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Abstract. We propose a bounded model checking (BMC) method for the ver-
ification of multi-agent systems’ (MASs). The MASs are modelled by deon-
tic interleaved interpreted systems, and specifications are expressed in the logic
RTECTLKD. The verification approach is based on the state of the art solutions
to BMC, one of the mainstream approaches in verification of reactive systems.
We test our results on a typical communication scenario: train controller problem
with faults.

1 Introduction

Agents are rational and sophisticated entities that act autonomously on behalf of their
users, across open and distributed environments, to solve a growing number of complex
problems. A multi-agent system (MAS) [14] is a loosely united network of agents that
interact (communicate, coordinate, cooperate, etc.) to solve problems that are beyond
the individual capacities or knowledge of a single agent. Deontic interpreted systems
(DIS), a deontic extension of interpreted systems [4], were defined in [8] to represent
and reason about epistemic and correct functioning behaviour of MASs. They provide
a semantics based on the computation states of the agents, on which it is possible to
interpret a modality Oiφ, representing the fact “in all correct functioning executions of
agent i, φ holds”, as well as a traditional epistemic modalities and temporal operators.
Deontic interleaved interpreted systems (DIIS) are a deontic extension of the formalism
of interleaved interpreted systems [7]. We introduce them since they allow for the dis-
tinction between correct (or ideal, normative, etc.) and incorrect states, and they enable
more efficient verification of MASs that are not so loosely coupled.

Model checking [2] is one of the mainstream techniques whose aim is to provide
an algorithm determining whether an abstract model - representing, for example, a soft-
ware project - satisfies a formal specification expressed as a modal formula. Moreover, if
the property does not hold, the method identifies a counterexample execution that shows
the source of the problem. The practical applicability of model checking in MASs set-
tings requires the development of sophisticated means of coping with what is known
as the state explosion problem. To avoid this problem a number of approaches have
been developed, including BDD-based bounded [5,9] and unbounded [13,12] model
checking, SAT-based bounded [10,11,15] and unbounded [6] model checking.
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The RTCTLKD language is an epistemic and deontic extension of RTCTL [3], which
allows for the representation of the quantitative temporal evolution of epistemic states
of the agents, as well as their correct and incorrect functioning behaviour.

In past research we have provided a theoretical underpinnings of a bounded model
checking (BMC) algorithm for DIS and an existential part of CTLKD (ECTLKD) [15].
However, the method have not been implemented and experimentally evaluated. More-
over, it was not tailored to the DIISs settings, and it was not based on the state-of-the
art BMC method for ECTL [17], which uses a reduced number of paths, what results
in significantly smaller and less complicated propositional formulae that encode the
ECTLKD properties. In this paper we provide a new SAT-based BMC technique for the
existential part of RTCTLKD (thus, for ECTLKD as well) by means of which we can
automatically verify not only epistemic and temporal properties but also deontic and
quantitative temporal properties that express compliance of a MAS, modelled by DIIS,
with respect to specifications.

The structure of the paper is as follows. In Section 2 we shortly introduce DIISs,
the RTCTLKD language together with its existential (RTECTLKD) and universal frag-
ments (RTACTLKD), unbounded and bounded semantics. In Section 3 we define a BMC
method for RTECTLKD. In Section 4 we present performance evaluation of our newly
developed SAT-based BMC algorithm and we conclude the paper.

2 Preliminaries

DIIS. We assume that a MAS consists of n agents, and by Ag = {1, . . . , n} we denote
the non-empty set of agents; note that we do not consider the environment component.
This may be added with no technical difficulty at the price of heavier notation. We
assume that each agent c ∈ Ag is in some particular local state at a given point in
time, and that a set Lc of local states for agent c ∈ Ag is non-empty and finite (this is
required by the model checking algorithms). We assume that for each agent c ∈ Ag, its
set Lc can be partitioned into faultless (green) and faulty (red) states. For n agents and
n mutually disjoint and non-empty sets G1, . . . ,Gn we define the set G of all possible
global states as the Cartesian product L1× . . .×Ln, such that L1 ⊇ G1, . . . , Ln ⊇ Gn.
The set Gc is called the set of green states for agent c. The complement of Gc with
respect to Lc (denoted by Rc) is called the set of red states for the agent c. Note that
Gc ∪ Rc = Lc for any agent c. Further, by lc(g) we denote the local component of
agent c ∈ Ag in a global state g = (l1, . . . , ln).

