
Automatic OpenMP Loop Scheduling:

A Combined Compiler and Runtime Approach�

Peter Thoman, Herbert Jordan, Simone Pellegrini, and Thomas Fahringer

University of Innsbruck,
Distributed and Parallel Systems Group,

A6020 Innsbruck, Austria
peter.thoman@uibk.ac.at

Abstract. The scheduling of parallel loops in OpenMP has been a re-
search topic for over a decade. While many methods have been proposed,
most focus on adapting the loop schedule purely at runtime, and without
regard for the overall system state. We present a fully automatic loop
scheduling policy that can adapt to both the characteristics of the input
program as well as the current runtime behaviour of the system, includ-
ing external load. Using state of the art polyhedral compiler analysis, we
generate effort estimation functions that are then used by the runtime
system to derive the optimal loop schedule for a given loop, work group
size, iteration range and system state. We demonstrate performance im-
provements of up to 82% compared to default scheduling in an unloaded
scenario, and up to 471% in a scenario with external load. We further
show that even in the worst case, the results achieved by our automated
system stay within 3% of the performance of a manually tuned strategy.

1 Introduction

OpenMP [1] is one of the most widely used languages for programming shared
memory systems, particularly in the field of High PerformanceComputing (HPC).
Despite the introduction of task-based parallelism in recent versions of the stan-
dard [5], loop parallelism remains a very important part of most OpenMP pro-
grams. Thus, the question of how to map parallel loop iterations to threads and
cores has been continually investigated since the standards’ inception. In Section
5 we provide an overview of some of this existing work, and describe how our ap-
proach improves upon previous methods.

Our loop scheduling system is built on the idea of close integration between
a state-of-the-art compiler providing in-depth analysis and a custom runtime
library that continuously monitors the overall system state while minimizing
overhead. Such integration is realized by having the compiler generate a data

� This work was funded by the FWF Austrian Science Fund as part of project TRP
220-N23 ”Automatic Portable Performance for Heterogeneous Multi-cores” and by
the FFG Austrian Research Promotion Agency as part of the OpenCore project
824925.

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 88–101, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Automatic OpenMP Loop Scheduling 89

structure for each parallel loop in the original program which captures analysis-
derived meta-information about the loop body in addition to the actual ex-
ecutable code. This approach is immediately applicable to existing programs
without any code-level changes, a significant advantage considering the large
number of OpenMP codes in active HPC use.

We have implemented this system and evaluated its performance. Our con-
crete contributions are as follows:

– A method using polyhedral model [16] based utilities to obtain effective
estimates of OpenMP loop performance over all potential iteration ranges.

– A runtime scheduling algorithm that uses these estimators as well as current
sytem state information to make loop scheduling decisions.

– An encoding of meta-information statically collected by the compiler into
executable code usable at runtime.

– An implementation of this architecture in the Insieme compiler and runtime
system [2].

– Evaluation and analysis of the actual performance of our scheduling algo-
rithm in terms of program execution time. We compare our results to results
obtained by the version of GOMP [3] included with GCC 4.5.3, using both
its default scheduling policy and the best policy for each program determined
by exhaustive search.

The remainder of this paper is structured as follows: The next section will provide
some experimental results that motivate our work. In Section 3 we describe the
architecture and implementation of our system, including the compiler analysis,
the runtime scheduling system and their interaction. The results of experimental
evaluation are presented in Section 4. Section 5 gathers some references to related
work. Finally Section 6 presents a conclusion, and an outlook on potential future
improvements.

2 Motivation

In this section we present some initial experiments using simple OpenMP ker-
nels in a variety of settings. These results motivated our design of a unified

0.8

0.9

1

1.1

1.2

1.3

1.4

Re
la

tiv
e

Ru
nt

im
e

(a) Dense Matrix Multiplication

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Re
la

tiv
e

Ru
nt

im
e

(b) Triangular Matrix Multiplication

Fig. 1. Initial Experiments, Impact of Program Characteristics

90 P. Thoman et al.

compiler/runtime approach to loop scheduling. They also demonstrate the im-
portance of load awareness. For a complete description of the experimental setup
and hardware used throughout this paper see Section 4. In all our figures the
relative execution time normalized to the best performing configuration is shown.

