Stefan Katzenbeisser Edgar Weippl
L.Jean Camp Melanie Volkamer
Mike Reiter Xinwen Zhang (Eds.)

Trust
and Trustworthy
Computing

Vienna, Austria, June 2012
Proceedings

LNCS 7344

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

7344

Stefan Katzenbeisser Edgar Weippl
L. Jean Camp Melanie Volkamer
Mike Reiter Xinwen Zhang (Eds.)

Trust
and Trustworthy
Computing

5th International Conference, TRUST 2012
Vienna, Austria, June 13-15, 2012
Proceedings

@ Springer

Volume Editors

Stefan Katzenbeisser

Melanie Volkamer

Technical University Darmstadt, Germany

E-mail: katzenbeisser @seceng.informatik.tu-darmstadt.de
and melanie.volkamer @cased.de

Edgar Weippl
Vienna University of Technology and SBA Research, Austria
E-mail: edgar.weippl @tuwien.ac.at

L. Jean Camp
Indiana University, Bloomington, IN, USA
E-mail: ljcamp@indiana.edu

Mike Reiter
University of North Carolina at Chapel Hill, USA
E-mail: reiter@cs.unc.edu

Xinwen Zhang
Huawei America R&D, Santa Clara, CA, USA
E-mail: xinwen.zhang @huawei.com

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-30920-5 e-ISBN 978-3-642-30921-2
DOI 10.1007/978-3-642-30921-2

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012938995
CR Subject Classification (1998): C.2, K.6.5,E.3,D.4.6,J.1, H4

LNCS Sublibrary: SL 4 — Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 5th International Conference on
Trust and Trustworthy Computing (TRUST) held in Vienna, Austria, during
June 13-15, 2012. Continuing the tradition of the previous conferences, which
were held in Villach (2008), Oxford (2009), Berlin (2010) and Pittsburgh (2011),
TRUST 2012 featured both a technical and a socio-economic track. TRUST thus
continues to provide a unique interdisciplinary forum for researchers, practition-
ers and decision makers to explore new ideas in designing, building and using
trustworthy computing systems. This year’s technical track provided a good mix
of topics ranging from trusted computing and mobile devices to applied cryp-
tography and physically unclonable functions, while the socio-economic track
focused on the emerging field of usable security.

Out of 36 submissions to the technical track and 12 submissions to the socio-
economic track, we assembled a program consisting of 20 papers. In addition,
TRUST 2012 featured a poster session for rapid dissemination of the latest
research results, invited talks, as well as a panel discussion on future challenges
of trust in mobile and embedded devices.

We would like to thank everyone for their efforts in making TRUST 2012 a
success: the members of the Organizing Committee, in particular Yvonne Poul,
for their tremendous help with all aspects of the organization; the members
of the Program Committees of both tracks for their efforts in selecting high-
quality research papers to be presented at the conference; all external reviewers
who helped to maintain the quality of theconference; the keynote speakers and
panel members; and most importantly all authors who submitted their work
to TRUST 2012. Finally, we express our gratitude to our sponsors Intel and
Hewlett-Packard, whose support was crucial for the success of TRUST 2012.

April 2012 L. Jean Camp
Stefan Katzenbeisser

Mike Reiter

Melanie Volkamer

Edgar Weippl

Xinwen Zhang

Steering Committee

Alessandro Acquisti
Boris Balacheff
Paul England
Andrew Martin
Chris Mitchell

Sean Smith

Ahmad-Reza Sadeghi

Claire Vishik

General Chairs

Edgar Weippl

Stefan Katzenbeisser

Organization

Carnegie Mellon University, USA

Hewlett Packard, UK

Microsoft, USA

University of Oxford, UK

Royal Holloway, University of London, UK
Dartmouth College, USA

TU Darmstadt / Fraunhofer SIT, Germany
Intel, UK

Vienna University of Technology and
SBA Research, Austria
TU Darmstadt, Germany

Program Chairs (Technical Strand)

Mike Reiter

Xinwen Zhang

University of North Carolina at Chapel Hill,
USA
Huawei, USA

Program Committee (Technical Strand)

Srdjan Capkun
Haibo Chen
Xuhua Ding
Jan-Erik Ekberg
Cedric Fournet
Michael Franz
Tal Garfinkel
Trent Jaeger
Xuxian Jiang
Apu Kapadia
Jiangtao Li
Peter Loscocco
Heiko Mantel
Jonathan McCune

ETHZ Zurich, Switzerland
Fudan University, China
Singapore Management University, Singapore
Nokia Research Center

Microsoft Research, UK

UC Irvine, USA

VMWare

Penn State University, USA
NCSU, USA

Indiana University, USA

Intel Labs

NSA, USA

TU Darmstadt, Germany
Carnegie Mellon University, USA

VIII Organization

Bryan Parno
Reiner Sailer
Matthias Schunter
Jean-Pierre Seifert
Elaine Shi

Sean Smith
Christian Stueble
Edward Suh
Neeraj Suri

Jesse Walker
Andrew Warfield

Microsoft Research, UK
IBM Research, USA
IBM Zurich, Switzerland
DT-Lab, Germany
PARC, USA

Dartmouth College, USA
Sirrix AG, Germany
Cornell University, USA
TU Darmstadt, Germany
Intel Labs

University of British Columbia, Canada

Program Chairs (Socio-economic Strand)

L. Jean Camp
Melanie Volkamer

Indiana University, USA
TU Darmstadt and CASED, Germany

Program Committee (Socio-economic Strand)

Alexander De Luca
Angela Sasse
Artemios G. Voyiatzis

Eleni Kosta

Gabriele Lenzini
Guenther Pernul
Heather Lipford

Tan Brown
Jeff Yan

Kristiina Karvonen

Mario Cagalj

Mikko Siponen

Pam Briggs

Peter Buxmann

Peter Y A Ryan

Randi Markussen
Simone Fischer-Huebner

University of Munich, Germany

University College London, UK

Industrial Systems Institute/ ATHENA R.C,
Greece

Katholieke Universiteit Leuven, Belgium

University of Luxembourg, Luxembourg

Regensburg University, Germany

University of North Caronlina at Charlotte,
USA

University of Oxford, UK

Newcastle University, UK

Helsinki Institute for Information Technology,
Finland

University of Split, Croatia

Universtiyof Oulu, Finland

Northumbria University, UK

TU Darmstadt, Germany

University of Luxembourg, Luxembourg

University of Copenhagen, Denmark

Karlstad University, Sweden

Sonia Chiasson
Stefano Zanero
Sven Dietrich
Tara Whalen
Yolanta Beres
Yang Wang
Debin Liu

Publicity Chair

Marcel Winandy

Organization

Carleton University, Canada
Politecnico di Milano, Italy

Stevens Institute of Technology, USA
Carleton University, Canada

HP Labs, USA

Carnegie Mellon University, USA
PayPal

Ruhr University Bochum, Germany

IX

Table of Contents

Technical Strand

Authenticated Encryption Primitives for Size-Constrained Trusted
COmPUEING . . . oot 1
Jan-Erik Ekberg, Alexandra Afanasyeva, and N. Asokan

Auditable Envelopes: Tracking Anonymity Revocation Using Trusted
COmPUEING .« . ottt 19
Matt Smart and Eike Ritter

Lockdown: Towards a Safe and Practical Architecture for Security
Applications on Commodity Platforms............. 34
Amit Vasudevan, Bryan Parno, Ning Qu, Virgil D. Gligor, and
Adrian Perrig

Experimenting with Fast Private Set Intersection 55
Emiliano De Cristofaro and Gene Tsudik

Reliable Device Sharing Mechanisms for Dual-OS Embedded Trusted
Computingo 74
Daniel Sangorrin, Shinya Honda, and Hiroaki Takada

Modelling User-Centered-Trust (UCT) in Software Systems: Interplay
of Trust, Affect and Acceptance Model 92
Zahid Hasan, Alina Krischkowsky, and Manfred Tscheligi

Clockless Physical Unclonable Functions 110
Julian Murphy

Lightweight Distributed Heterogeneous Attested Android Clouds. 122
Martin Pirker, Johannes Winter, and Ronald Toegl

Converse PUF-Based Authentication 142
Unal Kocabas, Andreas Peter, Stefan Katzenbeisser, and
Ahmad-Reza Sadeghi

Trustworthy Execution on Mobile Devices: What Security Properties

Can My Mobile Platform Give Me? 159
Amit Vasudevan, Emmanuel Owusu, Zongwei Zhou,
James Newsome, and Jonathan M. McCune

Verifying System Integrity by Proxy o it 179
Joshua Schiffman, Hayawardh Vijayakumar, and Trent Jaeger

XII Table of Contents

Virtualization Based Password Protection against Malware in
Untrusted Operating Systems
Yueqiang Cheng and Xuhua Ding

SmartTokens: Delegable Access Control with NFC-Enabled
Smartphones
Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Sandeep Tamrakar, and Christian Wachsmann

A Belief Logic for Analyzing Security of Web Protocols
Apurva Kumar

Provenance-Based Model for Verifying Trust-Properties...............
Cornelius Namiluko and Andrew Martin

Socio-economic Strand

On the Practicality of Motion Based Keystroke Inference Attack
Liang Cai and Hao Chen

AndroidLeaks: Automatically Detecting Potential Privacy Leaks in
Android Applications on a Large Scale................
Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen

Why Trust Seals Don’t Work: A Study of User Perceptions and
Behavior
Tacovos Kirlappos, M. Angela Sasse, and Nigel Harvey

Launching the New Profile on Facebook: Understanding the Triggers
and Outcomes of Users’ Privacy Concernscooveivenon..
Saijing Zheng, Pan Shi, Heng Xu, and Cheng Zhang

Author Index

Authenticated Encryption Primitives
for Size-Constrained Trusted Computing

Jan-Erik Ekberg!, Alexandra Afanasyeva?, and N. Asokan!

! Nokia Research Center, Helsinki
2 State University of Aerospace Instrumentation, Saint-Petersburg

Abstract. Trusted execution environments (TEEs) are widely deployed
both on mobile devices as well as in personal computers. TEEs typically
have a small amount of physically secure memory but they are not enough
to realize certain algorithms, such as authenticated encryption modes, in
the standard manner. TEEs can however access the much larger but
untrusted system memory using which “pipelined” variants of these al-
gorithms can be realized by gradually reading input from, and/or writing
output to the untrusted memory. In this paper, we motivate the need for
pipelined variants of authenticated encryption modes in TEEs, describe a
pipelined version of the EAX mode, and prove that it is as secure as stan-
dard, “baseline”, EAX. We point out potential pitfalls in mapping the
abstract description of a pipelined variant to concrete implementation
and discuss how these can be avoided. We also discuss other algorithms
which can be adapted to the pipelined setting and proved correct in a
similar fashion.

Keywords: Trusted Computing, Platform Security, Cryptography.

1 Introduction

Trusted execution environments (TEEs) based on general-purpose secure hard-
ware incorporated into end user devices are widely deployed. There are two
dominant types of TEE designs. The first is as a self-contained stand-alone se-
cure hardware element like Trusted Platform Module (TPM) [15]. The second
is a design like M-Shield [14/11] and ARM TrustZone [I] which augment the
processor with a secure processing mode (Figure [T).

In these latter designs, during normal operation the processor runs the basic
operating software (like the device OS) but can enter the secure mode on-demand
to securely execute small pieces of sensitive code. Certain memory areas are only
accessible in secure mode. These can be used for persistent storage of long-term
secrets. Secure mode is typically combined with isolated RAM and ROM, re-
siding within the System-On-A-Chip (SoC), to protect code executing in the
TEE against memory-bus eavesdropping. The RAM available within this min-
imal TEE is usually quite small, as low as tens of kilobytes in contemporary
devices [9]. Often this constraint implies that only the basic cryptographic prim-
itives or only the specific parts of some security critical architecture (such as a
hypervisor) can be implemented within the TEE.

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 1-{[8] 2012.
© Springer-Verlag Berlin Heidelberg 2012

2 J.-E. Ekberg, A. Afanasyeva, and N. Asokan

Physical codocation for HW isolation,

TEE Separate processor mode (secure mode) for logical isolation
Secure Processing Memoary Untru"sted
Mode (HW/microcode) RAM
Registers 1 =
E-Fuses |solated i Sealed d N
- eale: ata
Int./DMA logic o ROM / RAM P—._______\\‘
DSPs cru) P]
*Untrusted
RAM"

Fig. 1. TEE architecture variant: secure processor mode

In most, if not all, of these hardware architectures ([I], [II], [8]) the primary
RAM on the device outside the TEE is addressable by secure mode code exe-
cuting within the TEE (see Figure[Il). This unprotected, and hence potentially
"untrusted” RAM is significantly larger than the isolated (trusted) RAM. It is
used

— to transfer input parameters for secure execution within the TEE as well as
for receiving any computation results from the TEE.

— to implement secure virtual memory for secure mode programs running with
the TEE.

— to store and fetch state information when multiple different secure mode
programs execute in an interleaved fashion (when one program needs to
stop its execution in the TEE before it is fully completed, the full state
information needed to continue its execution later is too big to be retained
within the TEE).

In the latter two cases, the TEE must seal any such data before storing it in
the untrusted memory. Sealing means encrypting and integrity-protecting the
data using a key available only within the TEE so that (a) the sealed data is
cryptographically bound to additional information specifying who can use the
unsealed data and how, and (b) any modifications to the sealed data can be
detected when it is used within the TEE.

The basic requirements of a sealing primitive are confidentiality and integrity
of the sealed data. These can be met by using one of several well-known au-
thenticted encryption modes. Many authenticated encryption modes have been
proved secure using standard reduction techniques. However, the general as-
sumption and proof model for the execution of such a scheme is that its entire
execution sequence is carried out securely and in isolation: i.e., inputs are re-
ceived into isolated memory, the entire computation is securely run to completion
as an atomic operation producing an output in isolated memory, and only then
are outputs returned to insecure channels or untrusted RAM. This setting is
unreasonable in memory-constrained TEEs. They need a “pipelined” variant of
authenticated encryption modes where encryption and decryption can be done in
a piecemeal fashion where input is read from and/or output written to untrusted

Authenticated Encryption Primitives 3

RAM gradually as the computation proceeds. In fact, interfaces specifying this
sort of pipelined authenticated encryption operations are starting to appear in
TEE standard specifications [7]. A natural question is whether these pipelined
variants of authenticated encryption modes are as secure as the original, “base-
line”, variants.

In this paper, we make three contributions. First, we highlight the problem of
finding secure pipelined implementations of authenticated encryption primitives
in the context of memory-constrained TEEs. Second, we describe how a concrete
provably secure authenticated encryption mode (EAX) can be adapted for use in
a pipelined fashion in memory-constrained TEEs. We prove the security of the
pipelined variant by showing that it is as secure as the baseline EAX variant. We
discuss other cryptographic primitives where the same approach for pipelining
and security proof may apply. Third, we point out that naive realizations of
pipelined EAX can be vulnerable to information leakage and describe a secure
implementation.

We begin by introducing our platform model in section 2] and list the assump-
tions we make regarding the computing environment and algorithm implemen-
tation in section [3l In section Ml we provide proofs for pipelined EAX variants.
In section Bl we discuss implementation pitfalls, and describe the full reference
implementation in section [l Related work, further work and conclusions are
discussed in sections [7, B and

2 DMotivation and System Models

The hardware architecture we consider is shown in Figure[Il Authenticated se-
cure mode programs allowed to run inside the TEE often need to store data or
pass it via untrusted RAM to itself or other programs that will run in the same
TEE later. In the figure this is shown by arrows labelled “sealed data”: data is
encrypted in trusted, isolated memory to be stored in untrusted memory and
is later correspondingly retrieved and decrypted from untrusted memory to be
further processed inside the TEE.

Our work is motivated by this need to produce efficient cryptographic seals
for computer programs executing within a TEE on a mobile phone. The memory
constraints in the TEE (isolated memory) are often severe. For example, accord-
ing to [9], TEE programs in their scenario must fit into roughly 10kB of machine
code and is limited to around 1-2kB of heap memory and 4kB of stack spaceEI.
The choice to analyze EAX rather than e.g. the more widely used CCM also
stems from such constraints - EAX allows for more compact implementation.

The problem of allocating isolated memory for the ciphertext and plaintext
separately, mandated by (the proof of) baseline operation of encryption primi-
tives, can in some scenarios be replaced by in-place sealing/unsealing. In-place
operation is however impractical in cases where the sealed data needs to be used
also after sealing and it is never viable in cases where the seal size is larger

! The comparably lavish stack space has to be shared by e.g. cryptographic primitives
when invoked, so the effective stack size is counted in hundreds of bytes.

4 J.-E. Ekberg, A. Afanasyeva, and N. Asokan

N (nonce) M (msg) H (auth. hdr)
[+] 1
Baseline EAX
TEE “Untrusted
—
Seal C, Tag

C (ciphertext)

‘:IZI Pipelined EAX
‘OMA C,
& TEE %r_p — 0 » “Untrusted

1 % o RAM"
S|
- Tag)
Tag
(a) EAX mode outline (b) Sealing in system model 1

Fig. 2. EAX mode[4] and system model 1 sealing

Baseline EAX
TEE C, Tag "Untrusted
< RAM"
Unseal [M or false’ N
Baseline EAX
TEE M “Untrusted Pipelined EAX
Seal [i C, Tag R < Tag
TEE : =3 “Untrusted
c : c, RAM"
> <
e o [
Pipelined EAX - P n
- "True' or False' N
TEE < e “Untrusted
< »| RAM" < <
1] m, ¥ < =
gl —= 3 —
9 N e e,
m_ m, >
G > i’
Tag . L P s, »
(a) Sealing in system model 2 (b) Unsealing in system model 2

Fig. 3. Sealing and unsealing in system model 2

than available isolated RAM. Such situations include the case where the TEE
program needs to access only a part of the seal or when it needs to produce a
large protected message say for transfer to another device or server.

We consider two models of pipelined sealing and unsealing. In system model 1
(Figure , the plaintext data is made available in TEE isolated memory, i.e.
the decryption primitive decrypts into isolated memory from untrusted mem-
ory, and vice versa for encryption. This model is applicable e.g. for secret keys
generated in a TPM, but subsequently stored in sealed format within the OS.

Authenticated Encryption Primitives 5

In system model 2 (Figures and , the plaintext comes from or is re-
turned to untrusted memory. Use cases for this approach includes streaming

encrypted content, or encrypting data for network communication.

3 Assumptions and Requirements

With the motivations above, we define our problem scope:

1. The device includes a TEE that provides cryptographic services, specifically
a symmetric sealing primitive, to the caller without revealing the keys used.

2. The TEE is extremely memory-constrained: It only includes a small amount
(a few kilobytes) of trusted memory, but has the possibility to use external,
untrusted RAM to aid the computation.

3. Encryption/decryption inside isolated memory is not an option; the amount
of memory needed for the seal/unseal operations should be constant (©(1),
rather than ©(n) or higher) in terms of the size of the input data.

The specific problem we address is whether we can realize a pipelined variant
of authenticated encryption with associated data (AEAD) with the same level
of security as for the baseline (non-pipelined) in the two system models dis-
cussed above. We define “pipelined” in the computational sense: inputs to the
encryption primitive are channeled from the source memory to the primitive as
a stream of blocks, and equivalently that the results of the AEAD algorithm
(i.e. output blocks) are channeled to target memory as they are being produced
rather than when the operation completes.

The baseline setting for AEAD is one where inputs are first retrieved into
the TEE, then the operation is carried out, possibly making use of secrets and
a random source, and finally the results are released. This is the setting in
which cryptographic primitives are usually proved correct, since it is the “natural
model” for, e.g., communication security. The use of untrusted memory during
algorithm execution (otherwise the pipelined setting is no different from the
baseline setting) implies that more information will certainly be available to an
adversary in the pipelined alternative.

We are interested in security from the perspective of the TEE: for a given
input at the TEE boundary the pipelined variant of the AEAD implementation
is as secure as the baseline variant if both produce the same output at the TEE
boundary.

The code running in the TEE can be considered immutable. However such
code may use two types of memory locations: isolated memory within the TEE
and untrusted memory outside. We assume that an adversary can freely read and
modify any untrusted memory. The classification of memory can be done for any
memory location used by the AEAD implementation, including local state vari-
ables, processed input data as well as any intermediate or final result. We limit
ourselves to this binary categorization, although a more complete model would
also include statistical considerations caused by indirect information leakage e.g.
in the form of side-channel attacks.

6 J.-E. Ekberg, A. Afanasyeva, and N. Asokan

By necessity, we must assume that any long-term secrets (e.g., sealing keys)
that are applied to the processing are stored and handled in trusted memory only.
We also assume that stack and counters are fully contained in trusted memory.
As with trusted execution in general, the existence of a good (pseudo)random
data source inside the TEE domain is needed and assumed to be present.

For some cryptographic primitives, the system models we examine do not
imply any degradation in security. For example, pipelined variants of message
authentication codes like AES-CBC-MAC will not reveal any information outside
the TEE until all the input data has been processed and the result is computed.
This happens irrespectively of whether data input is carried out in a pipelined
way or by transmitting the complete data to the TEE prior to MAC calcula-
tion. Thus pipelined operation for MACs is from a security perspective trivially
equivalent to baseline operation. A similar argument holds for most common
encryption/decryption modes, such as cipher block chaining or counter modes.
As a rule only a few inputs and outputs for neighboring cryptoblocks affect the
input or output of a given block. Therefore, if the final result is secure when the
complete data is transferred to the TEE prior to the operation, so is trivially an
implementation that during encryption and decryption only temporarily buffers
the small set of blocks with interdependencies. In an AEAD the MAC is affected
by the complete data input, but in a pipelined setting the TEE will reveal parts
of the outputs prior to receiving all input for the computation of the AEAD
integrity tag. This combination of confidentiality and integrity is the cause for
the problem scope to be relevant, especially when applied in system model 2.

4 Proof of Security

In this section we will briefly introduce the standard reduction technique for rea-
soning about the security in cryptographic algorithms and protocols. Using this
method we present a adversary model definition and a proof outline that cov-
ers our assumptions and requirements listed in section Bl for the system models
introduced in section [2

4.1 Technique

In this paper, we will use the same general proof method as was used for the
baseline EAX variant[4]. The proof in the standard complexity-theoretic as-
sumption, often called the “standard reduction technique”, is described in detail
in references [3] and [2]. On a high level the method is as follows: A security
proof can include two parts. The first one is a proof in the context of chosen-
plaintext attacks (CPA), where the adversary is given the ability to encrypt any
plaintext using the algorithmic primitive. The opposite, the chosen-ciphertext
attack (CCA) allows the adversary to set the ciphertext and observe the result-
ing plaintext. Each proof is constructed as a game between an adversary (A) and
a challenger (C') making use of Oracles (O) that abstract the evaluated algorith-
mic primitive in some way, depending on the properties that are proved. In our

Authenticated Encryption Primitives 7

models the oracles will represent the encryption and decryption initialized with
a key, the second model adds an oracle also for OMAC.

The CPA (privacy) security proof is modelled by the adversary using an en-
crypting Oracle (O,). The game is defined as follows:

1. A examines O, by making ¢ adaptive queries to it, i.e. sending any chosen
plaintext to O, and as response receiving the corresponding ciphertext.

2. In a second phase, A selects a plaintext not generated in the first step and
sends it to C. C then ‘tosses a coin’ b and depending on the outcome either
returns to A the result of submitting the received input to O, or in the
second case a random bit string of an equivalent length.

3. Finally, A tries to determine whether the result returned from C' was the
random string or the actual result from O.. The so called advantage of the
adversary A is computed as Adv(A) = Pr{A% =1} — Pr{A® =1}, i.e. the
difference in success probability for A correctly determining b and making a
random choice.

The CCA (authenticity) security proof uses two oracles: an encrypting oracle
(O.) and a decrypting one (O4). The slightly more complex game starts out like
the CPA game, but after receiving the result from C, A is allowed to continue,
and submit up to o adaptive queries to the decryption oracle Oy (of course the
return string from the challenger shall not be used). Only after these extended
queries A will guess the value of b. Again, the advantage of adversary A will be
calculated as the difference between its probability of success with oracles usage
and without it.

Adv(A) = Pr{A% %+ =1} — Pr{A® =1}

The baseline EAX mode of operation has been proved secure against CCA and
CPA attacks. Since the pipelined variant is a derivation of the standard EAX we
can use reduction to show that the pipelined variant is as secure as the baseline
one. In this proof by reduction, we use an adversary model where an adversary
B attacks baseline EAX FE by using an adversary A attacking the new pipelined
EAX variant E’, both set up with the same parameters (keys). For the game
it will also be necessary to show that the adversary B can simulate all oracles
that would be used by A. The game is set up as follows: suppose there exists
an adversary A which can attack algorithm E’ with advantage Adv(A) = e.
Adversary B wants to break algorithm FE (for which a security proof already
exists) by making use of A, such that

1. B has access to the oracles used in the proof of F

2. B forges all oracles used by A, by simulating the work those oracles would
do for A, only based on its own knowledge about the baseline system E
and its own oracles. This can be done with a non-negligible probability
(Pr{OracleSim}).

2 OMAC is a provably secure cryptographic hash construct based on the CBC-MAC
primitive. Definition in [4].

8 J.-E. Ekberg, A. Afanasyeva, and N. Asokan

3. If there exists a probabilistic polynomial time algorithm for B to attack F us-
ing A’s advantage, then Adv(B) = ex Pr{OracleSim}.If Pr{OracleSim} =
1 then the respective attack advantages and thereby the security of systems
E and E' are equal.

In other words the game shows that if we can attack the modified algorithm
E’ then we can attack the original system E in the way we built adversary B.
But as a security proof already exists for E, our premise of the existence of A is
disproved, thereby proving the security of E’.

4.2 Analysis

Correctness of the pipelined EAX in our first system model (Figure is
straight-forward. Intuitively, this is because the attacker has no advantage in
the pipelined setting compared to the baseline setting because inputs and out-
puts are not interleaved. For the sake of completeness, we present the proof in
Appendix [Al

In our second system model intermediate computation results are returned
to untrusted memory during algorithm execution. Thus the possibility of an
adaptive attack cannot be ruled out immediately. We use the terminology and
definitions from [4]. In all algorithms, the return statement denotes the return-
ing of data to untrusted memory, not the termination of algorithm execution.
The Read primitive is used to explicitly indicate data input from untrusted
memory. The interactions between A, B and g are shown in Figure [l

Adaptive Adaptive
queries queries

g, (©,0r0)

challenge

Challenge'
RESPODES‘

Response

[y —
M

guess b guess b

Fig. 4. Proof outline

Theorem 41. The pipelined EAX variant presented in Algorithms [l and [3 is
as secure as original baseline EAX.

Proof. We begin with the CPA (privacy) claim. Let A be an adversary using re-
sources (g, o) that is trying to distinguish algorithm [l from a source of random
bits. We will construct an adversary B with resources (o1, 02) that distinguishes

Authenticated Encryption Primitives 9

Algorithm 1. Encryption, model 2 Algorithm 2. Decryption, model 2
Input: N,H,K,M = {mo,m1,...,mp_1} Input: N,H,K,C =

Output: C = {co,c1,...,cn-1},Tag {co,c1,...,en-1},Tag
1: Read(N, H,n) Output: M =
2: N <= OMACY%(N) {mo,m1,...,mn_1} or Invalid
3: H < OMACK(H) 1: Read(N, H,n,Tag)
4: C<=0 2: N <= OMACY%(N)
5: for alli€0...n—1do 3: H <= OMACK(H)
6: Read(m) 4: C<=0
T aeEmi®EWN+ i)k 5: foralli€0...n—1do
8: return ¢ 6: Read(c)
9: C < OMAC%(c;,0) 7. C<=OMAC%(c;,C)
10: end for 8: end for
11: Tag=N®COH 2 T<=NaCoOH
12: return Tag 10: if T # Tag then
11: return Invalid
12: else
13: foralliel...n—1do
14: Read(c;)
15: m; < ¢ @ EWN +1i)k
16: return m;
17: end for
18: end if

the OMAC algorithnﬁ from a source of random bits. Adversary B has an oracle
g2 that responds to queries (¢t,M,s) € {0,1,2} x {0,1}* x N with a string
{M41, So, S1,...,Ss-1}, where each named component is an I-bit string. Oracle
g2 is the OMAC algorithm. Algorithm [3 describes adversary B:

We may assume that 4 makes ¢ > 1 queries, so adversary B uses 3¢q queries.
Then under the conventions for the data complexity, adversary B uses at most
(0, 9) resources. Observe that Pr[AF"? = 1] = Pr[BOMAC = 1] and Pr[A® =
1] = Pr[B® = 1]. Using Lemma 4 from [4] we conclude that

Adv§L(A) = PriAM = 1] — Prid® =1] =

g

= Pr[BOMAC =1] - Pr[B$ =1]< Adv?fi}AC(U, 2)
1,50+ 3
< Uy S AR

This means that the pipelined EAX, described in Alg. [lis as private as original
EAX. This completes the privacy claim.

3 The construction of adversary B is adapted to a specific proof setup presented in [,
and uses a “tweakable OMAC extension” encapsulated in Lemma 4[4] and its proof.
Lemma 4 asserts the pseudorandomness of the OMAC algorithm and provides an
upper bound for the advantage of the adversary.

10 J.-E. Ekberg, A. Afanasyeva, and N. Asokan

Algorithm 3. Algorithm BY simulating O,
: Run A
: for all Oracle O, calls N;, Hj,nj, 5 €0...q—1 from A do
NSoS: ... 7Snj—1 <~ gg(O, N]‘,’N,j)
for alli€0...n—1do
Cij =mi; B S
return c¢; j, in response to each Oracle O. query m; ; from A
end for
H; <= g2(1,Hj;,0)
Cj <~ 92(2, C]',O)
Tag; «HON@®C
return Tag;
12: end for
13: When A halts, get bit b
14: return b

PN Wiy

— =

For CCA (authenticity) and reusing the naming, let A be an adversary attack-
ing the authenticity of algorithms [and 2 To estimate the advantage of A, we
construct from A (the authenticity-attacking adversary) an adversary B (with
oracles for go and g3, intended for forging the original AES-EAX primitive).
Algorithm [3] simulated oracle O, and algorithm M will simulate the decryption
oracle Oy:

It is easy to see that adversary B can simulate both the oracles O, and Oy for
A indistinguishably from the real challenger of the AES-EAX primitive. Thus,
the advantage of adversary B in forging the authenticity algorithms [I]and 2l can
be calculated as follows:

Adv®CA(B) = Pr{BFAX | forge} — Pr{B®, forge} =
= Adv®“A(A)

This completes the claim and the proof

5 Implementation Pitfalls

Although we proved the pipelined EAX variant correct, adequate care is needed
when it is incorporated into practice. In this section, we outline two potential
pitfalls.

5.1 Security for the External User

At the outset, we mentioned that our goal is to guarantee security from the per-
spective of the TEE. In practice, one also needs to worry about ensuring security
from the perspective of the external “TEE user”, for example, an application
running on the operating system. As the external memory is untrusted from the
perspective of the user, some form of security association between the TEE and

Authenticated Encryption Primitives 11

Algorithm 4. Algorithm: BY simulating Oy

1: Run A

2: for all O. requests from A do

3: Run simulator from [l

4: end for

5: for all Oq4 requests N;, H;,C;||Tag, 7 €0...q — 1 from A do
6: M]-<—g3(Nj,H]-,C’j,Tag)

7. if M; = Invalid then

8: return Invalid

9: else
10: KeyStr < M; & C
11: for allie0...n—1do
12: Return ¢} ; @ KeyStr;, in response to each Oracle O4 query c; ; from A
13: end for
14: end if
15: end for

16: When A halts, get bit b
17: return bs

the user is necessary in order to ensure security from the user’s perspective. This
applies both in the pipelined as well as in the baseline setting.

Although it has no bearing on the security from the perspective of the TEE,
the pipelined variant of the unsealing algorithm shown in Figure is equiv-
alent to the baseline variant only if the series of ciphertexts {co,c1,...,¢n-1}
in the first phase of the pipelined variant is exactly the same as the series of
ciphertexts in second phase (after T'ag is validated as True). In practice this can
be ensured by using re-encryption: for example, in the first phase, the TEE will
output encrypted blocks ¢, when processing input ¢; and expects the set of ¢ to
be provided to the second phase.

