

Lecture Notes in Computer Science 7344
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Stefan Katzenbeisser Edgar Weippl
L. Jean Camp Melanie Volkamer
Mike Reiter Xinwen Zhang (Eds.)

Trust
and Trustworthy
Computing

5th International Conference, TRUST 2012
Vienna, Austria, June 13-15, 2012
Proceedings

13

Volume Editors

Stefan Katzenbeisser
Melanie Volkamer
Technical University Darmstadt, Germany
E-mail: katzenbeisser@seceng.informatik.tu-darmstadt.de
and melanie.volkamer@cased.de

Edgar Weippl
Vienna University of Technology and SBA Research, Austria
E-mail: edgar.weippl@tuwien.ac.at

L. Jean Camp
Indiana University, Bloomington, IN, USA
E-mail: ljcamp@indiana.edu

Mike Reiter
University of North Carolina at Chapel Hill, USA
E-mail: reiter@cs.unc.edu

Xinwen Zhang
Huawei America R&D, Santa Clara, CA, USA
E-mail: xinwen.zhang@huawei.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-30920-5 e-ISBN 978-3-642-30921-2
DOI 10.1007/978-3-642-30921-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012938995

CR Subject Classification (1998): C.2, K.6.5, E.3, D.4.6, J.1, H.4

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 5th International Conference on
Trust and Trustworthy Computing (TRUST) held in Vienna, Austria, during
June 13–15, 2012. Continuing the tradition of the previous conferences, which
were held in Villach (2008), Oxford (2009), Berlin (2010) and Pittsburgh (2011),
TRUST 2012 featured both a technical and a socio-economic track. TRUST thus
continues to provide a unique interdisciplinary forum for researchers, practition-
ers and decision makers to explore new ideas in designing, building and using
trustworthy computing systems. This year’s technical track provided a good mix
of topics ranging from trusted computing and mobile devices to applied cryp-
tography and physically unclonable functions, while the socio-economic track
focused on the emerging field of usable security.

Out of 36 submissions to the technical track and 12 submissions to the socio-
economic track, we assembled a program consisting of 20 papers. In addition,
TRUST 2012 featured a poster session for rapid dissemination of the latest
research results, invited talks, as well as a panel discussion on future challenges
of trust in mobile and embedded devices.

We would like to thank everyone for their efforts in making TRUST 2012 a
success: the members of the Organizing Committee, in particular Yvonne Poul,
for their tremendous help with all aspects of the organization; the members
of the Program Committees of both tracks for their efforts in selecting high-
quality research papers to be presented at the conference; all external reviewers
who helped to maintain the quality of theconference; the keynote speakers and
panel members; and most importantly all authors who submitted their work
to TRUST 2012. Finally, we express our gratitude to our sponsors Intel and
Hewlett-Packard, whose support was crucial for the success of TRUST 2012.

April 2012 L. Jean Camp
Stefan Katzenbeisser

Mike Reiter
Melanie Volkamer

Edgar Weippl
Xinwen Zhang

Organization

Steering Committee

Alessandro Acquisti Carnegie Mellon University, USA
Boris Balacheff Hewlett Packard, UK
Paul England Microsoft, USA
Andrew Martin University of Oxford, UK
Chris Mitchell Royal Holloway, University of London, UK
Sean Smith Dartmouth College, USA
Ahmad-Reza Sadeghi TU Darmstadt / Fraunhofer SIT, Germany
Claire Vishik Intel, UK

General Chairs

Edgar Weippl Vienna University of Technology and
SBA Research, Austria

Stefan Katzenbeisser TU Darmstadt, Germany

Program Chairs (Technical Strand)

Mike Reiter University of North Carolina at Chapel Hill,
USA

Xinwen Zhang Huawei, USA

Program Committee (Technical Strand)

Srdjan Capkun ETHZ Zurich, Switzerland
Haibo Chen Fudan University, China
Xuhua Ding Singapore Management University, Singapore
Jan-Erik Ekberg Nokia Research Center
Cedric Fournet Microsoft Research, UK
Michael Franz UC Irvine, USA
Tal Garfinkel VMWare
Trent Jaeger Penn State University, USA
Xuxian Jiang NCSU, USA
Apu Kapadia Indiana University, USA
Jiangtao Li Intel Labs
Peter Loscocco NSA, USA
Heiko Mantel TU Darmstadt, Germany
Jonathan McCune Carnegie Mellon University, USA

VIII Organization

Bryan Parno Microsoft Research, UK
Reiner Sailer IBM Research, USA
Matthias Schunter IBM Zurich, Switzerland
Jean-Pierre Seifert DT-Lab, Germany
Elaine Shi PARC, USA
Sean Smith Dartmouth College, USA
Christian Stueble Sirrix AG, Germany
Edward Suh Cornell University, USA
Neeraj Suri TU Darmstadt, Germany
Jesse Walker Intel Labs
Andrew Warfield University of British Columbia, Canada

Program Chairs (Socio-economic Strand)

L. Jean Camp Indiana University, USA
Melanie Volkamer TU Darmstadt and CASED, Germany

Program Committee (Socio-economic Strand)

Alexander De Luca University of Munich, Germany
Angela Sasse University College London, UK
Artemios G. Voyiatzis Industrial Systems Institute/ATHENA R.C,

Greece
Eleni Kosta Katholieke Universiteit Leuven, Belgium
Gabriele Lenzini University of Luxembourg, Luxembourg
Guenther Pernul Regensburg University, Germany
Heather Lipford University of North Caronlina at Charlotte,

USA
Ian Brown University of Oxford, UK
Jeff Yan Newcastle University, UK
Kristiina Karvonen Helsinki Institute for Information Technology,

Finland
Mario Cagalj University of Split, Croatia
Mikko Siponen Universtiyof Oulu, Finland
Pam Briggs Northumbria University, UK
Peter Buxmann TU Darmstadt, Germany
Peter Y A Ryan University of Luxembourg, Luxembourg
Randi Markussen University of Copenhagen, Denmark
Simone Fischer-Huebner Karlstad University, Sweden

Organization IX

Sonia Chiasson Carleton University, Canada
Stefano Zanero Politecnico di Milano, Italy
Sven Dietrich Stevens Institute of Technology, USA
Tara Whalen Carleton University, Canada
Yolanta Beres HP Labs, USA
Yang Wang Carnegie Mellon University, USA
Debin Liu PayPal

Publicity Chair

Marcel Winandy Ruhr University Bochum, Germany

Table of Contents

Technical Strand

Authenticated Encryption Primitives for Size-Constrained Trusted
Computing . 1

Jan-Erik Ekberg, Alexandra Afanasyeva, and N. Asokan

Auditable Envelopes: Tracking Anonymity Revocation Using Trusted
Computing . 19

Matt Smart and Eike Ritter

Lockdown: Towards a Safe and Practical Architecture for Security
Applications on Commodity Platforms . 34

Amit Vasudevan, Bryan Parno, Ning Qu, Virgil D. Gligor, and
Adrian Perrig

Experimenting with Fast Private Set Intersection . 55
Emiliano De Cristofaro and Gene Tsudik

Reliable Device Sharing Mechanisms for Dual-OS Embedded Trusted
Computing . 74

Daniel Sangorŕın, Shinya Honda, and Hiroaki Takada

Modelling User-Centered-Trust (UCT) in Software Systems: Interplay
of Trust, Affect and Acceptance Model . 92

Zahid Hasan, Alina Krischkowsky, and Manfred Tscheligi

Clockless Physical Unclonable Functions . 110
Julian Murphy

Lightweight Distributed Heterogeneous Attested Android Clouds 122
Martin Pirker, Johannes Winter, and Ronald Toegl

Converse PUF-Based Authentication . 142
Ünal Kocabaş, Andreas Peter, Stefan Katzenbeisser, and
Ahmad-Reza Sadeghi

Trustworthy Execution on Mobile Devices: What Security Properties
Can My Mobile Platform Give Me? . 159

Amit Vasudevan, Emmanuel Owusu, Zongwei Zhou,
James Newsome, and Jonathan M. McCune

Verifying System Integrity by Proxy . 179
Joshua Schiffman, Hayawardh Vijayakumar, and Trent Jaeger

XII Table of Contents

Virtualization Based Password Protection against Malware in
Untrusted Operating Systems . 201

Yueqiang Cheng and Xuhua Ding

SmartTokens: Delegable Access Control with NFC-Enabled
Smartphones . 219

Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Sandeep Tamrakar, and Christian Wachsmann

A Belief Logic for Analyzing Security of Web Protocols 239
Apurva Kumar

Provenance-Based Model for Verifying Trust-Properties 255
Cornelius Namiluko and Andrew Martin

Socio-economic Strand

On the Practicality of Motion Based Keystroke Inference Attack 273
Liang Cai and Hao Chen

AndroidLeaks: Automatically Detecting Potential Privacy Leaks in
Android Applications on a Large Scale . 291

Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen

Why Trust Seals Don’t Work: A Study of User Perceptions and
Behavior . 308

Iacovos Kirlappos, M. Angela Sasse, and Nigel Harvey

Launching the New Profile on Facebook: Understanding the Triggers
and Outcomes of Users’ Privacy Concerns . 325

Saijing Zheng, Pan Shi, Heng Xu, and Cheng Zhang

Author Index . 341

Authenticated Encryption Primitives

for Size-Constrained Trusted Computing

Jan-Erik Ekberg1, Alexandra Afanasyeva2, and N. Asokan1

1 Nokia Research Center, Helsinki
2 State University of Aerospace Instrumentation, Saint-Petersburg

Abstract. Trusted execution environments (TEEs) are widely deployed
both on mobile devices as well as in personal computers. TEEs typically
have a small amount of physically secure memory but they are not enough
to realize certain algorithms, such as authenticated encryption modes, in
the standard manner. TEEs can however access the much larger but
untrusted system memory using which “pipelined” variants of these al-
gorithms can be realized by gradually reading input from, and/or writing
output to the untrusted memory. In this paper, we motivate the need for
pipelined variants of authenticated encryption modes in TEEs, describe a
pipelined version of the EAX mode, and prove that it is as secure as stan-
dard, “baseline”, EAX. We point out potential pitfalls in mapping the
abstract description of a pipelined variant to concrete implementation
and discuss how these can be avoided. We also discuss other algorithms
which can be adapted to the pipelined setting and proved correct in a
similar fashion.

Keywords: Trusted Computing, Platform Security, Cryptography.

1 Introduction

Trusted execution environments (TEEs) based on general-purpose secure hard-
ware incorporated into end user devices are widely deployed. There are two
dominant types of TEE designs. The first is as a self-contained stand-alone se-
cure hardware element like Trusted Platform Module (TPM) [15]. The second
is a design like M-Shield [14,11] and ARM TrustZone [1] which augment the
processor with a secure processing mode (Figure 1).

In these latter designs, during normal operation the processor runs the basic
operating software (like the device OS) but can enter the secure mode on-demand
to securely execute small pieces of sensitive code. Certain memory areas are only
accessible in secure mode. These can be used for persistent storage of long-term
secrets. Secure mode is typically combined with isolated RAM and ROM, re-
siding within the System-On-A-Chip (SoC), to protect code executing in the
TEE against memory-bus eavesdropping. The RAM available within this min-
imal TEE is usually quite small, as low as tens of kilobytes in contemporary
devices [9]. Often this constraint implies that only the basic cryptographic prim-
itives or only the specific parts of some security critical architecture (such as a
hypervisor) can be implemented within the TEE.

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 1–18, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 J.-E. Ekberg, A. Afanasyeva, and N. Asokan

Fig. 1. TEE architecture variant: secure processor mode

In most, if not all, of these hardware architectures ([1], [11], [8]) the primary
RAM on the device outside the TEE is addressable by secure mode code exe-
cuting within the TEE (see Figure 1). This unprotected, and hence potentially
”untrusted” RAM is significantly larger than the isolated (trusted) RAM. It is
used

– to transfer input parameters for secure execution within the TEE as well as
for receiving any computation results from the TEE.

– to implement secure virtual memory for secure mode programs running with
the TEE.

– to store and fetch state information when multiple different secure mode
programs execute in an interleaved fashion (when one program needs to
stop its execution in the TEE before it is fully completed, the full state
information needed to continue its execution later is too big to be retained
within the TEE).

In the latter two cases, the TEE must seal any such data before storing it in
the untrusted memory. Sealing means encrypting and integrity-protecting the
data using a key available only within the TEE so that (a) the sealed data is
cryptographically bound to additional information specifying who can use the
unsealed data and how, and (b) any modifications to the sealed data can be
detected when it is used within the TEE.

The basic requirements of a sealing primitive are confidentiality and integrity
of the sealed data. These can be met by using one of several well-known au-
thenticted encryption modes. Many authenticated encryption modes have been
proved secure using standard reduction techniques. However, the general as-
sumption and proof model for the execution of such a scheme is that its entire
execution sequence is carried out securely and in isolation: i.e., inputs are re-
ceived into isolated memory, the entire computation is securely run to completion
as an atomic operation producing an output in isolated memory, and only then
are outputs returned to insecure channels or untrusted RAM. This setting is
unreasonable in memory-constrained TEEs. They need a “pipelined” variant of
authenticated encryption modes where encryption and decryption can be done in
a piecemeal fashion where input is read from and/or output written to untrusted

Authenticated Encryption Primitives 3

RAM gradually as the computation proceeds. In fact, interfaces specifying this
sort of pipelined authenticated encryption operations are starting to appear in
TEE standard specifications [7]. A natural question is whether these pipelined
variants of authenticated encryption modes are as secure as the original, “base-
line”, variants.

In this paper, we make three contributions. First, we highlight the problem of
finding secure pipelined implementations of authenticated encryption primitives
in the context of memory-constrained TEEs. Second, we describe how a concrete
provably secure authenticated encryption mode (EAX) can be adapted for use in
a pipelined fashion in memory-constrained TEEs. We prove the security of the
pipelined variant by showing that it is as secure as the baseline EAX variant. We
discuss other cryptographic primitives where the same approach for pipelining
and security proof may apply. Third, we point out that naive realizations of
pipelined EAX can be vulnerable to information leakage and describe a secure
implementation.

We begin by introducing our platform model in section 2, and list the assump-
tions we make regarding the computing environment and algorithm implemen-
tation in section 3. In section 4 we provide proofs for pipelined EAX variants.
In section 5 we discuss implementation pitfalls, and describe the full reference
implementation in section 6. Related work, further work and conclusions are
discussed in sections 7, 8 and 9.

2 Motivation and System Models

The hardware architecture we consider is shown in Figure 1. Authenticated se-
cure mode programs allowed to run inside the TEE often need to store data or
pass it via untrusted RAM to itself or other programs that will run in the same
TEE later. In the figure this is shown by arrows labelled “sealed data”: data is
encrypted in trusted, isolated memory to be stored in untrusted memory and
is later correspondingly retrieved and decrypted from untrusted memory to be
further processed inside the TEE.

Our work is motivated by this need to produce efficient cryptographic seals
for computer programs executing within a TEE on a mobile phone. The memory
constraints in the TEE (isolated memory) are often severe. For example, accord-
ing to [9], TEE programs in their scenario must fit into roughly 10kB of machine
code and is limited to around 1-2kB of heap memory and 4kB of stack space1.
The choice to analyze EAX rather than e.g. the more widely used CCM also
stems from such constraints - EAX allows for more compact implementation.

The problem of allocating isolated memory for the ciphertext and plaintext
separately, mandated by (the proof of) baseline operation of encryption primi-
tives, can in some scenarios be replaced by in-place sealing/unsealing. In-place
operation is however impractical in cases where the sealed data needs to be used
also after sealing and it is never viable in cases where the seal size is larger

1 The comparably lavish stack space has to be shared by e.g. cryptographic primitives
when invoked, so the effective stack size is counted in hundreds of bytes.

4 J.-E. Ekberg, A. Afanasyeva, and N. Asokan

(a) EAX mode outline (b) Sealing in system model 1

Fig. 2. EAX mode[4] and system model 1 sealing

(a) Sealing in system model 2 (b) Unsealing in system model 2

Fig. 3. Sealing and unsealing in system model 2

than available isolated RAM. Such situations include the case where the TEE
program needs to access only a part of the seal or when it needs to produce a
large protected message say for transfer to another device or server.

We consider two models of pipelined sealing and unsealing. In system model 1
(Figure 2(b)), the plaintext data is made available in TEE isolated memory, i.e.
the decryption primitive decrypts into isolated memory from untrusted mem-
ory, and vice versa for encryption. This model is applicable e.g. for secret keys
generated in a TPM, but subsequently stored in sealed format within the OS.

Authenticated Encryption Primitives 5

In system model 2 (Figures 3(a) and 3(b)), the plaintext comes from or is re-
turned to untrusted memory. Use cases for this approach includes streaming
encrypted content, or encrypting data for network communication.

3 Assumptions and Requirements

With the motivations above, we define our problem scope:

1. The device includes a TEE that provides cryptographic services, specifically
a symmetric sealing primitive, to the caller without revealing the keys used.

2. The TEE is extremely memory-constrained: It only includes a small amount
(a few kilobytes) of trusted memory, but has the possibility to use external,
untrusted RAM to aid the computation.

3. Encryption/decryption inside isolated memory is not an option; the amount
of memory needed for the seal/unseal operations should be constant (Θ(1),
rather than Θ(n) or higher) in terms of the size of the input data.

The specific problem we address is whether we can realize a pipelined variant
of authenticated encryption with associated data (AEAD) with the same level
of security as for the baseline (non-pipelined) in the two system models dis-
cussed above. We define “pipelined” in the computational sense: inputs to the
encryption primitive are channeled from the source memory to the primitive as
a stream of blocks, and equivalently that the results of the AEAD algorithm
(i.e. output blocks) are channeled to target memory as they are being produced
rather than when the operation completes.

The baseline setting for AEAD is one where inputs are first retrieved into
the TEE, then the operation is carried out, possibly making use of secrets and
a random source, and finally the results are released. This is the setting in
which cryptographic primitives are usually proved correct, since it is the “natural
model” for, e.g., communication security. The use of untrusted memory during
algorithm execution (otherwise the pipelined setting is no different from the
baseline setting) implies that more information will certainly be available to an
adversary in the pipelined alternative.

We are interested in security from the perspective of the TEE : for a given
input at the TEE boundary the pipelined variant of the AEAD implementation
is as secure as the baseline variant if both produce the same output at the TEE
boundary.

The code running in the TEE can be considered immutable. However such
code may use two types of memory locations: isolated memory within the TEE
and untrusted memory outside. We assume that an adversary can freely read and
modify any untrusted memory. The classification of memory can be done for any
memory location used by the AEAD implementation, including local state vari-
ables, processed input data as well as any intermediate or final result. We limit
ourselves to this binary categorization, although a more complete model would
also include statistical considerations caused by indirect information leakage e.g.
in the form of side-channel attacks.

6 J.-E. Ekberg, A. Afanasyeva, and N. Asokan

By necessity, we must assume that any long-term secrets (e.g., sealing keys)
that are applied to the processing are stored and handled in trusted memory only.
We also assume that stack and counters are fully contained in trusted memory.
As with trusted execution in general, the existence of a good (pseudo)random
data source inside the TEE domain is needed and assumed to be present.

For some cryptographic primitives, the system models we examine do not
imply any degradation in security. For example, pipelined variants of message
authentication codes like AES-CBC-MACwill not reveal any information outside
the TEE until all the input data has been processed and the result is computed.
This happens irrespectively of whether data input is carried out in a pipelined
way or by transmitting the complete data to the TEE prior to MAC calcula-
tion. Thus pipelined operation for MACs is from a security perspective trivially
equivalent to baseline operation. A similar argument holds for most common
encryption/decryption modes, such as cipher block chaining or counter modes.
As a rule only a few inputs and outputs for neighboring cryptoblocks affect the
input or output of a given block. Therefore, if the final result is secure when the
complete data is transferred to the TEE prior to the operation, so is trivially an
implementation that during encryption and decryption only temporarily buffers
the small set of blocks with interdependencies. In an AEAD the MAC is affected
by the complete data input, but in a pipelined setting the TEE will reveal parts
of the outputs prior to receiving all input for the computation of the AEAD
integrity tag. This combination of confidentiality and integrity is the cause for
the problem scope to be relevant, especially when applied in system model 2.

4 Proof of Security

In this section we will briefly introduce the standard reduction technique for rea-
soning about the security in cryptographic algorithms and protocols. Using this
method we present a adversary model definition and a proof outline that cov-
ers our assumptions and requirements listed in section 3, for the system models
introduced in section 2.

4.1 Technique

In this paper, we will use the same general proof method as was used for the
baseline EAX variant[4]. The proof in the standard complexity-theoretic as-
sumption, often called the “standard reduction technique”, is described in detail
in references [3] and [2]. On a high level the method is as follows: A security
proof can include two parts. The first one is a proof in the context of chosen-
plaintext attacks (CPA), where the adversary is given the ability to encrypt any
plaintext using the algorithmic primitive. The opposite, the chosen-ciphertext
attack (CCA) allows the adversary to set the ciphertext and observe the result-
ing plaintext. Each proof is constructed as a game between an adversary (A) and
a challenger (C) making use of Oracles (O) that abstract the evaluated algorith-
mic primitive in some way, depending on the properties that are proved. In our

Authenticated Encryption Primitives 7

models the oracles will represent the encryption and decryption initialized with
a key, the second model adds an oracle also for OMAC2.

The CPA (privacy) security proof is modelled by the adversary using an en-
crypting Oracle (Oe). The game is defined as follows:

1. A examines Oe by making q adaptive queries to it, i.e. sending any chosen
plaintext to Oe and as response receiving the corresponding ciphertext.

2. In a second phase, A selects a plaintext not generated in the first step and
sends it to C. C then ‘tosses a coin’ b and depending on the outcome either
returns to A the result of submitting the received input to Oe, or in the
second case a random bit string of an equivalent length.

3. Finally, A tries to determine whether the result returned from C was the
random string or the actual result from Oe. The so called advantage of the
adversary A is computed as Adv(A) = Pr{AOe = 1}− Pr{A$ = 1}, i.e. the
difference in success probability for A correctly determining b and making a
random choice.

The CCA (authenticity) security proof uses two oracles: an encrypting oracle
(Oe) and a decrypting one (Od). The slightly more complex game starts out like
the CPA game, but after receiving the result from C, A is allowed to continue,
and submit up to σ adaptive queries to the decryption oracle Od (of course the
return string from the challenger shall not be used). Only after these extended
queries A will guess the value of b. Again, the advantage of adversary A will be
calculated as the difference between its probability of success with oracles usage
and without it.

Adv(A) = Pr{AOe,Od = 1} − Pr{A$ = 1}
The baseline EAX mode of operation has been proved secure against CCA and
CPA attacks. Since the pipelined variant is a derivation of the standard EAX we
can use reduction to show that the pipelined variant is as secure as the baseline
one. In this proof by reduction, we use an adversary model where an adversary
B attacks baseline EAX E by using an adversary A attacking the new pipelined
EAX variant E′, both set up with the same parameters (keys). For the game
it will also be necessary to show that the adversary B can simulate all oracles
that would be used by A. The game is set up as follows: suppose there exists
an adversary A which can attack algorithm E′ with advantage Adv(A) = ε.
Adversary B wants to break algorithm E (for which a security proof already
exists) by making use of A, such that

1. B has access to the oracles used in the proof of E
2. B forges all oracles used by A, by simulating the work those oracles would

do for A, only based on its own knowledge about the baseline system E
and its own oracles. This can be done with a non-negligible probability
(Pr{OracleSim}).

2 OMAC is a provably secure cryptographic hash construct based on the CBC-MAC
primitive. Definition in [4].

8 J.-E. Ekberg, A. Afanasyeva, and N. Asokan

3. If there exists a probabilistic polynomial time algorithm for B to attackE us-
ing A’s advantage, then Adv(B) = ε∗Pr{OracleSim}. If Pr{OracleSim} =
1 then the respective attack advantages and thereby the security of systems
E and E′ are equal.

In other words the game shows that if we can attack the modified algorithm
E′ then we can attack the original system E in the way we built adversary B.
But as a security proof already exists for E, our premise of the existence of A is
disproved, thereby proving the security of E′.

4.2 Analysis

Correctness of the pipelined EAX in our first system model (Figure 2(b)) is
straight-forward. Intuitively, this is because the attacker has no advantage in
the pipelined setting compared to the baseline setting because inputs and out-
puts are not interleaved. For the sake of completeness, we present the proof in
Appendix A.

In our second system model intermediate computation results are returned
to untrusted memory during algorithm execution. Thus the possibility of an
adaptive attack cannot be ruled out immediately. We use the terminology and
definitions from [4]. In all algorithms, the return statement denotes the return-
ing of data to untrusted memory, not the termination of algorithm execution.
The Read primitive is used to explicitly indicate data input from untrusted
memory. The interactions between A, B and g are shown in Figure 4.

Fig. 4. Proof outline

Theorem 41. The pipelined EAX variant presented in Algorithms 1 and 2 is
as secure as original baseline EAX.

Proof. We begin with the CPA (privacy) claim. Let A be an adversary using re-
sources (q, σ) that is trying to distinguish algorithm 1 from a source of random
bits. We will construct an adversary B with resources (σ1, σ2) that distinguishes

Authenticated Encryption Primitives 9

Algorithm 1. Encryption, model 2

Input: N,H,K,M = {m0,m1, . . . ,mn−1}
Output: C = {c0, c1, . . . , cn−1}, T ag
1: Read(N,H, n)
2: N ⇐ OMAC0

K(N)
3: H ⇐ OMAC1

K(H)
4: C ⇐ 0
5: for all i ∈ 0 . . . n− 1 do
6: Read(mi)
7: ci ⇐ mi ⊕E(N + i)K
8: return ci
9: C ⇐ OMAC2

K(ci, C)
10: end for
11: Tag ⇐ N ⊕ C ⊕H
12: return Tag

Algorithm 2. Decryption, model 2

Input: N,H,K,C =
{c0, c1, . . . , cn−1}, T ag

Output: M =
{m0,m1, . . . ,mn−1} or Invalid

1: Read(N,H, n, Tag)
2: N ⇐ OMAC0

K(N)
3: H ⇐ OMAC1

K(H)
4: C ⇐ 0
5: for all i ∈ 0 . . . n− 1 do
6: Read(ci)
7: C ⇐ OMAC2

K(ci, C)
8: end for
9: T ⇐ N ⊕ C ⊕H
10: if T �= Tag then
11: return Invalid
12: else
13: for all i ∈ 1 . . . n− 1 do
14: Read(ci)
15: mi ⇐ ci ⊕E(N + i)K
16: return mi

17: end for
18: end if

the OMAC algorithm3 from a source of random bits. Adversary B has an oracle
g2 that responds to queries (t,M, s) ∈ {0, 1, 2} × {0, 1}∗ × N with a string
{M1, S0, S1, . . . , Ss−1}, where each named component is an l-bit string. Oracle
g2 is the OMAC algorithm. Algorithm 3 describes adversary B:

We may assume that A makes q > 1 queries, so adversary B uses 3q queries.
Then under the conventions for the data complexity, adversary B uses at most
(σ, σ

2) resources. Observe that Pr[AEnc2 = 1] = Pr[BOMAC = 1] and Pr[A$ =

1] = Pr[B$ = 1]. Using Lemma 4 from [4] we conclude that

AdvCPA
Alg4 (A) = Pr[AAlg4 = 1]− Pr[A$ = 1] =

= Pr[BOMAC = 1]− Pr[B$ = 1] ≤ AdvdistOMAC(σ,
σ

2
)

≤ 1, 5σ + 3

2l
≤ AdvCPA

EAX

This means that the pipelined EAX, described in Alg. 1 is as private as original
EAX. This completes the privacy claim.

3 The construction of adversary B is adapted to a specific proof setup presented in [4],
and uses a “tweakable OMAC extension” encapsulated in Lemma 4[4] and its proof.
Lemma 4 asserts the pseudorandomness of the OMAC algorithm and provides an
upper bound for the advantage of the adversary.

