
LIBKOMP, an Efficient OpenMP Runtime System
for Both Fork-Join and Data Flow Paradigms

François Broquedis1, Thierry Gautier2, and Vincent Danjean3

1 INPG
2 INRIA
3 UJF,

MOAIS Team, LIG, Grenoble, France
{francois.broquedis,vincent.danjean}@imag.fr,

thierry.gautier@inrialpes.fr

Abstract. To efficiently exploit high performance computing platforms, appli-
cations currently have to express more and more finer-grain parallelism. The
OpenMP standard allows programmers to do so since version 3.0 and the in-
troduction of task parallelism. Even if this evolution stands as a necessary step
towards scalability over shared memory machines holding hundreds of cores,
the current specification of OpenMP lacks ways of expressing dependencies be-
tween tasks, forcing programmers to make unnecessary use of synchronization
degrading overall performance. This paper introduces LIBKOMP, an OpenMP
runtime system based on the X-KAAPI library that outperforms popular OpenMP
implementations on current task-based OpenMP benchmarks, but also provides
OpenMP programmers with new ways of expressing data-flow parallelism.

Keywords: OpenMP, data-flow programming, task parallelism, runtime
systems.

1 Introduction

The architecture design of high performance computing platforms keeps getting more
and more complex, widening the gap between the theoretical computing power of a
given architecture and the performance parallel applications can achieve on it. HPC
programmers have to express massive parallelism to occupy the constantly growing
number of processing units contained in a multicore chip, and finely control the way
parallel flows are executed to efficiently deal with memory affinity (shared cache mem-
ory, NUMA design, etc.). This burden will not get any lighter with the recent evolution
of processor design, in which architects associate a few powerful cores with numer-
ous, more simple cores. The success of this kind of design will rely on the ability for
programmers to write applications with good performance at runtime, even for small
problem instances.

Several libraries and programming environments [30,15,29,9,8] were proposed to
improve the productivity of programmers by encouraging them to express all the
potential parallelism in an application at fine grain, while delegating to the runtime
system (or the compiler) the role to extract useful parallelism for the target multicore
machine. They introduce high-level parallel constructs, such as Cilk cilk_for, X10

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 102–115, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

LIBKOMP, an Efficient OpenMP Runtime System 103

for_each or OpenMP parallel for, to easily describe potential parallelism in
most of HPC numerical applications. In Cilk++, Intel Cilk+, Intel TBB, X-KAAPI and
OpenMP (using the dynamic loop scheduler), the parallel loops generate internal tasks
and rely on variations of a work stealing algorithm to deal with load balancing.

Tasks are now part of the OpenMP standard since version 3.0. To schedule task-based
parallel applications, the work-stealing algorithm [6,3,16,20,26] is one of the most
heavily-studied dynamic scheduler. Its biggest advantage lies in its simple predictive
performance model. Several studies on OpenMP task scheduling have shown that work-
stealing based algorithms seem to provide, on average, good speedup [11,27,28,1,23].

While we consider this evolution as a necessary step to exploit manycore comput-
ers efficiently, several studies have illustrated the limitation of the OpenMP fork-join
task execution model [5,12,22] with respect to the data flow model, emphasizing that
data flow applications are able to express more parallelism. The OpenMP ARB is al-
ready considering interesting possible extensions to the standard to deal with task/data
dependencies [4,12], allowing OpenMP programmers to exploit accelerators in a unified
model.

The X-KAAPI1 library, a re-design in C of the Kaapi library [17] we develop, provides
a runtime system that has proven to be efficient when it comes to scheduling data-flow
parallel applications over multicore machines. X-KAAPI comes with very little task cre-
ation and scheduling overheads and implements recursive tasks in a very efficient way,
making this runtime system a good candidate for both scheduling OpenMP 3.0 tasks,
as the fork-join model can be seen as a particular case of the data-flow paradigm, and
experiment with possible data-flow related extensions to the OpenMP standard.

This paper introduces LIBKOMP, an OpenMP runtime system based on the
X-KAAPI library that performs well on current task-based OpenMP benchmarks and
applications, but also emphasizes the interest of extending the OpenMP standard to ex-
press data-flow parallelism, presenting performance improvements for OpenMP bench-
marks that were modified to express task/data dependencies.

The paper is organized as follows. Section 2 introduces the main assets of the
X-KAAPI runtime system that the LIBKOMP library can rely on, and details the way
we implement the OpenMP tasking model. Section 3 describes the evaluation of our
runtime on the original BOTS benchmarks suite and modified versions of the SparseLU
and NQueens kernels to benefit from the data-flow execution model while Section 4
presents some related work.

2 The LIBKOMP Runtime System

OpenMP tasks offer the application programmer new ways of expressing parallelism.
This new paradigm will make OpenMP applications generate a great number of fine-
grain tasks. The success of such an approach for parallelizing applications will greatly
depend on the runtime system’s ability to:

1. Generate all these tasks with the smaller overhead possible: the long term goal
would be to let the runtime system decide how many tasks a parallel region should
create considering both the application and the system current states.

