
An OpenMP 3.1 Validation Testsuite

Cheng Wang, Sunita Chandrasekaran, and Barbara Chapman

University of Houston,
Computer Science Dept, Houston, Texas
{cwang35,sunita,chapman}@cs.uh.edu
http://www2.cs.uh.edu/~hpctools

Abstract. Parallel programming models are evolving so rapidly that it
needs to be ensured that OpenMP can be used easily to program mul-
ticore devices. There is also effort involved in getting OpenMP to be
accepted as a de facto standard in the embedded system community.
However, in order to ensure correctness of OpenMP’s implementation,
there is a requirement of an up-to-date validation suite. In this paper,
we present a portable and robust validation testsuite execution environ-
ment to validate the OpenMP implementation in several compilers. We
cover all the directives and clauses of OpenMP until the latest release,
OpenMP Version 3.1. Our primary focus is to determine and evaluate
the correctness of the OpenMP implementation in our research compiler,
OpenUH and few others such as Intel, Sun/Oracle and GNU.

We also aim to find the ambiguities in the OpenMP specification
and help refine the same with the validation suite. Furthermore, we also
include deeper tests such as cross tests and orphan tests in the testsuite.

Keywords: OpenMP, validation suite, task constructs, tests.

1 Introduction

OpenMP [5] has become the de facto standard in shared-memory parallel pro-
gramming for C/C++ and Fortran. Defined by compiler directives, library rou-
tines and environment variables, the OpenMP API is currently supported by a
variety of compilers from open source community to vendors (for e.g. GNU [18],
Open64 [1], Intel [11], IBM [8]). OpenMP ARB ratified the version OpenMP
3.0 in 2008 and 3.1 in 2011. The main difference between versions 2.5 (released
in 2005) and versions 3.0/3.1 is the introduction of the concept of tasks and
the task construct. The task-based programming model enables the developers
to create explicit asynchronous units of work to be scheduled dynamically by
the runtime. This model and its capabilities address the previous difficulties in
parallelizing applications employing recursive algorithms or pointers based data
structures [2]. OpenMP version 3.1 was a minor release that offered corrections
to the version 3.0. The main purpose of OpenMP version 3.1 is to improve effi-
ciency for fine grain parallelism for tasks by adding final and mergeable clauses
along with other extensions such as taskyield.

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 237–249, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www2.cs.uh.edu/~hpctools

238 C. Wang, S. Chandrasekaran, and B. Chapman

The goal of the work in this paper is to build an efficient framework, i.e. a
testing environment, that will be used to validate the OpenMP implementations
in OpenMP compilers. OpenMP is evolving with the increase in the number
of users, as a result, there is an absolute need to check for completeness and
correctness of the OpenMP implementations. We need to create an effective
testing environment in order to achieve this goal. In prior work, we collaborated
with colleagues at University of Stuttgart, to create validation methodologies
for OpenMP versions 2.0 and 2.5 reported in [16,17] respectively. We have built
our current framework on top of the older one. We have improved the testing
environment and now the OpenMP validation testsuite covers all tests for the
directives and clauses in OpenMP 3.1. This testing interface is portable, flexi-
ble and offers an user-friendly framework that can be tailored to accommodate
specific testing requirements. Tests could be easily added/removed adhering to
the changes in the OpenMP specification in future. In our current work we have
ensured that the bugs in the previous validation testsuite have been fixed.

The organization of this paper is as follows: In Section 2 we describe the design
and execution environment of the OpenMP validation suite. Section 3 shows the
implementations and basic ideas for each of the tests. Here, we mainly focus
on the concept of OpenMP tasks. In Section 4 we evaluate the validation suite
using several open-source and vendor compilers. We discuss the related work in
Section 5. Finally, we present the conclusion and the future work in Section 6.

2 The Design of an OpenMP Validation Suite

The basic idea in the design of the OpenMP validation suite is to provide short
unit tests wherever possible and check if the directive being tested has been im-
plemented correctly. For instance, the parallel construct and its corresponding
clauses such as shared are tested for correctness. A test will fail if the corre-
sponding feature has not been implemented correctly. We refer to such typical
tests as normal tests.