10 J.-E. Ekberg, A. Afanasyeva, and N. Asokan

Algorithm 3. Algorithm Bg simulating Oe

1: Run A
2: for all Oracle Oe calls Nj ,Hj , nj , j ∈ 0 . . . q − 1 from A do
3: NS0S1 . . . , Snj−1 ⇐ g2(0, Nj , nj)
4: for all i ∈ 0 . . . n− 1 do
5: ci,j ⇐ mi,j ⊕ Sj

6: return ci,j , in response to each Oracle Oe query mi,j from A
7: end for
8: Hj ⇐ g2(1,Hj , 0)
9: Cj ⇐ g2(2, Cj , 0)
10: Tagj ⇐H⊕N ⊕ C
11: return Tagj
12: end for
13: When A halts, get bit b
14: return b

For CCA (authenticity) and reusing the naming, let A be an adversary attack-
ing the authenticity of algorithms 1 and 2. To estimate the advantage of A, we
construct from A (the authenticity-attacking adversary) an adversary B (with
oracles for g2 and g3, intended for forging the original AES-EAX primitive).
Algorithm 3 simulated oracle Oe, and algorithm 4 will simulate the decryption
oracle Od:

It is easy to see that adversary B can simulate both the oracles Oe and Od for
A indistinguishably from the real challenger of the AES-EAX primitive. Thus,
the advantage of adversary B in forging the authenticity algorithms 1 and 2 can
be calculated as follows:

AdvCCA(B) = Pr{BEAX , forge} − Pr{B$, forge} =

= AdvCCA(A)

This completes the claim and the proof

5 Implementation Pitfalls

Although we proved the pipelined EAX variant correct, adequate care is needed
when it is incorporated into practice. In this section, we outline two potential
pitfalls.

5.1 Security for the External User

At the outset, we mentioned that our goal is to guarantee security from the per-
spective of the TEE. In practice, one also needs to worry about ensuring security
from the perspective of the external “TEE user”, for example, an application
running on the operating system. As the external memory is untrusted from the
perspective of the user, some form of security association between the TEE and

Authenticated Encryption Primitives 11

Algorithm 4. Algorithm: Bg simulating Od

1: Run A
2: for all Oe requests from A do
3: Run simulator from 3
4: end for
5: for all Od requests Nj ,Hj , Cj ||Tag, j ∈ 0 . . . q − 1 from A do
6: Mj ← g3(Nj ,Hj , Cj , T ag)
7: if Mj = Invalid then
8: return Invalid
9: else
10: KeyStr ←Mj ⊕ Cj

11: for all i ∈ 0 . . . n− 1 do
12: Return c′i,j ⊕KeyStri, in response to each Oracle Od query c′i,j from A
13: end for
14: end if
15: end for
16: When A halts, get bit b
17: return bs

the user is necessary in order to ensure security from the user’s perspective. This
applies both in the pipelined as well as in the baseline setting.

Although it has no bearing on the security from the perspective of the TEE,
the pipelined variant of the unsealing algorithm shown in Figure 3(b) is equiv-
alent to the baseline variant only if the series of ciphertexts {c0, c1, . . . , cn−1}
in the first phase of the pipelined variant is exactly the same as the series of
ciphertexts in second phase (after Tag is validated as True). In practice this can
be ensured by using re-encryption: for example, in the first phase, the TEE will
output encrypted blocks c′i when processing input ci and expects the set of c′i to
be provided to the second phase.

5.2 Mapping of Memory Locations

The risk of implementation pitfalls when mapping idealized protocols used in
proofs to a real protocol is well known. Our target architecture hides an issue
of such nature. Even as we now can use the reduction proofs to argue that
pipelined operation of AES-EAX is secure in system models 1 and 2, a naive
pipelined variant implementation unfortunately leads to a severe security flaw.
Consider lines 7-10 of Algorithm 5 which illustrates how a naive implementor
would map the inner loop of EAX encryption (lines 4-6 of Algorithm 7, and lines
6-9 of Algorithm 1)

At first glance, Algorithm 5 looks like a reasonable EAX implementation as
shown in Figure 2(a)). It writes out each block of the ciphertext to untrusted
RAM as soon as it is calculated. Step 8 corresponds to the encryption of a single
block (Algorithm 7/Step 5 or Algorithm 1/Step 8). Step 10 corresponds to the
incremental construction of the MAC (Algorithm 7/Step 6 or Algorithm 1/Step
9). As Algorithm 5 is realized on the architecture shown in Figure 1, the variable

12 J.-E. Ekberg, A. Afanasyeva, and N. Asokan

Algorithm 5. Pipelined EAX Encryption: naive realization

Input: k, h, n,M = {m0,m1, . . . ,mn−1}
Output: C = {c0, c1, . . . , cn−1}, T ag
1: L← Ek(0);B ← 2L;P ← 4L
2: N ← Ek(Ek(0)⊕ n⊕B) OMAC0

k(n)
3: H ← Ek(Ek(1)⊕ h⊕B) OMAC1

k(h)
4: t1← N
5: t2← Ek(2)
6: for i← 0 to n− 1 do
7: t4← Ek(t1)
8: ci ← mi ⊕ t4
9: t1← t1 + 1
10: t2← Ek(t2⊕ ci) OMAC2

k(ci, C)
11: end for
12: . . .

ci will be mapped to a memory location in untrusted memory. So an attacker who
controls the untrusted RAM will now be in a position to manipulate ci after it
is generated in step 8 but before it is used as input to OMAC2

K in step 10.
Clearly, the sealing primitive should release the encrypted block to untrusted

memory only after both the encryption as well as the data inclusion into the
integrity check value has been performed. Even though this is the intent in the
abstract descriptions of Algorithms 7 and 1, the violation of this rule while
mapping the algorithms to concrete realizations for our target architecture is
not immediately or automatically evident to the programmer. In the baseline
setting, where inputs and outputs as well as state variables are all in isolated
memory this consideration causes no security issues, even for pipelined operation.
In fact pipelining (or rather the fact that the input length need not be known in
advance) is listed as a particular advantage of AES-EAX [4]. However, realization
of pipelined EAX in our target architecture raises this subtle security issue.

The correct way of pipelining EAX sealing is outlined in Algorithm 6 in Sec-
tion 6. The solution is to add an intermediary buffer in isolated memory to
hold the encrypted block. For unsealing, such a buffer is also needed, but its
placement is different, since the confidentiality and integrity primitives are then
invoked in opposite order.

6 Reference Implementation

Based on the proofs of Algorithm 7 and Algorithm 1, and the insight on pitfalls,
we have implemented and deployed EAX using AES-128 as shown in Algorithm
6. We apply a small simplification constraint to the EAX inputs. The length of
the EAX associated data as well as the nonce are required to be exactly the block
length of the underlying block cipher primitive. These conditions simplify the
internal structures of EAX significantly since two data padding code branches
can be omitted completely. Although this approach sacrifices generality, neither
compatibility nor the original security proofs are affected.

Authenticated Encryption Primitives 13

Algorithm 6. Pipelined EAX Encryption

Input: k, h, n,M = {m0,m1, . . . ,mn−1}
Output: C = {c0, c1, . . . , cn−1}, T ag
1: L← Ek(0);B ← 2L;P ← 4L
2: N ← Ek(Ek(0)⊕ n⊕B) OMAC0

k(n)
3: H ← Ek(Ek(1)⊕ h⊕B) OMAC1

k(h)
4: t1← N
5: t2← Ek(2)
6: t3← 0
7: for i← 0 to FULLBL(M) − 1 do
8: t4← Ek(t1)
9: t3← mi ⊕ t4
10: ci ← t3
11: t1← t1 + 1
12: if i < NPADBL(M) − 1 then
13: t2← Ek(t2⊕ t3) OMAC2

k(ci, C)
14: end if
15: end for
16: if REMBY T (M) > 0 then
17: t3← 0
18: str ← Ek(t1)
19: PART (t3← mFULLBL ⊕ t4)
20: PART (cFULLBL ← t3)
21: end if
22: if REMBY T (M) = 0 ∧ FULLBL(M) > 0 then
23: C ← Ek(t2⊕ t3⊕B) OMAC2

k(ci, C)
24: else
25: t3← ADDPADBY TE(t3)
26: C ← Ek(t2⊕ t3⊕ P) OMAC2

k(ci, C)
27: end if
28: Tag← C ⊕N ⊕H

In Algorithm 6, input parameters consist of a key k, a block-sized header
h, and a block-sized nonce n. The input data vector M = {m0,m1, . . .m

∗
n−1}

is a list of block-sized units where each element is a full block except possibly
the last element which may be shorter. The resulting ciphertext vector C has a
similar construct. The resulting message integrity code m is a block-sized result.
The OMAC sub-primitive calculations are marked in bold, right justified. The
multiplications of value L are defined by polynomial multiplication in GF (2) as
defined by [4].

For increased readability we introduce a few convenience macros that hide
block length calculations as well as detailed loops for simple operations over
bytes in partially filled blocks. Pipelined versions are trivially constructed cor-
responding to the “values-known-in advance” versions listed in Algorithm 6 for
readability. FULLBL denotes the number of full blocks in the input data vector,
and the function NPADBL(x) will for the vector x give the number of blocks that
are not padded with a termination marker. REMBY T (x) gives the number of

14 J.-E. Ekberg, A. Afanasyeva, and N. Asokan

bytes (if any) in the last vector element provided that it is not block-sized. AD-
DPADBYTE(x) adds a termination marker to the vector block in accordance
with [4], and PART indicates that the operation is applied to a byte vector
which is not block-sized. All temporary variables t1, t2, t3 and t4 are block-sized
units.

The innermost operation of EAX is clearly visible on lines 8-11. The counter
(in t1) drives the block cipher and produces a key stream into t4, and the CBC-
MAC is accumulated into t2 on each round. t3 is the temporary buffer that
guarantees the integrity of the ci as explained in Section 5.

The EAX implementation with the constraints outlined above is size-efficient.
The algorithm supporting both encryption and decryption and implemented in
C compiles to 742 bytes for an OMAP2/OMAP3 processor with ARM and an
embedded AES block implementation. Algorithm memory (stack) consumption
is a fixed 168 bytes, satisfying the Θ(1) requirement in Section 3.

7 Related Work

Since the concept of a hardware-assisted TCB was re-invigorated around a
decade ago, a number of techniques to secure the “virtual” memory of the trusted
execution environment have been proposed. One of the first results was the emer-
gence of execute only-virtual memory (XOM) [10], an important stepping stone
for trustworthy computing, but it does not consider data protection.

The work on the AEGIS secure processor [12] [13] introduced a secure com-
puting model that highlights the operation of a security kernel running in an
isolated environment, shielded from both physical and software attacks. Among
other features, AEGIS implemented a memory management unit (MMU) that
protects against physical attacks by deploying stateful, authenticated encryption
for virtual memory blocks stored in untrusted memory regions. A comparison of
cryptographic primitives suitable for implementing such a secure virtual memory
manager in hardware can be found in [16].

This work examines the implementation pitfalls and security proof in the
context of implementing EAX, one well-known AEAD. We prove security for
that AEAD in two given models, relevant to TEE implementation. Prior work
[6] [5] addressing the problem and provability of “online” encryption (system
model 2) in a wider context, take another route and also provide alternative
constructions for rendering a cryptographic primitive secure in this model.

8 Interpretation and Proposal

The proof approach (and the implementation pitfall) described in this paper are
more generally applicable to other authenticated encryption modes as well. For
example, AES-CCM, the most widely used AEAD today, uses the same con-
fidentiality and integrity primitives as AES-EAX (AES-CTR and AES-CBC-
MAC, respectively), with the main difference that in AES-CCM the integrity is
calculated over the plaintext rather than over the ciphertext. Thus, the extra

Authenticated Encryption Primitives 15

buffer in isolated memory needed in the implementation will still be required,
although its placement in AES-CCM will, with respect to sealing/unsealing, be
the mirror image of its application in AES-EAX. The Model 1 proofs are trivially
adaptable to AES-CCM, but most likely also model 2 proof constructs would be
similar when applied to AES-CCM.

Standardized AEAD APIs, like the Global Platform (GP) TEE API [7], in-
cludes APIs for pipelined AES-CGM and AES-CCM primitives modelled after
interfaces for hash functions, i.e. with separate functions for Init, Update and
Finalization. The Update function encrypt or decrypts data in pieces. These
functions trivially map to a TEE implementation for pipelined encryption (Fig-
ure 3(a)). A TEE AEAD decryption primitive (Figure 3(b)) can in our model be
implemented with the GP API by invoking the set of Init, Update and Finaliza-
tion twice, and binding the Init parameters between the two invocation sets. It
is however evidently clear that the API, as it is defined now, easily stimulates an
unwary implementor to release decrypted plaintext to untrusted memory before
the tag is checked, and in doing that he/she breaks the property of plaintext
awareness for the AEAD primitive.

In the light of the findings in this paper, we propose that APIs for AEAD
decryption inside TEE:s are changed. One option is to re-encrypt the decrypted
content with a temporary key that is given out as a side-effect of a properly
validated tag (integrity check) in the Finalization API method. Alternatively,
the decryption Update API should not return any decrypted data at all, instead
a new Keystream method would be added to return the message XOR keystream
to the caller after the tag has been properly validated. Either of these solutions
would force the API user to model his decryption operation in a manner that is
secure from the TEE perspective.

9 Conclusion

We have described one example of an AEAD that can be proved correct in a com-
putation context where not all data memory during the algorithm computation
is assumed to be trustworthy. The hardware architecture introduced in Figure 1
is new to algorithm analysis, although devices with such properties are widely
deployed. We have proved AES-EAX secure in this setup, and provide an insight
into what modifications need to be done to a conventional EAX algorithm to
securely realize it in the pipelined setting.

The pipelined AES-EAX presented and analyzed in this paper is commercially
deployed as part of a trusted device architecture.

References

1. ARM. Trustzone-enabled processor,
http://www.arm.com/pdfs/DDI0301D_arm1176jzfs_r0p2_trm.pdf

2. Bellare, M., Rogaway, P.: The game playing technique (2004),
http://eprint.iacr.org/2004/331

http://www.arm.com/pdfs/DDI0301D_arm1176jzfs_r0p2_trm.pdf
http://eprint.iacr.org/2004/331

16 J.-E. Ekberg, A. Afanasyeva, and N. Asokan

3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. In: CCS 1993: Proceedings of the 1st ACM Conference on
Computer and Communications Security, pp. 62–73. ACM, New York (1993)

4. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004), doi:10.1007/978-3-540-25937-4-25

5. Boldyreva, A., Taesombut, N.: Online Encryption Schemes: New Security Notions
and Constructions. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 1–14.
Springer, Heidelberg (2004), doi:10.1007/978-3-540-24660-2-1

6. Fouque, P.-A., Joux, A., Martinet, G., Valette, F.: Authenticated On-Line En-
cryption. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 145–159. Springer, Heidelberg (2004), doi:10.1007/978-3-540-24654-1-11

7. GlobalPlatform Device Technology. TEE Internal API Specification. Global Plat-
form, vrtsion 0.27 edition (September 2011),
http://www.globalplatform.org/specificationform.asp?fid=7762

8. Intel Corporation. Trusted eXecution Technology (TXT) – Measured LaunchedEn-
vironment Developer’s Guide (December 2009)

9. Kostiainen, K., Ekberg, J.-E., Asokan, N., Rantala, A.: On-board credentials with
open provisioning. In: ASIACCS 2009: Proceedings of the 4th International Sym-
posium on Information, Computer, and Communications Security, pp. 104–115.
ACM, New York (2009)

10. Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., Horowitz,
M.: Architectural support for copy and tamper resistant software. SIGPLAN
Not. 35(11), 168–177 (2000)

11. Srage, J., Azema, J.: M-Shield mobile security technology, TI White paper (2005),
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf

12. Edward Suh, G., Clarke, D., Gassend, B., van Dijk, M., Devadas, S.: Efficient
memory integrity verification and encryption for secure processors. In: MICRO 36:
Proceedings of the 36th Annual IEEE/ACM International Symposium on Microar-
chitecture, p. 339. IEEE Computer Society, Washington, DC (2003)

13. Edward Suh, G., O’Donnell, C.W., Sachdev, I., Devadas, S.: Design and implemen-
tation of the aegis single-chip secure processor using physical random functions.
In: ISCA 2005: Proceedings of the 32nd Annual International Symposium on Com-
puter Architecture, pp. 25–36. IEEE Computer Society, Washington, DC (2005)

14. Sundaresan, H.: OMAP platform security features, TI White paper (July 2003),
http://focus.ti.com/pdfs/vf/wireless/platformsecuritywp.pdf

15. Trusted Platform Module (TPM) Specifications,
https://www.trustedcomputinggroup.org/specs/TPM/

16. Chenyu, Y., Rogers, B., Englender, D., Solihin, D., Prvulovic, M.: Improving cost,
performance, and security of memory encryption and authentication. In: 33rd
International Symposium on Computer Architecture, ISCA 2006, Boston, MA,
pp. 179–190 (2006)

http://www.globalplatform.org/specificationform.asp?fid=7762
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://focus.ti.com/pdfs/vf/wireless/platformsecuritywp.pdf
https://www.trustedcomputinggroup.org/specs/TPM/

Authenticated Encryption Primitives 17

A First System Model Analysis

The first model that we consider is the one where plaintext inside the TEE is
encrypted for storage in untrusted memory, and vice versa for decryption. For
the encryption primitive we will use the standard reduction technique to reason
about whether the encrypted content can be released to an adversary before the
whole primitive has completed.

In this model the decryption primitive is unmodified and need not be ana-
lyzed, as the decrypted plaintext is stored in the TEE and thus is not becoming
available to the adversary during the execution of the primitive. An implemen-
tation must still adhere to a similar rule as with encryption, i.e. any encrypted
block has to be moved to trusted memory prior to the integrity check and a
subsequent decryption - otherwise an adversary has the possibility to decouple
the data for the integrity check from the data being decrypted.

Algorithm 7 is an abstraction of the implementation of pipelined EAX, and
returns encrypted blocks as they have been generated.

Theorem A1. The pipelined EAX encryption variant presented in Algorithm
7 is as secure as the original baseline EAX encryption.

Proof. We begin with the CPA claim. Let A be an adversary using resources
(q, σ) and is trying to distinguish algorithm 7 from a source of random bits. We
construct an adversary B that distinguishes the original EAX algorithm from
a source of random bits. Adversary B has an oracle g1 that responds to query
(N,H,M) ∈ {0, 1}l × {0, 1}l × {0, 1}∗ with a string C = {c0, c1, . . . , cn−1}, T ag.
Each named component is an l-bit string. Algorithm 8 describes the operation
of adversary B using g1:

Algorithm 7. Encryption, model 1

Input: N,H,K,M = {m0,m1, . . . ,mn−1}
Output: C = {c0, c1, . . . , cn−1}, T ag
1: N ⇐ OMAC0

K(N)
2: H ⇐ OMAC1

K(H)
3: for all i ∈ 0 . . . n− 1 do
4: ci ⇐ CTRN

K (mi)
5: return ci
6: C ⇐ OMAC2

K(ci, C)
7: end for
8: Tag ⇐ N ⊕ C ⊕H
9: return Tag

Algorithm 8. AlgorithmBg simulating
Oe

1: Run A
2: for all Oracle calls (Nj ,Hj ,Mj), j ∈

0 . . . n− 1 from A do
3: Cj ||Tagj ⇐ g1(Nj ,Hj ,Mj)
4: for all i ∈ 0 . . . n− 1 do
5: return ci,j in response to A’s

query
6: end for
7: return Tagj in response to A’s

query
8: end for
9: When A halts, read its output bit b
10: return b

18 J.-E. Ekberg, A. Afanasyeva, and N. Asokan

We may assume thatAmakes q > 1 queries to its oracle, and adversaryB uses
the same number of queries. Also, Pr[AAlg2 = 1]=Pr[BEAX = 1]. We assume
that A is nonce-respecting4, B is length-committing5 and Pr[A$ = 1]=Pr[B$ =
1]. Thus, we conclude that

AdvCPA
Alg2 (A) = Pr[AAlg1 = 1]− Pr[A$ = 1] =

= Pr[BEAX = 1]− Pr[B$ = 1] = AdvCPA
EAX(B)

This completes the claim.
It is easy to see that the CCA proof follows from the CPA proof, since the de-

cryption procedure remains unmodified. Thus, using the same logic it is possible
to show that

AdvCCA
Alg2 (A) = AdvCCA

EAX(B)

and this completes the proof.

4 An adversary is nonce-respecting if its queries never repeat a nonce value.
5 Adversary B is length-committing if it consults its own oracles with the appropriate
data block lengths implied by the needs of adversary A.

Auditable Envelopes: Tracking Anonymity

Revocation Using Trusted Computing

Matt Smart and Eike Ritter

School of Computer Science, University of Birmingham, UK
research@mattsmart.co,

e.ritter@cs.bham.ac.uk

Abstract. In this paper, we discuss a protocol allowing the remote user
of a system providing revocable anonymity to be assured of whether or
not her anonymity is revoked. We achieve this via a novel use of Trusted
Computing and Virtual Monotonic Counters. The protocol has wide-
ranging scope in a variety of computer security fields, such as electronic
cash, fair exchange and electronic voting.

1 Introduction

A number of fields in computer security consider the anonymity of protocol
users to be of critical importance: in digital cash and electronic commerce, it is
important that rogue users should not be able to trace the spender of a coin, or
to link coins that user has spent with each other. In anonymous fair exchange
protocols, multiple parties exchange items with one another, whilst wishing to
remain anonymous (sometimes for obvious reasons). In electronic voting, the
voter must remain unlinkable to their vote.

However, designers of each of these classes of protocol must consider that there
are sometimes occasions when a user’s anonymity must be revoked — a coin
might be maliciously double-spent, or used for an illegal purchase; a party could
renege on their promise as part of an exchange protocol; a voter may attempt to
vote twice, or may not be a legitimate voter at all1. The point of this paper is not
to consider for what reason anonymity revocation is required, though: instead,
we note that users whose anonymities are revoked should be made aware of this
fact. In this work, we present a solution to this problem, which is essentially a
digitized version of the “sealed envelope problem” discussed in [1].

Let us consider the physical, paper abstraction of the problem. Alice lives in a
country where it must be possible to link her identity to her vote (though only
authorised entities should be able to make this distinction). When she collects
her ballot paper, her identity is sealed inside a tamper-evident envelope, and
the serial number of her ballot paper is written on the outside. The envelope is
stored securely. Alice votes. Some time later, for whatever reason, someone may

1 The ability to link a voter to their ballot is actually a legal requirement in the UK
[2, 20, 15, 16].

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 19–33, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

20 M. Smart and E. Ritter

wish to trace Alice’s ballot back to her. After the election, Alice may wish to see
whether her anonymity has been revoked or not. To do this, she merely requests
to see the appropriate envelope from the authorities (i.e., that with her ballot
serial number on it), and verifies that the envelope is still sealed.

We can apply this abstraction to a number of other fields, and it particularly
makes sense when considering payment for goods (we discuss this more in Section
5). However, digitising the (auditable) sealed envelope is not at all trivial: it is
intuitively not possible to simply give the authorities an encrypted copy of Alice’s
identity: if the key is provided with the ciphertext, then Alice has no way to know
whether it has been used. If the key is not provided, then the authorities cannot
do anything with the ciphertext anyway, without contacting Alice (who, as a
rogue user, may deliberately fail to provide information) [1]. As a result, we
must consider that some sort of trusted platform is required, in order for Alice
to be convinced that her anonymity has not been revoked. In this work, we detail
a protocol which uses trusted computing—specifically, the TPM—to assure Alice
in this way.

1.1 Related Work

This paper is potentially relevant to a wide range of fields where revocable
anonymity is important: digital cash, fair exchange, and electronic voting. We
do not specifically address any of these areas, as the way in which they use the
identity of the user is unimportant to us: it is the similarity in the need for the
user’s anonymity that matters. Very little existing work considers auditable re-
vocable anonymity: Kugler and Vögt [11] discuss an electronic payment protocol
in which the spender of a coin can determine (within a fixed period) whether
their anonymity is revoked or not. Although the protocol is attractive, it requires
knowledge a priori of who is to be traced—something which is not possible in
fields such as electronic voting. More generally, Moran and Naor [12] discuss
many high-level theoretical implementations of cryptographic “tamper-evident
seals”, but do not go into detail as to how these would be realised (and seemingly
place a lot of trust in the entity responsible for generating seals).

Ables and Ryan [1] discuss several implementations of a “digital envelope” for
the storage of escrowed data using the TPM. Their second solution is appealing,
and uses a third party with monotonic counters. However, their solution allows
only a single envelope at a time to be stored (as the TPM only permits the
usage of one monotonic counter at a time), and also would require Alice herself
to generate her identity (something which would not be appropriate for us).

The work of Sarmenta et al. [14] on virtual monotonic counters using a TPM is
crucial to our work, as we use a new monotonic counter for each anonymous user,
allowing each to track their own anonymity. We discuss this more in Section 2.1.

1.2 Motivation and Contribution

In this work, we introduce a new protocol, not tied to any specific class of user-
anonymous security protocols (electronic commerce, voting, et cetera), which

Auditable Envelopes: Tracking Anonymity Revocation 21

uses the TPM to assure a user of whether or not their identity has been revealed:
we call this property non-repudiation of anonymity revocation. Our motivation
is clear: if we are to have protocols providing anonymity revocation, then it
must be possible for a user to determine when their anonymity is revoked. The
reasoning for this is twofold: not only does a user have the right to know when
they have been identified (generally, as a suspect in a crime), but the fact that
anonymity revocation is traceable is also beneficial:

. . . the detectability of inappropriate actions and accountability for orig-
ination suffices to prevent misbehaviour from happening [22, p. 5]

Though protocols exist in electronic commerce which permit this ([11], for ex-
ample), the techniques used are not widely applicable, for reasons discussed
above. We consider preliminary discussions of “escrowed data” stored in a dig-
ital envelope which use monotonic counters [1], and discuss the use of virtual
monotonic counters [14] to allow multiple tokens to be securely stored by a single
entity.

1.3 Structure

In Section 2, we provide some background in Trusted Computing and the TPM.
In Section 3, we discuss our trust requirements for the protocol, which itself
is presented in Section 4. We discuss applicability of the protocol in Section 5,
give a short discussion on the security of the protocol in Section 6, and finally
conclude.

2 Background: Trusted Computing

Trusted Computing is the notion that it is possible to enforce the behaviour of a
computer, through the provision of specific “trustworthy” hardware. This allows
users of a machine to be convinced that it is in the correct state, and is not com-
promised. Trusted Computing requirements are generally realised via the use of
a Trusted Platform Module (TPM) [18, 19], a tamper-resistant secure coproces-
sor responsible for a number of functions, including random number generation,
RSA key generation, and encryption/decryption. The TPM is capable of remote
attestation as to the state of its registers, and of sealing data: encrypting it such
that it can only be opened by a TPM in the correct state.

The TPM has many other functionalities, including Direct Anonymous At-
testation, used to anonymously attest to the state of a machine [3]. These func-
tionalities are accessed by the host through a predefined set of commands (or
API). For brevity we do not expand further on these functionalities, but instead
direct the interested reader to [5], which provides a solid introduction to Trusted
Computing and the TPM. It suffices to state that we do not modify the API in
any way with our work.

22 M. Smart and E. Ritter

2.1 Physical and Virtual Monotonic Counters

For us, one of the most important capabilities of the TPM is the availability
of secure monotonic counters. Monotonic counters are tamper-resistant coun-
ters embedded in the TPM, which, once incremented, cannot be reverted to a
previous value: this reduces the likelihood of replay attacks, for many applica-
tions [14].

Unfortunately, the 1.2 version of the TPM, being a low-cost piece of hardware,
has only four monotonic counters, of which only one can be used in any boot
cycle. As noted by Sarmenta et al., the intention here was to implement a higher
number of virtual monotonic counters on a trusted operating system. We would
rather not require trusted operating systems, however. The work of Sarmenta et
al. [14] demonstrates the creation of an unbounded number of virtual monotonic
counters with a non-trusted OS.

A virtual monotonic counter is a mechanism (in untrusted hardware or soft-
ware) which stores a counter value, and provides two commands to access it:
ReadCounter, which returns the current value, and IncrementCounter, which in-
creases the counter’s value. The counter’s value must be non-volatile, increments
and reads must be atomic, and changes must be irreversible. Note that virtual
monotonic counters are not stored on the TPM, but instead on untrusted stor-
age, allowing a far higher number of simultaneous counters to be used.

