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Abstract. The introduction of task-level parallelization promises to raise the
level of abstraction compared to thread-centric expression of parallelism. How-
ever, tasks might exhibit poor performance on NUMA systems if locality can-
not be maintained. In contrast to traditional OpenMP worksharing constructs for
which threads can be bound, the behavior of tasks is much less predetermined by
the OpenMP specification and implementations have a high degree of freedom
implementing task scheduling.

Employing different approaches to express task-parallelism, namely the
single-producer and parallel-producer patterns with different data initialization
strategies, we compare the behavior and quality of OpenMP implementations
with task-parallel codes on NUMA architectures. For the programmer, we pro-
pose recipies to express parallelism with tasks allowing to preserve data locality
while optimizing the degree of parallelism. Our proposals are evaluated on rea-
sonably large NUMA systems with both important application kernels as well as
a real-world simulation code.

1 Introduction

The availability of cost-efficient two- and quad-socket compute nodes with large mem-
ory made non-uniform memory access (NUMA) architectures omnipresent. In a NUMA
architecture, the memory is partitioned and the latency and bandwidth of memory ac-
cess depend on the distance to the core from which the access occurs. The thread-
centric expression of parallelism, like worksharing in OpenMP[13], works fine on such
machines for well-structured code and evenly-balanced algorithms, but it often is un-
suitable for recursive algorithms, unbounded loops, or irregular problems in general.
Task-level parallelism provides solutions for these applications, but while threads can
be bound to cores, the OpenMP specification leaves a high degree of freedom regarding
the behavior of tasks to the implementation. If tasks are executed on a NUMA node
remote from the data, it has to be transferred first, leading to poor performance.

In this work, we compare the behavior and quality of OpenMP tasking implementa-
tions on recent NUMA architectures of different sizes. While detailed descriptions on
the inner workings of research OpenMP implementations can be found in the literature
(e.g.[14] or [10]), this information is not available for commercial ones, thus we created
several experiments to analyze their behavior. We observed significant differences both
in the overhead of task creation as well as in the task scheduling on NUMA architec-
tures for the four implementations from Intel, GNU, Oracle and PGI. By analyzing how
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the implementations execute tasks, we derived strategies for task-parallel programming
that take the data allocation and work scheduling into account. For implementations
that exhibit reliable and consistent behavior, we show that our strategies are successful
for compute kernels as well as real-world applications.

This paper is structured as follows: the next chapter discusses related work. Chapter 3
contains our observations on how current OpenMP implementations execute tasks on
NUMA architectures. In Chap. 4 we exploit this to express several compute kernels with
tasks instead of employing worksharing constructs. Following in Chap. 5 we transfer
our strategies to two real-world applications. Chapter 6 contains the summary of our
findings.

2 Related Work

Tasking[1] has been introduced in OpenMP 3.0 and has been shown to be able to deliver
comparable performance to OpenMP worksharing implementations[2]. The Barcelona
OpenMP Task Suite[7] can be employed to compare the efficiency of tasking implemen-
tations for several kernels, but in contrast to this work it does not highlight differences
in behavior on NUMA machines.

Several articles deal with the efficient scheduling of OpenMP tasks on multi-core
multi-socket (NUMA) machines [12,3]. The main challenge is to reflect the system’s
memory hierarchy in the execution of the OpenMP tasks, while little or no knowl-
edge is present of how tasks are being executed inside the application. Furthermore,
task-stealing has to be applied in order to perform load balancing, which means the
assignment of tasks from an overutilized thread to an underutilized thread. However, if
tasks are moved to a different NUMA node, data of ’stolen’ tasks remain on the NUMA
node of the initialization, which then leads to remote memory accesses during task ex-
ecution, as the Linux operating system with a standard kernel does not perform any
auto-migration of memory pages.

