obtained by referring to ”Lemma 1” in [5]. For
MPC, the stability margin can be adjusted by turning the value of κi according
to Lemma 1. With regard to DMPC, [2] adjusts the stability margin by tuning
the weight in the local cost function.

The control objective is to asymptotically stabilize the closed-loop system, so
that xi

k,∞ = 0 and ui
k,∞ = 0. For t = 0, . . . ,∞, it is easy to obtain

∞∑
t=N

[
‖xi

k,t‖2Qi
+ ‖ui

k,t‖2Ri

]
≤ ‖xi

k,N‖2Pi
. (15)

Considering both (8) and (15), yields

J̌ i
k ≤ J̄ i

k =

N−1∑
t=0

[
‖ẑik,t‖2Q̄i

+ ‖ui
k,t‖2R̄i

+ ‖xi
k,t − x̂i

k,t‖2T̄i

]
+ ‖xi

k,N‖2Pi
(16)

where J̄ i
k is a finite-horizon cost function, which consists of a finite horizon

standard cost, to specify the desired control performance and a terminal cost,
to penalize the states at the end of the finite horizon.

The terminal region Ωi for agent i is designed, so that it is invariant for
nonlinear system controlled by a local linear state feedback.

3.2 Compatibility Constraint for Stability

We define ξ−i = x−∗i − x̂−i, ξi = x∗i − x̂i, Q̄i =

[
Q̄1

i Q̄12
i

(Q̄12
i )T Q̄3

i

]
.

C∗
x(k) =

Na∑
i=1

N−1∑
t=1

{2(x∗i
k,t)

TQ̄12
i ξ−i

k,t + 2(x̂−i
k,t)

TQ̄3
i ξ

−i
k,t + (ξ−i

k,t)
TQ̄3

i ξ
−i
k,t}, (17)

C∗
ξ (k) =

Na∑
i=1

N−1∑
t=1

(ξik,t)
TT̄iξ

i
k,t, (18)

Lemma 2. Suppose (9) holds and there exits ρ(k) such that, for all k > 0,

0 ≤ ρ(k) ≤ 1,

− ρ(k)

Na∑
i=1

{‖(xi(k))T, (x̂−i
k )T‖2Q̄i

+ ‖u∗i(0|k)‖2R̄i
}+ C∗

x(k)− C∗
ξ (k) ≤ 0.

(19)
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Then, by solving the receding-horizon optimization problem

min
Ūi(k)

J̄ i
k, s.t.(1), (2), (14), (16), ui

k,N = Kix
i
k,N , xi

k,N ∈ Ωi. (20)

and implementing u∗i
k,0, the stability of the global closed-loop system is guaranteed,

once a feasible solution at time k = 0 is found.

Satisfaction of (19) indicates that all xi
k,t should not deviate too far from their

assumed values x̂i
k,t. Hence, (19) can be taken as a new version of the compatibil-

ity condition. This compatibility condition is derived from a single compatibility
condition that collects all the states (whether predicted or assumed) with in
the switching horizon and is disassembled to each agent in distributed manner,
which results in local compatibility constraint for each agent.

Since x∗
k,t for all agent i is coupled with other agents through (19), it is

necessary to assign the constraint to each agent so as to satisfy (19) along the
optimization.

Denote ξik = [ξi,qk,x, ξ
i,q
k,y , ξ

i,v
k,x, ξ

i,v
k,y ]

T, ξ−i
k = {ξjk|j ∈ Ni}. At time k > 0, by

solving the optimization problem, there exits a parameter E i,l
k , l = 1, . . . , ni, for

each element of ξi,lk , l = 1, . . . , ni.
Define

E i,l
k = max

t
|ξi,lk−1,t|. (21)

And denote E i
k = [E i,q

k,x, E
i,q
k,y, E

i,v
k,x, E

i,v
k,y]

T, E−i
k = {Ej

k|j ∈ Ni}. At time k + 1 > 0,
set following constraint for each agent i.

|(xi
k+1,t)

T − (x̂i
k+1,t)

T| < E i
k. (22)

From (21) and (22), it is shown that ξik+1,t < E i
k and ξ−i

k+1,t < E−i
k .