The manner in which Sarmenta et al. implement their solution means that the
counter is not tamper-resistant, but merely tamper-evident. This is sufficient for
our purposes. The counter produces verifiable output in the form of unforgeable
execution certificates, via a dedicated attestation identity key (AIK) for each
counter. The counter uses this key, together with nonces, to produce signed
execution certificates to send to users.

In the implementation of virtual monotonic counters suggested by Sarmenta
et al. [14, p. 31], the counter mechanism is stored in full on the host (rather than
on the host’s TPM), and supports the following functions:

– CreateNewCounter(nonce): returns a CreateCertificate containing the ID num-
ber of the counter, and the nonce given as a parameter

– ReadCounter(CounterID,Nonce): returns a ReadCertificate containing the value
of the counter, the counter’s ID and the given nonce

– IncrementCounter(CounterID,Nonce): increments the counter, and returns an
IncrementCertificate containing the new value of the counter, counter ID and
nonce

– DestroyCounter(CounterID,Nonce): destroys the counter.

In this work, we assume availability of the virtual monotonic counters defined
by Sarmenta et al.. To avoid use of commands that are not included in the
TPM API, we adopt the first, log-based scheme which they define [14, p. 32]. As
noted earlier, the TPM has a limited number of physical monotonic counters, of
which only one at a time can be used. The log-based implementation of virtual
monotonic counters uses a physical monotonic counter as a “global clock”, where
the time t is simply the value of the TPM’s physical counter at a given time.

Auditable Envelopes: Tracking Anonymity Revocation 23

The value of a virtual monotonic counter is then the value of the global clock
at the last time the virtual counter’s IncrementCounter command was executed.
This consequently means that the value of a counter each time it is incremented
cannot be predicted deterministically—we can merely say with certainty that
the value of the counter will only monotonically increase. As we discuss further
in the conclusion, this does not present a problem for us.

The IncrementCounter operation is then implemented using the TPM’s API
command TPM IncrementCounter, inside an exclusive, logged transport session,
using the ID of the counter in question, and a nonce nS generated by the client
to prevent replay. The result of the final TPM ReleaseTransportSigned operation
is a data structure including the nonce, and a hash of the transport session log,
which is used to generate an IncrementCertificate.

The ReadCounter operation is more complex, and involves the host (the “iden-
tity provider”, idp, for us) keeping an array of the latest increment certificates
[14, p. 33] for each virtual counter, returning the right one when the client re-
quests it. In order to prevent reversal of the counter’s value, however, the host
must send the current time certificate, the current increment certificate, and all
of the previous increment certificates. Verification of the counter’s value then
involves checking that each previous increment certificate is not for the counter
whose ID has been requested.

We do not go into further implementation specifics, but instead refer interested
readers to [14, p. 32] for further information.

3 Trust Model

In our work, we make the following assumptions:

1. Alice and the identity provider idp (discussed in the next section) trust the
TPM in Alice’s machine, by virtue of it attesting to its state (and therefore,
the state of Alice’s machine)

2. All users trust idp, by virtue of it attesting to its state (and therefore, the
state of idp’s machine)

3. The judge is trusted to only authorise anonymity revocation where necessary

In a strict sense, it is not necessary for users to deliberately place trust in any
TPM (whether it is in the identity provider’s machine, or the user’s): both the
user’s and the identity provider’s TPMs have the ability to verify the correctness
of the other’s TPM and host machine, where the TPM itself is assumed to be a
tamper-resistant hardware module. Instead, therefore, any trust we place must
be in the manufacturer of the TPM, to construct such a device according to its
correct specification. Note as a consequence that idp is not a trusted third party:
the fact that it is worthy of trust can be determined by any user.

4 Protocol

We begin by explaining our protocol from a high level, and then go into more
implementation specific detail. Note that we assume the availability of standard

24 M. Smart and E. Ritter

TPM LoadKey2(kI , . . .)

id := {id}pkI

CreateCounter(nc)

IncrementCounter(CounterID,nS)

Alice ID Provider (idp) Service Provider (s)

Encrypted Transport Session

TPM CreateWrapKey(binding,IDP-PCR INFO,kI,...)

TPM UnSeal(id, kI)

TPM LoadKey2(kTA, . . .)

TPM UnSeal(idm, kTA)

{id, CreateCertificate, signidp(hash(id||CounterID))}pkTA

TPM CreateWrapKey(binding,ALICE-PCR INFO,kTA,...)

3. (pkTA, skTA) :=

4. (pkI , skI) :=

5. Nonce nc

7. idm =

8. ReadCounter(CounterID,na)

9. ReadCertificate

10. {m,CounterID,id, signidp(hash(id||CounterID))}s

11. signJudge(id, CounterID, nS)

12. signidp({id}s)

13. ReadCounter(CounterID,n′

a)

14. ReadCertificate

2. ALICE-PCR INFO:=TPM Quote(. . . ,ci,. . .)

1. IDP-PCR INFO:=TPM Quote(. . . ,ca,. . .)

Fig. 1. Our Revocation Audit Protocol

public key cryptographic techniques, hashing and signature protocols. Our sce-
nario is as follows. Alice wishes to engage in a user-anonymous protocol with a
service provider, s: Alice normally remains anonymous, but s has some interest
in revoking her anonymity under certain circumstances (s can obtain a signed
request for the user’s identity from a judge). Alice would like to know whether
or not her anonymity has been revoked at some point after her interaction with
s is complete.

In order to present a solution, we introduce a third party, the identity provider,
idp. The identity provider runs trusted hardware, and attests to the state of
his machine in an authenticated encrypted transport session with Alice’s TPM
(again, it should be noted that this means idp is not a trusted third party,
but a party which proves that it is trustworthy). Once Alice is assured that
she can trust idp’s machine, and idp is likewise assured of the trustworthiness
of Alice’s machine, idp generates a virtual monotonic counter specifically for
Alice’s identity, using a nonce sent by Alice. He then encrypts Alice’s identity
using a key generated by Alice’s TPM. This is concatenated with a certificate
produced by the creation of the counter, hashed, and signed. The signature,
certificate and encrypted ID—which we will refer to as a pseudonym—are sent
to Alice, encrypted with a binding wrap public key to which only her TPM has
the private counterpart.

Alice now reads the counter generated for her. She can then send whatever
message is necessary to s, along with the particulars of the counter relating to

Auditable Envelopes: Tracking Anonymity Revocation 25

her ID, and idp’s signature thereof. The service provider is able to verify the
validity of the signed hash on Alice’s identity, and can store it for further use.

Should s request to view Alice’s identity, he contacts idp with a signature
generated by a judge, on the pseudonym and particulars of the certificate (the
details originally sent to him). The protocol dictates that idp first increments
the virtual monotonic counter associated with the certificate received, and can
then load the appropriate key, and decrypt Alice’s identity. Alice is later able to
request the value of her monotonic counter once again, allowing her to determine
whether or not her anonymity was revoked.

4.1 Implementation Steps

We now present a more detailed implementation. A diagram for the protocol is
give in Figure 1. The protocol can be split into two stages: in the first, Alice
registers her identity with idp, and receives a pointer to a virtual monotonic
counter back. In the second, she interacts with s, who may wish to obtain her
identity. She is then able to audit this process.

Stage 1. Alice begins with her TPM and the TPM of the identity provider,
idp, engaging in an encrypted transport session2. She invents a nonce, ca, and
challenges idp’s TPM to reveal the state of a number of its platform configuration
registers (PCRs—a set of protected memory registers inside the TPM, which
contain cryptographic hashes of measurements based on the current state of the
host system), using the TPM Quote command (with ca being used for freshness).
Alice can use this information to determine if the TPM is in a suitable state (i.e.,
if its host machine is running the correct software). The identity provider’s TPM
does the same with Alice’s TPM, using a different nonce ci. In this manner, both
platforms are assured of the trustworthiness of the other.

Alice proceeds to have idp’s TPM generate a fresh RSA keypair kI = (pkI , skI)
using the TPM CreateWrapKey command, binding the key to the PCR informa-
tion she acquired. This ensures that only a TPM in the same state as when
the TPM Quote command was executed is able to open anything sealed with
pkI . Similarly, idp’s TPM has Alice’s TPM generate a binding wrap keypair
kTA = (pkTA, skTA), where the private key is accessible only to Alice’s TPM.

Next, idp receives a nonce nc from Alice. He then creates a virtual monotonic
counter [14], which he ‘ties’ to Alice’s identity, using the CreateNewCounter com-
mand with nc. This returns a CreateCertificate, detailing the ID number of the
counter, CounterID, and the nonce used to create it. idp proceeds to produce a
pseudonym id = {id}pkI for Alice, an encryption of her identity (which we assume
it knows) using the TPM Seal command and the binding wrap key pkI . id and
the ID of the counter, CounterID, are concatenated and hashed. The signed hash,

2 We note that idp could also undergo direct anonymous attestation [3] with Alice to
attest to the state of his machine. However, this is unnecessary for us, as neither
Alice nor idp need to (or could) be anonymous at this stage.

26 M. Smart and E. Ritter

pseudonym id and the aforementioned CreateCertificate are sent to Alice, en-
crypted with the binding wrap key pkTA generated for her TPM. The ID provider
stores CounterID and id locally. Alice has her TPM decrypt the message she re-
ceives, and then verifies the hash. Note that only Alice’s TPM, in the correct
state, can decrypt the message sent to her.

Finally, Alice generates a fresh nonce na, and contacts idp to request the value
of the counter, via the ReadCounter(CounterID, Nonce) command. She receives
back a ReadCertificate containing the counter’s value, the CounterID and the
nonce she sent.

Stage 2. The second stage, which can happen at any time in future, is where
Alice communicates with whichever service provider she chooses (note that she
may choose to use the same id token with multiple service providers, or may
generate a new token for each—it would obviously be sensible to do the latter,
to prevent linkability between service providers). Where Alice’s message (which
might be a tuple containing her vote, or a coin, or some exchangeable object) is
represented by m, she sends the tuple

{m,CounterID, id, signidp(hash(id||CounterID))}s
to s. Note that the whole message is encrypted with the public key of the service
provider, preventing eavesdropping. The message m is further processed (how
is outside of the scope of this paper). The signed hash is examined to confirm
that it is indeed a valid signature, by idp, on the pseudonym and Counter ID
provided. The service provider can then store 〈CounterID, id〉 for later use.

Now, Alice can, at any point, check the value of her virtual monotonic
counter. The service provider may wish to discover her identity, and so will
seek a signed request from a judge, generating a nonce nS . He sends this re-
quest, signJudge(id, nS ,CounterID), to idp. Note that in order to decrypt Alice’s
pseudonym, idp must use the key kI—bound to the correct state of his TPM’s
PCRs—which Alice selected. This means that he needs to be in the correct
state. He begins by incrementing Alice’s virtual monotonic counter using the
command IncrementCounter(CounterID, nS), and then loads the appropriate key
kI using the TPM LoadKey2 command. He can then decrypt Alice’s identity using
TPM UnBind. Finally, idp returns id, encrypted for s. Again, what s does with
Alice’s identity is outside of the scope of this paper.

At any later time, Alice can check the virtual monotonic counter value, by
contacting idp and executing ReadCounter command with a fresh nonce n′

a. If
idp was correctly following the protocol (which, using a verified TPM, he must
have been), Alice will know—by determining whether the value of the counter
has increased—if her identity has been revealed.

A key point of the protocol is that the identity provider is automatically
trusted to follow it, as a consequence of the encrypted transport session in Stage
1. When Alice quotes the PCRs of the identity provider’s TPM, she makes it gen-
erate a key bound to the correct machine state that it is currently in (presumably,

Auditable Envelopes: Tracking Anonymity Revocation 27

Alice would terminate any session where an erroneous result of TPM Quote was
reported). Even if idp were to become corrupted after the encrypted transport
session, this corruption would alter its TPM’s PCRs, protecting Alice’s identity
from rogue decryption.

5 Applicability

In this section, we discuss some use cases for the protocol: as mentioned earlier,
we believe it to have a number of areas of applicability. Here we focus on digital
cash and electronic voting, two classes of protocol where anonymity is critical.

5.1 When Does Alice Request a Pseudonym?

We mentioned in Section 4.1 that Alice is free to have idp generate an unlimited
number of pseudonyms for her, or just one, depending on her preference. Com-
mon sense dictates that, should Alice wish the services she interacts with to be
unable to link her transactions together, she should generate a fresh pseudonym
for each service she uses. For services which a user uses only once (say, par-
ticipating in an election), this solution is sufficient. For those which she uses
multiple times—such as spending multiple coins in a digital cash system—we
consider whether a solution requiring Alice to contact idp multiple times for dif-
ferent pseudonyms is suitable. Digital cash protocols such as [10] typically secure
a spender’s identity by encrypting it with a key to which only one, trusted, entity
has access. When coins are withdrawn, the identities of those coins are stored
with the encrypted ID of their owners in a database. Consequently, as in [10],
though the digital coin itself does not contain Alice’s identity, it contains pointers
which which her identity can be looked up in the database.

We note that, in [10], whenever Alice withdraws a coin, she encrypts her
identity using fresh symmetric keys for two separate parties: the Bank and the
Ombudsman, both of whom have to cooperate to later retrieve her anonymity.
In fact, our protocol fits very well into this model. Alice still selects two fresh
symmetric keys, but now encrypts not her plaintext ID, but the tuple

〈CounterID, id, signidp(hash(id||CounterID))〉,
obtained from idp. As idp is trusted to legitimately produce signatures on identi-
ties, the Bank and Ombudsman can trust the encrypted ID to be legitimate, and
issue the coin as before. Should revocation be required, the Bank now simply
contacts idp, allowing Alice to determine that this has occurred.

The advantage here is that Alice’s withdrawn coins remain unlinkable—her
ID is not encoded into them, and every instance of her ID stored by the Bank is
not only encrypted with the key idp generated for it, but also with session keys
generated by Alice. We note, of course, that [10] is now quite dated. However,
it represents a class of digital cash protocol in which the spender’s identity is
stored encrypted in a database, and is used here for its simplicity. A range of
other digital cash systems could use our protocol in the same way [4, 6, 17, 21],
or by simply storing the pseudonym in the coin [7–9, 13].

28 M. Smart and E. Ritter

5.2 Digital Cash Examples

If we take any digital cash protocol where the identity of the coin spender is
in some way encrypted (whether stored on a remote server [10] or encoded into
the coin itself [13]), we can envisage a situation in which a user either spends
a digital coin twice, or participates in an illegal transaction. An authority will
have some interest in this, and thus requests that the Bank trace the coins spent
by the user, in order to identify her.

In the case of the protocols listed above, the identity of the user is simply
decrypted (albeit by two separate authorities in the first case). The user has no
way to know that she was traced, until she is apprehended! Now, we modify each
protocol such that:

– in the case of protocols where the spender ID is encoded onto the coin, the
coins instead contain the user’s identity—encrypted using the wrap key made
for idp—and the CounterID, with the signed hash of both;

– in the case of a database storing the spender ID, with a lookup value in
each key, we proceed as discussed above, with the spender providing the
idp-encrypted ID token which is then stored in the database.

This done, the coin spender knows that each coin can only be linked back to
her with the cooperation of idp, who (since he is following the protocol) must
increment the appropriate counter, allowing the spender to know if she is iden-
tified. Note that a protocol providing revocation auditability already exists [11],
but requires knowledge a priori of who is to be traced, making the protocol
unsuitable for other applications.

5.3 Electronic Voting Example

Voting is generally considered to be an area where anonymity of the user (voter)
should be unequivocal. However, in some countries (such as the UK, and New
Zealand), it is a legal requirement that a voter’s ballot paper must be linkable
back to them [20]. Smart and Ritter’s work on revocable anonymity in electronic
voting [15, 16] stores the voter’s identity in an encrypted manner in the ballot. If
instead we store the encrypted ID, with the CounterID and signed hash of both,
we achieve the same property as above: if the authorities need to trace a voter,
they contact the identity provider. If a voter is traced, they know that they will
be able to determine this was the case, because the identity provider will have
incremented their virtual monotonic counter.

An interesting problem is how to deal with coercion resistance: if Alice receives
an encrypted identity from idp, and then sends it to a vote tallier who places it on
the bulletin board unchanged, then a coercer can see that Alice has voted (this is
undesirable if we wish to prevent forced-abstention attacks). In protocol vote2,
permitting revocable anonymity [16, p. 197–9], revocation is effected by having
Alice send the tuple 〈id = {id}Judge, SignR(id)〉 to the talliers. The ciphertext id
is produced by the registrar, R, during registration.

Auditable Envelopes: Tracking Anonymity Revocation 29

This is followed by an encrypted transport session between the voter’s TPM
and a Tallier, in which a sealing wrap key used to encrypt designated verifier
proofs of re-encryption is produced. Our change to the protocol is again quite
small. In the registration phase, once the “join” stage of the protocol is complete,
Alice sends her idp-encrypted id to R, who performs an ElGamal encryption of
it using the Judge’s public key. Before the talliers post this ciphertext to the
bulletin board, it is randomly re-encrypted. Should revocation be required, the
co-operation of both the Judge and idp is required, and Alice will again be able
to see that this has occurred.

6 Analysis

In this section we briefly discuss the security properties of the protocol. The
main property that we achieve is that Alice is always able to determine whether
her anonymity is revoked or not (non-repudiation of anonymity revocation). This
property is satisfied as a result of the knowledge that, having attested to the state
of his TPM (and hence, the software being run on the host), idp will either:

– act according to the protocol specification, or
– be unable to decrypt Alice’s identity.

Our reasoning is as follows. If the Identity Provider adheres to the specification,
he generates a counter for Alice’s identity using a nonce she supplies. He encrypts
her identity using a keypair which can only be used again by a TPM in the same
state which Alice originally accepted.

The information that idp generates to send to Alice must be correct, other-
wise idp is deviating from the protocol. It follows that, when s requests Alice’s
anonymity to be revoked, idp must first increment the associated counter. If idp
does deviate from the protocol, he will not be able to use the same key kI later
on to decrypt Alice’s identity, as that key is bound to his original TPM state
(which would change if different, or malicious, software were used).

Thus, the most a rogue idp could achieve is suggesting Alice’s anonymity has
been revoked when it has not (i.e., tampering with the counter), opening up idp
to further questioning (it is hence not in the identity provider’s interest to lie to
Alice in this way). Since the counter must always be incremented before Alice’s
identity is decrypted, Alice will always know when she has been identified, by
querying the counter.

We next consider Alice’s interaction with s. In her communication with s, Alice
provides her pseudonym and the counter ID tied to it, together with a signed
hash of these values (as originally provided to her by idp). This convinces s that
the identity provided is genuine. This leads us to the issue of eavesdropping at-
tacks, allowing a user to illegitimately obtain the pseudonym of another user,
and thus ‘frame’ an innocent victim for a crime. Note that without identifying
Alice immediately, s cannot be further convinced that the pseudonym is indeed
hers. However, our protocol prevents this problem from arising: in the message

30 M. Smart and E. Ritter

idm sent from idp to Alice, Alice’s pseudonym and counter information are en-
crypted using a binding wrap key, meaning that only her TPM can obtain these
values. The only other message where these two values are together is in Alice’s
communication with s, and here, the entire message is encrypted for s.

The message containing Alice’s actual identity is signed by idp before being
sent back to s. Hence, providing s trusts idp, he will always obtain Alice’s le-
gitimate identity by following the protocol. We might consider that s does not
trust idp, in which case we could request that s and idp also undergo some sort
of attestation, like that between Alice and idp. In the case of the digital cash
example presented earlier, we could require that the Bank and Ombudsman each
force idp to attest to its state.

Trustworthiness of the Service Provider. Note that, as we have already
mentioned, we do not consider how s behaves, as it is outside of the scope of
this protocol. However, we now discuss a possible course of action to prevent a
rogue s replaying the counter and pseudonym values sent to him by an honest
user. In order to mitigate this issue, we need to force the pseudonym’s actual
owner to prove her ownership. We therefore alter some of the messages in the
protocol (numbered according to Figure 1, where messages 10a–d come between
messages 10 and 11):

7. idp→Alice: {id,CreateCertificate, signidp(hash(id ‖ hash(CounterID)))}pkTA

8. Alice→idp: {ReadCounter(CounterID, na)}pkI

9. idp→Alice: {ReadCertificate}pkTA

10. Alice→s: {m, id, hash(CounterID), signidp(id ‖ hash(CounterID))}s
10a. s→Alice: cctr
10b. Alice→s: hash(CounterID ‖ cctr)
10c. s→idp: id, cctr
10d. idp→s: hash(CounterID ‖ cctr)
11. s→idp: signJudge(id, nS)

These changes are appropriate if we wish to prevent a rogue s from gaining
an 〈id,CounterID〉 pair with which to frame another user. We begin by altering
what idp sends to Alice, such that the signed hash now itself contains a hash of
CounterID. Both the request and result of reading the counter are encrypted for
idp’s and Alice’s TPM respectively.

The messages from 10 onwards are the most important. Rather than sending
her counter’s ID in the clear for s, Alice sends a hash of it, which fits in with the
signed hash provided by idp. s now returns a challenge cctr, which Alice hashes
with CounterID and returns. In 10c and 10d, s sends the pair 〈id, cctr〉 to idp, who
looks up id and returns a hash of its associated CounterID concatenated with the
challenge. This allows s to ensure that Alice really is the owner of the pseudonym
and counter ID she provided. No further changes are necessary, as this prevents
s from stealing Alice’s pseudonym and counter ID: s would be unable to generate

Auditable Envelopes: Tracking Anonymity Revocation 31

message 10b as he never sees CounterID in the clear. Note that consequently,
message 11 also needs to change.

In this section, we have discussed the security properties of our work. Note
that changes to mitigate against a corrupt service provider are only appropriate
where untrustworthy service providers are a risk—hence we do not include these
changes in the main protocol.

7 Conclusions and Future Work

In this paper, we have presented work on a protocol which allows users of a
protocol providing revocable anonymity to audit whether or not their anonymity
is revoked. We have shown how virtual monotonic counters can be used on an
authenticated host to track anonymity revocation, for use with any other class
of security protocol requiring revocable anonymity. Further, we addressed how
to mitigate the actions of a corrupt service provider. This work makes significant
steps in auditable anonymity revocation, a field which has not been considered
in detail before.

There are factors which we would like to consider in future work. Some of
those are motivated by the issues Sarmenta et al. discuss regarding log-based
virtual monotonic counters in [14]. The counters are non-deterministic, being
based on the single counter in use by the TPM in any one power cycle. This
means that counter increment values are unpredictable—not a problem for our
application, but potentially a cause of high overhead. Indeed, the ReadCertificate
for a counter would include “the log of all increments of all counters. . . since the
last increment”. The size of such a certificate could be substantial. Power failures
mid-cycle on idp could also cause the counters to become untrustworthy.

These issues are mitigated by the idea of Merkle hash tree-based counters [14,
pp. 34–6] which would require changes to the TPM’s API. It is for this reason
that we did not adopt this solution, but would instead look to it for future work.
We would also like to consider a formal analysis of the security properties of the
protocol.

One might also consider whether the third party, idp, is required for this pro-
tocol to work: an exemplar alternative might be in which Alice and s interact
only with each other, assuring trustworthiness via a protocol such as DAA [3].
Alice seals her identity using a key generated by her TPM, meaning that interac-
tion with her TPM is again required to reveal her identity (and thereby, Alice is
informed that this has happened). This solution will not work: as we mentioned
earlier, a rogue Alice would rather switch her machine off than risk detection. Us-
ing a high-availability third party, which proves itself to be following the correct
protocol, mitigates this problem.

We feel the protocol we have presented has wide-ranging applicability to a
number of user-anonymous protocols—particularly those in digital cash and elec-
tronic voting—allowing all users subject to revocable anonymity to be assured
of whether or not they can be identified.

32 M. Smart and E. Ritter

References

1. Ables, K., Ryan, M.D.: Escrowed Data and the Digital Envelope. In: Acquisti, A.,
Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 246–256.
Springer, Heidelberg (2010)

2. Blackburn, R.: The Electoral System in Britain. Macmillan, London (1995)
3. Brickell, E., Camenisch, J., Chen, L.: Direct Anonymous Attestation. In: Proceed-

ings of the 11th ACM Conference on Computer and Communications Security,
CCS 2004, pp. 132–145. ACM (2004)

4. Camenisch, J., Maurer, U., Stadler, M.: Digital Payment Systems with Passive
Anonymity-Revoking Trustees. Journal of Computer Security 5(1), 69–89 (1997)

5. Challener, D., Yoder, K., Catherman, R., Safford, D., Doorn, L.V.: A Practical
Guide to Trusted Computing. IBM Press, Boston (2008)

6. Chen, Y., Chou, J.S., Sun, H.M., Cho, M.H.: A Novel Electronic Cash System
with Trustee-Based Anonymity Revocation From Pairing. Electronic Commerce
Research and Applications (2011), doi:10.1016/j.elerap.2011.06.002

7. Fan, C.I., Liang, Y.K.: Anonymous Fair Transaction Protocols Based on Electronic
Cash. International Journal of Electronic Commerce 13(1), 131–151 (2008)

8. Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Transferable Constant-Size Fair E-
Cash. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888,
pp. 226–247. Springer, Heidelberg (2009)

9. Hou, X., Tan, C.H.: On Fair Traceable Electronic Cash. In: Proceedings, 3rd An-
nual Communication Networks and Services Research Conference, pp. 39–44. IEEE
(2005)

10. Jakobsson, M., Yung, M.: Revokable and Versatile Electronic Money (Extended
Abstract). In: CCS 1996: Proceedings of the 3rd ACM Conference on Computer
and Communications Security, pp. 76–87. ACM Press, New York (1996)

11. Kügler, D., Vogt, H.: Off-line Payments with Auditable Tracing. In: Blaze, M. (ed.)
FC 2002. LNCS, vol. 2357, pp. 269–281. Springer, Heidelberg (2003)

12. Moran, T., Naor, M.: Basing Cryptographic Protocols on Tamper-Evident Seals.
Theoretical Computer Science 411(10) (2010)

13. Pointcheval, D.: Self-Scrambling Anonymizers. In: Frankel, Y. (ed.) FC 2000.
LNCS, vol. 1962, pp. 259–275. Springer, Heidelberg (2001)

14. Sarmenta, L.F., van Dijk, M., O’Donnell, C.W., Rhodes, J., Devadas, S.: Virtual
Monotonic Counters and Count-Limited Objects using a TPM without a trusted
OS. In: Proceedings of the First ACM Workshop on Scalable Trusted Computing,
STC 2006, pp. 27–42. ACM, New York (2006)

15. Smart, M., Ritter, E.: Remote Electronic Voting with Revocable Anonymity. In:
Prakash, A., Sen Gupta, I. (eds.) ICISS 2009. LNCS, vol. 5905, pp. 39–54. Springer,
Heidelberg (2009)

16. Smart, M., Ritter, E.: True Trustworthy Elections: Remote Electronic Voting Using
Trusted Computing. In: Calero, J.M.A., Yang, L.T., Mármol, F.G., Garćıa Villalba,
L.J., Li, A.X., Wang, Y. (eds.) ATC 2011. LNCS, vol. 6906, pp. 187–202. Springer,
Heidelberg (2011)

17. Tan, Z.: An Off-line Electronic Cash Scheme Based on Proxy Blind Signature. The
Computer Journal 54(4), 505–512 (2011)

18. TCG: Trusted Computing Group: TPM Main: Part 2: Structures of the TPM,
Version 1.2, Revision 103 (October 2006), http://bit.ly/camUwE

19. TCG: Trusted Computing Group: TPM Main: Part 3: Commands, Version 1.2,
Revision 103 (October 2006), http://bit.ly/camUwE

http://bit.ly/camUwE
http://bit.ly/camUwE

Auditable Envelopes: Tracking Anonymity Revocation 33

20. The Electoral Commission: Factsheet: Ballot Secrecy (December 2006),
http://www.electoralcommission.org.uk/ data/assets/

electoral commission pdf file/0020/13259/Ballot-Secrecy-2006-12

23827-6127 E N S W .pdf

21. Wang, C., Lu, R.: An ID-based Transferable Off-Line e-Cash System with Revok-
able Anonymity. In: Proceedings, International Symposium on Electronic Com-
merce and Security, ISECS 2008, pp. 758–762. IEEE (2008)

22. Weber, S.G., Mühlhäuser, M.: Multilaterally Secure Ubiquitous Auditing. In:
Caballé, S., Xhafa, F., Abraham, A. (eds.) Intelligent Networking, Collaborative
Systems and Applications. SCI, vol. 329, pp. 207–233. Springer, Heidelberg (2010)

http://www.electoralcommission.org.uk/__data/assets/electoral_commission_pdf_file/0020/13259/Ballot-Secrecy-2006-12_23827-6127__E__N__S__W__.pdf
http://www.electoralcommission.org.uk/__data/assets/electoral_commission_pdf_file/0020/13259/Ballot-Secrecy-2006-12_23827-6127__E__N__S__W__.pdf
http://www.electoralcommission.org.uk/__data/assets/electoral_commission_pdf_file/0020/13259/Ballot-Secrecy-2006-12_23827-6127__E__N__S__W__.pdf

Lockdown: Towards a Safe and Practical Architecture
for Security Applications on Commodity Platforms

Amit Vasudevan1, Bryan Parno2,�, Ning Qu3,��, Virgil D. Gligor1, and Adrian Perrig1

1 CyLab/Carnegie Mellon University
{amitvasudevan,gligor,perrig}@cmu.edu

2 Microsoft Research
parno@microsoft.com

3 Google Inc.
quning@gmail.com

Abstract. We investigate a new point in the design space of red/green sys-
tems [19,30], which provide the user with a highly-protected, yet also highly-
constrained trusted (“green”) environment for performing security-sensitive
transactions, as well as a high-performance, general-purpose environment for all
other (non-security-sensitive or “red”) applications. Through the design and im-
plementation of the Lockdown architecture, we evaluate whether partitioning,
rather than virtualizing, resources and devices can lead to better security or per-
formance for red/green systems. We also design a simple external interface to
allow the user to securely learn which environment is active and easily switch
between them. We find that partitioning offers a new tradeoff between security,
performance, and usability. On the one hand, partitioning can improve the secu-
rity of the “green” environment and the performance of the “red” environment (as
compared with a virtualized solution). On the other hand, with current systems,
partitioning makes switching between environments quite slow (13-31 seconds),
which may prove intolerable to users.