1 http://kaapi.gforge.inria.fr

http://kaapi.gforge.inria.fr

104 F. Broquedis, T. Gautier, and V. Danjean

2. Provide efficient ways of performing load balancing to reach scalability: a task-
based application can dynamically generate tasks of different types and workloads.

3. Implement recursive tasks in an efficient way: recursive algorithms should be par-
allelized using recursive tasks, as it’s most of the time the most convenient way to
parallelize them, and not being penalized in terms of performance.

On top of focusing on these three aspects while implementing the OpenMP 3.0 lib-
GOMP ABI, our LIBKOMP runtime system also provides the OpenMP programmer
with new ways of expressing dependencies between OpenMP tasks, thanks to specific
keywords provided by a source-to-source compiler we also develop, called KaCC [25].
So, LIBKOMP can be used either as a run-time replacement of the libGOMP runtime
for OpenMP binaries compiled with GCC, or it can be used as a classical shared library
for applications compiled with KaCC (allowing use of its extended features).

2.1 The LIBKOMP Execution Model

In LIBKOMP, each OpenMP thread corresponds to a X-KAAPI task. The number of
kernel threads used to run an OpenMP program is controlled by the internal control
variable called nthreads-var [29]. When the application reaches a scheduling point, a
kernel thread is able to suspend the current task to execute another one, and resume ex-
ecution of the previous task later. LIBKOMP takes advantage of such context switches
to restore previous internal control variables (ICV), OpenMP thread number, etc., if
required. When the execution starts, the master thread of the current process starts to
execute the main task. A thread creates tasks and pushes them on its own workqueue.
The workqueue is represented as a stack. The enqueue operation is very fast, typically
about ten cycles on current processors. As for Cilk, a running X-KAAPI task can create
child tasks. Once a task terminates its execution, the thread that was executing it picks
its children first, following the FIFO order of their creation.

2.2 Parallel Regions in LIBKOMP

A parallel region creates a set of implicit initial tasks, each of them being associated
with a unique OpenMP thread number, which share team-related information. Tasks
are pushed into the X-KAAPI stack of the running thread in a new activation frame.
Tasks are not bound to kernel threads: it is the responsibility of the X-KAAPI work
stealing scheduler to dynamically decide the mapping. LIBKOMP interprets a program
specification of a number of threads num_threads in a parallel directive as the cre-
ation of num_threads X-KAAPI tasks. Several of these tasks may be scheduled on
the same kernel thread, depending on the threads workload and the scheduling deci-
sions taken by the X-KAAPI work-stealing scheduler. At the end of a parallel region, its
master thread calls a LIBKOMP function to wait for the completion of all previously
created tasks in the activation frame associated with this region.

2.3 Data Access Modes for Dependent Tasks

A X-KAAPI task is a function call that should return no value except through the shared
memory and the list of its effective parameters. Tasks share data if they have access to

LIBKOMP, an Efficient OpenMP Runtime System 105

1 f o r (k = 0 ; k < NB; ++k)
2 {
3 #pragma k a a p i t a s k r e a d w r i t e (s l i [k , k])
4 p o t r f (BS , s l i [k , k]) ;
5

6 f o r (m = k +1; m < NB; ++m)
7 {
8 i f (i s _empty (s l i [m, k])) cont inue ;
9 #pragma k a a p i t a s k r e a d (s l i [k , k]) r e a d w r i t e (s l i [m, k])

10 t r s m (BS , s l i [k , k] , s l i [m, k]) ;
11 }
12

13 f o r (m = k +1; m < NB; ++m)
14 {
15 i f (i s _empty (m, k , &s l i)) cont inue ;
16 #pragma k a a p i t a s k r e a d (s l i [m, k]) r e a d w r i t e (s l i [m,m])
17 s y r k (BS , s l i [m, k] , s l i [m,m]) ;
18

19 f o r (n = k +1 ; n < m; ++n)
20 {
21 i f ((i s _empty (n , k , & s l i) | | (i s _empty (m, n , &s l i))) cont inue ;
22 #pragma k a a p i t a s k r e a d (s l i [n , k] , s l i [m, k]) r e a d w r i t e (s l i [m, n])
23 gemm (BS , s l i [n , k] , s l i [m, k] , s l i [m, n]) ;
24 }
25 }
26 }
27 #pragma k a a p i s ync

Fig. 1. Pseudo code for sparse Cholesky factorization

the same memory region. A memory region is defined as a set of addresses in the pro-
cess virtual address space. With X-KAAPI, this set has the shape of a multi-dimensional
array [25].

The user is responsible for indicating the mode each task uses to access the memory:
the main access modes are read, write, cumulative write or exclusive [16,17,25,24]. The
syntax to specify these access modes is very close to the directives proposed in StarSs
meta model [5] and those defined by the OpenMP dependent tasks proposal [12].

Code of figure 1 illustrates the API provided by X-KAAPI along with the KaCC
compiler [25] on a sparse Cholesky factorization used in the performance evaluation
section. The matrix is composed of at most NB × NB blocks of size BS × BS. The
clauses read or readwrite specify access mode for variables following the structured
block. True dependencies exist when a task read data produced by a previously created
task. For instance, the task created at line 3 produces (read-write access) the diagonal
block [k, k] that will be consumed by tasks created at line 9. A variable that does not
appear in any clause is passed by value.

