

Lecture Notes in Computer Science 7312
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Barbara M. Chapman Federico Massaioli
Matthias S. Müller Marco Rorro (Eds.)

OpenMP
in a Heterogeneous World

8th International Workshop on OpenMP, IWOMP 2012
Rome, Italy, June 11-13, 2012
Proceedings

13

Volume Editors

Barbara M. Chapman
University of Houston
Department of Computer Science
4800 Calhoun Rd, Houston 77204-3010, TX, USA
E-mail: chapman@cs.uh.edu

Federico Massaioli
Marco Rorro
CASPUR
Via dei Tizii, 6, 00185 Rome, Italy
E-mail: {federico.massaioli, marco.rorro}@caspur.it

Matthias S. Müller
Dresden University of Technology
Center for Information Services and High Performance Computing (ZIH)
Zellescher Weg 12, 01062 Dresden, Germany
E-mail: matthias.mueller@tu-dresden.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-30960-1 e-ISBN 978-3-642-30961-8
DOI 10.1007/978-3-642-30961-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012939165

CR Subject Classification (1998): C.1, D.1, F.2, D.4, C.3, C.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

OpenMP is a widely accepted, standard application programming interface (API)
for high-level shared-memory parallel programming in Fortran, C, and C++.
Since its introduction in 1997, OpenMP has gained support from most high-
performance compiler and hardware vendors. Under the direction of the OpenMP
Architecture Review Board (ARB), the OpenMP specification has evolved, reach-
ing the recent release of Specification 3.1. Heterogeneous systems, where con-
ventional CPUs are combined with one or more many-core accelerators, are
raising new interest in directive-based approaches to parallel programming, like
OpenMP. The appealing computing power offered by heterogeneous hardware
makes the old problem of software portability even more complicated. Code port-
ing can no longer be restricted to making computing intensive routines suitable
for a given architecture. Since architectural diversity is now built into hetero-
geneous systems themselves, to fully exploit their computing power, one single
application may need to contain two or more versions of the same code section,
suited for different subsystems. This year, the IWOMP conference took its title
from the important role that OpenMP can play in helping programmers to gen-
eralize the design of their codes, so that it can be mapped onto accelerators or
conventional CPUs, leaving the low-level parallelization work to the compiler.

The community of OpenMP researchers and developers in academia and
industry is united under cOMPunity (www.compunity.org). This organization
has held workshops on OpenMP around the world since 1999: the European
Workshop on OpenMP (EWOMP), the North American Workshop on OpenMP
Applications and Tools (WOMPAT), and the Asian Workshop on OpenMP
Experiences and Implementation (WOMPEI) attracted annual audiences from
academia and industry. The International Workshop on OpenMP (IWOMP)
consolidated these three workshop series into a single annual international event
that rotates across the previous workshop sites. The first IWOMP meeting was
held in 2005, in Eugene, Oregon, USA. Since then, meetings have been held each
year, in Reims, France, Beijing, China, West Lafayette, USA, Dresden, Germany,
Tsukuba, Japan, and Chicago, USA. Each workshop has drawn participants from
research and industry throughout the world. IWOMP 2012 continued the series
with technical papers, tutorials, and OpenMP status reports. Furthermore, to
stress the importance of the research activities in the field of compilers, runtime
systems, and tools as a driving force for the OpenMP evolution, IWOMP tradi-
tionally hosts one of the meetings of the language committee. The first IWOMP
workshop was organized under the auspices of cOMPunity, and thereafter, the
IWOMP Steering Committee took care of organizing and expanding this series
of events. The success of the IWOMP meetings is mostly due to the generous
support from numerous sponsors.

VI Preface

The cOMPunity website (www.compunity.org) provides access to all pre-
sentations proposed during the meetings and to a photo gallery of the events.
Information about the latest conference can be found on the IWOMP website
at www.iwomp.org. This book contains the proceedings of the 8th International
Workshop on OpenMP which was held in Rome in June 2012, where 18 techni-
cal papers and 7 posters were presented out of more than 30 works submitted
to the call for papers. The workshop program also included a tutorial day and
the keynote talk of Bjarne Stroustrup, the creator and developer of the C++
programming language.

The interest shown this year again in the IWOMP conference witnesses the
strength, the maturity, and the diffusion of the portable, scalable model defined
by OpenMP, and confirms the critical role played by this series of events in the
development of the specification and its adoption.

June 2012 Barbara M. Chapman
Federico Massaioli
Matthias S. Müller

Marco Rorro

Organization

Program and Organizing Chair

Federico Massaioli CASPUR, Italy

Sponsor Contact Chair

Barbara M. Chapman University of Houston, USA

Tutorial Chair

Ruud van der Pas Oracle America, USA

Poster Co-chairs

Alejandro Duran BSC, Spain
Christian Terboven RWTH Aachen University, Germany

Program Commitee

Dieter an Mey RWTH Aachen University, Germany
Eduard Ayguadé BSC/UPC, Spain
Massimo Bernaschi IAC-CNR, Italy
James Beyer Cray Inc., USA
Mark Bull EPCC, UK
Bronis R. de Supinski NNSA ASC, LLNL, USA
Alejandro Duran BSC, Spain
Rudolf Eigenmann Purdue University, USA
Massimiliamo Fatica NVIDIA, USA
Guang R. Gao University of Delaware, USA
William Gropp University of Illinois, USA
Lei Huang Prairie View A&M University, USA
Ricky Kendall Oak Ridge National Laboratory, USA
Raymond Loy Argonne National Laboratory, USA
Craig Lucas NAG Ltd, UK
Larry Meadows Intel, USA
Matthias S. Müller ZIH, TU Dresden, Germany
Stephen Olivier University of North Carolina, USA
Marco Rorro CASPUR, Italy

VIII Organization

Mitsuhisa Sato University of Tsukuba, Japan
Eric Stahlberg OpenFPGA and Wittenberg University, USA
Christian Terboven RWTH Aachen University, Germany
Ruud van der Pas Oracle America, USA
Michael Wong IBM, Canada

Steering Committee Chair

Matthias S. Müller ZIH, TU Dresden, Germany

Steering Committee

Dieter an Mey RWTH Aachen University, Germany
Eduard Ayguadé BSC/UPC, Spain
Mark Bull EPCC, UK
Barbara M. Chapman University of Houston, USA
Rudolf Eigenmann Purdue University, USA
Guang R. Gao University of Delaware, USA
William Gropp University of Illinois, USA
Ricky Kendall Oak Ridge National Laboratory, USA
Michael Krajecki University of Reims, France
Rick Kufrin NCSA/Univerity of Illinois, USA
Kalyan Kumaran Argonne National Laboratory, USA
Federico Massaioli CASPUR, Italy
Larry Meadows Intel, USA
Arnaud Renard University of Reims, France
Mitsuhisa Sato University of Tsukuba, Japan
Sanjiv Shah Intel
Bronis R. de Supinski NNSA ASC, LLNL, USA
Ruud van der Pas Oracle America, USA
Matthijs van Waveren Fujitsu, France
Michael Wong IBM, Canada
Weimin Zheng Tsinghua University, China

Additional Reviewers

Gary Elsesser
Jeffrey Sandoval
Francesco Salvadore

Table of Contents

Eighth International Workshop on OpenMP
IWOMP 2012

Proposed Extensions to OpenMP

Specification and Performance Evaluation of Parallel I/O Interfaces for
OpenMP . 1

Kshitij Mehta, Edgar Gabriel, and Barbara Chapman

The Design of OpenMP Thread Affinity . 15
Alexandre E. Eichenberger, Christian Terboven, Michael Wong, and
Dieter an Mey

Auto-scoping for OpenMP Tasks . 29
Sara Royuela, Alejandro Duran, Chunhua Liao, and
Daniel J. Quinlan

A Case for Including Transactions in OpenMP II: Hardware
Transactional Memory . 44

Barna L. Bihari, Michael Wong, Amy Wang,
Bronis R. de Supinski, and Wang Chen

Extending OpenMP* with Vector Constructs for Modern Multicore
SIMD Architectures . 59

Michael Klemm, Alejandro Duran, Xinmin Tian, Hideki Saito,
Diego Caballero, and Xavier Martorell

Introducing Task Cancellation to OpenMP . 73
Oussama Tahan, Mats Brorsson, and Mohamed Shawky

Runtime Environments

Automatic OpenMP Loop Scheduling: A Combined Compiler and
Runtime Approach . 88

Peter Thoman, Herbert Jordan, Simone Pellegrini, and
Thomas Fahringer

libKOMP, an Efficient OpenMP Runtime System for Both Fork-Join
and Data Flow Paradigms . 102

François Broquedis, Thierry Gautier, and Vincent Danjean

X Table of Contents

A Compiler-Assisted Runtime-Prefetching Scheme for Heterogeneous
Platforms . 116

Li Chen, Baojiang Shou, Xionghui Hou, and Lei Huang

Optimization and Accelerators

Experiments with WRF on Intel R© Many Integrated Core (Intel MIC)
Architecture . 130

Larry Meadows

Optimizing the Advanced Accelerator Simulation Framework Synergia
Using OpenMP . 140

Hongzhang Shan, Erich Strohmaier, James Amundson, and
Eric G. Stern

Using Compiler Directives for Accelerating CFD Applications on
GPUs . 154

Haoqiang Jin, Mark Kellogg, and Piyush Mehrotra

Effects of Compiler Optimizations in OpenMP to CUDA Translation . . . 169
Amit Sabne, Putt Sakdhnagool, and Rudolf Eigenmann

Task Parallelism

Assessing OpenMP Tasking Implementations on NUMA
Architectures . 182

Christian Terboven, Dirk Schmidl, Tim Cramer, and Dieter an Mey

Performance Analysis Techniques for Task-Based OpenMP
Applications . 196

Dirk Schmidl, Peter Philippen, Daniel Lorenz, Christian Rössel,
Markus Geimer, Dieter an Mey, Bernd Mohr, and Felix Wolf

Task-Based Execution of Nested OpenMP Loops . 210
Spiros N. Agathos, Panagiotis E. Hadjidoukas, and
Vassilios V. Dimakopoulos

Validation and Benchmarks

SPEC OMP2012 – An Application Benchmark Suite for Parallel
Systems Using OpenMP . 223

Matthias S. Müller, John Baron, William C. Brantley, Huiyu Feng,
Daniel Hackenberg, Robert Henschel, Gabriele Jost, Daniel Molka,
Chris Parrott, Joe Robichaux, Pavel Shelepugin,
Matthijs van Waveren, Brian Whitney, and Kalyan Kumaran

Table of Contents XI

An OpenMP 3.1 Validation Testsuite . 237
Cheng Wang, Sunita Chandrasekaran, and Barbara Chapman

Poster Papers

Performance Analysis of an Hybrid MPI/OpenMP ALM Software for
Life Insurance Policies on Multi-core Architectures 250

Francesca Perla and Paolo Zanetti

Adaptive OpenMP for Large NUMA Nodes . 254
Aurèle Mahéo, Souad Koliäı, Patrick Carribault, Marc Pérache, and
William Jalby

A Generalized Directive-Based Approach for Accelerating PDE
Solvers . 258

Francesco Salvadore

Design of a Shared-Memory Model for CAPE . 262
Viet Hai Ha and Éric Renault

Overlapping Computations with Communications and I/O Explicitly
Using OpenMP Based Heterogeneous Threading Models 267

Sadaf R. Alam, Gilles Fourestey, Brice Videau, Luigi Genovese,
Stefan Goedecker, and Nazim Dugan

A Microbenchmark Suite for OpenMP Tasks . 271
J. Mark Bull, Fiona Reid, and Nicola McDonnell

Support for Thread-Level Speculation into OpenMP 275
Sergio Aldea, Diego R. Llanos, and Arturo González-Escribano

Author Index . 279

Specification and Performance Evaluation

of Parallel I/O Interfaces for OpenMP

Kshitij Mehta, Edgar Gabriel, and Barbara Chapman

Department of Computer Science, University of Houston
{kmehta,gabriel,chapman}@cs.uh.edu

Abstract. One of the most severe performance limitations of paral-
lel applications today stems from the performance of I/O operations.
Numerous projects have shown, that parallel I/O in combination with
parallel file systems can significantly improve the performance of I/O
operations. However, as of today there is no support for parallel I/O op-
erations for applications using shared-memory programming models such
as OpenMP. This paper introduces parallel I/O interfaces for OpenMP.
We discuss the rationale of our design decisions, present the interface
specification and a prototype implementation with the OpenUH com-
piler. We evaluate the performance of our implementation for various
benchmarks on different file systems and demonstrate the benefits of the
new interfaces.

1 Introduction

Amdahl’s law stipulates that the scalability of a parallel application is limited by
its least scalable section. For many scientific applications, the scalability limita-
tion comes from the performance of I/O operations, due to the fact that current
hard drives have an order of magnitude higher latency and lower bandwidth than
any other component in a computer system. Parallel I/O allows (efficient) simul-
taneous access by multiple processes or threads to the same file. Although the
adoption of parallel I/O in scientific applications is modest, it has been shown
that in combination with parallel file systems parallel I/O can lead to significant
performance improvements [1].

I/O options are limited as of today for applications using shared memory
programming models such as OpenMP [2]. Most OpenMP applications use the
routines provided by the base programming languages (e.g. Fortran, C, C++) for
accessing a data file. In order to maintain consistency of the resulting file, read
and write operations are performed outside of parallel regions. In case multiple
threads are accessing a file, access to the file handle should be protected e.g.
within a omp critical construct to avoid concurrent access by different threads.

Another approach has each thread utilizing a separate file to avoid race condi-
tions or synchronizations when accessing a single, shared file. While this approach
often leads to a better performance than the previously discussed methods, it has
three fundamental drawbacks. First, it requires (potentially expensive) pre- and
post-processing steps in order to create the required number of input files and

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 1–14, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 K. Mehta, E. Gabriel, and B. Chapman

merge the output files of different threads. Second, it is difficult to support appli-
cation scenarios where the number of threads utilized is determined dynamically
at runtime. Third, managing a large number of files often creates a bottleneck on
the metadata server of the parallel file system. The latter could become relevant
in the near future as the number of cores of modern micro-processors are expected
to grow into the hundreds or even thousands.

This paper introduces the notion of parallel I/O for OpenMP applications.
We discuss and evaluate design alternatives, present an initial set of interfaces
and evaluate the performance using a prototype implementation in the OpenUH
compiler. The main goal of the new interfaces is to improve the performance
of I/O operations for OpenMP applications by providing threads the ability to
perform I/O using a single file without having to explicitly lock the file handle
or synchronize access to the file using ad hoc methods.

The parallel I/O interfaces suggested here introduce the ability of collabora-
tion among threads on shared data items through collective I/O interfaces, to
specify more work per operation through list I/O interfaces and allow to exploit
OpenMP specific features for I/O, specifically to write private data items to file
in an efficient manner.

The organization of the paper is as follows: Section 2 discusses existing parallel
I/O interfaces. In Section 3 we present the new set of interfaces to support
parallel I/O in OpenMP applications along with design alternatives. Section 4
presents a prototype implementation of the interfaces in the OpenUH compiler
framework, while Section 5 evaluates the performance of this implementation
for various micro-benchmarks. Finally, Section 6 summarizes the contributions
of this paper, and gives an overview of outstanding items and currently ongoing
work.

2 Related Work

The most widely used parallel I/O specification is based on the Message Passing
Interface (MPI) [3], which has introduced the notion of parallel I/O in version
two. The most notable features of MPI I/O compared to standard POSIX style
I/O operations are i) the ability to express in advance, regions of interest in
a file on a per process basis using the file-view; ii) the notion of collective I/O
operations, which allows processes to collaborate and transform often suboptimal
I/O requests of each process into a more file-system friendly sequence of I/O
operations; iii) and support for relaxed consistency semantics which pushes the
responsibility to create a consistent file from the file-system to the application.

Unified Parallel C (UPC) is an extension of the C language for parallel com-
puting based on a partitioned global address space (PGAS). UPC provides an
abstraction for parallel I/O [4] mostly following the MPI I/O specification. The
main difference with MPI I/O comes from the fact that UPC I/O does not have
the notion of derived data types and thus has to use List I/O interfaces.

Other popular I/O libraries include HDF5 [5] and pNetCDF [6]. Although
both libraries support the notion of parallel I/O, they are layered on top of MPI
I/O and do not introduce significant new features.

Specification and Performance Evaluation of Parallel I/O Interfaces 3

3 Interface Specification

In the following, we discuss various design alternatives for parallel I/O interfaces
in OpenMP, followed by the actual specification.

Directive based interfaces vs. runtime based library calls. The primary design
decision is whether to use compiler directives to indicate parallel execution of
read/write operations, or whether to define an entirely new set of library func-
tions. The first approach would have the advantage that the changes made to
an application are minimal compared to using an entirely new set of functions.
Furthermore, it would allow an application to execute in a sequential manner in
case OpenMP is not enabled at compile time.

Additionally, the syntax of the directive based parallel I/O operations are
implicitly assumed to behave similarly to their sequential counterparts. This
poses the challenge of having to first identify which functions to support, e.g. C
I/O style fread/fwrite operations vs. POSIX I/O style read/write operations
vs. fprintf/fscanf style routines. Furthermore, due to fact that OpenMP also
supports Fortran and C++ applications, one would have to worry about the
different guarantees given by POSIX style I/O operations vs. the record-based
Fortran I/O routines or how to deal with C++ streams. Because of the challenges
associated with the latter aspects for a parallel I/O library, we decided to define
an entirely new set of library functions integrated into the runtime library of an
OpenMP compiler.

Individual vs. shared file pointers. The notion of parallel I/O implies that mul-
tiple processes or threads are performing I/O operations simultaneously. A pre-
liminary question when designing the interfaces is whether to allow each thread
to operate on a separate file pointer, or whether a file pointer is shared across all
threads. Due to the single address space that the OpenMP programming model
is based on, shared file pointers seem to be the intuitive solution to adapt. Note,
that the overall goal is that all threads are able to execute I/O operations on
the shared file handle without having to protect the access to this handle.

Collective vs. individual interfaces. A follow-up question to the discussion on
individual vs. shared file pointers is whether threads are allowed to call I/O
operations independent of each other or whether there is some form of restriction
on how threads can utilize the new I/O functions. Specifically, the question is
whether to use collective I/O operations, which request all threads in a parallel
region to call the I/O operations in the same sequence and the same number of
times, or whether to allow each thread to execute I/O operations independent of
each other. Although collective I/O operations initially sound very restrictive,
there are two very good reasons to use them. First, collaboration among the
threads is a key design element to improve the performance of I/O operations.
The availability of multiple (application level) threads to optimize I/O operations
is however only guaranteed for collective interfaces. Second, individual file I/O
operations could in theory also be implemented on a user level by opening the

4 K. Mehta, E. Gabriel, and B. Chapman

file multiple times and using explicit offsets into the file when accessing the
data. Therefore, we decided to support collective I/O interfaces in the current
specification.

However, using collective I/O interfaces also requires a specification of the
order by which the different threads access the data. The current specification
read/writes data in the order of the thread-id’s. However, relying on a thread’s id
is not a robust method of coordinating file operations implicitly among threads,
especially in case of using nested parallelism. The OpenMP specification makes it
clear that relying on thread id order for things such as predetermining the work
a thread gets from a worksharing construct is at best benignly non-conforming
(as in the case of a static schedule used by a parallel loop).

Despite this fact, we opted for now to base implicit ordering among threads
on the total thread id order due to the lack of useful alternatives. If the order
of data items can be determined using a different mechanism in an application,
interfaces that allow each thread to specify the exact location of the data item in
the file are also provided. Our future work exploring parallel file I/O in OpenMP
will consider it in the context of nested parallelism and explicit tasks, particularly
as the latter continues to evolve and mature.

Synchronous vs. asynchronous interfaces. Synchronous I/O interfaces block the
execution of the according function to the point that it is safe for the appli-
cation to modify the input buffer of a write operation, or the data of a read
operation is fully available. Asynchronous interfaces on the other hand only ini-
tiate the execution of the according operation, and the application has to use
additional functions to verify whether the actual read/write operations have fin-
ished. Internally, asynchronous I/O operations are often implemented by spawn-
ing additional threads in order to execute the according read/write operations in
the background. In a multi-threaded programming model, where the user often
carefully hand-tunes the number of threads executing on a particular processor,
creating additional threads in the background can have unintended side affects
that could influence the performance negatively. For this reason, the initial ver-
sion of the OpenMP I/O routines only supports synchronous I/O operations.

Algorithmic vs. list I/O interfaces. A general rule of I/O operations is, that
the more data an I/O function has to deal with, the larger the number of opti-
mizations that can be applied to it. Ideally, this would consist of a single, large,
contiguous amount of data that has to be written to or read from disk. In reality
however, the elements that an application has to access are often not contiguous
neither in the main memory nor on the disk. Consider for example unstructured
computational fluid dynamics (CFD) applications, where each element of the
computational mesh is stored in a linked list. The linked list is in that context
necessary, since neighborhood conditions among the elements are irregular (e.g.
a cell might have more than one neighbor in a direction), and might change
over the lifetime of an application. The question therefore is how to allow an
application to pass more than one element to an I/O operation, each element
pointing to potentially a different memory location and being of different size.

Specification and Performance Evaluation of Parallel I/O Interfaces 5

Two solutions are usually considered: an algorithmic interface, which allows to
easily express repetitive and regular access patterns, or list I/O interfaces, which
simply take a list of <input buffer pointers, data length> as arguments. Due to
the fact that OpenMP does not have a mechanism on how to express/store
repetitive patterns in memory (unlike e.g. MPI using its derived data types),
supporting algorithmic interfaces would lead to an explosion in the size of the
interfaces that would be cumbersome for the end-user. Therefore, we opted to
support list I/O interfaces in the current specification, but not algorithmic in-
terfaces. We might revisit this section however, since Array shaping[7] is being
discussed under the context of OpenMP accelerator support.

Error Handling. As of today, OpenMP does not make any official statements to
recognize hardware or software failures at runtime, though there is active inves-
tigation of this topic by the OpenMP Language Committee (LC). Dealing with
some form of failures is however mandatory for I/O operations. Consider for ex-
ample recognizing when a write operation fails, e.g. because of quota limitations.
Therefore, the I/O routines introduced in this paper all return an error code.
The value returned is either 0 (success), or -1 (failure). In case of a failure, the
amount written/read is undefined. This model follows the (user friendlier) error
behavior of the MPI I/O operations which give stronger guarantees compared
to the POSIX style function and the error codes returned in the errno variable.

3.1 Introduction to the Annotation Used

In the following, we present the C versions of the parallel I/O functions intro-
duced. Since all functions presented here are collective operations, i.e. all threads
of a parallel region have to call the according function, some input arguments
can be either identical or different on each thread. Furthermore, the arguments
can be either shared variables or private variables. Table 1 shows the interfaces,
focusing on the read operations for the sake of brevity. For convenience, we
introduce the following annotation to classify arguments of the functions:

– [private]: The argument is expected to be a private variable of a thread,
values between the threads can differ.

– [private’]: Argument is expected to be different on each thread. This can be
either achieved by using private variables, or by pointing to different parts
of a shared data structure/array.

– [shared]: The argument is expected to be a shared variable.
– [shared’]: An argument marked as shared’ is expected to have exactly the

same value on all threads in the team. This can either be accomplished by
using a shared variable, or by using private variables having exactly the same
value/content.

3.2 Interface Specification

The file management functions consists of two routines to collectively open and
close a file. All threads in a parallel region should input the same file name when

6 K. Mehta, E. Gabriel, and B. Chapman

Table 1. OpenMP I/O general file manipulation routines

File Management Interfaces

int omp file open all([shared] int *fd, [shared’] char *filename, [shared’] int flags)
int omp file close all([shared] int fd)

Different Argument Interfaces

int omp file read all ([private’]void* buffer, long length, [shared]int fd, [shared’]int hint)
int omp file read at all ([private’]void* buffer, long length, [private’]off t offset

[shared]int fd, [shared’]int hint)
[shared]int fd, [shared’]int hint)

int omp file read list all ([private’]void** buffer, int size, [shared]int fd, [shared’]int hint)
int omp file read list at all ([private’]void** buffer, [private’]off t* offsets, int size,

[shared]int fd, [shared’]int hint)

Common Argument Interfaces

int omp file read com all ([shared]void* buffer, [shared’]long length,
[shared]int fd, [shared’]int hint)

int omp file read com at all ([shared]void* buffer, [shared’]long length,
[shared’]off t offset, [shared]int fd, [shared’]int hint)

int omp file read com list all ([shared]void** buffer, [shared’]int size,
[shared]int fd, [shared’]int hint)

int omp file read com list at all ([shared]void** buffer, [shared’]off t* offsets,
[shared’]int size, [shared]int fd, [shared’]int hint)

opening a file. The flags argument controls how the file is to be opened, e.g. for
reading, writing, etc.. The returned file descriptor fd is a shared variable. Note,
that it is recommended to use as many threads for opening the file as will be
used later on for the according read-write operation. However, a mismatch in
the number of threads used for opening vs. file access is allowed, specifically, it is
allowed to open the file outside of a parallel region and use the resulting file han-
dle inside of a parallel region. Having the same number of threads when opening
the file as in the actual collective read-write operation could have performance
benefits due to the ability of the library to correctly set-up and initialize internal
data structures. Note also, that a file handle opened using omp file open all can
not be used for sequential POSIX read/write operations, and vice versa.

The different argument interface routines assume that each thread in a collec-
tive read/write operation passes different arguments, except for the file handle.
Specifically, each thread is allowed to pass a different buffer pointer and different
length of data to be written or read. This allows, for example, each thread to
write data structures that are stored as private variables into a file.

In the explicit offset interfaces, i.e. interfaces that have the keyword at in
their name, each thread should provide the offset into file where to read data
from or write data to. If two or more threads point to the same location in the
file through the according offsets, the outcome of a write operation is undefined,

Specification and Performance Evaluation of Parallel I/O Interfaces 7

i.e. either the data of one or the other thread could be in the file, and poten-
tially even a mixture of both. For read operations, overlapping offsets are not
erroneous.

For implicit offset interfaces, data will be read or written starting from the
position where the current file pointer is positioned. Data will be read from the
file in the order of the threads’ OpenMP assigned IDs.

All functions also take an argument referred to as hint. A hint is an integer
value that indicates whether buffer pointers provided by different threads are
contiguous in memory and file, or not. For the sake of brevity we omit details
at this point. The specification also contains List I/O interfaces, which are not
discussed here due to space limitations.

The common argument interfaces define functions where each thread has to
pass exactly the same arguments to the function calls. The main benefits from
the perspective of the parallel I/O library are that the library has access to
multiple threads for executing the I/O operations. Thus, it does not have to
spawn its own threads, which might under certain circumstances interfere with
the application level threads.

In the following, we show a simple example using the interfaces described
above.

int fd; //global file handle

char* buf; //global data buffer

#pragma omp parallel

{

char* private_buf; //private data buffer

long len = 100000000;

omp_file_open_all (&fd, "input.out", O_RDONLY);

// Read data into private buffer

omp_file_read_all(private_buf, len, fd, NULL);

omp_file_close_all(fd);

do_something (buf, private_buf);

omp_file_open_all (&fd, "result.out", O_CREAT|O_RDWR);

// Write data from global buffer

omp_file_com_write_all(buf, len, fd, NULL);

}

...

#pragma omp parallel

{

// write more data from global buffer

omp_file_com_write_all(buf, len, fd, NULL);

omp_file_close_all(fd);

}

8 K. Mehta, E. Gabriel, and B. Chapman

4 Implementation in the OpenUH Compiler

We developed a parallel I/O library which provides collective I/O operations
based on POSIX threads. The library is organized in multiple logical compo-
nents, the most important of which we present in the following.

The base function collects the input arguments provided by all threads in a
single array. All threads sychronize at this point through a barrier, after which
the master thread begins analyzing the input arguments and redirects control
to the contiguity analyzer or the work manager. The remaining threads are put
to sleep and wait for an I/O assignment.

The contiguity analyzer performs the optimization of merging buffers by scan-
ning the input array of memory addresses to look for contiguity between them.
If the analyzer finds discontiguity between buffers, it passes the contiguous block
found so far to the work manager and proceeds with the scan on the rest of the
array. Large sized blocks are split amongst threads instead of assigning an entire
block to a single thread.

The work manager performs the task of assigning blocks of data to be
read/written to threads. Once it accepts a contiguous block of data from the
contiguity analyzer (or from the base function), it assigns the block to the next
available worker thread and sets the ASSIGNED flag for the thread. It also
manages the internal file offset used for those interfaces that do not accept a
file offset explicitly. The work manager can be programmed to wake up a thread
immediately once an I/O request is assigned to it or wake up all threads once
the contiguity analyzer completes its analysis and the FINISH flag is set.

The low level interfaces list the functions available to a thread for performing
I/O. As an example, for a thread with multiple I/O assignments, it creates an
array of struct iovec and calls the readv / writev routines.

The parallel I/O library has been integrated in the runtime of the OpenUH
compiler. OpenUH [8], a branch of the Open64 4.x compiler suite, is a production
quality, fully functional C/C++ and Fortran optimizing compiler under develop-
ment at University of Houston that supports the bulk of the OpenMP 3.0 API,
including explicit tasking. It is freely available1 and used as a basis upon which
language extensions (e.g., Co-array Fortran) and new ideas for better supporting
OpenMP during both the compilation and runtime phases are explored.

Since the collective I/O interfaces were originally developed as part of a stand-
alone library for POSIX threads, integration of the library with the compiler and
providing the OpenMP syntax discussed previously required some modification.
The bulk of the integration work was to take advantage of the functionality of the
compiler’s OpenMP runtime within the parallel I/O library. This includes using
the runtime’s functionality to determine the number of threads in a parallel re-
gion, thread ID’s etc. Furthermore, the parallel I/O library has been modified to
take advantage of the highly optimized synchronization routines among threads
instead of the original implementation in the parallel I/O library.

1 http://www.cs.uh.edu/~hpctools/OpenUH

http://www.cs.uh.edu/~hpctools/OpenUH

Specification and Performance Evaluation of Parallel I/O Interfaces 9

5 Performance Evaluation

In the following, we evaluate the performance of the prototype implementation
on two storage systems using a set of micro-benchmarks that implement com-
monly used I/O patterns in OpenMP applications and/or options to express I/O
patterns in OpenMP applications. In this paper, we focus on write operations,
although most micro-benchmarks can easily be extended to read operations as
well. In the following, we provide a brief description of the microbenchmarks
used.

1. Writing in parallel to one file using the ordered directive Threads write non-
overlapping parts of a large shared buffer to a shared file using POSIX write()

operations in this benchmark. Since the file descriptor is shared between all
threads, access to it is protected by executing an ordered for loop. Note that
access to the file descriptor could also be protected using OpenMP’s critical
section. This test exposes the performance drawback that can be seen when
access to a shared file needs to be exclusive. As such, this is a worst case scenario
when threads write to a common file.

2. Writing in parallel to separate files All threads perform writes to separate,
individual files in this benchmark. Each thread has exclusive access to its own
file and can perform I/O without requiring any interaction/synchronization with
other threads. For many scenarios, this access pattern will lead to the maximum
I/O bandwidth achievable by an OpenMP application.

3. Collective write using omp file write all This benchmark aims to evalu-
ate the collective interface omp file write all. Threads write non-overlapping
parts of a large, shared matrix to a common file. The file is opened using
omp file open all. The shared matrix is ultimately written multiple times us-
ing a for loop to achieve the desired file size. The access to the open file does
not require synchronization between threads.

5.1 Resources

For our experiments, we use two PVFS2 (v2.8.2) [9] file system installations. One
has been setup over nodes of a cluster that employ regular hard drives, whereas
the second installation has been setup over an SSD based storage.

PVFS2 over the Crill Compute Cluster The crill compute cluster consists of
16 nodes, each node having four 2.2 GHz 12-core AMD Opteron processors (48
cores total) with 64 GB main memory. Each node has three 4x SDR InfiniBand
links, one of them being reserved for I/O operations and two for message passing
communication. A PVFS2 file system has been configured over the crill nodes
such that all 16 crill nodes act as PVFS2 servers and clients, and a secondary
hard drive on each node is used for data storage.

PVFS2 over SSD Apart from regular hard drives, the crill cluster has a
RAMSAN-630 Solid State Disks (SSD) based storage from Texas Memory Sys-
tems. This SSD is made of NAND based enterprise grade Single Level Cell (SLC)
flash. The SSD installation has four 500GB cards, thus making a total of 2TB.
It has two dual port QDR Infiniband cards, and we use one of two ports on each

10 K. Mehta, E. Gabriel, and B. Chapman

card. The peak I/O bandwidth of the SSD storage is 2 GB/s. The PVFS2 par-
allel file system configured over the SSD employs two separate I/O servers, each
I/O server serving exactly half of the SSD storage. Tests have been executed
multiple times, and we present in each case the average of the bandwidth values
observed across various runs. Also, we flush all data to disk using fsync before
closing a file to ensure we do not see effects of data caching.

5.2 Results

First, we present the results of the first two micro-benchmarks described above.
These benchmarks do not utilize the new interfaces presented in this paper,
but allow to set upper and lower bounds for the expected performance of the
collective OpenMP I/O interfaces.

The left part in figure 1 shows the bandwidth obtained on the crill-pvfs2
file system when threads perform I/O to a shared file. The I/O bandwidth ob-
served reaches a maximum of 212 MBytes/sec, independent of the number of
threads used. This can be explained by the fact that the benchmark serial-
izes the access to the file handle and therefore the I/O operation itself. The
right part of fig 1 shows the results obtained with the second micro-benchmark
where threads write to individual files. The bandwidth obtained in this case is
significantly higher than when threads write to a shared file, reaching a maxi-
mum of almost 500 MBytes/sec. This value is an indication of the upper bound
on the I/O performance that can be achieved from a single node. Note how-
ever, that for many production codes this solution would require a separate
merging step, which would degrade the overall bandwidth obtained. Results of
the same two microbenchmarks executed on the SSD storage revealed a similar
trend in the performance can be seen for both, the first benchmarks achieving a

 0

 100

 200

 300

 400

 500

 600

8k 32k 128k 512k 2m 8m 32m 128m 512m

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Segment size

Shared file benchmark on crill-pvfs2

1 thread

2 threads

4 threads

8 threads

16 threads

32 threads

48 threads

 0

 100

 200

 300

 400

 500

 600

8k 32k 128k 512k 2m 8m 32m 128m 512m

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Segment size

Individual files benchmark on crill-pvfs2

1 thread

2 threads

4 threads

8 threads

16 threads

32 threads

48 threads

Fig. 1. Shared file microbenchmark(left) and individual files microbenchmark(right)
on crill-pvfs2

Specification and Performance Evaluation of Parallel I/O Interfaces 11

maximum average write bandwidth of 160 Mbytes/sec, and the second bench-
mark 356 Mbytes/sec. We omit the graphs due to space restrictions.

Fig 2 shows the performance of omp file write all on crill-pvfs2 platform.
Note that omp file write all is a collective function where every thread pro-
vides a fixed amount of data and the data points shown on this graph (seg-
ment size) indicate the total amount of data written across the threads by each
omp file write all call. The results indicate that our prototype implementation
of the new OpenMP I/O routine presented in this paper achieved a bandwidth
in excess of 500 Mbytes/sec. Performance for 1, 2 threads reaches a maximum
of 214 Mbytes/sec and 360 Mbytes/sec respectively, whereas it is much higher
for a larger number of threads. The benefits of multiple threads performing I/O
are clear in this case. It can also be seen that overall, increasing the segment
size, i.e. the amount of data written in a single function call, results in increas-
ing performance. However, the bandwidth obtained does not necessarily increase
beyond a certain threshold. For the crill-pvfs2 file system, the main limitation
comes from how fast data can be transferred out of the node, while for the SSD
storage the limitation is sustained write bandwidth of the storage itself.

 0

 100

 200

 300

 400

 500

 600

8k 32k 128k 512k 2m 8m 32m 128m 512m

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Segment size

omp_file_write_all on crill-pvfs2

1 thread

2 threads

4 threads

8 threads

16 threads

32 threads

48 threads

 0

 100

 200

 300

 400

 500

 600

8k 32k 128k 512k 2m 8m 32m 128m 512m

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Segment size

omp_file_write_all on pvfs2-ssd

1 thread

2 threads

4 threads

8 threads

16 threads

32 threads

48 threads

Fig. 2. omp file write all on crill-pvfs2 (left) and pvfs2-ssd (right)

Fig. 3 shows a comparison of all three micro-benchmarks for 16 threads. De-
spite the fact that omp file write all writes to a shared file, its performance is
consistently better than when writing to a shared file using explicit serialization.
The new collective I/O routines presented in this paper perform typically close
to the performance of the second micro-benchmark, which – as discussed – of-
ten represents a best-case scenario. Furthermore, taking into account that the
’separate files’ scenario would require an explicit merging step after executing
the application, the new routines clearly represent the best of three solutions
evaluated in the corresponding micro-benchmarks.

12 K. Mehta, E. Gabriel, and B. Chapman

 0

 100

 200

 300

 400

 500

 600

8k 32k 128k 512k 2m 8m 32m 128m 512m

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Segment size

Comparing omp_file_write_all with microbenchmarks on crill-pvfs2

shared file

individual files

omp_file_write_all

 0

 100

 200

 300

 400

 500

 600

8k 32k 128k 512k 2m 8m 32m 128m 512m

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Segment size

Comparing omp_file_write_all with microbenchmarks on crill-pvfs2-ssd

shared file

individual files

omp_file_write_all

Fig. 3. Comparing microbenchmarks with omp file write all for 16 threads on crill-
pvfs2 (left) and pvfs2-ssd (right)

5.3 BT I/O

The new OpenMP I/O routines have also been evaluated with two OpenMP
applications. We present here results obtained with the Block-Tridiagonal (BT)
NPB benchmark [10], which has in its MPI version an I/O performance com-
ponent. An OpenMP version of the BT benchmark is available since version 3
of NPB, however without the I/O part. We extended the NPB OpenMP BT
benchmark to include I/O in a way similar to its MPI-IO implementation. Note,
that subtle differences remain between the two implementations, most notably
that the OpenMP version does not read the data back for verification after the
write operation.

Experiments have been performed with the class D benchmark, where ap-
proximately 128 Gigabytes of data are written over the course of the program
(approximately 2.5GB of data over 50 iterations). Table 2 shows the time spent
in I/O operations over both file systems for various numbers of threads. I/O
was performed such that data was split between threads and every thread was
involved in writing data. The overall results indicate, that the I/O time can be
improved by a factor of around 2.5 for this application. The time spent in I/O op-
erations is constantly decreasing until 4 threads, and stays constant afterwards,
since the limitations of the two file systems described in the previous subsection
have been reached. While the results indicate that the I/O performance might
not necessarily scale to arbitrary numbers of threads, it is important to note,
that the prototype implementation of the new interfaces did lead to a significant
performance improvement, which allowed to push the performance of the I/O
operations. An advanced user might be able to achieve the same performance
through regular POSIX style I/O routines. However, our interfaces have the
advantage of a) providing good performance for non I/O expert, b) taking ad-
vantage of the multi-threaded execution environment in an OpenMP application,
and c) offer support for a number of scenarios such as collectively writing private
variables that would be very difficult to achieve without compiler support.

Specification and Performance Evaluation of Parallel I/O Interfaces 13

Table 2. BTIO results showing I/O times (seconds)

No. of threads crill-pvfs2 pvfs2-ssd

1 410 691
2 305 580
4 168 386
8 164 368
16 176 368
32 172 368
48 168 367

6 Conclusions

This paper introduces a set of interfaces for performing parallel I/O in OpenMP
applications. We discuss design alternatives and present the architecture of a
prototype implementation. Using a set of micro-benchmarks we evaluate the
performance of the implementation on two different platforms. The results ob-
tained indicate the potential of the new interfaces in case a high-performance
parallel file system is used.

An important question is arising about the interoperability of the MPI I/O
specification with the interface routines suggested in this paper. A hybrid ap-
plication using both OpenMP and MPI would have to choose at the moment
between the two competing specifications. Depending on whether it uses one file
per process or one file across multiple processes, it could use the OpenMP I/O or
the MPI I/O routines, but not both simultaneously. However, an interesting ap-
proach in combining the two specifications could be given in that the MPI I/O
library could use internally the OpenMP I/O routines to enhance the perfor-
mance of the I/O operations on a per-node basis. This could become especially
attractive with the upcoming MPI-3 standard, which allows a hybrid application
to register helper threads with the MPI library to enhance the performance of
communication and I/O operations.

In the future, we plan to extend this work into multiple directions. First, the
interface specification itself will be updated to take advantage of recent develop-
ments in OpenMP into account, such as array shaping or explicit tasks. Second,
a tremendous amount of optimizations are possible in the parallel I/O library it-
self, such as explicitly controlling the number of active threads reading/writing
data, exploiting data locality in NUMA architectures for I/O operations and
combining multiple resources (e.g. local disk + network storage) to enhance the
performance of the I/O operations.

Acknowledgments. We would like to thank Brett Estrade, who had edito-
rial contributions to the first version of the paper. Partial support for this
work was provided by the National Science Foundation’s Computer Systems Re-
search program under Award No. CNS-0833201 and CRI-0958464. Any opinions,

14 K. Mehta, E. Gabriel, and B. Chapman

findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National
Science Foundation.

References

1. Gabriel, E., Venkatesan, V., Shah, S.: Towards high performance cell segmentation
in multispectral fine needle aspiration cytology of thyroid lesions. Computational
Methods and Programs in Biomedicine 98(3), 231–240 (2009)

2. OpenMP Application Review Board: OpenMP Application Program Interface,
Draft 3.0 (October 2007)

3. Message Passing Interface Forum: MPI-2.2: Extensions to the Message Passing
Interface (September 2009), http://www.mpi-forum.org

4. El-Ghazawi, T., Cantonnet, F., Saha, P., Thakur, R., Ross, R., Bonachea, D.:
UPC-IO: A Parallel I/O API for UPC. V1.0 (2004)

5. Group, H.D.F.: HDF5 Reference Manual. Release 1.6.3, National Center for
Supercomputing Application (NCSA), University of Illinois at Urbana-Champaign
(September 2004)

6. Li, J., Liao, W.K., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham, R.,
Siegel, A., Gallagher, B., Zingale, M.: Parallel netcdf: A high-performance scientific
i/o interface. In: Proceedings of the 2003 ACM/IEEE Conference on Supercom-
puting, SC 2003, pp. 39–49. ACM, New York (2003)

7. Ayguadé, E., Badia, R.M., Bellens, P., Cabrera, D., Duran, A., Ferrer, R., González,
M., Igual, F.D., Jiménez-González, D., Labarta, J.: Extending openmp to sur-
vive the heterogeneous multi-core era. International Journal of Parallel Program-
ming 38(5-6), 440–459 (2010)

8. Liao, C., Hernandez, O., Chapman, B., Chen, W., Zheng, W.: OpenUH: An opti-
mizing, portable OpenMP compiler. In: 12th Workshop on Compilers for Parallel
Computers (January 2006)

9. PVFS2 webpage: Parallel Virtual File System, http://www.pvfs.org
10. Wong, P., der Wijngaart, R.F.V.: NAS Parallel Benchmarks I/O Version 3.0.

Technical Report NAS-03-002, Computer Sciences Corporation, NASA Advanced
Supercomputing (NAS) Division

http://www.mpi-forum.org
http://www.pvfs.org

The Design of OpenMP Thread Affinity

Alexandre E. Eichenberger1, Christian Terboven2, Michael Wong3,
and Dieter an Mey2

1 IBM T.J. Watson Research Center, Yorktown Heights, New York, USA
alexe@us.ibm.com

2 Center for Computing and Communication,
JARA, RWTH Aachen University, Germany

{terboven,anmey}@rz.rwth-aachen.de
3 IBM Software Group, Toronto, Ontario, Canada

michaelw@ca.ibm.com

Abstract. Exascale machines will employ significantly more threads than today,
but even on current architectures controlling thread affinity is crucial to fuel all
the cores and to maintain data affinity, but both MPI and OpenMP lack a solution
to this problem. In this work, we present a thread affinity model for OpenMP,
which will be shown to work well with hybrid use cases, too. It maintains a sep-
aration of platform-specific data and algorithm-specific properties, thus offering
deterministic behavior and simplicity in use.

1 Introduction

On Exascale machines, higher performance will likely be achieved by significantly scal-
ing the computing power combined with a smaller increase in total memory capacity.
Systems will run significantly more threads than today and these threads will share
deeply-hierarchical memory architectures, as it is the case today already. For applica-
tions, this implies the need to exploit parallelism at every possible level, e.g., using
MPI [10] for process-level, coarse-grain parallelism and OpenMP [8] for outer-loop,
medium-grain parallelism as well as for inner-loop, fine-grain parallelism. Since mem-
ory accesses to remote locations incur higher latency and lower bandwidth, control of
thread placement to enforce affinity within parallel applications is crucial to fuel all the
cores and to exploit the full performance of the memory subsystem on Non-Uniform
Memory Architectures (NUMA).

However, both programming models lack a solution for this problem. The user is
constrained to employ vendor-specific approaches which mostly are not portable be-
tween different systems and often set a unique affinity policy for the whole application,
without the option to change behavior for a given parallel region. This underlines the
need for a common affinity mechanism that is integrated in the OpenMP standard.

In this work, we present a solution to control thread affinity in OpenMP programs,
which will be shown to be compatible with MPI in hybrid use cases. It maintains a
separation of platform-specific data and algorithm-specific properties, thus offering de-
terministic behavior and simple employment by the application users in most scenarios.

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 15–28, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

16 A.E. Eichenberger et al.

This work explains in detail the proposal made by the Affinity Subcommittee of the
OpenMP Language Committee to incorporate support for thread affinity in OpenMP
4.0.

This paper is structured as follows: Chap. 2 discusses related work and vendor-
specific affinity proposals. Chapter 3 describes the underlying machine model used in
Chap. 4 outlining the behavior of threads inside places and the affinity policies. Chap-
ter 5 explains use scenarios and the reference implementation, followed by Chap. 6 on
possible future enhancements. We close with Chap. 7 as our summary.

2 Related Work

OpenMP [8] provides a standard, easy to use programming model for multiprocessors,
without any notion of the hardware an OpenMP programming is running on. This has
been noted by OpenMP implementors, who use appropriate operating system calls to
offer compiler vendor-specific environment variables to pin software threads to pro-
cessors [3]. These approaches will be described in Chap. 2.1, however, they are not
portable and we are convinced that the low-level control of thread pinning from within
an OpenMP program does not provide the right level of abstraction necessary to pro-
gram current and future system architectures. This is particularly true when two or more
levels of parallelism are employed[4].

Several proposals to extend OpenMP with support for thread and also data affin-
ity have been made in the past, including the extension by low-level APIs as well as
higher-level concepts. This work most significantly differentiates from previous ones
by the introduction of places as an abstraction of architecture details, with which the
application user may control the program execution. A similar concept named loca-
tion [12] as both an execution environment as well as data storage has been proposed
before by Huang et al., again borrowing ideas from X10’s place and Chapel’s locale.
All this previous work heavily influenced this proposal.

Libraries such as the Portable Hardware Locality (hwloc)[2] provide a low level
of hardware abstraction and offer a solution for the portability problem by support-
ing many platforms and operating systems. This and similar approaches may provide
detailed hardware information in a tree-like structure. However, even some current sys-
tems cannot be represented correctly by a tree, such as an 8-socket AMD Operton or
Intel Xeon system, where the number of hops between two sockets vary between socket
pairs. Still we believe that dealing with this information is too low-level for most appli-
cation programmers.

2.1 Current Implementation-specific Approaches

All implementations have in common that they did not introduce a specific naming
scheme to identify processor cores, but rather use the core numbering scheme provided
by the operating system. They are configuration specific in that they have been designed
by vendors to easily and quickly support contemporary systems.

The KMP AFFINITY environment variable in the Intel compilers [7] allow to bind
OpenMP threads to cores. If unspecified, threads remain unbound. The environment

The Design of OpenMP Thread Affinity 17

variable may contain enumerations of single core numbers in any order or ranges of
core numbers with and without the definition of a stride, as well as sets of core num-
bers using the same scheme enclosed in curly brackets. Thus, threads may be bound
to specific cores, but also to a set of cores representing a whole part of the machine.
Furthermore, it knows about the specifiers compact and scatter: specifying compact as-
signs the OpenMP thread n+1 to a free thread context as close as possible to the thread
context where the n-th OpenMP thread was placed, and specifying scatter distributes
the threads as evenly as possible across the entire system. Adding the specifier ver-
bose instructs the runtime to print information regarding the detected machine topology
as well as the actual thread binding. In order to distribute four OpenMP threads over
two sockets and four cores on the machine illustrated in Fig. 1, one could either set
KMP AFFINITY to "scatter" or "0,4,8,12".

While the facility provided by Intel is very flexible and addresses many use cases,
it does not support nested OpenMP well. The way in which thread binding for com-
pact and spread is computed does not allow any changes after the program has started.
However, the features of the Intel implementation influenced this proposal heavily.

The GOMP CPU AFFINITY environment variable controls the binding of threads to
specific cores in the OpenMP runtime of the GNU compilers, libgomp[5]. The variable
may contain enumerations of core ids in any order or ranges of cores with and without
the definition of a stride. If specified, the OpenMP threads are bound in the order in
which they are started to the given cores, one thread per core. If more threads are started
than cores specified in the list, the assignment continues from the beginning of the list.
If the variable is unspecified, the assignment of threads is up to the host system.

The Oracle compilers[9] offer the SUNW MP PROCBIND environment variable to
influence the binding of threads, which is disabled by default. If the environment vari-
able is set to true, the threads are bound to the available cores in a round-robin fashion,
although the starting core is determined by the OpenMP runtime, unless exactly one
core number is given. If a list of core numbers is specified, the OpenMP threads will be
bound in a round-robin fashion to these cores.

The PGI compilers[11] do not bind threads to cores unless the user sets the en-
vironment variable MP BIND to yes. If binding is enable, the environment variable
MP BLIST may contain a list of core numbers the threads are being bound to, one
thread per core in a round-robin manner.

The IBMTMcompilers[6] support binding via the environment variableXLSMPOPTS.
This can be set to bind=SDL=n1,n2,n3 or bindlist=SDL=n1,...,ni. SDL is
a system detail level and can be PROC, PROC CORE, L2CACHE, or MCM, which is a
node. Both allow to bind threads to multiple logical processors. The first option speci-
fies an enumeration with the integers n1 being the starting resource id, n2 is the number
of requested resources, and n3 is the stride, which specifies the increment used to deter-
mine the next resource id to bind, ignoring extra resources if the number of resources
specified is greater than the number of threads. In the latter option the list of integers
enumerates the resources to be used during binding. When the number of threads t is
greater than the number of resources x, t threads are divided among x resources ac-
cording to the following formula: The �t/x� threads are bound to the first t mod x
resources. The �t/x� threads are bound to the remaining resources.

18 A.E. Eichenberger et al.

Fig. 1. Linear system with 2 sockets, 8 cores, and 16 hardware threads

The features provided by the GNU, Oracle, PGI and IBM implementations work
well for many use cases, but again do not provide support for nested OpenMP. The
binding of a thread to a single core is too restrictive for several scenarios. In order to
distribute four OpenMP threads on two sockets and four cores on the machine illustrated
in Fig. 1, using the GNU, Oracle or PGI implementations one has to set the respective
environment variable to "0,4,8,12". For the IBM runtime one could either set the
environment variable XLSMPTOPS to "bind=PROC CORE=0,4,4" or otherwise to
"bindlist=PROC CORE=0,4,8,12".

3 Machine Model

HPC machines are typically built using a hierarchy of building blocks that are increas-
ingly shared among the threads in the systems. For example, a few hardware threads
share a common core including functional units and first level cache. Cores are then
replicated to form a chip or socket, where they share a common cache hierarchy and
ports to external caches or memory devices. At the next level, chips or sockets are as-
sembled to form a node or a system. An example of a linear system is depicted in Fig. 1.

While we could conceivably build a machine model that precisely represents such
hierarchies of machine resources, we decided against such detailed representation for
the following reasons. First, it is difficult to find a precise, detailed representation that
encompasses all of the current and up-coming HPC architectures. Second, we would
have to provide a detailed interface for the user to interact with the representation. This
interaction would be required by application writers who aim at generating portable
code, as they might desire one kind of affinity on a machine with one set of features,
and another type of affinity on a machine with a distinct set of features. Third, detailed
representation and associated affinity policy are bound to introduce additional runtime
overhead during parallel region creation.

3.1 Places

Because of the above reasons, here we propose to use a simple representation of re-
sources rooted in the concept of a place: a place is defined as a set of hardware execu-
tion environments (e.g. hardware threads, processor cores, GPU lanes) that is treated by
OpenMP as one unit of location when dealing with OpenMP thread affinity. A place is a
clear delineation of OpenMP thread placement: on one hand, the user can fully specify

The Design of OpenMP Thread Affinity 19

the places to be used for each of the OpenMP threads in a given parallel region; and on
the other hand, the OpenMP runtime has full flexibility to place and migrate OpenMP
threads within any of the execution environments mapped to a given place. This defi-
nition is very flexible as it lets the user specify the affinity that matters for the user’s
application by determining the assignment of OpenMP threads to places while leaving
sufficient amount of flexibility to the runtime to perform runtime-driven load balancing
within the allocated resources.

We propose to give the user full control over the allocation of resources to each
place in the system. For example, consider a user wanting to determine the placement
of OpenMP threads to the hardware cores in the system and let the OpenMP runtime en-
vironment determine load balancing among the threads within each core. Using the sys-
tem depicted in Fig. 1 as an example, this user would define a set of up to 8 places, one
per physical core, and allocate two hardware threads per place, e.g., hardware threads
t0 and t1 for the first place, an so on. Consider a second user that wants to maintain
full control over affinity and disallow the OpenMP runtime to perform any runtime load
balancing. Using the same machine, this user would define a set of up to 16 places, each
containing exactly one hardware thread. A third user may want to give the runtime full
control over thread placements, and thus would assign all hardware threads to a unique
place, e.g., including hardware threads t0 to t15.

3.2 Place List

Now we consider how the places in the system relate with one another. The place list
is defined as an ordered list of places. Consider the list (t0), (t1), (t2), ... to (t15) repre-
senting a list of 16 places, each including a single hardware thread. This list represent
one possible walk through the hardware threads in Fig. 1 such that threads sharing cores
be next to each others, and then threads associated with neighbor cores be next to each
other, and so on. For example, place (t0) is followed by place (t1) as they share a com-
mon core, and then by places (t2) and (t3) as they all share a common chip. Note that the
place list is not a reliable indicator of the degree of sharing since, for example, neighbor
places (t6) and (t7) have a core in common but neighbor places (t7) and (t8) only share
the same node, but neither core nor chip.

This concept of a place list also applies to two-dimensional torus-like structures. In
this case, a suitable list of places including one hardware thread each is obtained by, for
example, zigzagging among the threads of the first chip before listing the threads of the
next chip.

3.3 Model Specification

The thread-affinity machine model consists of an ordered list of places along with a set
of execution environment resources dedicated to each place in the list. While we expect
most users to rely on a default vendor-specific, machine-specific machine model, we
also provide a mechanism for a user-defined machine model. Like other parameters in
the OpenMP model, this can be provided as an environment variable (OMP PLACES)
using the semantic provided in Fig. 2. The value of OMP PLACES can be one of two

20 A.E. Eichenberger et al.

”OMP PLACES” = <place-list> | <abstract-name>

<place-list> = <place-interval> ”,” <place-list> | <place-interval>
<place-interval> = <place> ”:” <len> ”:” <step> | <place> ”:” <len> |

<place> | ”!” <place>

<place> = ”(” <resource-list> ”)”
<resource-list> = <resource-interval> ”,” <resource-list> |<resource-interval>

<resource-interval> = <resource> ”:” <len> ”:” <step> |
<resource> ”:” <len> | <resource> | ”!” <resource>

<abstract-name> = <word> | <word> | . . . | <word>

<resource> = non-negative integer
<len> = positive integer (not null)
<step> = integer

Fig. 2. Place list syntax

types of values: either an abstract name describing a set of places or an explicit list of
places described by non-negative numbers.

When appropriate for the target machine, abstract names such as threads and
cores should be understood by the execution and runtime environment. While the
precise definitions of the abstract names are vendor-specific, these definitions should
correspond to the intuition of informed users, i.e. cores defining each place corre-
sponds to a single physical core (having one or more hardware threads). Vendors may
also add abstract names as appropriate for their target platforms.

Alternatively, the OMP PLACES environment variable can be defined using an ex-
plicit ordered list of places. A place is defined by an unordered set of nonnegative
numbers enclosed by parenthesis and comma separated. The meaning of the numbers
is implementation-dependent, but generally represent the smallest unit of execution ex-
posed by the execution environment, typically a hardware thread. The exact syntax is
defined in Fig. 2, the examples below define a model with 4 places containing 4 hard-
ware threads each:

OMP_PLACES="(0,1,2,3),(4,5,6,7),(8,9,10,11),(12,13,14,15)"
OMP_PLACES="(0:4),(4:4),(8:4),(12:4)"
OMP_PLACES="(0:4):4:4"

3.4 Strengths and Limitations of the Machine Model

As formulated, the thread-affinity machine model is static for the duration of the ex-
ecution of the OpenMP program and provides for a single, linear level of abstraction,
namely a list of places. The model only permits thread migration within each given
place; however, the user is free to define as coarse a place as required by load-balancing

The Design of OpenMP Thread Affinity 21

needs. While the model limitations may theoretically impact the performance of spe-
cific applications, we believe that the model strikes a good balance between efficiency
and expressivity, because most machines’ building blocks and applications’ parallelism
are hierarchical in nature. Similarly, the parallelism in most HPC applications is hi-
erarchical, with coarse-grain, outer-loop parallelism, which, in turn, includes nested,
fine-grain, inner-loop parallelism. As a result, the linear partition of places will often be
perfectly partitioned at the outer-loop levels. Examples in section 5 fill further illustrate
this point.

4 Affinity

4.1 Threads per Place

While places deal with hardware resources, we have not yet defined how the software
threads under control of the OpenMP runtime are mapped to the places. The OpenMP
standard already has a mechanism to cap the maximum number of concurrently working
OpenMP threads in the system. This upper limit is stored in the runtime as the Inter-
nal Control Variable (ICV) thread-limit-var and is set by the OMP THREAD LIMIT
environment variable.

It has to be defined how to cap the number of OpenMP threads in the presence of a
place-list. One approach would be to simply let the runtime create as many OpenMP
threads as needed for each place as long as the total number does not exceed the thread-
limit-var ICV. While flexible, this approach suffers from a few issues. First, one place
could temporarily consume all OpenMP threads, thus leaving no more threads for other
places at a given instance of time, thus creating imbalance in the system. Second, not
all architectures and operating systems efficiently support over-subscription of software
threads to hardware threads. Third, performance may become more difficult to predict
if some places have a large number of OpenMP threads while others have very few.

Thus one approach is to use a fix, static policy mapping an equal number of OpenMP
threads to each place defined in the system (plus or minus one). Defining P as the
number of places in the place list, the number of OpenMP threads per place is capped
at �thread-limit-var/P � OpenMP threads, with the first thread-limit-var mod P places
having their cap increased by one.

Figure 3 illustrates the assignment of OpenMP threads to an 8-place target machine
with a thread limit of, respectively, 8, 32, and 20 OpenMP threads. Note that this ap-
proach does not preclude supporting heterogeneous machines with strong and weaker
cores. Consider, for example, the mapping of threads for a machine with 1 strong core
and 6 weak cores. In this case, the user can create two places associated with the
hardware threads of the strong core, and 6 places associated with hardware threads
of the weak cores. As a result, even though each place is capped to an equal number of
OpenMP threads, the strong core will effectively execute up to twice as many OpenMP
threads as each of the weak cores.

The drawback of this approach is that it reuses OMP THREAD LIMIT in a slightly
different context. Another approach would be to introduce an alternative environment
variable, or use the number of hardware resources listed in OMP PLACES.

22 A.E. Eichenberger et al.

Fig. 3. Threads per places for varying thread limits (OMP THREAD LIMIT)

4.2 Affinity Policies

The new affinity clause on the parallel construct determines the selection of places,
which remains fixed for the duration of the parallel region. When designing the affinity
policies, our aim was to provide effective affinity for a large set of application patterns
while remaining at a high level so as to provide an interface that is portable across
threading levels and platforms. The main affinity policies are spread and compact,
whose features are highlighted below.

– Spread. When using the spread affinity, the user requests the OpenMP runtime to
spread the worker threads evenly within the places in the system, as much as possi-
ble. We expect users to select this affinity policy in order to increase the resources
available to each worker thread. The spread policy also logically sub-divides the
machine in equally sized sub-partitions so as to enable suitable affinity in presence
of nested parallelism.

– Compact. When using the compact affinity, the user requests the OpenMP runtime
to pack the worker threads on the same place as the master, as much as possible. We
expect users to select this affinity policy in order to exploit fine-grain instruction-
level parallelism among the created threads while aiming to preserve data locality
among the different threads to the same subset of the memory hierarchy.

The detailed behavior of an OpenMP implementation is defined in terms of ICVs.
First, we define the place-list-var ICV as an ordered list describing all OpenMP places
available to the execution environment. Its value is constant during the duration of the
program. The user can set its value with the OMP PLACES environment variable, or a
default, vendor-specific value is used. Second, we define the place-partition-var ICV as
an ordered list that corresponds to one contiguous interval in the place list and describes
the places currently available to the execution environment for a given parallel di-
rective. Its initial value is set to include the entire place list as defined by the place-list-
var ICV. Its value may change when creating a parallel region using the spread affinity
policy. There is one copy of this ICV per data environment. Third, the policies impact
how the OpenMP threads are numbered within a parallel region.

Figure 4 illustrates the affinity policies, where the middle column shows a visual de-
piction of parallel constructs with specific affinity policies, the rightmost three columns

The Design of OpenMP Thread Affinity 23

Fig. 4. Compact and Spread affinity policies

summarize the impact on the three parts of the execution environment, respectively, par-
tition, thread placement, and thread numbering. In this figure, circles illustrate threads,
white boxes depict places and grey boxes indicate the values of place-partition-var
ICVs. Figure 4(a) depicts a (parent) thread owning a partition of the machine with six
places, p4 to p9, before executing a parallel construct with three threads.

Let us focus first on the impact of affinity on partitions. We see in Fig. 4 that the
spread policy subdivides the partition of the parent thread. The original place-partition-
var ICV, including places p4 to p9, is partitioned in three equal-sized, contiguous sub-
partitions, where the master thread gets p4 and p5, one worker thread gets p6 and p7,
the other worker gets p8 and p9. In general, when the parent’s partition cannot be
divided evenly, only the last partition includes more places than the other partitions.
When a parallel construct requests more threads than there are places in the par-
ent’s place partition, some threads will be mapped to the same places. For example,
when requesting 8 threads on a partition with 4 places, the places are sub-partitioned
in 4 sub-partitions of unit size, each with 2 OpenMP threads mapped to it. The thread-
limit-var ICV is also adjusted to reflect the reduced thread limit within each partition.
For the compact policy, each team thread inherits the full partition of the parent. Con-
sider now the placements of the worker threads of the parallel construct. For the
compact policy, shown in Fig. 4(b), the worker threads are co-located with the master
thread, as much as possible. Assuming that there are at most two OpenMP threads per
place, the execution environment assigns one worker thread on the same place as the
parent/master thread (here: p4) and one thread on the place following the parent/master
thread (p5). For the spread policy, depicted in Fig. 4(c), each worker thread is assigned
to the first place in its sub-partition, namely p6 and p8 here.

For both affinity policies, worker threads that are assigned to places with lower place
numbers have lower thread numbers than worker threads assigned to places with higher
place numbers. The thread number of worker threads assigned to the same place is
implementation-defined. Note that places are numbered by their respective positions in
the place-list-var ICV. When there are not enough OpenMP threads available within a

24 A.E. Eichenberger et al.

given place, the number of worker threads returned by the parallel region as well as the
affinity of the threads becomes implementation-defined.

To formally define the policies, we assume a parallel construct requesting a team
of size T with place-partition-var including P consecutive places. Places are ordered
by indices; in particular, the place following a given place x (namely, the x’th place in
place-list-var) corresponds to place x+ 1. Using this numbering, we define the lowest
numbered place in the current place-partition-var as Pfirst, and we define the place
on which the master thread executes as Pmaster . When referring to a place that falls
outside of the current place partition (namely Pfirst to Pfirst+P−1, inclusively), that
place defaults back to the Pfirst place.

Affinity Policy and Its Impact on Team Threads Mapping to Places. compact: The
execution environment first takes OpenMP threads that are both available and executing
on the Pmaster place. If it needs additional OpenMP threads, it then takes available
threads from the place following Pmaster , and so on, until it forms a team of T threads.
spread: When requesting a team with fewer OpenMP threads than there are places in the
place partition, the team threads are spaced S = �P/T � places apart. The first thread
executes on place Pfirst, the next team thread on place Pfirst+S , and so on until all
worker threads have been assigned1. Otherwise, there is at least one thread per place.
In this case, each place executes at least �T/P � threads, with the first places (Pfirst to
Pfirst+(PmodT)−1) executing one additional team thread.

Updated place-partition-var ICV in the Data Environment of the Team Threads.
compact: Each team thread inherits the place-partition-var of the parent thread. spread:
Consider first the case where team threads are spaced S = �P/T � places apart. In this
case, the place-partition-var of the parent thread is partitioned into P non-overlapping
partitions of length S (with an exception for the last partition which is extended up to
the last place, Pfirst+P−1). Each thread then gets the partition that includes the place
where it executes. Otherwise, each thread gets a place-partition-var that solely includes
the place where it executes.

Thread Number of Team Threads Depending on Affinity Policy. compact: The
smallest thread numbers are assigned to the worker threads located on Pmaster; the
next smallest numbers are assigned to the worker threads located on the place follow-
ing Pmaster , and so on. spread: The smallest thread numbers are assigned to the worker
threads located on Pfirst; the next smallest numbers are assigned to the worker threads
located on the place following Pfirst, and so on.

4.3 Runtime Library Routines

In order to provide an interface to the affinity policies that is coherent with the handling
of other clauses such as the num threads clause for the parallel construct, we propose
adding two library calls, omp get proc bind() and omp set proc bind() in
order to, respectively, retrieve and set the affinity policy of the current data environment.

1 A special case occurs when Pmaster is not located at a multiple of S places after Pfirst

(namely, when Pfirst+x∗S < Pmaster < Pfirst+(x+1)∗S holds true for some integer x). In
this case, the execution environment skips creating a worker thread on Pfirst+x∗S.

The Design of OpenMP Thread Affinity 25

Fig. 5. Use Scenarios

5 Use Scenarios and Implementation

Before we discuss the reference implementation, we want to illustrate use scenarios:

1. Varying level of concurrency. Consider an application that has many phases and
assume we are targeting an 8 cores machine with 2 hardware threads per core.
For phases with little parallelism or data sharing, the thread distribution shown in
Fig. 5 (left, top) may be used, with one OpenMP thread per core. In a phase where
threads have some data locality in common, a thread distribution like in Fig. 5
(left, middle) may be beneficial, as each software thread is mapped on a dedicated
hardware thread and two threads per core share the same cache hierarchy. In a
third phase, with high level of parallelism, memory latency can be hidden by over-
committing software threads per hardware thread, as shown in Fig. 5 (left, bottom).
For load balancing within a core, one would use one place per core with a thread
limit of at least 32. While a user could vary the level of concurrency by using the
num threads clause prior to this affinity proposal, the application writer had no
way to determine where its worker threads would be mapped. Using the appropri-
ate OMP PLACES and OMP THREAD LIMITS environment variables as well as
the appropriate num threads and affinity clauses, a user can now reliably
distribute the worker threads across cores and consistently across target machines
and OpenMP runtime vendors.

2. Distinct data sharing patterns. The second use scenario illustrates a nested par-
allelism case, where outer loops are parallelized with little data reuse between
threads, and where inner loops are parallelized with data reuse and false sharing
between threads. Figure 5 (right) illustrates this scenario, where a spread affinity is
used at the top level and a compact affinity is used at the inner level of parallelism.

3. Restricting OpenMP threads. In a third use scenario, a user may simply want
to restrict the OpenMP threads to a subset of the machine. A typical example
is when a single shared memory machine is used for several MPI processes. In
such case, a typical user will aim to reduce the interferences of the MPI pro-
cesses among themselves by logically partitioning the shared memory machine
and assigning a distinct subset of cores to each MPI process. In this case, the user
can simply define the OMP PLACES environment of each MPI process to include
the specific cores assigned to each process. Even in the absence of affinity poli-
cies (e.g. OMP PROC BIND set to false), where OpenMP threads are allowed to

26 A.E. Eichenberger et al.

migrate freely, the runtime is required to limit the OpenMP threads to only hard-
ware resources listed in the list of places. We expect most vendors to provide for
MPI scripts that directly set the OMP PROC BIND environment variable so as to
alleviate the need for the user to perform such repetitive tasks.

5.1 Reference Implementation on IBM POWER

We have created a reference implementation in an experimental OpenMP runtime tar-
geting POWERTMplatforms running on AIX and Linux. The changes to the runtime
were fairly limited. We added one global, static place-list ICV, switched the global,
static bind-var and thread-limit-var ICVs to become scoped within the data environ-
ment of the OpenMP threads, and added one new place-partition-var ICV, also within
the data environment of the OpenMP threads. While adding ICVs to the data environ-
ment can potentially impact performance, as this data must be copied from the master
thread into the context of the team members of a parallel region, we have found no no-
ticeable slowdown as affinity policies can be trivially encoded in two bits of data and the
thread-limit-var ICV value can be reconstructed on demand from other data available
in the data environment of a given OpenMP thread.

The second change to the experimental runtime was to change our default OpenMP
thread selection policy invoked when creating a team of threads for a parallel construct.
Like many other OpenMP runtimes, we keep a pool of software threads ready to be
awoken when needed. In our implementation, the master selects the threads for a given
parallel task, taking some general measure of load balance between the cores in the
system, and then signals the software threads to get them to exit an idling loop or sleep
state. We have found that using spread or compact affinity policies were slightly faster
than our default policy because these deterministic policies have less code checking out
for load across each cores in the system. The one cost introduced by this proposal is
that now the code has to query which affinity policy is to be used and switch to the
appropriate code.

Overall, the impact on a parallel region overhead was less than 1 %. Also, this pro-
posal does not impact performance critical parts of the runtime such as the handling of
barriers. Changes are really limited to switching the thread selection algorithm in the
parallel construct code from one (default) policy to two additional policies, and select-
ing the right policy depending on the value of the proc-bind-var ICV in the current data
environment.

6 Future Enhancements

A number of issues remain open based on the discussion in the Affinity Subcommittee.
We intend to comment on the outcome in the final paper:

– Requesting more threads than available. If a parallel region requests for more
threads than currently available in the sub-partition, the number of threads returned
by the parallel construct is currently implementation-defined. One possible option
is to cap the maximum number of threads to the number of threads within the cur-
rent partition. Another option is to provide for additional threads in the current

The Design of OpenMP Thread Affinity 27

partition (provided there are some) by breaking the current sub-partition and return
to taking threads from the full place-list.

– Threads per Place. A finer control to allow the user to set the number of threads
per place was asked for. One suggestion is to use a new environment variable or
internal control variable, OMP PARTITION LIMIT.

– Assignment of Thread Numbers. A great deal of interest revolve around the default
assignment of threads. Should it naturally be left to right in the same order as places
in a list, or some form of round-robin fashion?

– Explicit Setting of Partition. One possible enhancement is to let the user explic-
itly query the machine model and possibly set the current place-partition-var ICV
for the current data environment. This scenario can easily occur when user-thread
programs call parallel libraries, or when legacy user-thread applications want to
speedup inner-loops using the convenience of OpenMP. In such a scenario, the user
would create its user threads (e.g. pthreads), map them to known locations in the
machine, and then possibly produce an OMP PLACES excluding these known loca-
tions.

– Other Affinity Policies. As it stands, the current proposal has two affinity policies,
spread and compact. Potentially, we could add another policy that instructs the
runtime to select places within the current partition in a way that evenly distributes
the threads among the places in the sub-partition, particularly if less places are
asked for than are available. Another policy of interest is one that ’breaks’ free
of the current sub-partition so as to allow a given parallel construct to escape the
confines of its logical sub-partition and gets thread from the entire machine.

7 Summary

We have proposed a machine model abstraction that allows decoupling the OpenMP
runtime from architectural details from the target platform while preserving most as-
pects relating to thread locality by using the abstraction of a place list. OpenMP direc-
tives allow the user to select, for each parallel construct, the thread affinity policy
that best suits the parallel region. One affinity policy is the spread policy, which spread
the OpenMP threads evenly among the places in the machine, and then logically sub-
partitions the place list so that each team member gets an even subset of the machine
for nested parallel regions. The other affinity policy is compact, which allocates the
worker threads as much as possible on the same place as the master thread. We have
demonstrated the use of these policies based on several use scenarios. A reference im-
plementation demonstrated that the overhead due to this proposal is minimal.

Acknowledgments. We would like to acknowledge the input of Kelvin Li and Mary
Chan, as well as the helpful comments from the anonymous reviewers. This work has
also tremendously benefited from discussions at the OpenMP Affinity Subcommittee.
This work has been supported and partially funded by Argonne National Laboratory
and the Lawrence Livermore National Laboratory on behalf of the U.S. Department of
Energy, under Lawrence Livermore National Laboratory subcontract no. B554331.

28 A.E. Eichenberger et al.

References

1. OpenMP Pragma and Region Instrumentor (OPARI)
2. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier, G., Thibault,

S., Namyst, R.: hwloc: A generic framework for managing hardware affinities in hpc ap-
plications. In: 2010 18th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), pp. 180–186 (February 2010)

3. Terboven, C., an Mey, D., Schmidl, D., Jin, H., Wagner, M.: Data and Thread Affinity in
OpenMP Programs. In: Proceedings of the 2008 Workshop on Memory Access on Future
Processors: a Solved Problem?, MAW 2008, pp. 377–384. ACM International Conference
on Computing Frontiers (2008)

4. Schmidl, D., Terboven, C., an Mey, D., Bücker, M.: Binding Nested OpenMP Programs on
Hierarchical Memory Architectures. In: Sato, M., Hanawa, T., Müller, M.S., Chapman, B.M.,
de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132, pp. 29–42. Springer, Heidelberg
(2010)

5. GNU. GNU libgomp (2012)
6. IBM. IBM C/C++ Version 11.1 and FORTRAN Version 13.1 (2009)
7. Intel. Intel C++ Compiler XE 12.0 User and Reference Guide (2010)
8. OpenMP ARB. OpenMP Application Program Interface, v. 3.1 (July 2011)
9. Oracle Solaris Studio 12.2: OpenMP API User’s Guide. Oracle (2012)

10. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI-The Complete Refer-
ence, 2nd (revised) edn. The MPI Core, vol. 1. MIT Press, Cambridge (1998)

11. The Portland Group. PGI Compiler User’s Guide (2011)
12. Huang, L., Jin, H., Yi, L., Chapman, B.: Enabling locality-aware computations in OpenMP.

Sci. Program. 18(3-4), 169–181 (2010)

c©Copyright IBM Corporation 2012 c©Copyright Aachen University 2012 IBM United States of America Produced in the United States of America US Government
Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products
and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program,
or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it
is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to: IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PAPER AS IS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes may be made periodically to the information herein; these changes may be
incorporated in subsequent versions of the paper. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this paper at any time
without notice.

Any references in this document to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The
materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license
to these patents. You can send license inquiries, in writing, to: IBM Director of Licensing, IBM Corporation, 4205 South Miami Boulevard, Research Triangle Park, NC 27709
U.S.A. All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only. This information
is for planning purposes only. The information herein is subject to change before the products described become available. If you are viewing this information softcopy, the
photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, ibm.com, Power, and POWER are trademarks or registered trademarks of International Business Machines Corporation in the United States, other

countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (c©or TM), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law
trademarks in other countries. A current list of IBM trademarks is available on the web at ”Copyright and trademark information” at http://www.ibm.com/legal/copytrade.shtml.
Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other countries. Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both. Other company, product, or service names may be trademarks or service marks of others.

Auto-scoping for OpenMP Tasks

Sara Royuela1, Alejandro Duran2, Chunhua Liao1, and Daniel J. Quinlan1

1 Lawrence Livermore National Laboratory
{royuelaalcaz1,liao6,dquinlan}@llnl.gov

2 Barcelona Supercomputing Center
alex.duran@bsc.es

Abstract. Auto-scoping analysis for OpenMP must be revised owing to the in-
troduction of asynchronous parallelism in the form of tasks. Auto-scoping is the
process of automatically determine the data-sharing of variables. This process
has been implemented for worksharing and parallel regions. Based on the pre-
vious work, we present an auto-scoping algorithm to work with OpenMP tasks.
This is a much more complex challenge due to the uncertainty of when a task
will be executed, which makes it harder to determine what parts of the program
will run concurrently. We also introduce an implementation of the algorithm and
results with several benchmarks showing that the algorithm is able to correctly
scope a large percentage of the variables appearing in them.

1 Introduction

Parallel programming models play an important role in increasing the productivity of
high-performance systems. In this regard, not only performance is necessary, but also
convenient programmability is valuable to make these models appealing to program-
mers. OpenMP provides an API with a set of directives that define blocks of code to be
executed by multiple threads. This simplicity has been a crucial aspect in the prolifera-
tion of OpenMP users.

Each application has its own specific requirements for the parallel programming
model. Loop-centered parallel designs are useful for certain problems where the in-
herent parallelism relies in bounded iterative constructs. This model becomes of lit-
tle use when dealing with unbounded iterations, recursive algorithms or producer/con-
sumer schemes, adding excessive overhead, redundant synchronizations and therefore,
achieving poor performance. These limitations have driven the evolution of OpenMP
from loop-centered designs to adaptive parallelism. This new form of parallelism is
defined by means of explicit asynchronous tasks. Tasks are units of work that may
be either deferred or executed immediately. The use of synchronization constructs en-
sures the completion of all the associated tasks. This model offers better solutions for
parallelizing irregular problems than loop-based approaches. Furthermore, tasks are
highly composable since they can appear in parallel regions, worksharings and other
tasks.

The use of OpenMP task directives requires programmers to determine the appro-
priate data-sharing attributes of the variables used inside the task. According to the

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 29–43, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

30 S. Royuela et al.

OpenMP specification, the data-sharing attributes of the variables referenced in an
OpenMP task can be shared, private or firstprivate. Although OpenMP
defines a default data-sharing attribute for each variable, this might not always be the
one that ensures the correctness of the code. Thus, programmers still need to scope1

them manually most of the time. This process is tedious and error-prone considering
the large amount of variables that can potentially appear in each construct. Rules for
the automatic scope of variables in OpenMP parallel regions have been presented and
tested in the past. However, the process of analyzing OpenMP tasks is quite different
because of the uncertainty introduced by tasks regarding when are those tasks going to
be executed. Due to this uncertainty, the first challenge is to determine the regions of
code that execute concurrently with a given task in order to be able to find out possible
race conditions. The second challenge is to discover how variables are used inside and
outside the task to assign the proper data-sharing attribute according to the information
collected.

The contributions of this paper are the following:

– A new algorithm for the automatic discovery of the data-sharing attributes of vari-
ables in OpenMP tasks to enhance the programmability of OpenMP. The algorithm
determines the code that is executed concurrently with a task and the possible race
conditions of the variables within the task. Then, it scopes these variables with the
data-sharing that ensures the correctness of the code.

– An implementation of the proposed algorithm in the Mercurium source-to-source
compiler and proof of the auto-scoping benefits by testing its implementation on
several OpenMP task benchmarks. We present the results of the variables that have
been automatically scoped and those which the compiler has not been able to de-
termine the scope. We also compare our results with the results obtained with the
Sun Studio 12.3 compiler.

2 Motivation and Related Work

OpenMP data-sharing attributes for variables referenced in a construct can be prede-
termined, explicitly determined or implicitly determined. Predetermined variables are
those that, regardless of their occurrences, have a data-sharing attribute determined by
the OpenMP model. Explicitly determined variables are those that are referenced in a
given construct and are listed in a data-sharing attribute clause on the construct. Im-
plicitly determined variables are those that are referenced in a given construct, do not
have predetermined data-sharing attributes and are not listed in a data-sharing attribute
clause on the construct (See OpenMP Specifications 3.1 [6] for more details). All vari-
ables appearing within a construct have a default data-sharing defined by the OpenMP
specifications (either are predetermined or implicitly determined); nonetheless, users
are duty bound to explicitly scope most of these variables changing the default data-
sharing values in order to fulfill the correctness of their codes (i.e., avoiding data race
conditions) and enhance their performance (i.e., privatizing shared variables).

1 In this paper we use the word scope referring to data-sharing attributes.

Auto-scoping for OpenMP Tasks 31

Listing 1.1. Code with OpenMP task from Floorplan BOTS benchmark

1 / ∗ M e t h o d t h a t c o m p u t e s a l l p o s s i b l e p o s i t i o n s o f a s e t o f c e l l s w i t h i n a b o a r d .

2 ∗ @ p a r a m i d i d e n t i f i e r o f t h e c u r r e n t c e l l .

3 ∗ @ p a r a m F O O T P R I N T s u r f a c e a l r e a d y u s e d i n t h e b o a r d .