1 Introduction

Consumers currently use their general-purpose computers to perform many sensitive
tasks; they pay bills, fill out tax forms, check account balances, trade stocks, and access
medical data. Unfortunately, increasingly sophisticated and ubiquitous attacks under-
mine the security of these activities. Red/green systems [19,30] have been proposed as
a mechanism for improving user security without abandoning the generality that has
made computers so successful. They are based on the observation that users perform
security-sensitive transactions infrequently, and hence enhanced security protections
need only be provided on demand for a limited set of activities. Thus, with a red/green
system, the user spends most of her time in a general-purpose, untrusted (or “red”) en-
vironment which retains the full generality of her normal computer; i.e., she can install
arbitrary applications that run with good performance. When the user wishes to perform
a security sensitive transaction, she switches to a trusted (or “green”) environment that
includes stringent protections, managed code, network and services at the cost of some
performance degradation.

� This work was done while Bryan Parno was still at CyLab/Carnegie Mellon University.
�� This work was done while Ning Qu was still at CyLab/Carnegie Mellon University.

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 34–54, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Lockdown: Towards a Safe and Practical Architecture 35

The typical approach to creating a red/green system relies on virtualization to isolate
the trusted and untrusted environments [19,30]. While straightforward to implement,
this approach has several drawbacks. First, it requires virtualizing all of the system re-
sources and devices that may be shared between the two environments. From a security
perspective, this introduces considerable complexity [16] into the reference monitor
(i.e., the virtual machine monitor) responsible for keeping the two environments sep-
arate. In addition, even without compromising a reference monitor, actively sharing
resources by allowing both environments to run simultaneously exposes side-channels
that can be used to learn confidential information [36,9,31,18]. From a performance per-
spective, the interposition necessary to virtualize devices adds overhead to both trusted
and untrusted applications [16].

Through our design and implementation of the Lockdown architecture, we investi-
gate whether partitioning resources can overcome these drawbacks. In particular, Lock-
down employs a light-weight hypervisor to partition system resources across time, so
that only one environment (trusted or untrusted) runs at a time. When switching between
the two environments, Lockdown resets the state of the system (including devices) and
leverages existing support for platform power-management to save and restore device
state. This approach makes Lockdown device agnostic, removes considerable complex-
ity from the hypervisor, and yet maintains binary compatibility with existing free and
commercial operating systems (e.g., Windows and Linux run unmodified). It also al-
lows the untrusted environment to have unfettered access to devices, resulting in near
native performance for most applications, although a small performance degradation
is necessary to protect Lockdown from the untrusted environment. In the trusted en-
vironment, Lockdown employs more expensive mechanisms to keep the environment
pristine. For example, Lockdown only permits known, trusted code to execute. Since
this trusted code may still contain bugs, Lockdown ensures that trusted applications can
only communicate with trusted sites. This prevents malicious sites from corrupting the
applications, and ensures that even if a trusted application is corrupted, it can only leak
data to sites the user already trusts with her data.

As an additional contribution, we study the design and implementation of a user
interface for red/green systems that is independent of the choice of virtualization versus
partitioning. Our design results in a small, external USB device that communicates the
state of the system (i.e, trusted or untrusted) to the user. The security display is beyond
the control of an adversary and cannot be spoofed or manipulated. Its simple interface
(providing essentially one bit of input and one bit of output), makes it easy to understand
and use, and overcomes the challenges in user-based attestation [26] to create a trusted
communication channel between the user and the red/green system.

We have implemented and evaluated a full prototype of our user interface (which
we call the Lockdown Verifier) plus Lockdown for Windows and Linux on commodity
x86 platforms (AMD and Intel). To the best of our knowledge, this represents the first
complete, end-to-end design, implementation and evaluation of a red/green system on
commodity platforms; we discuss related work in § 8. The Lockdown hypervisor im-
plementation has 10K lines of code, including the code on the Lockdown Verifier. The
small size and simple design supports our hypothesis that partitioning (instead of vir-
tualization) can improve security. Our evaluation also indicates that the performance of

36 A. Vasudevan et al.

untrusted applications is the same or better with partitioning (as opposed to virtualiza-
tion). Lockdown only imposes a 3% average overhead for memory and 2-7% overhead
for disk operations for untrusted applications. Virtualization on the other hand imposes
overhead for all platform hardware with the overhead ranging from 3-81% depend-
ing on the resources being virtualized (§ 7.2). The primary limitation of partitioning
on current systems is the time (13–31 seconds) needed to switch between the two en-
vironments. While we describe several potential optimizations that could significantly
reduce this time, whether this tradeoff between security, performance, and usability is
acceptable remains an open question.

2 Problem Definition

Goals. The goal of a red/green system is to enable a set of trusted software to com-
municate with a set of trusted sites while preserving the secrecy and integrity of these
applications and the data they handle. Protecting trusted software that does not require
network access is a strict subset of this goal. Ideally, this should be achieved without
modifying any hardware or software the user already employs. In other words, a user
should be able to run the same OS (e.g., Windows), launch her favorite browser (e.g.,
Internet Explorer) and connect to her preferred site (e.g., a banking website) via the
Internet in a highly secure manner while maintaining the current level of performance
for applications that are not security-sensitive.

Adversary Model. We assume the adversary can execute arbitrary code within the
untrusted environment and may also monitor and manipulate network traffic to and from
the user’s machine. However, we assume the adversary is remote and cannot perform
physical attacks on the user’s machine.

Assumptions. The first three assumptions below are necessary for any red/green sys-
tem. The last two are particular to Lockdown’s implementation. (i) Trusted Software
and Sites: As we discuss in § 3.2, we assume certain software packages and certain
websites can be trusted to not deliberately leak private data; (ii) Reference Monitor
Security: We assume that our reference monitor code does not contain vulnerabili-
ties. Reducing the complexity and amount of code in the reference monitor (as we do
with Lockdown) allows manual audits and formal analysis to validate this assumption;
(iii) User Abilities: We assume the user can be trained to perform security-sensitive
operations in the trusted environment; (iv) Hardware Support: We assume the user’s
computer supports Hardware Virtualization Extensions (with Nested Page Table sup-
port [10]) and contains a Trusted Platform Module [44] chip. Both technologies are
ubiquitous; and (v) Trusted BIOS: Lockdown uses the BIOS during its installation and
to reset devices, so we must assume the BIOS has not been corrupted. Fortunately, most
modern BIOSes require signed updates [32], preventing most forms of attack.

3 Lockdown’s Architecture

At a high level (Figure 1), Lockdown splits system execution into two environments,
trusted and untrusted, that execute non-concurrently. This design is based on the belief

Lockdown: Towards a Safe and Practical Architecture 37

App
3

App
2

App
1

Untrusted Environment

Operating
System

Lockdown

Memory,
CPU, TPM

Devices

App
3

App
2

App
1

Trusted Environment

Operating
System

Lockdown Verifier

Insecure

Secure

Bu
zzer

Fig. 1. Lockdown System Architecture. Lockdown partitions the platform into two environ-
ments; only one environment executes at a time. An external device (which we call the Lock-
down Verifier) verifies the integrity of Lockdown, indicates which environment is active and can
be used to toggle between them. The shaded portions represent components that must be trusted
to maintain isolation between the environments.

that the user has a set of tasks (e.g., games, browsing for entertainment) that she wants
to run with maximum performance, and that she has a set of tasks that are security sen-
sitive (e.g., checking bank accounts, paying bills, making online purchases) which she
wants to run with maximum security and which are infrequent and less performance-
critical. The performance-sensitive applications run in the untrusted environment with
near-native speed, while security-sensitive applications run in the trusted environment,
which is kept pristine and protected by Lockdown. The Lockdown architecture is based
on two core concepts: (i) hyper-partitioning: system resources are partitioned as op-
posed to being virtualized. Among other benefits, this results in greater performance,
since it minimizes resource interpositioning, and it eliminates most side-channel attacks
possible with virtualization; and (ii) trusted environment protection: Lockdown lim-
its code execution in the trusted environment to a small set of trusted applications and
ensures that network communication is only permitted with trusted sites.

3.1 Hyper-partitioning

Since the untrusted environment may be infected with malware, Lockdown must iso-
late the trusted environment from the untrusted environment. Further, Lockdown must
isolate itself from both environments so that its functionality cannot be deliberately
or inadvertently modified. One way to achieve this isolation is to rely on the platform
hardware to partition resources. With platform capabilities such as Single-Root I/O Vir-
tualization (SR-IOV) [29] and additional hardware such as an IOMMU, it is possible
to assign physical devices directly to an environment (untrusted or trusted) [4,17]. This
hardware capability facilitates concurrent execution of multiple partitions without vir-
tualizing devices. Unfortunately, not all devices can be shared currently (e.g., video,
audio) [5] and such platform support is not widely available today [6,17].

38 A. Vasudevan et al.

CPU and Memory Partitioning. Lockdown partitions the CPU in time by only allow-
ing one environment to execute at a time. The available physical memory in the system
is partitioned into three areas: the Lockdown memory region, the untrusted environ-
ment’s memory region, and the trusted environment’s memory region1. Lockdown em-
ploys Nested Page Tables (NPT)2 [10] to restrict each environment to its own memory
region. In other words, the NPT for the untrusted environment does not map physical
memory pages that belong to the trusted environment and vice versa. Further, it employs
hardware-based DMA-protection within each environment to prevent DMA-based ac-
cess beyond each environment’s memory regions.

Device Partitioning. With hyper-partitioning, both the untrusted and trusted environ-
ments use the same set of physical devices. Devices that do not store persistent data,
such as video, audio, and input devices can be partitioned by saving and restoring their
states across environment switches. However, storage devices may contain persistent,
sensitive data from the trusted environment, or malicious data from the untrusted envi-
ronment. Thus, Lockdown ensures that each environment is provided with its own set
of storage devices and/or partitions. For example, Lockdown can assign a different hard
disk to each environment. Alternatively, Lockdown can assign a different partition on
the same hard disk to each environment. The challenge is to save and restore device
state in a device agnostic manner, and to partition storage devices without virtualizing
them, while providing strong isolation that cannot be bypassed by a malicious OS.

Lockdown leverages the Advanced Configuration and Power-management Interface
(ACPI) [14] to save and restore device states while partitioning non-storage devices.
The ACPI specification defines an ACPI subsystem (system BIOS and chipset) and an
Operating System Power Management (OSPM) subsystem. With an ACPI-compatible
OS, applications and device drivers interact with the OSPM code, which in turn inter-
acts with the low-level ACPI subsystem. ACPI defines four system sleep states which
an ACPI-compliant computer system can be in: S1 (power is maintained to all system
components, but the CPU stops executing instructions), S2 (the CPU is powered off),
S3 (standby), and S4 (hibernation: all of main memory is saved to the hard disk and
the system is powered down). Figure 2a shows how an OSPM handles ACPI Sleep
States S3 and S4. When a sleep command is initiated (e.g., when the user closes the
lid on a laptop), the OSPM first informs all currently executing user and kernel-mode
applications and drivers about the sleep signal. They, in turn, store the configuration in-
formation needed restore the system when it awakes. The device drivers use the OSPM
subsystem to set desired device power levels. The OSPM then signals the ACPI sub-
system, which ultimately performs chipset-specific operations to transition the system
into the desired sleep state. The OSPM polls the ACPI subsystem for a wake signal to
determine when it should reverse the process and wake the system. Note that with this
scheme, Lockdown does not need to include any device drivers or interpose on device
operations. The OS contains all the required drivers that deal directly with the devices
for normal operation and for saving and restoring device states.

1 An implementation using ACPI S4 state for hyper-partitioning (§ 6), requires only two memory
regions, Lockdown and the current environment (untrusted or trusted) since ACPI S4 results
in the current environment’s memory contents being saved and restored from the disk.

2 Also termed as Extended Page Tables on Intel platforms.

Lockdown: Towards a Safe and Practical Architecture 39

Fig. 2. Hyper-Partitioning. (a) Lockdown leverages the Advanced Configuration and Power-
management Interface (ACPI) OS sleep mechanism to partition (by saving and restoring states)
non-storage system devices while being device agnostic. (b) Storage devices (e.g., disk) are par-
titioned by intercepting the device selection requests and redirecting device operations to the
appropriate device, based on the current environment. (c) Environment switching is performed
upon receiving a command from the Lockdown Verifier. The OS ACPI sleep steps are modified
by Lockdown to transition between environments (untrusted and trusted).

Lockdown efficiently partitions storage devices by interposing on device selection,
rather than device usage. It takes advantage of the fact that modern storage devices rely
on a controller that implements the storage protocol (e.g., ATA, SATA) and directs stor-
age operations to the attached devices. When the operating system writes to the storage
controller’s I/O registers (a standard set for a given controller type), Lockdown inter-
cepts the write and manipulates the device controller to select the appropriate device for
the currently executing environment (see Figure 2b). All other device operations (e.g.,
reads and writes) proceed unimpeded by Lockdown. A similar scheme can be adopted
for two partitions on the same hard disk by manipulating sector requests. Our evaluation
(§ 7) shows that interposing on device/sector selection has a minimal effect on perfor-
mance. Since we assume the BIOS is trusted (§ 2), we can be sure that Lockdown will
always be started first, and hence will always maintain its protections over the trusted
disk.

Environment Switching. Lockdown performs an environment switch by transitioning
the current environment to sleep and waking up the other. Figure 2c shows the steps

40 A. Vasudevan et al.

taken for an environment switch, assuming the user starts in the untrusted environment.
When the user toggles the switch on the trusted Lockdown Verifier to initiate a switch to
the trusted environment (Step 1), the Lockdown Verifier communicates with Lockdown
which in turn instructs the OSPM in the untrusted environment to put the system to
sleep (Step 2). When the OSPM in the untrusted environment issues the sleep command
to the ACPI Subsystem, Lockdown intercepts the command (Step 3), resets all devices,
updates the output on the Lockdown Verifier (Step 4), and issues a wake command to the
OSPM in the trusted environment (Step 5). Switching back to the untrusted environment
follows an analogous procedure.

3.2 Trusted Environment Protection

Lockdown’s trusted environment runs a commodity OS and applications. Lockdown
verifies the integrity of all the files of the trusted environment during Lockdown’s in-
stallation. Further, Lockdown trusts the software in the trusted environment to not leak
data deliberately. However, vulnerabilities within the OS or an application in the trusted
environment can be exploited either locally or remotely to execute malicious code. Fur-
ther, since the trusted environment and untrusted environment use the same devices, the
untrusted environment could change a device’s firmware to act maliciously. Lockdown
uses approved code execution and network protection to ensure that only trusted code
(including device firmware code) can be executed and only trusted sites can be visited
while in the trusted environment, as explained below.

Approved Code Execution. For non-firmware code, Lockdown uses Nested Page Ta-
bles (NPT) to enforce a W ⊕ X policy on physical memory pages used within the
trusted environment. Thus, a page within the trusted environment may be executed or
written, but not both. Prior to converting a page to executable status, Lockdown checks
the memory region against a list of trusted software (§ 3.2 describes how this list is es-
tablished). Execution is permitted only if this check succeeds. Previous work enforces
a similar policy only on the kernel [37], or uses it to determine what applications are
running [21]. In contrast, Lockdown uses these page protections to restrict the OS and
the applications to a limited set of trusted code. For device firmware code, Lockdown,
during installation, scans all installed hardware and enumerates all system and device
firmware code regions. It assumes this code has not yet been tampered with and uses
NPTs to prevent either environment from writing to these regions.

Network Protection. Since users perform many security-sensitive activities online, ap-
plications executing in the trusted environment need to communicate with remote sites
via the network. However, permitting network communication exposes the trusted en-
vironment to external attacks. Remote attackers may exploit flaws in the OS’s network
stack, or the user may inadvertently access a malicious site, or a network-based attacker
may perform SSL-based attacks (e.g., tricking a user into accepting a bogus certificate).
While approved code execution prevents many code-based attacks, the trusted environ-
ment may still be vulnerable to script-based attacks (e.g., Javascript) and return-oriented
programming attacks [38].

To forestall such attacks, Lockdown restricts the trusted environment to communi-
cate only with a limited set of trusted sites. It imposes these restrictions by interposing

Lockdown: Towards a Safe and Practical Architecture 41

on all network traffic to or from the trusted environment. Lockdown uses hardware CPU
and physical memory protections to prevent the trusted environment from seeing or ac-
cessing any physical network devices present in the system. Network communication is
permitted via a proxy network driver that Lockdown installs in the guest OS. This driver
forwards packets to Lockdown, which analyzes the packets and then forwards them to
the physical network interface. The trusted environment can use a distinct physical net-
work interface or reuse the same interface of the untrusted environment for network
communication (since the environments run non-concurrently). In both cases the Lock-
down hypervisor will need to include the network driver for the physical interface.
A simpler approach is to perform network access (either wireless or wired) using the
Lockdown Verifier. In this case, the Lockdown hypervisor does not need to contain any
network driver but simply forwards the packets to the verifier.

Lockdown uses packet analysis to determine which network packets are permitted.
One approach, with the argument that any site with sensitive data should be using SSL
to protect it in transit, would be to allow only SSL and DNS network packets to pass
through to trusted sites. All other packets are dropped. When an SSL session is initiated,
Lockdown determines if the request is a valid SSL connection request. If it is, Lock-
down validates the site’s SSL certificate and checks it against the list of trusted sites
(the creation and maintenance of this list is discussed in the following section). If any
of these checks fail, the packet is dropped. Incoming packets are permitted only if they
belong to an existing SSL session or are in response to an earlier DNS request. Note
that DNS-based attacks are forestalled by SSL certificate verification. From a technical
perspective, supporting other network protocols such as SSH is also possible.

Defining Trusted Entities. To keep the trusted environment safe, Lockdown restricts
the software that can execute and the sites that can be visited. To define what soft-
ware and sites can be trusted, we leverage the user’s existing trust in the distributor of
Lockdown, i.e., the organization that provided the user with a copy of Lockdown in
the first place. For example, in a corporation, the IT department would play the role
of Lockdown distributor. For consumers, the role might be played by a trusted com-
pany or organization, such as RedHat, Mozilla, or Microsoft. Lockdown’s key insight
is that by agreeing to install Lockdown, the user is expressing their trust in the Lock-
down provider, since Lockdown will be operating with maximum platform privileges
on their computer. Thus, we can also trust that same organization to vet trusted software
and websites. The list of trusted software can be relatively small: primarily an operat-
ing system and a trusted browser. The list of trusted sites is necessarily larger, since it
should include the security-sensitive companies a user interacts with. However, to limit
potential leaks to entities on the list that the user does not interact with, the user can
customize the list. During Lockdown’s installation, the user is presented with the mas-
ter list of trusted software and trusted websites and selects a subset of each list. Thus,
the user can choose her favorite web browser, and select the handful of websites she
actually uses from the hundreds of sites on the master list. Lockdown will then prohibit
the trusted environment from contacting any site not on the user’s restricted list. A small
application that runs in the trusted environment allows the user to update her selection
at a later time.

42 A. Vasudevan et al.

4 External Verification and Trusted Path

While the reference monitor (i.e., the hypervisor or virtual machine monitor) in a red/-
green system always knows whether the trusted or the untrusted environment is cur-
rently operating, it must create a trusted path to the user to convey this information in a
way she can easily understand and trust. Otherwise, she might be tricked into perform-
ing security-sensitive operations in the untrusted environment. Below, we show how to
eliminate such attacks by using a simple, external device to control the environment
switching and to display the result of the switch to the user. We also show how the
external device can verify that it is interacting with a correct version of the red/green
system, preventing malware from misleading the device.

The Lockdown Verifier. The user employs an external device called the Lockdown
Verifier to switch between trusted and untrusted environments. To enable the user to
trust the Lockdown Verifier, it must possess the following properties: (i) Correct
Operation: Software executing on the Lockdown Verifier must be robust against
compromise. By minimizing the code for the verifier, we make it amenable to formal
analysis;(ii) Minimal Input Capabilities: To minimize complexity (and hence user
confusion), we wish to minimize the number of input options; and (iii) Minimal Out-
put Capabilities: To reduce confusion, the user should be able to easily learn which
environment she is working in. To achieve these properties, the Lockdown Verifier con-
sists of a single switch, two LEDs, and a buzzer (Figure 1). The switch can be toggled
from secure to insecure (or vice versa). When the user is in the trusted environment, the
green LED is lit. When the user is in the untrusted environment, the red LED is lit. To
provide additional feedback to the user (e.g., after she toggles the switch), the verifier
uses a blinking red LED to indicate processing. Thus, the user need only remember to
check that the green LED is lit before performing security-sensitive tasks. The Lock-
down Verifier uses the buzzer to attract the user’s attention whenever the LEDs change
state. The verifier can also create an alarm buzz if it is unable to verify the correctness
of the reference monitor (e.g., Lockdown) or if the system encounters a fatal error.

Secure Channel. To accurately verify the state of the system (trusted or untrusted),
the Lockdown Verifier must be able to communicate securely with the red/green refer-
ence monitor (i.e., the hypervisor or virtual machine monitor). More precisely, it should
not be possible for an adversary to impersonate or undetectably modify the reference
monitor. We can achieve this goal using a combination of CPU protections and hard-
ware attestation via a TPM [44]. To create a secure channel for communicating with
the Lockdown Verifier, the reference monitor uses CPU protections to reserve a USB
controller and to prevent both environments from accessing it. We use USB as an inter-
face as it is intuitive for users and eliminates the need for an external power source for
the verifier. To convince the Lockdown Verifier that it is communicating with the cor-
rect reference monitor, we use TPM-based attestation. Initially, the reference monitor
is started using a measured launch operation [15,7] which securely records a hash of
the reference monitor’s code in the TPM. When the verifier is connected to the system,
it sends a challenge (a cryptographic nonce) to the reference monitor. The reference
monitor uses the TPM to generate a quote (essentially a signed statement describing the
software state of the system) that it securely transmits to the Lockdown Verifier using

Lockdown: Towards a Safe and Practical Architecture 43

the reserved USB controller. The Lockdown Verifier then checks the attestation based
on the TPM public key (setup during installation). If verification fails, the Lockdown
Verifier halts, sets the LED state to blinking red and emits an alarm buzz. If it succeeds,
the Lockdown Verifier emits an attention buzz and sets the LED state to solid red if the
untrusted environment is running or to solid green if the trusted environment is running.

Since it is connected via USB, the Lockdown Verifier can also detect when the sys-
tem is rebooted, since on a reboot, a USB controller sends all attached USB devices a
reset signal. When this happens, the Lockdown Verifier emits the attention buzz and sets
the LED state to blinking red, since it can no longer vouch for the state of the system. It
then performs the procedure described above to verify that the reference monitor is back
in control and to learn which environment is currently active. Note that the measured
launch operation coupled with the TPM-based attestation and the reserved USB con-
troller/channel eliminates the need to setup and share a secret key between the reference
monitor and the Lockdown Verifier.

5 Security Analysis

Trusted Environment Isolation. Lockdown’s hyper-partitioning and network protec-
tion mechanisms are designed to isolate the trusted environment from local and remote
malware. Locally, Lockdown ensures that the trusted environment and untrusted envi-
ronment never execute concurrently, preventing malware in the untrusted environment
from directly interfering with the trusted environment’s execution. Lockdown’s use of
Nested Page Tables ensures that software in the untrusted environment cannot even
address the trusted environment’s memory region, thus protecting its secrecy and in-
tegrity. To prevent device-based attacks, Lockdown uses hardware DMA protections
to prevent DMA-based reads and writes to sensitive areas, and it ensures that all de-
vices are reset during an environment switch. Storage devices are partitioned between
the two environments to prevent secrets from leaking out of the trusted environment,
and to prevent maliciously crafted inputs from penetrating into the trusted environment.
Remotely, Lockdown’s network protections prevent untrusted entities from contacting
the trusted environment. To provide defense-in-depth, these protections also prevent the
trusted environment from contacting untrusted sites. Thus, even if a bug in the trusted
OS or applications results in a data leak, the data can only travel to sites the user already
trusts with her data.

Code Integrity. Lockdown’s approved execution ensures that only measured code that
appears on Lockdown’s list of trusted software can run within the trusted environment.
Further, once the code is measured, Lockdown renders it immutable. Lockdown thus
prevents a significant class of attacks that modify existing code or execute new mali-
cious code. However, this approach does not check interpreted code (e.g., JavaScript).
Hence, if a trusted site is compromised, it may allow an attacker to manipulate the
trusted environment. Thus, one drawback of Lockdown’s current approach is that a
compromise at one of the user’s trusted sites can affect the security of her transactions
at other sites. Improving browser-based isolation can mitigate these concerns [46,12],
but eventually, we anticipate a trusted environment for each trusted site.

44 A. Vasudevan et al.

Trusted Path. Lockdown is designed to create a trusted path to the user, i.e., to provide
the user with the confidence that she is communicating securely with the party she
intends to contact. Lockdown achieves this property by providing a simple indicator
(a green LED) on the Lockdown Verifier to signal when the user is operating in the
trusted environment. This indicator is only provided in response to a message received
from Lockdown over the secure channel that the Lockdown Verifier establishes with
Lockdown (§ 4). This channel is protected by Lockdown’s exclusive access to the USB
controller combined with the TPM’s ability to provide a verifiable summary of the
system’s software and a guarantee that the hardware memory protections are in place.

5.1 Other Attacks

Denial of Service. Lockdown’s hyper-switching mechanism triggers the sleep state in
the OSPM of the untrusted environment in order to switch to the trusted environment.
However, malware in the untrusted environment can modify the OSPM to ignore the
sleep command. Thus, malware in the untrusted environment can keep the trusted envi-
ronment from loading. However, it cannot do so undetectably. Before Lockdown trig-
gers the sleep state in the OSPM of the untrusted environment, it lights up a blinking
red LED on the Lockdown Verifier and sounds an attention buzz to indicate processing.
If the untrusted environment ignores the sleep command, then the switch to the trusted
environment will never complete, and hence the Lockdown Verifier LED will never
glow green. Lockdown relies on the user to wait for a green LED before performing
security-sensitive tasks.

