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Abstract. Trust establishment requires evidence about the system’s
ability to operate as expected. However, the nature of this evidence and
its representation and usage in trust evaluation still remains an open
problem. Current mechanisms for collecting this evidence, such as the
TCG integrity schema, do not support the linkage of this evidence and
therefore limit the kinds of properties that can be verified. We argue
that provenance provides more comprehensive evidence that can be rep-
resented in a manner that eases trust evaluation. Towards this end, we
propose a provenance-based model for reasoning about a system’s ability
to satisfy trust properties of interest. This approach enables interoper-
ability, supports multiple abstractions and enables evaluation of varying
trust properties. Its application on verifying properties of platforms for
use in a trust domain demonstrate its feasibility and flexibility.

1 Introduction

Distributed systems have the potential to deliver cheaper, flexible and scalable
computation and data storage solutions. However, security and trust still pose a
significant challenge towards their wider adoption [3]. This subject has received
considerable attention and several systems that use trusted computing [1,10]
have been proposed to address this challenge. These systems provide information
about their configurations, which can be used to determine whether or not the
system’s behaviour conforms to expectations. However, the question of what
information is necessary, how it can be represented and how it can be used in
trust evaluation is still an open problem.

We argue that provenance provides more comprehensive evidence (including
integrity of the components and activities that occur on the system such as
events, processes, interactions e.t.c.) which can be captured in a manner that
eases trust evaluation. Towards this end, and motivated by the realisation that
trusted computing and provenance seek to address similar issues [7], we propose
a provenance-based model which captures activities on a system as a prove-
nance graph. The model extends the Open Provenance Model (OPM) [9] to
enable provenance to be captured in a manner that supports verification of trust
properties.
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This approach has a number of advantages including: i) ability to provide a
more comprehensive view of a system; ii) support for multiple abstractions; iii)
support for interoperability; and iv) support for varying complexity in the types
of properties that can be expressed. We apply this approach to the verification
of platforms for use in a trust domain.

1.1 Virtual Platforms for Trust Domains

Information sharing is crucial for any successful collaboration. However, the
sensitive nature of certain information may prevent or discourage entities from
sharing it. To overcome this challenge, the Trust Domains Project1 proposes
the concept of a trust domain as a means of capturing the state and processes
that allow information to be shared among entities that exhibit shared and
predictable behaviour to protect the information.

Fig. 1. A shared infrastructure used to execute experiments. Ex is an experiment set-up
and QEx is the completed experiment containing results.

Figure 1 illustrates an application of such a concept. In this scenario, re-
searchers collaborate on a number of projects, each of which is comprised of a
number of experiments. Researchers from university X may create an exper-
iment which might be validated or used in the next series of experiments by
other researchers from Y . To facilitate this, experiments are created as virtual
appliances (VA) — ready-to-use virtual machine images configured with an op-
erating system and a software stack necessary for a particular experiment. How-
ever, since the virtual appliances are created outside of their control, researchers
need to establish whether or not virtual appliances will enforce appropriate data
flow control before entrusting them with data for the experiment. This can be
achieved by collecting evidence that could support a VA’s behavioural character-
istics and representing such evidence in a manner suitable for trust evaluation.

1 The Trust Domains project is a TSB and EPSRC funded project that aims to build
a framework for controlled information sharing. Further details are available on
http://www.hpl.hp.com/research/cloud_security/TrustDomains.pdf

http://www.hpl.hp.com/research/cloud_security/TrustDomains.pdf
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2 Related Work

Our work is motivated by Lyle and Martin [7] who note that provenance and
trusted computing could complement each other. We build on our previous work
[4] on a trace-based model for verifying properties of virtual appliances and on
an open provenance model (OPM) [9]. This work proposes the semantics of a
model that can be used to capture trust-relevant evidence. It differs from our
previous work in that it is more general, i.e. the trace of events considered is
in fact a subset of provenance, and has a simplified means of specifying trust
properties, as opposed to the CSP specifications mechanism proposed in [4].