4 ∗ @ p a r a m BOARD w h o l e b o a r d t h a t c a n b e u s e d .

5 ∗ @ p a r a m C E L L S s e t o f c e l l s t o b e p l a c e d i n t h e b o a r d .

6 ∗ @ r e t u r n T h e n u m b e r o f p o s s i b l e c o m b i n a t i o n s o f t h e c e l l s w i t h i n t h e b o a r d ∗ /

7 s t a t i c i n t a d d c e l l (i n t id , coor FOOTPRINT , i b r d BOARD, s t r u c t c e l l ∗CELLS)
8 {
9 i n t i , j , nn , a rea , nnc = 0 , n n l = 0 ;

10 i b r d boa rd ;
11 coor f o o t p r i n t , NWS[DMAX] ;
12

13 / ∗ F o r e a c h p o s s i b l e s h a p e s o f t h e c u r r e n t c e l l ∗ /

14 f o r (i = 0 ; i < CELLS [i d] . n ; i ++)
15 {
16 / ∗ C o m p u t e a l l p o s s i b l e l o c a t i o n s o f t h e n o r t h −w e s t c o r n e r o f t h e s h a p e ∗ /

17 nn = s t a r t s (id , i , NWS, CELLS) ;
18 n n l += nn ;
19 / ∗ F o r e a c h p o s s i b l e l o c a t i o n ∗ /

20 f o r (j = 0 ; j < nn ; j ++)
21 #pragma omp task untied private (board , f o o t p r i n t , a r e a) \
22 firstprivate (NWS, i , j , i d) \
23 shared (FOOTPRINT ,BOARD, CELLS, MIN AREA, MIN FOOTPRINT , N, BEST BOARD, nnc)
24 {
25 / ∗ E x t e n t t h e s h a p e f r o m t h e c o m p u t e d n o r t h −w e s t c o r n e r p o s i t i o n ∗ /

26 s t r u c t c e l l c e l l s [N+ 1] ;
27 memcpy (c e l l s , CELLS, s i z e o f (s t r u c t c e l l)∗ (N+ 1)) ;
28 c e l l s [i d] . t o p = NWS[j] [0] ;
29 c e l l s [i d] . b o t = c e l l s [i d] . t o p + c e l l s [i d] . a l t [i] [0] − 1 ;
30 c e l l s [i d] . l h s = NWS[j] [1] ;
31 c e l l s [i d] . r h s = c e l l s [i d] . l h s + c e l l s [i d] . a l t [i] [1] − 1 ;
32 memcpy (board , BOARD, s i z e o f (i b r d)) ;
33

34 / ∗ I f t h e c e l l c a n n o t b e l a y e d d o w n i n t h e b o a r d , p r u n e t h e s e a r c h ∗ /

35 i f (! lay down (id , board , c e l l s))
36 cont inue ;
37

38 / ∗ C a l c u l a t e t h e c u r r e n t f o o t p r i n t w i t h t h e n e w c e l l l a y e d d o w n ∗ /

39 f o o t p r i n t [0] = max (FOOTPRINT [0] , c e l l s [i d] . b o t + 1) ;
40 f o o t p r i n t [1] = max (FOOTPRINT [1] , c e l l s [i d] . r h s + 1) ;
41 a r e a = f o o t p r i n t [0] ∗ f o o t p r i n t [1] ;
42

43 / ∗ I f t h e c u r r e n t c e l l i s t h e l a s t o n e ∗ /

44 i f (c e l l s [i d] . n e x t == 0)
45 {
46 / ∗ I f t h e a r e a i s m i n i m u m , u p d a t e g l o b a l v a l u e s ∗ /

47 i f (a r e a < MIN AREA)
48 #pragma omp critical
49 {
50 MIN AREA = a r e a ;
51 MIN FOOTPRINT [0] = f o o t p r i n t [0] ;
52 MIN FOOTPRINT [1] = f o o t p r i n t [1] ;
53 memcpy (BEST BOARD, board , s i z e o f (i b r d)) ;
54 }
55 }
56 / ∗ I f t h e a r e a i s s t i l l s m a l l e r t h a n b e s t a r e a , t r y t o f i t m o r e c e l l s ∗ /

57 e l s e i f (a r e a < MIN AREA)
58 {
59 #pragma omp atomic
60 nnc += a d d c e l l (c e l l s [i d] . nex t , f o o t p r i n t , board , c e l l s) ;
61 }
62 }
63 }
64

65 #pragma omp taskwait
66 re turn nnc + n n l ;
67 }

32 S. Royuela et al.

In Listing 1.1 we show a section of code from the Floorplan benchmark contained
in BOTS [2]. In this code we find a task within a for-loop construct. We have spec-
ified data-sharing attributes for all variables used in the task, although some of this
variables do not need an explicit data-sharing attribute because OpenMP rules applying
for implicitly determined variables already specify the appropriate attribute. We aim to
improve the programmability of OpenMP by defining a new algorithm which analyzes
the access to variables appearing in OpenMP tasks and automatically defines the proper
scope of these variables. The compiler should be capable of accurately scoping the vari-
ables by analyzing a) the immediately previous and following synchronization points
of the task, b) the accesses done to the variables appearing within the task in all the
concurrent codes to the task and c) the liveness of these variables after the task. In those
cases in which the compiler cannot automatically scope a variable, it should warn the
user to manually do this work. Due to the effectiveness of the algorithm, we prove that
the work of the manual scope of variables can be considerably reduced and, therefore,
the programmability of OpenMP can be highly improved.

Lin et al. [10] proposed a set of rules which allow the compiler to automatically
define the appropriate scope of variables referenced in an OpenMP parallel region.
They use a data scope attribute called AUTO, which activates the automatic discovery
of the scope of variables. These rules apply to variables that have not been implicitly
scoped, like the index of worksharing do-loops. Their algorithm aims to help in the
auto-parallelization process but it has several limitations such as:

– It is only applicable to parallel,parallel do, parallel sections and
parallel workshare constructs.

– It recognizes OpenMP directives, but not API function calls such asomp set lock
and omp unset lock, enabling the report of false positives in the data race con-
dition process.

– Their interprocedural analysis and array subscripts analyses are limited. Conserva-
tively, most of the times arrays are scoped as shared while they could be privatized.

They implemented the rules in the Sun Studio 9 Fortran 95 compiler and tested the
enhancement in the programmability with the PANTA 3D Navier-Stokes solver. They
found that OpenMP required the manual scoping of 1389 variables, rather than the 13
variables that need to be manually scoped using the process of automatic scoping. They
proved that the performance obtained by the two versions is the same.

Voss et al. [5] evaluated the application of the auto-scoping in OpenMP to the auto-
matic parallelization. They implemented the same AUTO data-sharing attribute as Lin
et al. did, but in the Polaris parallelizing compiler. They used a subset of the SPEC
benchmark suite for the evaluation and they revealed that many parts cannot be scoped
by the compiler, thus disabling the auto-parallelization in those sections of the program.
Their limitations are the same as in the work of Lin et al. [10] since the rules used in
the automatic scoping process are the same.

Oracle Solaris Studio 12.3 [7] extends the rules already implemented for the auto-
matic scope of variables in parallel regions to support tasks. It defines a set of five rules
that helps in the automatic scope of variables. However, it does not define an algorithm
to find the concurrent code of a task and the way to determine the occurrence of data
race conditions. Furthermore, this implementation has several restrictions:

Auto-scoping for OpenMP Tasks 33

– The rules are restricted to scalar variables, and do not deal with arrays.
– The set of rules is not applicable to global variables.
– The implementation cannot handle nested tasks or untied tasks.
– It recognizes OpenMP directives, but not runtime routines such as omp set lock

and omp unset lock, enabling the report of false positives in the data race condition
process.

The analysis of data race conditions in OpenMP programs is needed for many analytic
purposes, such as auto-scoping and auto-parallelization. Y. Lin [9] presented a method-
ology for the static race detection. His method distinguishes between general races2

and data races3. We base our data race analysis in the method presented by Lin, taking
into account only data race conditions. This is motivated by the fact that those are the
only race situations that can affect the correctness of OpenMP programs.

We base our work on the increasing need of asynchronous parallelism methods and
the good results obtained with algorithms that auto-scope variables in OpenMP parallel
regions. Since, to the best of our knowledge, there is no previous work on the exhaustive
definition of concurrent regions of code in the existence of tasks, we introduce a new
algorithm that detects all regions of code that can be executed in parallel with a given
task and, based on this information, determines the scope of variables in the task. The
algorithm differs from the previous proposals in that it has a methodology based on a
parallel control flow graph with synchronizations that discovers all regions executing
concurrently with a task. Furthermore, our algorithm takes into account OpenMP di-
rectives and OpenMP API calls to determine data race situations and it can deal with
arrays and global variables.

3 Proposal

Our proposal is to extend the clause default used with the OpenMP task directive in
order to accept the keyword AUTO. The clause default(AUTO) attached to a task
construct will launch the automatic discovery of the scope of variables in that task.
In Algorithm 1 we present the high-level description of the proposed algorithm. For
each variable referenced inside the task region, which is neither local to the task nor a
variable with an explicitly predetermined data-sharing attribute, the algorithm returns
one of the following results:

– UNDEFINED: The algorithm is not able to determine the behavior of the variable.
This variable will be reported to the user to be manually scoped.

– PRIVATE: The variable is to be scoped as private.
– FIRSTPRIVATE: The variable is to be scoped as firstprivate.
– SHARED: The variable is to be scoped as shared.
– SHARED OR FIRTSPRIVATE: The variable can be scoped as either shared or
firstprivatewithout altering the correctness of the results. It is an implemen-
tation decision to scope them as shared or firstprivate.

2 A general race occurs when the order of two accesses to the same memory location, where at
least one is a write, is not enforced by synchronizations.

3 A data race is a general race where the access to the memory is not protected by a critical
section.

34 S. Royuela et al.

Algorithm 1. High-level description of the auto-scoping algorithm for OpenMP tasks

1.Define the regions of code that execute concurrently with a given task. These re-
gions are defined by the immediately previous and following synchronizations of
the task and belong to:

–Other tasks scheduled in the region described above.
–Other instances of the task if it is scheduled within a loop or in a parallel region.
–Code from the parent task between the task scheduling point and the synchro-
nization of the task.

2.Scope the variables within the task depending on the use of these variables in all
regions detected in the previous step and the liveness properties of the variables
after the execution of the task.

The algorithm works under the hypothesis that the input code is correct and that
the input code comes from an original sequential code that has been parallelized with
OpenMP, otherwise, the results of the algorithm may be incorrect. Based on that, sup-
pose the analysis of a task t; the algorithm computes the scope sc(x) of every variable
x ∈ X , where X is the set of variables appearing within t that have not explicitly de-
termined scope and are not local variables of the task. In order to do that, the algorithm
proceeds as it is shown in Algorithm 2.

Algorithm 2. Detailed algorithm for the auto-scoping in OpenMP tasks

1.Determine the regions of code executing concurrently with t, referred to as con-
current regions in this paper. These regions can be other tasks, other instances of
the same task and code from the parent task. In order to do that, we first define the
following points:
Scheduling The task scheduling point of t as defined in the OpenMP specification.

Any previous code in the parent task is already executed before the task starts
its execution.

Next sync The point where t is either implicitly or explicitly synchronized with
other tasks in execution. Any code after this point will be executed after the
completion of t.

Last sync The immediately previous synchronization point to the Scheduling point
of t. If this synchronization is a taskwait, then we take into account the
previous nested tasks since they may not be finished.

With these points, we can define the concurrent regions to be the following:
–The region of code of the parent task that runs concurrently with t, bounded by
Scheduling and Next sync.

–The regions defined by the tasks that run concurrently with t, bounded by
Last sync and Next sync. Other instances t’ of t are concurrent with t when
t is scheduled within a parallel construct or within a loop body.

2.{∀s : s ∈ X}, where s is a scalar, apply the following rules in order:
(a)If s is a parameter passed by reference or by address in a call to a function that

we do not have access to, or s is a global variable and t contains a call to a
function that we do not have access to, then sc(s) = UNDEFINED.

Auto-scoping for OpenMP Tasks 35

(b)If s is not used in the concurrent regions, then:
i.If s is only read within t, then sc(s) = SHARED OR FIRSTPRIVATE.

ii.If s is written within t, then:
A.If s is a global variable and/or s is alive after Next sync, then sc(s) =
SHARED.

B.If s is dead after the exit of the task, then:
–If the first action performed in s is a write, then sc(s) = PRIVATE.
–If the first action performed in s is a read, then sc(s) =
SHARED OR FIRSTPRIVATE.

(c)If s is used in the concurrent regions, then:
i.If s is only read in both the concurrent regions and within the task, then
sc(s) = SHARED OR FIRSTPRIVATE.

ii.If s is written either in the concurrent regions or within the task, then we
look for data race conditions (data race analysis specifics are explained at
the end of this algorithm). Thus,

A.If we can assure that no data race can occur, then sc(s) = SHARED.
B.If a data race can occur, then sc(s) = RACE.

3.{∀a | a ∈ X}, where a is an array or an aggregate, apply the following rules in
order:

(a){∀ai | i ∈ [0..N]}, where ai is a use of a or a region of a (if a is an array) or a
member of a (if a is an aggregate), and N is the number of uses of a, compute
sc(ai) applying the same methodology used for scalars.

(b)Since OpenMP does not allow different scopes for the subparts of a variable,
we compute sc(a) by mixing the results obtained in the previous step following
the rules below:

i.If {∀ai : sc(ai) = SC | i ∈ [0..N]}, then sc(a) = SC.
ii.If {∃ai, aj : sc(ai) = SC1 ∧ sc(aj) = SC2 | i, j ∈ [0..N] ∧ i <>
j ∧ SC1 <> SC2}, then:

A.If {∃ai : sc(ai) = UNDEFINED | i ∈ [0..N]}, or {∃ai, aj :
sc(ai) = RACE ∧ sc(aj) = SHARED | i, j ∈ [0..N] ∧ i <> j},
then sc(a) = UNDEFINED.

B.If {∀ai : sc(ai) = SHARED OR FIRSTPRIVATE ∨ sc(ai) =
SHARED | i ∈ [0..N]}, then sc(a) = SHARED.

C.If {∀ai : sc(ai) = PRIVATE ∨ sc(ai) = RACE | i ∈ [0..N]}, then
sc(a) = RACE.

D.If {∃ai, aj : sc(ai) = SHARED OR FIRSTPRIVATE∧ (sc(aj) =
RACE ∨ sc(aj) = PRIVATE) | i, j ∈ [0..N] ∧ i <> j}, then
sc(a) = FIRSTPRIVATE.

4.{∀v : sc(v) = RACE | v ∈ X}, based on the hypothesis that the input code is
correct, we privatize v (otherwise a synchronization would have existed to avoid
the race condition). Therefore,

–If the first action performed in v (or in any part of v if v is an array or an
aggregate) within t is a read, then sc(v) = FIRSTPRIVATE.

–If the first action performed in v (or in all parts of v if v is an array or an
aggregate) within t is a write, then sc(v) = PRIVATE.

36 S. Royuela et al.

Data Race conditions. In the previous algorithm we need to analyze whether the vari-
ables within a task are in a data race situation or not. Data race conditions can appear
when two threads can access to the same memory unit at the same time, and at least
one of these accesses is a write. To determine data race conditions, we have to analyze
the code appearing in all the concurrent regions and in the task. Variables that appear in
more than one of these regions within blocks that are not protected by synchronization
constructs (atomic or critical) or runtime library lock routines (omp set lock and
omp unset lock) can trigger a data race situation.

Under the assumption we make that the code is correct and, since OpenMP defines an
unexpected behavior for the algorithms containing race conditions, the variables scoped
as RACE are privatized. Depending on the use made of the variable within the task it
will be PRIVATE (if it is first written) or FIRSTPRIVATE (if it is first read).

Limitations. The only limitation of the algorithm is the incapability of dealing with
tasks containing calls to functions which code is not accessible at compile time; in
this case all variables that can be involved in this functions cannot be scoped. The
variables affected are global variables and parameters to the unaccessible function that
are addresses or passed by reference.

Regarding the implementation, the compiler might be unable to determine the previ-
ous synchronization point, Last sync, and/or the next synchronization point, Next sync
(i.e., the point belongs to a function that calls the function where the analyzed task is
scheduled); in these cases only the variables that are local to the function (including its
parameters) where the task is scheduled can be automatically scoped. The rest of vari-
ables must be scoped as UNDEFINED and reported to the user to be manually scoped.

Strengths. The algorithm is perfectly accurate when the input code fulfill the hypothe-
ses, so it never produces false positives and the reported results are always correct.
Specific rules cover the cases when the algorithm cannot determine the data-sharing
attribute of a variable. The undetermined variables are reported back to the user.

The methodology we use to determine the regions of code that run concurrently with
a task, based on the definition of the synchronization points of the task, models an
algorithm that is insensitive to the scheduling policy used in runtime.

Example. In the code presented in Listing 1.1 a task is defined within a loop construct.
The algorithm proposed will compute the following result for the variables appearing
within the task: variable cells does not need to be scoped because it is local to the task;
global variables N, MIN AREA, MIN FOOTPRINT and BEST BOARD are scoped as
UNDEFINED due to the occurrence of the system call memcpy and because we do
not have access to the code of this function; the same happens to the parameter board,
passed by reference to memcpy; variable nnc is scoped as SHARED because it is written
within the task, it cannot produce a data race because the access is protected in an
atomic construct and its value is alive at the exit of the task; variables area and footprint
are PRIVATE because the algorithm detects a race condition (different instances of the
task can write to the variable at the same time) and their values are written without
being read; variables i, j, id, BOARD, CELLS, FOOTPRINT and NWS are scoped as
SHARED OR FIRSTPRIVATE because they are only read.

Auto-scoping for OpenMP Tasks 37

4 Implementation

Mercurium [3] is a source-to-source compiler for C/C++ and Fortran that has a common
internal representation (IR) for the three languages. The compiler defines a pipeline
of phases that transforms the input source into an output source which is afterwards
passed to the back-end compiler (gcc, icc, etc). We have implemented the algorithm
presented in Section 3 within a new phase along with other analyses that are required for
the computation of the scope. These analyses are control flow analysis, use-definition
chains and liveness analysis. All of them are both intra- and inter- thread, and intra- and
inter- procedural.

We define a parallel control flow graph (PCFG) [8] with specific support for OpenMP:

– OpenMP pragmas and OpenMP API function calls are represented with special
nodes attaching the specifics of each case, i.e.: additional clauses, creation of par-
allelism (parallel, task) or synchronization (taskwait, barrier).

– All implicit memory flush operations introduced by the OpenMP directives are
made explicit. For example, a flush is implied during a barrier region and this is
represented with the introduction of a flush before the barrier and a flush
after the barrier.

– For each OpenMP worksharing without a nowait clause, we add a node repre-
senting the implicit barrier that occurs at the end of the worksharing.

– All task synchronization points are represented with special edges symbolizing the
boundaries of the region where the task can be executed. These edges connect:
1. The scheduling point of the task with the entry of the task.
2. The exit of the task with the synchronization point that synchronizes the task

with its parent (i.e., a taskwait) or with the threads of the team (i.e., a
barrier).

Nodes in the PCFG can be simple (nodes containing basic blocks or OpenMP stand-
alone directives) or complex (nodes containing a subgraph: OpenMP non-stand-alone
directives, loop constructs, function calls or conditional expressions). In Fig. 1 we show
a basic class diagram of the PCFG. The visitor pattern is used to traverse the Mercurium
IR and generate the graph. The graph is composed by a unique complex node that con-
tains the whole graph. Nodes are connected by means of edges.

Fig. 1. Basic class diagram of the PCFG

38 S. Royuela et al.

Focusing on the representation of tasks in the PCFG, in Fig. 2 we show a code
scheme with different tasks (task blocks) and synchronization points (taskwait
and barrier blocks) embedded in a sequential code (section X blocks). In Fig. 3
we show a simplified version of the resultant PCFG. Section blocks represent code
executed sequentially that can result in one or more simple or complex nodes in the
detailed PCFG; these blocks are connected among them by flow (solid) edges whereas
tasks are connected by synchronization (dotted) edges; this edges (dotted) do not imply
control flow as the other edges (solid) do, so they must be analyzed distinctly.

We take into account nested tasks (including nesting due to recursive functions) and
the semantics of the different synchronization points when we connect tasks in the
PCFG:

– A taskwait synchronizes just the previous tasks that are scheduled by the en-
countered task of the taskwait (in Fig. 3, the taskwait only synchronizes
task A, but not task B).

– A barrier synchronizes any previously scheduled task that has not yet been syn-
chronized (in Fig. 3, the barrier not only synchronizes task C and task D,
but also task B).

 #pragma omp task
 {
 // task A code
 #pragma omp task
 {
 // task B code
 }
 // task A code
 }

#pragma omp taskwait

#pragma omp barrier

// section 1

// section 2

// section 3

 #pragma omp task
 {
 // task C code
 }

 #pragma omp task
 {
 // task D code
 }

// section 4

// section 5

// section 6

Fig. 2. Code scheme with tasks

task A code

section 1

section 2

taskwait

section 3

section 4

section 5

Task C code

Task D code

barrier

section 3

Task B code

Fig. 3. Abstraction of the PCFG used during the
auto-scoping that shows the connections of the
tasks in Fig. 2

Auto-scoping for OpenMP Tasks 39

In Fig. 4 we show the flow chart with the analyses performed in the compiler in order
to have enough information to compute the scope of variables. The steps we follow are
described below:

1. Create the PCFG, as it is defined previously, for each function involved in the
analysis.

2. Compute the use-definition chains. This analysis computes for each node the set of
variables that are read before than being defined (UPPER EXPOSED) and the set
of variables that are defined (KILLED). Variables that have an undefined behavior
are classified in a special set called UNDEFINED (Address parameters -pointers
or parameters passed by value- of functions that are called in a different file from
the file where they are defined have an undefined behavior. The occurrence of such
calls cause an undefined behavior in all global variables).

Information is propagated from simple nodes to complex nodes.
3. With the use-definition information, we then perform liveness analysis. This analy-

sis computes the sets of variables that are alive at the entry of each node (LIVE IN)
and the variables that are alive at the exit of each node (LIVE OUT).
Information is propagated from simple nodes to complex nodes.

4. Apply the algorithm shown in Section 3 for the automatic discovery of the scope
of variables in OpenMP tasks. The algorithm has been fully implemented except
for the support for aggregates. In our implementation we have decided to further
specify the variables scoped as SHARED OR FIRSTPRIVATE as follows:

– All scalar variables are defined as FIRSTPRIVATE because the cost of the
privatization should be comparable to the cost of one access to a shared vari-
able. In the worst case (s, scalar variable, is only used once), performance is
not affected and, in the best case (s is used more than once) performance is
improved.

– Due to the likely high cost of privatizing an array, all array variables are defined
as SHARED. Only in those cases where the positions of the array are accessed
many times it may be advantageous to privatize the array.

 Upper Exposed

 Killed

 Undefined

 Live in

 Live out

 Private
  Firstprivate
 Shared
 Shared_or_private
 Race
 Undefined

Fig. 4. Flow chart of the Mercurium analyses used in the Auto-Scoping process

40 S. Royuela et al.

Mercurium offers two different ways to use the analyses:

1. Some flags added in the command line trigger the analysis of all the input sources.
These analyses are performed in the middle-end, next to all transformations applied
in this stage. Moreover, some flags allow the synthesized information to be output
in different formats: textually and graphically (as a PCFG).

2. The compiler provides an API with methods allowing the use of the analyses on
demand. The analyses can be used in any stage of the compiler and they can be
applied to any section of the IR. The main functions provided are:

PCFG Generation: Creates one PCFG for each function included in a region of
IR, or, if the IR does not contain a function, then creates one PCFG with the
sample of code contained in the IR.

Use-definition analysis: Computes use-definition analysis for every node
contained in a PCFG.

Liveness analysis: Computes liveness analysis for every node contained in a
PCFG.

Task analysis: Computes auto-scoping for every task node contained a PCFG.

5 Evaluation

For the evaluation of the proposed algorithm, we have used the Barcelona OpenMP
Tasks Suite [2] and other benchmarks, all developed in the Barcelona Supercomputing
Center. Table 1 presents the description of the benchmarks used in our evaluation. Table
2 describes the principal characteristics of each benchmark: the language of the source
code, the number of lines and the number of tasks and the method used in the functions
containing tasks (it can be iterative, recursive or both).

Table 1. Short description of the benchmarks used in the evaluation

Benchmark Description
Alignment Dynamic programming algorithm that aligns sequences of proteins.
FFT Spectral method that computes the Fast Fourier Transformation.
Fib Recursive version of the Fibonacci numbers computation.
Health Simulation method for a country health system.
Floorplan Optimization algorithm for the optimal placement of cells in a floor plan.
NQueens Search algorithm that finds solutions for the N Queens problem.
Sort Integer sorting algorithm that uses a mixture of sorting algorithms to sort a vector.
SparseLU Linear algebra algorithm that computes the LU factorization of a sparse matrix.
UTS Search algorithm that computes the number of nodes in an Unbalanced Tree.
Stencil Stencil algorithm over a matrix structure.
Cholesky Linear algebra algorithm that computes the Cholesky decomposition of a matrix.

Auto-scoping for OpenMP Tasks 41

Table 2. Principal characteristics of the benchmarks used in the evaluation

Source language Lines count Number of tasks Method

Alignment C 694 1 iterative

FFT C 4859 41 recursive

Fib C 45 2 recursive

Health C 551 2 iterative & recursive

Floorplan C 344 1 iterative & recursive

NQueens C 405 1 iterative & recursive

Sort C 486 9 recursive

SparseLU C 309 4 iterative

UTS C 283 1 iterative & recursive

Stencil C 218 1 iterative

Cholesky C 70 6 iterative

Since we want to evaluate the enhancement of programmability, we have computed
the number of variables that have been automatically scoped. A summary of the results
comparing Mercurium implementation with Sun Studio 12.3 implementation is shown
in Table 3. This table contains the amount of variables that have been automatically
scoped organized according to their scope4, the amount of variables that the algorithm
has been unable to scope5 and the percentage of successfulness for each benchmark in
both compilers as well as the mean of successfulness for each compiler.

Table 3. Automatic scoping results of Mercurium and Sun Studio 12.3 compilers for different
benchmarks

Mercurium Sun Studio 12

SHARED PRIVATE FIRSTPRIVATE UNDEF (%)success SHARED PRIVATE FIRSTPRIVATE UNDEF (%)success

Alignment 0 5 5 11 47.61% 0 5 5 11 47.61%

FFT 5 0 241 1 99.58% 0 0 241 1 99,58%

Fib 2 0 4 0 100.00% 1 0 4 0 100.00%

Health 0 0 3 1 75.00% 1 0 2 1 75.00%

Floorplan 2 2 6 5 66.67% 1 1 6 7 53.33%

NQueens 0 0 6 0 100.00% 0 0 6 0 100.00%

Sort 0 0 34 3 91.89% 0 0 34 3 91.89%

SparseLU 1 3 7 6 64.70% 0 3 1 14 22.22%

UTS 2 0 4 0 100.00% 1 0 4 1 83.33%

Stencil 0 0 6 1 85.71% 0 0 6 1 85.71%

Cholesky 0 0 16 0 100.00% 0 0 16 0 100.00%

TOTAL 84.65% 78.05%

Regarding to the Mercurium compiler, the overall result shows that a significant
amount of variables, almost the 85%, can be automatically scoped. Most of the vari-
ables that cannot be automatically scoped are global variables. The compiler is not able

4 Sun Studio auto-scopes as PRIVATE all variables that are local to a task. We have purged this
variables from the results to simplify the comparison between the two compilers and because
these variables have a predetermined data-sharing attribute.

5 The two compilers have different behavior regarding to the variables that cannot be automat-
ically scoped: Mercurium does not make any decision about these variables and it shows a
warning with the list of variables that have not been scoped. Sun Studio automatically scopes
these variables as SHARED and it warns the user about this decision.

42 S. Royuela et al.

to determine a correct data-sharing attribute for these variables because either there is a
call to a function which code is not located in the same file as the call, or the previous
synchronization point of the tasks cannot be specified. In some cases, such as the Align-
ment or the Cholesky benchmarks, the algorithm is able to find data race conditions
and privatize the variables. In some other cases, such as the Floorplan benchmark, the
algorithm dismisses data races, and keeps variables as shared.

Regarding to the Sun Studio compiler, the 78% of variables can be automatically
scoped. The results are the same for the two compilers in most cases. Specific weak-
nesses of the Sun Studio 12.3 implementation make the difference in the results. I.e.,
in the case of the SparseLU benchmark, Mercurium obtains better results because it
implements support for nested tasks and Sun Studio does not. In other cases such as
the Floorplan benchmark, array variables can not be auto-scoped by Sun whereas they
are auto-scoped by Mercurium. An important difference between the two compilers is
the treatment of variables that are free of data race conditions and can be shared or
firstprivate: Mercurium classifies arrays as shared and scalars as firstprivate whereas
Sun Studio classifies all variables that are only read as firstprivate. Sun Studio applies
this rule for scalars and also in some arrays as we have proved in benchmarks such as
Floorplan and this decision can affect the performance in the occurrence of large arrays.

Overall, our algorithm detects 6.65% more variables than Sun Studio compiler. The
results in both compilers reveal that the main handicap for the automatic discovery
of data-sharing attributes in tasks are global variables. In the case of Mercurium, the
major difficulty is defining the previous and next synchronization points of a task. We
have to improve the PCFG implementation in order to have enough context information
to determine these two points. If we are able to define the regions of code that are
concurrent, all variables that are undefined in the current results will be automatically
scoped.

6 Conclusions and Future Work

We have developed an automatic mechanism to improve the programmability of
OpenMP by relieving the programmer from the tedious work of manually scoping
variables within tasks. The mechanism consists of a new algorithm based on com-
piler analyses such as use-definition chains and liveness analysis, and the OpenMP
synchronization points. This algorithm scopes automatically the variables appearing
in OpenMP tasks with the use of the clause default(AUTO). We have proved the
benefits of this new method implementing the algorithm in the Mercurium compiler
and testing it with a set of benchmarks. Our results show that the majority of variables
can be scoped by the compiler and that the main difficulty is the treatment of global
variables. The variables that cannot be automatically scoped are reported to the user to
proceed to manual scoping.

In the future we want to enhance the implementation in Mercurium by adding sup-
port to aggregates and improving the PCFG generation to have the necessary context
information to define the concurrent regions of a task in any case. We also plan to imple-
ment the algorithm in the ROSE [4] source-to-source compiler and take advantage of its
features for dealing with multiple files and library calls. We want to make the compiler

Auto-scoping for OpenMP Tasks 43

capable of recognizing the most common C library calls, such as memory allocation
methods, in order to avoid the incapacity of auto-scoping global variables and address
parameters in the occurrence of such calls. The automatic scoping of variables is part
of the solution to other problems of compiler analyses and optimizations. This analy-
sis can, for example, lead us to enhance auto-parallelizing tools and provide support to
OpenMP correctness tools. We plan to use the auto-scoping analysis to automatically
define data-dependencies between tasks[1].

Acknowledgements. We would like to acknowledge the support of the European Com-
mission through the ENCORE project (FP7-248647), and the support of the Spanish
Ministry of Education (contracts TIN2007-60625, CSD2007-00050), and the General-
itat de Catalunya (contract 2009-SGR-980). This work performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.

References

1. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X., Planas, J.:
OmpSs: a Proposal for Programming Heterogeneous Multi-Core Architectures. Parallel Pro-
cessing Letters 21(2), 173–193 (2011)

2. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguadé, E.: Barcelona OpenMP Tasks Suite:
A Set of Benchmarks Targeting the Exploitation of Task Parallelism in OpenMP. In: 38th
International Conference on Parallel Processing, ICPP 2009, Vienna, Austria, pp. 124–131.
IEEE Computer Society (September 2009)

3. Barcelona Supercomputing Center. The NANOS Group Site: The Mercurium Compiler,
http://nanos.ac.upc.edu/mcxx

4. Quinlan, D., et al.: Rose compiler infrastructure (2012), http://rosecompiler.org
5. Voss, M., Chiu, E., Chow, P.M.Y., Wong, C., Yuen, K.: An Evaluation of Auto-Scoping in

OpenMP. In: Chapman, B.M. (ed.) WOMPAT 2004. LNCS, vol. 3349, pp. 98–109. Springer,
Heidelberg (2005)

6. OpenMP ARB. OpenMP Application Program Interface, v. 3.1 (September 2011)
7. Oracle. Oracle Solaris Studio 12.3: OpenMP API User’s Guide (2010),

http://docs.oracle.com/cd/E24457_01/html/E21996/index.html
8. Royuela, S.: Compiler Analysis and its Application to OmpSs. Master’s thesis, Technical

University of Catalonia, 1012
9. Lin, Y.: Static Nonconcurrency Analysis of OpenMP Programs. In: Mueller, M.S., Chapman,

B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005 and IWOMP 2006.
LNCS, vol. 4315, pp. 36–50. Springer, Heidelberg (2008)

10. Lin, Y., Terboven, C., an Mey, D., Copty, N.: Automatic Scoping of Variables in Parallel Re-
gions of an OpenMP Program. In: Chapman, B.M. (ed.) WOMPAT 2004. LNCS, vol. 3349,
pp. 83–97. Springer, Heidelberg (2005)

http://nanos.ac.upc.edu/mcxx
http://rosecompiler.org
http://docs.oracle.com/cd/E24457_01/html/E21996/index.html

A Case for Including Transactions in OpenMP II:
Hardware Transactional Memory

Barna L. Bihari1, Michael Wong2, Amy Wang2,
Bronis R. de Supinski1, and Wang Chen2

1 Lawrence Livermore National Laboratory
2 IBM Corporation

{bihari1,bronis}@llnl.gov
{michaelw,aktwang,wdchen}@ca.ibm.com

Abstract. We present recent results using Hardware Transactional Memory
(HTM) on IBM’s Blue Gene/Q system. By showing how this latest TM system
can significantly reduce the complexity of shared memory programming while
retaining efficiency, we continue to make our case that the OpenMP language
specification should include transactional language constructs. Furthermore, we
argue for its support as an advanced abstraction to support mutable shared state,
thus expanding OpenMP synchronization capabilities. Our results demonstrate
how TM can be used to simplify modular parallel programming in OpenMP
while maintaining parallel performance. We show performance advantages in the
BUSTM (Benchmark for UnStructured-mesh Transactional Memory) model us-
ing the transactional memory hardware implementation on Blue Gene/Q.

1 Introduction

While the concept of transactions has been around for nearly two decades [6], we
still need efficient, production-quality implementations of transactional memory (TM).
TM could greatly simplify shared memory programming while maintaining efficiency.
However, software TM (STM) is often considered a research toy [3] while commer-
cially available chips have only recently supported hardware TM (HTM) [5].

The two implementation strategies for TM exhibit significant differences. HTM mod-
ifies the memory system, typically through modifications to the L1 and/or L2 caches, to
support atomic execution of groups of memory instructions. STM, which does not use
special hardware, handles all memory conflicts in software. Thus, STM has substantial
runtime overheads, while HTM has been limited to prototype architectures.

IBM R© recently announced the first production-quality HTM system in the Blue
Gene/Q R© (BG/Q) platform. We anticipate that other vendors will provide similar sup-
port in the near future. Several ongoing efforts are evaluating its applicability, efficiency
and ease of use (see [14], [15]). The preliminary results are encouraging and HTM
support can greatly simplify efficient and correct synchronization of multiple threads.
Prior work [11,17] has proposed TM support within OpenMP [12]. With the advent of
commercially available HTM implementations, our results demonstrate that we should
incorporate TM into the OpenMP specification in order to make these benefits easily
accessible.

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 44–58, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Case for Including Transactions in OpenMP II 45

This paper continues our case for including transactions in OpenMP. We build on
our preliminary STM results that combined an STM system, which provided the TM
primitives, with an OpenMP implementation, which provided all other shared memory
functionality [16]. We again explore performance with the BUSTM benchmark code.
However, we use a more complex, fully 3-D geometry in many of our experiments. Our
initial studies treated performance as a secondary focus; this work shows that HTM
can provide significant speed-ups and scalability. Since we have not highly optimized
BUSTM for the system, our results are preliminary, but very encouraging.

The rest of this paper is organized as follows. Section 2 discusses existing OpenMP
synchronization while Section 3 contrasts TM to other concurrency control techniques.
Section 4 presents our proposed TM extensions for OpenMP and Section 5 describes the
BG/Q TM implementation. Section 6 details our experimental results, including several
runs in three different synchronization modes (TM, atomic, and critical) that contrast
existing OpenMP constructs with our proposed solution.

2 Current OpenMP Synchronization Mechanisms

OpenMP currently includes four synchronization mechanisms: locks, barriers, atomics
and critical sections. These mechanisms synchronize objects in shared memory but are
either limited in their performance and applicability or are difficult to use correctly. TM
provides greater flexibility and ease of use; our results show it can also be performant.

Using locks for synchronization on a per construct basis leads to fine-grained locking
that can produce complex associations between data and synchronization as multiple
locks are held and released through intersecting lifetimes. A failure to acquire and re-
lease these locks in the correct order can lead to deadlocks and data races. They are not
composable and, thus, break modular programming. Alternatively, developers can use
coarse-grained locking strategies. However, using few locks can lead to unnecessary
convoying of execution and loss of performance. Developers can synthesize more di-
rected synchronization mechanisms from OpenMP atomics. However, these techniques
usually remain low level and suffer from problems similar to locks. Thus, we must use
more advanced abstractions as OpenMP programs increase in size and complexity.

OpenMP barriers and critical sections provide higher level abstractions. However,
barriers enforce synchronization across all threads in a team, which is frequently a much
larger scope than the programmer requires. OpenMP critical sections provide a directed,
high-level synchronization mechanism. However, the OpenMP specification precludes
nesting of critical sections. Further named critical sections allow additional complexity
that is often unnecessary and undesirable.

Parallel programming is complex, whether it is developing the program, reason-
ing about the program or looking for bugs. TM provides a higher level of abstraction
than existing OpenMP synchronization mechanisms without unnecessary restrictions or
complexities. TM results in simpler design, simpler reasoning, and maintenance, while
allowing specialized synchronization support for different platforms. Above all, it en-
ables simple lexical or dynamic nesting, even across library interfaces.

46 B.L. Bihari et al.

3 Prior Approaches to Concurrency Control

3.1 Mutual Exclusion

Perhaps the most common form of concurrency control for shared-memory parallel
programming is mutual exclusion. In general, mutual exclusion ensures program cor-
rectness, that is, serializability, by limiting access to shared-memory variables to one
thread at a time. Mutual exclusion achieves this restriction by using mutually exclusive
locks, also known as just locks or mutexes. For a thread to access a shared-memory
variable, it must first acquire the lock that protects the shared-memory variable. When
a thread has completed its access to the shared-memory variable, it releases the lock.

The concept of mutual exclusion appears straightforward and easy to apply. How-
ever, mutual exclusion quickly becomes unwieldy in large-scale software. Further, it is
extremely difficult nearly to write both correct and efficient large-scale multithreaded
software using mutual exclusion [7].

3.2 Non-blocking Atomic Primitives and OpenMP Atomics

Another, less common mechanism to synchronize shared-memory accesses uses non-
blocking atomic primitives, such as compare-and-swap (CAS) or load-linked store-
conditional (LL/SC), or more recently, OpenMP atomics. These approaches support
non-blocking algorithms that can offer substantial concurrency. However, only expert
parallel programmers typically use them as they are error prone even for simple data
structures, such as queues [10].

3.3 Lock Elision

TM essentially supports optimistic speculation. An alternative speculative technique
simply elides the lock. In most cases, no synchronization conflict will occur and the
accesses can be performed without acquiring the lock. Hardware techniques can track
temporary results and then commit them if no conflict has occurred [13].

In essence, lock elision is an implementation technique of TM that allows optimistic
execution of a critical section by eliding the write to a lock, so that the lock appears
to be free to other threads. A failed transaction results in execution restarting at the
beginning of the lock and actually acquiring the lock. The existing hardware cache
coherency mechanism is used to track read and write sets, which is consistent with their
intended use. although now they are usually tagged with a special transactional bit.
However, this mechanism also effectively limits the size of transactions to a cache size
while a general TM mechanism can allow bigger transaction sets. Lock elision benefits
from being backwards compatible to existing code that does not have to be rewritten,
and, if no hardware support for TM is present, the lock is just acquired.

3.4 Integrated TM Language Support

Several languages include TM support, including Programming Clojure, Scala, Haskell,
Perl, Python, Caml, and Java. For C++, significant work has explored language-level and

A Case for Including Transactions in OpenMP II 47

library implementations. Several vendors provide compilers that support STM [4,8,9].
Most vendors have used C++ as the model for TM because it has the more complex
language constructs than C and Fortran. Issues that have been explored include:

– Memory model and atomics (C++11);
– Support for member initializers;
– Support for C++ expressions;
– Integration of non-transactional and TM constructs;
– Embedding non-transactional synchronization within TM constructs;
– Structured block nesting;
– Multiple function entry and exit points;
– Static (templates) and dynamic (virtual functions) polymorphism;
– Exceptions thrown from within TM constructs;

The expectation is that transferring TM to C or Fortran will be straightforward.

4 Proposed OpenMP Extension

We propose to integrate TM into OpenMP. TM is not new; Herlihy and Moss proposed
it in 1993 for lock free data structures [6]. However, since that introduction, it has
exploded in popularity due to a promise of easy parallel programming. TM solves the
concurrency control problem. Case studies have shown that TM reduces the challenge
of parallel programming compared to mutual exclusion [18]. TM raises the level of
abstraction from basic support for mutable shared state to advanced support. TM can
coexist with current OpenMP concurrency mechanisms.

TM simplifies development of deadlock-free programs since functions can be com-
posed regardless of order. Thus, TM supports a modular programming model in which
software is written by composing separate and interchangeable modules together. Mod-
ular programming is fundamental to all of OpenMP’s base languages.

Our proposed syntax for the invocation of TM is simple by design and by definition.
We use the following notation in C/C++:

1 #pragma tm a tomic [(s a fe mode)]
2 {
3 < code >
4 }

The syntax in Fortran is essentially identical.

5 Blue Gene/Q TM Implementation

BG/Q support for TM involves three aspects. The BG/Q compute chip includes a ver-
sioning L2 cache that can associate version numbers with cache tags. Thus, the cache
can contain multiple instances of the same address. This mechanism allows the BG/Q
compiler and runtime to implement TM support. In this section, we describe these com-
piler and runtime techniques.

48 B.L. Bihari et al.

5.1 Compiler Support

The compiler is responsible for translating the tm atomic enclosed region into two
function calls to the TM runtime: tm begin and tm end. The compiler must also
generate register save and restore code in case a transaction is aborted and must be
retried. The safe mode clause asserts to the compiler that the TM region does not
contain irrevocable actions such as I/O or writing to device memory space. Without this
assertion, the runtime assumes that the transaction is unsafe, which requires the system
to use jail mode protection. A rollback caused by a jail mode violation restricts concur-
rency as the TM runtime immediately retries the transaction in the irrevocable mode.
Entering and exiting jail mode requires two system calls. We can avoid the overhead of
these calls by using the safe mode clause.

5.2 TM Runtime

A key aspect of TM support is detection of memory access conflicts. Our TM runtime
implements two conflict detection schemes: eager and lazy. Users can choose which
detection scheme to use via the TM ENABLE INTERRUPT ON CONFLICT runtime
environment variable. In the eager scheme, threads receive interrupts upon WAW, WAR,
and RAW conflicts. We base conflict arbitration on the age of the transactions to favor
survival of the older one. In the lazy scheme, all transactions, including doomed ones
run to the commit point at which arbitration and invalidation occur. When we abort a
transaction, the thread rolls back to the start of the transaction and retries immediately.

We support irrevocable actions inside a transaction as the runtime can revert to a
single global lock when an irrevocable action occurs. The runtime also reverts back to
a single global lock when a hardware transaction fails more than a configurable number
of times. Users can adjust this threshold via the TM MAX NUM ROLLBACK runtime en-
vironment variable. The runtime implements flat transaction nesting semantics in which
commit and rollback are to the outermost enclosing transaction.

The BGQ L2 cache is 16 way set associative and 10 out of 16 ways can be used
to store speculative states without an eviction. Since the L2 is 32MB in size and as
such, it can buffer approximately 20MB of speculative state. Capacity overflow can
also happen when the ways in a set are exhausted. When a transaction suffers capacity
overflow, the TM runtime retries the transaction TM MAX NUM ROLLBACK number of
times; that is, in the same way as rollbacks due to access conflicts. The reason is that
it is likely that capacity related rollbacks are transient, for example, due to too many
concurrent transactions running at the same time.

Our runtime provides several counters that can facilitate TM optimization. Users can
use the TM REPORT LOG to trigger printout of the counters. Four settings control the
level of detail reported: TM REPORT LOG=ALL/SUMMARY/FUNC/VERBOSE. The
TM REPORT NAME environment variable can specify the name of the report file.
The runtime provides utility functions to print and to inspect counter values, which
allows users (or tools) to collect the statistics and to generate reports in any format. The
TM REPORT STAT ENABLE environment variable enables the inspection routines.

The counters collect the following information per thread:

1. totalTransactions
2. totalRollbacks

A Case for Including Transactions in OpenMP II 49

3. totalSerializedJMV
4. totalSerializedMAXRB
5. totalSerializedOTHER

We capture the total number of transactions that a thread commits in totalTransactions
and the total number of retries that it attempts in totalRollbacks. If execution of an irre-
vocable action serializes a thread, we increment its totalSerializedJMV counter (JMV
stands for jail mode violation). totalSerializedMAXRB tracks the total number of times
that a thread is serialized due to retrying TM MAX NUM ROLLBACK times. We track
other non-obvious serialization causes in the totalSerializedOTHER counter.

6 Experimental Results Using BUSTM

We now present computational experiments to show HTM behavior and performance on
BG/Q. We use the BUSTM (Benchmark for UnStructured-mesh Transactional Memory)
code. We show results in BUSTM’s deterministic and probabilistic modes on two differ-
ent types of meshes that represent two different unstructured mesh connectivities. For
more details on the benchmark, we refer the reader to our previous work [1,2,16].

Unlike our previous work, we emphasize performance in terms of execution time
and scalability. However, BUSTM has not been optimized to run on any particular sys-
tem, including BG/Q. The TM runtime provides several options that we have not yet
explored. The runtime software, while quite stable, is still in limited availability as it
continues to evolve. Thus, our results represent a preliminary set of performance num-
bers on a new system with novel technology and are likely to improve in the future.

6.1 Geometries Used

Prism Mesh around a Cylinder. Our first example is the same grid of 119893 triangu-
lar prism cells arranged as a 2-D layer of 3-D cells that we used in earlier work [16]. The
mesh has 420060 faces (some quadrilateral, others triangular) and 123132 nodes. This
mesh has a fixed number of potential conflicts although the actual number of conflicts,
which we observe with the totalRollbacks counter, varies between runs.

Tetrahedral Mesh around a Sphere. Our second example of a real unstructured mesh
is a fully 3-D tetrahedral mesh composed of 362,429 cells, a total of 739,480 triangular
faces, and 67,938 nodes. The actual geometry around which this mesh was constructed
is a 10o wedge of a sphere. This mesh is fully 3-D: all interior cells are connected
to the nearest neighbors through all of their faces. Thus, the connectivity graph, which
significantly impacts the memory access pattern for the face- and particle-loops, is qual-
itatively and quantitatively different than that of the triangular prism mesh.

6.2 Experiments in Deterministic Mode

BUSTM’s deterministic mode models conservative finite volume schemes, in which
the outer loop is over the cell faces on which the heavy computation occurs [1,2]. This

50 B.L. Bihari et al.

1 #pragma tm a tomic
2 {
3 g r a d i e n t [c e l l n o 1] += i n c r ;
4 g r a d i e n t [c e l l n o 2] −= i n c r ;
5 }

Fig. 1. Gradients accumulated within a trans-
action in update cells

1 #pragma omp parallel f o r
2 f o r (i =0 ; i < max face ; i ++){
3 l e f t n e i g h b o r = l e f t c e l l s [i] ;
4 r i g h t n e i g h b o r = r i g h t c e l l s [i] ;
5 u p d a t e c e l l s (i n c r ,
6 l e f t n e i g h b o r , r i g h t n e i g h b o r) ;
7 }

Fig. 2. Loop that calls update cells

0 200 400 600 800 1000
10

0

10
1

10
2

10
3

Run number

N
um

be
r

of
 r

ol
lb

ac
ks

Rollbacks, Prism Mesh − Deterministic

1 th.
2 th.
4 th.
8 th.
16 th.
32 th.
64 th.

Fig. 3. Rollbacks across 1000 runs on pris-
matic mesh, in deterministic mode

1 2 4 8 16 32 64

10
0

10
2

10
4

Number of threads

N
um

be
r

of
 r

ol
lb

ac
ks

/e
rr

or
s

 Rollbacks/errors, Prisms − Deterministic

errors (without TM)
rollbacks (with TM)

Fig. 4. Total number of rollbacks and errors on
prismatic mesh, in deterministic mode

mode takes the mesh data, the number of threads, and the iteration count as input. We
replace the face-by-face flux computations with the simpler numerical divergence of
a mesh-function that we define on an unstructured mesh in a cell-centered sense. This
emulation computes the gradient of a function. If the function is constant, its gradient
and, thus, its divergence is zero. Fig. 1 shows the gradient transaction, which may seem
rather trivial, but it is purposely chosen in such a way so that we can later easily replace
it with equivalent atomic statements for side-by-side performance comparisons.

Since BUSTM loops over the faces, as Fig. 2 shows, conflicts can occur if dif-
ferent faces concurrently update the same cell. These conflicts only actually occur,
if update cells does not use transactions or other synchronization such as a
critical section, and two updates happen at the same physical time. Thus, the prob-
ability of conflicts is extremely low and, in fact, many of our experimental runs had no
conflicts.

Prism Mesh. Fig. 3 shows that the number of rollbacks in each of 1000 runs is al-
ways less than 120, and often zero. Fig. 4 shows the sum of the number of rollbacks
that TM incurs over the same 1000 runs versus the total number of errors committed
(without TM) for thread counts between 1 and 64. Unlike in the STM case [16], the
number of TM retries (i.e., “rollbacks”) is comparable to the number of errors with the
unsynchronized code. Both curves exhibit similar trends with increasing thread counts:

A Case for Including Transactions in OpenMP II 51

1 2 4 8 16 32 64
10

1

10
2

10
3

Number of threads

R
un

 ti
m

e
(s

)

Timings, Prism Mesh − Deterministic

TM
critical
atomic
linear

Fig. 5. Actual run time on prismatic mesh,
in deterministic mode

0 200 400 600 800 1000
10

0

10
1

10
2

10
3

Run number

N
um

be
r

of
 r

ol
lb

ac
ks

Rollbacks, Tetrahedral Mesh − Deterministic

1 th.
2 th.
4 th.
8 th.
16 th.
32 th.
64 th.

Fig. 6. Rollbacks across 1000 runs on tetrahedral
mesh, in deterministic mode

the number of conflicts increases significantly with the number of threads, except on 8
threads where we obtained no rollbacks at all. Fig. 3, which also clearly shows this lo-
cal anomaly, also indicates a large variation in the number of rollbacks across runs with
16 threads where the spread from run to run is wider than on 64 threads, for example.
Since the errors and rollbacks exhibit similar trends in Fig. 4, we believe that the details
of the connectivity of this particular mesh and/or the cell ordering may be responsible
for this conflict pattern. Overall, conflicts rarely occur relative to the number of poten-
tial conflicts. Despite the relatively small mesh, only 0.0017% of all cell updates incur
conflicts even on 64 threads. No rollbacks or errors occur with just two threads (or one,
which is expected).

In order to compare to other synchronization techniques, we ran the code, with trivial
code modiifications, in two other modes as well. Fig. 5 shows timings for TM, atomic,
which uses the atomic directive, and critical, which replaces the transaction with a
critical region; linear corresponds to perfect speed up. BG/Q has an efficient im-
plementation of the atomic construct so atomic exhibits almost linear scaling through
64 threads. However, the gradient computation of Fig. 1 involves three variable up-
dates (one for each dimension). Indeed, when we replace the one transaction with three
atomic constructs, the larger overhead of transactional memory ends up being amor-
tized over a larger code section so TM becomes actually slightly more efficient with
fewer than 16 threads, as Fig. 5 shows. As we expect, critical scales poorly, lagging the
other methods even with just two threads.

Tetrahedral Mesh. Fig. 6 and Fig. 7 plot the pattern and number of rollbacks with the
fully 3-D mesh. We again see few (less than 100 for most runs) conflicts during each
run. Fig. 6 is qualitatively similar to Fig. 3 although we see fewer conflicts with 16
threads. Fig. 7 now shows a monotone increase in rollbacks with the number of threads
and the absence of anomalies that we have seen in Fig. 4. The distribution of conflicts
across the runs exhibits a pattern in which higher thread counts result in a proportional
increase in rollbacks. The number of unsynchronized errors again follows, in a qualita-
tive sense, the pattern of rollbacks, although it is not monotone. The number of potential

52 B.L. Bihari et al.

1 2 4 8 16 32 64

10
0

10
2

10
4

Number of threads

N
um

be
r

of
 r

ol
lb

ac
ks

/e
rr

or
s

Rollbacks/errors, Tets − Deterministic

errors (without TM)
rollbacks (with TM)

Fig. 7. Total number of rollbacks and errors
on tetrahedral mesh, in deterministic mode

1 2 4 8 16 32 64
10

1

10
2

10
3

Number of threads

R
un

 ti
m

e
(s

)

Timings, Tetrahedral Mesh − Deterministic

TM
critical
atomic
linear

Fig. 8. Actual run time on tetrahedral mesh, in
deterministic mode

1 #pragma tm a tomic
2 {
3 c e l l c o u n t e r [c e l l n o] ++;
4 }

Fig. 9. Cell counter incremented
within a transaction in function
mark cell

1 #pragma omp parallel f o r
2 f o r (i =0 ; i<m a x p a r t i c l e s ; i ++){
3 n e x t c e l l = rand () ;
4 whi le (i n s i d e){
5 m a r k c e l l (n e x t c e l l) ; / / c e l l touched
6 n e x t f a c e = rand () ;
7 n e x t c e l l = n e i g h b o r (n e x t f a c e) ;
8 i f (n e x t c e l l < 0) i n s i d e = 0 ;
9 }

10 }

Fig. 10. Particle loop calls mark cell

conflicts is again the number of cells (362,429) times the number of faces per cell (4),
which yields a conflict probability of 0.00013% even for the run that exhibits the most
conflicts (190). This extremely small conflict probability occurs with a small 3-D mesh
by today’s standards; larger meshes would be expected to incur even fewer conflicts.

For the timings, Fig. 8 shows that atomic again scales well up to 64 threads, and it
is actually linear with up to 16 threads. TM is about 10% faster than atomic with fewer
than eight threads and scales well up to 8 threads, after which it slowly degrades in
scalability to about 70% of the ideal linear speed-up. The break even point between
TM and atomic is again 16 threads. As before, critical is faster with just one thread.
However, it actually slows down slightly as the thread count increases.

6.3 Experiments in Probabilistic Mode

We now present results for the probabilistic mode [1,2] to understand how well TM suits
real Monte Carlo applications. We again use the unstructured bookkeeping in BUSTM
in order to emulate the behavior of particles. Fig. 9 illustrates a simple transaction that
safely increments a single cell-based integer and Fig. 10 shows the loop that distributes

A Case for Including Transactions in OpenMP II 53

0 200 400 600 800 1000
10

3

10
4

10
5

10
6

Run number

N
um

be
r

of
 c

on
fli

ct
s

Rollbacks, Prism Mesh − Probabilistic

1 th.
2 th.
4 th.
8 th.
16 th.
32 th.
64 th.

Fig. 11. Rollbacks across 1000 runs on pris-
matic mesh, in probabilistic mode

1 2 4 8 16 32 64

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Number of threads

N
um

be
r

of
 r

ol
lb

ac
ks

/e
rr

or
s

Rollbacks/errors, Prisms − Probabilistic

errors (without TM)
rollbacks (with TM)

Fig. 12. Total number of rollbacks and errors on
prismatic mesh, in probabilistic mode

the particles across the threads. Again, the transaction itself in Fig. 9 is trivial because of
our anticipated timing comparisons to atomic. For error checking, we use a separate
counter that we increment for each particle every time it touches a cell.

Prism Mesh. Our first probabilistic experiments use the triangular prism mesh. We re-
port conflict statistics that the TM runtime reports. Each of our 1,000 runs uses 12,000
random particles (10% of the number of cells). Fig. 11 shows a much higher number
of conflicts than in the deterministic case. The conflicts are fairly consistent for a given
thread count with a relatively narrow spread from run to run, and appear almost linearly
proportional to the number of threads. We observe the opposite trend from the determin-
istic case between the total number of TM rollbacks and the total number of unsynchro-
nized errors in Fig. 12in that that TM performs many more rollbacks than unsynchronized
errors (without TM), sometimes by an order of magnitude. This phenomenon may arise
from the much heavier computational load imposed by frequent invocations of the ran-
dom number generator. Also, higher conflict-rate scenarios can lead to multiple rollbacks
on the same memory location, thus considerably increasing the number of rollbacks. In
fact, on some rare occasions, we exceed the default maximum number of rollbacks of
10, thus invoking jail mode and serializing the entire transactional loop.

The single statement transaction of Fig. 9 is easily replaced with an atomic or
critical directive. Because of this, however, TM no longer gains an advantage due
to multiple atomic constructs being included in a single transaction. Nevertheless,
Fig. 13 shows that TM again scales well, as does atomic. Again, critical has constant
execution time independent of thread count.

Tetrahedral Mesh. We now show probabilistic experiments on the tetrahedral mesh.
Each of our 1,000 runs uses the same number of random particles as mesh cells. Fig. 14
shows an unexpected pattern in terms of the number of rollbacks. Surprisingly, we incur
the most rollbacks with 16 threads, with a much lower conflict rate on 32 and 64 threads.
This anomaly can only be explained by the unique connectivity of this 3-D mesh in
this particular scenario. Fig. 15 shows that another anomaly occurs in the number of

54 B.L. Bihari et al.

1 2 4 8 16 32 64
10

3

10
4

10
5

Number of threads

R
un

 ti
m

e
(s

)

Timings, Prism Mesh − Probabilistic

TM
critical
atomic
linear

Fig. 13. Actual run time on prismatic
mesh, in probabilistic mode

0 200 400 600 800 1000
10

4

10
5

Run number

N
um

be
r

of
 c

on
fli

ct
s

Rollbacks, Tetrahedral Mesh − Probabilistic

 1 th.
2 th.
4 th.
8 th.
16 th.
32 th.
64 th.

Fig. 14. Rollbacks across 1000 runs on tetrahedral
mesh, in probabilistic mode

1 2 4 8 16 32 64

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Number of threads

N
um

be
r

of
 r

ol
lb

ac
ks

/e
rr

or
s

Rollbacks/errors, Tets − Probabilistic

errors (without TM)
rollbacks (with TM)

Fig. 15. Total number of rollbacks and errors
on tetrahedral mesh, in probabilistic mode

1 2 4 8 16 32 64

10
3

10
4

Number of threads

R
un

 ti
m

e
(s

)

Timings on Tetrahedral Mesh − Probabilistic

TM
critical
atomic
linear

Fig. 16. Actual run time on tetrahedral mesh, in
probabilistic mode

incorrect results without TM with two threads, but on the rest of the thread counts the
error trend follows, qualitatively speaking, that of the rollbacks. Overall, the total num-
ber of resolved conflicts and committed errors is again a small fraction of the number
of updates. For example, even on 16 threads, the conflict probability is only 0.045% on
this relatively small mesh.

In terms of timings, Fig. 16 shows that TM again scales well up to 16 threads, with
marginal improvements on 32 and 64 threads. As expected, critical has constant execu-
tion time, while atomic scales better than in the prism case, probably because the mesh
is larger. The difference between atomic and TM is again due to the larger overhead of
TM for a single statement.

7 Conclusions, Current and Future Work

We explored the HTM support of IBM’s newly introduced Blue Gene/Q platform
through the BUSTM code. In order to understand the potential benefits of HTM in

A Case for Including Transactions in OpenMP II 55

different scientific computing scenarios, we ran BUSTM in two different modes on two
different unstructured meshes. In all cases TM scaled well up to at least 16 threads, with
further, albeit smaller gains on 32 and 64 threads. Wherever TM had three memory lo-
cations to protect instead of just one, it outperformed the OpenMP atomic construct.
Further, it outperformed the OpenMP critical construct in all cases and by an order
of magnitude or more on 64 threads. Thus, our preliminary evaluation of this new HTM
technology shows that TM offers substantial benefits in all cases.

Our explicit goal is the inclusion of TM into the OpenMP specification. Our perfor-
mance comparisons only required substitution for OpenMP directives, thus retaining
composability and the benefits of modular programming while retaining efficiency.

Finally, this reinforces our position that the deterministic and probabilistic algo-
rithms shown here, while they represent different numerical algorithms, are well-suited
to transactions since conflicts rarely occur. We continue to study the outlier cases pre-
sented here, to add new potential meshes, to include more complicated operations in
the transactions, and to search for new algorithms to add to BUSTM’s portfolio.

Acknowledgements. The authors wish to thank John Gyllenhaal and Scott Futral of
LLNL for numerous fruitful discussions on this subject and for support of this work.
The IBM authors gratefully acknowledge the help of Kelvin Li and Mary Chan. The first
author also acknowledges past financial support from Rockwell International, Boeing,
and Hypercomp, Inc. in developing the unstructured mesh bookkeeping used in the
experiments, and from Icon Consulting and IBM in writing the BUSTM code.

This article (LLNL-PROC-528852) has been authored in part by Lawrence Liver-
more National Security, LLC under Contract DE-AC52-07NA27344 with the U.S. De-
partment of Energy. Accordingly, the United States Government retains and the pub-
lisher, by accepting the article for publication, acknowledges that the United States
Government retains a non-exclusive, paid-up, irrevocable, world-wide license to pub-
lish or reproduce the published form of this article or allow others to do so, for United
States Government purposes.

IBM Specific
IBM United States of America
Produced in the United States of America
US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the products
and services currently available in your area. Any reference to an IBM product, pro-
gram, or service is not intended to state or imply that only that IBM product, program,
or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it
is the user’s responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter de-
scribed in this document. The furnishing of this document does not grant you any

56 B.L. Bihari et al.

license to these patents. You can send license inquiries, in writing, to: IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PAPER “AS IS” WITHOUT WAR-
RANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes may be made periodically to the information herein; these changes may be
incorporated in subsequent versions of the paper. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this paper at any time with-
out notice.

Any references in this document to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of those Web sites. The materi-
als at those Web sites are not part of the materials for this IBM product and use of those
Web sites is at your own risk.

IBM may have patents or pending patent applications covering subject matter de-
scribed in this document. The furnishing of this document does not give you any li-
cense to these patents. You can send license inquiries, in writing, to: IBM Director of
Licensing, IBM Corporation, 4205 South Miami Boulevard, Research Triangle Park,
NC 27709, U.S.A.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Trademarks
IBM, the IBM logo, ibm.com, and Blue Gene/Q are trademarks or registered trademarks
of International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first occurrence
in this information with a trademark symbol, these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time this information was published.
Such trademarks may also be registered or common law trademarks in other countries.
A current list of IBM trademarks is available on the web at ”Copyright and trademark
information” at http://www.ibm.com/legal/copytrade.shtml.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or regis-
tered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

A Case for Including Transactions in OpenMP II 57

Linux is a registered trademark of Linus Torvalds in the United States, other coun-
tries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks
of Oracle and/or its affiliates.

Other company, product, or service names may be trademarks or service marks of
others.

References

1. Bihari, B.L.: Applicability of Transactional Memory to Modern Codes. In: International Con-
ference on Numerical Analysis and Applied Mathematics 2010 (ICNAAM 2010) Conference
Proceedings, pp. 1764–1767. APS, Rodos (2010)

2. Bihari, B.: Transactional Memory for Unstructured Mesh Simulations. Journal of Scientific
Computing (to appear, 2012)

3. Cascaval, C., Blundell, M.C., Michael, H.W., Wu Cain, P., Chiras, S., Chatterjee, S.: Software
Transactional Memory: Why is it Only a Research Toy? ACM Queue 6(5), 46–58 (2008)

4. Dice, D., Shalev, O., Shavit, N.: Transactional Locking II. In: Dolev, S. (ed.) DISC 2006.
LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

5. Haring, R., The IBM BlueGene Team: The IBM Blue Gene/Q Compute Chip. In: Hot Chips
24: A Symposium on High Performance Chips, Palo Alto, CA (2011)

6. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural Support for Lock-Free Data
Structures. SIGARCH Comput. Archit. News 51(2), 289–300 (1993)

7. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann Pub-
lishers (February 2008)

8. IBM. IBM XL C/C++ for Transactional Memory for AIX, V0.9 Language Extensions and
Users Guide (May 2008), http://dl.alphaworks.ibm.com/technologies/
xlcstm/xlcstm-whitepaper.pdf

9. Intel. Intel C++ STM Compiler, Prototype Edition 2.0 (2008),
http://softwarecommunity.intel.com/articles/eng/1460.htm/

10. Michael, M.M., Scott, M.L.: Simple, Fast, and Practical Non-Blocking and Blocking Con-
current Queue Algorithms. In: Proceedings of the Fifteenth Annual ACM Symposium on
Principles of Distributed Computing, PODC 1996, pp. 267–275. ACM, New York (1996)

11. Milovanović, M., Ferrer, R., Unsal, O.S., Cristal, A., Martorell, X., Ayguadé, E., Labarta,
J., Valero, M.: Transactional Memory and OpenMP. In: Chapman, B., Zheng, W., Gao, G.R.,
Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007. LNCS, vol. 4935, pp. 37–53. Springer,
Heidelberg (2008)

12. OpenMP ARB. OpenMP Application Program Interface, v. 3.1 (July 2011)
13. Rajwar, R., Goodman, J.R.: Speculative Lock Elision: Enabling Highly Concurrent Multi-

threaded Execution. In: Proceedings of the 34th Annual ACM/IEEE International Sympo-
sium on Microarchitecture, MICRO 34, pp. 294–305. IEEE Computer Society, Washington,
DC (2001)

14. Schindewolf, M., Schulz, M., Gyllenhaal, J., Bihari, B., Wang, A., Karl, W.: What Scientific
Applications Can Benefit from Hardware Transacional Memory? In: International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (SC 2012), Salt
Lake City, Utah (November 2012) (currently under review)

15. Wang, A., Gaudet, M., Wu, P., Ohmacht, M., Amaral, J.N., Barton, C., Silvera, R., MIchael,
M.: Evaluation of Blue Gene/Q Hardware Support for Transactional Memories. In: PACT
(submitted, 2012)

http://dl.alphaworks.ibm.com/technologies/xlcstm/xlcstm-whitepaper.pdf
http://dl.alphaworks.ibm.com/technologies/xlcstm/xlcstm-whitepaper.pdf
http://softwarecommunity.intel.com/articles/eng/1460.htm/

58 B.L. Bihari et al.

16. Wong, M., Bihari, B.L., de Supinski, B.R., Wu, P., Michael, M., Liu, Y., Chen, W.: A Case for
Including Transactions in OpenMP. In: Sato, M., Hanawa, T., Müller, M.S., Chapman, B.M.,
de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132, pp. 149–160. Springer, Heidelberg
(2010)

17. Woongki, B., Minh, C.C., Trautmann, M., Kozyrakis, C., Olukotun, K.: The OpenTM Trans-
actional Application Programming Interface. In: PACT 2007: Proceedings of the 16th In-
ternational Conference on Parallel Architecture and Compilation Techniques, pp. 376–587.
IEEE Computer Society, Washington, DC (2007)

18. Zyulkyarov, F., Gajinov, V., Unsal, O.S., Cristal, A., Ayguadé, E., Harris, T., Valero, M.:
Atomic Quake: Using Transactional Memory in an Interactive Multiplayer Game Server. In:
Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2009, pp. 25–34. ACM, New York (2009)

Extending OpenMP* with Vector Constructs
for Modern Multicore SIMD Architectures

Michael Klemm1, Alejandro Duran2, Xinmin Tian1, Hideki Saito1, Diego Caballero2,
and Xavier Martorell1,3

1 Intel Corporation
{michael.klemm,xinmin.tian,hideki.saito}@intel.com

2 Barcelona Supercomputing Center
{alex.duran,diego.caballero}@bsc.es

3 Universitat Politecnica de Catalunya
xavim@ac.upc.edu

Abstract. In order to obtain maximum performance, many applications require
to extend parallelism from multi-threading to instruction-level (SIMD) paral-
lelism that exists in many current (and future) multi-core architectures. While
auto-vectorization technology has been used to exploit this SIMD level, it is not
always enough due to OpenMP semantics and compiler technology limitations.
In those cases, programmers need to resort to low-level intrinsics or vendor spe-
cific directives. We propose a new OpenMP directive: the simd directive. This
directive will allow programmers to guide the vectorization process enabling a
more productive and portable exploitation of the SIMD level. Our performance
results show significant improvements over current auto-vectorizing technology
of the Intel R© Composer XE 2011.

1 Introduction

Moore’s Law is still alive and well and bestows an exponential growth of the number
of transistors on a chip [1]. Due to fundamental constraints on energy consumption and
cooling [21], CPU vendors cannot push performance of single-core CPUs at the usual
pace. The available transistor budget is instead spent to increase the number of cores
per die and to widen the arithmetic Vector Processing Units (VPU) by doubling the
length of SIMD vectors. The evolution from Intel R© Streaming SIMD Extensions (SSE,
128 bit) to Intel R© Advanced Vector Extensions [9] (AVX, 256 bit) to the instructions of
the Intel R© Knights Ferry prototype [7] (512 bit) are a good example.

Applications must make effective use of the available VPUs together with paral-
lelization to leverage the full potential of today’s multi-core architectures. While
OpenMP* [20] is a widely accepted industry standard for thread parallelism, it does
not offer any means to express SIMD parallelism. Programmers need to rely on an
OpenMP compiler to automatically handle vectorization or they need to use vendor-
specific extensions (e. g., vectorization directives) to express SIMD parallelization. Pro-
grammers need to trust the compiler on SIMD vectorization interacting correctly and
optimally with the OpenMP constructs. This, unfortunately, is not the case across the
board. Several commercial compilers (e. g., Cray’s, IBM’s, etc.) support directives that

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 59–72, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

60 M. Klemm et al.

allow programmers to express independence between loop iterations which in turn en-
ables vectorization. But these extensions are neither portable nor complete enough to
handle more complex cases.

To alleviate the situation for programmers, we propose special SIMD constructs for
OpenMP to extend parallelism from thread-level parallelism to instruction-level par-
allelism. The proposed constructs provide a standardized set of SIMD constructs for
programmers who no longer need to use non-portable, vendor-specific vectorization in-
trinsics or directives. In addition, SIMD constructs provide additional knowledge about
the code structure to the compiler and allow for a better vectorization that blends well
with parallelization.

2 Related Work

Since the appearance of the traditional vector architectures, automatic vectorization of
scalar code has become an outstanding topic in compiler research. The relatively re-
cent introduction of short VPUs in the latest CPUs and accelerators, and the increasing
role that these units are playing, are bringing vectorization into prominence again. To
succeed in the auto-vectorization process, compilers need to deal with alignment con-
straints, control flow divergences, different memory access patterns, operations between
data types with different length, loops with dynamic bounds, etc.

As a result, we find a lot of related work in that direction that comes up with promis-
ing techniques on auto-vectorization with alignment constrains and operations on mixed
data lengths [5,17,23,24], vectorizing code with non-stride-onedata accesses [15,16,18],
and control flow divergences [4,10]. We can find even the definition of a new level of
parallelism, called superword-level parallelism, focused on exploiting these short SIMD
units in a different way to how data-level parallelism does [4,13].

However, these techniques are not always useful. To avoid poor performance it re-
quires very sophisticated heuristics, analysis, and code transformations, which are usu-
ally not implemented in production compilers [14]. Even implementing them, compilers
cannot always vectorize due to inter-procedural and inter-file analysis limitations, loops
with dynamic/unknown compile-time bounds, complex memory accesses, and pointer
arithmetic. All these characteristics may hinder the compiler ability to auto-vectorize.
In some cases, we have different options of vectorization, as when both the inner and
outer loops could be vectorized and the compiler cannot choose the right one [19].

As a result of these limitations, programmers are often forced to use low-level
intrinsics to exploit the SIMD level of the architecture. This is an error-prone and time-
consuming process for programmers who need to rewrite their code and that, also, re-
duces the portability of the programs. To ease this problem, OpenCL [11] introduced
basic data types that represent vectors allowing the user to specify operations between
them that will be in turn vectorized by the compiler. This approach still requires rewrit-
ing of the code but to a lesser and more portable extend. Others [2,12,22] have intro-
duced a user-guided vectorization based on compiler directives that allow programmers
to mark loops that should be vectorized. These last approaches require little effort by
the programmer while still achieving very good performance across platforms.

We argue that it would be beneficial to OpenMP users that the OpenMP specification
would provide support for user-directed vectorization in order to improve performance

Extending OpenMP* with Vector Constructs for Modern Multicore SIMD 61

1 #pragma omp parallel
2 {
3 #pragma omp f o r
4 f o r (i =0 ; i<N; i ++) {
5 f o r (j =16; j<N−16; j ++) {
6 a [i] [j] = a [i] [j −16] + b [i] [j] ;
7 b [i] [j] = b [i] [j +16] + a [i] [j] ;
8 }
9 }

10 }

Fig. 1. Parallel code fragment that cannot be vectorized automatically

portability of programs at the SIMD-parallel level. In the following sections we discuss
why and how this support should be integrated into OpenMP.

3 Motivation

While the existing worksharing constructs of OpenMP already define loop-level par-
allelism on for (C/C++) or do loops (Fortran), re-using these existing constructs to
describe vectorization does not work. The example in Fig. 1 shows a code fragment
that can (partially) be executed in parallel, but cannot be vectorized by the compiler
without additional knowledge about vectorization and the correct vector length.

In Fig. 1, two issues for the compiler arise that inhibit vectorization by the for
construct. First, it cannot simply extend the for worksharing construct to the j-loop,
since this would violate the OpenMP semantics. At the same time, it is not possible to
nest a second for construct to indicate to the compiler that the inner-most loop is safe
to parallelize or vectorize. Second, the j-loop contains a loop-carried dependency that
prohibits the automatic vectorizer of the compiler to emit vectorized code. However, the
code can be vectorized for any given vector length for array b and for vectors shorter
than 16 elements for array a.

Also note that, in general, to maintain the OpenMP principle that “if the user cannot
tell, then it is ok”, compilers can only apply vectorization inside of each chunk of a for
as otherwise there would be observable differences in the mapping of loop iterations to
threads. As a result of this, the performance maybe hampered by the inefficient use of
vector registers and because of alignment of the data of the different chunks. This is
particularly true when the loop size is a small ratio of the vector length.

Our solution to the above issue is to extend OpenMP with a set of constructs and
clauses that enable programmers to specify vectorization patterns in addition to the par-
allelization patterns. This completes OpenMP’s support for multi-level parallelism, that
is, both thread-level and instruction-level parallelism by exploiting SIMD instructions.

4 SIMD Extensions to OpenMP

To facilitate vectorization of OpenMP codes, we propose to extend the set of OpenMP
directives by a new set of directives to handle vectorization. In the following we will
describe the syntax and semantics of the proposed extensions.

62 M. Klemm et al.

1 #pragma omp parallel
2 {
3 #pragma omp f o r
4 f o r (i =0 ; i<N; i ++) {
5 #pragma omp simd v e c t o r l e n g t h (1 6)
6 f o r (j =16; j<N−16; j ++) {
7 a [i] [j] = a [i] [j −16] + b [i] [j] ;
8 b [i] [j] = b [i] [j +16] + a [i] [j] ;
9 }

10 }
11 }

Fig. 2. Code of Fig. 1 with vectorization construct added

4.1 Vectorized Worksharing Construct

The basis of our extensions to OpenMP is the simd construct for for (C/C++) and
do loops (Fortran). Fig. 2 shows how the proposed construct can be used to guide the
compiler on vectorizing the code of Fig. 1 (we will cover the vectorlength clause
later in this paper).

The syntax of the simd construct is as follows:

C/C++:
#pragma omp simd [clause[[,] clause] ...] new-line

for-loops

Fortran:
!$omp simd [clause[[,] clause] ...] new-line

do-loops
[!$omp end simd]

The simd construct closely follows the idea and syntax of the existing workshar-
ing constructs. It supports several clauses that we will cover in Section 4.3. The loop
header of the associated for or do loop must obey the same restrictions as for the
existing worksharing constructs. These restrictions enable the OpenMP compiler to de-
termine the iteration space of the loop upfront and distribute it accordingly to fit the
vectorization.

4.2 Vectorization and Parallelization

In line with the existing combined parallel worksharing constructs, we define a set of
combined simd constructs:

C/C++
#pragma omp simd for [clause[[,] clause] ...] new-line

for-loops
#pragma omp parallel simd for [clause[[,] clause] ...] new-line

for-loops

Extending OpenMP* with Vector Constructs for Modern Multicore SIMD 63

Fortran:
!$omp simd do [clause[[,] clause] ...] new-line

do-loops
[!$omp end simd do]
!$omp parallel simd do [clause[[,] clause] ...] new-line

do-loops
[!$omp end parallel simd do]

While the simd construct vectorizes sequential loops, the simd for construct com-
bines the semantics of the for and simd constructs in a single construct. It vectorizes
a loop and distributes it across the binding thread set. The simd for construct may
appear anywhere the for worksharing construct may be and supports all clauses of the
for worksharing construct.

The combined constructs go beyond mere syntactical sugar. The combined simd
for slightly changes the semantics of the optional chunk size of the scheduling
clause. In simd worksharing constructs, the chunk size refers to the chunk size after
vectorization has been applied. That is, a loop chunk is created after the loop has been
distributed across the SIMD registers.

4.3 Additional Vectorization Clauses

To further influence the behavior of the simd construct, we define clauses to control
data visibility, vector length, induction variables, and memory alignment. All clauses
are optional and only need to be used when the compiler does not recognize a vector-
ization pattern or if programmers want to override the defaults of the simd construct.

Data Sharing Clauses. All OpenMP data-sharing clauses are available to control the
visibility and sharing of variables for vectorized loops. We extend the semantics of
the clauses to match the requirements of vectorization. The private clause creates
an uninitialized vector for the given variables. The firstprivate clause promotes
variables to private vectors that are initialized with values from outside the loop. With
lastprivate, a private vector is created and the variable’s value in the last loop
iteration is retained. The reduction clause creates a private copy of the variable and
horizontally aggregates partial values of a vector into a global, scalar reduction result.

Controlling the Vector Length. The default vector length can be specified through the
vectorlength and vectorlengthfor clauses. If the compiler cannot determine
the correct vector length (e. g., due to loop-carried dependencies), the programmer may
use vectorlength to enable vectorization. The value for vectorlengthmust be
of an integral compile-time constant and depends on the data type used for computation
and the distance of the loop-carried dependency (if any). It must also be a power of
two (e. g., 2, 4, 8). For instance, a loop working on double values would select 4
as the vector length when compiling for a processor with support for Intel AVX. The
vectorlengthfor clause helps identify the correct vector length for a given data
type. It accepts a data type of the base language as its argument and automatically
chooses the vector length to fit the machine architecture.

64 M. Klemm et al.

The vector length may be a multiple of the machine vector length. In this case, the
compiler may apply double-pumping, triple-pumping, or quad-pumping that emulates
longer vectors by fusing multiple vector registers into a larger logical vector register.

Induction Variables. Induction variables are variables whose value linearly depends
on the loop counter of a loop. With the linear clause, a programmer can specify a set
of variables that shall be considered induction variables across loop iterations. For each
variable, the linear clause accepts the identifier and an increment:

simd-construct linear(identifier[:increment] [, identifier[:increment] ...])

The increment can either be a compile-time constant or a variable. When the compiler
vectorizes the loop, the compiler generates vectors that contain the induction values for
the current loop chunk and makes sure that the vector is updated accordingly along the
loop iteration space.

Data Alignment. Data alignment is important since most platforms can load aligned
data much faster than unaligned data. This especially applies to vectors. Yet, compilers
are in general not able to detect the alignment properties of data across all modules of
a program. Compilers, thus, have to react conservatively and emit code that uses only
unaligned loads and stores. Hence, we define the align clause to explicitly provide
this knowledge to the compiler:

simd-construct align(identifier[:alignment] [, identifier[:alignment] ...])

For each identifier in the list of the align clause, the programmer can specify the
alignment properties. If the alignment is omitted, the default is the standard alignment
for vectors on the target platform (e. g., 16 B for Intel SSE).

Forced Vectorization. The simd construct implies that the associated loop or function
is always vectorized by the OpenMP compiler. If the compiler cannot vectorize the
code for some reason (e. g., a too complex code pattern), it should abort compilation
and emit a diagnostic message to inform the programmer. This can help programmers
avoid an unexpected performance behavior and reduce the (performance) debugging
effort. To further control this behavior, we define the noassert clause to specify that
the programmer does not want to get notified about the vectorization process of the
associated code in any case (e. g., if asserts have been turned on globally by means of a
compiler switch). Simarly, the assert clause can be used by the programmer to turn
on notifications if the compiler cannot vectorize a loop (or function) and notifications
have been turned off on a global scale.