Corrupt Lockdown Distributor. Lockdown depends on an external party to define
the master list of trusted software and trusted sites. If this party were corrupted, the
user might install malicious software in the trusted environment or visit malicious sites.
However, users already depend on remote entities for software updates. For example, if
an attacker could corrupt the Windows Update Service, then he could perform a similar
attack to load malware onto millions of machines. Lockdown merely leverages this
existing trust to more precisely define what can be done in the trusted environment.

Social Engineering. A clever attacker may convince the user to perform a security-
sensitive task in the untrusted environment, rather than in the trusted environment.
Lockdown cannot prevent such an attack; it can only rely on the user to check the
system’s status as displayed by the Lockdown Verifier, and to switch to the trusted en-
vironment for security-sensitive tasks. With sufficient user education, users can obtain
strong assurance if they elect to participate.

6 Implementation

We implemented a complete prototype of Lockdown on both AMD and Intel x86 plat-
forms with Windows 2003 Server as the OS in both the trusted and untrusted environ-
ments. To demonstrate that Lockdown’s hyper-partitioning is a generic primitive that
works with other ACPI-compliant OSes, we also developed a prototype using Linux
guests. Neither prototype required changing any code in the OS kernels. Due to space
constraints, we focus on describing our Windows prototype on the AMD platform.

Lockdown: Towards a Safe and Practical Architecture 45

Our Lockdown prototype consists of a Lockdown Loader and the Lockdown Run-
time. The SKINIT instruction is used to perform a late-launch [7] operation which
ensures that the Lockdown Loader runs in a hardware-protected environment and that
its measurement (cryptographic hash) is stored in the TPM’s Platform Configuration
Register (PCR) 17. The trusted Lockdown Loader loads the Lockdown Runtime and
protects the Lockdown Runtime’s memory region from DMA reads and writes (us-
ing AMD’s Device Exclusion Vector [7]). It then verifies the integrity of the Lockdown
Runtime and extends a measurement (a cryptographic hash) of the Lockdown Runtime’s
code into the TPM’s PCR 19. The Lockdown Loader then initializes the USB controller
on the host for communication with the Lockdown Verifier, creates the Nested Page Ta-
bles [10] for the trusted and untrusted environments and transfers control to the Lock-
down Runtime. When first launched, the Lockdown Runtime requests a challenge from
the Lockdown Verifier. The Lockdown Runtime and the Lockdown Verifier then en-
gage in the authentication protocol described in § 4. The Lockdown Runtime launches
the environment currently indicated on the Lockdown Verifier in a hardware virtual
machine, and informs the Lockdown Verifier once the environment has been launched,
so that the Lockdown Verifier can sound the attention buzz and light the appropriate
LED. The Lockdown Runtime’s role in hyper-partitioning, and protection of the trusted
environment is described below.

6.1 Hyper-partitioning

To implement hyper-partitioning for non-storage devices under the Windows OS, Lock-
down makes use of the ACPI S4 (hibernate) sleep state. ACPI S3 (standby) would offer
faster switching times, but Windows ACPI implementation only saves and restores de-
vice state during an S4 sleep, and hence we cannot use S3 with Windows without mod-
ifying its source code. Memory and storage device partitioning are described below.

Memory. In our current implementation (on systems with 4 GB of physical memory),
Lockdown reserves 186 MB for itself and 258 MB for the system’s firmware. The rest
of physical memory is available to the trusted or untrusted environments. Isolation be-
tween the environments and Lockdown is maintained by using Nested Page Tables;
the page-table entries which point to Lockdown’s physical memory regions are marked
not-present, while the entries for the system firmware are set to prohibit writes.

Storage Devices. Our prototype can assign a different hard drive to each environment
(trusted and untrusted), or it can partition a single hard drive into separate regions for
each environment. Lockdown assigns each environment its own hard drive by inter-
cepting read and write accesses to the ATA/SATA drive-select and command port (e.g.,
0x1F6/7). This allows Lockdown to prevent the trusted environment from accessing the
untrusted disk (and vice versa). For example, if the trusted environment writes a request
to port 0x1F6 to select the master drive, an exception is generated, returning control
to Lockdown. Lockdown writes to the disk controller’s register and selects the slave
(trusted) disk instead. A similar procedure prevents the untrusted environment from
selecting the trusted disk. Lockdown isolates partitions within a single disk by inter-
cepting write accesses to the ports which are required to set the LBA (Logical Block
Address) sector addresses (e.g., ports 0x1F3/4/5) and the sector count (e.g., port 0x1F2)

46 A. Vasudevan et al.

in addition to the command port. When a sector read or write command is initiated by
the environments using the command port, Lockdown verifies that the sector LBA ad-
dress and count are within limits of the partition of the current environment before
forwarding the command to the disk controller.

Environment Switching. Lockdown establishes control over the system’s ACPI modes
by intercepting the trusted and untrusted environments’ attempts to access the ACPI
Sleep and Status registers. The Lockdown Runtime determines the I/O location of these
registers by parsing the ACPI Fixed Address Descriptor Table. When the user toggles
the switch on the Lockdown Verifier, Lockdown sets an internal switch flag and sig-
nals the Lockdown Monitor inside the current environment to initiate the sleep state.
The Lockdown Monitor is an untrusted application which uses the SetSuspendState
Windows API in order to trigger an S4 Sleep. The OSPM in Windows then prepares
the system for hibernation, saves the memory contents to disk, and writes to the ACPI
Sleep Register. Lockdown captures this write and instead clears the switch flag and up-
dates the Lockdown Verifier to indicate the newly active environment. Lockdown then
resets the system via a soft-reset to reset the device states. Finally, Lockdown launches
the target environment by waking it from hibernation. The Windows OS in the target
environment loads the hibernation image from the disk, restores the device states, and
transfers control to the Windows Kernel.

6.2 Protecting the Trusted Environment

Approved Code Execution. To enforce approved code execution, Lockdown uses page-
level code hashing, similar to the approach used by previous work [21,37]. Prior to ex-
ecuting the trusted environment, Lockdown sets its Nested Page Table (NPT) entries to
prevent execution of those pages. When the trusted environment attempts to execute a
page, it causes a fault that returns control to Lockdown. Lockdown computes a hash
of the faulting page and compares it to the hashes in its list of trusted software. If a
match is found, the corresponding NPT entry is updated to allow execution but prevent
writes. If the trusted environment later writes to this page, a write fault will be gen-
erated. Lockdown will re-enable writing but disable execution. Matching a code page
to the list of approved software is straightforward. In Windows, an application’s entire
executable is mapped into memory, so the executable’s header and relocation tables are
always present at runtime. Lockdown uses this information to compute the inverse of
the relocation operation and compare the page to hashes of the original executable.

Network Protection. To provide network protection for the trusted environment, we
developed an untrusted network driver for Windows, and an SSL Protocol Analyzer
within Lockdown. The analyzed network packets are sent to the Lockdown Verifier
using Lockdown’s USB driver, and ultimately out to the network. The Lockdown Veri-
fier has an ethernet port and a dedicated network chipset. Our OS-level network driver
sends and receives network packets to and from the SSL Protocol Analyzer via a hy-
percall. Our SSL Protocol Analyzer is based on ssldump3. We added support for SSL

3 http://www.rtfm.com/ssldump/

http://www.rtfm.com/ssldump/

Lockdown: Towards a Safe and Practical Architecture 47

session tracking and event handling depending on the SSL packet (e.g., Certificate,
ServerHello). The certificate handler is used to compare a site’s SSL certificate against
Lockdown’s list of trusted-site certificates.

6.3 External Verification and Trusted Path

We built the Lockdown Verifier using a low-cost LPC 2148 development board. The
board is equipped with a 60Mhz ARM7 CPU, 512 KB flash, 42 KB RAM and an eth-
ernet chipset/port. We attached a red and a green LED, a switch, and a buzzer to the
board. The Lockdown Runtime contains USB and TPM drivers that communicate with
the Lockdown Verifier and the host system TPM respectively. The verifier upon reset
or power-up waits for a challenge request from Lockdown. Upon receiving the chal-
lenge request, the Lockdown Verifier transmits a cryptographic nonce and receives a
TPM-generated attestation from Lockdown. The attestation contains the TPM’s signa-
ture over the current values of PCRs 17 and 19, as well as the nonce that was provided.
The verifier uses the TPM’s public-key (installed during Lockdown’s installation) to
verify the attestation. If the verification succeeds, the Lockdown Verifier goes into a
trusted communication mode with Lockdown and responds to commands to set LEDs
and report on the switch’s status, until the system is reset or turned off.

7 Evaluation

7.1 Trusted Computing Base (TCB)

Like all security systems, Lockdown must assume the correctness and security of its
core components. This assumption is more likely to hold if we reduce the amount
of code that must be trusted, keep the design simple and minimize the external inter-
face. This reduces opportunities for bugs and makes the code more amenable to formal
analysis. Lockdown’s total TCB is only 10KLOC, placing Lockdown within the reach
of formal verification and manual audit techniques. Lockdown’s design is simple and
greatly reduces the attack surface. Lockdown does not expose any interface while the
untrusted environment is running and interposes only on memory and disk accesses.
When the trusted environment is executing, Lockdown also intercepts execution on
memory pages for approved code execution. These operations are handled transpar-
ently via well-defined CPU intercepts. Further, in the trusted environment, Lockdown
exposes a single hypercall interface to the guest OS network driver. The arguments to
this hypercall interface are the type of operation (read or write), the network packet
length and the packet data which are sanity checked by the Lockdown Runtime.

Lockdown’s TCB compares favorably with other popular hypervisors and VMMs
(Figure 3), which tend to be orders of magnitude larger, despite not providing Lock-
down’s protection’s for a trusted environment. Xen, KVM, and Hyper-V include an
entire OS in the TCB for device access and administrative purposes, dramatically in-
creasing their TCBs. While VMware ESXi does not require such an OS, it still includes
a large TCB, since it employs full virtualization of devices and hence must include
device drivers for all supported platforms. Only L4Ka-Pistachio [2] and NOVA [40]

48 A. Vasudevan et al.

Fig. 3. Lockdown’s TCB and Features. Comparison with popular, general-purpose hypervi-
sors and micro-kernels. Note: We assume a Linux kernel with only the required device drivers
for a host platform. For our test system this came up to 300KLOC. As VMWare, Hyper-V
and Windows are closed-source, we rely on publicly available information to estimate their
SLOC [1,20,3]. QEMU’s TCB with only x86 support is around 150KLOC.

approach Lockdown’s TCB size. However, the L4Ka-Pistachio requires non-trivial OS
porting and cannot run OSes such as Windows. While NOVA is designed to run an
unmodified OS, it currently only runs Linux due to its minimal device support; its vir-
tualization architecture also requires device drivers to be written from scratch.

7.2 Performance Measurements

We use our prototype to determine Lockdown’s performance on a recent laptop with
a dual-core AMD Phenom-II N620 CPU, 4GB RAM, 250GB SATA hard disk, a v1.2
TPM and two USB controllers.

CPU and Memory Overhead. Lockdown’s use of Nested Page Tables (NPT) to hyper-
partition memory adds latency to memory accesses, since it adds an extra layer of in-
direction when resolving addresses. AMD and Intel are actively working to improve
the performance of this recently-added feature [10]. Lockdown also adds overhead to
code execution in the trusted environment due to its verification of approved code. To
measure the CPU and memory overhead, we use benchmarks from the SPECint 2006
suite. We run the benchmarks in the trusted environment, in the untrusted environment,
and on the native system We also run the benchmarks in the trusted environment with
approved code protection disabled to allow us to distinguish between overhead added
by these protections and overhead added by the NPTs. Figure 4a shows Lockdown’s
overhead as a percentage of the native system’s performance. In the untrusted envi-
ronment, performance is only slightly worse than native (3% average overhead). The
trusted environment adds considerably more overhead (15–59%). Even without includ-
ing the overhead of approved code execution, the trusted environment is still slower
than the untrusted environment due to its use of smaller page size. In the untrusted en-
vironment, we use the 2 MB pages to improve performance. However, in the trusted
environment, we also use NPTs to check for approved code at a page granularity, and
hence the trusted environment must use the smaller 4 KB pages, making it less effi-
cient. Nonetheless, this performance is appropriate for infrequent tasks, such as online
banking, that are less performance intensive.

Storage Overhead. To partition the system’s disks between the trusted and un-
trusted environments, Lockdown intercepts both environments’ drive/sector selection

Lockdown: Towards a Safe and Practical Architecture 49

Fig. 4. Lockdown Performance Measurements. (a) CPU and memory overhead relative to
native (smaller is better), (b) Storage micro- and macrobenchmarks compared to native (smaller
is better), (c) Environment switch latency, (d) Network-protection latency.

commands, adding overhead to disk I/O. To measure this overhead with microbench-
marks, we employ Iometer, an industry-standard disk benchmarking tool. We use Iome-
ter to measure Lockdown’s maximum throughput for direct reads and writes, as well as
reads and writes from a database workload. For macrobenchmarks, we use a variety
of standard disk-bound applications, including Postmark (10000 files and 10000 trans-
actions), IoZone (2GB file), Bonnie (2GB file), and tar (on the Windows installation
folder). Figure 4b shows the results of these benchmarks relative to the native system’s
performance. As expected (since Lockdown treats both environments equally when par-
titioning storage devices), the two environments perform similarly. On these disk-bound
tests, Lockdown imposes relatively modest overheads of 2–7%.

Environment Switch Latency. We split Lockdown’s environment switch latency into
three parts: (a) sleep latency: the time taken from when the user flips the switch on
the Lockdown Verifier to the time the guest OS finishes preparing for sleep and in-
vokes the ACPI subsystem, (b) reset latency: the time taken for Lockdown to reset the
system’s devices, and transfer control to the target environment’s OSPM and, (c) awak-
ening latency: the time taken by the OSPM in the target environment to resume normal
operations. Figure 4c shows the measurements for Lockdown’s environment switch la-
tency. The switch currently requires 31 seconds on Windows and 13–28 seconds on
Linux. While longer than ideal, we expect users to swap between the two environments

50 A. Vasudevan et al.

relatively infrequently. Our results indicate that the direction of the switch has a rel-
atively small impact on the switching time. The reset latency is largely due to Lock-
down’s use of the BIOS to reset the system’s devices. The BIOS performs a far more
extensive reset than Lockdown needs (more than 25% of the switch time), completely
reinitializing the CPU, chipset, memory and devices. BIOS vendors are actively work-
ing to greatly reduce this latency with the Unified Extensible Firmware Interface
(UEFI) [33]. The reset process can also be significantly accelerated as computers adopt
the new PCI-Express 2.0 bus standard. With this standard, Lockdown can use a single
PCI-bus command to reset each device in the system, instead of using the BIOS. Fur-
ther, if OS device drivers are architected in a way that no prior state assumptions are
made about the device (as in Linux), we can completely eliminate the reset latency by
modifying the kernel to restart itself without issuing a platform reset.

Network Protection Overhead. Since Lockdown interposes on the trusted environ-
ment’s network connections, we expect performance to be worse in the trusted envi-
ronment. Since the untrusted environment has full access to the network interface, it
should be comparable to native. To measure Lockdown’s network overhead, we use
Firefox with the YSlow add-on to measure the time necessary to load three popular
banking websites, as well as the time required to download a 8 MB file. We averaged
the download times over 5 runs, clearing the Firefox cache each time. Figure 4d summa-
rizes our results. As expected, the untrusted environment’s performance is equivalent to
the native system (within experimental error). The trusted environment takes longer, be-
cause all network packets traverse via the SSL protocol analyzer and over USB through
the Lockdown Verifier. Fortunately, most security-sensitive online transactions involve
small network transmissions that makes the download times usable.

Comparison with Virtualization. Finally, we compare Lockdown’s performance with
traditional virtualization approaches. We choose the popular Xen (3.4.2) hypervisor
for our comparison even though it does not provide the same high level of protection
as Lockdown. We instantiate two virtual machines (VMs) with identical configuration
for the untrusted and trusted environments within Xen. For measurement purposes, we
benchmark the core platform subsystems comprising the memory, disk, network and
graphics. To measure the memory overhead we use benchmarks from the SPECint 2006
suite. We use Tar, Bonnie, Postmark and IoZone (with the same parameters as discussed
previously) as our disk macrobenchmarks. We use Flashget to measure the average net-
work throughput and the PassMark 2D benchmark suite to measure the graphics per-
formance. Figure 5 shows the performance of Lockdown and Xen as a percentage of
the native system’s performance, for both the untrusted and trusted environments4. Our
results show that virtual machine monitors in general (including Xen) virtualize the
underlying platform resources and therefore introduce similar performance latency in
all VMs (untrusted and trusted). The slowdown is particularly high for the disk (54%),
network (55%) and graphics (81%) subsystems. In contrast, Lockdown only imposes
restrictions for the trusted partition and lets the untrusted partition run near native speed

4 Note that we could not compare Xen with direct device assignment [4], as that requires spe-
cial platform support that is not widely available today [6,29]. Futher, not all devices can be
assigned currently (e.g., video, audio) [5,29].

Lockdown: Towards a Safe and Practical Architecture 51

Fig. 5. Comparison of Partitioning (Lockdown) with Virtualization (Xen). Partitioning pe-
nalizes only the trusted environment while virtualization treats both environments as equal and
imposes similar overheads.

(only a 3% average overhead for memory and 2-7% overhead for disk). These results
demonstrate the efficiency advantage of partitioning vs virtualization. The performance
degradation in the trusted partition is higher for memory and network due to Lock-
down’s approved execution and network protection mechanisms. However, for the disk
and graphics subsystem the overhead introduced is less than Xen.

8 Related Work

Following our earlier preliminary work on hyper-partitioning [45], systems such as No-
Hype and SecureSwitch, like Lockdown, advocate the use of partitioning in order to
minimize TCB. However, both these systems are fairly different from Lockdown in
many ways.

NoHype [17] uses static partitioning of devices leveraging specialized platform hard-
ware capabilities such as Single-Root I/O Virtualization (SR-IOV) [29] and aims to run
commodity operating systems. However, SR-IOV capabilities are only found in few
high-end server platforms today. Also, NoHype does not have a particular operating
model in mind and treats all VMs equally, as opposed to Lockdown which has a par-
ticular operating model in mind, i.e., trusted and untrusted, and takes steps to keep the
trusted partition more secure. Furthermore, NoHype lacks the trusted path provided by
Lockdown for assessing and switching between environments.

SecureSwitch [41] attempts to provide isolation between untrusted and trusted OSes
with low switch times. However, unlike Lockdown, it does not provide any trusted envi-
ronment protections (approved execution and trusted network access) or user-verifiable
trusted path for input and output. In addition, their isolation mechanism requires chang-
ing the system BIOS and relies on specialized hardware (southbridge DIMM isolation,
dual disk controllers with disk locking feature and motherboard jumpers for switching)
that are not commodity.

In contrast, Lockdown represents a complete end-to-end solution of a red/green sys-
tem on commodity platforms (without specialized platform hardware) and does not re-
quire changes to the system BIOS or the OSes. The Lockdown Verifier is an external

52 A. Vasudevan et al.

USB device that communicates verified system state (“red” or “green”) to the user and
enables trustworthy switching between the “red” and “green” environments.

Systems such as NetTop [27], HAP [28], NGSCB [30], Terra [13], Qubes [43],
Virtics [34], or Overshadow [11] use virtualization to isolate code running at different
security levels. As discussed in § 7, virtualization allows rapid switching (orders of mag-
nitude faster than Lockdown) between multiple environments. However, virtualization
increases side-channels that may leak sensitive information. Device virtualization also
degrades performance and increases the amount of trusted code by orders of magnitude.
Several proposals use virtualization to isolate one web application from another [46,12],
but they do not protect the web browser from other code on the system. However, this
work would be complementary to Lockdown if used within the trusted environment to
prevent a compromise of one trusted site from affecting the other trusted sites.

Specialized hypervisor systems such as Proxos [42], Nizza [39], Flicker [23,25,24]
and TrustVisor [22] allow a small, specially-crafted piece of code to run in isolation
from the rest of the system. However, they typically do not protect general-purpose
applications or provide full access to system devices.

OS level approaches such as Apiary [35] and WindowBox [8] modify the OS kernel
or leverage specific OS features (e.g., FreeBSDs jails) to enforce application specific
execution containers. However, as these containers share the same OS kernel, memory
and system devices, any vulnerability within the OS can be exploited to subvert the
protection mechanisms.

9 Conclusion

We evaluated a new point in the design space of red/green systems by using partitioning,
rather than virtualization to share critical system resources and devices. Our implemen-
tation and results indicate that partitioning offers increased security (by reducing the
size of the reference monitor to 10K lines of code and by reducing opportunities for
side channels) and performance (by giving the untrusted environment unfettered access
to system devices) at the cost of slow switching times (on current systems). Determin-
ing whether the switching times can be reduced to an acceptable level, or whether the
security and performance benefits can be adopted by virtualization-based approaches,
are interesting directions for future research.

Acknowledgement. This research was supported by CyLab at Carnegie Mellon un-
der grants DAAD19-02-1-0389, W911NF-09-1-0273, W911NF10C0037, and MURI
W 911 NF 0710287 from the Army Research Office, and by support from NSF under
awards CCF-0424422 and CNS-0831440. The views and conclusions contained here
are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either express or implied, of ARO, CMU, NSF or the
U.S. Government or any of its agencies.

References

1. Vmware esx server node evaluator’s guide,
http://www.vmware.com/pdf/esx_vin_eval.pdf

2. The l4ka project (2011), http://www.l4ka.org

http://www.vmware.com/pdf/esx_vin_eval.pdf
http://www.l4ka.org

Lockdown: Towards a Safe and Practical Architecture 53

3. Source lines of code (2011),
http://en.wikipedia.com/wiki/Source_lines_of_code

4. Xen pcipassthrough (October 2011),
http://wiki.xensource.com/xenwiki/XenPCIpassthrough

5. Xen vgapassthrough (October 2011),
http://wiki.xensource.com/xenwiki/XenVGAPassthrough

6. Xen vtdhowto (October 2011),
http://wiki.xensource.com/xenwiki/VTdHowTo

7. Advanced Micro Devices. AMD64 architecture programmer’s manual: Volume 2: System
programming. AMD Publication no. 24594 rev. 3.11 (December 2005)

8. Balfanz, D., Simon, D.R.: Windowbox: A simple security model for the connected desktop.
In: Proceedings of the 4th USENIX Windows Systems Symposium (2000)

9. Bernstein, D.J.: Cache-timing attacks on aes (April 2005),
http://cr.yp.to/papers.html

10. Bhargava, R., Serebrin, B., Spadini, F., Manne, S.: Accelerating two-dimensional page walks
for virtualized systems. In: ASPLOS (March 2008)

11. Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A., Boneh, D.,
Dwoskin, J., Ports, D.R.K.: Overshadow: A virtualization-based approach to retrofitting pro-
tection in commodity operating systems. In: ASPLOS (2008)

12. Cox, R.S., Gribble, S.D., Levy, H.M., Hansen, J.G.: A safety-oriented platform for web ap-
plications. In: IEEE S&P, pp. 350–364 (May 2006)

13. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A virtual machine-based
platform for trusted computing. In: SOSP (October 2003)

14. Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. Advanced configuration and power
interface specification. Revision 3.0b (October 2006)

15. Intel Corporation. Trusted execution technology – preliminary architecture specification and
enabling considerations. Document number 31516803 (November 2006)

16. Karger, P., Safford, D.: I/O for virtual machine monitors: Security and performance issues.
IEEE Security and Privacy 6(5), 16–23 (2008)

17. Keller, E., Szefer, J., Rexford, J., Lee, R.B.: Nohype: virtualized cloud infrastructure without
the virtualization. In: International Symposium on Computer Architecture (2010)

18. Lampson, B.: A note on the confinement problem. Comm. of the ACM 16(10) (1973)
19. Lampson, B.: Usable security: How to get it. Comm. of the ACM 52(11) (2009)
20. Leinenbach, D., Santen, T.: Verifying the Microsoft Hyper-V Hypervisor with VCC. In: Cav-

alcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 806–809. Springer, Heidelberg
(2009)

21. Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor support for identifying covertly executing
binaries. In: Proceedings of the USENIX Security Symposium (2008)

22. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVisor: Efficient
TCB reduction and attestation. In: IEEE S&P (May 2010)

23. McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An execution infras-
tructure for TCB minimization. In: EuroSys (April 2008)

24. McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Seshadri, A.: Minimal TCB code execu-
tion (extended abstract). In: IEEE Symposium on Security and Privacy (May 2007)

25. McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Seshadri, A.: How low can you go? Rec-
ommendations for hardware-supported minimal TCB code execution. In: ACM ASPLOS
(March 2008)

26. McCune, J.M., Perrig, A., Seshadri, A., van Doorn, L.: Turtles all the way down: Research
challenges in user-based attestation. In: USENIX Workshop on Hot Topics in Security (2007)

27. Meushaw, R., Simard, D.: Nettop: Commercial technology in high assurance applications.
VMware Tech Trend Notes 9(4), 1–8 (2000)

http://en.wikipedia.com/wiki/Source_lines_of_code
http://wiki.xensource.com/xenwiki/XenPCIpassthrough
http://wiki.xensource.com/xenwiki/XenVGAPassthrough
http://wiki.xensource.com/xenwiki/VTdHowTo
http://cr.yp.to/papers.html

54 A. Vasudevan et al.

28. National Security Agency. High assurance platform program (January 2009),
http://www.nsa.gov/ia/programs/h_a_p/index.shtml

29. PCI SIG. Single Root I/O Virtualization and Sharing Specification. V. 1.1 (2010)
30. Peinado, M., Chen, Y., England, P., Manferdelli, J.L.: NGSCB: A Trusted Open System. In:

Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 86–97.
Springer, Heidelberg (2004)

31. Percival, C.: Cache missing for fun & profit. In: BSDCan (2005)
32. Phoenix Technologies. TrustedCore: Foundation for secure CRTM and BIOS implementa-

tion (2006), https://forms.phoenix.com/whitepaperdownload/docs/
trustedcore wp.pdf

33. Phoenix Technologies. Transitioning the Plug-In Industry from Legacy to Unified Extensible
Firmware Interface (UEFI). Intel Developer Forum (September 2009)

34. Piotrowski, M., Joseph, A.D.: Virtics: A system for privilege separation of legacy desk-
top applications. Technical Report UCB/EECS-2010-70, EECS Department, University of
California, Berkeley (May 2010)

35. Potter, S., Nieh, J.: Apiary: Easy-to-use desktop application fault containment on commodity
operating systems. In: USENIX Annual Technical Conference (2010)

36. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud: Exploring
information leakage in third-party compute clouds. In: ACM CCS (2009)

37. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: A tiny hypervisor to provide lifetime
kernel code integrity for commodity OSes. In: SOSP (2007)

38. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without function
calls (on the x86). In: ACM CCS (2007)

39. Singaravelu, L., Pu, C., Haertig, H., Helmuth, C.: Reducing TCB complexity for security-
sensitive applications: Three case studies. In: EuroSys (2006)

40. Steinberg, U., Kauer, B.: Nova: A microhypervisor-based secure virtualization architecture.
In: EuroSys (2010)

41. Sun, K., Wang, J., Zhang, F., Stavrou, A.: Secureswitch: Bios-assisted isolation and switch
between trusted and untrusted commodity oses. In: NDSS (2012)

42. Ta-Min, R., Litty, L., Lie, D.: Splitting interfaces: Making trust between applications and
operating systems configurable. In: OSDI (2006)

43. The Qubes OS, http://qubes-os.org/Home.html
44. Trusted Computing Group. Trusted Platform Module Main Specification. V. 1.2 (2007)
45. Vasudevan, A., Parno, B., Qu, N., Gligor, V.D., Perrig, A.: Lockdown: A safe and practi-

cal environment for security applications. Technical Report CMU-CyLab-09-011, CyLab,
Carnegie Mellon University (July 2009)

46. Wang, H.J., Grier, C., Moshchuk, A., King, S.T., Choudhury, P., Venter, H.: The multi-
principal OS construction of the gazelle web browser. In: USENIX Security Symposium
(2009)

http://www.nsa.gov/ia/programs/h_a_p/index.shtml
https://forms.phoenix.com/whitepaperdownload/docs/trustedcore_wp.pdf
https://forms.phoenix.com/whitepaperdownload/docs/trustedcore_wp.pdf
http://qubes-os.org/Home.html

Experimenting with Fast Private Set Intersection

Emiliano De Cristofaro1 and Gene Tsudik2

1 PARC
2 UC Irvine

Abstract. Private Set Intersection (PSI) is a useful cryptographic primitive that
allows two parties (client and server) to interact based on their respective (private)
input sets, in such a way that client obtains nothing other than the set intersection,
while server learns nothing beyond client set size. This paper considers one PSI
construct from [DT10] and reports on its optimized implementation and perfor-
mance evaluation. Several key implementation choices that significantly impact
real-life performance are identified and a comprehensive experimental analysis
(including micro-benchmarking, with various input sizes) is presented. Finally, it
is shown that our optimized implementation of this RSA-OPRF-based PSI proto-
col markedly outperforms the one presented in [HEK12].