Denote

C∗i
x (k) =

N−1∑
t=1

{2(x∗i
k,t)

TQ̄12
i E−i

k + 2(x̂−i
k,t)

TQ̄3
i E−i

k + (E−i
k )TQ̄3

i E−i
k )T}, (23)

C∗i
ξ (k) =

N−1∑
t=1

(ξik,t)
TT̄iξ

i
k,t. (24)

Then C∗
x(k) ≤

∑Nv

i=1 C
∗i
x (k), C∗

ξ (k) =
∑Nv

i=1 C
∗i
ξ (k).

By applying (21)-(24), it is shown that (19) is guaranteed by assigning

0 ≤ ρi(k) ≤ 1,

Nv∑
i=1

−ρi(k){‖(xi
k)

T, (x̂−i
k )T‖2Q̄i

+ ‖u∗i
k,0‖2R̄i

}+
Nv∑
i=1

C∗i
x (k)−

Nv∑
i=1

C∗i
ξ (k) ≤ 0. (25)

(25) is dispensed to agent i. However, the conservativeness is introduced.(25) is
more stringent than (19).
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Remark 2. By adding the deviation punishment term in the local cost function,
the closed-loop stability follows with a large weight. The larger weight means
the more loss of the performance [3].

3.3 Feasibility of Distributed MPC

The key issue to guarantee feasibility of the above receding horizon problems is
how to satisfy the communication distance constraint.

‖q̂jk,t − qik,t‖ ≤ r̄i −
√
(E i,q

k,x)
2 + (E i,q

k,y)
2,
√
(E i,q

k,x)
2 + (E i,q

k,y)
2 < r̄i. (26)

It is easy to find that (26) is the sufficient condition for communication distance
constraint (6). But this constraint let the distributed receding horizon optimal
problem is more conservative than the case of central. By revising the time-
varying compatible constraint, the conservatism can be reduced.

4 Control Strategy

For practical implementation, distributed MPC is formulated as follow:
Off-line stage :

i) Set the value of the prediction horizon N and the communication radius r̄i.
ii) According to (3)(5)(9), find Qi, Ri, Q̄i, R̄i, t = 0, · · · , N − 1, for all agents.
iii) Set the value of the compatibility constraint for all agents Ei(0) = +∞.
iv) Calculate the terminal weight Pi, local linear feedback control gain Ki and
the terminal set Ωi.
v) Set T̄i(0) = 0.

On-line stage :
For agent i, perform the following steps at k ≥ 0:

i) Take the measurement of xi
0.

ii) Send xi
0 to its neighbor j, j ∈ Ni of agent i. Receive xj

0.

iii) Set x̂j
t,0 = xj

0,0, j ∈ Ni, t = 0, · · · , N − 1 and x̂i
0,t = xi

0.
iv) Solve problem (20).
v) Implement ui

0 = u∗i
0,0.

vi) Get x̂i
t,0 and compatibility constraint Ei(1) .

vii) Send x̂i
0,t and Ei(1) to neighbor j, j ∈ Ni. Receive x̂j

0,t and Ej(1). Calculate
T̄i(k).

5 Numerical Example

We consider the model of agent i [2] as

xi
k+1 =

[
I2 I2
0 I2

]
xi
k +

[
0.5I2
I2

]
ui
k,
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(xi
k = [qi,xk , qi,yk , vi,xk , vi,yk ]T, with sampling time interval of 0.5 second. There are

four agents. A set of positions of the four agents constitute a formation.
The initial positions of the four agents are [q1,xo , q1,yo ] = [0, 1], [q2,xo , q2,yo ] =

[−1, 0], [q3,xo , q3,yo ] = [0,−1], [q4,xo , q4,yo ] = [1, 0]. Linear constraints on states and

input are
∣∣xi
∣∣ ≤ [100 15 15

]T
,
∣∣ui
∣∣ ≤ [2 2

]T
. The agent i, i = {1, 2, 3} are se-

lected as the core agents of the formation. A0 is designed as A0 = {(1, 2); (1, 3);
(2, 4)}. If all system achieve the desire formation and the core agents coopera-
tively cover the virtue leader, then ui,x

k (k) =0, ui,y
k = 0. The global cost function

is obtained as

J(k) =

∞∑
t=0

[∥∥q1k,t − q2k,t + c12
∥∥2 +

∥∥q1k,t − q3k,t + c13
∥∥2 + ∥∥q2k,t − q4k,t + c24

∥∥2
+

1

9

∥∥(q1k,t + q2k,t + q3k,t
)
− qc
∥∥2

+
∥∥v1k,t∥∥2 + ∥∥ v2k,t

∥∥2 + ∥∥v3k,t∥∥2 + ∥∥v4k,t∥∥2 + ‖uk,t‖2
]
.