4.4 Vectorizing Functions

Functions that are called from a to-be-vectorized loop need special treatment to suc-
cessfully vectorize the whole loop. Fig. 3 shows an example of a loop that calls into
the functions min and distsq. Since the code will be vectorized over the arrays a, b,
c, and d, the functions min and distsq can no longer have scalar arguments. They

Extending OpenMP* with Vector Constructs for Modern Multicore SIMD 65

1 #pragma omp simd (min) nomask
2 f l o a t min (f l o a t a , f l o a t b) {
3 re turn a < b ? a : b ;
4 }
5

6 #pragma omp simd (d i s t s q) nomask
7 f l o a t d i s t s q (f l o a t x , f l o a t y) {
8 re turn (x − y) ∗ (x − y) ;
9 }

10

11 vo id example () {
12 #pragma omp parallel simd f o r
13 f o r (i =0 ; i<N; i ++) {
14 d [i] = min (d i s t s q (a [i] , b [i]) , c [i]) ;
15 }
16 }

Fig. 3. Vectorization of a loop with calls into functions

instead need to accept arguments that constitute a full vector of input parameters. Sim-
ilarly, functions can no longer return a scalar value but must return a vector of values.

To guide the compiler on which functions to vectorize, we allow the simd directive
to also annotate function declarations and definitions. The directive instructs the com-
piler to create a scalar version of the function definition and to also create versions of
the function that accept vector arguments and that return a vector of return values. The
compiler must generate both versions as the scalar version could be used in a differ-
ent compilation unit. Besides the vectorlength, vectorlengthfor, linear,
and align clauses, the simd directive for function annotation accepts two additional
clauses to guide the compiler on how to vectorize the function.

The default behavior when vectorizing a function is that a particular formal param-
eter of the function should be promoted to a vectorized function argument. For the
example code in Fig. 3, the compiler would promote a and b of min to vector registers.
In some cases, however, it might be desired to replicate a scalar parameter into the vec-
tor register during promotion. The uniform clause lets the programmer override the
default behavior for a parameter and switch to (conceptual) replication.

To support conditionals in vectorized loops, two implementations of functions are
provided: one especially suitable for conditional invocation (i. e., masked), and another
especially suitable for unconditional invocation (i. e., unmasked). If all invocations at
call sites of the function are conditional, generation of the unmasked implementation
can be suppressed using the mask clause. Similarly, if all invocations are unconditional,
generation of the masked implementation can be suppressed using the nomask clause.
Using both clauses together has no effect: both implementations are provided in this
case. With these clauses, programmers may reduce the code size of the application.

5 Implementation

The implementation of the SIMD directives for OpenMP is based on the existing im-
plementation of Intel R© CilkTM Plus. Intel Cilk Plus defines a set of SIMD pragmas for

66 M. Klemm et al.

Collect function annotations or function analysis information

Function cloning and vector signature generation

Function vectorization Identify and analyze functions by parsing annotations and
profiling information to decide function cloning and

signatures for matching caller&callee on target CPU/GPU
Memory/Loop optimizations

Loop Vectorization/Parallelization

Scalar Optimization and Code Generation

Phase-2: optimizing with program annotation
or profiling feedback information

Phase-1: compile and execute with call graph and profiling

vectorized binary code

Fig. 4. Compilation infrastructure of the SIMD directives in ICC [22]

guided vectorization and the implementation can be reused for the OpenMP SIMD di-
rectives. We do not rely on anything that comes from the multi-threading features of
Cilk Plus.

In addition to the implementation in the Intel R© Composer, there exist two additional
implementations. The Mercurium compiler [3] has been extended [2] with OpenMP
SIMD directives and can be used as a research prototype. The Cilk Plus runtime has
also been ported to the GNU Compiler Collection 4.7 [6] and can be used as the basis
to adopt OpenMP SIMD directives in other compilers.

Since the details of the Cilk Plus implementation of SIMD pragmas can be found
in [22], we restrict ourselves to sketch the ideas of the implementation and refer to [22]
for the details.

For each vectorized function with a simd directive, the compiler applies multi-
versioning and emits several variants of the function to support different vectorization
schemes as well as the original scalar code. Creating the scalar code is important not
to break (non-vectorized) code that imports symbols from other compilation units. A
name-mangling scheme uniquely identifies the created variants so that they can safely
be linked into the final executable. At the call site, the compiler searches for the function
definition and recreates the mangled name from the usage in the vectorized code.

Masking support for a vector function is implemented by adding a hidden formal pa-
rameter that contains a boolean. An added if statement only performs the computation
of the function when the boolean is true. During vectorization, this boolean is promoted
to a vector of booleans to only apply the function to those vector elements for which
the mask bit is set to true.

When a uniform or linear clause is present, the compiler does not promote the
parameter to a vector, but instead keeps the scalar parameter. For uniform parameters,
the compiler uses a scalar register to store the runtime value. If the uniform parameter
is a pointer then the compiler can take this (scalar) address as the base address for vector
loads and stores. A linear clause directs the compiler to use scalar loads/stores and

Extending OpenMP* with Vector Constructs for Modern Multicore SIMD 67

to assume that data referenced by the linear parameter is stored in memory with the
stride specified at the clause (unit stride by default).

The compiler can automatically determine the correct value for vectorlength in
most cases. From the data type used in the computation and the target machine instruc-
tion set, the compiler can deduce the vector length (e. g., 2 for double-precision with
SSE or 8 for single-precision with AVX). Specifying a vectorlength that is a mul-
tiple of a vector length instructs the compiler to use double-pumping or quad-pumping,
that is, to fuse multiple physical registers into a single virtual register. For mixed-type
computations, e. g., single-precision and double-precision, it needs to find a common
virtual vector length that suits both data types. For instance, double-pumping might be
applied to the double-precision registers, while a single physical register is used for
single-precision values.

6 Evaluation

To document the benefits of adding the OpenMP SIMD directives, we conduct a se-
ries of benchmarks. The benchmarks have been selected to reflect different application
domains and to correspond to typical HPC-type applications.

6.1 Methodology

We use the following experimental setup for our evaluation. The benchmarking sys-
tem is a dual-socket Intel R© Xeon R© X5680 processor with 3.33 GHz, Hyper-Threading
technology, and 24 GB main memory (at 1333 GHz). The machine runs RedHat* En-
terprise Linux* 6.0 (kernel 2.6.32-71). We use the GNU Compiler Collection (GCC,
version 4.6.2) and the Intel R© C++ Composer XE for Linux (ICC, version 2011 SP1)
with support for SIMD directives to compile the benchmarks.

To rule out machine effects and jitter, we run each benchmark ten times and take the
average of the runs as the timing result. We use GCC as the baseline performance for
the evaluation. The results are normalized against this baseline and we show the relative
speed-up compared to the GCC baseline.

6.2 Benchmarks

We have evaluated our proposal using the following benchmarks from different appli-
cation domains:

Mandelbrot computes the well-known mandelbrot set by testing a progression of com-
plex numbers for convergence. The convergence test makes Mandelbrot a difficult
code for an auto-vectorizer. The input size is 4,000x4,000.

Volume Rendering is a typical kernel from graphics processing. It contains several
conditional tests, which inhibit optimal auto-vectorization. The benchmark uses
40,960 rays for rendering.

Blackscholes implements a version of the Black-Scholes model used in the financial
sector for option pricing. Although it is a data-parallel problem, the auto-vectorizer

68 M. Klemm et al.

0,00x

1,00x

2,00x

3,00x

4,00x

5,00x

6,00x

Mandelbrot Volume
Rendering

BlackScholes Fast Walsh Perlin Noise SGpp

re
la
tiv

e
sp
ee
d
up

(h
ig
he

ri
s
be

tt
er
)

GCC auto vec

ICC auto vec

ICC SIMD directive

Fig. 5. Relative speed-up of the benchmarks over GCC auto-vectorization baseline

cannot properly vectorize the code because it suspects data dependencies. The
benchmark is tested with an input data size of 16,000x16,000 SP floating-point
elements.

Fast Walsh Transform performs a dyadic convolution, a transformation based on the
Fourier transformation with applicability to electrical engineering and numerical
theory. This benchmark is tested in single-precision using 67,108,864 elements as
input data.

Perlin Noise is an image filter to increase realism in computer graphics. The computa-
tion is performed using SP floating-point numbers while the image is stored using
unsigned-char data types. We use an image size of 10,240x10,240 pixels.

SG++ is a DP kernel that uses sparse adaptive grids [8] for data-mining to learn and
predict properties of data. Due to the non-linear nature of the code, auto-vectorizers
fail and manual vectorization becomes necessary. We use a 5-dimensional data set
that consists of 10,000 training data points and 38,400 analysis data points.

6.3 Results

The normalized performance of the benchmarks is shown in Fig. 5. It compares GCC’s
and ICC’s auto-vectorizer performance with the peformance of the OpenMP SIMD
directives. Fig. 6 compares the performance of ICC only to rule out improvements be-
cause of different compiler optimizations.

Mandelbrot cannot be auto-vectorized by neither GCC nor ICC. The compilers are
not able to properly detect the structure of the loop and to vectorize the function invoca-
tion for the convergence check. If the OpenMP SIMD directives are added to the code,
the compiler receives enough knowledge about the code structure so that it can replicate
the convergence check into a vectorized function. With the vectorized function body it
becomes possible to vectorize the parallel loop. This immediately pays off in a 3.33x
performance improvement over the non-vectorized version compiled by ICC.

Extending OpenMP* with Vector Constructs for Modern Multicore SIMD 69

3,66x

2,04x 2,13x

4,34x

1,47x

2,40x

0,00x

0,50x

1,00x

1,50x

2,00x

2,50x

3,00x

3,50x

4,00x

4,50x

5,00x

Mandelbrot Volume
Rendering

BlackScholes Fast Walsh Perlin Noise SGpp

re
la
tiv

e
sp
ee
d
up

(h
ig
he

ri
s
be

tt
er
)

ICC auto vec

ICC SIMD directive

Fig. 6. Relative speed-up of the benchmarks over ICC auto-vectorization baseline

Volume Rendering suffers from the same auto-vectorizer problems. Due to the code
structure with loops spread over different functions and the complex control flow, the
compilers fail to auto-vectorize the code. Adding the OpenMP SIMD directives helps
to gain about a 2x speed-up with vectorization.

Blackscholes contains two nested loops with calls into math functions (square root,
exponentials, and logarithms). Because of the mathematical functions, GCC cannot
auto-vectorize the code. ICC assumes data dependencies that inhibit auto-vectorization;
the speed-up of 1.50x over GCC is due to the optimized mathematical functions that
ship with ICC. Adding the SIMD directives to the non-vectorized loops overrules ICC’s
data dependency analysis and also enables the vectorized version of the mathematical
functions. This yields a speed-up of 2.13x over the non-vectorized ICC version.

The Fast Walsh Transform contains a loop structure of three nested loops. The num-
ber of iterations of the outer-most loop decreases logarithmically; the middle loop is
running with stride one but the upper bound depends on the outer loop. The inner-most
loop runs backwards and the trip count also depends on the outer loop. The automatic
vectorization fails to detect that the loop can be vectorized. Adding the SIMD directive
to the inner-most loop enables ICC to vectorize and to achieve a 4x better performance.

Perlin Noise is the most complex benchmark. It contains SP and unsigned-char com-
putation in the same loop. The mixture of data types makes it hard for the compiler
to vectorize the code, since different data types correspond to different vector lengths.
To equalize the vector length, virtual vector registers need to be used by fusing two or
more physical registers (double pumping or quad pumping). Without SIMD directives,
ICC only generated slightly better code than GCC. The SIMD directives enable ICC to
generate better code, but still there is headroom for improvement, since ICC does not
fully exploit double and quad pumping at present.

SG++ is too complex for the auto-vectorizers. The outer-most loop is well-suited for
parallelization due to its large trip count. The trip count of the inner-most loop is too

70 M. Klemm et al.

low for vectorization (number of dimensions). The middle loop is the best target for
vectorization. However, the non-linear kernel prevents auto-vectorization; the compiler
is not able to detect that a reduction variable across the non-linear kernel can be pro-
moted to a vector. With the added SIMD directives, we can force the compiler to make
this change and to gain a 2.08x speed-up over the ICC and GCC non-vectorized codes.

7 Conclusions and Future Work

In order to exploit all levels of parallelism that are available in current architectures
applications need to exploit the available SIMD level in many of them. We have shown
that while auto-vectorization technology has significantly improved over the years, it is
still not possible to vectorize all loops. Although the for construct can help compilers
to know where to vectorize, this is not enough because of constraints imposed by the
OpenMP specification and because of limitations of compiler technology.

To overcome this limitation, we have presented a proposal for a new OpenMP direc-
tive: the simd directive. This directive allows the programmer to instruct the compiler
which loops should be vectorized, and also give some other information by means of
the clauses to allow for better vectorization. This directive can also be applied to func-
tion declarations so the compiler emits vector-enabled versions of those function to use
them from vectorized loops.

Our evaluation with a set of benchmarks shows how the use of this directive can give
significant improvements over the auto-vectorizer of a production compiler.

In the future, we expect to improve our vector code generation for different cases
(such as when the loop uses different data types) and test the portability of the directive
across different platforms. We also want to try different combinations on the order of
cutting chunks and vectorization of loop iterations.

Acknowledgments. * Other brands and names are the property of their respective
owners.

Intel, Xeon, and Cilk are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

We would like to acknowledge the support of the European Commission through
the ENCORE project (FP7-248647), and the support of the Spanish Ministry of Edu-
cation (contracts TIN2007-60625, CSD2007-00050), and the Generalitat de Catalunya
(contract 2009-SGR-980).

References

1. Borkar, S., Chien, A.A.: The Future of Microprocessors. Communications of the ACM 54(5),
67–77 (2011)

2. Caballero, D.L.: User-directed Vectorization in OmpSs. Master’s thesis, Universitat
Politècnica de Catalunya, Barcelona, Spain (September 2011)

3. Barcelona Supercomputing Center. The NANOS Group Site: The Mercurium Compiler,
http://nanos.ac.upc.edu/mcxx

http://nanos.ac.upc.edu/mcxx

Extending OpenMP* with Vector Constructs for Modern Multicore SIMD 71

4. Omer Cheema, M., Hammami, O.: Application-specific SIMD Synthesis for Reconfigurable
Architectures. Microprocessors and Microsystems 30(6), 398–412 (2006)

5. Eichenberger, A.E., Wu, P., O’Brien, K.: Vectorization for SIMD Architectures with Align-
ment Constraints. In: Proc. of the ACM SIGPLAN 2004 Conf. on Programming Language
Design and Implementation, Washington, D.C, pp. 82–93 (June 2004)

6. Free Software Foundation Inc. GCC 4.7 Release Series (March 2012),
http://gcc.gnu.org/gcc-4.7/

7. Heinecke, A., Klemm, M., Bungartz, H.-J.: From GPGPUs to Many-Core: NVIDIA Fermi*
and Intel R© Many Integrated Core Architecture. Computing in Science and Engineering (to
appear, 2012)

8. Heinecke, A., Pflüger, D.: Multi- and many-core data mining with adaptive sparse grids. In:
Proc. of the 8th ACM Intl. Conf. on Computing Frontiers, New York, pp. 29:1–29:10 (May
2011)

9. Intel Corporation. Intel R© Advanced Vector Extensions Programming Reference, Document
number 319433-011 (June 2011)

10. Karrenberg, R., Hack, S.: Whole-Function Vectorization. In: Proc. of the 9th Intl. Ann.
IEEE/ACM Symp. on Code Generation and Optimization, Charmonix, France, pp. 141–150
(April 2011)

11. Khronos OpenCL Working Group. The OpenCL Specification (February 2009),
http://www.khronos.org/registry/cl/

12. Krzikalla, O., Feldhoff, K., Müller-Pfefferkorn, R., Nagel, W.E.: Auto-Vectorization Tech-
niques for Modern SIMD Architectures. In: Proc. of the 16th Workshop on Compilers for
Parallel Computing, Padova, Italy (January 2012)

13. Larsen, S., Amarasinghe, S.: Exploiting Superword Level Parallelism with Multimedia In-
struction Sets. In: Proc. of the ACM SIGPLAN 2000 Conf. on Programming Language De-
sign and Implementation, Vancouver, BC, Canada, pp. 145–156 (June 2000)

14. Maleki, S., Gao, Y., Garzarán, M.J., Wong, T., Padua, D.A.: An Evaluation of Vectorizing
Compilers. In: Proc. of the 2011 Intl. Conf. on Parallel Architectures and Compilation Tech-
niques, Galveston Island, TX, pp. 372–382 (October 2011)

15. Naishlos, D., Biberstein, M., Ben-David, S., Zaks, A.: Vectorizing for a SIMdD DSP ar-
chitecture. In: Proc. of the 2003 Intl. Conf. on Compilers, Architecture and Synthesis for
Embedded Systems, San Jose, CA, pp. 2–11 (October 2003)

16. Naishlos, D., Biberstein, M., Zaks, A.: Compiler Vectorization Techniques for a Dis-
joint SIMD Architecture. Technical Report H-0146, IBM Research Division, Haifa, Israel
(November 2002)

17. Nuzman, D., Henderson, R.: Multi-platform Auto-vectorization. In: Proc. of the 4th Ann.
IEEE/ACM Intl. Symp. on Code Generation and Optimization, New York, pp. 281–294
(March 2006)

18. Nuzman, D., Rosen, I., Zaks, A.: Auto-vectorization of Interleaved Data for SIMD. In: Proc.
of the 2006 ACM SIGPLAN Conf. on Programming Language Design and Implementation,
Ottawa, ON, Canada, pp. 132–143 (June 2006)

19. Nuzman, D., Zaks, A.: Outer-loop Vectorization: Revisited for Short SIMD Architectures. In:
Proc. of the 17th Intl. Conf. on Parallel Architectures and Compilation Techniques, Toronto,
ON, Canada, pp. 2–11 (October 2008)

20. OpenMP Architecture Review Board. OpenMP Application Program Interface, Version 3.1
(July 2011), http://www.openmp.org/

21. Sutter, H.: The Free Lunch Is Over—A Fundamental Turn Toward Concurrency in Software.
Dr. Dobb’s Journal 30(3) (March 2005)

http://gcc.gnu.org/gcc-4.7/
http://www.khronos.org/registry/cl/
http://www.openmp.org/

72 M. Klemm et al.

22. Tian, X., Saito, H., Preis, S.V., Kozhukhov, S.S., Cherkasov, A.G., Nelson, C., Panchenko,
N., Geva, R.: Compiling C/C++ SIMD Extensions for Function and Loop Vectorization on
Multicore-SIMD Processors. In: Multicore and GPU Programming Models, Languages and
Compilers Workshop (Submitted for peer review)

23. Wu, P., Eichenberger, A.E., Wang, A.: Efficient SIMD Code Generation for Runtime Align-
ment and Length Conversion. In: Proc. of the 3rd Ann. IEEE/ACM Intl. Symp. on Code
Generation and Optimization, Jan Jose, CA, pp. 153–164 (March 2005)

24. Wu, P., Eichenberger, A.E., Wang, A., Zhao, P.: An Integrated Simdization Framework Using
Virtual Vectors. In: Proc. of the 19th Annual Intl. Conf. on Supercomputing, Boston, MA,
USA, pp. 169–178 (June 2005)

Introducing Task Cancellation to OpenMP

Oussama Tahan1, Mats Brorsson2, and Mohamed Shawky1

1 Heudiasyc-UMR 7253 Université de Technologie de Compiègne, Compiègne, France
{oussama.tahan,shawky}@hds.utc.fr

2 KTH Royal Institute of Technology, Stockholm, Sweden
matsbror@kth.se

Abstract. Multi-core processors are at the heart of current and future
trends for computer architectures. The number of cores on a single chip
is rapidly increasing, so as the need for simpler and more efficient pro-
gramming models. OpenMP is a powerful programming model that has
been adopted by a large spectrum of research and development teams to
develop parallel applications on multi-core processors. To fully exploit
the available cores in multi-cores chips, the latest versions of OpenMP
specification marked a transition from a thread-centric to a task-centric
programming model. Hence, tasks are used to express parallelism and
to execute concurrent computations. However, this programming model
suffers from the lack of a useful feature where created tasks can be ex-
plicitly cancelled. Task cancellation is considered an important aspect in
programs based on speculative execution and search algorithms, where
computation resources should be quickly released if not needed, yield-
ing higher computation efficiency and lower power consumption. In this
paper, we present a proposal and an enhancement to the OpenMP pro-
gramming model that allows users to create special type of tasks called
“cancellable tasks”. New easy to use extensions are added in order to
support both cooperative and forced cancellation of these special tasks
through specific cancellation calls. We will show that these extensions
reduce execution time and response delays of parallel applications that
may need cancellation and prompt resources re-allocation compared to
the user cancellation approach based on flags.

Keywords: Multi-Core Processors, Parallel Programming Models,
OpenMP, Task Cancellation.

1 Introduction

Today, OpenMP is a widely used shared memory parallel programming model.
In 2008 Ayguadé et al. [7] presented the design of adding a task-centric pro-
gramming model to OpenMP. This model has given programmers the ability
to explicitly create a task that can be immediately executed on one or several
existing threads or it can be deferred for a later execution. This programming
model has shown more flexibility and simplicity in expressing parallelism than
the previous thread-centric model (OpenMP up to version 2.5). In addition, it

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 73–87, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

74 O. Tahan, M. Brorsson, and M. Shawky

turns out to be more efficient in many cases since unbalanced computations and
workloads are simply and effectively dealt with when using tasks while dealing
with these issues was not possible with the previous model.

However, an interesting aspect of task management has not yet been studied
or taken into account in the task-based model which is task cancellation. Many
programs are based today on parameter sweep applications, parameterized and
search algorithms, N-version programming methodologies and application level
speculative executions [10]; therefore, task cancellation is an essential feature to
deal efficiently with this kind of algorithms.

We introduce in this paper a new compiler and runtime approach that adds
extensions to the OpenMP tasking model in which programmers will have the
ability to create applications containing cancellable tasks and group of tasks
through specific constructs extensions. In addition, programmers will also be
able to cancel these groups of tasks before they start their execution, immedi-
ately or at specific scheduling points. To present our contribution, this paper
is structured as follows: In the following section we present some related work
to task cancellation in other task-based programming models and in OpenMP.
In Section 3 we present the OpenMP tasking model and the motivation behind
building this extension. We then present our proposed extension in Section 4. In
Section 5 we present an example and the evaluation of this extension while in
Section 6 we conclude and present our future work.

2 Related Work

In order to program multi and many core chips, some other task-based par-
allel programming languages exist like Intel Cilk Plus, TBB (Intel’s Threading
Building Blocks), .Net TPL (Task Parallel Library) or PPL (Parallel Pattern Li-
brary), Chapel, X10 and Habanero-Java (HJ). Like OpenMP 3.0, these program-
ming models are based on dynamic task parallelism where user defined tasks are
used to run computations concurrently. Through our research, we found out that
only two of these parallel programming languages have officially introduced task
cancellation in their model. These two models are the TBB and the TPL/PPL
libraries. However, Perez et al. [6] introduced task cancellation to Cilk++ (a
predecessor to Intel Cilk Plus) by relying on the abort library already existing
in the Cilk-5 programming model. When an abort procedure is called through a
task, the subtree of tasks that has the calling task as root is cancelled; however,
only tasks already spawned are cancelled but not future tasks to be spawned [1]
and other subtrees spawned from other tasks are not affected.

As for the TBB, cancellation is based on defining and creating groups of tasks
that can be cancelled [2]. When the TBB function cancel_group_execution()
is called by a task, a request for cancellation will be sent for all not yet executed
tasks in its own group and subordinate groups. Using the TBB and Cilk-5 can-
cellation schemes, a task can belong only to one group and when a task calls the
cancellation request only tasks from the same group can be cancelled. Therefore,
to cancel tasks not belonging to the same team, user-defined shared memory flags

Introducing Task Cancellation to OpenMP 75

must be used. It means that a programmer should implement the comparison of
the flags inside of a task and hence a thread has to switch its execution to the
new task before cancelling it and the programmer has to explicitly protect the
flag from concurrent accesses.

A similar approach has been implemented in the TPL/PPL library where
groups of cancellable tasks are explicitly created and defined [3], but like in
TBB, a task can only be part of only one user defined cancellable group and
tasks already executing cannot be cancelled and hence they should continue
their execution until completion or until cancellation is detected through user
code. Wong et al. [14] presented an error model for OpenMP that extends the
programming model with error handling features. They proposed the done con-
struct that a programmer can use to cancel regions like parallel, worksharing
and task regions. This approach seems to be useful when a programmer aims to
terminate the whole subset of the region in which the cancellation request has
been called including the caller itself, or only the innermost region. However,
we believe that this model is not efficient for algorithms where only parts of
the subset may be requested for cancellation or when tasks can be grouped for
cancellation, neither in situations where some tasks should be protected from
cancellation. In our work, we propose a cancellation model that takes into con-
sideration these issues not dealt with in the previous proposal by offering several
APIs that a programmer can use efficiently for tasks cancellation. In contrast to
the cancellation features used in other programming models, we propose in this
work an extension to the OpenMP tasking model that allows task cancellation
in both cooperative and forced manners. In addition, using our approach, an
OpenMP task can belong to one or several cancellable groups to manage task
cancellation in a simpler way. Moreover, a task is able to cancel tasks belong-
ing to other groups while avoiding the use of user-defined shared flags. On the
other hand, user-level cancellation protection can be applied by an OpenMP
programmer to protect portions of a task or the whole task from cancellation.

3 Task Cancellation in OpenMP

In the following sections, we briefly present the OpenMP tasking model and the
motivation behind adding task cancellation to OpenMP.

3.1 The OpenMP Tasking Model

The tasking model was added to OpenMP as of specification version 3.0. When
a thread encounters the “#pragma omp task” directive, a new task is created
and immediately executed or pushed in a queue of tasks for later execution. In
order to synchronize created tasks, a parent task can wait for its child tasks
to finish execution by using the “#pragma omp taskwait” directive. The parent
task will be stuck at this synchronization point until all child tasks have finished
their execution. Different clauses are also used to define variables shared between
tasks, or variables private for each task [4].

76 O. Tahan, M. Brorsson, and M. Shawky

3.2 The Motivation behind Adding Task Cancellation to OpenMP

Today, many applications are based on algorithms where application level spec-
ulative execution is needed, or they rely on search and parameterized algorithms
[10]. All of these algorithms strongly depend on task cancellation in order to have
more efficient execution. Süß and Leopold [11] proposed a cancellation scheme
to OpenMP based on the thread-centric OpenMP model. In their proposal, they
introduced new directives to OpenMP that allow a programmer to simply cancel
threads in a parallel region. However, their method might not be efficient for the
task-centric programming model where only task cancellation may be needed
and not the whole parallel region. In [14], the done construct has been proposed
to terminate innermost OpenMP regions depending on the specified clause. This
proposal does not take into account the need to terminate groups of the running
or scheduled tasks neither the need to protect tasks from being cancelled. We
believe that adding task cancellation to OpenMP will improve the efficiency of
this kind of applications and it will allow programmers to easily develop these
programs. Task cancellation is important since first of all, execution time can be
reduced when cancelled tasks release the threads on which they were running
and these threads become available and ready to execute other tasks. On the
other hand, when tasks are cancelled, time spent on synchronization will become
smaller and hence a parent task may be released and may continue executing
sooner.

Moreover, reducing power consumption is increasingly important in order to
obtain good performance with low power consumption. Cancelling tasks can
reduce the power consumed by an application by avoiding unnecessary compu-
tations. In addition, cancelling a task can be used to free a thread from a task
that may take too much time to finish or from a task stuck in an endless loop.

Furthermore, when cancelling not yet executed or created tasks, and by de-
tecting through the runtime if a cancellation is requested, we can reduce time
spent by a thread for tasks switching since cancelled tasks do not have to exe-
cute and they can be eliminated before being switched to the thread. Currently,
OpenMP programmers may express cancellation through user-defined shared
flags creation and communication; hence, they must ensure that these flags are
always updated in the memory in order to be read correctly by the other tasks
running on other threads to avoid possible deadlocks or extra unnecessary com-
putation. However, using the flush directive is frequently missed by OpenMP
users with little experience [12]. In addition, since these flags are accessed in
both read and write modes in parallel, data races may occur and these latter
may cause incorrect results and unexpected application behavior. To avoid these
data races, atomic or critical accesses should be used. In [12], experiments showed
that the most frequent mistake in OpenMP programming is that programmers
do not take into account concurrent accesses to some variables and hence they
do not protect these shared variables. When implementing a cancellation scheme
within the compiler and the runtime, user-defined flags are not needed anymore
and since protecting and flushing the memory will be automatically done in the
runtime, no deadlocks or extra computation may take place. In addition, flag

Introducing Task Cancellation to OpenMP 77

polling overheads can be reduced by implicitly replicating the cancellation flag
on the existing threads so each thread polls on its own flag. In the following sec-
tion we present our idea to introduce task cancellation to the OpenMP tasking
model.

4 Adding Cancellable Tasks to OpenMP

In our work, we introduced a new type of tasks to OpenMP, which is the can-
cellable type of tasks. These new cancellable tasks can be destroyed by the
programmer during the execution of the program. Our aim is to give the pro-
grammer the ability to build in a flexible way, parallel programs containing two
different types of tasks; cancellable and non cancellable tasks, and to easily can-
cel and stop the former ones from executing. Using our proposal, programmers
can apply cancellation through either cooperative or non-cooperative way. In
order to obtain cancellable tasks, we introduce a new specific type of group of
tasks called cancellable group. In an OpenMP program containing more than
one cancellable task, several cancellable groups may exist and cancellable tasks
will belong to these groups. The programmer can allocate a group for one or
several cancellable tasks and these latter can be created and assigned to a spe-
cific group anywhere in the program. When a group is cancelled, all tasks that
belong to this group should be cancelled. In addition, unlike the cancellation
schemes presented in Section 2, a cancellable task can be assigned to one or
several cancellable groups at the same time.

4.1 Creating Cancellable Tasks

To create a cancellable task, we propose to add an extension to the OpenMP task
creation directive. Through this extension, programmers will be able to specify
if a task is cancellable and will assign it to a specific group. In addition, they
will also be able to assign a task to several groups at the same time which means
that this specific task will be cancelled if at least one of the groups to which it
is assigned is cancelled. This will give a programmer the flexibility to cancel a
task in several ways without having to assign a new special group for it. The
proposed extension is: cancellable (group #1, group #2, ...)
Using this cancellable clause, the programmer will indicate if a task is cancellable
and will specify the cancellable groups to which this task belongs. These groups
are identified by a number specified by the programmer; hence each group will
have its own user defined identification number. In a future implementation, we
can add extensions to the current implementation to allow programmers easily
define a group of tasks (taskgroup) and insert it within the proposed clauses.

The OpenMP directive for creating a cancellable task is proposed as follows:

#pragma omp task cancellable (group #1, group #2, ...)
{ do_work();}

78 O. Tahan, M. Brorsson, and M. Shawky

4.2 Dealing with Nested Tasks

Since nested parallelism is frequent in OpenMP programs based on tasks, and
since most applications contain nested tasks, our method should deal with this
too; hence, when a parent task is cancelled, its child tasks are cancelled too.
In general, when a programmer requests the cancellation of a task, it means
that the whole parallel tree of work created by this task should also be can-
celled. Therefore we introduced the groups’ inheritance in our method which
means that child tasks will automatically inherit their parent task’s group or
groups. The programmer does not have to insert and code this inheritance since
it will be automatically detected by the runtime and a child task will inherit the
cancellable groups of all its anterior tasks in the tree when created.

4.3 Cancelling Tasks

In order to cancel tasks during the program execution, a programmer must cancel
the group in which these tasks have been assigned. Therefore, we propose a new
OpenMP function that gives a programmer the ability to cancel the groups of
tasks. When cancellation is requested by a task, the programmer should specify
which groups of tasks should be cancelled. If no groups were specified for cancel-
lation, all cancellable groups and tasks belonging to them will be cancelled. The
programmer can also specify if the cancellation request should be done in a forced
way (not finished tasks are forced to stop execution) or in a cooperative way
(only not started or created tasks are cancelled). The proposed OpenMP func-
tion calls are respectively int omp_forced_taskscancel (int group #1, int
group #2, ...) and int omp_coop_taskscancel (int group#1, int
group#2, ...).

If the return value of these functions is equal to 1, this means that cancellation
is successful. If the return value is equal to 0, it means that at least one of the
destination groups has already been cancelled while if the value is equal to -1,
the cancellation cannot take place.

On the other hand, if a programmer wants to send a cancellation call to a
specific group from a task that belongs to this same group, the calling task will
also be cancelled with its cancellable group when the call is a forced cancellation.
However, the programmer can specify if the task should still be alive and continue
its normal execution by using another OpenMP function that we name forced
cancellation with exclude. Using this cancellation with exclude, the calling task
will ignore its own cancellation request only if the cancelled group or groups do
not belong to the list of its inherited groups.

The forced cancellation function with exclude will be as follows:

int omp_forced_taskscancel_exclude (int group#1, int group#2, ...)

If the return value of this function is equal to 1, it means that cancella-
tion has succeeded while if the value is equal to 0, it means that at least one of

Introducing Task Cancellation to OpenMP 79

the destination groups has already been cancelled. However, if the return value
is equal to -1, this will mean that cancellation cannot take place. This last
return value can be obtained in a future implementation when taskgroups will
be defined. Cancelling a taskgroup that does not exist may yield to this negative
return value.

When a task calls its same group for cancellation we should notice that its
child tasks (if there are any) will be belonging to the same group through in-
heritance, consequently they will be cancelled as well. In order to prevent this
from happening when the cancellation with exclude is used, a programmer must
ensure that already submitted child tasks have finished execution. If it is not the
case, the runtime will implicitly force the task to wait for all its child tasks before
sending the group cancellation request. After sending the cancellation call with
the exclusion, the new created child tasks will not inherit the group requested
to be cancelled and hence they will not be cancellable on that group.

4.4 Protecting Tasks from Cancellation

Using our approach, we allow tasks to be cancelled during their execution through
forced cancellation, unlike TBB and TPL libraries where only not yet started
tasks are cancelled. However, cancelling some tasks forcefully or even coopera-
tively may cause deadlocks in a program or prevent tasks from doing some impor-
tant work like releasing locks, freeing resources or doing some critical functions
etc. Therefore, we introduced in our approach a cancellation protection scheme
that gives the programmer the ability to specify cancellable tasks or parts of
them as unaffected by cancellation.

In order to protect a task from cancellation, we have taken two cases into
account. The first one is where a cancellable task should not be cancelled be-
fore being created. Therefore, if a task encounters a cancellable task creation
procedure, the new task will be created and submitted for execution even if it
belongs to an already cancelled group. The second case is when a programmer
needs to protect the whole body of a cancellable task or just a part of it from
cancellation.

In order to protect a task from being banned from creation, we added another
extension to the task creation directive called locked-on-creation . This clause
will prevent the non creation of a task and it will also prevent the cancellation of
the body of this cancellable task when this latter is submitted for execution or has
started its execution. This extension can be useful if the child task belongs to a
cancellable group but it does some important work like freeing memory resources
or releasing a lock. A programmer can create this type of child tasks within
a cancellable or non cancellable parent task. If the parent task is cancellable,
usually the programmer should ensure that it cannot be interrupted during its
execution. This can be done by guaranteeing that the parent task’s group will
not be forced for cancellation (through application specifications) or by manually
locking the parent task from cancellation. However, using our implementation,
if the parent task is cancellable and not already locked, it will automatically
lock itself for cancellation when creating this type of tasks and it will release

80 O. Tahan, M. Brorsson, and M. Shawky

itself right after the child task submission. In its current stage, the runtime does
not take into account orphaning issues but we intend to bring modifications to
the implementation in the future to ensure that all child tasks finished their
execution before cancelling the parent task.

In addition, programmers are able to lock cancellable tasks from cancella-
tion within the body of a task through int omp_cancellabletask_lock(void)
function call and release it through int omp_cancellabletask_unlock(void).

The first function is used to lock and protect the task from cancellation. If
the returned value is equal to 1 it means that locking was successful. If the value
is equal to 0 it means that the task was already locked while the returned value
is equal to -1 if the task could not be locked.

The second function is used to unlock the calling cancellable task. If the return
value is equal to 1 it means that unlocking was successful and the task should be
cancelled. If it returns 0 it signifies that the task has been unlocked successfully
but no cancellation for the task is needed. However, if the return value is equal to
-1 it indicates that the calling task was already unlocked while if the return value
is equal to -2, it means that unlocking was not successful (e.g., if the calling task
is not a cancellable task).When a task is being created inside a protected code, it
will also inherit the protection status of its parent task and will be automatically
defined as protected.

We also added a new OpenMP runtime function that allows programmers to
detect if a task is requested to be cancelled. This extension is the following:

int omp_iscancelled(int group)
When a cancellation is requested for the group specified as a parameter of

the function, the return value will be equal to 1. However, if the return value
is equal to 0, it means that the specified group cancellation has not yet been
requested. If the return value is equal to -1 it means that the calling task is not
a cancellable type of task.

4.5 When Does Cancellation Take Place?

Our task cancellation method is a combined compiler and runtime system based
approach. In order to obtain this new OpenMP feature, we made modifications to
the Mercurium source to source compiler and to the Nanos++ runtime system
[8][13]. Both the runtime and compiler are developed by the Barcelona Super
Computing Center (BSC) and support OpenMP and OmpSs models. OmpSs
is an extension to OpenMP that lets programmers express more fine-grained
dependences between tasks than the taskwait construct and that supports het-
erogeneous devices [5]. However, in this paper we only consider the OpenMP
model and we do not take into consideration the possible effects of OmpSs.

We have made some modifications to Mercurium in order to detect the new
cancellation related directives, clauses and functions that we defined earlier in
this paper. We also modified the runtime in order to handle the new functions
generated by the source to source compiler.

Introducing Task Cancellation to OpenMP 81

During its lifetime, an OpenMP task can have one of these statuses:

1. a task may be not yet created or submitted for execution;
2. a task may be created and submitted for execution but not yet executed;
3. a task may be running and being executed by a thread;
4. a task may be synchronizing or sleeping in a queue waiting for a specific

condition to release it (like a taskwait construct).
5. a task may already have finished execution;

When a task calls the groups cancellation request, the runtime will check if an
older request has already been sent. If this is the first request, a cancellation
flag will be enabled, and the requested cancellable groups are registered in the
runtime. If no groups were specified through the call, a special flag is enabled
to declare that all groups are requested for cancellation. The task cancellation
procedure is protected through the runtime by locks and hence, cancellation
cannot be done concurrently by more than one task.

When a task encounters a task creation procedure, it will check if the new task
is considered as cancellable (user-defined, through inheritance or both), it will
verify if the task is protected against cancellation and it will detect the groups
to which it is assigned. If the cancellable task is not protected and at least one
of its groups is cancelled, this task will not be created. However, if it is protected
or none of its groups are cancelled, the task will be created and submitted and
it will be assigned to its user defined groups and inherited groups if there are
any.

As for the tasks currently running on threads, if the call is a forced cancella-
tion, the calling thread will detect through the runtime if they are cancellable,
if they are assigned to the called cancellable groups and if they are unlocked for
cancellation. If all these conditions are met, a signal will be sent to the specific
threads to stop executing these current running tasks. This signal is sent using
the POSIX pthread_kill function and will be handled by the destination thread
which is forced to discard the currently running task and to pick another task
immediately from the tasks queue.

In addition, when at least one of the cancellation flags have been enabled, and
if a forced cancellation is called, tasks that are synchronizing or waiting to be
executed in the tasks pools and that met the cancellation conditions are removed
from the queues and prohibited from execution when picked up by the threads.
When a thread picks from the tasks pools a task that belongs to cooperatively
cancelled group or groups, this task is cancelled only if it has not yet started.

Interrupting running tasks or cancelling those who already started execution
and sleeping in the queues is considered as a forced non cooperative cancellation
method and hence resources deallocation is difficult and it may lead to corrupted
data. Therefore we consider that programmers should use this method only when
they know for sure that applying this forced cancellation to their tasks will not
generate faults or incorrect results and behavior in their application.

82 O. Tahan, M. Brorsson, and M. Shawky

Algorithm 1. NQueens code using the proposed cancellation scheme
1. void find_queens (int size, int goal_number)
2.. { int number_of_solutions, depth=0;
3.. #pragma omp parallel
4. {
5. #pragma omp single
6. {
7. nqueens(size, &number_of_solutions, goal_number, depth, ...);
8. } //end single
9. } //end parallel
10. } //end find_nqueens

11. void nqueens (int n, int *solutions, int goal, int depth, ...)
12. {
13. if (depth==n) {
14. int found_solutions=0;
15. #pragma omp critical
16. {
17. *solutions=*solutions+1;
18. found_solutions+=*solutions;
19. } //end critical

20. if ((found_solutions >= goal) && (satisfy_conditions()) && (!omp_iscancelled(1))) {
21. int cancellation_succeeded=omp_coop_taskscancel (1);
22. if (cancellation_succeeded)
23. {//this will execute only once
24. do_some_work ();
25. print_found_queens_positions();
26. } //endif
27. } //endif
28. } //end if

29. for (i=0; i<n; i=i+1) {
30. #pragma omp task cancellable (1) shared (solutions, goal)
31. {
32. if (!omp_iscancelled(1)) {
33. if (verify_good_position()) nqueens (n, soluttions, goal, depth+1, ...);
34. } //endif
35. } //end task
36. } // endfor

37. #pragma omp taskwait
38. } //end nqueens

5 Evaluation of OpenMP Task Cancellation

We have made an initial evaluation of our proposal using the NQueens bench-
mark from BOTS (Barcelona OpenMP Tasks Suite) [9] developed by the
Barcelona Super Computing Center. The benchmark is based on the NQueens
problem where all solutions are computed. The purpose of this algorithm is to
determine a placement for n queens on an n × n chessboard where the queens
cannot attack each other. In Algorithm1, we show a part of the implementation
code of the NQueens benchmark using the proposed OpenMP task cancellation
approach. To test our approach, we considered that the benchmark should stop
looking for placements when at least a certain number of solutions is found and a
certain condition specified by the user is satisfied (line 20 in Algorithm 1). There-
fore, when both conditions are satisfied, the rest of the computations should be
aborted in order to save computation time and unnecessary power consumption.

Introducing Task Cancellation to OpenMP 83

In this implementation, we use the cooperative cancellation procedure and hence
we do not force the tasks to be cancelled.

Algorithm 2. NQueens cancellation using user-defined flags
1. void find_queens (int size, int goal_number)
2.. { int number_of_solutions, depth=0;
3.. #pragma omp parallel
4. {
5. #pragma omp single
6. {
7. nqueens(size, &number_of_solutions, goal_number, depth, flag , ...);
8. } //end single
9. } //end parallel
10. } //end find_nqueens

11. void nqueens (int n, int *solutions, int goal, int depth, int flag , ...)
12. {
13. if (depth==n) {int cancellation_succeeded=0;
14. #pragma omp critical
15. {
16. *solutions=*solutions+1;
18. if ((*solutions >= goal) && (satisfy_conditions()) && (!flag)) {
19. flag+=1; //conditions satisfied, raise flag
20. cancellation_succeeded+=1;
21. } //end if
22. }//end critical, flushes are implicitly defined at entry and exit of the critical section

23. if (cancellation_succeeded)
24. {//this will execute only once
25. do_some_work ();
26. print_found_queens_positions();
27. } //endif
28. } //endif

29. for (i=0; i<n; i=i+1) {
30. int temp=0;
31. #pragma omp critical
32. temp=flag;
33. if (temp!=1)
34 #pragma omp task shared (solutions, flag)
35. {
36. int temp=0;
37. #pragma omp critical
38. temp=flag;
39. if (temp!=1) {
40. if (verify_good_position()) nqueens (n, soluttions, goal, depth+1, ...);
41. } //endif
42. } //end task
43. } // endfor

44. #pragma omp taskwait
45. } //end nqueens

From an algorithmic point of view, using the cancellation scheme is considered
more efficient than letting the user define and compare flags. When using flags,
programmers should insert the flush directive in several parts of the code to
make sure that the flag is updated in the shared memory and that other threads
are reading the newest value from it. In addition, since the flag may be read and
written in parallel, the programmer has to protect this variable from concurrent
read/write accesses in order to prevent any race conditions. Locks, atomic or

84 O. Tahan, M. Brorsson, and M. Shawky

critical constructs should be used for this purpose. Our implementation offers
these protections and flushes implicitly within the proposed extensions. In Algo-
rithm2, we show the NQueens benchmark that uses a flag to enable cancellation
and uses critical sections to protect this shared flag (flushing the memory is
implicitly done in critical sections).

On the other hand, we have evaluated the performance of the approach by
running NQueens on a Sun Fire X4600 server running Linux CentOS with 8
Dual Core AMD Opteron(tm) 8218 Processors at a clock speed of 2.6 GHz and
employing a NUMA architecture with 32 GB of memory. We have tested our
method on the test inputs of the NQueens benchmark using different numbers
of threads (maximum 16) and by applying a breadth-first tasks scheduling policy.
We compared the performance of the application to the intitial benchmark with
the initial implementation where there are no checking for cancellation requests.
Our implementation brought 4% overhead to the execution time. This overhead
is mainly due to the costs of task groups’ inheritance and to the overheads of
polling of the cancellation flags. We noticed that this overhead tends to increase
with larger input sets; studying in details the inputs size effect on performance
and memory usage will be the subject of future works. However, compared to
the user-defined cancellation approach, our method offers better performance
and response time when cancellation is requested, with a speed-up that increases
with the increasing number of threads and with the growing number of tasks to
cancel.

Fig. 1. NQueens speed-up using runtime cancellation over using user-defined flags

In Figure1, we can notice that execution time speed-up is almost 2% when
running the benchmark on two threads, and it increases with the growing num-
ber of threads to achieve a 17% speedup on 16 threads. The proposed approach

Introducing Task Cancellation to OpenMP 85

brought an improvement in performance because cancelling tasks waiting in
the queue does not require tasks context switching before being cancelled, they
are checked for cancellation and cancelled immediately when dequeued. On the
other hand, when cancellation is requested, threads rush to pick tasks from the
queue more frequently because the executed cancellable tasks become very fine
grained and hence they lead to contention in the task queue which also causes
a higher response time for cancellation. In addition, polling of one user-defined
flag may also cause loss in performance specially when protecting the flag within
a critical region. This overhead is reduced using the new implementation since
each thread polls on its own flag. But in this study, we do not evaluate and
compare the different overheads produced when inserting critical regions or any
other memory protection mechanisms and we leave it for future work.

6 Conclusion and Future Work

In this paper, we presented new extensions to the OpenMP task-centric pro-
gramming model that gives programmers the possibility to easily code parallel
applications where task cancellation is necessary and where fast resource re-
allocation is important for better efficiency. This approach can also be used for
applications where users can cancel work through an interface for example.

Fig. 2. Suggested OpenMP Task Cancellation Directives

86 O. Tahan, M. Brorsson, and M. Shawky

These extensions are based on several new directives and runtime functions
that create cancellable protected and unprotected tasks, and assign them to can-
cellable groups of tasks that can be cooperatively or forcefully cancelled through
runtime specific calls. The suggested directives and clauses are shown in Figure2.
Our proposed method is simple and straightforward and easily understandable
by programmers. We showed also its improvements compared to applying user
defined flags.

In our future work, we would like to analyze more benchmarks using cooper-
ative or forced cancellation scheme. We will study methods to enable resources
deallocation and ensure clean region and program exit. We will also add ex-
tensions that allow tasks to dynamically switch groups of cancellation and to
enable or disable task cancellation in parallel regions. We will also scrutinize the
effects of the different input sizes on performances and we will analyze other
tasks scheduling policies effects on the performance of our proposal.

References

1. The Cilk Project: Cilk5 Specifications (2010),
http://supertech.csail.mit.edu/cilk/manual-5.4.6.pdf

2. Intel Threading Building Blocks for Open Source: TBB Specifications (2012),
http://threadingbuildingblocks.org/documentation.php

3. Microsoft MSDN Library: Cancellation in the PPL (2012),
http://msdn.microsoft.com/en-us/library/dd984117.aspx

4. OpenMP Architecture Review Board: OpenMP Specifications (2011),
http://www.openmp.org/specs

5. Programming Models at BSC: The OmpSs Programming Model (2012),
https://pm.bsc.es/content/ompss-programming-model

6. Perez, R., Malecha, G.: Speculative Parallelism in Cilk++ (2010),
http://courses.csail.mit.edu/6.884/spring10/
projects/rmperez-gmalecha_paper.pdf

7. Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel, X.,
Unnikrishnan, P., Zhang, G.: The Design of OpenMP Tasks. IEEE Trans. Parallel
Distrib. Syst. 20, 404–418 (2009)

8. Balart, J., Duran, A., Gonzàlez, M., Martorell, X., Ayguadé, E., Labarta, J.:
Nanos Mercurium: a Research Compiler for OpenMP. In: European Workshop on
OpenMP (EWOMP 2004), pp. 103–109 (2004)

9. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
Tasks Suite: A Set of Benchmarks Targeting the Exploitation of Task Parallelism
in OpenMP. In: Proceedings of the 2009 International Conference on Parallel Pro-
cessing, ICPP 2009, pp. 124–131. IEEE Computer Society, Washington, DC (2009)

10. Prabhu, P., Ramalingam, G., Vaswani, K.: Safe Programmable Speculative Paral-
lelism. In: Proceedings of the 2010 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2010, pp. 50–61. ACM, New York
(2010)

11. Süß, M., Leopold, C.: Implementing Irregular Parallel Algorithms with OpenMP.
In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128,
pp. 635–644. Springer, Heidelberg (2006)

http://supertech.csail.mit.edu/cilk/manual-5.4.6.pdf
http://threadingbuildingblocks.org/documentation.php
http://msdn.microsoft.com/en-us/library/dd984117.aspx
http://www.openmp.org/specs
https://pm.bsc.es/content/ompss-programming-model
http://courses.csail.mit.edu/6.884/spring10/projects/rmperez-gmalecha_paper.pdf
http://courses.csail.mit.edu/6.884/spring10/projects/rmperez-gmalecha_paper.pdf

Introducing Task Cancellation to OpenMP 87

12. Süß, M., Leopold, C.: Common Mistakes in OpenMP and How to Avoid Them: A
Collection of Best Practices. In: Mueller, M.S., Chapman, B.M., de Supinski, B.R.,
Malony, A.D., Voss, M. (eds.) IWOMP 2005 and IWOMP 2006. LNCS, vol. 4315,
pp. 312–323. Springer, Heidelberg (2008)

13. Teruel, X., Martorell, X., Duran, A., Ferrer, R., Ayguadé, E.: Support for OpenMP
Tasks in Nanos v4. In: Proceedings of the 2007 Conference of the Center for Ad-
vanced Studies on Collaborative Research, CASCON 2007, pp. 256–259. ACM,
New York (2007)

14. Wong, M., Klemm, M., Duran, A., Mattson, T., Haab, G., de Supinski, B.R.,
Churbanov, A.: Towards an Error Model for OpenMP. In: Sato, M., Hanawa, T.,
Müller, M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS,
vol. 6132, pp. 70–82. Springer, Heidelberg (2010)

Automatic OpenMP Loop Scheduling:

A Combined Compiler and Runtime Approach�

Peter Thoman, Herbert Jordan, Simone Pellegrini, and Thomas Fahringer

University of Innsbruck,
Distributed and Parallel Systems Group,

A6020 Innsbruck, Austria
peter.thoman@uibk.ac.at

Abstract. The scheduling of parallel loops in OpenMP has been a re-
search topic for over a decade. While many methods have been proposed,
most focus on adapting the loop schedule purely at runtime, and without
regard for the overall system state. We present a fully automatic loop
scheduling policy that can adapt to both the characteristics of the input
program as well as the current runtime behaviour of the system, includ-
ing external load. Using state of the art polyhedral compiler analysis, we
generate effort estimation functions that are then used by the runtime
system to derive the optimal loop schedule for a given loop, work group
size, iteration range and system state. We demonstrate performance im-
provements of up to 82% compared to default scheduling in an unloaded
scenario, and up to 471% in a scenario with external load. We further
show that even in the worst case, the results achieved by our automated
system stay within 3% of the performance of a manually tuned strategy.

1 Introduction

OpenMP [1] is one of the most widely used languages for programming shared
memory systems, particularly in the field of High PerformanceComputing (HPC).
Despite the introduction of task-based parallelism in recent versions of the stan-
dard [5], loop parallelism remains a very important part of most OpenMP pro-
grams. Thus, the question of how to map parallel loop iterations to threads and
cores has been continually investigated since the standards’ inception. In Section
5 we provide an overview of some of this existing work, and describe how our ap-
proach improves upon previous methods.

Our loop scheduling system is built on the idea of close integration between
a state-of-the-art compiler providing in-depth analysis and a custom runtime
library that continuously monitors the overall system state while minimizing
overhead. Such integration is realized by having the compiler generate a data

� This work was funded by the FWF Austrian Science Fund as part of project TRP
220-N23 ”Automatic Portable Performance for Heterogeneous Multi-cores” and by
the FFG Austrian Research Promotion Agency as part of the OpenCore project
824925.

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 88–101, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Automatic OpenMP Loop Scheduling 89

structure for each parallel loop in the original program which captures analysis-
derived meta-information about the loop body in addition to the actual ex-
ecutable code. This approach is immediately applicable to existing programs
without any code-level changes, a significant advantage considering the large
number of OpenMP codes in active HPC use.

We have implemented this system and evaluated its performance. Our con-
crete contributions are as follows:

– A method using polyhedral model [16] based utilities to obtain effective
estimates of OpenMP loop performance over all potential iteration ranges.

– A runtime scheduling algorithm that uses these estimators as well as current
sytem state information to make loop scheduling decisions.

– An encoding of meta-information statically collected by the compiler into
executable code usable at runtime.

– An implementation of this architecture in the Insieme compiler and runtime
system [2].

– Evaluation and analysis of the actual performance of our scheduling algo-
rithm in terms of program execution time. We compare our results to results
obtained by the version of GOMP [3] included with GCC 4.5.3, using both
its default scheduling policy and the best policy for each program determined
by exhaustive search.

The remainder of this paper is structured as follows: The next section will provide
some experimental results that motivate our work. In Section 3 we describe the
architecture and implementation of our system, including the compiler analysis,
the runtime scheduling system and their interaction. The results of experimental
evaluation are presented in Section 4. Section 5 gathers some references to related
work. Finally Section 6 presents a conclusion, and an outlook on potential future
improvements.

2 Motivation

In this section we present some initial experiments using simple OpenMP ker-
nels in a variety of settings. These results motivated our design of a unified

0.8

0.9

1

1.1

1.2

1.3

1.4

Re
la

tiv
e

Ru
nt

im
e

(a) Dense Matrix Multiplication

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Re
la

tiv
e

Ru
nt

im
e

(b) Triangular Matrix Multiplication

Fig. 1. Initial Experiments, Impact of Program Characteristics

90 P. Thoman et al.

compiler/runtime approach to loop scheduling. They also demonstrate the im-
portance of load awareness. For a complete description of the experimental setup
and hardware used throughout this paper see Section 4. In all our figures the
relative execution time normalized to the best performing configuration is shown.

Figure 1 illustrates results for two kernels, dense matrix multiplication with
full and triangular matrices, using a variety of standard OpenMP loop schedul-
ing policies. Clearly, the ideal loop schedule depends on the characterics of the
program. The dense matrix multiplication requires an equal amount of work
within each iteration of the parallel loop while for the triangular matrix, the
effort per iteration depends on the iterator value. We say that the dense matrix
multiplication has a flat work profile while the work profile for the triangular
matrix is slanted.

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

Re
la

tiv
e

Ru
nt

im
e

(a) Small problem size (N=160)

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

1.3
Re

la
tiv

e
Ru

nt
im

e

(b) Large problem size (N=1600)

Fig. 2. Initial Experiments, Impact of Problem Size

In the next experiment we investigated the impact of the problem size on the
ideal loop schedule. In Figure 2 we see that with small problem sizes, the negative
performance impact of scheduling policies with a runtime component (dynamic,
guided) increases, most likely due to thread scheduling overhead. Also, the in-
crease in workload per chunk mitigates the slightly worsened load balance for a
static chunk size of 8, leading to this configuration showing the best result. With
large problem sizes, the relative overhead of runtime scheduling is much smaller,
tough still measureable. The round-robin static scheduling policy “static,1” fea-
tures acceptable load balance with relatively low overhead, making it the best
performing configuration.

Finally, we look at a scenario that has often been neglected in loop schedul-
ing research: the impact of external system load on the execution of a program.
While this is an unusual situation in traditional HPC, where a cluster of servers is
reserved for exclusive use by one program, it is the default on desktops, worksta-
tions and some large shared memory servers. With on-chip parallelism steadily
increasing – even on embedded systems – and OpenMP being employed in end-
user applications and games [6], we believe that an automatic loop scheduler
needs to take this scenario into account.

Figure 3 shows the same program configurations as Figure 1(b) in two distinct
load scenarios (for information on how the load simulation is performed, see
Section 4). With increasing system load more fine-grained runtime scheduling

Automatic OpenMP Loop Scheduling 91

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Re
la

tiv
e

Ru
nt

im
e

(a) Low load (desktop) scenario

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Re
la

tiv
e

Ru
nt

im
e

(b) High load (workstation) scenario

Fig. 3. Initial Experiments, Impact of External Load

policies gain a significant advantage of up to 46% compared to the default policy.
These figures contain error bars since there was a slightly larger variance in
the measurements – particularly for static scheduling – as a result of operating
system scheduling behaviour.

To summarize, these initial findings guided the design of our loop scheduling in
the following ways:

– As per the first set of figures, the automatic loop scheduler clearly needs to be
aware of the program structure. This is accomplished via compiler analysis.

– However, as the second set of examples shows, just having static information
is insufficient. The problem size is usually only known at runtime, necessi-
tating integration of statuc compiler analysis with a runtime system.

– Finally, when exclusive use cannot be assumed, being aware of external sys-
tem load is of utmost importance when selecting a scheduling policy. Thus,
the runtime needs to consider the system state.

3 Architecture

Our loop scheduling system consists of the following components:

– An advanced analysis component in the Insieme source-to-source compiler
that generates a symbolic effort estimation function for each parallel loop in
the target program, or a less accurate per-iteration effort value as a fallback.

– A backend extension to the compiler that allows forwarding of this meta-
information from the compiler to the Insieme runtime system.

– A monitoring component that measures the current external system load.
– A custom runtime library implementing a loop scheduling algorithm based

on the meta-information provided by the compiler, the exact iteration range
of the current loop and the external load.

Figure 4 illustrates how these components interact on a high level. In the fol-
lowing subsections each component will be discussed in detail.

92 P. Thoman et al.

Input
program

OMP
frontend

Polyhedral
Representation

ISL/Barvinok Barv

SCoP Extractor

esent

Statement
Cardinality rdina

Statement
effort estimator e

Effort Function
[a, b) -> eff

t Fun
ff

Insieme
Backend

Output
Program P

Insieme Compiler

GCC GCC

Binary

Insieme Runtime

Runtime
Library

System
Monitor

Loop Scheduling
Algorithm

ti

Parallel
Loops

Extractor

Fig. 4. An Overview of the Architecture of our System

3.1 Compiler Analysis

The main goal of our compiler analysis is to obtain, for each parallel loop, an
effort estimation function feffort ∈ N

2 → N. Given lower and upper iteration
bounds a and b, the evaluation of feffort(a, b) provides an estimate for the com-
putational cost of the corresponding subrange of the covered loop.

This effort estimation function is derived in several steps, starting from the
parallel loop body B:

1. Enclose B in a for loop iterating over the symbolic range [a, b).
2. Extract a polyhedral representation of this parameterized loop.
3. Set the effort estimation function feffort(a, b) := 0
4. For each statement stmt ∈ B:

(a) Use the barvinok [17] library to obtain a piecewise affine function for the
statement’s cardinality fcard(a, b)

(b) Weight this function with the effort estimation eff(stmt) for the state-
ment, computing fstmt(a, b) := fcard(a, b) ∗ eff(stmt)

(c) Add the statement effort to the total effort function
feffort(a, b) := feffort(a, b) + fstmt(a, b)

5. Algebraically simplify feffort(a, b) using CUDD [18]

In step 2, the internal representation of the loop B is analyzed and a polyhedral
representation is extracted. In-depth discussion of the polyhedral model and its
application in compilers goes beyond the scope of this paper – a thorough intro-
duction is provided by Bastoul [7]. For our purpose, it suffices to mention that
the polyhedral model can be applied to Static Control Parts (SCoPs). SCoPs are
program fragments that fulfill the following conditions: (1) all control structures
are for loops or if statements with affine boundaries and conditions; (2) arrays
are the only complex data structures, and are accessed with affine subscript ex-
pressions; (3) Subscripts, bounds and condition expressions depend only on loop
iterators and symbolic constants.

The polyhedral model assigns to each statement an n-dimensional polytope
describing how frequently it is processed within the modeled loop nest. Using

Automatic OpenMP Loop Scheduling 93

this representation, a piecewise affine function expressing the number of exe-
cutions of each statement can be calculated by computing its cardinality (4a).
In step 4b we arrive at an effort estimation function for each such statement
by weighting its cardinality function with an estimate for the cost of executing
it once. The weighting factor eff(stmt) takes into account the expected num-
ber of CPU instructions and memory accesses required for the given statement.
This estimation is rather simplistic in our current implementation: we count the
number of memory accesses and floating point operations required to perform
the statement in our internal representation, without taking into account any
transformations performed by the back-end compiler.

Special considerations apply when performing the SCoP analysis for our use case.
Generally, the polyhedral model is used to transform code fragments (see section
5), while we only use it to estimate effort. In the former case, the analysis needs
to accurately cover all effects of the code to maintain the program semantics. For
estimation, failing to fully analyze some statement means that the estimation
function might be less accurate, potentially weakening the performance of the
scheduling algorithm, but the program semantics are preserved. In practice, this
allows us to extend the applicable range of our analysis by ignoring the side
effects of external function calls, as long as we can provide an effort estimate
for them (e.g. printf). We further extended the interprocedural applicability of
our estimation by applying implicit inlining which does not affect the generated
code.

In the case where a loop can still not be covered by the polyhedral model, as
is the case when control flow depends on input data, we apply a rough estimate
to loop boundaries and conditionals to generate a single scalar effort estima-
tion representing one iteration of the parallel loop. Section 4.2 provides some
experimental data on how commonly this fallback needs to be employed in real
programs.

3.2 Compiler Backend

The Insieme compiler produces C code, which is in turn translated to a binary
by a secondary compiler – typically GCC. The Insieme compiler backend enu-
merates all the parallel loops included in the program, and, for each of them,
generates a work item structure. To pass loop-related meta-information from the
compiler to the runtime, this structure includes an (optional) function pointer
of type uint64 effort estimator(int64 lower, int64 upper) and a scalar
fallback value uint64 iteration effort. For each loop where our analysis was
successful, the function pointer is set to a compiler generated C implementation
of the deduced effort estimation function.

3.3 Runtime Monitoring

The resource monitoring component of the runtime needs to measure the cur-
rent external load, that is, CPU load generated by processes other than the

94 P. Thoman et al.

managed parallel program. This is obtained by using the Linux proc filesystem.
Specifically, the current processes’ CPU usage values from /proc/self/stat are
compared with the system-wide values obtained from /proc/stat, and a value
between 0.0 and 1.0 representing the total external load across all cores is com-
puted. To minimize the overhead of this method and to increase measurement
reliability, this value is cached and updated at most ten times per second. In-
creasing the update frequency did not improve scheduling performance in our
experiments.

3.4 Loop Scheduling Algorithm

All information gathered by the components outlined above is used by the run-
time loop scheduler to make a scheduling decision for each individual execution
of every parallel loop. The decision algorithm is outlined in Figure 5 and consists
of four major steps:

1. Immediately schedule tiny loops if the estimated effort is small (lines 1-8)
2. Check the external load and use an adaptive dynamic schedule if it is greater

than a threshold value (9-12)
3. If an effort estimator is available, use calculated balanced distribution (13-

15)
4. Otherwise, assume irregular load and schedule dynamically (16-19)

lower, upper lower and upper bound of iteration range
members number of members in the current work group
estimator effort estimation function for current loop
iter effort scalar per-iteration effort estimate for current loop
load current external system load
MINEFF minimum effort for consideration (constant per-system)
MINLOAD minimum load for consideration (constant per-system)

1: if estimator available then
2: estimate = estimator(lower, upper)
3: else
4: estimate = (upper − lower) ∗ iter effort
5: end if
6: if estimate < MINEFF then
7: return immediate
8: end if
9: if load > MINLOAD then

10: chunk = max((MINEFF/iter effort) ∗ (1 − load), 1)
11: return dynamic(chunk)
12: end if
13: if estimator available then
14: shares = compute shares(lower, upper, members, estimator)
15: return balanced(shares)
16: else
17: chunk = max(MINEFF/iter effort, 1)
18: return dynamic(chunk)
19: end if

Fig. 5. Loop scheduling algorithm

The result of the algorithm determines the loop scheduling behaviour for the
current loop execution instance. Three modes are available:

Automatic OpenMP Loop Scheduling 95

immediate no parameters. Immediately executes the whole loop on the first
thread to encounter it.

dynamic one parameter, the chunk size. Works like the standard OpenMP
policy of the same name, dynamically distributing chunks of the loop range
to requesting threads.

balanced requires an array of floating point values determining the relative
starting points of the shares for each member of the work group. For example,
[0.0, 0.25, 0.5, 0.75] would implement an equal distribution amongst four
threads, while [0.0, 0.6, 0.9, 0.96] assigns progressively smaller chunks to
subsequent threads.

The algorithm makes use of the compute shares(lower, upper, members,
estimator) function. It generates a distribution that tries to assign approxi-
mately the same amount of work to each member of the current work group.
It first estimates the total effort for the given range [lower, upper], divides it
by the number of work group members, and then uses a binary search to find
a suitable chunk for each thread using the estimation function. Though this is
usually a very quick process since the estimation function only takes a few cycles
to run, the result is cached and reused if the same loop is executed for the same
range again. This is a very common occurance in HPC codes, and the caching
minimizes overhead in this case.

The parameters MINEFF and MINLOAD need to be set once per system. We have
not yet developed a rigorous method for deducing these automatically. Never-
theless, experience indicates that systems are relatively insensitive regarding the
precise values of these parameters, making them easy to tune manually.

4 Evaluation

In this section our system and algorithm are evaluated, starting with small ker-
nels designed to allow easy analysis of the behaviour of the algorithm, followed
by tests in a real-world setting. All experiments were performed on a SuperMicro
7046GT-TRF server with two Intel Xeon 5650 processors, containing 6 cores (12
hardware threads) each. The system runs CentOS version 5 (kernel 2.6.18) 64
bits. To compile the reference version of the example programs and as a sec-
ondary compiler for the code produced by Insieme, GCC version 4.5.3 was used
with the -O3 flag set to reflect a production environment. When we refer to a
“default” scheduling policy, we specifically mean the default implementation of
the version of GOMP [3] included with this version of GCC.

To ensure statistical significance each experiment was repeated five times, and
the median result is reported. In cases where significant statistical variance oc-
curred vertical error bars are used to show the standard deviation. We depict
three values per configuration (combination of program and system load state):
the default OpenMP behaviour, the best result obtained using OpenMP poli-
cies for each configuration, and the result obtained by our method. The “best”
OpenMP policy is found by exhaustive search across the following settings: [(no
change), auto, static, dynamic, guided]. The latter three are tested with the

96 P. Thoman et al.

chunk sizes 1, 2, 8 and 32. All values are normalized to the execution time of
the best performing version.

External load profiles were recorded by monitoring each indivual core of a ref-
erence system. During experiments, these profiles were replayed by a custom
load generator. We used two separate load profiles, a “desktop” profile and a
“workstation” profile. The former features generally lower load and short peaks
of activity, while the latter shows a higher average load level and fully saturates
some cores.

4.1 Kernel Experiments

For illustrative purposes, we will apply our method to three small kernels: a
dense matrix multiplication, a triangular matrix multiplication, and a pendulum
simulation. These represent three major classes of problems. Both the dense and
triangular matrix multiplication satisfy the SCoP constraints and can therefore
be rigorously analyzed. The former has a flat work profile and is thus ideally
suited to static OpenMP scheduling, while the latter has a slanted work profile.
Finally, the per-iteration work in the pendulum kernel strongly depends on the
input data, hence it can not be covered by SCoP analysis.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

no load desktop workstation

omp default

omp best

insieme

(a) Dense matrix multiplication

0

0.2

0.4

0.6

0.8

1

1.2

1.4

no load desktop workstation

omp default

omp best

insieme

(b) Pendulum simulation

Fig. 6. Kernel experiment

Figure 6(a) shows the results for dense matrix multiplication. In the absence
of external load, fully static scheduling is ideal for this kernel, and our imple-
mentation is 1.7% slower than the best (and default) OpenMP policy. With
external load, the default policy is ineffective, and our result improves on the
best OpenMP policy by 10% to 15%. The best policy found for desktop load is
“dynamic,8” while the best policy for the workstation load profile is “dynamic”.
The reason for the good result demonstrated by our method is that due to the
detection of external load the chunk size is adapted dynamically.

Next, we look at the triangluar matrix multiplication kernel, which has a
more interesting load profile. As Figure 7(a) illustrates, the compiler-assisted
workload distribution performed by our method in the unloaded case is very
effective, improving performance by 82% compared to the default behaviour,

Automatic OpenMP Loop Scheduling 97

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

no load desktop workstation

omp default

omp best

insieme

(a)

0

200000

400000

600000

800000

1000000

1200000

-5 15 35 55 75 95

Eff
or

t E
st

im
at

io
n

Iterator Value

0 0.25 0.5 0.75 1

Computed distribu on:
thread 0 t1 t2 ...

(b)

Fig. 7. Triangular matrix multiplication results

and by 27% compared to the best OpenMP scheduling policy, “static,2”. This
improvement over the block-cyclic scheduling can be explained by.

The effort estimation function generated by our analyis and the per-thread
shares computed for 16 threads are shown in Figure 7(b). In the upper part, the
effort estimation for each iterator value is plotted: iterations below zero perform
no work, above that the amount of effort increases with the iterator value as
the lower left triangular matrix rows become progressively wider. For this test
case, the best scheduling policy with a loaded system is “dynamic” for both
load profiles. Our scheduling is the fastest for both situations, though in the
“workstation” case the difference is negligible (3%).

The performance results for the pendulum kernel are depicted in Figure 6(b).
This benchmark computes the resting points of pendulae under the effect of mag-
netic fields, from many starting locations. It is communication-free but has an
unpredictable, input data dependent, load imbalance, causing default scheduling
to be sub-optimal. For the case with no load, the “dynamic,2” policy is best,
while for the other two cases “dynamic” performs best. When the workstation
external load profile is active, our method performs slightly (0.7%) worse than
the “dynamic” OpenMP policy. For this load profile and the loop effort esti-
mated for this kernel, our scheduler always decides to dynamically distribute a
single loop iteration, thus performing exactly the same operation as the “dy-
namic” policy. The 0.7% difference can be explained by the overhead introduced
by our scheduling process.

4.2 Real-World Applicability

While the results measured on small kernels are encouraging, methods based on
extensive compiler analysis often fail when applied to larger code bases. However,
the polyhedral model has been successfully used in production compilers [8], and,
as described in Section 3.1, we were able to further relax some of its constraints
for our use case.

In this section, we present an experimental analysis on some of the bench-
marks contained in the NAS Parallel Benchmarks (NPB) [4] suite. As a first

98 P. Thoman et al.

step we investigate the extent to which the parallel loops contained within these
programs can be treated with our analysis method.

Table 1. Applicability of our analysis on NPB loops

State Number of loops % of loops

Total 465 100.0%
Fully analysed 373 80.2%
Non-affine expressions 57 12.3%
Data-dependent control flow 33 7.1%
Contain while loops 2 0.4%

Table 1 lists total number of loops contained within the NPB programs, the
amount that were fully analysed, and groups those that could not be analysed
into categories depending on the reason for the analysis failure. Note that the
number of loops listed here is higher than the amount statically contained within
the program source code, due to our method analysing each call site separately.
More than 4 out of 5 of all parallel loops contained in the set of benchmarks
can be analyzed. The most common reason for analysis failure are non-affine
boundary, condition or subscript expressions, followed by data-dependent control
flow. Two of the parallel loop nests contain while loops.

Table 2. Nas Parallel Benchmark performance results

Gain Over
Name External Load Default Best Best Config

ft.B none 4.2% -0.2% static,1
ft.B desktop 21.8% 4.4% dynamic,2
ft.B workstation 59.9% 11.2% dynamic

ep.B none 14.0% -1.9% dynamic,8
ep.B desktop 3.2% -0.9% dynamic
ep.B workstation 19.7% 3.0% dynamic,32

bt.B none -2.4% -2.4% static
bt.B desktop 70.8% 65.2% dynamic
bt.B workstation * * *

cg.B none 8.4% 3.9% guided,32
cg.B desktop 113.4% 111.2% guided,32
cg.B workstation 471.3% 451.7% guided,8

mg.B none 51.7% 5.3% dynamic
mg.B desktop 56.1% 33.0% dynamic
mg.B workstation 157.4% 110.8% dynamic,2

GM none 13.7% 0.9%
GM desktop 48.2% 36.8%
GM workstation 94.9% 67.7%

The results of our performance evaluation are summarized in Table 2. The
“Default” and “Best” columns list the relative difference in execution time

Automatic OpenMP Loop Scheduling 99

achieved by our scheduling system compared to default scheduling (as specified
by the benchmarks) and the best scheduling policy found in the search space
described earlier. For example, 4.2% in the ft.B/none/default cell means that
executing the ft benchmark with no external load and the default scheduling
policy took 104.2% of the time the same configuration took using our scheduling
system. Predefined problem size B was chosen for all the benchmarks as a good
compromise between realistic size and maintaining a feasible duration for the
experiments. The GM values are the geometric means, for each configuration,
across all benchmarks.

Some points that deserve particular attention are:

– The bt benchmark with workstation external load could not be completed
due to time constraints – the execution time increased disproportionately
with increased load across all scheduling policies.

– There is only a single case where our algorithm performs worse than the de-
fault: bt with no load. It is the only benchmark where the default scheduling
(static) is also the best policy. For most loops within bt our method picks
this optimum, but for one of them the analysis fails, causing a fallback to a
slightly less efficient dynamic schedule.

– The best speedup in a load-free scenario occurs for mg. This is due to the
nature of the algorithm implemented by this benchmark, which leads to some
loops being executed with very small iteration domains. These are identified
as low-effort by our method and immediately scheduled as a whole on the
first thread available.

– Generally, higher levels of external load favour our system, which can effec-
tively adapt to them.

– Even with no external load, our method tends to achieve a marked im-
provement over default scheduling due to the availablity of compiler-deduced
meta-information. The average speedup obtained in this setting is 13%.

5 Related Work

Enhancing OpenMP loop scheduling is a topic that has been repeatedly inves-
tigated over the years. However, most research has focused on pure runtime
solutions to the problem [11][12][10]. Conversely, our approach integrates an in-
telligent runtime system with meta-information provided by compiler analysis.

Recent work on compiler-based OpenMP loop scheduling by Wang et al. [9]
uses machine learning to estimate the best loop scheduling policy at compile
time. Since this is a pure compiler approach, it cannot deal with changing run-
time conditions. Also, unlike the single-pass analysis of our approach, it requires
an extensive training phase.

Some systems use OpenMP in conjunction with the polyhedral model to gen-
erate parallel code [13][14]. Other recent work investigates using information
provided by polyhedral analysis of OpenMP programs to improve programmer
error detection [15]. None of these works aim on improving loop scheduling by
forwarding static analysis results to a runtime system.

100 P. Thoman et al.

6 Conclusion

This paper presents an automatic OpenMP loop scheduling method that com-
bines advanced compiler analysis with a load-aware runtime system. Polyhedral
analysis is used to calculate a parameterized effort estimation function for each
parallel loop, based on the cardinality of all statements it contains. Executable
code for this function is generated by the compiler backend, and invoked at
runtime to calculate an ideal balanced schedule or estimate efficient chunk sizes
for dynamic scheduling. Additionally, external CPU load is taken into account
during the scheduling process.

We evaluated our system on small kernels as well as programs from the NAS
Parallel Benchmarks suite, and achieved improvements of up to 82% in the un-
loaded state, and 471% with heavy external load, compared to default OpenMP
scheduling. To estimate the absolute effectiveness of our approach, we performed
an exhaustive search over a broad range of standard OpenMP scheduling poli-
cies and compared with the best results. Our scheduling frequently improves
upon even this tuned result, particularly in scenarios featuring external load.
The worst-case performance achieved by our system is within 3% of the best
standard OpenMP policy.

References

1. OpenMP Architecture Review Board: OpenMP Application Program Interface.
Version 3.1 (July 2011)

2. The Insieme Compiler Project, http://insieme-compiler.org/
3. GOMP – An OpenMP implementation for GCC,

http://gcc.gnu.org/projects/gomp/

4. Bailey, D., Barton, J., Lasinski, T., Simon, H.: The NAS Parallel Benchmarks.
NAS Technical Report RNR-91-002, NASA Ames Research Center, Moffett Field,
CA (1991)

5. Duran, A., Corbalán, J., Ayguadé, E.: Evaluation of OpenMP Task Scheduling
Strategies. In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS,
vol. 5004, pp. 100–110. Springer, Heidelberg (2008)

6. Knafla, B., Leopold, C.: Parallelizing a Real-Time Steering Simulation for Com-
puter Games with OpenMP. In: Proc. Parallel Computing (ParCo), pp. 219–226
(2007)

7. Bastoul, C.: Improving Data Locality in Static Control Programs. PhD thesis,
University Paris 6, Pierre et Marie Curie, France (2004)

8. Trifunovic, K., Cohen, A., et al.: GRAPHITE Two Years After: First Lessons
Learned From Real-World Polyhedral Compilation. In: GCC Research Opportuni-
ties Workshop (GROW) (2010)

9. Wang, Z., O’Boyle, M.: Mapping parallelism to multi-cores: a machine learn-
ing based approach. In: Proceedings of the 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP) (2009)

10. Zhang, Y., Burcea, M., Cheng, V., Ho, R., Voss, M.: An Adaptive OpenMP
Loop Scheduler for Hyperthreaded SMPs. In: Proc. of PDCS 2004: International
Conference on Parallel and Distributed Computing Systems (2004)

http://insieme-compiler.org/
http://gcc.gnu.org/projects/gomp/

Automatic OpenMP Loop Scheduling 101

11. Tzen, T., Tzen, T.H., Ni, L., Ni, L.M.: Trapezoid Self-Scheduling: A Practical
Scheduling Scheme for Parallel Compilers. IEEE Transactions on Parallel and
Distributed Systems (1993)

12. Ayguadé, E., Blainey, B., Duran, A., Labarta, J., Mart́ınez, F., Martorell, X.,
Silvera, R.: Is the Schedule Clause Really Necessary in OpenMP? In: Voss, M.J.
(ed.) WOMPAT 2003. LNCS, vol. 2716, pp. 147–160. Springer, Heidelberg (2003)

13. Bondhugula, U., Ramanujam, J., et al.: PLuTo: A practical and fully automatic
polyhedral program optimization system. In: Proceedings of the ACM SIGPLAN
2008 Conference on Programming Language Design and Implementation (PLDI)
(2008)

14. Baskaran, M., Vydyanathan, N., Bondhugula, U., Ramanujam, J., Rountev, A.,
Sadayappan, P.: Compiler-assisted dynamic scheduling for effective parallelization
of loop nests on multicore processors. In: Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP) (2009)

15. Basupalli, V., Yuki, T., Rajopadhye, S., Morvan, A., Derrien, S., Quinton, P.,
Wonnacott, D.: ompVerify: Polyhedral Analysis for the OpenMP Programmer. In:
Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011.
LNCS, vol. 6665, pp. 37–53. Springer, Heidelberg (2011)

16. Benabderrahmane, M.-W., Pouchet, L.-N., Cohen, A., Bastoul, C.: The Polyhedral
Model Is More Widely Applicable Than You Think. In: Gupta, R. (ed.) CC 2010.
LNCS, vol. 6011, pp. 283–303. Springer, Heidelberg (2010)

17. Verdoolaege, S.: barvinok: User Guide,
http://www.kotnet.org/~skimo/barvinok/barvinok.pdf

18. Somenzi, F.: CUDD: CU Decision Diagram Package,
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

http://www.kotnet.org/~skimo/barvinok/barvinok.pdf
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

LIBKOMP, an Efficient OpenMP Runtime System
for Both Fork-Join and Data Flow Paradigms

François Broquedis1, Thierry Gautier2, and Vincent Danjean3

1 INPG
2 INRIA
3 UJF,

MOAIS Team, LIG, Grenoble, France
{francois.broquedis,vincent.danjean}@imag.fr,

thierry.gautier@inrialpes.fr

Abstract. To efficiently exploit high performance computing platforms, appli-
cations currently have to express more and more finer-grain parallelism. The
OpenMP standard allows programmers to do so since version 3.0 and the in-
troduction of task parallelism. Even if this evolution stands as a necessary step
towards scalability over shared memory machines holding hundreds of cores,
the current specification of OpenMP lacks ways of expressing dependencies be-
tween tasks, forcing programmers to make unnecessary use of synchronization
degrading overall performance. This paper introduces LIBKOMP, an OpenMP
runtime system based on the X-KAAPI library that outperforms popular OpenMP
implementations on current task-based OpenMP benchmarks, but also provides
OpenMP programmers with new ways of expressing data-flow parallelism.

