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Abstract. Recent researches have shown that motion sensors may be
used as a side channel to infer keystrokes on the touchscreen of smart-
phones. However, the practicality of this attack is unclear. For example,
does this attack work on different devices, screen dimensions, keyboard
layouts, or keyboard types? Does this attack depend on specific users
or is it user independent? To answer these questions, we conducted a
user study where 21 participants typed a total of 47,814 keystrokes on
four different mobile devices in six settings. Our results show that this
attack remains effective even though the accuracy is affected by user
habits, device dimension, screen orientation, and keyboard layout. On a
number-only keyboard, after the attacker tries 81 4-digit PINs, the prob-
ability that she has guessed the correct PIN is 65%, which improves the
accuracy rate of random guessing by 81 times. Our study also indicates
that inference based on the gyroscope is more accurate than that based
on the accelerometer. We evaluated two classification techniques in our
prototype and found that they are similarly effective.

1 Introduction

Modern mobile devices, such as smartphones and tablets, are equipped with
multiple sensors. While these sensors enable exciting new applications, they also
pose new security and privacy risks. The risks of some of these sensors are easily
understood. For example, when an attacker can access the microphone, camera,
or GPS, she can eavesdrop on the sound, image, and location of the user [524]23].
Therefore, most mobile platforms protect these sensors by requiring access per-
missions to these sensors. By contrast, the security risks of motion sensors, such
as the accelerometer and gyroscope, are not as well understood. For example,
applications need no permission to access motion sensors on Android. As another
example, W3C’s DeviceOrientation Event Specification [I9] allows any web ap-
plication to access the accelerometer and gyroscope, which was adopted by both
Android since version 3.0 and iOS since version 4.2.

However, recent researches have shown that motion sensors can leak sensi-
tive information [4I17]. The attacker may use motion sensors as a side channel
to infer keystrokes typed on on-screen keyboards, which may help the attacker
recover important information about the user, such as his passwords or credit
card numbers. This motion-based keystroke inference attack is based on the ob-
servation that device vibration during a keystroke is correlated to the key typed.

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 273-P90] 2012.
© Springer-Verlag Berlin Heidelberg 2012



274 L. Cai and H. Chen

Although previous studies showed that motion sensors leak information about
keystrokes, they have yet to demonstrate the practicality of this attack. Those
studies were based on a single smartphone and a few users. However, for this
attack to be practical, we must evaluate whether it is robust against:

— Hardware variation: Different devices may use different sensor chips,
which may have different sampling rates and precisions. Also the motion
sensors may be embedded at different locations on the mobile devices. Does
this attack work on different devices?

— Dimension variation: Previous work studied only smartphones. Lately,
larger devices, such as tablets, are becoming popular. Does this attack work
better or worse on these larger devices?

— Keyboard layout variation: Device vibration during a keystroke is cor-
related to the location of the key, which is determined by both the key and
the keyboard layout. Furthermore, keyboard layout often affects how the
user holds the device and types. During our experiment, we observed that
on regular keyboards in portrait mode, users usually held the device in one
hand and typed with fingers in the other hand; however, on split keyboards
in landscape mode, users usually held the device using both hands and typed
with both thumbs. Does this attack work on different keyboard layouts?

— User variation: Device vibration during keystrokes may depend on the
user’s typing style, such as the force of her finger, the tilt angle of the device,
and anchor of her holding hand on the device. Does this attack work on
different users?

Besides the above questions regarding the robustness of this attack, a successful
attack must address the following questions in its design and implementation:

— Extracting keystroke-relevant signal from motion sensor data. Al-
though the attacker, through his malware installed on the victim device, can
read from the motion sensors, he does not know when a keystroke starts and
ends in the continuous data stream. To recognize keystrokes, he must divide
the continuous sensor data stream into segments for each keystroke.

— Selecting the motion sensor. A device may have multiple motion sensors,
such as an accelerometer and a gyroscope. Previous work studied only the
accelerometer, but a shrewd attacker would choose the sensor that provides
the best results.