3 Monitoring Task Execution

The OpenMP runtime has a lot of freedom in how to schedule tasks, providing both
opportunities to optimize load balancing via ’task-stealing’ and challenges to maintain
data locality on NUMA architectures. Ideally tasks are distributed among the threads in
a way that no thread is under- or overutilized and tasks are still close to their data, i.e. on
the same NUMA node. While this goal is not achievable for any arbitrary workload and
data access pattern, differences in especially the task-stealing have significant impact
on the overall performance, depending on the pattern of task creation:

– single-producer multiple-executors: This pattern is popular for that it often requires
little changes to code and data structures. The single construct ensures that a
code region is executed by one thread only and thus avoids data races. The thread
executing the single construct is responsible for creating all tasks of appropriate
task chunk size (tcs) and all data necessary for the computation inside the tasks
can be packed up at creation time using the firstprivate clause. The implicit
barrier at the end of the single construct waits for the termination of all tasks.



184 C. Terboven et al.

– parallel-producer multiple-executors: A parallel OpenMP for worksharing con-
struct loops over the outer iteration space with an increment specified as task chunk
size (tcs). In every iteration a task is spawned, performing the iteration over a range
of size tcs. Thus, all threads of the team executing the worksharing construct cre-
ate multiple tasks in parallel. The implicit barrier at the end of the for construct
waits for the termination of all tasks. This pattern can also be expressed without
any worksharing construct at all, as the content of a parallel region is executed by
all threads of the corresponding team and thus a task construct encountered by all
threads creates multiple tasks. Then the synchronization is performed at the end of
the parallel region, or by appropriate task synchronization constructs or an explicit
barrier.

Experiment Setup. We selected the Intel C/C++ 12.1.2, the Oracle Studio C/C++
12.2 and 12.3, the GNU 4.5 and 4.6 and the PGI C/C++ 11.7-0 compilers for our
comparisons, as they represent the most widely used OpenMP-enabled compilers on
x86-compatible architectures. Two different machines were used to carry out our ex-
periments:

– 4-sockets: The bullx s6010 compute node is equipped with four Intel Xeon X7550
processors running at 2.0 GHz, thus offering 32 physical cores and 64 logical cores
with hyper-threading, and 64 GB of main memory. The Intel Quickpath Intercon-
nect (QPI) used to connect the four sockets with each other and with I/O facilities
creates a system topology with four NUMA domains, with every NUMA node be-
ing separated from any other by just one hop. The system is running Scientific
Linux 6.1.

– 16-sockets: The Bull BCS system consists of four bullx s6010 systems as described
above. The four systems are equipped with Bull’s proprietary BCS cards providing
a cache-coherent and high performant interconnect, running a single system image
Scientific Linux 6.1 on 128 physical cores with 256 GB of main memory. It is
important to notice that not only the BCS interconnect imposes a NUMA topology
consisting of the four nodes, but still every node consists of four NUMA nodes
connected via the QPI, thus this system exhibits two different levels of NUMAness.

3.1 Load Balancing vs. Data Locality

Load balancing and data locality are performance-critical aspects in shared memory
parallel programming. To analyze the general behavior of OpenMP task implementa-
tions on a NUMA system, we created an artificial benchmark. It executes 128, 000work
packages, each of which reads an (inner) array with a constant value. To simulate load
imbalance, the (inner) arrays differ in size: the first packages are much smaller than
the last ones, so that the work is linearly increasing with steps of 128, 000/n packages
where n denotes the number of threads. The first 128, 000/n packages consists of arrays
of size 200, 000/n, the next 128, 000/n packages read arrays of size 2 ∗ (200, 000/n),
and so on. This benchmark allows to investigate load balancing capabilities as well as
data locality effects very well: the data is distributed among the NUMA nodes using a
chunk size of 128, 000/n elements of the outer array, the first chunk of work packages
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reside on the NUMA node that thread 0 has been bound to, the next chunk is on NUMA
node of thread 1, and so on. Thus, ’perfect’ data locality would lead to weak load bal-
ance, and vice versa, a compromise has to be found. Figure 1 exemplary shows the size
of work items and how they are initialized when using 8 threads.
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Fig. 1. Size of work packages when 8 threads are used in the load balancing experiment. Each
chunk of work packages has been initialized by a different thread.