They cooperatively track the virtual leader whose reference is qc = (0.5 ∗ k, 0).
The distance between agents is defined as c12 = (1.5, 2), c13 = (3, 1), c24 =
(0,−4). Choose N1 = {2}, N2 = {1}, N3 = {1}, N4 = {2}. Then,

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1
9I2 0 − 8

9I2 0 − 8
9I2 0 0 0

0 I2 0 0 0 0 0 0
− 8

9I2 0 2 1
9I2 0 1

9I2 0 −I2 0
0 0 0 I2 0 0 0 0

− 8
9I2 0 1

9I2 0 1 1
9I2 0 0 0

0 0 0 0 0 I2 0 0
0 0 −I2 0 0 0 I2 0
0 0 0 0 0 0 0 I2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, R = I8.

Q̄1 =

⎡
⎢⎢⎣

7
9I2 0 − 4

9I2 0
0 1

3I2 0 0
− 4

9I2 0 I2 0
0 0 0 1

3I2

⎤
⎥⎥⎦ , Q̄2 =

⎡
⎢⎢⎣
1 1
9I2 0 − 4

9I2 0
0 1

3I2 0 0
− 4

9I2 0 4
9I2 0

0 0 0 1
3I2

⎤
⎥⎥⎦ ,

Q̄3 =

⎡
⎢⎢⎣
1 1
9I2 0 − 8

9I2 0
0 1

2I2 0 0
− 8

9I2 0 8
9I2 0

0 0 0 1
3I2

⎤
⎥⎥⎦ , Q̄4 =

⎡
⎢⎢⎣

I2 0 −I2 0
0 I2 0 0

−I2 0 I2 0
0 0 0 1

3I2

⎤
⎥⎥⎦

and R̄i = I2, i ∈ {1, 2, 3, 4}. Choose Qi = 6.85 ∗ I4 and Ri = I2, i ∈ {1, 2, 3, 4},
N = 10. The terminal set is αi = 0.22. The communication radius r̄i = 4.5. The
above choice of model, cost and constraints allow us to rewrite problem (20) as a
quadratic programming with quadratic constraint. To solve the optimal control
problems numerically, the package NPSOL 5.02 is used.
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From top to bottom, the first sub-graph of Fig 1 is the evolution of the forma-
tion with distributed MPC with time-varying compatible constraint; the second
sub-graph of Fig 1 is the evolution of the formation with distributed MPC with-
out the communication distance constraint. Compared with the first sub-graph,
the second sub-graph have a large overshoot.

From top to bottom, the first sub-graph of Fig 5.2 is evolutions of actual
distance between agents with distributed MPC with time-varying compatible
constraint; the second sub-graph of Fig 2 is evolutions of actual distance between
agents with distributed MPC without the communication distance constraint;
As shown in Fig 2. ”x” is for the distance between agent 1 and 2; ”*” is for
the distance between agent 1 and 3; ”o” is for the distance between agent 2
and 4. Obviously, the distance between agent 1 and 2 is over the communication
distance constraint in the second sub-graph.

The vale of ρi(k) is shown in Fig 3. ”�” for agent 1; ”+” for agent 2; ”>” for
agent 3; ”<” for agent 4.

Fig. 1. Evolutions of the formation with different control schemes
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Fig. 2. Evolutions of the distance
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Fig. 3. The vale of ρi(k)

6 Conclusions

In this paper, we have proposed an improved distributed MPC scheme for multi-
agent systems based on deviation punishment for communication distance con-
straint. One of the features of the proposed scheme is that the cost function of
each agent penalizes the deviation between the predicted state trajectory and
the assumed state trajectory, which improves the consistency and optimal con-
trol trajectory. At each sample time, the value of compatibility constraint is
set by the deviation of previous sample time-instant. The close-loop stability
is guaranteed with a small value for the weight of the deviation function term.
Furthermore, the effectiveness of the scheme has been investigated by a numeri-
cal example. One of the future works will focus on the problem for the collision
avoidance constraints.
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Abstract. This paper presents a human-robot collaboration framework which 
describes a comprehensive structure of rescue robots which are expected to 
collaborate with human in urban search and rescue (USAR). We develop a 
victim’s autonomous search and rescue robotic system based on biomimetic 
sensing technology and discuss the information flow model and control mode 
transition between human and robot. The intelligence control architecture used 
for human-robot collaboration is also proposed. Experiments indicate that this 
system makes the collaboration convenient and the rescue robotics utilizing the 
intelligence control architecture search and discover victims promptly and 
efficiently. 