Keywords: OpenMP, data-flow programming, task parallelism, runtime
systems.

1 Introduction

The architecture design of high performance computing platforms keeps getting more
and more complex, widening the gap between the theoretical computing power of a
given architecture and the performance parallel applications can achieve on it. HPC
programmers have to express massive parallelism to occupy the constantly growing
number of processing units contained in a multicore chip, and finely control the way
parallel flows are executed to efficiently deal with memory affinity (shared cache mem-
ory, NUMA design, etc.). This burden will not get any lighter with the recent evolution
of processor design, in which architects associate a few powerful cores with numer-
ous, more simple cores. The success of this kind of design will rely on the ability for
programmers to write applications with good performance at runtime, even for small
problem instances.

Several libraries and programming environments [30,15,29,9,8] were proposed to
improve the productivity of programmers by encouraging them to express all the
potential parallelism in an application at fine grain, while delegating to the runtime
system (or the compiler) the role to extract useful parallelism for the target multicore
machine. They introduce high-level parallel constructs, such as Cilk cilk_for, X10

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 102–115, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

LIBKOMP, an Efficient OpenMP Runtime System 103

for_each or OpenMP parallel for, to easily describe potential parallelism in
most of HPC numerical applications. In Cilk++, Intel Cilk+, Intel TBB, X-KAAPI and
OpenMP (using the dynamic loop scheduler), the parallel loops generate internal tasks
and rely on variations of a work stealing algorithm to deal with load balancing.

Tasks are now part of the OpenMP standard since version 3.0. To schedule task-based
parallel applications, the work-stealing algorithm [6,3,16,20,26] is one of the most
heavily-studied dynamic scheduler. Its biggest advantage lies in its simple predictive
performance model. Several studies on OpenMP task scheduling have shown that work-
stealing based algorithms seem to provide, on average, good speedup [11,27,28,1,23].

While we consider this evolution as a necessary step to exploit manycore comput-
ers efficiently, several studies have illustrated the limitation of the OpenMP fork-join
task execution model [5,12,22] with respect to the data flow model, emphasizing that
data flow applications are able to express more parallelism. The OpenMP ARB is al-
ready considering interesting possible extensions to the standard to deal with task/data
dependencies [4,12], allowing OpenMP programmers to exploit accelerators in a unified
model.

The X-KAAPI1 library, a re-design in C of the Kaapi library [17] we develop, provides
a runtime system that has proven to be efficient when it comes to scheduling data-flow
parallel applications over multicore machines. X-KAAPI comes with very little task cre-
ation and scheduling overheads and implements recursive tasks in a very efficient way,
making this runtime system a good candidate for both scheduling OpenMP 3.0 tasks,
as the fork-join model can be seen as a particular case of the data-flow paradigm, and
experiment with possible data-flow related extensions to the OpenMP standard.

This paper introduces LIBKOMP, an OpenMP runtime system based on the
X-KAAPI library that performs well on current task-based OpenMP benchmarks and
applications, but also emphasizes the interest of extending the OpenMP standard to ex-
press data-flow parallelism, presenting performance improvements for OpenMP bench-
marks that were modified to express task/data dependencies.

The paper is organized as follows. Section 2 introduces the main assets of the
X-KAAPI runtime system that the LIBKOMP library can rely on, and details the way
we implement the OpenMP tasking model. Section 3 describes the evaluation of our
runtime on the original BOTS benchmarks suite and modified versions of the SparseLU
and NQueens kernels to benefit from the data-flow execution model while Section 4
presents some related work.

2 The LIBKOMP Runtime System

OpenMP tasks offer the application programmer new ways of expressing parallelism.
This new paradigm will make OpenMP applications generate a great number of fine-
grain tasks. The success of such an approach for parallelizing applications will greatly
depend on the runtime system’s ability to:

1. Generate all these tasks with the smaller overhead possible: the long term goal
would be to let the runtime system decide how many tasks a parallel region should
create considering both the application and the system current states.

1 http://kaapi.gforge.inria.fr

http://kaapi.gforge.inria.fr

104 F. Broquedis, T. Gautier, and V. Danjean

2. Provide efficient ways of performing load balancing to reach scalability: a task-
based application can dynamically generate tasks of different types and workloads.

3. Implement recursive tasks in an efficient way: recursive algorithms should be par-
allelized using recursive tasks, as it’s most of the time the most convenient way to
parallelize them, and not being penalized in terms of performance.

On top of focusing on these three aspects while implementing the OpenMP 3.0 lib-
GOMP ABI, our LIBKOMP runtime system also provides the OpenMP programmer
with new ways of expressing dependencies between OpenMP tasks, thanks to specific
keywords provided by a source-to-source compiler we also develop, called KaCC [25].
So, LIBKOMP can be used either as a run-time replacement of the libGOMP runtime
for OpenMP binaries compiled with GCC, or it can be used as a classical shared library
for applications compiled with KaCC (allowing use of its extended features).

2.1 The LIBKOMP Execution Model

In LIBKOMP, each OpenMP thread corresponds to a X-KAAPI task. The number of
kernel threads used to run an OpenMP program is controlled by the internal control
variable called nthreads-var [29]. When the application reaches a scheduling point, a
kernel thread is able to suspend the current task to execute another one, and resume ex-
ecution of the previous task later. LIBKOMP takes advantage of such context switches
to restore previous internal control variables (ICV), OpenMP thread number, etc., if
required. When the execution starts, the master thread of the current process starts to
execute the main task. A thread creates tasks and pushes them on its own workqueue.
The workqueue is represented as a stack. The enqueue operation is very fast, typically
about ten cycles on current processors. As for Cilk, a running X-KAAPI task can create
child tasks. Once a task terminates its execution, the thread that was executing it picks
its children first, following the FIFO order of their creation.

2.2 Parallel Regions in LIBKOMP

A parallel region creates a set of implicit initial tasks, each of them being associated
with a unique OpenMP thread number, which share team-related information. Tasks
are pushed into the X-KAAPI stack of the running thread in a new activation frame.
Tasks are not bound to kernel threads: it is the responsibility of the X-KAAPI work
stealing scheduler to dynamically decide the mapping. LIBKOMP interprets a program
specification of a number of threads num_threads in a parallel directive as the cre-
ation of num_threads X-KAAPI tasks. Several of these tasks may be scheduled on
the same kernel thread, depending on the threads workload and the scheduling deci-
sions taken by the X-KAAPI work-stealing scheduler. At the end of a parallel region, its
master thread calls a LIBKOMP function to wait for the completion of all previously
created tasks in the activation frame associated with this region.

2.3 Data Access Modes for Dependent Tasks

A X-KAAPI task is a function call that should return no value except through the shared
memory and the list of its effective parameters. Tasks share data if they have access to

LIBKOMP, an Efficient OpenMP Runtime System 105

1 f o r (k = 0 ; k < NB; ++k)
2 {
3 #pragma k a a p i t a s k r e a d w r i t e (s l i [k , k])
4 p o t r f (BS , s l i [k , k]) ;
5

6 f o r (m = k +1; m < NB; ++m)
7 {
8 i f (i s _empty (s l i [m, k])) cont inue ;
9 #pragma k a a p i t a s k r e a d (s l i [k , k]) r e a d w r i t e (s l i [m, k])

10 t r s m (BS , s l i [k , k] , s l i [m, k]) ;
11 }
12

13 f o r (m = k +1; m < NB; ++m)
14 {
15 i f (i s _empty (m, k , &s l i)) cont inue ;
16 #pragma k a a p i t a s k r e a d (s l i [m, k]) r e a d w r i t e (s l i [m,m])
17 s y r k (BS , s l i [m, k] , s l i [m,m]) ;
18

19 f o r (n = k +1 ; n < m; ++n)
20 {
21 i f ((i s _empty (n , k , & s l i) | | (i s _empty (m, n , &s l i))) cont inue ;
22 #pragma k a a p i t a s k r e a d (s l i [n , k] , s l i [m, k]) r e a d w r i t e (s l i [m, n])
23 gemm (BS , s l i [n , k] , s l i [m, k] , s l i [m, n]) ;
24 }
25 }
26 }
27 #pragma k a a p i s ync

Fig. 1. Pseudo code for sparse Cholesky factorization

the same memory region. A memory region is defined as a set of addresses in the pro-
cess virtual address space. With X-KAAPI, this set has the shape of a multi-dimensional
array [25].

The user is responsible for indicating the mode each task uses to access the memory:
the main access modes are read, write, cumulative write or exclusive [16,17,25,24]. The
syntax to specify these access modes is very close to the directives proposed in StarSs
meta model [5] and those defined by the OpenMP dependent tasks proposal [12].

Code of figure 1 illustrates the API provided by X-KAAPI along with the KaCC
compiler [25] on a sparse Cholesky factorization used in the performance evaluation
section. The matrix is composed of at most NB × NB blocks of size BS × BS. The
clauses read or readwrite specify access mode for variables following the structured
block. True dependencies exist when a task read data produced by a previously created
task. For instance, the task created at line 3 produces (read-write access) the diagonal
block [k, k] that will be consumed by tasks created at line 9. A variable that does not
appear in any clause is passed by value.

OpenMP task model does not allow dependent tasks. The application programmer
has to insert coarse grain synchronizations using the taskwait keyword to respect
data flow dependencies, which can limit parallelism [22].

Tasks with data flow dependencies have already been cited to be important in lin-
ear algebra [22] or for managing multi-CPUs multi-GPUs computations [4,12,2,21] in
a unified model. It could be used to avoid unnecessary synchronizations in recursive
divide and conquer programs, such as the BOTS NQueens. Indeed, the number of solu-
tions cumulated by each task only requires one final synchronization. Due to the limita-
tions of the OpenMP tasking model, the BOTS NQueens implementation waits for the

106 F. Broquedis, T. Gautier, and V. Danjean

completion of all created child tasks at each level of the recursion. This synchronization
allows to cumulate subresults but it also permits fast C stack allocation of chess board
state for each child. Thanks to the cumulative access mode and the stack-based task
management proposed by X-KAAPI, it is also possible to avoid these synchronization
points by allocating a chess board state in the internal X-KAAPI stack, such that it is
valid when a spawned task performs its computation [17].

A X-KAAPI task is a very light object. It basically holds a pointer to the main entry
point function, its parameters and some flags set by the task scheduler. For each type
of task, the runtime maintains a format object which is responsible to interpret the task:
retrieve the access mode and type of each parameters, getting the implementation of the
entry point of the task (CPU or GPU [21]). Such separation reduces the task size by
factorizing common information.

2.4 Stack-Based Execution

At runtime, a X-KAAPI task generates a sequence of child tasks that access data in a
shared memory area. Each task is pushed into the queue of the current thread. After a
task finishes, its children tasks are executed with respect to the order of their creation.
The local queue is managed as LIFO queue of activation frames. Each activation frame
is a FIFO queue of tasks. This model implements a valid, highly efficient sequential
execution order [16,17], as the runtime system only needs to compute data flow de-
pendencies when the thread execution scheme reaches a task that has been stolen and
not completed yet. The successors of the stolen task depend on its completion. So, all
tasks following the first stolen task encountered, must require computation of data flow
dependencies to detect whether they are ready or not. In order to keep fast stack-based
execution without computation of data flow dependencies in X-KAAPI [17], a thread
suspends its execution when it reaches the first stolen task in its stack and calls the work
stealing scheduler to steal a new ready task.

2.5 Work Stealing and Data Flow Dependencies

Thanks to Cilk [6,15], the work stealing technique has become mainstream and is now
often considered when it comes to dynamically balance the work load among processing
units. The work stealing principle can be synthesized as follows. An idle thread, called
a thief, initiates a steal request to a random selected victim. On reply, the thief receives
one or more ready tasks.

At the startup time, only the main thread of X-KAAPI process performs tasks, all
others threads are idle. This original idea in X-KAAPI follows the work first princi-
ple [15]; at the expense of a larger critical path, X-KAAPI moves the cost of computing
ready tasks from the work performed by the victim during task’s creations to the steal
operations performed by thieves. Theoretical analysis of work stealing algorithms to
schedule dependent tasks are studied in [16,18] and an elegant recent proof is written
in [32] which considered specifics of the X-KAAPI work stealing protocol.

To compute a ready task, a thief thread iterates through the victim’s queue from
the last recent pushed task to the most recent one and it computes true data flow

LIBKOMP, an Efficient OpenMP Runtime System 107

dependencies for each task. False dependencies are resolved through variables renam-
ing. The iteration stops on the first task found ready.

The main difference between X-KAAPI and other software [5,2,34] is that X-KAAPI

computes data flow dependencies only when idle thread search for a ready task.

2.6 Discussion

If a program is highly parallel, i.e. T∞ � T1, then the number of steal operations per
thread remains in order O(T∞) which is low. In that case, the cost of computing data
flow, perhaps multiple times if several idle threads iterate over the same queue, is neg-
ligible with comparison to systematic computation on task creation. Otherwise, if the
frequency of steal operations increases, X-KAAPI tries to aggregate multiple requests
to the same victim. Our protocol elects the thieves to reply to all of the victim’s requests.
This aggregation strategy permits the combination of k searches of ready tasks in a less
costly operation to one search of k ready tasks [19]. In [32], a theoretical analysis shows
it can reduce the total number of steal requests.

Nevertheless, the overhead to manage tasks and computing data flow graph could
remain important. Also, X-KAAPI implements an original optimization. It is applied
when the cost of computing ready tasks becomes important, especially when the vic-
tim’s stack contains many tasks. The user may annotate code or the scheduler automati-
cally detects such situation. Then, the scheduler computes, and attaches to the stack, an
accelerating data structure to make faster steal operations. The structure maintains the
list of ready tasks. When a task completes and activates dependent tasks, the runtime
pushes them directly into list (of ready tasks). The capacity of X-KAAPI to pass from
workqueue’ stack representation to this accelerating data structure makes it unique. It
allows to move overhead in computing ready tasks during steal operation to the compu-
tation of accelerating data structure with low cost steal operation.

2.7 Parallel Loops in LIBKOMP

The parallel loop support in GCC/OpenMP relies on three main functions to initialize
the iteration space, get the next slice for local computation and a function call at the
end of the loop. Static scheduling may inline some of them. LIBKOMP follows the
same ABI and relies on the X-KAAPI loop support [24]. Loop support in X-KAAPI is
based on adaptive algorithms [33,31] to dynamically adapt the parallelism grain (num-
ber of tasks, number of iterations per task, etc.) considering the current system state. The
LIBKOMP loop port on X-KAAPI is only required to decompose the original X-KAAPI

parallel loop in order to fit the parallel work share construct of the libGOMP ABI.

3 Performance Evaluation

This section presents our evaluation on the BOTS benchmarks suite and two versions of
the Cholesky factorization to compare the performance obtained by our solution with
respect to two other OpenMP implementations: the original libGOMP that comes with

108 F. Broquedis, T. Gautier, and V. Danjean

version 4.6.2 of the GCC compiler and version 12.1.2 of the Intel C OpenMP compiler.
LIBKOMP is based on version 1.0.2 of the X-KAAPI runtime system.

We conducted our experiments on CC-NUMA 48 cores AMD Magny Cours. There
are three levels of cache memory. L1 (64 KB) and L2 (512 KB) are per core, whereas
L3 (5 MB) is shared by 6 cores. This configuration provides a total of 256 GB (32 GB
per NUMA node) of main memory. We will refer to this configuration as AMD48 in
the following of the paper.

3.1 Task Management Overhead

This section compares the overhead of task creation and execution with respect
to the sequential computation. The experiment evaluates the time to execute the
KaCC/LIBKOMP program of figure 2 for computing the 35-th Fibonacci number using
the fast task creation protocol. Equivalent programs in term of task creations and syn-
chronizations are written in Intel Cilk+, Intel TBB 4.0 and GCC/libGOMP. Sequential
time is 0.091s. Figure 2 reports times using 1, 8, 16, 32 and 48 cores from our AMD48
configuration. On 1 core, LIBKOMP has the smallest overhead with respect to the se-
quential computation (slowdown of about 8). This overhead can easily be absorbed by
increasing the task granularity, but at the expense of increasing the critical path, thus
reducing the available parallelism [15,11]. The grain is too fine for OpenMP/libGOMP
(computation was stopped on 32 and 48 cores after 5 minutes). For one core execution,
libGOMP never creates tasks and makes function calls as sequential execution does.

vo id f i b o n a c c i (long∗ r e s u l t ,
c o n s t long n)

{
i f (n <2)

∗ r e s u l t = n ;
e l s e
{

long r1 , r2 ;
#pragma k a a p i t a s k w r i t e (& r1)

f i b o n a c c i (&r1 , n−1) ;
f i b o n a c c i (&r2 , n−2) ;

#pragma k a a p i s ync
∗ r e s u l t = r1 + r2 ;

}
}

(a) LIBKOMP benchmark using KaCC

#cores Cilk+ TBB LIBKOMP libGOMP

1 1.063 2.356 0.728 2.429
(slowdown) (x 11.7) (x 26) (x 8) (x27)

8 0.127 0.293 0.094 51.06

16 0.065 0.146 0.047 104.14

32 0.035 0.072 0.024 (no time)
48 0.028 0.049 0.017 (no time)

(b) Time (second) on the AMD48 configuration
for fibonacci(35). Sequential time is 0.091 s.

Fig. 2. Fibonacci micro benchmark

3.2 Parallel Loops

In this section, we compare the performance obtained by both the libGOMP runtime
system and LIBKOMP on a parallel version of EUROPLEXUS [14], an industrial
application that computes finite element simulation of fluid-structure systems, expos-
ing a single OpenMP parallel loop. Because work per iteration is lightly irregular, we
tested both static and dynamic scheduling for libGOMP. We use the MAXPLANE

LIBKOMP, an Efficient OpenMP Runtime System 109

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40 45 50

T
se

q
/ T

pa
r

core count

ideal
libKOMP

OpenMP /dynamic
OpenMP /static

Fig. 3. EUROPLEXUS parallel loop speedup, libGOMP (static,
dynamic) VS LIBKOMP (xkaapi)

instance as input of the
EUROPLEXUS appli-
cation. Figure 3 reports
the obtained speedup
of parallel implemen-
tations with respect to
the sequential version.
The same cores was
used in both libGOMP
or LIBKOMP using the
environment variable
GOMP_CPU_AFFINITY.
Overall speedups are very
close, but LIBKOMP
scales better for a larger
number of cores (>25).

3.3 Barcelona OpenMP Tasks Suite (BOTS)

The Barcelona OpenMP Tasks Suite has been introduced to test the behavior of 3.0-
compatible OpenMP runtime systems regarding tasks implementation. It provides sev-
eral kernels inspired from real-life OpenMP applications and projects. Each kernel,
detailed in [13], comes with different implementations relying on different aspects/key-
words of the OpenMP 3.0 tasks model (tied/untied tasks, controlling the cut-off using
the if clause, etc.). We ran all these kernels on the AMD48 platform using a varying
number of cores to experiment with each kernel’s scalability, and kept the best imple-
mentation for each runtime system. Figure 4 shows the corresponding results.

Executing some of these kernels may lead to the creation of a great number of tasks.
For instance, the execution of the NQueens algorithm on a 14x14 chessboard generates
more than 370M of tasks. Creating such a number of tasks comes with overheads on
any tested runtime systems, the worst ones being observed from libGOMP. Determining
the right number of tasks to instanciate from an application may be really challenging.
Some runtime systems like libGOMP implements a threshold heuristic that limits tasks
creation when the number of tasks is greater than k times the number of threads. It has
the advantage of limiting the number of tasks but may limit the parallelism of the appli-
cation, as observed on the FFT benchmark performance on figure 4b in which creating
all the 2M tasks expressed in the application allows both the LIBKOMP and Intel run-
time systems to perform better load balancing. Some of these embarassing applications
comes with implementations in which the application programmer can define the max-
imum depth from which new tasks will be executed sequentially, taking the number of
creating tasks from 370M for NQueens to 2394 for example, thus explaining the better
performance obtained by libGOMP on the these kernels.

More generally, these experiments show LIBKOMP obtains performance that is
comparable to other OpenMP runtime systems (sometimes being even better!) on fork-
join applications exposing a reasonable number of tasks, and outperforms libGOMP

110 F. Broquedis, T. Gautier, and V. Danjean

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4 8 16 24 32 48

S
p
e
e
d
u
p

Number of cores

libKOMP
intel

libGOMP

(a) Alignment (prot100.aa)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4 8 16 24 32 48

S
p
e
e
d
u
p

Number of cores

libKOMP
intel

libGOMP

(b) FFT (n=33,554,432)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4 8 16 24 32 48

S
p
e
e
d
u
p

Number of cores

libKOMP
intel

libGOMP

(c) Floorplan (input.20)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4 8 16 24 32 48

S
p
e
e
d
u
p

Number of cores

libKOMP
intel

libGOMP

(d) MultiSort (n=33,554,432)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4 8 16 24 32 48

S
p
e
e
d
u
p

Number of cores

libKOMP
intel

libGOMP
KaCC

(e) NQueens (n=14)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4 8 16 24 32 48

S
p
e
e
d
u
p

Number of cores

libKOMP (64x128)
libKOMP (128x64)
intel (64x128)
intel (128x64)

libGOMP (64x128)
libGOMP (128x64)

(f) SparseLU (nxm)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4 8 16 24 32 48

S
p
e
e
d
u
p

Number of cores

libKOMP
intel

libGOMP

(g) Strassen (n=8192)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

8 16 24 32 48

S
p
e
e
d
u
p

Number of cores

libKOMP
intel

libGOMP

(h) UTS (medium.input)

Fig. 4. Speedups of the BOTS benchmarks suite scheduled by the LIBKOMP, libGOMP and
Intel runtime systems on a varying number of cores from the AMD48 platform with respect to
the GCC-compiled sequential version

LIBKOMP, an Efficient OpenMP Runtime System 111

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

G
fl

op
s/

s

matrix dimension

libKOMP
QUARK

(a) Tile size of NB = 128

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

G
fl

op
s/

s

matrix dimension

libKOMP
QUARK

(b) Tile size of NB = 256

Fig. 5. Gflops on Cholesky algorithm with QUARK and LIBKOMP

and Intel on applications creating a great number of tasks, thanks to its efficient man-
agement of recursive tasks.

To conclude this section, reported experiments have demonstrated that LIBKOMP
has almost the same performance as libGOMP or Intel ICC for a moderate number
of tasks and a moderate number of cores. For tasks-intensive computations, such as
UTS, LIBKOMP outperforms the other two OpenMP implementations. LIBKOMP is
designed to schedule data-flow graphs.

Mixing tasks with declaration of memory access modes allows a finer resolution
of synchronizations. It also provides valuable information on memory accesses to the
runtime system. The implementation of BOTS NQueens has been modified as described
at the end of section 2.4 and compiled with KaCC/LIBKOMP. Letting the runtime
system deal with fine-grain sychronizations allows to significantly improve the overall
performance here, as this version of NQueens reaches a speedup of 47.8 over 48 cores
of the AMD48 machine (KaCC performance reported on figure 4e).

3.4 Data Flow Tasks versus Fork-Join Tasks

We evaluate the potential gain offered by data-flow tasks over OpenMP 3.0 fork-join
tasks executing two different versions of the Cholesky factorization, a widely-used lin-
ear algebra algorithm.

LIBKOMP versus QUARK. The first one relies on the PLASMA_dpotrf_Tile
algorithm coming from version 2.4.2 of the PLASMA [7] library that comes with a
runtime system, in charge of scheduling PLASMA tasks, called QUARK. We imple-
mented the QUARK [34] ABI for dependent tasks on top of LIBKOMP to compare our
implementation with the original version of QUARK.

Figure 5 reports the performance, in GFlop/s, for different matrix sizes on the
AMD48 machine. One can observe that LIBKOMP outperforms QUARK for fine
grain tasks (NB = 128). The main reasons are: 1/ QUARK implements a central-
ized list of ready tasks; 2/ Creating QUARK tasks comes with bigger overheads. We
can expect this contention point to become more severe as the number of cores in-
creases with next generation machines, affecting PLASMA performance. When the
grain increases, LIBKOMP remains better but the difference decreases because of the

112 F. Broquedis, T. Gautier, and V. Danjean

relatively small impact of the task management with respect to the whole computation.
One can also note that increasing the grain size reduces the average parallelism and
limits the speedup. For a matrix size of 3000, the performance for NB = 128 reaches
150GFlops, while for NB = 256, it drops to about 75GFlops.

LIBKOMP versus OMP. The second version of the Cholesky factorization we stud-
ied here is a sparse factorization (LDL t) coming from the industrial code EURO-
PLEXUS [14]. We compare a data flow program on top of LIBKOMP with respect
to the original EUROPLEXUS code using OpenMP 3.0 task. The two code structures
are similar to Cilk and SMPSs codes presented in [22] for the dense case. Management
of sparsity is done in the same way as in the BOTS SparseLU code. Figure 6 reports
speedup using a matrix used by the MAXPLANE simulation in EUROPLEXUS [14].

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

Sp
ee

du
p

(T
p/

T
se

q)

core count

ideal
libKOMP
OpenMP

Fig. 6. Speedups on sparse Cholesky

The dimension of the ma-
trix is 59462 with 3.59%
of non zero elements. The
block size with the best se-
quential time is BS = 88
and is used for parallel
versions. The sequential
time is 47.79s. LIBKOMP
version outperforms lib-
GOMP version, for the
same reasons as for the
dense case [22]: thanks to
the knowledge of data de-
pendencies, independent
tasks between outer loop
iterations can be executed
concurrently.

4 Related Work

Kaapi [17] was designed in our group after our preliminary work on Athapascan [16,10].
X-KAAPI keeps definition of access modes to compute data flow dependencies between
a sequence of tasks. StarSs/SMPSs [5], QUARK [34], StarPU [2] follow the same de-
sign. We can still note differences in the kind of access modes and the shape of the
memory region that are defined : StarSs/SMPSs, QUARK have similar access mode
but only consider unidimensional arrays. QUARK comes with an original scratch
access mode to reuse thread-specific temporary data. StarPU [2] has a more complex
way to split data and define sub-views of a data structure. X-KAAPI has a direct support
for multi-dimensional arrays [25].

The data flow task model is flat in StarSs/SMPSs, QUARK and StarPU while
X-KAAPI also allows recursive tasks creation. The fork-join parallel paradigm is only
supported by X-KAAPI, Intel TBB [30], Cilk [6,15] and Cilk+ (Intel version of Cilk).
The X-KAAPI performance for fine grain recursive applications is equivalent, and some-
times better, than Cilk+ and Intel TBB, that only allow the creation of independent tasks.

LIBKOMP, an Efficient OpenMP Runtime System 113

In TBB, Cilk or X-KAAPI, task creation is several order of magnitude cheaper than in
StartSs/SMPSs, QUARK or StarPU. Scalability of the QUARK and StarPU runtime
system is limited due to their central list scheduling. SMPSs seems to support a more
distributed scheduling.

X-KAAPI has a unique model of adaptive task that allows a runtime adaptation of
tasks creation when a resource turns idle. The OpenMP runtime of GCC 4.6.2, lib-
GOMP, implements a threshold heuristic that limits tasks creation when the number
of tasks is greater than k times the number of threads (k = 64). It has the advantage
of limiting the number of tasks [11] (max-task strategy) but may limit the parallelism
of the application, as observed on the FFT benchmark performance [11]. TBB, with an
autopartitionner heuristic, is able to limit the number of tasks without a priori limiting
the application parallelism.

Intel TBB, Cilk+, OpenMP and X-KAAPI support parallel loops which are not avail-
able in StarSs/SMPSs, QUARK or StarPU. Our comparison with OpenMP/GCC 4.6.2
shows that for benchmarked instances on real EUROPLEXUS code, OpenMP loop
scheduling strategy is not an important feature.

From all of the tested softwares, X-KAAPI is the only runtime system that allows to
mix in a unified framework data-flow tasks, fork-join tasks and parallel loops with at
least equivalent performance (sometimes even better!) than specific softwares for each
paradigm.

5 Conclusion

Computer architects keep designing more and more complex platforms embedding an
almost constantly increasing number of processing units. To deal with these so-called
manycore architectures, OpenMP had to evolve to allow the application programmer
to express finer-grain parallelism. The 3.0 version of the OpenMP standard has layed
the fundations of a fine-grain environment, introducing the task construct to gener-
ate fine-grain tasks, either explicitely or out of OpenMP 2.5 parallel regions. We pro-
posed in this paper a runtime system, called LIBKOMP, that efficiently implements the
OpenMP task model and is binary compatible with existing OpenMP applications built
against GCC’s libGOMP. LIBKOMP outperformed popular OpenMP implementations
like GCC’s libGOMP and ICC’s KMP runtime systems on several benchmarks of the
Barcelona OpenMP Tasks Suite. We also showed the interest of taking OpenMP task
proposal one step further, proposing extensions to deal with data dependencies. We im-
plemented these extensions inside a source-to-source compiler obtaining better perfor-
mance using data-flow tasks compared to OpenMP 3.0 fork-join tasks. From our point of
view, many of the characteristics of the LIBKOMP runtime system, and more generally
the X-KAAPI runtime system LIBKOMP is based on, like adaptive loops scheduling,
moldable tasks and also unified CPU/GPU programming are interesting to discuss as
possible OpenMP evolutions.

Acknowledgement. The authors would like to thank Fabien Le Mentec for providing
results on EUROPLEXUS code. Work on EUROPLEXUS have been partially supported
by CEA and by the 09-COSI-011-05 REPDYN ANR Project. This work has been par-
tially supported by the ANR-11-BS02-013 HPAC ANR Project.

114 F. Broquedis, T. Gautier, and V. Danjean

References

1. Agathos, S.N., Hadjidoukas, P.E., Dimakopoulos, V.V.: Design and implementation of
openmp tasks in the ompi compiler. In: Angelidis, P., Michalas, A. (eds.) Panhellenic Con-
ference on Informatics, pp. 265–269. IEEE (2011),
http://dblp.uni-trier.de/db/conf/pci/pci2011.html#AgathosHD11

2. Agullo, E., Augonnet, C., Dongarra, J., Ltaief, H., Namyst, R., Roman, J., Thibault, S., To-
mov, S.: Dynamically scheduled Cholesky factorization on multicore architectures with GPU
accelerators. In: Symposium on Application Accelerators in High Performance Computing
(SAAHPC), Knoxville, USA (July 2010)

3. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multiprogrammed multi-
processors. Theor. Comp. Sys. 34(2), 115–144 (2001)

4. Ayguade, E., Badia, R.M., Cabrera, D., Duran, A., Gonzalez, M., Igual, F., Jimenez, D.,
Labarta, J., Martorell, X., Mayo, R., Perez, J.M., Quintana-Ortí, E.S.: A Proposal to Extend
the OpenMP Tasking Model for Heterogeneous Architectures. In: Müller, M.S., de Supin-
ski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS, vol. 5568, pp. 154–167. Springer,
Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-02303-3_13

5. Badia, R.M., Herrero, J.R., Labarta, J., Pérez, J.M., Quintana-Ortí, E.S., Quintana-Ortí, G.:
Parallelizing dense and banded linear algebra libraries using smpss. Concurr. Comput.: Pract.
Exper. 21, 2438–2456 (2009)

6. Blumofe, R., Joerg, C., Kuszmaul, B., Leiserson, C., Randall, K., Zhou, Y.: Cilk: An efficient
multithreaded runtime system. Journal of Parallel and Distributed Computing 37(1), 55–69
(1996), citeseer.nj.nec.com/article/blumofe95cilk.html

7. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear algebra
algorithms for multicore architectures. Parallel Comput. 35, 38–53 (2009)

8. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel language.
Int. J. High Perform. Comput. Appl. 21, 291–312 (2007),
http://dl.acm.org/citation.cfm?id=1286120.1286123

9. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun, C.,
Sarkar, V.: X10: an object-oriented approach to non-uniform cluster computing. SIGPLAN
Not. 40, 519–538 (2005)

10. Dumitrescu, B., Doreille, M., Roch, J.L., Trystram, D.: Two-dimensional block partitionings
for the parallel sparse cholesky factorization. Numerical Algorithms 16, 17–38 (1997)

11. Duran, A., Corbalán, J., Ayguadé, E.: Evaluation of OpenMP Task Scheduling Strategies.
In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 100–110.
Springer, Heidelberg (2008)

12. Duran, A., Perez, J.M., Ayguadé, E., Badia, R.M., Labarta, J.: Extending the OpenMP Task-
ing Model to Allow Dependent Tasks. In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP
2008. LNCS, vol. 5004, pp. 111–122. Springer, Heidelberg (2008)

13. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona openmp tasks suite:
A set of benchmarks targeting the exploitation of task parallelism in openmp. In: Interna-
tional Conference on Parallel Processing, ICPP 2009, pp. 124–131. IEEE (2009)

14. Faucher, V.: Advanced Parallel Computing for Explosive Fluid-Structure Interaction. In:
COMPDYN 2011, Corfu, Greece (May 2011)

15. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the cilk-5 multithreaded
language. In: Proceedings of the ACM SIGPLAN 1998 Conference on Programming Lan-
guage Design and Implementation, PLDI 1998, pp. 212–223. ACM, New York (1998)

16. Galilée, F., Roch, J.L., Cavalheiro, G.G.H., Doreille, M.: Athapascan-1: On-line building
data flow graph in a parallel language. In: Proceedings of PACT 1998, p. 88. IEEE Computer
Society, Washington, DC (1998)

http://dblp.uni-trier.de/db/conf/pci/pci2011.html#AgathosHD11
http://dx.doi.org/10.1007/978-3-642-02303-3_13
citeseer.nj.nec.com/article/blumofe95cilk.html
http://dl.acm.org/citation.cfm?id=1286120.1286123

LIBKOMP, an Efficient OpenMP Runtime System 115

17. Gautier, T., Besseron, X., Pigeon, L.: Kaapi: a thread scheduling runtime system for data
flow computations on cluster of multi-processors. In: PASCO 2007 (2007)

18. Gautier, T., Roch, J.L., Wagner, F.: Fine grain distributed implementation of a dataflow lan-
guage with provable performances. In: Workshop PAPP 2007 - Practical Aspects of High-
Level Parallel Programming in (ICCS2007). IEEE, Beijing (2007)

19. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the synchronization-
parallelism tradeoff. In: Proceedings of the 22nd ACM Symposium on Parallelism in Algo-
rithms and Architectures, SPAA 2010, pp. 355–364. ACM, New York (2010)

20. Hendler, D., Shavit, N.: Non-blocking steal-half work queues. In: PODC 2002: Proceed-
ings of the Twenty-First Annual Symposium on Principles of Distributed Computing,
pp. 280–289. ACM, New York (2002)

21. Hermann, E., Raffin, B., Faure, F., Gautier, T., Allard, J.: Multi-GPU and Multi-CPU Par-
allelization for Interactive Physics Simulations. In: D’Ambra, P., Guarracino, M., Talia, D.
(eds.) Euro-Par 2010. LNCS, vol. 6272, pp. 235–246. Springer, Heidelberg (2010)

22. Kurzak, J., Ltaief, H., Dongarra, J., Badia, R.M.: Scheduling dense linear algebra operations
on multicore processors. Concurr. Comput.: Pract. Exper. 22, 15–44 (2010)

23. LaGrone, J., Aribuki, A., Addison, C., Chapman, B.: A Runtime Implementation of OpenMP
Tasks. In: Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011.
LNCS, vol. 6665, pp. 165–178. Springer, Heidelberg (2011),
http://dl.acm.org/citation.cfm?id=2023025.2023042

24. Le Mentec, F., Danjean, V., Gautier, T.: X-Kaapi C programming interface. Tech. Rep. RT-
0417, INRIA (December 2011)

25. Le Mentec, F., Gautier, T., Danjean, V.: The X-Kaapi’s Application Programming Interface.
Part I: Data Flow Programming. Tech. Rep. RT-0418, INRIA (December 2011)

26. Michael, M.M., Vechev, M.T., Saraswat, V.A.: Idempotent work stealing. SIGPLAN Not. 44,
45–54 (2009)

27. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Prins, J.F.: Scheduling task parallelism on
multi-socket multicore systems. In: Proceedings of the 1st International Workshop on Run-
time and Operating Systems for Supercomputers, ROSS 2011, pp. 49–56. ACM, New York
(2011), http://doi.acm.org/10.1145/1988796.1988804

28. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Spiegel, M., Prins, J.F.: Openmp task schedul-
ing strategies for multicore numa systems. International Journal of High Performance Com-
puting Applications (2012)

29. OpenMP Architecture Review Board (1997-2008), http://www.openmp.org
30. Robison, A., Voss, M., Kukanov, A.: Optimization via reflection on work stealing in TBB.

In: IPDPS (2008)
31. Tchiboukdjian, M., Danjean, V., Gautier, T., Le Mentec, F., Raffin, B.: A Work Stealing

Scheduler for Parallel Loops on Shared Cache Multicores. In: Guarracino, M.R., Vivien,
F., Träff, J.L., Cannatoro, M., Danelutto, M., Hast, A., Perla, F., Knüpfer, A., Di Martino,
B., Alexander, M. (eds.) Euro-Par-Workshop 2010. LNCS, vol. 6586, pp. 99–107. Springer,
Heidelberg (2011)

32. Tchiboukdjian, M., Gast, N., Trystram, D., Roch, J.-L., Bernard, J.: A Tighter Analysis of
Work Stealing. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS,
vol. 6507, pp. 291–302. Springer, Heidelberg (2010)

33. Traoré, D., Roch, J.-L., Maillard, N., Gautier, T., Bernard, J.: Deque-Free Work-Optimal
Parallel STL Algorithms. In: Luque, E., Margalef, T., Benítez, D. (eds.) Euro-Par 2008.
LNCS, vol. 5168, pp. 887–897. Springer, Heidelberg (2008),
http://www.caos.uab.es/europar2008/

34. YarKhan, A., Kurzak, J., Dongarra, J.: Quark users’ guide: Queueing and runtime for kernels.
Tech. Rep. ICL-UT-11-02. University of Tennessee (2011)

http://dl.acm.org/citation.cfm?id=2023025.2023042
http://doi.acm.org/10.1145/1988796.1988804
http://www.openmp.org
http://www.caos.uab.es/europar2008/

A Compiler-Assisted Runtime-Prefetching

Scheme for Heterogeneous Platforms

Li Chen1, Baojiang Shou1, Xionghui Hou1, and Lei Huang2

1 State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences

No.6 Kexueyuan South Road,Beijing 100190, China
{lchen,shoubaojiang,houxionghui}@ict.ac.cn

2 Department of Computer Science, Prairie View A&M University,
Prairie View,TX 77446, USA

lhuang@pvamu.edu

Abstract. GPGPU has been widely used in recent years in both
academia and industry. Many research for benchmarks on GPUs were
reported to achieve over 100 times speedup, however, due to the high
overhead of data transfer between GPU and CPU in real-world appli-
cations, the achievements are dramatically limited. In the case of using
multiple GPUs, the situation is even worse. Another difficulty raised by
the GPGPUs is the programming productivity.

In this work, we introduce a new language extension to the easy-to-use
programming model OpenMP, implement a runtime and a prefetching
mechanism to further extend our work in support of OpenMP on het-
erogeneous platforms. The new language extension allows the OpenUH
compiler to generate efficient code for heterogeneous platforms with mul-
tiple GPUs included. To improve the performance of applications with
lots of data transfer, we implement runtime inter-thread dataflow analy-
sis and a runtime-prefetching mechanism with the help of compiler anal-
ysis, making the data transfer overlap with the computation as much as
possible. We have evaluated our prefetching system using benchmarks
including NPB SP, kmeans and nbody. In these experiments, we achieve
speedups of 1.23, 1.4 and 1.32 respectively compared with the versions
without prefetching support.

1 Introduction

Within recent years, GPGPUs have been widely used in both academia and
industry. Significant research has been carried out in optimizing programs run-
ning on a single GPU, and some of them have reported to achieve great speedup
[19][14][23][2][26]. However, for the real-world applications, the data transfers
between CPUs and GPUs have typically slowed down the performance [6][25]
dramatically. The situation becomes more complicated in the latest heteroge-
neous systems since they are typically equipped with multicores and multiple
GPUs together. The common practice of GPU programming on a single GPU,
to offload the most compute-intensive kernel completely to it is not the most

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 116–129, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Compiler-Assisted Runtime-Prefetching Scheme 117

efficient [25][13][22] [11] in the latest heterogeneous systems anymore. It is nec-
essary to offload works to multiple GPUs [18][10] and multicores instead of to
a single GPU. Research [4] shows the importance of maintaining cross-device
data mappings with a case study of concurrent CPU-GPU execution. In order
to achieve satisfied performance on real-world applications on today’s heteroge-
neous systems, it is critical to solve the bottleneck of the data transfer among
these devices.

Some latest architecture such as AMD Fusion integrates CPU and GPU cores
together to share the main memory. Although these architectures make the ex-
plicit data transfers unnecessary, the data placement and cache coherence is still
a key factor that affects application performance. For the existing disjoined CPU
and GPU systems, as well as to software managed scratch memory/cache archi-
tectures, the data transfer optimization is still critical to performance. In order
to optimize data transfer, it is worth revisiting the achievements of reducing
data communication on Distributed Memory Systems (DSM) on last decades.
Researchers optimized the data transferring in such systems using data distri-
bution, compiler optimizations and software DSM runtime support. In hetero-
geneous systems, it would also achieve better performance if the programming
models support data distribution to allow users to specify how data is distributed
on different devices. It will reduce large amount of unnecessary data transfer
specified by the developers who know the best for where/how the data will be
used in the program. Compiler optimizations are essential to reduce data trans-
fer by analyzing data access patterns and further optimizing them by performing
code motion and instruction scheduling. However, the compiler optimizations are
limited to many unknown factors at compile time. We believe that it has more
space to perform aggressive optimizations if we can apply the compiler analysis
at the runtime.

In this paper, we made the following contributions. Firstly we proposed a new
method of static task partition. Secondly we provided a runtime inter-thread
use-def analysis; Thirdly we proposed a prefetching scheme based on the result
of data-flow analysis and we implemented it in the OpenUH compiler system.
This paper is organized as follows. Section 2 discusses the language extension,
section 3 gives the related compiler supports, and section 4 contains the details of
the prefetching scheme. Section 5 talks about the implementation and evaluation
of our work. Related work is in section 6 and conclusion is given in section 7.

2 Language Extensions

We make several extensions to OpenMP to support work distribution among
CPUs and GPUs. In concept, we separate the OpenMP threads and GPU
threads. For a worksharing construct in OpenMP, we keep the OpenMP threads
intact, while introduce additional GPU agent threads that manages GPU ker-
nels and handles data transfers. Similar to setting up the number of OpenMP
threads, the number of GPU agent threads can be defined using an environment
variable OMP NUM ACCS, a num accs(integer-expression) clause for the par-
allel construct, and a function omp set num accs. In a parallel region, thread

118 L. Chen et al.

order is like this, GPU threads always have larger thread number than OpenMP
threads, and this is compatible to the OpenMP semantics.

The following is the syntax to extend the static schedule in omp for to control
the work distribution among multiple GPUs and CPUs.

#pragma omp for schedule (static [,cchunck] [,gchunk] [<C_ratio :G_ratio >])

With the new extended schedule, loop iterations are divided hierarchically
among CPUs and GPUs. The iterations of a parallel loop is divided into two
consecutive parts based on the two ratios C ratio and G ratio, of which the first
part is mapped to the CPUs, while the remainder part is assigned to GPUs.
The default ratio is 1:0. The distribution between CPUs and GPUs allows users
to control the load balance. Each partition is further divided into small chunks,
whose size is specified by cchunk on the CPU side and gchunk on the GPU
part. These chunks are statically assigned to the related computing devices in a
round-robin fashion in the order of the thread number. When any of the chunk
size values is not specified, the related partition space is divided into chunks
that are approximately equal in size, with one chunk assigned to one computing
device. We call it a heterogeneous schedule if the ratio description is specified.

The work distribution between CPU and GPU leads to a data distribution by
a compiler. Typically, data partitioning can be carried out by splitting the ar-
rays either in strips or in chessboard blocks, generating different communication
topologies. When using chessboard partitioning, every GPU has two indistinct
neighbors, and this incurs more communication overhead, so we only consider
strip-based partitioning currently.

Currently, omp master, omp critical, omp atomic and omp ordered are not
allowed in the loop body decorated with heterogeneous schedule clause. Because
on GPGPUs, it’s usually hard and expensive to run a parallel loop with fine-
grained synchronizations in it with out-of-order multithreaded execution model
(such as CUDA).

The heterogeneous schedule can be used by an expert programmer or by a
performance tuning system.

3 Compiling Supports

On heterogeneous platforms, data prefetch is asynchronous data transfer over-
lapped with kernel computation. Compared with multicore prefetching, longer
prefetch distance is usually needed since the cache (global memory of GPUs)
here has longer latency and more data may be needed to transfer for a ker-
nel computation. And this calls for inter-procedural code motion. So, effective
compile-time prefetch further needs accurate control flow information and accu-
rate dataflow information. To overcome the limitation of compiler analysis, we
use execution-based prefetch.

Prefetch region is a loop that has a large iteration count and contains parallel
loops with heterogeneous schedule. The codes of prefetching threads are actually
another multi-threaded program. Through team collaboration, these prefetching

A Compiler-Assisted Runtime-Prefetching Scheme 119

threads can go multiple parallel regions ahead of the computing threads making
enough room for communication scheduling.

Before code generation, static loop partitioning and array region analysis are
applied, and runtime calls are inserted to describe array access information of
each structured code block. After that, prefetching codes can be generated in
three steps. Firstly, each prefetch region is cloned and placed in a separate proce-
dure, and live-in variables are identified and passed as parameters. Each callee in
the dynamic scope of the prefetch region should also be cloned. Thread forking
codes are inserted before the prefetch region, and kill is inserted after the region
to terminate prefetching threads. Secondly, inter-procedural program slicing is
applied in the cloned prefetch region where slicing seeds are the data access ex-
pressions in the runtime calls. Thirdly, store removal should be applied to those
assignment statements to statically allocated global variables and heap variables,
since prefetching codes cannot modify those global data. Although store removal
can lead to a different control flow path in the prefetching code from the original
program, but it is usually not the case.

In the generated prefetch codes, most of the statements are just data access
descriptions. OpenMP runtime calls (such as barrier and ompc fork) are also
reserved as they are in the original program, but act differently since they are
called by a prefetch thread not by a computing thread.

4 Runtime Use-Def Analysis and Prefetch Scheduling

In our prefetcing scheme, there are two kinds of threads for data prefetching. The
prefetch inspection threads are responsible for gathering data access information,
while the prefetch execution threads see to issuing prefetches and synchroniz-
ing with the corresponding computing threads. In fact, there are one prefetch
inspection thread and one working thread for each separated memory, i.e. the
number of prefetch inspection threads is larger than the number of current ac-
tive accelerators by one, since the CPU side also need to apply data prefetching
for the existence of separate memories. These prefetch threads are forked on the
entry of each parallel region in the prefetch code.

To temporarily store data access information, an internal data structure called
DFTrace is introduced and shared by these threads. DFTrace is a queue, and new
items are pushed into the tail by the prefetch inspection thread, and the front
item is popped out by the prefetch execution thread. There are two kinds of items
in the DFTrace, barrier routine calls and structured code blocks (mostly are
loops). For each code block entry in the DFTrace, only data access information
of the related computing thread (local information) are recorded. Due to the
OpenMP memory model, local modifications to shared data cannot be seen by
other threads before the next flush. In our system, local definitions can only
be seen by other threads after the next barrier. For each barrier entry in the
DFTrace, there are a dynamic counter, a compile-time assigned tag, a prefetching
queue and data regions that need to be flushed. In the barrier operation of each
prefetch inspection thread, local definitions during this barrier phase will be

120 L. Chen et al.

merged by the prefetch inspection thread and exchanged with other prefetch
inspection threads of the same team, to build up global definition information
and to record them in the barrier entry.

Pending prefetches and instant prefetches are two kinds of prefetches that will
be generated by prefetch inspection thread. The instant prefetch can be carried
out immediately, because its reaching definition has been finished and the data
have been flushed. A pending prefetch is hung upon a future barrier which is
the reaching definition of the data, and is triggered on when the corresponding
barrier has finished execution. Prefetching threads keep pace with the computing
threads through barrier matching, which is realized by matching the barrier
counter from different threads.

For each use region in a newly generated DFTrace entry, its use-def chain
is built using set operations on the fly. The following algorithm describes how
to generate prefetches from this analysis. As we have pointed out, there are
three kinds of definitions during the analysis, barrier operations recorded in the
DFTrace, data prefetches recorded on certain barrier entries, and past definitions
that are not recorded in the DFTrace. To apply data flow analysis, barrier entries
are visited in reverse order. Each single datum has only one reaching definition
at runtime, while data region may have several reaching definitions, and each
corresponds to one sub- data region. If the reaching definition is in the DFtrace,
the related prefetch is a pending prefetch at the related barrier. Otherwise,the
reaching definition is a past definition in this thread or in some other thread. If
the related data does not present in the local memory, an instant prefetch can
be generated.

Algorithm. Prefetch generation for a use region
Input: u is the USE region of a newly generated DFTrace item
Output: Pending prefetches and instant prefetches
1. for (each barrier of DFTrace in reverse order , from the tail on){
2. let the local def region of the item be ldef , and its global def

region be gdef
3. u=u-ldef;
4. if(u==null) break;
5. if (meet(u,gdef)!=null) {
6. pf1=meet(u,gdef);
7. pf1 is a pending prefetch , and is hung at this barrier ;
8. }
9. u=u-gdef;
10. for (each pending prefetch , p_pf , at this barrier)
11. u=u-regions (p_pf);
12. }
13. u_remote =u-local_memory;
14. if (u_remote !=null)
15. u_remote is an instant prefetch ;

Fig. 1. Runtime data flow analysis and prefetch generation

Figure 2 illustrates the prefetching scheme with a snapshot of a simple code.
The code structure of a computing thread is given on the left, which is comprised
of four parallel loops and four barriers, and the second loop (L2 for short) is being

A Compiler-Assisted Runtime-Prefetching Scheme 121

executed right now. In this code, there are definitions to array A in both loop1
and loop2, output is a runtime call to describe DEF array regions while input
describing USE array regions. Helper code of the prefetch inspection thread is
outlined on the right, in which kernel calls have been cut away and the fourth
loop is now being inspected. The DFTrace is shown in the middle, for the use
region A[0-74] in the fourth loop, we find two reaching definitions using use-def
analysis. A[50-74] is a remote definition in B2, so a pending prefetch is generated
there. A[0-49] is a past definition, and since part of it hits in local memory, an
instant prefetch A[25-49] is generated.

d_A=output(A,lower_A,upper_A)
d_C = input(C,lower_C,upper_C);
omp_for_kernel1<<< >>>(d_A,d_C);
Record_event(A,lower_A,upper_A);

d_A=output(A,lower_A,upper_A)
 d_D=input(D,lower_D,upper_D);
omp_for_kernel2<<< >>>(d_A,d_D);
Record_event(A,lower_A,upper_A);

d_C = input(C,lower_C,upper_C);
d_D=output(D,lower_D,upper_D)
omp_for_kernel3<<< >>>(d_C,d_D);
Record_event(D,lower_D,upper_D);

d_C=output(C,lower_C,upper_C);
d_A=input(A,lower_A,upper_A);
omp_for_kernel4<<< >>>(d_A,d_C);
Record_event(C,lower_C,upper_C);

Code structure of an Agent Thread

Helper code of the Prefetch
Inspection Thread

barrier();

barrier();

barrier();

d_A = output(A,lower_A,upper_A);
d_C = input(C,lower_C,upper_C);

d_A = output(A,lower_A,upper_A);
d_D = input(D,lower_D,upper_D);

d_C = input(C,lower_C,upper_C);
d_D = output(D,lower_D,upper_D);

d_C = output(C,lower_C,upper_C);
 d_A = input(A,lower_A,upper_A);

barrier();

barrier();

barrier();
barrier();

barrier();

Local Def: A[75-99]
Local Use: D[75-99]

Local Def: D[25-49]
Local Use: C[25-49]

Local Def: A[75-99]
Remote Def: A[50-74]

Local Def: D[25-49]
Remote Def: D[50-74]

DFTrace generated by the
prefetch inspection thread

Local Def: C[0-74]
Local Use: A[0-74]

A
U=A[0-74]

A

Remote Available:
A[25-49]

Local Available
A[0-24]

DSM Status

A
U=A[0-49]

A
pending prefetch
A[50-74]

A
instant prefetch:
A[25-49]

U=A[0-74]

L1

B1

L4

L3

L2

B2

B3

B4

L3

L2

B2

B3

L1

B1

L4

L3

L2

B2

B3

B4

L4

Pending
Prefetch
Queue

Pending
Prefetch
Queue

Push Back

Prefetch Execution
Thread

Checking and
handling

Issue

Fig. 2. Snapshot of the prefetching scheme

The thread relationship between computing threads and prefetching threads
is set up through message exchange on the entry of the first encountered par-
allel region. Prefetch execution threads keep pace with the computing threads
to update their memory status through barrier matching. To support barrier
matching, a separate barrier counter is maintained for each computing thread
and its prefetch inspection thread, with the initial value being 0. Each prefetch-
ing inspection thread acts exactly the same as its computing thread in aspect of
control flows when store removal does not change the control flow of prefetching
codes, Or else, prefetch inspection thread may generate irrelevant prefetches, but
this is very rare.

4.1 Adaptive Scheduling

The above scheduling strategy is to launch the data transfer as early as possible.
But it is not optimal, if data transfer needed by a computing thread is hindered

122 L. Chen et al.

by a un-related data prefetch. This means that the corresponding prefetch of the
former data transfer should have been scheduled ahead of the ongoing prefetch.
In many scientific applications, communication patterns are repetitive and keep
stable for a relative long time, so an adaptive method can be adopted. Runtime
system monitors such violations, and will adjust the prefetch placement in the
next iteration.

To discriminate different data transfers, each barrier call is assigned a compile-
time tag and each data transfer shares the same tag as its reaching definition (the
barrier call). At runtime, if an agent thread is hindered by an un-related data
prefetch when it tries to launch new data transfers, a new scheduling rule will be
generated and sent to the corresponding prefetching thread. The rule is a binary
tuple (pf tag, wt tag), where pf tag is the tag of the ongoing prefetching operation
and wt tag is the tag of the waiting data transfer. This binary tuple indicates
that in the next loop iteration, the scheduling order of the two prefetches should
be exchanged. After adaptation, the tag of each involved prefetch operation may
be changed to the tag of the barrier that it attaches to currently.

5 Implementation and Evaluation

Our compiler is based on the OpenUH compiler which is built by the University
of Houston focusing on OpenMP research. We uses its source-to-source function-
ality to translate OpenMP codes into hybrid codes of pthreads and CUDA. We
developed a runtime library called OMPH, which is built upon the traditional
OpenMP runtime, supports collaboration between different prefetch inspection
threads and supports the communication between prefetch inspection threads,
prefetch execution threads and the agent threads. An intelligent software dis-
tributed shared memory system (DSM) is also realized including data layout
transformation functionality and heap management. After the source-to-source
compilation, the compiler invokes native NVCC compiler to compile the hybrid
code of pthreads and CUDA. At last, it links the pthreads library, CUDA library,
object files, OMPH library and the DSM library together to get the executables.

Translator. Our compiler supports the heterogeneous static schedule of omp
for. Heterogeneous loop tiling is applied in the LNO phase, which is realized
through loop index splitting according to the partitioning ratio values, thread
divergence generation and loop tiling according to different chunk sizes on dif-
ferent computing devices. For each array reference, the array region is computed
and its halo width is also computed in order to simplify runtime management.
Array region information of each structured block is used to generate data de-
scription DSM calls. Currently, only the rectangular array region is supported,
and the non-rectangular region will be conservative to the entire array.

The generation of prefetching codes is comprised of two phases. In the ipa
phase, prefetch region is identified and procedure cloning is annotated for all
callsites in the dynamic scope of the prefetch region. And then an interprocedural
slicing is applied, where slicing seeds include subscript expressions of each array
reference, if clause expression and num threads clause of each omp for. The

A Compiler-Assisted Runtime-Prefetching Scheme 123

latter two kinds of expressions are considered because they impact the control
flow of each parallel loop but are not executable WHIRL statement yet before
OpenMP transformation. Slicing annotations are marked in WHIRL statements.
During the LNO phase, loop partitioning for heterogeneous schedule is applied
and slicing annotations are perserved during that time. After loop partitioning
and OpenMP code transformation, procedure cloning is performed and irrelevant
codes are cut away according to slicing annotation, and prefetching codes are
generated.

Target Machine. We evaluation our prefetch scheme on a system with two
Tesla C2050 cards, figure 3 gives the layout of the motherboard and the two
GPU cards are in slot4 and slot8. There are two Intel Xeon E5620 qual-cores
CPUs which support two SMT threads per core and there were 12GB DDR3
main memory. Each Tesla C2050 card has 3GB global memory, 14 stream multi-
processors and 32 stream processors per stream multi-processor run at a fre-
quency of 1.15GHz. Tesla C2050 uses PCI-E 2.0 x16 bus to connect with the
system and has two DMA engines to transfer data in uplink and downlink si-
multaneously. The operating system is SUSE Linux 11.2 and CUDA SDK 4.0
is used in the following experiments. Since the distance between different CPUs
and GPUs is inconsistent, agent threads and prefetching inspection threads are
bound to the nearest cpu cores with respect to the related GPUs in the follow-
ing experiments. We found that the worst binding will lead to 9.4% performance
decrease for SP’s static prefetching version.

Fig. 3. The motherboard layout of the GPU platform

Benchmarks. We evaluated our prefetching scheme with three benchmarks,
SP from NPB-3.3/OMP, kmeans and nbody. For all the parallel loops in these
program, the partitioning ratio between CPUs and GPUs is 0:1. We rewrite SP
in C language since our compiler system only supports C language at present
and add heterogeneous schedule clause for each parallel loop. In SP, there are
multiple parallel regions, and some of the parallel loops are partitioned along

124 L. Chen et al.

Table 1. Ideal prefetching: communication times and the maximal overlapped ratios

Benchmark Computation
Time(s)

Data Transfer
Time(s)

Overlapped
Time(s)

Overlapped
Percentage(%)

SP (CLASS C) 124.26 85.8 49.40 57.6

Kmeans (16M) 6.47 5.65 3.70 65.5

Nbody (32K) 22.45 15.9 10.65 47.44

different array dimensions, leading to a large amount of data transfer (data
redistributions on several main large arrays) between the two GPUs. Kmeans
is a popular algorithm used in data mining. The input of SP is class C, while
nbody runs with an input of 32K nodes. The input of Kmeans is 16M nodes, 32
features per node and 10 clusters. All these benchmarks are compute intensive,
and better kernel speedups can be achieved using more than one GPUs.

An ideal static prefetching version is constructed for each benchmark, and
related data are collected in Table 1. Not all the data transfer time listed in the
table can be overlapped with kernel computing. In SP, some newly generated
data will be used immediately in the next kernel, so such communication can-
not be hiden by data prefetching. For SP, optimal communication placement is
achieved with the help of profiling, casual placement of the data transfers will
not lead to maximum overlap. Insufficient global memory problem is encoun-
tered in both kmeans and nbody, and memory replacement incurs data transfer
between CPUs and GPUs. Nbody has less overlapped percentage than kmeans,
because the prefetch distance in nbody is just several small loop tiles while in
kmeans it is one entire outer loop iteration.

Figure 4 gives the results of the three benchmarks. In all these tests, OMP
NUM ACCS is set to be 2. And execution times are shown in Figure 4a. In the
figure, standard version is a hand-tuned hybrid program of pthreads and CUDA,
without special communication code motion or runtime support. In the DSM
version, all the communication is realized using DSM routine calls, and it has
no prefetching optimization either. The execution times are normalized to that
of the standard version. Figure 4c shows the speedups of different prefetching
schemes according to standard versions, while Figure 4d shows the percentage
difference. In SP, the reason of less speedup of eager policy than static prefetch-
ing is due to the blindness of the prefetch placement. In fact, a certain data
prefetch takes long time, and during that time several kernels finished running
and a follow-up kernel is hindered since it needs some halo-region data trans-
fer before launching. When using adaptive placement policy, the placement of
the prefetch will be adjusted in the first two outer-loop iterations, and after
that the related prefetch arrives at its optimal position, so a better speedup is
achieved. For kmeans and nbody, due to the relative simple behaviors of the
applications, runtime-prefetching scheme almost achieved the same speedup as
the static prefetching version.

Figure 4b shows the runtime overhead of the DSM system which is relatively
small. Many of the overhead comes from locking operations for accessing shared

A Compiler-Assisted Runtime-Prefetching Scheme 125

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��

��
��
��
��

��

��

�
�
�
�

��
�
�
�
�

 0.6

 0.8

 1

 1.2

 1.4

SP Kmeans Nbody

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e Standard

Ideal Prefetching
DSM
Eager Prefetching
Adaptive Prefetching

(a) Normalized execution time

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

 0%

 1%

 2%

 3%

 4%

 5%

 6%

SP Kmeans Nbody

Pe
rc

en
ta

ge

(b) The percentage of DSM overhead

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�
�
�
�

��

��

 1

 1.2

 1.4

 1.6

 1.8

 2

SP Kmeans Nbody

Sp
ee

du
p

Ideal Prefetching
Eager Prefetching
Adaptive Prefetching

(c) Speedups of prefetching schemes

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

��

�
�
�
�

�
�
�
�

 0%

 20%

 40%

 60%

 80%

 100%

SP Kmeans Nbody

Pe
rc

en
t o

f
T

im
e

O
ve

rl
ap

pe
d Ideal Prefetching

Eager Prefetching
Adaptive Prefetching

(d) Percentage of overlapped communi-
cation time

Fig. 4. Effects of prefetching schemes and overhead of the DSM system

data objects such as software DSM items. To minimize the cost of heap allocation
on GPU, a heap manager with a caching policy is realized. The heap manager
will not actually free a memory block when the user frees it. Instead, the base
address of the data block will be stored into a reclaim buffer along with its size.
For each heap allocation request, the reclaim buffer is searched for a data block
with the same size. Only when not found, a new data block will be allocated.
And the manager will not free any data block in the reclaim buffer unless a new
allocation request can not be satisfied. The prefetch inspection threads run very
fast unless memory allocation cannot be satisfied by the reclaim buffer.

The experimental results show that the proposed runtime-prefetching scheme
can achieve comparable speedup to hand-tuned, static prefetching.

6 Related Work

Heterogeneous architecture has been a hot research topic in computer architec-
tures. Many work has been done on improving the programming productivity
and program optimizations on such systems. We compare our work with some of
them in the areas of programming interface, optimizations, compiler and runtime
support.

OpenCL [7] attempts to provide a common programming interface for multi-
core and many-core platforms. However, its programming level is relatively low,
especially in the complicated data management part, which has significant per-
formance impact. There are many tools such as [21] [8] developed to simplify

126 L. Chen et al.

programming on accelerators. Several language extensions are put forward to
porting legacy codes to heterogenous platforms efficiently. OpenACC [15] is an
open standard for offloading codes in standard C, C++ and Fortran from a host
CPU to an attached accelerator. It allows the programmer to specify guidance
on how to map parallel loops onto accelerators, to describe data layout and opti-
mize data movement in an abstract way, so as to help compiler generate efficient
codes. It is quite similar in syntax to PGI Accelerator [20]. These extensions
provide users high level abstractions for optimizations. A different approach is
adopted in [9] to optimize a certain type of data transfer among CUDA kernels
(cyclic data communication), which combines compiler analysis and runtime op-
timizations and does not depend on the strength of static compile-time analyses
or on programmer-supplied annotations. Compared with the above works, our
work proposed a moderate extension to the standard API OpenMP to support
heterogeneous programming.

There are many studies on synergistic execution on heterogeneous proces-
sors, taking workload balancing and data transfer into consideration. Among
them, some of the works focus on dynamic workload partitioning and schedul-
ing. Task-driven execution model is used in [12][13] [1] [16], where high level
APIs are put forward to describe data parallelism and tasks are organized into
DAGs at runtime for adaptive mapping on heterogeneous platforms. Besides,
StarPU [1] also provides data prefetching for future tasks. An OpenCL frame-
work is proposed [10] to provide a single compute device image for systems with
multiple GPUs, where the OpenCL runtime maintains a virtual device memory,
and identifies an optimal workload distribution by applying a run-time memory
access range analysis and a sampling run to each kernel. For optimal workload
mapping, data transfer between CPUs and GPUs is deferred until necessary [3].
Many of the above works take data transfer into consideration when scheduling
tasks, and some of them even realize data preloading. However, these approaches
are not suitable for general OpenMP programs. There are also many works on
static workload partitioning. A combination of thread mapping and subteam is
proposed [24] to let programmers control over how work is allocated on these ar-
chitectures statically. Automatic static approach is adopted in [17] for MATLAB
programs. This work maintains resource vectors, uses a variant of list scheduling
and tries to minimize the amount of data transfer needed in workload mapping.
Another purely static approach [5] is developed based on predictive modeling
and program features to find the best partitioning on heterogeneous systems.
Our approach handles the data transfer optimization in a generic and integrated
way that combines OpenMP extension, compiler analysis and runtime support.
It can handle complicated control flows and data flows.

7 Conclusion and Future Work

In this paper, we present a compiler-assisted runtime prefetching scheme to
overlap the data transfer on heterogeneous systems. In order to achieve the goal,
we first extend OpenMP with a heterogeneous schedule clause to enable static

A Compiler-Assisted Runtime-Prefetching Scheme 127

task partition among CPUs and GPUs. The new extension enables programmers
to fully control the load balance on such a system. We then implement the
extension in the OpenUH compiler to generate hybrid codes of Pthreads and
CUDA, as well as software DSM to support data communications. To cut down
the overhead of data transfer between device memories and the main memory, we
demonstrated a runtime-prefetching scheme that leverages compile-time analysis
information and code generation support. Prefetching codes are simply another
OpenMP program, in which prefetching threads can collaborate with each other
and go multiple parallel regions ahead of computing threads, and this provides
the long prefetching distance needed in the GPU scenario. Runtime inter-thread
dataflow analysis is used to overcome the limitations of compiler analysis. To
optimize communication placement, an adaptive scheduling policy is given. We
test our compiler and runtime system with three benchmarks, and the results
show that runtime-prefetching scheme can have similar performance as its hand-
coded counterparts.

For the future work, we plan to further optimize the prefetching scheme by
exploiting additional compiler analysis, and evaluating them using more bench-
marks and applications. We would like to discuss the language extensions with
OpenMP ARB to seek a unified solution for keeping load balance among different
devices.

Acknowledgement. This research is supported in part by the National Hi-
Tech Research and Development 863 Program of China (2012AA010902), the
National Fundamental Research Program of China (2011CB302504), the Na-
tional Natural Science Foundation of China (60970024 and 60925009) and the
Innovation Research Group of NSFC (60921002).

We would like to thank the reviewers for valuable comments and suggestions.

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: Starpu: a unified platform
for task scheduling on heterogeneous multicore architectures. Concurr. Comput.:
Pract. Exper. 23, 187–198 (2011)

2. Barrachina, S., Castillo, M., Igual, F., Mayo, R., Quintana-Orti, E.: Evaluation
and tuning of the level 3 cublas for graphics processors. In: IEEE International
Symposium on Parallel and Distributed Processing, IPDPS 2008, pp. 1–8 (April
2008)

3. Becchi, M., Byna, S., Cadambi, S., Chakradhar, S.: Data-aware scheduling of legacy
kernels on heterogeneous platforms with distributed memory. In: Proceedings of
the 22nd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
2010, pp. 82–91. ACM, New York (2010),
http://doi.acm.org/10.1145/1810479.1810498

4. Che, S., Sheaffer, J.W., Skadron, K.: Dymaxion: optimizing memory access pat-
terns for heterogeneous systems. In: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2011,
pp. 13:1–13:11. ACM, New York (2011)

http://doi.acm.org/10.1145/1810479.1810498

128 L. Chen et al.

5. Grewe, D., O’Boyle, M.F.P.: A Static Task Partitioning Approach for Heteroge-
neous Systems Using OpenCL. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601,
pp. 286–305. Springer, Heidelberg (2011)

6. Gelado, I., Kelm, J.H., Ryoo, S., Lumetta, S.S., Navarro, N., Hwu, W.M.W.: Cuba:
an architecture for efficient cpu/co-processor data communication. In: Proceed-
ings of the 22nd Annual International Conference on Supercomputing, ICS 2008,
pp. 299–308. ACM, New York (2008)

7. Group, K.O.W.: The opencl specification (2011),
http://www.khronos.org/registry/cl/

8. Han, T.D., Abdelrahman, T.S.: /hi/cuda: a high-level directive-based language
for gpu programming. In: GPGPU-2: Proceedings of 2nd Workshop on General
Purpose Processing on Graphics Processing Units, pp. 52–61. ACM, New York
(2009)

9. Jablin, T.B., Prabhu, P., Jablin, J.A., Johnson, N.P., Beard, S.R., August, D.I.:
Automatic cpu-gpu communication management and optimization. In: Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2011, pp. 142–151. ACM, New York (2011)

10. Kim, J., Kim, H., Lee, J.H., Lee, J.: Achieving a single compute device image in
opencl for multiple gpus. In: Proceedings of the 16th ACM Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP 2011, pp. 277–288. ACM, New
York (2011)

11. Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A.D., Satish,
N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R., Dubey, P.:
Debunking the 100x gpu vs. cpu myth: an evaluation of throughput computing
on cpu and gpu. In: Proceedings of the 37th Annual International Symposium on
Computer Architecture, ISCA 2010, pp. 451–460. ACM, New York (2010)

12. Linderman, M.D., Collins, J.D., Wang, H., Meng, T.H.: Merge: a programming
model for heterogeneous multi-core systems. In: Proceedings of the 13th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XIII, pp. 287–296. ACM, New York (2008)

13. Luk, C.K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous multi-
processors with adaptive mapping. In: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 42, pp. 45–55. ACM, New
York (2009)

14. Meng, J., Skadron, K.: Performance modeling and automatic ghost zone optimiza-
tion for iterative stencil loops on gpus. In: Proceedings of the 23rd International
Conference on Supercomputing, ICS 2009, pp. 256–265. ACM, New York (2009)

15. Org., O.S.: The openacc application programming interface (2011),
http://www.openacc-standard.org/Downloads/

OpenACC.1.0.pdf?attredirects=0&d=1
16. Planas, J., Badia, R.M., Ayguadé, E., Labarta, J.: Hierarchical task-based pro-

gramming with starss. Int. J. High Perform. Comput. Appl. 23, 284–299 (2009),
http://dl.acm.org/citation.cfm?id=1572226.1572233

17. Prasad, A., Anantpur, J., Govindarajan, R.: Automatic compilation of matlab
programs for synergistic execution on heterogeneous processors. In: Proceed-
ings of the 32nd ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2011, pp. 152–163. ACM, New York (2011),
http://doi.acm.org/10.1145/1993498.1993517

18. Strengert, M., Müller, C., Dachsbacher, C., Ertl, T.: Cudasa: Compute uni-
fied device and systems architecture. In: Favre, J.M., Ma, K.L. (eds.) EGPGV,
pp. 49–56. Eurographics Association (2008)

http://www.khronos.org/registry/cl/
http://www.openacc-standard.org/Downloads/OpenACC.1.0.pdf?attredirects=0\&d=1
http://www.openacc-standard.org/Downloads/OpenACC.1.0.pdf?attredirects=0\&d=1
http://dl.acm.org/citation.cfm?id=1572226.1572233
http://doi.acm.org/10.1145/1993498.1993517

A Compiler-Assisted Runtime-Prefetching Scheme 129

19. Sung, I.J., Stratton, J.A., Hwu, W.M.W.: Data layout transformation exploiting
memory-level parallelism in structured grid many-core applications. In: Proceed-
ings of the 19th International Conference on Parallel Architectures and Compila-
tion Techniques, PACT 2010, pp. 513–522. ACM, New York (2010)

20. The Portland Group: PGI Fortran & C Accelator Programming Model. White
Paper (2010)

21. Ueng, S.-Z., Lathara, M., Baghsorkhi, S.S., Hwu, W.-m.W.: CUDA-Lite: Reduc-
ing GPU Programming Complexity. In: Amaral, J.N. (ed.) LCPC 2008. LNCS,
vol. 5335, pp. 1–15. Springer, Heidelberg (2008)

22. Venkatasubramanian, S., Vuduc, R.W., none, n.: Tuned and wildly asynchronous
stencil kernels for hybrid cpu/gpu systems. In: Proceedings of the 23rd Interna-
tional Conference on Supercomputing, ICS 2009, pp. 244–255. ACM, New York
(2009)

23. Vineet, V., Harish, P., Patidar, S., Narayanan, P.J.: Fast minimum spanning tree
for large graphs on the gpu. In: Proceedings of the Conference on High Performance
Graphics 2009, HPG 2009, pp. 167–171. ACM, New York (2009)

24. White, L.: OpenMP Extensions for Heterogeneous Architectures. In: Chapman,
B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011. LNCS,
vol. 6665, pp. 94–107. Springer, Heidelberg (2011),
http://dl.acm.org/citation.cfm?id=2023025.2023036

25. Yang, C., Wang, F., Du, Y., Chen, J., Liu, J., Yi, H., Lu, K.: Adaptive optimization
for petascale heterogeneous cpu/gpu computing. In: Proceedings of the 2010 IEEE
International Conference on Cluster Computing, CLUSTER 2010, pp. 19–28. IEEE
Computer Society, Washington, DC (2010)

26. Yang, Y., Xiang, P., Kong, J., Zhou, H.: A gpgpu compiler for memory optimiza-
tion and parallelism management. In: Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2010,
pp. 86–97. ACM, New York (2010)

http://dl.acm.org/citation.cfm?id=2023025.2023036

Experiments with WRF on Intel� Many

Integrated Core (Intel MIC) Architecture

Larry Meadows

Intel Corporation, Hillsboro OR, USA
lawrence.f.meadows@intel.com

Abstract. WRF is a well-known weather code with a hybrid OpenMP
and MPI implementation. This paper investigates the performance of
WRF on heterogeneous hardware consisting of Intel� Xeon� proces-
sors and Intel MIC Architecture co-processors, using offload, OpenMP,
and MPI.

1 Introduction

The Intel Many Integrated Core (MIC) architecture[1] was originally announced
in May of 2010. The Knights Ferry design and development kit will be followed
with the Knights Corner product. The Intel MIC architecture combines many
Intel Architecture CPU cores on a single chip. This architecture is very different
from the GPGPU architectures in that it can execute a full operating system
and entire programs, rather than just kernels. In particular, it is possible to run
one or more ranks of an MPI program on an Intel MIC chip.

The Weather Research and Forecasting (WRF) Model[2] is a widely respected
weather prediction systemdevelopedby a collaborative partnership amongNCAR,
NOAA, and several other agencies. A version of WRF was included in the retired
SPEC HPC2002 benchmark suite and is included in the SPEC MPI2007 bench-
mark suite. WRF has a hybrid MPI and OpenMP parallel model, and comes with
benchmark data sets that represent real problems and include verification tests,
making it an excellent code for studying and tuning performance on heterogeneous
parallel systems.

Section 2 describes the Intel MIC hardware architecture. Section 3 describes
the Intel OpenMP and MPI implementations for Intel MIC architecture. Sec-
tion 4 describes WRF, its parallel model, and the benchmark data set. Sec-
tion 5 presents results for compiler offload. Section 6 presents results for hybrid
MPI+OpenMP runs on heterogeneous hardware.

2 Intel MIC Architecture

2.1 Hardware Architecture

The results in this paper were obtained on a Knights Ferry (KNF) PCI-Express
card. The KNF processor consists of 32 in-order cores running at 1200MHz,

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 130–139, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Experiments with WRF 131

each with four hardware thread contexts. Each core has 256KiB of shared L2
cache, 32KiB of L1 data cache, and 32Kib of L1 instruction cache. The cores are
interconnected to each other and to memory controllers by a ring bus. All caches
are coherent with each other and with main memory. Each core has a 512-bit
vector floating point unit that is able to operate on 16 single precision floating
point values per cycle.

The hardware thread contexts each have their own set of scalar Intel64 regis-
ters as well as 512-bit vector floating point registers. The four hardware threads
help to cover latency as is usual in SMT architectures.

Fig. 1 is a block diagram of the Intel MIC architecture.

Fig. 1. Intel MIC Architecture Block Diagram

KNF is limited to 2GiB of GDDR5 memory.
Multiple KNF cards can communicate with each other and with the host over

the PCI express bus. A DMA engine supports asynchronous data movement
between cards and between a card and the host.

The host hardware used in this paper is a dual socket Intel Xeon X5680
running at 3.33GHz. Each socket is a 6 core part, and each core has two hardware
thread contexts, for a total of 24 hardware thread contexts. The system has
24GiB of memory and runs Red Hat EL6.

2.2 System Software Architecture

KNF runs a version of the Linux kernel with a Busybox[3]environment. The
device has a ramdisk to hold the kernel and the command environment. A virtual
ethernet driver and NFS support is provided, so host file systems can be mounted
on the card, or native executables and shared objects can be copied to the
ramdisk.

Both the host kernel and the device kernel support DMA through a kernel
driver. DMAs can be initiated from either the host or the device and can be

132 L. Meadows

reads or writes. The hardware DMA engine requires 64-byte alignment of source
and destination addresses. It is also possible to map remote memory across the
PCI-Express bus so that writes from one side are visible to the other side.

For memory to be mapped or DMAd, the physical memory must first be
registered (and the virtual addresses pinned) so that it isn’t paged out. Regis-
tration is a relatively expensive operation, and there is a limit to the amount of
memory that can be registered, so careful management of memory registration
is required.

3 Software Stack Implementation

The work described here uses three major pieces of software: OpenMP, MPI,
and compiler-assisted offload.

3.1 OpenMP

Intel’s OpenMP implementation fully supports the OpenMP 3.1 specification[4].
OpenMP annotations are recognized by the compiler, which then generates code
and calls to the OpenMP runtime library to realize the OpenMP parallelism[5].

Since Intel MIC is an implementation of Intel64 Architecture, it is able to use
substantially the same compiler and runtime as Xeon. There are two differences
between Intel MIC and Intel Xeon that affect the runtime implementation or
the optimal use of OpenMP: thread yielding and affinity.

The Intel MIC core is a 4-thread implementation of simultaneous multithread-
ing (SMT)[6]. When a thread is stalled the core executes another thread that is
able to execute. The OpenMP runtime often uses busy wait loops for synchro-
nization. It is important that the thread executing the busy wait loop yield the
core so that other threads on the same core can execute. Intel MIC provides the
delay instruction for this purpose. The delay instruction causes the hardware
thread picker to advance to the next thread on the core. This instruction takes
an integer argument giving the number of cycles for which the thread should be
skipped.

Each hardware thread on Intel MIC is represented by an OS CPU number.
By default, the OS can schedule OpenMP threads on any available CPU, and
can change the CPU on which an OpenMP thread is executed at any time. It
is often useful to restrict the sets of CPUs on which an OpenMP thread can
execute, and also to place particular OpenMP threads on the same core as other
threads.

Intel provides the KMP AFFINITY environment variable (as well as an API) for
this purpose[7]. OpenMP threads can be bound to individual OS CPUs or to
cores, and can be placed according to a policy, or explicitly placed on a given
core or OS CPU. The policies are called compact, to place threads in order on
cores; scatter, to place threads round-robin on cores; and balanced, to place
threads in order on cores but to use as many cores as possible.

Experiments with WRF 133

3.2 MPI

One of the major differences between Intel MIC and GPGPU is that Intel MIC
supports a full OS environment. Entire programs, not just kernels, can execute
on Intel MIC. Intel provides an implementation of MPI-2[8] based on MPICH2[9]
that supports MPI communication between process on the devices and processes
on the host, and will support clusters of such nodes. The implementation uses a
combination of mapped memory and DMA for host-device communication, and
shared memory for intra-device and intra-host communication.

3.3 Compiler Offload

Intel MIC can be used in two ways: as a platform for native execution, and as an
offload platform to run portions of a computation. The latter is the way in which
GPGPUs are used as accelerators today. Intel’s compiler provides the ability
to offload essentially arbitrary sections of code to the device from a program
executing on the host using directives (in Fortran) and pragmas (in C/C++).
The offload directives typically specify the data to be transferred between the
host and the device and delimit the code to be executed on the device. The
actual code that is executed on the device can use OpenMP directives or any
other model of parallelism, make system calls, do I/O, and anything else a native
program can do on the device.

Section 5 has an example of offloading a computation from WRF onto the
device (in Fortran).

Offload directives exist for Fortran, C, and C++. The remainder of this section
describes some of the directives for Fortran.