— Selecting the inference techniques. Multiple techniques exist for in-
ferring keystrokes based on device motion. No previous study compared
the alternative techniques, but a shrewd attacker would choose the best
technique.

To answer the above questions and to evaluate the practicality of the motion-
based keystroke inference attack, we conducted a user study where 21 partici-
pants typed on four different mobile devices consisting of two smartphones and
two tablets. We asked each participant to type in each of six settings to evalu-
ate various factors affecting the attack and collected a total of 47,814 keystrokes.
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We developed a prototype attack and applied the attack on the collected
keystrokes. We evaluated how variations in hardware, device dimension, key-
board layout, and user habit affect the attack. To make the attack more effec-
tive, we investigated how to extract data segments representing keystrokes from
a continuous stream of motion sensor data, the difference between different mo-
tion sensors, and the difference between two classifiers. Our evaluation shows
that on a number-only keyboard, after the attacker tries 81 4-digit PINs, the
probability that she has guessed the correct PIN is 65%, which improves the
accuracy rate of the random guessing attack by 81 times.

2 Background

2.1 Motion Based Keystroke Inference Attack

Keyboards are the most common input device. We use keyboards to input a
variety of information, some of which is highly valuable, such as passwords,
PINs, social security numbers, and credit card numbers. It came as no surprise
that keystroke logging [I] is a favorite tool of the trade by attackers. The attacker
can install a Trojan program on the victim computer to log keystrokes, or use
out-of-band channels to infer keystrokes. An acoustic key logger, for example,
can infer keystrokes from acoustic frequency signatures [2], timings between two
keystrokes [8], or language models [25]. Electromagnetic emanations of keyboards
have also been studied for keylogging [21].

Touch screen mobile devices have changed the paradigm of user interaction.
Most touch screen mobile devices have no physical keyboard. Instead, the user
types on the software keyboard on the screen. Since there is neither sound nor
electromagnetic emanation from a virtual keyboard, the attacker can no longer
infer keystrokes based on these signals. Moreover, mobile operating systems, such
as Android and iOS, have security design that thwarts Trojan based keyloggers.
For instance, on the Android platform, each app runs in its own Linux process
and is assigned a unique user ID. An application cannot read keystrokes unless
it is active and receives the focus on the screen. In most cases, it seems that key
loggers, at least the traditional ones described above, face severe obstacles on
touch screen mobile devices.

However, a new approach for keystroke logging on touch screen smart phones
has been recently proposed in [4JI7]. The new attack exploits the output of
motion sensors, such as accelerometers, to infer keystrokes. When the user types
on the soft keyboard on her smartphone (especially when she holds her phone by
hand rather than placing it on a fixed surface) it causes slight phone vibrations,
which can be detected by motion sensors. The keystroke induced vibration on
touch screens is correlated with the location of keys being typed. This can be
observed from the shifting reflection of distant objects on the device screen when
we type. It is possible to estimate the approximate location where a user’s finger
hit the screen by analyzing the output of motion sensors. Given the keyboard
layout is known, it is then straightforward to infer the keystroke value from the
location.
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Fig. 1. Architecture of a motion based keystroke inference app

A keystroke inference malware should have at least four components— sensor
sniffer, preprocessor, classifier and dispatcher, as shown in Figure [[l The sniffer
reads the motion sensor output from a background process. After preprocessing,
the sensor data is sent to the classifier, which extracts features and maps the
data to a keystroke value. The dispatcher eventually sends the inference result
to a remote server controlled by the attacker. If the attack is user dependent, the
attacking program should also contain a component to collect a certain amount
of training data (sensor data labeled with key values). The training data set is
sent to generate templates or parameters used in classification.

