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Abstract. Previous research demonstrates that multiple representations of 
learning content can enhance students’ learning, but also that students learn 
deeply from multiple representations only if the learning environment supports 
them in making connections between the representations. We hypothesized that 
connection-making support is most effective if it helps students make sense of 
the content across representations and in becoming fluent in making 
connections. We tested this hypothesis in a classroom experiment with 599 4th- 
and 5th-grade students using an ITS for fractions. The experiment further 
contrasted two forms of support for sense making: auto-linked representations 
and the use of worked examples involving one representation to guide work 
with another. Results confirm our main hypothesis: A combination of worked 
examples and fluency support lead to more robust learning than versions of the 
ITS without connection-making support. Therefore, combining different types 
of connection-making support is crucial in promoting students’ deep learning 
from multiple representations.  
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1 Introduction 

Multiple representations, such as charts and diagrams in mathematics, are universally 
used in instructional materials because they can emphasize important aspects of the 
learning content. Representations as learning tools may be especially beneficial when 
incorporated in intelligent tutoring systems (ITSs): rather than working with static 
representations, students can interact with virtual manipulatives [1], and they can be 
tutored on their interactions with them. There is extensive evidence in the educational 
psychology literature that learning with multiple representations can enhance 
students’ deep understanding of the domain [2,3]. However, research has also shown 
that, in order to benefit from multiple representations, students need to make 
connections between them [2,4,5]. Yet, students find it difficult to make these 
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connections [2] and tend not to make them spontaneously [2,6]. Therefore, they need 
to be supported in doing so [7]. 

In the domain of fractions, multiple representations such as circles, rectangles, and 
number lines are commonly used [8]. Each representation provides a different 
conceptual view on fractions [9]. In order to gain a deep understanding of fractions, 
students need to understand the conceptual views presented by each representation, 
and they need to relate the representations to one another [8,10]. Being able to relate 
these different representations is key to developing a deep understanding of fractions 
(e.g., as numbers that have magnitudes), which is an important educational goal [10]. 

A crucial question when designing learning environments that use multiple 
representations is therefore what kind of connection-making support will promote 
deep learning. Following the KLI theoretical framework for robust learning [11], we 
distinguish between two types of learning processes: sense-making processes and 
fluency-building processes. Making sense of connections means (in the case of 
fractions) that students conceptually understand how different representations relate to 
each other (e.g., why two representations show the same fraction). Fluently making 
connections means to fast and effortlessly relate different representations (e.g., 
representations that show the same value). Prior research on how best to support 
students in making connections between multiple representations has focused only on 
supporting sense-making processes, for instance, by supporting students in relating 
corresponding elements of representations at a structural level [12]. However, both 
types of learning processes may be necessary in order to develop competence in a 
complex domain [11]. Applying this notion to learning with multiple representations, 
we hypothesize that students learn most robustly when, in addition to being supported 
in making sense of connections between multiple representations, they are supported 
in fluently making connections between multiple representations.  

A crucial question regarding sense-making support is further: how much automated 
support should students receive from the system [2]? On the one hand, providing 
students with auto-linked representations (AL), in which the system, rather than the 
student, connects and updates representations, has been shown to enhance learning in 
complex domains [5]. On the other hand, research has demonstrated that students 
should actively create connections between representations, rather than passively 
observing correspondences [13]. Thus, we compare two ways of sense-making 
support, one in which the tutor demonstrates connections (i.e., auto-linked 
representations, AL), one in which more of that burden falls on the student. A well-
researched way of supporting active sense-making processes is to provide students 
with worked examples (WEs), that is, solved problems with solution steps shown 
[14]. WEs have been shown to be effective in many domains [14], and have been used 
in ITSs (e.g., [15]). Berthold and Renkl [16] compared students’ learning from multi-
representational WEs to single-representation WEs and found that multiple 
representations can enhance students’ learning from WEs. However, to our 
knowledge, WEs have not yet been used as a means to support students in making 
connections between multiple representations. In our study, students use a WE that 
uses a more familiar representation as a guide to solve an isomorphic problem that 
involves a less familiar representation. As they integrate the example problem and the 
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new problem, they can make connections between the two representations. We 
hypothesize that WE support (compared to AL support) will be the more effective 
type of sense-making support in promoting students’ learning of fractions, since 
students have to engage more actively in making connections. 