It is possible to offload an OpenMP parallel region to the device with the
!DEC� OMP OFFLOAD directive followed by an OpenMP parallel construct. This
results in an offload region consisting of the body of the parallel construct:

!DEC� OMP OFFLOAD

!OMP PARALLEL

...

!�OMP END PARALLEL

The combined parallel workshare constructs may also be used. It is also pos-
sible to offload a block of code or a call statement.

Attributes following the offload directive tell the compiler which variables
are input to the device (IN), output from the device (OUT), or both input and
output (INOUT). The compiler generates code to transfer the input data before
executing the offload region, execute the offload region, and transfer the data
back after executing the offload region. The compiler attempts to automatically
transfer data that is used in the offload region, but it is often necessary and/or
more efficient to explicitly specify the data to be transferred. There are also
mechanisms to transfer data asynchronously and to start an offload region and
later wait for its completion.

It is also possible to place persistent data, for example, Fortran common
blocks, on both the device and the host. Such data can be updated independently

134 L. Meadows

by both the device and the host, and can also be transferred to and from the
host with the appropriate offload attributes.

Finally, if a subprogram is called from within an offload region, it is neces-
sary to annotate the subprogram definition so that a device version of the sub-
program is created. This is done with the !DEC� ATTRIBUTES OFFLOAD: MIC::

subprogram-name directive.
When an OpenMP offload region is created on the device, it is completely

independent from any OpenMP region on the host. The number of threads,
thread affinity, and any other attributes of the region are determined from device-
specific environment variables or OpenMP API calls. However, OpenMP thread
teams persist from one offload region to another on the device, so any thread
creation cost is incurred only once.

4 WRF Benchmark

WRF can be run as a single OpenMP process or as multiple MPI+OpenMP
processes. The MPI implementation decomposes the domain and exchanges the
boundaries of the grid at each timestep. The OpenMP implementation further
decomposes the grid into a set of tiles with one tile per OpenMP thread. Each set
is computed in parallel using the OpenMP PARALLEL DO construct. The implicit
barrier at the end of each construct is used for synchronization.

The benchmark data set used in this paper is the single domain 12km Conti-
nental U.S. (CONUS) dataset with a simulation time step of 72 seconds over a
three hour simulated time period. This benchmark is from the WRF V3 bench-
mark page[10]. Version 3.0 of the WRF code was used.

The majority of the execution time is spent in the solve em subroutine and in
subroutines it calls. This subroutine contains 38 PARALLEL DO constructs. Thus
there is overhead for starting and ending each construct, as well as some serial
time outside of the constructs.

We used Vtune Amplifier XE to profile serial execution of the code on the host.
The top 20 functions accounted for 69% of the execution time. The microphysics
routine wsm52d took 11.6% of the time.

5 WRF Offload

Reference [11] describes work done to offload the wsm5 microphysics routine to
an Nvidia accelerator. Since this function takes only 11.6% of the serial time, this
work did not result in significant overall performance improvement. However, it
is a good way to demonstrate the offload capabilities of different compilers and
hardware, so we performed a similar experiment.

The outer loop for this region is show in Fig.2. The NVIDIA offload involved
substantial code restructuring to better match the device’s characteristics. Since
Intel MIC is a general purpose CPU architecture, we were able to offload this
region by simply placing an appropriate directive identifying the offload region
and data to be transferred before the outermost DO loop, as seen below:

Experiments with WRF 135

DO j=j t s , j t e
DO k=kts , kte
DO i=i t s , i t e

t (i , k)=th (i , k , j)� p i i (i , k , j)
q c i (i , k , 1) = qc (i , k , j)
q c i (i , k , 2) = q i (i , k , j)
qrs (i , k , 1) = qr (i , k , j)
qrs (i , k , 2) = qs (i , k , j)

ENDDO
ENDDO
CALL wsm52D(t , q (ims , kms , j) , qci , q rs &

, den (ims , kms , j) &
,p (ims , kms , j) , d e l z (ims , kms , j) &
, de lt , g , cpd , cpv , rd , rv , t0c &
, ep1 , ep2 , qmin &
,XLS, XLV0, XLF0, den0 , denr &
, c l i q , c i c e , psat &
, j &
, ra in (ims , j) , ra inncv (ims , j) &
, s r (ims , j) &
, ids , ide , jds , jde , kds , kde &
, ims , ime , jms , jme , kms , kme &
, i t s , i t e , j t s , j t e , kts , kte &
, snow (ims , j) , snowncv (ims , j) &

)
DO K=kts , kte
DO I=i t s , i t e

th (i , k , j)=t (i , k)/ p i i (i , k , j)
qc (i , k , j) = q c i (i , k , 1)
q i (i , k , j) = q c i (i , k , 2)
qr (i , k , j) = qrs (i , k , 1)
qs (i , k , j) = qrs (i , k , 2)

ENDDO
ENDDO

ENDDO

Fig. 2. wsm5 outer loop

136 L. Meadows

! dec� omp o f f l o a d t a r g e t (mic : 0) in (de l t , g , cpd , cpv , t0c , &
! dec�& den0 , rd , rv , ep1 , ep2 , qmin ,XLS,XLV0,XLF0, c l i q , &
! dec�& c ice , psat , denr , j t s , j t e , kts , kte , i t s , i t e , ims , &
! dec�& kms , ids , &
! dec�& ide , jds , jde , kds , kde , ime , jms , jme , kme) &
! dec�& in (t , qc i , q r s) in (delz , p , den , p i i) &
! dec�& inout (snowncv , ra inncv) &
! dec�& inout (qs , qr , qi , qc , th , q , snow , r a in) &
! �omp p a r a l l e l do p r i v a t e (i , j , k , t , qc i , q r s)

This tells the compiler which variables to transfer in to, out from, or both
in to and out from the card, and further to create an OpenMP PARALLEL DO

to run on the card. The compiler creates variable descriptors and a function
(encapsulated in a shared object). When the first offload region is encountered,
the offload runtime on the card loads the shared object into memory; then the
offload runtime on the host and the card cooperate to exchange the data and
call the offload function.

It is also necessary to ensure that persistent data on the card is properly initial-
ized. The routine wsm5initmust be called on the card. Finally, the routine rgmma
is called from wsm52D and the compiler must be told that a device version of that
routine is required. The following additional directives, and one additional sub-
routine call, were required in module mp wsm5.F and module physics init.F:

module mp wsm5 .F :
! dec� a t t r i b u t e s o f f l o a d : mic : : wsm52D
! dec� a t t r i b u t e s o f f l o a d : mic : : rgmma
! dec� a t t r i b u t e s o f f l o a d : wsm5init
modu l e ph s i c s i n i t .F :
! dec� o f f l o a d t a r g e t (mic : 0) &
! dec� in (rhoair0 , rhowater , rhosnow , c l i q , cpv , a l l owed t o r ead)

c a l l wsm5init (rhoair0 , rhowater , rhosnow , c l i q , cpv , &
a l l owed t o r ead)

Offloading wsm5 to the Intel MIC card decreased the time spent in wsm5 by
a factor of 4.4. This includes the time for data transfer to and from the card.
This speedup is comparable to the speedup quoted in [11].

It does not appear that WRF has any other obvious offload opportunities, at
least on this benchmark data set. The other high profile routines are not as com-
pute intensive relative to the amount of data that would have to be transferred.
Conceivably the offload could be performed at the level of the OpenMP parallel
regions in solve em, but this would involve moving almost all the data to the
card and would require a substantial number of offload directives. Therefore, we
took advantage of the general purpose abilities of Intel MIC and used MPI to
move an entire subdomain of the model to the card. This is described in the
next section.

Experiments with WRF 137

6 MPI Implementation

WRF supports parallelism at two levels. The problem can be decomposed into
MPI ranks (processes), and then each rank can use OpenMP for parallelism
within the process. This made it easy to run part of the benchmark on the MIC
card and part of the benchmark on the host.

Normally we would have started by running a single process on the MIC card,
tuning for OpenMP and serial performance, and then adding MPI. However, the
benchmark data set is too large to fit in the 2GiB memory of the KNF card.
Measurements on the host indicate that the benchmark requires more than 3GiB
of memory.

The bulk of the WRF data goes on the main thread’s stack. Each OpenMP
thread also requires a stack. Since Intel MIC uses lots of threads, the per-thread
stack size becomes significant. After experimentation we determined that one
MPI rank would fit on the card if the problem was decomposed into four MPI
ranks. This resulted in a main thread stack size of 450MiB and per-thread stack
sizes of 7MiB for a total of 898MiB on 64 threads. Together with the code size,
other internal memory usage, and the ramdisk holding the OS and the images,
and memory usage by the kernel and other processes, this resulted in 100%
memory usage on the card.

Running 4 ranks, with three on the host and one on the card, resulted in a
simulation time speedup of 3.29x over the serial code. The remainder of this
section analyzes the various bottlenecks.

6.1 Timing Model

The OpenMP regions all have implicit barriers at the end. There are no MPI
calls in the OpenMP regions. The MPI exchanges also result in implicit syn-
chronization. Each simulation timestep consists of a number of OpenMP regions
with MPI exchanges and some serial code in between. So the timing model is
relatively simple: Tstep = Tomp+Tmpi+Tserial. Tserial includes both serial com-
putation time and serial OpenMP overhead (such as loop setup and fork-join
overhead). Tomp can be further divided into true parallel time and load imbal-
ance: Tomp = Tpar + Timb. Load imbalance occurs when one thread has less
work than another thread, and shows up as more time spent by a thread in the
implicit barrier.

6.2 Timing Measurement and Results

Vtune has two different kinds of profiling collectors. The software stack sampling
collector uses posix timers to generate periodic interrupts to each thread. It
records the stack at each sample and then provides a breakdown by callstack.
This collector was used on the host to collect the initial profile mentioned in
Section 4. The second collector uses hardware Performance Monitoring Unit
(PMU) events. The events are programmed to interrupt after a certain count
threshold is reached. This collector does not provide a callstack but it does

138 L. Meadows

provide the IP of the instruction that was executing when the interrupt occured.
The software stack sampling collector is not yet available on Intel MIC so we
used the PMU collector. We used the hardware event CPU CLK UNHALTED
which increments on every clock cycle with an overflow threshold of 2,000,000,
which results in an effective sample rate of 600 HZ. Using the IP associated with
the sample we can get a statistical profile of the application.

The OpenMP runtime library is instrumented to record the entry and exit
to each parallel region. The entry is recorded on each thread, and the exit is
recorded by the main thread after the parallel region completes (immediately
after the master thread returns from the barrier).

Both the runtime instrumentation points and the PMU samples use the high-
resolution Time Stamp Counter (TSC) available on the Intel MIC. The TSCs
are synchronized between the cores and their resolution is the clock frequency;
furthermore the instruction (RDTSC) that is used to read the TSC has very low
overhead.

Thus we have two data sources that we can accurately correlate: the begin-
ning and end of each parallel region, and the samples themselves. This gives us
estimates of Tomp and of Tmpi + Tserial as follows: when a sample for a thread
falls within a parallel region for that thread, it is labeled as Tomp; when it falls
outside a parallel region, it is labeled as Tserial.

We can further segregate the Tserial samples by looking at the shared object
(module) in which the IP for the sample resides. For example, the OpenMP
runtime and the MPI runtime are implemented as shared objects; further the
WRF code itself is a separate module (the main program wrf.exe).

We tried to measure MPI time directly using mpiP[12]. The tool worked, but
it increased execution time by more than 10%, so the results were inconclusive.
Ideally we could get Tmpi from the samples that fall into the MPI module;
however, much of the MPI time is spent doing DMA in the kernel.

The following table shows Tpar and Timb statistics per thread, and Tomp,
Tserial, and Tmpi (estimated) as percentages of the total simulation time.

Average Stddev Overall

Tpar 45.17 7.97
Timb 17.03 7.35
Tomp 64.64
Tserial 7.70
Tmpi 27.56

7 Conclusions and Future Work

This paper describes the results of running one of the standard WRF
benchmarks on Intel MIC KNF hardware using both compiler offload and het-
erogeneous MPI. A very low overhead method of determining OpenMP load im-
balance is presented. The design and development KNF kit exhibits respectable
performance.

Experiments with WRF 139

Some of the methods used in this paper provide implementation ideas for
future tools. Future areas for investigation include finer-grained characterization
of OpenMP and MPI overheads and analysis of core-level performance on specific
WRF subroutines.

References

1. Intel Corporation,
http://www.intel.com/content/www/us/en/architecture-and-technology/

many-integrated-core/intel-many-integrated-core-architecture.html

2. NCAR, et al.: The Weather Research and Forecasting Model,
http://www.wrf-model.org

3. http://busybox.net/about.html

4. The OpenMP ARB, Inc., OpenMP Application Program Interface Version 3.1,
http://www.openmp.org

5. Tian, X., et al.: Intel OpenMP C++/Fortran Compiler for Hyper-Threading Tech-
nology: Implementation and Performance. Intel Technology Journal 6(1) (February
2002)

6. Eggers, S.J., Emer, J.S., Levy, H.M., Lo, J.L., Stamm, R.L., Tullsen, D.M.: Simul-
taneous Multithreading: A Platform for Next-Generation Processors. IEEE Micro,
12–19 (October 1997)

7. Intel Corporation, Intel� Fortran Compiler XE 12.1 User and Reference Guides,
Document number 323276-121US

8. Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,
Version 2.2, http://www.mpi-forum.org

9. Argonne National Laboratories,
http://www.mcs.anl.gov/research/projects/mpich2/

10. WRF WG2, WRF V3 Parallel Benchmark Page,
http://www.mmm.ucar.edu/wrf/WG2/benchv3/

11. Wolfe, M., Toepfer, C.: PGI Insider, The PGI Accelerator Programming Model on
NVIDIA GPUS Part 3: Porting WRF (October 2009)

12. Vetter, J., Chambreau, C.: mpiP: Lightweight, Scalable MPI Profiling, Version 3.3,
June 23 (2011), http://mpip.sourceforge.net

http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.wrf-model.org
http://busybox.net/about.html
http://www.openmp.org
http://www.mpi-forum.org
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mmm.ucar.edu/wrf/WG2/benchv3/
http://mpip.sourceforge.net

Optimizing the Advanced Accelerator

Simulation Framework Synergia Using OpenMP

Hongzhang Shan1, Erich Strohmaier1, James Amundson2, and Eric G. Stern2

1 Future Technology Group
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, CA 94720

{hshan,estrohmaier}@lbl.gov
2 Fermi National Accelerator Laboratory

Batavia, IL 60510
{amundson,egstern}@fnal.gov

Abstract. Synergia is an advanced accelerator simulation framework
widely used in the accelerator community. Unfortunately, its perfor-
mance and scalability suffers significantly from very high communica-
tion requirements. In this paper, we address this issue by replacing the
flat MPI programming model with the hybrid OpenMP+MPI program-
ming model. We describe in detail how the code has been parallelized
in OpenMP and what the challenges are. The improved hybrid code can
perform over 1.7 times better than the original program for a realistic
benchmark problem.

1 Introduction

Synergia [1] is an open source framework developed by the accelerator com-
munity to simulate beam dynamics with fully three dimensional space-charge
capabilities and a higher order optics implementation. It can be used to predict
the motion of high energy particles in a beam (bunched or continuous) in 6D
phase space. The electric and magnetic fields are expressed on a 3D rectangu-
lar grid, and, at any given time, both longitudinal and transverse motions are
treated consistently. It is designed to be run efficiently on parallel computers
and the ultimate design goal is to run accelerator simulations on the largest
available leadership class computing platforms. However, due to the substan-
tial difficulties in performance optimization of tightly coupled 6D particle-in-cell
(PIC) simulations, the near-term goal in code development is to enable efficient
code execution on medium size clusters.

The most difficult obstacle to high performance or scalability is the high
communication requirement of the current flat MPI implementation. Synergia
uses the particle-in-cell (PIC) [8] method to simulate the beam dynamics. The
interactions between the particles and the fields cause a large amount of data
to be communicated globally between involved processes. Figure 1 shows the
scaling behavior of the benchmark problem used with Synergia for this study.

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 140–153, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Optimizing the Advanced Accelerator Simulation Framework Synergia 141

With increasing number of MPI processes, the communication time (MPI time)
increases steadily. When the number of processes reaches 256, over 70% of the
running time has been spent on MPI communication and the total running time
no longer declines. In this paper, we will discuss in detail why and how using
OpenMP can improve the performance of our applications. In addition, we will
also discuss the choices, problems and limitations we face during our optimizing
process.

Fig. 1. The scalability of Synergia on the Cray XE6

Using a hybrid MPI+OpenMP programming model fits naturally with the
trend in in computer architectures towards the ubiquitous use of multicore or
manycore technology in current high-performance computing (HPC) platforms.
MPI is used for inter-node communication while OpenMP is used for intra-node
computation and communication between cores on the same node. Compared
with the flat MPI programming model, using OpenMP enables the potential
for a reduction of the amount of memory needed by applications due to its
global shared address space. This advantage will become increasingly important
as the amount of memory per core will decline on future petascale or exascale
architectures.

The rest of the paper is organized as follows. First, Section 2 describes the
algorithms and communication patterns of the benchmark application for Syn-
ergia. Section 3 describes the experimental platform. The detailed optimization
process using OpenMP is discussed in Section 4. Related work is discussed in
Section 5. Finally, we summarize our conclusions and future work in Section 6.

2 Benchmark Application

Synergia is a multi component, multi language framework. It provides a straight-
forward user interface through Python classes. The benchmark application used

142 H. Shan et al.

Fig. 2. A schematic plot of the particle-field decomposition method, source from [8]

in this study is contained in the subdirectory cxx test in the file cxx example.cc.
It is build as part of the normal Synergia build process.

The code simulates the beam dynamics with full 3D space-charge effects us-
ing the particle-in-cell algorithm [8]. The charged particles interact via magnetic
and electric fields and for its simulation the code has to go through several per-
formance critical subroutines. The field is modeled by a 3D computational grid
which is partitioned uniformly among all the processes. Similarly, the charged
particles are also evenly partitioned among the processes. However, the dynamics
of moving particles does not preserve physical locality and as a consequence parti-
cles assigned to a process may be scattered across the whole physical field rapidly.
Figure 2 shows a schematic plot of the particle-field decomposition among three
processors. The major algorithmic steps performed by the benchmark are:

1. Get Local Charge Density (RHO): The charge of the particles are de-
posited onto the computational grid to obtain the charge density distribu-
tion. Due to the non-local distribution of the particles, a copy of the whole
computational grid is needed locally. (Local operation)

2. Get Global Charge Density (RHO): The local charge densities have to
be summed up by calling MPI Allreduce. (Global operation)

3. Get PHI2: Solving the Poisson equation on the global grid using the FFT-
based Green function method. The FFT is performed using the FFTW [5]
software package. The communication in the transpose step is implemented
using pairwise MPI Sendrecv. (Local + global operations)

4. Get PHI: Communicate with neighbors to get data for the boundary of the
subdomain. (Global operation)

5. Sort: Sort the local particles based on position in Z direction. This is a
function periodically invoked to improve the data locality. (Local operation)

Optimizing the Advanced Accelerator Simulation Framework Synergia 143

6. Get Local En: Calculate the local electric field by differentiating the scalar
field. All three spatial field components are calculated. (Local operation)

7. Get Global En: All processes gather the entire electric field data using
MPI Allgather. (Global operation)

8. Apply Kick: The electric field is interpolated to the position of individual
particles and the particles are advanced using the self-consistent electromag-
netic field and the external maps. (Local operation)

The code contains three major communication operations. The first is the
MPI Allreduce operation in Get Global Charge Density phase to sum up all
local charge density. The second is the MPI Sendrecv operation in Get PHI2
phase for the matrix transpose in the solution of the Poisson equation using
the FFT-based method. The third is the MPI Allgather operation in the pro-
cess of gathering the electric potential from the subdomain of each processor
after the solution of the Poisson equation. The total communication volume is
proportional to the number of computational grid points. Furthermore, the com-
munication volumes of the first and the third operations are also proportional
to the number of MPI processes. With shared data arrays some of the communi-
cation in these steps can be avoided. Therefore, using OpenMP can potentially
reduce the total communication volume and improve application performance.

3 Platforms

Our work has been performed on a Cray XE6 platform, called Hopper, which
is located at NERSC and consists of 6,384 dual-socket nodes each with 32GB
DDR3 1,333-MHz memory and 24 cores. The peak Gflops rate is 8.4 Gflops/core
and 201.6 Gflops/node. Each socket within a node contains an AMD “Magny-
Cours” processor at 2.1 GHz with 12 cores. Each Magny-Cours package is itself

Fig. 3. The node architecture of Hopper

144 H. Shan et al.

a MCM (Multi-Chip Module) containing two hex-core dies connected via hyper-
transport. (See Figure 3.) Each die has its own memory controller that is con-
nected to two 4-GB DIMMS. This means each node can effectively be viewed as
having four chips and there are large potential performance penalties for cross-
ing the NUMA domains. Each core has its own L1 and L2 caches, with 64KB
and 512KB respectively. One 6-MB L3 cache is shared between 6 cores on the
Magny-Cours processor. Every pair of nodes is connected via hypertransport to
a Cray Gemini network chip, which collectively form a 17x8x24 3-D torus.

The compilation of Synergia is through an automatic build system based on
CMake [4]. The software packages we used include the GNU gcc compiler (SUSE
Linux) 4.3.4, Python 2.6, and CMake version 2.8.2.

4 Improving the Performance Using OpenMP

In this section, we will focus on improving the benchmark performance using
OpenMP. The computational grid size is set as 64, 64, and 256 in X, Y, and Z
direction, respectively. There are 10 particles per cell and a total of about 10
Million particles. In total 256 time steps have been simulated.

4.1 Parallelizing the Loops

The first step is straightforward. Finding those loops which have no data depen-
dence across iterations and using “omp parallel for” pragma to parallelize the
work, including the loops which perform reductions at the end. Data placement
requires special attention when using OpenMP on systems with non-uniform
memory access (NUMA) node architecture. Since a first touch policy is used on
Hopper, in which the data will be allocated in the memory associated with the
first thread to access it, we intentionally touch the data immediately after mem-
ory allocation so that an OpenMP thread and the data it will work on have the
same core affinity. Otherwise, accessing data across the NUMA domains inside
a node will cause a large performance penalty.

Figure 4 displays the time breakdowns for different number of OpenMP threads
per MPI process when the same total of 256 cores is used. Based on the default
thread deployment policy, the OpenMP threads spawned by the same MPI pro-
cess are assigned to the cores continuously. Since each node has 24 cores, a total
of 11 nodes are needed and 8 cores on the last node are left unused.

The top five time-consuming phases are shown (from bottom to up). They are
for Get Global Charge Density (Global RHO), Get PHI2 (PHI2), Get Global EN
(Global EN), Get Local Charge Density (Local RHO), and Apply Kick (Apply
Kick). The remaining time is counted as Others. The bottom three phases are
totally dominated by communication and can be treated as communication time.
The other three can be roughly treated as local computation time. For the flat
MPI implementation (#OpenMP=1), the time spent on these three phases is
around 73 seconds. It drops to 43 seconds when two OpenMP threads per MPI
process are used and drops further to 37 seconds when four OpenMP threads per

Optimizing the Advanced Accelerator Simulation Framework Synergia 145

Fig. 4. The time breakdowns for different number of OpenMP threads

MPI process are used. For Global RHO and Global EN, the better performance
is mainly due to the reduced total communication volume as the number of
MPI processes goes down. For PHI2, the communication is dominated by the
matrix transpose needed by the FFT operation. The communication volume is
constant. The transpose time drops significantly when switching from the flat
MPI to using two OpenMP threads per MPI process. This is probably because
of the larger message sizes. However, further increasing #OpenMP does not
improve the performance. Instead when #OpenMP=8, the time for PHI2 goes
up, causing the total communication time to increase accordingly.

Local RHO, is responsible for depositing the local particles onto a local auxil-
iary grid and involves no MPI communication. Its time goes down slightly when
#OpenMP=2 and then goes up when higher number of OpenMP threads are
used. Due to the data dependence across iterations, this phase can not be easily
parallelized using OpenMP “parallel for” pragma. Currently only one OpenMP
thread executes during this phase. When the number of MPI processes goes
down, the number of local particles assigned to an MPI process becomes larger,
leading to higher depositing time. The time does not go up when #OpenMP=2
is due to reduced memory contention within the node. The time of Apply Kick
is mainly related to the number of particles assigned to each OpenMP thread.
When the loop is perfectly parallelized with OpenMP, the number of particles
per OpenMP thread remains constant if the total number cores stays at 256.
Therefore, the execution time of this phase should be constant. The small vari-
ation is caused by the differences in the memory performance.

Overall, the best performance is obtained when four OpenMP threads per
MPI process are used. The total running time has been reduced over from 97
to 63 seconds. In the next two sections, we will investigate the performance of
phase PHI2 and phase Local RHO.

146 H. Shan et al.

4.2 Using OpenMP for FFTW

FFTW [5] is used in Synergia to perform the FFT to solve the Poisson equations
in phaseGet PHI2. The computational domain used for FFT is a doubled domain
padded on the boundary. The actual size is 128, 128, and 512 for X, Y, and Z
directions, respectively. By default, only MPI processes are involved. We changed
the initialization process for FFTW3 and enabled OpenMP so that all OpenMP
threads can participate in the FFT process. The results using only MPI processes
(the case in above section) and using all OpenMP threads are shown in Figure 5.
Using more than one OpenMP threads for FFTW helps the performance. But
the improvement is only minor for the 2 and 4 OpenMP thread cases; it only
becomes significant when 8 OpenMP threads are used. In the latter case, more
than 20% of FFTW time has been saved.

To understand whether the performance could be improved further, we isolate
the code related to FFTW from Synergia and develop an independent micro
benchmark based on it. We find that the micro benchmark results match those
of Synergia very well, indicating further improvement dependent solely on future
optimizations of FFTW or the MPI implementation. The best result for this
phase is obtained with #OpenMP=2.

4.3 Parallelizing Deposit

During the stage of computing the local charge density, the particles are de-
posited onto a computational grid to obtain the charge density distribution.
Due to the spatial distribution of the particles, the grid size should cover the
whole field instead of only the subdomain assigned to a process. As we mentioned
earlier, due to the data dependence, this section can not be easily parallelized
using “pragma omp parallel for”.

Naive Approach. The naive approach is to allocate an auxiliary copy of the
global grid for each OpenMP thread so that each thread can directly deposits
its particles onto it. The particles assigned to an MPI process will be evenly
partitioned among all the OpenMP threads spawned by the process. After the
deposition, the charge density stored on the auxiliary grid will be summed up by
a reduction operation. There are a lot of algorithms to perform this reduction
operation. In this study, we examined three implementations: Critical, Slicing,
and BinaryTree.

– Critical. Critical depends on “pragma omp critical” statement to perform
the reduction. As soon as an OpenMP thread finishes its particle deposition,
it starts to compete for the critical section to add its particle contributions
to the final field. This serializes access to the final field array.

– Slicing. In Slicing, each OpenMP thread is responsible for a fixed slice of the
final field and fetches the data from all other OpenMP threads to perform
the reduction.

– BinaryTree. The reduction among the OpenMP threads will be carried out
according to a binary tree structure from bottom to top. At the bottom, the

Optimizing the Advanced Accelerator Simulation Framework Synergia 147

Fig. 5. The times for FFTW when one OpenMP thread and more threads are used

reduction will be done in pairs. Only one thread of a pair will be responsible
to perform this reduction. In the next step, the participating number of
OpenMP threads will be reduced to half, only including those threads which
performed the reduction operation in the last step. This process will be
repeated �log2 n� times (n is the number of OpenMP threads spawned by
the same MPI process).

The timing results for phase Get Local Charge Density for different algorithms
are shown in Figure 6. The Base times are those measured in Section 4.1. None of
the new algorithms performs better than the Base. The advantage of using more
OpenMP threads is overshadowed by the overhead to access extra memory and
perform the reduction operation. We also tried to use the reduction operation
supported by OpenMP itself. However, we did not see better performance results
either.

Lock Approach. Another strategy is to use omp locks instead of allocating
extra amount of memory. The whole field domain will be partitioned along the
Z direction among all the OpenMP threads spawned by the same MPI process.
Each OpenMP thread will be only responsible to compute the charge density
for its assigned subdomain. All the particles assigned to an MPI process, no
matter which OpenMP thread they are assigned to, as long as they fall into
the same subdomain, will be deposited onto the field by the same thread which
owns the subdomain. However, the particles near subdomain boundaries will
not only affect the charge density of its own subdomain. They will also affect
the charge density of neighboring subdomains. Therefore, for boundary posi-
tions omp locks are needed to assure result correctness. Different locks will be
allocated for different positions to maximize concurrency. The number of locks
allocated is proportional to the number of OpenMP threads.

148 H. Shan et al.

Fig. 6. The times for computing local charge density for different algorithms

Fig. 7. The times for computing local charge density using omp lock

The remaining question is how each thread will find those particles for which
it should be responsible. The OpenMP thread can not afford going through all
the particles to find the ones within their subdomain. One possible solution is
to allow the MPI process to sort the particles first based on their positions in Z
direction and then partition the particles among the OpenMP threads. However,
the sorting turns out to be very expensive. Even worse, the time goes up when
more OpenMP threads per MPI process are used. Therefore, sorting can only
be done periodically to improve data locality.

Optimizing the Advanced Accelerator Simulation Framework Synergia 149

Fig. 8. The time breakdowns before and after optimization

Instead, we partition the particles first among the OpenMP threads and allow
each OpenMP thread to perform a sort on its own particles. We add a function
called subsort in the Synergia source code for this purpose. The results is that all
the particles assigned to an MPI process are now divided into n (n = #OpenMP)
sorted sections. For each section, an OpenMP thread can use binary search to
find the first particle it should work on and move left and right to get other
particles as the particles it will work on should be continuous. This process will
be repeated for every section.

Figure 7 shows the new results using omp lock. When one OpenMP thread
is used, the time becomes slightly higher due to the extra sorting work. When
two threads are used, it is similar to the Base case. However, when four or eight
threads are used, the performance becomes better. Over 30% of the time has
been saved in the eight-thread case.

The final breakdown of execution times is shown in Figure 8 when both opti-
mizations for FFTW and charge deposition have been applied (labeled as OPT
and comparing with the Base). The best performance is obtained when four
OpenMP threads per MPI process are used. Compared with the flat MPI re-
sults, the performance become more than 1.7 times better when 256 cores are
used. Using a hybrid OpenMP+MPI programming model has significantly im-
proved the performance. Another advantage of using OpenMP is the memory
usage. Substantial amount of memory could be saved due to the shared address
space supported by OpenMP. Table 1 shows the memory footprints when differ-
ent number of OpenMP threads are used. As the growth in memory capacity is

150 H. Shan et al.

not keeping track with the growth in the number of cores on future architectures,
memory considerations are becoming much more important.

Table 1. The memory footprints for different MPI x OpenMP configurations (GB)

#MPI x #OpenMP 256x1 128x2 64x4 32x8

Memory (GB) 12.06 6.50 3.80 2.23

4.4 Performance Discussion

In Section 3, we mentioned that each node on Hopper can be viewed as having
four chips and each chip has six cores. The default computational grid sizes (used
above) are 64, 64, and 256 in X, Y, and Z direction, respectively. Currently,
Synergia can only partition the workloads along Z direction. The size 256 in Z
direction prevents us from testing the performance for six or twelve OpenMP
threads per MPI process. In this section, we use a slightly different domain size
to measure the OpenMP effect for cases where the number of OpenMP threads is
a multiple of 6. Figure 9 shows the performance for different number of OpenMP
threads for a grid size 64x64x2641.

The shortest running time is obtained when six OpenMP threads per MPI
process are used. For cases with more than six OpenMP threads, the Local time
(the upper three components) increase substantially and rapidly as more and
more data need to be accessed across chip boundaries. Surprisingly, the Comm
time also increases when more than six OpenMP threads are used. This is mainly
due to the matrix transpose to perform the global FFT.

Since the main performance bottleneck of Synergia is the global communica-
tion and using fewer MPI processes can reduce the total amount of communicated
data and improve the performance, one interesting question is how the perfor-
mance changes with the number of OpenMP threads for a constant number of
MPI processes running on a fixed configuration of cores. In Figure 9, we show
the running timing results using 44 MPI processes (labeled as 44x1). We still
request 264 cores but use only 4 cores (one on each NUMA chip) on a node.
This is the identical arrangement of MPI thread as on the case 44x6. Compar-
ing the performance results for the cases 44x1 and 44x6, the global Comm time

1 Due to a recent system software upgrade during the preparation of the final version of
this paper, the MPI Allreduce performance deteriorated under the GNU compiling
environment. This is caused by a potential performance bug in the new MPI im-
plementation. We isolated the MPI Allreduce functions used and compiled it with
the alternate Cray compiler. The performance results of this isolated benchmark
match our earlier results with GNU compiler very well. In order to be consistent
with our earlier results, we replace in this figure the time spent in MPI Allreduce in
Synergia with those measured independently using the Cray compiler. The time for
all other code phases is based on the GNU compiler to ensure comparability with
results elsewhere in this paper.

Optimizing the Advanced Accelerator Simulation Framework Synergia 151

Fig. 9. The time breakdowns for different number of OpenMP threads

is similar, but Local time is substantially higher. The additional parallelization
with OpenMP does not materially affect the MPI communication time but is
(obviously) needed to help lowering the Local computation time.

As we noted from both Figure 4 and Figure 8, using more than six OpenMP
threads per MPI process will substantially increase the local computation time
compared with cases using fewer OpenMP threads per MPI processes. The cur-
rent trend in architectures is to use more and more cores on a node. The number
of cores will reach several hundreds or even a thousand within a few years. Us-
ing OpenMP to scale complex applications like Synergia to a full node scale is
extremely challenging. Some tools, such as [2,10], need to be developed to au-
tomatically optimize data placement and thread affinity. If not impossible, it
will be very challenging for developers to perform such kind of task for complex
applications as the number of OpenMP regions and related number of variables
become very large. To improve the data locality for the NUMA architecture in-
side a node, some optimization techniques developed in the last decade for MPI
may need to be applied to OpenMP also.

To further improve the scalability of Synergia, we can use more particles per
cell. Using more particles will only increase the local computation time without
affecting global communication. Currently, we use 10 particles per cell and a
total of about 10 Million particles.

5 Related Work

Using OpenMP or hybrid MPI+OpenMP to improve the performance has been
studied by many researchers. To name a few, Nakajima [7] described how to use

152 H. Shan et al.

a three-level hybrid programming model (vectorization, OpenMP, and MPI) to
program efficiently on Earth Simulator. Shan et al. [9] discussed the advantage of
using hybrid MPI+OpenMP programming model for NAS parallel applications.
Kaushik et al. [6] investigated the performance of implicit PDE simulations for
hybrid MPI+OpenMP programming model on a multicore architecture. Brunst
and Mohr [3] introduced a tool to analyze the performance for hybrid OpenMP
and MPI programs. Recently, some tools have been developed to improve the
OpenMP performance for NUMA architectures [2,10]. The main difference to
our work is that we focus on a specific application Synergia and on a new ar-
chitecture, the Cray XE6. But the technologies for our optimization can be
generalized and applied to other applications.

6 Summary and Conclusions

In this paper, we describe in detail how to use OpenMP to improve the per-
formance of the accelerator simulation code Synergia. Using up to six OpenMP
threads per MPI process, the performance can be improved significantly. In the
best case, the performance has increase over 1.7 times for our test-case using
256 cores. However, using more than six OpenMP threads per MPI process does
not improve the performance further. Performance improvements stall as mem-
ory contention becomes more severe. To address this challenge, we are currently
working on a tool that can optimize the data placement and dynamically sched-
ule the OpenMP threads inside a node to improve data locality. We are also
planning on changing the workload partition method for Synergia. Currently,
it only partitions the grid along Z direction, which limits the scalability of the
code.

References

1. Amundson, J., Spentzouris, P., Qiang, J., Ryne, R.: Synergia: An accelerator mod-
eling tool with 3-d space charge. J. Comp. Phys. 211, 229 (2006)

2. Broquedis, F., Furmento, N., Goglin, B., Namyst, R., Wacrenier, P.-A.: Dynamic
Task and Data Placement over NUMA Architectures: An OpenMP Runtime Per-
spective. In: Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009.
LNCS, vol. 5568, pp. 79–92. Springer, Heidelberg (2009)

3. Brunst, H., Mohr, B.: Performance Analysis of Large-Scale OpenMP and Hybrid
MPI/OpenMP Applications with Vampir NG. In: Mueller, M.S., Chapman, B.M.,
de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005 and IWOMP 2006.
LNCS, vol. 4315, pp. 5–14. Springer, Heidelberg (2008)

4. CMAKE: the cross-platform, open-source build system, http://www.cmake.org
5. Frigo, M., Johnsoni, S.G.: The design and implementation of fftw3. Proceedings of

the IEEE 93(2), 216–231 (2005)
6. Kaushik, D., Keyes, D., Balay, S., Smith, B.: Hybrid Programming Model for Im-

plicit PDE Simulations on Multicore Architectures. In: Chapman, B.M., Gropp,
W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011. LNCS, vol. 6665, pp. 12–21.
Springer, Heidelberg (2011)

http://www.cmake.org

Optimizing the Advanced Accelerator Simulation Framework Synergia 153

7. Nakajima, K.: Three-level hybrid vs. flat MPI on the Earth Simulator: parallel
iterative solvers for finite-element method. Applied Numerical Mathematics 54(2)
(July 2005)

8. Qiang, J., Li, X.: Particle-field decomposition and domain decomposition in par-
allel particle-in-cell beam dynamics simulation. Computer Physics Communica-
tions 181, 2024 (2010)

9. Shan, H., Blagojevic, F., Min, S.J., Hargrove, P., Jin, H., Fuerlinger, K., Koniges,
A., Wright, N.J.: A programming model performance study using the nas parallel
benchmarks. Scientific Programming-Exploring Languages for Expressing Medium
to Massive On-Chip Parallelism 18(3-4) (August 2010)

10. Su, C., Li, D., Nikolopoulos, D., Grove, M., Cameron, K., de Supinski, B.: Critical
path-based thread placement for NUMA systems. In: 2nd International Workshop
on Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (2011)

Using Compiler Directives for Accelerating CFD
Applications on GPUs

Haoqiang Jin, Mark Kellogg, and Piyush Mehrotra

NAS Division, NASA Ames Research Center, Moffett Field, CA 94035-1000 USA
{haoqiang.jin,mark.kellogg,piyush.mehrotra}@nasa.gov

Abstract. As the current trend of parallel systems is towards a cluster of multi-
core nodes enhanced with accelerators, software development for such systems
has become a major challenge. Both low-level and high-level programming mod-
els have been developed to address complex hierarchical structures at different
hardware levels and to ease the programming effort. However, achieving the de-
sired performance goal is still not a simple task. In this study, we describe our ex-
perience with using the accelerator directives developed by the Portland Group to
port a computational fluid dynamics (CFD) application benchmark to a general-
purpose GPU platform. Our work focuses on the usability of this approach and
examines the programming effort and achieved performance on two Nvidia GPU-
based systems. The study shows very promising results in terms of programma-
bility as well as performance when compared to other approaches such as the
CUDA programming model.

Keywords: GPU Programming, Accelerator Directives, Performance
Evaluation.

1 Introduction

The current trend of parallel systems for exascale computing is towards a cluster of
multi-core nodes enhanced with accelerators such as general-purpose graphics process-
ing units (GPGPUs). Thirty-nine systems in the most recent Top 500 list [14] use an
accelerator-based hybrid architecture. They take advantage of the ability of accelera-
tors to execute large numbers of threads while maintaining high levels of power effi-
ciency. However, software development for such systems has become a major challenge.
The popular programming models for GPGPU, CUDA [8] and OpenCL [6], support
high performance computing at different hardware levels but often require a substan-
tial rewrite of users’ codes. Several compiler directive-based approaches, notably Port-
land Group (PGI)’s Accelerator model [11], CAPS’ HMPP language [3], and the recent
OpenACC standard [9], have been developed as a way to ease the programming effort.
Extensions for the OpenMP model have also been proposed to support accelerators [2].
However, achieving the desired performance goal is still not a simple task.

In this study, we describe our experience using the PGI’s accelerator (ACC) direc-
tives to port a computational fluid dynamics (CFD) application SP benchmark from the
NAS Parallel Benchmarks (NPBs) [1] to GPGPU-based platforms. Our work focuses on
the usability of this ACC directive-based approach and examines the programming ef-
fort and achieved performance in comparison with the CUDA approach on two Nvidia

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 154–168, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Using Compiler Directives for Accelerating CFD Applications on GPUs 155

GPU-based systems. There are quite a few previous studies on porting CFD applica-
tions to accelerators (for example, Overflow [4], NPB-LU [10], NPB-OpenCL [13]).
This study is the first attempt to utilize the directive-based approach for the selected
benchmark and to understand the performance impact of different implementations of
a single benchmark.

The rest of the paper is organized as follows. We give a brief overview of GPU
programming in Section 2. Section 3 describes the different implementations of the SP
benchmark. In Section 4 we first present performance results from two small kernels for
matrix transposition and matrix multiplication, and then examine performance impact
of different approaches in implementing the SP benchmark. We conclude our study in
Section 5 and also elaborate on future work.

2 GPU Programming

A GPU device consists of a set of multiprocessors, each containing multiple streaming
processing cores. Logically, the device is organized as an array of thread blocks parti-
tioned in a multidimensional manner. Execution of thread blocks is carried out by the
multiprocessors independently. Each thread block is executed by the cores on a specific
multiprocessor. Thread synchronization is only possible within a thread block. A small
fast memory, called “shared memory,” is accessible to threads in a given multiprocessor.
All threads can also access a global memory that is large, but with high latency. One
can improve bandwidth to global memory by coalescing accesses. For comprehensive
information on GPU computing, a good reference is [7].

The CUDA (Compute Unified Device Architecture) approach was developed by
Nvidia [8] as both a hardware and a software solution for supporting general-purpose
GPUs. The CUDA programming model uses a set of extensions to Fortran and C to
describe how codes or “kernel” functions can be “offloaded” to the device for execution
and to specify where data reside. The user has to define an explicit layout of the threads
on the GPU (number of blocks, number of threads) for each kernel function.

The PGI’s Accelerator model [11] is a high-level approach using compiler directives
for GPU programming. The key to this approach is that the user specifies high-level
constructs and the compiler translates them into appropriate low-level calls. This pre-
serves the original code structure and simplifies the code development substantially. In
this model, the “acc region” construct defines the code segment to be executed on
the device. Additional clauses can be used to specify data transfers between the host
and the device. The “acc do” loop directive can be used to map loop nests to thread
blocks on the device. The user can fine-tune the mapping with loop scheduling clauses,
but for many cases, the compiler can automatically place the loop directives as well
as data transfer clauses for the ACC region. This is a descriptive approach used by the
PGI model, as opposite to prescriptive approaches like OpenMP where the compiler
interprets user-inserted high-level instructions and translates them into proper low-level
codes without further analysis. For performance consideration, several directives are
provided for allocating device-resident data within a scope (data region) or throughout
the program (global data). One can use the “acc mirror” directive to create dupli-
cated copies of a variable on both device and host, and the “acc update” directive to
synchronize the copies.

156 H. Jin, M. Kellogg, and P. Mehrotra

Sample codes for a matrix transposition implemented using different approaches are
illustrated in Fig. 1. The ACC directive version (b) differs from the serial version (a)
only by the additional “acc region” and “acc do” directives. The CUDA version,
shown in (c) for kernel code and (d) for host code, in contrast is much more complex.

a) Serial (CPU) code
1 real(8)::a(m,n),b(n,m)

2 do i = 1,m

3 do j = 1,n

4 b(j,i) = a(i,j)

5 end do

6 end do

b) ACC directive code
1 real(8)::a(m,n),b(n,m)

2 !$acc region

3 !$acc do

4 do i = 1,m

5 !$acc do

6 do j = 1,n

7 b(j,i) = a(i,j)

8 end do

9 end do

10 !$acc end region

c) CUDA kernel
1 attributes(global) subroutine &

mt_kernel(m,n,a,b)

2 real(8) :: a(m,n),b(n,m)

3 integer,parameter :: bsize = 16

4 j = (blockidx%x-1)*bsize + threadidx%x

5 i = (blockidx%y-1)*bsize + threadidx%y

6 b(j,i) = a(i,j)

7 end subroutine mt_kernel

d) CUDA host code
1 real(8),device,allocatable,dimension(:,:) &

:: a_dv,b_dv

2 integer,parameter :: bsize = 16

3 type(dim3) :: dgrid,dblock

4 allocate(a_dv(m,n),b_dv(n,m))

5 a_dv = a !copy data to device

6 dblock = dim3(bsize,bsize,1)

7 dgrid = dim3(m/bsize,n/bsize,1)

8 call mt_kernel<<<dgrid,dblock>>> &

(m,n,a_dv,b_dv)

9 b = b_dv !copy data back to host

10 deallocate(a_dv, b_dv)

Fig. 1. Sample codes for matrix transposition: a) serial version, b) ACC directive version, and
c,d) CUDA kernel and host codes

When developing GPU codes, a few optimization techniques should be kept in mind:
use lots of parallelism to hide memory latency, maximize memory bandwidth via mem-
ory coalescing, and cache frequently accessed data in fast memory (such as shared
memory). The last method is analogous to cache blocking, a common optimization
technique for the CPU. Figure 2a shows the CUDA kernel code using shared memory
(variable asub) for matrix transposition where a call to syncthreads is used to syn-
chronize the update of asub in a thread block. Figure 2b shows the corresponding cache
blocked code for the CPU.

3 Benchmark Implementations

This section describes several approaches of using the PGI Accelerator directives to
implement the SP application benchmark. For comparison, we also include a CUDA
implementation of this benchmark.

Using Compiler Directives for Accelerating CFD Applications on GPUs 157

a) CUDA kernel, cached
1 attributes(global) subroutine mt_kernel(m,n,a,b)

2 real(8) :: a(m,n),b(n,m)

3 integer,parameter :: bsize = 16

4 real(8),shared :: asub(bsize+1,bsize)

5 ix = threadidx%x; iy = threadidx%y

6 i = (blockidx%x-1)*bsize + ix

7 j = (blockidx%y-1)*bsize + iy

8 asub(ix,iy) = a(i,j) ! cache sub block

9 call syncthreads()

10 i = (blockidx%x-1)*bsize + iy

11 j = (blockidx%y-1)*bsize + ix

12 b(j,i) = asub(iy,ix) ! copy data back

13 end subroutine mt_kernel

b) Host CPU code, blocked
1 integer,parameter :: bsize=64

2 real(8) :: asub(bsize,bsize),bsub(bsize,bsize)

3 do ii = 1,m,bsize

4 do jj = 1,n,bsize

5 asub = a(ii:ii+bsize-1,jj:jj+bsize-1)

6 do i = 1,bsize

7 do j = 1,bsize

8 bsub(j,i) = asub(i,j)

9 end do

10 end do

11 b(jj:jj+bsize-1,ii:ii+bsize-1) = bsub

12 end do

13 end do

Fig. 2. Sample codes for matrix transposition: a) CUDA kernel with data cached via shared mem-
ory, b) host CPU code with cache blocking

SP is one of the application benchmarks in the NAS Parallel Benchmarks (NPBs)
suite [1]. The benchmark mimics the computation, memory access and communication
patterns found in many NASA computational fluid dynamics (CFD) codes. It has a
larger surface-to-volume ratio and less computation per grid point compared to other
application benchmarks in the NPBs. Thus, it should give us a bottom line on how well
CFD applications might perform on a GPU platform.

The core of SP is a scalar penta-diagonal solver for a 3-dimensional (3D) grid with
five elements at each grid point. The flow of the benchmark is illustrated in Fig. 3. The
solver alternates an implicit scheme in each of the three dimensions (x/y/z_solve)
iteratively for a designed number of time steps. The implicit scheme contains data flow
dependences in the sweeping dimension, and is fully independent in the other two di-
mensions. Computation in compute_rhs (for the right-hand side calculation) and other
smaller routines is explicit and can be performed concurrently in 3D. The benchmark
reports the timing of the iteration loop without initialization and final verification.

158 H. Jin, M. Kellogg, and P. Mehrotra

3.1 Baseline Code

The starting point for our study is the serial version of SP written in Fortran from the

Initialize

compute_rhs
txinvr

x_solve
ninvr

y_solve
pinvr

z_solve
tzetar

add

verify

time iter

Fig. 3. Schematic diagram of the
SP benchmark control flow

recent NPB 3.3.1 release. This original version em-
ployed several 4-dimensional (4D) arrays for solution
and working space in a (m,i,j,k) form that was de-
signed for better CPU cache performance [5]. In all of
the 4D arrays, m is always of size 5, but i, j, and k
vary according to the problem size and are always much
larger than m. Fortran arrays follow column-major or-
der, which means the leftmost index changes most
rapidly in memory. For programming on GPU architec-
tures, such a data layout is not ideal and memory access
patterns in many cases may not be stride-1, which re-
duces opportunities for memory coalescing. This could
lead to a serious performance bottleneck. To mitigate
the issue we applied a couple of transformations to the
original code. The first change involves array dimension
swapping from (m,i,j,k) to (i,j,k,m) so that mem-
ory accesses can coalesce along the inner dimension of
the arrays. The second change includes the use of For-
tran allocatable arrays in a module for those working
arrays specified in common blocks. This change is nec-
essary to use the PGI “acc mirror” directive (see next section). The modified code is
our baseline for developing different implementations for the GPU.

3.2 Implementations Using ACC Directives

Applying ACC directives to the serial code to get an initial port for the GPU is straight-
forward. However, achieving the desired performance on the GPU requires careful con-
sideration of several issues. It is important to minimize the data transfer between host
and device, maximize parallelism across all levels, and use fast memory and stride-1
memory accesses for computation. We relied on feedback from the PGI compiler at
compile time and profile information at run time for the development and optimization
process.

In the SP implementation, we elected to have the GPU device perform the full com-
putation of the time iteration loop with only the initialization and verification being
executed on the host. Using device-resident arrays reduces data transfer between host
and device. In fact, in our final version, only the initial data from initialization and the
solution data for verification are transferred between the host and the device (via the
“acc update” construct). The benchmark time includes the time spent on data trans-
fer. Although overlapping host and device computations can hide data transfer latency,
this technique was not tested in this study.

When developing codes using the ACC directives, we wanted to examine the perfor-
mance impact from different approaches. Here we summarize five versions produced
at different stages of the code development, varying in complexity from very simple to
substantially optimized.

Using Compiler Directives for Accelerating CFD Applications on GPUs 159

simple – This initial version applies the “acc region” directive to the outermost par-
allel loops in all routines. The compiler identified many parallel loops and auto-
matically generated “acc do parallel” and “acc do vector” constructs with
the proper width factor at different loop nesting levels. Only a few loops required
manual insertion of the “acc do parallel” directive with necessary data scop-
ing clauses, mainly in the three solve routines. The compiler was able to generate
“copyin” and “copyout” clauses automatically for global data transferred in and
out of ACC regions.

mlocal – The second version pays more attention to the location of data. Specifically,
the “acc mirror” directive was used for three global arrays (u,rhs,forcing) to
indicate the “mirroring” of data on both the host and the device. Other working ar-
rays were declared with “acc local” for device-only allocation. As a
result, the compiler suppressed many copyin and copyout clauses for the mir-
rored arrays, but data copy clauses were still added for device-local variables. We
used the “acc update device(u,forcing)” and “acc update host(u)” di-
rectives explicitly for copying the initialization data to the device before the time
iteration loop and the solution data to the host after the iteration loop.

mirror – The third version uses “acc mirror” for all working arrays previously de-
clared as local. Use of the directive eliminates all the unnecessary data transfers
between ACC regions. As in the mlocal version, the “acc update” directive is
used for transferring global data between the host and the device. The only draw-
back is that the host has to keep unused copies of the working arrays.
Another approach is to use a single “acc data region” to contain all ACC re-
gions at a higher level, and then use the “acc device present” directive to list
all global variables that do not need to be copied. But for the current code where
ACC regions are spread across many routines, we decided to use the declarative
approach with the “acc mirror” directive for simplicity.

dim-prom – The next version includes dimension promotion for the working arrays
(lhs,lhsp,lhsm) from 3D to 4D in routines x/y/z_solve as

lhs(i,j,m) -> lhs(i,j,k,m).

This increases the ability to achieve stride-1 memory access and allows exploitation
of parallelism in multiple dimensions.

data-trans – The last version applies data transposition to the rhs residual array in rou-
tine x_solve from rhs(i,j,k,m) to rhsx(j,i,k,m). The computation is then
applied to the new array and the results are copied back to the original array at the
end. Because of data dependence in the i dimension, we can only parallelize loops
associated with the j and k dimensions. This transformation allows stride-1 mem-
ory access in the j dimension and improves GPU memory bandwidth utilization
via memory coalescing. A similar transposition was also applied to the lhs, lhsp,
and lhsm arrays.

3.3 CUDA Implementations

For comparison purposes, we developed CUDA implementations of the SP benchmark
based on the CUDA Fortran programming model [12]. The development consisted of
two phases.

160 H. Jin, M. Kellogg, and P. Mehrotra

Phase I represented a first attempt at CUDA parallelization based on the original SP
code. All the program semantics and data structures in the code were transferred to the
CUDA version with as little alteration as possible. The main task involved mapping loop
nests to CUDA kernels with proper thread blocks. Converting multidimensional array
indices to use thread block id’s and thread id’s was a tedious process. As mentioned in
Section 3.1, because of the small size of m in the 4D arrays, proper memory coalescing
was awkward and difficult to achieve. Additionally, and more importantly, the original
layout of the arrays resulted in the need for large amounts of shared memory on the
GPU to facilitate coalesced accesses to the arrays in GPU global memory.

The use of shared memory became a problem because it limited thread occupancy,
i.e., the efficiency of multiprocessor usage. On the Nvidia Tesla M2090, a much smaller
amount of shared memory (48 KB per multiprocessor) is available compared to global
memory. Many of the CUDA kernels required over 12 KB of shared memory per thread
block. This severely limited the number of kernel blocks that could be simultaneously
executed, and therefore the overall thread occupancy. This limitation was ultimately a
serious impediment to the performance gains achieved in Phase I.

In Phase II, we addressed the issue of excessive shared memory usage by realizing
that memory coalescing can be easily achieved if we use a modified array structure via
the transformation:

rhs(m,i,j,k) -> rhs(i,j,k,m).

This essentially followed the same code modification for the baseline version described
in Section 3.1. The advantage of this transformation was that accesses to the trans-
formed arrays in GPU global memory can be easily coalesced since CUDA threads
map naturally to unique values of i. So we achieved memory coalescing without the us-
age of shared memory, which resulted in a significant performance increase in Phase II
over Phase I. Detailed discussion of the CUDA implementations of SP will be presented
in a separate publication. The rest of the paper focuses on this final CUDA version only.

The Phase II CUDA code performs several data transpositions, which require addi-
tional working arrays. As a result, the overall memory usage increases. Table 1 summa-
rizes the memory requirements of different SP versions for various problem sizes. The
first three ACC directive-based versions are not listed in the table since they have mem-
ory requirements similar to the baseline version. Versions employing data transpositions
require significantly more memory.

Table 1. Memory usage (MB) of different versions of the SP benchmark

Problem Size baseline dim-prom data-trans cuda
CLASS A (64×64×64) 48.1 80.0 90.9 129.8
CLASS B (102×102×102) 191.7 320.3 363.6 519.4
CLASS C (162×162×162) 760.7 1274.0 1446.2 2066.0
CLASS D (408×408×408) 12032.1 20202.2 22932.2 32760.3

4 Performance Study

Our performance study was conducted on two types of GPU-enabled compute nodes
installed at NASA Ames Research Center. Table 2 summarizes the main characteristics

Using Compiler Directives for Accelerating CFD Applications on GPUs 161

of these nodes. The Pleiades-GPU node is part of the Pleiades supercomputer for high
performance computing. Each node contains two Intel six-core Westmere processors
and one Nvidia Tesla M2090 GPU. The Tesla M2090 is the best performing Fermi-
based T20-series GPGPU, capable of 665 Gflops in double precision and 177 GB/s
memory bandwidth (ECC off). The hyperwall-GPU node is part of a visualization clus-
ter. Each node contains two AMD quad-core Opteron processors and two Nvidia GTX
480 GPUs. The GTX 480 is based on the same Fermi architecture as the Tesla M2090
except that it has a smaller non-ECC memory. The 64 KB configurable memory on both
GPUs can be configured as either 16 KB of shared memory with 48 KB of L1 cache,
or 48 KB of shared memory with 16 KB of L1 cache. We used version 11 of the PGI
compiler for compiling both accelerator directive codes and CUDA-Fortran codes. The
compiler sets aside 16K of shared memory space for accelerator directive codes.

Table 2. Summary of machine characteristics

Machine Name Pleiades-GPU hyperwall-GPU
CPU Type Intel Xeon X5670 AMD Opteron 2354
CPU Speed 2930 MHz 2200 MHz
L3 Cache 12 MB 2 MB
#Cores / Socket 6 4
#Cores / Node 12 8
Node Memory 48 GB 16 GB
GPU Type Tesla M2090 GeForce GTX 480
Clock Rate 1301 MHz 1451 MHz
Configurable Memory 64 KB 64 KB
Global Memory 5375 MB 1535 MB
ECC Enabled N/A
#Multiprocessors 16 15
#CUDA Cores 512 480
Compute Capability 2.0 2.0
NVRM Version 275.09 290.10
OS SUSE Linux 11.1 CentOS Linux 6.0
Compiler PGI 11.9 PGI 11.10

In the remainder of this section, we first present results from two small kernels for
matrix transposition and matrix multiplication. We then examine the performance im-
pact of different approaches in parallelizing the SP benchmark on the GPUs and com-
pare that with a single core of the hosts.

4.1 Matrix Transposition

Matrix transposition is a common operation in many applications and appears in several
implementations of the SP code. Study of this kernel can give us some insights into the
performance characteristics of SP. Figure 4 compares both GPU and CPU performance
of matrix transposition implemented in several ways, three of which (host simple, acc
directive, and cuda simple) were shown in Fig. 1. The cuda cached version uses shared

162 H. Jin, M. Kellogg, and P. Mehrotra

0.125

0.25

0.5

1

2

4

8

16

32

64

128

G
B

/s

256 512 1024 2048 4096 8192

Problem Size

 cuda kernel, simple
 cuda kernel, cached

 kernel, acc directive
 gpu+data copy

 host, simple
 host, blocked

a) Pleiades-GPU

256 512 1024 2048 4096 8192

Problem Size

b) hyperwall-GPU

Fig. 4. Performance comparison of matrix transposition (64-bit words) on both GPUs and CPUs

memory to improve memory coalescing, while the host blocked version applies cache
blocking on the CPU, as shown in Fig. 2. The GB/s rates for GPU kernels were com-
puted from execution times spent on the device, excluding data transfers from/to the
host. The timing profiles were obtained with the PGI pgcollect tool.

As the problem size increases, the CUDA-based codes show a gradual increase in
performance and the cached version gains an additional benefit from using shared mem-
ory. It is interesting to note that the ACC directive version performed very well for all
problem sizes and even outperformed the CUDA versions for smaller problem sizes on
the Tesla M2090 used in Pleiades-GPU. The CUDA version performed slightly better
(10-15%) on the GTX 480 compared to the Tesla M2090, which can be attributed to
the use of ECC memory on the Tesla processor. When comparing GPU with CPU, we
observe that the performance difference is about 16X on Pleiades-GPU and 32X on
hyperwall-GPU, partly due to a weaker CPU on the latter system. However, when con-
sidering communication between device and host, the GPU versions are dominated by
data transfers and the net results, labeled “gpu+data copy” for one case in Fig. 4, be-
come similar to or even worse than the cache-blocked host version. The simple-minded
host version suffers from poor cache utilization at larger problem sizes.

4.2 Matrix Multiplication

Matrix multiplication can demonstrate the upper bound of performance that is achiev-
able on GPUs. Figure 5 compares the performance of this kernel code implemented
in the same five ways as outlined for matrix transposition in the previous section. The
performance of the GPU versions includes the data transfer time between the host and
the device. As shown in the figure, the performance of the properly cache-blocked host
code is invariant with respect to the problem size, while the unblocked simple ver-
sion suffers from poor cache performance. On the other hand, the GPU versions (both
CUDA and ACC directive) show increased performance as problem size increases. The
highest Gflop/s rates achieved from the CUDA, ACC directive, and host versions are

Using Compiler Directives for Accelerating CFD Applications on GPUs 163

1

2

4

8

16

32

64

128

G
fl

o
p

/s

64 128 256 512 1024 2048 4096 8192

Problem Size

 cuda, simple
 cuda, cached

 acc directive host, simple
 host, blocked

a) Pleiades-GPU

64 128 256 512 1024 2048 4096 8192

Problem Size

b) hyperwall-GPU

Fig. 5. Performance comparison of matrix multiplication (64-bit words) on both GPUs and CPUs

117.8, 105.3, and 4.6, respectively. Although the CUDA cached version with shared
memory has shown the best performance, the ACC directive version has similar perfor-
mance but with much less programming effort, which indicates the great potential of
this programming model.

4.3 SP Benchmark

The study of the SP benchmark focused on the performance impact of the programming
efforts described in Section 3. We conducted a set of runs for the CLASS A problem
size and collected routine-level timing data for each of the approaches. We also ob-
tained time spent by GPU kernels using the pgcollect tool. The results on the two
GPU systems are summarized in Table 3 together with total benchmark time, GPU ker-
nel time, and GPU communication time between the host and the device. Performance
improvements from different approaches using the baseline version of SP as a reference
are shown in Fig. 6 for both systems.

Several observations can be made from these results. Compared to the original
version, the baseline host version is about 20% slower on the older AMD Opteron
processor, but performs comparably on the newer Intel Westmere processor where vec-
torization helps. Faster CPU speed and larger L3 cache of the Westmere processor con-
tribute to the better host performance of the baseline version on this platform. It is not
surprising that the simple ACC directive version, without paying any attention to data
transfers, is 3X-8X slower than the baseline and is dominated by data transfers between
the device and the host. Use of the “acc mirror” suppresses many of the unnecessary
data transfers and improves performance substantially, as seen for routines using ex-
plicit schemes (e.g., 36X speedup for compute_rhs). Among the three solve routines,
x_solve performs the best on the CPU due to efficient cache utilization, but the worst
on the GPU because of the non-stride-1 memory access in the parallel dimensions. The
first three ACC directive codes show no difference in GPU kernel time.

164 H. Jin, M. Kellogg, and P. Mehrotra

Table 3. Timing profile (in seconds) of different implementations of the SP benchmark (CLASS
A) on the two GPU systems

Pleiades-GPU original baseline simple mlocal mirror dim-prom data-trans cuda
compute_rhs 16.21 15.82 126.84 38.37 3.47 3.47 3.41 1.72
x_solve 6.08 6.90 35.91 25.77 22.48 7.56 3.09 2.55
y_solve 6.20 6.26 34.39 20.51 17.27 2.07 2.11 1.74
z_solve 6.35 6.99 32.33 20.78 17.46 2.45 2.49 1.71
add 1.09 0.76 16.56 0.20 0.20 0.20 0.20 0.15
rest 3.88 2.49 57.89 5.30 0.94 0.94 0.95 0.18
total 39.81 39.22 302.58 110.56 61.65 16.63 12.22 8.03
GPUkrnl 0.00 0.00 59.37 59.60 59.78 15.14 10.32 7.34
GPUcomm 0.00 0.00 243.21 50.96 1.87 1.49 1.90 0.69
hyperwall-GPU original baseline simple mlocal mirror dim-prom data-trans cuda
compute_rhs 32.58 42.71 122.78 36.55 2.94 2.89 2.48 1.43
x_solve 10.32 9.34 28.59 17.07 14.06 5.51 2.61 3.06
y_solve 11.61 19.09 26.62 13.69 10.63 1.96 1.98 1.32
z_solve 11.90 17.83 25.55 13.83 10.72 2.19 2.19 1.33
add 2.37 2.30 15.88 0.14 0.14 0.14 0.14 0.11
rest 10.22 6.98 56.56 4.50 0.67 0.68 0.67 0.38
total 79.01 98.25 275.97 85.79 39.16 13.37 10.08 7.25
GPUkrnl 0.00 0.00 36.71 37.01 37.10 12.08 8.72 7.18
GPUcomm 0.00 0.00 239.26 48.78 2.06 1.30 1.37 0.07

Array dimension promotion for the working arrays in the solve routines is a key
transformation for speeding up these routines by 3X-5X on the GPU. Data transposi-
tion for better memory coalescing produces an additional performance gain in x_solve

and to some extent in compute_rhs, although such a code transformation will likely
worsen performance on the CPU because of cache unfriendliness. The final ACC direc-
tive version (data-trans) resulted in a performance improvement over the host baseline
version by a factor of 3.2X on the Westmere core and 9.7X on the Opteron core. Com-
pared to the CUDA code, the best ACC directive version is only 30-40% slower, which
is very acceptable given the fact that programming effort for the directive-based codes
is considerably less.

To scale up the problem size, we used the best ACC directive version and compared
it with the cuda version and the host baseline version. The total benchmark times are
summarized in Table 4 for CLASS A, B, and C. As noted in Table 1, the cuda code
requires 2 GB of memory for the CLASS C problem, which is more than the available
GPU memory on hyperwall-GPU. For the sake of completeness of our performance
study, we created another CUDA version of SP with reduced memory requirements
by removing some of the working arrays used for improving memory coalescing. The
timing results from this version are marked as “(mr)” for CLASS B and CLASS C in
Table 4. Figure 7 presents the performance for different data sizes using the baseline
results on Pleiades as a reference. We observe further performance improvement on the
GPUs when scaling up to larger problems.

An interesting observation from Table 3 is that the performance of the ACC directive
versions is consistently lower on Pleiades-GPU (Tesla M2090) than on hyperwall-GPU

Using Compiler Directives for Accelerating CFD Applications on GPUs 165

0

2

4

6

8

10

12

14
P

er
fo

rm
an

ce
 Im

p
ro

ve
m

en
t

 simple
 mlocal
 mirror
 dim-prom
 data-trans
 cuda

a) Pleiades-GPU

0

5

10

15

20

25

30

compute_rhs
x_solve

y_solve
z_solve

add rest total

b) hyperwall-GPU

Fig. 6. Performance improvement of the SP benchmark (CLASS A) relative to the baseline on a)
Pleiades-GPU, b) hyperwall-GPU

(GTX 480). The GPU communication time on the two systems is similar. The main dif-
ference comes from time spent on executing GPU kernels. For the simple, mlocal, and
mirror versions, the slowdown in kernel performance is as much as 60%, which cannot
be solely attributed to the use of ECC memory in the Tesla M2090. As a comparison,
the performance difference of the cuda version on the two systems is only about 10%.
As the problem size scales up as shown in Fig. 7, the performance difference of the
CUDA version on the two GPUs is no more than 15%, but the ACC directive version
again shows consistently better results on the GTX 480 GPU, with performance in-
creasing by as much as 60%. It is interesting to note that the memory-reduced CUDA
version suffered substantial performance degradation on the Tesla M2090 but less so on
the GTX 480. This indicates the sensitivity of the Tesla M2090 to performance tuning.
It also suggests that the ACC directive version still has room for further improvement.

One explanation of the decreased ACC directive performance on the Tesla GPU is
related to how the PGI accelerator compiler treats shared memory. For a Fermi-based
GPU, each streaming multiprocessor (MP) has 64KB of configurable local memory,
which can be set to 48KB as hardware cache and 16KB as shared memory, or 16KB as
hardware cache and 48KB as shared memory. The compiler uses the default setting of
16KB as shared memory, set on a per kernel basis, which cannot be adjusted by the user.
The Fermi GPU has 16 MPs, each with two SIMD units, and each SIMD unit has 16

166 H. Jin, M. Kellogg, and P. Mehrotra

Table 4. Timing results (in seconds) of the SP benchmark for different problem classes

Problem baseline acc-directive (best) cuda
Machine Class Total Time Total Time GPUkrnl Total Time GPUkrnl

CLASS A 39.22 12.22 10.32 8.03 7.34
CLASS B 157.78 56.73 54.76 31.49 30.56

Pleiades-GPU CLASS B(mr) 52.09 51.18
CLASS C 646.49 231.19 228.75 122.27 120.18
CLASS C(mr) 208.50 205.72
CLASS A 98.25 10.08 8.72 7.25 7.18
CLASS B 358.74 36.67 35.10 26.34 25.97

hyperwall-GPU CLASS B(mr) 31.74 31.46
CLASS C 1728.97 143.60 141.23 − −
CLASS C(mr) 126.49 125.61

0

2

4

6

8

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t

pld-baseline
pld-acc directive

pld-cuda
hw-baseline

hw-acc directive

hw-cuda

 CLASS A
 CLASS B
 CLASS B(mr)
 CLASS C
 CLASS C(mr)

Fig. 7. Comparison of GPU performance of SP implementations with the baseline for different
data sizes

CUDA cores. The two SIMD units share the same shared memory. Compiler feedback
indicates that many of the kernels in SP require 10-14KB of shared memory. With the
16KB limitation of shared memory, the kernel launch can only run one instance (one
thread block) of the kernel on each MP, since two thread blocks would require more
than 20KB of shared memory. So for this case, the kernel is running only 16 thread
blocks in parallel. There seems to be not enough parallelism within the thread block to
keep the 32 CUDA cores in the two SIMD units in each MP busy.

5 Conclusions

In this paper we presented our efforts to port the SP benchmark to GPU-based plat-
forms using the directive-based PGI accelerator model. We showed that this approach
achieved decent performance with much less programming effort when compared to the
low-level CUDA approach. The descriptive approach used by this model is convenient

Using Compiler Directives for Accelerating CFD Applications on GPUs 167

for users as they can gradually optimize performance based on compiler feedback. The
GPU performance of SP is about a factor of 3X-10X when compared with a single CPU
core, which is far from satisfactory given the fact that we have not considered multicore
CPU performance.

We examined the performance impact of different programming efforts in the de-
velopment process. Minimizing data transfer between the device and the host, and op-
timizing memory accesses are the keys for achieving desired performance. This often
requires changes to the code structure, which may not always be portable. Certain opti-
mizations, such as cache blocking via fast memory, work well on both CPUs and GPUs.
In other cases, data transposition is required for better memory coalescing on the device,
which does not necessarily translate into a performance gain on the host.

There are several areas of interest for further study. The impact of GPU shared mem-
ory size on application performance needs further study, in particular as a possible tun-
able parameter for the compiler and its runtime support. It is not clear how different loop
schedules would affect performance. This study relies on the compiler to set the loop
schedules automatically. Determining an optimal loop schedule is not easy, and may
require an auto-tuning tool. Another area is to study the effectiveness of overlapping
work on the host and the device to hide data transfer latency. Support of directive-based
programming for multiple GPUs is a challenging task since overhead from data com-
munication between GPUs could be overwhelming. For future work, we would like to
extend our study to these areas as well as to other applications and platforms.

Acknowledgments. The authors would like to acknowledge fruitful discussions with
Dennis Jespersen and Dale Talcott of the NAS Division on many experiments we con-
ducted, and Michael Wolfe for providing valuable insight of the PGI compiler.

References

1. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L., Fatoohi,
R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D., Venkatakrishnan, V.,
Weeratunga, S.K.: The NAS Parallel Benchmarks. International Journal of Supercomputer
Applications 5(3), 63–73 (1991)

2. Beyer, J.C., Stotzer, E.J., Hart, A., de Supinski, B.R.: OpenMP for Accelerators. In: Chap-
man, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011. LNCS, vol. 6665,
pp. 108–121. Springer, Heidelberg (2011)

3. CAPS: HMPP Programming Model, http://www.caps-entreprise.com/hmpp.html
4. Jespersen, D.C.: Acceleration of a CFD code with a GPU. Scientific Programming 18,

193–201 (2010)
5. Jin, H., Frumkin, M., Yan, J.: The OpenMP Implementation of NAS Parallel Benchmarks

and Its Performance. NAS Technical Report NAS-99-011, NASA Ames Research Center
(October 1999)

6. Khronos Group, The OpenCL Standard, http://www.khronos.org/opencl/
7. Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors: A Hands-on Approach.

Morgan Kaufmann Publishers (2010)
8. NVIDIA CUDA Architecture, http://www.nvidia.com/object/cuda_home.html
9. The OpenACC Standard, http://www.openacc-standard.org/

http://www.caps-entreprise.com/hmpp.html
http://www.khronos.org/opencl/
http://www.nvidia.com/object/cuda_home.html
http://www.openacc-standard.org/

168 H. Jin, M. Kellogg, and P. Mehrotra

10. Pennycook, S.J., Hammond, S.D., Jarvis, S.A., Mudalige, G.R.: Performance Analysis of a
Hybrid MPI/CUDA Implementation of the NAS-LU Benchmark. ACM SIGMETRICS Per-
formance Evaluation Review - PMBS 10 38(4), 23–29 (2011)

11. The Portland Group, PGI Accelerator Programming Model for Fortran and C, v1.3
(November 2010), http://www.pgroup.com/resources/accel.htm

12. The Portland Group, PGI CUDA Fortran Programming Guide and Reference,
http://www.pgroup.com/resources/cudafortran.htm

13. Seo, S., Jo, G., Lee, J.: Performance Characterization of the NAS Parallel Benchmarks in
OpenCL. In: IEEE International Symposium on Workload Characterization (IISWC), Austin,
TX, pp. 137–148 (2011)

14. The Top 500 Supercomputer List (November 2011),
http://www.top500.org/lists/2011/11

http://www.pgroup.com/resources/accel.htm
http://www.pgroup.com/resources/cudafortran.htm
http://www.top500.org/lists/2011/11

Effects of Compiler Optimizations

in OpenMP to CUDA Translation

Amit Sabne, Putt Sakdhnagool, and Rudolf Eigenmann

Purdue University, West Lafayette IN 47907, USA

Abstract. One thrust of the OpenMP standard development focuses
on support for accelerators. An important question is whether or not
OpenMP extensions are needed, and how much performance difference
they would make. The same question is relevant for related efforts in
support of accelerators, such as OpenACC. The present paper pursues
this question. We analyze the effects of individual optimization tech-
niques in a previously developed system that translates OpenMP pro-
grams into GPU codes, called OpenMPC. We also propose a new tuning
strategy, called Modified IE (MIE), which overcomes some inefficiencies
of the original OpenMPC tuning scheme. Furthermore, MIE addresses
the challenge of tuning in the presence of runtime variations, owing to
the memory transfers between the CPU and GPU. MIE, on average, per-
forms 11% better than the previous tuning system while restricting the
tuning system time complexity to a polynomial function.

Keywords: GPU, CUDA, Tuning System, Compiler Optimizations.

1 Introduction

OpenMP has established itself as a standard in parallel programming and is of
particular interest for today’s and future multicores. There is a large and growing
code base, the standard is well understood and documented, and there exists a
multitude of compilers and supporting tools. These features are of paramount
importance to the programmer. They help significantly reduce the difficulty and
the cost of developing parallel software.

The number of new parallel languages that have been proposed in even just
the past two decades is massive. The question of cost versus benefit arises with
every such proposal. Unfortunately, few quantitative analyses are available that
would allow one to find out if the same objective could have been achieved with
an existing language standard and what are costs and benefits of new versus old,
in terms of performance and productivity. Obviously, any new language will start
from zero in building a code base, compilers, tools, and programming experience.

� This work was supported, in part, by the National Science Foundation under grants
No. CNS-0720471, 0707931-CNS, 0833115-CCF, and 0916817-CCF.

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 169–181, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

170 A. Sabne, P. Sakdhnagool, and R. Eigenmann

A new language development has emerged in the context of new graphics
processing units, or accelerators. These devices offer promising avenues towards
low-energy, highly parallel computation for a class of applications. Among the
proposed programming languages are CUDA and OpenCL, both of which al-
low the programmer to access architecture-specific features. These architecture-
specific interfaces, however, significantly depart from the parallel programming
semantics offered by standards, such as OpenMP. The cost/benefit question
arises anew.

In previous work, we have addressed this cost/benefit question. We have pro-
vided quantitative comparisons of hand-written CUDA programs versus
equivalent programs written in OpenMP and translated to CUDA [1]. Using
an automatic translator and tuning system, called OpenMPC, we were able to
achieve performance results that came close to hand-coded CUDA on a large set
of benchmarks. The contribution of the present paper is to address three open
issues of that work.

– The previous work provided overall performance numbers. The breakdown
into individual techniques was not yet available. In the current paper, we
quantify the contributions of each individual technique. Of particular interest
in this analysis is also the importance of CUDA-specific OpenMP extensions,
which are generated automatically in the OpenMPC system.

– A key component of the OpenMPC is its tuning system, which empirically
searches through a large space of optimization variants and tries to find
the best. The initial OpenMPC system used an inefficient exhaustive search
mechanism. In this work, we use an improved navigation algorithm, signifi-
cantly reducing tuning time.

– A problem faced by all empirical tuning systems is the variability of execution
times, even for the same program executed repeatedly on the same platform
in single-user mode. This effect makes it difficult to correctly measure the
impact of an optimization technique. A common method is to average over
multiple runs, increasing tuning time. We have developed a new method
that identifies optimizations that are vulnerable to runtime variation and
uses increased measuring time only for those.

The remainder of the paper is organized as follows. Section 2 describes Open-
MPC and its available optimization options. It also identifies opportunities for
improvement in the present OpenMPC tuning system. Section 3 explains our
tuning mechanism for finding the best tuning options. Individual performance
analysis is shown in Section 4. Section 5 makes concluding remarks and mentions
ongoing work.

2 Overview of OpenMPC System

OpenMPC [1] is a programming framework that generates CUDA programs from
OpenMP programs. The framework includes an extended OpenMP program-
ming interface, a source-to-source translator, and an automatic tuning system.

Effects of Compiler Optimizations in OpenMP to CUDA Translation 171

The programming interface extends OpenMP with a new set of directives and
environment variables (henceforth referred to as CUDA extensions1) for control-
ling CUDA-related parameters and optimizations. OpenMP translates standard
OpenMP programs by applying a set of program transformations and by in-
serting CUDA extensions. OpenMPC includes an empirical tuning system that
automatically generates, prunes, and searches the optimization space and de-
termines the best combination of optimizations. Fig. 1 shows the workflow of
the OpenMPC translator. Fig. 2 displays a small example of the OpenMPC
translated CUDA code for Jacobi benchmark.

OpenMP
Code

Cetus
IR

CUDA
Code

Fig. 1. OpenMPC workflow

#pragma omp parallel for private(i, j)

for (i = 1; i <= SIZE; i++){

for (j = 1; j <= SIZE; j++){

a[i][j]=(b[i-1][j]+b[i+1][j]+b[i][j-1]+b[i][j+1])/4.0f;

}}

(a)

__global__ void kernel(...){

int _bid = (blockIdx.x+(blockIdx.y*gridDim.x));

int _gtid = (threadIdx.x+(_bid*blockDim.x));

tid=(_gtid+1);

if (tid<=SIZE){

for (i=1; i<=SIZE; i ++){

a[i][j]=(b[i-1][tid]+b[i+1][tid]+b[i][tid-1]+b[i][tid+1])/4.0F;

}}}

(b)

Fig. 2. OpenMPC translation example. (a) source code in OpenMP (b) result CUDA
kernel from OpenMPC translation.

1 Our CUDA extensions are not meant to be a proposal for extending the OpenMP
standard. They represent a research framework for exploring questions such as those
addressed in this paper.

172 A. Sabne, P. Sakdhnagool, and R. Eigenmann

2.1 Optimization Options

There are 18 optimization options available in OpenMPC, grouped into 4 cat-
egories: (1) Program environment configuration, (2) Data caching strategy, (3)
Data offloading optimizations, and (4) Code transformation. Table 1 shows all
optimization options in OpenMPC that are considered for individual optimiza-
tion analysis. The first three groups are supported by our CUDA extensions. The
fourth group is applied through source-to-source transformation in the Open-
MPC compiler.

2.2 Improving the OpenMPC Tuning System

To analyze the effects of individual tuning options, we make use of the OpenMPC
system, which allows us to implement the method in [2]: Using the highest-
optimized program variant as a baseline, this method iteratively switches off one
optimization at a time, to measure its effect in terms of the slowdown incurred.
To this end, we have identified a number of open issues in OpenMPC, which we
address in the present work.

Advanced Optimization Space Navigation: The goal of an empirical tun-
ing system is to generate a set of optimizations that yield best performance. In
OpenMPC, 18 optimizations are available as compiler flags. Finding the best
combination from these flags is non-trivial, because each optimization can im-
prove or worsen the performance of a program, depending upon its characteristic
and depending on other present optimizations.

The initial OpenMPC system uses simple exhaustive search to navigate the
space of optimization variants. This space can be very large (for n on-off opti-
mization options, the size is 2n). OpenMPC reduces this space using aggressive
tuning heuristics, which we refer to as pruned exponential search (PE). PE does
the program analysis to prune the tuning space by removing the inapplicable
or non-beneficial tuning options for the particular program. It then runs ex-
haustive search over the remaining tuning options. However, two issues remain:
The resulting search space can still be large (which was acceptable for obtaining
the original research results [1], but can be too long for end users). In addition,
sometimes the aggressive pruning heuristics may eliminate the best optimization
combination.