The idea of collecting provenance from virtual appliances has also been inves-
tigated by Wei [8]. Our work differs in that we are interested in the evaluation
of trustworthiness of a system using the generated provenance rather than the
trustworthiness of provenance records. The idea of developing a more compre-
hensive view of the system configurations has also been discussed in [14,2]. Presti
[14] proposes the notion of a tree of trust as a mechanism for representing veri-
fication data. Schmidt et. al. [2] builds on this structure and proposes modifica-
tions to the TPM command set and data structures to support the derivation of
tree-formed verification data. In our case, the TPM does not require any modifi-
cations. Instead it is simply used to validate the authenticity of the nodes in the
graph. Whereas in a tree structure there is only one way of getting to a particular
node, our graph-based approach provides a richer semantics — enabling verifiers
to consider multiple paths to a node. Furthermore, our model is extensible and
supports interoperability.

The TCG Infrastructure Working Group recognises that trust establishment
must consider the origin, condition and history of components used to construct
the platform. However, the proposed architecture2 is limited to capturing com-
ponents that exist on a system rather than how those components interact or
how they are related. Our approach is more comprehensive in that it includes the
activities that occur on the system in question and relations among components
involved in those activities.

3 Trust Properties and Evidence

The TCG defines trust in terms of the expectations of a relying party on the be-
haviour of the system they wish to rely on. These expectations can be considered
constraints on the behaviour of the system being relied on. We call these con-
straints trust properties and define them as constraints that capture a trustor’s
expectations on the behaviour of the system. But what kinds of constraints are
necessary to arrive at a particular trustworthiness decision? What kind of infor-
mation is necessary to support such decisions?

The answers to these questions will depend on a number of factors such as
the level of trust desired, the amount of information available and the ability

2 http://www.trustedcomputinggroup.org/files/resource_files/

87651761-1D09-3519-AD6C5B3E41547285/IWG_ArchitecturePartII_v1.0.pdf

http://www.trustedcomputinggroup.org/files/resource_files/
87651761-1D09-3519-AD6C5B3E41547285/IWG_ArchitecturePartII_v1.0.pdf
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of the trustor to use this information. In this section, we describe the kind of
information, which we refer to as evidence that can be collected in the scenario
described in Section 1.1 and the trust properties applicable to it.

3.1 Trust Properties

We identify four categories of trust properties as follows:

1. Possible future behaviour : seek to determine whether or not a VA will ex-
hibit certain behavioural patterns when executed. Examples include: i) an
executable will use known configurations; ii) a given executable will run be-
fore another executable; or iii) cryptographic keys will be reset at start-up.

2. Processes performed and parameters used : identify the processes carried out
during the creation of a VA, the order in which they were performed and
the parameters that were used as input to the processes. Examples include:
i) a certain package was installed; ii) a package was configured as expected;
or iii) certain privileges were assigned to a given object.

3. Data sources and integrity: seek to establish the authenticity of data such
as packages included on a VA. Some examples include: i) packages installed
were downloaded from trusted sources; ii) all critical packages installed were
of a known integrity; or iii) a given file was obtained from a known package.

4. Integrity of processes: seek to determine whether or not the software compo-
nents that executed as part of the build process, described below, behaved as
expected. These may include: i) the executed programs have known integrity
values; or ii) a particular process used the expected executable files.

3.2 Evidence Classification

The properties discussed above can be determined by collecting evidence from
three main sources: build platform; build process ; and verification meta-data.

1. Build platform — provides services for creating VAs and thus determines
the behaviour of the resulting VA. Evidence from the build platform may
include: i) components executed e.g. VA build tools, package managers; ii)
configurations of the components e.g. ports open, digital signature checks
or enabled services; or iii) dependency resolution among components e.g.
versions of libraries used by the components.

2. Build process — involves a number of steps including package download and
installation, configuration changes and execution of specified scripts. Evi-
dence from this process might include: i) integrity values of the input and
output e.g. command line parameters, environment variables; ii) configura-
tion settings for virtual appliance, e.g. user accounts and privileges, network
configurations and start-up scripts; and iii) virtual appliance contents e.g.
software packages installed or files copied to the disk image.

3. Verification metadata —provides information about the format or validity of
other pieces of evidence. Examples include: i) integrity schemas and reference
manifests; ii) digital signatures; and iii) meta-data about the repositories
from where packages are downloaded.
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4 Graph-Based Representation

To enable meaningful trust evaluation, the evidence, discussed above, must be
captured in an interoperable manner (since the producer may be different from
the consumer of the evidence) and must include relationships among the parts
of the evidence. Towards this end, we propose a provenance-based model that
extends the open provenance model (OPM) [9] to capture the evidence.