1 Introduction

Private Set Intersection (PSI) is a primitive that allow two parties (client and server),
to interact on their respective input sets, such that client only obtains the intersection
of the two sets, whereas, server learns nothing beyond the size of client input set. PSI
is appealing in many real-world settings: common application examples include na-
tional security/law enforcement [DT10], Intelligence Community systems [DJL+10],
healthcare and genomic applications [BBD+11], collaborative botnet detection tech-
niques [NMH+10], location sharing [NTL+11] as well as cheating prevention in online
gaming [BLHB11]. Motivated by practical relevance of the problem, the research com-
munity has considered PSI quite extensively and devised a number of techniques that
vary in costs, security assumptions and adversarial models, e.g., [FNP04,KS05,HL08],
[JL09,DSMRY09,DT10,HN10,JL10,DKT10,ADT11]. (Notable PSI protocols are re-
viewed in Appendix A.)

In this paper, we focus on a specific RSA-OPRF-based PSI protocol from [DT10] that
currently offers the most efficient operation. It achieves linear computational and com-
munication complexity and improves overall efficiency (over prior work) by reducing
the total cost of underlying cryptographic operations. Although [DT10] actually presents
two PSI protocols, this paper focuses on the second – RSA-OPRF-based, in Figure 4 of
[DT10] – which is the more efficient of the two. Hereafter, it is referred to as DT10-v4.

Objectives: We discuss our implementation of DT10-v4 and experimentally assess
its performance. Our goal is twofold: (1) Identify implementation choices that impact
overall protocol performance, and (2) Provide a comprehensive performance evaluation.

Organization: Next section overviews DT10-v4. Then, Section 3 and Section 4 de-
scribe, respectively, its implementation and performance evaluation. Finally, perfor-
mance analysis of our optimized implementation is contrasted with that in [HEK12].

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 55–73, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

56 E. De Cristofaro and G. Tsudik

2 The DT10-v4 PSI Protocol

We now review the PSI protocol presented in Figure 4 in [DT10], from here on denoted
as DT10-v4. First, we introduce some notation, present actual construction, and, finally,
discuss settings where (server-side) precomputation is possible/recommended.

2.1 Notation

Notation used in the rest of this paper is reflected in Table 1 below:

Table 1. Notation

a← A variable a is chosen uniformly at random from set A
τ, τ ′ security parameters
p, q safe primes

N = pq, e, d RSA modulus, public and private exponents
H(·) full-domain hash function H : {0, 1}∗ → Z

∗
N

H ′(·) cryptographic hash function H ′ : {0, 1}τ1 → {0, 1}τ ′

C,S client’s and server’s sets, respectively
v, w sizes of C and S , respectively

i ∈ [1, v], j ∈ [1, w] indices of elements of C and S , respectively
ci, sj i-th and j-th elements of C and S , respectively

hci, hsj H(ci) and H(sj), respectively

2.2 Protocol Specification

Figure 1 shows the operation of DT10-v4 below.

Client, Server,
on input C = {c1, . . . , cv} on input p, q, d,S = {s1, . . . , sw}

∀i = 1, . . . , v : ∀j = 1, . . . , w :

(1) ri ← ZN (1) ksj = (hsj)
d mod N

(2) μi = hci · ri
e mod N (2) tsj = H ′(ksj)

(3)
{μ1, . . . , μv}

�� (3)

∀i = 1, . . . , v :

(4) μ′
i = (μi)

d mod N

(4)
{ts1, . . . , tsw}
{μ′

1, . . . , μ
′
v}

��

∀i = 1, . . . , v :

(5) kci = μ′
i/ri mod N

(6) tci = H ′(kci)

(7) If ∃j s.t. tci = tsj output ci ∈ C ∩ S

Fig. 1. DT10-v4 executes on common input: N, e, H(·), H ′(·)

Experimenting with Fast Private Set Intersection 57

Correctness: If ci ∈ C ∩ S, then ∃j s.t.: kci = μ′
i/ri = (hci · ri

e)d/ri = hsj
d =

ksj =⇒ tci = tsj .

Security: DT10-v4 is proven secure in the presence of semi-honest adversaries, un-
der the One-More-RSA assumption [BNPS03] in the Random Oracle Model (ROM) –
see [DT10] for details. The proof in Appendix B of [DT10] actually achieves one-side
(adaptive) simulation in the ideal-world/real-world paradigm.1 Thus, security of DT10-
v4 may actually hold in the presence of a malicious client and a semi-honest server.
Further, security against a malicious server also seems easy to obtain: RSA signatures
have the desirable property of verifiability, thus, client can easily verify server’s ad-
herence to the protocol with respect to the computation of μ′

i = (μi)d mod N . Also,
client’s message to server (i.e., the first round) does not depend on any information
from latter, which, in fact, produces no output. However, server would need to prove
that its RSA parameters are generated correctly, and it could do so using, for example,
techniques from [CM99] or [HMRT11]. Nonetheless, we leave as part of future work
formal proofs for malicious security of DT10-v4.

Communication Complexity: DT10-v4 communication complexity amounts to 2v
group elements and w hash outputs. Specifically, in the first round, client sends v ele-
ments in ZN , whereas, in the second, server transfers v elements in ZN and w outputs
of H ′(·). For 80-bit security, SHA-1, which has 160-bit outputs, may suffice.

Computational Complexity: We note that server workload can be dramatically
reduced if exponentiations (·)d mod N are optimized using the Chinese Remainder
Theorem (CRT)2, since server knows factorization of N . Specifically, DT10-v4’s com-
putational complexity is as follows. Server computes: w full-domain hashes; 2w + 2v
modular exponentiations with (|N |/2)-bit exponents and (|N |/2)-bit moduli (using
CRT); w invocations of H ′(·). Client computes: v full-domain hashes; v exponentia-
tions with |e|-bit exponent and |N |-bit modulus (in practice, one can select e = 3); v
modular inverses of |N |-bit integers modulo |N | bits; 2v modular multiplications of
|N |-bit integers modulo |N | bits; v invocations of H ′(·). Thus, on server side, compu-
tational complexity is dominated by O(w + v) CRT exponentiations, whereas, client’s
computation is dominated by O(v) modular multiplications and inverses. Since client
does not perform any expensive cryptographic operation (i.e., no modular exponenti-
ations), DT10-v4 is particularly suited for scenarios where client runs on a resource-
poor device, e.g., a smart-phone.

2.3 Precomputation

One beneficial feature of DT10-v4, as well as some other PSI techniques in [HL08],
[JL09], [JL10], is that server computation over its own input does not depend on any
client input. Therefore:

1 Specifically, the proof constructs of an (adaptive) ideal world simulator SIMc from a malicious
real-world client C∗, and shows that the views of C∗ in the real game with the real-world server
and in the interaction with SIMc are indistinguishable.

2 See items 14.71 and 14.75 in [MVOV97] for more details on CRT-based exponentiation.

58 E. De Cristofaro and G. Tsudik

1. Server does not need to wait for client to perform its w exponentiations to compute
ksj = H(hsj)d mod N (for j = 1, . . . , w). These operations can be done as
soon as server set is available. In the absolute worst case, server can perform these
operations in parallel with receiving client’s first message.

2. Results of server computation over its own set can be re-used in multiple protocol
instances. Thus, unless server’s set changes frequently, the overhead is negligible.

In light of the above, [DT10] suggests to divide the protocol into two phases: off-line and
on-line. This way, computational complexity of the latter is dominated by O(v) CRT
exponentiations, while off-line phase overhead amounts to O(w) CRT exponentiations.
This makes DT10-v4 particularly appealing for scenarios where server input set is not
“very dynamic”.

3 Implementing DT10-v4

This section presents our implementation of DT10-v4 PSI construction from [DT10].
We discuss some design choices that may affect overall performance, present our pro-
totype implementation, and discuss additional techniques to optimize performance.

3.1 Important Design Choices

We now identify and discuss some factors that significantly affect overall performance
of DT10-v4 implementation. We begin with straightforward issues and then turn to
some less trivial strategies. (Note: for the sake of generality, we assume below that
server does NOT perform precomputation.)

1. Small RSA public exponent: Recall from Section 2.2, that the only modular expo-
nentiations performed by client are those in step (2), specifically, raising random
values ri-s to the e-th power (mod N). Therefore, the choice of RSA public ex-
ponent e directly influences client run-time. Common choices of e are: 3, 17, and
216+1 = 65537. The cryptography research community has often raised concerns
related to possible attacks when using e=3 for RSA encryption [Bon98,FKJM+06].
However, although further careful consideration is needed, such concerns do not
seem to apply in this setting, since ri-s are generated anew, at random.

2. Chinese Remainder Theorem: On server side, the most computation-intensive op-
erations are exponentiations (·)d mod N – in steps (1) and (4). As discussed in
Section 2.2, these can be optimized using (CRT). Specifically, it is well known that
using CRT can make exponentiations 4 times faster.

3. Pipelining: While we describe DT10-v4 as a sequence of steps, pipelining can be
used to maximize overall efficiency by minimizing wait times. A good start is to
implement computation and communication in separate threads, such that indepen-
dent operations can be performed in parallel. (Note that this does not presume that
underlying hardware has multiple cores). Specifically:

a) Server can compute tsj = H ′((hsj)d mod N), j = 1, . . . , w (i.e., steps (1)-
(2)), as soon as (sj’s) are available, i.e., even before starting interaction with
client, or, in the worst case, as soon as client starts transmitting. This is as
simple as implementing server’s steps (1)-(2) in a dedicated thread.

Experimenting with Fast Private Set Intersection 59

b) Server does not need to wait for μi+1, . . . , μv to arrive in order to compute
μ′

i = (μi)d mod N . To minimize waiting, we simply need to implement expo-
nentiations in a separate thread drawing input from a shared buffer, where the
thread listening on the channel pushes received values.

c) Similarly, client can compute ri
−1 (needed to compute μi/ri mod N) in step

(5) in parallel with steps (2)-(4).
d) Finally, client does not need to wait for μ′

i+1, . . . , μv to arrive to compute tci =
H ′(μ′

i/ri mod N), i.e., steps (5)-(6).

4. Threading in Multi-core Settings: Structuring the code in multiple threads allows
us to further improve overall performance. For example, on server side, we can cre-
ate two threads for step (1) and step (4), respectively. Thus, if multiple cores are
available (or the computing architecture using aggressive pipelining), these opera-
tions are performed in parallel, thus, lowering overall run-time. Once again, we note
that parallel thread execution is transparent to application developers and normally
incurs no extra costs.

5. Fast Cryptographic Library: The choice of the cryptographic library is a crucial
factor affecting overall performance. Efficiency of modular exponentiations varies
widely across cryptographic libraris. For example, Table 2 shows modular exponen-
tiations measured on a 64-bit desktop with an Intel Xeon CPU E31225 at 3.10GHz
(running Ubuntu 11.10), using increasingly large exponents and moduli.

Table 2. Benchmarking of modular exponentiations with increasingly large moduli

1024-bit 2048-bit 3072-bit
C/GMP 0.60ms 4.44ms 14.08ms
C/OpenSSL 0.81ms 6.12ms 20.89ms
Java (v1.6.0 23) 3.33ms 24.47ms 76.91ms
Ratio Java/GMP 5.55 5.51 5.46

3.2 Prototype Implementation

Due to space limitations, we refer the readers to the full version of the paper (in [DT12])
for a detailed description of our implementation of DT10-v4. The prototype is imple-
mented in C, using the GMP library for large integer arithmetic and OpenSSL for key
generation and hash function implementation.

3.3 Additional Performance-Optimizing Techniques

Besides design choices discussed in Section 3.1 above – all of which can be easily
adopted – there are some less obvious aspects that can help us further optimize imple-
mentation of DT10-v4. Although we discuss them below, we defer their implementa-
tion to the next version of the prototype, since these optimizations appeal to specific
settings. Whereas, this paper focuses on the general PSI scenario.

1. Bottleneck Identification: In settings where the PSI protocol is executed over the
Internet and communication takes place over slow links, communication overhead
is likely to become the bottleneck. For instance, consider a scenario, where server

60 E. De Cristofaro and G. Tsudik

runs on an Intel Xeon CPU at 3.10GHz. Using GMP, it takes, on average, 0.15ms to
perform (·)d mod N exponentiations, with 1024-bit moduli, using CRT. Therefore,
one can estimate the link speed at which the bottleneck becomes transmission of the
{μi}v

i=1 and {tsj}w
j=1 values, respectively. Specifically, if network speed is lower

than: |μ′
i|

time = 1024 bits
0.15ms = 7.31Mbps, it takes longer to transmit μ′

i than to compute it.

Whereas, if network speed is lower than: |tsj |
time = 160 bits

0.15ms = 1.14Mbps then it takes
longer to send tsj than to compute it. These estimates could be useful for further
protocol optimizations; see below.

2. Exploiting Parallelism: Many modern desktops and laptops have multiple cores.
Thus, if the bottleneck is computation of (·)d exponentiations, the server-side thread
in charge of receiving {μi}v

i=1 will push them into the buffer faster than the thread
computing {(μi)d}v

i=1 can pull them. With multiple cores, exponentiations of mul-
tiple values in the buffer could be done in parallel. Similarly, computation of
{(hsj)d}w

i=j does not depend on any other information; thus, it could be paral-
lelized too.

3. Minimizing Transmission: If the bottleneck is transmission time, then we can op-
timize software by, for example, using UDP instead of TCP, or choosing socket
options geared for transmission of many tiny packets.

4 Performance Evaluation

We now present a detailed performance evaluation of our DT10-v4 implementation.

Experimental Setup. Experiments are performed on the following testbed: PSI server
ran on a Linux computer, equipped with an Intel Xeon E31225 CPU (running at
3.10GHz). PSI client ran on a Mid-2011 13-inch Apple Macbook Air, with an Intel
Core i5 (running at 1.7GHz). Server and client are connected through a 100Mbps Eth-
ernet LAN. The code was written in C using the GMP library for modular arithmetic
operations and OpenSSL for other cryptographic operations (such as, random numbers
and key generation, hash function invocations). Finally, note that we used 1024-bit,
2048-bit, or 3072-bit RSA moduli and SHA-1 to instantiate the H ′(·) function.

4.1 Protocol Total Running Time

In Figures 2 and 3, we report total run-times for DT10-v4 protocol running on, respec-
tively, small (100 to 1000) and medium (1000 to 10000) sets, using 1024-bit moduli.3

Next, Figures 4, 5, 6, and 7, respectively, report total run-time for small and medium
sets, using 2048-bit and 3072-bit moduli, respectively.

Time is measured as the difference between system time read when the protocol starts
and time read when the protocol ends. Specifically, we consider the protocol as started
whenever client initiates protocol execution (i.e., it opens a connection on server’s

3 We also ran experiments with even large sets (in the order of hundreds of thousands). We do
not include them here as they simply grow linearly for increasing set sizes, thus, one can obtain
an estimation of them, for essentially any input size, by looking at Figures 2–7.

Experimenting with Fast Private Set Intersection 61

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 R

un
ni

ng
 T

im
e

(m
s)

Set Sizes, w=v

Small Sets, |N|=1024

Fig. 2. DT10-v4 total run-time for small sets (100 to 1000 items), using 1024-bit moduli

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
ot

al
 R

un
ni

ng
 T

im
e

(m
s)

Set Sizes, w=v

Medium Sets, |N|=1024

Fig. 3. DT10-v4 total run-time for medium sets (1000 to 10000 items), using 1024-bit moduli

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 R

un
ni

ng
 T

im
e

(m
s)

Set Sizes, w=v

Small Sets, |N|=2048

Fig. 4. DT10-v4 total run-time for small sets (100 to 1000 items), using 2048-bit moduli

62 E. De Cristofaro and G. Tsudik

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
ot

al
 R

un
ni

ng
 T

im
e

(m
s)

Set Sizes, w=v, |N|=2048

Medium Sets, |N|=2048

Fig. 5. DT10-v4 total run-time for medium sets (1000 to 10000 items), using 2048-bit moduli

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 R

un
ni

ng
 T

im
e

(m
s)

Set Sizes, w=v

Small Sets, |N|=3072

Fig. 6. DT10-v4 total run-time for small sets (100 to 1000 items), using 3072-bit moduli

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
ot

al
 R

un
ni

ng
 T

im
e

(m
s)

Set Sizes, w=v, |N|=3072

Medium Sets, |N|=3072

Fig. 7. DT10-v4 total run-time for medium sets (1000 to 10000 items), using 3072-bit moduli

listening socket), whereas, the protocol ends whenever client outputs the intersection (if
any). In other words, we do not perform precomputation and, on a conservative stance,
we do not allow the server to start computation of {(hsj)d mod N}w

j=1 (its step (1))
until client establishes a connection on the listening socket.

The only cryptographic operation performed ahead of time (thus, not included in run-
time) is RSA key generation, since server executes it only once for all possible clients

Experimenting with Fast Private Set Intersection 63

and all executions. Finally, protocol execution time does not count time spent by server
waiting for an incoming connection, since the listening socket is created only once, for
all possible clients and all protocol executions.

4.2 Micro-benchmarking

We now analyze performance of specific operations performed by client and server
during DT10-v4 protocol execution. We start with Client. In Figure 8 (resp., Figure 10),
we measure the time spent by the process executing DT10-v4 client, using 1024-bit
(resp., 2048-bit) moduli, for the following operations:
1. Label ‘Receive’ corresponds to the time spent to wait/receive the {μ′

i}v
i=1 and

{tsj}w
j=1 values from server.

2. Label ‘Cli-1’ corresponds to the time needed to compute {μi = hci · ri
e mod

N}v
i=1.

3. Label ‘Inverse’ corresponds to the time to compute {r−1
i mod N}v

i=1.

4. Label ‘Cli-2’ corresponds to the time needed to compute {tci = H ′(μ′
i/ri mod

N)}v
i=1.

Next, we look at Server. In Figure 9, (resp., Figure 11)), we measure the time spent by
the process executing DT10-v4 server, using 1024-bit (resp., 2048-bit) moduli, for the
following operations:
1. Label ‘Receive’ corresponds to the time spent to wait/receive the {μi}v

i=1 values
from client.

2. Label ‘BlindSig’ corresponds to the time to compute {μ′
i = (μi)d mod N}v

i=1.

3. Label ‘Sig’ corresponds to the time to compute {tsj = H ′((hsj)d mod N)}w
j=1.

It is interesting to observe that, using 1024-bit moduli, client actually spends less time
to receive all the values from server than vice versa, despite the former actually needs to
receive more. This is a good opportunity to see multi-threading in action: client’s thread
responsible to send the {μi} values has to wait for them to be available, thus, causing
some waiting time to server’s thread that receives them. In other words, by looking at the
micro-benchmarking one can identify different “bottlenecks” in the different settings.

5 Comparison to [HEK12]

In this section, we focus on the performance evaluation of the DT10-v4 PSI protocol
presented in [HEK12].

The work in [HEK12] presents a few novel Private Set Intersection constructions
based on garbled circuits [Yao82]: the main intuition is that, by leveraging the Oblivi-
ous Transfer (OT) extension [IKNP03], the complexity of such protocols is essentially
tied to a number of OTs (thus, public-key operations) equal to the security parameter
k. In fact, OT extension achieves an unlimited number of OTs at the cost of (essen-
tially) k OTs. Therefore, for very large security parameters, the number of public-key

64 E. De Cristofaro and G. Tsudik

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 R

un
ni

ng
 T

im
e

(m
s)

Set Sizes, w=v

Client, |N|=1024

Receive
Cli-1

Inverse
Cli-2

Fig. 8. Micro-benchmarking client’s operations in DT10-v4 (small sets), using 1024-bit moduli

 0

 50

 100

 150

 200

 250

 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 R

un
ni

ng
 T

im
e

(m
s)

Set Sizes, w=v

Server, |N|=1024

Receive
BlindSig

Sig

Fig. 9. Micro-benchmarking server’s operations in DT10-v4 (small sets), using 1024-bit moduli

 0

 200

 400

 600

 800

 1000

 1200

 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 R

un
ni

ng
 T

im
e

(m
s)

Set Sizes, w=v

Client, |N|=2048

Receive
Cli-1

Inverse
Cli-2

Fig. 10. Micro-benchmarking client’s operations in DT10-v4 (small sets), using 2048-bit moduli

Experimenting with Fast Private Set Intersection 65

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 200 300 400 500 600 700 800 900 1000

T
ot

al
 R

un
ni

ng
 T

im
e

(m
s)

Set Sizes, w=v

Server, |N|=2048

Receive
BlindSig

Sig

Fig. 11. Micro-benchmarking server’s operations in DT10-v4 (small sets), using 2048-bit moduli

operations with this technique may grow more gracefully than with custom protocols.
Finally, [HEK12] compares the efficiency of newly proposed constructions to an imple-
mentation of “custom” PSI protocols from [DT10].

Note that we do not examine the proposals and the experimental methodology
of [HEK12]. Rather, we observe that the implementation of DT10-v4 presented in
this paper achieves a remarkable speed up compared to performance results presented
in [HEK12] for same protocols. Finally, we highlight some open questions regarding
comparison between techniques in [HEK12] and those in [DT10].

5.1 Performance Comparison

We start by noticing that the run-time of the PSI protocol in [DT10] is reported to be
around 10 seconds in a setting where |S| = |C| = 1024, the security parameter is 80-bit
(thus, RSA moduli are 1024-bit), no precomputation is allowed at server, and commu-
nication between server and client is over a 100Mbps LAN. It is not clear whether this
measure is the sum of server and client execution time or represents the time for the
protocol to complete. On a conservative stance, we assume the former. On a compa-
rable hardware,4 and using the parameters discussed above, our measure for DT10-v4
protocol never exceeded 1 seconds (and DT10-v4 is actually not reported as the fastest
protocol – see Section 5.2). Similarly, evaluation in [HEK12] reports 62 seconds (resp.,
126 seconds) using 2048-bit (resp., 3072-bit) moduli; whereas, our implementation of
DT10-v4 never exceeds 2 seconds (resp., 5 seconds).

In Table 3, we summarize running times for DT10-v4 as per our implementation,
and compare to those for garbled-circuit based techniques presented in [HEK12] and re-
ported in Fig. 11 of [HEK12]. We argue that our implementation of DT10-v4 markedly
outperforms PSI protocols based on garbled circuits, in all the three security-parameter
settings that we consider (and that are realistic today), in stark contrast to what has been
claimed in [HEK12].

4 In [HEK12] both server and client run on 3GHz CPU, whereas, in our experiments, server runs
on a 3.1GHz CPU and client on a 1.7GHz CPU.

66 E. De Cristofaro and G. Tsudik

Table 3. Summary of PSI running times (with |S| = |C| = 1024)

80-bit 112-bit 128-bit
DT10-v4 as per

< 1s < 2s < 5s
our implementation
Best Custom-protocol PSI as

10.9s 62.4s 126s
per [HEK12]’s experiments
Garbled-circuit based

51.5s 57.1s 61.5s
PSI in [HEK12]

5.2 The Choice of Protocols from [DT10]

Authors of [HEK12] argue that the protocol in Figure 3 of [DT10], based on the
One-More-DH assumption, is more efficient than that in Figure 4 (based on the One-
More-RSA assumption and denoted as DT10-v4) in scenarios where server-side pre-
computation is not possible. Our analysis below shows that this is wrong.

In the following, aiming at 80-bit security, we use: a 1024-bit RSA modulus N , an
RSA public exponent e = 3, CRT-optimized exponentiations, a 1024-bit prime p, a
160-bit prime q, and SHA-1 hash function. Also recall that w = |S| and v = |C|.
We also use m to denote a modular multiplication of 1024-bit integers. Consequently,
we say that exponentiations modulo 1024 bits require, on average, O(1.5 · |exp|) ·
m, where |exp| denotes exponent size. Modular exponentiations with 512-bit moduli
count for approximately O(1.5 · |exp|) · m/4. As we discussed earlier in the paper,
the computational complexity of protocol in Figure 4 in [DT10] (DT10-v4) is clearly
determined by 2w+2v exponentiations with 512-bit exponents and moduli, thus, (2w+
2v)(1.5 · 512)m/4, i.e., (384w + 384v) · m. Whereas, the computational complexity
of protocol in Figure 3 of [DT10] comes down to w + 3v exponentiations with 160-bit
exponents and 1024-bit moduli, thus, (w +3v) · (1.5 ·160) ·m, i.e., (240w+720v) ·m.

If one allows precomputation, then protocol in Figure 4 (DT10-v4) is straightfor-
wardly more efficient than the Figure 3 counterpart, since online complexity goes down
to (384v) ·m. But if one does not allow precomputation (as in [HEK12]), then it would
seem that Figure 3 protocol would outperform DT10-v4 for settings where approxi-
mately v

w < 4
10 — a setting that is anyway never tested in [HEK12], which always

assumes w = v. Nonetheless, when precomputation is not possible, then the analysis
of Figure 3’s complexity should actually account for w + v additional exponentiations
needed to evaluate the H(·) function, which is of the hash-into-the-group kind, i.e.,

H(x) = x(p−1
q) mod p, thus, protocol in Figure 3 appears to be always slower than

Figure 4 (i.e., DT10-v4.) Therefore, the protocol in [DT10]’s Figure 4 is always more
computational efficient than the one in Figure 3.

5.3 Evaluation Criteria

Once again, note that it is out of the scope of this paper to provide a definite explanation
as to why our implementation of DT10-v4 achieves run-times several times lower than
those reported by [HEK12] (see section 7 thereof). Similarly, we do not analyze the
validity of the conclusions drawn by the authors of [HEK12] regarding whether or not

Experimenting with Fast Private Set Intersection 67

DT10-v4 PSI protocol is more efficient than garbled circuits-based constructions in all
settings. However, we make some observations regarding implementation of DT10-v4
by Huang et al. [HEK12] and also argue that a comprehensive comparison should take
into account several settings (we sketch those below and leave the task of addressing
them as an interesting open problem).

1. As discussed earlier, several design factors (e.g., pipelining, CRT, etc.) significantly
impact overall performance of custom PSI protocols (see Section 3.1) and it is
unclear whether they were taken into account in [HEK12].

2. [HEK12] implements techniques from [DT10] and in [HEK12] in Java. Java usu-
ally offers slower performance than other programming languages (such as C/C++).
Nonetheless, this choice might seem irrelevant, since both techniques are imple-
mented in Java. However, we believe it remains to be seen if the use of Java
penalizes techniques from [DT10] that perform a higher number of public-key op-
erations. For instance, as mentioned earlier, a CRT-based RSA exponentiation takes
5.55 times longer in Java than in C/GMP. Does this slowdown occur, in the same
measure for all Java operations (e.g., symmetric-key)? If not, then the choice of
Java might not be fair, as constructions in [HEK12] heavily rely on symmetric-key
operations.5 Also, it would also be interesting to measure memory overhead for
increasing set sizes incurred by all techniques. We believe that performance and
scalability could be tremendously affected by, for example, inability to keep an
entire circuit in memory.

3. [HEK12] employs techniques that are fundamentally and markedly different from
those used by custom protocols. Thus, a different choice of parameters can signifi-
cantly favor one while penalizing the other. We mention just a few:

a) Techniques in [HEK12] are tested in settings where |S| = |C|. As a result,
we believe that a more thorough comparison would include scenarios where
|S| �= |C|. Also, comparisons in [HEK12] are given only for |S| = |C| = 1024.
It remains unclear how performance of protocols in [HEK12] would scale for
higher set sizes, since at least some of them involve non-linear complexities,
as opposed to their counterparts in [DT10].

b) Some protocols in [HEK12] incur higher communication complexity than pro-
tocols in [DT10]. Therefore, we argue that a more thorough comparison must
include (realistic) settings where the subject protocol is executed on the In-
ternet, and not only over fast 100Mbps LANs. (Complexity is not analyzed
asymptotically but authors of [HEK12] report, on page 13, that the SCS-WN
protocol consumes more bandwidth: 147–470MB, depending on the security
level, versus 0.4–2.0MB.)

c) Experiments in [HEK12] measure run-times as a total execution time.
However, we believe that more details – ideally, a benchmark of sub-operations
– should also be provided to better understand if the testing setting and imple-
mentation choices penalize one technique while favoring another.