5.2 Mapping of Memory Locations

The risk of implementation pitfalls when mapping idealized protocols used in
proofs to a real protocol is well known. Our target architecture hides an issue
of such nature. Even as we now can use the reduction proofs to argue that
pipelined operation of AES-EAX is secure in system models 1 and 2, a naive
pipelined variant implementation unfortunately leads to a severe security flaw.
Consider lines 7-10 of Algorithm [B which illustrates how a naive implementor
would map the inner loop of EAX encryption (lines 4-6 of Algorithm [7 and lines
6-9 of Algorithm [I))

At first glance, Algorithm [B] looks like a reasonable EAX implementation as
shown in Figure . It writes out each block of the ciphertext to untrusted
RAM as soon as it is calculated. Step 8 corresponds to the encryption of a single
block (Algorithm [1/Step 5 or Algorithm [Il/Step 8). Step 10 corresponds to the
incremental construction of the MAC (Algorithm [7/Step 6 or Algorithm [II/Step
9). As Algorithm [lis realized on the architecture shown in Figure[I] the variable

12 J.-E. Ekberg, A. Afanasyeva, and N. Asokan

Algorithm 5. Pipelined EAX Encryption: naive realization
Input: k,h,n, M = {mo,m1,...,mp_1}
Output: C = {co,c1,...,cn-1},Tag
1: L < Ey(0); B < 2L; P < 4L
: N Ex(En(0) ®n® B) OMAC2(n)
H — En(Ex(1) @ h @ B) OMACL (h)
t1 N
L 12« Ei(2)
for i+ 0ton—1do
t4d < Ek(tl)
ci<+— m; Dt
9: tl+—tl+1
10: 2« Ep(t2@) OMACi(c;,C)
11: end for
12: ...

PP WY

¢; will be mapped to a memory location in untrusted memory. So an attacker who
controls the untrusted RAM will now be in a position to manipulate ¢; after it
is generated in step 8 but before it is used as input to OM AC? in step 10.

Clearly, the sealing primitive should release the encrypted block to untrusted
memory only after both the encryption as well as the data inclusion into the
integrity check value has been performed. Even though this is the intent in the
abstract descriptions of Algorithms [7] and [the violation of this rule while
mapping the algorithms to concrete realizations for our target architecture is
not immediately or automatically evident to the programmer. In the baseline
setting, where inputs and outputs as well as state variables are all in isolated
memory this consideration causes no security issues, even for pipelined operation.
In fact pipelining (or rather the fact that the input length need not be known in
advance) is listed as a particular advantage of AES-EAX [4]. However, realization
of pipelined EAX in our target architecture raises this subtle security issue.

The correct way of pipelining EAX sealing is outlined in Algorithm [0] in Sec-
tion [6l The solution is to add an intermediary buffer in isolated memory to
hold the encrypted block. For unsealing, such a buffer is also needed, but its
placement is different, since the confidentiality and integrity primitives are then
invoked in opposite order.

6 Reference Implementation

Based on the proofs of Algorithm [and Algorithm [and the insight on pitfalls,
we have implemented and deployed EAX using AES-128 as shown in Algorithm
[l We apply a small simplification constraint to the EAX inputs. The length of
the EAX associated data as well as the nonce are required to be exactly the block
length of the underlying block cipher primitive. These conditions simplify the
internal structures of EAX significantly since two data padding code branches
can be omitted completely. Although this approach sacrifices generality, neither
compatibility nor the original security proofs are affected.

Authenticated Encryption Primitives 13

Algorithm 6. Pipelined EAX Encryption
Input: k,h,n, M = {mo,m1,...,mp_1}

Output: C = {co,c1,...,cn-1},Tag

1: L < Ey(0); B < 2L; P < 4L
: N Ex(En(0) ®n® B) OMAC2(n)
H — En(Ex(1) @ h @ B) OMACL (h)
t1 N
12 Ek(2)
t3 <+ 0

for i < 0 to FULLBL(M) — 1 do

td < Ek(tl)

9: t3 < m; Dtd

10: ci «+ t3

11: tl+—tl+1

12: if 7 < NPADBL(M) —1 then

13: 12 + E,(t2 @ t3) OMACi(c;,C)
14: end if

15: end for

16: if REMBYT(M) > 0 then

17: t3+ 0

18: str « Ej(tl)

19: PART(t3 <+ mrurrBr @ t4)
20: PART(crurrBL < t3)

PP WY

21: end if

22: if REMBYT(M)=0 A FULLBL(M) > 0 then
23: C+ Ep(t20t3® B) OMACZ(c;,C)
24: else

25: t3+ ADDPADBYTE(t3)

26: C+ Ex(t2@t30 P) OMAC3(c;,C)
27: end if

28: Tag« CON O H

In Algorithm [input parameters consist of a key k, a block-sized header
h, and a block-sized nonce n. The input data vector M = {mg, m1,...m}_;}
is a list of block-sized units where each element is a full block except possibly
the last element which may be shorter. The resulting ciphertext vector C has a
similar construct. The resulting message integrity code m is a block-sized result.
The OMAC sub-primitive calculations are marked in bold, right justified. The
multiplications of value L are defined by polynomial multiplication in GF(2) as
defined by [].

For increased readability we introduce a few convenience macros that hide
block length calculations as well as detailed loops for simple operations over
bytes in partially filled blocks. Pipelined versions are trivially constructed cor-
responding to the “values-known-in advance” versions listed in Algorithm [0l for
readability. FU LLBL denotes the number of full blocks in the input data vector,
and the function NPADBL(x) will for the vector z give the number of blocks that
are not padded with a termination marker. REM BY T'(x) gives the number of

14 J.-E. Ekberg, A. Afanasyeva, and N. Asokan

bytes (if any) in the last vector element provided that it is not block-sized. AD-
DPADBYTE(x) adds a termination marker to the vector block in accordance
with [], and PART indicates that the operation is applied to a byte vector
which is not block-sized. All temporary variables t1,2,¢3 and ¢4 are block-sized
units.

The innermost operation of EAX is clearly visible on lines 8-11. The counter
(in ¢1) drives the block cipher and produces a key stream into ¢4, and the CBC-
MAC is accumulated into t2 on each round. ¢3 is the temporary buffer that
guarantees the integrity of the ¢; as explained in Section

The EAX implementation with the constraints outlined above is size-efficient.
The algorithm supporting both encryption and decryption and implemented in
C compiles to 742 bytes for an OMAP2/OMAP3 processor with ARM and an
embedded AES block implementation. Algorithm memory (stack) consumption
is a fixed 168 bytes, satisfying the ©(1) requirement in Section Bl

7 Related Work

Since the concept of a hardware-assisted TCB was re-invigorated around a
decade ago, a number of techniques to secure the “virtual” memory of the trusted
execution environment have been proposed. One of the first results was the emer-
gence of execute only-virtual memory (XOM) [I0], an important stepping stone
for trustworthy computing, but it does not consider data protection.

The work on the AEGIS secure processor [12] [13] introduced a secure com-
puting model that highlights the operation of a security kernel running in an
isolated environment, shielded from both physical and software attacks. Among
other features, AEGIS implemented a memory management unit (MMU) that
protects against physical attacks by deploying stateful, authenticated encryption
for virtual memory blocks stored in untrusted memory regions. A comparison of
cryptographic primitives suitable for implementing such a secure virtual memory
manager in hardware can be found in [16].

This work examines the implementation pitfalls and security proof in the
context of implementing EAX, one well-known AEAD. We prove security for
that AEAD in two given models, relevant to TEE implementation. Prior work
[6] [5] addressing the problem and provability of “online” encryption (system
model 2) in a wider context, take another route and also provide alternative
constructions for rendering a cryptographic primitive secure in this model.

8 Interpretation and Proposal

The proof approach (and the implementation pitfall) described in this paper are
more generally applicable to other authenticated encryption modes as well. For
example, AES-CCM, the most widely used AEAD today, uses the same con-
fidentiality and integrity primitives as AES-EAX (AES-CTR and AES-CBC-
MAC, respectively), with the main difference that in AES-CCM the integrity is
calculated over the plaintext rather than over the ciphertext. Thus, the extra

Authenticated Encryption Primitives 15

buffer in isolated memory needed in the implementation will still be required,
although its placement in AES-CCM will, with respect to sealing/unsealing, be
the mirror image of its application in AES-EAX. The Model 1 proofs are trivially
adaptable to AES-CCM, but most likely also model 2 proof constructs would be
similar when applied to AES-CCM.

Standardized AEAD APIs, like the Global Platform (GP) TEE API [7], in-
cludes APIs for pipelined AES-CGM and AES-CCM primitives modelled after
interfaces for hash functions, i.e. with separate functions for Init, Update and
Finalization. The Update function encrypt or decrypts data in pieces. These
functions trivially map to a TEE implementation for pipelined encryption (Fig-
ure. A TEE AEAD decryption primitive (Figure can in our model be
implemented with the GP API by invoking the set of Init, Update and Finaliza-
tion twice, and binding the Init parameters between the two invocation sets. It
is however evidently clear that the API, as it is defined now, easily stimulates an
unwary implementor to release decrypted plaintext to untrusted memory before
the tag is checked, and in doing that he/she breaks the property of plaintext
awareness for the AEAD primitive.

In the light of the findings in this paper, we propose that APIs for AEAD
decryption inside TEE:s are changed. One option is to re-encrypt the decrypted
content with a temporary key that is given out as a side-effect of a properly
validated tag (integrity check) in the Finalization API method. Alternatively,
the decryption Update API should not return any decrypted data at all, instead
a new Keystream method would be added to return the message XOR keystream
to the caller after the tag has been properly validated. Either of these solutions
would force the APT user to model his decryption operation in a manner that is
secure from the TEE perspective.

9 Conclusion

We have described one example of an AEAD that can be proved correct in a com-
putation context where not all data memory during the algorithm computation
is assumed to be trustworthy. The hardware architecture introduced in Figure[Il
is new to algorithm analysis, although devices with such properties are widely
deployed. We have proved AES-EAX secure in this setup, and provide an insight
into what modifications need to be done to a conventional EAX algorithm to
securely realize it in the pipelined setting.

The pipelined AES-EAX presented and analyzed in this paper is commercially
deployed as part of a trusted device architecture.

References

1. ARM. Trustzone-enabled processor,
http://www.arm.com/pdfs/DDI0301D_arm1176jzfs_rOp2_trm.pdf

2. Bellare, M., Rogaway, P.: The game playing technique (2004),
http://eprint.iacr.org/2004/331

http://www.arm.com/pdfs/DDI0301D_arm1176jzfs_r0p2_trm.pdf
http://eprint.iacr.org/2004/331

16

10.

11.

12.

13.

14.

15.

16.

J.-E. Ekberg, A. Afanasyeva, and N. Asokan

. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-

ing efficient protocols. In: CCS 1993: Proceedings of the 1st ACM Conference on
Computer and Communications Security, pp. 62-73. ACM, New York (1993)

. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Roy, B.,

Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389-407. Springer, Heidelberg
(2004), doi:10.1007/978-3-540-25937-4-25

. Boldyreva, A., Taesombut, N.: Online Encryption Schemes: New Security Notions

and Constructions. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 1-14.
Springer, Heidelberg (2004), doi:10.1007/978-3-540-24660-2-1

. Fouque, P-A., Joux, A., Martinet, G., Valette, F.: Authenticated On-Line En-

cryption. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 145-159. Springer, Heidelberg (2004), doi:10.1007/978-3-540-24654-1-11

. GlobalPlatform Device Technology. TEE Internal API Specification. Global Plat-

form, vrtsion 0.27 edition (September 2011),
http://www.globalplatform.org/specificationform.asp?fid=7762

. Intel Corporation. Trusted eXecution Technology (TXT) — Measured LaunchedEn-

vironment Developer’s Guide (December 2009)

. Kostiainen, K., Ekberg, J.-E., Asokan, N., Rantala, A.: On-board credentials with

open provisioning. In: ASTACCS 2009: Proceedings of the 4th International Sym-
posium on Information, Computer, and Communications Security, pp. 104-115.
ACM, New York (2009)

Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., Horowitz,
M.: Architectural support for copy and tamper resistant software. SIGPLAN
Not. 35(11), 168-177 (2000)

Srage, J., Azema, J.: M-Shield mobile security technology, TI White paper (2005),
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf

Edward Suh, G., Clarke, D., Gassend, B., van Dijk, M., Devadas, S.: Efficient
memory integrity verification and encryption for secure processors. In: MICRO 36:
Proceedings of the 36th Annual IEEE/ACM International Symposium on Microar-
chitecture, p. 339. IEEE Computer Society, Washington, DC (2003)

Edward Suh, G., O’'Donnell, C.W., Sachdev, 1., Devadas, S.: Design and implemen-
tation of the aegis single-chip secure processor using physical random functions.
In: ISCA 2005: Proceedings of the 32nd Annual International Symposium on Com-
puter Architecture, pp. 25-36. IEEE Computer Society, Washington, DC (2005)
Sundaresan, H.: OMAP platform security features, TI White paper (July 2003),
http://focus.ti.com/pdfs/vf/wireless/platformsecuritywp.pdf

Trusted Platform Module (TPM) Specifications,
https://www.trustedcomputinggroup.org/specs/TPM/

Chenyu, Y., Rogers, B., Englender, D., Solihin, D., Prvulovic, M.: Improving cost,
performance, and security of memory encryption and authentication. In: 33rd
International Symposium on Computer Architecture, ISCA 2006, Boston, MA,
pp. 179-190 (2006)

http://www.globalplatform.org/specificationform.asp?fid=7762
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://focus.ti.com/pdfs/vf/wireless/platformsecuritywp.pdf
https://www.trustedcomputinggroup.org/specs/TPM/

Authenticated Encryption Primitives 17

A First System Model Analysis

The first model that we consider is the one where plaintext inside the TEE is
encrypted for storage in untrusted memory, and vice versa for decryption. For
the encryption primitive we will use the standard reduction technique to reason
about whether the encrypted content can be released to an adversary before the
whole primitive has completed.

In this model the decryption primitive is unmodified and need not be ana-
lyzed, as the decrypted plaintext is stored in the TEE and thus is not becoming
available to the adversary during the execution of the primitive. An implemen-
tation must still adhere to a similar rule as with encryption, i.e. any encrypted
block has to be moved to trusted memory prior to the integrity check and a
subsequent decryption - otherwise an adversary has the possibility to decouple
the data for the integrity check from the data being decrypted.

Algorithm [7 is an abstraction of the implementation of pipelined EAX, and
returns encrypted blocks as they have been generated.

Theorem A1l. The pipelined EAX encryption variant presented in Algorithm
[7is as secure as the original baseline EAX encryption.

Proof. We begin with the CPA claim. Let A be an adversary using resources
(¢,0) and is trying to distinguish algorithm [7 from a source of random bits. We
construct an adversary B that distinguishes the original FAX algorithm from
a source of random bits. Adversary B has an oracle g; that responds to query
(N,H,M) € {0,1} x {0, 1} x {0,1}* with a string C = {cg,¢c1,...,cn_1},Tag.
Each named component is an [-bit string. Algorithm [§] describes the operation
of adversary B using g;:

Algorithm 7. Encryption, model 1 Algorithm 8. Algorithm BY simulating
Input: N, H,K,M = {mo,m1,...,mn_1} Oe

Output: C = {co,c1,...,cn-1},Tag 1: Run A

1: N <= OMAC%(N) 2: for all Oracle calls (N;, H;, M;), j €
2: H <= OMACK(H) 0...n—1from A do

3: foralli€0...n—1do 3. Cj||Tag; < g1(N;, Hj, Mj)

4: ¢ <= CTRY (mi) 4: forallic0...n—1do

5: return c; 5: return ¢;; in response to A’s
6: C < OMAC%(c;,C) query

7: end for 6: end for

8 Tag=NOCDOH 7 return 7Tag; in response to A’s
9: return Tag query

8: end for

9: When A halts, read its output bit b
10: return b

18 J.-E. Ekberg, A. Afanasyeva, and N. Asokan

We may assume that A makes ¢ > 1 queries to its oracle, and adversary B uses
the same number of queries. Also, Pr[4492 = 1]=Pr[BF4X = 1]. We assume
that A is nonce-respectingd, B is length-committingd and Pr[A® = 1]=Pr[B® =
1]. Thus, we conclude that

Adv§i3 (A) = PriAM =1] = PriA® = 1] =

= Pr[BFAX = 1] - Pr[B* =1] = Advgf,’;;(m

This completes the claim.

It is easy to see that the CCA proof follows from the CPA proof, since the de-
cryption procedure remains unmodified. Thus, using the same logic it is possible
to show that

ABSEAA) = AdSSA(B)

and this completes the proof.

4 An adversary is nonce-respecting if its queries never repeat a nonce value.
® Adversary B is length-committing if it consults its own oracles with the appropriate
data block lengths implied by the needs of adversary A.

Auditable Envelopes: Tracking Anonymity
Revocation Using Trusted Computing

Matt Smart and Eike Ritter

School of Computer Science, University of Birmingham, UK
research@mattsmart.co,
e.ritter@cs.bham.ac.uk

Abstract. In this paper, we discuss a protocol allowing the remote user
of a system providing revocable anonymity to be assured of whether or
not her anonymity is revoked. We achieve this via a novel use of Trusted
Computing and Virtual Monotonic Counters. The protocol has wide-
ranging scope in a variety of computer security fields, such as electronic
cash, fair exchange and electronic voting.

1 Introduction

A number of fields in computer security consider the anonymity of protocol
users to be of critical importance: in digital cash and electronic commerce, it is
important that rogue users should not be able to trace the spender of a coin, or
to link coins that user has spent with each other. In anonymous fair exchange
protocols, multiple parties exchange items with one another, whilst wishing to
remain anonymous (sometimes for obvious reasons). In electronic voting, the
voter must remain unlinkable to their vote.

However, designers of each of these classes of protocol must consider that there
are sometimes occasions when a user’s anonymity must be revoked — a coin
might be maliciously double-spent, or used for an illegal purchase; a party could
renege on their promise as part of an exchange protocol; a voter may attempt to
vote twice, or may not be a legitimate voter at alll. The point of this paper is not
to consider for what reason anonymity revocation is required, though: instead,
we note that users whose anonymities are revoked should be made aware of this
fact. In this work, we present a solution to this problem, which is essentially a
digitized version of the “sealed envelope problem” discussed in [1].

Let us consider the physical, paper abstraction of the problem. Alice lives in a
country where it must be possible to link her identity to her vote (though only
authorised entities should be able to make this distinction). When she collects
her ballot paper, her identity is sealed inside a tamper-evident envelope, and
the serial number of her ballot paper is written on the outside. The envelope is
stored securely. Alice votes. Some time later, for whatever reason, someone may

! The ability to link a voter to their ballot is actually a legal requirement in the UK
12, 120, 114, 16].

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 19-83] 2012.
© Springer-Verlag Berlin Heidelberg 2012

20 M. Smart and E. Ritter

wish to trace Alice’s ballot back to her. After the election, Alice may wish to see
whether her anonymity has been revoked or not. To do this, she merely requests
to see the appropriate envelope from the authorities (i.e., that with her ballot
serial number on it), and verifies that the envelope is still sealed.

We can apply this abstraction to a number of other fields, and it particularly
makes sense when considering payment for goods (we discuss this more in Section
B). However, digitising the (auditable) sealed envelope is not at all trivial: it is
intuitively not possible to simply give the authorities an encrypted copy of Alice’s
identity: if the key is provided with the ciphertext, then Alice has no way to know
whether it has been used. If the key is not provided, then the authorities cannot
do anything with the ciphertext anyway, without contacting Alice (who, as a
rogue user, may deliberately fail to provide information) [1]. As a result, we
must consider that some sort of trusted platform is required, in order for Alice
to be convinced that her anonymity has not been revoked. In this work, we detail
a protocol which uses trusted computing—specifically, the TPM—to assure Alice
in this way.

1.1 Related Work

This paper is potentially relevant to a wide range of fields where revocable
anonymity is important: digital cash, fair exchange, and electronic voting. We
do not specifically address any of these areas, as the way in which they use the
identity of the user is unimportant to us: it is the similarity in the need for the
user’s anonymity that matters. Very little existing work considers auditable re-
vocable anonymity: Kugler and Vgt [11] discuss an electronic payment protocol
in which the spender of a coin can determine (within a fixed period) whether
their anonymity is revoked or not. Although the protocol is attractive, it requires
knowledge a priori of who is to be traced—something which is not possible in
fields such as electronic voting. More generally, Moran and Naor [12] discuss
many high-level theoretical implementations of cryptographic “tamper-evident
seals”, but do not go into detail as to how these would be realised (and seemingly
place a lot of trust in the entity responsible for generating seals).

Ables and Ryan [1] discuss several implementations of a “digital envelope” for
the storage of escrowed data using the TPM. Their second solution is appealing,
and uses a third party with monotonic counters. However, their solution allows
only a single envelope at a time to be stored (as the TPM only permits the
usage of one monotonic counter at a time), and also would require Alice herself
to generate her identity (something which would not be appropriate for us).

The work of Sarmenta et al. [14] on virtual monotonic counters using a TPM is
crucial to our work, as we use a new monotonic counter for each anonymous user,
allowing each to track their own anonymity. We discuss this more in Section 2.1

1.2 Motivation and Contribution

In this work, we introduce a new protocol, not tied to any specific class of user-
anonymous security protocols (electronic commerce, voting, et cetera), which

Auditable Envelopes: Tracking Anonymity Revocation 21

uses the TPM to assure a user of whether or not their identity has been revealed:
we call this property non-repudiation of anonymity revocation. Our motivation
is clear: if we are to have protocols providing anonymity revocation, then it
must be possible for a user to determine when their anonymity is revoked. The
reasoning for this is twofold: not only does a user have the right to know when
they have been identified (generally, as a suspect in a crime), but the fact that
anonymity revocation is traceable is also beneficial:

... the detectability of inappropriate actions and accountability for orig-
ination suffices to prevent misbehaviour from happening [22, p. 5]

Though protocols exist in electronic commerce which permit this ([11], for ex-
ample), the techniques used are not widely applicable, for reasons discussed
above. We consider preliminary discussions of “escrowed data” stored in a dig-
ital envelope which use monotonic counters [1], and discuss the use of virtual
monotonic counters |14] to allow multiple tokens to be securely stored by a single
entity.

1.3 Structure

In Section 2l we provide some background in Trusted Computing and the TPM.
In Section Bl we discuss our trust requirements for the protocol, which itself
is presented in Section @l We discuss applicability of the protocol in Section [B]
give a short discussion on the security of the protocol in Section [B, and finally
conclude.

2 Background: Trusted Computing

Trusted Computing is the notion that it is possible to enforce the behaviour of a
computer, through the provision of specific “trustworthy” hardware. This allows
users of a machine to be convinced that it is in the correct state, and is not com-
promised. Trusted Computing requirements are generally realised via the use of
a Trusted Platform Module (TPM) [18,[19], a tamper-resistant secure coproces-
sor responsible for a number of functions, including random number generation,
RSA key generation, and encryption/decryption. The TPM is capable of remote
attestation as to the state of its registers, and of sealing data: encrypting it such
that it can only be opened by a TPM in the correct state.

The TPM has many other functionalities, including Direct Anonymous At-
testation, used to anonymously attest to the state of a machine [3]. These func-
tionalities are accessed by the host through a predefined set of commands (or
APT). For brevity we do not expand further on these functionalities, but instead
direct the interested reader to [5], which provides a solid introduction to Trusted
Computing and the TPM. It suffices to state that we do not modify the API in
any way with our work.

22 M. Smart and E. Ritter

2.1 Physical and Virtual Monotonic Counters

For us, one of the most important capabilities of the TPM is the availability
of secure monotonic counters. Monotonic counters are tamper-resistant coun-
ters embedded in the TPM, which, once incremented, cannot be reverted to a
previous value: this reduces the likelihood of replay attacks, for many applica-
tions [14].

Unfortunately, the 1.2 version of the TPM, being a low-cost piece of hardware,
has only four monotonic counters, of which only one can be used in any boot
cycle. As noted by Sarmenta et al., the intention here was to implement a higher
number of virtual monotonic counters on a trusted operating system. We would
rather not require trusted operating systems, however. The work of Sarmenta et
al. [14] demonstrates the creation of an unbounded number of virtual monotonic
counters with a non-trusted OS.

A virtual monotonic counter is a mechanism (in untrusted hardware or soft-
ware) which stores a counter value, and provides two commands to access it:
ReadCounter, which returns the current value, and IncrementCounter, which in-
creases the counter’s value. The counter’s value must be non-volatile, increments
and reads must be atomic, and changes must be irreversible. Note that virtual
monotonic counters are not stored on the TPM, but instead on untrusted stor-
age, allowing a far higher number of simultaneous counters to be used.

The manner in which Sarmenta et al. implement their solution means that the
counter is not tamper-resistant, but merely tamper-evident. This is sufficient for
our purposes. The counter produces verifiable output in the form of unforgeable
execution certificates, via a dedicated attestation identity key (AIK) for each
counter. The counter uses this key, together with nonces, to produce signed
execution certificates to send to users.

In the implementation of virtual monotonic counters suggested by Sarmenta
et al. |14, p. 31], the counter mechanism is stored in full on the host (rather than
on the host’s TPM), and supports the following functions:

— CreateNewCounter(nonce): returns a CreateCertificate containing the ID num-
ber of the counter, and the nonce given as a parameter

— ReadCounter(CounterlD,Nonce): returns a ReadCertificate containing the value
of the counter, the counter’s ID and the given nonce

— IncrementCounter(CounterlD,Nonce): increments the counter, and returns an
IncrementCertificate containing the new value of the counter, counter ID and
nonce

— DestroyCounter(CounterlD,Nonce): destroys the counter.

In this work, we assume availability of the virtual monotonic counters defined
by Sarmenta et al.. To avoid use of commands that are not included in the
TPM API, we adopt the first, log-based scheme which they define |14, p. 32]. As
noted earlier, the TPM has a limited number of physical monotonic counters, of
which only one at a time can be used. The log-based implementation of virtual
monotonic counters uses a physical monotonic counter as a “global clock”, where
the time ¢ is simply the value of the TPM’s physical counter at a given time.

Auditable Envelopes: Tracking Anonymity Revocation 23

The value of a virtual monotonic counter is then the value of the global clock
at the last time the virtual counter’s IncrementCounter command was executed.
This consequently means that the value of a counter each time it is incremented
cannot be predicted deterministically—we can merely say with certainty that
the value of the counter will only monotonically increase. As we discuss further
in the conclusion, this does not present a problem for us.

The IncrementCounter operation is then implemented using the TPM’s API
command TPM IncrementCounter, inside an exclusive, logged transport session,
using the ID of the counter in question, and a nonce ng generated by the client
to prevent replay. The result of the final TPM ReleaseTransportSigned operation
is a data structure including the nonce, and a hash of the transport session log,
which is used to generate an IncrementCertificate.

The ReadCounter operation is more complex, and involves the host (the “iden-
tity provider”, idp, for us) keeping an array of the latest increment certificates
[14, p. 33] for each virtual counter, returning the right one when the client re-
quests it. In order to prevent reversal of the counter’s value, however, the host
must send the current time certificate, the current increment certificate, and all
of the previous increment certificates. Verification of the counter’s value then
involves checking that each previous increment certificate is not for the counter
whose ID has been requested.

We do not go into further implementation specifics, but instead refer interested
readers to [14, p. 32] for further information.

3 Trust Model

In our work, we make the following assumptions:

1. Alice and the identity provider idp (discussed in the next section) trust the
TPM in Alice’s machine, by virtue of it attesting to its state (and therefore,
the state of Alice’s machine)

2. All users trust idp, by virtue of it attesting to its state (and therefore, the
state of idp’s machine)

3. The judge is trusted to only authorise anonymity revocation where necessary

In a strict sense, it is not necessary for users to deliberately place trust in any
TPM (whether it is in the identity provider’s machine, or the user’s): both the
user’s and the identity provider’s TPMs have the ability to verify the correctness
of the other’s TPM and host machine, where the TPM itself is assumed to be a
tamper-resistant hardware module. Instead, therefore, any trust we place must
be in the manufacturer of the TPM, to construct such a device according to its
correct specification. Note as a consequence that idp is not a trusted third party:
the fact that it is worthy of trust can be determined by any user.

4 Protocol

We begin by explaining our protocol from a high level, and then go into more
implementation specific detail. Note that we assume the availability of standard

24 M. Smart and E. Ritter

Alice ID Provider (idp) Service Provider (s)

' | Encrypted Transport Session !
1. IDP-PCR-INFO:=TPM_Quote(...,cq....)

2. ALICE-PCR_INFO:=TPM_Quote(...,c;....)

I
I

I

I

I

I

|

I

I 3. (pkra,skra) =

| TPM_CreateWrapKey (binding, ALICE-PCR_INFO,kp 4, - - .)
I

I

I

I

L

4. (pky, skp) =
TPM_CreatelirapKey (binding, IDP-PCR_INFO, k7 , . ..)

I
I
I
I
I
I
I
I
I
I
'
i

5. Nonce n.

CreateCounter(n.)
7. idm = = (i,

{id, CreateCertificate, signiq, (hash (id| |CounterID)) } 1. 4

TPM_LoadKey2(k A, - - -)
TPM_UnSeal(idm, kpa) 8. ReadCounter(CounterlD,n)

9. ReadCertificate

10. {m,CounterlD,id, sign;y, (hash(id| | CounterID)) } ¢

IncrementCounter(CounterlD,n g)
TPM_LoadKey2(ky, - . .)
TPM_UnSeal(id, k1)

13. ReadCounter(CounterlD,n/,)

11. signjydge(id, CounterlD, ng)

12. signigp ({id}s)

14. ReadCertificate

Fig. 1. Our Revocation Audit Protocol

public key cryptographic techniques, hashing and signature protocols. Our sce-
nario is as follows. Alice wishes to engage in a user-anonymous protocol with a
service provider, s: Alice normally remains anonymous, but s has some interest
in revoking her anonymity under certain circumstances (s can obtain a signed
request for the user’s identity from a judge). Alice would like to know whether
or not her anonymity has been revoked at some point after her interaction with
s is complete.

In order to present a solution, we introduce a third party, the identity provider,
idp. The identity provider runs trusted hardware, and attests to the state of
his machine in an authenticated encrypted transport session with Alice’s TPM
(again, it should be noted that this means idp is not a trusted third party,
but a party which proves that it is trustworthy). Once Alice is assured that
she can trust idp’s machine, and idp is likewise assured of the trustworthiness
of Alice’s machine, idp generates a virtual monotonic counter specifically for
Alice’s identity, using a nonce sent by Alice. He then encrypts Alice’s identity
using a key generated by Alice’s TPM. This is concatenated with a certificate
produced by the creation of the counter, hashed, and signed. The signature,
certificate and encrypted ID—which we will refer to as a pseudonym—are sent
to Alice, encrypted with a binding wrap public key to which only her TPM has
the private counterpart.

Alice now reads the counter generated for her. She can then send whatever
message is necessary to s, along with the particulars of the counter relating to

Auditable Envelopes: Tracking Anonymity Revocation 25

her ID, and idp’s signature thereof. The service provider is able to verify the
validity of the signed hash on Alice’s identity, and can store it for further use.

Should s request to view Alice’s identity, he contacts idp with a signature
generated by a judge, on the pseudonym and particulars of the certificate (the
details originally sent to him). The protocol dictates that idp first increments
the virtual monotonic counter associated with the certificate received, and can
then load the appropriate key, and decrypt Alice’s identity. Alice is later able to
request the value of her monotonic counter once again, allowing her to determine
whether or not her anonymity was revoked.

4.1 Implementation Steps

We now present a more detailed implementation. A diagram for the protocol is
give in Figure [II The protocol can be split into two stages: in the first, Alice
registers her identity with idp, and receives a pointer to a virtual monotonic
counter back. In the second, she interacts with s, who may wish to obtain her
identity. She is then able to audit this process.

Stage 1. Alice begins with her TPM and the TPM of the identity provider,
idp, engaging in an encrypted transport sessiond. She invents a nonce, ¢,, and
challenges idp’s TPM to reveal the state of a number of its platform configuration
registers (PCRs—a set of protected memory registers inside the TPM, which
contain cryptographic hashes of measurements based on the current state of the
host system), using the TPM Quote command (with ¢, being used for freshness).
Alice can use this information to determine if the TPM is in a suitable state (i.e.,
if its host machine is running the correct software). The identity provider’s TPM
does the same with Alice’s TPM, using a different nonce ¢;. In this manner, both
platforms are assured of the trustworthiness of the other.

Alice proceeds to have idp’s TPM generate a fresh RSA keypair k; = (pky, skr)
using the TPM CreateWrapKey command, binding the key to the PCR informa-
tion she acquired. This ensures that only a TPM in the same state as when
the TPM Quote command was executed is able to open anything sealed with
pky. Similarly, idp’s TPM has Alice’s TPM generate a binding wrap keypair
kra = (pkra, skra), where the private key is accessible only to Alice’s TPM.