Figure 1 illustrates results for two kernels, dense matrix multiplication with
full and triangular matrices, using a variety of standard OpenMP loop schedul-
ing policies. Clearly, the ideal loop schedule depends on the characterics of the
program. The dense matrix multiplication requires an equal amount of work
within each iteration of the parallel loop while for the triangular matrix, the
effort per iteration depends on the iterator value. We say that the dense matrix
multiplication has a flat work profile while the work profile for the triangular
matrix is slanted.

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

Re
la

tiv
e

Ru
nt

im
e

(a) Small problem size (N=160)

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

1.3
Re

la
tiv

e
Ru

nt
im

e

(b) Large problem size (N=1600)

Fig. 2. Initial Experiments, Impact of Problem Size

In the next experiment we investigated the impact of the problem size on the
ideal loop schedule. In Figure 2 we see that with small problem sizes, the negative
performance impact of scheduling policies with a runtime component (dynamic,
guided) increases, most likely due to thread scheduling overhead. Also, the in-
crease in workload per chunk mitigates the slightly worsened load balance for a
static chunk size of 8, leading to this configuration showing the best result. With
large problem sizes, the relative overhead of runtime scheduling is much smaller,
tough still measureable. The round-robin static scheduling policy “static,1” fea-
tures acceptable load balance with relatively low overhead, making it the best
performing configuration.

Finally, we look at a scenario that has often been neglected in loop schedul-
ing research: the impact of external system load on the execution of a program.
While this is an unusual situation in traditional HPC, where a cluster of servers is
reserved for exclusive use by one program, it is the default on desktops, worksta-
tions and some large shared memory servers. With on-chip parallelism steadily
increasing – even on embedded systems – and OpenMP being employed in end-
user applications and games [6], we believe that an automatic loop scheduler
needs to take this scenario into account.

Figure 3 shows the same program configurations as Figure 1(b) in two distinct
load scenarios (for information on how the load simulation is performed, see
Section 4). With increasing system load more fine-grained runtime scheduling

Automatic OpenMP Loop Scheduling 91

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Re
la

tiv
e

Ru
nt

im
e

(a) Low load (desktop) scenario

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Re
la

tiv
e

Ru
nt

im
e

(b) High load (workstation) scenario

Fig. 3. Initial Experiments, Impact of External Load

policies gain a significant advantage of up to 46% compared to the default policy.
These figures contain error bars since there was a slightly larger variance in
the measurements – particularly for static scheduling – as a result of operating
system scheduling behaviour.

To summarize, these initial findings guided the design of our loop scheduling in
the following ways:

– As per the first set of figures, the automatic loop scheduler clearly needs to be
aware of the program structure. This is accomplished via compiler analysis.

– However, as the second set of examples shows, just having static information
is insufficient. The problem size is usually only known at runtime, necessi-
tating integration of statuc compiler analysis with a runtime system.

– Finally, when exclusive use cannot be assumed, being aware of external sys-
tem load is of utmost importance when selecting a scheduling policy. Thus,
the runtime needs to consider the system state.

3 Architecture

Our loop scheduling system consists of the following components:

– An advanced analysis component in the Insieme source-to-source compiler
that generates a symbolic effort estimation function for each parallel loop in
the target program, or a less accurate per-iteration effort value as a fallback.

– A backend extension to the compiler that allows forwarding of this meta-
information from the compiler to the Insieme runtime system.

– A monitoring component that measures the current external system load.
– A custom runtime library implementing a loop scheduling algorithm based

on the meta-information provided by the compiler, the exact iteration range
of the current loop and the external load.