OpenMP task model does not allow dependent tasks. The application programmer
has to insert coarse grain synchronizations using the taskwait keyword to respect
data flow dependencies, which can limit parallelism [22].

Tasks with data flow dependencies have already been cited to be important in lin-
ear algebra [22] or for managing multi-CPUs multi-GPUs computations [4,12,2,21] in
a unified model. It could be used to avoid unnecessary synchronizations in recursive
divide and conquer programs, such as the BOTS NQueens. Indeed, the number of solu-
tions cumulated by each task only requires one final synchronization. Due to the limita-
tions of the OpenMP tasking model, the BOTS NQueens implementation waits for the

106 F. Broquedis, T. Gautier, and V. Danjean

completion of all created child tasks at each level of the recursion. This synchronization
allows to cumulate subresults but it also permits fast C stack allocation of chess board
state for each child. Thanks to the cumulative access mode and the stack-based task
management proposed by X-KAAPI, it is also possible to avoid these synchronization
points by allocating a chess board state in the internal X-KAAPI stack, such that it is
valid when a spawned task performs its computation [17].

A X-KAAPI task is a very light object. It basically holds a pointer to the main entry
point function, its parameters and some flags set by the task scheduler. For each type
of task, the runtime maintains a format object which is responsible to interpret the task:
retrieve the access mode and type of each parameters, getting the implementation of the
entry point of the task (CPU or GPU [21]). Such separation reduces the task size by
factorizing common information.

2.4 Stack-Based Execution

At runtime, a X-KAAPI task generates a sequence of child tasks that access data in a
shared memory area. Each task is pushed into the queue of the current thread. After a
task finishes, its children tasks are executed with respect to the order of their creation.
The local queue is managed as LIFO queue of activation frames. Each activation frame
is a FIFO queue of tasks. This model implements a valid, highly efficient sequential
execution order [16,17], as the runtime system only needs to compute data flow de-
pendencies when the thread execution scheme reaches a task that has been stolen and
not completed yet. The successors of the stolen task depend on its completion. So, all
tasks following the first stolen task encountered, must require computation of data flow
dependencies to detect whether they are ready or not. In order to keep fast stack-based
execution without computation of data flow dependencies in X-KAAPI [17], a thread
suspends its execution when it reaches the first stolen task in its stack and calls the work
stealing scheduler to steal a new ready task.

2.5 Work Stealing and Data Flow Dependencies

Thanks to Cilk [6,15], the work stealing technique has become mainstream and is now
often considered when it comes to dynamically balance the work load among processing
units. The work stealing principle can be synthesized as follows. An idle thread, called
a thief, initiates a steal request to a random selected victim. On reply, the thief receives
one or more ready tasks.

At the startup time, only the main thread of X-KAAPI process performs tasks, all
others threads are idle. This original idea in X-KAAPI follows the work first princi-
ple [15]; at the expense of a larger critical path, X-KAAPI moves the cost of computing
ready tasks from the work performed by the victim during task’s creations to the steal
operations performed by thieves. Theoretical analysis of work stealing algorithms to
schedule dependent tasks are studied in [16,18] and an elegant recent proof is written
in [32] which considered specifics of the X-KAAPI work stealing protocol.

To compute a ready task, a thief thread iterates through the victim’s queue from
the last recent pushed task to the most recent one and it computes true data flow

LIBKOMP, an Efficient OpenMP Runtime System 107

dependencies for each task. False dependencies are resolved through variables renam-
ing. The iteration stops on the first task found ready.

The main difference between X-KAAPI and other software [5,2,34] is that X-KAAPI

computes data flow dependencies only when idle thread search for a ready task.

2.6 Discussion

If a program is highly parallel, i.e. T∞ � T1, then the number of steal operations per
thread remains in order O(T∞) which is low. In that case, the cost of computing data
flow, perhaps multiple times if several idle threads iterate over the same queue, is neg-
ligible with comparison to systematic computation on task creation. Otherwise, if the
frequency of steal operations increases, X-KAAPI tries to aggregate multiple requests
to the same victim. Our protocol elects the thieves to reply to all of the victim’s requests.
This aggregation strategy permits the combination of k searches of ready tasks in a less
costly operation to one search of k ready tasks [19]. In [32], a theoretical analysis shows
it can reduce the total number of steal requests.

Nevertheless, the overhead to manage tasks and computing data flow graph could
remain important. Also, X-KAAPI implements an original optimization. It is applied
when the cost of computing ready tasks becomes important, especially when the vic-
tim’s stack contains many tasks. The user may annotate code or the scheduler automati-
cally detects such situation. Then, the scheduler computes, and attaches to the stack, an
accelerating data structure to make faster steal operations. The structure maintains the
list of ready tasks. When a task completes and activates dependent tasks, the runtime
pushes them directly into list (of ready tasks). The capacity of X-KAAPI to pass from
workqueue’ stack representation to this accelerating data structure makes it unique. It
allows to move overhead in computing ready tasks during steal operation to the compu-
tation of accelerating data structure with low cost steal operation.