Next, idp receives a nonce n. from Alice. He then creates a virtual monotonic
counter |14], which he ‘ties’ to Alice’s identity, using the CreateNewCounter com-
mand with n.. This returns a CreateCertificate, detailing the ID number of the
counter, CounterlD, and the nonce used to create it. idp proceeds to produce a
pseudonym id = {id},, for Alice, an encryption of her identity (which we assume
it knows) using the TPM Seal command and the binding wrap key pk;. id and
the ID of the counter, CounterID, are concatenated and hashed. The signed hash,

2 We note that idp could also undergo direct anonymous attestation |3] with Alice to
attest to the state of his machine. However, this is unnecessary for us, as neither
Alice nor idp need to (or could) be anonymous at this stage.

26 M. Smart and E. Ritter

pseudonym id and the aforementioned CreateCertificate are sent to Alice, en-
crypted with the binding wrap key pkr4 generated for her TPM. The ID provider
stores CounterID and id locally. Alice has her TPM decrypt the message she re-
ceives, and then verifies the hash. Note that only Alice’s TPM, in the correct
state, can decrypt the message sent to her.

Finally, Alice generates a fresh nonce n,, and contacts idp to request the value
of the counter, via the ReadCounter(CounterID, Nonce) command. She receives
back a ReadCertificate containing the counter’s value, the CounterlD and the
nonce she sent.

Stage 2. The second stage, which can happen at any time in future, is where
Alice communicates with whichever service provider she chooses (note that she
may choose to use the same id token with multiple service providers, or may
generate a new token for each—it would obviously be sensible to do the latter,
to prevent linkability between service providers). Where Alice’s message (which
might be a tuple containing her vote, or a coin, or some exchangeable object) is
represented by m, she sends the tuple

{m, CounterlD, id, sign;4, (hash(id||CounterID)) } s

to s. Note that the whole message is encrypted with the public key of the service
provider, preventing eavesdropping. The message m is further processed (how
is outside of the scope of this paper). The signed hash is examined to confirm
that it is indeed a valid signature, by idp, on the pseudonym and Counter ID
provided. The service provider can then store (CounterlD, id) for later use.

Now, Alice can, at any point, check the value of her virtual monotonic
counter. The service provider may wish to discover her identity, and so will
seek a signed request from a judge, generating a nonce ng. He sends this re-
quest, signjudge(id, ng, CounterlD), to idp. Note that in order to decrypt Alice’s
pseudonym, idp must use the key k;—bound to the correct state of his TPM’s
PCRs—which Alice selected. This means that he needs to be in the correct
state. He begins by incrementing Alice’s virtual monotonic counter using the
command IncrementCounter(CounterID, ng), and then loads the appropriate key
kr using the TPM LoadKey2 command. He can then decrypt Alice’s identity using
TPM UnBind. Finally, idp returns id, encrypted for s. Again, what s does with
Alice’s identity is outside of the scope of this paper.

At any later time, Alice can check the virtual monotonic counter value, by
contacting idp and executing ReadCounter command with a fresh nonce n},. If
idp was correctly following the protocol (which, using a verified TPM, he must
have been), Alice will know—by determining whether the value of the counter
has increased—if her identity has been revealed.

A key point of the protocol is that the identity provider is automatically
trusted to follow it, as a consequence of the encrypted transport session in Stage
1. When Alice quotes the PCRs of the identity provider’s TPM, she makes it gen-
erate a key bound to the correct machine state that it is currently in (presumably,

Auditable Envelopes: Tracking Anonymity Revocation 27

Alice would terminate any session where an erroneous result of TPM Quote was
reported). Even if idp were to become corrupted after the encrypted transport
session, this corruption would alter its TPM’s PCRs, protecting Alice’s identity
from rogue decryption.

5 Applicability

In this section, we discuss some use cases for the protocol: as mentioned earlier,
we believe it to have a number of areas of applicability. Here we focus on digital
cash and electronic voting, two classes of protocol where anonymity is critical.

5.1 When Does Alice Request a Pseudonym?

We mentioned in Section [£]] that Alice is free to have idp generate an unlimited
number of pseudonyms for her, or just one, depending on her preference. Com-
mon sense dictates that, should Alice wish the services she interacts with to be
unable to link her transactions together, she should generate a fresh pseudonym
for each service she uses. For services which a user uses only once (say, par-
ticipating in an election), this solution is sufficient. For those which she uses
multiple times—such as spending multiple coins in a digital cash system—we
consider whether a solution requiring Alice to contact idp multiple times for dif-
ferent pseudonyms is suitable. Digital cash protocols such as |10] typically secure
a spender’s identity by encrypting it with a key to which only one, trusted, entity
has access. When coins are withdrawn, the identities of those coins are stored
with the encrypted ID of their owners in a database. Consequently, as in [10],
though the digital coin itself does not contain Alice’s identity, it contains pointers
which which her identity can be looked up in the database.

We note that, in |10], whenever Alice withdraws a coin, she encrypts her
identity using fresh symmetric keys for two separate parties: the Bank and the
Ombudsman, both of whom have to cooperate to later retrieve her anonymity.
In fact, our protocol fits very well into this model. Alice still selects two fresh
symmetric keys, but now encrypts not her plaintext ID, but the tuple

(CounterlD, id, sign;y, (hash(id||CounterID))),

obtained from idp. As idp is trusted to legitimately produce signatures on identi-
ties, the Bank and Ombudsman can trust the encrypted ID to be legitimate, and
issue the coin as before. Should revocation be required, the Bank now simply
contacts idp, allowing Alice to determine that this has occurred.

The advantage here is that Alice’s withdrawn coins remain unlinkable—her
ID is not encoded into them, and every instance of her ID stored by the Bank is
not only encrypted with the key idp generated for it, but also with session keys
generated by Alice. We note, of course, that |[10] is now quite dated. However,
it represents a class of digital cash protocol in which the spender’s identity is
stored encrypted in a database, and is used here for its simplicity. A range of
other digital cash systems could use our protocol in the same way [4, |6, 17, [21],
or by simply storing the pseudonym in the coin |79, [13].

28 M. Smart and E. Ritter

5.2 Digital Cash Examples

If we take any digital cash protocol where the identity of the coin spender is
in some way encrypted (whether stored on a remote server [10] or encoded into
the coin itself [13]), we can envisage a situation in which a user either spends
a digital coin twice, or participates in an illegal transaction. An authority will
have some interest in this, and thus requests that the Bank trace the coins spent
by the user, in order to identify her.

In the case of the protocols listed above, the identity of the user is simply
decrypted (albeit by two separate authorities in the first case). The user has no
way to know that she was traced, until she is apprehended! Now, we modify each
protocol such that:

— in the case of protocols where the spender ID is encoded onto the coin, the
coins instead contain the user’s identity—encrypted using the wrap key made
for idp—and the CounterlD, with the signed hash of both;

— in the case of a database storing the spender ID, with a lookup value in
each key, we proceed as discussed above, with the spender providing the
idp-encrypted ID token which is then stored in the database.

This done, the coin spender knows that each coin can only be linked back to
her with the cooperation of idp, who (since he is following the protocol) must
increment the appropriate counter, allowing the spender to know if she is iden-
tified. Note that a protocol providing revocation auditability already exists [11],
but requires knowledge a priori of who is to be traced, making the protocol
unsuitable for other applications.

5.3 Electronic Voting Example

Voting is generally considered to be an area where anonymity of the user (voter)
should be unequivocal. However, in some countries (such as the UK, and New
Zealand), it is a legal requirement that a voter’s ballot paper must be linkable
back to them |20]. Smart and Ritter’s work on revocable anonymity in electronic
voting [15,[16] stores the voter’s identity in an encrypted manner in the ballot. If
instead we store the encrypted ID, with the CounterID and signed hash of both,
we achieve the same property as above: if the authorities need to trace a voter,
they contact the identity provider. If a voter is traced, they know that they will
be able to determine this was the case, because the identity provider will have
incremented their virtual monotonic counter.

An interesting problem is how to deal with coercion resistance: if Alice receives
an encrypted identity from idp, and then sends it to a vote tallier who places it on
the bulletin board unchanged, then a coercer can see that Alice has voted (this is
undesirable if we wish to prevent forced-abstention attacks). In protocol vote2,
permitting revocable anonymity |16, p. 197-9], revocation is effected by having
Alice send the tuple (id = {id}udge, Signg(id)) to the talliers. The ciphertext id
is produced by the registrar, R, during registration.

Auditable Envelopes: Tracking Anonymity Revocation 29

This is followed by an encrypted transport session between the voter’s TPM
and a Tallier, in which a sealing wrap key used to encrypt designated verifier
proofs of re-encryption is produced. Our change to the protocol is again quite
small. In the registration phase, once the “join” stage of the protocol is complete,
Alice sends her idp-encrypted id to R, who performs an ElGamal encryption of
it using the Judge’s public key. Before the talliers post this ciphertext to the
bulletin board, it is randomly re-encrypted. Should revocation be required, the
co-operation of both the Judge and idp is required, and Alice will again be able
to see that this has occurred.

6 Analysis

In this section we briefly discuss the security properties of the protocol. The
main property that we achieve is that Alice is always able to determine whether
her anonymity is revoked or not (non-repudiation of anonymity revocation). This
property is satisfied as a result of the knowledge that, having attested to the state
of his TPM (and hence, the software being run on the host), idp will either:

— act according to the protocol specification, or
— be unable to decrypt Alice’s identity.

Our reasoning is as follows. If the Identity Provider adheres to the specification,
he generates a counter for Alice’s identity using a nonce she supplies. He encrypts
her identity using a keypair which can only be used again by a TPM in the same
state which Alice originally accepted.

The information that idp generates to send to Alice must be correct, other-
wise idp is deviating from the protocol. It follows that, when s requests Alice’s
anonymity to be revoked, idp must first increment the associated counter. If idp
does deviate from the protocol, he will not be able to use the same key k; later
on to decrypt Alice’s identity, as that key is bound to his original TPM state
(which would change if different, or malicious, software were used).

Thus, the most a rogue idp could achieve is suggesting Alice’s anonymity has
been revoked when it has not (i.e., tampering with the counter), opening up idp
to further questioning (it is hence not in the identity provider’s interest to lie to
Alice in this way). Since the counter must always be incremented before Alice’s
identity is decrypted, Alice will always know when she has been identified, by
querying the counter.

We next consider Alice’s interaction with s. In her communication with s, Alice
provides her pseudonym and the counter ID tied to it, together with a signed
hash of these values (as originally provided to her by idp). This convinces s that
the identity provided is genuine. This leads us to the issue of eavesdropping at-
tacks, allowing a user to illegitimately obtain the pseudonym of another user,
and thus ‘frame’ an innocent victim for a crime. Note that without identifying
Alice immediately, s cannot be further convinced that the pseudonym is indeed
hers. However, our protocol prevents this problem from arising: in the message

30 M. Smart and E. Ritter

idm sent from idp to Alice, Alice’s pseudonym and counter information are en-
crypted using a binding wrap key, meaning that only her TPM can obtain these
values. The only other message where these two values are together is in Alice’s
communication with s, and here, the entire message is encrypted for s.

The message containing Alice’s actual identity is signed by idp before being
sent back to s. Hence, providing s trusts idp, he will always obtain Alice’s le-
gitimate identity by following the protocol. We might consider that s does not
trust idp, in which case we could request that s and idp also undergo some sort
of attestation, like that between Alice and idp. In the case of the digital cash
example presented earlier, we could require that the Bank and Ombudsman each
force idp to attest to its state.

Trustworthiness of the Service Provider. Note that, as we have already
mentioned, we do not consider how s behaves, as it is outside of the scope of
this protocol. However, we now discuss a possible course of action to prevent a
rogue s replaying the counter and pseudonym values sent to him by an honest
user. In order to mitigate this issue, we need to force the pseudonym’s actual
owner to prove her ownership. We therefore alter some of the messages in the
protocol (numbered according to Figure [l where messages 10a—d come between
messages 10 and 11):

7. idp—Alice: {id, CreateCertificate, sign;q,(hash(id || hash(CounterID)))} ko
8. Alice—idp: {ReadCounter(CounterlD, ny)}pk,
9. idp—Alice: {ReadCertificate} i, .
10. Alice—s: {m,id, hash(CounterID), sign;y,(id || hash(CounterID))},
10a. s—Alice: ¢
10b. Alice—s: hash(CounterlID || cetr)
10c. s—idp: id, copr
10d. idp—s: hash(CounterID || cqir)
11. s—idp: sign j,ge.(id, n.s)

These changes are appropriate if we wish to prevent a rogue s from gaining
an (id, CounterID) pair with which to frame another user. We begin by altering
what idp sends to Alice, such that the signed hash now itself contains a hash of
CounterID. Both the request and result of reading the counter are encrypted for
idp’s and Alice’s TPM respectively.

The messages from 10 onwards are the most important. Rather than sending
her counter’s ID in the clear for s, Alice sends a hash of it, which fits in with the
signed hash provided by idp. s now returns a challenge c.t., which Alice hashes
with CounterID and returns. In 10c and 10d, s sends the pair (id, c.;,) to idp, who
looks up id and returns a hash of its associated CounterlD concatenated with the
challenge. This allows s to ensure that Alice really is the owner of the pseudonym
and counter ID she provided. No further changes are necessary, as this prevents
s from stealing Alice’s pseudonym and counter ID: s would be unable to generate

Auditable Envelopes: Tracking Anonymity Revocation 31

message 10b as he never sees CounterID in the clear. Note that consequently,
message 11 also needs to change.

In this section, we have discussed the security properties of our work. Note
that changes to mitigate against a corrupt service provider are only appropriate
where untrustworthy service providers are a risk—hence we do not include these
changes in the main protocol.

7 Conclusions and Future Work

In this paper, we have presented work on a protocol which allows users of a
protocol providing revocable anonymity to audit whether or not their anonymity
is revoked. We have shown how virtual monotonic counters can be used on an
authenticated host to track anonymity revocation, for use with any other class
of security protocol requiring revocable anonymity. Further, we addressed how
to mitigate the actions of a corrupt service provider. This work makes significant
steps in auditable anonymity revocation, a field which has not been considered
in detail before.

There are factors which we would like to consider in future work. Some of
those are motivated by the issues Sarmenta et al. discuss regarding log-based
virtual monotonic counters in [14]. The counters are non-deterministic, being
based on the single counter in use by the TPM in any one power cycle. This
means that counter increment values are unpredictable—not a problem for our
application, but potentially a cause of high overhead. Indeed, the ReadCertificate
for a counter would include “the log of all increments of all counters. .. since the
last increment”. The size of such a certificate could be substantial. Power failures
mid-cycle on idp could also cause the counters to become untrustworthy.

These issues are mitigated by the idea of Merkle hash tree-based counters |14,
pp. 34-6] which would require changes to the TPM’s API. It is for this reason
that we did not adopt this solution, but would instead look to it for future work.
We would also like to consider a formal analysis of the security properties of the
protocol.

One might also consider whether the third party, idp, is required for this pro-
tocol to work: an exemplar alternative might be in which Alice and s interact
only with each other, assuring trustworthiness via a protocol such as DAA [3].
Alice seals her identity using a key generated by her TPM, meaning that interac-
tion with her TPM is again required to reveal her identity (and thereby, Alice is
informed that this has happened). This solution will not work: as we mentioned
earlier, a rogue Alice would rather switch her machine off than risk detection. Us-
ing a high-availability third party, which proves itself to be following the correct
protocol, mitigates this problem.

We feel the protocol we have presented has wide-ranging applicability to a
number of user-anonymous protocols—particularly those in digital cash and elec-
tronic voting—allowing all users subject to revocable anonymity to be assured
of whether or not they can be identified.

32 M. Smart and E. Ritter
References
1. Ables, K., Ryan, M.D.: Escrowed Data and the Digital Envelope. In: Acquisti, A.,

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 246-256.
Springer, Heidelberg (2010)

Blackburn, R.: The Electoral System in Britain. Macmillan, London (1995)
Brickell, E., Camenisch, J., Chen, L.: Direct Anonymous Attestation. In: Proceed-
ings of the 11th ACM Conference on Computer and Communications Security,
CCS 2004, pp. 132-145. ACM (2004)

Camenisch, J., Maurer, U., Stadler, M.: Digital Payment Systems with Passive
Anonymity-Revoking Trustees. Journal of Computer Security 5(1), 69-89 (1997)
Challener, D., Yoder, K., Catherman, R., Safford, D., Doorn, L.V.: A Practical
Guide to Trusted Computing. IBM Press, Boston (2008)

Chen, Y., Chou, J.S., Sun, H.M., Cho, M.H.: A Novel Electronic Cash System
with Trustee-Based Anonymity Revocation From Pairing. Electronic Commerce
Research and Applications (2011), doi:10.1016/j.elerap.2011.06.002

Fan, C.I., Liang, Y.K.: Anonymous Fair Transaction Protocols Based on Electronic
Cash. International Journal of Electronic Commerce 13(1), 131-151 (2008)
Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Transferable Constant-Size Fair E-
Cash. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888,
pp. 226-247. Springer, Heidelberg (2009)

Hou, X., Tan, C.H.: On Fair Traceable Electronic Cash. In: Proceedings, 3rd An-
nual Communication Networks and Services Research Conference, pp. 39-44. IEEE
(2005)

Jakobsson, M., Yung, M.: Revokable and Versatile Electronic Money (Extended
Abstract). In: CCS 1996: Proceedings of the 3rd ACM Conference on Computer
and Communications Security, pp. 76-87. ACM Press, New York (1996)

Kigler, D., Vogt, H.: Off-line Payments with Auditable Tracing. In: Blaze, M. (ed.)
FC 2002. LNCS, vol. 2357, pp. 269-281. Springer, Heidelberg (2003)

Moran, T., Naor, M.: Basing Cryptographic Protocols on Tamper-Evident Seals.
Theoretical Computer Science 411(10) (2010)

Pointcheval, D.: Self-Scrambling Anonymizers. In: Frankel, Y. (ed.) FC 2000.
LNCS, vol. 1962, pp. 2569-275. Springer, Heidelberg (2001)

Sarmenta, L.F., van Dijk, M., O’Donnell, C.W., Rhodes, J., Devadas, S.: Virtual
Monotonic Counters and Count-Limited Objects using a TPM without a trusted
OS. In: Proceedings of the First ACM Workshop on Scalable Trusted Computing,
STC 2006, pp. 27-42. ACM, New York (2006)

Smart, M., Ritter, E.: Remote Electronic Voting with Revocable Anonymity. In:
Prakash, A.,; Sen Gupta, I. (eds.) ICISS 2009. LNCS, vol. 5905, pp. 39-54. Springer,
Heidelberg (2009)

Smart, M., Ritter, E.: True Trustworthy Elections: Remote Electronic Voting Using
Trusted Computing. In: Calero, J.M.A., Yang, L.T., Mdrmol, F.G., Garcia Villalba,
L.J., Li, A.X., Wang, Y. (eds.) ATC 2011. LNCS, vol. 6906, pp. 187-202. Springer,
Heidelberg (2011)

Tan, Z.: An Off-line Electronic Cash Scheme Based on Proxy Blind Signature. The
Computer Journal 54(4), 505-512 (2011)

TCG: Trusted Computing Group: TPM Main: Part 2: Structures of the TPM,
Version 1.2, Revision 103 (October 2006), http://bit.1ly/camUwE

TCG: Trusted Computing Group: TPM Main: Part 3: Commands, Version 1.2,
Revision 103 (October 2006), http://bit.1ly/camUwE

http://bit.ly/camUwE
http://bit.ly/camUwE

Auditable Envelopes: Tracking Anonymity Revocation 33

20. The Electoral Commission: Factsheet: Ballot Secrecy (December 2006),
http://www.electoralcommission.org.uk/ data/assets/
electoral commission pdf file/0020/13259/Ballot-Secrecy-2006-12
23827-6127 E N S W .pdf

21. Wang, C., Lu, R.: An ID-based Transferable Off-Line e-Cash System with Revok-
able Anonymity. In: Proceedings, International Symposium on Electronic Com-
merce and Security, ISECS 2008, pp. 758-762. IEEE (2008)

22. Weber, S.G., Miihlhduser, M.: Multilaterally Secure Ubiquitous Auditing. In:
Caballé, S., Xhafa, F., Abraham, A. (eds.) Intelligent Networking, Collaborative
Systems and Applications. SCI, vol. 329, pp. 207-233. Springer, Heidelberg (2010)

http://www.electoralcommission.org.uk/__data/assets/electoral_commission_pdf_file/0020/13259/Ballot-Secrecy-2006-12_23827-6127__E__N__S__W__.pdf
http://www.electoralcommission.org.uk/__data/assets/electoral_commission_pdf_file/0020/13259/Ballot-Secrecy-2006-12_23827-6127__E__N__S__W__.pdf
http://www.electoralcommission.org.uk/__data/assets/electoral_commission_pdf_file/0020/13259/Ballot-Secrecy-2006-12_23827-6127__E__N__S__W__.pdf

Lockdown: Towards a Safe and Practical Architecture
for Security Applications on Commodity Platforms

Amit Vasudevan', Bryan Parno®*, Ning Qu®**, Virgil D. Gligor', and Adrian Perrig'

I CyLab/Carnegie Mellon University
{amitvasudevan, gligor,perrig}@cmu.edu
2 Microsoft Research
parno@microsoft.com
3 Google Inc.
quning@gmail.com

Abstract. We investigate a new point in the design space of red/green sys-
tems [19130], which provide the user with a highly-protected, yet also highly-
constrained trusted (“green”) environment for performing security-sensitive
transactions, as well as a high-performance, general-purpose environment for all
other (non-security-sensitive or “red”’) applications. Through the design and im-
plementation of the Lockdown architecture, we evaluate whether partitioning,
rather than virtualizing, resources and devices can lead to better security or per-
formance for red/green systems. We also design a simple external interface to
allow the user to securely learn which environment is active and easily switch
between them. We find that partitioning offers a new tradeoff between security,
performance, and usability. On the one hand, partitioning can improve the secu-
rity of the “green” environment and the performance of the “red” environment (as
compared with a virtualized solution). On the other hand, with current systems,
partitioning makes switching between environments quite slow (13-31 seconds),
which may prove intolerable to users.

1 Introduction

Consumers currently use their general-purpose computers to perform many sensitive
tasks; they pay bills, fill out tax forms, check account balances, trade stocks, and access
medical data. Unfortunately, increasingly sophisticated and ubiquitous attacks under-
mine the security of these activities. Red/green systems [[19J30] have been proposed as
a mechanism for improving user security without abandoning the generality that has
made computers so successful. They are based on the observation that users perform
security-sensitive transactions infrequently, and hence enhanced security protections
need only be provided on demand for a limited set of activities. Thus, with a red/green
system, the user spends most of her time in a general-purpose, untrusted (or “red”) en-
vironment which retains the full generality of her normal computer; i.e., she can install
arbitrary applications that run with good performance. When the user wishes to perform
a security sensitive transaction, she switches to a trusted (or “green”) environment that
includes stringent protections, managed code, network and services at the cost of some
performance degradation.

* This work was done while Bryan Parno was still at CyLab/Carnegie Mellon University.
** This work was done while Ning Qu was still at CyLab/Carnegie Mellon University.

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 34-54] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Lockdown: Towards a Safe and Practical Architecture 35

The typical approach to creating a red/green system relies on virtualization to isolate
the trusted and untrusted environments [[19/30]. While straightforward to implement,
this approach has several drawbacks. First, it requires virtualizing all of the system re-
sources and devices that may be shared between the two environments. From a security
perspective, this introduces considerable complexity [16] into the reference monitor
(i.e., the virtual machine monitor) responsible for keeping the two environments sep-
arate. In addition, even without compromising a reference monitor, actively sharing
resources by allowing both environments to run simultaneously exposes side-channels
that can be used to learn confidential information [36/9/31J18]. From a performance per-
spective, the interposition necessary to virtualize devices adds overhead to both trusted
and untrusted applications [16].

Through our design and implementation of the Lockdown architecture, we investi-
gate whether partitioning resources can overcome these drawbacks. In particular, Lock-
down employs a light-weight hypervisor to partition system resources across time, so
that only one environment (trusted or untrusted) runs at a time. When switching between
the two environments, Lockdown resets the state of the system (including devices) and
leverages existing support for platform power-management to save and restore device
state. This approach makes Lockdown device agnostic, removes considerable complex-
ity from the hypervisor, and yet maintains binary compatibility with existing free and
commercial operating systems (e.g., Windows and Linux run unmodified). It also al-
lows the untrusted environment to have unfettered access to devices, resulting in near
native performance for most applications, although a small performance degradation
is necessary to protect Lockdown from the untrusted environment. In the trusted en-
vironment, Lockdown employs more expensive mechanisms to keep the environment
pristine. For example, Lockdown only permits known, trusted code to execute. Since
this trusted code may still contain bugs, Lockdown ensures that trusted applications can
only communicate with trusted sites. This prevents malicious sites from corrupting the
applications, and ensures that even if a trusted application is corrupted, it can only leak
data to sites the user already trusts with her data.

As an additional contribution, we study the design and implementation of a user
interface for red/green systems that is independent of the choice of virtualization versus
partitioning. Our design results in a small, external USB device that communicates the
state of the system (i.e, trusted or untrusted) to the user. The security display is beyond
the control of an adversary and cannot be spoofed or manipulated. Its simple interface
(providing essentially one bit of input and one bit of output), makes it easy to understand
and use, and overcomes the challenges in user-based attestation [26]] to create a trusted
communication channel between the user and the red/green system.

We have implemented and evaluated a full prototype of our user interface (which
we call the Lockdown Verifier) plus Lockdown for Windows and Linux on commodity
x86 platforms (AMD and Intel). To the best of our knowledge, this represents the first
complete, end-to-end design, implementation and evaluation of a red/green system on
commodity platforms; we discuss related work in §[8 The Lockdown hypervisor im-
plementation has 10K lines of code, including the code on the Lockdown Verifier. The
small size and simple design supports our hypothesis that partitioning (instead of vir-
tualization) can improve security. Our evaluation also indicates that the performance of

36 A. Vasudevan et al.

untrusted applications is the same or better with partitioning (as opposed to virtualiza-
tion). Lockdown only imposes a 3% average overhead for memory and 2-7% overhead
for disk operations for untrusted applications. Virtualization on the other hand imposes
overhead for all platform hardware with the overhead ranging from 3-81% depend-
ing on the resources being virtualized (§ [Z2). The primary limitation of partitioning
on current systems is the time (13-31 seconds) needed to switch between the two en-
vironments. While we describe several potential optimizations that could significantly
reduce this time, whether this tradeoff between security, performance, and usability is
acceptable remains an open question.

2 Problem Definition

Goals. The goal of a red/green system is to enable a set of trusted software to com-
municate with a set of trusted sites while preserving the secrecy and integrity of these
applications and the data they handle. Protecting trusted software that does not require
network access is a strict subset of this goal. Ideally, this should be achieved without
modifying any hardware or software the user already employs. In other words, a user
should be able to run the same OS (e.g., Windows), launch her favorite browser (e.g.,
Internet Explorer) and connect to her preferred site (e.g., a banking website) via the
Internet in a highly secure manner while maintaining the current level of performance
for applications that are not security-sensitive.

Adversary Model. We assume the adversary can execute arbitrary code within the
untrusted environment and may also monitor and manipulate network traffic to and from
the user’s machine. However, we assume the adversary is remote and cannot perform
physical attacks on the user’s machine.

Assumptions. The first three assumptions below are necessary for any red/green sys-
tem. The last two are particular to Lockdown’s implementation. (i) Trusted Software
and Sites: As we discuss in §[3.2] we assume certain software packages and certain
websites can be trusted to not deliberately leak private data; (ii) Reference Monitor
Security: We assume that our reference monitor code does not contain vulnerabili-
ties. Reducing the complexity and amount of code in the reference monitor (as we do
with Lockdown) allows manual audits and formal analysis to validate this assumption;
(iii) User Abilities: We assume the user can be trained to perform security-sensitive
operations in the trusted environment; (iv) Hardware Support: We assume the user’s
computer supports Hardware Virtualization Extensions (with Nested Page Table sup-
port [[10]) and contains a Trusted Platform Module [44] chip. Both technologies are
ubiquitous; and (v) Trusted BIOS: Lockdown uses the BIOS during its installation and
to reset devices, so we must assume the BIOS has not been corrupted. Fortunately, most
modern BIOSes require signed updates [32]], preventing most forms of attack.

3 Lockdown’s Architecture

At a high level (Figure [T)), Lockdown splits system execution into two environments,
trusted and untrusted, that execute non-concurrently. This design is based on the belief

Lockdown: Towards a Safe and Practical Architecture 37

oo
_________________________ -
Lockdown |]
Wty Devices

CPU, TPM

Untrusted Environment Trusted Environment Lockdown Verifier
| b |
1 1 1 1 \‘
/[Aep N —@iH
' o v Secure %
| b | G
1 1 1 1
' . ' Insecure
. Operating - Operating ' ‘
. System . System '
| Lo |
1 1 1

Fig. 1. Lockdown System Architecture. Lockdown partitions the platform into two environ-
ments; only one environment executes at a time. An external device (which we call the Lock-
down Verifier) verifies the integrity of Lockdown, indicates which environment is active and can
be used to toggle between them. The shaded portions represent components that must be trusted
to maintain isolation between the environments.

that the user has a set of tasks (e.g., games, browsing for entertainment) that she wants
to run with maximum performance, and that she has a set of tasks that are security sen-
sitive (e.g., checking bank accounts, paying bills, making online purchases) which she
wants to run with maximum security and which are infrequent and less performance-
critical. The performance-sensitive applications run in the untrusted environment with
near-native speed, while security-sensitive applications run in the trusted environment,
which is kept pristine and protected by Lockdown. The Lockdown architecture is based
on two core concepts: (i) hyper-partitioning: system resources are partitioned as op-
posed to being virtualized. Among other benefits, this results in greater performance,
since it minimizes resource interpositioning, and it eliminates most side-channel attacks
possible with virtualization; and (ii) trusted environment protection: Lockdown lim-
its code execution in the trusted environment to a small set of trusted applications and
ensures that network communication is only permitted with trusted sites.

3.1 Hyper-partitioning

Since the untrusted environment may be infected with malware, Lockdown must iso-
late the trusted environment from the untrusted environment. Further, Lockdown must
isolate itself from both environments so that its functionality cannot be deliberately
or inadvertently modified. One way to achieve this isolation is to rely on the platform
hardware to partition resources. With platform capabilities such as Single-Root I/O Vir-
tualization (SR-IOV) [29] and additional hardware such as an IOMMU, it is possible
to assign physical devices directly to an environment (untrusted or trusted) [4/17]. This
hardware capability facilitates concurrent execution of multiple partitions without vir-
tualizing devices. Unfortunately, not all devices can be shared currently (e.g., video,
audio) [5]] and such platform support is not widely available today [[6/17].

38 A. Vasudevan et al.

CPU and Memory Partitioning. Lockdown partitions the CPU in time by only allow-
ing one environment to execute at a time. The available physical memory in the system
is partitioned into three areas: the Lockdown memory region, the untrusted environ-
ment’s memory region, and the trusted environment’s memory regiorﬂ. Lockdown em-
ploys Nested Page Tables (NPTﬂ [LO] to restrict each environment to its own memory
region. In other words, the NPT for the untrusted environment does not map physical
memory pages that belong to the trusted environment and vice versa. Further, it employs
hardware-based DMA-protection within each environment to prevent DMA-based ac-
cess beyond each environment’s memory regions.

Device Partitioning. With hyper-partitioning, both the untrusted and trusted environ-
ments use the same set of physical devices. Devices that do not store persistent data,
such as video, audio, and input devices can be partitioned by saving and restoring their
states across environment switches. However, storage devices may contain persistent,
sensitive data from the trusted environment, or malicious data from the untrusted envi-
ronment. Thus, Lockdown ensures that each environment is provided with its own set
of storage devices and/or partitions. For example, Lockdown can assign a different hard
disk to each environment. Alternatively, Lockdown can assign a different partition on
the same hard disk to each environment. The challenge is to save and restore device
state in a device agnostic manner, and to partition storage devices without virtualizing
them, while providing strong isolation that cannot be bypassed by a malicious OS.