Runtime Variations – A Key Problem of Auto-Tuning Systems: In
computer systems, unpredictable system variations during program execution
are usual. They arise due to OS overheads, other running processes, or underlying
hardware operations. Although these variations do not affect the correctness
of the program, they can impact its execution time. We define this type of
variation as runtime variation. Although runtime variation does not disrupt
program execution, in auto-tuning system, runtime variation can be problematic.
Since the auto-tuning systems improves the program based on execution time,
the variation can cause some beneficial optimizations to be removed from the
tuning result and vice versa.

Effects of Compiler Optimizations in OpenMP to CUDA Translation 173

Table 1. Optimization options in OpenMPC

Program Environment Configuration

Compiler Flags Description

cudaThreadBlockSize=N Set the default CUDA thread block size

assumeNonZeroTripLoops Assume that all loops have non-zero iterations

Data Caching Strategy

Compiler Flags Description

shrdSclrCachingOnReg Cache shared scalar variables onto GPU register

shrdArryElmtCachingOnReg Cache shared array elements onto GPU register

shrdSclrCachingOnSM Cache shared scalar variables onto GPU shared memory

prvtArryCachingOnSM Cache private array variables onto GPU shared memory

shrdArryCachingOnTM Cache 1-dimensional, R/O shared array variables onto
GPU texture memory

shrdSclrCachingOnConst Cache R/O shared scalar variables onto GPU constant
memory

shrdArryCachingOnConst Cache R/O shared array variables onto GPU constant
memory

Data Offloading Optimization

Compiler Flags Description

useMallocPitch Use cudaMallocPitch() for 2-dimensional arrays

useGlobalGMalloc Allocate GPU variables as global variables
which provides more scope for reducing memory trans-
fers

globalGMallocOpt Apply CUDA malloc optimization for globally allocated
GPU variables

cudaMallocOptLevel=N Set CUDA malloc optimization level for locally allo-
cated GPU variables

cudaMemTrOptLevel=N Set CUDA CPU-GPU memory transfer optimization
level

Code Transformation

Compiler Flags Description

localRedVarConf=N Configure how local reduction variables are generated
for array-type variables

useMatrixTranspose Apply Matrix Transpose optimization

useParallelLoopSwap Apply Parallel Loop Swap optimization

useUnrollingOnReduction Apply Loop Unrolling for in-block reduction

One of the significant observations made during our study was the fact that
most of the variations on GPU programs are due to the variations in memory
transfer times. Since GPU and CPU do not share a common address space,
memory transfers form an essential part of GPU programs. GPUs are generally
connected to the CPU using a PCIe bus, thereby leading to a variability in
the memory transfer times. Table 2 compares the relative standard deviation in

174 A. Sabne, P. Sakdhnagool, and R. Eigenmann

computation time and the memory transfer time. Relative standard deviation
is a percentage of the ratio of standard deviation to the mean of the sample. It
acts as an indicator as of how the variations relate to the average. From Table 2,
we can see that the relative standard deviations in memory transfer can be as
much as 7000 times the relative standard deviations in computation time.

Table 2. Variations on GPU Programs

Benchmark Relative Standard Deviation Relative Standard Deviation Ratio
for Memory Transfer Time (A) for Computation Time (B) (A/B)

NW (8192) 0.2395 0.0128 18.71

Jacobi (12288) 0.7394 0.0001 7394

CG (W) 0.2562 0.0706 3.63

FT (W) 0.1521 0.0112 13.58

To alleviate runtime variations, one can average execution times across multi-
ple runs. However, multiple executions can increase the tuning time significantly.
The PE algorithm does not take runtime variations into consideration, and there-
fore is more prone to erroneous final option combinations on GPU programs.

Objectives of This Work: Our goal is to determine the impact of individual
optimization techniques in the OpenMP to CUDA translator. To this end, we
use the improved OpenMPC translation and tuning system, which can find the
best combination of optimization techniques for each program. In doing so, it
also reports the performance difference made by individual optimizations. We
proceed as follows.

– We modify a previously described Iterative Elimination (IE) [3] tuning al-
gorithm to make it applicable to GPU programs.

– We describe a generic tuning methodology to deal with memory transfer
time based variations of GPU applications.

– With the best tuning option combination generated by the above tuning
system, we analyze the impact of each tuning option or compiler flag.

The next section presents the new tuning algorithm. Section 4 presents results
obtained using this methodology.

3 Modified IE (MIE) Algorithm for OpenMPC

To address the issues presented in Section 2.2, we propose a Modified IE (MIE)
algorithm, which is a tuning algorithm based on Iterative Elimination (IE) [3].
In this section, we briefly describe IE and then present our MIE algorithm.

Effects of Compiler Optimizations in OpenMP to CUDA Translation 175

3.1 Iterative Elimination

The IE algorithm is shown in Algorithm 1. IE begins by switching on all opti-
mization options, and then iteratively measures their effect by switching off one
tuning option at a time. Next, it removes the one with the most negative effect.
The process repeats until all remaining optimizations show non-negative effects.
The complexity of IE is O(n2), compared to O(2n) of the PE algorithm.

Algorithm 1. Iterative Elimination Algorithm

Require: n = Number of Tuning Options (F1, F2, ... Fn)
Ensure: B = {F1 = 1, F2 = 1, ..., Fn = 1} B is a set of combination options

i ← 1; NextB ← B; � NextB stores the fastest combination in every iteration
for i = 1 → n do

for j = 1 → n do
if Fj �= 0 then

NextB = min(NextB, B with Fj = 0); � Compares the runtimes
end if

end for � Termination: No Fi has changed from 1 to 0
if NextB = B then

break; � None of the switched on options has a negative impact
end if
B ← NextB; � Start next iteration with a new baseline NextB

end for � Creates set of best tuning options e.g B = {F1 = 1, F2 = 0, ., Fn = 1}

Another tuning method, Combined Elimination (CE) [3] performs the option
removal in a more aggressive fashion, under the assumption that some inter-
ferences between options are negligible. The tuning time of CE is known to be
shorter than IE. However, since the performance of IE is known to be the best
amongst the available tuning algorithms [3], we chose IE as our base algorithm.
Other algorithms could be adapted in place of IE in our system [4,5]. Unlike the
work in [6], which uses optimal ordering of compiler flags, IE tries to find the
best tuning options set, irrespective of the order.

3.2 Grouping of Different Optimization Options

To deal with the problem of runtime variations, a direct implementation of IE
would require multiple runs and averaging before eliminating an optimization
option. This would lead to high tuning times, because the runtime variations of
GPU programs can be large.

Comparing only the computation runtime instead of the total execution time
can eliminate the effect of memory transfer variations on tuning. To achieve that,
the behavior of memory transfers must be the same between two comparable can-
didate combinations of IE. If this invariant is maintained, the memory transfer
time can be subtracted from total execution time (e.g., by obtaining these times
from available hardware profilers) an optimization technique is evaluated by IE.

An intuitive strategy would be to apply techniques that affect memory trans-
fers (i.e. data offloading optimizations shown in Table 1) in a first tuning phase,

176 A. Sabne, P. Sakdhnagool, and R. Eigenmann

averaging the results over multiple runs. In a second phase, the remaining opti-
mization options are tuned, whereby transfer times are removed from execution
times. In this way, most of the runtime variations in the GPU program can be
filtered out; a single run suffices.

The split into the two phases is beneficial only when the data offloading opti-
mizations do not interfere with other. That is not always the case. For example,
useMallocPitch, which manages 2D array allocation and transfer, may or may
not be beneficial depending on the stride of 2D array accesses. Since usePar-
allelLoopSwap transforms the array accesses in the code, useMallocPitch may
improve performance if useParallelLoopSwap is applied.

To address this problem, MIE uses a third phase, in which memory transfer
optimizations that are affected by computation optimization options are placed.
This phase also averages runtimes over multiple runs. In a fourth phase, MIE
tunes separately those optimizations that do not interact with others. It uses a
simple, fast tuning algorithm for this phase.

Phase 1 contains all memory transfer-based (data offloading) optimizations,
except useMallocPitch. Phase 2 contains program environment configuration
and code transformation options that impact the computation. Phase 3 con-
tains dependent optimizations. With the currently available tuning options in
OpenMPC, Phase 3 contains only useMallocPitch. This technique impacts the
data offloading (memory transfers), but is dependent upon computation tech-
nique useParallelLoopSwap. Phase 4 contains data caching optimizations. They
are independent of the techniques in the other groups.

Table 3. Grouping of OpenMPC Options for Tuning (MemTR = Memory Trans-
fer Optimization, Comp = Computation Optimization). Options in paranthesis imply
multi-values options.

Phase Type Tuning Options

1 MemTR useGlobalGMalloc, globalGMallocOpt,
cudaMallocOptLevel=1, cudaMemTrOptLevel=2

2 Comp useUnrollingOnReduction, useLoopCollapse,
useMatrixTranspose, useParallelLoopSwap,
prvtArryCachingOnSM, localRedVarConf=0,

assumeNonZeroTripLoops

3 Dependent useMallocPitch

4 Independent ArrayCache = {shrdArryElmtCachingOnReg,
shrdArryCachingOnTM, shrdArryCachingOnConst}

ScalarCache = {shrdSclrCachingOnReg,
shrdSclrCachingOnSM, shrdSclrCachingOnConst}

3.3 MIE Running Strategy

With the above groups of optimizations in place, we now describe the MIE run
strategy.

Effects of Compiler Optimizations in OpenMP to CUDA Translation 177

1. Data Offload Optimizations: First the algorithm runs IE with the Phase 1
optimizations as the input set. Since these options all impact memory trans-
fers, they are vulnerable to high runtime variations. The MIE algorithm runs
each IE stage multiple times and considers the average execution times for
making elimination decisions.

2. Computation Optimizations: The configuration formed in Phase 1 is the
baseline configuration. MIE now appends Phase 2 options to this configura-
tion and runs IE over all new options. While making comparisons between
two combinations, the memory transfer time is removed from the compar-
ison, effectively considering only the computation time. This helps reduce
the effect of variations to a large extent. This stage requires calculation of
the time spent in copying the data between CPU and GPU memories. This
is accomplished by using the CUDA profiler. Using this method, MIE avoids
averaging over multiple runs, substantially reducing the time required.

3. Dependent Optimizations: In the combination formed after Phase 2, MIE
includes Phase 3 option i.e. useMallocPitch and averages the runtimes over
multiple executions to see if this option is beneficial and should be included.
(Should there be more tuning options added in Phase 3, MIE would run IE
on this group, with averaging runtimes over multiple executions.)

4. Independent Optimizations: Since this group does not depend upon
other options, MIE iteratively runs each Phase 4 option on top of the con-
figuration formed in Phase 3, and adds the best value of each multi-valued
option to the final optimization configuration.

4 Performance Analysis

4.1 Setup

We ran both the PE and the MIE algorithm on NVIDIA Quadro FX 5600 GPU
device, which has 16 multiprocessors (SMs) clocked at 1.35GHz and 1.5 GB of
memory. Each SM consists of 8 SIMD processing units (SPs) and has 16 KB of
shared memory. The host CPU is a 3-GHz AMD dual-core processor with 12
GB memory. The OpenMPC generated CUDA programs were compiled using
the NVIDIA CUDA Compiler (NVCC) with option -O3.

We demonstrate the effectiveness of our tuning system on NAS OpenMP Par-
allel benchmarks, Rodinia OpenMP benchmarks and some scientific computation
applications. As described in 3.3, we run Phase 1 and Phase 3 options 5 times
each and use the average runtimes for IE. For other groups, we compare only
the computation times for IE runs.

4.2 Performance Comparison between Pruned Exhaustive
and Modified IE Algorithms

To evaluate the performance of the MIE algorithm, we show in Figure 3 the
speedup of benchmarks achieved with MIE, normalized with respect to the PE
algorithm. MIE performs better than the PE algorithm in most of the cases,

178 A. Sabne, P. Sakdhnagool, and R. Eigenmann

Fig. 3. Program Speedups of Modified IE relative to Pruned Exhaustive Algorithm

averaging to a 11% performance improvement over PE. In fact, MIE outperforms
Pruned Exhaustive method substantially for the Hotspot and LUD benchmarks.
This effect is due to the over-pruning occurring in the PE method, thereby
missing out on the best option combination.

Another important observation is the fact that MIE performs marginally bet-
ter (2 to 5 %) compared to Pruned Exhaustive method on most other programs
where over-pruning does not happen. This is counter-intuitive since PE is ex-
pected to search through all possible choices. It is explained due to the excessive
memory transfer based variations, wherein the best option combination pro-
duced by the Pruned Exhaustive method may not be the optimal, rather it is
the one that suffered the least.

Table 4 compares the tuning time required by the Pruned Exhaustive algo-
rithm against the tuning time required by the MIE algorithm. The advantage of
IE in terms of tuning time is evident from this table.

Table 4. Tuning Time Comparison of Pruned Exhaustive Vs. Modified IE Algorithm

Benchmark Tuning Time (mins)
Pruned Exhaustive Tuning Modified IE Tuning

SRAD 538 23

FT (S) 2345 23

CG (S) 1108 17

CFD (97k) 1083 210

FT (A) 3680 97

Jacobi (12288) 98 55

4.3 Impact of Individual Optimization Options

As stated earlier, to analyze the effect of individual tuning options in OpenMPC,
we follow the method from [2], wherein we turn off one optimization at a time

Effects of Compiler Optimizations in OpenMP to CUDA Translation 179

Fig. 4. Individual impacts of the 18 optimizations. Bars show normalized performance
of the benchmarks after disabling the selected optimization. A large drop in perfor-
mance indicates high impact.

180 A. Sabne, P. Sakdhnagool, and R. Eigenmann

from the best tuning options set, so as to understand the effects of the individual
optimization in terms of the slowdown incurred. The bigger the slowdown, the
larger is the benefit of the optimization. We analyze the results in Fig 4 with
respect to the techniques shown in Table 1.

Some benchmarks like SRAD, Jacobi, SPMUL depict high benefits obtained
due to compiler techniques. However, some others like Backprop show relatively
small effects. The effectiveness of our Modified IE tuning algorithm can be
gauged from the observation that switching off an individual technique with
respect to the best tuning optimization set has never improved the performance
beyond 3%, which can be attributed to the computation variations.

Memory transfer optimization-based techniques show high impact on many
GPU programs. Similarly, the techniques that change data access strides can be
highly beneficial since they help coalesce memory accesses. useParallelLoopSwap
and useMatrixTranspose are some such techniques.

Exploiting GPU specific memories for caching both the scalar and array vari-
ables can be highly beneficial. GPUs have on-chip cache and shared memories
and off-chip constant and texture memories. The current OpenMPC setup tries
to put all the variables (either scalar or arrays) on one of these memories, de-
pending upon the tuning option provided. However, since these memories may
not be large enough to hold the complete data sets, the compilation of such
programs may fail (in which case the current tuning system ignores the option).
We foresee a methodology to adaptively exploit all the GPU specific memories.

5 Conclusion and Future Work

We have analyzed the performance of GPU optimization techniques present in
the OpenMPC translation and tuning system. Our main findings indicate that
the compiler engineer who wishes to translate a program in a given language
into a CUDA program should consider the following optimizations:

1. Memory transfer optimization-based techniques are essential for offloading-
based programming models.

2. Exploiting special memories on GPUs can yield significant speedups.

3. Transformations that change the memory access strides are of great impor-
tance in GPU programs.

4. Tuning is important. With its help, standard OpenMP programs can be
translated effectively and efficiently into CUDA/GPU code.

5. Explicit GPU programming (without tuning support) needs to make use of
CUDA-extensions (above items 1, 2) for best performance. It is important for
emerging standards, such as OpenMP (3.1) [7] and OpenACC [8] to support
these features. Above items 1 and 3 should be applicable to a wide range of
accelerators. Item 2, however, is CUDA specific, but is necessary to obtain
best performance.

Effects of Compiler Optimizations in OpenMP to CUDA Translation 181

We also proposed a new empirical tuning algorithm for GPU programs called
Modified IE (MIE), which significantly reduces tuning time. MIE addresses and
is able to tolerate runtime variations caused by memory transfer between GPU
and CPU. As a result, MIE performs 11% better, on average, than the original
OpenMPC tuning system [1], while maintaining polynomial tuning time.

Ongoing work: The presented analysis of different techniques has provided us
with intuitions as of what kind of compiler techniques are useful on GPUs. We
did not implement some of the unsafe options [1] in MIE, the application of
which may provide larger benefits. We plan to extend the tuning system into
automatically incorporating such options, with the programmer’s help in under-
standing correctness of the output. Furthermore, best performance is achieved by
inserting certain CUDA-extension directives in the OpenMP source program [1].
Our ongoing work includes the extension of the translation and tuning system
to automate these modifications as well.

References

1. Lee, S., Eigenmann, R.: Openmpc: Extended openmp programming and tuning for
gpus. In: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2010, pp. 1–11.
IEEE Computer Society, Washington, DC (2010)

2. Blume, W., Eigenmann, R.: Performance analysis of parallelizing compilers on the
perfect benchmarks programs. IEEE Transactions on Parallel and Distributed Sys-
tems 3, 643–656 (1992)

3. Pan, Z., Eigenmann, R.: Fast and effective orchestration of compiler optimizations
for automatic performance tuning. In: Proceedings of the International Symposium
on Code Generation and Optimization, CGO 2006, pp. 319–332. IEEE Computer
Society, Washington, DC (2006)

4. Triantafyllis, S., Vachharajani, M., Vachharajani, N., August, D.I.: Compiler
optimization-space exploration. In: Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-Directed and Runtime Optimization,
CGO 2003, pp. 204–215. IEEE Computer Society, Washington, DC (2003)

5. Pinkers, R.P.J., Knijnenburg, P.M.W., Haneda, M., Wijshoff, H.A.G.: Statistical
selection of compiler options. In: Proceedings of the IEEE Computer Society’s 12th
Annual International Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunications Systems, MASCOTS 2004, pp. 494–501. IEEE Com-
puter Society, Washington, DC (2004)

6. Cooper, K.D., Subramanian, D., Torczon, L.: Adaptive optimizing compilers for the
21st century. J. Supercomput. 23, 7–22 (2002)

7. OpenMP 3.1: Openmp 3.1 released (July 2011),
http://openmp.org/wp/openmp-31-released/

8. OpenACC (November 2011), http://www.openacc-standard.org/

http://openmp.org/wp/openmp-31-released/
http://www.openacc-standard.org/

Assessing OpenMP Tasking Implementations on NUMA
Architectures

Christian Terboven, Dirk Schmidl, Tim Cramer, and Dieter an Mey

JARA, RWTH Aachen University, Germany
Center for Computing and Communication

{terboven,schmidl,cramer,anmey}@rz.rwth-aachen.de

Abstract. The introduction of task-level parallelization promises to raise the
level of abstraction compared to thread-centric expression of parallelism. How-
ever, tasks might exhibit poor performance on NUMA systems if locality can-
not be maintained. In contrast to traditional OpenMP worksharing constructs for
which threads can be bound, the behavior of tasks is much less predetermined by
the OpenMP specification and implementations have a high degree of freedom
implementing task scheduling.

Employing different approaches to express task-parallelism, namely the
single-producer and parallel-producer patterns with different data initialization
strategies, we compare the behavior and quality of OpenMP implementations
with task-parallel codes on NUMA architectures. For the programmer, we pro-
pose recipies to express parallelism with tasks allowing to preserve data locality
while optimizing the degree of parallelism. Our proposals are evaluated on rea-
sonably large NUMA systems with both important application kernels as well as
a real-world simulation code.

1 Introduction

The availability of cost-efficient two- and quad-socket compute nodes with large mem-
ory made non-uniform memory access (NUMA) architectures omnipresent. In a NUMA
architecture, the memory is partitioned and the latency and bandwidth of memory ac-
cess depend on the distance to the core from which the access occurs. The thread-
centric expression of parallelism, like worksharing in OpenMP[13], works fine on such
machines for well-structured code and evenly-balanced algorithms, but it often is un-
suitable for recursive algorithms, unbounded loops, or irregular problems in general.
Task-level parallelism provides solutions for these applications, but while threads can
be bound to cores, the OpenMP specification leaves a high degree of freedom regarding
the behavior of tasks to the implementation. If tasks are executed on a NUMA node
remote from the data, it has to be transferred first, leading to poor performance.

In this work, we compare the behavior and quality of OpenMP tasking implementa-
tions on recent NUMA architectures of different sizes. While detailed descriptions on
the inner workings of research OpenMP implementations can be found in the literature
(e.g.[14] or [10]), this information is not available for commercial ones, thus we created
several experiments to analyze their behavior. We observed significant differences both
in the overhead of task creation as well as in the task scheduling on NUMA architec-
tures for the four implementations from Intel, GNU, Oracle and PGI. By analyzing how

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 182–195, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Assessing OpenMP Tasking Implementations on NUMA Architectures 183

the implementations execute tasks, we derived strategies for task-parallel programming
that take the data allocation and work scheduling into account. For implementations
that exhibit reliable and consistent behavior, we show that our strategies are successful
for compute kernels as well as real-world applications.

This paper is structured as follows: the next chapter discusses related work. Chapter 3
contains our observations on how current OpenMP implementations execute tasks on
NUMA architectures. In Chap. 4 we exploit this to express several compute kernels with
tasks instead of employing worksharing constructs. Following in Chap. 5 we transfer
our strategies to two real-world applications. Chapter 6 contains the summary of our
findings.

2 Related Work

Tasking[1] has been introduced in OpenMP 3.0 and has been shown to be able to deliver
comparable performance to OpenMP worksharing implementations[2]. The Barcelona
OpenMP Task Suite[7] can be employed to compare the efficiency of tasking implemen-
tations for several kernels, but in contrast to this work it does not highlight differences
in behavior on NUMA machines.

Several articles deal with the efficient scheduling of OpenMP tasks on multi-core
multi-socket (NUMA) machines [12,3]. The main challenge is to reflect the system’s
memory hierarchy in the execution of the OpenMP tasks, while little or no knowl-
edge is present of how tasks are being executed inside the application. Furthermore,
task-stealing has to be applied in order to perform load balancing, which means the
assignment of tasks from an overutilized thread to an underutilized thread. However, if
tasks are moved to a different NUMA node, data of ’stolen’ tasks remain on the NUMA
node of the initialization, which then leads to remote memory accesses during task ex-
ecution, as the Linux operating system with a standard kernel does not perform any
auto-migration of memory pages.

3 Monitoring Task Execution

The OpenMP runtime has a lot of freedom in how to schedule tasks, providing both
opportunities to optimize load balancing via ’task-stealing’ and challenges to maintain
data locality on NUMA architectures. Ideally tasks are distributed among the threads in
a way that no thread is under- or overutilized and tasks are still close to their data, i.e. on
the same NUMA node. While this goal is not achievable for any arbitrary workload and
data access pattern, differences in especially the task-stealing have significant impact
on the overall performance, depending on the pattern of task creation:

– single-producer multiple-executors: This pattern is popular for that it often requires
little changes to code and data structures. The single construct ensures that a
code region is executed by one thread only and thus avoids data races. The thread
executing the single construct is responsible for creating all tasks of appropriate
task chunk size (tcs) and all data necessary for the computation inside the tasks
can be packed up at creation time using the firstprivate clause. The implicit
barrier at the end of the single construct waits for the termination of all tasks.

184 C. Terboven et al.

– parallel-producer multiple-executors: A parallel OpenMP for worksharing con-
struct loops over the outer iteration space with an increment specified as task chunk
size (tcs). In every iteration a task is spawned, performing the iteration over a range
of size tcs. Thus, all threads of the team executing the worksharing construct cre-
ate multiple tasks in parallel. The implicit barrier at the end of the for construct
waits for the termination of all tasks. This pattern can also be expressed without
any worksharing construct at all, as the content of a parallel region is executed by
all threads of the corresponding team and thus a task construct encountered by all
threads creates multiple tasks. Then the synchronization is performed at the end of
the parallel region, or by appropriate task synchronization constructs or an explicit
barrier.

Experiment Setup. We selected the Intel C/C++ 12.1.2, the Oracle Studio C/C++
12.2 and 12.3, the GNU 4.5 and 4.6 and the PGI C/C++ 11.7-0 compilers for our
comparisons, as they represent the most widely used OpenMP-enabled compilers on
x86-compatible architectures. Two different machines were used to carry out our ex-
periments:

– 4-sockets: The bullx s6010 compute node is equipped with four Intel Xeon X7550
processors running at 2.0 GHz, thus offering 32 physical cores and 64 logical cores
with hyper-threading, and 64 GB of main memory. The Intel Quickpath Intercon-
nect (QPI) used to connect the four sockets with each other and with I/O facilities
creates a system topology with four NUMA domains, with every NUMA node be-
ing separated from any other by just one hop. The system is running Scientific
Linux 6.1.

– 16-sockets: The Bull BCS system consists of four bullx s6010 systems as described
above. The four systems are equipped with Bull’s proprietary BCS cards providing
a cache-coherent and high performant interconnect, running a single system image
Scientific Linux 6.1 on 128 physical cores with 256 GB of main memory. It is
important to notice that not only the BCS interconnect imposes a NUMA topology
consisting of the four nodes, but still every node consists of four NUMA nodes
connected via the QPI, thus this system exhibits two different levels of NUMAness.

3.1 Load Balancing vs. Data Locality

Load balancing and data locality are performance-critical aspects in shared memory
parallel programming. To analyze the general behavior of OpenMP task implementa-
tions on a NUMA system, we created an artificial benchmark. It executes 128, 000work
packages, each of which reads an (inner) array with a constant value. To simulate load
imbalance, the (inner) arrays differ in size: the first packages are much smaller than
the last ones, so that the work is linearly increasing with steps of 128, 000/n packages
where n denotes the number of threads. The first 128, 000/n packages consists of arrays
of size 200, 000/n, the next 128, 000/n packages read arrays of size 2 ∗ (200, 000/n),
and so on. This benchmark allows to investigate load balancing capabilities as well as
data locality effects very well: the data is distributed among the NUMA nodes using a
chunk size of 128, 000/n elements of the outer array, the first chunk of work packages

Assessing OpenMP Tasking Implementations on NUMA Architectures 185

reside on the NUMA node that thread 0 has been bound to, the next chunk is on NUMA
node of thread 1, and so on. Thus, ’perfect’ data locality would lead to weak load bal-
ance, and vice versa, a compromise has to be found. Figure 1 exemplary shows the size
of work items and how they are initialized when using 8 threads.

0
20
40
60
80

100
120
140
160
180
200
220
240

0 to 15999 16000 to
31999

32000 to
47999

48000 to
63999

64000 to
79999

80000 to
95999

96000 to
111999

112000 to
127999

Ar
ra

y
Si

ze
s

in
 T

ho
un

d
El

em
en

ts

Work Package

Initialized
by Thread 0

Initialized
by Thread 1

Initialized
by Thread 2

Initialized
by Thread 3

Initialized
by Thread 4

Initialized
by Thread 5

Initialized
by Thread 6

Initialized
by Thread 7

Fig. 1. Size of work packages when 8 threads are used in the load balancing experiment. Each
chunk of work packages has been initialized by a different thread.

Linearly increasing load is the ’worst case’ for a for worksharing construct with a
static schedule and can be addressed by using a dynamic schedule, in which the
(outer) iterations are distributed among the threads in the order in which they complete
their previous work. In order to compare the behavior of the tasking implementations,
we used the parallel-producer pattern along the (outer) iterations with one iteration per
task. The work is measured as the total number of assignments to an inner array ele-
ment. The goal is to achieve a work distribution close to 100 %, which means that every
thread has to execute the same amount of work. The minimum, maximum and standard
deviation of the average work per thread is shown in Table 1. Considering the 4-sockets
system first, the Intel compiler distributes work almost evenly: all threads execute be-
tween 97 % and 101 % of the average work. The GNU and PGI compilers perform
slightly worse, here all threads execute between 80 % and 115 % of the average work.
The Oracle Studio compiler distributes work even more unbalanced over the threads, as
we observed a range from 76 % to 161 %.

The load balancing on the 16-sockets machine is much worse than on the 4-sockets
machine. Obviously it is harder to perform the task scheduling for 128 threads on 16
sockets than for 32 threads on 4 sockets. Thus, we expected a slightly worse result, in
the order as shown by the Intel compiler: 85 % to 121 %. However, for the PGI, GNU
and the Oracle Studio compilers, the distributions became extremely imbalanced. In the
worst case, with the Oracle Studio Compiler, one particular thread only gets 0.09 % of
the average work, whereas another thread gets 566.60 %.

186 C. Terboven et al.

Table 1. Minimum, maximum and standard deviation of the work done by a thread and percentage
of local iterations for the load balancing kernel benchmark on the 4-socket and on the 16-socket
machine

4-sockets 16-sockets

Tasking MIN MAX STDV local MIN MAX STDV local
Intel 97.65 % 100.43 % 0.51 79% 84.38 % 121.28 % 8.53 80%
GNU 81.53 % 114.15 % 5.60 80% 66.93 % 271.019 % 41.30 69%
Oracle Studio 76.02 % 161.52 % 17.68 60% 0.09 % 566.60 % 152.93 29%
PGI 83.41 % 106.56 % 5.04 82% 25.00 % 199.84 % 27.78 79%

Worksharing MIN MAX STDV local MIN MAX STDV local
Intel static 6.06 % 193.94 % 55.96 100% 1.55% 198.45% 57.29 100%
Intel dynamic 83.08 % 109.98 % 5.17 3.12% 8.61% 522.42% 148.99 0.82%

Using the same experiment again, now we shift focus on data locality. Again, we ex-
pect, that tasks are executed where they are created as long as enough work is available
locally, so that there is no motivation for task-stealing. Only after all local work is com-
plete, work from a remote location should be picked up. Table 1 also shows the results
of this experiment for all investigated compilers for tasking and as well as a reference
values for the Intel compiler using a for worksharing construct with a dynamic and
a static schedule. These reference values indicate that there is an obvious trade of
between load balancing and locality. The static schedule archives 100% locality on
both systems, but the load balancing is poor. The dynamic schedule achieves better
load balancing, but the data locality is about 3% (1%) on the 4-socket (16-socket) sys-
tem. The Intel, GNU and PGI compilers achieve a local work rate of 70 − 80 % on
both machines with tasks. The Oracle compiler archives a local access rate of 60 % on
the 4-sockets and 29 % only on the 16-sockets system. Although this is slightly worse
than the other compilers, it is still much better than the result of the for workshar-
ing loop with dynamic schedule. We conclude that for computations which exhibit a
load imbalance and are sensitive regarding data locality, tasks offer a better alternative
to traditional worksharing constructs. However, the performance depends on the task
scheduling mechanisms of the OpenMP runtime, and in this experiment Intel provided
the best compromise.

3.2 Task Overhead

Overhead of task construction is an important factor for the performance of OpenMP
implementations. The basic measurement technique of our experiment is based on the
EPCC OpenMP benchmarks [4], where the time taken for a section of sequential code
is compared to the time taken for the same code enclosed in a given directive. We
extended the original implementation by two new methods. In the first case only one
thread generates the tasks (single-producer, left) and in the second case we create tasks
with the parallel-producer pattern (right):

Assessing OpenMP Tasking Implementations on NUMA Architectures 187

#pragma omp p a r a l l e l p r i v a t e (j)
#pragma omp s i n g l e

f o r (j =0 ; j<i n n e r r e p s ∗ \
o m p g e t n u m t h r e a d s () ; j ++)

#pragma omp t a s k
d e l a y (d e l a y l e n g t h) ;

#pragma omp p a r a l l e l p r i v a t e (j)

f o r (j =0 ; j<i n n e r r e p s ; j ++)

#pragma omp t a s k
d e l a y (d e l a y l e n g t h) ;

The variable innerreps denotes the number of repetitions and is chosen so that the
execution time is significantly larger than the costs of the enclosing single directive.
The number of generated tasks is the same for both cases and increases with the number
of threads. Table 2 shows that the overhead on the 4-sockets system for all compilers is
much bigger for the single-producer (sin-pro) pattern than the for the parallel-producer
(par-pro) pattern: for single-producer the overhead increases with the number of tasks.
While the PGI runtime has a maximum overhead of approximately 58 μs, the GNU run-
time levels out at more than 1, 100 μs. Compared to that, the parallel-producer pattern
incurs much less overhead. Again the Intel and PGI runtime (0.3 μs and 3.3 μs with
32 threads, respectively) deliver outstanding results. The overhead increase with the
GNU an the Oracle Studio compilers is much more moderate compared to the single-
producer pattern, but still an order of magnitude higher than for the other two runtime
implementations.

The experiments on the 16-sockets machine presented in Table 3 show the same
trends concerning the two patterns. However, it also shows that with the single-producer
pattern the absolute overhead rises sharply with 128 threads for all implementations and
with the GNU and Oracle Studio runtime for the parallel-producer pattern as well. The
overhead of the task generation for the single-producer with the GNU compiler is more
than 40, 000 μs while it is less than 900 μs with the PGI compiler. In summary the
Intel runtime generates tasks with least overhead of only 1.7 μs (128 threads) using the
parallel-producer pattern.

Table 2. Overhead of task creation on 4-sockets in μs

Threads 1 2 4 8 12 16 24 32

Intel sin-pro 0.23 1.20 1.36 1.75 59.05 156.12 560.40 764.85
par-pro 0.11 0.19 0.36 0.24 0.27 0.17 0.30 0.26

GNU sin-pro 2.21 2.04 6.88 83.66 185.04 304.44 652.26 1126.18
par-pro 1.86 2.09 2.92 5.86 10.11 14.28 27.05 44.22

ORACLE sin-pro 0.09 1.05 9.24 59.89 139.49 211.27 299.22 424.22
STUDIO par-pro 0.09 1.32 3.43 4.33 8.47 14.06 18.55 39.65
PGI sin-pro 0.03 2.98 2.66 2.69 4.43 9.36 34.22 57.79

par-pro 0.03 1.26 1.37 0.95 1.69 1.90 2.49 3.26

4 Task Behavior on NUMA Architectures

In this chapter we exploit the insights gathered in the previous one to create
task-parallel implementations of two compute kernels, namely STREAM[11] and a

188 C. Terboven et al.

Table 3. Overhead of task creation on 16-sockets in μs

Threads 1 2 4 8 16 32 64 128

Intel sin-pro 0.12 1.89 187.68 199.57 492.64 2440.62 2432.05 5656.16
par-pro 0.12 0.32 0.93 0.17 0.72 1.11 1.32 1.69

GNU sin-pro 1.75 1.80 14.57 209.79 785.69 1361.50 11938.48 40555.73
par-pro 1.74 1.98 2.89 34.76 324.20 401.80 1870.33 9908.19

ORACLE sin-pro 0.09 3.52 37.02 176.28 643.73 1534.76 3571.80 7440.76
STUDIO par-pro 0.09 1.89 5.95 18.42 88.01 235.51 505.06 1183.10
PGI sin-pro 0.69 5.25 4.77 14.10 62.57 160.95 367.81 892.55

par-pro 0.02 2.68 2.35 3.45 6.94 23.58 51.35 357.38

Sparse-Matrix-Vector-Multiplication in a CG-method[9], which both are very sensitive
regarding the memory access pattern.

4.1 STREAM

For the sake of brevity we only examine results from the triad operation, they are con-
sistent with the other ones. Figure 2 shows the results for the Intel, Oracle and GNU
compilers only, as the PGI compiler failed to compile our experiment framework cor-
rectly (Internal error: assertion failed). The arrays have a dimension of 256, 435, 456
double elements, which results in 1.96 GB of memory consumption per array, or
5.87 GB of total kernel size in the triad operation. This kernel size is much larger than
the accumulated cache size and thus we achieve reliable measurements of the memory
bandwidth of the system.

Considering the 4-sockets machine first, all three compilers deliver roughly the same
performance for the traditional worksharing-based parallelization, which we refer to
as workshare: static-init for-loop and regard as a reference. In this variant, a static
schedule is employed both during data initialization and the actual computation, mean-
ing that for t threads the arrays are divided into t parts of approximately equal size.
Given four NUMA nodes in the system and a scatter thread binding, meaning threads
are spread as far apart as possible, t

4 threads will be bound to each NUMA node, result-
ing in an even data distribution over all NUMA nodes in the system. We compared this
to the following task-parallel variants, for which we found a task chunk size of 65, 536
iterations per task to be optimal, although it does not have a significant influence on the
performance as long as enough tasks are spawned to generate enough parallelism and
as long as the work per task is computationally expensive enough compared to the task
creation and scheduling overhead:

– tasks: static-init single-producer: The data initialization is performed in the same
way as in the original parallel version. The generation of tasks is performed by one
thread only (single-producer multiple-executors pattern).

– tasks: static-init parallel-producer: Again the data initialization is performed in
the same way as in the original parallel version, but now the creation of tasks is
performed in parallel (parallel-producer multiple-executors pattern).

Assessing OpenMP Tasking Implementations on NUMA Architectures 189

0

10000

20000

30000

40000

50000

60000

1 2 4 6 8 12 16 20 24 32

M
em

or
y

Ba
nd

w
id

th

[M
B/

s]

Number of threads
(a) triad on 4S: Intel

0

10000

20000

30000

40000

50000

60000

1 2 4 6 8 12 16 20 24 32

M
em

or
y

Ba
nd

w
id

th

[M
B/

s]

Number of threads
(b) triad on 4S: Oracle

0

10000

20000

30000

40000

50000

60000

1 2 4 6 8 12 16 20 24 32

M
em

or
y

Ba
nd

w
id

th

[M
B/

s]

Number of threads
(c) triad on 4S: GNU

workshare: static-init for-loop
tasks: static-init single-producer
tasks: static-init parallel-producer
tasks: task-init parallel-producer

0

50000

100000

150000

200000

1 2 4 8 16 32 64 128

M
em

or
y

Ba
nd

w
id

th

[M
B/

s]

Number of threads
(e) triad on 16S: Oracle

0

50000

100000

150000

200000

1 2 4 8 16 32 64 128

M
em

or
y

Ba
nd

w
id

th

[M
B/

s]

Number of threads
(f) triad on 16S: Intel

Fig. 2. STREAM triad operation on the 4-sockets and 16-sockets system

– tasks: task-init parallel-producer: The data initialization and the computation is
performed task-parallel by applying the same pattern to both code regions.

Still examining the 4-sockets (4S) machine in Fig. 2(a)-(c), for the Intel and the Oracle
compiler, the worksharing version outperforms the best task-parallel version by just 3 %
to 5 %. Regarding these runtimes, the two task-parallel variants employing the parallel-
producer pattern deliver approximately the same performance, as both distribute the
data in a nearly optimal fashion over the NUMA nodes. If the parallel-producer pattern
is used in the data initialization and the computation, the OpenMP runtimes of Intel and
Oracle are able to maintain data affinity. However, this does not work with the GNU
compiler, for which all three tasking variants deliver about the same performance - the

190 C. Terboven et al.

base performance that can be achieved on this machine for random memory access.
For all three compilers, the single-producer tasking version clearly suffers from two
effects: (1) the runtime cannot maintain data affinity, as all tasks are created from a
single NUMA node and the work-stealing will just pick arbitrary tasks from the queue;
and (2) the single thread responsible for creating the tasks cannot completely keep the
other threads executing the tasks busy. If only one thread creates all the tasks, the run-
time’s task-stealing mechanism cannot take the data distribution into account during the
’stealing’ and thus the performance on NUMA systems obviously suffers.

The situation looks different on the 16-socket (16S) machine, where the peak per-
formance of the task-parallel versions is significantly below the for workshare version
with a static schedule. Interpreting comments from the Intel OpenMP runtime, the
system topology is assumed to consist of 16 packages (= processor sockets), the two
levels of NUMAness are not respected. Corresponding to the observations in Chap. 3.1,
with higher numbers of threads the task-to-thread affinity is not ’strong’ enough to pre-
vent disadvantageous task-stealing. The single-producer variant is far behind, as the
4S results already implied. Futhermore, employing 128 threads on that machine is not
profitable, similar to experiences made with other big SMPs in the past. For the final
paper we will investigate measurements with 120 or 124 threads.

4.2 SMXV in a CG Kernel

While STREAM served our purpose as a benchmark indicating fine differences in the
memory access pattern, the Sparse-Matrix-Vector-Multiplication (SMXV) in a CG-
Method [9] much more resembles a real-world compute kernel as part of many PDE
solvers. Depending on the problem the matrix for the system of linear equations can be
very irregular. In this case the sparse matrix vector product is a typical example of the
importance of adequate load balancing. Especially in cases where the optimal work dis-
tribution cannot be calculated in advance, we expect task-parallel implementations to
help avoiding performance issues. On the one hand the programmer has to ensure that a
sufficient number of tasks is used to avoid load imbalance, on the other hand too many
tasks introduce additional overhead. In our CG implementation all vector operations
and the dot-product are parallelized with OpenMP for constructs. Only the SMXV is
parallelized with tasks. The work is distributed by chunks of rows and the chunk size is
the same for each task, calculated as

chunk size(tasks) =

{ �N/tasks�, if N%tasks = 0
�N/tasks�+ 1, otherwise

(1)

where N is the dimension of the square matrix and tasks the number of tasks. The
matrix used here represents a computational fluid dynamics problem (Fluorem/HV15R)
and is taken from the University of Florida Sparse Matrix Collection [5]. The dimension
is N = 2, 017, 169 and the number of nonzero values is nnz = 283, 073, 458, which
results in a memory footprint of approximately 3.2 GB, so that the data set is big enough
to not fit into the caches, even on the 16-sockets machine. The data is initialized using
a for worksharing construct with a static schedule.

Figure 3 shows the performance of the SMXV when executing 1000 CG itera-
tions. We compare the performance of the different OpenMP implementations on both

Assessing OpenMP Tasking Implementations on NUMA Architectures 191

machines. In almost all cases the Intel compiler delivers the best performances. For both
machine types the parallel-producer pattern reaches a significantly higher performance
than the single-producer pattern when using the Intel or the Oracle Studio implemen-
tation. In contrast, the peak performance achieved with the GNU compiler is below
9 GFLOPS (see 3(a)/3(b)) or rather below 5 GFLOPS (see 3(c)/3(d)) independent of
the pattern. The figure also shows that even with more than 100, 000 tasks the per-
formance of the Intel compiler for the parallel-producer variant is stable in contrast to
the single-producer pattern. The behavior for the other compilers is similar in this point,
although the performance decrease becomes visible with lower amount of tasks already.

Figure 3(c) shows that all implementations do not scale on the 16-sockets system
when the tasks are created by one single thread. In contrast to that the Intel compiler
reaches up to 21 GFLOPS on the same system (see 3(d)) in the parallel-producer vari-
ant. Task-stealing done by the OpenMP runtime to perform load balancing by the as-
signment of tasks from an overutilized to an underutilized thread. Table 4 shows the
percentage of tasks which are executed by a different thread than it was created from.
As expected, for the single-producer pattern more than 90 % of the tasks are not ex-
ecuted by the same thread. Furthermore, for the parallel-producer pattern only 2.9 %
or rather 8.6 % of the tasks are executed by a thread which did not create this task.
This means that the amount of remote data accesses introduced due to task-stealing is
very low, which results in much better performance. However, Table 4 also shows that
there is no difference for the GNU runtime in all cases, meaning that this kernel does
not benefit from the parallel producer pattern. The Oracle Studio runtime is almost as
good as the Intel runtime on the 4-sockets system, but the amount of remote accesses
increases to over 40 % on the 16-socket system.

Table 4. Percentage of remote data accesses for the single- and parallel-producer pattern on the
4-sockets and 16-sockets systems using the CG kernel with 1024 tasks

4-sockets 16-sockets
single parallel single parallel

Intel 96.21 % 2.87 % 99.22 % 8.61 %
GNU 96.87 % 96.90 % 99.04% 99.14 %
ORACLE STUDIO 95.97 % 4.04 % 98.24 % 41.02 %

5 Application Case Studies

Finally, we compare the different compilers for two real-world applications. Both codes
have been parallelized with nested parallel regions and we added a new version utilizing
OpenMP tasks. In both versions the parallelism is expressed in exactly the same way.

FIRE: The Flexible Image Retrieval Engine (FIRE) [6] was developed at the Human
Language Technology and Pattern Recognition Group1 of RWTH Aachen University.
The retrieval engine takes a set of query images and for each query image it returns a
number of similar images from an image database.

1 http://www-i6.informatik.rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de

192 C. Terboven et al.

Oracle Studio 12.2 GNU 4.6 Intel 12.2

(a) SMXV 4-sockets Single-Producer (b) SMXV 4-sockets Parallel-Producer

(c) SMXV 16-sockets Single-Producer (d) SMXV 16-sockets Parallel-Producer

Fig. 3. Performance of SMXV for different Implementations

NestedCP: NestedCP [8] is developed at the Virtual Reality Group of the RWTH
Aachen University2 and is used to extract critical points in unsteady flow field datasets.
Critical points are essential parts of the velocity field topologies and extracting them
helps to interactively visualize the data in virtual environments.

Figure 4 shows the runtime and speedup of the FIRE and the NestedCP codes on
the 16-sockets machine comparing the tasking version to the one with nested parallel
regions. Only the Intel, GNU and Oracle Studio compilers have been investigated, as
the PGI compiler failed to compile any of the two codes successfully.

Two observations are important for our discussion. Firstly, the best results for both
codes are achieved using the tasking version with the Intel compiler. For the FIRE
code a speedup of 127 is reached and for NestedCP a speedup of about 33, both on
128 cores. This version outperforms in both cases the nested parallel version, if the
machine is fully utilized. This fact shows that the tasking paradigm works well for both
applications and that the superior load balancing behavior of tasks compared to parallel
regions can improve the programs performance.

2 http://www.vr.rwth-aachen.de

http://www.vr.rwth-aachen.de

Assessing OpenMP Tasking Implementations on NUMA Architectures 193

0

30

60

90

120

0
100
200
300
400
500
600

1 2 4 8 16 32 64 128

Sp
ee

du
p

Ru
nt

im
e

in
 se

co
nd

s

Number of Threads

FIRE:Intel

0

30

60

90

120

0
100
200
300
400
500
600

1 2 4 8 16 32 64 128

Sp
ee

du
p

Ru
nt

im
e

in
 se

co
nd

s

Number of Threads

FIRE: GNU

0

30

60

90

120

0
100
200
300
400
500
600

1 2 4 8 16 32 64 128

Sp
ee

du
p

Ru
nt

im
e

in
 se

co
nd

s

Number of Threads

FIRE: Studio

0
5
10
15
20
25
30
35

0
10
20
30
40
50

1 2 4 8 16 32 64 128

Sp
ee

du
p

Ru
nt

im
e

in
 se

co
nd

s

Number of Threads

NestedCP: Intel

0
5
10
15
20
25
30
35

0
10
20
30
40
50

1 2 4 8 16 32 64 128

Sp
ee

du
p

Ru
nt

im
e

in
 se

co
nd

s

Number of Threads

NestedCP: GNU
134s

0
5
10
15
20
25
30
35

0
10
20
30
40
50

1 2 4 8 16 32 64 128

Sp
ee

du
p

Ru
nt

im
e

in
 se

co
nd

s
Number of Threads

NestedCP:Studio

Fig. 4. Performance of the FIRE and NestedCP codes. A task-parallel version is compared to a
nested variant.

Secondly, the behavior differs a lot between the compilers. With the GNU and Oracle
Studio compilers, NestedCP does not scale to more than 16 threads at all with the task-
ing version. The FIRE code scales up to a speedup of 100 with the GNU compiler, with
the Oracle compiler the performance drops down, when more than 32 threads are used.
However, the FIRE version using nested parallel regions delivers the best speedup using
the Oracle Studio compiler. These differences in the performance behavior of compilers
and/or runtimes makes it nearly impossible to write code that performs equally well on
a variety of platforms, meaning different hardware architectures and different OpenMP
implementations.

6 Summary

The introduction of task-level parallelism in OpenMP raised the level of abstraction
compared to thread-centric worksharing models, by delegating the responsibility of

194 C. Terboven et al.

distributing the work among the threads to the runtime. On hierarchical NUMA ar-
chitectures, tasks might exhibit poor performance if remote data is accessed frequently,
that means if the runtime cannot maintain data locality when selecting a thread to ex-
ecute a given task. If the system topology is not too complex, and if thread binding is
used and the task-parallelism is expressed using an appropriate pattern, such as parallel-
producer, OpenMP runtimes can maintain data affinity and thus achieve performance
on par with or even better than state-of-the-art worksharing implementations. Compar-
ing the OpenMP implementations on the 4-socket system, particularly the Intel runtime
showed consistent behavior and incurs little overhead in task creation.

However, there were significant differences in behavior between the four OpenMP
implementations on the 4-sockets machine and especially on the 16-sockets machines.
In all kernels with all implementations the performance did not increase in the same
way as the hardware’s capabilties.

If the behavior of an OpenMP runtime differs a lot from another one, application
performance gets hurt. Furthermore, the expectations from observation on the 4-sockets
machine were not applicable on the 16-sockets machine, because the complexer topol-
ogy was mostly not correctly respected. If a weak implementation does not offer reliable
behavior, this also weakens the attractivity of the OpenMP tasking programming model.

Acknowledgement. Parts of this work were funded by the German Federal Ministry
of Research and Education (BMBF) under Grant No. 01IH11006.

References

1. Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel, X., Unnikr-
ishnan, P., Zhang, G.: The Design of OpenMP Tasks. IEEE Transactions on Parallel and
Distributed Systems 20(3), 404–418 (2009)

2. Ayguadé, E., Duran, A., Hoeflinger, J., Massaioli, F., Teruel, X.: An Experimental Evaluation
of the New OpenMP Tasking Model. In: Adve, V., Garzarán, M.J., Petersen, P. (eds.) LCPC
2007. LNCS, vol. 5234, pp. 63–77. Springer, Heidelberg (2008)

3. Broquedis, F., Furmento, N., Goglin, B., Wacrenier, P.-A., Namyst, R.: ForestGOMP: An
Efficient OpenMP Environment for NUMA Architectures. International Journal of Parallel
Programming 38, 418–439 (2010) 10.1007/s10766-010-0136-3

4. Bull, J.M.: Measuring Synchronisation and Scheduling Overheads in OpenMP. In: Proceed-
ings of First European Workshop on OpenMP, pp. 99–105 (1999)

5. Davis, T.A.: University of Florida Sparse Matrix Collection. NA Digest, 92 (1994)
6. Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval: an experimental comparison.

Information Retrieval 11(2), 77–107 (2008)
7. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP Tasks Suite:

A Set of Benchmarks Targeting the Exploitation of Task Parallelism in OpenMP. In: Parallel
Processing, (ICPP 2009), pp. 124–131 (September 2009)

8. Gerndt, A., Sarholz, S., Wolter, M., Mey, D.A., Bischof, C., Kuhlen, T.: Nested OpenMP for
Efficient Computation of 3D Critical Points in Multi-Block CFD Datasets. In: Proceedings
of the ACM/IEEE, SC 2006 Conference, p. 46 (November 2006)

9. Hestenes, M.R., Stiefel, E.: Methods of Conjugate Gradients for Solving Linear Systems.
Journal of Research of the National Bureau of Standards 49(6), 409–436 (1952)

Assessing OpenMP Tasking Implementations on NUMA Architectures 195

10. LaGrone, J., Aribuki, A., Addison, C., Chapman, B.: A Runtime Implementation of OpenMP
Tasks. In: Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011.
LNCS, vol. 6665, pp. 165–178. Springer, Heidelberg (2011)

11. McCalpin, J.: STREAM: Sustainable Memory Bandwidth in High Performance Computers
(1999), http://www.cs.virginia.edu/stream (accessed March 29, 2012)

12. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Prins, J.F.: Scheduling task parallelism on
multi-socket multicore systems. In: Proceedings of the 1st International Workshop on Run-
time and Operating Systems for Supercomputers, ROSS 2011, pp. 49–56. ACM, New York
(2011)

13. OpenMP ARB. OpenMP Application Program Interface, v. 3.1,
http://www.openmp.org

14. Teruel, X., Martorell, X., Duran, A., Ferrer, R., Ayguadé, E.: Support for OpenMP tasks in
Nanos v4. In: Lyons, K.A., Couturier, C. (eds.) Proceedings of the 2007 Conference of the
Centre for Advanced Studies on Collaborative Research, pp. 256–259. IBM (October 2007)

http://www.cs.virginia.edu/stream
http://www.openmp.org

Performance Analysis Techniques for Task-Based
OpenMP Applications�

Dirk Schmidl1, Peter Philippen2, Daniel Lorenz2, Christian Rössel2,
Markus Geimer2, Dieter an Mey1, Bernd Mohr2, and Felix Wolf1,2,3

1 RWTH Aachen University, 52056 Aachen, Germany
2 Jülich Supercomputing Centre, 52425 Jülich, Germany

3 German Research School for Simulation Sciences, 52062 Aachen, Germany

Abstract. Version 3.0 of the OpenMP specification introduced the task construct
for the explicit expression of dynamic task parallelism. Although automated
load-balancing capabilities make it an attractive parallelization approach for pro-
grammers, the difficulty of integrating this new dimension of parallelism into
traditional models of performance data has so far prevented the emergence of
appropriate performance tools. Based on our earlier work, where we have intro-
duced instrumentation for task-based programs, we present initial concepts for
analyzing the data delivered by this instrumentation. We define three typical per-
formance problems related to tasking and show how they can be visually explored
using event traces. Special emphasis is placed on the event model used to capture
the execution of task instances and on how the time consumed by the program is
mapped onto tasks in the most meaningful way. We illustrate our approach with
practical examples.

1 Introduction

To harness the available performance of today’s multi-core systems, applications need
to make efficient use of the available parallelism. Cores sitting idle, for example in
communication calls waiting for data to arrive or in synchronization operations due to
load imbalance, waste resources and reduce the overall performance of the application.
However, optimizing load balance is often a non-trivial undertaking, especially since
the behavior of the application may change when ported to a different architecture or
executed on a different number of processor cores.

To address this situation, the tasking construct was introduced with OpenMP 3.0 [3].
Using tasks, the programmer is able to express parallelism in his code at a much finer
level of detail. Instead of specifying a single command stream per thread, as with the
traditional parallel and work-sharing constructs, the programmer can now decompose
his program into smaller tasks and specify dependencies between creator tasks and their
children. The defined tasks are assigned to the available threads by the runtime system.
This approach is supposed to automatically improve load balancing, although it incurs

� This material is based upon work supported by the German Federal Ministry of Research and
Education (BMBF) under Grant No. 01IS07005 and by the Department of Energy under Grant
No. DE-SC0001621.

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 196–209, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Performance Analysis Techniques for Task-Based OpenMP Applications 197

additional overhead in the runtime system. Moreover, it poses new challenges not only
for developers, but also for performance-analysis tools used for tuning applications.

In our earlier work, we introduced a portable method to distinguish individual task
instances and to track their suspension and resumption using event-based instrumen-
tation [12]. A prerequisite for this approach is that tied tasks are used or untied tasks
which are only suspended at task scheduling points. Based on this method, we present
initial performance-analysis concepts in a trace-based analysis workflow. Specifically,
we make the following contributions:

– We define three performance problems related to tasking.
– We describe an extension of the Open Trace Format 2 (OTF2) [6] event model to

record constituents of these performance problems in event traces. This determines
how task instances are represented in the control flow of individual threads.

– We show how time or other performance-related metrics are attributed to tasks and
threads.

– We demonstrate our concepts using benchmarks and a real-world application.

The paper is organized as follows: We review related work in Section 2. After dis-
cussing typical performance problems in Section 3, we cover the OTF2 event model in
Section 4. Next, we explain the representation of task instances and the attribution of ex-
ecution time in Section 5. Practical examples follow in Section 6. Finally, in Section 7,
we discuss progress and limitations, and present future work.

2 Related Work

Since OpenMP is such a commonly used parallel programming interface, there is al-
ready a body of work addressing performance analysis and optimization. Many current
performance analysis tools support the measurement and analysis of performance data
related to OpenMP constructs. Tools based on instrumentation, such as Scalasca [8],
TAU [14], and Vampir [10], utilize the source-to-source instrumenter OPARI [13] to
capture OpenMP-specific events. However, currently none of them provides support for
tasks, mainly because the event stream of a thread may result in a sequence of task-
instance fragments, which can only be analyzed if the overall task instance to which
those fragments belong can be identified.

Fürlinger et al. [7] were the first who profiled tasks using instrumentation. However,
their initial work provides no mechanism to identify task instances. Lorenz at al. [12]
presented an instrumentation mechanism to identify task instances via source-code in-
strumentation of task-related constructs. This mechanism was demonstrated via a pro-
totypical extension of OPARI. In the meantime, the successor OPARI2 [2] was released,
which—among other improvements—contains a production version of this instrumen-
tation mechanism. Our work builds upon the OPARI2 instrumentation and uses it as a
prerequisite for performance measurements.

Instead of instrumenting the code directly, other tools such as HPCToolkit [1]
apply statistical sampling. In this way, they obtain the call-stack and hardware coun-
ters in regular intervals. Moreover, Sun proposed a compiler interface [9] to obtain

198 D. Schmidl et al.

OpenMP-related data for performance analysis. Lin and Mazurov [11] extended this
proposal to support tasking and implemented a prototype based on the Sun Studio Per-
formance Analyzer. However, whereas they focus on the acquisition of performance
data, our work focuses on their analysis.

3 Performance Problems Related to Tasking

In task-parallel programs, typically many more task instances than compute resources
exist. Consequently, we cannot expect all task instances to be executed in parallel. Tasks
which have to wait at a synchronization point do therefore not necessarily indicate a
performance drawback. In most HPC applications, the number of active threads is a
good indication for the number of available compute resources, as most applications
start one thread per core they want to use. Accordingly, all threads can be active at
the same time. What needs to be investigated, even in tasking programs, is whether
all threads are doing useful work all the time. Here, useful work means everything
except spending time in the OpenMP runtime or doing nothing. The following three
performance problems related to tasking can lead to situations where threads waste
compute resources.

Too Finely Grained Task Parallelism. Overhead spent in the OpenMP runtime to
create a task or to suspend and resume it should be avoided if possible. If the execution
time of a task is very small, this overhead can consume more CPU cycles than the
task’s actual execution. In this case, it would be more efficient to execute the task’s
body immediately without separating it into a task. The overhead to create and manage
a task, of course, depends on many different factors, such as the hardware, the compiler,
the data-sharing attributes of the task, and so on. Thus, we cannot quantify precisely
when it is beneficial to create a task.

Too Coarsely Grained Task Parallelism. In contrast to the previous situation, creating
only a few very large tasks may result in load imbalance. For example, if 12 equally
sized large tasks are created and eight threads are used, half of the threads will execute
two tasks and the rest will only execute one. Even if there is a task for every thread,
sometimes there might not be enough to smooth differences in the runtime of individual
tasks, which can depend on dynamic conditions.

Task-Creation Bottleneck. When a lot of threads execute tasks while only a few
threads create them, the creation of tasks can become the bottleneck. This can hap-
pen, for example, when tasks are created in a single region by just one thread. For
n worker threads, the master thread must produce the tasks at least (n-1) times faster
than they are executed by workers. This situation is commonly known in master-worker
approaches where the master can become the performance bottleneck if the number
of workers is too large. Another reason why not enough tasks are created might be a
shortage of available parallelism in dynamic algorithms.

Performance Analysis Techniques for Task-Based OpenMP Applications 199

4 The OTF2 Task Event Model

Before any performance analysis of an application can be done, information about its
runtime behavior has to be collected. For this purpose, the work presented in this pa-
per leverages the Score-P [2] instrumentation and measurement system. To instrument
OpenMP directives, Score-P utilizes the source-to-source instrumenter OPARI2, us-
ing the technique presented in [12] for task-related constructs. In tracing mode, which
forms the basis of this work, the instrumentation hooks inserted by OPARI2 trigger the
generation of events in the Open Trace Format 2 (OTF2) [6]. But before describing its
task-specific details, we first give a brief overview of OTF2.

OTF2 stores concurrent events in separate event streams per thread of execution,
representing its runtime behavior. Common event types are entering/leaving a func-
tion, sending/receiving a message, or creating/destroying an OpenMP thread team. Each
event includes a timestamp as well as additional event-specific data, such as the source-
code region being entered or the number of bytes being transferred. To avoid redun-
dancy in the data being stored, static entities (so-called definitions) such as information
about source-code regions are stored only once and referenced using numerical identi-
fiers. In addition, OTF2 uses an efficient encoding scheme for these identifiers and other
attributes to compress the event data on-the-fly.

To encode task-specific behavior, the “traditional” records provided by OTF2,
for example, Enter/Leave for entering or leaving a source-code region and
OmpFork/OmpJoin for creating or destroying an OpenMP thread team, do not suffice.
Therefore, new event types need to be introduced. A careful analysis of the performance
deficiencies presented in Section 3 reveals that two types of actions are relevant to an-
alyze the efficiency of task parallelism: the creation as well as the execution of a task.
In the following, we describe which events are generated by those actions and which
event attributes are required for our analyses.

When a task is created, the OpenMP runtime system basically has two choices: the
task can either be executed immediately or queued for later execution. In both cases, it
is essential for a measurement system to be able to identify each task instance. That is,
for each task being created, we generate a corresponding OmpTaskCreate event and
attach a unique numerical task identifier to it. The task identifier zero is reserved for the
implicit task for which no OmpTaskCreate event is generated.

When a task starts its execution—either immediately or when dequeued from the
task queue—the measurement system needs to be notified in order to be able to map all
following events onto the task which generates them. For this purpose, we use the task
identifier assigned during task creation. Obviously, the same notification is required
when the execution of one task is suspended and another task is resumed, that is, a task
switch occurs. As the begin of a task’s execution is basically also a task switch (either
switching from the implicit task or from another task which was suspended or finished
its execution), we use only a single event to encode this behavior. As the identifier of
the task previously being executed is implicitly known, the OmpTaskSwitch event
carries only the task ID of the task being started or resumed, respectively.

Finally, to allow the measurement system to clean up its internal task-specific
data structures, the completion of a task needs to be identified. For this reason, the

200 D. Schmidl et al.

1 Enter("OMP task", metrics, timestamp);
2 OmpTaskCreate(new_task_id, timestamp);
3
4 #pragma omp task
5 {
6 OmpTaskSwitch(new_task_id, timestamp);
7 Enter("OMP task structured block", metrics, timestamp);
8
9 // Do some useful work...

10
11 Leave("OMP task structured block", metrics, timestamp);
12 OmpTaskComplete(new_task_id, timestamp);
13 }
14
15 if (current_task_id != old_task_id)
16 OmpTaskSwitch(old_task_id, timestamp);
17 Leave("OMP task", metrics, timestamp);

Fig. 1. OTF2 events generated for an OpenMP task construct

OmpTaskComplete event is introduced, also providing the task identifier of the task
that has just finished its execution.

As can be seen, the identification of task instances via task identifiers is essential for
our event model. However, the OpenMP standard does not yet require runtime systems
to provide such identifiers. We therefore rely on the task instrumentation provided by
OPARI2, which implements a portable method to track task identifiers for tied tasks, as
well as untied tasks that are suspended only at implied scheduling points.

Figure 1 illustrates when the different events will be generated for an OpenMP task
construct. As can be seen, task creation is surrounded by a conventionalEnter/Leave
event pair (lines 1 and 17). Inside, the task creation is recorded by the generating task,
assigning a new task identifier (line 2). The OmpTaskSwitch event before leaving the
creation region is only generated in the case one or more tasks have been executed at
the implicit task scheduling point during creation (lines 15/16). The task execution itself
is surrounded by an (unconditional) OmpTaskSwitch and an OmpTaskComplete
event (lines 6 and 12), as well as an Enter/Leave pair for the task’s structured block
(lines 7 and 11).

For other task switching points (i.e., taskwait as well as implicit and explicit
barriers) the event generation is depicted in Figure 2, using the taskwait directive as
an example. Here, a conventional region is created for the construct itself (lines 1 and
7), and optionally an OmpTaskSwitch event is generated in case another task was
executed in between (lines 5/6).

Note that time spent in either a task creation, barrier, or taskwait region is
not necessarily a bottleneck, as these regions can also include the execution of tasks.
Therefore, the time spent executing other tasks needs to be subtracted from the total
time spent in these regions to compute the real waiting time.

Performance Analysis Techniques for Task-Based OpenMP Applications 201

5 Task Interruption

During the analysis of tasks, special care has to be taken when tasks are suspended and
resumed. In this section, we discuss how analysis tools can handle OmpTaskSwitch
events. The example code in Figure 3 illustrates problems regarding task suspension and
resumption. Note that the taskwait statements in Figure 3 serve only as additional
task scheduling points.

Both functions f1 and f2 in the example do exactly the same, they call do work
and run into a taskwait statement. A thread executing this code could create both
tasks and push them into the task queue. At the barrier it might execute them in the
order shown in Figure 3. First, it starts the execution of task1 and suspends it in the
taskwait statement, then completely executes task2 before it resumes task1.

The rectangles in Figure 3 illustrate the times spent in every function. The length
of the rectangles is directly proportional to the time spent in the region. Although both
tasks actually do the same, the execution of task1 and f1 takes much longer than
the execution of task2 and f2, because task1 was suspended in between. This
is misleading to the programmer. Actually, the suspension of task1 also suspended
the execution of f1, so the time for f1 should not include the execution of task2.
We decided to virtually suspend all functions and regions in the task when the task
is suspended and resume them later along with the task. Figure 4 shows the resulting
event stream. Task1 is split in two intervals by the suspension. This clearly shows that
task2 is not part of task1.

As a proof of concept, we implemented a post-processing tool to apply this approach
to OTF2 traces. The tool duplicates the trace and inserts at task switch regions corre-
sponding leave events for the suspended task and region enter events for the resumed
task. Of course, rewriting the trace is too much overhead for traces of realistic size but
it is sufficient to further investigate the concept. Later on, an analysis tool can generate
the events on-the-fly when reading the trace.

6 Evaluation

As mentioned earlier, the tracing capabilities described in this paper were implemented
as part of Score-P, while the handling of task switches was implemented in a post-
processing tool for OTF2 traces generated by Score-P. Here, we demonstrate that our

1 Enter("OMP taskwait", metrics, timestamp);
2
3 #pragma omp taskwait
4
5 if (current_task_id != old_task_id)
6 OmpTaskSwitch(old_task_id, timestamp);
7 Leave("OMP taskwait", metrics, timestamp);

Fig. 2. OTF2 events generated for an OpenMP taskwait construct

202 D. Schmidl et al.

event model is adequate to allow the identification of the performance problems intro-
duced in Section 3. Our evaluation is based on both kernel benchmarks as well as a
real-world application.

Kernel-Benchmarks. To show that the performance problems outlined ealier can be
detected, we wrote artificial test programs for all three performance problems:

– A program that creates 10 very large tasks and represents the problem of coarsely
grained tasks.

– A program that creates many finely grained tasks.
– A program that uses a master-worker approach. Here the master produces tasks

sufficiently fast for a few threads but becomes a performance bottleneck for a larger
number of threads.

After instrumenting these kernels and measuring their execution behavior using Score-P
configured in tracing mode, we applied our post-processing tool to the generated OTF2
traces. The resulting modified trace files were then visualized using the graphical trace

#pragma omp parallel
{
#pragma omp task

f1();

#pragma omp task
f2();

#pragma omp barrier
}

void f1(){
do_work();

#pragma omp taskwait
}

void f2(){
do_work();

#pragma omp taskwait
}

-enter(task1)

-leave(task1)

-enter(f1)

-leave(f1)

-enter(do_w
ork)

-leave(do_w
ork)

-enter(taskw
ait)

-leave(taskw
ait)

-enter(task2)
-enter(f2)
-enter(do_w

ork)

-leave(do_w
ork)

-enter(taskw
ait)

-leave(task2)
-leave(f2)
-leave(taskw

ait)

-enter(barrier)

-leave(barrier)

barrier
task1

f1

do_work

taskwait

task2
f2

do_work tw

-TaskSw
itch(1)

-TaskSw
itch(0)

-TaskCom
plete(1)

-TaskSw
itch(2)

-TaskSw
itch(1)

-TaskCom
plete(2)

Fig. 3. Top: Code to generate two tasks, one calling f1 and the other one calling f2. Both func-
tions do exactly the same. Bottom: Example execution sequence for this code with active func-
tions shown as rectangles. Task1 is interrupted when task2 begins. The rectangles indicate,
that task1 and f1 have a much longer execution time than task2 and f2.

Performance Analysis Techniques for Task-Based OpenMP Applications 203

barrier

task1

f1
do_work

task2
f2

do_work tw

task1
f1

-enter(task1)

-leave(task1)

-enter(f1)

-leave(f1)

-enter(do_w
ork)

-leave(do_w
ork)

-enter(taskw
ait)

-leave(taskw
ait)

-enter(task2)
-enter(f2)
-enter(do_w

ork)

-leave(do_w
ork)

-enter(taskw
ait)

-leave(task2)
-leave(f2)
-leave(taskw

ait)

-enter(barrier)

-leave(barrier)

-TaskSw
itch(1)

-TaskSw
itch(0)

-TaskCom
plete(1)

-TaskSw
itch(2)

-TaskSw
itch(1)

-TaskCom
plete(2)

tw tw

Fig. 4. Execution sequence of the above-mentioned example code with one thread only. Here all
functions are interrupted when task1 is interrupted. Task1 and task2 seem to take the same
time, now.

browser Vampir [10]. In the following, regions called task X Y indicate a task that was
created by thread X and whose identifier is Y. Regions named !$omp task indicate
task creation overhead.

Figure 5 shows a Vampir screenshot for the first test program creating very large
tasks. In the timeline view at the top, it is clearly visible that two threads execute two
tasks, whereas the rest of the threads only execute a single task. Therefore, six threads
spend a significant amount of time in the !$omp implicit barrier region, wait-
ing for the two remaining threads to finish. The function summary view at the bottom
displays the exclusive execution time spent in different regions, highlighting the perfor-
mance bottleneck of this kernel. The program spends 0.6 seconds from a total of 1.6
seconds in the barrier which can be considered substantial overhead.

The corresponding displays for the second test program generating many finely
grained tasks is shown in Figure 6. Here, we zoomed in on a smaller interval to see
more details. The function summary chart gives again a first indication of suboptimal
performance. It can be seen that a significant fraction of the wall-clock time is used for
task creation (i.e., spent in OMP TASK), while the fraction of actual workload execution
seems to be minor. Looking closer at the timeline view, we can see that the individ-
ual tasks take about 50 μs, while the creation of one task takes about 5 ms or more.
The program could therefore be optimized since immediate execution of the task body
would be much faster than creating separate tasks.

The third kernel implements a master-worker approach where one thread creates
many tasks and all other threads execute them. Figure 7 shows the timeline views
for two different thread-team sizes. At the top, the timeline of an execution with four
threads is shown. Thread 0 is continuously creating tasks and the other threads are ex-
ecuting them. Since threads 1-3 are busy executing the tasks and spend only a very
small fraction of time in the barrier between task executions, the overhead spent in the
OpenMP runtime is quite low.

At the bottom, the timeline of an execution with 16 threads is shown. Here, a dif-
ferent behavior can be observed. Thread 0 is still creating tasks all the time, but many
of the other threads are waiting in the barrier without executing any tasks. Immediately

204 D. Schmidl et al.

Fig. 5. Vampir screenshot illustrating how too coarsely grained tasks can be detected. In the time-
line view two threads execute two task whereas the other threads execute only one task and wait
in the barrier.

after a task has been created, a thread starts executing it. For example, after thread 0 fin-
ished creating task 0 102, thread 10 stops idling and executes it. Shortly afterwards,
thread 6 picks up task 0 103 and thread 4 executes task 0 104. This demonstrates
that there are not enough tasks available for all threads. In this situation, the developer
should think about a different task-creation approach, such as creating tasks in parallel
or switching to larger tasks to fully utilize all available threads.

FIRE. Finally, we want to examine how our approach allows task execution to be rep-
resented in call trees using a real-world example. The Flexible Image Retrieval Engine
(FIRE) [4] was developed by the Human Language Technology and Pattern Recogni-
tion Group of RWTH Aachen University. FIRE is used to compare k query images to
an image database, identifying those images that are close to the query images. The first
parallelization of the FIRE code used nested parallelism with two levels [15]. Here, we
are using a modified version using tasking instead. For every query image, a separate
task is created. Inside these tasks, every comparison of a query picture and one ele-
ment of the database constitutes another task. This approach is a bit more flexible than
the nested OpenMP version since every thread can work on any task. For nested par-
allelism, it was necessary to assign a fixed number of threads to the inner regions. Our
test case requires searching for two query images in a database of 1000 images.

Similar to the approach used for the kernel benchmarks, we instrumented the
task-based FIRE code and generated an OTF2 trace using Score-P. After applying our
post-processing tool, however, we analyzed the resulting trace files using a prototype of
the automatic trace analyzer of Scalasca [8] which is capable of handling OTF2 traces.
The analysis result is shown in the CUBE display in Figure 8. The left column shows

Performance Analysis Techniques for Task-Based OpenMP Applications 205

Fig. 6. Vampir screenshot illustrating how too finely grained tasks can be detected. The task cre-
ation (!$omp task) regions consume more time than the task execution (task X Y) regions.

Fig. 7. Vampir screenshot illustrating how a task-creation bottleneck can be detected. Both time-
lines show the same program where a single thread creates tasks for all other threads. Top: With
four threads every worker thread is busy, executing tasks. Bottom: With 16 Threads some threads
are idle and wait for tasks from the master thread.

206 D. Schmidl et al.

different metrics derived from the trace data, with the visit count being selected,
whereas the right column shows the system tree, i.e., the machine, the process, and all
the threads being used. In the middle column, the call tree of the application is shown.

The call tree shows a parallel region in main -> Server::batch. Inside the
parallel region, there is a single construct where tasks are created and an implicit
barrier at the end where the tasks are executed. The visit count indicates that only two
tasks are created in the single construct, that is, one task for every query image. If we
take a closer look at the tasks executed in the implicit barrier, we can identify these two
tasks there (task 0 1 and task 0 2). All the other subtasks, which were created by
these two tasks, also appear under the implicit barrier, since the threads waiting in this
barrier executed them.

Overhead Analysis. After having shown that our approach is capable of identifying the
performance problems discussed in Section 3 and that it is also applicable to real-world
application codes, we now examine the measurement overhead introduced by our in-
strumentation. For this purpose, we use the Barcelona OpenMP Task Suite (BOTS) [5],
a set of benchmark codes for OpenMP tasking developed by Duran et al. We performed

Fig. 8. Scalasca analysis result of the FIRE code. The middle column shows the call tree of the
program run, with tasks being executed inside the implicit barrier at the end of a parallel region.

Performance Analysis Techniques for Task-Based OpenMP Applications 207

several test runs of these benchmarks on the Juropa1 cluster at Jülich Supercomputing
Centre, consisting of dual-sockel boards with Intel Xeon X5570 quad-core processors.
We compared the runtime of the instrumented and uninstrumented versions of the BOTS
benchmark codes using eight threads and determined the overhead introduced. The run-
time of each benchmark was measured 10 times and the minimum runtime out of these
runs is shown in Table 1.

Obviously, there are differences in the overhead observed. Some tests show nearly no
overhead, for example the strassen or sparselu benchmarks. Others, like sort,
floorplan of fft, show an overhead of 5-25%. This overhead can still be con-
sidered acceptable, since the measurements provide very detailed information on the
runtime behavior of the program. For some of the benchmarks, a negative overhead of
up to -9% (fib.omp-tasks-tied) was observed. Since this phenomenon was con-
sistent across all ten test runs, it is unlikely to be an artifact of run-to-run variation. Our
current assumption is that for very small tasks, the executing threads are competing for
some shared data structures in the OpenMP runtime. Since our instrumentation enlarges
the computational part of the task, lock competition effects might diminish, leading to a
reduction of the overhead time spent in the OpenMP runtime. However, since we cannot
investigate runtime internals, we are unable to proof this assumption.

As an exception, we observed an overhead of roughly 500% for the
fib.omp-tasks-if clause-tied benchmark. The tasks executed by the fib
code recursively spawn two child tasks, perform a taskwait, and then add the two

Table 1. Runtime of the BOTS benchmarks with eight Threads. The original runtime and the
runtime of the instrumented benchmark, when only OpenMP constructs were instrumented (no
function instrumentation by the compiler) is shown as well as the overhead due to instrumentation
in percent.

Original Runtime Instrumented Runtime Overhead
alignment.omp-tasks-tied 2,77 sec. 2,77 sec. -0,08%
fft.omp-tasks-tied 5,49 sec. 6,25 sec. 13,77%
fib.omp-tasks-if clause-tied 0,12 sec. 0,75 sec. 525,81%
fib.omp-tasks-tied 36,29 sec. 32,97 sec. -9,16%
floorplan.omp-tasks-if clause-tied 2,89 sec. 3,10 sec. 7,22%
floorplan.omp-tasks-tied 43,04 sec. 41,21 sec. -4,25%
health.omp-tasks-if clause-tied 3,24 sec. 4,00 sec. 23,51%
health.omp-tasks-tied 23,01 sec. 22,30 sec. -3,05%
nqueens.omp-tasks-if clause-tied 5,82 sec. 6,58 sec. 13,04%
nqueens.omp-tasks-tied 270,69 sec. 294,45 sec. 8,78%
sort.omp-tasks-tied 3,09 sec. 3,28 sec. 6,14%
sparselu.single-omp-tasks-tied 14,74 sec. 14,74 sec. 0,00%
strassen.omp-tasks-if clause-tied 25,85 sec. 25,76 sec. -0,36%
strassen.omp-tasks-tied 25,85 sec. 26,03 sec. 0,72%

1 http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/
JUROPA/JUROPA node.html

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/JUROPA_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/JUROPA_node.html

208 D. Schmidl et al.

values returned by the child tasks. In the if clause variant, tasks are only spawned up to
a fixed recursion depth, reducing the task creation overhead enormously. Our measure-
ment approach does not instrument tasks not being spawned, but we still instrument and
record all the taskwait statements for all recursion levels. However, the ratio of one
taskwait statement for one addition in the code is quite artificial and unrealistic for
real-world applications.

7 Conclusion

In this paper, we described potential performance problems that might emerge when
utilizing OpenMP tasks. To capture the constituents of these performance problems in
event traces, we presented the event model developed for OTF2, and described its imple-
mentation as part of the measurement infrastructure Score-P. Furthermore, a mechanism
to attribute performance metrics to tasks taking their possible interruption into account
has been prototyped as a post-processing tool which rewrites OTF2 event traces. With
this infrastructure in place, we were able to detect the previously specified performance
problems in synthetic benchmarks. Applying our approach to a real-world code like
FIRE, we could show how tasks can be represented in more complex call trees.

In the future, we plan to integrate our concepts fully into Score-P, omitting the trace
rewriting step, and into the supported performance analysis tools Vampir, Scalasca,
TAU and Periscope. By gaining experience with our approach, for example, by an-
alyzing real-world user codes, we will look out for typical task-related performance
problems that have not been addressed yet and whose detection and analysis might be
of value to the user.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., Tallent,
N.R.: HPCToolkit: Tools for performance analysis of optimized parallel programs. Concurr.
Comput.: Pract. Exper. 22, 685–701 (2010), http://hpctoolkit.org

2. An Mey, D., Biersdorff, S., Bischof, C., Diethelm, K., Eschweiler, D., Gerndt, M., Knüpfer,
A., Lorenz, D., Malony, A.D., Nagel, W.E., Oleynik, Y., Rössel, C., Saviankou, P., Schmidl,
D., Shende, S.S., Wagner, M., Wesarg, B., Wolf, F.: Score-P–A unified performance mea-
surement system for petascale applications. In: Proc. of the CiHPC: Competence in High
Performance Computing, HPC Status Konferenz der Gauß-Allianz e.V., Schwetzingen, Ger-
many, pp. 1–12. Springer (June 2010) (to appear)

3. OpenMP Architecture Review Board. OpenMP application progam interface version 3.0.
Technical report, OpenMP Architecture Review Board (May 2008)

4. Deselaers, T., Keysers, D., Ney, H.: Features for Image Retrieval: A Quantitative Compar-
ison. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004.
LNCS, vol. 3175, pp. 228–236. Springer, Heidelberg (2004)

5. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguadé, E.: Barcelona OpenMP Tasks Suite:
A Set of Benchmarks Targeting the Exploitation of Task Parallelism in OpenMP. In: 38th
International Conference on Parallel Processing (ICPP 2009), pp. 124–131. IEEE Computer
Society, Vienna (2009)

http://hpctoolkit.org

Performance Analysis Techniques for Task-Based OpenMP Applications 209

6. Eschweiler, D., Wagner, M., Geimer, M., Knüpfer, A., Nagel, W.E., Wolf, F.: Open Trace
Format 2 - The next generation of scalable trace formats and support libraries. In: Proc. of
the Intl. Conference on Parallel Computing (ParCo), Ghent, Belgium (2011) (to appear)

7. Fürlinger, K., Skinner, D.: Performance Profiling for OpenMP Tasks. In: Müller, M.S.,
de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS, vol. 5568, pp. 132–139.
Springer, Heidelberg (2009)

8. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca Perfor-
mance Toolset Architecture. Concurrency and Computation: Practice and Experience 22(6),
702–719 (2010)

9. Itzkowitz, M., Mazurov, O., Copty, N., Lin, Y.: An OpenMP runtime API for profiling. Tech-
nical report, Sun Microsystems, Inc. (2007)

10. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller, M.S.,
Nagel, W.E.: The Vampir Performance Analysis Tool Set. In: Tools for High Performance
Computing, pp. 139–155. Springer (July 2008)

11. Lin, Y., Mazurov, O.: Providing Observability for OpenMP 3.0 Applications. In: Müller, M.S.,
de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS, vol. 5568, pp. 104–117.
Springer, Heidelberg (2009)

12. Lorenz, D., Mohr, B., Rössel, C., Schmidl, D., Wolf, F.: How to Reconcile Event-Based
Performance Analysis with Tasking in OpenMP. In: Sato, M., Hanawa, T., Müller, M.S.,
Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132, pp. 109–121.
Springer, Heidelberg (2010)

13. Mohr, B., Malony, A.D., Shende, S.S., Wolf, F.: Design and prototype of a performance tool
interface for OpenMP. The Journal of Supercomputing 23(1), 105–128 (2002)

14. Shende, S., Malony, A.D.: The TAU Parallel Performance System. International Journal of
High Performance Computing Applications 20(2), 287–331 (2006)

15. Terboven, C., Deselaers, T., Bischof, C., Ney, H.: Shared-Memory Parallelization for
Content-based Image Retrieval. In: ECCV 2006 Workshop on Computation Intensive Meth-
ods for Computer Vision (CIMCV), Graz, Austria (May 2006)

Task-Based Execution of Nested OpenMP

Loops�

Spiros N. Agathos��, Panagiotis E. Hadjidoukas,
and Vassilios V. Dimakopoulos

Department of Computer Science, University of Ioannina
P.O. Box 1186, Ioannina, Greece, GR-45110
{sagathos,phadjido,dimako}@cs.uoi.gr

Abstract. In this work we propose a novel technique to reduce the
overheads related to nested parallel loops in OpenMP programs. In par-
ticular we show that in many cases it is possible to replace the code of a
nested parallel-for loop with equivalent code that creates tasks instead
of threads, thereby limiting parallelism levels while allowing more oppor-
tunities for runtime load balancing. In addition we present the details of
an implementation of this technique that is able to perform the whole
procedure completely transparently. We have experimented extensively
to determine the effectiveness of our methods. The results show the ac-
tual performance gains we obtain (up to 25% in a particular application)
as compared to other OpenMP implementations that are forced to suffer
nested parallelism overheads.