Linearly increasing load is the ’worst case’ for a for worksharing construct with a
static schedule and can be addressed by using a dynamic schedule, in which the
(outer) iterations are distributed among the threads in the order in which they complete
their previous work. In order to compare the behavior of the tasking implementations,
we used the parallel-producer pattern along the (outer) iterations with one iteration per
task. The work is measured as the total number of assignments to an inner array ele-
ment. The goal is to achieve a work distribution close to 100 %, which means that every
thread has to execute the same amount of work. The minimum, maximum and standard
deviation of the average work per thread is shown in Table 1. Considering the 4-sockets
system first, the Intel compiler distributes work almost evenly: all threads execute be-
tween 97 % and 101 % of the average work. The GNU and PGI compilers perform
slightly worse, here all threads execute between 80 % and 115 % of the average work.
The Oracle Studio compiler distributes work even more unbalanced over the threads, as
we observed a range from 76 % to 161 %.

The load balancing on the 16-sockets machine is much worse than on the 4-sockets
machine. Obviously it is harder to perform the task scheduling for 128 threads on 16
sockets than for 32 threads on 4 sockets. Thus, we expected a slightly worse result, in
the order as shown by the Intel compiler: 85 % to 121 %. However, for the PGI, GNU
and the Oracle Studio compilers, the distributions became extremely imbalanced. In the
worst case, with the Oracle Studio Compiler, one particular thread only gets 0.09 % of
the average work, whereas another thread gets 566.60 %.
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Table 1. Minimum, maximum and standard deviation of the work done by a thread and percentage
of local iterations for the load balancing kernel benchmark on the 4-socket and on the 16-socket
machine

4-sockets 16-sockets

Tasking MIN MAX STDV local MIN MAX STDV local
Intel 97.65 % 100.43 % 0.51 79% 84.38 % 121.28 % 8.53 80%
GNU 81.53 % 114.15 % 5.60 80% 66.93 % 271.019 % 41.30 69%
Oracle Studio 76.02 % 161.52 % 17.68 60% 0.09 % 566.60 % 152.93 29%
PGI 83.41 % 106.56 % 5.04 82% 25.00 % 199.84 % 27.78 79%

Worksharing MIN MAX STDV local MIN MAX STDV local
Intel static 6.06 % 193.94 % 55.96 100% 1.55% 198.45% 57.29 100%
Intel dynamic 83.08 % 109.98 % 5.17 3.12% 8.61% 522.42% 148.99 0.82%

Using the same experiment again, now we shift focus on data locality. Again, we ex-
pect, that tasks are executed where they are created as long as enough work is available
locally, so that there is no motivation for task-stealing. Only after all local work is com-
plete, work from a remote location should be picked up. Table 1 also shows the results
of this experiment for all investigated compilers for tasking and as well as a reference
values for the Intel compiler using a for worksharing construct with a dynamic and
a static schedule. These reference values indicate that there is an obvious trade of
between load balancing and locality. The static schedule archives 100% locality on
both systems, but the load balancing is poor. The dynamic schedule achieves better
load balancing, but the data locality is about 3% (1%) on the 4-socket (16-socket) sys-
tem. The Intel, GNU and PGI compilers achieve a local work rate of 70 − 80 % on
both machines with tasks. The Oracle compiler archives a local access rate of 60 % on
the 4-sockets and 29 % only on the 16-sockets system. Although this is slightly worse
than the other compilers, it is still much better than the result of the for workshar-
ing loop with dynamic schedule. We conclude that for computations which exhibit a
load imbalance and are sensitive regarding data locality, tasks offer a better alternative
to traditional worksharing constructs. However, the performance depends on the task
scheduling mechanisms of the OpenMP runtime, and in this experiment Intel provided
the best compromise.