Figure 4 illustrates how these components interact on a high level. In the fol-
lowing subsections each component will be discussed in detail.

92 P. Thoman et al.

Input
program

OMP
frontend

Polyhedral
Representation

ISL/Barvinok Barv

SCoP Extractor

esent

Statement
Cardinality rdina

Statement
effort estimator e

Effort Function
[a, b) -> eff

t Fun
ff

Insieme
Backend

Output
Program P

Insieme Compiler

GCC GCC

Binary

Insieme Runtime

Runtime
Library

System
Monitor

Loop Scheduling
Algorithm

ti

Parallel
Loops

Extractor

Fig. 4. An Overview of the Architecture of our System

3.1 Compiler Analysis

The main goal of our compiler analysis is to obtain, for each parallel loop, an
effort estimation function feffort ∈ N

2 → N. Given lower and upper iteration
bounds a and b, the evaluation of feffort(a, b) provides an estimate for the com-
putational cost of the corresponding subrange of the covered loop.

This effort estimation function is derived in several steps, starting from the
parallel loop body B:

1. Enclose B in a for loop iterating over the symbolic range [a, b).
2. Extract a polyhedral representation of this parameterized loop.
3. Set the effort estimation function feffort(a, b) := 0
4. For each statement stmt ∈ B:

(a) Use the barvinok [17] library to obtain a piecewise affine function for the
statement’s cardinality fcard(a, b)

(b) Weight this function with the effort estimation eff(stmt) for the state-
ment, computing fstmt(a, b) := fcard(a, b) ∗ eff(stmt)

(c) Add the statement effort to the total effort function
feffort(a, b) := feffort(a, b) + fstmt(a, b)

5. Algebraically simplify feffort(a, b) using CUDD [18]

In step 2, the internal representation of the loop B is analyzed and a polyhedral
representation is extracted. In-depth discussion of the polyhedral model and its
application in compilers goes beyond the scope of this paper – a thorough intro-
duction is provided by Bastoul [7]. For our purpose, it suffices to mention that
the polyhedral model can be applied to Static Control Parts (SCoPs). SCoPs are
program fragments that fulfill the following conditions: (1) all control structures
are for loops or if statements with affine boundaries and conditions; (2) arrays
are the only complex data structures, and are accessed with affine subscript ex-
pressions; (3) Subscripts, bounds and condition expressions depend only on loop
iterators and symbolic constants.

The polyhedral model assigns to each statement an n-dimensional polytope
describing how frequently it is processed within the modeled loop nest. Using

Automatic OpenMP Loop Scheduling 93

this representation, a piecewise affine function expressing the number of exe-
cutions of each statement can be calculated by computing its cardinality (4a).
In step 4b we arrive at an effort estimation function for each such statement
by weighting its cardinality function with an estimate for the cost of executing
it once. The weighting factor eff(stmt) takes into account the expected num-
ber of CPU instructions and memory accesses required for the given statement.
This estimation is rather simplistic in our current implementation: we count the
number of memory accesses and floating point operations required to perform
the statement in our internal representation, without taking into account any
transformations performed by the back-end compiler.

Special considerations apply when performing the SCoP analysis for our use case.
Generally, the polyhedral model is used to transform code fragments (see section
5), while we only use it to estimate effort. In the former case, the analysis needs
to accurately cover all effects of the code to maintain the program semantics. For
estimation, failing to fully analyze some statement means that the estimation
function might be less accurate, potentially weakening the performance of the
scheduling algorithm, but the program semantics are preserved. In practice, this
allows us to extend the applicable range of our analysis by ignoring the side
effects of external function calls, as long as we can provide an effort estimate
for them (e.g. printf). We further extended the interprocedural applicability of
our estimation by applying implicit inlining which does not affect the generated
code.