With each agent c ∈ Ag we associate a finite set of possible actions Actc such that
a special “null” action (εc) belongs to Actc ; as it will be clear below the local state of
agent c remains the same, if the null action is performed. We do not assume that the sets
Actc (for all c ∈ Ag) are disjoint. Next, with each agent c ∈ Ag we associate a protocol
that defines rules, according to which actions may be performed in each local state. The
protocol for agent c ∈ Ag is a function Pc : Lc → 2Actc such that εc ∈ Pc(l) for any
l ∈ Lc , i.e., we insist on the null action to be enabled at every local state. For each agent
c, there is defined a (partial) evolution function tc : Lc×Actc → Lc such that for each
l ∈ Lc and for each a ∈ Pc(l) there exists l′ ∈ Lc such that tc(l, a) = l′; moreover,
tc(l, εc) = l for each l ∈ Lc . Note that the local evolution function considered here
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differs from the standard one (see [4]) by having the local action instead of the join
action as the parameter. Further, we define the following sets Act =

⋃
c∈Ag Actc and

Agent(a) = {c ∈ Ag | a ∈ Actc}.
We assumed that, in every state, agents evolve simultaneously. Thus the global in-

terleaved evolution function t : G × Act1 × · · · × Actn → G is defined as follows:
t(g, a1, . . . , an) = g′ iff there exists an action a ∈ Act \ {ε1, . . . , εn} such that for
all c ∈ Agent(a), ac = a and tc(lc(g), a) = lc(g

′), and for all c ∈ Ag \ Agent(a),
ac = εc and tc(lc(g), ac) = lc(g). In brief we write the above as g

a−→ g′.
Now, for a given set of agents Ag and a set of propositional variables PV, which

can be either true or false, a deontic interleaved interpreted system is a tuple: DIIS =
(ι, < Lc,Gc , Actc , Pc , tc >c∈Ag,V), where ι ∈ G is an initial global state, and V :
G → 2PV is a valuation function. With such a DIIS it is possible to associate a model
M = (ι, S, T, {∼c}c∈Ag, {��c}c∈Ag,V), where ι is the initial global state; S ⊆ G is
a set of reachable global states that is generated from ι by using the global interleaved
evolution functions t; T ⊆ S×S is a global transition (temporal) relation on S defined
by: sT s′ iff there exists an action a ∈ Act\{ε1, . . . , εn} such that s

a−→ s′. We assume
that the relation is total, i.e., for any s ∈ S there exists an a ∈ Act \ {ε1, . . . , εn} such
that s

a−→ s′ for some s′ ∈ S; ∼c⊆ S × S is an indistinguishability relation for agent
c defined by: s ∼c s′ iff lc(s′) = lc(s); ��c⊆ S × S is a deontic relation for agent c
defined by: s ��c s′ iff lc(s′) ∈ Gc ; V : S → 2PV is the valuation function of DIIS
restricted to the set S. V assigns to each state a set of propositional variables that are
assumed to be true at that state.

Syntax of RTCTLKD. Let p ∈ PV, c ∈ Ag, Γ ⊆ Ag, and I be an interval in IN =
{0, 1, 2, . . .} of the form: [a, b) and [a,∞), for a, b ∈ IN; note that the remaining forms
of intervals can be defined by means of [a, b) and [a,∞). Hereafter, let left(I) denote
the left end of the interval I , and right(I) the right end of the interval I . The language
RTCTLKD is defined by the following grammar:

ϕ:= true | false | p | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ | EXϕ | E(ϕUIϕ) | EGIϕ |
Kcϕ | DΓϕ | EΓϕ | CΓϕ | Ocα | K̂d

cα

The derived basic modalities are defined as follows: E(αRIβ)
def
= E(βUI(α ∧ β)) ∨