2.2 Motion Sensor Data

There are two possible hardware motion sensors available on mobile devices: ac-
celerometer and gyroscope. Accelerometers are already widely adopted by mobile
devices. Recently, a gyroscope has been integrated in a number of smartphones
and tablets to allow for more accurate recognition of rotating movement within a
3D space. The device movement caused by keystroke is the combination of both
shift and rotation. However, since we have observed that the rotation is more
related to the key locations, precisely capturing the device rotation is of more
interests in keystroke inference. In general it is believed that the accelerometer is
designed for recognizing the linear shift component of device movement and the
gyroscope is better at recognizing device rotation. But the reality is both of them
can detect rotation. With a fixed reference from gravity, accelerometers provide
a better measurement tracking pitch and roll when the device is not moving.
Gyros provide a higher accuracy when the device is in motion [I5]. In this pa-
per, we compared the keystroke inference results based both on accelerometer
and gyroscope.

Another important specification of motion sensor data is the sampling rate.
Unlike audio input, the motion data is not sampled in a fixed rate. Instead, all
of the motion sensors return multi-dimensional arrays of sensor values in terms
of sensor events, i.e. new sensor values are reported only when they are different
from those reported in the previous event. We list the average and standard
deviation of intervals in motion sensor data from different devices we used for
evaluation in Table [

Mobile platforms allow applications to specify different data delays when read-
ing motion sensor output to trade off between efficiency and accuracy. In this
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Table 1. Interval of motion sensor output for difference devices

Accelerometer Gyroscope
average (ms) stdev average (ms) stdev
Google Nexus S 20.07 0.77 1.18 0.11
HTC Evo 4G 22.04 1.93 n/a n/a
Galaxy Tab 10.1 10.10 0.23 10.10 0.23
Motorola Xoom 10.05 0.36 1.15 0.18

Device

paper we focus mainly on the inference rate rather than the efficiency so that
the sensor data delay has been always set to zero.

3 Related Works

Previous research [5] has raised the awareness of privacy attacks on smartphone
sensors. Besides the obvious privacy concern over the GPS sensor, researchers
have shown attacks using the camera [23] and microphone [24]. These attacks
are less insidious because these sensors are protected with access permission by
mobile operating systems.

Researchers have studied keystroke inference based on side channels, such as
sound [2I25], electromaganetic wave [2I], and timing [20]. Since these attacks
exploit characteristics of physical keyboards, they become ineffective on smart-
phones with soft keyboards.

Applications exploiting motion sensors have been extensively researched. Most
of these works focus on human activity or gesture recognition. Activity recogni-
tion is an important topic in the area of pervasive computing. Researchers have
proposed schemes to detect user’s activity in choreography [3], food prepara-
tion [18], and in medical research [I4]. In [I1], Lester, etc. tried to determine
whether two devices are worn by the same person based on motion signals. The
main application for gesture recognition is user interaction [T2J6IT0/22]. Some also
use it for authentication[I67]. In [I3], users can authenticate two devices by at-
taching them together and shaking. It is also based on accelerometer data. These
works use a wide variety of approaches for classification, ranging from frequency
domain analysis[IT/3I13], Time series analysis [14], Template matching[12/18)]
to statistical learning[22]. Although their experience on processing motion sen-
sor signal can be borrowed, several major differences between these researches
and motion based keystroke inference must be noticed. First, the duration of
keystroke induced device movement is much shorter than that caused by a ges-
ture or human activity such as walking or dancing. Second, many of the previous
research collect sensor data from a customized devices or Wii remote. The mo-
tion sensor signals from these devices usually have constant sampling rate. On a
smartphone, the motion data is reported via motion events asynchronously. Fi-
nally, the movement caused by keystrokes are not perceptible as user activity or
gesture. For example, it is hard for users to control the magnitude of movement.
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This paper is directly related to [4] and [I7], as they all focus specifically on
motion based keystroke inference attack. However, our paper provides a more
thorough investigation on the practicality of such attack. We conducted a user
study of many more users, devices and settings, and compared the performance
of different classification schemes. To the best of our knowledge, this paper is
also the first one to investigate output of gyroscopes on mobile devices.

4 Methodology

4.1 Data Acquisition

The attacker can read the motion sensor data through either a web application
or an application installed on the victim mobile device. For example, the attacker
can embed the code for sniffing the motion sensors in an otherwise legitimate
application. Since Android requires no permission for reading motion sensors,
these applications are unlikely to raise suspicion.