The model is based on the idea that information about the data used, pro-
cesses performed, entities that perform these processes and any new data gen-
erated is captured as a set of RDF triples, where each triple (X, Y, Z ) specifies
that a component X was related to another component Z through the property
Y . In the rest of this section, we describe the extensions to OPM necessary to
support reasoning about trust properties.

4.1 A Summary of OPM Semantics

Since our model builds on OPM, we begin with a summary of the main semantics
of OPM, a detailed discussion of which can be found in Groth and Moreua [9].

OPM defines three main entities in a provenance record. These include: Agent,
Artifact and Process, where an agent is an entity capable of performing a process,
an artifact is an immutable piece of state and a process is a series of actions that use
artifacts and generate new artifacts. These entities are related through a number of
properties as depicted in Figure 2. The wasTriggeredBy (WTB) defines a relation-
ship in which one process is made operational by another process. A process can be
specified to have been controlled by multiple agents through the wasControlledBy
(WCB) property. Artifacts used in a process are indicated through the used prop-
ertywhile those that are created by a process are related to the process that created
them through the wasGeneratedBy (WGB) property. The used andWGB proper-
ties must occur after the process has been created. To maintain the link between
those artifacts that are used and those created, the wasDerivedFrom (WDF) prop-
erty is used to specify that one artifact was derived from another. However, these
semantics introduce some limitations (as discussed in the following sections) to-
wards capturing the evidence for the purpose of trust evaluation.

4.2 Program Execution

A program can be captured as an agent in OPM. However, the semantics of the
properties defined in OPM limit the ability to express execution relationships

Fig. 2. An illustration of the main components of OPM. Artifacts are illustrated with
a circle, agents by a hexagon and processes by rectangles.
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Fig. 3. Capturing the boot phase using OPM. Shows that a process can be controlled
by multiple programs.

among programs. Consider the boot phase of a system in which the BIOS exe-
cutes the boot loader, which in turn executes the operating system kernel. Using
OPM, this scenario can be captured as illustrated in Figure 3. The BIOS con-
trols a process, P1, which triggers another process, P2, controlled by the boot
loader. P2 triggers P3, which is controlled by the operating system kernel. The
semantics of the WCB property, however, imply that a single process can in fact
be controlled by multiple programs (e.g. P3 wasControlledBy OS Kernel and
Rootkit in Figure 3). Alternatively, the concept of role defined in OPM could
be used to specify the role played by each program linked through the WCB
property. However, roles are defined as labels and would still require a similar
effort in defining semantics to make them useful in trust evaluation.

An alternative approach would be to use the TCG integrity architecture to
create a chain of trust which captures the notion that a program in the chain
executed and transferred control to the next program in the chain. However,
such an approach is not sufficient to capture the idea that other activities could
have been happening at the same time as the execution of programs in the chain.
To overcome these limitations, we propose an extension to OPM that captures
aspects about program execution. The extension, illustrated in Figure 5.A, en-
ables programs to be related to the processes through which they are executed
and the component executing them. This has an advantage that when estab-
lishing trust not only is the resulting chain of execution checkable, but also the
processes in which the chain was created. We formally define the extension to
include ExecutionProcess and BootstrapProcess processes and a number of prop-
erties that relate programs to the processes through which they were executed

(A) Program execution (B) Program configuration

Fig. 4. Conceptual representation of extensions to support program execution and
configuration
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as well as to the program that initiated the execution (note: ran is a Z function
which returns the range of a given relation).

wasPerformedBy : Process → Program
ExecutionProcess : PProcess
wasExecutedThrough : Program → Process
wasExecutedBy : Program → Program
wasExecutedAt : Program → Time
BootstrapProcess : PExecutionProcess

ExecutionProcess = ranwasExecutedThrough
∀ p1, p2 : Program •

wasExecutedBy p2 = p1 ⇔ (∃ e : ExecutionProcess •
wasPerformedBy e = p1 ∧ wasExecutedThrough p2 = e)

∀ e : ExecutionProcess •
e ∈ BootstrapProcess ⇔ (∃ p1 : Program •

wasPerformedBy e = p1 ∧ wasExecutedThrough p1 = e)

Intuitively, an ExecutionProcess is performed by a specific program and yields
another program (i.e. the new program goes into the running state). A special
type of execution process in which the program that performs the execution is
the same as the program that is yielded is referred to as a BootstrapProcess.