Lockdown leverages the Advanced Configuration and Power-management Interface
(ACPI) [14] to save and restore device states while partitioning non-storage devices.
The ACPI specification defines an ACPI subsystem (system BIOS and chipset) and an
Operating System Power Management (OSPM) subsystem. With an ACPI-compatible
OS, applications and device drivers interact with the OSPM code, which in turn inter-
acts with the low-level ACPI subsystem. ACPI defines four system sleep states which
an ACPI-compliant computer system can be in: S1 (power is maintained to all system
components, but the CPU stops executing instructions), S2 (the CPU is powered off),
S3 (standby), and S4 (hibernation: all of main memory is saved to the hard disk and
the system is powered down). Figure Ph shows how an OSPM handles ACPI Sleep
States S3 and S4. When a sleep command is initiated (e.g., when the user closes the
lid on a laptop), the OSPM first informs all currently executing user and kernel-mode
applications and drivers about the sleep signal. They, in turn, store the configuration in-
formation needed restore the system when it awakes. The device drivers use the OSPM
subsystem to set desired device power levels. The OSPM then signals the ACPI sub-
system, which ultimately performs chipset-specific operations to transition the system
into the desired sleep state. The OSPM polls the ACPI subsystem for a wake signal to
determine when it should reverse the process and wake the system. Note that with this
scheme, Lockdown does not need to include any device drivers or interpose on device
operations. The OS contains all the required drivers that deal directly with the devices
for normal operation and for saving and restoring device states.

' An implementation using ACPI $4 state for hyper-partitioning (§[8), requires only two memory
regions, Lockdown and the current environment (untrusted or trusted) since ACPI S4 results
in the current environment’s memory contents being saved and restored from the disk.

2 Also termed as Extended Page Tables on Intel platforms.

Lockdown: Towards a Safe and Practical Architecture 39

Initiate Sleep
OSPM Trusted Untrusted
Environment Environment
Store Current Configuration
2 9 A A
g g g
& ‘ Set Device Power Levels ‘ 2 12
n v 3 18
Invoke ACPI Subsystem 1=
Sug\sCZtlem Lockdown
o (] Poll ACPI Subsystem Y
£
©
; ‘ Restore Configuration and Power ‘
¢ Resume
(a)
Untrusted Environment Trusted Environment

2. Initiate Sleep

Store Current Store Current
o Configuration Configuration »
£ @
53 Sef Device Power 5. Initiate 3
? Levels 3. Intercept Wake Levels 2
Invoke ACPI Subsystem Lockdown Invoke ACPI Subsystem
A

Poll ACPI Subsystem Poll ACPI Subsystem <
2 4. Update 1. Switch e 5

Restore Configuration C estore Configuration 2
] ommand
= and Power Levels and Power Levels 3 Untrusted Disk Trusted Disk

v
Resume Lockdown
Verifier Resume

(c) (b)

Fig. 2. Hyper-Partitioning. (a) Lockdown leverages the Advanced Configuration and Power-
management Interface (ACPI) OS sleep mechanism to partition (by saving and restoring states)
non-storage system devices while being device agnostic. (b) Storage devices (e.g., disk) are par-
titioned by intercepting the device selection requests and redirecting device operations to the
appropriate device, based on the current environment. (¢) Environment switching is performed
upon receiving a command from the Lockdown Verifier. The OS ACPI sleep steps are modified
by Lockdown to transition between environments (untrusted and trusted).

Lockdown efficiently partitions storage devices by interposing on device selection,
rather than device usage. It takes advantage of the fact that modern storage devices rely
on a controller that implements the storage protocol (e.g., ATA, SATA) and directs stor-
age operations to the attached devices. When the operating system writes to the storage
controller’s I/O registers (a standard set for a given controller type), Lockdown inter-
cepts the write and manipulates the device controller to select the appropriate device for
the currently executing environment (see Figure Zb). All other device operations (e.g.,
reads and writes) proceed unimpeded by Lockdown. A similar scheme can be adopted
for two partitions on the same hard disk by manipulating sector requests. Our evaluation
(§ 1) shows that interposing on device/sector selection has a minimal effect on perfor-
mance. Since we assume the BIOS is trusted (§2)), we can be sure that Lockdown will
always be started first, and hence will always maintain its protections over the trusted
disk.

Environment Switching. Lockdown performs an environment switch by transitioning
the current environment to sleep and waking up the other. Figure Pk shows the steps

40 A. Vasudevan et al.

taken for an environment switch, assuming the user starts in the untrusted environment.
When the user toggles the switch on the trusted Lockdown Verifier to initiate a switch to
the trusted environment (Step 1), the Lockdown Verifier communicates with Lockdown
which in turn instructs the OSPM in the untrusted environment to put the system to
sleep (Step 2). When the OSPM in the untrusted environment issues the sleep command
to the ACPI Subsystem, Lockdown intercepts the command (Step 3), resets all devices,
updates the output on the Lockdown Verifier (Step 4), and issues a wake command to the
OSPM in the trusted environment (Step 5). Switching back to the untrusted environment
follows an analogous procedure.

3.2 Trusted Environment Protection

Lockdown’s trusted environment runs a commodity OS and applications. Lockdown
verifies the integrity of all the files of the trusted environment during Lockdown’s in-
stallation. Further, Lockdown trusts the software in the trusted environment to not leak
data deliberately. However, vulnerabilities within the OS or an application in the trusted
environment can be exploited either locally or remotely to execute malicious code. Fur-
ther, since the trusted environment and untrusted environment use the same devices, the
untrusted environment could change a device’s firmware to act maliciously. Lockdown
uses approved code execution and network protection to ensure that only trusted code
(including device firmware code) can be executed and only trusted sites can be visited
while in the trusted environment, as explained below.

Approved Code Execution. For non-firmware code, Lockdown uses Nested Page Ta-
bles (NPT) to enforce a W & X policy on physical memory pages used within the
trusted environment. Thus, a page within the trusted environment may be executed or
written, but not both. Prior to converting a page to executable status, Lockdown checks
the memory region against a list of trusted software (§[3.2] describes how this list is es-
tablished). Execution is permitted only if this check succeeds. Previous work enforces
a similar policy only on the kernel [37]], or uses it to determine what applications are
running [21]]. In contrast, Lockdown uses these page protections to restrict the OS and
the applications to a limited set of trusted code. For device firmware code, Lockdown,
during installation, scans all installed hardware and enumerates all system and device
firmware code regions. It assumes this code has not yet been tampered with and uses
NPTs to prevent either environment from writing to these regions.

Network Protection. Since users perform many security-sensitive activities online, ap-
plications executing in the trusted environment need to communicate with remote sites
via the network. However, permitting network communication exposes the trusted en-
vironment to external attacks. Remote attackers may exploit flaws in the OS’s network
stack, or the user may inadvertently access a malicious site, or a network-based attacker
may perform SSL-based attacks (e.g., tricking a user into accepting a bogus certificate).
While approved code execution prevents many code-based attacks, the trusted environ-
ment may still be vulnerable to script-based attacks (e.g., Javascript) and return-oriented
programming attacks [38]].

To forestall such attacks, Lockdown restricts the trusted environment to communi-
cate only with a limited set of trusted sites. It imposes these restrictions by interposing

Lockdown: Towards a Safe and Practical Architecture 41

on all network traffic to or from the trusted environment. Lockdown uses hardware CPU
and physical memory protections to prevent the trusted environment from seeing or ac-
cessing any physical network devices present in the system. Network communication is
permitted via a proxy network driver that Lockdown installs in the guest OS. This driver
forwards packets to Lockdown, which analyzes the packets and then forwards them to
the physical network interface. The trusted environment can use a distinct physical net-
work interface or reuse the same interface of the untrusted environment for network
communication (since the environments run non-concurrently). In both cases the Lock-
down hypervisor will need to include the network driver for the physical interface.
A simpler approach is to perform network access (either wireless or wired) using the
Lockdown Verifier. In this case, the Lockdown hypervisor does not need to contain any
network driver but simply forwards the packets to the verifier.

Lockdown uses packet analysis to determine which network packets are permitted.
One approach, with the argument that any site with sensitive data should be using SSL
to protect it in transit, would be to allow only SSL and DNS network packets to pass
through to trusted sites. All other packets are dropped. When an SSL session is initiated,
Lockdown determines if the request is a valid SSL connection request. If it is, Lock-
down validates the site’s SSL certificate and checks it against the list of trusted sites
(the creation and maintenance of this list is discussed in the following section). If any
of these checks fail, the packet is dropped. Incoming packets are permitted only if they
belong to an existing SSL session or are in response to an earlier DNS request. Note
that DNS-based attacks are forestalled by SSL certificate verification. From a technical
perspective, supporting other network protocols such as SSH is also possible.

Defining Trusted Entities. To keep the trusted environment safe, Lockdown restricts
the software that can execute and the sites that can be visited. To define what soft-
ware and sites can be trusted, we leverage the user’s existing trust in the distributor of
Lockdown, i.e., the organization that provided the user with a copy of Lockdown in
the first place. For example, in a corporation, the IT department would play the role
of Lockdown distributor. For consumers, the role might be played by a trusted com-
pany or organization, such as RedHat, Mozilla, or Microsoft. Lockdown’s key insight
is that by agreeing to install Lockdown, the user is expressing their trust in the Lock-
down provider, since Lockdown will be operating with maximum platform privileges
on their computer. Thus, we can also trust that same organization to vet trusted software
and websites. The list of trusted software can be relatively small: primarily an operat-
ing system and a trusted browser. The list of trusted sites is necessarily larger, since it
should include the security-sensitive companies a user interacts with. However, to limit
potential leaks to entities on the list that the user does not interact with, the user can
customize the list. During Lockdown’s installation, the user is presented with the mas-
ter list of trusted software and trusted websites and selects a subset of each list. Thus,
the user can choose her favorite web browser, and select the handful of websites she
actually uses from the hundreds of sites on the master list. Lockdown will then prohibit
the trusted environment from contacting any site not on the user’s restricted list. A small
application that runs in the trusted environment allows the user to update her selection
at a later time.

42 A. Vasudevan et al.

4 External Verification and Trusted Path

While the reference monitor (i.e., the hypervisor or virtual machine monitor) in a red/-
green system always knows whether the trusted or the untrusted environment is cur-
rently operating, it must create a trusted path to the user to convey this information in a
way she can easily understand and trust. Otherwise, she might be tricked into perform-
ing security-sensitive operations in the untrusted environment. Below, we show how to
eliminate such attacks by using a simple, external device to control the environment
switching and to display the result of the switch to the user. We also show how the
external device can verify that it is interacting with a correct version of the red/green
system, preventing malware from misleading the device.

The Lockdown Verifier. The user employs an external device called the Lockdown
Verifier to switch between trusted and untrusted environments. To enable the user to
trust the Lockdown Verifier, it must possess the following properties: (i) Correct
Operation: Software executing on the Lockdown Verifier must be robust against
compromise. By minimizing the code for the verifier, we make it amenable to formal
analysis;(ii)) Minimal Input Capabilities: To minimize complexity (and hence user
confusion), we wish to minimize the number of input options; and (iii) Minimal Out-
put Capabilities: To reduce confusion, the user should be able to easily learn which
environment she is working in. To achieve these properties, the Lockdown Verifier con-
sists of a single switch, two LEDs, and a buzzer (Figure[T)). The switch can be toggled
from secure to insecure (or vice versa). When the user is in the trusted environment, the
green LED is lit. When the user is in the untrusted environment, the red LED is lit. To
provide additional feedback to the user (e.g., after she toggles the switch), the verifier
uses a blinking red LED to indicate processing. Thus, the user need only remember to
check that the green LED is lit before performing security-sensitive tasks. The Lock-
down Verifier uses the buzzer to attract the user’s attention whenever the LEDs change
state. The verifier can also create an alarm buzz if it is unable to verify the correctness
of the reference monitor (e.g., Lockdown) or if the system encounters a fatal error.

Secure Channel. To accurately verify the state of the system (trusted or untrusted),
the Lockdown Verifier must be able to communicate securely with the red/green refer-
ence monitor (i.e., the hypervisor or virtual machine monitor). More precisely, it should
not be possible for an adversary to impersonate or undetectably modify the reference
monitor. We can achieve this goal using a combination of CPU protections and hard-
ware attestation via a TPM [44]]. To create a secure channel for communicating with
the Lockdown Verifier, the reference monitor uses CPU protections to reserve a USB
controller and to prevent both environments from accessing it. We use USB as an inter-
face as it is intuitive for users and eliminates the need for an external power source for
the verifier. To convince the Lockdown Verifier that it is communicating with the cor-
rect reference monitor, we use TPM-based attestation. Initially, the reference monitor
is started using a measured launch operation [15/7] which securely records a hash of
the reference monitor’s code in the TPM. When the verifier is connected to the system,
it sends a challenge (a cryptographic nonce) to the reference monitor. The reference
monitor uses the TPM to generate a quote (essentially a signed statement describing the
software state of the system) that it securely transmits to the Lockdown Verifier using

Lockdown: Towards a Safe and Practical Architecture 43

the reserved USB controller. The Lockdown Verifier then checks the attestation based
on the TPM public key (setup during installation). If verification fails, the Lockdown
Verifier halts, sets the LED state to blinking red and emits an alarm buzz. If it succeeds,
the Lockdown Verifier emits an attention buzz and sets the LED state to solid red if the
untrusted environment is running or to solid green if the trusted environment is running.

Since it is connected via USB, the Lockdown Verifier can also detect when the sys-
tem is rebooted, since on a reboot, a USB controller sends all attached USB devices a
reset signal. When this happens, the Lockdown Verifier emits the attention buzz and sets
the LED state to blinking red, since it can no longer vouch for the state of the system. It
then performs the procedure described above to verify that the reference monitor is back
in control and to learn which environment is currently active. Note that the measured
launch operation coupled with the TPM-based attestation and the reserved USB con-
troller/channel eliminates the need to setup and share a secret key between the reference
monitor and the Lockdown Verifier.

5 Security Analysis

Trusted Environment Isolation. Lockdown’s hyper-partitioning and network protec-
tion mechanisms are designed to isolate the trusted environment from local and remote
malware. Locally, Lockdown ensures that the trusted environment and untrusted envi-
ronment never execute concurrently, preventing malware in the untrusted environment
from directly interfering with the trusted environment’s execution. Lockdown’s use of
Nested Page Tables ensures that software in the untrusted environment cannot even
address the trusted environment’s memory region, thus protecting its secrecy and in-
tegrity. To prevent device-based attacks, Lockdown uses hardware DMA protections
to prevent DMA-based reads and writes to sensitive areas, and it ensures that all de-
vices are reset during an environment switch. Storage devices are partitioned between
the two environments to prevent secrets from leaking out of the trusted environment,
and to prevent maliciously crafted inputs from penetrating into the trusted environment.
Remotely, Lockdown’s network protections prevent untrusted entities from contacting
the trusted environment. To provide defense-in-depth, these protections also prevent the
trusted environment from contacting untrusted sites. Thus, even if a bug in the trusted
OS or applications results in a data leak, the data can only travel to sites the user already
trusts with her data.

Code Integrity. Lockdown’s approved execution ensures that only measured code that
appears on Lockdown’s list of trusted software can run within the trusted environment.
Further, once the code is measured, Lockdown renders it immutable. Lockdown thus
prevents a significant class of attacks that modify existing code or execute new mali-
cious code. However, this approach does not check interpreted code (e.g., JavaScript).
Hence, if a trusted site is compromised, it may allow an attacker to manipulate the
trusted environment. Thus, one drawback of Lockdown’s current approach is that a
compromise at one of the user’s trusted sites can affect the security of her transactions
at other sites. Improving browser-based isolation can mitigate these concerns [46/12],
but eventually, we anticipate a trusted environment for each trusted site.

44 A. Vasudevan et al.

Trusted Path. Lockdown is designed to create a trusted path to the user, i.e., to provide
the user with the confidence that she is communicating securely with the party she
intends to contact. Lockdown achieves this property by providing a simple indicator
(a green LED) on the Lockdown Verifier to signal when the user is operating in the
trusted environment. This indicator is only provided in response to a message received
from Lockdown over the secure channel that the Lockdown Verifier establishes with
Lockdown (§M)). This channel is protected by Lockdown’s exclusive access to the USB
controller combined with the TPM’s ability to provide a verifiable summary of the
system’s software and a guarantee that the hardware memory protections are in place.

5.1 Other Attacks

Denial of Service. Lockdown’s hyper-switching mechanism triggers the sleep state in
the OSPM of the untrusted environment in order to switch to the trusted environment.
However, malware in the untrusted environment can modify the OSPM to ignore the
sleep command. Thus, malware in the untrusted environment can keep the trusted envi-
ronment from loading. However, it cannot do so undetectably. Before Lockdown trig-
gers the sleep state in the OSPM of the untrusted environment, it lights up a blinking
red LED on the Lockdown Verifier and sounds an attention buzz to indicate processing.
If the untrusted environment ignores the sleep command, then the switch to the trusted
environment will never complete, and hence the Lockdown Verifier LED will never
glow green. Lockdown relies on the user to wait for a green LED before performing
security-sensitive tasks.

Corrupt Lockdown Distributor. Lockdown depends on an external party to define
the master list of trusted software and trusted sites. If this party were corrupted, the
user might install malicious software in the trusted environment or visit malicious sites.
However, users already depend on remote entities for software updates. For example, if
an attacker could corrupt the Windows Update Service, then he could perform a similar
attack to load malware onto millions of machines. Lockdown merely leverages this
existing trust to more precisely define what can be done in the trusted environment.

Social Engineering. A clever attacker may convince the user to perform a security-
sensitive task in the untrusted environment, rather than in the trusted environment.
Lockdown cannot prevent such an attack; it can only rely on the user to check the
system’s status as displayed by the Lockdown Verifier, and to switch to the trusted en-
vironment for security-sensitive tasks. With sufficient user education, users can obtain
strong assurance if they elect to participate.

6 Implementation

We implemented a complete prototype of Lockdown on both AMD and Intel x86 plat-
forms with Windows 2003 Server as the OS in both the trusted and untrusted environ-
ments. To demonstrate that Lockdown’s hyper-partitioning is a generic primitive that
works with other ACPI-compliant OSes, we also developed a prototype using Linux
guests. Neither prototype required changing any code in the OS kernels. Due to space
constraints, we focus on describing our Windows prototype on the AMD platform.

Lockdown: Towards a Safe and Practical Architecture 45

Our Lockdown prototype consists of a Lockdown Loader and the Lockdown Run-
time. The SKINIT instruction is used to perform a late-launch [7|] operation which
ensures that the Lockdown Loader runs in a hardware-protected environment and that
its measurement (cryptographic hash) is stored in the TPM’s Platform Configuration
Register (PCR) 17. The trusted Lockdown Loader loads the Lockdown Runtime and
protects the Lockdown Runtime’s memory region from DMA reads and writes (us-
ing AMD’s Device Exclusion Vector [7]]). It then verifies the integrity of the Lockdown
Runtime and extends a measurement (a cryptographic hash) of the Lockdown Runtime’s
code into the TPM’s PCR 19. The Lockdown Loader then initializes the USB controller
on the host for communication with the Lockdown Verifier, creates the Nested Page Ta-
bles [10] for the trusted and untrusted environments and transfers control to the Lock-
down Runtime. When first launched, the Lockdown Runtime requests a challenge from
the Lockdown Verifier. The Lockdown Runtime and the Lockdown Verifier then en-
gage in the authentication protocol described in § [l The Lockdown Runtime launches
the environment currently indicated on the Lockdown Verifier in a hardware virtual
machine, and informs the Lockdown Verifier once the environment has been launched,
so that the Lockdown Verifier can sound the attention buzz and light the appropriate
LED. The Lockdown Runtime’s role in hyper-partitioning, and protection of the trusted
environment is described below.

6.1 Hyper-partitioning

To implement hyper-partitioning for non-storage devices under the Windows OS, Lock-
down makes use of the ACPI S4 (hibernate) sleep state. ACPI S3 (standby) would offer
faster switching times, but Windows ACPI implementation only saves and restores de-
vice state during an S4 sleep, and hence we cannot use S3 with Windows without mod-
ifying its source code. Memory and storage device partitioning are described below.

Memory. In our current implementation (on systems with 4 GB of physical memory),
Lockdown reserves 186 MB for itself and 258 MB for the system’s firmware. The rest
of physical memory is available to the trusted or untrusted environments. Isolation be-
tween the environments and Lockdown is maintained by using Nested Page Tables;
the page-table entries which point to Lockdown’s physical memory regions are marked
not-present, while the entries for the system firmware are set to prohibit writes.

Storage Devices. Our prototype can assign a different hard drive to each environment
(trusted and untrusted), or it can partition a single hard drive into separate regions for
each environment. Lockdown assigns each environment its own hard drive by inter-
cepting read and write accesses to the ATA/SATA drive-select and command port (e.g.,
0x1F6/7). This allows Lockdown to prevent the trusted environment from accessing the
untrusted disk (and vice versa). For example, if the trusted environment writes a request
to port Ox1F6 to select the master drive, an exception is generated, returning control
to Lockdown. Lockdown writes to the disk controller’s register and selects the slave
(trusted) disk instead. A similar procedure prevents the untrusted environment from
selecting the trusted disk. Lockdown isolates partitions within a single disk by inter-
cepting write accesses to the ports which are required to set the LBA (Logical Block
Address) sector addresses (e.g., ports 0x 1F3/4/5) and the sector count (e.g., port 0x1F2)

46 A. Vasudevan et al.

in addition to the command port. When a sector read or write command is initiated by
the environments using the command port, Lockdown verifies that the sector LBA ad-
dress and count are within limits of the partition of the current environment before
forwarding the command to the disk controller.

Environment Switching. Lockdown establishes control over the system’s ACPI modes
by intercepting the trusted and untrusted environments’ attempts to access the ACPI
Sleep and Status registers. The Lockdown Runtime determines the I/O location of these
registers by parsing the ACPI Fixed Address Descriptor Table. When the user toggles
the switch on the Lockdown Verifier, Lockdown sets an internal switch flag and sig-
nals the Lockdown Monitor inside the current environment to initiate the sleep state.
The Lockdown Monitor is an untrusted application which uses the SetSuspendState
Windows API in order to trigger an S4 Sleep. The OSPM in Windows then prepares
the system for hibernation, saves the memory contents to disk, and writes to the ACPI
Sleep Register. Lockdown captures this write and instead clears the switch flag and up-
dates the Lockdown Verifier to indicate the newly active environment. Lockdown then
resets the system via a soft-reset to reset the device states. Finally, Lockdown launches
the target environment by waking it from hibernation. The Windows OS in the target
environment loads the hibernation image from the disk, restores the device states, and
transfers control to the Windows Kernel.

6.2 Protecting the Trusted Environment

Approved Code Execution. To enforce approved code execution, Lockdown uses page-
level code hashing, similar to the approach used by previous work [2137]. Prior to ex-
ecuting the trusted environment, Lockdown sets its Nested Page Table (NPT) entries to
prevent execution of those pages. When the trusted environment attempts to execute a
page, it causes a fault that returns control to Lockdown. Lockdown computes a hash
of the faulting page and compares it to the hashes in its list of trusted software. If a
match is found, the corresponding NPT entry is updated to allow execution but prevent
writes. If the trusted environment later writes to this page, a write fault will be gen-
erated. Lockdown will re-enable writing but disable execution. Matching a code page
to the list of approved software is straightforward. In Windows, an application’s entire
executable is mapped into memory, so the executable’s header and relocation tables are
always present at runtime. Lockdown uses this information to compute the inverse of
the relocation operation and compare the page to hashes of the original executable.

Network Protection. To provide network protection for the trusted environment, we
developed an untrusted network driver for Windows, and an SSL Protocol Analyzer
within Lockdown. The analyzed network packets are sent to the Lockdown Verifier
using Lockdown’s USB driver, and ultimately out to the network. The Lockdown Veri-
fier has an ethernet port and a dedicated network chipset. Our OS-level network driver
sends and receives network packets to and from the SSL Protocol Analyzer via a hy-
percall. Our SSL Protocol Analyzer is based on ssldumpﬁ. We added support for SSL

3 http://www.rtfm.com/ssldump/

http://www.rtfm.com/ssldump/

Lockdown: Towards a Safe and Practical Architecture 47

session tracking and event handling depending on the SSL packet (e.g., Certificate,
ServerHello). The certificate handler is used to compare a site’s SSL certificate against
Lockdown’s list of trusted-site certificates.

6.3 [External Verification and Trusted Path

We built the Lockdown Verifier using a low-cost LPC 2148 development board. The
board is equipped with a 60Mhz ARM7 CPU, 512 KB flash, 42 KB RAM and an eth-
ernet chipset/port. We attached a red and a green LED, a switch, and a buzzer to the
board. The Lockdown Runtime contains USB and TPM drivers that communicate with
the Lockdown Verifier and the host system TPM respectively. The verifier upon reset
or power-up waits for a challenge request from Lockdown. Upon receiving the chal-
lenge request, the Lockdown Verifier transmits a cryptographic nonce and receives a
TPM-generated attestation from Lockdown. The attestation contains the TPM’s signa-
ture over the current values of PCRs 17 and 19, as well as the nonce that was provided.
The verifier uses the TPM’s public-key (installed during Lockdown’s installation) to
verify the attestation. If the verification succeeds, the Lockdown Verifier goes into a
trusted communication mode with Lockdown and responds to commands to set LEDs
and report on the switch’s status, until the system is reset or turned off.

7 Evaluation

7.1 Trusted Computing Base (TCB)

Like all security systems, Lockdown must assume the correctness and security of its
core components. This assumption is more likely to hold if we reduce the amount
of code that must be trusted, keep the design simple and minimize the external inter-
face. This reduces opportunities for bugs and makes the code more amenable to formal
analysis. Lockdown’s total TCB is only 10KLOC, placing Lockdown within the reach
of formal verification and manual audit techniques. Lockdown’s design is simple and
greatly reduces the attack surface. Lockdown does not expose any interface while the
untrusted environment is running and interposes only on memory and disk accesses.
When the trusted environment is executing, Lockdown also intercepts execution on
memory pages for approved code execution. These operations are handled transpar-
ently via well-defined CPU intercepts. Further, in the trusted environment, Lockdown
exposes a single hypercall interface to the guest OS network driver. The arguments to
this hypercall interface are the type of operation (read or write), the network packet
length and the packet data which are sanity checked by the Lockdown Runtime.
Lockdown’s TCB compares favorably with other popular hypervisors and VMMs
(Figure [3), which tend to be orders of magnitude larger, despite not providing Lock-
down’s protection’s for a trusted environment. Xen, KVM, and Hyper-V include an
entire OS in the TCB for device access and administrative purposes, dramatically in-
creasing their TCBs. While VMware ESXi does not require such an OS, it still includes
a large TCB, since it employs full virtualization of devices and hence must include
device drivers for all supported platforms. Only L4Ka-Pistachio [2] and NOVA [40]

48 A. Vasudevan et al.

Hypervisor/Micro-kernel TCB usnlrlr'l)ggi?i::gys Frs;enflll':“n;::ie(\)l:‘ce
Lockdown 10KLOC v v
L4Ka-Pistachio 25KLOC * £
NOVA 36KLOC * *
VMWare ESXi 200KLOC v *

Xen + Linux 400KLOC v =
KVM + Linux + QEMU 470KLOC v *
Hyper-V + Windows 5000KLOC v *

Fig. 3. Lockdown’s TCB and Features. Comparison with popular, general-purpose hypervi-
sors and micro-kernels. Note: We assume a Linux kernel with only the required device drivers
for a host platform. For our test system this came up to 300KLOC. As VMWare, Hyper-V
and Windows are closed-source, we rely on publicly available information to estimate their
SLOC [112043]. QEMU’s TCB with only x86 support is around 150KLOC.

approach Lockdown’s TCB size. However, the L4Ka-Pistachio requires non-trivial OS
porting and cannot run OSes such as Windows. While NOVA is designed to run an
unmodified OS, it currently only runs Linux due to its minimal device support; its vir-
tualization architecture also requires device drivers to be written from scratch.

7.2 Performance Measurements

We use our prototype to determine Lockdown’s performance on a recent laptop with
a dual-core AMD Phenom-II N620 CPU, 4GB RAM, 250GB SATA hard disk, a v1.2
TPM and two USB controllers.

CPU and Memory Overhead. Lockdown’s use of Nested Page Tables (NPT) to hyper-
partition memory adds latency to memory accesses, since it adds an extra layer of in-
direction when resolving addresses. AMD and Intel are actively working to improve
the performance of this recently-added feature [[10]. Lockdown also adds overhead to
code execution in the trusted environment due to its verification of approved code. To
measure the CPU and memory overhead, we use benchmarks from the SPECint 2006
suite. We run the benchmarks in the trusted environment, in the untrusted environment,
and on the native system We also run the benchmarks in the trusted environment with
approved code protection disabled to allow us to distinguish between overhead added
by these protections and overhead added by the NPTs. Figure [dh shows Lockdown’s
overhead as a percentage of the native system’s performance. In the untrusted envi-
ronment, performance is only slightly worse than native (3% average overhead). The
trusted environment adds considerably more overhead (15-59%). Even without includ-
ing the overhead of approved code execution, the trusted environment is still slower
than the untrusted environment due to its use of smaller page size. In the untrusted en-
vironment, we use the 2 MB pages to improve performance. However, in the trusted
environment, we also use NPTs to check for approved code at a page granularity, and
hence the trusted environment must use the smaller 4 KB pages, making it less effi-
cient. Nonetheless, this performance is appropriate for infrequent tasks, such as online
banking, that are less performance intensive.

Storage Overhead. To partition the system’s disks between the trusted and un-
trusted environments, Lockdown intercepts both environments’ drive/sector selection

Lockdown: Towards a Safe and Practical Architecture 49

l Untrusted Memory [Trusted Memory [Trusted Approved Execution
70 O Two Disks M Single Disk
60 7
1 |
_§ 40 S5 1
g o
o 30 Sa
2] o
X 20 1 »3 o
N
10 1 24—
0 1 A
PO S P e SR @»@\ S 0 . :
F @S P 0§ . " ° °
& ¥ b_b?" bf:rc W g{oo' rc"o CH +’°\ N4 g @’b'{@ o(‘o > \)(9.@
o A & @ o
(@)
Operating System/ Sleep Reset Awakening Total @TwoDisks Msingle Disk
Platform Latency Latency Latency Latency 7
Linux 145 7s 10s 31s i
Windows 11s 8s 9s 28s g°
Linux modified 8s Os 5s 13s §4
(© 3°
Native | Untrusted Trusted LaE) 1
Download ltem System |Environment|Environment 1 —
Bank of America Homepage| 8 449s 8 467s 24 288s 0 —._]
Chase Homepage 5443s| 5975s 14754s <3 Qo*\((. & ,vo“e
Citi Cards Homepage 4476s| 3995s 15562s PR
8MB file 45s 49s 122s
(d) (b)

Fig. 4. Lockdown Performance Measurements. (a) CPU and memory overhead relative to
native (smaller is better), (b) Storage micro- and macrobenchmarks compared to native (smaller
is better), (¢) Environment switch latency, (d) Network-protection latency.

commands, adding overhead to disk I/O. To measure this overhead with microbench-
marks, we employ lometer, an industry-standard disk benchmarking tool. We use lome-
ter to measure Lockdown’s maximum throughput for direct reads and writes, as well as
reads and writes from a database workload. For macrobenchmarks, we use a variety
of standard disk-bound applications, including Postmark (10000 files and 10000 trans-
actions), IoZone (2GB file), Bonnie (2GB file), and tar (on the Windows installation
folder). Figure[db shows the results of these benchmarks relative to the native system’s
performance. As expected (since Lockdown treats both environments equally when par-
titioning storage devices), the two environments perform similarly. On these disk-bound
tests, Lockdown imposes relatively modest overheads of 2—7%.

Environment Switch Latency. We split Lockdown’s environment switch latency into
three parts: (a) sleep latency: the time taken from when the user flips the switch on
the Lockdown Verifier to the time the guest OS finishes preparing for sleep and in-
vokes the ACPI subsystem, (b) reset latency: the time taken for Lockdown to reset the
system’s devices, and transfer control to the target environment’s OSPM and, (¢) awak-
ening latency: the time taken by the OSPM in the target environment to resume normal
operations. Figure @k shows the measurements for Lockdown’s environment switch la-
tency. The switch currently requires 31 seconds on Windows and 13-28 seconds on
Linux. While longer than ideal, we expect users to swap between the two environments

50 A. Vasudevan et al.

relatively infrequently. Our results indicate that the direction of the switch has a rel-
atively small impact on the switching time. The reset latency is largely due to Lock-
down’s use of the BIOS to reset the system’s devices. The BIOS performs a far more
extensive reset than Lockdown needs (more than 25% of the switch time), completely
reinitializing the CPU, chipset, memory and devices. BIOS vendors are actively work-
ing to greatly reduce this latency with the Unified Extensible Firmware Interface
(UEFI) [33]]. The reset process can also be significantly accelerated as computers adopt
the new PCI-Express 2.0 bus standard. With this standard, Lockdown can use a single
PCI-bus command to reset each device in the system, instead of using the BIOS. Fur-
ther, if OS device drivers are architected in a way that no prior state assumptions are
made about the device (as in Linux), we can completely eliminate the reset latency by
modifying the kernel to restart itself without issuing a platform reset.