We record the stream of motion sensor events in a sequence of tuples (¢, V? =
{vi, vémi})ﬂ =1...N, where t; is the time when the i, sensor event occurs,
V' contains sensor reading on three dimensions, and N is the total number of
sensor events. For the accelerometer, V; contains the acceleration force in m/s?
along the x, y and z axis, respectively. For the gyroscope, V? contains the rate
of rotation in rad/s around the x, y and z axis.

4.2 Preprocessing

De-jittering: Many signal analysis methods require constant-interval sampling.
However, motion sensors usually do not generate new events until the reading
has changed (Table[Il). Therefore, we dejitterize the motion events as follows:

1. Calculate the average interval A of sensor events in each stream.

2. For any event e! = {t!, Vi} if t' —¢~1 > gA, we insert M events evenly
between e'~! and e’ such that > A < t]\j[ill

in all these new events to be equal to that in V~!, because a long interval

with no event indicates that the sensor reading has not changed.

3. For any event e’ = {t', V'}, if t'T1 — ¢"=1 < 2 A, then we delete e’.

< gA. We set the sensor values

Low-pass Filtering: The interpolation in the previous step converts the stream
of sensor events into a time series. To remove spurious high frequency spikes, we
apply an IIR Low-pass filter whose cutoff frequency is 30Hz.

Calibration: When the motion data is received from the accelerometer, we must
calibrate it to remove the projection of gravity on each axis. Although typing
may cause slight device movement, the total rotation and shift of the device
are negligible during the short time of each keystroke. Therefore, we calibrate
the accelerometer data by subtracting the average value from each data point on
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each axis, resulting in (', V' = {v;, — v, v;, — Uy, v — 0. }). In theory, the average
gyroscope value on each axis is zero. In our experiments, however, we observed
that the average values were small but non-zero, possibly due to hardware or

driver imprecision. Thus we must calibrate the gyroscope data similarly.

Segmentation: After calibration, we obtain a series of motion sensor data, from
which we must extract segments of motion data where each segment corresponds
to one keystroke. In other words, we must recognize the start and end of each
keystroke from the motion data series. We build a library of waveform patterns
of keystroke motion and use them to determine the segment of each keystroke
in the motion data.

4.3 Classification

We use and compare two classification techniques: Dynamic Time Warping(DTW)
and Support Vector Machine(SVM). They have been extensively used in user ac-
tivity and gesture recognition. DTW is a template matching technique that uses
a time function as the feature, while SVM is a statistical learning technique that
uses a vector of parameters as the feature.

Feature Selection. Feature selection extracts relevant information from input
data to feed to classifiers. The input to our keystroke inference tool is motion
data, which may look similar to the input to user activity or gesture recognition
superficially. However, a key difference is in the magnitude and stability of the
data. In user activity and gesture recognition, the user perceives and controls the
device motion consciously; therefore, the magnitude of motion data can often
be used as a good feature in recognizing activities or gestures. By contrast,
magnitude is a poor feature in keystroke inference, as motion is a byproduct of
typing and is never controlled by the user consciously. Therefore, we need to
explore features other than magnitude.

The motion data on the z-axis from the accelerometer mainly reflect the shift
component of the device movement, and the motion data on the z-axis from the
gyroscope reflect the rotation around the z-axis. Since neither of them is closely
related to the keys being typed, we drop them from further consideration.

Dynamic Time Warping. Dynamic Time Warp is a common template match-
ing approach for motion sensor analysis [I2/I86JT0]. Likely because of the rela-
tively high variance in the sampling rate of our data, we find that DTW works
better than other template matching algorithms, such as Euclidean Distance.
Another factor in favor of DTW is the varying number of motion data points
for different key presses. For example, when the user types continuously and
quickly, a new keystroke can interrupt the device vibration caused by the previ-
ous keystroke. We observed in our data that the duration of a keystroke can be
as short as 100ms, less than half of the duration of a typical keystroke. DTW
substring matching handles varying length of input nicely.
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Fig. 2. Sample DTW features extracted from the data by same user

Existing works on activity or gesture recognition based on DTW use the
magnitude of motion data on the three dimensions as input to DTW. However, as
we discussed earlier, magnitude of motion data is not a good feature in inferring
keystrokes, and neither is motion data on the z-axis. Therefore, from the motion
data, we compute h; = arctan(vl /vi) x 180/7 as the DTW feature. Figure
plots the values of this feature on sample keystrokes. Our experiments show
that this feature gives better results than the magnitudes on three axes.