4.3 Program Configuration

Configuration settings play an important role in determining the behaviour of
a program. Grawrock [5] notes that in any non-trivial system, there will be a
number of configuration options that may affect how a system behaves. For
this reason, configuration settings used in a system must be considered when
evaluating the system’s trustworthiness.

In OPM, configuration settings can be captured as a type of Artifact. This
artifact can then be linked to the process that uses it through the used property
to capture the idea that a process is configured with the configuration settings
specified. However, as discussed in the previous section, the semantics of WCB
imply that configuration settings used by a process cannot be linked to the spe-
cific program being configured because multiple programs are linked to the same
process that uses the artifact. Furthermore, the semantics of used imply that a
process has to start its operation before it can be configured. However, for trust
evaluation it is important to capture the idea that a program was configured in a
certain way before it engaged in some other activities. To achieve this, we define
an extension to OPM, illustrated in Figure 5.B, in which ConfigurationSettings is
defined as a type of artifact that can be used to configure a program in a process
called ConfigurationProcess . We capture this extension formally as follows.
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ConfigurationSettings : PArtifact
ConfigurationProcess : PProcess
wasAppliedTo : ConfigurationSettings �→ Program
wasConfiguredBy : Program �→ Program
wasConfiguredThrough : Program �→ ConfigurationProcess

∀ p : Process • p ∈ ConfigurationProcess ⇔
(∃ c : ConfigurationSettings • c ∈ used(| p |))

∀ c : ConfigurationSettings; p : Program • p ∈ wasAppliedTo (| c |) ⇔
(∃ e : ConfigurationProcess • c ∈ used(| e |) ∧ e ∈ wasConfiguredThrough(| p |))

∀ p1, p2 : Program • p1 ∈ wasConfiguredBy(| p2 |)) ⇔
(∃ e : ConfigurationProcess, c : ConfigurationSettings •

wasPerformedBy e = p2 ∧ p1 ∈ wasAppliedTo (| c |))

This extension allows us to capture properties such as “a program X configured
another program Y with settings Z”.

4.4 Integrity Measurement

Integrity measurement can be captured as a process using OPM, so that the
entity being measured is linked to the integrity measurement process through
the used property while the resulting integrity value is linked to the process that
performs the measurement through the WGB property. However, the semantics
of used imply that only artifacts can be integrity measured because the used re-
lationship can only be applied to artifacts. To overcome this limitation, we intro-
duce an extension to OPM, illustrated in Figure 5.A and formally defined below,
which includes a type of process referred to as IntegrityMeasurementProcess , an
artifact called IntegrityValue, a Measurable type and a number of properties that
relate these concepts (and those already defined in OPM).

IntegrityMeasurementProcess : PProcess
performedOn : IntegrityMeasurementProcess → Measurable
IntegrityValue : PArtifact
integrityOf : IntegrityValue �→ Measurable
measured : Program �→ Measurable

Measurable = (Artifact ∪ Agent)
∀ p : Program; m : Measurable • measured p = m ⇔

(∃ e : IntegrityMeasurementProcess • performedOn e = m
∧ performedBy e = p)

The extension specifies that IntegrityMeasurementProcess is a process that can
take agents, in addition to artifacts, as input and produce another artifact of
type IntegrityValue. The entity whose integrity is being taken can be linked
to the resulting integrity value through the integrityOf property and to the
IntegrityMeasurementProcess through the performedon property.
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4.5 Communication

Components on a system communicate through various means to provide ser-
vices to one another (e.g. remote procedure calls), inform each other about their
activities or observations (e.g. events, message broadcasts) and exchange infor-
mation for use in computations. For example, in the scenario described in Section
1.1 a package manager communicates with the repository to download packages
for installation on a virtual appliance. This communication creates interactions
which determine the flow of information within and across systems. Of particu-
lar interest to the scenario is the ability to track the source of packages that are
installed on a VA.