2.7 Parallel Loops in LIBKOMP

The parallel loop support in GCC/OpenMP relies on three main functions to initialize
the iteration space, get the next slice for local computation and a function call at the
end of the loop. Static scheduling may inline some of them. LIBKOMP follows the
same ABI and relies on the X-KAAPI loop support [24]. Loop support in X-KAAPI is
based on adaptive algorithms [33,31] to dynamically adapt the parallelism grain (num-
ber of tasks, number of iterations per task, etc.) considering the current system state. The
LIBKOMP loop port on X-KAAPI is only required to decompose the original X-KAAPI

parallel loop in order to fit the parallel work share construct of the libGOMP ABI.

3 Performance Evaluation

This section presents our evaluation on the BOTS benchmarks suite and two versions of
the Cholesky factorization to compare the performance obtained by our solution with
respect to two other OpenMP implementations: the original libGOMP that comes with

108 F. Broquedis, T. Gautier, and V. Danjean

version 4.6.2 of the GCC compiler and version 12.1.2 of the Intel C OpenMP compiler.
LIBKOMP is based on version 1.0.2 of the X-KAAPI runtime system.

We conducted our experiments on CC-NUMA 48 cores AMD Magny Cours. There
are three levels of cache memory. L1 (64 KB) and L2 (512 KB) are per core, whereas
L3 (5 MB) is shared by 6 cores. This configuration provides a total of 256 GB (32 GB
per NUMA node) of main memory. We will refer to this configuration as AMD48 in
the following of the paper.

3.1 Task Management Overhead

This section compares the overhead of task creation and execution with respect
to the sequential computation. The experiment evaluates the time to execute the
KaCC/LIBKOMP program of figure 2 for computing the 35-th Fibonacci number using
the fast task creation protocol. Equivalent programs in term of task creations and syn-
chronizations are written in Intel Cilk+, Intel TBB 4.0 and GCC/libGOMP. Sequential
time is 0.091s. Figure 2 reports times using 1, 8, 16, 32 and 48 cores from our AMD48
configuration. On 1 core, LIBKOMP has the smallest overhead with respect to the se-
quential computation (slowdown of about 8). This overhead can easily be absorbed by
increasing the task granularity, but at the expense of increasing the critical path, thus
reducing the available parallelism [15,11]. The grain is too fine for OpenMP/libGOMP
(computation was stopped on 32 and 48 cores after 5 minutes). For one core execution,
libGOMP never creates tasks and makes function calls as sequential execution does.

vo id f i b o n a c c i (long∗ r e s u l t ,
c o n s t long n)

{
i f (n <2)

∗ r e s u l t = n ;
e l s e
{

long r1 , r2 ;
#pragma k a a p i t a s k w r i t e (& r1)

f i b o n a c c i (&r1 , n−1) ;
f i b o n a c c i (&r2 , n−2) ;

#pragma k a a p i s ync
∗ r e s u l t = r1 + r2 ;

}
}

(a) LIBKOMP benchmark using KaCC

#cores Cilk+ TBB LIBKOMP libGOMP

1 1.063 2.356 0.728 2.429
(slowdown) (x 11.7) (x 26) (x 8) (x27)

8 0.127 0.293 0.094 51.06

16 0.065 0.146 0.047 104.14

32 0.035 0.072 0.024 (no time)
48 0.028 0.049 0.017 (no time)

(b) Time (second) on the AMD48 configuration
for fibonacci(35). Sequential time is 0.091 s.

Fig. 2. Fibonacci micro benchmark

3.2 Parallel Loops

In this section, we compare the performance obtained by both the libGOMP runtime
system and LIBKOMP on a parallel version of EUROPLEXUS [14], an industrial
application that computes finite element simulation of fluid-structure systems, expos-
ing a single OpenMP parallel loop. Because work per iteration is lightly irregular, we
tested both static and dynamic scheduling for libGOMP. We use the MAXPLANE

LIBKOMP, an Efficient OpenMP Runtime System 109

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40 45 50

T
se

q
/ T

pa
r

core count

ideal
libKOMP

OpenMP /dynamic
OpenMP /static

Fig. 3. EUROPLEXUS parallel loop speedup, libGOMP (static,
dynamic) VS LIBKOMP (xkaapi)

instance as input of the
EUROPLEXUS appli-
cation. Figure 3 reports
the obtained speedup
of parallel implemen-
tations with respect to
the sequential version.
The same cores was
used in both libGOMP
or LIBKOMP using the
environment variable
GOMP_CPU_AFFINITY.
Overall speedups are very
close, but LIBKOMP
scales better for a larger
number of cores (>25).

3.3 Barcelona OpenMP Tasks Suite (BOTS)

The Barcelona OpenMP Tasks Suite has been introduced to test the behavior of 3.0-
compatible OpenMP runtime systems regarding tasks implementation. It provides sev-
eral kernels inspired from real-life OpenMP applications and projects. Each kernel,
detailed in [13], comes with different implementations relying on different aspects/key-
words of the OpenMP 3.0 tasks model (tied/untied tasks, controlling the cut-off using
the if clause, etc.). We ran all these kernels on the AMD48 platform using a varying
number of cores to experiment with each kernel’s scalability, and kept the best imple-
mentation for each runtime system. Figure 4 shows the corresponding results.