Network Protection Overhead. Since Lockdown interposes on the trusted environ-
ment’s network connections, we expect performance to be worse in the trusted envi-
ronment. Since the untrusted environment has full access to the network interface, it
should be comparable to native. To measure Lockdown’s network overhead, we use
Firefox with the YSlow add-on to measure the time necessary to load three popular
banking websites, as well as the time required to download a 8 MB file. We averaged
the download times over 5 runs, clearing the Firefox cache each time. Figure[dld summa-
rizes our results. As expected, the untrusted environment’s performance is equivalent to
the native system (within experimental error). The trusted environment takes longer, be-
cause all network packets traverse via the SSL protocol analyzer and over USB through
the Lockdown Verifier. Fortunately, most security-sensitive online transactions involve
small network transmissions that makes the download times usable.

Comparison with Virtualization. Finally, we compare Lockdown’s performance with
traditional virtualization approaches. We choose the popular Xen (3.4.2) hypervisor
for our comparison even though it does not provide the same high level of protection
as Lockdown. We instantiate two virtual machines (VMs) with identical configuration
for the untrusted and trusted environments within Xen. For measurement purposes, we
benchmark the core platform subsystems comprising the memory, disk, network and
graphics. To measure the memory overhead we use benchmarks from the SPECint 2006
suite. We use Tar, Bonnie, Postmark and IoZone (with the same parameters as discussed
previously) as our disk macrobenchmarks. We use Flashget to measure the average net-
work throughput and the PassMark 2D benchmark suite to measure the graphics per-
formance. Figure [shows the performance of Lockdown and Xen as a percentage of
the native system’s performance, for both the untrusted and trusted environmentsl. Our
results show that virtual machine monitors in general (including Xen) virtualize the
underlying platform resources and therefore introduce similar performance latency in
all VMs (untrusted and trusted). The slowdown is particularly high for the disk (54%),
network (55%) and graphics (81%) subsystems. In contrast, Lockdown only imposes
restrictions for the trusted partition and lets the untrusted partition run near native speed

4 Note that we could not compare Xen with direct device assignment [4], as that requires spe-
cial platform support that is not widely available today [6/29]]. Futher, not all devices can be
assigned currently (e.g., video, audio) [5129].

Lockdown: Towards a Safe and Practical Architecture 51

Untrusted Environment Trusted Environment
N rrm—e— 10 Iz
90 8 T
g —g0 =g | £ T80
E£0 TP —] £ £70T
S2c0 1]] 5 880 1
‘£ @30 .g - £ 9 50 T
2540 11 Vi & £40 1
20 =30 H
e B B 2524
o £ H
;513 az m7 2518 1= 7
x
N
N
W T
O
@Xen ® lockdown E Xen M Lockdown

Fig.5. Comparison of Partitioning (Lockdown) with Virtualization (Xen). Partitioning pe-
nalizes only the trusted environment while virtualization treats both environments as equal and
imposes similar overheads.

(only a 3% average overhead for memory and 2-7% overhead for disk). These results
demonstrate the efficiency advantage of partitioning vs virtualization. The performance
degradation in the trusted partition is higher for memory and network due to Lock-
down’s approved execution and network protection mechanisms. However, for the disk
and graphics subsystem the overhead introduced is less than Xen.

8 Related Work

Following our earlier preliminary work on hyper-partitioning [45], systems such as No-
Hype and SecureSwitch, like Lockdown, advocate the use of partitioning in order to
minimize TCB. However, both these systems are fairly different from Lockdown in
many ways.

NoHype [[L7] uses static partitioning of devices leveraging specialized platform hard-
ware capabilities such as Single-Root I/O Virtualization (SR-IOV) [29] and aims to run
commodity operating systems. However, SR-IOV capabilities are only found in few
high-end server platforms today. Also, NoHype does not have a particular operating
model in mind and treats all VMs equally, as opposed to Lockdown which has a par-
ticular operating model in mind, i.e., trusted and untrusted, and takes steps to keep the
trusted partition more secure. Furthermore, NoHype lacks the trusted path provided by
Lockdown for assessing and switching between environments.

SecureSwitch [41]] attempts to provide isolation between untrusted and trusted OSes
with low switch times. However, unlike Lockdown, it does not provide any trusted envi-
ronment protections (approved execution and trusted network access) or user-verifiable
trusted path for input and output. In addition, their isolation mechanism requires chang-
ing the system BIOS and relies on specialized hardware (southbridge DIMM isolation,
dual disk controllers with disk locking feature and motherboard jumpers for switching)
that are not commodity.

In contrast, Lockdown represents a complete end-to-end solution of a red/green sys-
tem on commodity platforms (without specialized platform hardware) and does not re-
quire changes to the system BIOS or the OSes. The Lockdown Verifier is an external

52 A. Vasudevan et al.

USB device that communicates verified system state (“red” or “green”) to the user and
enables trustworthy switching between the “red” and “green” environments.

Systems such as NetTop [27], HAP [28]], NGSCB [30], Terra [13]], Qubes [43],
Virtics [34], or Overshadow [[11] use virtualization to isolate code running at different
security levels. As discussed in §[7] virtualization allows rapid switching (orders of mag-
nitude faster than Lockdown) between multiple environments. However, virtualization
increases side-channels that may leak sensitive information. Device virtualization also
degrades performance and increases the amount of trusted code by orders of magnitude.
Several proposals use virtualization to isolate one web application from another [46/12],
but they do not protect the web browser from other code on the system. However, this
work would be complementary to Lockdown if used within the trusted environment to
prevent a compromise of one trusted site from affecting the other trusted sites.

Specialized hypervisor systems such as Proxos [42], Nizza [39], Flicker [23125/24]]
and TrustVisor [22] allow a small, specially-crafted piece of code to run in isolation
from the rest of the system. However, they typically do not protect general-purpose
applications or provide full access to system devices.

OS level approaches such as Apiary [35] and WindowBox [8] modify the OS kernel
or leverage specific OS features (e.g., FreeBSDs jails) to enforce application specific
execution containers. However, as these containers share the same OS kernel, memory
and system devices, any vulnerability within the OS can be exploited to subvert the
protection mechanisms.

9 Conclusion

We evaluated a new point in the design space of red/green systems by using partitioning,
rather than virtualization to share critical system resources and devices. Our implemen-
tation and results indicate that partitioning offers increased security (by reducing the
size of the reference monitor to 10K lines of code and by reducing opportunities for
side channels) and performance (by giving the untrusted environment unfettered access
to system devices) at the cost of slow switching times (on current systems). Determin-
ing whether the switching times can be reduced to an acceptable level, or whether the
security and performance benefits can be adopted by virtualization-based approaches,
are interesting directions for future research.

Acknowledgement. This research was supported by CyLab at Carnegie Mellon un-
der grants DAAD19-02-1-0389, W911NF-09-1-0273, W911NF10C0037, and MURI
W 911 NF 0710287 from the Army Research Office, and by support from NSF under
awards CCF-0424422 and CNS-0831440. The views and conclusions contained here
are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either express or implied, of ARO, CMU, NSF or the
U.S. Government or any of its agencies.

References

1. Vmware esx server node evaluator’s guide,
http://www.vmware.com/pdf/esx_vin_eval.pdf
2. The l4ka project (2011), http://www.1l4dka.org

http://www.vmware.com/pdf/esx_vin_eval.pdf
http://www.l4ka.org

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Lockdown: Towards a Safe and Practical Architecture 53

Source lines of code (2011),
http://en.wikipedia.com/wiki/Source_lines_of_code

Xen pcipassthrough (October 2011),
http://wiki.xensource.com/xenwiki/XenPCIpassthrough

Xen vgapassthrough (October 2011),
http://wiki.xensource.com/xenwiki/XenVGAPassthrough

Xen vtdhowto (October 2011),
http://wiki.xensource.com/xenwiki/VTdHowToO

Advanced Micro Devices. AMD64 architecture programmer’s manual: Volume 2: System
programming. AMD Publication no. 24594 rev. 3.11 (December 2005)

Balfanz, D., Simon, D.R.: Windowbox: A simple security model for the connected desktop.
In: Proceedings of the 4th USENIX Windows Systems Symposium (2000)

Bernstein, D.J.: Cache-timing attacks on aes (April 2005),
http://cr.yp.to/papers.html

Bhargava, R., Serebrin, B., Spadini, F., Manne, S.: Accelerating two-dimensional page walks
for virtualized systems. In: ASPLOS (March 2008)

Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A., Boneh, D.,
Dwoskin, J., Ports, D.R.K.: Overshadow: A virtualization-based approach to retrofitting pro-
tection in commodity operating systems. In: ASPLOS (2008)

Cox, R.S., Gribble, S.D., Levy, H.M., Hansen, J.G.: A safety-oriented platform for web ap-
plications. In: IEEE S&P, pp. 350-364 (May 2006)

Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A virtual machine-based
platform for trusted computing. In: SOSP (October 2003)

Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. Advanced configuration and power
interface specification. Revision 3.0b (October 2006)

Intel Corporation. Trusted execution technology — preliminary architecture specification and
enabling considerations. Document number 31516803 (November 2006)

Karger, P., Safford, D.: I/O for virtual machine monitors: Security and performance issues.
IEEE Security and Privacy 6(5), 16-23 (2008)

Keller, E., Szefer, J., Rexford, J., Lee, R.B.: Nohype: virtualized cloud infrastructure without
the virtualization. In: International Symposium on Computer Architecture (2010)

Lampson, B.: A note on the confinement problem. Comm. of the ACM 16(10) (1973)
Lampson, B.: Usable security: How to get it. Comm. of the ACM 52(11) (2009)
Leinenbach, D., Santen, T.: Verifying the Microsoft Hyper-V Hypervisor with VCC. In: Cav-
alcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 806-809. Springer, Heidelberg
(2009)

Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor support for identifying covertly executing
binaries. In: Proceedings of the USENIX Security Symposium (2008)

McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVisor: Efficient
TCB reduction and attestation. In: IEEE S&P (May 2010)

McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An execution infras-
tructure for TCB minimization. In: EuroSys (April 2008)

McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Seshadri, A.: Minimal TCB code execu-
tion (extended abstract). In: IEEE Symposium on Security and Privacy (May 2007)
McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Seshadri, A.: How low can you go? Rec-
ommendations for hardware-supported minimal TCB code execution. In: ACM ASPLOS
(March 2008)

McCune, J.M., Perrig, A., Seshadri, A., van Doorn, L.: Turtles all the way down: Research
challenges in user-based attestation. In: USENIX Workshop on Hot Topics in Security (2007)
Meushaw, R., Simard, D.: Nettop: Commercial technology in high assurance applications.
VMware Tech Trend Notes 9(4), 1-8 (2000)

http://en.wikipedia.com/wiki/Source_lines_of_code
http://wiki.xensource.com/xenwiki/XenPCIpassthrough
http://wiki.xensource.com/xenwiki/XenVGAPassthrough
http://wiki.xensource.com/xenwiki/VTdHowTo
http://cr.yp.to/papers.html

54

28.
29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.
45.

46.

A. Vasudevan et al.

National Security Agency. High assurance platform program (January 2009),
http://www.nsa.gov/ia/programs/h_a_p/index.shtml

PCI SIG. Single Root I/O Virtualization and Sharing Specification. V. 1.1 (2010)

Peinado, M., Chen, Y., England, P., Manferdelli, J.L.: NGSCB: A Trusted Open System. In:
Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 86-97.
Springer, Heidelberg (2004)

Percival, C.: Cache missing for fun & profit. In: BSDCan (2005)

Phoenix Technologies. TrustedCore: Foundation for secure CRTM and BIOS implementa-
tion (2006), https://forms.phoenix.com/whitepaperdownload/docs/
trustedcore wp.pdf

Phoenix Technologies. Transitioning the Plug-In Industry from Legacy to Unified Extensible
Firmware Interface (UEFI). Intel Developer Forum (September 2009)

Piotrowski, M., Joseph, A.D.: Virtics: A system for privilege separation of legacy desk-
top applications. Technical Report UCB/EECS-2010-70, EECS Department, University of
California, Berkeley (May 2010)

Potter, S., Nieh, J.: Apiary: Easy-to-use desktop application fault containment on commodity
operating systems. In: USENIX Annual Technical Conference (2010)

Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud: Exploring
information leakage in third-party compute clouds. In: ACM CCS (2009)

Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: A tiny hypervisor to provide lifetime
kernel code integrity for commodity OSes. In: SOSP (2007)

Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without function
calls (on the x86). In: ACM CCS (2007)

Singaravelu, L., Pu, C., Haertig, H., Helmuth, C.: Reducing TCB complexity for security-
sensitive applications: Three case studies. In: EuroSys (2006)

Steinberg, U., Kauer, B.: Nova: A microhypervisor-based secure virtualization architecture.
In: EuroSys (2010)

Sun, K., Wang, J., Zhang, F., Stavrou, A.: Secureswitch: Bios-assisted isolation and switch
between trusted and untrusted commodity oses. In: NDSS (2012)

Ta-Min, R., Litty, L., Lie, D.: Splitting interfaces: Making trust between applications and
operating systems configurable. In: OSDI (2006)

The Qubes OS, http://qubes-o0s.org/Home.html

Trusted Computing Group. Trusted Platform Module Main Specification. V. 1.2 (2007)
Vasudevan, A., Parno, B., Qu, N., Gligor, V.D., Perrig, A.: Lockdown: A safe and practi-
cal environment for security applications. Technical Report CMU-CyLab-09-011, CyLab,
Carnegie Mellon University (July 2009)

Wang, H.J., Grier, C., Moshchuk, A., King, S.T., Choudhury, P., Venter, H.: The multi-
principal OS construction of the gazelle web browser. In: USENIX Security Symposium
(2009)

http://www.nsa.gov/ia/programs/h_a_p/index.shtml
https://forms.phoenix.com/whitepaperdownload/docs/trustedcore_wp.pdf
https://forms.phoenix.com/whitepaperdownload/docs/trustedcore_wp.pdf
http://qubes-os.org/Home.html

Experimenting with Fast Private Set Intersection

Emiliano De Cristofaro! and Gene Tsudik?

LPARC
2 UC Irvine

Abstract. Private Set Intersection (PSI) is a useful cryptographic primitive that
allows two parties (client and server) to interact based on their respective (private)
input sets, in such a way that client obtains nothing other than the set intersection,
while server learns nothing beyond client set size. This paper considers one PSI
construct from [DT10] and reports on its optimized implementation and perfor-
mance evaluation. Several key implementation choices that significantly impact
real-life performance are identified and a comprehensive experimental analysis
(including micro-benchmarking, with various input sizes) is presented. Finally, it
is shown that our optimized implementation of this RSA-OPRF-based PSI proto-
col markedly outperforms the one presented in [HEK12].

1 Introduction

Private Set Intersection (PSI) is a primitive that allow two parties (client and server),
to interact on their respective input sets, such that client only obtains the intersection
of the two sets, whereas, server learns nothing beyond the size of client input set. PSI
is appealing in many real-world settings: common application examples include na-
tional security/law enforcement [DT10], Intelligence Community systems [DIL™10],
healthcare and genomic applications [BBD™11], collaborative botnet detection tech-
niques [NMH™10], location sharing [NTL"11] as well as cheating prevention in online
gaming [BLHB11]]. Motivated by practical relevance of the problem, the research com-
munity has considered PSI quite extensively and devised a number of techniques that
vary in costs, security assumptions and adversarial models, e.g., [FNPO4/KSOS/HLOS],
[JLOOIDSMRYO09IDTI10/HNI10JLI0IDKT10/ADT11]. (Notable PSI protocols are re-
viewed in Appendix[Al)

In this paper, we focus on a specific RSA-OPRF-based PSI protocol from [DT10] that
currently offers the most efficient operation. It achieves linear computational and com-
munication complexity and improves overall efficiency (over prior work) by reducing
the total cost of underlying cryptographic operations. Although [DT10] actually presents
two PSI protocols, this paper focuses on the second — RSA-OPRF-based, in Figure 4 of
[DT10] — which is the more efficient of the two. Hereafter, it is referred to as DT10-v4.

Objectives: We discuss our implementation of DT10-v4 and experimentally assess
its performance. Our goal is twofold: (1) Identify implementation choices that impact
overall protocol performance, and (2) Provide a comprehensive performance evaluation.

Organization: Next section overviews DT10-v4. Then, Section [3 and Section [de-
scribe, respectively, its implementation and performance evaluation. Finally, perfor-
mance analysis of our optimized implementation is contrasted with that in [HEK12].

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 55-]3] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

56 E. De Cristofaro and G. Tsudik
2 The DT10-v4 PSI Protocol

We now review the PSI protocol presented in Figure 4 in [DT10], from here on denoted
as DT10-v4. First, we introduce some notation, present actual construction, and, finally,
discuss settings where (server-side) precomputation is possible/recommended.

2.1 Notation
Notation used in the rest of this paper is reflected in Table[Ilbelow:
Table 1. Notation

a < A variable a is chosen uniformly at random from set A
7,7’ security parameters
p, q safe primes
N = pq, e,d RSA modulus, public and private exponents
H(-) full-domain hash function H : {0,1}* — Z}%
H'(-) cryptographic hash function H' : {0,1}™ — {0,1}”
C, S client’s and server’s sets, respectively
v, w sizes of C and S, respectively
1 € [1,v], j € [1,w] indices of elements of C and S, respectively
¢i, s; i-th and j-th elements of C and S, respectively
hei, hs; H(c;) and H (s;), respectively

2.2 Protocol Specification

Figure[Tl shows the operation of DT10-v4 below.

Client, Server,
oninputC = {e1,...,¢cv} oninputp,q,d,S = {s1,..., 5w}
Vizl,..‘,v: ijl,..‘,w:
(1) 7y Zn (1) ks; = (hs;)? mod N
(2) pi = he; -7 mod N (2) ts; = H'(ks;)
{,U/17~"7,U/11}
3 > (3)
Vi = 1, e,V
) i = (pi)* mod N
GRS
4 <
{ts1,...,tSw}

Vi=1,...,0:

(5) ke; = pi/r; mod N

(6) te; = H'(ke;)

(7) If J; s.t. te; = tsjoutputc; € CNS

Fig. 1. DT10-v4 executes on common input: N, e, H(-), H'(+)

Experimenting with Fast Private Set Intersection 57

Correctness: If ¢; € CN S, then 3; s.t.: ke; = pl/ri = (he; - 10)% ry = hsjd =
]ij — tc; = tSj.

Security: DT10-v4 is proven secure in the presence of semi-honest adversaries, un-
der the One-More-RSA assumption [BNPS03]] in the Random Oracle Model (ROM) —
see [DT10] for details. The proof in Appendix B of [DT10] actually achieves one-side
(adaptive) simulation in the ideal-world/real-world paradigm Thus, security of DT10-
v4 may actually hold in the presence of a malicious client and a semi-honest server.
Further, security against a malicious server also seems easy to obtain: RSA signatures
have the desirable property of verifiability, thus, client can easily verify server’s ad-
herence to the protocol with respect to the computation of i = (u;)? mod N. Also,
client’s message to server (i.e., the first round) does not depend on any information
from latter, which, in fact, produces no output. However, server would need to prove
that its RSA parameters are generated correctly, and it could do so using, for example,
techniques from [CM99]] or [HMRT11]. Nonetheless, we leave as part of future work
formal proofs for malicious security of DT10-v4.

Communication Complexity: DT10-v4 communication complexity amounts to 2v
group elements and w hash outputs. Specifically, in the first round, client sends v ele-
ments in Zy, whereas, in the second, server transfers v elements in Z and w outputs
of H'(-). For 80-bit security, SHA-1, which has 160-bit outputs, may suffice.

Computational Complexity: We note that server workload can be dramatically
reduced if exponentiations (-)? mod N are optimized using the Chinese Remainder
Theorem (CRTE, since server knows factorization of N. Specifically, DT10-v4’s com-
putational complexity is as follows. Server computes: w full-domain hashes; 2w + 2v
modular exponentiations with (|IV|/2)-bit exponents and (|/V|/2)-bit moduli (using
CRT); w invocations of H'(-). Client computes: v full-domain hashes; v exponentia-
tions with |e|-bit exponent and | N|-bit modulus (in practice, one can select e = 3); v
modular inverses of |N|-bit integers modulo |N| bits; 2v modular multiplications of
| V|-bit integers modulo | N| bits; v invocations of H'(-). Thus, on server side, compu-
tational complexity is dominated by O(w + v) CRT exponentiations, whereas, client’s
computation is dominated by O(v) modular multiplications and inverses. Since client
does not perform any expensive cryptographic operation (i.e., no modular exponenti-
ations), DT10-v4 is particularly suited for scenarios where client runs on a resource-
poor device, e.g., a smart-phone.

2.3 Precomputation

One beneficial feature of DT10-v4, as well as some other PSI techniques in [HLOS],
[JLO9]], [JL1Q], is that server computation over its own input does not depend on any
client input. Therefore:

! Specifically, the proof constructs of an (adaptive) ideal world simulator SIM,. from a malicious
real-world client C*, and shows that the views of C™ in the real game with the real-world server
and in the interaction with SIM,. are indistinguishable.

2 See items 14.71 and 14.75 in [MVOV97] for more details on CRT-based exponentiation.

58 E. De Cristofaro and G. Tsudik

1. Server does not need to wait for client to perform its w exponentiations to compute
ks; = H(hs;)? mod N (for j = 1,...,w). These operations can be done as
soon as server set is available. In the absolute worst case, server can perform these
operations in parallel with receiving client’s first message.

2. Results of server computation over its own set can be re-used in multiple protocol
instances. Thus, unless server’s set changes frequently, the overhead is negligible.

In light of the above, [DT10] suggests to divide the protocol into two phases: off-line and
on-line. This way, computational complexity of the latter is dominated by O(v) CRT
exponentiations, while off-line phase overhead amounts to O(w) CRT exponentiations.
This makes DT10-v4 particularly appealing for scenarios where server input set is not
“very dynamic”.

3 Implementing DT10-v4

This section presents our implementation of DT10-v4 PSI construction from [DT10].
We discuss some design choices that may affect overall performance, present our pro-
totype implementation, and discuss additional techniques to optimize performance.

3.1 Important Design Choices

We now identify and discuss some factors that significantly affect overall performance
of DT10-v4 implementation. We begin with straightforward issues and then turn to
some less trivial strategies. (Note: for the sake of generality, we assume below that
server does NOT perform precomputation.)

1. Small RSA public exponent: Recall from Section[2.2], that the only modular expo-
nentiations performed by client are those in step (2), specifically, raising random
values r;-s to the e-th power (mod N). Therefore, the choice of RSA public ex-
ponent e directly influences client run-time. Common choices of e are: 3,17, and
21641 = 65537. The cryptography research community has often raised concerns
related to possible attacks when using e = 3 for RSA encryption [Bon98IFKIM™06].
However, although further careful consideration is needed, such concerns do not
seem to apply in this setting, since r;-s are generated anew, at random.

2. Chinese Remainder Theorem: On server side, the most computation-intensive op-
erations are exponentiations (-)d mod N — in steps (1) and (4). As discussed in
Section2.2] these can be optimized using (CRT). Specifically, it is well known that
using CRT can make exponentiations 4 times faster.

3. Pipelining: While we describe DT10-v4 as a sequence of steps, pipelining can be
used to maximize overall efficiency by minimizing wait times. A good start is to
implement computation and communication in separate threads, such that indepen-
dent operations can be performed in parallel. (Note that this does not presume that
underlying hardware has multiple cores). Specifically:

a) Server can compute ts; = H'((hs;)? mod N), j = 1,...,w (i.e., steps (1)-
(2)), as soon as (s;’s) are available, i.e., even before starting interaction with
client, or, in the worst case, as soon as client starts transmitting. This is as
simple as implementing server’s steps (1)-(2) in a dedicated thread.

Experimenting with Fast Private Set Intersection 59

b) Server does not need to wait for p;41, ..., i, to arrive in order to compute
(i = (pi)® mod N. To minimize waiting, we simply need to implement expo-
nentiations in a separate thread drawing input from a shared buffer, where the
thread listening on the channel pushes received values.

¢) Similarly, client can compute 7; ~* (needed to compute y;/r; mod N) in step
(5) in parallel with steps (2)-(4).

d) Finally, client does not need to wait for 1, ..., j, to arrive to compute tc; =
H'(u;/r; mod N), i.e., steps (5)-(6).

4. Threading in Multi-core Settings: Structuring the code in multiple threads allows
us to further improve overall performance. For example, on server side, we can cre-
ate two threads for step (1) and step (4), respectively. Thus, if multiple cores are
available (or the computing architecture using aggressive pipelining), these opera-
tions are performed in parallel, thus, lowering overall run-time. Once again, we note
that parallel thread execution is transparent to application developers and normally
incurs no extra costs.

5. Fast Cryptographic Library: The choice of the cryptographic library is a crucial
factor affecting overall performance. Efficiency of modular exponentiations varies
widely across cryptographic libraris. For example, Table[2l shows modular exponen-
tiations measured on a 64-bit desktop with an Intel Xeon CPU E31225 at 3.10GHz
(running Ubuntu 11.10), using increasingly large exponents and moduli.

Table 2. Benchmarking of modular exponentiations with increasingly large moduli

1024-bit 2048-bit 3072-bit
C/GMP 0.60ms 4.44ms 14.08ms
C/OpenSSL 0.81ms 6.12ms 20.89ms
Java (v1.6.0 23) 3.33ms 24.47ms 76.91ms
Ratio Java/GMP 5.55 5.51 5.46

3.2 Prototype Implementation

Due to space limitations, we refer the readers to the full version of the paper (in [DT12])
for a detailed description of our implementation of DT10-v4. The prototype is imple-
mented in C, using the GMP library for large integer arithmetic and OpenSSL for key
generation and hash function implementation.

3.3 Additional Performance-Optimizing Techniques

Besides design choices discussed in Section 3.1] above — all of which can be easily
adopted — there are some less obvious aspects that can help us further optimize imple-
mentation of DT10-v4. Although we discuss them below, we defer their implementa-
tion to the next version of the prototype, since these optimizations appeal to specific
settings. Whereas, this paper focuses on the general PSI scenario.

1. Bottleneck Identification: In settings where the PSI protocol is executed over the
Internet and communication takes place over slow links, communication overhead
is likely to become the bottleneck. For instance, consider a scenario, where server

60 E. De Cristofaro and G. Tsudik

runs on an Intel Xeon CPU at 3.10GHz. Using GMP, it takes, on average, 0.15ms to
perform ()d mod N exponentiations, with 1024-bit moduli, using CRT. Therefore,
one can estimate the link speed at which the bottleneck becomes transmission of the
{mi}i—; and {ts;}}’; values, respectively. Specifically, if network speed is lower

. lwil _ 1024 bits
than: time ~ 0.15ms :
Whereas, if network speed is lower than: t‘fri{ fl: = 10??5?11“55 = 1.14Mbps then it takes
longer to send ts; than to compute it. These estimates could be useful for further

protocol optimizations; see below.

= 7.31Mbps, it takes longer to transmit 4 than to compute it.

2. Exploiting Parallelism: Many modern desktops and laptops have multiple cores.
Thus, if the bottleneck is computation of (~)d exponentiations, the server-side thread
in charge of receiving {1; }¥_, will push them into the buffer faster than the thread
computing {(p;)?}%_; can pull them. With multiple cores, exponentiations of mul-
tiple values in the buffer could be done in parallel. Similarly, computation of
{(hs;)4}e ; does not depend on any other information; thus, it could be paral-
lelized too.

3. Minimizing Transmission: If the bottleneck is transmission time, then we can op-
timize software by, for example, using UDP instead of TCP, or choosing socket
options geared for transmission of many tiny packets.

4 Performance Evaluation

We now present a detailed performance evaluation of our DT10-v4 implementation.

Experimental Setup. Experiments are performed on the following testbed: PSI server
ran on a Linux computer, equipped with an Intel Xeon E31225 CPU (running at
3.10GHz). PSI client ran on a Mid-2011 13-inch Apple Macbook Air, with an Intel
Core i5 (running at 1.7GHz). Server and client are connected through a 100Mbps Eth-
ernet LAN. The code was written in C using the GMP library for modular arithmetic
operations and OpenSSL for other cryptographic operations (such as, random numbers
and key generation, hash function invocations). Finally, note that we used 1024-bit,
2048-bit, or 3072-bit RSA moduli and SHA-1 to instantiate the H'(-) function.

4.1 Protocol Total Running Time

In Figures 2] andBl we report total run-times for DT10-v4 protocol running on, respec-
tively, small (100 to 1000) and medium (1000 to 10000) sets, using 1024-bit moduliE
Next, Figures [l [3 [6l and [7] respectively, report total run-time for small and medium
sets, using 2048-bit and 3072-bit moduli, respectively.

Time is measured as the difference between system time read when the protocol starts
and time read when the protocol ends. Specifically, we consider the protocol as started
whenever client initiates protocol execution (i.e., it opens a connection on server’s

3 We also ran experiments with even large sets (in the order of hundreds of thousands). We do
not include them here as they simply grow linearly for increasing set sizes, thus, one can obtain
an estimation of them, for essentially any input size, by looking at Figures 2H7l

Experimenting with Fast Private Set Intersection 61

Small Sets, INI=1024

400
350
300
250

150
100
50

Total Running Time (ms)
n
8

100 200 300 400 500 600 700 800 900 1000
Set Sizes, w=v

Fig.2. DT10-v4 total run-time for small sets (100 to 1000 items), using 1024-bit moduli

Medium Sets, INI=1024
4000

3500
3000
2500
2000
1500
1000

Total Running Time (ms)

500

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Set Sizes, w=v

Fig. 3. DT10-v4 total run-time for medium sets (1000 to 10000 items), using 1024-bit moduli

Small Sets, INI=2048

2000
1800
1600
1400
1200
1000

Total Running Time (ms)

100 200 300 400 500 600 700 800 900 1000
Set Sizes, w=v

Fig. 4. DT10-v4 total run-time for small sets (100 to 1000 items), using 2048-bit moduli

62 E. De Cristofaro and G. Tsudik

Medium Sets, INI=2048

18000
16000
14000
12000
10000
8000
6000
4000
2000

Total Running Time (ms)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Set Sizes, w=v, INI=2048

Fig. 5. DT10-v4 total run-time for medium sets (1000 to 10000 items), using 2048-bit moduli

Small Sets, INI=3072

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

Total Running Time (ms)

100 200 300 400 500 600 700 800 900 1000
Set Sizes, w=v

Fig. 6. DT10-v4 total run-time for small sets (100 to 1000 items), using 3072-bit moduli

Medium Sets, INI=3072

50000 T T T T T T T T T T
45000
40000
35000
30000
25000
20000
15000
10000

5000

Total Running Time (ms)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Set Sizes, w=v, INI=3072

Fig.7. DT10-v4 total run-time for medium sets (1000 to 10000 items), using 3072-bit moduli

listening socket), whereas, the protocol ends whenever client outputs the intersection (if
any). In other words, we do not perform precomputation and, on a conservative stance,
we do not allow the server to start computation of {(th)d mod N ;-":1 (its step (1))
until client establishes a connection on the listening socket.

The only cryptographic operation performed ahead of time (thus, not included in run-
time) is RSA key generation, since server executes it only once for all possible clients

Experimenting with Fast Private Set Intersection 63

and all executions. Finally, protocol execution time does not count time spent by server
waiting for an incoming connection, since the listening socket is created only once, for
all possible clients and all protocol executions.

4.2 Micro-benchmarking

We now analyze performance of specific operations performed by client and server
during DT10-v4 protocol execution. We start with Client. In Figure[8l(resp., Figure[10),
we measure the time spent by the process executing DT10-v4 client, using 1024-bit
(resp., 2048-bit) moduli, for the following operations:
1. Label ‘Receive’ corresponds to the time spent to wait/receive the {u;}Y_; and
{ts;}}=, values from server.