In the case where a loop can still not be covered by the polyhedral model, as
is the case when control flow depends on input data, we apply a rough estimate
to loop boundaries and conditionals to generate a single scalar effort estima-
tion representing one iteration of the parallel loop. Section 4.2 provides some
experimental data on how commonly this fallback needs to be employed in real
programs.

3.2 Compiler Backend

The Insieme compiler produces C code, which is in turn translated to a binary
by a secondary compiler – typically GCC. The Insieme compiler backend enu-
merates all the parallel loops included in the program, and, for each of them,
generates a work item structure. To pass loop-related meta-information from the
compiler to the runtime, this structure includes an (optional) function pointer
of type uint64 effort estimator(int64 lower, int64 upper) and a scalar
fallback value uint64 iteration effort. For each loop where our analysis was
successful, the function pointer is set to a compiler generated C implementation
of the deduced effort estimation function.

3.3 Runtime Monitoring

The resource monitoring component of the runtime needs to measure the cur-
rent external load, that is, CPU load generated by processes other than the

94 P. Thoman et al.

managed parallel program. This is obtained by using the Linux proc filesystem.
Specifically, the current processes’ CPU usage values from /proc/self/stat are
compared with the system-wide values obtained from /proc/stat, and a value
between 0.0 and 1.0 representing the total external load across all cores is com-
puted. To minimize the overhead of this method and to increase measurement
reliability, this value is cached and updated at most ten times per second. In-
creasing the update frequency did not improve scheduling performance in our
experiments.

3.4 Loop Scheduling Algorithm

All information gathered by the components outlined above is used by the run-
time loop scheduler to make a scheduling decision for each individual execution
of every parallel loop. The decision algorithm is outlined in Figure 5 and consists
of four major steps:

1. Immediately schedule tiny loops if the estimated effort is small (lines 1-8)
2. Check the external load and use an adaptive dynamic schedule if it is greater

than a threshold value (9-12)
3. If an effort estimator is available, use calculated balanced distribution (13-

15)
4. Otherwise, assume irregular load and schedule dynamically (16-19)

lower, upper lower and upper bound of iteration range
members number of members in the current work group
estimator effort estimation function for current loop
iter effort scalar per-iteration effort estimate for current loop
load current external system load
MINEFF minimum effort for consideration (constant per-system)
MINLOAD minimum load for consideration (constant per-system)

1: if estimator available then
2: estimate = estimator(lower, upper)
3: else
4: estimate = (upper − lower) ∗ iter effort
5: end if
6: if estimate < MINEFF then
7: return immediate
8: end if
9: if load > MINLOAD then

10: chunk = max((MINEFF/iter effort) ∗ (1 − load), 1)
11: return dynamic(chunk)
12: end if
13: if estimator available then
14: shares = compute shares(lower, upper, members, estimator)
15: return balanced(shares)
16: else
17: chunk = max(MINEFF/iter effort, 1)
18: return dynamic(chunk)
19: end if

Fig. 5. Loop scheduling algorithm

The result of the algorithm determines the loop scheduling behaviour for the
current loop execution instance. Three modes are available:

Automatic OpenMP Loop Scheduling 95

immediate no parameters. Immediately executes the whole loop on the first
thread to encounter it.

dynamic one parameter, the chunk size. Works like the standard OpenMP
policy of the same name, dynamically distributing chunks of the loop range
to requesting threads.

balanced requires an array of floating point values determining the relative
starting points of the shares for each member of the work group. For example,
[0.0, 0.25, 0.5, 0.75] would implement an equal distribution amongst four
threads, while [0.0, 0.6, 0.9, 0.96] assigns progressively smaller chunks to
subsequent threads.

The algorithm makes use of the compute shares(lower, upper, members,
estimator) function. It generates a distribution that tries to assign approxi-
mately the same amount of work to each member of the current work group.
It first estimates the total effort for the given range [lower, upper], divides it
by the number of work group members, and then uses a binary search to find
a suitable chunk for each thread using the estimation function. Though this is
usually a very quick process since the estimation function only takes a few cycles
to run, the result is cached and reused if the same loop is executed for the same
range again. This is a very common occurance in HPC codes, and the caching
minimizes overhead in this case.