EGIβ, EFIα
def
= E(trueUIα), AXα

def
= ¬EX¬α, AFα

def
= ¬EG¬α, A(αRβ)

def
=

¬E(¬αU¬β), AGα
def
= ¬EF¬α, Ocα

def
= ¬Oc¬α, Kcα

def
= ¬Kc¬α, K̂d

cα
def
=

¬K̂d

c¬α, DΓϕ
def
= ¬DΓ¬α, EΓϕ

def
= ¬EΓ¬α, CΓϕ

def
= ¬CΓ¬α, where c, d ∈ AG,

and Γ ⊆ AG. Intuitively, E and A mean, resp., there exists a computation, and for all
the computations,UI and GI are the operators, resp., for “bounded until” and “bounded
always”. Kc is the operator dual for the standard epistemic modality Kc (“agent c
knows”), so Kcα is read as “agent c does not know whether or not α holds”. Simi-
larly, the modalities DΓ ,EΓ ,CΓ are the dual operators for DΓ ,EΓ ,CΓ representing
distributed knowledge in the group Γ , everyone in Γ knows, and common knowledge
among agents in Γ . Further, we use the (double) indexed modal operators Oc , Oc , K̂d

c

and K̂
d

c to represent the correctly functioning circumstances of agent c. The formula
Ocα stands for “for all the states where agent c is functioning correctly, α holds”. Oc

is the operator dual for the modality Oc . The formula K̂d
cα is read as “agent c knows
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that α under the assumption that agent d is functioning correctly”. K̂
d

c is the operator
dual for the modality K̂d

c . We refer to [8] for a discussion of this notion; note that the
operator Oc is there referred to as Pc .

Next, we define two sublogics of RTCTLKD. The first one is the existential fragment
of RTCTLKD (RTECTLKD), defined by the following grammar: ϕ ::= p | ¬p | α ∧ β |
α ∨ β | EXα | E(αUIβ) | EGIα | Kcα | EΓα | DΓα | CΓα | Ocα | K̂d

cα. The
second on is the universal fragment of RTCTLKD (RTACTLKD), defined as: ϕ ::= p |
¬p | α∧β | α∨β | AXα | A(αRIβ) | AFIα |Kcα | EΓα | DΓα | CΓα | Ocα | K̂d

cα.

Semantics of RTCTLKD. Let M be a model for DIIS. A path in M is an infinite
sequence π = (s0, s1, . . .) of states such that (sj , sj+1) ∈ T for each j ∈ IN. For a
path π, we take π(j) = sj . By Π(s) we denote the set of all the paths starting at
s ∈ S. For the group epistemic modalities we define the following. If Γ ⊆ Ag, then

∼E
Γ

def
=

⋃
c∈Γ ∼c , ∼C

Γ

def
= (∼E

Γ )
+ (the transitive closure of ∼E

Γ ), and ∼D
Γ

def
=

⋂
c∈Γ ∼c .

Given the above, the semantics of RTCTLKD is the following:
• M, s |= true, •M, s �|= false, •M, s |= p iff p ∈ V(s), •M, s |= ¬α iff M, s �|= α,
• M, s |= α ∧ β iff M, s |= α and M, s |= β,
• M, s |= α ∨ β iff M, s |= α or M, s |= β,
• M, s |= EXα iff (∃π ∈ Π(s))(M,π(1) |= α),
• M, s |= E(αUIβ) iff (∃π∈Π(s))(∃m∈I)[M,π(m) |=β and (∀j<m)M,π(j) |=α],
• M, s |= EGIα iff (∃π ∈ Π(s)) such that (∀m ∈ I)[M,π(m) |= α],
• M, s |= Kcα iff (∃s′ ∈ S)(s ∼c s′ and M, s′ |= α),
• M, s |= Y Γα iff (∃s′ ∈ S)(s ∼Y

Γ s′ and M, s′ |= α), where Y ∈ {D,E,C},
• M, s |= Ocα iff (∃s′ ∈ S)(s ��c s′ and M, s′ |= α),

• M, s |= K̂
d

cα iff (∃s′ ∈ S)(s ∼c s′ and s ��d s′ and M, s′ |= α).

An RTCTLKD formula ϕ is valid in M (denoted M |= ϕ) iff M, ι |= ϕ, i.e., ϕ is true at
the initial state of the model M . The model checking problem asks whether M |= ϕ.

Bounded Semantics. The proposed bounded semantics is the backbone of the SAT-
based BMC method for RTECTLKD, which is presented in the next section. As usual,
we start by defining k-paths and loops.