2. Label ‘Cli-1° corresponds to the time needed to compute {y; = he; - ;¢ mod
Nisi
3. Label ‘Inverse’ corresponds to the time to compute {r; * mod N}?_,.

4. Label ‘Cli-2’ corresponds to the time needed to compute {tc; = H'(u}/r; mod
N)Yisi-

Next, we look at Server. In Figure[0] (resp., Figure[[1))), we measure the time spent by
the process executing DT10-v4 server, using 1024-bit (resp., 2048-bit) moduli, for the
following operations:
1. Label ‘Receive’ corresponds to the time spent to wait/receive the {;}Y_; values
from client.

2. Label ‘BlindSig’ corresponds to the time to compute {u) = (12;)¢ mod N}¥_;.
3. Label ‘Sig’ corresponds to the time to compute {ts; = H'((hs;)? mod N

It is interesting to observe that, using 1024-bit moduli, client actually spends less time
to receive all the values from server than vice versa, despite the former actually needs to
receive more. This is a good opportunity to see multi-threading in action: client’s thread
responsible to send the {u;} values has to wait for them to be available, thus, causing
some waiting time to server’s thread that receives them. In other words, by looking at the
micro-benchmarking one can identify different “bottlenecks” in the different settings.

5 Comparison to [HEK12]

In this section, we focus on the performance evaluation of the DT10-v4 PSI protocol
presented in [HEK12].

The work in [HEK12] presents a few novel Private Set Intersection constructions
based on garbled circuits [Yao82]: the main intuition is that, by leveraging the Oblivi-
ous Transfer (OT) extension [IKNPO3||, the complexity of such protocols is essentially
tied to a number of OTs (thus, public-key operations) equal to the security parameter
k. In fact, OT extension achieves an unlimited number of OTs at the cost of (essen-
tially) & OTs. Therefore, for very large security parameters, the number of public-key

64 E. De Cristofaro and G. Tsudik

180

Client, INI=1024

Recefve —
Cli-1

160
140
120
100
80
60
40

20

Total Running Time (ms)

Y et

B

100 200 300

400

Fig. 8. Micro-benchmarking client’s operations in DT10-v4 (small

250

500 600
Set Sizes, w=v

700 800

sets), using 1024-bit moduli

Server, INI=1024

Receive

. BlindS
) Si
E
@
£
i)
=)
<
c
c
=]
o
s
o
i
0 . . .
100 200 300 400

500 600 700 800 900
Set Sizes, w=v

1000

Fig. 9. Micro-benchmarking server’s operations in DT10-v4 (small sets), using 1024-bit moduli

Client, INI=2048

1200 .
Receive
% 1000 Cli-1
(2]
£
2 800
E
2 600
=4
S
o 400
s
L2 200
0
100 200 300 400

800

500 600
Set Sizes, w=v

700 900

Fig. 10. Micro-benchmarking client’s operations in DT10-v4 (small sets), using 2048-bit moduli

Experimenting with Fast Private Set Intersection 65

Server, INI=2048
1400

Receive =——e— !
,g 1200 BlindSi " mw“*\m"
o
~ \ﬂ\”m
o 1000 - 1
£ e
= 800 |- o d
o P
S 600 ot g
S et
o L - 4
5 o0 M__w.w'
5 .
200 e
-
0

100 200 300 400 500 600 700 800 900 1000
Set Sizes, w=v

Fig. 11. Micro-benchmarking server’s operations in DT10-v4 (small sets), using 2048-bit moduli

operations with this technique may grow more gracefully than with custom protocols.
Finally, [HEK12] compares the efficiency of newly proposed constructions to an imple-
mentation of “custom” PSI protocols from [DT10].

Note that we do not examine the proposals and the experimental methodology
of [HEK12]. Rather, we observe that the implementation of DT10-v4 presented in
this paper achieves a remarkable speed up compared to performance results presented
in [HEK12] for same protocols. Finally, we highlight some open questions regarding
comparison between techniques in [HEK12]] and those in [DT10].

5.1 Performance Comparison

We start by noticing that the run-time of the PSI protocol in [DT10] is reported to be
around 10 seconds in a setting where |S| = |C| = 1024, the security parameter is 80-bit
(thus, RSA moduli are 1024-bit), no precomputation is allowed at server, and commu-
nication between server and client is over a 100Mbps LAN. It is not clear whether this
measure is the sum of server and client execution time or represents the time for the
protocol to complete. On a conservative stance, we assume the former. On a compa-
rable hardware[] and using the parameters discussed above, our measure for DT10-v4
protocol never exceeded 1 seconds (and DT10-v4 is actually not reported as the fastest
protocol — see Section[5.2). Similarly, evaluation in [HEK12] reports 62 seconds (resp.,
126 seconds) using 2048-bit (resp., 3072-bit) moduli; whereas, our implementation of
DT10-v4 never exceeds 2 seconds (resp., 5 seconds).

In Table Bl we summarize running times for DT10-v4 as per our implementation,
and compare to those for garbled-circuit based techniques presented in [HEK12]] and re-
ported in Fig. 11 of [HEK12)]. We argue that our implementation of DT10-v4 markedly
outperforms PSI protocols based on garbled circuits, in all the three security-parameter
settings that we consider (and that are realistic today), in stark contrast to what has been
claimed in [HEK12].

“Tn [HEK12] both server and client run on 3GHz CPU, whereas, in our experiments, server runs
on a 3.1GHz CPU and client on a 1.7GHz CPU.

66 E. De Cristofaro and G. Tsudik

Table 3. Summary of PSI running times (with |S| = |C| = 1024)

80-bit 112-bit 128-bit
DT10-v4 as per
our implementation
Best Custom-protocol PSI as
per [HEK12]’s experiments
Garbled-circuit based
PSTin [HEKI12]

<ls <2s <bs
10.9s 62.4s 126s

51.5s 57.1s 61.5s

5.2 The Choice of Protocols from [DT10]

Authors of [HEKI12]] argue that the protocol in Figure 3 of [DT10], based on the
One-More-DH assumption, is more efficient than that in Figure 4 (based on the One-
More-RSA assumption and denoted as DT10-v4) in scenarios where server-side pre-
computation is not possible. Our analysis below shows that this is wrong.

In the following, aiming at 80-bit security, we use: a 1024-bit RSA modulus NV, an
RSA public exponent e = 3, CRT-optimized exponentiations, a 1024-bit prime p, a
160-bit prime ¢, and SHA-1 hash function. Also recall that w = |S| and v = |C]|.
We also use m to denote a modular multiplication of 1024-bit integers. Consequently,
we say that exponentiations modulo 1024 bits require, on average, O(1.5 - |exp|) -
m, where |exp| denotes exponent size. Modular exponentiations with 512-bit moduli
count for approximately O(1.5 - |exp|) - m/4. As we discussed earlier in the paper,
the computational complexity of protocol in Figure 4 in [DT10] (DT10-v4) is clearly
determined by 2w+ 2v exponentiations with 512-bit exponents and moduli, thus, (2w+
20)(1.5 - 512)m/4, i.e., (384w + 384v) - m. Whereas, the computational complexity
of protocol in Figure 3 of [DT10] comes down to w + 3v exponentiations with 160-bit
exponents and 1024-bit moduli, thus, (w +3v) - (1.5-160) - m, i.e., (240w + 720v) - m.

If one allows precomputation, then protocol in Figure 4 (DT10-v4) is straightfor-
wardly more efficient than the Figure 3 counterpart, since online complexity goes down
to (384v) - m. But if one does not allow precomputation (as in [HEK12]), then it would
seem that Figure 3 protocol would outperform DT10-v4 for settings where approxi-
mately " < 140 — a setting that is anyway never tested in [HEK12]], which always
assumes w = v. Nonetheless, when precomputation is not possible, then the analysis
of Figure 3’s complexity should actually account for w + v additional exponentiations
needed to evaluate the H(-) function, which is of the hash-into-the-group kind, i.e.,

H(z) = ("4 mod p, thus, protocol in Figure 3 appears to be always slower than
Figure 4 (i.e., DT10-v4.) Therefore, the protocol in [DT10]’s Figure 4 is always more
computational efficient than the one in Figure 3.

5.3 [Evaluation Criteria

Once again, note that it is out of the scope of this paper to provide a definite explanation
as to why our implementation of DT10-v4 achieves run-times several times lower than
those reported by [HEK12] (see section 7 thereof). Similarly, we do not analyze the
validity of the conclusions drawn by the authors of [HEK12] regarding whether or not

Experimenting with Fast Private Set Intersection 67

DT10-v4 PSI protocol is more efficient than garbled circuits-based constructions in all
settings. However, we make some observations regarding implementation of DT10-v4
by Huang et al. [HEK12] and also argue that a comprehensive comparison should take
into account several settings (we sketch those below and leave the task of addressing
them as an interesting open problem).

1. As discussed earlier, several design factors (e.g., pipelining, CRT, etc.) significantly
impact overall performance of custom PSI protocols (see Section B.I) and it is
unclear whether they were taken into account in [HEK12].

2. [HEK12[] implements techniques from [DT10] and in [HEK12] in Java. Java usu-
ally offers slower performance than other programming languages (such as C/C++).
Nonetheless, this choice might seem irrelevant, since both techniques are imple-
mented in Java. However, we believe it remains to be seen if the use of Java
penalizes techniques from [DT10] that perform a higher number of public-key op-
erations. For instance, as mentioned earlier, a CRT-based RSA exponentiation takes
5.55 times longer in Java than in C/GMP. Does this slowdown occur, in the same
measure for all Java operations (e.g., symmetric-key)? If not, then the choice of
Java might not be fair, as constructions in [HEK12] heavily rely on symmetric-key
operationsﬁ Also, it would also be interesting to measure memory overhead for
increasing set sizes incurred by all techniques. We believe that performance and
scalability could be tremendously affected by, for example, inability to keep an
entire circuit in memory.

3. [HEK12] employs techniques that are fundamentally and markedly different from
those used by custom protocols. Thus, a different choice of parameters can signifi-
cantly favor one while penalizing the other. We mention just a few:

a) Techniques in [HEKI2] are tested in settings where |S| = |C|. As a result,
we believe that a more thorough comparison would include scenarios where
|S| # |C]. Also, comparisons in [HEK12]] are given only for |S| = |C| = 1024.
It remains unclear how performance of protocols in [HEK12]] would scale for
higher set sizes, since at least some of them involve non-linear complexities,
as opposed to their counterparts in [DT10].

b) Some protocols in [HEK12] incur higher communication complexity than pro-
tocols in [DT10]. Therefore, we argue that a more thorough comparison must
include (realistic) settings where the subject protocol is executed on the In-
ternet, and not only over fast 100Mbps LANs. (Complexity is not analyzed
asymptotically but authors of [HEK12]| report, on page 13, that the SCS-WN
protocol consumes more bandwidth: 147-470MB, depending on the security
level, versus 0.4-2.0MB.)

¢) Experiments in [HEKI12] measure run-times as a total execution time.
However, we believe that more details — ideally, a benchmark of sub-operations
— should also be provided to better understand if the testing setting and imple-
mentation choices penalize one technique while favoring another.

5 To encrypt 1 million 64-byte strings with AES-CBC, using C/OpenSSL, it takes, on average
0.60 and 0.83 seconds, with, respectively, 128-bit and 256-bit keys. Whereas, in Java, it takes
1.22 and 1.58 seconds. Therefore, the slowdown factor here is only 2.03 for 128-bit keys and
1.90 for 256-bit keys (versus about 5.5 for modular exponentiations).

68 E. De Cristofaro and G. Tsudik

Finally, while research on custom PSI protocols reached the point where malicious
security can be achieved efficiently — at the same asymptotic complexity as semi-honest
security [HN1OJL10/DKT10] — efficiency of garbled-circuit-based techniques secure in
the malicious model remains unclear.

6 Conclusion

This paper presented an optimized implementation and performance evaluation of the
currently fastes PSI protocol from [DT10]. We analyzed implementation choices that
impact overall performance and presented an experimental analysis, including micro-
benchmarking, with different set sizes. We showed that resulting run-times appreciably
outperform those reported in [HEK12]. Achieved speed up is significantly higher than
what one would obtain by simply porting [HEK12] implementation of DT10-v4 from
Java to C. Finally, we identified some open questions with respect to comparisons of
custom PSI protocols with generic garbled-circuit based constructions.

Acknowledgments. We gratefully acknowledge Yanbin Lu, Paolo Gasti, Simon Bar-
ber, and Xavier Boyen for their help and suggestions. We would also like to thank the
authors of [HEK12] for their valuable feedback.

References

ADTI11. Ateniese, G., De Cristofaro, E., Tsudik, G. (If) Size Matters: Size-Hiding Pri-
vate Set Intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.)
PKC 2011. LNCS, vol. 6571, pp. 156-173. Springer, Heidelberg (2011)

ALOQ7. Aumann, Y., Lindell, Y.: Security Against Covert Adversaries: Efficient Proto-
cols for Realistic Adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 137-156. Springer, Heidelberg (2007)

BBDT11. Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering gattaca:
efficient and secure testing of fully-sequenced human genomes. In: CCS (2011),
http://arxiv.org/abs/1110.2478

BCCT09. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A.,
Shacham, H.: Randomizable Proofs and Delegatable Anonymous Credentials.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108-125. Springer,
Heidelberg (2009)

BLHBI11. Bursztein, E., Lagarenne, J., Hamburg, M., Boneh, D.: OpenConflict: Preventing
Real Time Map Hacks in Online Games. In: IEEE Security and Privacy (2011)

BNPSO03. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal of
Cryptology 16(3) (2003)

Bon9s. Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices of the
AMS 46(2) (1998)
CM99. Camenisch, J.L., Michels, M.: Proving in Zero-Knowledge that a Number Is

the Product of Two Safe Primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 107-122. Springer, Heidelberg (1999)

CSO03. Camenisch, J.L., Shoup, V.: Practical Verifiable Encryption and Decryption of
Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 126—-144. Springer, Heidelberg (2003)

http://arxiv.org/abs/1110.2478

DIL*10.

DKT10.

DSMRY09.

DT10.

DT12.

EIGSS.

FIPROS.

FKIM™06.

FNPO4.

GGMS86.
HEK12.

HLO08.

HMRT11.

HN10.

IKNPO3.

JLO9.

JL10.

KLO8.

Experimenting with Fast Private Set Intersection 69

De Cristofaro, E., Jarecki, S., Liu, X., Lu, Y., Tsudik, G.: Automatic Privacy Pro-
tection Program — UC Irvine Team Web Site (2010),
http://sprout.ics.uci.edu/projects/iarpa-app

De Ceristofaro, E., Kim, J., Tsudik, G.: Linear-Complexity Private Set Intersection
Protocols Secure in Malicious Model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 213-231. Springer, Heidelberg (2010)

Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient Robust Pri-
vate Set Intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud,
D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125-142. Springer, Heidelberg (2009)
De Cristofaro, E., Tsudik, G.: Practical Private Set Intersection Protocols with
Linear Complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143-159.
Springer, Heidelberg (2010), http://eprint.iacr.org/2009/491

De Cristofaro, E., Tsudik, G.: On the Performance of certain Private Set Intersec-
tion Protocols. Cryptology ePrint Archive (2012),
http://eprint.iacr.org/2012/054

ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4) (1985)

Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Obliv-
ious Pseudorandom Functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378,
pp- 303-324. Springer, Heidelberg (2005)

Fouque, P.-A., Kunz-Jacques, S., Martinet, G., Muller, E., Valette, F.: Power Attack
on Small RSA Public Exponent. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 339-353. Springer, Heidelberg (2006)

Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set In-
tersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 1-19. Springer, Heidelberg (2004)

Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM 33(4) (1986)

Huang, Y., Evans, D., Katz, J.: Private Set Intersection: Are Garbled Circuits Better
than Custom Protocols. In: NDSS (2012)

Hazay, C., Lindell, Y.: Efficient Protocols for Set Intersection and Pattern Match-
ing with Security Against Malicious and Covert Adversaries. In: Canetti, R. (ed.)
TCC 2008. LNCS, vol. 4948, pp. 155-175. Springer, Heidelberg (2008)

Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient rsa key generation and
threshold paillier in the two-party setting. Cryptology ePrint Archive (2011),
http://eprint.iacr.org/2011/494

Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Ad-
versaries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp- 312-331. Springer, Heidelberg (2010)

Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers Ef-
ficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145-161.
Springer, Heidelberg (2003)

Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications
to Adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577-594. Springer, Heidelberg (2009)

Jarecki, S., Liu, X.: Fast Secure Computation of Set Intersection. In: Garay,
J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418-435. Springer,
Heidelberg (2010)

Katz, J., Lindell, Y.: Introduction to modern cryptography. Chapman & Hall/CRC
(2008)

http://sprout.ics.uci.edu/projects/iarpa-app
http://eprint.iacr.org/2009/491
http://eprint.iacr.org/2012/054
http://eprint.iacr.org/2011/494

70 E. De Cristofaro and G. Tsudik

KSO05. Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241-257. Springer, Heidelberg (2005)

MVOV97. Menezes, A., Oorschot, P.V., Vanstone, S.: Handbook of Applied Cryptography.
CRC (1997)

NMH™10. Nagaraja, S., Mittal, P., Hong, C.Y., Caesar, M., Borisov, N.: BotGrep: Finding
Bots with Structured Graph Analysis. In: Usenix Security (2010)

NPO6. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM Journal on Comput-
ing, 1-35(5) (2006)

NTL*11. Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location
Privacy via Private Proximity Testing. In: NDSS (2011)

Pai99. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238.
Springer, Heidelberg (1999)

RS60. Reed, S., Solomon, G.: Polynomial codes over certain finite fields. Journal of the
Society for Industrial and Applied Mathematics 8(2) (1960)

Sha79. Shamir, A.: How to Share a Secret. Communications of ACM 22(11) (1979)

Yao82. Yao, A.C.: Protocols for secure computations. In: FOCS (1982)

A Survey of PSI Techniques

In this appendix, we survey research work on Private Set Intersection (PSI). This ap-
pendix is organized in chronological order: we first overview work prior to [DT10],
then, after discussing the work in [DT10]], we present recent results.

A.1 Work Prior to [DT10]

Once again, recall that PSI is a protocol involving a server and a client, on inputs S =
{s1,...,8w}and C = {c1,..., ¢y}, respectively, that results in client obtaining S N C.
As aresult of running PSI, set sizes are reciprocally disclosed to both server and client.
In the variant called PSI with Data Transfer (PSI-DT), each item in server set has an
associated data record, i.e., server’s inputis S = {(s1,datay),- -, (sw, datay)}, and
client’s output is defined as {(s;,data;) € S | I¢; € C s.t. ¢; = s;}.

We distinguish between two classes of PSI protocols: one based on Oblivious Poly-
nomial Evaluations (OPE) [NPO06], and the other based on Oblivious Pseudo-Random
Functions (OPRF-s) [FIPROS].

Freedman, Nissim, and Pinkas [FNP04] introduce the concept of Private Set Intersec-
tion and and propose a protocol based on OPE. They represent a set as a polynomial, and
elements of the set as its roots. A client encodes elements in its private set C as the roots
of a v-degree polynomial over aring R, i.e., f = [[;_,(z—¢;) = Zf:o a; ", Then, as-
suming pk¢ is client’s public key for any additively homomorphic cryptosystem (such
as Paillier’s [Pai99]), client encrypts the coefficients with pkc, and sends them to server.
The latter homomorphically evaluates f at each s; € S. Note that f(s;) = 0 if and only
if s; e CNS.Foreach s; € S, returns u; = E(r; f(s;) + s;) to client (where r; is
chosen at random and E(-) denotes additively homomorphic encryption under pk¢). If
sj € CN S then client learns s; upon decrypting. If s; ¢ C NS then u; decrypts to a

Experimenting with Fast Private Set Intersection 71

random value. To enable data transfer, server can return E(r; f(s;) + (s;]|data;)), for
each s; in its private set S. The protocol in [ENP04] incurs the following complexities:
The number of server operations depends on the evaluation of client’s encrypted poly-
nomial with v coefficients on w points (in &). Using Paillier cryptosystem [Pai99] and
a 1024-bit modulus, this costs O(vw) of 1024-bit mod 2048-bit exponentiationsﬁ On
the other hand, client computes O(v + w) of 1024-bit mod 2048-bit exponentiations.
However, server computation can be reduced to O(w loglog v) using: (1) Horner’s rule
for polynomial evaluations, and (2) a hashing-to-bins method (see [FNP04] for more
details). If one does not need data transfer, it is more efficient to use the Exponential
ElGamal cryptosystem [EIG83] (i.e., an ElGamal variant that provides additively ho-
momorphism)ﬂ Such a cryptosystem does not provide efficient decryption, however,
it allows client to test whether a ciphertext is an encryption of “0”, thus, to learn that
the corresponding element belongs to the set intersection. As a result, efficiency is im-
proved, since in ElGamal the computation may make use of: (1) very short random
exponents (e.g., 160-bit) and (2) shorter moduli in exponentiations (1024-bit). The PSI
protocol in [FNPO4] is secure against honest-but-curious adversaries in the standard
model, and can be extended to malicious in the Random Oracle Model (ROM), at an
increased cost.

Hazay and Nissim [HN10] present an improved construction of [ENP04], in the pres-
ence of malicious adversaries without ROM, using zero-knowledge proofs to let client
demonstrate that encrypted polynomials are correctly produced. Perfectly hiding com-
mitments, along with an Oblivious Pseudo-Random Function evaluation protocol, are
used to prevent server from deviating from the protocol. The protocol in [HN10] incurs
O(v+ w(loglog v +m)) computational and O (v + w - m) communication complexity,
where m is the number of bits needed to represent a set element.

Kissner and Song [[KS05] also propose OPE-based protocols involving (potentially)
more than two players. They present one technique secure in the standard model against
semi-honest and one — against malicious adversaries. The former incurs quadratic —
O(vw) — computation (but linear communication) overhead. The latter uses expensive
generic zero-knowledge proofs to prevent parties from deviating to the protocol. Also,
it is not clear how to enable data transfer.

Dachman-Soled, et al. [DSMRY09] also present an OPE-based PSI construction, im-
proving on [KS05]. Their protocol incorporates a secret sharing of polynomial inputs:
specifically, as Shamir’s secret sharing [Sha79] implies Reed-Solomon codes [RS60],
generic (i.e., expensive) zero-knowledge proofs can be avoided. Complexity of re-
sulting protocol amounts to O(wk? log?(v)) in communication and O(wvk log(v) +
wk? log?(v)) in computation, where k is a security parameter.

Other techniques rely on Oblivious Pseudo-Random Functions (OPRF-s), introduced
in [FIPROS)]. An OPRF is a two-party protocol that securely computes a pseudo-random
function fi(-) on key & contributed by the sender and input 2 contributed by the re-
ceiver, such that the former learns nothing from the interaction and the latter learns

® Encryption and decryption in the Paillier cryptosystem [Pai99] involve exponentiations mod
n?:if |n| = 1024 bits, then |n?| = 2048 bits (where n is the public modulus).

" In the Exponential EIGamal variant, encryption of message m is computed as E, ,(m) =
(¢",y" - g™) instead of (¢", m - y"), for random r and public key y.

72 E. De Cristofaro and G. Tsudik

only the value fx(x). Most prominent OPRF-based protocols are presented below. The
intuition behind OPRF-based PSI protocols is as follows: server and client interact in
v parallel execution of the OPRF f(-), on input k and ¢;,V ¢; € C, respectively. As
server transfers Ts.; = fi(s;),V s; € S and client obtains T.; = fi(c;),V ¢ € C,
client learns the set intersection by finding matching (T%.;, Te.;) pairs, while it learns
nothing about values s; € S \ S N C, since f(s;) is indistinguishable from random, if
fx(+) is a pseudo-random function

Hazay and Lindell [HLOS]] propose the first PSI construction based on OPRF-s. In it,
server generates a secret random key k, then, for each s; € S, computes u; = fi(s j),
and sends client the setif = {uy, - -- , uy }. Next, client and server engage in an OPRF
computation of fx(c;) for each ¢; € C. Finally, client learns that ¢; € C N S if (and
only if) fx(c;) € U. [HLOF] introduces two constructions: one secure in the presence
of malicious adversaries with one-sided simulatability, the other — in the presence of
covert adversaries [ALO7].

Jarecki and Liu [JLO9] improve on [HLOS|| by constructing a protocol secure in
the standard model against both malicious parties, based on the Decisional g-Diffie-
Hellman Inversion assumption, in the Common Reference String (CRS) model, where
a safe RSA modulus must be pre-generated by a trusted party. The OPRF in [JLO9] is
built using the Camenisch-Shoup additively homomorphic cryptosystem [CS03] (CS
for short). However, this technique can be optimized, leading to the work by Belenkiy,
etal. [BCCT09). In fact, the OPRF construction could work in groups of 160-bit prime
order, unrelated to the RSA modulus, instead of (more expensive) composite order
groups [JLO9|]. Thus improved, the protocol in [JLO9] incurs the following computa-
tional complexity: server needs to perform O(w) PRF evaluations, specifically, O(w)
modular exponentiations of m-bit exponents mod n2, where m the number of bits
needed to represent set items and n? is typically 2048-bit long. The client needs to
compute O(v) CS encryptions, i.e., O(v) m-bit exponentiations mod 2048 bits, plus
O(v) 1024-bit exponentiations mod 1024 bits. The server also computes O(v) 1024-bit
exponentiations mod 1024 bits and O(v) CS decryptions — i.e., O(v) 1024-bit expo-
nentiations mod 2048 bits. Complexity in malicious model grows by a factor of 2. The
input domain size of the pseudo-random function in [JLO9] is limited to be polynomial
in the security parameter, since the security proof requires the ability to exhaustively
search over input domain.

A.2 Protocolsin [DT10]

The work in [DT10] presented two linear-complexity PSI protocols, both secure in
the Random Oracle Model in the presence of semi-honest adversaries. Specifically,
in [DT10], they present:

1. One protocol (Figure 3) secure under the One-More-Gap-DH assumption [BNPS03].
It imposes O(w + v) short exponentiations on server, and O(v) — on client. Note
that the term “short” exponentiation refers to the fact that exponentiations can be of
160-bit exponents modulo 1024 bits (for 80-bit security).

8 For more details on pseudo-random functions, we refer to [KLOSIGGMS6].

Experimenting with Fast Private Set Intersection 73

2. Another protocol (Figure 4) secure under the One-More-RSA assumption [BNPS03],
whose implementation we have presented and analyzed in this paper. Recall that, in
this protocol, server computational overhead amounts to O(w + v) RSA signatures
using CRT optimization (i.e., 512 bits modulo 512 bits exponentiations for 80-bit
security). Whereas, client complexity is dominated by O(v) RSA encryptions, i.e.,
in practice, O(v) modular multiplications if a short RSA public exponent is selected.

Both protocols incur the following communication overhead: client and server need to
send and receive O(v) group elements (i.e., 1024-bit); additionally, server sends client
O(w) hash outputs (e.g., 160-bit using SHA-1).

A.3 Recent Results

Shortly after [DT10], Jarecki and Liu [JL10] also propose a PSI protocol with linear
complexity and fast exponentiations. (Remark that some of the proofs in [DT10] are
based on that of Jarecki and Liu.) This protocol is based on a concept related to OPRFs,
i.e., Unpredictable Functions (UPFs). One specific UPF, fi(x) = H(z)", is used as
a basis for two-party computation (in ROM), with server contributing the key k£ and
client — the argument x. The client picks a random exponent « and sends y = H ()%
to server, that replies with z = y*, such that client recovers fi.(z) = 2!/®. By using
a zero-knowledge discrete-log proofs of knowledge, the protocol in [JL10] can obtain
malicious security and implement secure computation of (Adaptive) Set Intersection,
under the One-More-Gap-DH assumption in ROM [BNPSO03]. Therefore, the computa-
tional complexity of the UPF-based PSI in [JL10] also amounts to O(w + v) exponen-
tiations with short exponents at server side and O(v) at client side (e.g., 160-bit mod
1024-bit). Communication complexity is also linear is input set size, i.e., O(w + v).

De Cristofaro, et al. [DKT10] present another linear-complexity short-exponent PSI
construction secure in ROM in the presence of malicious adversaries. However, com-
pared to [JL10], its security relies on a weaker assumption — DDH vs One-More-Gap-
DH. Then, Ateniese, et al. [ADT11]] introduce the concept of Size-Hiding Private Set
Intersection (SHI-PSI). Besides the standard privacy features guaranteed by the PSI
primitive, SHI-PSI additionally provides unconditional (i.e., not padding-based) hiding
of client’s set size. The security of this novel protocol is under the RSA assumption in
ROM, in the presence of semi-honest adversaries. Server’s computational complexity
amounts to only O(w) exponentiations in the RSA setting, thus, it is independent of
size of client’s input. Whereas, client’s overhead is in the order of O(v - logv) expo-
nentiations. Communication complexity is limited to O(w), i.e., it is also independent
of size of client’s input.

Finally, Huang, et al. [HEKI12] present novel PSI constructions based on garbled
circuits [Yao82]. The main intuition is that, by leveraging the Oblivious Transfer (OT)
extension [[IKNPO3], the complexity of such protocols is tied to a number of OTs (thus,
public-key operations) equal to the security parameter k. In fact, OT extension achieves
an unlimited number of OTs at the cost of (essentially) k OTs. Therefore, for increasing
security parameters, the number of public-key operations with their technique grows
more gracefully than with custom protocols.

Reliable Device Sharing Mechanisms
for Dual-OS Embedded Trusted Computing

Daniel Sangorrin, Shinya Honda, and Hiroaki Takada

Graduate School of Information Science, Nagoya University,
Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan
{dsl,honda,hiro}@ertl. jp

Abstract. Dual-OS virtualization techniques allow consolidating a trus-
ted real-time operating system (RTOS) and an untrusted general-
purpose operating system (GPOS) onto the same embedded platform. In
order to protect the reliability and real-time performance of the RTOS,
platform devices are usually duplicated and assigned exclusively to each
operating system causing an increase in the total hardware cost. This
paper investigates and compares several mechanisms for sharing devices
reliably in a dual-OS system. In particular, we observe that device shar-
ing mechanisms currently used for cloud virtualization are not necessarily
appropriate for dual-OS systems. We propose two new mechanisms based
on the dynamic re-partition of devices; and evaluate them on a physical
platform to show the advantages and drawbacks of each approach.

Keywords: Device sharing, Virtualization, TrustZone, Real-time.

1 Introduction

A dual-OS system|[1+4] is a method for consolidating a real-time operating sys-
tem (RTOS) and a general-purpose operating system (GPOS) onto the same
embedded platform—to reduce the hardware cost—thanks to the use of a vir-
tualization layer (VL). The RTOS provides support for applications with strict
reliability, security and real-time requirements. Both the RTOS and the VL are
small scale and considered to belong to the trusted computing base (TCB). In
contrast, the GPOS provides support for applications with high functionality re-
quirements, and is considered to belong to the untrusted computing base (UCB)
due to its large scale. The most fundamental requirement of a dual-OS system is
protecting the reliability of the TCB against any misbehavior or malicious attack
coming from the UCB|5]. For that reason, in dual-OS systems devices are usually
duplicated and assigned exclusively to each guest OS: devices that are critical
for the reliability of the system are assigned to the RTOS; and the remainder
devices are assigned to the GPOS. The dual-OS VL must guarantee that neither
the GPOS nor GPOS devices—particularly devices with Direct Memory Access
(DMA)—are allowed to access the memory and devices assigned to the RTOS.

Device duplication is useful for ensuring the reliability of the RTOS, and max-
imizing the system performance. However, it also adds a significant increase in

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 74-gT] 2012.
© Springer-Verlag Berlin Heidelberg 2012

Reliable Device Sharing Mechanisms 75

[Trusted : .FIQ ‘IRQ
[|untrusted i I Y
Config—>¢ TZIC Secure VCPU Non-Secure VCPU
Memory 9 - ‘ RTOS ‘ @~ aPos |
....... Secure Interrupts Y
data i B ———— —(@ [
Non-Secure Secure Non-Secure ‘ VL (SafeG monitor)
data devices devices ARM TrustZone® Core

S)
ﬁ ﬁ ‘ ﬁ BUS (NS bit) ﬁ

s N,
< e

Fig. 1. Architecture of the SafeG dual-OS system

the total hardware cost. Several device sharing mechanisms have been proposed
in the context of cloud virtualization|d, 7] to reduce this cost. Most of them
use a model in which device drivers are paravirtualized, splitting them between
a front-end driver in the guest OSs, and the real back-end driver running on
a trusted domain. The most typical application is sharing high-bandwidth net-
work and storage devices that are concurrently accessed by numerous guest OSs.
Despite its benefits, this approach is not suitable for dual-OS systems because
of its rather high overhead; issues on the real-time performance of the trusted
domain; and a significant increase in the complexity of the TCB.