Keywords: OpenMP, nested parallelism, runtime system, tasks, work-
sharing constructs.

1 Introduction

OpenMP has become one of the most popular models for programming shared-
memory platforms and this is not without good reasons; just to name a few,
the base language (C/C++/Fortran) does not change, high-level abstractions
are provided, most low-level threading details need not be dealt with and all
these lead to ease of use and higher productivity. At the same time significant
performance benefits are possible. While the initial target of OpenMP was mostly
loop-level parallelism, its expressiveness expanded significantly with the addition
of tasks in V3.0 of the specifications [8], making it now suitable for a quite large
class of parallel applications.

Among the important features included from the very beginnings of OpenMP
was nested parallelism, that is the ability of any running thread to create its
own team of child threads. Although actual support for nested parallelism was

� This work has been supported in part by the General Secretariat for Research and
Technology and the European Commission (ERDF) through the Artemisia SMECY
project (grant 100230).

�� S.N. Agathos is supported by the Greek State Scholarships Foundation (IKY).

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 210–222, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Task-Based Execution of Nested OpenMP Loops 211

slow to appear in implementations, nowadays most of them support it in some
way. However, it is well known that nested parallelism, while desirable, is quite
difficult to handle efficiently in practice, as it easily leads to processor oversub-
scription, which may cause significant performance degradation.

The addition of the collapse clause in V3.0 of the specifications can be seen
as a way to avoid the overheads of spawning nested parallelism for certain nested
loops. However, it is not always possible to use the collapse clause since:

– the loops may not be perfectly nested

– the bounds of an inner loop may be dependent on the index of the outer
loop

– the inner loop may be within the extend of a general parallel region, not a
parallel-loop region.

The nature of OpenMP loops is relatively simple; they are basically do-all
structures with independent iterations, similar to what is available in other pro-
gramming systems and languages (e.g., the FORALL construct in Fortran 95,
the parallel for template in Intel TBB [10], or cilk for in Cilk++ [7]). What
is interesting is that some of these systems implement do-all loops without
spawning threads; they are mostly creating some kind of task set to perform the
job. Can an OpenMP implementation do the same? While this seems rather use-
less for first-level parallel-for loops (since there is no team of threads to execute
the tasks; only the initial thread is active), it may be worthwhile in a nested
level.

What we propose here is a novel way of avoiding nested parallel loop overheads
through the use of tasks. In particular, as our first contribution, we show that
it is possible to replace a second-level loop by code that creates tasks which
perform equivalent computations; the tasks are executed by the first-level team
of threads, completely avoiding the overheads of creating second-level teams of
threads and oversubscribing the system. We use the proposed method to show
experimentally the performance improvement potential.

At the same time we observe that our techniques require sizable code changes
to be performed by the application programmer, while they are not always appli-
cable for arbitrary loop bodies. Our second contribution is then to automate the
whole procedure and provide transparent tasking from the loop nests, which,
except the obvious usability advantages, does not have the limitations of the
manual approach. We present the implementation details of our proposal in the
context of the ompi [4] compiler. Finally, we perform a performance study using
synthetic benchmarks as well as a face-detection application that utilizes nested
parallel loops; all experimental results depict the performance gains attainable
by our techniques.

The rest of the paper is organized as follows: in Section 2 we present the
necessary code transformations that a programmer must perform in order to
produce tasking code equivalent to a nested loop region, for cases where this
is indeed possible. In Section 3 we discuss the transparent implementation of
the proposed methodology, which is applicable for general loops and schedules.

212 S.N. Agathos, P.E. Hadjidoukas, and V.V. Dimakopoulos

#pragma omp parallel num_threads(M)

{

#pragma omp parallel for\

schedule(static) num_threads(N)

for (i=LB; i<UB; i++) {

<body>

}

}

Fig. 1. Nested parallel loop example

#pragma omp parallel num_threads(M)

{

for (t=0; t<N; t++)

#pragma omp task

{

calculate(N,LB,UB,&lb,&ub);

for (i=lb; i<ub; i++)

<body>

}

#pragma omp taskwait

}

Fig. 2. Transformation outline of Fig.1

Section 4 contains our performance experiments and finally Section 5 concludes
this paper.

2 Proof of Concept: Re-writing Loop Code Manually

Consider the sample OpenMP code shown in Fig. 1. There exists a nested parallel
for-loop which will normally spawn a team of N threads for each of the M (first-
level) threads that participate in the outer parallel region1; a total of M ×N
threads may be simultaneously active executing second-level parallelism, leading
to potentially excessive system oversubscription.

Fig. 2 illustrates how the code of Fig. 1 can be re-written so as to make use
of OpenMP tasks instead of nested parallelism. The idea is conceptually simple:
each first-level thread creates N tasks (i.e. equal in number to the original code’s
second-level threads), and then waits until all tasks are executed. The code of
each task contains the original loop body; in order to perform the same work
the corresponding thread would perform, it is necessary to calculate the exact
iterations that should be executed, hence the calculate() call. In essence, the
user code must perform the same calculations that the runtime system would
perform for the case of Fig. 1 when handing out the iterations for the static
schedule.

Why does it work? The answer is that the original code creates implicit
tasks, according to OpenMP terminology, while the code in Fig. 2 emulates
them through the use of explicit tasking. Also, while implicit tasks may con-
tain barriers (which are not allowed within explicit tasks), there is no such a
possibility here since the implicit tasks in Fig. 1 only execute independent loop
iterations, and within the loop body there can not exist a barrier closely nested.

1 Even if num threads(M) is absent from the outer parallel construct, the standard
practice is to produce as many threads as the number of available processors. Assume,
without loss of generality, that they are equal to M .

Task-Based Execution of Nested OpenMP Loops 213

(a) GCC (b) ICC

Fig. 3. Performance of the proposed technique; speedup for a face detection algorithm
applied on an test image with 57 faces

As a result, the programs in Figs. 1 and 2 are equivalent, and no other changes
are required2, (we will return to this in the next section).

The important difference is that the code in Fig. 2 does not generate a second
level of parallelism. It utilizes the tasking subsystem of the compiler and uses
only the available M threads to execute the M × N tasks generated in total,
allowing for improved load balance opportunities. While task creation and exe-
cution is not without overheads, it remains mostly in the realm of the OpenMP
implementation to deal with it efficiently. On the other hand controlling a large
amount of threads resulting from nested parallel regions may not be possible, es-
pecially when the OpenMP runtime relies on kernel-level threads (such as posix
threads, which is a usual case).

We applied the above technique to the parallel version of a high-performance
face detection application. The application itself, the 16-core system as well as
the software configuration we used for our experiments are described in more
detail in Section 4 so we will avoid repeating it here. The important issue is
that the application contains a first-level parallel loop with unbalanced iteration
load. The number of iterations depends on the image size and is usually less than
14. Inside this loop, there exist multiple second-level parallel for-loops, which
clearly need to be exploited in order to increase performance. We re-wrote these
second-level loops according to the method described above. We compiled the
code with various OpenMP compilers and in Fig. 3 we show the execution results
obtained using GNU GCC and Intel ICC on a particular image containing 57
faces; similar results were observed with other compilers, too. In the figure, the
new application code is designated as l2task. The original code which utilized
nested parallelism is the l2true part. For comparison, we include the l2false

2 Actually one more change may be needed. Because in task regions the data sharing
attributes of referenced variables default to firstprivate while in parallel regions
they default to shared the user must explicitly set the data sharing attributes of all
referenced variables in the new task-based code.

214 S.N. Agathos, P.E. Hadjidoukas, and V.V. Dimakopoulos

bars which represent the original code executed with nested parallelism disabled
(i.e. the environmental variable OMP NESTED was set to false).

In the plots we vary the number of participating threads per level using up
to M = 12 threads for the first level and up to N = 8 threads in the second
level. For both compilers nested parallelism (l2true) boosts performance as
long as processors are not heavily oversubscribed. It can be seen that GCC’s
performance drops for large number of threads, while ICC seems to handle the
situation much better, although its performance approximately levels off after
the 8× 6 configuration. Our approach results in better speedups for more than
8 first-level threads in both cases, confirming the validity of our approach. The
lower performance shown in smaller configurations is expected since we only rely
on the few first-level threads while nested parallelism is able to utilize all the 16
processors in the system. Finally, in the larger configurations, notice that while
the l2true code utilizes all the 16 available processors (albeit with increased
overheads), we obtain better speedups with only 12 threads.

3 Overcoming Limitations by Automatic Transformation

In the previous section we presented the core idea behind our method. The pro-
posed code transformation was exemplified using a loop with a static schedule.
A similar approach can be used for any schedule type, e.g. dynamic or guided.
In these cases, however, the new code does not execute just one chunk of iter-
ations; it should rather be enclosed within another loop that asks continuously
for chunks of iterations. Calculating the iteration bounds becomes considerably
more complicated as it has to take into account the competition / synchroniza-
tion among tasks and keep some kind of state in order to hand out the iterations
in accordance to the loop schedule. In essence, the user has to re-implement a
mini worksharing runtime subsystem in order to cover all possible schedule con-
figurations. This is clearly both undesirable for the user and redundant as far
as the compiler is concerned, since all this functionality is already present in its
OpenMP runtime library.

Another important issue is that even if the user is determined to do all this
work, this will not be enough to make it applicable to all possible cases. The
reason is that within the loop body there may exist references to thread-specific
quantities, for example,

– the loop body may contain calls to omp_get_thread_num() and utilize the
thread’s ID in computations, or,

– the loop body may access threadprivate variables.

The above makes it almost impossible to move the loop’s body to independent
tasks, as there is no guarantee as to which threads will execute what tasks.

In conclusion, the manual code transformations need extensive programmer
involvement and are not applicable in the general case. On the other hand, all the
required functionality is already implemented within the runtime library of the
OpenMP system. Additionally, the runtime system has access to all the stored

Task-Based Execution of Nested OpenMP Loops 215

thread-specific quantities. It should thus be in position to support the required
transformations seamlessly. In this section we describe the actual implementation
of this idea in the runtime system of the ompi compiler.

3.1 The OMPi Compiler

ompi is an experimental, lightweight OpenMP infrastructure for C. It consists of
a source-to-source compiler and a runtime library. The compiler takes as input C
code with OpenMP directives and outputs multithreaded C code augmented with
calls to its runtime library, ready to be compiled by any standard C compiler. It
conforms to V3.0 of the specifications while also supporting parts of the recently
announced V3.1 [9].

Here we provide a brief description of portions of ompi and its tasking imple-
mentation that are necessary for our discussion. A more detailed description was
given by Agathos et al [1]. The compiler uses outlining to move the code residing
within a parallel or a task region to a new function and then, depending on
the construct, inserts calls to create a team of threads or a task to execute the
code of the new function.

The runtime system of ompi has a modular architecture in order to facilitate
experimentation with different threading libraries. In particular, it is composed
of two largely independent layers. The upper layer (ort) carries all required
OpenMP functionality by controlling a number of abstract execution entities
(EEs). The lower layer (eelib) is responsible for actually providing the EEs,
along with some synchronization primitives. A significant number of eelibs is
available. The default one is built on top of posix threads, while there also exists
a library which is based on high-performance user-level threads [6].

ompi provides a tasking layer within ort which can be used with any eelib,
although the runtime design allows for the latter to provide its own tasking func-
tionality, if desired. Each execution entity (thread) is equipped with a queue
(task queue) which is used to store all the pending tasks it has created.
ompi’s task scheduler is based on work stealing [2], whereby a thread that
has finished executing its own tasks tries to steal tasks from other threads’
task queues. After a new task is created, it is placed in the thread’s queue
until some thread decides to execute it. Task queues have fixed length, which
means that they can store up to a certain number of pending tasks. This number
is one of ompi’s runtime parameters, controlled through an environment vari-
able (OMPI_TASKQ_SIZE). The manipulation of task queues is based on a highly
efficient lock-free algorithm.

When a thread is about to execute its implicit task (parallel region), a new
task descriptor is allocated and the task code is executed immediately. When-
ever a thread reaches an explicit task construct, it can either allocate a new
task node and submit the corresponding task for deferred execution, or it can
suspend the execution of the current task and execute the new task immediately;
ompi’s default behavior is to choose the former. That is, it implements a breadth-
first task scheduling policy. It resorts to the second alternative (depth-first task
execution) when the task queue is full. In that case the thread enters throttling

216 S.N. Agathos, P.E. Hadjidoukas, and V.V. Dimakopoulos

mode, where every encountered task is executed immediately to completion. No-
tice that in this case the current task (although temporarily suspended in favor
of the new task) does not enter the task queue, so it can never be resumed by
another thread. In effect, all tasks are tied. Throttling mode is disabled when
30% of the task queue capacity becomes again available.

3.2 Automating the Process

In order to apply our technique we had to modify the code produced by the
ompi compiler as well as add new functionality to the runtime system. The
actual changes in the compiler were rather minimal and limited to the case
where a combined parallel for construct is encountered. An (identical) out-
lined function is still created which includes all the code needed for sharing the
loop iterations among threads. However, the call to create the team of threads
now includes a new parameter to let the runtime know that this is a combined
loop construct. This covers nested and orphaned construct cases alike.

The changes in the runtime system (ort) were more extensive. Whenever a
team of threads needs to be created, if the team is going to operate in nesting
level > 1 and the parallel region is actually coming from a combined parallel

for construct3, then, instead of threads, an equal number of explicit tasks are
created. However, as noted previously this is not enough to cover the cases where
the user code accesses thread-specific data.

ompi associates a control block (eecb) with every execution entity it man-
ages. The eecb contains everything ort needs in order to schedule the thread,
including the size of the team, the thread ID within the team, its parallel level
etc. The only thread-specific data not actually stored in a threads eecb are
threadprivate variables. These are allocated at the team’s parent control block
(in order to guarantee persistence across parallel regions, as required by the
OpenMP rules). The eecb makes them available through a pointer to the par-
ent eecb (thus a tree of eecbs is formed at runtime). In conclusion, everything a
running thread requires is serviced through its control block. Whenever a thread
starts the execution of a parallel region, ort assigns a new eecb to it, which is
later freed when the team is disbanded.

Based on the above, the main idea behind our implementation is that the
produced tasks try to mimic threads. Every task produced (instead of a thread)
when a nested combined parallel loop is encountered, carries a special flag along
with the ID number the corresponding thread would have. The tasks are inserted
as normal in the task queue of the outer-level thread that encountered the
nested construct. When such a task is scheduled for execution (either by the
same thread or a thief), the flag will cause the following actions:

– A new eecb is created, as would be done if a new nested thread was created
in the first place, updating the tree of eecbs correspondingly.

3 and if the user allows; a new environmental variable lets the user decide whether the
new technique should be applied or not.

Task-Based Execution of Nested OpenMP Loops 217

– The outer-level thread that is about to execute the task assumes temporarily
the new eecb and sets its thread ID equal to the ID stored within the task.

– The task becomes tied to this thread.

In essence, an outer level thread while executing the task in question, obtains
all the characteristics of the inner level thread that would be created normally.
As such it is able to handle thread-specific data accesses, overcoming all the
previously mentioned limitations. Notice for example that because the old con-
trol block of the thread remains intact in the tree, all information needed to
service runtime calls such as omp_get_level(), omp_get_active_level(), etc,
is readily available. When the task execution is finished, the temporary eecb
is freed and the thread resumes its original control block, continuing with its
normal operation.

3.3 Ordered

The above implementation is able to substitute a nested team of threads by
an equivalent set of tasks, for any OpenMP schedule type. However, one of
our initial concerns was the possible presence of the ordered directive. This
particular directive forces ordering dependencies among the iteration executors;
when the executors are threads there is no problem whatsoever but what about
tasks? Is there a possibility that particular task scheduling sequences lead to
deadlock? In all cases but one, the answer is no. This is because even if there
is only one thread available to execute the generated tasks, there will always be
at least one task active, advancing the iteration count and obtaining the next
chunk of iterations. For example, consider the case of dynamic schedules; if there
is a thread (task) blocked at an ordered directive then there must exist at least
one other thread that obtained the (sequentially) previous chunk; eventually the
latter will be executed and the turn of the former will come.

The single problematic case is the static schedule with specified chunk size.
Although it is a matter of implementation, the straightforward way of executing
it is by using a double loop; the outer loop iterates over the series of chunks while
the inner loop goes over the actual iterations of a particular chunk. As the loops
bounds are pre-calculated (since for this particular schedule they are not subject
to competition among the executors), imposing an ordered directive may lead
to a deadlocked situation, depending on how tasks are implemented / scheduled.

To see this consider the case of having M (level-1) threads to execute N > M
tasks generated by the level-2 parallel loop. When all threads have gone through
their first chunk of iterations, they will be blocked at an ordered region waiting
for their next chunk’s turn. However, if tasks are executed on a run-to-completion
basis, the remainingN−M tasks will never be given a change to run and advance
the iteration count, resulting in a deadlock.

ompi by default executes tasks to completion and is thus susceptible to this
problem. The engineering solution we currently follow is to avoid the problem
altogether: if the loop schedule is static and an explicit chunk size is given and
an ordered clause is present, nested parallelism is generated as usual, instead of

218 S.N. Agathos, P.E. Hadjidoukas, and V.V. Dimakopoulos

delay() {

volatile i, a;

for (i=0; i < TASK_LOAD; i++)

a += i;

}

testpfor() {

for(i=0; i <= REPS; i++)

#pragma omp parallel for num_threads(N)

for (j=0; j < N; j++)

delay();

}

main() {

#pragma omp parallel for num_threads(16)

for (i=0; i < 16;t++)

testpfor();

}

Fig. 4. Code for synthetic benchmark

tasks. We are currently working on the support for OpenMP V3.1 which includes
a new taskyield directive. Yielding upon an imminent ordered block should
allow the possibility of other tasks to be executed and thus make progress.

4 Evaluation

We have run several experiments in order to evaluate the performance gains of
our implementation. We report here the results obtained on a server with two
8-core AMD Opteron 6128 CPUs operating at 2GHz and a total of 16GB of main
memory. The operating system is Debian Squeeze based on the 2.6.32.5 Linux
kernel. In our experiments, apart from ompi, we had the following compilers
available: GNU gcc (version 4.4.5-8), Intel icc (version 12.1.0) Oracle suncc
(version 12.2). We used “-O3 -fopenmp” flags for gcc, “-fast -openmp” flags for
icc and “-fast -xopenmp=parallel” flags for suncc. gcc with the “-O3” flag
was used as a back-end compiler for ompi. For all compilers, the default runtime
settings were used. These settings also happened to produce the best results.

4.1 Synthetic Benchmark

Our first experiments aim at showing directly the performance gains possible
with our methodology in the given system. A synthetic benchmark is used, mea-
suring the time taken to execute the code shown in Fig. 4. This code is based on
the EPCC microbenchmarks [3] which are used to estimate OpenMP construct
overheads. We instead measure the total execution time. In the main function
a team of 16 threads is created and each thread calls the testpfor() function
once. In there a thread executes REPS times a combined parallel for direc-
tive, creating N second-level threads, each one performing work, the granularity

Task-Based Execution of Nested OpenMP Loops 219

(a) TASK LOAD = 500 (b) N = 4 second-level threads

Fig. 5. Synthetic benchmark execution times

of which is controlled by the TASK LOAD parameter in the delay() function. We
used REPS= 100000 and varied the TASK LOAD value.

We present the results in Fig. 5. In Fig. 5(a) we consider fine grain work
(TASK LOAD = 500) and vary the number of second-level threads in order to
stress the runtime system. The growing number of threads results in consider-
able overheads that are clearly depicted in the total execution time. Because
ompi avoids creating nested parallelism, it exhibits remarkable stability in its
performance, which is only very slightly affected by an increasing number of
generated tasks.

In figure 5(b) we fixed the number of second-level threads to N = 4 and varied
the work granularity, with TASK LOAD values in the range of 1K to 150K. We use
a logarithmic scale due to the wide range of timing results. As expected, for finer
grain work our methodology results in significantly faster execution as compared
to other compilers. As the work gets coarser, all compilers tend to exhibit similar
performance since the task or thread manipulation stops being the performance
bottleneck and execution time is dominated by the actual computation. For the
coarser load, all compilers execute the benchmark in about 2000 sec.

4.2 Face Detection

As already mentioned in Section 2, we also experimented with a full face detec-
tion application, which has been described in detail by Hadjidoukas et al [5]. It
takes as input an image and discovers the number of faces depicted in it, along
with their position in the image. The code has been parallelized with OpenMP,
utilizing nested parallelism in order to obtain better performance than what is
possible with only single-level loop parallelization.

In Fig. 6 we outline the structure of the main loop nest of the application.
Initially the image is subsampled repeatedly to create a pyramid of different
scales, the number of which is dependent on the images size and is usually less
than 14. For each scale (this is the first-level loop) a series of convolutional
filters and non-linear subsamplings are applied through the 3 nested for-loops.

220 S.N. Agathos, P.E. Hadjidoukas, and V.V. Dimakopoulos

for each scale { /* level 1 */

for i=1 to 4 {

<body1>

}

for i=1 to 14 {

<body2>

}

for i=1 to 14 {

<body3>

}

}

Fig. 6. Structure of the main computational loop

(a) For the class57 image (b) For processing all images

Fig. 7. Face detection results (for each compiler the speedups are calculated in com-
parison to its own sequential execution time)

Because of the load imbalance between the different image scales, the level-1
loop is parallelized through a parallel for directive with dynamic schedule,
while for the inner loops a parallel for directive with a static schedule is
applied.

In our experiments we vary the number of participating threads per paral-
lelism level; a configuration of M × N threads uses M (≤ 12) threads in the
first level and N (≤ 8) threads for the second level. In Fig. 7 we show the per-
formance obtained when each of the available compilers was used. We do not
include results for single-level parallelization (N = 1) as they were inferior to
what we obtained when N > 1. For these plots the speedups for each com-
piler are calculated in relation to the sequential execution time obtained by the
same compiler so that we can show how it behaves under nested parallelism. In
Fig. 7(a) the application used as input a particularly demanding image which
contains 57 faces (the ‘class57’ image from the CMU test set [11]). For obtaining
the results in Fig. 7(b) we processed a series of 161 images with varying sizes
and faces, one after the other.

Task-Based Execution of Nested OpenMP Loops 221

Table 1. Best execution times and comparison with ompi when processing all images
(speedup is calculated in comparison to the best sequential time overall)

Compiler Sequential Best Parallel Speedup ompi
time (sec) configuration time (sec) improvement

gcc 37.329 6x4 9.210 3.219 25.5%

icc 37.282 12x8 9.163 3.236 25.2%

suncc 29.656 4x4 8.778 3.378 21.9%

ompi 37.329 16x8 6.853 4.327 –

All compilers, except ompi are using nested parallelism, spawning M × N
threads, while ompi uses only M threads that execute M × N tasks in total.
The results lead to similar conclusions in both plots. For the 4× 4 configuration
ompi exhibits the lowest speedup due to the few (4) available threads while
all other compilers employ 16 threads in total, potentially exploiting all the 16
cores of the system. On the other hand, when 8 or more threads are used in
the first level, ompi exhibits the highest speedups. icc exhibits the second best
performance and when processing image class57 it attains stable speedups for
all thread configurations. For the set of all images icc exhibits its best behavior
when 4 × 4 threads are used, while for more threads synchronization overheads
cause poorer speedups. gcc get its best speedup for image class57 for 8 × 6
threads, whereas for set of all images maximum speedup is shown for 6 × 4
threads. suncc exhibits similar execution times compared to icc for both inputs
in all thread configurations. The lower speedups shown for suncc are due to its
shorter sequential execution times compared to all other compilers.

For completeness, in Table 1 we report the best performance attained by
each compiler based on absolute execution times. For each compiler, we include
the time required for a sequential run, the best observed configuration and the
parallel execution time for that configuration. Speedups are then calculated in
relation to the lowest sequential execution time, which is achieved using the
suncc compiler. The last column demonstrates the performance improvement
ompi achieves in comparison to each compiler, based on the parallel execution
times. Notice that for a fair comparison we also considered the 16×N configu-
ration, which, although not advantageous for the rest of the compilers, it gives
ompi the chance to utilize all the available processors. It should be clear that
our task-based technique outperforms the conventional implementations which
utilize nested thread teams.

5 Conclusion

We have proposed a novel technique for executing nested parallel for loops
using tasks instead of threads, thereby avoiding the overheads associated with
nested parallelism in such cases. The technique we present is potentially ap-
plicable to any OpenMP runtime system that supports tasking and requires
almost no changes in the compiler-produced code. It has been implemented in

222 S.N. Agathos, P.E. Hadjidoukas, and V.V. Dimakopoulos

the framework of the OMPi compiler and has been shown to offer significant
performance gains. While in this work we were mostly interested in showing the
performance potential, as a future work we envisage an adaptive application of
our technique. In particular, we believe that appropriate decisions can be made
at runtime, depending on the number of active threads; if the active threads are
much less than the available system processors it may be more appropriate to
create nested threads instead of tasks.

Our technique can be applied to nested parallel sections regions without
any alterations, as well, and this is currently under implementation in OMPi. It is
not applicable, though, to general nested parallel regions. This is because parallel
regions produce threads that may contain barrier synchronizations, which are not
allowed within tasks. Nevertheless, it seems plausible to investigate this further
and we are actually working on this possibility within our psthread library
[6,1]; this library is based on user-level threads that are used to instantiate both
OpenMP threads and OpenMP tasks.

References

1. Agathos, S.N., Hadjidoukas, P.E., Dimakopoulos, V.V.: Design and Implementa-
tion of OpenMP Tasks in the OMPi Compiler. In: Proc. of 15th Panhellenic Con-
ference on Informatics, PCI 2011, pp. 265–269. IEEE, Kastoria (2011)

2. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An efficient multithreaded runtime system. J. Parallel Distrib. Com-
put. 37(1), 55–69 (1996)

3. Bull, J.M.: Measuring Synchronisation and Scheduling Overheads in OpenMP. In:
Proc. of 1st European Workshop on OpenMP, EWOMP, pp. 99–105. Lund, Sweden
(September 1999)

4. Dimakopoulos, V.V., Leontiadis, E., Tzoumas, G.: A portable C compiler for
OpenMP V.2.0. In: Proc. of 5th European Workshop on OpenMP, EWOMP 2003,
Aachen, Germany, pp. 5–11 (September 2003)

5. Hadjidoukas, P.E., Dimakopoulos, V.V., Delakis, M., Garcia, C.: A high-
performance face detection system using OpenMP. Concurrency and Computation:
Practice and Experience 21, 1819–1837 (2009)

6. Hadjidoukas, P.E., Dimakopoulos, V.V.: Nested Parallelism in the OMPi
OpenMP/C Compiler. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par
2007. LNCS, vol. 4641, pp. 662–671. Springer, Heidelberg (2007)

7. Leiserson, C.E.: The Cilk++ concurrency platform. J. of Supercomputing 51, 244–
257 (2012)

8. OpenMP ARB: OpenMP Application Program Interface V3.0 (May 2008)
9. OpenMP ARB: OpenMP Application Program Interface V3.1 (July 2011)

10. Reinders, J.: Intel threading building blocks, 1st edn. O’Reilly & Associates, Inc.,
Sebastopol (2007)

11. Rowley, H., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE
Trans. on Pattern Analysis and Machine Intelligence 20, 23–28 (1998)

SPEC OMP2012 — An Application Benchmark

Suite for Parallel Systems Using OpenMP

Matthias S. Müller1,2, John Baron1,4, William C. Brantley1,3, Huiyu Feng1,4,
Daniel Hackenberg1,2, Robert Henschel1,5, Gabriele Jost1,3, Daniel Molka1,2,

Chris Parrott1,6, Joe Robichaux1,7, Pavel Shelepugin1,8,
Matthijs van Waveren1,9, Brian Whitney1,10,

and Kalyan Kumaran1,11

1 SPEC High Performance Group
info@spec.org

http://www.spec.org/hpg
2 Center for Information Services and High Performance Computing (ZIH),

Technische Universität Dresden, 01062 Dresden, Germany
3 Advanced Micro Devices, Inc.
4 Silicon Graphics International

5 Indiana University
6 Portland Group

7 IBM
8 Intel Corporation

9 Fujitsu Systems Europe Ltd
10 Oracle

11 Argonne National Laboratory

Abstract. This paper describes SPEC OMP2012, a benchmark devel-
oped by the SPEC High Performance Group. It consists of 15 OpenMP
parallel applications from a wide range of fields. In addition to a perfor-
mance metric based on the run time of the applications the benchmark
adds an optional energy metric. The accompanying run rules detail how
the benchmarks are executed and the results reported. They also cover
the energy measurements. The first set of results provide scalability on
three different platforms.

Keywords: Benchmark, OpenMP, SPEC, Energy Efficiency.

1 Introduction

The Standard Performance Evaluation Corporation’s (SPEC) High Performance
Group (HPG) has a long history of producing industry standard benchmarks for
comparing high performance computer systems and accompanying software. The
group’s members comprise leading HPC vendors, national laboratories and uni-
versities from across the globe. The group currently has two science application
benchmark suites based on the OpenMP and MPI programming models. The

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 223–236, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

224 M.S. Müller et al.

targeted HPC systems include multi-CPU shared memory servers to distributed
memory clusters.

The current effort is aimed to refresh the OpenMP benchmark suite that was
released in 2001. This initial suite, SPEC OMP2001, comprising a collection of
OpenMP based applications was released in June, 2001. An update containing
a larger dataset was released in June, 2002. Until February 2012 more than
370 results were published for this benchmark clearly proving the popularity
of the benchmark. SPEC OMP2001 was based on version 1.0 of the OpenMP
specifications, that were released in 19981. Most of the applications were based
on codes from SPEC CPU2000 with added OpenMP directives. In the mean-
time OpenMP has evolved to version 3.0, containing new directives and clauses.
The increased use of OpenMP, the evolution of the standard and the fact that
typical applications will change over time in terms of algorithms, physics and
language standards, provided the motivation to develop a new SPEC benchmark
for OpenMP.

The development of the benchmark suite included identifying candidate ap-
plications from different science domains making use of a variety of OpenMP
directives in different programming languages and, very importantly, stressing
various hardware features on a node including the processor core and various
memory hierarchies. Like any SPEC benchmark suite the new suite comes within
a harness with scalable data sets for running and validating. The harness and
the benchmark has been built and tested on a variety of platforms. The suite
comes with run rules that result submitters must adhere to. The run rules are
similar to other current SPEC benchmarks. Run times are compared to a refer-
ence architecture and the geometric mean of all run time ratios is computed to
calculate the performance metric.

Another interesting facet of this benchmark suite is the addition of an exper-
imental power metric. The HPG worked closely with the Power group within
SPEC to make use of their work on power analyzers, power daemons, and run
rules for making power measurements to include a power metric. Result submis-
sions are encouraged to make power measurements along with performance, but
it is not mandatory to do so.

Some aspects of the benchmark are still under development. This paper de-
scribes the almost final version. For definite performance numbers the official
benchmark reports at the SPEC web page should be consulted once the bench-
mark is released. The next section discusses a few of the principles that guided
the development of SPEC OMP2012. In Section 3, we provide a short description
of the applications contained in the benchmarks. Following that we describe how
we added energy measurements to the suite. In Section 5 we describe the initial
results and discuss the scalability achieved on the benchmarks. Section 6 puts
the benchmark in perspective compared to related work. Section 7 concludes the
paper.

1 Fortran Version 1.0 was released Oct. 1997, C/C++ Version 1.0 was released Oct.
1998.

SPEC OMP2012 225

2 Design and Principles of SPEC OMP2012

2.1 General Design

The SPEC OMP2012 benchmark and its accompanying run rules has been
designed to fairly and objectively benchmark and compare high-performance
computing systems runing OpenMP applications. The rules help ensure that
published results are meaningful, comparable to other results, and reproducible.
SPEC believes that the user community benefits from an objective series of tests
which serve as a common reference.

A SPEC OMP2012 result is an empirical report of performance observed when
carrying out certain computation- and communication-intensive tasks. It is also
a declaration that the observed level of performance can be obtained by others.
Finally it carries an implicit claim that the performance methods it employs
are more than just “prototype” or “experimental” or “research” methods; it is
a claim that there is a certain level of maturity and general applicability in its
methods.

The SPEC HPG committee reviews SPEC OMP2012 results for consistency
and strict adherence to the run rules, whether enough details have been supplied
for reproduction of the results, and whether only allowable optimizations have
been used. If the committee accepts the results, they get published on the SPEC
website. On the website, HPC users can view the results and compare them to
results of others.

2.2 Run Rules

The run rules cover the building and running of the benchmark and the disclosure
of the benchmark results. The SPEC OMP2012 benchmark suite supports base,
peak and power metrics. The overall performance metric is the geometric mean
of the run time ratios of the system under test with the run time of a reference
machine. The reference system chosen for this benchmark suite is a Sun Fire
X4140 with two AMD Opteron 2384 processors (quad-core ‘Shanghai” , 2.7 GHz)
with 32 GB RAM.

A set of Perl tools is supplied to build and run the benchmarks and automati-
cally validate the output. To produce publishable results, these SPEC tools must
be used. This helps ensure reproducibility of results by requiring that all indi-
vidual benchmarks in the suite be run in the same way and that a configuration
file be available that defines the optimizations used.

The optimizations used are expected to be safe and it is expected that system
and compiler vendors would endorse the general use of these optimizations by
customers who seek to achieve good application performance.

For the base metric, the same compiler must be used for all modules of a
given language within a benchmark suite. Except for portability flags, all flags
or options that affect the transformation process from SPEC-supplied source to
completed executable must be the same for all modules of a given language.
For the peak metric, each module can be compiled with a different compiler

226 M.S. Müller et al.

and a different set of flags or options. In addition, for the peak metric, source
code changes are allowed. Changes to the directives and source are permitted to
facilitate generally useful and portable optimizations, with a focus on improving
scalability. Changes in algorithms are not permitted.

As used in these run rules, the term ”run-time dynamic optimization” (RDO)
refers broadly to any method by which a system adapts to improve performance
of an executing program based upon observation of its behavior as it runs. Run
time dynamic optimization is allowed, subject to the provisions that the tech-
niques must be generally available, documented, and supported.

Differences between Run Rules of OMP2001 and of OMP2012. The
main differences between the OMP2001 and OMP2012 relate to power measure-
ments, feedback driven optimization and run time dynamic optimization.

Powermeasurementsmake their entry in the HPGbenchmarks with OMP2012.
They were not supported in OMP2001. Thus the OMP2012 run rules devote quite
a few rules to the measurement of power.

Feedback driven optimization relates to allowing the compiler to do two passes
through the code: the first pass generates feedback information, and this in-
formation is used in the second pass for optimization purposes. This type of
optimization was allowed for in OMP2001, but in OMP2012 it is not allowed.

Run time dynamic optimization is a concept that makes its entry in OMP2012.
Run time dynamic optimization is allowed in OMP2012, subject to the provisions
that the techniques must be generally available, documented, and supported.

3 Description of the Benchmark

The following section should provide a short description of the applications used
in SPEC OMP2012. This includes the scientific area of each code and contains
a brief explanation of the specific workload. Table 1 contains an overview of
all applications providing the programming language, the code size, memory
demand, the amount of OpenMP usage and the code area. For reporting the
lines of code (LOC) we use the Unified CodeCount tool (UCC) [15] and report
the logical SLOC.

350.md. The IU-MD code performs molecular dynamics simulations of dense
nuclear matter such as occurs in Type II supernovas [4], the outer layers
of neutron stars, and in white dwarf stars. The IU-MD code simulates fully
ionized atoms via a classical screened Coulomb interaction. An exponen-
tial screening factor models the screening effect of the background electron
gas. These simulations have been used to study a number of properties of
dense matter in compact stellar objects, such as chemical and phase separa-
tion, thermal conductivity, phase diagrams, and mechanical properties. The
benchmark performs a short run of a realistic 27648 ion system consisting
of carbon and oxygen ions.

351.bwaves. 351.bwaves [11] numerically simulates blast waves in three dimen-
sional transonic transient laminar viscous flow. The initial configuration of

SPEC OMP2012 227

Table 1. Application key facts

Code Memory LOC Language OMP OMP Area
MB call direc-

sites tives
350.md 5 1,768 Fortran 14 3 Molecular Dynamics
351.bwaves 22,800 876 F77 29 1 Computational Fluid

Dynamics
352.nab 618 11,485 C 60 5 Molecular Modeling
357.bt331 11,188 2,331 Fortran 44 5 Computational Fluid

Dynamics
358.botsalgn 156 1,277 C 4 3 Sequence Alignment
359.botsspar 7,179 209 C 8 4 LU factorization
360.ilbdc 16,482 978 Fortran 7 1 Lattice Boltzmann
362.fma3d 5,205 19,681 F90 142 5 Finite Element Method
363.swim 6,490 212 Fortran 14 3 Finite Difference
367.imagick 1,733 96,810 C 312 6 Image Processing
370.mgrid331 13,972 806 Fortran 20 5 Multi-Grid Solver
371.applu331 14,884 1,782 Fortran 81 9 PDE/SSOR
372.smithwa 177 2,561 C 22 3 Optimal Pattern

Matching
376.kdtree 119 287 C++ 4 3 Sorting and Searching
377.DROPS2 5,340 8,350 C++ 55 5 Finite Element Method

the blast waves problem consists of a high pressure and density region at
the center of a cubic cell of a periodic lattice, with low pressure and den-
sity elsewhere. Periodic boundary conditions are applied to the array of
cubic cells.The algorithm implemented is an unfactored solver for the im-
plicit solution of the compressible Navier-Stokes equations using the bicon-
jugate gradient stabilized (Bi-CGstab) algorithm, which solves systems of
non-symmetric linear equations iteratively. The code is made OpenMP par-
allel with 29 parallel do directives.

352.nab. 352.nab is based on Nucleic Acid Builder (NAB), which is a molecular
modeling application that performs the types of floating point intensive cal-
culations that occur commonly in life science computation [13]. The calcula-
tions range from relatively unstructured ”molecular dynamics” to relatively
structured linear algebra.

357.bt331. BT is a simulated CFD application that uses an implicit algorithm
to solve 3-dimensional (3-D) compressible Navier-Stokes equations. The fi-
nite differences solution to the problem is based on an Alternating Direction
Implicit (ADI) approximate factorization that decouples the x, y and z di-
mensions. The resulting systems are Block-Tridiagonal of 5x5 blocks and are
solved sequentially along each dimension. This version is derived from the
NPB 3.3.1 benchmark suite [9].

228 M.S. Müller et al.

358.botsalgn. This application is part of the Barcelona OpenMP tasks suite [6].
All protein sequences from an input file are aligned against every other se-
quence using the Myers and Miller algorithm. The outer loop is parallelized
with an omp for worksharing directive with tasks created inside this parallel
loop. This allows the implementation to break the iterations when the num-
ber of threads is large compared to the number of iterations and when there
is imbalance. To be able to use untied tasks several global variables, used as
temporal space, were moved to local variables.

359.botsspar. This application is part of the Barcelona OpenMP tasks suite [6].
An LU matrix factorization over sparse matrices is computed. A first level
matrix is composed by pointers to small submatrices that may not be allo-
cated. Due to the sparseness of the matrix, a lot of imbalance exists. Matrix
size and submatrix size can be set at execution time. While a dynamic sched-
ule can reduce the imbalance, a solution with task-based parallelism seems
to obtain better results. In each of the sparseLU phases, a task is created for
each block of the matrix that is not empty.

360.ilbdc. The benchmark kernel is geared to the collision-propagation routine
of an advanced 3-D lattice Boltzmann flow solver using a two-relaxation-
time (TRT-type) collision operator for the D3Q19 model [2]. The benchmark
kernel is not a complete flow solver. Lattice Boltzmann flow solvers use a
velocity-discrete Boltzmann equation and discretize space and time in such a
way that an explicit (finite difference) numerical scheme with Euler forward
time-stepping is obtained. The resulting fluid mechanical results satisfy the
incompressible athermal Navier-Stokes equations with second order accu-
racy. The specific data structures of the benchmark kernel use a list-based
”sparse” data representation resulting in indirect data access patterns. How-
ever, especially for flow in porous media or blood flow simulations, such data
structures are highly beneficial to efficiently recover the complex geometries.

362.fma3d. FMA-3D [10] is a finite element method program designed to simu-
late the inelastic, transient dynamic response of three-dimensional solids and
structures subjected to impulsively or suddenly applied loads. As an explicit
code, the program is appropriate for problems where high rate dynamics or
stress wave propagation effects are important. In contrast to programs using
implicit time integration algorithms, the program uses a large number of
relatively small time steps, with the solution for the next configuration of
the body being explicit (and inexpensive) at each step. To further reduce
the computational effort, the program has a complete implementation of
Courant subcycling in which each element is integrated with the maximum
time step permitted by local stability criteria. More than 100 parallel do
directives are contained in the code and the threadprivate directive is used.

363.swim. Swim is a weather prediction benchmark program for comparing
the performance of current supercomputers [16]. The swim code is a finite-
difference approximation of the shallow-water equations and is known to be
memory bandwidth limited. It computes on a 1335x1335 area array of data
and iterates over 512 timesteps.

SPEC OMP2012 229

367.imagick. ImageMagick[1] is a software suite to create, edit, compose, or
convert bitmap images. It can read and write images in a variety of formats
(over 100) including DPX, EXR, GIF, JPEG, JPEG-2000, PDF, PhotoCD,
PNG, Postscript, SVG, and TIFF. Use ImageMagick to resize, flip, mirror,
rotate, distort, shear and transform images, adjust image colors, apply var-
ious special effects, or draw text, lines, polygons, ellipses and Bzier curves.

370.mgrid331. MG demonstrates the capabilities of a very simple multigrid
solver in computing a three dimensional potential field. This version is de-
rived from the NPB 3.3.1 benchmark suite [9]. The code makes use of the
OpenMP directives for loop parallelism, including the collapse clause to par-
allelize a nested loop construct.

371.applu331. Solution of five coupled nonlinear PDE’s, on a 3-dimensional
logically structured grid, using an implicit psuedo-time marching scheme,
based on two-factor approximate factorization of the sparse Jacobian matrix.
This scheme is functionally equivalent to a nonlinear block SSOR iterative
scheme with lexicographic ordering. Spatial discretization of the differential
operators is based on second-order accurate finite volume scheme. Insists on
the strict lexicographic ordering during the solution of the regular sparse
lower and upper triangular matrices. As a result, the degree of exploitable
parallelism during this phase is limited to O(N**2) as opposed to O(N**3) in
other phases and it’s spatial distribution is non-homogenous. This fact also
creates challenges during the loop re-ordering to enhance the cache locality.
This version is derived from the NPB 3.3.1 benchmark suite [9].

372.smithwa. The C program runSequenceAlignment is derived from the Mat-
lab program RUN sequenceAlignment that was written by Bill Mann (for-
merly of MIT Lincoln Labs) and distributed as version 0.6 of DARPA SSCA
#1. Whereas the Matlab code is serial, the C code has been modified for
parallel execution under OpenMP, following the suggestions given in the
”parallelization.txt” file that is included in the version 0.6 distribution.
The program operates as follows. A similarity or ”scoring” matrix is gen-
erated by genSimMatrix.c. Two random sequences of amino acid codons
are generated by genScalData.c, and then six pre-determined verification
sequences are embedded therein. Then in Kernel 1 each OpenMP thread
compares sub-sequences of the two sequences via the local-affine Smith-
Waterman algorithm, and builds a list of the best alignments and their
endpoints. Next, in Kernel 2A each OpenMP thread or MPI process be-
gins at each endpoint and follows each alignment back to its start point,
and outputs a list of the best alignments and their start points, endpoints
and codon sequences. Kernel 2B merges the results of Kernel 2A from all of
the OpenMP threads or MPI processes, and outputs a final list of the best
alignments.

376.kdtree. The program builds a k-d tree using random coordinate points,
then searches the k-d tree for points that are proximate to each point in
the tree. The build phase is single threaded, but the search phase is multi-
threaded using the OpenMP task directive. The points that are sorted into
the tree are defined using a random number gener ator to generate either 3D

230 M.S. Müller et al.

(x,y,z) or 4D (x,y,z,w) points that are stored one large 2 D array, xyzw. In
order to build the k-d tree, four index arrays xi, yi, zi and wi are created then
heap-sorted using the x, y, z and w coordinate data from the xyzw array.
The k-d tree is a balanced tree, and is built in O[n*log(n)] time. Once the
k-d tree is built, the k-d tree is walked to visit each point, and that point
is used as a query point to search the k-d tree for all other points that lie
within a specific radius of that query point. The default value for that radius
is one-tenth the range of the random numbers. The total number of points
found by using each point successively as a query point, as well as the total
execution time, are reported. Note that the walking and searching of the k-d
tree imply two recursive traversals of the k-d tree.

377.DROPS. This research is partially supported by the Deutsche Forschungs-
gemeinschaft (DFG) within SFB 540 (Model-based experimental analysis
of kinetic phenomena in fluid multi-phase reactive systems). The software
aims at simulating flows consisting of two phases, e.g., an oil drop in water
[Bertakis:2010] or a liquid film flowing downward a wall [Gross:2005]. To this
end, it employs advanced numerical techniques. The computational domain
is discretized by a hierarchy of tetrahedral grids which is adaptively mod-
ified while evolving in simulation time. The level set method captures the
interface between both phases. Additionally, the numerical techniques in-
clude iterative solvers based on multigrid methods, extended finite elements
to represent the pressure jump at the interface, and a continuum surface
force term for treating the surface tension. A detailed description of the nu-
merical techniques is given in [Gross:2006] [Gross:2007]. The shared-memory
parallelization of the submitted DROPS code is based on an OpenMP for
reducing the runtime of the main computational expensive parts, i.e., setting
up the non-linear equation systems and their solution.

4 Energy Efficiency

Our approach to add energy measurements is based on the SPEC Power and
Performance Benchmark Methodology that describes in detail how testers can
integrate a power metric into their benchmarks. Following this methodology al-
lows OMP2012 to use the PTDaemon. The PTDaemon can control a large set of
professional power analyzers and temperature sensors. Its feature set is rich and
includes aspects such as range checking, uncertainty calculation, multichannel
measurements and more.

Moreover, the methodology requires users to follow strictly defined run rules
(e.g. regarding the power measurement setup) and to provide detailed docu-
mentation of their benchmark configuration (e.g. hardware/software setup). For
example, it is required that the power analyzer be supported by the measurement
framework and be calibrated once a year. The temperature needs also to be mea-
sured and a minimum temperature is required to prevent people from reducing
the power consumption by using air that is colder than a typical environment.

The energy consumption has been added as a separate and optional met-
ric. It compares the energy consumption of each benchmark with the energy

SPEC OMP2012 231

Fig. 1. Average and maximum power consumption of the different applications on the
reference system compared to idle and linpack power

consumption of the reference machine. An energy metric of 2 means that a
benchmark run on a given system consumes half of the energy (in Joules) of the
benchmark run on the reference machine. This could for example be caused by

– the system under test having the same power consumption but twice the
performance (half the benchmark runtime) of the reference machine, or

– the system under test delivering the same performance as the reference ma-
chine at half the power consumption.

We also report the average and maximum power consumption of each benchmark
run. To measure idle power we include a 15-minute idle period, of which we re-
port the last 5 minutes as the average idle power consumption of the system.
Fig. 1 shows the power consumption on the reference system. The average power
consumption varies between 82% and 97% of the reported max power consump-
tion. This reported max power consumption is smaller than the value reported
by the vendor. It is also smaller than the power consumed by a power intensive
benchmark like Linpack. A large difference between the value for average and
max power of the individual benchmarks indicates high variations of the power
consumption in time. Fig. 2 shows the power consumption of 359.botspar as an
example.

5 First Scalability Results

Figure 3 shows the scaling of the benchmarks on a four socket systemwith Opteron
6274 processors. The results were obtained with PGI compilers version 12.3 and
the flags: -mp -fast -Mvect=sse -Mipa=fast,inline -Msmartalloc. The pro-
cessors have 16 cores with 2.2GHz base frequency and up to 2.5ĠHz with turbo.
Each 16-core processor is implemented as multi-chip-modules that consist of two

232 M.S. Müller et al.

Fig. 2. Power consumption of 359.botspar over time on a two socket system with Intel
Xeon X5670 processors

8-core dies. Each die has a shared last level cache and an integrated dual-channel
DDR3 memory controller. Therefore, the 64 cores in the 4 socket system are par-
titioned into 8 NUMA domains with 8 cores each. The eight cores of each die are
composed of four dual-core modules. The two cores in a module share the floating
point unit as well as L2 and instruction caches.

The scaling with the number of utilized modules (FPUs) is depicted in Fig-
ure 3a. While execution resources scale linearly, the level 3 cache capacity and the
memory bandwidth are shared by all modules. Despite this some benchmarks
scale almost linear, i.e. are not constrained by the shared resources. On the
other hand 363.swim mirrors the memory bandwidth scaling. In between there
are some more or less memory bound benchmarks. 376.kdtree does not show any
scaling as the used compiler version does not support the nested tasking in this
benchmark.

Figure 3b shows how the performance increases if multiple sockets (dies) are
used. In this case execution resources aswell as last level cache capacityandmemory
bandwidth scale linearly. Therefore, most benchmarks achieve better scaling. This
is most noticeable with 363.swim that scales linearly with the increasing memory
bandwidth. 350.md, 358.botsalgn, 370.mgrid331, 371.applu331, and 372.smithwa
scale almost linearly as well. The speedup of 351.bwaves, 352.nab, 357.bt331, and
360.ilbdc is slightly lower. However, with more than 85% parallel efficiency when
going from 1 to 4 sockets, they still scale very well. 359.botsspar does not scale as
well as it doeswithin a single die. This behavior could be caused by frequent remote
memory accesses that cause contention on the processor interconnects. To a lesser
degree this applies to 362.fma3d as well. 377.DROPS2 does not scale well with the
number of sockets. 376.kdtree again is limited by the nested task issue of the PGI
12.3 compilers.

SPEC OMP2012 233

(a) single die, 2 threads per module (b) multiple sockets, 8 threads per die

Fig. 3. Scaling of SPEC OMP2012 on an quad socket Opteron 6274 system (367.imag-
ick is missing because of segmentation faults that occur with the used compiler version)

Fig. 4a shows up to which thread counts the benchmarks scale on an SGI
Altix UV. Therefore, measurements are omited if the runtime increases when
more threads are used. 350.md scales almost linearly up to 512 threads on that
architecture. 372.smithwa shows good speedup up to 384 threads. 358.botsalgn
scales almost linearly up to 128 threads. 363.swim, 370.mgrid, and 351.bwaves
scale well up to 256 threads with approximately 75% parallel efficiency. They also
achieve more than 50% parallel efficiency with 512 threads. While 363.swim and
370.mgrid did not show any sign of being affected by inter-socket communication
on the four socket Opteron system, the more complex topology in the SGI Altix
UV seems to affect their scalability. 359.botsspar and 376.kdtree also achieve
a high parallel efficiency with up to 256 threads, but do not scale well beyond
that. The scalability of the remaining benchmarks is seriously constricted on
the Altix UV system. Their parallel efficiency is below 50% with 256 threads.
357.bt331, 360.ilbdc, and 362.fma3d show noticeable reductions in runtime when
using more than 256 threads. The runtime of 352.nab and 367.imagick reduces
marginally when going from 256 to 512 threads.

Fig. 4b shows the scalability up to 128 threads on a Sun Fire E25K system
from Oracle. The parallel efficiency of 128 threads compared to 16 threads is in
the 50% to 100% range with two exceptions: 372.smithwa shows slightly super-
linear speedup while 371.applu331 does not scale well on that architecture.

6 Related Work

There are numerous efforts to create benchmarks for different purposes. The goal
of SPEC OMP2012 is to create an application benchmark consisting of codes us-
ing OpenMP. There are only a few efforts that share this goal. One of the bench-
mark that is in wider use is the NAS Parallel Benchmark [9]. They consist of a

234 M.S. Müller et al.

(a) SGI Altix UV (b) Sun Fire E25K

Fig. 4. Scalability of SPEC OMP2012 on large SMP systems

small set of programs designed to help evaluate the performance of parallel super-
computers. The benchmark, which is derived from computational fluid dynamics
(CFD) applications, consists of five kernels and three pseudo-applications. The
Rodinia Benchmark [5] is a collection of different algorithms with implementa-
tions for CUDA, OpenCL and OpenMP. The EPCC Microbenchmarks [3] focus
on measuring the overhead of specific directives of OpenMP.

The need to add energy consumption measurements into benchmarks has
been identified by various communities. The Green5002 list uses Linpack as
workload and combines the achieved performance with an extrapolated energy
consumption to an energy efficiency metric [7]. Since June 2008 the Top5003 list
also contains the overall power consumption of the system.

The Open Systems Group within SPEC has created SPECpower ssj2008 [12],
a benchmark with a concise power measurement methodology and precise run-
rules. Instead of an HPC workload it combines a Java server workload at dif-
ferent load levels from 0 to 100% and measures the power consumption of the
server. An extensive list of benchmark results from all major server vendors is
publicly available on the SPEC website, thus making it easy to compare the en-
ergy efficiency of e.g. CPUs or system designs. The power consumption of SPEC
MPI2007 was also analyzed [8], but unlike the work presented here, power is not
a standardized feature in the SPEC MPI2007 benchmark.

There are also a number of application benchmark suites developed and
published by SPEC. Characteristics of the SPEC benchmark suites CPU2006,
OMP2001 [17,14], and OMP2012 are shown in Table 2. The provided runtimes
are for execution on the different reference machines.

The benchmark suites differ in the systems or applications they focus on.
SPEC CPU2006 focuses on serial applications. SPEC OMPM2001 focuses on

2 http://www.green500.org
3 http://www.top500.org

http://www.green500.org
http://www.top500.org

SPEC OMP2012 235

Table 2. Comparison of CPU2006, OMPM2001, OMPL2001, and OMP2012

Characteristic CPU2006 OMPM2001 OMPL2001 OMP2012
Max. working set 0.9/1.8 GB 1.6 GB 6.4 GB 23 GB
Memory needed 1 or 2 GB 2 GB 7 GB 32 GB
Single runtime 20 min 90 min 4 hrs 60 min
Language C, C++, F95 C, F90 C, F90 C, C++, F95
Focus Single CPU < 16 cores > 16 cores > 8 cores
System type Desktop MP workstation SMP SMP
Total runtime 288 hours 34 hours 72 hours > 72 hours
Run modes speed and rate parallel speed parallel speed parallel speed
Applications 29 11 9 15
Iterations Median of 3 Worst of 2, Worst of 2, Median of 3

median of ≥3 median of ≥3
Source mods Not allowed Allowed Allowed Allowed
Reference system 1 CPU 4 CPU 16 CPU 8 cores

300 MHz 350 MHz 300 MHz 2.7 GHz

multiprocessing workstations with less than 16 CPUs, while SPEC OMPL2001
focuses on systems with more than 16 CPUs.

7 Summary and Conclusion

SPECOMP2012 is a benchmark suite, which uses real parallel applications which
use OpenMP. They stress the whole system under test, e.g. compiler, run time
system, operating system, memory, and CPU. The selected applications come
from a wide field of scientific areas, and also cover a significant range of OpenMP
usage, including features added with OpenMP 3.0. The benchmark suite comes
with an elaborate set of run rules, which help ensure that published results are
meaningful, comparable to other results, and reproducible. The energy metric
is another important feature. Its value increases with the growing cost of the
energy. SPEC also has an extensive review procedure, which is followed before
results are published on the public SPEC web site.

This unique combination of properties distinguishes SPEC OMP2012 from
other OpenMP benchmark suites. SPEC believes that the user community
benefits from an objective series of realistic tests, which serve as a common
reference.

Acknowledgements. This work has been partially funded by the Bundesmin-
isterium für Bildung und Forschung via the Spitzencluster CoolSilicon (BMBF
13N10186) and the research project eeClust (BMBF 01IH08008C). This re-
search used resources of the Argonne Leadership Computing Facility at Argonne
National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under contract DE-AC02-06CH11357.

236 M.S. Müller et al.

References

1. Image magick homepage (March 2012), http://www.imagemagick.org
2. Axner, L., Bernsdorf, J., Zeiser, T., Lammers, P., Linxweiler, J., Hoekstra, A.G.:

Performance evaluation of a parallel sparse lattice Boltzmann solver. Journal of
Computational Physics 227(10), 4895–4911 (2008)

3. Mark Bull, J., O’Neill, D.: A microbenchmark suite for OpenMP 2.0. In: Proceed-
ings of the Third Workshop on OpenMP (EWOMP 2001), pp. 41–48 (2001)

4. Caballero, O.L., Horowitz, C.J., Berry, D.K.: Neutrino scattering in heterogeneous
supernova plasmas. Phys. Rev. C 74, 065801 (2006)

5. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.-H., Skadron, K.:
Rodinia: A benchmark suite for heterogeneous computing. In: Proceedings of the
2009 IEEE International Symposium on Workload Characterization, IISWC 2009,
pp. 44–54. IEEE Computer Society, Washington, DC (2009)

6. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguadé, E.: Barcelona OpenMP
tasks suite: A set of benchmarks targeting the exploitation of task parallelism in
OpenMP. In: ICPP, pp. 124–131. IEEE Computer Society (2009)

7. Feng, W.-C., Cameron, K.W.: The green500 list: Encouraging sustainable super-
computing. Computer 40(12), 50–55 (2007)

8. Hackenberg, D., Schöne, R., Molka, D., Müller, M.S., Knüpfer, A.: Quantifying
power consumption variations of HPC systems using SPECMPI benchmarks. Com-
puter Science – Research and Development 25, 155–163 (2010), doi:10.1007/s00450-
010-0118-0

9. Jin, H., Frumkin, M., Yan, J.: The OpenMP implementation of NAS parallel bench-
marks and its performance. Technical report, NASA (1999)

10. Key, S.W., Hoff, C.C.: An improved constant membrane and bending stress shell
element for explicit transient dynamics. Computer Methods in Applied Mechanics
and Engineering 124(12), 33–47 (1995)

11. Kremenetsky, M., Raefsky, A., Reinhardt, S.: Poor Scalability of Parallel Shared
Memory Model: Myth or Reality? In: Sloot, P.M.A., Abramson, D., Bogdanov,
A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS,
vol. 2660, pp. 657–666. Springer, Heidelberg (2003), 10.1007/3-540-44864-0 68

12. Lange, K.-D.: Identifying shades of green: The SPECpower benchmarks. Com-
puter 42, 95–97 (2009)

13. Macke, T.J., Case, D.A.: Modeling Unusual Nucleic Acid Structures, ch.25, pp.
379–393. American Chemical Society (1997)

14. Müller, M.S., Kalyanasundaram, K., Gaertner, G., Jones, W., Eigenmann, R.,
Lieberman, R., van Waveren, M., Whitney, B.: SPEC HPG benchmarks for high
performance systems. International Journal of High Performance Computing and
Networking 1(4), 162–170 (2004)

15. Nguyen, V., Deeds-Rubin, S., Tan, T., Boehm, B.: A sloc counting standard. Tech-
nical report, University of Southern California: Center for Systems and Software
Engineering (2007)

16. Sadourny, R.: The Dynamics of Finite-Difference Models of the Shallow-Water
Equations. Journal of Atmospheric Sciences 32, 680–689 (1975)

17. Saito, H., Gaertner, G., Jones, W., Eigenmann, R., Iwashita, H., Lieberman, R.,
van Waveren, M., Whitney, B.: Large System Performance of SPEC OMP2001
Benchmarks. In: Zima, H.P., Joe, K., Sato, M., Seo, Y., Shimasaki, M. (eds.) ISHPC
2002. LNCS, vol. 2327, pp. 370–379. Springer, Heidelberg (2002)

http://www.imagemagick.org

An OpenMP 3.1 Validation Testsuite

Cheng Wang, Sunita Chandrasekaran, and Barbara Chapman

University of Houston,
Computer Science Dept, Houston, Texas
{cwang35,sunita,chapman}@cs.uh.edu
http://www2.cs.uh.edu/~hpctools

Abstract. Parallel programming models are evolving so rapidly that it
needs to be ensured that OpenMP can be used easily to program mul-
ticore devices. There is also effort involved in getting OpenMP to be
accepted as a de facto standard in the embedded system community.
However, in order to ensure correctness of OpenMP’s implementation,
there is a requirement of an up-to-date validation suite. In this paper,
we present a portable and robust validation testsuite execution environ-
ment to validate the OpenMP implementation in several compilers. We
cover all the directives and clauses of OpenMP until the latest release,
OpenMP Version 3.1. Our primary focus is to determine and evaluate
the correctness of the OpenMP implementation in our research compiler,
OpenUH and few others such as Intel, Sun/Oracle and GNU.

We also aim to find the ambiguities in the OpenMP specification
and help refine the same with the validation suite. Furthermore, we also
include deeper tests such as cross tests and orphan tests in the testsuite.

Keywords: OpenMP, validation suite, task constructs, tests.

1 Introduction

OpenMP [5] has become the de facto standard in shared-memory parallel pro-
gramming for C/C++ and Fortran. Defined by compiler directives, library rou-
tines and environment variables, the OpenMP API is currently supported by a
variety of compilers from open source community to vendors (for e.g. GNU [18],
Open64 [1], Intel [11], IBM [8]). OpenMP ARB ratified the version OpenMP
3.0 in 2008 and 3.1 in 2011. The main difference between versions 2.5 (released
in 2005) and versions 3.0/3.1 is the introduction of the concept of tasks and
the task construct. The task-based programming model enables the developers
to create explicit asynchronous units of work to be scheduled dynamically by
the runtime. This model and its capabilities address the previous difficulties in
parallelizing applications employing recursive algorithms or pointers based data
structures [2]. OpenMP version 3.1 was a minor release that offered corrections
to the version 3.0. The main purpose of OpenMP version 3.1 is to improve effi-
ciency for fine grain parallelism for tasks by adding final and mergeable clauses
along with other extensions such as taskyield.

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 237–249, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www2.cs.uh.edu/~hpctools

238 C. Wang, S. Chandrasekaran, and B. Chapman

The goal of the work in this paper is to build an efficient framework, i.e. a
testing environment, that will be used to validate the OpenMP implementations
in OpenMP compilers. OpenMP is evolving with the increase in the number
of users, as a result, there is an absolute need to check for completeness and
correctness of the OpenMP implementations. We need to create an effective
testing environment in order to achieve this goal. In prior work, we collaborated
with colleagues at University of Stuttgart, to create validation methodologies
for OpenMP versions 2.0 and 2.5 reported in [16,17] respectively. We have built
our current framework on top of the older one. We have improved the testing
environment and now the OpenMP validation testsuite covers all tests for the
directives and clauses in OpenMP 3.1. This testing interface is portable, flexi-
ble and offers an user-friendly framework that can be tailored to accommodate
specific testing requirements. Tests could be easily added/removed adhering to
the changes in the OpenMP specification in future. In our current work we have
ensured that the bugs in the previous validation testsuite have been fixed.

The organization of this paper is as follows: In Section 2 we describe the design
and execution environment of the OpenMP validation suite. Section 3 shows the
implementations and basic ideas for each of the tests. Here, we mainly focus
on the concept of OpenMP tasks. In Section 4 we evaluate the validation suite
using several open-source and vendor compilers. We discuss the related work in
Section 5. Finally, we present the conclusion and the future work in Section 6.

2 The Design of an OpenMP Validation Suite

The basic idea in the design of the OpenMP validation suite is to provide short
unit tests wherever possible and check if the directive being tested has been im-
plemented correctly. For instance, the parallel construct and its corresponding
clauses such as shared are tested for correctness. A test will fail if the corre-
sponding feature has not been implemented correctly. We refer to such typical
tests as normal tests.

Basically a number of values are calculated using the directive being tested
and we compare the result with a known reference value. There is one type of
failure called performance failure, in this case, even if the implementation of a
directive is incorrect, it is not directly related to the correctness factor but it
would just degrade the performance, for e.g. the untied clause in task construct.
So it is at times not quite enough to only rely on the result calculated, but would
require carefully written tests to check for the correctness of the implementation
in a given compiler.

In a given code base, there might be more than a few directives being used at
a given time. However, it is a challenge to check for correctness for a particular
directive of interest, for instance loop, among several others. To solve this issue,
we perform another test methodology called cross test, to validate only the di-
rective under consideration. If this directive is removed from the code base, the
output of the code will be incorrect.

Besides, we also need to ensure that the directive is serving its purpose. For
instance lets consider a variable declared as shared. We also know that the

An OpenMP 3.1 Validation Testsuite 239

Fig. 1. The OpenMP Validation Suite Framework

variable is shared by default irrespective of explicitly declaring it as shared.
Let us replace the shared with a private clause or any other clause which does
not contain the functionality of the directive being tested, which in this case is
shared. As a result, the cross test will check for the output result, which has to
be incorrect because the variable is no longer being shared.

Moreover, in order to ensure that the directive being tested also gets exe-
cuted correctly when ”orphaned” from the main function, we creat a new test
methodology named as orphan test. In the orphan test, the directive to be tested
is placed into a children procedure which is called by the main function.

All test results will be statistically analyzed. Each test will be repeated mul-
tiple times. This is to ensure that the directive being tested functions correctly
at all times. In order to estimate the probability that a test is passed acciden-
tally we take the following approach: if nf is the number of failed cross tests
and M the total number of iterations, the probability of that test will fail is
p =

nf

M . Thus the probability that an incorrect implementation passes the test
is pa = (1 − p)M , and the certainty of test is pc = 1 − pa, i.e. the probability
that a directive is validated.

Currently the validation suite contains more than 70 unit tests covering all of
the clauses in the OpenMP version 3.1 release. Each of the unit tests has three
types of tests: normal, cross, and orphan test. One of the challenges is that if
we implement each of these tests separately, the entire suite would be ad-hoc
and error-prone. It would also be challenging to manage and analyze the results
generated out of so many tests. So we created an execution environment that
will manage these several tests methodically.

Figure 1 shows the proposed framework i.e. the execution environment of the
OpenMP validation suite. In this framework, we create a test directive pool that
will consist of templates for the unit tests for each of the OpenMP directives be-
ing tested. This framework has been developed mainly using the Perl scripting
language. We use this framework to parse through the several templates that
have been written for each of the OpenMP directives. Executing this framework
will deliver the source code for the three types of tests, namely normal, cross
and orphan tests. The normal tests will be the first test to be performed in this
process. If this particular test fails then there is no need to perform the cross and

240 C. Wang, S. Chandrasekaran, and B. Chapman

orphan tests. As a result, the corresponding source codes for cross and orphan
tests will not be generated. This has been carefully crafted into our framework.
If the normal tests pass successfully, the framework will automatically generate
source codes for the other two tests. Note that we had to create only one template
in order to generate source codes for all the three types of tests. As a result we
emphasize that the framework adopts an automatic approach while creating the
different kinds of tests necessary to check the correctness of the directives. There
is very little manual labor involved in this process. Once these different tests
have been created, our framework will compile and execute them as and when
necessary. There is also a result analyzer component as part of the framework
that will collect the results from each of the unit tests once all of them have
completed execution. These results will be in the form of log files and the analyzer
component will help in generating a complete report in a user-friendly manner.

The advantages that the execution environment offers are as follows:

– Creates one template for each test that is sufficient to automatically generate
source codes for the three types of tests, i.e normal, cross and orphan tests.

– Creates bug reports that consist of adequate information about the compiler
being used for testing purposes. The report will consist of version numbers of
the compiler, build and configuration options, optimization flags used, and
so on.

– Launches all the tests automatically, although individual tests will be per-
formed only for those directives that are being tested.

– Generates reports that are easy to read and understand. These user-friendly
reports will contain information about the bugs that have been identified.
The details of the compilation and execution are also provided.

The framework is easy to use and maintain. It is quite flexible enough to accom-
modate changes as and when OpenMP specification gets updated with newer
features.

3 Implementation

In this section, we discuss the unit tests for the OpenMP directives and clauses.
We primarily discuss the unit tests for the directives and clauses in the latest
versions of OpenMP (version 3.0 and 3.1). Previous publications [16,17] also
discusses some of the ideas for the unit tests used to evaluate OpenMP Version
2.5 directives and clauses.

3.1 Directives and Clauses

Task is a new construct in OpenMP 3.0. It provides a mechanism to create ex-
plicit tasks. Tasks could be executed immediately or delayed by any assigned
thread. Figure 2 shows the test for OpenMP task construct. The basic idea is to

An OpenMP 3.1 Validation Testsuite 241

generate a set of tasks by a single thread and execute them in a parallel region.
The tasks should be executed on more than one threads. In the cross test, the
task pragma is removed. As a result, every task is executed only by one thread
since the tasks are in the single region hence delivering incorrect outputs.

int test_omp_task(){
int i, result =0;
int tids[NUM_TASKS];

/∗ I n i t i l i z a t i o n ∗/
for (i=0; i<NUM_TASKS; i++)
{
tids[i]=0;

}

#pragma omp parallel
{
#pragma omp single
{
for (i = 0; i < NUM_TASKS; i++){
int myi = i;
#pragma omp task
{
sleep (SLEEPTIME);
tids[myi]= omp_get_thread_num();

} /∗ end of omp task ∗/
} /∗ end of for ∗/

} /∗ end of s ing l e ∗/
} /∗end of pa ra l l e l ∗/

/∗now check for r e su l t s∗/
for (i = 1; i < NUM_TASKS; i++){
if (tids[0] != tids[i])
return (result = 1);

}

return result;
} /∗ end of te st ∗/

Fig. 2. Test for task construct

int test_omp_taskwait(){
int i, result = 0;
int array[NUM_TASKS];

/∗ I n i t i a l i z a t i on ∗/
for(i=0;i<NUM_TASKS;i++)
{

array[i]=0;
}

#pragma omp parallel
{
#pragma omp single
{
for (i = 0; i < NUM_TASKS; i++){
int myi = i;
#pragma omp task
array[myi] = 1;

} /∗ end of for ∗/

#pragma omp taskwait

/∗check for a l l tasks f i n i sh ∗/
for (i = 0; i < NUM_TASKS; i++){
if (array[i] == 0)
result ++;

} /∗end of for∗/
} /∗ end of s ing l e ∗/

} /∗end of pa ra l l e l ∗/

return (result == 0);
}/∗end of te st∗/

Fig. 3. Test for taskwait construct

The taskwait construct specifies a synchronization point where the current
task is suspended until all children tasks have completed. Figure 3 shows the
code listing for testing the taskwait construct. A flag is set to each element of
an array when a set of tasks are generated. If taskwait executes successfully, all
elements in the array should be 1; otherwise, the elements should be zero. In the
cross test, we remove the taskwait construct and check the value of elements in
the array. Obviously, part of the values will be 0 while others will be 1 if there is
no ”barrier” at the completion of tasks. Consequently, it is able to validate the
taskwait construct.

The shared clause defines a set of variables that could be shared by threads
in parallel construct or shared by tasks in task construct. The basic idea to
test this would be to update a shared variable i.e. say i by a set of tasks and

242 C. Wang, S. Chandrasekaran, and B. Chapman

check whether it could be shared by all tasks. If this is the case, the value of the
shared variable should be equal to number of tasks. In the cross test, we check if
the result is wrong without the shared clause. As discussed in section 2, shared
is replaced by the firstprivate clause, i.e., the attribute of i is changed to
firstprivate. As a result, the value of i should be incorrect.

As opposed to shared clause, the private clause defines that variables are
private to each task or thread. The idea of testing for the private clause is first
to generate a set of tasks as before and each task to update a private variable,
e.g., local sum. We compare the value with the known sum which is calculated
in prior. In the cross test, we remove the private clause from task construct.
Thus the private variable now becomes shared by default. As a result, we see
that the value of local sum should be incorrect.

The firstprivate clause is similar to private clause except that the new
item list has been initialized prior to encountering the task construct. As a
result, in contrast to private clause, we do not need to initialize variables de-
clared as firstprivate. Consequently, test for the firstprivate is similar to
the test for the private clause except that variable local sum does not need
to be initialized to zero in the task region. In the cross test, the firstprivate
is removed and hence the variable local sum becomes a shared variable once
again.

The default clause determines the data-sharing attributes of variables im-
plicitly. In C language, the variables declared as default is shared, while in
Fortran from OpenMP 3.0, variables are declared as private or firstprivate
by default. In addition, OpenMP 3.0 also allows variables to not have any prede-
termined data-sharing attribute declared as none. As a result, the idea of testing
for default clause is actually the same as to testing for shared clause in C and
firstprivate, private in Fortran.

The if clause controls the task implementation as shown in Figure 4. If the if
is evaluated as false then the encountering task will be suspended and a new task
is executed immediately. The suspended task will be resumed until the generated
task is finished. The idea of testing the if clause is to generate a set tasks by
a single thread and pause it immediately. The parent thread shall set a counter
variable that the task which is paused, will consider when the thread wakes up.
If the if clause is evaluated to false, the task region will be suspended and the
counter variable count will be assigned to 1. When the task region resumes, we
evaluate the value of the counter variable count. In the cross test, we removed
if clause from the task construct, since if is evaluated to true by default, the
task region will be executed immediately and the counter variable count will
still be 0.

In OpenMP 3.0, task is executed by a thread of the team that generated it
and is tied by default, i.e., tied tasks are executed by the same thread after the
suspension. If it is the untied clause, any thread could resume the task after
the suspension. The implementation of untied clause introduces newer kinds
of compiler bugs and performance failures. But degradation in performance is
unrelated to the implementation of the clause and its correctness. Testing such

An OpenMP 3.1 Validation Testsuite 243

int test_omp_task_if(){
int count , result =0;
int cond_false=0;

#pragma omp parallel
{
#pragma omp single
{
#pragma omp task if (cond_false)
{
sleep (SLEEPTIME_LONG);
result = (0 == count);

} /∗ end of omp task ∗/

count = 1;
} /∗ end of s ing l e ∗/

} /∗end of pa ra l l e l ∗/

return result;
} /∗end of te st ∗/

Fig. 4. Test for if clause

int omp_for_collapse(){
int is_larger = 1;
#pragma omp parallel
{
int i,j,my_islarger = 1;
#pragma omp for schedule (static

,1) collapse (2) ordered
for (i = 1; i < 100; i++)
for (j =1; j <100; j++)
{
#pragma omp ordered
my_islarger = my_islarger &&

check_i_islarger(i);
} /∗ end of for ∗/

#pragma omp critical
is_larger=is_larger &&

my_islarger;
} /∗end of pa ra l l e l ∗/
return (is_larger);

} /∗end of te st∗/

Fig. 5. Test for collapse clause

features require the test codes to be very carefully created, since if the clause
is not implemented correctly, it will not yield incorrect results but just degrade
the performance and moreover the purpose of validating the feature will not be
achieved.

We discuss the idea of testing the untied as shown in figure 6. First we create a
set of tasks in parallel region and save the thread id executed by each task. Then
we suspend all the tasks using taskwait. We send half of the threads into a busy
loop so that at least half of the other idle threads could be rescheduled to the
suspended tasks. We compare the thread number before and after the suspension.
Since task is untied, tasks could be rescheduled by different threads after the
suspension. In the cross test, the untied clause is removed so that the tasks are
tied with the execution thread by default. As a result, the thread number before
and after the task suspension should be the same delivering incorrect result.

Besides the tasking model, OpenMP 3.0 defines a new collapse clause for
the loop construct that handles perfectly nested multi-dimensional loops. This
clause collapses the loops, it is associated with, into one single loop,and controls
the number of loops associated with one larger loop. The order of iterations in
the collapsed loop is determined by the order of iterations in all loops before the
collapse. If no collapse clause specified, the only loop that is associated with
the loop construct is the one that immediately follows the construct.

Figure 5 shows the basic idea of testing the collapse clause that binds the
two loops together. With the ordered clause, both i and j loops should be
executed in order, thus the variable my islarger should be TRUE. In the cross
test, since the collapse clause is removed, the only loop that is associated with
the loop construct is the i loop, the one that immediately follows the construct
which should be executed in parallel and the only j loop will be executed in
order. Consequently, the result will be incorrect.

244 C. Wang, S. Chandrasekaran, and B. Chapman

int omp_task_untied(){
int init_tid [NUM_TASKS];
int curr_tid [NUM_TASKS];
int i, count =0;

/∗ I n i t i a l i z a t i o n ∗/
for(i=0; i<NUM_TASKS; i++){

init_tid [i]=0;
curr_tid [i]=0;

}

#pragma omp parallel
{
#pragma omp single
{
for (i = 0; i < NUM_TASKS; i++){
int myi = i;
#pragma omp task untied
{
init_tid [myi]=

omp_get_thread_num();
#pragma omp taskwait
if ((init_tid [myi]%2) == 0){
sleep (SLEEPTIME);
curr_tid [myi]=

omp_get_thread_num();
} /∗end of i f ∗/

} /∗ end of omp task ∗/
} /∗ end of for ∗/

} /∗ end of s ing l e ∗/
} /∗ end of pa ra l l e l ∗/

for(i=0;i<NUM_TASKS;i++){
if(curr_tid [i]!=init_tid [i])
count ++;

} /∗end of for∗/
return count;

} /∗end of te st ∗/

Fig. 6. Test for untied clause

int test_omp_task(){
int tids[NUM_TASKS];
int i, error=0;

/∗ I n i t i l i z a t i o n ∗/
for(i=0; i<NUM_TASKS; i++)
{

tids[i]=0;
}

#pragma omp parallel
{
#pragma omp single
{
for (i = 0; i < NUM_TASKS; i++){
int myi = i;
#pragma omp task

final(myi >= THRESH)
{
sleep (SLEEPTIME);
tids[myi]=

omp_get_thread_num();
} /∗ end of omp task ∗/

} /∗ end of for ∗/
} /∗ end of s ing l e ∗/

} /∗end of pa ra l l e l ∗/

/∗check tid beyond thresh∗/
for (i =THRESH;i < NUM_TASKS;i++)
{
if (tids[THRESH] != tids[i])
error ++;

}

/∗check for i f r e su l t i s correct ∗/
return (error ==0);

} /∗ end of te st ∗/

Fig. 7. Test for final clause

3.2 Support for OpenMP 3.1

OpenMP version 3.1 was released in July 2011, a refined and extended version
of OpenMP 3.0. The taskyield construct defines an explicit scheduling point,
i.e. the current task is suspended and switched to a different task in the team.
The test for the taskyield construct is similar to the test for untied clause,
except for the taskwait begin replaced by taskyield.

The OpenMP 3.1 also provides a new features to reduce the task generation
overhead by using final and mergeable clause. If the expression in final clause
is evaluated to true, the task that is generated will be the final task and no further
tasks will be generated. Consequently, it reduces the overheads of generating new
tasks, especially in recursive computations such as in Fibonacci series when the
Fibonacci numbers are too small. The test for the final clause is shown in
Figure 7. The idea is to set a threshold and if the task number is larger to the
threshold, that particular task will be the final task. We save the task id to check
if the task larger to the threshold is executed by the same task.

An OpenMP 3.1 Validation Testsuite 245

In OpenMP 3.1, the atomic is refined to include the read, write, update,

and capture clauses. The read along with the construct atomic guarantee an
atomic read operation in the region. For instance x is read atomically if v=x.
Similarly, the write forces an atomic write operation. It is much more lightweight
using read or write separately than just using critical. The update clause
forces an atomic update of an variable, such as i++, i–. If no clause is presented
at the atomic construct, the semantics are equivalent to atomic update. The
capture clause ensures an atomic update of an variable that also captures the
intermediate or final value of the variable. For example, if capture clause is
present then in v = x++, x is atomically updated while the value is captured by
v.