Executing some of these kernels may lead to the creation of a great number of tasks.
For instance, the execution of the NQueens algorithm on a 14x14 chessboard generates
more than 370M of tasks. Creating such a number of tasks comes with overheads on
any tested runtime systems, the worst ones being observed from libGOMP. Determining
the right number of tasks to instanciate from an application may be really challenging.
Some runtime systems like libGOMP implements a threshold heuristic that limits tasks
creation when the number of tasks is greater than k times the number of threads. It has
the advantage of limiting the number of tasks but may limit the parallelism of the appli-
cation, as observed on the FFT benchmark performance on figure 4b in which creating
all the 2M tasks expressed in the application allows both the LIBKOMP and Intel run-
time systems to perform better load balancing. Some of these embarassing applications
comes with implementations in which the application programmer can define the max-
imum depth from which new tasks will be executed sequentially, taking the number of
creating tasks from 370M for NQueens to 2394 for example, thus explaining the better
performance obtained by libGOMP on the these kernels.

More generally, these experiments show LIBKOMP obtains performance that is
comparable to other OpenMP runtime systems (sometimes being even better!) on fork-
join applications exposing a reasonable number of tasks, and outperforms libGOMP

110 F. Broquedis, T. Gautier, and V. Danjean

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4 8 16 24 32 48

S
p
e
e
d
u
p

Number of cores

libKOMP
intel

libGOMP

(a) Alignment (prot100.aa)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4 8 16 24 32 48

S
p
e
e
d
u
p

Number of cores

libKOMP
intel

libGOMP

(b) FFT (n=33,554,432)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4 8 16 24 32 48

S
p
e
e
d
u
p

Number of cores

libKOMP
intel

libGOMP

(c) Floorplan (input.20)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4 8 16 24 32 48

S
p
e
e
d
u
p

Number of cores

libKOMP
intel

libGOMP

(d) MultiSort (n=33,554,432)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4 8 16 24 32 48

S
p
e
e
d
u
p

Number of cores

libKOMP
intel

libGOMP
KaCC

(e) NQueens (n=14)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4 8 16 24 32 48

S
p
e
e
d
u
p

Number of cores

libKOMP (64x128)
libKOMP (128x64)
intel (64x128)
intel (128x64)

libGOMP (64x128)
libGOMP (128x64)

(f) SparseLU (nxm)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4 8 16 24 32 48

S
p
e
e
d
u
p

Number of cores

libKOMP
intel

libGOMP

(g) Strassen (n=8192)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

8 16 24 32 48

S
p
e
e
d
u
p

Number of cores

libKOMP
intel

libGOMP

(h) UTS (medium.input)

Fig. 4. Speedups of the BOTS benchmarks suite scheduled by the LIBKOMP, libGOMP and
Intel runtime systems on a varying number of cores from the AMD48 platform with respect to
the GCC-compiled sequential version

LIBKOMP, an Efficient OpenMP Runtime System 111

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

G
fl

op
s/

s

matrix dimension

libKOMP
QUARK

(a) Tile size of NB = 128

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

G
fl

op
s/

s

matrix dimension

libKOMP
QUARK

(b) Tile size of NB = 256

Fig. 5. Gflops on Cholesky algorithm with QUARK and LIBKOMP

and Intel on applications creating a great number of tasks, thanks to its efficient man-
agement of recursive tasks.

To conclude this section, reported experiments have demonstrated that LIBKOMP
has almost the same performance as libGOMP or Intel ICC for a moderate number
of tasks and a moderate number of cores. For tasks-intensive computations, such as
UTS, LIBKOMP outperforms the other two OpenMP implementations. LIBKOMP is
designed to schedule data-flow graphs.

Mixing tasks with declaration of memory access modes allows a finer resolution
of synchronizations. It also provides valuable information on memory accesses to the
runtime system. The implementation of BOTS NQueens has been modified as described
at the end of section 2.4 and compiled with KaCC/LIBKOMP. Letting the runtime
system deal with fine-grain sychronizations allows to significantly improve the overall
performance here, as this version of NQueens reaches a speedup of 47.8 over 48 cores
of the AMD48 machine (KaCC performance reported on figure 4e).

3.4 Data Flow Tasks versus Fork-Join Tasks

We evaluate the potential gain offered by data-flow tasks over OpenMP 3.0 fork-join
tasks executing two different versions of the Cholesky factorization, a widely-used lin-
ear algebra algorithm.

LIBKOMP versus QUARK. The first one relies on the PLASMA_dpotrf_Tile
algorithm coming from version 2.4.2 of the PLASMA [7] library that comes with a
runtime system, in charge of scheduling PLASMA tasks, called QUARK. We imple-
mented the QUARK [34] ABI for dependent tasks on top of LIBKOMP to compare our
implementation with the original version of QUARK.