3.2 Task Overhead

Overhead of task construction is an important factor for the performance of OpenMP
implementations. The basic measurement technique of our experiment is based on the
EPCC OpenMP benchmarks [4], where the time taken for a section of sequential code
is compared to the time taken for the same code enclosed in a given directive. We
extended the original implementation by two new methods. In the first case only one
thread generates the tasks (single-producer, left) and in the second case we create tasks
with the parallel-producer pattern (right):
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#pragma omp p a r a l l e l p r i v a t e ( j )
#pragma omp s i n g l e

f o r ( j =0 ; j<i n n e r r e p s ∗ \
o m p g e t n u m t h r e a d s ( ) ; j ++)

#pragma omp t a s k
d e l a y ( d e l a y l e n g t h ) ;

#pragma omp p a r a l l e l p r i v a t e ( j )

f o r ( j =0 ; j<i n n e r r e p s ; j ++)

#pragma omp t a s k
d e l a y ( d e l a y l e n g t h ) ;

The variable innerreps denotes the number of repetitions and is chosen so that the
execution time is significantly larger than the costs of the enclosing single directive.
The number of generated tasks is the same for both cases and increases with the number
of threads. Table 2 shows that the overhead on the 4-sockets system for all compilers is
much bigger for the single-producer (sin-pro) pattern than the for the parallel-producer
(par-pro) pattern: for single-producer the overhead increases with the number of tasks.
While the PGI runtime has a maximum overhead of approximately 58 µs, the GNU run-
time levels out at more than 1, 100 µs. Compared to that, the parallel-producer pattern
incurs much less overhead. Again the Intel and PGI runtime (0.3 µs and 3.3 µs with
32 threads, respectively) deliver outstanding results. The overhead increase with the
GNU an the Oracle Studio compilers is much more moderate compared to the single-
producer pattern, but still an order of magnitude higher than for the other two runtime
implementations.

The experiments on the 16-sockets machine presented in Table 3 show the same
trends concerning the two patterns. However, it also shows that with the single-producer
pattern the absolute overhead rises sharply with 128 threads for all implementations and
with the GNU and Oracle Studio runtime for the parallel-producer pattern as well. The
overhead of the task generation for the single-producer with the GNU compiler is more
than 40, 000 µs while it is less than 900 µs with the PGI compiler. In summary the
Intel runtime generates tasks with least overhead of only 1.7 µs (128 threads) using the
parallel-producer pattern.

Table 2. Overhead of task creation on 4-sockets in µs

Threads 1 2 4 8 12 16 24 32

Intel sin-pro 0.23 1.20 1.36 1.75 59.05 156.12 560.40 764.85
par-pro 0.11 0.19 0.36 0.24 0.27 0.17 0.30 0.26

GNU sin-pro 2.21 2.04 6.88 83.66 185.04 304.44 652.26 1126.18
par-pro 1.86 2.09 2.92 5.86 10.11 14.28 27.05 44.22

ORACLE sin-pro 0.09 1.05 9.24 59.89 139.49 211.27 299.22 424.22
STUDIO par-pro 0.09 1.32 3.43 4.33 8.47 14.06 18.55 39.65
PGI sin-pro 0.03 2.98 2.66 2.69 4.43 9.36 34.22 57.79

par-pro 0.03 1.26 1.37 0.95 1.69 1.90 2.49 3.26

4 Task Behavior on NUMA Architectures

In this chapter we exploit the insights gathered in the previous one to create
task-parallel implementations of two compute kernels, namely STREAM[11] and a
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Table 3. Overhead of task creation on 16-sockets in µs

Threads 1 2 4 8 16 32 64 128

Intel sin-pro 0.12 1.89 187.68 199.57 492.64 2440.62 2432.05 5656.16
par-pro 0.12 0.32 0.93 0.17 0.72 1.11 1.32 1.69

GNU sin-pro 1.75 1.80 14.57 209.79 785.69 1361.50 11938.48 40555.73
par-pro 1.74 1.98 2.89 34.76 324.20 401.80 1870.33 9908.19

ORACLE sin-pro 0.09 3.52 37.02 176.28 643.73 1534.76 3571.80 7440.76
STUDIO par-pro 0.09 1.89 5.95 18.42 88.01 235.51 505.06 1183.10
PGI sin-pro 0.69 5.25 4.77 14.10 62.57 160.95 367.81 892.55

par-pro 0.02 2.68 2.35 3.45 6.94 23.58 51.35 357.38

Sparse-Matrix-Vector-Multiplication in a CG-method[9], which both are very sensitive
regarding the memory access pattern.