5 To encrypt 1 million 64-byte strings with AES-CBC, using C/OpenSSL, it takes, on average
0.60 and 0.83 seconds, with, respectively, 128-bit and 256-bit keys. Whereas, in Java, it takes
1.22 and 1.58 seconds. Therefore, the slowdown factor here is only 2.03 for 128-bit keys and
1.90 for 256-bit keys (versus about 5.5 for modular exponentiations).

68 E. De Cristofaro and G. Tsudik

Finally, while research on custom PSI protocols reached the point where malicious
security can be achieved efficiently – at the same asymptotic complexity as semi-honest
security [HN10,JL10,DKT10] – efficiency of garbled-circuit-based techniques secure in
the malicious model remains unclear.

6 Conclusion

This paper presented an optimized implementation and performance evaluation of the
currently fastes PSI protocol from [DT10]. We analyzed implementation choices that
impact overall performance and presented an experimental analysis, including micro-
benchmarking, with different set sizes. We showed that resulting run-times appreciably
outperform those reported in [HEK12]. Achieved speed up is significantly higher than
what one would obtain by simply porting [HEK12] implementation of DT10-v4 from
Java to C. Finally, we identified some open questions with respect to comparisons of
custom PSI protocols with generic garbled-circuit based constructions.

Acknowledgments. We gratefully acknowledge Yanbin Lu, Paolo Gasti, Simon Bar-
ber, and Xavier Boyen for their help and suggestions. We would also like to thank the
authors of [HEK12] for their valuable feedback.

References

ADT11. Ateniese, G., De Cristofaro, E., Tsudik, G. (If) Size Matters: Size-Hiding Pri-
vate Set Intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.)
PKC 2011. LNCS, vol. 6571, pp. 156–173. Springer, Heidelberg (2011)

AL07. Aumann, Y., Lindell, Y.: Security Against Covert Adversaries: Efficient Proto-
cols for Realistic Adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 137–156. Springer, Heidelberg (2007)

BBD+11. Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering gattaca:
efficient and secure testing of fully-sequenced human genomes. In: CCS (2011),
http://arxiv.org/abs/1110.2478

BCC+09. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A.,
Shacham, H.: Randomizable Proofs and Delegatable Anonymous Credentials.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer,
Heidelberg (2009)

BLHB11. Bursztein, E., Lagarenne, J., Hamburg, M., Boneh, D.: OpenConflict: Preventing
Real Time Map Hacks in Online Games. In: IEEE Security and Privacy (2011)

BNPS03. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal of
Cryptology 16(3) (2003)

Bon98. Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices of the
AMS 46(2) (1998)

CM99. Camenisch, J.L., Michels, M.: Proving in Zero-Knowledge that a Number Is
the Product of Two Safe Primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 107–122. Springer, Heidelberg (1999)

CS03. Camenisch, J.L., Shoup, V.: Practical Verifiable Encryption and Decryption of
Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 126–144. Springer, Heidelberg (2003)

http://arxiv.org/abs/1110.2478

Experimenting with Fast Private Set Intersection 69

DJL+10. De Cristofaro, E., Jarecki, S., Liu, X., Lu, Y., Tsudik, G.: Automatic Privacy Pro-
tection Program – UC Irvine Team Web Site (2010),
http://sprout.ics.uci.edu/projects/iarpa-app

DKT10. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-Complexity Private Set Intersection
Protocols Secure in Malicious Model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 213–231. Springer, Heidelberg (2010)

DSMRY09. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient Robust Pri-
vate Set Intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud,
D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009)

DT10. De Cristofaro, E., Tsudik, G.: Practical Private Set Intersection Protocols with
Linear Complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159.
Springer, Heidelberg (2010), http://eprint.iacr.org/2009/491

DT12. De Cristofaro, E., Tsudik, G.: On the Performance of certain Private Set Intersec-
tion Protocols. Cryptology ePrint Archive (2012),
http://eprint.iacr.org/2012/054

ElG85. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4) (1985)

FIPR05. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Obliv-
ious Pseudorandom Functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378,
pp. 303–324. Springer, Heidelberg (2005)

FKJM+06. Fouque, P.-A., Kunz-Jacques, S., Martinet, G., Muller, F., Valette, F.: Power Attack
on Small RSA Public Exponent. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 339–353. Springer, Heidelberg (2006)

FNP04. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set In-
tersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 1–19. Springer, Heidelberg (2004)

GGM86. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM 33(4) (1986)

HEK12. Huang, Y., Evans, D., Katz, J.: Private Set Intersection: Are Garbled Circuits Better
than Custom Protocols. In: NDSS (2012)

HL08. Hazay, C., Lindell, Y.: Efficient Protocols for Set Intersection and Pattern Match-
ing with Security Against Malicious and Covert Adversaries. In: Canetti, R. (ed.)
TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

HMRT11. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient rsa key generation and
threshold paillier in the two-party setting. Cryptology ePrint Archive (2011),
http://eprint.iacr.org/2011/494

HN10. Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Ad-
versaries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 312–331. Springer, Heidelberg (2010)

IKNP03. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers Ef-
ficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161.
Springer, Heidelberg (2003)

JL09. Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications
to Adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)

JL10. Jarecki, S., Liu, X.: Fast Secure Computation of Set Intersection. In: Garay,
J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer,
Heidelberg (2010)

KL08. Katz, J., Lindell, Y.: Introduction to modern cryptography. Chapman & Hall/CRC
(2008)

http://sprout.ics.uci.edu/projects/iarpa-app
http://eprint.iacr.org/2009/491
http://eprint.iacr.org/2012/054
http://eprint.iacr.org/2011/494

70 E. De Cristofaro and G. Tsudik

KS05. Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

MVOV97. Menezes, A., Oorschot, P.V., Vanstone, S.: Handbook of Applied Cryptography.
CRC (1997)

NMH+10. Nagaraja, S., Mittal, P., Hong, C.Y., Caesar, M., Borisov, N.: BotGrep: Finding
Bots with Structured Graph Analysis. In: Usenix Security (2010)

NP06. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM Journal on Comput-
ing, 1–35(5) (2006)

NTL+11. Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location
Privacy via Private Proximity Testing. In: NDSS (2011)

Pai99. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

RS60. Reed, S., Solomon, G.: Polynomial codes over certain finite fields. Journal of the
Society for Industrial and Applied Mathematics 8(2) (1960)

Sha79. Shamir, A.: How to Share a Secret. Communications of ACM 22(11) (1979)
Yao82. Yao, A.C.: Protocols for secure computations. In: FOCS (1982)

A Survey of PSI Techniques

In this appendix, we survey research work on Private Set Intersection (PSI). This ap-
pendix is organized in chronological order: we first overview work prior to [DT10],
then, after discussing the work in [DT10], we present recent results.

A.1 Work Prior to [DT10]

Once again, recall that PSI is a protocol involving a server and a client, on inputs S =
{s1, . . . , sw} and C = {c1, . . . , cv}, respectively, that results in client obtaining S ∩ C.
As a result of running PSI, set sizes are reciprocally disclosed to both server and client.
In the variant called PSI with Data Transfer (PSI-DT), each item in server set has an
associated data record, i.e., server’s input is S = {(s1, data1), · · · , (sw, dataw)}, and
client’s output is defined as {(sj, dataj) ∈ S | ∃ci ∈ C s.t. ci = sj}.

We distinguish between two classes of PSI protocols: one based on Oblivious Poly-
nomial Evaluations (OPE) [NP06], and the other based on Oblivious Pseudo-Random
Functions (OPRF-s) [FIPR05].

Freedman, Nissim, and Pinkas [FNP04] introduce the concept of Private Set Intersec-
tion and and propose a protocol based on OPE. They represent a set as a polynomial, and
elements of the set as its roots. A client encodes elements in its private set C as the roots
of a v-degree polynomial over a ring R, i.e., f =

∏v
i=1(x−ci) =

∑k
i=0 αix

i. Then, as-
suming pkC is client’s public key for any additively homomorphic cryptosystem (such
as Paillier’s [Pai99]), client encrypts the coefficients with pkC , and sends them to server.
The latter homomorphically evaluates f at each sj ∈ S. Note that f(sj) = 0 if and only
if sj ∈ C ∩ S. For each sj ∈ S, returns uj = E(rjf(sj) + sj) to client (where rj is
chosen at random and E(·) denotes additively homomorphic encryption under pkC). If
sj ∈ C ∩ S then client learns sj upon decrypting. If sj /∈ C ∩ S then uj decrypts to a

Experimenting with Fast Private Set Intersection 71

random value. To enable data transfer, server can return E(rjf(sj) + (sj ||dataj)), for
each sj in its private set S. The protocol in [FNP04] incurs the following complexities:
The number of server operations depends on the evaluation of client’s encrypted poly-
nomial with v coefficients on w points (in S). Using Paillier cryptosystem [Pai99] and
a 1024-bit modulus, this costs O(vw) of 1024-bit mod 2048-bit exponentiations.6 On
the other hand, client computes O(v + w) of 1024-bit mod 2048-bit exponentiations.
However, server computation can be reduced to O(w log log v) using: (1) Horner’s rule
for polynomial evaluations, and (2) a hashing-to-bins method (see [FNP04] for more
details). If one does not need data transfer, it is more efficient to use the Exponential
ElGamal cryptosystem [ElG85] (i.e., an ElGamal variant that provides additively ho-
momorphism).7 Such a cryptosystem does not provide efficient decryption, however,
it allows client to test whether a ciphertext is an encryption of “0”, thus, to learn that
the corresponding element belongs to the set intersection. As a result, efficiency is im-
proved, since in ElGamal the computation may make use of: (1) very short random
exponents (e.g., 160-bit) and (2) shorter moduli in exponentiations (1024-bit). The PSI
protocol in [FNP04] is secure against honest-but-curious adversaries in the standard
model, and can be extended to malicious in the Random Oracle Model (ROM), at an
increased cost.

Hazay and Nissim [HN10] present an improved construction of [FNP04], in the pres-
ence of malicious adversaries without ROM, using zero-knowledge proofs to let client
demonstrate that encrypted polynomials are correctly produced. Perfectly hiding com-
mitments, along with an Oblivious Pseudo-Random Function evaluation protocol, are
used to prevent server from deviating from the protocol. The protocol in [HN10] incurs
O(v +w(log log v +m)) computational and O(v +w ·m) communication complexity,
where m is the number of bits needed to represent a set element.

Kissner and Song [KS05] also propose OPE-based protocols involving (potentially)
more than two players. They present one technique secure in the standard model against
semi-honest and one – against malicious adversaries. The former incurs quadratic –
O(vw) – computation (but linear communication) overhead. The latter uses expensive
generic zero-knowledge proofs to prevent parties from deviating to the protocol. Also,
it is not clear how to enable data transfer.

Dachman-Soled, et al. [DSMRY09] also present an OPE-based PSI construction, im-
proving on [KS05]. Their protocol incorporates a secret sharing of polynomial inputs:
specifically, as Shamir’s secret sharing [Sha79] implies Reed-Solomon codes [RS60],
generic (i.e., expensive) zero-knowledge proofs can be avoided. Complexity of re-
sulting protocol amounts to O(wk2 log2(v)) in communication and O(wvk log(v) +
wk2 log2(v)) in computation, where k is a security parameter.

Other techniques rely on Oblivious Pseudo-Random Functions (OPRF-s), introduced
in [FIPR05]. An OPRF is a two-party protocol that securely computes a pseudo-random
function fk(·) on key k contributed by the sender and input x contributed by the re-
ceiver, such that the former learns nothing from the interaction and the latter learns

6 Encryption and decryption in the Paillier cryptosystem [Pai99] involve exponentiations mod
n2: if |n| = 1024 bits, then |n2| = 2048 bits (where n is the public modulus).

7 In the Exponential ElGamal variant, encryption of message m is computed as Eg,y(m) =
(gr, yr · gm) instead of (gr, m · yr), for random r and public key y.

72 E. De Cristofaro and G. Tsudik

only the value fk(x). Most prominent OPRF-based protocols are presented below. The
intuition behind OPRF-based PSI protocols is as follows: server and client interact in
v parallel execution of the OPRF fk(·), on input k and ci, ∀ ci ∈ C, respectively. As
server transfers Ts:j = fk(sj), ∀ sj ∈ S and client obtains Tc:i = fk(ci), ∀ ci ∈ C,
client learns the set intersection by finding matching (Ts:j , Tc:i) pairs, while it learns
nothing about values sl ∈ S \ S ∩ C, since fk(sl) is indistinguishable from random, if
fk(·) is a pseudo-random function.8

Hazay and Lindell [HL08] propose the first PSI construction based on OPRF-s. In it,
server generates a secret random key k, then, for each sj ∈ S, computes uj = fk(sj),
and sends client the set U = {u1, · · · , uw}. Next, client and server engage in an OPRF
computation of fk(ci) for each ci ∈ C. Finally, client learns that ci ∈ C ∩ S if (and
only if) fk(ci) ∈ U . [HL08] introduces two constructions: one secure in the presence
of malicious adversaries with one-sided simulatability, the other – in the presence of
covert adversaries [AL07].

Jarecki and Liu [JL09] improve on [HL08] by constructing a protocol secure in
the standard model against both malicious parties, based on the Decisional q-Diffie-
Hellman Inversion assumption, in the Common Reference String (CRS) model, where
a safe RSA modulus must be pre-generated by a trusted party. The OPRF in [JL09] is
built using the Camenisch-Shoup additively homomorphic cryptosystem [CS03] (CS
for short). However, this technique can be optimized, leading to the work by Belenkiy,
et al. [BCC+09]. In fact, the OPRF construction could work in groups of 160-bit prime
order, unrelated to the RSA modulus, instead of (more expensive) composite order
groups [JL09]. Thus improved, the protocol in [JL09] incurs the following computa-
tional complexity: server needs to perform O(w) PRF evaluations, specifically, O(w)
modular exponentiations of m-bit exponents mod n2, where m the number of bits
needed to represent set items and n2 is typically 2048-bit long. The client needs to
compute O(v) CS encryptions, i.e., O(v) m-bit exponentiations mod 2048 bits, plus
O(v) 1024-bit exponentiations mod 1024 bits. The server also computes O(v) 1024-bit
exponentiations mod 1024 bits and O(v) CS decryptions – i.e., O(v) 1024-bit expo-
nentiations mod 2048 bits. Complexity in malicious model grows by a factor of 2. The
input domain size of the pseudo-random function in [JL09] is limited to be polynomial
in the security parameter, since the security proof requires the ability to exhaustively
search over input domain.

A.2 Protocols in [DT10]

The work in [DT10] presented two linear-complexity PSI protocols, both secure in
the Random Oracle Model in the presence of semi-honest adversaries. Specifically,
in [DT10], they present:

1. One protocol (Figure 3) secure under the One-More-Gap-DH assumption [BNPS03].
It imposes O(w + v) short exponentiations on server, and O(v) – on client. Note
that the term “short” exponentiation refers to the fact that exponentiations can be of
160-bit exponents modulo 1024 bits (for 80-bit security).

8 For more details on pseudo-random functions, we refer to [KL08,GGM86].

Experimenting with Fast Private Set Intersection 73

2. Another protocol (Figure 4) secure under the One-More-RSA assumption [BNPS03],
whose implementation we have presented and analyzed in this paper. Recall that, in
this protocol, server computational overhead amounts to O(w + v) RSA signatures
using CRT optimization (i.e., 512 bits modulo 512 bits exponentiations for 80-bit
security). Whereas, client complexity is dominated by O(v) RSA encryptions, i.e.,
in practice, O(v) modular multiplications if a short RSA public exponent is selected.

Both protocols incur the following communication overhead: client and server need to
send and receive O(v) group elements (i.e., 1024-bit); additionally, server sends client
O(w) hash outputs (e.g., 160-bit using SHA-1).

A.3 Recent Results

Shortly after [DT10], Jarecki and Liu [JL10] also propose a PSI protocol with linear
complexity and fast exponentiations. (Remark that some of the proofs in [DT10] are
based on that of Jarecki and Liu.) This protocol is based on a concept related to OPRFs,
i.e., Unpredictable Functions (UPFs). One specific UPF, fk(x) = H(x)k, is used as
a basis for two-party computation (in ROM), with server contributing the key k and
client – the argument x. The client picks a random exponent α and sends y = H(x)α

to server, that replies with z = yk, such that client recovers fk(x) = z1/α. By using
a zero-knowledge discrete-log proofs of knowledge, the protocol in [JL10] can obtain
malicious security and implement secure computation of (Adaptive) Set Intersection,
under the One-More-Gap-DH assumption in ROM [BNPS03]. Therefore, the computa-
tional complexity of the UPF-based PSI in [JL10] also amounts to O(w + v) exponen-
tiations with short exponents at server side and O(v) at client side (e.g., 160-bit mod
1024-bit). Communication complexity is also linear is input set size, i.e., O(w + v).

De Cristofaro, et al. [DKT10] present another linear-complexity short-exponent PSI
construction secure in ROM in the presence of malicious adversaries. However, com-
pared to [JL10], its security relies on a weaker assumption – DDH vs One-More-Gap-
DH. Then, Ateniese, et al. [ADT11] introduce the concept of Size-Hiding Private Set
Intersection (SHI-PSI). Besides the standard privacy features guaranteed by the PSI
primitive, SHI-PSI additionally provides unconditional (i.e., not padding-based) hiding
of client’s set size. The security of this novel protocol is under the RSA assumption in
ROM, in the presence of semi-honest adversaries. Server’s computational complexity
amounts to only O(w) exponentiations in the RSA setting, thus, it is independent of
size of client’s input. Whereas, client’s overhead is in the order of O(v · log v) expo-
nentiations. Communication complexity is limited to O(w), i.e., it is also independent
of size of client’s input.

Finally, Huang, et al. [HEK12] present novel PSI constructions based on garbled
circuits [Yao82]. The main intuition is that, by leveraging the Oblivious Transfer (OT)
extension [IKNP03], the complexity of such protocols is tied to a number of OTs (thus,
public-key operations) equal to the security parameter k. In fact, OT extension achieves
an unlimited number of OTs at the cost of (essentially) k OTs. Therefore, for increasing
security parameters, the number of public-key operations with their technique grows
more gracefully than with custom protocols.

Reliable Device Sharing Mechanisms

for Dual-OS Embedded Trusted Computing

Daniel Sangorŕın, Shinya Honda, and Hiroaki Takada

Graduate School of Information Science, Nagoya University,
Furo-cho, Chikusa-ku, 464-8601, Nagoya, Japan

{dsl,honda,hiro}@ertl.jp

Abstract. Dual-OS virtualization techniques allow consolidating a trus-
ted real-time operating system (RTOS) and an untrusted general-
purpose operating system (GPOS) onto the same embedded platform. In
order to protect the reliability and real-time performance of the RTOS,
platform devices are usually duplicated and assigned exclusively to each
operating system causing an increase in the total hardware cost. This
paper investigates and compares several mechanisms for sharing devices
reliably in a dual-OS system. In particular, we observe that device shar-
ing mechanisms currently used for cloud virtualization are not necessarily
appropriate for dual-OS systems. We propose two new mechanisms based
on the dynamic re-partition of devices; and evaluate them on a physical
platform to show the advantages and drawbacks of each approach.

Keywords: Device sharing, Virtualization, TrustZone, Real-time.

1 Introduction

A dual-OS system[1–4] is a method for consolidating a real-time operating sys-
tem (RTOS) and a general-purpose operating system (GPOS) onto the same
embedded platform—to reduce the hardware cost—thanks to the use of a vir-
tualization layer (VL). The RTOS provides support for applications with strict
reliability, security and real-time requirements. Both the RTOS and the VL are
small scale and considered to belong to the trusted computing base (TCB). In
contrast, the GPOS provides support for applications with high functionality re-
quirements, and is considered to belong to the untrusted computing base (UCB)
due to its large scale. The most fundamental requirement of a dual-OS system is
protecting the reliability of the TCB against any misbehavior or malicious attack
coming from the UCB[5]. For that reason, in dual-OS systems devices are usually
duplicated and assigned exclusively to each guest OS: devices that are critical
for the reliability of the system are assigned to the RTOS; and the remainder
devices are assigned to the GPOS. The dual-OS VL must guarantee that neither
the GPOS nor GPOS devices—particularly devices with Direct Memory Access
(DMA)—are allowed to access the memory and devices assigned to the RTOS.

Device duplication is useful for ensuring the reliability of the RTOS, and max-
imizing the system performance. However, it also adds a significant increase in

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 74–91, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Reliable Device Sharing Mechanisms 75

Secure
data

Non-Secure
data

Secure
devices

Non-Secure
devices

Memory

BUS (NS bit)

ARM TrustZone Core�

RTOS
Interrupts

FIQ IRQ

TZICConfig

Trusted
Untrusted

VL (SafeG monitor)

Secure VCPU Non-Secure VCPU

GPOS

Fig. 1. Architecture of the SafeG dual-OS system

the total hardware cost. Several device sharing mechanisms have been proposed
in the context of cloud virtualization[6, 7] to reduce this cost. Most of them
use a model in which device drivers are paravirtualized, splitting them between
a front-end driver in the guest OSs, and the real back-end driver running on
a trusted domain. The most typical application is sharing high-bandwidth net-
work and storage devices that are concurrently accessed by numerous guest OSs.
Despite its benefits, this approach is not suitable for dual-OS systems because
of its rather high overhead; issues on the real-time performance of the trusted
domain; and a significant increase in the complexity of the TCB.

This paper investigates and compares several mechanisms for sharing devices
reliably and efficiently in a dual-OS system. The main contributions are:

– A study on the suitability of existing device sharing mechanisms for dual-OS
systems. We observe that—in contrast to cloud virtualization—highly con-
current device sharing is not usually required in dual-OS systems. Instead,
a more common pattern is to use devices in turns, where the GPOS usage
percentage greatly exceeds the RTOS usage percentage.

– We propose two new mechanisms based on the dynamic re-partition of de-
vices to operating systems at run time. The difference is a trade-off between
execution overhead and the latency to access a shared device.

We implemented both mechanisms and the paravirtualization approach on a
physical platform using SafeG[3], an open source reliable dual-OS system based
on ARM TrustZone[8]. From the results of the evaluation, we observed that each
mechanism is best suited to a particular set of conditions and assumptions. In
particular, our two new mechanisms seem more suitable for device sharing pat-
terns commonly found in dual-OS systems than the paravirtualization approach.

The paper is organized as follows. Section 2 reviews knowledge about SafeG
and presents a motivational example. Section 3 is the core of this paper and
explains several device sharing mechanisms for dual-OS systems. Section 4 de-
tails the implementation of our two new mechanisms and the paravirtualization
approach on SafeG. Section 5 evaluates the overhead, latency and code modifi-
cations of each implementation. Section 6 compares this research with previous
work. Finally, the paper is concluded in Section 7.

76 D. Sangorŕın, S. Honda, and H. Takada

2 Background

2.1 SafeG: A Dual-OS System Based on ARM TrustZone

Fig. 1 depicts the architecture of SafeG[3, 9] (Safety Gate), a reliable open-
source dual-OS system based on ARM TrustZone[8] hardware. Here, we briefly
introduce some concepts about SafeG and TrustZone. For details, refer to [3, 8].

– Virtual CPUs : a processor core contains two Virtual CPUs (VCPUs), the
Secure and the Non-Secure VCPU, that are executed in a time-sliced fashion.
Each VCPU is equipped with its own memory management unit (MMU) and
exception vectors; and supports all ARM operation modes. SafeG assigns the
RTOS and GPOS to the Secure and Non-Secure VCPUs respectively.

– SafeG monitor : the Secure VCPU has an additional mode — called the mon-
itor mode—which is used by the SafeG monitor to context switch between
both OSs. The entry to SafeG monitor can only be triggered by software
executing the Secure Monitor Call (SMC) instruction or the occurrence of
an FIQ (Fast Interrupt Request) while the Non-Secure VCPU is active. The
SafeG monitor is small—around 2KB[3]—and executes with all interrupts
disabled, which simplifies its verification. A VCPU context switch on an
ARM1176[10] processor requires around 200 cycles[3] and involves saving
and restoring all ARM general-purpose registers.

– Address space partitioning: when a bus master accesses memory or devices,
the NS bit (Non-Secure bit) is propagated through the system bus indicating
the privilege of that access (i.e., secure or non-secure). This allows parti-
tioning the address space into two virtual worlds: the Secure and the Non-
Secure world. The Secure VCPU can access memory and devices from both
worlds. However, hardware logic makes sure that Secure world memory and
devices cannot be accessed by the Non-Secure VCPU or Non-Secure DMA
devices. At initialization, SafeG configures RTOS memory and devices as Se-
cure world resources; and GPOS memory and devices as Non-Secure world
resources. For that reason, the RTOS address space is protected against
malicious accesses from the untrusted GPOS.

– Interrupts partitioning: ARM processors have two types of interrupt known
as FIQ and IRQ. The main difference is that FIQs have higher priority and
more banked registers. SafeG configures RTOS devices to generate FIQs;
and GPOS devices to generate IRQs. This configuration is done through a
TrustZone interrupt controller (e.g., TZIC[11]), only accessible from the Se-
cure VCPU. FIQ and IRQ interrupts can be disabled in privileged mode by
setting the F and I flags of the Current Program Status Register (CPSR)
respectively. To prevent the GPOS from masking RTOS device interrupts,
SafeG takes advantage of the FW (F flag Writable) bit, which is only ac-
cessible by the Secure VCPU. This allows the RTOS to ensure that hard
real-time tasks always meet their deadlines.

The execution flow is controlled by two principles that ensure the real-time
performance of the RTOS: the GPOS is scheduled as the RTOS idle task; and
the RTOS can recover the control of the processor at any time through an FIQ.

Reliable Device Sharing Mechanisms 77

mechanical
switch

GPOS
(navigation,
multimedia)

CPU

RTOS
(parking aid)

CPU
R 1 3 5

2 4 6

Sensor

Camera

GPS

WiFi

RTOS
(parking aid)

R 1 3 5

2 4 6

GPOS
(navigation,
multimedia)

Virtualization layer

CPU

Video Card

Audio Card

Video Card

Audio Card

Sensor

Camera

GPS

WiFi
Video Card

Audio Card

(a) Traditional solution with hardware duplication

(b) Solution based on a dual-OS system with shared devices

Gear-
Change
Lever

Gear-
Change
Lever

ECU #1

ECU #2

ECU #1

������
�

��
��
��
�

��
��
��
�

�
�

Car terminal
(multimedia or
parking mode)

������
�

��
��
��
�

��
��
��
�

�
�

Car terminal
(multimedia or
parking mode)

Fig. 2. Motivational example for device sharing applied to an in-vehicle system

2.2 Motivational Example

Fig. 2 illustrates a motivational example for reliable device sharing inside an
in-vehicle car terminal[12] that operates in two modes: multimedia and park-
ing mode. In multimedia mode, the terminal is used for GPS navigation, video
playback or Internet access. This mode requires highly functional libraries such
as video codecs or network stacks. For that reason, the most suitable way to
implement it is by using a GPOS. In parking mode, the system fetches data from
a camera and a distance sensor placed on the rear of the car. The camera data is
displayed on the terminal to assist the driver during parking maneuver, and the
distance to nearby obstacles is indicated through a repetitive sound. This mode
requires high reliability and time determinism to avoid a potential car accident.
For that reason, the most suitable way to implement it is by using an RTOS.

The traditional approach to implement this system is illustrated by Fig. 2(a)
and consists of two separated computing units (ECUs). One computer contains
a GPOS with rich libraries to handle the multimedia mode; and the other one
contains a reliable RTOS to handle the parking mode. Parking mode is activated
through a mechanical switch (i.e., the gear-change lever) whenever the car is
driven backwards. Although this approach can satisfy the main requirements of
the system, it requires duplicated hardware that increases the total cost.