Keywords: human-robot collaboration, urban search and rescue, intelligence 
control architecture. 

1 Introduction 

Rescue robots are usually deployed in disaster areas mainly for search and rescue of 
victims [1]. It is commonly viewed as a tool: a device that performs tasks on 
command send by human, resulting that a robot has limited freedom and will perform 
poorly whenever it is unsuited for the task [2]. Robotic researchers have begun to 
change their view of robots from a tool or device operated by a human user to an 
assistant or a partner in the urban search and rescue. While USAR faces many 
unsolved problems such as mobility, sensing, and artificial intelligence, but the 
biggest challenge in rescue robotics stem from a limited understanding of human–
robot interaction and collaboration. Thus, rescue robotics has been suggested by a 
recent DARPA/NSF study as an application domain for the research in human-robot 
collaboration (HRC) [3]. 

To make rescue robots more human-friendly and make them efficient in disaster 
environments, we need a robotic system which can execute tasks collaborating with 

                                                           
*  This work was supported by the National High Technology Research and Development 

Program of China (863 Program) (No.2009AA04Z215) and the National Natural Science 
Foundation of China (No.60975071) and (No.61100005). 
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human. Current applications of Urban Search and Rescue environment require a 
human operator to guide the robot remotely outside of the hot zone [4]. Although 
human operation can be effective and reliant, operators can become heavily stressed, 
fatigued and inefficient due to a loss of the general situation of disaster environment, 
causing critical error in control and victims identification [5]. An alternative to using 
human remote control is to develop autonomous controllers for rescue robot. 
However, there are a considerable number of issues in deploying an autonomous 
rescue robot in an unknown clutter disaster environment. To address this problem, 
collaboration between human and robot is essential. 

K. Kosuge et al [6] propose a dynamic control algorithm for robot human 
collaboration system, in which human execute a task in cooperation with multiple 
robots in a common work environment. Ohba et al [7] developed a system where 
multiple operators in different locations control the collision free. In the paper we 
propose and realize a structure for human and robot collaboration. It describes the 
information, data and control flow between human and robot. Simultaneously, 
operator can change the control mode between manual control and autonomous 
control. Combining with unique hierarchical control architecture, the structure is used 
in a comprehensive victim’s autonomous search and rescue system. 

2 Human-Robot Collaboration 

In this section, we are going to present a robot-human collaboration structure and 
consider the information and data flow and the control mode transition between 
human and robot.  

To find a victim in a disaster scene, it is a difficult mission especially in the clutter 
environment. The physical characteristic of a victim that we can detect contains 
sound, shape of body, skin color, and clothing texture and so on. The victim’s 
autonomous search and rescue system (Fig. 1) we developed is equipped with many 
kinds of sensors, such as sound sensor, vision sensor, sonar, compass CO sensor. The 
vision sensors including light camera and infrared camera can provide 3D scene of the 
disaster environment. Sound source directional localization algorithm, designed to 
orient the victims, is implemented, utilizing the data provided by sound sensor. Sonar 
is used to respond the distance from robot to obstacle, to implement robot’s obstacle 
avoiding. CO sensor can detect the CO concentration. 

The sensor data are sent to the control architecture used to implement victim’s 
autonomous search and rescue, obstacle avoiding, and complete coverage of the 
disaster environment. On the other hand, these data are also delivered to user 
interface, operator can observe data change and make decision whether or not change 
control mode or not. The Fig. 2 show the data flow frame and control mode transition 
for human-robot collaboration.  
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Fig. 1. The Urban Search and Rescue Robotic System 

 

Fig. 2. Data and control command flow for human-robot collaboration 

We also design a friendly user interface (Fig. 3) used to observe data of disaster 
environment and change the control mode for operator when necessary. 