4.1 STREAM

For the sake of brevity we only examine results from the triad operation, they are con-
sistent with the other ones. Figure 2 shows the results for the Intel, Oracle and GNU
compilers only, as the PGI compiler failed to compile our experiment framework cor-
rectly (Internal error: assertion failed). The arrays have a dimension of 256, 435, 456
double elements, which results in 1.96 GB of memory consumption per array, or
5.87 GB of total kernel size in the triad operation. This kernel size is much larger than
the accumulated cache size and thus we achieve reliable measurements of the memory
bandwidth of the system.

Considering the 4-sockets machine first, all three compilers deliver roughly the same
performance for the traditional worksharing-based parallelization, which we refer to
as workshare: static-init for-loop and regard as a reference. In this variant, a static
schedule is employed both during data initialization and the actual computation, mean-
ing that for t threads the arrays are divided into t parts of approximately equal size.
Given four NUMA nodes in the system and a scatter thread binding, meaning threads
are spread as far apart as possible, t

4 threads will be bound to each NUMA node, result-
ing in an even data distribution over all NUMA nodes in the system. We compared this
to the following task-parallel variants, for which we found a task chunk size of 65, 536
iterations per task to be optimal, although it does not have a significant influence on the
performance as long as enough tasks are spawned to generate enough parallelism and
as long as the work per task is computationally expensive enough compared to the task
creation and scheduling overhead:

– tasks: static-init single-producer: The data initialization is performed in the same
way as in the original parallel version. The generation of tasks is performed by one
thread only (single-producer multiple-executors pattern).

– tasks: static-init parallel-producer: Again the data initialization is performed in
the same way as in the original parallel version, but now the creation of tasks is
performed in parallel (parallel-producer multiple-executors pattern).
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Fig. 2. STREAM triad operation on the 4-sockets and 16-sockets system

– tasks: task-init parallel-producer: The data initialization and the computation is
performed task-parallel by applying the same pattern to both code regions.

Still examining the 4-sockets (4S) machine in Fig. 2(a)-(c), for the Intel and the Oracle
compiler, the worksharing version outperforms the best task-parallel version by just 3 %
to 5 %. Regarding these runtimes, the two task-parallel variants employing the parallel-
producer pattern deliver approximately the same performance, as both distribute the
data in a nearly optimal fashion over the NUMA nodes. If the parallel-producer pattern
is used in the data initialization and the computation, the OpenMP runtimes of Intel and
Oracle are able to maintain data affinity. However, this does not work with the GNU
compiler, for which all three tasking variants deliver about the same performance - the
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base performance that can be achieved on this machine for random memory access.
For all three compilers, the single-producer tasking version clearly suffers from two
effects: (1) the runtime cannot maintain data affinity, as all tasks are created from a
single NUMA node and the work-stealing will just pick arbitrary tasks from the queue;
and (2) the single thread responsible for creating the tasks cannot completely keep the
other threads executing the tasks busy. If only one thread creates all the tasks, the run-
time’s task-stealing mechanism cannot take the data distribution into account during the
’stealing’ and thus the performance on NUMA systems obviously suffers.

The situation looks different on the 16-socket (16S) machine, where the peak per-
formance of the task-parallel versions is significantly below the for workshare version
with a static schedule. Interpreting comments from the Intel OpenMP runtime, the
system topology is assumed to consist of 16 packages (= processor sockets), the two
levels of NUMAness are not respected. Corresponding to the observations in Chap. 3.1,
with higher numbers of threads the task-to-thread affinity is not ’strong’ enough to pre-
vent disadvantageous task-stealing. The single-producer variant is far behind, as the
4S results already implied. Futhermore, employing 128 threads on that machine is not
profitable, similar to experiences made with other big SMPs in the past. For the final
paper we will investigate measurements with 120 or 124 threads.