Figure 5 reports the performance, in GFlop/s, for different matrix sizes on the
AMD48 machine. One can observe that LIBKOMP outperforms QUARK for fine
grain tasks (NB = 128). The main reasons are: 1/ QUARK implements a central-
ized list of ready tasks; 2/ Creating QUARK tasks comes with bigger overheads. We
can expect this contention point to become more severe as the number of cores in-
creases with next generation machines, affecting PLASMA performance. When the
grain increases, LIBKOMP remains better but the difference decreases because of the

112 F. Broquedis, T. Gautier, and V. Danjean

relatively small impact of the task management with respect to the whole computation.
One can also note that increasing the grain size reduces the average parallelism and
limits the speedup. For a matrix size of 3000, the performance for NB = 128 reaches
150GFlops, while for NB = 256, it drops to about 75GFlops.

LIBKOMP versus OMP. The second version of the Cholesky factorization we stud-
ied here is a sparse factorization (LDL t) coming from the industrial code EURO-
PLEXUS [14]. We compare a data flow program on top of LIBKOMP with respect
to the original EUROPLEXUS code using OpenMP 3.0 task. The two code structures
are similar to Cilk and SMPSs codes presented in [22] for the dense case. Management
of sparsity is done in the same way as in the BOTS SparseLU code. Figure 6 reports
speedup using a matrix used by the MAXPLANE simulation in EUROPLEXUS [14].

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

Sp
ee

du
p

(T
p/

T
se

q)

core count

ideal
libKOMP
OpenMP

Fig. 6. Speedups on sparse Cholesky

The dimension of the ma-
trix is 59462 with 3.59%
of non zero elements. The
block size with the best se-
quential time is BS = 88
and is used for parallel
versions. The sequential
time is 47.79s. LIBKOMP
version outperforms lib-
GOMP version, for the
same reasons as for the
dense case [22]: thanks to
the knowledge of data de-
pendencies, independent
tasks between outer loop
iterations can be executed
concurrently.

4 Related Work

Kaapi [17] was designed in our group after our preliminary work on Athapascan [16,10].
X-KAAPI keeps definition of access modes to compute data flow dependencies between
a sequence of tasks. StarSs/SMPSs [5], QUARK [34], StarPU [2] follow the same de-
sign. We can still note differences in the kind of access modes and the shape of the
memory region that are defined : StarSs/SMPSs, QUARK have similar access mode
but only consider unidimensional arrays. QUARK comes with an original scratch
access mode to reuse thread-specific temporary data. StarPU [2] has a more complex
way to split data and define sub-views of a data structure. X-KAAPI has a direct support
for multi-dimensional arrays [25].

The data flow task model is flat in StarSs/SMPSs, QUARK and StarPU while
X-KAAPI also allows recursive tasks creation. The fork-join parallel paradigm is only
supported by X-KAAPI, Intel TBB [30], Cilk [6,15] and Cilk+ (Intel version of Cilk).
The X-KAAPI performance for fine grain recursive applications is equivalent, and some-
times better, than Cilk+ and Intel TBB, that only allow the creation of independent tasks.

LIBKOMP, an Efficient OpenMP Runtime System 113

In TBB, Cilk or X-KAAPI, task creation is several order of magnitude cheaper than in
StartSs/SMPSs, QUARK or StarPU. Scalability of the QUARK and StarPU runtime
system is limited due to their central list scheduling. SMPSs seems to support a more
distributed scheduling.

X-KAAPI has a unique model of adaptive task that allows a runtime adaptation of
tasks creation when a resource turns idle. The OpenMP runtime of GCC 4.6.2, lib-
GOMP, implements a threshold heuristic that limits tasks creation when the number
of tasks is greater than k times the number of threads (k = 64). It has the advantage
of limiting the number of tasks [11] (max-task strategy) but may limit the parallelism
of the application, as observed on the FFT benchmark performance [11]. TBB, with an
autopartitionner heuristic, is able to limit the number of tasks without a priori limiting
the application parallelism.

Intel TBB, Cilk+, OpenMP and X-KAAPI support parallel loops which are not avail-
able in StarSs/SMPSs, QUARK or StarPU. Our comparison with OpenMP/GCC 4.6.2
shows that for benchmarked instances on real EUROPLEXUS code, OpenMP loop
scheduling strategy is not an important feature.

From all of the tested softwares, X-KAAPI is the only runtime system that allows to
mix in a unified framework data-flow tasks, fork-join tasks and parallel loops with at
least equivalent performance (sometimes even better!) than specific softwares for each
paradigm.

5 Conclusion

Computer architects keep designing more and more complex platforms embedding an
almost constantly increasing number of processing units. To deal with these so-called
manycore architectures, OpenMP had to evolve to allow the application programmer
to express finer-grain parallelism. The 3.0 version of the OpenMP standard has layed
the fundations of a fine-grain environment, introducing the task construct to gener-
ate fine-grain tasks, either explicitely or out of OpenMP 2.5 parallel regions. We pro-
posed in this paper a runtime system, called LIBKOMP, that efficiently implements the
OpenMP task model and is binary compatible with existing OpenMP applications built
against GCC’s libGOMP. LIBKOMP outperformed popular OpenMP implementations
like GCC’s libGOMP and ICC’s KMP runtime systems on several benchmarks of the
Barcelona OpenMP Tasks Suite. We also showed the interest of taking OpenMP task
proposal one step further, proposing extensions to deal with data dependencies. We im-
plemented these extensions inside a source-to-source compiler obtaining better perfor-
mance using data-flow tasks compared to OpenMP 3.0 fork-join tasks. From our point of
view, many of the characteristics of the LIBKOMP runtime system, and more generally
the X-KAAPI runtime system LIBKOMP is based on, like adaptive loops scheduling,
moldable tasks and also unified CPU/GPU programming are interesting to discuss as
possible OpenMP evolutions.