We address these hypotheses in the context of a proven ITS technology, namely, 
Cognitive Tutors [17]. The Fractions Tutor has been tested and iteratively improved 
based on five experimental studies with almost 3,000 students. Although Cognitive 
Tutors have been widely researched with middle- and high-school students [18] (e.g., 
Rittle-Johnson and Koedinger [19] report on a study in which 6th-graders used a 
Cognitive Tutor for fractions), the effectiveness of Cognitive Tutors and other ITSs 
for elementary-school students remains under-researched. 

We conducted a classroom experiment to investigate the effects of sense-making 
support for connection making and of fluency support for connection making on 
students’ understanding of fractions. 599 4th- and 5th-grade students worked with the 
Fractions Tutor during their regular mathematics class. Students either received sense-
making support for connection making (AL or WE) or not. This factor was crossed 
with a second experimental factor, namely, whether or not students received fluency 
support for connection making. Since many education researchers and practitioners 
emphasize the importance of helping students understand number lines [8,10], we 
included a version of the Fractions Tutor that provides only a number line as a control 
condition.  

2 Methods 

2.1 Fractions Tutor 

The ITS used in the present study used three different interactive representations of 
fractions: circles, rectangles, and number lines. Each representation emphasizes 
certain aspects of different conceptual interpretations of fractions [9]. The circle as a 
part-whole representation depicts fractions as parts of an area that is partitioned into 
equally-sized pieces. The rectangle is a more elaborate part-whole representation as it 
can be partitioned vertically and horizontally. At the same time, it does not have a 
standard shape for the unit, like the circle does. Finally, the number line is considered 
a measurement representation and thus emphasizes that fractions can be compared in 
terms of their magnitude, and that they fall between whole numbers.  

The Fractions Tutor covers a comprehensive set of ten topics including interpreting 
representations, reconstructing the unit of fraction representations, improper fractions 
from representations, equivalent fractions, fraction comparison, fraction addition and 
subtraction. In our classroom study, students in all conditions first worked on six 
introductory problems that introduced the representations. They then worked on eight 
problems per fractions topic, yielding a total of 80 tutor problems. The sequence of 
tutor problems included both single-representation problems and (in the connection-
making support conditions) multiple-representation problems.  
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Fig. 1. Example of sense-making support: worked-example problem 

To support students in making connections between the different representations, 
we created three new types of tutor problems. WE problems and AL problems were 
designed to provide sense-making support. Each was designed to emphasize 
conceptual correspondences between the two representations. In the WE problems 
(see Fig. 1), an example of a solved problem with a familiar representation (i.e., circle 
or rectangle) was displayed on the left. This worked example contained filled-in 
answers for all except for the last step. After the student filled in the last step of the 
worked example, an isomorphic problem with a less familiar representation (number 
line) showed up on the right.  The worked example served to guide students’ work on 
this problem. To solve the problem, students manipulated the interactive number line. 
The AL problems followed the same side-by-side format with problem steps lined up, 
but there was no WE. Rather, as students completed the steps in the number line 
problem, the area model representation updated automatically to mimic the steps the 
student performed on the number line. In this sense, the more familiar representation 
provided feedback on the work with the less familiar representation. (To make this 
work at a technical level, we extended the CTAT tools [20] so that the number line 
component could serve as a controller for the area model component.) The WE and 
the AL problems included self-explanation prompts at the end of each problem (see 
bottom of Fig. 1) which asked students to identify correspondences of the two given 
representations. 

The third type of connection-making problems, mixed representation problems 
(Mix; see Fig. 2), were designed to help students become fluent in connecting 
representations. Given a set of representations of fractions, students grouped them 
(through drag-and-drop) according to the fraction they represent. Students had to drag 
each individual graphical representation into the correct drop area labeled with a 
symbolic fraction. Students could drag-and-drop the fraction representations in any 
order. The drop area was able to detect which graphical representation the student 
drag-and-dropped into it, and could thereby give error feedback accordingly, when 
necessary. In each problem, multiple representations matched the same symbolic 
fraction. 
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Students received error feedback and hints on all steps. Hint messages and error 
feedback messages were designed to give conceptually oriented help, often in relation 
to the representations. The single-representation problems included prompts to help 
students relate the representations to the symbolic fractions. We had found these 
prompts to be effective in an earlier experimental study [3].  