Basically a number of values are calculated using the directive being tested
and we compare the result with a known reference value. There is one type of
failure called performance failure, in this case, even if the implementation of a
directive is incorrect, it is not directly related to the correctness factor but it
would just degrade the performance, for e.g. the untied clause in task construct.
So it is at times not quite enough to only rely on the result calculated, but would
require carefully written tests to check for the correctness of the implementation
in a given compiler.

In a given code base, there might be more than a few directives being used at
a given time. However, it is a challenge to check for correctness for a particular
directive of interest, for instance loop, among several others. To solve this issue,
we perform another test methodology called cross test, to validate only the di-
rective under consideration. If this directive is removed from the code base, the
output of the code will be incorrect.

Besides, we also need to ensure that the directive is serving its purpose. For
instance lets consider a variable declared as shared. We also know that the

An OpenMP 3.1 Validation Testsuite 239

Fig. 1. The OpenMP Validation Suite Framework

variable is shared by default irrespective of explicitly declaring it as shared.
Let us replace the shared with a private clause or any other clause which does
not contain the functionality of the directive being tested, which in this case is
shared. As a result, the cross test will check for the output result, which has to
be incorrect because the variable is no longer being shared.

Moreover, in order to ensure that the directive being tested also gets exe-
cuted correctly when ”orphaned” from the main function, we creat a new test
methodology named as orphan test. In the orphan test, the directive to be tested
is placed into a children procedure which is called by the main function.

All test results will be statistically analyzed. Each test will be repeated mul-
tiple times. This is to ensure that the directive being tested functions correctly
at all times. In order to estimate the probability that a test is passed acciden-
tally we take the following approach: if nf is the number of failed cross tests
and M the total number of iterations, the probability of that test will fail is
p =

nf

M . Thus the probability that an incorrect implementation passes the test
is pa = (1 − p)M , and the certainty of test is pc = 1 − pa, i.e. the probability
that a directive is validated.

Currently the validation suite contains more than 70 unit tests covering all of
the clauses in the OpenMP version 3.1 release. Each of the unit tests has three
types of tests: normal, cross, and orphan test. One of the challenges is that if
we implement each of these tests separately, the entire suite would be ad-hoc
and error-prone. It would also be challenging to manage and analyze the results
generated out of so many tests. So we created an execution environment that
will manage these several tests methodically.

Figure 1 shows the proposed framework i.e. the execution environment of the
OpenMP validation suite. In this framework, we create a test directive pool that
will consist of templates for the unit tests for each of the OpenMP directives be-
ing tested. This framework has been developed mainly using the Perl scripting
language. We use this framework to parse through the several templates that
have been written for each of the OpenMP directives. Executing this framework
will deliver the source code for the three types of tests, namely normal, cross
and orphan tests. The normal tests will be the first test to be performed in this
process. If this particular test fails then there is no need to perform the cross and

240 C. Wang, S. Chandrasekaran, and B. Chapman

orphan tests. As a result, the corresponding source codes for cross and orphan
tests will not be generated. This has been carefully crafted into our framework.
If the normal tests pass successfully, the framework will automatically generate
source codes for the other two tests. Note that we had to create only one template
in order to generate source codes for all the three types of tests. As a result we
emphasize that the framework adopts an automatic approach while creating the
different kinds of tests necessary to check the correctness of the directives. There
is very little manual labor involved in this process. Once these different tests
have been created, our framework will compile and execute them as and when
necessary. There is also a result analyzer component as part of the framework
that will collect the results from each of the unit tests once all of them have
completed execution. These results will be in the form of log files and the analyzer
component will help in generating a complete report in a user-friendly manner.

The advantages that the execution environment offers are as follows:

– Creates one template for each test that is sufficient to automatically generate
source codes for the three types of tests, i.e normal, cross and orphan tests.