Acknowledgement. The authors would like to thank Fabien Le Mentec for providing
results on EUROPLEXUS code. Work on EUROPLEXUS have been partially supported
by CEA and by the 09-COSI-011-05 REPDYN ANR Project. This work has been par-
tially supported by the ANR-11-BS02-013 HPAC ANR Project.

114 F. Broquedis, T. Gautier, and V. Danjean

References

1. Agathos, S.N., Hadjidoukas, P.E., Dimakopoulos, V.V.: Design and implementation of
openmp tasks in the ompi compiler. In: Angelidis, P., Michalas, A. (eds.) Panhellenic Con-
ference on Informatics, pp. 265–269. IEEE (2011),
http://dblp.uni-trier.de/db/conf/pci/pci2011.html#AgathosHD11

2. Agullo, E., Augonnet, C., Dongarra, J., Ltaief, H., Namyst, R., Roman, J., Thibault, S., To-
mov, S.: Dynamically scheduled Cholesky factorization on multicore architectures with GPU
accelerators. In: Symposium on Application Accelerators in High Performance Computing
(SAAHPC), Knoxville, USA (July 2010)

3. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multiprogrammed multi-
processors. Theor. Comp. Sys. 34(2), 115–144 (2001)

4. Ayguade, E., Badia, R.M., Cabrera, D., Duran, A., Gonzalez, M., Igual, F., Jimenez, D.,
Labarta, J., Martorell, X., Mayo, R., Perez, J.M., Quintana-Ortí, E.S.: A Proposal to Extend
the OpenMP Tasking Model for Heterogeneous Architectures. In: Müller, M.S., de Supin-
ski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS, vol. 5568, pp. 154–167. Springer,
Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-02303-3_13

5. Badia, R.M., Herrero, J.R., Labarta, J., Pérez, J.M., Quintana-Ortí, E.S., Quintana-Ortí, G.:
Parallelizing dense and banded linear algebra libraries using smpss. Concurr. Comput.: Pract.
Exper. 21, 2438–2456 (2009)

6. Blumofe, R., Joerg, C., Kuszmaul, B., Leiserson, C., Randall, K., Zhou, Y.: Cilk: An efficient
multithreaded runtime system. Journal of Parallel and Distributed Computing 37(1), 55–69
(1996), citeseer.nj.nec.com/article/blumofe95cilk.html

7. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear algebra
algorithms for multicore architectures. Parallel Comput. 35, 38–53 (2009)

8. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel language.
Int. J. High Perform. Comput. Appl. 21, 291–312 (2007),
http://dl.acm.org/citation.cfm?id=1286120.1286123

9. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun, C.,
Sarkar, V.: X10: an object-oriented approach to non-uniform cluster computing. SIGPLAN
Not. 40, 519–538 (2005)

10. Dumitrescu, B., Doreille, M., Roch, J.L., Trystram, D.: Two-dimensional block partitionings
for the parallel sparse cholesky factorization. Numerical Algorithms 16, 17–38 (1997)

11. Duran, A., Corbalán, J., Ayguadé, E.: Evaluation of OpenMP Task Scheduling Strategies.
In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 100–110.
Springer, Heidelberg (2008)

12. Duran, A., Perez, J.M., Ayguadé, E., Badia, R.M., Labarta, J.: Extending the OpenMP Task-
ing Model to Allow Dependent Tasks. In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP
2008. LNCS, vol. 5004, pp. 111–122. Springer, Heidelberg (2008)

13. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona openmp tasks suite:
A set of benchmarks targeting the exploitation of task parallelism in openmp. In: Interna-
tional Conference on Parallel Processing, ICPP 2009, pp. 124–131. IEEE (2009)

14. Faucher, V.: Advanced Parallel Computing for Explosive Fluid-Structure Interaction. In:
COMPDYN 2011, Corfu, Greece (May 2011)

15. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the cilk-5 multithreaded
language. In: Proceedings of the ACM SIGPLAN 1998 Conference on Programming Lan-
guage Design and Implementation, PLDI 1998, pp. 212–223. ACM, New York (1998)

16. Galilée, F., Roch, J.L., Cavalheiro, G.G.H., Doreille, M.: Athapascan-1: On-line building
data flow graph in a parallel language. In: Proceedings of PACT 1998, p. 88. IEEE Computer
Society, Washington, DC (1998)

http://dblp.uni-trier.de/db/conf/pci/pci2011.html#AgathosHD11
http://dx.doi.org/10.1007/978-3-642-02303-3_13
citeseer.nj.nec.com/article/blumofe95cilk.html
http://dl.acm.org/citation.cfm?id=1286120.1286123

LIBKOMP, an Efficient OpenMP Runtime System 115

17. Gautier, T., Besseron, X., Pigeon, L.: Kaapi: a thread scheduling runtime system for data
flow computations on cluster of multi-processors. In: PASCO 2007 (2007)