The parameters MINEFF and MINLOAD need to be set once per system. We have
not yet developed a rigorous method for deducing these automatically. Never-
theless, experience indicates that systems are relatively insensitive regarding the
precise values of these parameters, making them easy to tune manually.

4 Evaluation

In this section our system and algorithm are evaluated, starting with small ker-
nels designed to allow easy analysis of the behaviour of the algorithm, followed
by tests in a real-world setting. All experiments were performed on a SuperMicro
7046GT-TRF server with two Intel Xeon 5650 processors, containing 6 cores (12
hardware threads) each. The system runs CentOS version 5 (kernel 2.6.18) 64
bits. To compile the reference version of the example programs and as a sec-
ondary compiler for the code produced by Insieme, GCC version 4.5.3 was used
with the -O3 flag set to reflect a production environment. When we refer to a
“default” scheduling policy, we specifically mean the default implementation of
the version of GOMP [3] included with this version of GCC.

To ensure statistical significance each experiment was repeated five times, and
the median result is reported. In cases where significant statistical variance oc-
curred vertical error bars are used to show the standard deviation. We depict
three values per configuration (combination of program and system load state):
the default OpenMP behaviour, the best result obtained using OpenMP poli-
cies for each configuration, and the result obtained by our method. The “best”
OpenMP policy is found by exhaustive search across the following settings: [(no
change), auto, static, dynamic, guided]. The latter three are tested with the

96 P. Thoman et al.

chunk sizes 1, 2, 8 and 32. All values are normalized to the execution time of
the best performing version.

External load profiles were recorded by monitoring each indivual core of a ref-
erence system. During experiments, these profiles were replayed by a custom
load generator. We used two separate load profiles, a “desktop” profile and a
“workstation” profile. The former features generally lower load and short peaks
of activity, while the latter shows a higher average load level and fully saturates
some cores.

4.1 Kernel Experiments

For illustrative purposes, we will apply our method to three small kernels: a
dense matrix multiplication, a triangular matrix multiplication, and a pendulum
simulation. These represent three major classes of problems. Both the dense and
triangular matrix multiplication satisfy the SCoP constraints and can therefore
be rigorously analyzed. The former has a flat work profile and is thus ideally
suited to static OpenMP scheduling, while the latter has a slanted work profile.
Finally, the per-iteration work in the pendulum kernel strongly depends on the
input data, hence it can not be covered by SCoP analysis.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

no load desktop workstation

omp default

omp best

insieme

(a) Dense matrix multiplication

0

0.2

0.4

0.6

0.8

1

1.2

1.4

no load desktop workstation

omp default

omp best

insieme

(b) Pendulum simulation

Fig. 6. Kernel experiment

Figure 6(a) shows the results for dense matrix multiplication. In the absence
of external load, fully static scheduling is ideal for this kernel, and our imple-
mentation is 1.7% slower than the best (and default) OpenMP policy. With
external load, the default policy is ineffective, and our result improves on the
best OpenMP policy by 10% to 15%. The best policy found for desktop load is
“dynamic,8” while the best policy for the workstation load profile is “dynamic”.
The reason for the good result demonstrated by our method is that due to the
detection of external load the chunk size is adapted dynamically.

Next, we look at the triangluar matrix multiplication kernel, which has a
more interesting load profile. As Figure 7(a) illustrates, the compiler-assisted
workload distribution performed by our method in the unloaded case is very
effective, improving performance by 82% compared to the default behaviour,

Automatic OpenMP Loop Scheduling 97

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

no load desktop workstation

omp default

omp best

insieme

(a)

0

200000

400000

600000

800000

1000000

1200000

-5 15 35 55 75 95

Eff
or

t E
st

im
at

io
n

Iterator Value

0 0.25 0.5 0.75 1

Computed distribu on:
thread 0 t1 t2 ...