OpenMP 3.1 also extends the reduction clause to add two more operators:
max and min, that is to find the largest and smallest values in the reduction list
respectively.

For our tests, we use a common search/sort algorithm to discuss the reduction
clause and compare the results with a known reference value.

4 Evaluation

In this section, we use the OpenMP validation suite to evaluate the correctness
of some of the open source an vendor compilers including OpenUH, GNU C,
Intel and Oracle Studio compiler (suncc). The experiments were performed on a
Quad dual-core Opteron-880 machine and we used eight threads to perform the
evaluation.

To begin with, we use our in-house OpenUH compiler [14,13], to test the
correctness of OpenMP implementation in the compiler. Currently, OpenUH
supports OpenMP Version 3.0. OpenUH compiler is a branch of the open-
source Open64 compiler suite for C, C++, Fortran 95/2003, with support for
a variety of targets including x86 64, IA-64, and IA-32. It is able to trans-
late OpenMP 3.0, Co-array Fortran, UPC, and also translates CUDA into PTX
format. An OpenMP implementation translates OpenMP directives into corre-
sponding POSIX thread code with the support of runtime libraries.

The versions of the other compilers that we have used for the experimental
purposes are:

– GNU compiler is 4.6.2 (gcc)
– Intel C/C++ compiler 12.0 (icc)
– Oracle Studio 12.3 (suncc)

For the first round of experiments, we disable the optimization flags to avoid
any potential uncertainties, e.g. code reconstruction while compiling the unit
tests. And then we turn on the -O3 optimization as most of the time compiler
optimizations are highly used by programmers.We did not find any differences
with the turning off/on of the optimizations flags. Almost all the tests passed
with 100% certainity.

Table 1 shows the experimental results of evaluating the directives on several
compilers. For each sub-column, N is normal test, C is cross test, O is orphan

246 C. Wang, S. Chandrasekaran, and B. Chapman

Table 1. Experimental results on several compilers

OpenUH Gnu Intel Oracle

Directive N C O OC N C O OC N C O OC N C O OC

has openmp 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para shared 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para private 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para firstpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para if 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para reduction 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para copyin 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para num thres 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para default 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
for private 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
for firstpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
for lastpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
for reduction 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
for sche dynam 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
for sche static 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
for sche guided 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
for collapse 100 100 100 100 0 - 0 - 100 100 100 100 100 100 100 100
for ordered 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
for nowait 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
sec private 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
sec firstpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
sec lastpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
sec reduction 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
sec nowait 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
sing priv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
sing firstpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
sing copypriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
sing nowait 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para for priv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para for fpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para for lpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para for ordered 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para for reduc 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para for if 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para sec fpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para sec lpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para sec priv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
para sec reduc 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
task 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
task private 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
task firstpriv 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
task if 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
task untied 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
task default 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
master 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
critical 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
barrier 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
taskwait 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
atomic 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
flush 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
threadprivate 100 100 100 100 100 100 100 100 100 100 100 100 100 100 ce -
get wtick 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
get wtime 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

An OpenMP 3.1 Validation Testsuite 247

test while OC is orphan cross test (the cross test within orphan test). Each row
contains the directive to be tested. For instance, the para shared is to test the
shared clause in the parallel construct. Other terms such as ce means compile
error and textttto means time out (reach the maximum execution time threshold
we set in case of deep dead).

Using statistical analysis approach, the tests are repeated several times (the
number of times to be repeated is configured at the beginning) and the number of
times the tests pass/fail is calculated. Through this strategy, we can capture un-
common circumstances, where a compiler would still fail but pass under normal
circumstances. From the experimental results, we see that most of the tests pass
with 100% certainty. However, we could still see that the collapse implementa-
tion fails for the GNU C compiler, and the threadprivate implementation fails
for the Oracle Studio compiler.

It is quite challenging to analyze the reason behind why a compiler would
fail certain tests. But our validation suite still tries to provde as much detail as
necessary to the compiler developers in order to assist them in improving the
implemenation of the features in the compiler. Also we believe that the validation
suite will help resolve ambiguities in the OpenMP specification and help refine
the same if necessary.

5 Related Work

To the best of our knowledge, there is no similar public efforts reporting on the
validation of OpenMP implemenations on compilers. Vendors have their own
internal testsuites but this does not allow for open validation of implemented
features which may be of great importance to application developers. As men-
tioned in Section 1, [16,17] report on the validation methodologies and testsuite
for older OpenMP versions (2.0 and 2.5). Since there is no means with OpenMP
specification by which an user can obtain dynamic feedback on the success or
otherwise of a specific feature, open means for testing features’ availability is a
matter of concern. A path to extend OpenMP with error-handling capabilities
was proposed in [19]. This effort was to address OpenMP’s lack of any concept
of errors (both OpenMP runtime and user code errors) or support to handle
them. A number of works report on evaluation of peformance measurement us-
ing OpenMP, for e.g. EPCC [6],PARSEC [4],NAS [12],SPEC [3],BOTS [10] and
SHOC [9].

A methodology called randomized differential testing [20] was developed that
employs random code generator technique to detect compiler bugs. This is an
hand-tailored program generator methodology that took about three years to
complete, this work identifies compiler bugs that are not uncommon. Although
this effort has helped find more than 325 bugs so far in common compilers, the ex-
ecution environment is quite complex, this tool generates programs that are too
large, consequently bug reports are hard to understand. In order to clean this up,
manual intervention will be required, since automated approach would introduce
unidentifiable undefined behavior. Also it requires voting heuristics to determine

248 C. Wang, S. Chandrasekaran, and B. Chapman

which compiler implementation is wrong, this can be hard to determine at times.
In our approach we use fine-grained unit tests for each of the OpenMP direc-
tives, this will help us determined the faults due to erroneous implementations
very easily. Other approaches to detect bugs in compilers include [7,15]. Our ap-
proach is slightly different in a way that we designed an efficient, portable and
flexible validation framework that will detect bugs in OpenMP implementations
in various compilers.

6 Conclusion

The work in this paper presents a validation testsuite evaluating OpenMP imple-
mentations on several different compilers, both academic and commercial com-
pilers. The validation suite basically validates OpenMP Version 3.1 specification.
We developed a framework, that employs an automatic approach to run different
types of tests such as normal, cross and orphan tests. The framework provides
a flexible, portable and user-friendly testing environment.

Acknowledgements. Development at the University of Houston was supported
in part by the National Science Foundation”s Computer Systems Research pro-
gram under Award No. CRI-0958464. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

References

1. The Open64 Compiler, http://www.open64.net/
2. Addison, C., LaGrone, J., Huang, L., Chapman, B.: OpenMP 3.0 Tasking Imple-

mentation in OpenUH. In: Open64 Workshop at CGO, vol. 2009 (2009)
3. Aslot, V., Domeika, M., Eigenmann, R., Gaertner, G., Jones, W.B., Parady, B.:

SPEComp: A New Benchmark Suite for Measuring Parallel Computer Perfor-
mance. In: Eigenmann, R., Voss, M.J. (eds.) WOMPAT 2001. LNCS, vol. 2104,
pp. 1–10. Springer, Heidelberg (2001)

4. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC Benchmark Suite: Charac-
terization and Architectural Implications. In: Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, PACT 2008, pp.
72–81. ACM, New York (2008)

5. Board, O.A.R.: OpenMP Application Program Interface, Version 3.1 (July 2011)
6. Bull, J.M.: Measuring Synchronisation and Scheduling Overheads in OpenMP. In:

Proceedings of First European Workshop on OpenMP, pp. 99–105 (1999)
7. Burgess, C., Saidi, M.: The Automatic Generation of Test Cases for Optimizing

Fortran Compilers. Information and Software Technology 38(2), 111–119 (1996)
8. Cappello, F., Etiemble, D.: MPI versus MPI+ OpenMP on the IBM SP for the

NAS Benchmarks. In: ACM/IEEE 2000 Conference on Supercomputing, p. 12.
IEEE (2000)

9. Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford, K., Tip-
paraju, V., Vetter, J.S.: The Scalable Heterogeneous Computing (SHOC) Bench-
mark Suite. In: Proceedings of the 3rd Workshop on General-Purpose Computation
on Graphics Processing Units, GPGPU 2010, pp. 63–74. ACM, New York (2010)

http://www.open64.net/

An OpenMP 3.1 Validation Testsuite 249

10. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
Tasks Suite: A Set of Benchmarks Targeting the Exploitation of Task Parallelism
in Openmp. In: Proceedings of the 2009 International Conference on Parallel Pro-
cessing, ICPP 2009, pp. 124–131. IEEE Computer Society, Washington, DC (2009)

11. C. Intel and C. User. Reference guides. Available on the Intel Compiler Homepage
(2008), http://software.intel.com/en-us/intel-compilers

12. Jin, H., Frumkin, M., Yan, J.: The OpenMP Implementation of NAS Parallel
Benchmarks and its Performance. Technical report (1999)

13. Liao, C., Hernandez, O., Chapman, B., Chen, W., Zheng, W.: OpenUH: An Opti-
mizing, Portable OpenMP Compiler. Concurrency and Computation: Practice and
Experience 19(18), 2317–2332 (2007)

14. Liao, C., Hernandez, O., Chapman, B., Chen, W., Zheng, W.: OpenUH: An Opti-
mizing, Portable OpenMP Compiler. In: 12th Workshop on Compilers for Parallel
Computers, p. 2006 (2006)

15. McKeeman, W.: Differential Testing For Software. Digital Technical Journal 10(1),
100–107 (1998)

16. Müller, M., Neytchev, P.: An OpenMP Validation Suite. In: Fifth European Work-
shop on OpenMP, Aachen University, Germany (2003)

17. Müller, M., Niethammer, C., Chapman, B., Wen, Y., Liu, Z.: Validating OpenMP
2.5 for Fortran and C/C

18. Stallman, R.M., GCC DeveloperCommunity: Using The Gnu Compiler Collection:
A Gnu Manual For Gcc Version 4.3.3. CreateSpace, Paramount, CA (2009)

19. Wong, M., Klemm, M., Duran, A., Mattson, T., Haab, G., de Supinski, B.R.,
Churbanov, A.: Towards an Error Model for OpenMP. In: Sato, M., Hanawa, T.,
Müller, M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS,
vol. 6132, pp. 70–82. Springer, Heidelberg (2010)

20. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and Understanding Bugs in C
Compilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2011, pp. 283–294. ACM, New
York (2011)

http://software.intel.com/en-us/intel-compilers

Performance Analysis of an Hybrid

MPI/OpenMP ALM Software for Life Insurance
Policies on Multi-core Architectures

Francesca Perla and Paolo Zanetti

Dipartimento di Statistica e Matematica per la Ricerca Economica
Università degli Studi di Napoli “Parthenope”

Via Medina 40, I-80133 Napoli, Italy
{perla,zanetti}@uniparthenope.it

1 Introduction

The application of new insurance and reinsurance regulation introduced by the
European Directive 2009/138 (Solvency II) [4] leads to a complex valuation pro-
cess to assess risks and determine the overall solvency needs. The development
of an “internal model” – “a risk management system developed by an insurer to
analyse its overall risk position, to quantify risks and to determine the economic
capital required to meet those risks” [5] – generates hard computational prob-
lems. The perfect timing of measurements and consequent management actions
must be further safeguard. It stands to reason that the computational perfor-
mance of the valuation process plays a relevant role; this motivates the need
to develop both accurate and efficient numerical algorithms and to use High
Performance Computing (HPC) methodologies and resources. The literature on
the application of HPC in the development of “internal model” is very poor; a
relevant contribution is given in [1] where is introduced DISAR (Dynamic Invest-
ment Strategy with Accounting Rules), a Solvency II compliant system designed
to work on a grid of conventional computers. In [2] numerical experiments carried
out applying to DISAR a parallelisation strategy based on the distribution of
Monte Carlo simulations among processors are reported. The developed parallel
software is tested on an IBM Bladecenter using pure MPI implementation and
treating every core as a separate entity with its own address space.

Now, we show some of experiences in adding a layer of shared memory thread-
ing trying to optimize the application built using MPI and OpenMP. At this aim,
we use some tools and techniques for tuning the hybrid MPI/OpenMP DISAR
implementation.

2 The ALM Software for Life Insurance Policies

We investigate the performance of Asset-Liability Management (ALM) software
for monitoring portfolios of life insurance policies on multi-core architectures.
We refer to the methodological ALM valuation framework used in DISAR that

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 250–253, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Performance Analysis of an Hybrid MPI/OpenMP ALM Software 251

is detailed in [3]. The analysis is carried out on “Italian style” profit-sharing
life insurance policies (PS policies) with minimum guarantees. In these con-
tracts – widely diffused in Italy – the benefits which are credited to the poli-
cyholder are indexed to the annual return of a specified investment portfolio,
called the segregated fund (in Italian gestione separata). In Italian insurance
market, the crediting mechanism typically guarantees a minimum to the policy-
holder. A profit sharing policy is a “complex” structured contract, with underly-
ing the segregated fund return; the models for the market-consistent valuation of
the policy require the solution of partial stochastic differential equations and the
use of Monte Carlo (MC) simulation techniques. Then, to speed-up the valua-
tion process of portfolio of PS policies, we applied to DISAR a parallelisation
strategy based on the distribution of Monte Carlo simulations - the most time
consuming tasks involved in the valuation process - among processors.

3 Performance Results

We test the parallel MC-based version of the ALM software on an IBM Blade-
center LS21, installed at the University of Naples “Parthenope”, with six blades
equipped with two Dual-Core AMD Opteron 2210HE, a L2 cache memory of
1 MByte and a L1 cache of 64 Kbyte per core. The system is supplied with
OpenMP release 3.1, MPICH2 1.3.1 with hydra process manager and hwloc

1.2.1. We use the Mersenne Twister generator included in the Intel Math Kernel
Library for generating distributed pseudo-random sequences.

We simulate a real portfolio containing about 78000 policies aggregated in
5600 fluxes. The time horizon of simulation we consider is 40 years. The seg-
regated fund includes about 100 assets, both bonds and equities. The values of
MC trajectories used are N=5000, 20000, 50000.

We develop the hybrid MPI/OpenMP and the MPI pure versions from the
same code base; that is, both the versions maintain the same numerical accuracy.
It is the Monte Carlo loop that is parallelised using OpenMP to create the
hybrid code. Communication among nodes is limited to the final phase, since
communication consists only in the collective operation mpi reduce to compute
global averages from the partial ones, which give the MC method results. Each
MC simulation size and processor core count is tested with three combinations
of MPI processes and OpenMP threads (Fig. 1(a)): one MPI process for each
core, no OpenMP thread (pure MPI); one MPI process on each host, all other
cores filled with OpenMP threads (hybrid 1); one MPI process on each node, all
other cores filled with OpenMP threads (hybrid 2). We use TAU profiler to track
the performance of the application and PAPI framework for measuring hardware
related events. To improve performance of the hybrid versions, we properly set
thread affinity to specify which core each thread should run on; the thread
affinity has a large performance impact on a NUMA-system based. For binding
of processes we use hwloc - a sub-project of the overall OPEN MPI project -
which further aims at gathering a detailed knowledge of the hardware topology
(Fig 1(b)). To get a time comparison, in Fig. 2(a) the ratio of timings of the

252 F. Perla and P. Zanetti

0 1 2 3

MPI

MPI

MPI

0 1 2 3

MPI

MPI

join

fork

Hybrid 1

0 1 2 3

MPI

MPI

fork

join

Hybrid 2

(a)

Indexes: physical
Host: blade1ibmz

Machine (4095MB)

Socket P#1

NUMANode P#0 (2048MB)

Socket P#0

NUMANode P#1 (2048MB)

L2 (1024KB)L2 (1024KB)L2 (1024KB)L2 (1024KB)

L1 (64KB) L1 (64KB)L1 (64KB) L1 (64KB)

Core P#1 Core P#0 Core P#1Core P#0

PU P#1 PU P#3PU P#0 PU P#2

Host: blade1ibmz

(b)

Fig. 1. (a) Pure MPI and hybrid versions. - (b) Graphical output of the lstopo tool
describing the topology of the host.

hybrid 2 version with and without thread affinity is shown, for the total number
of cores increasing from 4 to 24. In any case the ratio is smaller than 1, confirming
the advantage in setting thread affinity. At the same aim, in Fig. 2(b) we report
the ratio of timings of the hybrid versions, both of them with thread affinity, with
pure MPI code. We observe that the hybrid 2 version performs better than the
other two codes; the pure MPI implementation instead outperforms the hybrid
1 version. Those results point out that, in terms of execution time, 1) the hybrid
2 version exhibits the optimal combination of #MPI processes and #OpenMP
threads - that is consistent with the hardware topology of the machine; 2) an
hybrid version can perform worse than pure MPI when the impact of NUMA
memory is not considered. In Fig. 3(a) we plot the parallel efficiency of pure

(a) (b)

0,978
0,98
0,982
0,984
0,986
0,988
0,99
0,992
0,994
0,996
0,998

1

4 8 12 16 20 24

Ti
m
e b
in
de
d
/T
im
e n
o
bi
nd
ed

5000
20000
50000

hybrid 2
binded vs. no binded

0,985

0,99

0,995

1

1,005

1,01

1,015

1,02

4 8 12 16 20 24

Ti
m
e h
yb
rid
/T
im
e p
ur
e
M
P
I

5000
20000
50000
5000
20000
50000

binded hybrid 1 vs. pure MPI

Fig. 2. Time comparison of (a) hybrid 2 version binded vs. no binded. (b) hybrid
versions vs. pure MPI.

MPI and hybrid 2 versions. Both of codes scale very well - the efficiency values
always very close to the ideal value 1 -, due to the perfect load balancing as
displayed by TAU profile; further hybrid 2 version scales better than pure MPI

Performance Analysis of an Hybrid MPI/OpenMP ALM Software 253

since the time spent carrying out collective communication is much lower, as the
TAU communication time profiles show (Fig. 3(b)). Note that for N=50000 the
execution time on 1 core is about 16 hours while it takes about 41 minutes on
24 cores with the hybrid 2 version. Another advantage of the hybrid version over
pure MPI is in the data memory consumed. For a fixed MC simulation size, the
ALM software requires for each generated MPI process a replication of almost
all of data arrays; this implies that halving the number of MPI processes, the
data memory usage reduces by almost a factor two.

0,975

0,98

0,985

0,99

0,995

4 8 12 16 20 24

E
ff
ic

ie
n
c
y

5000 MPI

20000 MPI

50000 MPI

5000 h2

20000 h2

50000 h2

(a) (b)

9,18

8,94

8,05

6,48

4,19

4,17

1,30

1,16

0,09

0,03

0,01

0,00

5

11

6

0

9

3

7

8

4

10

2

1

MPI_REDUCE - hybrid 2
node

27,65
24,48

20,68
16,48

13,14
10,96
10,89

10,61
8,68
8,54

7,86
3,64
3,50
3,48

0,07
0,04
0,04
0,01
0,00
0,00
0,00
0,00
0,00

0

17

14

2

18

22

16

9

8

21

13

11

19

7

10

20

5

12

1

3

23

6

15

MPI_REDUCE - pure MPI
node

Fig. 3. (a) Efficiency of pure MPI and hybrid 2 - (b) Time profile of mpi reduce for
N=20000 on 24 cores, on the left hybrid 2 version, on the right pure MPI

All our experiments show that an hybrid combination of MPI processes and
OpenMP threads, consistent with the hardware architecture, improves the over-
all performance of ALM software thus allowing to efficiently face the complex
valuation process in “internal models”.

References

1. Castellani, G., Passalacqua, L.: Applications of Distributed and Parallel Computing
in the Solvency II Framework: The DISAR System. In: Guarracino, M.R., Vivien,
F., Träff, J.L., Cannatoro, M., Danelutto, M., Hast, A., Perla, F., Knüpfer, A., Di
Martino, B., Alexander, M. (eds.) Euro-Par-Workshop 2010. LNCS, vol. 6586, pp.
413–421. Springer, Heidelberg (2011)

2. Corsaro, S., De Angelis, P.L., Marino, Z., Perla, F., Zanetti, P.: On parallel asset-
liability management in life insurance: a forward risk-neutral approach. Parallel
Comput. 36(7), 390–402 (2010)

3. De Felice, M., Moriconi, F.: Market Based Tools for Managing the Life Insurance
Company. Astin Bull. 35(1), 79–111 (2005)

4. Directive 2009/138/EC of the European Parliament and of the Council of 25 Novem-
ber 2009 on the taking-up and pursuit of the business of Insurance and Reinsurance.
Official Journal of the European Union (2009)

5. International Association of Insurance Supervisors: Guidance Paper on the Use of
Internal Models for Regulatory Capital Purpose (2008)

Adaptive OpenMP for Large NUMA Nodes

Aurèle Mahéo1, Souad Koliäı1, Patrick Carribault2,1, Marc Pérache2,1,
and William Jalby1

1 Exascale Computing Research Center, Versailles, France
2 CEA, DAM, DIF, F-91297, Arpajon, France

1 Introduction

The advent of multicore processors advocates for a hybrid programming model
like MPI+OpenMP. Therefore, OpenMP runtimes require solid performance
from a small number of threads (one MPI task per socket, OpenMP inside each
socket) to a large number of threads (one MPI task per node, OpenMP inside
each node). To tackle this issue, we propose a mechanism to improve performance
of thread synchronization with a large spectrum of threads. It relies on a hier-
archical tree traversed in a different manner according to the number of threads
inside the parallel region. Our approach exposes high performance for thread
activation (parallel construct) and thread synchronization (barrier construct).
Several papers study hierarchical structures to launch and synchronize OpenMP
threads [1, 2]. They tested tree-based approaches to distribute and synchronize
threads, but they do not explore mixed hierarchical solutions.

2 Adaptive OpenMP Runtime

Multiple tree shapes exist to perform thread synchronization. The most straight-
forward solution is a flat tree with one root and one thread per leaf. It allows fast
synchronization for a few number of threads: the master thread iterates through
leaves to flip one memory cell. But with an increasing number of threads, per-
formance drops. A tree mapping the topology of the underlying architecture
is more suitable. Such tree exposes more parallelism for synchronizing a large
number of threads, but invoking few threads requires a high overhead for tree
traversal.

Our approach is to bypass some parts of the tree when the number of threads
is small enough to impact only a sub-tree of the topology tree. Figure 1 depicts
this mechanism on a 32-core node (4 processors with 8 cores). Thus, when the
number of threads is lower than 8, the master thread starts at the second level
(leftmost child of the root). For a larger number of threads, the topology tree is
still fully used.

3 Experimental Results

We implemented our mechanism in MPC [3] inside the existing OpenMP run-
time. We conducted experiments on a Bull bullx 6010 server embedding a

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 254–257, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Adaptive OpenMP for Large NUMA Nodes 255

Fig. 1. Tree Structures for 32-Core Node

-a- Tree Evaluation

-b- Runtime Evaluation

Fig. 2. Parallel Overhead Evaluation on 128 Cores

memory controller for cache coherency called Bull Coherency Switch (BCS).
This ccNUMA system allows configuration with up to 16 processors sockets (4
modules containing 4 processor sockets and a BCS) sharing a single coherent
memory space. Thus these 16 processor sockets provide 128 CPU cores.

256 A. Mahéo et al.

-a- Tree Evaluation

-b- Runtime Evaluation

Fig. 3. Barrier Overhead Evaluation on 128 Cores

Figures 2 and 3 present the results of EPCC benchmarks [4] up to 128 threads.
Figure 2-a depicts the overhead of entering and exiting a parallel region for differ-
ent trees: 2-level tree (MPC 4-32), topology tree (MPC 4-4-8) and our approach
(MPC MIXED). We benefit from both trees by using this bypass mechanism: the
overhead is equal to the minimum of trees. Furthermore, Figure 2-b illustrates
that our approach achieves better performance than state-of-the art implemen-
tations. Figure 3-a and 3-b illustrate the same experiments for the OpenMP
barrier construct.

4 Conclusion and Future Work

We introduced a new mechanism to increase the performance of OpenMP thread
activation and synchronization for a wide spectrum of threads. It shows signifi-
cant performance improvement on a 128-core node on EPCC microbenchmarks.
For future work, we have to investigate more this strategy by extracting a generic
algorithm to bypass trees in a flexible way. Finally, it would be interesting to
integrate OpenMP tasks and check the influence of task scheduling.

Adaptive OpenMP for Large NUMA Nodes 257

References

1. Nanjegowda, R., Hernandez, O., Chapman, B., Jin, H.H.: Scalability Evaluation of
Barrier Algorithms for OpenMP. In: Müller, M.S., de Supinski, B.R., Chapman,
B.M. (eds.) IWOMP 2009. LNCS, vol. 5568, pp. 42–52. Springer, Heidelberg (2009)

2. Broquedis, F., Furmento, N., Goglin, B., Wacrenier, P.A., Namyst, R.: ForestGOMP:
an efficient OpenMP environment for NUMA architectures. International Journal
on Parallel Programming 38(5), 418–439 (2010)

3. Carribault, P., Pérache, M., Jourdren, H.: Enabling Low-Overhead Hybrid
MPI/OpenMP Parallelism with MPC. In: Sato, M., Hanawa, T., Müller, M.S.,
Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132, pp. 1–14.
Springer, Heidelberg (2010)

4. Bull, J.M., O’Neill, D.: A Microbenchmark Suite for OpenMP 2.0. SIGARCH Com-
put. Archit. News 29(5), 41–48 (2001)

A Generalized Directive-Based Approach

for Accelerating PDE Solvers

Francesco Salvadore

CASPUR - via dei Tizii 6/b 00185 Rome, Italy
salvador@caspur.it

1 Cube-Flu

Cube-Flu is a Python software application that produces Fortran code for solving
Partial Differential Equations (PDEs), according to the input provided by the
user. The code produced by Cube-Flu is designed for exploiting distribuited
memory architectures as well as Graphics Processing Units, as shown in the
next section. The software solves equations of the form ∂u

∂t = f (u) on cartesian
grids, using Runge-Kutta time integration, and finite difference schemes. The
idea behind the application is to provide a simple framework for solving a wide
class of systems of equations, using a natural and intuitive syntax. For instance,
considering the 2D Poisson equation

∂θ

∂t
= ν

(
∂2θ

∂x2
+

∂2θ

∂y2
,

)

we have to specify the forcing term as

nuu*(#[dsx]{tem}+#[dsy]{tem}),

together with all parameters and information describing our system and domain.
Discrete differential operators are directly translated by the software into the

corresponding linear combinations of array elements. Hence, given the operator

"ds":{"coeff ":{" -1":"1." ,"+0":" -2." ,"+1":" -1."}}

the software will perform a transformation that looks like:

#[dsx]{tem} −→ tem(i-1,j)*1.+tem(i,j)*(-2.)+ tem(i+1,j)*(1.)

where the x suffix stands for the first component of the array. Although the code
is still under development, a few significant tests have been performed providing
an interesting insight into implementation and performance issues.

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 258–261, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Generalized Directive-Based Approach for Accelerating PDE Solvers 259

2 Parallelization and Directive-Based GPU Porting

We briefly describe how the OpenMP parallelization and the PGI-Accelerator
GPU porting of our code is achieved in Cube-Flu. The mirror and update

clauses provided by PGI have been used to minimize the performance impact
of time-consuming data transfers from/to the GPU and to allow for a simple
code design. Most of the variables reside in Fortran modules embedding, when
needed, the mirror for GPU counterparts.

The major part of the Fortran code is made up of nested loops spanning the
cartesian grid points. The OpenMP parallelization of such loops is straightfor-
ward provided that no data dependencies between subsequent iterations of the
parallelized loop are present. This condition is often fulfilled by the computation
of field derivatives in finite difference schemes. To achieve reasonable occupancy
values on the GPU, a suitable choice is to parallelize loop nests along two di-
rections. Loops that do not require particular attention to be parallelized are
referred to as standard, and are marked with a preprocessing parallel directive
called !PARALLEL_STANDARD in the generated Fortran code. This directive gets
then translated into either OpenMP (left) or PGI-Accelerator (right) directives.

!$omp do
do i_z=istart_z ,iend_z

do i_y=istart_y ,iend_y
do i_x=istart_x ,iend_x

<loop body >
enddo

enddo
enddo
!$omp end do

!$acc region
!$acc do independent
do i_z=istart_z ,iend_z
!$acc do independent

do i_y=istart_y ,iend_y
do i_x=istart_x ,iend_x

<loop body >
enddo

enddo
enddo
!$acc end region

where the independent clause has been added as a further hint to the compiler.
Other loop nests have to be partially adapted to be parallelized: this is the

case, for instance, for in-place translations of a vector, required to impose bound-
ary conditions. Since the translation direction cannot be easily parallelized, we
resort to reordering the loop nest to bring this direction in the innermost loop,
making the first two loops parallelizable. When producing Fortran code, we use
the token !PARALLEL_REORDER to mark this kind of loops. Once the required re-
ordering is performed, OpenMP and PGI-Acc translations are straightforward.

We then have to consider simple scalar operations performed on arrays
or scalars, that we mark by inserting !PARALLEL_ONLYONE. For OpenMP, a
!$omp single directive does the job. For PGI-Accelerator a trick is required to
prevent the compiler from performing scalar operations on CPU, thereby adding
unnecessary data transfers. Writing the scalar operation as the body of a one-
iteration loop allows for the !$acc do seq directive to be applied, so that the
computation gets executed (by a single thread) on GPU.

Another critical point is detecting scalar variables – e.g., used as temporary
storage for array values – which have to be privatized trough the private clause
(for both paradigms). In OpenMP this is needed to avoid wrong results due

260 F. Salvadore

to race conditions, while PGI-accelerator’s default behavior is to disable paral-
lelization.

Finally, another case of special attention is given by loops involving random
values. Since the Fortran intrinsic random_number subroutine is not supported in
PGI-Accelerator we decided to manually parallelize a random number function:
the parallelization for the general case is not trivial and requires a certain amount
of additional memory to store variables for random evolution.

The Fortran code produced by Cube-Flu also features a 3D MPI decom-
position. allowing for MPI+OpenMP or MPI+GPU hybrid parallelizations. We
conceived a 3DMPI decomposition where a 2DMPI cartesian grid maps comput-
ing nodes, and the third direction is used for intra-node parallelization. Within
a node, it is possible to assign a larger amount of work to cores that control
GPUs, with respect to cores that directly perform computations. Furthermore,
this can be done at run-time, by setting the ratio between the domain portions
assigned to the two different purposed kinds of core.

3 Performance Results

The solution of compressible Navier-Stokes equations for a triperiodic system
with random forcing has been carried out with Cube-flu in different configura-
tions to assess performance results. A 1923 point grid, and single precision real
variables have been used. Tests have been performed on a cluster composed by
Dual-Socket, six cores Intel Xeon X5650 (Westmere) CPU nodes, featuring two
Tesla S2050 GPUs each.

MPI parallelization yields similar results with respect to the MPI+OpenMP
case. The limited scaling is probably due to the large amount of memory accesses
saturating the memory bandwidth. The MPI+OpenMP-socket parallelization
employs OpenMP within each socket, and MPI for inter-socket and inter-node
communications. The MPI+OpenMP-node parallelization uses one MPI pro-
cess for each node, employing OpenMP for all the cores of the same node. The
MPI+OpenMP-socket version seems to be slightly faster compared to both pure
MPI or MPI+OpenMP-node ones. In the MPI-GPU flavour, each MPI process
controls a GPU (the figure shows results for 1, 2 and 4 GPUs). The comparison

A Generalized Directive-Based Approach for Accelerating PDE Solvers 261

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 6 12 18 24

tim
e-

st
ep

 e
la

ps
ed

 ti
m

e
[s

]

number of cores

MPI

MPI+OpenMP-socket

MPI+OpenMP-node

MPI+GPU

MPI+GPU+Hybrid

between 1 core and 1 GPU gives a speed-up close to 8, and using more GPUs,
a reasonable (even though not linear) scaling is observed. The hybrid version
(MPI+GPU+Hybrid in the figure) uses 6 MPI processes for each socket with
one process controlling a GPU and the other 5 processes exploiting the CPU
cores. The domain decomposition among cores and GPUs has been manually
tuned and is crucial to get the best performance results.

In conclusion, our impression is that PGI Accelerator directives end up to
be a viable choice to perform a fairly simple heterogeneous porting of a realistic
code. Many issues arising in OpenMP parallelization can be transferred to GPU-
acceleration directives, supporting the inclusion of GPU-acceleration directives
into the OpenMP standard as a suitable choice. However, the OpenACC stan-
dard, a potential candidate for this integration, does not include the mirror

directive, that played a significant role in porting our code. The code generated
by Cube-Flu can be also viewed as a starting point for writing a more complex
and tuned GPU-hybrid code, possibly based on more low-level programming
models (CUDA, OpenCL,...).

References

2010. The Portland-Group, PGI Accelerator Programming Model for Fortran and C,
v1.3 (November 2010), http://www.pggroup.com/resources/accel.htm

2011. The OpenACC Standard, http://www.openacc-standard.org
2012. NVIDIACUDAArchitecture, http://www.nvidia.com/object/cuda_home.html
2010. Jespersen, D.C.: CFD Code Acceleration on Hybrid Many-Core Architectures.

Journal Scientific Programming 18(3-4) (2010)
1998. Orszag, S.A., Patterson, G.S.: Numerical Simulation of Three-Dimensional Ho-

mogeneous Isotropic Turbulence. Phys. Rev. Lett. 28 (1972)
2009. Thibault, J.C., Senocak, I.: CUDA implementation of a Navier-Stokes solver

on multi-GPU platforms for incompressible flows. In: Proc. 47th AIAA Aerospace
Sciences Meeting, AIAA 2009-758 (2009)

http://www.pggroup.com/resources/accel.htm
http://www.openacc-standard.org
http://www.nvidia.com/object/cuda_home.html

Design of a Shared-Memory Model for CAPE

Viet Hai Ha and Éric Renault

Institut Télécom – Télécom SudParis
Samovar UMR INT-CNRS 5157

Évry, France
{viet hai.ha,eric.renault}@it-sudparis.eu

1 Introduction

Checkpointing Aided Parallel Execution (CAPE) is the paradigm we devel-
oped to use checkpointing techniques to automatically run parallel programs on
distributed-memory architectures. Two versions of CAPE have been developed
and tested. The first one was based on complete checkpoints and has proved the
feasibility of the paradigm but did not have good performance [1]. The second
one based on incremental checkpoints improved performance a lot and made it
comparable with MPI similar programs [2]. However, both versions are applicable
only to problems containing parallel regions that verify the Bernstein’s condi-
tions. In this case data in parallel regions are processed independently in each
parallel thread and result are combined at the end of each region. To overcome
this restriction, two main tracks have been investigated: the first one consists
in implementing a shared-memory model and the second one in processing all
requirements of OpenMP data-sharing clauses and directives. In this paper, we
present the design of a shared-memory model based on the Home-based Lazy
Release Consistency model and the algorithm to implement it.

2 Shared-Memory Models on Distributed Systems

The straightforward idea to implement OpenMP on distributed systems is to use
the virtually global address space of a software SSI to replace the memory in case
of SMP systems. The most important advantage of this approach is the feasibility
of a fully compliant implementation. At the opposite, the global address space is
located across machines and causes a strong overhead to the global performance.
To reduce this overhead, shared data could be copied into many nodes but
this leads to consistency issues. Many consistency model haves been built with
different performance such as Sequential Consistency (SC), Relaxed Consistency
(RC), Lazy Release Consistency (LRC). An implementation of LRC is Home-
based Lazy Release Consistency (HLRC). In this last model, each shared page
is associated with a home page. This home page always hosts the most updated
content of the page, which can then be fetched by any non-home node that
needs an updated version. The hight efficiency of this model for implementing
an OpenMP compliant was shown in [3].

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 262–266, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Design of a Shared-Memory Model for CAPE 263

3 OpenMP flush Directive and Memory-Consistency
Mechanism

In OpenMP, the consistency between local and common memory is done via
flush directives. A flush enforces consistency between a thread’s temporary
view and memory, and does not effect the other threads. There are two types
of flush in OpenMP: one specifying a set of variables called the flush-set and
another without any parameter. In [4], they are called selective-flush and global-
flush respectively and the same names are used in this paper. For the selective
flush, consistency is applied on the given flush set, and for the global flush
the consistency is applied on the whole memory space. Within the advantage
has been proved in [3], we use the HLRC model with some modifications to
implement the memory model of CAPE.

4 Updated Home-Based Lazy Release Consistency Model

As presented in Section III of [2], the basic implementation of CAPE in homoge-
neous systems ensured the consistency between the memory of the master thread
and the slave threads in the sequential regions and at the begin and end points of
parallel regions. For the beginning and in sequential regions, all threads run the
same set of instructions, so they have the same memory spaces in these regions.
It is also the case for the beginning of parallel regions (before the devision into
jobs of parallel constructs). At the end of parallel constructs, all threads injects
the same set of updated memory items that makes their memory spaces become
consistent. Thus, the only problem remaining to ensure the consistency between
threads is implementing a mechanism for flush directives.

For most approaches using HLRC model, a flush on a copy of a page on a
distant node involves three main phases:

– On the distant node: computing the differences between pages, sending those
differences to the home node.

– On the home node: applying the received differences to the home page, com-
puting the differences between pages and send those differences to the distant
node.

– On the distant node: applying the received differences to the page.

For the global flush, the above phases are applied for each process’ shared page.
In the case of CAPE, the above algorithm can be directly used while consid-

ering the master node is the home node and its memory pages are home pages.
However, as a result of checkpointing, there are two advantages that can reduce
the cost of the flush execution. First, on slave nodes, create function of in-
cremental checkpointers can replace the diff function as they do exactly the
same job. Second, on the master node, the number of comparisons can usually
be significantly reduced if a list of memory updated items of all shared pages is
maintained and the diff function is applied on this list instead of home pages.
As a replacement of the updated list for the set of home pages, this model

264 V.H. Ha and É. Renault

is called the Updated Home-based Lazy Release Consistency (UHLRC) model.
Two other main operations are necessary to implement the mechanism:

– The initialization of the updated list on the home node: in parallel sections,
after having divided jobs to slave nodes, the master thread creates a null
list as the updated list. As an example, for the prototype in Fig. 2 of [2], an
instruction is inserted after line 7.

– The organization of a mechanism to capture flush requests and for the
synchronization between slave nodes and the master node. In this design,
an auxiliary thread called the monitor is used on each node and executed in
event-driven mode. Each time a flush request occurs on slave node, a signal
is sent to the local monitor. This monitor then coordinates with the one on
the master node to execute all flush operations.

5 The Global Flush Using the UHLRC Model

In this case, the above mechanism can be used as is.
On the slave nodes:

– The slave thread creates a diffs list using the create function (refer to sec. III
of [2]) then calls the stop function to temporary stop the checking process.
Then a signal is sent to the local monitor.

– The local monitor sends a request to the master’s monitor and waits the
acknowledgement.

– The local monitor sends the diffs list to the master’s monitor and waits the
returned data.

– The local monitor receives the returned diffs list, merges it into the process
memory space, calls the start function to restart the checking process and
notifies the slave thread to resume the execution.

On the master node:

– After the master’s monitor receives the flush request, it sends an acknowl-
edgement to the slave’s monitor and waits the diffs list.

– After the master’s monitor receives the diffs list, it computes the differences
between the current updated list and the received list and sends the result
back to the slave’s monitor.

– The master’s monitor applies the received diffs list to the current updated list.

6 The Selective Flush Directive Using the UHLRC Model

This case is slightly different from the global flush case and the associated al-
gorithm is far simpler. Below algorithm is designed for the specific case where
the flush set contains a single variable. For more than one variable the solution
can be easily derived from the case of single variable. Also note that OpenMP
does not distinguish between reading or writing from/to the memory to/from
the temporary view of the thread. This leads to an ambiguous problem that is
out of the scope of this paper.

Design of a Shared-Memory Model for CAPE 265

On the slave nodes:

– The slave’s monitor compares the current value of the variable given in the
flush set with the initial value. If they are different then this means it is a
write flush. Otherwise, this is a read operation. Then a signal is sent to the
local monitor.

– The local monitor sends a request to the master’s monitor and waits the
acknowledgement.

– In case of read flush:

• The local monitor sends the address of the variable to the master’s mon-
itor and waits the returned value.

• The local monitor receives the returned value, if it is not null merges it
into the process memory space. Then notifies the slave thread to resume
its execution.

– In case of write flush:

• The local monitor sends the value of the variable to the master’s monitor
and notifies the slave thread to resume its execution.

On the master node:

– The master’s monitor receives the flush request.
– The master’s monitor sends the acknowledgement to the slave’s monitor and

waits for data.
– In case of read flush:

• Master’s monitor searches for the given variable in the updated list.
When found it reads and sends back the updated value to the slave’s
monitor. Otherwise it sends back a null value to the slave’s monitor.

– In case of a write flush:

• The master’s monitor receives the returned value, updates it into the
updated list and keeps on executing.

7 Conclusion and Future Works

This paper presented the UHLRC model, an improved version of the HLRC
model to make it more appropriate to CAPE. In the near future work will consist
in implementing this model and evaluating its performance. Finding solutions
for OpenMP data-sharing directives and clauses is also planed to make CAPE
become an fully OpenMP compliant for distributed memory systems.

References

[1] Renault, É.: Distributed Implementation of OpenMP Based on Checkpointing
Aided Parallel Execution. In: Chapman, B., Zheng, W., Gao, G.R., Sato, M.,
Ayguadé, E., Wang, D. (eds.) IWOMP 2007. LNCS, vol. 4935, pp. 195–206.
Springer, Heidelberg (2008)

266 V.H. Ha and É. Renault

[2] Ha, V.H., Renault, É.: Design and Performance Analysis of CAPE based on Dis-
continuous Incremental Checkpoints. In: Proceedings of the Conference on Com-
munications, Computers and Signal Processing (PacRim 2011), Victoria, Canada
(August 2011)

[3] Tao, J., Karl, W., Trinitis, C.: Implementing an OpenMP Execution Environment
on InfiniBand Clusters. In: Mueller, M.S., Chapman, B.M., de Supinski, B.R., Mal-
ony, A.D., Voss, M. (eds.) IWOMP 2005 and IWOMP 2006. LNCS, vol. 4315, pp.
65–77. Springer, Heidelberg (2008)

[4] Karlsson, S., Lee, S.-W., Brorsson, M.: A Fully Compliant OpenMP Implemen-
tationon Software Distributed Shared Memory. In: Sahni, S.K., Prasanna, V.K.,
Shukla, U. (eds.) HiPC 2002. LNCS, vol. 2552, pp. 195–206. Springer, Heidelberg
(2002)

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 267–270, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Overlapping Computations with Communications
and I/O Explicitly Using OpenMP Based Heterogeneous

Threading Models

Sadaf R. Alam1, Gilles Fourestey1, Brice Videau2, Luigi Genovese2,
Stefan Goedecker3, and Nazim Dugan3

1 Swiss National Supercomputing Centre, Switzerland
2 CEA—Grenoble, France

3 University of Basel, Switzerland
{alam,fourestey}@cscs.ch,

brice.videau@imag.fr, luigi.genovese@cea.fr,
{stefan.goedecker,nazim.dugan}@unibas.ch

1 Introduction and Background

Holistic tuning and optimization of hybrid MPI and OpenMP applications is
becoming focus for parallel code developers as the number of cores and hardware
threads in processing nodes of high-end systems continue to increase. For example,
there is support for 32 hardware threads on a Cray XE6 node with Interlagos
processors while the IBM Blue Gene/Q system could support up to 64 threads per
node. Note that, by default, OpenMP threads and MPI tasks are pinned to processor
cores on these high-end systems and throughout the paper we assume fix bindings of
threads to physical cores for the discussion. A number of OpenMP runtimes also
support user specified bindings of threads to physical cores. Parallel and node
efficiencies on these high-end systems for hybrid MPI and OpenMP applications
largely depend on balancing and overlapping computation and communication
workloads. This issue is further intensified when the nodes have a non-uniform
access memory (NUMA) model and I/O accelerator devices. In these environments,
where access to I/O devices such as GPU for code acceleration and network interface
for MPI communication and parallel file I/O are managed and scheduled by a host
CPU, application developers could introduce innovative solutions to overlap CPUs
and I/O operations to improve node and parallel efficiencies. For example, in a
production level application called BigDFT, the developers have introduced a master-
slave model to explicitly overlap blocking, collective communication operations and
local multi-threaded computation. Similarly some applications parallelized with MPI,
OpenMP and GPU acceleration could assign a management thread for the GPU data
and control orchestration, an MPI control thread for communication management
while the CPU threads perform overlapping calculations, and potentially a
background thread can be set aside for file I/O based fault-tolerance. Considering
these emerging applications design needs, we would like to motivate the OpenMP
standards committee, through examples and empirical results, to introduce thread and
task heterogeneity in the language specification. This will allow code developers,
especially those programming for large-scale distributed-memory HPC systems and

268 S.R. Alam et al.

accelerator devices, to design and develop portable solutions with overlapping control
and data flow for their applications without resorting to custom solutions.

2 Heterogeneous OpenMP Model: BigDFT Implementation

BigDFT is a density functional electronic structure code and it uses a Daubechies
wavelet basis [1][7] and has been implemented using MPI, OpenMP, CUDA and
OpenCL. In the build up phase for the total electronic charge density, there are MPI
collective operations (MPI_Allreduce, MPI_Allgatherv and MPI_Reduce_Scatter)
within an OpenMP region, which could be overlapped with the OpenMP computation.
The code developers devise a solution where the master thread is responsible for the
MPI communication explicitly in communication and computation intensive phases
while the other threads perform local computation only. There is no memory
contention for the two sets of operations. Figure 1 provides the code listing with a
simple example highlighting how the code is structured in a complex simulation code.

Fig. 1. Sample code demonstrating the collective communication and local computation
overlap during different calculation phases in the BigDFT application

! Overlap of communication and computation is devised using nested OpenMP
! parallelization. Thread 0 makes the MPI communication. Computation
! is distributed to remaining threads with the internal OpenMP parallel region.
 nthread_max=omp_get_max_threads()
 if (nthread_max > 1) then
 call OMP_SET_NESTED(.true.)
 call OMP_SET_MAX_ACTIVE_LEVELS(2)
 call OMP_SET_NUM_THREADS(2)
 end if
!$OMP PARALLEL DEFAULT(shared), PRIVATE(ithread,nthread,ith_int,nth_int,s)
 ithread = OMP_get_thread_num()
 nthread = omp_get_num_threads()
. . . .
 ! thread 0 does mpi communication
 if (ithread == 0) then
 call MPI_Bcast(dat, ndat, MPI_DOUBLE_PRECISION ,0, MPI_COMM_WORLD,ierr)
 end if
 if (ithread > 0 .or. nthread==1) then
 ! only the remaining threads do computations,
 if (nthread_max > 1) call OMP_SET_NUM_THREADS(nthread_max-1)
 !$OMP PARALLEL DEFAULT(shared), PRIVATE(ith_int,nth_int,s) !internal parallel
 ith_int = omp_get_thread_num()
 nth_int=omp_get_num_threads()
 ! dynamic scheduling avoided
 s = 0.d0
 !$OMP DO
 do j=1,100000000
 s = s+1.d0
 enddo
 ss(ith_int+1)=s
 !$OMP CRITICAL
 sumtot=sumtot+s
 !$OMP END CRITICAL
 !$OMP END PARALLEL !internal end
 end if
 !$OMP END PARALLEL

 Overlapping Computations with Communications and I/O Explicitly Using OpenMP 269

There are two routines where the explicit computation and collective
communication overlap is being implemented in the application of Hamiltonian on a
wave function. The call to the communicate_density subroutine in turn invokes
either MPI_Reduce_Scatter or MPI_Allreduce. The threading model is initiated
with MPI_THREAD_FUNNELED and therefore in the above implementation thread 0
initiates MPI collective calls. As illustrated in the above example, the master thread
does not participate in the computation parts, however, the results in the next section
show that this improves efficiency up to 15% for different numbers of the cores.

3 Experiments and Results

Figure 2 shows results of the BigDFT runs with and without overlap on the two Cray
systems with identical interconnect but different core counts and NUMA resgions: 32
cores and 4 regions on Cray XE6 vs. 16 cores and 2 regions on Cray XK6 [2][3].
Consequently, twice as many nodes are used for the Cray XK6 experiments than for
the Cray XE6 experiments resulting in different runtimes. For example, for runs on
552 cores, 35 Cray XK6 nodes are used while on the Cray XE6 system, 18 nodes are
used. The runtime per simulation step on the Cray XK6 system without overlap is 9.6
seconds and with overlap is 1.75 seconds while on the Cray XE6 system time per step
on without explicit overlap is 2.16 seconds and with overlap is 1.86 seconds.

Fig. 2. Relative improvements on two target platforms are shown in the figure (left). On each
platform, experiments are performed with 4 OpenMP threads per MPI task. Noticeable
differences are observed when the latencies for the MPI collective communication operations
increase. Graph on the right shows OpenMP tuning opportunities on the Cray XK6 platform as
the number of threads increase for the local computation.

A second motivating scenario is the work-sharing concept that has been introduced
for the programming models for accelerators, where diverse sets of threads (CPU and
GPU) work together in separate memory address spaces. For example, we obtained
over a Teraflops for split DGEMM on a single server device with multiple GPU
devices [6]. The third scenario in which a subset of threads can deliver additional
functionality, for example in memory or file I/O based fault-tolerance, while the
others perform computation [8][9]. As there is an abundance of hardware threads per
node, a subset of threads can be dedicated to perform peripheral operations thereby
reducing overhead of these necessary operations.

0

2

4

6

8

10

12

14

16

72 140 276 552 1100

Pe
rc
en

ta
ge

 im
pr
ov
em

en
t w

it
h
ov
er
la
p

Number of cores

Cray XK6

Cray XE6

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8

Pe
rc
en

ta
ge

 Im
pr
ov

em
en

t w
it
h
ov

er
la
p

Number of OpenMP threads

138 MPI tasks

69 MPI tasks

270 S.R. Alam et al.

4 Discussion and Proposal for OpenMP Extensions

In all three scenarios and potentially others, where explicit overlapping is desired
between MPI communication, OpenMP computation and code acceleration using I/O
attached devices, an extension to the OpenMP standard that allows for
characterization of threads in a manner that a code developer can express their
bindings and affinities at runtime could be the only portable solution. For example, in
case of the BigDFT implementation with master and slave threads, users can specify
placement of the master thread according to the node memory and its network
interface layout. As the numbers of threads continue to increase, users can have
flexibility of including additional threads to the master thread pool. Likewise, in the
heterogeneous environment where there could be a large number of accelerator
threads with respect to fewer CPU threads (for computation) plus a CPU management
thread for the accelerators, users can specify at runtime the composition of threads
and their affinities. The split DGEMM example for instance takes a CPU thread away
from DGEMM computation for each GPU device on the node and assigns it to the
GPU DGEMM management. Thus, as the OpenMP committee reviews proposals for
extension to the standards for heterogeneous nodes [4][5], we would like to stress that
the proposal should also take into account heterogeneity of CPU threads thereby
allowing code developers to design applications with a greater degree of flexibility for
overlapping on-node computation with other operations. In future, we plan on
extending the explicit thread control in additional phases of the BigDFT application
and introducing OpenMP task heterogeneity in a quantum systems simulation code.

References

1. BigDFT code, http://inac.cea.fr/L_Sim/BigDFT/
2. Cray XE6 system, http://www.cray.com/Products/XE/CrayXE6System.aspx
3. Cray XK6 system, http://www.cray.com/Products/XK6/XK6.aspx
4. Ayguade, E., Badia, R.M., Cabrera, D., Duran, A., Gonzalez, M., Igual, F., Jimenez, D.,

Labarta, J., Martorell, X., Mayo, R., Perez, J.M., Quintana-Ortí, E.S.: A Proposal to Extend
the OpenMP Tasking Model for Heterogeneous Architectures. In: Müller, M.S., de
Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS, vol. 5568, pp. 154–167.
Springer, Heidelberg (2009)

5. Beyer, J.C., Stotzer, E.J., Hart, A., de Supinski, B.R.: OpenMP for Accelerators. In:
Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011. LNCS,
vol. 6665, pp. 108–121. Springer, Heidelberg (2011)

6. Fatica, M.: Accelerating Linpack with CUDA on heterogeneous clusters. In: GPGPU-2
Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing
Units. ACM, New York (2009)

7. Genovese, L., Neelov, A., Goedecker, S., Deutsch, T., Ghasemi, A., Zilberberg, O.,
Bergman, Rayson, M., Schneider, R.: Daubechies wavelets as a basis set for density
functional pseudopotential calculations. J. Chem. Phys. 129, 14109 (2008)

8. Jones, W.M., Daly, J.T., DeBardeleben, N.A.: Application Resilience: Making Progress in
Spite of Failure. In: Eighth IEEE International Symposium on Cluster Computing and the
Grid (CCGRID), pp. 789–794 (2008)

9. Park, B.H., Naughton, T.J., Agarwal, P.K., Bernholdt, D.E., Geist, A., Tippens, J.L.:
Realization of User Level Fault Tolerant Policy Management through a Holistic Approach for
Fault Correlation. In: IEEE Symp. on Policies for Distributed Systems and Networks (2011)

A Microbenchmark Suite for OpenMP Tasks

J. Mark Bull1, Fiona Reid1, and Nicola McDonnell2

1 EPCC, The King’s Buildings, The University of Edinburgh,
Mayfield Road, Edinburgh EH9 3JZ, Scotland, U.K.

{m.bull,f.reid}@epcc.ed.ac.uk
2 ICHEC, Trinity Technology and Enterprise Campus,

Grand Canal Quay, Dublin 2, Ireland
nix@ichec.ie

Abstract. We present a set of extensions to an existing microbench-
mark suite for OpenMP. The new benchmarks measure the overhead of
the task construct introduced in the OpenMP 3.0 standard, and asso-
ciated task synchronisation constructs. We present the results from a
variety of compilers and hardware platforms, which demonstrate some
significant differences in performance between different OpenMP imple-
mentations.

1 Introduction

The EPCC OpenMP microbenchmark suite [1], [2] contains a set of tests which
measure the overhead of various OpenMP constructs, including synchronisation,
loop scheduling and and handling of thread-private data. The most significant
new features added to OpenMP in Version 3.0 of the language specification [6]
were the task and taskwait constructs which permit the creation, execution
and synchronisation of independent units of execution.

We extend the microbenchmark suite to measure the overheads associated
with the new constructs. The basic technique remains the same as in previous
versions of the suite: we compare the time taken for a section of code executed
sequentially to the time taken for the same code executed in parallel, which
in the absence of overheads, should complete in the same time. Some similar
benchmarks are described in [3], though our set covers more patterns and we
report results on more platforms. Our benchmarks are intended to complement
those described in [4] and [5], which consist of computational kernels and focus
more on evaluating task scheduling mechanisms than on the overheads associated
with task creation and dispatch.

2 Benchmark Design and Implementation

The first test we consider is ParallelTasks where every thread generates (and
possibly executes) tasks. We also implement MasterTasks, where all the tasks
are generated by the master thread, and the remaining threads are free execute

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 271–274, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

272 J.M. Bull, F. Reid, and N. McDonnell

them, and MasterTasksBusySlaves where the master thread generates tasks,
while the remaining threads perform the same computation, but not enclosed in
a task construct. ConditionalTasks is the same as ParallelTasks, except that
all the tasks constructs have an if clause which always evaluates to 0 (false).

There are four tests where tasks are created nested inside other tasks. InNest-
edTasks, each thread creates innerreps/nthreads tasks (where nthreads in
the number of threads in the parallel region), and each of these tasks creates a
further nthreads tasks and waits for their completion before proceeding to the
next outer task. NestedMasterTasks is similar, except that the master thread
creates all the outer tasks. In TreeBranchTasks, every thread creates tasks re-
cursively in a binary tree structure, executing the delay function in every task.
TreeLeafTasks is similar, except that the delay function is only executed in
leaf tasks (i.e. when tree level is zero), rather than in every task. These two
tests are desgined to reflect task generation patterns typical of recursuve divide-
and-conquer algorithms. Finally there are two tests which measure the overhead
of task synchronisation. Taskwait and TaskBarrier are the same as Paral-
lelTasks, with the addition of a taskwait or barrier directive respectively,
inside the innermost loop.

3 Benchmark Results

3.1 Hardware

We have run the benchmark suite on the following platforms:

– Cray XE6 (Magny-Cours node) with GCC 4.5.2, Cray CCE C compiler
7.3.4 and PGI C 11.3.0.

– Cray XE6 (Istanbul node) with GCC 4.6.2, Cray C compiler 8.0.0 and
PGI C 11.10.0.

– IBM Power7 server with IBM XL C/C++ for AIX 11.1.
– AMD Magny-Cours server with GCC 4.6.1 and Oracle Solaris Studio

12.2 for Linux suncc.
– SGI Altix ICE 8200EX Westmere node, using GCC 4.5.1 and Intel icc

12.0.0.
– SGI Altix 4700 using Intel icc 11.1.

3.2 Results

We do not have space here to show the results of all the benchmarks on all the
platforms, so we have selected some of the more interesting results for presenta-
tion.

Figure 1 shows the overheads for the ParallelTasks benchmark. We observe
a wide range of values, depending on the compiler and hardware used. The Intel
compiler on the Westmere system has the lowest overheads (much less than 1
microsecond on 12 threads), while GCC generally has the highest overheads:
over 1 millisecond on the Magny-Cours system for larger thread counts. Also of

A Microbenchmark Suite for OpenMP Tasks 273

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 2 4 8 16 32 64

O
ve

rh
ea

d
(m

ic
ro

se
co

nd
s)

Number of OpenMP threads

GCC: Cray XE6/24
GCC: Magny-Cours

GCC: Westmere
GCC: Cray XE6/32
PGI: Cray XE6/24
PGI: Cray XE6/32

CCE: Cray XE6/24
CCE: Cray XE6/32

Intel: SGI Altix
Intel: Westmere

SUN: Magny-Cours
IBM: Power7

Fig. 1. Overheads for ParallelTasks benchmark

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64

O
ve

rh
ea

d
(m

ic
ro

se
co

nd
s)

Number of OpenMP threads

GCC: Cray XE6/24
GCC: Magny-Cours

GCC: Westmere
GCC: Cray XE6/32
PGI: Cray XE6/24
PGI: Cray XE6/32

CCE: Cray XE6/24
CCE: Cray XE6/32

Intel: SGI Altix
Intel: Westmere

SUN: Magny-Cours
IBM: Power7

Fig. 2. Overheads for TreeBranchTasks benchmark

274 J.M. Bull, F. Reid, and N. McDonnell

note is an increase of a factor of around 10 in the overheads of the Cray compiler
on the 32-core nodes compared to the 24-core nodes.

Figures 2 shows the overheads for the TreeBranchTasks benchmark. Two
of the implementations show much reduced overheads compared to the Par-
allelTasks benchmark: the most recent version of PGI (running on the Cray
XE6/32 system) and the Intel compiler on the SGI Altix. For larger thread
counts, there are some three order of magnitude between the best and worst
implementations.

4 Conclusions

We have presented an extension to our existing suite of OpenMP microbench-
marks to cover the task construct and associated synchronisation. We have
executed these benchmarks on a variety of OpenMP implementation, and on a
number of different hardware platforms. The results show that there are some
very significant differences in the overheads measured between different OpenMP
implementations: up to three orders of magnitude in some cases: this is much
larger than is typically observed for other OpenMP constructs, and indicates
that there is significant scope for optimisation of some implementations. The
results of these benchmarks should also serve to assist OpenMP programmers
in indicating the granularity of task which will be required to avoid excessive
overhead due to task generation and execution.

References

1. Bull, J.M.: Measuring Synchronisation and Scheduling Overheads in OpenMP. In:
Proceedings of First European Workshop on OpenMP, Lund, Sweden, pp. 99–105
(September 1999)

2. Bull, J.M., O’Neill, D.: A Microbenchmark Suite for OpenMP 2.0. In: Proceedings
of the Third European Workshop on OpenMP (EWOMP 2001), Barcelona, Spain
(September 2001)

3. LaGrone, J., Aribuki, A., Chapman, B.: A set of microbenchmarks for measuring
OpenMP task overheads. In: Proceedingis of International Conference on Parallel
and Distributed Processing Techniques and Applications, vol. II, pp. 594–600 (July
2011)

4. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
Tasks Suite: A Set of Benchmarks Targeting the Exploitation of Task Parallelism in
OpenMP. In: Proceedings of 38th International Conference on Parallel Processing
(ICPP 2009), Vienna, Austria (2009)

5. Teruel, X., Barton, C., Duran, A., Martorell, X., Ayguade, E., Unnikrishnan, P.,
Zhang, G., Silvera, R.: OpenMP tasking analysis for programmers. In: Proceedings
of the 2009 Conference of the Center for Advanced Studies on Collaborative Research
(CASCON 2009), pp. 32–42 (2009)

6. OpenMP ARB, OpenMP Application Programming Interface Version 3.0 (2008)

Support for Thread-Level Speculation

into OpenMP

Sergio Aldea, Diego R. Llanos, and Arturo González-Escribano

Departamento de Informática, Universidad de Valladolid,
Campus Miguel Delibes, 47011 Valladolid, Spain

{sergio,diego,arturo}@infor.uva.es

Abstract. Software-based, thread-level speculation (TLS) systems al-
low the parallel execution of loops that can not be analyzed at compile
time. TLS systems optimistically assume that the loop is parallelizable,
and augment the original code with functions that check the consis-
tency of the parallel execution. If a dependence violation is detected, of-
fending threads are restarted to consume correct values. Although many
TLS implementations have been developed so far, robustness issues and
changes required to existent compiler technology prevent them to reach
the mainstream. In this paper we propose a different approach: To add
TLS support to OpenMP. A new OpenMP speculative clause would allow
to execute in parallel loops whose dependence analysis can not be done
at compile time.

Keywords: TLS systems, speculative parallelization, OpenMP.

1 Introduction

Manual development of parallel versions of existent, sequential applications re-
quires an in-depth knowledge of the problem, the architecture, and the parallel
programming model. On the other hand, using automatic parallelization mech-
anisms we can only extract parallelism from a small fraction of loops, decided
at compile time.

The most promising runtime technique to extract parallelism from fragments
of code that can not be analyzed at compile time is called software-based Specu-
lative Parallelization (SP). This technique, also called Thread-Level Speculation
(TLS) [2,4,5] or even Optimistic Parallelization [6,7] aims to automatically ex-
tract loop- and task-level parallelism when a compile-time dependence analysis
can not guarantee that a given sequential code is safely parallelizable. SP opti-
mistically assumes that the code can be executed in parallel, relying on a runtime
monitor to ensure correctness. The original code is augmented with function calls
that distribute iterations among processors, monitor the use of all variables that
may lead to a dependence violation, and perform in-order commits to store the
results obtained by successful iterations. If a dependence violation appears at
runtime, these library functions stop the offending threads and re-starts them
in order to use the updated values, thus preserving sequential semantics.

B.M. Chapman et al. (Eds.): IWOMP 2012, LNCS 7312, pp. 275–278, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

276 S. Aldea, D.R. Llanos, and A. González-Escribano

The purpose of this paper is to discuss how to add SP support into OpenMP.
Parallel applications written with OpenMP should explicitly declare parallel
regions of code. In the case of parallel loops, the programmer should classifies all
variable used inside the loop, according to their use, in “private”, or “shared”.
This task is extremely difficult when the parallel loop consists of more than a
few dozen lines.

To help the programmer in the development of a parallel version of a sequential
loop, our proposal is to offer a new “speculative” clause. This clause would
allow the programmer to handle variables whose use can potentially lead to a
dependence violation, and therefore should be monitored at runtime in order to
obtain correct results. Note that the use of such a category effectively frees the
programmer from the task of deciding whether a particular variable is private or
shared. To the best of our knowledge, no production-state parallel programming
model incorporates support for thread-level speculation.

Our research group has worked for a decade in the field of software-based
speculative parallelization. The research carried out so far have led to both
a production-level SP runtime library [3] and a prototype of a SP compiler
framework [1]. We believe that adding support for speculative parallelization in
OpenMP will help to reduce the intrinsic difficulties of manual parallelization
of existent code. If successful, parallel code will be much easier to write and
maintain.

2 Our Proposal

We have developed a software-only TLS system [2] that has proven its usefulness
in the parallel execution of loops that can not be analyzed at compile time, both
with and without dependence violations [3].

Our TLS system is implemented using OpenMP for thread management. The
loop to be parallelized is transformed in a loop with as many iterations as avail-
able threads. At the beginning of the loop body, a scheduling method assigns to
the current thread the block of iterations to be executed. Read and write opera-
tions to the speculative structure are replaced at compile time with specload()

and specstore() function calls. specload() obtains the most up-to-date value
of the element being accessed. specstore() writes the datum in the version
copy of the current processor, and ensures that no thread executing a subse-
quent iteration has already consumed an outdated value for this structure ele-
ment, a situation called “dependence violation”. If such a violation is detected,
the offending thread and its successors are stopped and restarted. Finally, a
commit or discard() function is called once the thread has finished the execu-
tion of the chunk assigned. If the execution was successful, the version copy of
the data is committed to the main copy; otherwise, version data is discarded.

From the programmer point of view, the structure of a loop being speculatively
parallelized is not so different from a loop parallelized with OpenMP directives.
Current OpenMP parallel constructs force the programmer to explicitly declare

Support for Thread-Level Speculation into OpenMP 277

the variables used into the parallel region according to their use, which can be
an extremely hard and error-prone task if the loop has more than a few dozen
lines.

The problem of adding speculative parallelization support to OpenMP can
be handled from two points of view. One requires the addition of a new direc-
tive, for example pragma omp speculative for. However, this option demands
more effort, because there are many OpenMP related components that should
be modified. We believe that it is preferable to use a different approach to add a
new clause to current parallel constructs that allows the programmer to enumer-
ate which variables should be updated speculatively. The syntax of this clause
would be

speculative(variable[, var list])

In this way, if the programmer is unsure about the use of a certain structure, he
could simply label it as speculative. In this case, the OpenMP library would re-
place all definitions and uses of this structure with the corresponding specload()
and specstore() function calls. An additional commit or discard() function
should be automatically invoked once each thread has finished its chunk of it-
erations, to either commit the results, or restart the execution if the thread has
been squashed.

In order to integrate our TLS system, already written using OpenMP, into
an experimental OpenMP implementation that also supports speculative paral-
lelization, the particularities of our TLS system should be taken into account.
For example, our TLS system needs to set its own control variables as private
and shared. This implies that, if a speculative clause is found by the compiler,
declaring that there are variables that should be handled speculatively, the use
of our TLS system to guide the speculative execution needs to add several pri-
vate and shared variables to the current lists. Fortunately, OpenMP allows the
repetition of clauses, so the implementation of this new speculative clause may
add additional private and shared clauses that will later be expanded by the
compiler.

There are two additional issues to be considered. First, the current scheduling
methods implemented by OpenMP are not enough to handle speculative paral-
lelization. These methods assume that the task will never fail, and therefore they
do not take into account the possibility of restarting an iteration that has failed
due to a dependence violation. Therefore, it is necessary to use an speculative
scheduling method. This method assigns to each free thread the following chunk
of iterations to be executed. If a thread has successfully finished a chunk, it will
receive a brand new chunk not been executed yet. Otherwise, the scheduling
method may assign to that thread the same chunk whose execution had failed,
in order to improve locality and cache reutilization.

We have already developed both Fortran and C versions of our TLS system.
Since implementation of OpenMP for C, C++ and Fortran only differs in their
respective front ends, adding TLS support for a different language should not
require to modify the middle or the back end.

278 S. Aldea, D.R. Llanos, and A. González-Escribano

3 Conclusions

Adding speculative support to OpenMP would greatly increase the number of
loops that could be parallelized with this programming model. The programmer
may label some of the variables involved as private or shared, using speculative
for the rest. With this approach, in the first parallel version of a given sequential
loop, the programmer might simply label all variables as speculative. Of course,
the execution of such a loop would lead to an enormous performance penalty,
since all definitions and uses of all variables would have been transformed into
specload() and specstore() function calls, that will not perform any useful
task if the variables are indeed private or read-only shared. Note that our pro-
posal would let to transform any loop into a parallel loop, although the parallel
performance will depend of the number of dependence violations being triggered
at runtime. The approach described here is being currently implemented.

Acknowledgments. Thiswork has beenpartially supportedbyMICINN(Spain)
and the European Union FEDER (CENIT OCEANLIDER, CAPAP-H3 network,
TIN2010-12011-E, TIN2011-25639), and the HPC-EUROPA2 project (project
number: 228398) with the support of the European Commission - Capacities Area
- Research Infrastructures Initiative. Sergio Aldea is supported by a research grant
of Junta de Castilla y León, Spain.

References

1. Aldea, S., Llanos, D.R., Gonzalez-Escribano, A.: Towards a compiler framework for
thread-level speculation. In: PDP 2011, pp. 267–271. IEEE (February 2011)

2. Cintra, M., Llanos, D.R.: Toward efficient and robust software speculative paral-
lelization on multiprocessors. In: ACM PPoPP 2003 (June 2003)

3. Cintra, M., Llanos, D.R.: Design space exploration of a software speculative paral-
lelization scheme. IEEE TPDS 2005 16(6), 562–576 (2005)

4. Dang, F., Yu, H., Rauchwerger, L.: The R-LRPD Test: Speculative Parallelization
of Partially Parallel Loops. In: IEEE IPDPS 2002 (April 2002)

5. Gupta, M., Nim, R.: Techniques for speculative run-time parallelization of loops.
In: Proc. of the 1998 ACM/IEEE Conference on Supercomputing, pp. 1–12 (1998)

6. Kulkarni, M., Pingali, K., Ramanarayanan, G., Walter, B., Bala, K., Paul Chew,
L.: Optimistic parallelism benefits from data partitioning. In: ACM ASPLOS 2008,
pp. 233–243. ACM, Seattle (2008)

7. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Paul Chew,
L.: Optimistic parallelism requires abstractions. In: ACM PLDI 2007, pp. 211–222.
ACM, San Diego (2007)

Author Index

Agathos, Spiros N. 210
Alam, Sadaf R. 267
Aldea, Sergio 275
Amundson, James 140
an Mey, Dieter 15, 182, 196

Baron, John 223
Bihari, Barna L. 44
Brantley, William C. 223
Broquedis, François 102
Brorsson, Mats 73
Bull, J. Mark 271

Caballero, Diego 59
Carribault, Patrick 254
Chandrasekaran, Sunita 237
Chapman, Barbara 1, 237
Chen, Li 116
Chen, Wang 44
Cramer, Tim 182

Danjean, Vincent 102
de Supinski, Bronis R. 44
Dimakopoulos, Vassilios V. 210
Dugan, Nazim 267
Duran, Alejandro 29, 59

Eichenberger, Alexandre E. 15
Eigenmann, Rudolf 169

Fahringer, Thomas 88
Feng, Huiyu 223
Fourestey, Gilles 267

Gabriel, Edgar 1
Gautier, Thierry 102
Geimer, Markus 196
Genovese, Luigi 267
Goedecker, Stefan 267
González-Escribano, Arturo 275

Ha, Viet Hai 262
Hackenberg, Daniel 223
Hadjidoukas, Panagiotis E. 210
Henschel, Robert 223

Hou, Xionghui 116
Huang, Lei 116

Jalby, William 254
Jin, Haoqiang 154
Jordan, Herbert 88
Jost, Gabriele 223

Kellogg, Mark 154
Klemm, Michael 59
Koliäı, Souad 254
Kumaran, Kalyan 223

Liao, Chunhua 29
Llanos, Diego R. 275
Lorenz, Daniel 196

Mahéo, Aurèle 254
Martorell, Xavier 59
McDonnell, Nicola 271
Meadows, Larry 130
Mehrotra, Piyush 154
Mehta, Kshitij 1
Mohr, Bernd 196
Molka, Daniel 223
Müller, Matthias S. 223

Parrott, Chris 223
Pellegrini, Simone 88
Pérache, Marc 254
Perla, Francesca 250
Philippen, Peter 196

Quinlan, Daniel J. 29

Reid, Fiona 271
Renault, Éric 262
Robichaux, Joe 223
Rössel, Christian 196
Royuela, Sara 29

Sabne, Amit 169
Saito, Hideki 59
Sakdhnagool, Putt 169
Salvadore, Francesco 258

280 Author Index

Schmidl, Dirk 182, 196
Shan, Hongzhang 140
Shawky, Mohamed 73
Shelepugin, Pavel 223
Shou, Baojiang 116
Stern, Eric G. 140
Strohmaier, Erich 140

Tahan, Oussama 73
Terboven, Christian 15, 182
Thoman, Peter 88
Tian, Xinmin 59

van Waveren, Matthijs 223

Videau, Brice 267

Wang, Amy 44

Wang, Cheng 237

Whitney, Brian 223

Wolf, Felix 196

Wong, Michael 15, 44

Zanetti, Paolo 250

	Title
	Preface
	Organization
	Table of Contents
	Eighth International Workshop on OpenMP IWOMP 2012
	Proposed Extensions to OpenMP
	Specification and Performance Evaluation of Parallel I/O Interfaces for OpenMP
	Introduction
	Related Work
	Interface Specification
	Introduction to the Annotation Used
	Interface Specification

	Implementation in the OpenUH Compiler
	Performance Evaluation
	Resources
	Results
	BT I/O

	Conclusions
	References

	The Design of OpenMP Thread Affinity
	Introduction
	Related Work
	Current Implementation-specific Approaches

	Machine Model
	Places
	Place List
	Model Specification
	Strengths and Limitations of the Machine Model

	Affinity
	Threads per Place
	Affinity Policies
	Runtime Library Routines

	Use Scenarios and Implementation
	Reference Implementation on IBM POWER

	Future Enhancements
	Summary
	References

	Auto-scoping for OpenMP Tasks
	Introduction
	Motivation and Related Work
	Proposal
	Implementation
	Evaluation
	Conclusions and Future Work
	References

	A Case for Including Transactions in OpenMP II: Hardware Transactional Memory
	Introduction
	Current OpenMP Synchronization Mechanisms
	Prior Approaches to Concurrency Control
	Mutual Exclusion
	Non-blocking Atomic Primitives and OpenMP Atomics
	Lock Elision
	Integrated TM Language Support

	Proposed OpenMP Extension
	Blue Gene/Q TM Implementation
	Compiler Support
	TM Runtime

	Experimental Results Using BUSTM
	Geometries Used
	Experiments in Deterministic Mode
	Experiments in Probabilistic Mode

	Conclusions, Current and Future Work
	References

	Extending OpenMP* with Vector Constructs for Modern Multicore SIMD Architectures
	Introduction
	Related Work
	Motivation
	SIMD Extensions to OpenMP
	Vectorized Worksharing Construct
	Vectorization and Parallelization
	Additional Vectorization Clauses
	Vectorizing Functions

	Implementation
	Evaluation
	Methodology
	Benchmarks
	Results

	Conclusions and Future Work
	References

	Introducing Task Cancellation to OpenMP
	Introduction
	Related Work
	Task Cancellation in OpenMP
	The OpenMP Tasking Model
	The Motivation behind Adding Task Cancellation to OpenMP

	Adding Cancellable Tasks to OpenMP
	Creating Cancellable Tasks
	Dealing with Nested Tasks
	Cancelling Tasks
	Protecting Tasks from Cancellation
	When Does Cancellation Take Place?

	Evaluation of OpenMP Task Cancellation
	Conclusion and Future Work
	References

	Runtime Environments
	Automatic OpenMP Loop Scheduling: A Combined Compiler and Runtime Approach
	Introduction
	Motivation
	Architecture
	Compiler Analysis
	Compiler Backend
	Runtime Monitoring
	Loop Scheduling Algorithm

	Evaluation
	Kernel Experiments
	Real-World Applicability

	Related Work
	Conclusion
	References

	LIBKOMP, an Efficient OpenMP Runtime System for Both Fork-Join and Data Flow Paradigms
	Introduction
	The libKOMP Runtime System
	The libKOMP Execution Model
	Parallel Regions in libKOMP
	Data Access Modes for Dependent Tasks
	Stack-Based Execution
	Work Stealing and Data Flow Dependencies
	Discussion
	Parallel Loops in libKOMP

	Performance Evaluation
	Task Management Overhead
	Parallel Loops
	Barcelona OpenMP Tasks Suite (BOTS)
	Data Flow Tasks versus Fork-Join Tasks

	Related Work
	Conclusion
	References

	A Compiler-Assisted Runtime-Prefetching Scheme for Heterogeneous Platforms
	Introduction
	Language Extensions
	Compiling Supports
	Runtime Use-Def Analysis and Prefetch Scheduling
	Adaptive Scheduling

	 Implementation and Evaluation
	Related Work
	Conclusion and Future Work
	References

	Optimization and Accelerators
	Experiments with WRF on Intel Many Integrated Core (Intel MIC) Architecture
	Introduction
	Intel MIC Architecture
	Hardware Architecture
	System Software Architecture

	Software Stack Implementation
	OpenMP
	MPI
	Compiler Offload

	WRF Benchmark
	WRF Offload
	MPI Implementation
	Timing Model
	Timing Measurement and Results

	Conclusions and Future Work
	References

	Optimizing the Advanced Accelerator Simulation Framework Synergia Using OpenMP
	Introduction
	Benchmark Application
	Platforms
	Improving the Performance Using OpenMP
	Parallelizing the Loops
	Using OpenMP for FFTW
	Parallelizing Deposit
	Performance Discussion

	Related Work
	Summary and Conclusions
	References

	Using Compiler Directives for Accelerating CFD Applications on GPUs
	Introduction
	GPU Programming
	Benchmark Implementations
	Baseline Code
	Implementations Using ACC Directives
	CUDA Implementations

	Performance Study
	Matrix Transposition
	Matrix Multiplication
	SP Benchmark

	Conclusions
	References

	Effects of Compiler Optimizations in OpenMP to CUDA Translation
	Introduction
	Overview of OpenMPC System
	Optimization Options
	Improving the OpenMPC Tuning System

	Modified IE (MIE) Algorithm for OpenMPC
	Iterative Elimination
	Grouping of Different Optimization Options
	MIE Running Strategy

	Performance Analysis
	Setup
	Performance Comparison between Pruned Exhaustive and Modified IE Algorithms
	Impact of Individual Optimization Options

	Conclusion and Future Work
	References

	Task Parallelism
	Assessing OpenMP Tasking Implementations on NUMA Architectures
	Introduction
	Related Work
	Monitoring Task Execution
	Load Balancing vs. Data Locality
	Task Overhead

	Task Behavior on NUMA Architectures
	STREAM
	SMXV in a CG Kernel

	Application Case Studies
	Summary
	References

	Performance Analysis Techniques for Task-Based OpenMP Applications
	Introduction
	Related Work
	Performance Problems Related to Tasking
	The OTF2 Task Event Model
	Task Interruption
	Evaluation
	Conclusion
	References

	Task-Based Execution of Nested OpenMP Loops
	Introduction
	Proof of Concept: Re-writing Loop Code Manually
	Overcoming Limitations by Automatic Transformation
	The OMPi Compiler
	Automating the Process
	Ordered

	Evaluation
	Synthetic Benchmark
	Face Detection

	Conclusion
	References

	Validation and Benchmarks
	SPEC OMP2012 — An Application Benchmark Suite for Parallel Systems Using OpenMP
	Introduction
	Design and Principles of SPEC OMP2012
	General Design
	Run Rules

	Description of the Benchmark
	Energy Efficiency
	First Scalability Results
	Related Work
	Summary and Conclusion
	References

	An OpenMP 3.1 Validation Testsuite
	Introduction
	The Design of an OpenMP Validation Suite
	Implementation
	Directives and Clauses
	Support for OpenMP 3.1

	Evaluation
	Related Work
	Conclusion
	References

	Poster Papers
	Performance Analysis of an Hybrid MPI/OpenMP ALM Software for Life Insurance Policies on Multi-core Architectures
	Introduction
	The ALM Software for Life Insurance Policies
	Performance Results
	References

	Adaptive OpenMP for Large NUMA Nodes
	Introduction
	Adaptive OpenMP Runtime
	Experimental Results
	Conclusion and Future Work
	References

	A Generalized Directive-Based Approach for Accelerating PDE Solvers
	Cube-Flu
	Parallelization and Directive-Based GPU Porting
	Performance Results
	References

	Design of a Shared-Memory Model for CAPE
	Introduction
	Shared-Memory Models on Distributed Systems
	OpenMP flush Directive and Memory-Consistency Mechanism
	Updated Home-Based Lazy Release Consistency Model
	The Global Flush Using the UHLRC Model
	The Selective Flush Directive Using the UHLRC Model
	Conclusion and Future Works
	References

	Overlapping Computations with Communications and I/O Explicitly Using OpenMP Based Heterogeneous Threading Models
	Introduction and Background
	Heterogeneous OpenMP Model: BigDFT Implementation
	Experiments and Results
	Discussion and Proposal for OpenMP Extensions
	References

	A Microbenchmark Suite for OpenMP Tasks
	Introduction
	Benchmark Design and Implementation
	Benchmark Results
	Hardware
	Results

	Conclusions
	References

	Support for Thread-Level Speculation into OpenMP
	Introduction
	Our Proposal
	Conclusions
	References

	Author Index