4.2 SMXV in a CG Kernel

While STREAM served our purpose as a benchmark indicating fine differences in the
memory access pattern, the Sparse-Matrix-Vector-Multiplication (SMXV) in a CG-
Method [9] much more resembles a real-world compute kernel as part of many PDE
solvers. Depending on the problem the matrix for the system of linear equations can be
very irregular. In this case the sparse matrix vector product is a typical example of the
importance of adequate load balancing. Especially in cases where the optimal work dis-
tribution cannot be calculated in advance, we expect task-parallel implementations to
help avoiding performance issues. On the one hand the programmer has to ensure that a
sufficient number of tasks is used to avoid load imbalance, on the other hand too many
tasks introduce additional overhead. In our CG implementation all vector operations
and the dot-product are parallelized with OpenMP for constructs. Only the SMXV is
parallelized with tasks. The work is distributed by chunks of rows and the chunk size is
the same for each task, calculated as

chunk size(tasks) =

{ �N/tasks�, if N%tasks = 0
�N/tasks�+ 1, otherwise

(1)

where N is the dimension of the square matrix and tasks the number of tasks. The
matrix used here represents a computational fluid dynamics problem (Fluorem/HV15R)
and is taken from the University of Florida Sparse Matrix Collection [5]. The dimension
is N = 2, 017, 169 and the number of nonzero values is nnz = 283, 073, 458, which
results in a memory footprint of approximately 3.2 GB, so that the data set is big enough
to not fit into the caches, even on the 16-sockets machine. The data is initialized using
a for worksharing construct with a static schedule.

Figure 3 shows the performance of the SMXV when executing 1000 CG itera-
tions. We compare the performance of the different OpenMP implementations on both
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machines. In almost all cases the Intel compiler delivers the best performances. For both
machine types the parallel-producer pattern reaches a significantly higher performance
than the single-producer pattern when using the Intel or the Oracle Studio implemen-
tation. In contrast, the peak performance achieved with the GNU compiler is below
9 GFLOPS (see 3(a)/3(b)) or rather below 5 GFLOPS (see 3(c)/3(d)) independent of
the pattern. The figure also shows that even with more than 100, 000 tasks the per-
formance of the Intel compiler for the parallel-producer variant is stable in contrast to
the single-producer pattern. The behavior for the other compilers is similar in this point,
although the performance decrease becomes visible with lower amount of tasks already.

Figure 3(c) shows that all implementations do not scale on the 16-sockets system
when the tasks are created by one single thread. In contrast to that the Intel compiler
reaches up to 21 GFLOPS on the same system (see 3(d)) in the parallel-producer vari-
ant. Task-stealing done by the OpenMP runtime to perform load balancing by the as-
signment of tasks from an overutilized to an underutilized thread. Table 4 shows the
percentage of tasks which are executed by a different thread than it was created from.
As expected, for the single-producer pattern more than 90 % of the tasks are not ex-
ecuted by the same thread. Furthermore, for the parallel-producer pattern only 2.9 %
or rather 8.6 % of the tasks are executed by a thread which did not create this task.
This means that the amount of remote data accesses introduced due to task-stealing is
very low, which results in much better performance. However, Table 4 also shows that
there is no difference for the GNU runtime in all cases, meaning that this kernel does
not benefit from the parallel producer pattern. The Oracle Studio runtime is almost as
good as the Intel runtime on the 4-sockets system, but the amount of remote accesses
increases to over 40 % on the 16-socket system.

Table 4. Percentage of remote data accesses for the single- and parallel-producer pattern on the
4-sockets and 16-sockets systems using the CG kernel with 1024 tasks

4-sockets 16-sockets
single parallel single parallel

Intel 96.21 % 2.87 % 99.22 % 8.61 %
GNU 96.87 % 96.90 % 99.04% 99.14 %
ORACLE STUDIO 95.97 % 4.04 % 98.24 % 41.02 %

5 Application Case Studies

Finally, we compare the different compilers for two real-world applications. Both codes
have been parallelized with nested parallel regions and we added a new version utilizing
OpenMP tasks. In both versions the parallelism is expressed in exactly the same way.