(b)

Fig. 7. Triangular matrix multiplication results

and by 27% compared to the best OpenMP scheduling policy, “static,2”. This
improvement over the block-cyclic scheduling can be explained by.

The effort estimation function generated by our analyis and the per-thread
shares computed for 16 threads are shown in Figure 7(b). In the upper part, the
effort estimation for each iterator value is plotted: iterations below zero perform
no work, above that the amount of effort increases with the iterator value as
the lower left triangular matrix rows become progressively wider. For this test
case, the best scheduling policy with a loaded system is “dynamic” for both
load profiles. Our scheduling is the fastest for both situations, though in the
“workstation” case the difference is negligible (3%).

The performance results for the pendulum kernel are depicted in Figure 6(b).
This benchmark computes the resting points of pendulae under the effect of mag-
netic fields, from many starting locations. It is communication-free but has an
unpredictable, input data dependent, load imbalance, causing default scheduling
to be sub-optimal. For the case with no load, the “dynamic,2” policy is best,
while for the other two cases “dynamic” performs best. When the workstation
external load profile is active, our method performs slightly (0.7%) worse than
the “dynamic” OpenMP policy. For this load profile and the loop effort esti-
mated for this kernel, our scheduler always decides to dynamically distribute a
single loop iteration, thus performing exactly the same operation as the “dy-
namic” policy. The 0.7% difference can be explained by the overhead introduced
by our scheduling process.

4.2 Real-World Applicability

While the results measured on small kernels are encouraging, methods based on
extensive compiler analysis often fail when applied to larger code bases. However,
the polyhedral model has been successfully used in production compilers [8], and,
as described in Section 3.1, we were able to further relax some of its constraints
for our use case.

In this section, we present an experimental analysis on some of the bench-
marks contained in the NAS Parallel Benchmarks (NPB) [4] suite. As a first

98 P. Thoman et al.

step we investigate the extent to which the parallel loops contained within these
programs can be treated with our analysis method.

Table 1. Applicability of our analysis on NPB loops

State Number of loops % of loops

Total 465 100.0%
Fully analysed 373 80.2%
Non-affine expressions 57 12.3%
Data-dependent control flow 33 7.1%
Contain while loops 2 0.4%

Table 1 lists total number of loops contained within the NPB programs, the
amount that were fully analysed, and groups those that could not be analysed
into categories depending on the reason for the analysis failure. Note that the
number of loops listed here is higher than the amount statically contained within
the program source code, due to our method analysing each call site separately.
More than 4 out of 5 of all parallel loops contained in the set of benchmarks
can be analyzed. The most common reason for analysis failure are non-affine
boundary, condition or subscript expressions, followed by data-dependent control
flow. Two of the parallel loop nests contain while loops.

Table 2. Nas Parallel Benchmark performance results

Gain Over
Name External Load Default Best Best Config

ft.B none 4.2% -0.2% static,1
ft.B desktop 21.8% 4.4% dynamic,2
ft.B workstation 59.9% 11.2% dynamic

ep.B none 14.0% -1.9% dynamic,8
ep.B desktop 3.2% -0.9% dynamic
ep.B workstation 19.7% 3.0% dynamic,32

bt.B none -2.4% -2.4% static
bt.B desktop 70.8% 65.2% dynamic
bt.B workstation * * *

cg.B none 8.4% 3.9% guided,32
cg.B desktop 113.4% 111.2% guided,32
cg.B workstation 471.3% 451.7% guided,8

mg.B none 51.7% 5.3% dynamic
mg.B desktop 56.1% 33.0% dynamic
mg.B workstation 157.4% 110.8% dynamic,2

GM none 13.7% 0.9%
GM desktop 48.2% 36.8%
GM workstation 94.9% 67.7%

The results of our performance evaluation are summarized in Table 2. The
“Default” and “Best” columns list the relative difference in execution time

Automatic OpenMP Loop Scheduling 99

achieved by our scheduling system compared to default scheduling (as specified
by the benchmarks) and the best scheduling policy found in the search space
described earlier. For example, 4.2% in the ft.B/none/default cell means that
executing the ft benchmark with no external load and the default scheduling
policy took 104.2% of the time the same configuration took using our scheduling
system. Predefined problem size B was chosen for all the benchmarks as a good
compromise between realistic size and maintaining a feasible duration for the
experiments. The GM values are the geometric means, for each configuration,
across all benchmarks.