During training, among all the data segments of the same key, we choose as a
template the segment that minimizes its total distance to all the other segments.

Support Vector Machine. Support Vector Machine(SVM) is a statistical
learning technique used in related research [22]. Unlike template matching, Sup-
port Vector Machine uses parameter features extracted from the motion data.
Common features used in SVM can be either from time domain or frequency do-
main. We choose to use time domain features only because the relatively small
number of data points in the motion data segment of each keystroke makes fre-
quency domain features unreliable. We also avoid features that are determined
solely by the magnitude of motion, as discussed earlier. Our features include:

— Segment duration: the duration of the motion data segment.
— Peak time difference: p, — py, where v2> and vy" are the first peaks on
the x-axis and y-axis respectively.

— Spike number on X (and Y): the number of spikes on X(and Y) axis.
— Peak interval on X (and Y) axis: p,» — p, (and pj, —p, ), where vE* and
vP*" (and v} and v,"") are the first and second peaks on X (and Y) axis.

— Attenuation rate on X (and Y) axis: v2 /o7 (and v}? Jvy” ).
— Vertex angles: arctan(v}/v}) and arctan(vgl/vgl) , where p and p’ is the
time of the first and second peaks on (v;)? + (vy)?%.



On the Practicality of Motion Based Keystroke Inference Attack 281

The basic form of SVM makes binary classification decisions. To apply SVM as
a multi-classifer to infer keystrokes, we build a binary decision tree [9] based on
the geometric distribution of keys on each keyboard.

5 Evaluation

To answer the questions raised in Section [Il we conducted a user study in which
we collected typing-induced motion data from 21 users on 4 mobile devices in 6
settings. We designed and implemented a prototype system for keystroke infer-
ence as described in Section @l We ran the system on the data collected in our
user study.

5.1 User Study

Participants. With the approval of our university IRB, we recruited 21 partici-
pants for our user study. They were all undergraduate students. Before the user
study, we told them that the purpose was to study the usability of onscreen key-
boards. We purposely did not disclose the true purpose of this study so as not
to prime the participants to our security evaluation. All the participants have
used smartphones and 1/3 of them have also used tablets.

Procedure. We developed an application for recording keystrokes and their cor-
responding motion data and installed it on two smartphones and two tablets all
running Android. We gave each participant a set of random strings and ask him
to type each string in six different settings with regard to device type, key set,
device orientation, and keyboard layout (Table ). In each setting, we collected
around 30 keystrokes per key from each participant.

It took each participant around one hour to finish the study. To prevent
fatigue, our application reminded the participant to take a break after every few
strings. Before the application started to record keystrokes, we allowed all the
participants enough time to play with the devices to find the most comfortable
way to type. The only restriction is that they could not place the devices on
any fixed surfaces. We found that all the participants held the devices with one
hand and typed with the other in every setting except the one that used a split
software keyboard. However, the typing styles, such as the tilt of the devices and
the anchor points of their hands on the devices, varied greatly between different
participants and even between different strings typed by the same participant.

Settings. Participants type each string in each of six settings, which differ in
device type, key set, device orientation, and keyboard layout.