To cater for communication aspects of the system, we make use of a com-
bination of the D-profile proposed by Groth and Moreau [13] and the com-
mon module defined for the open provenance model vocabulary (OPMV)3. The
D-profile defines the relationship between a sender process and the message
it sends as well as the receiver process and the message it receives. This is
useful for capturing communication. However, if we need to capture interac-
tions resulting from this communication, the D-Profile falls short. To solve
this, we complement it with concepts defined in the common module. More
specifically, we use Download , downloadUri , connection defined in the names-
pace, http://purl.org/net/opmv/types/common# and Connection defined in the
namespace, http://www.w3.org/2006/http#.

4.6 Assertion Model

We have so far defined a way of capturing the various kinds of evidence as
provenance statements. However, these statements are only sound if they can be
traced to a root of trust. Groth and Moreau [13] note that in distributed sys-
tems, where there may be multiple monitoring and reporting components, each
provenance entry must be linked to the entity that reports it. They introduce the
attributedTo property to link an account of provenance to an entity responsible
for it. However, the soundness of these attributions can only be determined if a
link can be created between the attributing (assertor) entity and a root of trust,
i.e. a root of trust for assertion.

To achieve this, we propose an extension to OPM, called Assertion Model,
which makes use of the earlier defined extensions to create links between the
assertor to other components which could potentially serve as roots of trust. In
other words, this can be used to create multiple chain of trust (based on different
aspects of the system, not just the measure-before-load [5] as is the case for TCG
based chain of trust) with the assertor at one end of the chain and a root of trust
for assertion at the other end.

In this model, each triple (s , p, o) is linked to an assertor to create a pair
(A, (s , p, o)), which we refer to as an assertion. This specifies that an agent A

3 Common Module is a specialisation of OPMV that defines commonly used terms
not defined in the OPM specifications, see
http://code.google.com/p/opmv/wiki/GuideOfCommonModule for details.

http://code.google.com/p/opmv/wiki/GuideOfCommonModule
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(A) Integrity measurement (B) Structure of Assertion

Fig. 5. (A) depicts the integrity measurement extension while (B) shows the structure
of an assertion for use in the assertion model

asserts that a subject s is related to an object o through a property p. Figure
5.B depicts how each assertion is captured.

Property == {wasConfiguredBy,wasPerformedBy ,wasExecutedThrough,
wasExecutedBy, ....}

Assertor : PAgent
Assertion : (Assertor × (Node × Property × Node))
attributedTo : (Node × Property ×Node) → Assertor
occuredAt : (Node × Property ×Node) → Time

Node = (Process ∪Agent ∪ Artifact)
∀ x , y : Node; p : Property ; a : Assertor •

(a, (x , p, y)) ∈ Assertion ⇔ y ∈ p(| x |) ∧ attributedTo (x , p, y) = a

5 Reasoning about Trust-Properties

The graph representation discussed above provides a means of representing the
evidence about the activities on a system. But how useful is this evidence and
how does the graph representation help in trust evaluation? This section ad-
dresses these questions by proposing an approach in which the evidence is val-
idated against a set of criteria which aim to determine its soundness before
verifying it to determine if certain properties can be satisfied by the graph.

5.1 Evidence Validation

The evidence presented in a provenance graph can come from multiple sources.
As discussed in Section 4.6, for the purpose of trust evaluation, this evidence
must be linked to the entities that generate it. Therefore, we consider evidence
to be valid if it can be liked to an entity that can be securely identified. The use
of the assertion model simplifies this by providing a link between the assertions
and the assertors so that validation is based on the ability to securely identify
assertors for either the entire set of evidence or a subset of it. To achieve this, we
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develop three validation rules, which when taken together specify that evidence
presented in a particular subset of the graph is sound.

G = {(A, (s , p, o)) | s , o ∈ Node; p ∈ Property ; A ∈ Assertor}
1. RULE 1 : each assertion (s , p, o) must have been asserted by some agent

that exists within the system (SystemComponents is a set of components in
a system’s architecture).

∀ a : G | valid(a) ⇔ a.1 ∈ SystemComponents

2. RULE 2 : if the assertor is a program, then it must have been executed before
performing the assertion.

∀ g : G | g.1 ∈ Program •
valid(a) ⇔ wasExecutedAt a.1 < occuredAt a.2

3. RULE 3 : the assertor must be securely identifiable (this does not necessary
mean that the identity is the expected one, this is checked during verifica-
tion).