 

Fig. 3. User interface for human operator 
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①  These two windows show the true disaster environment picked up by light camera 
(left) and infrared camera (right) respectively. 

②  This part shows the sound data in the form of sound wave (left) recorded by 
microphones and the direction (right) of victim detected by sound source 
localization algorithm. 

③  This part displays the CO concentration of the disaster environment. 
④  This window shows the track by which robot walks. 
⑤  This part shows the control status. 
⑥  Using these two buttons, operator can change the control mode between 

autonomous control and human control. 
⑦  This part shows the command which the robot is executing. 
⑧  This part shows the positions of victims and robot in the first two rows and the 

control information in the last row. 

3 Intelligence Control Architecture 

This section will present the data processing and intelligence control architecture we 
design. Data generated from sound module and vision module is real-time and isolated. 
Considering the disaster scene is usually noisy and clustered and sensor data do not 
consider the historical data, it will not be completely credible. We propose a data 
processing algorithm based on historical data cumulative statistics particularly for 
sound source detection and orientation. Simultaneously, we design a control 
architecture applying to guide the search and rescue robot to cover disaster area and 
discover victims completely and efficiently. 

In general, robot control architecture can be defined as deliberative, reactive or 
hybrid. Deliberative control consists of high-level planning, whereas reactive control 
executes the results generated and calculated from the sensory data. Our proposed 
control architecture (Fig. 4) is hierarchical. 

 

Fig. 4. Intelligence control architecture 

The robot control architecture proposed in our search and rescue robot system 
consists of the following modules: 
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1) Robot Sensors: There are many kinds of sensor, such as light and infrared camera, 
three-dimensional digital compass and other internal/external sensors. Data 
generated and calculated from sensory system is the inputs of the control system. 
They have different characteristic and different advantages and disadvantages to 
reflex the environment from different respects. 

2) Robot Location: The search and rescue system utilizes the three dimensional digital 
compass and internal encoders to calculate the position of the robot in the disaster 
environment. Robot location is the foundation of the system. 

3) Data Processing: In this phase, data from different sensor modules such as sound 
module, vision module, and sonars are handled with the purpose of gathering 
effective result, reducing error, eliminating contradiction and redundancy. 

4) Deliberative Layer: In this layer, we process the orthogonal data according the 
characteristic and role in task cycle. Decision is made by analyzing the results of 
last data processing phase. It is also the deliberative layer where the level of 
autonomy between human control and autonomous control is primarily decided. 

5) Priority Module: Vision module is aimed at detecting the disaster environment and 
identifying victims, in contrast, sound module is aimed at detecting sound and 
confirm the orientation of the human and guiding the robot to move towards 
victims. Sonar data is used to implement robot obstacle avoiding and ensure the 
safety of search robot. Generally, in the priority module, we give the highest priority 
to obstacle avoiding, middle priority to vision module and lowest priority to sound 
module. 

6) Robot Actuators: The robot actuators module consists of the robot’s motors and 
motor control boards. Appropriate motor signals are sent based on the result of 
above modules. 

4 Experiments 

Experiments are designed to verify the performance of the Urban Search and Rescue 
Robotic System and the intelligence control architecture. The experiments are 
implemented in a room and a corridor respectively Fig. 5. The rubble-like objects 
within the simulative disaster scene include wood plastic, cardboard and so on.  

 

Fig. 5. Experiment environment 
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In the room, the scene consists of three victims who hold the cardboard in their 
hands, ensuring that only portion of their body was visible, limbs or head. They sit in 
a circle and call for help in turn (Fig. 6). When sound module of the search and rescue 
system detect voice, and oriented the victims (step 2). It will guide the robot to rotate 
and move towards the potential victims (step 3 and 4). The vision module detects the 
environment all the time. When vision identifies a victim, it will mark the victim, 
record the coordinate and inform the GUI by sending the region of victims on the 
image. GUI can draw this region (the red rectangle) on the screen (step 5). 