Let M be a model for DIIS, k ∈ IN, and 0 ≤ l ≤ k. A k-path is a finite sequence
π = (s0, . . . , sk) of states such that (sj , sj+1) ∈ T for each 0 ≤ j < k. A k-path π
is a loop if π(k) = π(l) for some l < k . By Πk(s) we denote the set of all the k-
paths starting at s in M . Note that although every k-path π is finite, if it is a loop, then
it generates the infinite path of the following form: u · vω with u = (π(0), . . . , π(l))
and v = (π(l + 1), . . . , π(k)). Further, since in the bounded semantics we consider
finite prefixes of paths only, the satisfiability of all the temporal operators depends on
whether a considered k-path is a loop. Thus, as customary, we introduce a function
loop :

⋃
s∈S Πk(s) → 2IN, which identifies these k-paths that are loops. The function

is defined as: loop(πk) = {l | 0 ≤ l < k and πk(l) = πk(k)}.
Given the above, the bounded semantics of RTECTLKD is defined as follows. Let

M, s |=k α denotes that α is k−true at the state s of M . The relation |=k is defined
inductively as follows:
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• M, s |=k true, •M, s �|=k false, •M, s |=k p iff p ∈ V(s),
• M, s |=k ¬p iff p �∈ V(s), •M, s |=k α ∨ β iff M, s |=k α or M, s |=k β,
• M, s |=k α ∧ β iff M, s |=k α and M, s |=k β,
• M, s |=k EXα iff k > 0 and (∃π ∈ Πk(s))M,π(1) |=k α,
• M, s |=k E(αUIβ) iff (∃π ∈ Πk(s))(∃0 ≤ m ≤ k)(m ∈ I and M,π(m) |=k β

and (∀0 ≤ j < m)M,π(j) |=k α),
• M, s |=k EGIα iff (∃π ∈ Πk(s))((k ≥ right(I) and (∀j ∈ I) M,π(j) |=k α) or
(k < right(I) and (∃l ∈ loop(π))(∀min(left (I), l) ≤ j < k)M,π(j) |=k α)),

• M, s |=k Kcα iff (∃π ∈ Πk(ι))(∃0 ≤ j ≤ k)(M,π(j) |=k α and s ∼c π(j)),
• M, s |=k Y Γα iff (∃π ∈ Πk(ι))(∃0 ≤ j ≤ k)(M,π(j) |=k α and s ∼Y

Γ π(j)),
where Y ∈ {D,E,C},

• M, s |=k Ocα iff (∃π ∈ Πk(ι))(∃0 ≤ j ≤ k)(M,π(j) |=k α and s ��c π(j)),

• M, s |=k K̂
d

cα iff (∃π ∈ Πk(ι))(∃0 ≤ j ≤ k)(M,π(j) |=k α and s ∼c π(j) and
s ��d π(j)).

An RTECTLKD formula ϕ is valid in model M with bound k (denoted M |=k ϕ) iff
M, ι |=k ϕ, i.e., ϕ is k-true at the initial state of the model M . The bounded model
checking problem asks whether there exists k ∈ IN such that M |=k ϕ.

The following theorem states that for a given model and formula there exists a bound
k such that the model checking problem (M |= ϕ) can be reduced to the bounded model
checking problem (M |=k ϕ). Its proof can be done by straightforward induction on
the length of an RTECTLKD formula.

Theorem 1. Let M be a model and ϕ an RTECTLKD formula. Then, the following
equivalence holds: M |= ϕ iff there exists k ≥ 0 such that M |=k ϕ.

Further, by straightforward induction on the length of an RTECTLKD formula ϕ, we
can show that ϕ is k-true in M if and only if ϕ is k-true in M with a number of
k-paths reduced to fk(ϕ), where the function fk : RTECTLKD → IN is defined as
follows. fk(true) = fk(false) = fk(p) = fk(¬p) = 0, where p ∈ PV; fk(α ∧ β) =
fk(α)+fk(β); fk(α∨β) = max{fk(α), fk(β)}; fk(E(αUIβ)) = k·fk(α)+fk(β)+1;
fk(EGIα) = (k + 1) · fk(α) + 1; fk(CΓα) = fk(α) + k; fk(Y α) = fk(α) + 1 for

Y ∈ {EX,Kc,Oc, K̂
d

c,DΓ ,EΓ }.