Some points that deserve particular attention are:

– The bt benchmark with workstation external load could not be completed
due to time constraints – the execution time increased disproportionately
with increased load across all scheduling policies.

– There is only a single case where our algorithm performs worse than the de-
fault: bt with no load. It is the only benchmark where the default scheduling
(static) is also the best policy. For most loops within bt our method picks
this optimum, but for one of them the analysis fails, causing a fallback to a
slightly less efficient dynamic schedule.

– The best speedup in a load-free scenario occurs for mg. This is due to the
nature of the algorithm implemented by this benchmark, which leads to some
loops being executed with very small iteration domains. These are identified
as low-effort by our method and immediately scheduled as a whole on the
first thread available.

– Generally, higher levels of external load favour our system, which can effec-
tively adapt to them.

– Even with no external load, our method tends to achieve a marked im-
provement over default scheduling due to the availablity of compiler-deduced
meta-information. The average speedup obtained in this setting is 13%.

5 Related Work

Enhancing OpenMP loop scheduling is a topic that has been repeatedly inves-
tigated over the years. However, most research has focused on pure runtime
solutions to the problem [11][12][10]. Conversely, our approach integrates an in-
telligent runtime system with meta-information provided by compiler analysis.

Recent work on compiler-based OpenMP loop scheduling by Wang et al. [9]
uses machine learning to estimate the best loop scheduling policy at compile
time. Since this is a pure compiler approach, it cannot deal with changing run-
time conditions. Also, unlike the single-pass analysis of our approach, it requires
an extensive training phase.

Some systems use OpenMP in conjunction with the polyhedral model to gen-
erate parallel code [13][14]. Other recent work investigates using information
provided by polyhedral analysis of OpenMP programs to improve programmer
error detection [15]. None of these works aim on improving loop scheduling by
forwarding static analysis results to a runtime system.

100 P. Thoman et al.

6 Conclusion

This paper presents an automatic OpenMP loop scheduling method that com-
bines advanced compiler analysis with a load-aware runtime system. Polyhedral
analysis is used to calculate a parameterized effort estimation function for each
parallel loop, based on the cardinality of all statements it contains. Executable
code for this function is generated by the compiler backend, and invoked at
runtime to calculate an ideal balanced schedule or estimate efficient chunk sizes
for dynamic scheduling. Additionally, external CPU load is taken into account
during the scheduling process.

We evaluated our system on small kernels as well as programs from the NAS
Parallel Benchmarks suite, and achieved improvements of up to 82% in the un-
loaded state, and 471% with heavy external load, compared to default OpenMP
scheduling. To estimate the absolute effectiveness of our approach, we performed
an exhaustive search over a broad range of standard OpenMP scheduling poli-
cies and compared with the best results. Our scheduling frequently improves
upon even this tuned result, particularly in scenarios featuring external load.
The worst-case performance achieved by our system is within 3% of the best
standard OpenMP policy.