– Creates bug reports that consist of adequate information about the compiler
being used for testing purposes. The report will consist of version numbers of
the compiler, build and configuration options, optimization flags used, and
so on.

– Launches all the tests automatically, although individual tests will be per-
formed only for those directives that are being tested.

– Generates reports that are easy to read and understand. These user-friendly
reports will contain information about the bugs that have been identified.
The details of the compilation and execution are also provided.

The framework is easy to use and maintain. It is quite flexible enough to accom-
modate changes as and when OpenMP specification gets updated with newer
features.

3 Implementation

In this section, we discuss the unit tests for the OpenMP directives and clauses.
We primarily discuss the unit tests for the directives and clauses in the latest
versions of OpenMP (version 3.0 and 3.1). Previous publications [16,17] also
discusses some of the ideas for the unit tests used to evaluate OpenMP Version
2.5 directives and clauses.

3.1 Directives and Clauses

Task is a new construct in OpenMP 3.0. It provides a mechanism to create ex-
plicit tasks. Tasks could be executed immediately or delayed by any assigned
thread. Figure 2 shows the test for OpenMP task construct. The basic idea is to

An OpenMP 3.1 Validation Testsuite 241

generate a set of tasks by a single thread and execute them in a parallel region.
The tasks should be executed on more than one threads. In the cross test, the
task pragma is removed. As a result, every task is executed only by one thread
since the tasks are in the single region hence delivering incorrect outputs.

int test_omp_task(){
int i, result =0;
int tids[NUM_TASKS];

/∗ I n i t i l i z a t i o n ∗/
for (i=0; i<NUM_TASKS; i++)
{
tids[i]=0;

}

#pragma omp parallel
{
#pragma omp single
{
for (i = 0; i < NUM_TASKS; i++){
int myi = i;
#pragma omp task
{
sleep (SLEEPTIME);
tids[myi]= omp_get_thread_num();

} /∗ end of omp task ∗/
} /∗ end of for ∗/

} /∗ end of s ing l e ∗/
} /∗end of pa ra l l e l ∗/

/∗now check for r e su l t s∗/
for (i = 1; i < NUM_TASKS; i++){
if (tids[0] != tids[i])
return (result = 1);

}

return result;
} /∗ end of te st ∗/

Fig. 2. Test for task construct

int test_omp_taskwait(){
int i, result = 0;
int array[NUM_TASKS];

/∗ I n i t i a l i z a t i on ∗/
for(i=0;i<NUM_TASKS;i++)
{

array[i]=0;
}

#pragma omp parallel
{
#pragma omp single
{
for (i = 0; i < NUM_TASKS; i++){
int myi = i;
#pragma omp task
array[myi] = 1;

} /∗ end of for ∗/

#pragma omp taskwait

/∗check for a l l tasks f i n i sh ∗/
for (i = 0; i < NUM_TASKS; i++){
if (array[i] == 0)
result ++;

} /∗end of for∗/
} /∗ end of s ing l e ∗/

} /∗end of pa ra l l e l ∗/

return (result == 0);
}/∗end of te st∗/

Fig. 3. Test for taskwait construct

The taskwait construct specifies a synchronization point where the current
task is suspended until all children tasks have completed. Figure 3 shows the
code listing for testing the taskwait construct. A flag is set to each element of
an array when a set of tasks are generated. If taskwait executes successfully, all
elements in the array should be 1; otherwise, the elements should be zero. In the
cross test, we remove the taskwait construct and check the value of elements in
the array. Obviously, part of the values will be 0 while others will be 1 if there is
no ”barrier” at the completion of tasks. Consequently, it is able to validate the
taskwait construct.

The shared clause defines a set of variables that could be shared by threads
in parallel construct or shared by tasks in task construct. The basic idea to
test this would be to update a shared variable i.e. say i by a set of tasks and

242 C. Wang, S. Chandrasekaran, and B. Chapman

check whether it could be shared by all tasks. If this is the case, the value of the
shared variable should be equal to number of tasks. In the cross test, we check if
the result is wrong without the shared clause. As discussed in section 2, shared
is replaced by the firstprivate clause, i.e., the attribute of i is changed to
firstprivate. As a result, the value of i should be incorrect.