— Dewice types: We used four Android devices in the user study: two smart-
phones (Nexus S and HTC Evo) and two tablets (Motorola Xoom and Sam-
sung Galaxy Tab 10.1). All the devices except the HTC Evo have both an
accelerometer and a gyroscope. Table [I] shows that the motion sensors in
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Fig. 3. Keystroke inference accuracy in different settings. There are only three bars in
Setting 5 and 6 of Group 2 because HTC Evo has no gyroscope.

different devices have different sampling rates. The OS on both smartphones
is Android 2.3.1 (Gingerbread) and on both tablets is Android 3.0 (Honey-
comb). We randomly divided all the users into two groups: 10 Users were
in group 1 while the remaining were in group 2. Users in group 1 typed on
Nexus S and Motorola Xoom while users in group 2 typed on HTC Evo and
Samsung Galaxy Tab.

Key sets: The keystroke inference attacker may know the set of keys in
certain scenarios. For example, during phone calls the user can type only
numbers because phone dialing pads have only numbers. Intuitively, one
expects lower inference rate on an alphabet-only keyboard than on a number-
only keyboard because the former has more keys to distinguish between. To
evaluate this conjecture, we chose only alphabet characters in all the strings
in setting 1 of our study, and chose only numbers in all the rest 5 settings of
our study.

Screen orientation: All software keyboards have different layouts for different
orientations of the screen. Typically the keyboard is larger in landscape mode
than in portrait mode. The screen was in portrait mode in one setting and
in landscape mode for the other five.

Keyboard layout: On an Android smartphone, the layout of the default soft-
ware keyboard can be configured. For instance, an app can display the
keyboard with the QWERTY layout by choosing text class, or with phone
dialing pad layout by choosing phone class. Users can enter numbers in ei-
ther layout. In the text class, number keys are located only in the first row of
the keyboard while in the phone class, number keys occupy most area of the
keyboard. In our user study, uses entered numbers in both keyboard layouts
on smartphones.

We compared two keyboard layouts on tablets. One is the QWERTY
layout of default Android keyboard. The other is a split layout provided by
a third party input method called Tablet Keyboard Free. In the split layout,
the QWERTY keyboard is divided into a left pane and a right pane, located
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Table 2. Users type each key in all six settings, varied by device, orientation, keyboard
layout, and key set

Group 1Dev1ces Group 2 Key set  Orientation Keyboard Layout
1 Motorola Xoom Galaxy tab 10.1 alphabet only landscape default keyboard
2 Motorola Xoom Galaxy tab 10.1 number only landscape default keyboard
3 Motorola Xoom Galaxy tab 10.1 number only  portrait default keyboard
4 Motorola Xoom Galaxy tab 10.1 number only landscape split keyboard
5 Nexus S HTC Evo number only landscape default keyboard, text class
6 Nexus S HTC Evo number only landscape default keyboard, phone class

in the lower left and right corners of the screen, respectively. A split keyboard
allows users to hold the device with two hands and to type with both thumbs.

Table (2] lists the six settings for both participant groups. The order of settings
in which each participant types is randomized.

5.2 Finding

Overview. We collected valid data for 47,814 keystrokes in total. Figure[Blshows
the inference accuracy rate for each setting. It shows that we correctly inferred
30% - 33% of the keystrokes within 26 letters (from the gyroscope reading),
which is more than 8 times as good as a random guess. The average inference
accuracy on number only keystrokes is as high as 55%, which is 5.5 times as good
as a random guess. Even on a smartphone with a smaller screen, the inference
accuracy on number-only keystrokes is 49%. These results confirmed that motion
sensors are a significant side channel for leaking sensitive information.

° ° °
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Fig. 4. Average inference accuracy of each key on the default QWERTY keyboard in
setting 1 on Motorola Xoom using dynamic time warping
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Figure [ shows that the average inference accuracies of different keys on the
default keyboard are close to each other except for one key. We have found
no evidence to suggest that inference accuracy differs on different areas on the
keyboard.

User Dependency. The above results are based on user-dependent inference,
where the training and testing data sets are from the same user. Figure Bl com-
pares the accuracy of user dependent inference with that of user independent
inference. In user independent inference, we picked a random user and used his
data to train all the classifiers, and then tested the classifiers on all the other
users’ data. Figure [l shows that user independent inference has much lower ac-
curacy. It indicates that keystroke inference depends heavily on the user’s typing
style. However, even though user independent inference is less accurate, it still
leaks useful information about keystrokes. For example, the average accuracy
rate in Setting 1 is 12%, which is 3 times as good as random guessing.