 

Fig. 2. Example of fluency support: mixed representations problem 

2.2 Test Instruments 

We assessed students’ knowledge of fractions at three test times. We created three 
equivalent test forms. Based on data from a pilot study with 61 4th-grade students, we 
made sure that the difficulty level of the test was appropriate for the target age group, 
and that the different test forms did not differ in difficulty. In our classroom study, we 
randomized the order in which the different test forms were administered.  

The tests targeted two knowledge types: procedural and conceptual knowledge. 
The conceptual knowledge scale assessed students’ principled understanding of 
fractions. The test items included reconstructing the unit, identifying fractions from 
graphical representations, proportional reasoning questions, and verbal reasoning 
questions about comparison tasks. The procedural knowledge scale assessed students’ 
ability to solve questions by applying algorithms. The test items included finding a 
fraction between two given fractions using representations, finding equivalent 
fractions, addition, and subtraction. The theoretical structure of the test (i.e., the two 
knowledge types just mentioned) was based on a factor analysis with the pretest data 
from the current experiment. We validated the resulting factor structure using the data 
from the immediate and the delayed posttests. 
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2.3 Experimental Design and Procedure 

In the present paper, we report the data from 599 4th- and 5th-grade students from one 
school district with 5 different elementary schools (25 classes) in the United States.  
Students participated in the study as part of  their regular mathematics instruction. All 
students worked with versions of the Fractions Tutor designed and created 
specifically for this study. Students were randomly assigned to one of the conditions 
shown in Table 1. We used a 2 (fluency support) x 3 (sense-making support) + 1 (NL 
control condition) experimental design to investigate the effects of connection making 
support on students’ learning of fractions. The fluency support factor had two levels: 
students either received Mix problems as fluency support, or no fluency support. The 
sense-making support factor had three levels: students either received WE problems 
or AL problems as sense-making support, or no sense-making support.   

We assessed students’ knowledge of fractions three times. On the first day, 
students completed a 30-minute pretest. They then worked on the Fractions Tutor for 
about ten hours, spread across consecutive school days. The day following the tutor 
sessions, students completed a 30-minute posttest. About one week after the posttest, 
we gave students an equivalent delayed posttest.  

Table 1. Experimental conditions1 included in the experimental study  

 Sense-making support Control 

None Auto-linked 
representations 

Worked 
example 

Fluency 
support 

None MGR AL WE 

Mixed 
representations 

Mix AL-Mix WE-Mix 

Control NL 

3 Results 

Students who completed all tests, and who completed their work on the tutoring 
system were included in the analysis, yielding a total of N = 428. The number of 
students who were excluded from the analysis did not differ between conditions, χ² (6, 
N = 169) = 4.34, p > .10. Table 2 shows the means and standard deviations for the 
conceptual and procedural knowledge scales by test time and condition. 

A hierarchical linear model (HLM; [21]) with four nested levels was used to 
analyze the data. HLMs are regression models that take into account nested sources of 
variability [21]. HLMs allow for significance testing in the same way as regular 
regression analyses do. We modeled performance for each of the three tests for each 
student (level 1), differences between students (level 2), differences between classes 
(level 3), and between schools (level 4). More specifically, we fit the following HLM:  
                                                           
1 MGR = multiple graphical representations, AL = auto-linked representations, WE = worked 

examples, Mix = mixed representations, NL = number line.  
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scoreij = testj + sensek + fluencyl + sensek*fluencyl + prei*sensek  +  
prei*fluencyl + student(class)i + class(school)i + schooli, 