3 SAT-Based BMC for RTECTLKD

Let M = (ι, S, T, {∼c}c∈Ag, {��c}c∈Ag,V) be a model, ϕ an RTECTLKD formula,
and k ≥ 0 a bound. The proposed BMC method is based on the BMC encoding pre-
sented in [16], and it consists in translating the problem of checking whether M |=k

ϕ holds, to the problem of checking the satisfiability of the propositional formula
[M,ϕ]k := [Mϕ,ι]k ∧ [ϕ]M,k. The formula [Mϕ,ι]k encodes sets of k-paths of M ,
whose size are equal to fk(ϕ), and in which at least one path starts at the initial state
of the model M . The formula [ϕ]M,k encodes a number of constraints that must be
satisfied on these sets of k-paths for ϕ to be satisfied. Once this translation is defined,
checking satisfiability of an RTECTLKD formula can be done by means of a SAT-solver.

In order to define the formula [M,ϕ]k we proceed as follows. We begin with an
encoding of states of the given model M . Since the set of states of M is finite, each state
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s ofM can be encoded by a bit-vector, whose length r depends on the number of agents’
local states. Thus, each state s of M can be represented by a vector w = (w1, . . . , wr)
(called a symbolic state) of propositional variables (called state variables). A finite
sequence (w0, . . . , wk) of symbolic states of length k is called a symbolic k-path. Since
in general we may need to consider more than one symbolic k-path, we introduce a
notion of the j-th symbolic k-path (w0,j , . . . , wk,j), where wi,j are symbolic states for
0 ≤ j < fk(ϕ) and 0 ≤ i ≤ k. Note that the exact number of symbolic k-paths depends
on the checked formula ϕ, and it can be calculated by means of the function fk.

Let σ : SV → {0, 1} be a valuation of state variables (a valuation for short).
Each valuation induces the function σ : SV r → {0, 1}r defined in the following
way: σ((w1, . . . , wr)) = (σ(w1), . . . , σ(wr)). Moreover, let SV denote the set of all
the state variables, and SV (w) denote the set of all the state variables occurring in
a symbolic state w. Next, let w and w′ be two symbolic states such that SV (w) ∩
SV (w′) = ∅. We define the following auxiliary propositional formulae:
• Is(w) is a formula over SV (w) that is true for a valuation σ iff σ(w) = s.
• p(w) is a formula over w that is true for a valuation σ iff p ∈ V(σ(w)) (encodes a

set of states of M in which p ∈ PV holds).
• H(w,w′) is a formula over SV (w) ∪ SV (w′) that is true for a valuation σ iff

σ(w) = σ(w′) (encodes equivalence of two global states).
• Hc(w,w

′) is a formula over SV (w) ∪ SV (w′) that is true for a valuation σ iff
lc(σ(w)) = lc(σ(w)) (encodes equivalence of local states of agent c).

• HOc(w,w
′) is a formula over SV (w) ∪ SV (w′) that is true for a valuation σ iff

lc(σ(w
′)) ∈ Gc (encodes an accessibility of a global state in which agent c is

functioning correctly).
• Ĥd

c (w,w
′) := Hc(w,w

′) ∧HOd(w,w
′).

• R(w,w′) is a formula over SV (w) ∪ SV (w′) that is true for a valuation σ iff
(σ(w),σ(w′)) ∈ T (encodes the transition relation of M ).

• Let j ∈ IN, and I be an interval. Then In(j, I) := true if j ∈ I , and In(j, I) :=
false if j �∈ I .