∀ g : G | valid(g) ⇒ (∃ iv : IntegrtiyValue • integrityOf iv = g.1)

5.2 Property Specification and Verification

Our verification model is based on RDF graph pattern matching provided in
SPARQL [6]. First, each property specification, discussed in the previous section,
is captured as a basic graph pattern (BGP) — a set of triples which may have
some of the elements represented by variables. Then the obtained BGP is mapped
to the graph (or a sub-graph) to determine if there is an entailment relationship
between the BGP and the graph. In the remainder of this section, we discuss
how properties are specified and verified on a given graph.

Presence/Absence of Triple Patterns: properties can be specified in terms
of the presence or absence of certain triples. For example, to specify that a firewall
was installed, one can check the graph to determine whether or not the triples
(installProcess ,wasPerformedBy , rpm) and (installProcess , used , firewall .rpm)
exist. This is achieved by specifying the triples to be checked as a BGP (when
the values of the triple elements are important) or graph templates (when cer-
tain values can be ignored). Verification is achieved by performing a query in the
form of ASK , which returns true or false, depending on whether the specified
triples can be found in the graph. Listing 1.1 shows how the example of firewall
installation can be verified.

Listing 1.1. Example query for determining presence/absence of triples

�

ASK
{ : i n s t a l l P r o c e s s :wasPerformedBy :rpm . }
{ : i n s t a l l P r o c e s s :used : f i r e w a l l . rpm . }

� �
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Values of Triple Elements: elements of a triple have values which can be used
to infer certain information about the behaviour of a system. In the TCG-based
integrity mechanism, for instance, trust is based on the presence of components
with known integrity values. We support specification of triple element values
using the FILTER feature of SPARQL. For example, to determine that in a
given execution, the installed firewall had a certain integrity value, a query such
as that shown in Listing 1.2 can be specified.

Listing 1.2. Example query for determining triple element values

�

ASK
{ : i n s t a l l P r o c e s s :used : f i r e w a l l . rpm .

? i v : i n t e g r i t yO f : f i r e w a l l . rpm .
FILTER ( ? i v = ” cdf84324 ”ˆˆ x sd : s t r i n g )}

� �

Supporting Multiple Abstractions: the property that any set of triples can
be defined as a graph enables us to provide multiple abstractions. So that a sub-
graph that concentrates on certain types of assertions can be obtained from a
provenance graph. This is achieved by specifying a graph template that includes
properties useful for a certain abstraction. For example, to capture a graph
that can be used to determine an execution chain of trust on a system, a graph
template such as ?x :wasExecutedBy ?y can be used to return all triples that have
a wasExecutedBy property between any two entities (represented by the variables
x and y). Such a graph can be obtained by using the CONSTRUCT query form
on a provenance graph, which returns a graph matching the triples specified. For
example, the query in Listing 1.3 returns a graph which only includes assertions
related to programs executed on a system. The resulting graph can be subjected
to further analysis as discussed above.

Listing 1.3. Example query to create abstraction for executions

�

CONSTRUCT { ?x ?p ?y .}
WHERE { ?x :wasExecutedBy ?y .}
� �

Sequencing of Triples: in most cases, a triple taken in isolation does not
provide much information. To develop a more meaningful judgement of the be-
haviour of the system requires a way of relating the triples. One such relation-
ship is the sequencing of triples. For example, to specify that a given program
was configured in a certain way before it participated in a process, would involve
checking that the program configuration occurred before a particular process was
performed. Triple sequencing can be specified using the assertion model, where
each assertion is linked to the time instance at which a particular triple occurred,
using the occuredAt property. Given a sequence of triples T =< t1, t2, ...tn >,
the FILTER construct can be used to relate the times at which each triple occurs.
Listing 1.4 shows an example (s = subject, p = property and o = object).
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Listing 1.4. Example query to determine sequence of triples

�

ASK
{ t1 . s t1 . p t1 . o .
t1 . ( s , p , o ) :occuredAt ?x1 .
t2 . s t2 . p t2 . o .
t2 . ( s , p , o ) :occuredAt ?x2 .
. . .
tn . s tn . p tn . o .
tn . ( s , p , o ) :occuredAt ?xn .
FILTER ( ?x1 < ?xn <...<?xn )}

�� �

6 Verifying Virtual Appliances

In this section, we describe an experiment that demonstrates how our proposed
model can be used to verify trust properties of platforms before they can be
admitted into a trust domain.