(1) 

with the dependent variable scoreij being studenti’s score on the dependent measures 
at testj (i.e., immediate or delayed posttest). Sensek indicates whether or not studenti 
received sense-making support, and fluencyl indicates whether studenti received 
fluency support. In order to analyze whether students with different levels of prior 
knowledge benefit differently from connection-making support, we included students’ 
pretest scores as a covariate (prei), and modeled the interaction of pretest score with 
sense-making support (prei*sensek), and with fluency support (prei*fluencyl). 
Student(class)i , class(school)i, and schooli indicate the nested sources of variability 
due to the fact that studenti was in a particular class of a particular school. The 
reported p-values were adjusted for multiple comparisons using the Bonferroni 
correction. We report partial η² for effect sizes on main effects and interactions 
between factors, and Cohen’s d for effect sizes of pairwise comparisons. An effect 
size partial η² of .01 corresponds to a small effect, .06 to a medium effect, and .14 to a 
large effect. An effect size d of .20 corresponds to a small effect, .50 to a medium 
effect, and .80 to a large effect.  

Table 2. Proportion correct: means (and standard deviation) for conceptual and procedural 
knowledge at pretest, immediate posttest, delayed posttest. Min. score is 0, max. score is 1.  

  pretest immediate posttest delayed posttest 

conceptual 
knowledge 

MGR .33 (.20) .45 (.23) .48 (.26) 
AL .38 (.20) .49 (.23) .51 (.26) 
WE .36 (.22) .43 (.20) .49 (.26) 
Mix .31 (.21) .37 (.22) .44 (.24) 
AL-Mix .36 (.20) .43 (.24) .49 (.25) 
WE-Mix .39 (.21) .52 (.24) .58 (.26) 
NL .37 (.20) .43 (.25) .48 (.20) 

procedural 
knowledge 

MGR .25 (.25) .30 (.28) .30 (.26) 
AL .21 (.18) .26 (.24) .26 (.24) 
WE .26 (.21) .29 (.24) .31 (.27) 
Mix .19 (.17) .23 (.20) .25 (.22) 
AL-Mix .20 (.18) .25 (.21) .26 (.21) 
WE-Mix .26 (.20) .32 (.26) .33 (.26) 
NL .21 (.20) .25 (.22) .27 (.23) 

3.1 Effects of Connection-Making Support 

We had expected that a combination of fluency support and sense-making support for 
connection making would lead to better results than either sense-making or fluency 
support alone. The results confirm our hypothesis for conceptual knowledge: we 
found a significant interaction effect between sense-making and fluency support on 
conceptual knowledge, F(2, 351) = 3.97, p < .05, p. η² =.03, such that students who 
received both types of support performed best on the conceptual knowledge posttests. 
The main effects of sense-making and fluency support were not significant (Fs < 1). 
There was no significant interaction effect on procedural knowledge (F < 1).  
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We had further predicted that WE problems would be the more effective type of 
sense-making support compared to AL problems. The results confirm this hypothesis 
for the conditions that received fluency support. Effect slices for the effect of sense-
making support (i.e., a test of the effect of sense-making support for each level of the 
fluency support factor) showed that there was a significant effect of sense-making 
support within the conditions with fluency support on conceptual knowledge, F(2, 
343) = 4.34, p < .05, p. η² =.07, but not within the conditions without fluency support 
(F < 1). Post-hoc comparisons between the Mix, AL-Mix, and the WE-Mix 
conditions confirmed that the WE-Mix condition significantly outperformed the Mix 
condition, t(341) = 2.82, p < .01, d = .32, and the AL-Mix condition t(342) = 2.20, p < 
.05, d = .26, on conceptual knowledge. In summary, WE problems are more effective 
in supporting sense-making of connections than AL problems, provided that students 
also receive fluency support.  

Finally, to verify the advantage of receiving connection-making support over the 
NL control condition, we compared the most successful condition (WE-Mix) to the 
NL condition using post-hoc comparisons. The advantage of the WE-Mix condition 
over the NL was significant on conceptual knowledge, t(115) = 2.41, p < .05, d = .27. 