As opposed to shared clause, the private clause defines that variables are
private to each task or thread. The idea of testing for the private clause is first
to generate a set of tasks as before and each task to update a private variable,
e.g., local sum. We compare the value with the known sum which is calculated
in prior. In the cross test, we remove the private clause from task construct.
Thus the private variable now becomes shared by default. As a result, we see
that the value of local sum should be incorrect.

The firstprivate clause is similar to private clause except that the new
item list has been initialized prior to encountering the task construct. As a
result, in contrast to private clause, we do not need to initialize variables de-
clared as firstprivate. Consequently, test for the firstprivate is similar to
the test for the private clause except that variable local sum does not need
to be initialized to zero in the task region. In the cross test, the firstprivate
is removed and hence the variable local sum becomes a shared variable once
again.

The default clause determines the data-sharing attributes of variables im-
plicitly. In C language, the variables declared as default is shared, while in
Fortran from OpenMP 3.0, variables are declared as private or firstprivate
by default. In addition, OpenMP 3.0 also allows variables to not have any prede-
termined data-sharing attribute declared as none. As a result, the idea of testing
for default clause is actually the same as to testing for shared clause in C and
firstprivate, private in Fortran.

The if clause controls the task implementation as shown in Figure 4. If the if
is evaluated as false then the encountering task will be suspended and a new task
is executed immediately. The suspended task will be resumed until the generated
task is finished. The idea of testing the if clause is to generate a set tasks by
a single thread and pause it immediately. The parent thread shall set a counter
variable that the task which is paused, will consider when the thread wakes up.
If the if clause is evaluated to false, the task region will be suspended and the
counter variable count will be assigned to 1. When the task region resumes, we
evaluate the value of the counter variable count. In the cross test, we removed
if clause from the task construct, since if is evaluated to true by default, the
task region will be executed immediately and the counter variable count will
still be 0.

In OpenMP 3.0, task is executed by a thread of the team that generated it
and is tied by default, i.e., tied tasks are executed by the same thread after the
suspension. If it is the untied clause, any thread could resume the task after
the suspension. The implementation of untied clause introduces newer kinds
of compiler bugs and performance failures. But degradation in performance is
unrelated to the implementation of the clause and its correctness. Testing such

An OpenMP 3.1 Validation Testsuite 243

int test_omp_task_if(){
int count , result =0;
int cond_false=0;

#pragma omp parallel
{
#pragma omp single
{
#pragma omp task if (cond_false)
{
sleep (SLEEPTIME_LONG);
result = (0 == count);

} /∗ end of omp task ∗/

count = 1;
} /∗ end of s ing l e ∗/

} /∗end of pa ra l l e l ∗/

return result;
} /∗end of te st ∗/

Fig. 4. Test for if clause

int omp_for_collapse(){
int is_larger = 1;
#pragma omp parallel
{
int i,j,my_islarger = 1;
#pragma omp for schedule (static

,1) collapse (2) ordered
for (i = 1; i < 100; i++)
for (j =1; j <100; j++)
{
#pragma omp ordered
my_islarger = my_islarger &&

check_i_islarger(i);
} /∗ end of for ∗/

#pragma omp critical
is_larger=is_larger &&

my_islarger;
} /∗end of pa ra l l e l ∗/
return (is_larger);

} /∗end of te st∗/

Fig. 5. Test for collapse clause

features require the test codes to be very carefully created, since if the clause
is not implemented correctly, it will not yield incorrect results but just degrade
the performance and moreover the purpose of validating the feature will not be
achieved.