6.1 Set-Up and Provenance Collection

The experiment was set-up as illustrated in Figure 6. A build platform was setup
using openSUSE 11.3 running on a kernel compiled with IMA support. Kiwi
imaging system4 and strace5 packages were installed and a simple shell script
was set-up to execute Kiwi using strace as a tracing tool. Execution traces were
collected including log files from Kiwi, integrity measurement log (an extract of
which appears in Listing 1.5) and a trace generated by strace (an extract appears
in Listing 1.6), which were processed and verified on a separate platform.

Fig. 6. An experimental setup for generating provenance for virtual appliances that
will be used in a trust domain

4 Kiwi is a tool, from openSUSE Build Services, used for creating VM images.
5 Strace is a UNIX tool for tracing system calls.
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Listing 1.5. Example IMA log showing a selected list of log entries with hash values
truncated to six digits

�

10 000000 ima 000000 boot aggregate
10 7ba06b ima 095 baf / i n i t
. . .
10 ba0922 ima bb4476 . / bu i ld . sh
10 f80069 ima e54a84 / usr /bin/ s t r a c e
10 f97bd8 ima e10ec0 / usr / sb in / k iwi
. . . .
10 1125 be ima 908990 c on f i g . xml
10 b97636 ima 185 cb1 KIWIConfig . sh
. . . .
10 6b81fa ima cc622c / usr /bin/ zypper
. . . .
10 988080 ima bddd59 zypper . con f
10 229 eb6 ima 6 bf998 opensuse . o r g d i s t r x x . repo
. . .
10 2d6856 ima 3b2310 openSUSE−xx−. i 586 . rpm
10 e828ee ima b0d515 f i l e sy s t em−xx−. i 586 . rpm
10 827556 ima bc4d2a vim−base −7.xx . i586 . rpm
. . . .
10 d9545c ima f56808 c on f i g . sh

�� �

Listing 1.6. Example entries in strace output

�

3056 18 : 1 9 : 0 8 c lone ( ch i l d s t a c k =0 , . . . . ) = 3057
3057 18 : 1 9 : 0 8 execve ( ”/ usr /bin/ zypper ” , . . . . ) = 0
. . .
3057 18 : 1 9 : 4 2 c lone ( ch i l d s t a c k =0 , . . . . ) = 3069
3069 18 : 1 9 : 4 2 execve ( ”/bin/rpm” , . . , http:download .

opensuse . org . . openSUSE−xx−. i 586 . rpm
. . .
4354 18 : 2 1 : 5 1 open ( ”/tmp/prov−va/tmp/ c on f i g . sh” , . .

�� �

6.2 Graph Representation

A provenance graph that conforms to the model described in Section 4 was
generated from the collected traces. The integrity measurement log provides
integrity values of the components on the platform and therefore enables us
to create instances of IntegrityValue and specify the integrityOf property. The
trace generated by strace provides information about relationships among the
programs executed and the data they use.

A slice of the resulting graph is shown in Figure 7. The graph shows how
programs and data used in various processes that occurred on a VA are related
and how IMA provides assertions about integrity values.

6.3 Verification

We demonstrate some of the trust properties that can be verified for VAs.

Verifying Package Authenticity: can be determined in two ways: check the
integrity values recorded for each of the“.rpm” packages or determine whether
they were obtained from a trusted repository. Listing 1.7 and 1.9 shows two
queries and the results obtained are shown in Listing 1.8 and 1.10, respectively.
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Fig. 7. A simplified provenance graph — showing only a small number of integrity
values. The full graph includes a link between an integrity value for each of the artifacts
and programs to the IMA.

Listing 1.7. Query that returns the integrity of all the packages installed

�

SELECT {?pkg ? i v }
WHERE {?pkg :wasGeneratedBy ?x .