3.2 Learning Effects 

To investigate whether students learned from the pretest to the immediate posttest and 
to the delayed posttest across conditions, we modified the HLM and treated pretest 
scores as dependent variables, not as covariates (i.e., prei, prei*sensek, and 
prei*fluencyl were excluded from the model in equation 1). The main effect for test 
was significant on procedural knowledge, F(2, 842) = 43.04, p < .01, p. η² =.01, and 
conceptual knowledge, F(2, 842) = 98.56, p < .01, p. η² =.11. Students in all 
conditions performed significantly better at the immediate posttest than at the pretest 
on conceptual knowledge, t(842) = 9.15, p < .01, d = .40 and on procedural 
knowledge, t(842) = 7.15, p < .01, d = .20. Similarly, students performed significantly 
better at the delayed posttest than at the pretest on conceptual knowledge, t(842) = 
13.80, p < .01, d = .60 and on procedural knowledge, t(842) = 8.70, p < .01, d = .24. 

4 Discussion and Conclusion 

We had hypothesized that students would learn most robustly about fractions when 
being supported both in making sense of connections and in fluently making 
connections between multiple representations. Our results confirm this hypothesis for 
students’ conceptual understanding of fractions: robust conceptual learning with 
multiple representations is enhanced by a combination of fluency support and sense-
making support for connection making. We did not find effects of connection-making 
support on procedural knowledge. This finding is not surprising: it is conceivable that 
making connections between multiple representations benefits students’ principled 
understanding of fractions but not their algorithmic knowledge of operations.  
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The fact that we did not find main effects of sense-making support and fluency 
support for connection making, on the other hand, is surprising: it shows that each 
type of connection-making support alone is not effective, but that the combination of 
both is needed to enhance students’ conceptual understanding of fractions. This 
finding is particularly interesting because prior research on connection making has 
mostly focused on sense-making processes by supporting connection making of 
structurally equivalent elements. Our results suggest that standard sense-making 
support for connection making should be extended by also supporting fluency in 
making connections. It is possible that fluency activities allow students to deepen the 
conceptual knowledge about connections they acquired through sense-making 
activities.  

With respect to how best to support sense making, our finding that WE support 
leads to better learning than AL support demonstrates, in line with earlier research on 
connection making [13], that students need to actively create connections between 
representations. We show that a novel application of WEs is effective in supporting 
active connection making. This finding extends the existing literature on WEs by 
showing that they can help students benefit from multiple representations when used 
as a means to support sense-making of connections. 

As predicted, the advantage for combining fluency and sense-making support for 
connection making was also significant compared to the control condition who 
worked only with number lines. Number lines are often considered the most important 
graphical representation of fractions [10], which may lead teachers to use only 
number lines in fractions instruction. However, our findings show that with effective 
connection-making support, multiple representations of fractions can facilitate the 
acquisition of conceptual knowledge more so than practicing only the number line. 

Finally, our results demonstrate significant learning gains for students who worked 
with the Fractions Tutor during their regular mathematics class. The gains persist at 
least until one week after the study when we administered the delayed posttest. This 
finding extends the ITS literature by demonstrating the effectiveness of a Cognitive 
Tutor for elementary-school students. Evaluation studies with ITSs have focused far 
more on high schools and middle schools than elementary schools [18,19]. 
Furthermore, the substantial and robust learning gains are encouraging, given that 
fractions are a difficult topic for elementary and middle-school students – a fact that 
provides a major obstacle for later mathematics learning, such as in algebra [8]. Our 
ITS for fractions is effective in helping students overcome some of these difficulties. 

In conclusion, the present experiment extends the ITS and educational psychology 
literature on learning with multiple representations in several ways. First, our findings 
show that, although prior research has conceived of connection making as primarily a 
sense-making process, effective connection making involves fluency processes and 
therefore requires activities aimed at supporting sense making and activities aimed at 
supporting fluency. Second, we demonstrate that students need to be active in making 
connections between representations, and that a novel application of worked examples 
is effective in helping students to accomplish this difficult task. Third, the study 
provides insight into the type of knowledge for which connection-making support is 
beneficial. Connection-making support does not benefit students in learning to apply 
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algorithms to solve procedural tasks, but it helps them acquire conceptual knowledge 
of domain principles. Finally, our findings extend the findings on the effectiveness of 
Cognitive Tutors to the younger population of elementary school students.   
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