We discuss the idea of testing the untied as shown in figure 6. First we create a
set of tasks in parallel region and save the thread id executed by each task. Then
we suspend all the tasks using taskwait. We send half of the threads into a busy
loop so that at least half of the other idle threads could be rescheduled to the
suspended tasks. We compare the thread number before and after the suspension.
Since task is untied, tasks could be rescheduled by different threads after the
suspension. In the cross test, the untied clause is removed so that the tasks are
tied with the execution thread by default. As a result, the thread number before
and after the task suspension should be the same delivering incorrect result.

Besides the tasking model, OpenMP 3.0 defines a new collapse clause for
the loop construct that handles perfectly nested multi-dimensional loops. This
clause collapses the loops, it is associated with, into one single loop,and controls
the number of loops associated with one larger loop. The order of iterations in
the collapsed loop is determined by the order of iterations in all loops before the
collapse. If no collapse clause specified, the only loop that is associated with
the loop construct is the one that immediately follows the construct.

Figure 5 shows the basic idea of testing the collapse clause that binds the
two loops together. With the ordered clause, both i and j loops should be
executed in order, thus the variable my islarger should be TRUE. In the cross
test, since the collapse clause is removed, the only loop that is associated with
the loop construct is the i loop, the one that immediately follows the construct
which should be executed in parallel and the only j loop will be executed in
order. Consequently, the result will be incorrect.

244 C. Wang, S. Chandrasekaran, and B. Chapman

int omp_task_untied(){
int init_tid [NUM_TASKS];
int curr_tid [NUM_TASKS];
int i, count =0;

/∗ I n i t i a l i z a t i o n ∗/
for(i=0; i<NUM_TASKS; i++){

init_tid [i]=0;
curr_tid [i]=0;

}

#pragma omp parallel
{
#pragma omp single
{
for (i = 0; i < NUM_TASKS; i++){
int myi = i;
#pragma omp task untied
{
init_tid [myi]=

omp_get_thread_num();
#pragma omp taskwait
if ((init_tid [myi]%2) == 0){
sleep (SLEEPTIME);
curr_tid [myi]=

omp_get_thread_num();
} /∗end of i f ∗/

} /∗ end of omp task ∗/
} /∗ end of for ∗/

} /∗ end of s ing l e ∗/
} /∗ end of pa ra l l e l ∗/

for(i=0;i<NUM_TASKS;i++){
if(curr_tid [i]!=init_tid [i])
count ++;

} /∗end of for∗/
return count;

} /∗end of te st ∗/

Fig. 6. Test for untied clause

int test_omp_task(){
int tids[NUM_TASKS];
int i, error=0;

/∗ I n i t i l i z a t i o n ∗/
for(i=0; i<NUM_TASKS; i++)
{

tids[i]=0;
}

#pragma omp parallel
{
#pragma omp single
{
for (i = 0; i < NUM_TASKS; i++){
int myi = i;
#pragma omp task

final(myi >= THRESH)
{
sleep (SLEEPTIME);
tids[myi]=

omp_get_thread_num();
} /∗ end of omp task ∗/

} /∗ end of for ∗/
} /∗ end of s ing l e ∗/

} /∗end of pa ra l l e l ∗/

/∗check tid beyond thresh∗/
for (i =THRESH;i < NUM_TASKS;i++)
{
if (tids[THRESH] != tids[i])
error ++;

}

/∗check for i f r e su l t i s correct ∗/
return (error ==0);

} /∗ end of te st ∗/

Fig. 7. Test for final clause

3.2 Support for OpenMP 3.1

OpenMP version 3.1 was released in July 2011, a refined and extended version
of OpenMP 3.0. The taskyield construct defines an explicit scheduling point,
i.e. the current task is suspended and switched to a different task in the team.
The test for the taskyield construct is similar to the test for untied clause,
except for the taskwait begin replaced by taskyield.