18. Gautier, T., Roch, J.L., Wagner, F.: Fine grain distributed implementation of a dataflow lan-
guage with provable performances. In: Workshop PAPP 2007 - Practical Aspects of High-
Level Parallel Programming in (ICCS2007). IEEE, Beijing (2007)

19. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the synchronization-
parallelism tradeoff. In: Proceedings of the 22nd ACM Symposium on Parallelism in Algo-
rithms and Architectures, SPAA 2010, pp. 355–364. ACM, New York (2010)

20. Hendler, D., Shavit, N.: Non-blocking steal-half work queues. In: PODC 2002: Proceed-
ings of the Twenty-First Annual Symposium on Principles of Distributed Computing,
pp. 280–289. ACM, New York (2002)

21. Hermann, E., Raffin, B., Faure, F., Gautier, T., Allard, J.: Multi-GPU and Multi-CPU Par-
allelization for Interactive Physics Simulations. In: D’Ambra, P., Guarracino, M., Talia, D.
(eds.) Euro-Par 2010. LNCS, vol. 6272, pp. 235–246. Springer, Heidelberg (2010)

22. Kurzak, J., Ltaief, H., Dongarra, J., Badia, R.M.: Scheduling dense linear algebra operations
on multicore processors. Concurr. Comput.: Pract. Exper. 22, 15–44 (2010)

23. LaGrone, J., Aribuki, A., Addison, C., Chapman, B.: A Runtime Implementation of OpenMP
Tasks. In: Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011.
LNCS, vol. 6665, pp. 165–178. Springer, Heidelberg (2011),
http://dl.acm.org/citation.cfm?id=2023025.2023042

24. Le Mentec, F., Danjean, V., Gautier, T.: X-Kaapi C programming interface. Tech. Rep. RT-
0417, INRIA (December 2011)

25. Le Mentec, F., Gautier, T., Danjean, V.: The X-Kaapi’s Application Programming Interface.
Part I: Data Flow Programming. Tech. Rep. RT-0418, INRIA (December 2011)

26. Michael, M.M., Vechev, M.T., Saraswat, V.A.: Idempotent work stealing. SIGPLAN Not. 44,
45–54 (2009)

27. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Prins, J.F.: Scheduling task parallelism on
multi-socket multicore systems. In: Proceedings of the 1st International Workshop on Run-
time and Operating Systems for Supercomputers, ROSS 2011, pp. 49–56. ACM, New York
(2011), http://doi.acm.org/10.1145/1988796.1988804

28. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Spiegel, M., Prins, J.F.: Openmp task schedul-
ing strategies for multicore numa systems. International Journal of High Performance Com-
puting Applications (2012)

29. OpenMP Architecture Review Board (1997-2008), http://www.openmp.org
30. Robison, A., Voss, M., Kukanov, A.: Optimization via reflection on work stealing in TBB.

In: IPDPS (2008)
31. Tchiboukdjian, M., Danjean, V., Gautier, T., Le Mentec, F., Raffin, B.: A Work Stealing

Scheduler for Parallel Loops on Shared Cache Multicores. In: Guarracino, M.R., Vivien,
F., Träff, J.L., Cannatoro, M., Danelutto, M., Hast, A., Perla, F., Knüpfer, A., Di Martino,
B., Alexander, M. (eds.) Euro-Par-Workshop 2010. LNCS, vol. 6586, pp. 99–107. Springer,
Heidelberg (2011)

32. Tchiboukdjian, M., Gast, N., Trystram, D., Roch, J.-L., Bernard, J.: A Tighter Analysis of
Work Stealing. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS,
vol. 6507, pp. 291–302. Springer, Heidelberg (2010)

33. Traoré, D., Roch, J.-L., Maillard, N., Gautier, T., Bernard, J.: Deque-Free Work-Optimal
Parallel STL Algorithms. In: Luque, E., Margalef, T., Benítez, D. (eds.) Euro-Par 2008.
LNCS, vol. 5168, pp. 887–897. Springer, Heidelberg (2008),
http://www.caos.uab.es/europar2008/

34. YarKhan, A., Kurzak, J., Dongarra, J.: Quark users’ guide: Queueing and runtime for kernels.
Tech. Rep. ICL-UT-11-02. University of Tennessee (2011)

http://dl.acm.org/citation.cfm?id=2023025.2023042
http://doi.acm.org/10.1145/1988796.1988804
http://www.openmp.org
http://www.caos.uab.es/europar2008/

	LIBKOMP, an Efficient OpenMP Runtime System for Both Fork-Join and Data Flow Paradigms
	Introduction
	The libKOMP Runtime System
	The libKOMP Execution Model
	Parallel Regions in libKOMP
	Data Access Modes for Dependent Tasks
	Stack-Based Execution
	Work Stealing and Data Flow Dependencies
	Discussion
	Parallel Loops in libKOMP

	Performance Evaluation
	Task Management Overhead
	Parallel Loops
	Barcelona OpenMP Tasks Suite (BOTS)
	Data Flow Tasks versus Fork-Join Tasks

	Related Work
	Conclusion
	References