References

1. OpenMP Architecture Review Board: OpenMP Application Program Interface.
Version 3.1 (July 2011)

2. The Insieme Compiler Project, http://insieme-compiler.org/
3. GOMP – An OpenMP implementation for GCC,

http://gcc.gnu.org/projects/gomp/

4. Bailey, D., Barton, J., Lasinski, T., Simon, H.: The NAS Parallel Benchmarks.
NAS Technical Report RNR-91-002, NASA Ames Research Center, Moffett Field,
CA (1991)

5. Duran, A., Corbalán, J., Ayguadé, E.: Evaluation of OpenMP Task Scheduling
Strategies. In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS,
vol. 5004, pp. 100–110. Springer, Heidelberg (2008)

6. Knafla, B., Leopold, C.: Parallelizing a Real-Time Steering Simulation for Com-
puter Games with OpenMP. In: Proc. Parallel Computing (ParCo), pp. 219–226
(2007)

7. Bastoul, C.: Improving Data Locality in Static Control Programs. PhD thesis,
University Paris 6, Pierre et Marie Curie, France (2004)

8. Trifunovic, K., Cohen, A., et al.: GRAPHITE Two Years After: First Lessons
Learned From Real-World Polyhedral Compilation. In: GCC Research Opportuni-
ties Workshop (GROW) (2010)

9. Wang, Z., O’Boyle, M.: Mapping parallelism to multi-cores: a machine learn-
ing based approach. In: Proceedings of the 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP) (2009)

10. Zhang, Y., Burcea, M., Cheng, V., Ho, R., Voss, M.: An Adaptive OpenMP
Loop Scheduler for Hyperthreaded SMPs. In: Proc. of PDCS 2004: International
Conference on Parallel and Distributed Computing Systems (2004)

http://insieme-compiler.org/
http://gcc.gnu.org/projects/gomp/

Automatic OpenMP Loop Scheduling 101

11. Tzen, T., Tzen, T.H., Ni, L., Ni, L.M.: Trapezoid Self-Scheduling: A Practical
Scheduling Scheme for Parallel Compilers. IEEE Transactions on Parallel and
Distributed Systems (1993)

12. Ayguadé, E., Blainey, B., Duran, A., Labarta, J., Mart́ınez, F., Martorell, X.,
Silvera, R.: Is the Schedule Clause Really Necessary in OpenMP? In: Voss, M.J.
(ed.) WOMPAT 2003. LNCS, vol. 2716, pp. 147–160. Springer, Heidelberg (2003)

13. Bondhugula, U., Ramanujam, J., et al.: PLuTo: A practical and fully automatic
polyhedral program optimization system. In: Proceedings of the ACM SIGPLAN
2008 Conference on Programming Language Design and Implementation (PLDI)
(2008)

14. Baskaran, M., Vydyanathan, N., Bondhugula, U., Ramanujam, J., Rountev, A.,
Sadayappan, P.: Compiler-assisted dynamic scheduling for effective parallelization
of loop nests on multicore processors. In: Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP) (2009)

15. Basupalli, V., Yuki, T., Rajopadhye, S., Morvan, A., Derrien, S., Quinton, P.,
Wonnacott, D.: ompVerify: Polyhedral Analysis for the OpenMP Programmer. In:
Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011.
LNCS, vol. 6665, pp. 37–53. Springer, Heidelberg (2011)

16. Benabderrahmane, M.-W., Pouchet, L.-N., Cohen, A., Bastoul, C.: The Polyhedral
Model Is More Widely Applicable Than You Think. In: Gupta, R. (ed.) CC 2010.
LNCS, vol. 6011, pp. 283–303. Springer, Heidelberg (2010)

17. Verdoolaege, S.: barvinok: User Guide,
http://www.kotnet.org/~skimo/barvinok/barvinok.pdf

18. Somenzi, F.: CUDD: CU Decision Diagram Package,
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

http://www.kotnet.org/~skimo/barvinok/barvinok.pdf
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

	Automatic OpenMP Loop Scheduling: A Combined Compiler and Runtime Approach
	Introduction
	Motivation
	Architecture
	Compiler Analysis
	Compiler Backend
	Runtime Monitoring
	Loop Scheduling Algorithm

	Evaluation
	Kernel Experiments
	Real-World Applicability

	Related Work
	Conclusion
	References