Let W = {SV (wi,j) | 0 ≤ i ≤ k and 0 ≤ j < fk(ϕ)} be a set of state variables.
The propositional formula [Mϕ,ι]k is defined over the set W in the following way:

[Mϕ,ι]k := Iι(w0,0) ∧
∧fk(ϕ)−1

j=0

∧k−1
i=0 R(wi,j , wi+1,j)

The next step of the reduction to SAT is the transformation of an RTECTLKD formula
ϕ into a propositional formula [ϕ]M,k := [ϕ]

[0,0,Fk(ϕ)]
k , where Fk(ϕ) = {j ∈ IN | 0 ≤

j < fk(ϕ)}, and [ϕ]
[m,n,A]
k denotes the translation of ϕ at the symbolic state wm,n

using k-paths, whose indices are in the set A.
Following [17], to translate an RTECTLKD formula with an operator Q (where Q ∈

{EX,EUI ,EGI ,K1, . . . ,Kn,O1, . . . ,On,DΓ ,EΓ } ∪ {K̂d

c | c, d ∈ Ag and c �= d}),
we want exactly one path to be chosen for translating the operator Q, and the remaining
k-paths to be used to translate arguments of Q. To accomplish this goal we need some
auxiliary functions. However, before we define them, we first recall a definition of a re-
lation ≺ that is defined on the power set of IN as follows: A ≺ B iff for all natural
numbers x and y, if x ∈ A and y ∈ B, then x < y. Notice that from the definition of
≺ it follows that A ≺ B iff either A = ∅ or B = ∅ or A �= ∅, B �= ∅, A ∩ B = ∅ and
max(A) < min(B).
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Now, let A ⊂ IN be a finite nonempty set, k, p ∈ IN, and m ∈ IN such that m ≤ |A|:
• gl(A,m) denotes the subset B of A such that |B| = m and B ≺ A \B.
• gr(A,m) denotes the subset C of A such that |C| = m and A \ C ≺ C.
• gs(A) denotes the set A \ {min(A)}.
• If k+1 divides |A|−1, then hG(A, k) denotes the sequence (B0, . . . , Bk) of subsets

of A \ {min(A)} such that
⋃k

j=0 Bj = A \ {min(A)}, |B0| = . . . = |Bk|, and
Bi ≺ Bj for every 0 ≤ i < j ≤ k. If hG(A, k) = (B0, . . . , Bk), then hG(A, k)(j)
denotes the set Bj , for every 0 ≤ j ≤ k.
Notice that if k + 1 does not divide |A| − 1, then hG(A, k) is undefined. However,
for every set A such that |A| = fk(EGIα), it follows from the definition of fk that
k + 1 divides |A| − 1.

• If k divides |A| − 1 − p, then hU(A, k, p) denotes the sequence (B0, . . . , Bk) of
subsets of A \ {min(A)} such that

⋃k
j=0 Bj = A \ {min(A)}, |B0| = . . . =

|Bk−1|, |Bk| = p, and Bi ≺ Bj for every 0 ≤ i < j ≤ k. If hU(A, k, p) =
(B0, . . . , Bk), then hU(A, k, p)(j) denotes the set Bj , for every 0 ≤ j ≤ k.
Notice that if k does not divide |A|−1−p, then hU(A, k, p) is undefined. However,
for every set A such that |A| = fk(E(αUIβ)), it follows from the definition of fk
that k divides |A| − 1− fk(β).

Let ϕ be an RTECTLKD formula, and k ≥ 0 a bound. We define inductively the transla-
tion of ϕ over path number n ∈ Fk(ϕ) starting at symbolic state wm,n as shown below.
Let min(A) = A′, then:

• [true]
[m,n,A]
k := true, • [false]

[m,n,A]
k := false,

• [p]
[m,n,A]
k := p(wm,n), • [¬p][m,n,A]

k := ¬p(wm,n),

• [α ∧ β]
[m,n,A]
k := [α]

[m,n,gl(A,fk(α))]
k ∧ [β]

[m,n,gr(A,fk(β))]
k ,

• [α ∨ β]
[m,n,A]
k := [α]

[m,n,gl(A,fk(α))]
k ∨ [β]

[m,n,gl(A,fk(β))]
k ,

• [EXα]
[m,n,A]
k := (1) H(wm,n, w0,A′) ∧ [α]

[1,A′,gs(A)]
k , if k > 0

(2) false, otherwise

• [E(αUIβ)]
[m,n,A]
k := H(wm,n, w0,A′) ∧∨k

i=0([β]
[i,A′,hU(A,k,fk(β))(k)]
k

[E(αUIβ)]
[m,n,A]
k := ∧In(i, I) ∧∧i−1

j=0[α]
[j, A′,hU(A,k,fk(β))(j)]
k ),

• [EGIα]
[m,n,A]
k := H(wm,n, w0,A′)∧

(1)
∧right(I)

j=left(I)[α]
[j,A′,hG(A,k)(j)]
k , if right(I) ≤ k

(2)
∨k−1

l=0 (H(wk,A′ , wl,A′) ∧∧k−1
j=min(left(I),l)[α]

[j,A′,hG(A,k)(j)]
k ), otherwise.