This paper investigates and compares several mechanisms for sharing devices
reliably and efficiently in a dual-OS system. The main contributions are:

— A study on the suitability of existing device sharing mechanisms for dual-OS
systems. We observe that—in contrast to cloud virtualization—highly con-
current device sharing is not usually required in dual-OS systems. Instead,
a more common pattern is to use devices in turns, where the GPOS usage
percentage greatly exceeds the RT'OS usage percentage.

— We propose two new mechanisms based on the dynamic re-partition of de-
vices to operating systems at run time. The difference is a trade-off between
execution overhead and the latency to access a shared device.

We implemented both mechanisms and the paravirtualization approach on a
physical platform using SafeG|3], an open source reliable dual-OS system based
on ARM TrustZone|g]. From the results of the evaluation, we observed that each
mechanism is best suited to a particular set of conditions and assumptions. In
particular, our two new mechanisms seem more suitable for device sharing pat-
terns commonly found in dual-OS systems than the paravirtualization approach.

The paper is organized as follows. Section 2 reviews knowledge about SafeG
and presents a motivational example. Section [3] is the core of this paper and
explains several device sharing mechanisms for dual-OS systems. Section €l de-
tails the implementation of our two new mechanisms and the paravirtualization
approach on SafeG. Section [{] evaluates the overhead, latency and code modifi-
cations of each implementation. Section [l compares this research with previous
work. Finally, the paper is concluded in Section [

76 D. Sangorrin, S. Honda, and H. Takada

2 Background

2.1 SafeG: A Dual-OS System Based on ARM TrustZone

Fig. [depicts the architecture of SafeG|3, [9] (Safety Gate), a reliable open-
source dual-OS system based on ARM TrustZone[8] hardware. Here, we briefly
introduce some concepts about SafeG and TrustZone. For details, refer to |3, g].

— Virtual CPUs: a processor core contains two Virtual CPUs (VCPUs), the
Secure and the Non-Secure VCPU, that are executed in a time-sliced fashion.
Each VCPU is equipped with its own memory management unit (MMU) and
exception vectors; and supports all ARM operation modes. SafeG assigns the
RTOS and GPOS to the Secure and Non-Secure VCPUs respectively.

— SafeG monitor: the Secure VCPU has an additional mode — called the mon-
itor mode—which is used by the SafeG monitor to context switch between
both OSs. The entry to SafeG monitor can only be triggered by software
executing the Secure Monitor Call (SMC) instruction or the occurrence of
an FIQ (Fast Interrupt Request) while the Non-Secure VCPU is active. The
SafeG monitor is small—around 2KB|3]—and executes with all interrupts
disabled, which simplifies its verification. A VCPU context switch on an
ARM1176[10] processor requires around 200 cycles|3] and involves saving
and restoring all ARM general-purpose registers.

— Address space partitioning: when a bus master accesses memory or devices,
the NS bit (Non-Secure bit) is propagated through the system bus indicating
the privilege of that access (i.e., secure or non-secure). This allows parti-
tioning the address space into two virtual worlds: the Secure and the Non-
Secure world. The Secure VCPU can access memory and devices from both
worlds. However, hardware logic makes sure that Secure world memory and
devices cannot be accessed by the Non-Secure VCPU or Non-Secure DMA
devices. At initialization, SafeG configures RTOS memory and devices as Se-
cure world resources; and GPOS memory and devices as Non-Secure world
resources. For that reason, the RTOS address space is protected against
malicious accesses from the untrusted GPOS.

— Interrupts partitioning: ARM processors have two types of interrupt known
as FIQ and IRQ. The main difference is that FIQs have higher priority and
more banked registers. SafeG configures RTOS devices to generate FIQs;
and GPOS devices to generate IRQs. This configuration is done through a
TrustZone interrupt controller (e.g., TZIC|[11])), only accessible from the Se-
cure VCPU. FIQ and IRQ interrupts can be disabled in privileged mode by
setting the F and I flags of the Current Program Status Register (CPSR)
respectively. To prevent the GPOS from masking RTOS device interrupts,
SafeG takes advantage of the FW (F flag Writable) bit, which is only ac-
cessible by the Secure VCPU. This allows the RTOS to ensure that hard
real-time tasks always meet their deadlines.

The execution flow is controlled by two principles that ensure the real-time
performance of the RTOS: the GPOS is scheduled as the RTOS idle task; and
the RTOS can recover the control of the processor at any time through an FIQ.

Reliable Device Sharing Mechanisms 7

mechanical

7! switch

Car terminal i ECU#
(multimedia or ‘ (nf,i';gtﬁm
parking mode) ! multimedia)

T Audio Card

7
!

/ E RTOS

0 (parking aid) |

Video Card '

Change Audio Card Camera| |
Lever 246 B\ cPy l

-

(a) Traditional solution with hardware duplication

Car terminal R .
(multimedia or
parking mode)

GPOS

RTOS i
: : (navigation,
(parkingaid) multimedia)

Virtualization layer |

CPU

(b) Solution based on a dual-OS system with shared devices

Fig. 2. Motivational example for device sharing applied to an in-vehicle system

2.2 Motivational Example

Fig. [illustrates a motivational example for reliable device sharing inside an
in-vehicle car terminal|l2] that operates in two modes: multimedia and park-
ing mode. In multimedia mode, the terminal is used for GPS navigation, video
playback or Internet access. This mode requires highly functional libraries such
as video codecs or network stacks. For that reason, the most suitable way to
implement it is by using a GPOS. In parking mode, the system fetches data from
a camera and a distance sensor placed on the rear of the car. The camera data is
displayed on the terminal to assist the driver during parking maneuver, and the
distance to nearby obstacles is indicated through a repetitive sound. This mode
requires high reliability and time determinism to avoid a potential car accident.
For that reason, the most suitable way to implement it is by using an RTOS.

The traditional approach to implement this system is illustrated by Fig. 2la)
and consists of two separated computing units (ECUs). One computer contains
a GPOS with rich libraries to handle the multimedia mode; and the other one
contains a reliable RTOS to handle the parking mode. Parking mode is activated
through a mechanical switch (i.e., the gear-change lever) whenever the car is
driven backwards. Although this approach can satisfy the main requirements of
the system, it requires duplicated hardware that increases the total cost.

In contrast, Fig. B(b) illustrates a solution based on a dual-OS system with
device sharing capabilities. Thanks to the use of a virtualization layer and device

78 D. Sangorrin, S. Honda, and H. Takada

sharing, it is possible to consolidate both operating systems onto the same plat-
form and avoid duplicating hardware. An important difference with device shar-
ing in enterprise cloud virtualization is that devices (e.g., the video and sound
card) are shared with low concurrency or rather in turns. For example, the
car terminal is expected to operate in multimedia mode during most of the
time; and only switch to parking mode occasionally. For that reason, exist-
ing device sharing mechanisms designed for highly concurrent systems—such
as paravirtualization|6]—are not suited to this situation. Ideally, in a dual-OS
system the GPOS should have direct access to devices for maximizing perfor-
mance; and use its own feature-rich drivers instead of relying on a more complex
TCB. Additionally, the worst-case amount of time that the RT'OS has to wait for
a shared device to be usable with reliability guarantees must be upper-bounded.

3 Reliable Device Sharing

3.1 Requirements and Assumptions

Based on the motivational example above, we define the following set of require-
ments for the design of a reliable device sharing mechanism.

(a) Completion: device sharing mechanisms must guarantee that the TCB has
full control over the successful completion of operations on shared devices.

(b) Memory isolation: TCB resources must be protected against any access—
accidental or malicious—coming from UCB (including devices with DMA).

(¢) Real-time: the timeliness of the RTOS must be guaranteed. In particular,
malicious GPOS software must not be able to prevent or delay further use
of a shared device (i.e., device latency) for an unbounded amount of time.

(d) Software-only: device sharing must be implemented in software. Customized
hardware implementations are out of the scope of this paper.

(e) Performance: the overhead caused by a device sharing mechanism (e.g., due
to unnecessary data copies or context switches) must be minimized. Ideally,
a device should be operated with native performance.

(f) Code modifications: modifications to the TCB software must be minimized.
In particular, complex modifications to the VL must be avoided because
they can increase the latency of RTOS interrupts. In contrast, the GPOS
kernel can be extended with drivers. Nonetheless, GPOS applications and
libraries should not require modifications for the sake of reusability.

We also make the following assumptions: software that belongs to the UCB does
not have deffects; the RTOS and GPOS drivers can be modified; the hardware
reset time of a shared device is upper-bounded; the processor has a single core;
and finally, we assume that the GPOS cannot damage a shared device.

3.2 Suitability of Existing Device Sharing Approaches

Fig.Bl(a)—(d) illustrate several existing approaches to device sharing, adapted to
the context of a dual-OS system. Bellow we analyze each approach.

Reliable Device Sharing Mechanisms 79

RTOS GPOS RTOS GPOS RTOS GPOS

Client Proxy ; Legacy i i

Task Task Driver Driver Driver Driver
| limit T

" | | T] & |
Y

| V-Device || V-Device |

‘ Device ‘ ‘ Device ‘ |Self-virtualizing Device|
(a) Proxy task (b) Device emulation (c) Self-virtualizing devices
RTOS GPOS RTOS GPOS RTOS GPOS
B?ﬁli(‘;:?d Frgpit‘;gpd Driver Driver Driver Driver
I A,
|Illplt

T < re-partition >

| Dowmieseomi] [v [N—([]

(d) Paravirtualization (e) Re-partitioning

Fig. 3. Device sharing approaches (VL=Virtualization Layer, dualoscom=Dual-OS
communications, V-Device=Virtual Device)

(a)

Prozy task: in this approach, RTOS client tasks send requests to a proxy
task in the GPOS—through a dual-OS communications system|13] usually
provided by the VL—with the intention of leveraging the richness of GPOS
libraries and drivers. Requests can be sent with a high level of abstraction
(e.g., play this sound), and therefore the overhead incurred is rather low.
Despite all these benefits, the proxy task approach cannot be used for reliable
device sharing because GPOS software is untrusted and it may misbehave
or ignore RTOS requests which goes against requirement BIl@).

Device emulation: this approach follows the classical Popek and Goldberg’s
trap-and-emulate model for machine virtualization[14]. The GPOS is tricked
to think that there is a legacy device in the board. GPOS accesses to this
virtual device are trapped by the VL and forwarded to the RTOS, where a
driver handles the real device. This approach brings platform independence
and flexibility to the GPOS. However, it has a significant execution over-
head, and requires complex extensions to the TCB (see requirement B.Ii{))
in order to implement the trap mechanism. Additionally, traps are typically
delivered to the RTOS as software interrupts. To guarantee the real-time
performance of the RTOS (see requirement B1l@)), the TCB must limit the
rate of these software interrupts, which may become a performance bottle-
neck if the GPOS needs to access device registers very frequently.
Self-virtualizing devices: A self-virtualizing device with built-in support for
real-time reservations could be shared seamlessly by the RTOS and the
GPOS through separated interfaces, achieving near-native performance.
Hardware virtualization support was recently introduced to some devices|15].

80 D. Sangorrin, S. Honda, and H. Takada

Table 1. Qualitative comparison of device sharing approaches

Existing approaches Re-partitioning
Property Proxy Emulation Self-virt Paravirt. Pure Hybrid
(1) Real-time X v v v v v
(2) Functionality 4 X v X v v
(3) Device Latency X v v v X v
(4) Overhead v X v X v X
(5) Concurrency v v v v X X
(6) Hardware Cost v v X v v v

Unfortunately, the current availability of such devices is limited in practice
to high bandwidth network and storage interfaces for enterprise cloud com-
puting. The design of customized self-virtualizing hardware with support for
real-time reservations is out of the scope of this paper (see BII(d)).

(d) Paravirtualization: in this approach, the GPOS is extended with a paravir-
tual driver—typically known as the front-end driver in XEN|[6] split-driver
terminology—that uses dual-OS communications for sending requests to the
RTOS back-end driver. Paravirtualization helps raising the level of abstrac-
tion from bus operations to device-level operations in order to reduce the
overhead, though its performance is still far from native. Similar to the emu-
lation approach, the rate of device operation requests must be limited not to
affect the real-time performance of the RTOS. The major drawback of this
approach is the fact that the GPOS is limited to the functionality supported
by the RTOS driver. RTOS drivers do not necessarily provide support for
all of the functionality available in a certain device. For instance, a sound
card may have audio capture features that are not needed by the RTOS.
Implementing this extra functionality on the RTOS would complicate un-
necessarily the TCB (see requirement BI(f)).

The left part of Table[Ilsummarizes qualitatively the properties of each approach.
Property (1) refers to the ability to guarantee the timeliness of the RTOS. Prop-
erty (2) indicates whether the GPOS uses its own fully functional drivers or not.
Property (3) shows the adequacy of each approach to minimize the device la-
tency. Property (4) refers to the overhead introduced by each approach. Property
(5) expresses the suitability of each approach for a highly concurrent scenario.
Finally, property (6) refers to the hardware cost of each approach.

We discard the proxy, device emulation and self-virtualizing approaches (i.e.,
approaches (a), (b) and (c)) because they cannot satisfy requirements B.I{),
B and BIId) respectively. Paravirtualization (approach (d)) can satisfy all
of the requirements enumerated in Sec. 3] at the cost of reduced functionality
and moderate overhead. However, it is not suitable for the type of device sharing
patterns described in Sec. [Z2] where the GPOS usage percentage of the shared
device greatly exceeds the RTOS usage percentage. For that reason, in Sect.
we explore a new approach based on dynamically re-partitioning devices between
the RTOS and the GPOS at run time.

Reliable Device Sharing Mechanisms 81

RTOS RTOS

RTOS PLUG GPOS
Re-partition UNPLUG Re-partition
Manager Manager
Reset C?)‘r‘:!'r"gﬁi_ plug/unplug
Driver cations Driver

L]vL |
IRQ
F!Q Config 12PC Untrust\l> ,Trust
Trigger . Device

Fig. 4. Architecture of the pure re-partitioning mechanism

3.3 Reliable Device Sharing through Re-partitioning

The re-partitioning approach—depicted in Fig. Ble)—consists of dynamically
modifying the assignment of devices to each OS at run time. Re-partitioning
is always initiated by the RTOS after a trigger condition (e.g., car going into
backwards mode) and has several benefits:

— Devices can be accessed directly by both OSs which minimizes overhead.

— If a device is assigned to the GPOS, its interrupts (IRQ) are handled by the
GPOS itself, which runs with the lowest RTOS priority. For that reason, the
timeliness of RTOS tasks and interrupt handlers can be guaranteed.

— The VL does not require complex or any modifications at all.

— Any device can be used (e.g., not restricted to self-virtualizing devices).

— The GPOS can leverage its own feature-rich drivers, while the RTOS restricts
itself to offer the minimum support in order to keep the TCB small.

We propose two mechanisms for implementing device sharing using the re-
partitioning approach: a pure re-partitioning mechanism and a hybrid one. The
main difference between them is a trade-off between the higher performance of
pure re-partitioning; and the lower device latency of the hybrid mechanism.

Pure Re-partitioning is illustrated by Fig.dl The architecture uses the con-
cept of hotplugging—rtypically found in buses such as USB—and applies it to the
dynamic re-partitioning of a device between the RTOS and the GPOS. Device
sharing is managed by the so-called Re-partition Manager agents at each OS.
The pseudo code of both agents is shown in Fig.[Bl When a condition triggers the
re-partitioning process, the RTOS re-partition manager is activated. The RTOS
re-partition manager needs to handle two scenarios:

— If the device must be re-partitioned to the TCB, the RTOS re-partition
manager will send an UNPLUG event to the GPOS counterpart. The RTOS
re-partition manager is not dependent on the state of its GPOS counterpart.
This is necessary for ensuring that even if the GPOS misbehaved, the RTOS

82 D. Sangorrin, S. Honda, and H. Takada

1 task RTOS_Repartition_Manager is 1 task GPOS_Repartition_Manager is
2 begin 2 begin

3 loop 3 loop

4 accept Repartition(Device, Trigger) do 4 Wait(Event, Device)

5 case Trigger is: 5 case Eventis:

6 when 'Set_Trust' => 6 when 'UNPLUG' =>
7 Send_Event(UNPLUG) 7 Unplug(Device)
8 Reset(Device) 8 when 'PLUG' =>

9 Config(Device, TRUST) 9 Plug(Device)

10 when 'Set_Untrust' => 10 end case

11 Flush(Device) 11 end loop

12 Config(Device, UNTRUST) 12 end task

13 Send_Event(PLUG)

14 end case

15 end Repartition

16 end loop

17 end task

Fig. 5. Pseudo code of the pure re-partitioning mechanism

would still be able to use the shared device with reliability guarantees. For
that reason, once the hotplug event is sent, the RTOS re-partition manager
needs to fully reset the device into a predefined state. This operation may in-
volve disabling the device’s interrupt, canceling current operations or waking
the device from low-power mode. Immediately after resetting the device—
and without the GPOS being able to execute—the RTOS re-partition man-
ager configures the device as part of the TCB. Note that the opposite order
would be insecure if the device was in the middle of a DMA operation. The
method to configure a shared device as part of the TCB is dependent on
the VL implementation. Once the re-partition process finishes, the RTOS
can respond to the trigger condition and use the device reliably. When the
GPOS is scheduled to execute by the VL (e.g., when the RTOS becomes idle)
the GPOS re-partition manager must handle the UNPLUG event. The way
to handle it may differ depending on the implementation but typically re-
quires killing or suspending tasks that were using the device; and unloading
or disabling the corresponding device driver.

— If the device must be re-partitioned to the UCB (e.g., because the RTOS
does not longer need it), the RTOS re-partition manager must flush any
sensitive data from the shared device; configure it as part of the UCB; and
send a PLUG event to the GPOS. The GPOS re-partition manager will
handle the PLUG event, which typically involves re-enabling or loading the
corresponding device driver; and sending a notification to user space for
registered processes to resume applications that were previously stopped.

The pure re-partitioning mechanism provides both OSs with direct access to
devices for maximizing performance. However, fully resetting devices before re-
partitioning can boost device latency to tens of milliseconds (see Sect. [l), which
depending on the real-time application may be considered excessive.

Reliable Device Sharing Mechanisms 83
RTOS GPOS
Re-partition Re-partition
Manager Manager

" Dual-0S
Config Communications Plug
Driver Modified Driver
—VL|Call —
T ¥

v | D{onirustAccessh G, |
Trigger Device ‘ IFi{Q
Fia [L_tnit_|[Runtime];’

Fig. 6. Architecture of the hybrid re-partitioning mechanism

1 task RTOS_Repartition_Manager is 1 task GPOS_Repartition_Manager is
2 begin 2 begin

3 Init(Device) 3 loop

4 loop 4 Wait_Event(PLUG, Device)

5 accept Repartition(Device, Trigger)do 5 Plug(Device)

6 case Trigger is: 6 endloop

7 when 'Set_Trust' => 7 end task

8 Reset_Runtime(Device)

9 Config(Device, TRUST) 1 procedure Write(Reg : in, Value : in) is
10 when 'Set_Untrust' => 2 begin

11 Flush(Device) 3 Ret=VL_call(Reg,Value)

12 Config(Device, UNTRUST) 4 if Ret == Error then

13 Send_Event(PLUG) 5 Unplug(This)

14 end case 6 Exit

15 end Repartition 7 endif

16 end loop 8 end procedure

17 end task

Fig. 7. Pseudo code of the hybrid re-partitioning mechanism

Hybrid Re-partitioning is depicted in Fig. In order to reduce the de-
vice latency, we modified the pure re-partitioning mechanism with some con-
cepts inspired by the paravirtualization approach, ergo the name of hybrid
re-partitioning. The mechanism is derived from the observation that most part
of the time spent on resetting a device is consumed on operations that are only
performed at initialization (e.g., setting the clock rate) but not at run time. In
the hybrid mechanism, the interface of a shared device is logically divided be-
tween bits that are required at initialization (Init interface); and those required
during run time (Runtime interface). The Init interface can only be accessed
by the RTOS. For that reason, the RTOS can guarantee that certain conditions
(e.g., that the device is powered on) are satisfied at all times, and thus reduce
the time for resetting a device. In contrast, the Runtime interface can be re-
partitioned to the RTOS or the GPOS. A software-only method to implement
the hybrid approach consists of configuring the device as part of the TCB, and
extending the VL with a simple VL call for the GPOS to access the Runtime in-
terface. Access permissions to the Runtime interface are controlled by the RTOS

84 D. Sangorrin, S. Honda, and H. Takada

re-partition manager and the VL through a boolean variable (Untrust Access)
in trusted memory. Fig. [shows the pseudo code of the hybrid mechanism which
differs from the one in Fig. [Blin the following aspects:

— Devices do not require a complete reset when re-partitioned to the TCB
because only the Runtime interface could have been altered by the UCB.

— In a software-only implementation, RTOS UNPLUG events can be replaced
by a lazy algorithm. If the GPOS attempts calling the VL while the Runtime
interface is assigned to the TCB, the VL will return an error code. The GPOS
device driver is modified to handle this error code as an UNPLUG event.
Note that the handling of PLUG and UNPLUG events must be serialized to
avoid race conditions.

The right part of Table [l summarizes the properties of each re-partitioning
mechanism. The hybrid mechanism has the major benefit of a shorter device la-
tency, compared to the pure re-partitioning mechanism, because it ensures that
time-consuming device initialization operations are not available to the GPOS.
However, a software-only implementation of the hybrid mechanism requires small
modifications to the VL and introduces overhead on each register access. Also,
if the shared device has DMA capabilities, the VL. may require further modifi-
cations in order to check that DMA memory addresses belong to the UCB.

4 Implementation

We implemented both re-partitioning mechanisms (pure and hybrid) and the
paravirtualization approach—suitable for highly concurrent shared devices—on
a physical platform for comparison. We used TOPPERS/SafeG v0.3, TOP-
PERS/ASP v1.6]9] and Linux v2.6.33 with buildroot[16] as the VL, RTOS
and GPOS respectively. The hardware platform consisted of a PB1176JZF-S
board|L7] equipped with an ARM1176JZF-S|10] running at 210MHz with 32 KB
of cache, 128 MB of Non-Secure dynamic memory and 8 MB of Secure static
memory. The following device peripherals were used for the implementation:

— Sound device: an ARM PrimeCell Advanced Audio CODEC Interface con-
nected to an LM4549 audio CODEC that is compatible with AC’97 Rev 2.1.
The device in the board provides an audio channel with 512-depth transmit
and receive FIFOs for audio playback and audio capture respectively.

— Display device: an ARM PrimeCell Color LCD controller (CLCDC) that
provides a display interface with outputs to a DVI digital/analog connector
for connecting to a CLCD monitor. The controller has dual 16-deep pro-
grammable 64-bit wide FIFOs for buffering incoming display data through a
DMA master interface. The controller is configured through a slave interface,
and has a color palette memory for low-resolution configurations.

Both devices can be configured to be part of the TrustZone Secure or Non-Secure
worlds through the TrustZone Protection Controller (TZPCJ1g]). In particular,
the master and slave interfaces of the CLCDC can be selectively configured as
Secure and Non-Secure.

Reliable Device Sharing Mechanisms 85

For the implementation of the paravirtualization approach, the GPOS was
extended with a new ALSA[19] sound driver that acts as the front-end driver;
and a simplified back-end sound driver—without capturing features—was added
to the RTOS. GPOS operations on the sound card are forwarded to the RTOS
back-end driver through the SafeG dual-OS communications system[13]. The
GPOS video driver was also splitted in two parts. The GPOS front-end driver
implements the Linux framebuffer interface by sending requests to a simplified
RTOS back-end driver which uses a low-resolution configuration. After that,
pixel operations are performed directly on a region of Non-Secure memory ac-
cessed by DMA. The RTOS back-end driver validates that DMA addresses sent
by the GPOS front-end driver belong to the UCB.

For the implementation of the two re-partitioning mechanisms, we used the
baseline feature-rich (e.g., with audio capturing or high resolution video) GPOS
sound and video drivers; and simplified drivers for the RTOS. The GPOS re-
partition manager executes with a high SCHED FIFO priority and handles
hotplug events by killing/restarting tasks associated to a device; and remov-
ing/installing the corresponding device driver modules. The hybrid mechanism
was implemented in software (i.e., through VL calls) because the TrustZone con-
troller currently does not support bit granularity for the configuration of a device
interface as Secure or Non-Secure. Therefore, the SafeG monitor was extended
with a lightweight system call—implemented with a few assembly instructions—
for the GPOS to access the Runtime interface. This system call involves a se-
cure monitor call (SMC) instruction; a branch that depends on the value of the
Untrust Access variable (placed in Secure memory); validating the bits being
accessed (including DMA addresses); and returning back to the GPOS.

5 Evaluation

This section presents the results of the evaluation of the device sharing imple-
mentations described above. The evaluation environment is the same as the one
used for the implementation in Sect.[dl All time measurements represent worst-
case values among a total of 10,000 measurements.

5.1 Overhead

In this section we evaluate the overhead that each mechanism causes on the
handling of shared devices. The RTOS has direct device access (i.e., no overhead)
in all mechanisms, and therefore we only evaluate the overhead on the GPOS.
First, we configured a system in which the RTOS is always idle and the GPOS
is used either to play a 16bits/48Khz OGG Vorbis music file; or to show an MP4
video with 1024x768 pixels and 16 bpp resolution streamed from a network
server. Both applications are executed with lower priority than the GPOS re-
partition manager. Table 2] shows the measured execution time overhead per
register access for each mechanism. In the pure re-partitioning mechanism, the
GPOS can access shared devices directly, and therefore no overhead appears.

86 D. Sangorrin, S. Honda, and H. Takada

Table 2. Execution time overhead per register access

Paravirtual Pure Hybrid

min avg max min avg max min avg max
Sound 6lps 122pus 182us 0 0 0 30ps 4lps H2us
Video 4Tus 117us 18Tus 0 0 0 30us 42us H3us

100 T B X

S B Paravirt. <z

= Brod SRS

a 80 B Pure PR |

g ?z@j%% Hybrid m—

g

g 60 o

o

z 407 -

© 0]

c R

- 20t e

1S} B

3o
B 0 5 B
Sound card Video card

Fig. 8. CPU performance for each mechanism

The overhead incurred by the paravirtualization mechanism is caused by the
communications between the back- and front-end drivers. Note that we measured
the overhead as per-register access because a single paravirtual operation may
involve the reading or writing of several registers at once. Finally, the hybrid
mechanism has lower overhead because register accesses do not cause a full
context switch to the RTOS as in the paravirtualization approach.

Then, we repeated the same experiment but this time we also executed the
Dhrystone[16] benchmark on the GPOS (with a lower priority) for quantifying
the performance decrease caused by each mechanism. Fig. [§ shows the per-
formance of each mechanism as a percentage of the native performance. As
expected, pure re-partitioning achieves 100% of native performance for both
devices. The overhead of the paravirtualization and the hybrid mechanisms is
considerably more pronounced for the sound card than for the video card. The
reason is that the sound card is completely handled through registers; while the
video card—once initialized through its slave interface registers—is managed
simply by modifying a block of RAM memory that the master interface accesses
through DMA. Currently, the overhead of the hybrid mechanism is higher than
what we had expected because we found a cache coherence problem between
the Secure and Non-Secure worlds. We have temporarily solved this problem by
flushing the data cache for each register access, which introduces significant over-
head. We also observed that the overhead of the paravirtualization approach in
the handling of the sound card can be reduced by increasing the size of the buffer
used to store music samples inside the ALSA front-end driver in the GPOS.

Reliable Device Sharing Mechanisms 87

Table 3. Device latency of each mechanism

Paravirtual Pure Hybrid
Sound 83us 10.53ms 113us
Video 3us 20.22ms 10us

Table 4. Number of source lines of code modified

Paravirtual Pure Hybrid
GPOS(user) 0 153 113
GPOS(kernel) 297 0 54
RTOS 38 43 32
VL 0 0 37

5.2 Device Latency

Device latency is the worst-case amount of time that the RTOS may have to wait
until a shared device can be used reliably. We modified the system described in
Sect. 5] (without the Dhrystone benchmark) so that every 10 seconds the GPOS
audio or video playback application is interrupted by the RTOS, in order to emit
a short beep sound (a raw PCM linked to the RTOS binary) or display a black
and white alert message on the screen.

Table B] shows the worst-case measurements for the device latency of each
mechanism. The measurements for the paravirtualization and hybrid mecha-
nisms are an order of magnitude smaller than the ones observed for pure re-
partitioning. The reason for that is the fact that both the paravirtualization and
the hybrid approach can limit GPOS access to critical bits of the device inter-
face. For example, the GPOS is not allowed to set the AC’97 CODEC or the
LCD in low power mode. In contrast, the pure re-partitioning approach allows
the GPOS to access the device directly, and therefore shared devices must be
fully reset every time the RTOS needs to use them. This must be taken into
account during the real-time scheduling analysis of the system. The device la-
tency of the hybrid mechanism is slightly longer than the latency observed for
the paravirtualization approach. This can be explained by the fact that in the
paravirtualization approach the usable functionality of a device is limited by
the support included in the simplified RTOS driver. In contrast, in the hybrid
approach the GPOS uses its own feature-rich drivers (e.g., with support for au-
dio capturing and high video resolutions), and therefore there are a few more
registers that need to be reconfigured.

5.3 Code Modifications

Tabledl displays the number of source lines of code (C code, except the VL which
is written in assembly) modified for each implementation. The paravirtualization
mechanism required a new GPOS sound driver and modifications to the GPOS

88 D. Sangorrin, S. Honda, and H. Takada

video driver in order to communicate with the RTOS drivers, which also re-
quired modifications. In the pure re-partitioning mechanism, most modifications
occurred at user level where the re-partition managers execute. Finally, the hy-
brid approach required modifications both in user and kernel level. In particular,
GPOS drivers were modified to perform calls to the VL, which was extended to
handle this new paravirtual call.

6 Related Work

While techniques for virtualizing processing time and memory resources have
usually a rather low overhead, it is challenging to efficiently virtualize I/O de-
vices. There exists a substantial amount of literature describing methods to
virtualize hardware devices. In particular, virtualization of high-bandwidth net-
work interface devices in the context of enterprise virtualization for data centers
has been the subject of extensive research.

— Full device emulation is used by fully virtualized systems|20]. In this ap-
proach, guest OS accesses to a virtual legacy device interface are trapped
by a hypervisor, which converts them into operations on a real device. The
main benefits of this approach are the fact that guest OSs do not require
modifications; and the ability to migrate them between heterogeneous hard-
ware. However, this approach incurs a significant performance degradation
due to frequent context switches between the guest OS and the hypervisor.

— Paravirtualization is the de-facto approach to device sharing in most popu-
lar enterprise hypervisors[6, |7]. In this approach, guest OSs contain device
drivers that are hypervisor-aware. A paravirtualized device driver operates
by communicating with the real device driver which runs outside the guest.
The real device driver that actually acccesses the hardware can reside in the
hypervisor or in a separate device driver domain with privileged access. The
level of abstraction is raised from low-level bus operations to device-level op-
erations. For that reason, paravirtualized devices achieve better performance
than emulated ones. Nonetheless, paravirtualization introduces a rather high
CPU overhead compared to a non-virtualized environment which also leads
to throughput degradation in high bandwidth networks|21]. Several tech-
niques to improve the performance of paravirtualized drivers have been pre-
sented. In [22] the authors report a 56% reduction of execution overhead on
the receive path for conventional network interfaces through improvements
on the driver domain model. [23] introduces improvements to the memory
sharing mechanism used by paravirtualized drivers to communicate with the
real device driver, reporting a reduction of up to 31% in the per-packet over-
head. [24] proposes a software architecture which runs middleware modules
at the hypervisor level. Their approach reduces I/O virtualization overhead
by increasing the level of abstraction which allows to cut down the num-
ber of guest-hypervisor context switches. Despite the numerous performance
improvements, paravirtual solutions are still far from native performance.

Reliable Device Sharing Mechanisms 89

— Direct device assignment—also known as pass-through access—provides guest
OSs with direct access to the real device, maximizing performance. With di-
rect device assignment, an untrusted guest OS could potentially program
a DMA device to overwritte the memory of another guest or the hyper-
visor itself. [25] presents a study on available protection strategies. The
most extended strategy involves the use of I/O memory management units
(IOMMUs)[26]. Software-based approaches have also been presented |27, 28].
Recently, in [29] the authors report up to 97%-100% of bare-metal perfor-
mance for I/O virtualization in a system that combines the usage of IOMMU
and a software-only approach for handling interrupts within guest virtual
machines. Despite its benefits, direct device assignment does not allow guest
OSs to share the same device and makes live migration difficult|30, 131].