The OpenMP 3.1 also provides a new features to reduce the task generation
overhead by using final and mergeable clause. If the expression in final clause
is evaluated to true, the task that is generated will be the final task and no further
tasks will be generated. Consequently, it reduces the overheads of generating new
tasks, especially in recursive computations such as in Fibonacci series when the
Fibonacci numbers are too small. The test for the final clause is shown in
Figure 7. The idea is to set a threshold and if the task number is larger to the
threshold, that particular task will be the final task. We save the task id to check
if the task larger to the threshold is executed by the same task.

An OpenMP 3.1 Validation Testsuite 245

In OpenMP 3.1, the atomic is refined to include the read, write, update,

and capture clauses. The read along with the construct atomic guarantee an
atomic read operation in the region. For instance x is read atomically if v=x.
Similarly, the write forces an atomic write operation. It is much more lightweight
using read or write separately than just using critical. The update clause
forces an atomic update of an variable, such as i++, i–. If no clause is presented
at the atomic construct, the semantics are equivalent to atomic update. The
capture clause ensures an atomic update of an variable that also captures the
intermediate or final value of the variable. For example, if capture clause is
present then in v = x++, x is atomically updated while the value is captured by
v.

OpenMP 3.1 also extends the reduction clause to add two more operators:
max and min, that is to find the largest and smallest values in the reduction list
respectively.

For our tests, we use a common search/sort algorithm to discuss the reduction
clause and compare the results with a known reference value.

4 Evaluation

In this section, we use the OpenMP validation suite to evaluate the correctness
of some of the open source an vendor compilers including OpenUH, GNU C,
Intel and Oracle Studio compiler (suncc). The experiments were performed on a
Quad dual-core Opteron-880 machine and we used eight threads to perform the
evaluation.

To begin with, we use our in-house OpenUH compiler [14,13], to test the
correctness of OpenMP implementation in the compiler. Currently, OpenUH
supports OpenMP Version 3.0. OpenUH compiler is a branch of the open-
source Open64 compiler suite for C, C++, Fortran 95/2003, with support for
a variety of targets including x86 64, IA-64, and IA-32. It is able to trans-
late OpenMP 3.0, Co-array Fortran, UPC, and also translates CUDA into PTX
format. An OpenMP implementation translates OpenMP directives into corre-
sponding POSIX thread code with the support of runtime libraries.

The versions of the other compilers that we have used for the experimental
purposes are:

– GNU compiler is 4.6.2 (gcc)
– Intel C/C++ compiler 12.0 (icc)
– Oracle Studio 12.3 (suncc)

For the first round of experiments, we disable the optimization flags to avoid
any potential uncertainties, e.g. code reconstruction while compiling the unit
tests. And then we turn on the -O3 optimization as most of the time compiler
optimizations are highly used by programmers.We did not find any differences
with the turning off/on of the optimizations flags. Almost all the tests passed
with 100% certainity.

Table 1 shows the experimental results of evaluating the directives on several
compilers. For each sub-column, N is normal test, C is cross test, O is orphan

246 C. Wang, S. Chandrasekaran, and B. Chapman

Table 1. Experimental results on several compilers

OpenUH Gnu Intel Oracle

Directive N C O OC N C O OC N C O OC N C O OC

has openmp 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para shared 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para private 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para firstpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para if 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para reduction 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para copyin 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para num thres 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para default 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
for private 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
for firstpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
for lastpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
for reduction 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
for sche dynam 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
for sche static 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
for sche guided 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
for collapse 100 100 100 100 0 - 0 - 100 100 100 100 100 100 100 100
for ordered 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
for nowait 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
sec private 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
sec firstpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
sec lastpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
sec reduction 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
sec nowait 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
sing priv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
sing firstpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
sing copypriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
sing nowait 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para for priv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para for fpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para for lpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para for ordered 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para for reduc 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para for if 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para sec fpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para sec lpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para sec priv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para sec reduc 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
task 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
task private 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
task firstpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
task if 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
task untied 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
task default 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
master 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
critical 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
barrier 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
taskwait 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
atomic 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
flush 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
threadprivate 100 100 100 100 100 100 100 100 100 100 100 100 100 100 ce -
get wtick 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
get wtime 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

An OpenMP 3.1 Validation Testsuite 247

test while OC is orphan cross test (the cross test within orphan test). Each row
contains the directive to be tested. For instance, the para shared is to test the
shared clause in the parallel construct. Other terms such as ce means compile
error and textttto means time out (reach the maximum execution time threshold
we set in case of deep dead).