Minimum Training Set Size. To evaluate the effect of training set size on
the accuracy in user dependent inference, we repeated the classification with
training sets of different sizes. For each size, the test was done in repeated random
sub-sampling cross validation. Figure [6] shows the results using dynamic time
warping. Initially, the inference accuracy increases when the training set becomes
larger. However, the curves become flat when the training set reaches a certain
size (12 for the alphabet-only keyboard and 8 for the number-only keyboard).
We found a similar correlation between training set size and inference accuracy
when using support vector machine as the classifier.

Device Variation. The participants in our user study were divided into two
groups. Each group was assigned a different set of devices, which use different
motion sensor chips. Although the precision and sampling rate of sensor data
that we obtained from the two groups are different, the results on keystroke
inference were very close.

Layout Variation. In Figure[Blwe can see the accuracies in setting 2 is slightly
higher than those in setting 3. It suggests that keystroke inference is more ac-
curate on a keyboard in landscape mode than in portrait mode. This is not
surprising because the keyboard in landscape mode is larger and the keys are
separated farther.

Device Dimension Variation. Comparing the results in setting 2 and those
in setting 5 shows that the inference accuracy is affected by device dimension. In
both settings the users were typing number-only strings on the default keyboard
(text class) in landscape mode. Using dynamic time warping, the inference ac-
curacy based on the output of tablet gyroscope is 50%, while that of inference
based on the smartphone gyroscope is 41%. Using support vector machine, the
accuracies are 45% and 36% respectively. In both cases, the inference accuracy
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Fig. 5. Average inference accuracy is much higher when the attack is user dependent

on a tablet is higher. Because all other factors — keyboard layout, key set, de-
vice orientation, data sampling rate, and users — are identical, we believe the
difference in accuracy is caused by device dimension.

The variables in setting 5 and 6 are all the same except the keyboard layout.
In setting 5, the number keys use only one row of the QWERTY keyboard.
By contrast, the number keys almost occupy the whole keyboard in setting 6.
Intuitively, the inference accuracies in setting 6 are higher than those in setting
5, which is confirmed in Figure Bl Comparing the results in setting 2 and 4
further supports our conclusion.

Finally, keystroke inference is affected by the size of the key set, as we ex-
pected. The users typed alphabet-only strings in setting 1 and number-only
strings in setting 2, with all other variables identical. The inference accuracies
in setting 1 are always lower than those in setting 2.

5.3 Motion Sensor Selection

Figure[3 suggests that the gyroscope is a better side channel than the accelerom-
eter for keystroke inference. In almost every setting, gyroscope data result in
higher inference accuracy. In the beginning, we suspected that it is due to the
higher sampling rate of the gyroscope sensors in both Motorola Xoom and Nexus
S, but comparing the results between Setting 1 and Setting 4 of Group 2 dis-
approved our suspicion because both motion sensors on Samsung Galaxy Tab
1.0 have exactly the same sampling rate. One possible explanation for the supe-
riority of gyroscope data is the effect of gravity on the accelerometer data. We
can see from the recorded data that the projection of gravity on each axis of the
accelerometer data is changing over time, which makes it hard to eliminate the
gravity during data calibration. It suggests that the angle between the device
and the desk surface is changing when users type. Such movement introduces
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Fig. 6. Average inference accuracy by the size of training set used in dynamic time
warping when the inference is user dependent

noise to the accelerometer output and reduces keystroke inference accuracy. On
the other hand, type induced device movement includes both rotation and shift-
ing. Ideally we want to extract the rotation to differentiate keystrokes because it
is better related to the location of the key on the screen. Both the accelerometer
and the gyroscope can be used to measure device rotation, but the gyroscope
is better at capturing high frequency rotation (> 0.5Hz) while the accelerom-
eter is more accurate when the rotation has a lower frequency (< 0.1Hz) [15].
The data we collected indicate that typing-induced movement lasts only about
200ms, which supports the observed superiority of gyroscope data. In the rest
of the paper, we focus on keystroke inference based on gyroscope data.