• [Kcα]
[m,n,A]

k := Iι(w0,A′ ) ∧∨k
j=0([α]

[j,A′,gs(A)]
k ∧Hc(wm,n, wj,A′)),

• [Ocα]
[m,n,A]

k := Iι(w0,A′) ∧∨k
j=0([α]

[j,A′,gs(A)]
k ∧HOc(wm,n, wj,A′)),

• [K̂
d

cα]
[m,n,A]

k := Iι(w0,A′) ∧∨k
j=0([α]

[j,A′,gs(A)]
k ∧ Ĥd

c (wm,n, wj,A′)),

• [DΓα]
[m,n,A]

k := Iι(w0,A′) ∧∨k
j=0([α]

[j,A′,gs(A)]
k ∧∧

c∈Γ Hc(wm,n, wj,A′)),

• [EΓα]
[m,n,A]

k := Iι(w0,A′) ∧∨k
j=0([α]

[j,A′,gs(A)]
k ∧∨

c∈Γ Hc(wm,n, wj,A′)),

• [CΓα]
[m,n,A]

k := [
∨k

j=1(EΓ )
jα]

[m,n,A]
k .

The theorem below states the correctness and the completeness of the presented transla-
tion. It can be proven by induction on the complexity of the given RTECTLKD formula.
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Theorem 2. Let M be a model, and ϕ an RTECTLKD formula. Then for every k ∈ IN,
M |=k ϕ if, and only if, the propositional formula [M,ϕ]k is satisfiable.

Now, from Theorems 1 and 2 we get the following.

Corollary 1. Let M be a model, and ϕ an RTECTLKD formula. Then, M |= ϕ if, and
only if, there exists k ∈ IN such that the propositional formula [M,ϕ]k is satisfiable.

4 Experimental Results

Our implementation of the presented BMC method uses Reduced Boolean Circuits
(RBC) [1] to represent the propositional formula [M,ϕ]k . An RBC represents sub-
formulae of [M,ϕ]k by fresh propositions such that each two identical subformulae
correspond to the same proposition. Further, our SAT-BMC method for RTCTLKD is,
to our best knowledge, the first ones formally presented in the literature. However, to
assess how well the new BMC algorithm performs, we compare it with non-BMC BDD-
based symbolic model checking algorithm for ECTLKD that is implemented in McMAS
(http://www-lai.doc.ic.ac.uk/mcmas/).

The tests have been performed on a computer with Intel Xeon 2 GHz processor and
4 GB of RAM, running Linux 2.6, with the default limits of 2 GB of memory and 5400
seconds. The specifications for the described benchmark are given in the universal form,
for which we verify the corresponding counterexample formula, i.e., the formula which
is negated and interpreted existentially.

W

T
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W

T

A

G

R

F

in1 in1

out1

out1in2 in2

ap1 ap2

out2

out2

in1

in1

in2

in2

out1out2

Fig. 1. A DIIS of FTC for 2 trains

FTC. To evaluate our BMC techniques, we anal-
yse a scalable multi-agent system, which is a
faulty train controller system (FTC). Figure 1
presents a DIIS composed of three agents: a con-
troller and two trains, but in general the system
consists of a controller, and n trains (for n ≥ 2)
that use their own circular tracks for travelling in
one direction (states Away (A)). At one point, all
trains have to pass through a tunnel (states Tun-
nel ’T’), but because there is only one track in the
tunnel, trains arriving from each direction cannot
use it simultaneously. There are colour light signals on both sides of the tunnel, which
can be either red (state ’R’) or green (state ’G’). All trains notify the controller when
they request entry to the tunnel or when they leave the tunnel. The controller controls
the colour of the colour light signals, however it can be faulty (state ’F’), and thereby it
does not serve its purpose. In the figure, the initial states of the controller and the trains
are ’G’ and ’W’ (Waiting in front of the tunnel) respectively, and the transitions with
the same label are synchronised. Null actions are omitted in the figure.