Using statistical analysis approach, the tests are repeated several times (the
number of times to be repeated is configured at the beginning) and the number of
times the tests pass/fail is calculated. Through this strategy, we can capture un-
common circumstances, where a compiler would still fail but pass under normal
circumstances. From the experimental results, we see that most of the tests pass
with 100% certainty. However, we could still see that the collapse implementa-
tion fails for the GNU C compiler, and the threadprivate implementation fails
for the Oracle Studio compiler.

It is quite challenging to analyze the reason behind why a compiler would
fail certain tests. But our validation suite still tries to provde as much detail as
necessary to the compiler developers in order to assist them in improving the
implemenation of the features in the compiler. Also we believe that the validation
suite will help resolve ambiguities in the OpenMP specification and help refine
the same if necessary.

5 Related Work

To the best of our knowledge, there is no similar public efforts reporting on the
validation of OpenMP implemenations on compilers. Vendors have their own
internal testsuites but this does not allow for open validation of implemented
features which may be of great importance to application developers. As men-
tioned in Section 1, [16,17] report on the validation methodologies and testsuite
for older OpenMP versions (2.0 and 2.5). Since there is no means with OpenMP
specification by which an user can obtain dynamic feedback on the success or
otherwise of a specific feature, open means for testing features’ availability is a
matter of concern. A path to extend OpenMP with error-handling capabilities
was proposed in [19]. This effort was to address OpenMP’s lack of any concept
of errors (both OpenMP runtime and user code errors) or support to handle
them. A number of works report on evaluation of peformance measurement us-
ing OpenMP, for e.g. EPCC [6],PARSEC [4],NAS [12],SPEC [3],BOTS [10] and
SHOC [9].

A methodology called randomized differential testing [20] was developed that
employs random code generator technique to detect compiler bugs. This is an
hand-tailored program generator methodology that took about three years to
complete, this work identifies compiler bugs that are not uncommon. Although
this effort has helped find more than 325 bugs so far in common compilers, the ex-
ecution environment is quite complex, this tool generates programs that are too
large, consequently bug reports are hard to understand. In order to clean this up,
manual intervention will be required, since automated approach would introduce
unidentifiable undefined behavior. Also it requires voting heuristics to determine

248 C. Wang, S. Chandrasekaran, and B. Chapman

which compiler implementation is wrong, this can be hard to determine at times.
In our approach we use fine-grained unit tests for each of the OpenMP direc-
tives, this will help us determined the faults due to erroneous implementations
very easily. Other approaches to detect bugs in compilers include [7,15]. Our ap-
proach is slightly different in a way that we designed an efficient, portable and
flexible validation framework that will detect bugs in OpenMP implementations
in various compilers.

6 Conclusion

The work in this paper presents a validation testsuite evaluating OpenMP imple-
mentations on several different compilers, both academic and commercial com-
pilers. The validation suite basically validates OpenMP Version 3.1 specification.
We developed a framework, that employs an automatic approach to run different
types of tests such as normal, cross and orphan tests. The framework provides
a flexible, portable and user-friendly testing environment.