 

 

Fig. 6. Experiment scene in light environment 

Fig. 7 show the experiment in corridor, where victims hide themselves in the 
woodpile and the robot is in manual control mode. Operator can observe disaster scene 
via the video generated from light camera and infrared camera and control robot with 
keyboard.  
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Fig. 7. Experiment scene in the corridor 

The ratio of discovering victims under different environment is presented in Table 1. 
It is defined as the ratio that the search and rescue system detects and identifies victims. 
There are 11 items added up with different Illumination(ILL)，Background(BG) and 
Pose of Victims(PoV). The average ratio is high than 90% obviously. 

Table 1. Ratio of discover victims 

SN ILL BG PoV Person-time 
of victims 

Person-
time 

detected 

Ratio of 
discover 

victim (%) 
1 Normal Complex Stand\ 

Block partly 
32 30 93.75 

2 Normal Complex Stand\ 
Block partly 

36 34 94.44 

3 Weak Simple Sit\ 
Non-blocked 

10 9 90.00 

4 Weak Simple Sit\ 
Non-blocked 

17 16 94.12 

5 Weak Complex Stand\Block 28 26 92.86 
6 Weak Complex Stand\Block 10 9 90.00 
7 Weak Complex Stand\ 

Block heavily 
32 30 93.75 

8 Weak Complex Stand\ 
Block heavily 

34 31 91.18 

9 Weak Complex Stand\ 
Non-blocked 

25 23 92.00 

10 Weak Complex Stand\ 
Non-blocked 

11 10 90.91 

11 Weak Complex Stand\Blocked 13 12 92.31 

5 Conclusion and Future Work 

Urban search and rescue robotic system has been an important application in the field 
of human-robot collaboration. In this paper, we propose a human-robot collaboration 
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structure and an intelligence control architecture. The intelligence control architecture 
provides the robot system with the ability to make decisions regarding which task 
should be implemented and which control mode is employed. Utilizing our proposed 
intelligence control architecture, the search and rescue robotic system can search and 
identify victims quickly and efficiently. 

The future work will focus on the improving of victim’s detection and identification 
algorithm and robot mission planning in the clutter and unknown environment. 
Furthermore, we will pay close attention to the design and guidelines of human-robot 
collaboration with the purpose of promoting robot performance and efficiency. 
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Abstract. To improve efficiency of action design for intelligent toy robot, a 
visual action design environment is created. Compared with the text-based 
action design software, it's intuitive, good usability. An algorithm for an 
automatic generation action sequence file (ASF) is present according to the data 
structure of action sequence, the file structure of ASF and the judgment 
methods of operation rules. Then using Eon Studio as virtual simulation 
development platform, the analysis to complicated action sequence files and 
reappearance of virtual action are realized. 

Keywords: Intelligent Toy Robot, Virtual Reality, Action Design, Algorithm. 

1 Introduction 

For intelligent toy robots, numerous, complex and vivid action is one of the key 
factors that attract players. Direct programming according to action plans is the main 
way of completing action design traditionally. Codes are used to drive the actual 
robots to test, and then improving actions based on test results. It doesn't enable 
designers to see results immediately after adding, modifying or deleting actions. Thus, 
the efficiency of action design is low. It is not sure whether the actions are both 
consistent and elegant. And it is not sure whether the robot can keep balance at 
movement, or meet the requirement of avoiding self collision. Under the situation that 
multiple robots are performing dancing, wrestling or gymnastics, action coordination 
is necessary, but the traditional method is difficult to reach that. In addition, it is hard 
to intuitionally judge the allowable move space for robots by the traditional method 
during the period of product design. It is also difficult to make sure that the structure 
design of robots can meet the requirement of complicated movement balance. 
Therefore, it cannot insure the ability of complex action design for toy robots. 

The programmable function is an important character of intelligent toy robots. 
Allowing players to design and develop actions would bring them great joy and 
intelligence practicing opportunities. However, the text-based or icon-based 
programming environment [1],[2] is not suitable for ordinary players, especially low-
age children. Thus, it is necessary to develop a powerful, interactive and visual 
environment that enables fast action planning and real-time preview. 
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In this paper, a visual action developing environment based icon editing and virtual 
scene has been created. 

2 Data Structure of Action Sequence 

2.1 Logic Structure 

Action sequence is an action assembly made up of one or more actions arrayed by 
time. A set of consecutive actions can become an action sequence. Given that there 
may be concurrent actions that are totally or partly synchronized in time, and there 
may be some repeated serial actions, the logic relation of action sequence is not 
merely linear. 