Let PV = {inTunnel1, . . . inTunneln, Red} be a set of propositional variables,
which we find useful in analysis of the scenario of the FTC system. A valuation function
V : S → 2PV is defined as follows. Let Ag = {Train1 (T 1), . . . , T rainN (TN),
Controller (C)}. Then, inTunnelc ∈ V(s) if lc(s) = T and c ∈ Ag \ {C}; Red ∈
V(s) if lC(s) = R. The specifications are the following:

http://www-lai.doc.ic.ac.uk/mcmas/
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ϕ1 = AG[0,∞] OC(
∧n−1

i=1

∧n
j=i+1 ¬(InTunneli∧ InTunnelj)). “Always when Con-

troller is functioning correctly, trains have exclusive access to the tunnel”.
ϕ2 = AG[0,∞]OC(inTunnel1 ⇒ KT1(¬inTunnel2)). “Always when Controller is

functioning correctly, then if Train1 is in the tunnel, it knows that Train2 is not in
the tunnel”.

ϕ3 = AG[0,∞](inTunnel1 ⇒ K̂C
T1(

∧n
i=2(¬inTunneli))). “Always when Train1 is in

the tunnel, it knows under assumption that Controller is functioning correctly that
none of the other trains is in the tunnel”.

ϕ4 = AG[0,∞](inTunnel1 ⇒ K̂C
T1(Red)). “Always when Train1 is in the tunnel, it

knows under assumption that Controller is functioning correctly that the colour of
the light signal for other trains is red”.

ϕ5 = AG[0,∞](InTunnel1 ⇒ KT1(AF[1,n+1](
∨n

i=1 InTunneli))). “Always when
Train1 is in the tunnel, it knows that either he or other train will be in the tunnel
during the next n+ 1 time units”.

All the above properties are false in our DIIS model of the FTC system.

Performance Evaluation. The experimental results show that our SAT-based BMC
significantly outperforms the BDD-based unbounded algorithm of McMAS for ϕ1 and
ϕ2 in both the memory consumption and the execution time (as shown below in the line
plots); note that both formulae are in ECTLKD. In the case of ϕ1 our SAT-BMC is 3-
times better than McMAS, and for ϕ2 it is even 43-times better. A noticeable superiority
of SAT-BMC for ϕ1 and ϕ2 follows from the long encoding times of the BDD for the
transition relation and very short counterexamples.
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Since McMAS does not support the K̂ modality, we were not able to compare our re-
sults with McMAS for the formulae ϕ3 and ϕ4. Thus, we present results of our method
only. Namely, for ϕ3 and ϕ4 we managed to compute the results for 1100 and 3000
trains, respectively, in the time of 5400 seconds (exact data for 1100 trains: k = 4,
fk(ϕ3) = 2, encoding time (bmcT) is 210.12, memory use for encoding (bmcM) is
655.20, satisfiability checking time (satT) is 5258.43, memory use for satisfiability
checking (satM) is 1412.00, bmcT+satT is 5468.55, max(bmcM,satM) is 1412.00; ex-
act data for 3000 trains: k = 1, fk(ϕ4) = 2, bmcT is 170.38, bmcM is 1191.00, satT is
18.13, satM is 2356.00, bmcT+satT is 188.51, max(bmcM,satM) is 2356.00).

The formula ϕ5 demonstrate that SAT-BMC is indeed a complementary technique to
BDD-based unbounded model checking. McMAS was able to check ϕ5 (in its equiva-
lent ECTLKD form) for 45 trains in the time of 5400 seconds (memory use: 120MB),
and our SAT-BMC succeed to compute the results only for 11 trains (exact data for
11 trains: k = 21, fk(ϕ4) = 3, bmcT is 1.99, bmcM is 4.47, satT is 4914.08, satM
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is 224.00, bmcT+satT is 4916.07, max(bmcM,satM) is 224.00). The reason for this is
that the length of the counterexamples grows with the number of trains, i.e, for n trains
k = 2n− 1.

Our future work will involve an implementation of the method also for other models
of multi-agent systems, for example for standard interpreted systems. Moreover, we are
going to define a BDD-based BMC algorithm for RTECTLKD, and compare it with the
method presented in this paper.
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