Acknowledgements. Development at the University of Houston was supported
in part by the National Science Foundation”s Computer Systems Research pro-
gram under Award No. CRI-0958464. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

References

1. The Open64 Compiler, http://www.open64.net/
2. Addison, C., LaGrone, J., Huang, L., Chapman, B.: OpenMP 3.0 Tasking Imple-

mentation in OpenUH. In: Open64 Workshop at CGO, vol. 2009 (2009)
3. Aslot, V., Domeika, M., Eigenmann, R., Gaertner, G., Jones, W.B., Parady, B.:

SPEComp: A New Benchmark Suite for Measuring Parallel Computer Perfor-
mance. In: Eigenmann, R., Voss, M.J. (eds.) WOMPAT 2001. LNCS, vol. 2104,
pp. 1–10. Springer, Heidelberg (2001)

4. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC Benchmark Suite: Charac-
terization and Architectural Implications. In: Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, PACT 2008, pp.
72–81. ACM, New York (2008)

5. Board, O.A.R.: OpenMP Application Program Interface, Version 3.1 (July 2011)
6. Bull, J.M.: Measuring Synchronisation and Scheduling Overheads in OpenMP. In:

Proceedings of First European Workshop on OpenMP, pp. 99–105 (1999)
7. Burgess, C., Saidi, M.: The Automatic Generation of Test Cases for Optimizing

Fortran Compilers. Information and Software Technology 38(2), 111–119 (1996)
8. Cappello, F., Etiemble, D.: MPI versus MPI+ OpenMP on the IBM SP for the

NAS Benchmarks. In: ACM/IEEE 2000 Conference on Supercomputing, p. 12.
IEEE (2000)

9. Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford, K., Tip-
paraju, V., Vetter, J.S.: The Scalable Heterogeneous Computing (SHOC) Bench-
mark Suite. In: Proceedings of the 3rd Workshop on General-Purpose Computation
on Graphics Processing Units, GPGPU 2010, pp. 63–74. ACM, New York (2010)

http://www.open64.net/

An OpenMP 3.1 Validation Testsuite 249

10. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
Tasks Suite: A Set of Benchmarks Targeting the Exploitation of Task Parallelism
in Openmp. In: Proceedings of the 2009 International Conference on Parallel Pro-
cessing, ICPP 2009, pp. 124–131. IEEE Computer Society, Washington, DC (2009)

11. C. Intel and C. User. Reference guides. Available on the Intel Compiler Homepage
(2008), http://software.intel.com/en-us/intel-compilers

12. Jin, H., Frumkin, M., Yan, J.: The OpenMP Implementation of NAS Parallel
Benchmarks and its Performance. Technical report (1999)

13. Liao, C., Hernandez, O., Chapman, B., Chen, W., Zheng, W.: OpenUH: An Opti-
mizing, Portable OpenMP Compiler. Concurrency and Computation: Practice and
Experience 19(18), 2317–2332 (2007)

14. Liao, C., Hernandez, O., Chapman, B., Chen, W., Zheng, W.: OpenUH: An Opti-
mizing, Portable OpenMP Compiler. In: 12th Workshop on Compilers for Parallel
Computers, p. 2006 (2006)

15. McKeeman, W.: Differential Testing For Software. Digital Technical Journal 10(1),
100–107 (1998)

16. Müller, M., Neytchev, P.: An OpenMP Validation Suite. In: Fifth European Work-
shop on OpenMP, Aachen University, Germany (2003)

17. Müller, M., Niethammer, C., Chapman, B., Wen, Y., Liu, Z.: Validating OpenMP
2.5 for Fortran and C/C

18. Stallman, R.M., GCC DeveloperCommunity: Using The Gnu Compiler Collection:
A Gnu Manual For Gcc Version 4.3.3. CreateSpace, Paramount, CA (2009)

19. Wong, M., Klemm, M., Duran, A., Mattson, T., Haab, G., de Supinski, B.R.,
Churbanov, A.: Towards an Error Model for OpenMP. In: Sato, M., Hanawa, T.,
Müller, M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS,
vol. 6132, pp. 70–82. Springer, Heidelberg (2010)

20. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and Understanding Bugs in C
Compilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2011, pp. 283–294. ACM, New
York (2011)

http://software.intel.com/en-us/intel-compilers

	An OpenMP 3.1 Validation Testsuite
	Introduction
	The Design of an OpenMP Validation Suite
	Implementation
	Directives and Clauses
	Support for OpenMP 3.1

	Evaluation
	Related Work
	Conclusion
	References