Parallel actions are illustrated by branch structure. For those repeated single action 
or series actions, cyclic structure is used. Several different type of action sequence 
graphs are illustrated in Fig.1. a) is a linear action sequence, b) includes parallel action 
sequence, c) cyclic action sequence  and d) shows the nested parallel structures . 

 

Fig. 1. Different action sequence graphs 

2.2 Storage Structure 

The logic structure of action sequence is shown as a directed graph, so the adjacency 
list is chosen for the storage structure. For the convenience of regulation judgment 
and traverse algorithm, redundant data is added. The redundant data will take extra 
storage space, resulting in inconvenience when deleting actions. The pros and cons 
are compared comprehensively. The structure of the list and head nodes is shown as 
Fig. 2.  

 

Fig. 2. Adjacency list 
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3 Algorithm for Automatic Generation of ASF 

3.1 Operation Rules and Judgment Algorithm 

Action sequence is an action assembly made up of one or more actions arrayed by 
time order. This sequence must conform to certain constraint conditions to satisfy the 
correctness and integrity of action sequence. Rule judgment must be conducted while 
the user adds, deletes, or changes the actions. Warning and rejecting events are 
activated when a certain action does not conform to the rules. 

Take adding directed line as an example. The directed lines in action sequence graph 
indicate the continuation of actions. It means the ending of an old action and the starting 
of a new one. There are two reasons for breaking the correctness and integrity of action 
sequence. One is transmitting antinomy, another is concurrent mistake. 

• Transmitting Antinomy 

Transmitting antimony occurs when two routes such as Ai →…→ Aj →…→ Ak 
and Ai →Ak in one action sequence appear at the same time. 

• Concurrent Mistake 

If two intersecting paralleling structures in one action sequence contain a public 
subsequence, this action sequence has a concurrent mistake as shown in Fig.3. 

Further analyses of the characteristics of transmitting antinomy and concurrent 
mistake reveal their common characteristic--the source node is directly connected 
with the joint node. Here source node is a node with more than one direct 
subsequence, while joint node is a node with more than one direct predecessor. As 
shown in Fig. 3, node A2 becomes a source node and node A6 becomes a joint node 
after directed line 2 is added. 

Therefore, the rule for right connection operation is as follows: A directed line 
starting from a source node and ending to a joint node is not allowed in an action 
sequence.  

According to the above rules, two situations can be used to judge whether the user 
breaks the rules during connection operation. 

(1) Direct breach of the rules after connection because Ai becomes the source node 
and Aj becomes the joint node when the line<Ai, Aj> is added.  

(2) Two situations of the indirect breach of rules occur after connection. 

a) Some direct subsequence of Ai is joint node. Ai becomes the source node when the 
line <Ai, Aj> is added.  

b) Some direct predecessor of Aj is source node. Aj becomes the joint node when the 
line<Ai, Aj> is added. 

 
Fig. 3. Transmitting antinomy raised when arc1is added, and concurrent mistake when line2 is 
added 
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3.2 Automatic Generation of ASF 

ASF (Action sequence file) is a structured data file stored in txt or xml format. The 
files are made up of different markups and action data. Take the action sequence in 
Fig. 1 b) as an example. The file structure of this action sequence is shown as Fig.4.  

The linear structures are represented by a couple of markups named Begin Linear 
Action/End Linear Action. The parallel structures are represented by Begin Parallel 
Action/End Parallel Action. For the convenience of algorithm, cyclic structure is 
turned into an equal linear structure. 

 

Fig. 4. The structure of action sequence file 

The idea of the algorithm lies in that different markups are created when traversing 
each action node of directed graph. The key of the algorithm is how to traverse a 
directed graph and when the text information is add to the file. Correct action 
sequence files must be generated for all legal action sequences. Handling parallel 
structure is the difficult part of the algorithm, especially when complicated action 
sequences are included. To avoid ambiguity, the parallel structure in ASFs contains 
strict expression. 

In general situations, parallel structure starts from the source node and ends at the 
joint node. Nonetheless, for convenience and usability of action sequence edition, not 
all parallel structures are required to contain source node and joint node at the same 
time. To deal with the matching between source nodes and joint nodes, virtual source 
nodes (S0 in Fig. 5) and virtual joint nodes (J0, J1, and J2 in Fig.5) are add to the action 
sequence graph.  