5.4 Classification Techniques

We chose both dynamic time warping and support vector machine as the clas-
sifer in our prototype. Our results show no strong evidence that one is superior
to the other. Other than these two classifiers, we also tried time series analysis
techniques, such as Linear predictive coding. All of them have inferior perfor-
mance.

6 Discussions

6.1 Inference Precision

Our evaluation shows that the accuracy for inferring a single keystroke is about
33% for the alphabet only keyboard and about 50% for the number only key-
board. Moreover, when the inference is incorrect, the probability that the falsely
inferred key belongs to a small set of keys surrounding the correct key is high.
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Figure [7al shows that on a number-only keyboard, the probability that the in-
ferred key belongs to a set of three keys (including the correct key) is about
90%. Therefore, after the attacker records the motion data of a four-key PIN on
this keyboard, he can try 3* = 81 different PINs and the probability that one
of these PINs is correct is 0.9* = 0.65. By comparison, when the attacker has
no motion data and therefore has to guess each key randomly, after 81 tries the
probably that he has guessed a correct PIN is 0.3%* = 0.0081. Our motion-based
keystroke inference has improved the success probability by 81 times.
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Fig. 7. Inference precision: (a)Probability that the inferred key belongs to a set of keys
(the correct key and its neighboring keys) using dynamic time warping; (b)Accuracy
rate described by the distance of the inferred key from the correct key using dynamic
time warping

The incorrectly inferred keys are usually nearby the actual key. Figure [7hl
shows the distribution of key distance [17]. It indicates that almost 90% of in-
ferred keys are either the actual key pressed or only one key distance away.

6.2 Multiple Templates in DTW

We observed in the user study that many participants switched among a set
of fixed typing style rather than changing randomly. This reminds us that a
user may feel comfortable typing in several styles. To account for this, we tried
matching multiple templates in dynamic time warping classification and found
that it works better than matching a single template. Figure [Bal shows the DTW
classifier has a higher accuracy when the data is matched against multiple tem-
plates. However, the classification takes longer as the template number increases.
We chose to use three templates in setting 1 and two templates in setting 6 even
though the accuracy is higher if 7 templates are used as in setting 6.

6.3 Multi-class SVM

SVM is a binary classifier. To apply it to keystroke inference, a variety of tech-
niques are available for decomposition of the multi-class problem. We compared
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two approaches: One-against-all(OvA) and Binary tree of SVM (BTS) and the
latter shows a much better performance. Moreover, BTS has a useful feature in
keystroke inference. The SVM on the first level only determines whether the key
is on the left side or the right side of the keyboard. But the SVM on the last
level need to make a decision between two adjacent keys. Thus it is reasonable
that SVM on the lower level node has lower inference accuracy. As shown in
Figure BB the inference accuracy decreases when the input goes through more
classifiers. The results suggest that the medium output of BTS can be used for
determining approximation of the key. For example, the accuracy inferring a key
on the alphabet only keyboard with a BTS classification of 5 levels is only 22%,
but the accuracy after the 4th SVM is 50%, i.e, the chance that the actual key is
one of two keys is 50%. This is consistent to what we observed from Figure [Tal

7 Conclusion

To evaluate the practicality of motion-based keystroke inference attack, we con-
ducted a user study where 21 participants typed a total of 47,814 keystrokes on
four different mobile devices in six settings. We developed a prototype attack
and applied the attack on the users’ keystrokes. Our results show that this attack
remains effective even though the accuracy is affected by user habits, device di-
mension, screen orientation, and keyboard layout. On a number-only keyboard,
after the attacker tries 81 4-digit PINs, the probability that she has guessed the
correct PIN is 65%, which improves the accuracy rate of random guessing by 81
times. Our study also indicates that inference based on the gyroscope is more
accurate than that based on the accelerometer. We evaluated two classification
techniques in our prototype and found that they are similarly effective.
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