— Self-virtualizing devices have been introduced[15, 28,132, 133] to avoid the high
performance overhead of software-based device virtualization. This approach
allows guest OSs to access devices directly, through separate interfaces that
can be assigned independently to each guest OS. The main drawbacks of this
approach are its increased hardware cost and limited availability.

Micro-kernels use a technique close to paravirtualization. Device drivers are
implemented as user-space processes and applications communicate with them
through inter-process communication|5]. Finally, direct device assignment is not
easy to implement in embedded systems because they are not usually equipped
with an IOMMU to provide the necessary isolation. Fortunately, recent ARM
high-end embedded processors include TrustZone hardware security extensions|g]
which provide similar functionality for up to two domains.

7 Conclusions and Future Work

In this paper, we investigated several device sharing mechanisms for dual-OS
systems, where the most fundamental requirement is protecting the reliability of
the RTOS. We observed that previous approaches are not well suited to device
sharing patterns where the GPOS share greatly exceeds that of the RTOS. For
that reason, we proposed two new approaches (pure and hybrid) that are based
on dynamically re-partitioning devices between the RTOS and the GPOS at run
time. The reliability of the RTOS is ensured by the fact that before a device
is re-partitioned to the RTOS, the device (or its run-time interface) is reset
and configured as a TCB resource, which prevents further accesses by malicious
GPOS applications. Additionally, when a device is re-partitioned back to the
GPOS, its buffers are flushed to avoid leaking sensitive data. We evaluated both
approaches and compared them with the paravirtualization approach, popular
in cloud virtualization. We observed a trade-off between the lower overhead and
higher functionality of the re-partitioning approaches; and the shorter device
latency of the paravirtualization approach. We suggest that TrustZone hardware
could be extended to allow configuring device interfaces with finer granularity
for the hybrid approach to be implemented with near-native performance.

90 D. Sangorrin, S. Honda, and H. Takada

In Sec.[B1] we assumed a dual-OS system that runs on a single-core processor.
On a multi-core implementation, both re-partitioning algorithms need to address
a race condition that may occur if the GPOS accesses a device just after being
reset by the RTOS, and before being configured as a TCB resource (e.g., lines
8 and 9 of the RTOS re-partition manager in Fig. []). To solve this problem, a
mechanism for the RTOS to block UCB accesses to the shared device, while still
configured as an UCB resource, is needed. The implementation could be done
in software by extending the VL with support for TCB critical sections; or in
hardware by adding a new flag for blocking UCB accesses to the shared device.

Acknowledgments. Part of this work is supported by the KAKENHI (23700035)
and the Monbukagakusho scholarship.

References

1. Wilson, P., Frey, A., Mihm, T., Kershaw, D., Alves, T.: Implementing Embedded
Security on Dual-Virtual-CPU Systems. IEEE Design & Test of Computers 24(6),
582-591 (2007)

2. Heiser, G.: The Role of Virtualization in Embedded Systems. In: Proceedings of
the 1st Workshop on Isolation and Integration in Embedded Systems, Glasgow,
UK, pp. 11-16 (2008)

3. Sangorrin, D., Honda, S., Takada, H.: Dual Operating System Architecture for
Real-Time Embedded Systems. In: Proceedings of the 6th International Work-
shop on Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT), Brussels, Belgium, pp. 6-15 (2010)

4. Beltrame, G., Fossati, L., Zulianello, M., Braga, P., Henriques, L.: xLuna: a Real-
Time, Dependable Kernel for Embedded Systems. In: Proceedings of the 19th IP
Based Electronics System Conference and Exhibition (IP-SoC), Grenoble, France
(2010)

5. Armand, F., Gien, M.: A practical look at micro-kernels and virtual machine mon-
itors. In: Proceedings of the 6th IEEE Conference on Consumer Communications
and Networking Conference, Piscataway, USA, pp. 395401 (2009)

6. Chisnall, D.: The Definitive Guide to the Xen Hypervisor, 1st edn. Prentice Hall
Press (2007)

7. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the Linux Virtual
Machine Monitor. In: Proceedings of the Ottawa Linux Symposium (OLS 2007),
Ottawa, Canada, pp. 225-230 (2007)

8. ARM Ltd.: ARM Security Technology. Building a Secure System using TrustZone
Technology, PRD29-GENC-009492C (2009)

9. TOPPERS project: Official website, http://www.toppers. jp/

10. ARM Ltd.: ARM1176JZF-S TRM, DDI 0301G (2008)

11. ARM Ltd.: AMBA3 TrustZone Interrupt Controller TRM, DTO 0013B (2008)

12. Hergenhan, A., Heiser, G.: Operating Systems Technology for Converged ECUs.
In: Proceedings of the 6th Embedded Security in Cars Conference (ESCAR),
Hamburg, Germany (2008)

13. Sangorrin, D., Honda, S., Takada, H.: Reliable and Efficient Dual-OS Communica-
tions for Real-Time Embedded Virtualization, Internal Report, Nagoya University,
Japan (2012)

http://www.toppers.jp/

14.

15.
16.
17.
18.
19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Reliable Device Sharing Mechanisms 91

Popek, G., Goldberg, R.: Formal requirements for virtualizable third generation
architectures. Communications of the ACM 17(7), 412421 (1974)

PCI-SIG: I/O Virtualization, http://www.pcisig.com/specifications/iov/
Buildroot: Official website, http://buildroot.uclibc.org/

ARM Ltd.: RealView Platform Baseboard for ARM1176JZF-S User Guide (2011)
ARM Ltd.: AMBAS3 TrustZone Protection Controller TRM, DTO 0015A (2004)
ALSA project: Official website, http://www.alsa-project.org/

Sugerman, J., Venkitachalam, G., Lim, B.: Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor. In: Proceedings of the USENIX
2001 Annual Technical Conference, Boston, USA, pp. 1-14 (2001)

Menon, A., Santos, J., Turner, Y., Janakiraman, G., Zwaenepoel, W.: Diagnosing
performance overheads in the XEN virtual machine environment. In: Proceedings
of the 1st ACM/USENIX International Conference on Virtual Execution Environ-
ments (VEE 2005), Chicago, USA, pp. 13-23 (2005)

Santos, J., Turner, Y., Janakiraman, G., Pratt, I.: Bridging the gap between
software and hardware techniques for I/O virtualization. In: Proceedings of the
USENIX 2008 Annual Technical Conference, Boston, USA, pp. 29-42 (2008)
Ram, K., Santos, J., Turner, Y.: Redesigning Xens Memory Sharing Mechanism
for Safe and Efficient I/O Virtualization. In: Proceedings of the 2nd conference on
I/0O virtualization (WIOV 2010), Pittsburgh, USA (2010)

Gordon, A., Ben-Yehuda, M., Filimonov, D., Dahan, M.: VAMOS, Virtualization
Aware Middleware. In: Proceedings of the 3rd Conference on I/O Virtualization
(WIOV 2011), Portland, USA (2011)

Willmann, P., Rixner, S., Cox, A.: Protection strategies for direct access to virtu-
alized I/O devices. In: Proceedings of the USENIX 2008 Annual Technical Confer-
ence, Boston, USA, pp. 15-28 (2008)

Ben-Yehuda, M., Xenidis, J., Ostrowski, M., Rister, K., Bruemmer, A., Doorn,
L.: The Price of Safety: Evaluating IOMMU Performance. In: Proceedings of the
Ottawa Linux Symposium (OLS 2007), Ottawa, Canada, pp. 9-20 (2007)

Xia, L., Lange, J., Dinda, P., Bae, C.: Investigating Virtual Passthrough I/O on
Commodity Devices. Operating Systems Review 43(3), 83-94 (2009)

Willmann, P.; Shafer, J., Carr, D., Menon, A., Rixner, S., Cox, A., Zwaenepoel,
W.: Concurrent Direct Network Access for Virtual Machine Monitors. In: Proceed-
ings of the 13th IEEE International Symposium on High-Performance Computer
Architecture (HPCA-13), Phoenix, USA, pp. 306-317 (2007)

Gordon, A., Amit, N., HarEl, N., Ben-Yehuda, M., Landau, A., Schuster, A.,
Tsafrir, D.: ELI: Bare-Metal Performance for I/O Virtualization. In: Proceedings
of the 17th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS 2012), London, UK (2012)
Zhai, E., Cummings, G., Dong, Y.: Live Migration with Pass-through Device for
Linux VM. In: Proceedings of the Ottawa Linux Symposium (OLS 2008), Ottawa,
Canada, pp. 261-268 (2008)

Kadav, A., Swift, M.: Live migration of direct-access devices. Operating Systems
Review 43(3), 95-104 (2009)

Raj, H., Schwan, K.: High performance and scalable I/O virtualization via self-
virtualized devices. In: Proceedings of the 16th International Symposium on High
Performance Distributed Computing, California, USA, pp. 179-188 (2007)
Rauchfuss, H., Wild, T., Herkersdorf, A.: A network interface card architecture for
I/0 virtualization in embedded systems. In: Proceedings of the 2nd Conference on
I/O Virtualization (WIOV 2010), Pittsburgh, USA (2010)

http://www.pcisig.com/specifications/iov/
http://buildroot.uclibc.org/
http://www.alsa-project.org/

Modelling User-Centered-Trust (UCT)
in Software Systems:
Interplay of Trust, Affect and Acceptance Model

Zahid Hasan, Alina Krischkowsky, and Manfred Tscheligi

Christian Doppler Laboratory for Contextual Interfaces
HCI & Usability Unit, ICT&S Center, University of Salzburg
Sigmund-Haffner-Gasse 18, 5020 Salzburg, Austria
firstname.lastname@sbg.ac.at

Abstract. Even though trust is a frequently articulated topic in soft-
ware technology literatures, yet the user centered point of view of trust is
hardly discussed. How users perceive the trustworthiness of software sys-
tems is not trivial, in fact, if a user cannot trust a program to execute on
his behalf, then he should not run it [36]. This paper identifies a potential
lack in examination of trust in software systems from user’s perspective
and aims to develop a conceptual User-Centered-Trust (UCT) framework
to model it. This model integrates both Technology Acceptance Model
(TAM) and trust under Theory of Reasoned Action (TRA) nomological
network. In order to integrate them, trust has been conceptualized as an
attitude towards the usage of the systems having two distinct dimensions:
cognitive and affective.

Keywords: Trust, Acceptance model, Technology.

1 Introduction

The advent of World Wide Web (WWW) and the emergence of e-commerce dur-
ing the 90s [23] introduced new types of buying-selling behaviors over the Inter-
net which differ from traditional ‘face-to-face’ interaction. In this new paradigm
trust is considered as an essential component [2]. A considerable number of trust
models and frameworks have been proposed during past decades. However, the
trust targets in most of these studies are humans (e-vendor or organizations),
and the nature as well as the role of trust in technological artifacts remains un-
clear [71]. What has been generally absent from these investigations is a focus on
the effects of trust placed in the information technology (IT) artifacts-hardware
and software systems [69).

Trust in IT is an important concept because people today rely on IT more
than ever before [48], although, the nature of trust in technological artifacts
is still an under-investigated and not well understood topic [71]. Researchers
debate whether or not technological artifacts can be an object of trust [71], and
if it is valid to ascribe human characteristics to technological artifacts [71]; [10];
[s]; [0 [13.

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 92-[09] 2012.
© Springer-Verlag Berlin Heidelberg 2012

Modelling User-Centered-Trust (UCT) in Software Systems 93

In parallel to trust aspect, another stream of research surfaced during the
80’s which is Technology Acceptance Model (TAM) - TAM assumes that how
individuals accept a new technology is based on an internal cost-benefit analy-
sis. Users assess a technology’s usefulness and evaluate whether that usefulness
exceeds the costs associated with gaining access to it or learning to use it [54].

Each of these two models explains different aspects of usages. While TAM
focuses on technological interface, trust focuses on user’s perceptions of the e-
vendor [5]. A number of attempts have been undertaken to combine these two
essential theories to predict user behavior in e-commerce environment. However,
since there is no commonly-agreed definition of trust model, these attempts
generally yield diverse interpretations (for details see [5]).

Both TAM and trust model can be explained through the Theory of Reasoned
Action (TRA), which essentially posits that behaviour is driven by intentions
where intentions are a function of an individual’s attitude and these attitudes
are derived from beliefs. However, most often in TAM and trust literatures these
attitudes are dropped out. This exclusion of attitude poses two problems, first
it has created inconsistencies between trusting beliefs and technology beliefs[5].
Second, It reduced the scope of exploring the role of affect (as a dimension of
attitude) in technology acceptance.

Considering the points mentioned above, this paper provides a conceptual
framework for understanding trust related phenomena in software systems from
users’ perspective. This hypothetical model incorporates both TAM and trust
under TRA nomological network.

2 Concept of Trust

Sociologist Diego Gambetta says:

“Trust is one of the most important social concepts that helps human
agents to cope with their social environment and is present in all human
interaction” [24].

In fact, trust helps us to make rational decisions in the real world based on the
mixture of bounded rational calculation and trust [33]. The meaning of trust is so
diverse that articulating a precise definition of trust is not a simple matter. Some
define trust as people’s behavior in a situation of vulnerability or simply their
attitude or the degree of confidence [32]. Even at worst, when researchers tried
to come up with a common definition of trust by surveying a massive number
of empirical studies, ultimately, it produced a ’conceptual confusion’ regarding
the meaning of trust [40]. The meaning of trust in the OXFORD dictionary is
defined as ’confidence in or reliance on some quality or attribute of a person
or thing, or the truth of a statement’. However this simplistic view of trust is
not often sufficient to describe the complex interaction of trust-relationship. Re-
searchers do not have a common consensus on what exactly trust is, disagreeing
even on basic definitions [72]. Moreover, trust has been studied by different dis-
ciplines - sociology, psychology, management, marketing, ergonomics, industrial

94 Z. Hasan, A. Krischkowsky, and M. Tscheligi

psychology, electronic commerce (e-commerce) where it has been defined accord-
ing to specific disciplinary jargon and conceptualized by own understanding and
findings. For example, Psychologists consider trust as an important element for
personality development. Philosophers define trust in terms of social values and
benefits. In management and business trust is related to organizational bene-
fit and believed to increase business productivity. Researchers from Marketing
field often define trust within buyer-seller relationship, branding and services.
Trust plays a central role in helping consumers overcome perceptions of risk and
insecurity.

2.1 Trust as Belief, Attitude, Intention and Psychological State

Trust has been conceptualized as belief, attitude, intention across different fields.
The following section provides a short description of each concepts.

Belief: According to Pavlou (2003) [56], trust in e-commerce is defined as the
belief that allows consumers to willingly become vulnerable to Web retailers af-
ter having taken the retailers’ characteristics into consideration.

Attitude: Jones (1996)[37 defines trust as an attitude of optimism about the
goodwill and competence of another. The attitude of optimism is based on both
beliefs about the other’s trustworthiness and emotions.

Intention: Mayer, Davis, and Schoorman (1995) [47] define trust as the inten-
tion (willingness) of a party to be vulnerable to the actions of another party
based on the expectation that the other will perform a particular action impor-
tant to the trustor, irrespective of the ability to monitor or control that other
party. Hoy and Tschannen-Moran (1999) [32] states: Trust is an individuals or
groups willingness to be vulnerable to another party based on the confidence that
the later party is benevolent, reliable, competent honest and open. Doney, Can-
non, and Mullen (1998) [19] define trust as a willingness to rely on another party
and to take action in circumstances where such action makes one vulnerable to
the other party.

Psychological State: According to Rousseau, Sitkin, et al. (1998) [58], trust
is a psychological state comprising the intention to accept vulnerability based
upon positive expectations of the intentions or behavior of another. Trust can
be defined as a state involving confident positive expectations about anothers
motives with respect to oneself in situations entailing risk ([8], appeared in [73])

Although there is no common agreement about the definition of trust, most
researchers acknowledge the importance of trust in human life. For instance, one
can decrease complexity by adopting trust since it helps reducing the number of
options one has to consider in a given situation, which enables people to live in
risky and uncertain situations [13].

2.2 Confusion about Trust and Trustworthiness

Russell Hardin (1996) [29] argued that when philosophers attempt to consider
trust, often they inadvertently consider trustworthiness, mistaking it for trust.

Modelling User-Centered-Trust (UCT) in Software Systems 95

Mayer, Davis, and Schoorman (1995) [47] separated the notion of ’trust’ (the
general beliefs) from ’trustworthiness’ (the set of specific beliefs). Colquitt, Scott,
et al. (2007) [12] distinguished trustworthiness (the ability, benevolence, and
integrity of a trustee) and trust propensity (a dispositional willingness to rely
on others) from trust (the intention to accept vulnerability to a trustee based on
positive expectations of his or her actions). Slemrod and Katuscak (2002) [60]
assert the flip side of trust is trustworthiness.

2.3 Anomalies in Trust Measures

Not surprisingly being a vague notion, trust does not provide any coherent way
of measurement. Different authors adopted different models of trust and also
tend to measure it from different conceptualizations.

Geyskens, et al. (1998)[28] noted that although there exists conceptual agree-
ment on trust in marketing channel field, however, studies differ in their oper-
ational measurement of trust. They criticized that most studies include one or
both aspects of trust in a single or global and uni-dimensional measure of trust.

Gefen (2002) [26] found that previous researches on trust had mostly used a
single dimensional scale that combines many aspects of trustworthiness into one
factor [34], or measured consumers’ assessment of their overall trust in the online
vendor[25]. The data from his experiment showed that trustworthiness and trust
should not be regarded as a single construct. According to him [26], overall trust
is a distinct construct that is the product of three trustworthiness-beliefs

McKnight, et al. (1998) [51] raised the question: ’If one researcher defines
trust in a widely different way from another researcher, how can the theoretical
formulations and the empirical results of researchers build on each other?’

3 TAM: Technology Acceptance Model

TAM is one of the most influential extensions of Ajzen and Fishbeins theory of
reasoned action (TRA) which was originated in 1975 [20]. TRA theorizes that the
relationship between beliefs and intentions is indirect and mediated by attitudes.
TRA posits that beliefs lead to attitudes, which lead to behavioral intentions,
which results in behavior itself. Ten years later, in 1985, Davis (1985)[15] adopted
this model into his Technology Acceptance Model (TAM). The goal of TAM is
to provide an explanation of the determinants of computer acceptance that is
general, capable of explaining user behavior across a broad range of end-user
computing technologies and user populations [I7]. This model uses a response
that can be explained or predicted by user motivation, which is directly influ-
enced by an external stimulus comprising of the actual system’s features and
capabilities [9]. Relevant beliefs are perceived usefulness (U) and perceived ease
of use (EOU). Perceived usefulness has a causal effect on perceived usefulness.

Perceived usefulness is defined as: The degree to which an individual believes
that using a particular system would enhance his or her job performance.

Perceived ease of use is defined as: The degree to which an individual believes
that using a particular system would be free of physical and mental effort.

96 Z. Hasan, A. Krischkowsky, and M. Tscheligi

However, Venkatesh and Davis (1996) [70] found that both perceived useful-
ness and perceived ease of use have a direct effect on behavioral intentions, thus
eliminating the need for attitude construct from the TAM model.

Perceived

Usefulness
()
b
External Attitude Behavioral Actual
Toward Intention to > System

Variables Using (A) Use (BI) Use

Perceived /

Ease of Use

(E)

Fig. 1. Technology Acceptance Model (TAM) by [17]

3.1 Trust and TAM

These two theories Trust and TAM, are complement each other. Each model
explains a different aspect of the consumer’s relationship with an online retailer
[B]. TAM explains the effects of consumers’ technology beliefs on use, on the
other hand, trust focuses less on the technology interface and more on the users
perceptions of the e-vendor. Benamati, et al. (2010)[5] argued that in order to
explain consumers’ intentions and behaviors in a more complete way, we need
to combine these two theories (see figure [2).

INTENTIS

| BELIEFS ATTITUDES

TechnologyBeliefs

TAM

Perceived
EaseofUse

Technology
Atitude

Perceived
Usetiness

\m

= TAMRelationshios
........ > TrustRelationships
— —p IntegrationRelationships

Fig. 2. Trust with TAM proposed by Benamati, et al. (2010) [5]

Modelling User-Centered-Trust (UCT) in Software Systems 97

Since e-commerce is heavily technology-driven and at the same time it entails
high perceived risk, it is justifiable to combine both trust, risk and TAM into a
single model [56]. Suh and Han (2002)[63] found trust has a more direct effect
on a customer’s attitude than on perceived ease of use in the Internet banking
context.

Benamati, et al. (2010) [5] noted that past studies which tried to integrate
TAM with trust posit very different relationships between model constructs. For
example, Pavlou (2003)[56] found that trust affects technology beliefs, Suh and
Han (2002)[63] observed that technology beliefs affect trust, whereas Gefen, et
al. (2003)[27] found trust and technology beliefs affect each other.

4 Trust in Technology vs. Trust in People

Even if some scholars argue that trust in technology is inappropriate, because
technology lacks the requisite properties of a social actor, for example, accord-
ing to Friedman, et al. (2000)[22], trust requires both parties to be able to ex-
tend good will, be vulnerable and experience betrayal. However, It appears that
there is sufficient evidence to indicate that people are capable of instilling trust
in an artifact of technology, such as an information document or a computer
system [10].

Recent trust research in the information systems (IS) field has described trust
as not only a primary predictor of technology usage but also as a fundamen-
tal construct for understanding user perceptions of technology [41]. However,
trust in IS is defined in terms of trust in people (how trust in people affects IT-
acceptance) without regard for trust in the technology itself [49]. Most IS trust
research has focused on a web vendor or virtual team members and thus the
trustee has been human, or an organization of humans [41]. Trust-in-technology
is defined as the extent to which one is willing to depend on a technology be-
cause one believes the technology itself exhibits desirable attributes [48]. There
are two approaches adopted to measure trust in technology: 1) measuring trust
using interpersonal-trust variables including ability, benevolence, and in-
tegrity [41], [71]. and 2) measuring trust using system-like trust variables
including functionality, helpfulness, and reliability [48], [65], [42]. According to
Tripp, McKnight, et al. (2011)[68], even if both of these two measures work well,
it is unclear when researchers should use interpersonal versus system-like trust
in technology. They found that in human like technology (e.g. facebook) inter-
personal trust is more appropriate measure and for less human-like system (e.g.
Microsoft Access) system-like trust measure is more suitable.

McKnight (2005)[48] distinguished between trust in people and trust in
technology. They proposed a set of system-like trust variables (functionality, help-
fulness, and reliability) which is counterpart of interpersonal-trust variables (abil-
ity, benevolence, and integrity). According to him [48], since technology lacks moral
agency, it is difficult to ascribe to IT without reverting to unwarranted anthropo-
morphisms, for example, one cannot say an IT cares (related to trusting belief-
benevolence) or tells the truth (related to trusting belief-integrity). Based on this

98 Z. Hasan, A. Krischkowsky, and M. Tscheligi

assumption McKnight, et al. (2011)[49] differentiated trusting beliefs in people
and technology in the following way:

Competence vs. Functionality: With trust in people, one assesses the effi-
cacy of the trustee to fulfill a promise in terms of their ability or power to do
something for us. With technology, users consider whether the technology de-
livers on the functionality promised by providing features needed to complete a
task.

Benevolence vs. Helpfulness: With people, one hopes they care enough to
offer help when needed. With technology, users sense no caring emotions because
technology itself has no moral agency. However, users do hope that a technol-
ogy”s help function will provide advice necessary to complete a task.

Integrity vs. Reliability: In both cases, we hope trustees are consistent, pre-
dictable or reliable. With people, predictability refers to the degree to which an
individual can be relied upon to act in a predictable manner. Although technol-
ogy has no volition, it still may not function consistently due to built-in flaws or
situational events that cause failures.

Li, et al. (2009)[42] hold similar arguments. Since attributes requiring moral
capability and volitional control may not be easily ascribed to all IT artifacts,
they [42] argued that beliefs about benevolence and integrity are not essential
dimensions of technology trust. They [42] proposed that that technology trust
is a function of beliefs regarding two generalizable attributes of all technologies
belief in capability and belief in reliability.

5 Trust in Software Systems

5.1 Trust in ISO Definition

The growing number of research regarding trust related issues indicates that
trust is an important factor in human computer interaction. Realizing this fact
the notion of Trust has been included in the new ISO standard ISO/IEC 25010
[6]. Trust has been included in ’Satisfaction in use’ and defined as the extent to
which the user is satisfied that the product will behave as intended. According to
Bevan (2010)[7], "Trust is the stakeholders satisfaction with the perceived prag-
matic do-goal of using a system that is secure. This is satisfaction with security.’

5.2 Trust in Software Development Process

In Trusted Software Methodology (TSM) (which was held by America govern-
ment and business organizations), trusted software is defined as: ’the degree
of confidence that exists that the software will be acceptable for one’s needs’.
According to Amoroso, et al. (1991)[3], the above definition suffers from the
problem of subjectivity, that is the degree to which software is trusted will be
dependent on users past experience, education, background and so on. Amoroso,
et al (1991)[3] argued that one way to remove this subjectivity is to define a set
of specific detailed guidelines.

Modelling User-Centered-Trust (UCT) in Software Systems 99

5.3 Trustworthy Software

According to Hasselbring and Reussner (2006)[30], software trustworthiness con-
sists of five attributes, such as, correctness, safety, quality of service, security and
privacy. Zhao, et al. (2010)[75] identified five disjoint attributes: availability, re-
liability, maintainability, safety and security. Trustworthiness is a new concept
based on such attributes of software as such the accuracy, reliability, safety, time-
liness, integrity, availability, predictability, survival, controllability, and many
other concepts [64].

Becker, et al. (2006)[4] considered trustworthy systems should have the fol-
lowing attributes: Correctness, Safety, Quality of Services (Availability, Reliabil-
ity, Performance), Security and Privacy. Sommerville, et al. (2006)[61] consider
trustworthiness of a system corresponds to the technical notion of dependabil-
ity, that is, trustworthiness reflects the systems availability, reliability, safety,
confidentiality, integrity and maintainability.

6 User-Centered-Trust (UCT) in Software Systems

As we have seen, in software engineering trust has been discussed mainly in
software security and software development process. It is assumed that if a soft-
ware is secured and reliable then it would be more trustworthy [38] even though
security is one of the features of trustworthiness. In software development pro-
cess, there are several development guidelines or heuristics (auditing, testing
etc.) which are thought to make the software trusted to the developers [3]. Some
others [30] proposed software quality attributes (reliability, performance, pri-
vacy etc.) necessary for trustworthy software systems. The new ISO standard
ISO/IEC 25010 also defines trust as satisfaction with security [6] .

If a user cannot trust a program to execute on his behalf, then he should
not run it [36]. However, it is clear that trust has been studied in software
systems without taking into account the end-users perspective. We only deal with
software attributes. It seems that software built according to the specifications
of trustworthiness (e.g., [3]) will be more trustworthy from the point of view of
software designers, vendors and the software industry, but it will not have any
effects on users. Jiang, Li and Xu (2010) [35] mentioned that researchers focused
on developing new technologies to build the trust, however, users’ perspective
of trust has been hardly discussed. According to them [35] *The researchers are
busy in dealing with sending message in a secure way, but rarely concern about
how to send message to users friendly’. So, it can be argued that there is a strong
need to have a proper trust model in software systems that incorporates both
technical and end-user perspective.

6.1 Conceptualization of Trust in Software Systems

Following Mayer, et al. (1995) [47], we would like to explain trust phenomenon
under TRA’s (Theory of Reasoned Action) nomological network. TRA-based

100 Z. Hasan, A. Krischkowsky, and M. Tscheligi

model of trust implies that trusting beliefs (competence/functionality, benev-

olence/helpfulness, integrity/reliability) affect trusting attitude (overall judge-

ment), which, in turn, influences behavioral intentions. However unlike [47], we

incorporated attitude in our model followed by Benamati, et al. (2010) [5].
Trust in software system can be categorized in the following ways :

1. Dimensions of Trust: Two dimensions of trust exist in software systems.
Trusting attitude is composed of two elements, one is cognitive and another
one is affective or emotional [37] dimension.

(a) Affective trust is rooted in a person’s emotional attitude toward soft-
ware and/or vendors. Bonding occurs through emotionally charged ex-
periences with technology; for example, if a systems failure leads to a
catastrophic loss, it is likely to have a strong emotional impact on the
user[I0]. On the other, a beautiful, attractive interface may provide pos-
itive impression.

(b) Cognitive trust is provided by signals of system state (e.g., a program
is running rather than freezing or crashing, a network is operating at
normal speed) [10].

2. Levels of Trust: Three levels of trust can be identified in software technology.

(a) Dispositional trust is the general tendency to be willing to depend on
software technology across a broad spectrum of situations and technolo-
gies [49]. Dispositional trust to software system corresponds to technol-
ogy bias, the attitude a person holds toward computing technology in
general.

(b) Interpersonal trust is invoked with respect to the developer or vendor
of the system. According to Jin, et al. (2009)[36], how to obtain trust
in a program is two fold: 1. User must trust the author of the program,
and 2. he must trust that the program he is executing is the same as the
program written by the author.

(¢) Societal or Institutional trust applies to underlying technology (might
be network architecture, hardware, software licenses and so on).

3. Dimensions of Trustworthiness of Vendors (trusting beliefs in ven-
dors): In accordance with TRA, we follow the model of Mayer, et al. (1995) [47]
where a clear distinction between trust and trustworthiness was drawn. Ac-
cording to Serva, et al. (2005)[76], trustworthiness is not the same as trust,
but rather it forms the basis for trust and downstream trust-related actions.
The three dimensions have been taken from [50].

(a) Benevolence is the belief that the developer/vendor is interested in the
well being of the user without intention of opportunistic behavior and
motivated by a search for a mutually beneficial relationship.

(b) Competence is the degree with which user perceives that developer/vendor
is in possession of the necessary knowledge and skills to complete an agree-
ment or exchange.

(c) Integrity refers that user believes the developer makes good- faith agree-
ments, tells the truth, acts ethically, and fulfils promises.

Modelling User-Centered-Trust (UCT) in Software Systems 101

4. Dimensions of Trustworthiness of Technology (Trusting beliefs in
technology): These dimensions are taken from [49].
(a) Functionality represent users’ expectations about the trustee’s capabil-
ity.
(b) Helpfulness represent users’ beliefs that the technology provides ade-
quate, effective, and responsive help.
(¢) Reliability assume trustees are consistent, predictable or reliable in per-
formance.
5. Preconditions: The followings are met in order to establish trust relation-
ship.
(a) Uncertainty or risk: Risk is present because there is the potential for
systems failure, in which case the user may lose valuable information
[10].
(b) Goal/Dependability: arises when user needs to perform operations on the
Systems.

The following diagram illustrates the conceptions of trust:

Societal Trust

veos—c-o—ox

Interpersonal Trust

i &
&
A 5
Dispositional trust S

Levels of trust

<~-=pso-~o0s3

Fig. 3. Conceptualization of Trust in software systems

7 Proposition 1: Attitude, Acceptance and Affect

Technology attitude is frequently omitted from TAM studies, even though TRA
deems it a necessary mediator and empirical justification for the exclusion is
lacking [0]. Yang and Yoo (2004)[74] noted that attitude was given little value in
predicting IS use, because Davis (1989)[17] had observed no influence of attitude
on IS use when PU was considered to predict IS use. However, Yang and Yoo
(2004) [74] argued that since attitude has both affective and cognitive compo-
nents and since Davis (1989) [I7] did not take affect into account, so he (Davis)
failed to observe it. According to Yang and Yoo (2004) [74]: ’Therefore, one can
argue that one of the reasons that Davis et al. did not find a significant influ-
ence of attitude in their study was because the potentially significant influence of
cognition was offset by the insignificant influence of affect.’

102 Z. Hasan, A. Krischkowsky, and M. Tscheligi

Beliefs Attitudes Intention Behavior

Pla

> Cognitive
Technology
Attitude

:
! : P3
P 4b ! H

Aesthetics

| | i '
: : | i '
: i - ' 3 ' ; ;
: : Affective ; : Intension to : ' :
Trusting beliefs | : Attitude : : Use —.—-—)} : sag |
‘ : : : | :
| ! ! :
'
'

-

(Technology) P2b

W i :
! H P3
: P2a !
H d Cognitive
i

! Trusting
Reliability ! ! Attitude

R 7

Trusting beliefs
(Ve