• Pretreatment 

The goal of pretreatment is to add virtual source nodes and virtual joint nodes by 
algorithm, as well as to find the corresponding relations of all source nodes and joint 
nodes. 

(1) Data Structure 
Four linear arrays are used to store data. The array Rear is used to store the end 

nodes that have no direct subsequence, the array RSource to store the source nodes 
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corresponding to the end nodes, the array Source to store all the source nodes, and the 
array Joint to store all the joint nodes. 

(2) Adding Virtual Source Nodes 
All the starting nodes that have no predecessor are identified. If the staring node is 

more than 1, a public direct predecessor S0 is added and the value is set as -1. 

(3) Adding Virtual Joint Nodes 
The algorithm of adding virtual joint nodes is as follows: 

Step1:  Find all the end nodes and store them in the array Rear. 
Step2:  Stop when the length of the array Rear is equal to or smaller than 1. 
Step3: Take a node Ai out from the array Rear one by one. Searching by backtracking 

method in the action sequence graph until a source node is found. Put it into the 
array RSource. 

Step4:  A virtual joint node Ji is added according to the nodes with the same value in 
the array RSource. Delete two direct predecessors of virtual node Ji from the Rear 
and put Ji into the Rear. 

Step5: According to Step4, store Ai in the array Source and store Ji into the array 
Joint. Then turn to Step2. 

 

Fig. 5. The virtual source node and the virtual joint nodes were added 

(4) Matching Between Joint Nodes and Source Nodes 
Source nodes corresponding to virtual joint nodes have already been found when 

the virtual nodes were added. Therefore, only the relations of other joint nodes and 
source nodes (including virtual source nodes) need to be identified. It is the way to 
search source node that backtracking along all routes starting from the joint node Aj 

until a public source node Ai is found. But the joint node found along different routes 
starting from source node Ai may be different if there is more than one parallel 
structure. In this case, special handling is needed.  

(5) Special Handling 
One solution is to take the method of adding virtual source nodes in order to keep 

the source node and the joint node in a one-to-one relationship. However, this method 
will break the original structure of action sequence, making it inconvenient for storage 
and editing. Another solution is to record the routes between a source node Aj and its 
different corresponding joint nodes. Such as the source node A2 in Fig.5, three routes 
need to be recorded: A2A3J1, A2A4J7, and A2A6J7. The second solution is taken in this 
paper. 
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• Algorithm Process 

The purpose of the algorithm is to insert markups (Table 1) and action data into the 
ASF when traversing an action sequence graph. The traverse method is not merely 
depth-first traverse or width-first traverse. The algorithm described by pseudo code is 
showed in Fig.6. 

Table 1. Diffrent markups 

Name BM EM BPAM EPAM BLAM ELAM AM EAM 

Mark-
up 

Begin End 
Begin 

Parallel-
Action 

End 
Parallel-
Action 

Begin 
Linear-
Action 

End 
Linear-
Action 

Action 
End 

Action 

 

Fig. 6. The algorithm described by pseudo code 

4 Editor Development and Testing Results 

VC++ is used as a development tool for action editor while Eon Studio 7.0 is used for 
the virtual simulation. After the action sequence is edited, it is stored as an act format 
file (.act). An action sequence file in txt format can be generated afterwards. It can 
drive the humanoid robot to perform actions (shown as Fig. 7) after the action 
sequence file analysis (another paper will be written to describe this part) is 
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conducted. Therefore, during the process of action design, a preview of the action 
effect can be accomplished, which can help hasten action design. Through this editor, 
action designers can efficiently design action sets without editing any code. 

 

Fig. 7. Toy intelligent robots are performing actions 

5 Conclusion and Prospect 

Majority of the current virtual reality simulation applications are accomplished by 
creating the activities of virtual objects inside the virtual scene files [5] [6] [7]. This paper 
proposes a way to obtain the data of a driven virtual object’s action changes by 
reading external files. The paper is a significant attempt to create the dynamic 
interaction of virtual objects (scenes) driven by large amount of external data. By 
separating virtual scene files from simulation data, more flexible and stronger virtual 
simulation functions can be completed. When real-time external data need to be 
collected, driving the scenes to obtain real-time changes by collected results is 
extremely significant.  
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