FIRE: The Flexible Image Retrieval Engine (FIRE) [6] was developed at the Human
Language Technology and Pattern Recognition Group1 of RWTH Aachen University.
The retrieval engine takes a set of query images and for each query image it returns a
number of similar images from an image database.

1 http://www-i6.informatik.rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de
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Oracle Studio 12.2 GNU 4.6 Intel 12.2 

(a) SMXV 4-sockets Single-Producer (b) SMXV 4-sockets Parallel-Producer

(c) SMXV 16-sockets Single-Producer (d) SMXV 16-sockets Parallel-Producer

Fig. 3. Performance of SMXV for different Implementations

NestedCP: NestedCP [8] is developed at the Virtual Reality Group of the RWTH
Aachen University2 and is used to extract critical points in unsteady flow field datasets.
Critical points are essential parts of the velocity field topologies and extracting them
helps to interactively visualize the data in virtual environments.

Figure 4 shows the runtime and speedup of the FIRE and the NestedCP codes on
the 16-sockets machine comparing the tasking version to the one with nested parallel
regions. Only the Intel, GNU and Oracle Studio compilers have been investigated, as
the PGI compiler failed to compile any of the two codes successfully.

Two observations are important for our discussion. Firstly, the best results for both
codes are achieved using the tasking version with the Intel compiler. For the FIRE
code a speedup of 127 is reached and for NestedCP a speedup of about 33, both on
128 cores. This version outperforms in both cases the nested parallel version, if the
machine is fully utilized. This fact shows that the tasking paradigm works well for both
applications and that the superior load balancing behavior of tasks compared to parallel
regions can improve the programs performance.

2 http://www.vr.rwth-aachen.de

http://www.vr.rwth-aachen.de
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Fig. 4. Performance of the FIRE and NestedCP codes. A task-parallel version is compared to a
nested variant.

Secondly, the behavior differs a lot between the compilers. With the GNU and Oracle
Studio compilers, NestedCP does not scale to more than 16 threads at all with the task-
ing version. The FIRE code scales up to a speedup of 100 with the GNU compiler, with
the Oracle compiler the performance drops down, when more than 32 threads are used.
However, the FIRE version using nested parallel regions delivers the best speedup using
the Oracle Studio compiler. These differences in the performance behavior of compilers
and/or runtimes makes it nearly impossible to write code that performs equally well on
a variety of platforms, meaning different hardware architectures and different OpenMP
implementations.

6 Summary

The introduction of task-level parallelism in OpenMP raised the level of abstraction
compared to thread-centric worksharing models, by delegating the responsibility of
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distributing the work among the threads to the runtime. On hierarchical NUMA ar-
chitectures, tasks might exhibit poor performance if remote data is accessed frequently,
that means if the runtime cannot maintain data locality when selecting a thread to ex-
ecute a given task. If the system topology is not too complex, and if thread binding is
used and the task-parallelism is expressed using an appropriate pattern, such as parallel-
producer, OpenMP runtimes can maintain data affinity and thus achieve performance
on par with or even better than state-of-the-art worksharing implementations. Compar-
ing the OpenMP implementations on the 4-socket system, particularly the Intel runtime
showed consistent behavior and incurs little overhead in task creation.

However, there were significant differences in behavior between the four OpenMP
implementations on the 4-sockets machine and especially on the 16-sockets machines.
In all kernels with all implementations the performance did not increase in the same
way as the hardware’s capabilties.

If the behavior of an OpenMP runtime differs a lot from another one, application
performance gets hurt. Furthermore, the expectations from observation on the 4-sockets
machine were not applicable on the 16-sockets machine, because the complexer topol-
ogy was mostly not correctly respected. If a weak implementation does not offer reliable
behavior, this also weakens the attractivity of the OpenMP tasking programming model.
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