? i v : i n t e g r i t yO f ?pkg .
FILTER regex (?x , ”rpm”)}

� �

Listing 1.8. Results of package source query

�

Ar t i f a c t In t e g r i t yVa lu e
” f i l e sy s t em−xx−. i 586 . rpm” ”b0d515”
”vim−base−7.xx . i586 . rpm” ”bc4d2a”
”openSUSE−xx−. i 586 . rpm” ”3b2310”
� �

Listing 1.9. Query to return the mapping of the packages to the source

�

SELECT {?pkg ?y }
WHERE {?x : c onne c t i on ?y .

? x rd f : t yp e :Download .
?pkg :wasGeneratedBy ?x .}

� �

Listing 1.10. Results of package source query

�

Ar t i f a c t Connection
” f i l e sy s t em−xx−. i 586 . rpm” opensuse . o r g d i s t r x x . repo
”vim−base−7.xx . i586 . rpm” opensuse . o r g d i s t r x x . repo
”openSUSE−xx−. i 586 . rpm” opensuse . o r g d i s t r x x . repo
� �
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Verifying Configurations Applied: can be verified by checking the integrity
values of the configuration settings that have a wasAppliedTo relationship with
programs. Listing 1.11 shows the query performed.

Listing 1.11. Example query to check configurations

�

SELECT { ?y ?x ? z}
WHERE { ?x : i n t e g r i t yO f ?y .

?p r d f : t y pe :Con f i gu ra t i onProc e s s .
?p :used ?y .
? z :wasConfiguredThrough ?p .
?y :wasAppliedTo ? z}

� �

Listing 1.12. Results of the checking program configurations

�

Con f i gu ra t i onSe t t i ng s In t e g r i t yVa lu e Program
”zypper . con f ” ”bddd59” ” zypper ”
”KIWIConfig . sh” ”185 cb1” ”Kiwi”
� �

Verifying Startup Scripts : is accomplished by checking the integrity of the
programs or artifacts that have been placed in a certain location. Listing 1.13

Listing 1.13. Example query to determine the scripts that will be executed

�

SELECT {?x ?y }
WHERE {?x r d f : t y p e : a r t i f a c t .

?y : i n t e g r i t yO f ?x
FILTER regex (?x , ”ˆ i n i t ” ) }

� �

Listing 1.14. Results of checking scripts copied

�

Ar t i f a c t In t e g r i t yVa lu e
” c on f i g . sh ” ”3de324”
” image . sh” ”359 aa3”
� �

7 Discussion

7.1 Interoperability and Extensibility

Our model can be extended with semantics useful for a given application domain
by defining new concepts or extending existing concepts. The new concepts can
then be linked to concepts that exist in the model or to other new ones by defin-
ing or using existing properties. For example, entities in the TCG schemas can
be mapped to either programs or artifacts to take advantage of the interrela-
tions among components and thus enable a more comprehensive verification of
platform configurations.
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7.2 Collecting and Securing the Evidence

One key issue with the use of provenance in verifying trustworthiness is estab-
lishing the trustworthiness of the provenance itself. Considerable effort [12,11]
has been directed towards this end and it is not our intention to provide a solu-
tion for this problem. Instead, we have assumed that this information is secured
and concentrated on developing a model that enables one to use this information
in trustworthiness verification. The evidence can further be tagged with trust
values to indicate the belief that the assertor has in the assertions [11], allowing
quantitative measurement of trust.

7.3 Assumption on Infrastructure

In this paper, we consider trust properties that can be established through evi-
dence obtained from the build platform. There are other aspects that could affect
the behaviour of a virtual appliance when launched. For example, two identically
configured VAs could behave differently if the runtime parameters passed from
the hypervisor are different. We assume that the hypervisor would launch all
VAs with identical parameters. We intend to investigate how such parameters
could affect the behaviour as part of our future work.

8 Conclusions and Future Work

The nature of evidence for use in trust evaluation and how it can be represented
and used is still an open problem. Existing mechanisms such as the TCG in-
tegrity schema are limited to a specific aspect of a system’s operation (e.g. chain
of program execution). We have proposed a provenance-based model in which
evidence is represented as a provenance graph which captures activities that oc-
cur on a system. This model specifies relationships among system components
and data to enable evaluation against certain trust properties. Our application
to virtual platforms for use in a trust domain demonstrate that the approach
enables verification of more comprehensive properties. The model will be incor-
porated as part of the trust domain framework.
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