In contrast, Fig. 2(b) illustrates a solution based on a dual-OS system with
device sharing capabilities. Thanks to the use of a virtualization layer and device

78 D. Sangorŕın, S. Honda, and H. Takada

sharing, it is possible to consolidate both operating systems onto the same plat-
form and avoid duplicating hardware. An important difference with device shar-
ing in enterprise cloud virtualization is that devices (e.g., the video and sound
card) are shared with low concurrency or rather in turns. For example, the
car terminal is expected to operate in multimedia mode during most of the
time; and only switch to parking mode occasionally. For that reason, exist-
ing device sharing mechanisms designed for highly concurrent systems—such
as paravirtualization[6]—are not suited to this situation. Ideally, in a dual-OS
system the GPOS should have direct access to devices for maximizing perfor-
mance; and use its own feature-rich drivers instead of relying on a more complex
TCB. Additionally, the worst-case amount of time that the RTOS has to wait for
a shared device to be usable with reliability guarantees must be upper-bounded.

3 Reliable Device Sharing

3.1 Requirements and Assumptions

Based on the motivational example above, we define the following set of require-
ments for the design of a reliable device sharing mechanism.

(a) Completion: device sharing mechanisms must guarantee that the TCB has
full control over the successful completion of operations on shared devices.

(b) Memory isolation: TCB resources must be protected against any access—
accidental or malicious—coming from UCB (including devices with DMA).

(c) Real-time: the timeliness of the RTOS must be guaranteed. In particular,
malicious GPOS software must not be able to prevent or delay further use
of a shared device (i.e., device latency) for an unbounded amount of time.

(d) Software-only: device sharing must be implemented in software. Customized
hardware implementations are out of the scope of this paper.

(e) Performance: the overhead caused by a device sharing mechanism (e.g., due
to unnecessary data copies or context switches) must be minimized. Ideally,
a device should be operated with native performance.

(f) Code modifications : modifications to the TCB software must be minimized.
In particular, complex modifications to the VL must be avoided because
they can increase the latency of RTOS interrupts. In contrast, the GPOS
kernel can be extended with drivers. Nonetheless, GPOS applications and
libraries should not require modifications for the sake of reusability.

We also make the following assumptions: software that belongs to the UCB does
not have deffects; the RTOS and GPOS drivers can be modified; the hardware
reset time of a shared device is upper-bounded; the processor has a single core;
and finally, we assume that the GPOS cannot damage a shared device.

3.2 Suitability of Existing Device Sharing Approaches

Fig. 3(a)–(d) illustrate several existing approaches to device sharing, adapted to
the context of a dual-OS system. Bellow we analyze each approach.

Reliable Device Sharing Mechanisms 79

(b) Device emulation

GPOSRTOS

Device

Trap

V-Device

VL

Legacy
DriverDriver

limit

(d) Paravirtualization

GPOSRTOS

Device

dualoscomVL

Front-end
Driver

Back-end
Driver

limit

(a) Proxy task

GPOSRTOS

Device

dualoscomVL

Client
Task

Proxy
Task

(c) Self-virtualizing devices

GPOSRTOS

Self-virtualizing Device

Driver Driver

V-Device V-Device

VL

(e) Re-partitioning

VL

RTOS

Driver

GPOS

Driver

Device

VL

RTOS

Driver

GPOS

Driver

Device

����������	

Fig. 3. Device sharing approaches (VL=Virtualization Layer, dualoscom=Dual-OS
communications, V-Device=Virtual Device)

(a) Proxy task : in this approach, RTOS client tasks send requests to a proxy
task in the GPOS—through a dual-OS communications system[13] usually
provided by the VL—with the intention of leveraging the richness of GPOS
libraries and drivers. Requests can be sent with a high level of abstraction
(e.g., play this sound), and therefore the overhead incurred is rather low.
Despite all these benefits, the proxy task approach cannot be used for reliable
device sharing because GPOS software is untrusted and it may misbehave
or ignore RTOS requests which goes against requirement 3.1(a).

(b) Device emulation: this approach follows the classical Popek and Goldberg’s
trap-and-emulate model for machine virtualization[14]. The GPOS is tricked
to think that there is a legacy device in the board. GPOS accesses to this
virtual device are trapped by the VL and forwarded to the RTOS, where a
driver handles the real device. This approach brings platform independence
and flexibility to the GPOS. However, it has a significant execution over-
head, and requires complex extensions to the TCB (see requirement 3.1(f))
in order to implement the trap mechanism. Additionally, traps are typically
delivered to the RTOS as software interrupts. To guarantee the real-time
performance of the RTOS (see requirement 3.1(c)), the TCB must limit the
rate of these software interrupts, which may become a performance bottle-
neck if the GPOS needs to access device registers very frequently.

(c) Self-virtualizing devices : A self-virtualizing device with built-in support for
real-time reservations could be shared seamlessly by the RTOS and the
GPOS through separated interfaces, achieving near-native performance.
Hardware virtualization support was recently introduced to some devices[15].

80 D. Sangorŕın, S. Honda, and H. Takada

Table 1. Qualitative comparison of device sharing approaches

Existing approaches Re-partitioning
Property Proxy Emulation Self-virt Paravirt. Pure Hybrid

(1) Real-time ✗ ✓ ✓ ✓ ✓ ✓

(2) Functionality ✓ ✗ ✓ ✗ ✓ ✓

(3) Device Latency ✗ ✓ ✓ ✓ ✗ ✓

(4) Overhead ✓ ✗ ✓ ✗ ✓ ✗

(5) Concurrency ✓ ✓ ✓ ✓ ✗ ✗

(6) Hardware Cost ✓ ✓ ✗ ✓ ✓ ✓

Unfortunately, the current availability of such devices is limited in practice
to high bandwidth network and storage interfaces for enterprise cloud com-
puting. The design of customized self-virtualizing hardware with support for
real-time reservations is out of the scope of this paper (see 3.1(d)).

(d) Paravirtualization: in this approach, the GPOS is extended with a paravir-
tual driver—typically known as the front-end driver in XEN[6] split-driver
terminology—that uses dual-OS communications for sending requests to the
RTOS back-end driver. Paravirtualization helps raising the level of abstrac-
tion from bus operations to device-level operations in order to reduce the
overhead, though its performance is still far from native. Similar to the emu-
lation approach, the rate of device operation requests must be limited not to
affect the real-time performance of the RTOS. The major drawback of this
approach is the fact that the GPOS is limited to the functionality supported
by the RTOS driver. RTOS drivers do not necessarily provide support for
all of the functionality available in a certain device. For instance, a sound
card may have audio capture features that are not needed by the RTOS.
Implementing this extra functionality on the RTOS would complicate un-
necessarily the TCB (see requirement 3.1(f)).

The left part of Table 1 summarizes qualitatively the properties of each approach.
Property (1) refers to the ability to guarantee the timeliness of the RTOS. Prop-
erty (2) indicates whether the GPOS uses its own fully functional drivers or not.
Property (3) shows the adequacy of each approach to minimize the device la-
tency. Property (4) refers to the overhead introduced by each approach. Property
(5) expresses the suitability of each approach for a highly concurrent scenario.
Finally, property (6) refers to the hardware cost of each approach.

We discard the proxy, device emulation and self-virtualizing approaches (i.e.,
approaches (a), (b) and (c)) because they cannot satisfy requirements 3.1(a),
3.1(f) and 3.1(d) respectively. Paravirtualization (approach (d)) can satisfy all
of the requirements enumerated in Sec. 3.1, at the cost of reduced functionality
and moderate overhead. However, it is not suitable for the type of device sharing
patterns described in Sec. 2.2, where the GPOS usage percentage of the shared
device greatly exceeds the RTOS usage percentage. For that reason, in Sect. 3.3
we explore a new approach based on dynamically re-partitioning devices between
the RTOS and the GPOS at run time.

Reliable Device Sharing Mechanisms 81

Driver

RTOS
Re-partition

Manager

Trigger

RTOS

Reset

VL

Driver

GPOS
Re-partition

Manager

RTOS

plug/unplug

FIQ

PLUG /
UNPLUG

Config

Device

IRQ
TrustUntrust

TZPC

Dual-OS
Communi-

cations

Fig. 4. Architecture of the pure re-partitioning mechanism

3.3 Reliable Device Sharing through Re-partitioning

The re-partitioning approach—depicted in Fig. 3(e)—consists of dynamically
modifying the assignment of devices to each OS at run time. Re-partitioning
is always initiated by the RTOS after a trigger condition (e.g., car going into
backwards mode) and has several benefits:

– Devices can be accessed directly by both OSs which minimizes overhead.
– If a device is assigned to the GPOS, its interrupts (IRQ) are handled by the

GPOS itself, which runs with the lowest RTOS priority. For that reason, the
timeliness of RTOS tasks and interrupt handlers can be guaranteed.

– The VL does not require complex or any modifications at all.
– Any device can be used (e.g., not restricted to self-virtualizing devices).
– The GPOS can leverage its own feature-rich drivers, while the RTOS restricts

itself to offer the minimum support in order to keep the TCB small.

We propose two mechanisms for implementing device sharing using the re-
partitioning approach: a pure re-partitioning mechanism and a hybrid one. The
main difference between them is a trade-off between the higher performance of
pure re-partitioning; and the lower device latency of the hybrid mechanism.

Pure Re-partitioning is illustrated by Fig. 4. The architecture uses the con-
cept of hotplugging—typically found in buses such as USB—and applies it to the
dynamic re-partitioning of a device between the RTOS and the GPOS. Device
sharing is managed by the so-called Re-partition Manager agents at each OS.
The pseudo code of both agents is shown in Fig. 5. When a condition triggers the
re-partitioning process, the RTOS re-partition manager is activated. The RTOS
re-partition manager needs to handle two scenarios:

– If the device must be re-partitioned to the TCB, the RTOS re-partition
manager will send an UNPLUG event to the GPOS counterpart. The RTOS
re-partition manager is not dependent on the state of its GPOS counterpart.
This is necessary for ensuring that even if the GPOS misbehaved, the RTOS

82 D. Sangorŕın, S. Honda, and H. Takada

1 task RTOS_Repartition_Manager is
2 begin
3 loop
4 accept Repartition(Device, Trigger) do
5 case Trigger is:
6 when 'Set_Trust' =>
7 Send_Event(UNPLUG)
8 Reset(Device)
9 Config(Device, TRUST)
10 when 'Set_Untrust' =>
11 Flush(Device)
12 Config(Device, UNTRUST)
13 Send_Event(PLUG)
14 end case
15 end Repartition
16 end loop
17 end task

1 task GPOS_Repartition_Manager is
2 begin
3 loop
4 Wait(Event, Device)
5 case Event is:
6 when 'UNPLUG' =>
7 Unplug(Device)
8 when 'PLUG' =>
9 Plug(Device)
10 end case
11 end loop
12 end task

Fig. 5. Pseudo code of the pure re-partitioning mechanism

would still be able to use the shared device with reliability guarantees. For
that reason, once the hotplug event is sent, the RTOS re-partition manager
needs to fully reset the device into a predefined state. This operation may in-
volve disabling the device’s interrupt, canceling current operations or waking
the device from low-power mode. Immediately after resetting the device—
and without the GPOS being able to execute—the RTOS re-partition man-
ager configures the device as part of the TCB. Note that the opposite order
would be insecure if the device was in the middle of a DMA operation. The
method to configure a shared device as part of the TCB is dependent on
the VL implementation. Once the re-partition process finishes, the RTOS
can respond to the trigger condition and use the device reliably. When the
GPOS is scheduled to execute by the VL (e.g., when the RTOS becomes idle)
the GPOS re-partition manager must handle the UNPLUG event. The way
to handle it may differ depending on the implementation but typically re-
quires killing or suspending tasks that were using the device; and unloading
or disabling the corresponding device driver.

– If the device must be re-partitioned to the UCB (e.g., because the RTOS
does not longer need it), the RTOS re-partition manager must flush any
sensitive data from the shared device; configure it as part of the UCB; and
send a PLUG event to the GPOS. The GPOS re-partition manager will
handle the PLUG event, which typically involves re-enabling or loading the
corresponding device driver; and sending a notification to user space for
registered processes to resume applications that were previously stopped.

The pure re-partitioning mechanism provides both OSs with direct access to
devices for maximizing performance. However, fully resetting devices before re-
partitioning can boost device latency to tens of milliseconds (see Sect. 5), which
depending on the real-time application may be considered excessive.

Reliable Device Sharing Mechanisms 83

Untrust_Access

Init

Device

Runtime

Driver

RTOS
Re-partition

Manager

Trigger

Config

VL

Modified Driver

GPOS
Re-partition

Manager
Plug

FIQ

Ok
Error

PLUG

IRQ

VL Call

Dual-OS
Communications

Fig. 6. Architecture of the hybrid re-partitioning mechanism

1 task RTOS_Repartition_Manager is
2 begin
3 Init(Device)
4 loop
5 accept Repartition(Device, Trigger) do
6 case Trigger is:
7 when 'Set_Trust' =>
8 Reset_Runtime(Device)
9 Config(Device, TRUST)
10 when 'Set_Untrust' =>
11 Flush(Device)
12 Config(Device, UNTRUST)
13 Send_Event(PLUG)
14 end case
15 end Repartition
16 end loop
17 end task

1 task GPOS_Repartition_Manager is
2 begin
3 loop
4 Wait_Event(PLUG, Device)
5 Plug(Device)
6 end loop
7 end task

1 procedure Write(Reg : in, Value : in) is
2 begin
3 Ret = VL_call(Reg,Value)
4 if Ret == Error then
5 Unplug(This)
6 Exit
7 end if
8 end procedure

Fig. 7. Pseudo code of the hybrid re-partitioning mechanism

Hybrid Re-partitioning is depicted in Fig. 6. In order to reduce the de-
vice latency, we modified the pure re-partitioning mechanism with some con-
cepts inspired by the paravirtualization approach, ergo the name of hybrid
re-partitioning. The mechanism is derived from the observation that most part
of the time spent on resetting a device is consumed on operations that are only
performed at initialization (e.g., setting the clock rate) but not at run time. In
the hybrid mechanism, the interface of a shared device is logically divided be-
tween bits that are required at initialization (Init interface); and those required
during run time (Runtime interface). The Init interface can only be accessed
by the RTOS. For that reason, the RTOS can guarantee that certain conditions
(e.g., that the device is powered on) are satisfied at all times, and thus reduce
the time for resetting a device. In contrast, the Runtime interface can be re-
partitioned to the RTOS or the GPOS. A software-only method to implement
the hybrid approach consists of configuring the device as part of the TCB, and
extending the VL with a simple VL call for the GPOS to access the Runtime in-
terface. Access permissions to the Runtime interface are controlled by the RTOS

84 D. Sangorŕın, S. Honda, and H. Takada

re-partition manager and the VL through a boolean variable (Untrust Access)
in trusted memory. Fig. 7 shows the pseudo code of the hybrid mechanism which
differs from the one in Fig. 5 in the following aspects:

– Devices do not require a complete reset when re-partitioned to the TCB
because only the Runtime interface could have been altered by the UCB.

– In a software-only implementation, RTOS UNPLUG events can be replaced
by a lazy algorithm. If the GPOS attempts calling the VL while the Runtime
interface is assigned to the TCB, the VL will return an error code. The GPOS
device driver is modified to handle this error code as an UNPLUG event.
Note that the handling of PLUG and UNPLUG events must be serialized to
avoid race conditions.

The right part of Table 1 summarizes the properties of each re-partitioning
mechanism. The hybrid mechanism has the major benefit of a shorter device la-
tency, compared to the pure re-partitioning mechanism, because it ensures that
time-consuming device initialization operations are not available to the GPOS.
However, a software-only implementation of the hybrid mechanism requires small
modifications to the VL and introduces overhead on each register access. Also,
if the shared device has DMA capabilities, the VL may require further modifi-
cations in order to check that DMA memory addresses belong to the UCB.

4 Implementation

We implemented both re-partitioning mechanisms (pure and hybrid) and the
paravirtualization approach—suitable for highly concurrent shared devices—on
a physical platform for comparison. We used TOPPERS/SafeG v0.3, TOP-
PERS/ASP v1.6[9] and Linux v2.6.33 with buildroot[16] as the VL, RTOS
and GPOS respectively. The hardware platform consisted of a PB1176JZF-S
board[17] equipped with an ARM1176JZF-S[10] running at 210MHz with 32 KB
of cache, 128 MB of Non-Secure dynamic memory and 8 MB of Secure static
memory. The following device peripherals were used for the implementation:

– Sound device: an ARM PrimeCell Advanced Audio CODEC Interface con-
nected to an LM4549 audio CODEC that is compatible with AC’97 Rev 2.1.
The device in the board provides an audio channel with 512-depth transmit
and receive FIFOs for audio playback and audio capture respectively.

– Display device: an ARM PrimeCell Color LCD controller (CLCDC) that
provides a display interface with outputs to a DVI digital/analog connector
for connecting to a CLCD monitor. The controller has dual 16-deep pro-
grammable 64-bit wide FIFOs for buffering incoming display data through a
DMA master interface. The controller is configured through a slave interface,
and has a color palette memory for low-resolution configurations.

Both devices can be configured to be part of the TrustZone Secure or Non-Secure
worlds through the TrustZone Protection Controller (TZPC[18]). In particular,
the master and slave interfaces of the CLCDC can be selectively configured as
Secure and Non-Secure.

Reliable Device Sharing Mechanisms 85

For the implementation of the paravirtualization approach, the GPOS was
extended with a new ALSA[19] sound driver that acts as the front-end driver;
and a simplified back-end sound driver—without capturing features—was added
to the RTOS. GPOS operations on the sound card are forwarded to the RTOS
back-end driver through the SafeG dual-OS communications system[13]. The
GPOS video driver was also splitted in two parts. The GPOS front-end driver
implements the Linux framebuffer interface by sending requests to a simplified
RTOS back-end driver which uses a low-resolution configuration. After that,
pixel operations are performed directly on a region of Non-Secure memory ac-
cessed by DMA. The RTOS back-end driver validates that DMA addresses sent
by the GPOS front-end driver belong to the UCB.

For the implementation of the two re-partitioning mechanisms, we used the
baseline feature-rich (e.g., with audio capturing or high resolution video) GPOS
sound and video drivers; and simplified drivers for the RTOS. The GPOS re-
partition manager executes with a high SCHED FIFO priority and handles
hotplug events by killing/restarting tasks associated to a device; and remov-
ing/installing the corresponding device driver modules. The hybrid mechanism
was implemented in software (i.e., through VL calls) because the TrustZone con-
troller currently does not support bit granularity for the configuration of a device
interface as Secure or Non-Secure. Therefore, the SafeG monitor was extended
with a lightweight system call—implemented with a few assembly instructions—
for the GPOS to access the Runtime interface. This system call involves a se-
cure monitor call (SMC) instruction; a branch that depends on the value of the
Untrust Access variable (placed in Secure memory); validating the bits being
accessed (including DMA addresses); and returning back to the GPOS.

5 Evaluation

This section presents the results of the evaluation of the device sharing imple-
mentations described above. The evaluation environment is the same as the one
used for the implementation in Sect. 4. All time measurements represent worst-
case values among a total of 10,000 measurements.

5.1 Overhead

In this section we evaluate the overhead that each mechanism causes on the
handling of shared devices. The RTOS has direct device access (i.e., no overhead)
in all mechanisms, and therefore we only evaluate the overhead on the GPOS.

First, we configured a system in which the RTOS is always idle and the GPOS
is used either to play a 16bits/48Khz OGG Vorbis music file; or to show an MP4
video with 1024x768 pixels and 16 bpp resolution streamed from a network
server. Both applications are executed with lower priority than the GPOS re-
partition manager. Table 2 shows the measured execution time overhead per
register access for each mechanism. In the pure re-partitioning mechanism, the
GPOS can access shared devices directly, and therefore no overhead appears.

86 D. Sangorŕın, S. Honda, and H. Takada

Table 2. Execution time overhead per register access

Paravirtual Pure Hybrid

min avg max min avg max min avg max

Sound 61μs 122μs 182μs 0 0 0 30μs 41μs 52μs
Video 47μs 117μs 187μs 0 0 0 30μs 42μs 53μs

 0

 20

 40

 60

 80

 100

Sound card Video card

%
 o

f n
at

iv
e

pe
rf

or
m

an
ce Paravirt.

Pure
Hybrid

Fig. 8. CPU performance for each mechanism

The overhead incurred by the paravirtualization mechanism is caused by the
communications between the back- and front-end drivers. Note that we measured
the overhead as per-register access because a single paravirtual operation may
involve the reading or writing of several registers at once. Finally, the hybrid
mechanism has lower overhead because register accesses do not cause a full
context switch to the RTOS as in the paravirtualization approach.

Then, we repeated the same experiment but this time we also executed the
Dhrystone[16] benchmark on the GPOS (with a lower priority) for quantifying
the performance decrease caused by each mechanism. Fig. 8 shows the per-
formance of each mechanism as a percentage of the native performance. As
expected, pure re-partitioning achieves 100% of native performance for both
devices. The overhead of the paravirtualization and the hybrid mechanisms is
considerably more pronounced for the sound card than for the video card. The
reason is that the sound card is completely handled through registers; while the
video card—once initialized through its slave interface registers—is managed
simply by modifying a block of RAM memory that the master interface accesses
through DMA. Currently, the overhead of the hybrid mechanism is higher than
what we had expected because we found a cache coherence problem between
the Secure and Non-Secure worlds. We have temporarily solved this problem by
flushing the data cache for each register access, which introduces significant over-
head. We also observed that the overhead of the paravirtualization approach in
the handling of the sound card can be reduced by increasing the size of the buffer
used to store music samples inside the ALSA front-end driver in the GPOS.

Reliable Device Sharing Mechanisms 87

Table 3. Device latency of each mechanism

Paravirtual Pure Hybrid

Sound 83μs 10.53ms 113μs
Video 3μs 20.22ms 10μs

Table 4. Number of source lines of code modified

Paravirtual Pure Hybrid

GPOS(user) 0 153 113
GPOS(kernel) 297 0 54
RTOS 38 43 32
VL 0 0 37

5.2 Device Latency

Device latency is the worst-case amount of time that the RTOS may have to wait
until a shared device can be used reliably. We modified the system described in
Sect. 5.1 (without the Dhrystone benchmark) so that every 10 seconds the GPOS
audio or video playback application is interrupted by the RTOS, in order to emit
a short beep sound (a raw PCM linked to the RTOS binary) or display a black
and white alert message on the screen.

Table 3 shows the worst-case measurements for the device latency of each
mechanism. The measurements for the paravirtualization and hybrid mecha-
nisms are an order of magnitude smaller than the ones observed for pure re-
partitioning. The reason for that is the fact that both the paravirtualization and
the hybrid approach can limit GPOS access to critical bits of the device inter-
face. For example, the GPOS is not allowed to set the AC’97 CODEC or the
LCD in low power mode. In contrast, the pure re-partitioning approach allows
the GPOS to access the device directly, and therefore shared devices must be
fully reset every time the RTOS needs to use them. This must be taken into
account during the real-time scheduling analysis of the system. The device la-
tency of the hybrid mechanism is slightly longer than the latency observed for
the paravirtualization approach. This can be explained by the fact that in the
paravirtualization approach the usable functionality of a device is limited by
the support included in the simplified RTOS driver. In contrast, in the hybrid
approach the GPOS uses its own feature-rich drivers (e.g., with support for au-
dio capturing and high video resolutions), and therefore there are a few more
registers that need to be reconfigured.

5.3 Code Modifications

Table 4 displays the number of source lines of code (C code, except the VL which
is written in assembly) modified for each implementation. The paravirtualization
mechanism required a new GPOS sound driver and modifications to the GPOS

88 D. Sangorŕın, S. Honda, and H. Takada

video driver in order to communicate with the RTOS drivers, which also re-
quired modifications. In the pure re-partitioning mechanism, most modifications
occurred at user level where the re-partition managers execute. Finally, the hy-
brid approach required modifications both in user and kernel level. In particular,
GPOS drivers were modified to perform calls to the VL, which was extended to
handle this new paravirtual call.

6 Related Work

While techniques for virtualizing processing time and memory resources have
usually a rather low overhead, it is challenging to efficiently virtualize I/O de-
vices. There exists a substantial amount of literature describing methods to
virtualize hardware devices. In particular, virtualization of high-bandwidth net-
work interface devices in the context of enterprise virtualization for data centers
has been the subject of extensive research.

– Full device emulation is used by fully virtualized systems[20]. In this ap-
proach, guest OS accesses to a virtual legacy device interface are trapped
by a hypervisor, which converts them into operations on a real device. The
main benefits of this approach are the fact that guest OSs do not require
modifications; and the ability to migrate them between heterogeneous hard-
ware. However, this approach incurs a significant performance degradation
due to frequent context switches between the guest OS and the hypervisor.

– Paravirtualization is the de-facto approach to device sharing in most popu-
lar enterprise hypervisors[6, 7]. In this approach, guest OSs contain device
drivers that are hypervisor-aware. A paravirtualized device driver operates
by communicating with the real device driver which runs outside the guest.
The real device driver that actually acccesses the hardware can reside in the
hypervisor or in a separate device driver domain with privileged access. The
level of abstraction is raised from low-level bus operations to device-level op-
erations. For that reason, paravirtualized devices achieve better performance
than emulated ones. Nonetheless, paravirtualization introduces a rather high
CPU overhead compared to a non-virtualized environment which also leads
to throughput degradation in high bandwidth networks[21]. Several tech-
niques to improve the performance of paravirtualized drivers have been pre-
sented. In [22] the authors report a 56% reduction of execution overhead on
the receive path for conventional network interfaces through improvements
on the driver domain model. [23] introduces improvements to the memory
sharing mechanism used by paravirtualized drivers to communicate with the
real device driver, reporting a reduction of up to 31% in the per-packet over-
head. [24] proposes a software architecture which runs middleware modules
at the hypervisor level. Their approach reduces I/O virtualization overhead
by increasing the level of abstraction which allows to cut down the num-
ber of guest-hypervisor context switches. Despite the numerous performance
improvements, paravirtual solutions are still far from native performance.

Reliable Device Sharing Mechanisms 89

– Direct device assignment—also known as pass-through access—provides guest
OSs with direct access to the real device, maximizing performance. With di-
rect device assignment, an untrusted guest OS could potentially program
a DMA device to overwritte the memory of another guest or the hyper-
visor itself. [25] presents a study on available protection strategies. The
most extended strategy involves the use of I/O memory management units
(IOMMUs)[26]. Software-based approaches have also been presented[27, 28].
Recently, in [29] the authors report up to 97%-100% of bare-metal perfor-
mance for I/O virtualization in a system that combines the usage of IOMMU
and a software-only approach for handling interrupts within guest virtual
machines. Despite its benefits, direct device assignment does not allow guest
OSs to share the same device and makes live migration difficult[30, 31].

– Self-virtualizing devices have been introduced[15, 28, 32, 33] to avoid the high
performance overhead of software-based device virtualization. This approach
allows guest OSs to access devices directly, through separate interfaces that
can be assigned independently to each guest OS. The main drawbacks of this
approach are its increased hardware cost and limited availability.

Micro-kernels use a technique close to paravirtualization. Device drivers are
implemented as user-space processes and applications communicate with them
through inter-process communication[5]. Finally, direct device assignment is not
easy to implement in embedded systems because they are not usually equipped
with an IOMMU to provide the necessary isolation. Fortunately, recent ARM
high-end embedded processors include TrustZone hardware security extensions[8]
which provide similar functionality for up to two domains.

7 Conclusions and Future Work

In this paper, we investigated several device sharing mechanisms for dual-OS
systems, where the most fundamental requirement is protecting the reliability of
the RTOS. We observed that previous approaches are not well suited to device
sharing patterns where the GPOS share greatly exceeds that of the RTOS. For
that reason, we proposed two new approaches (pure and hybrid) that are based
on dynamically re-partitioning devices between the RTOS and the GPOS at run
time. The reliability of the RTOS is ensured by the fact that before a device
is re-partitioned to the RTOS, the device (or its run-time interface) is reset
and configured as a TCB resource, which prevents further accesses by malicious
GPOS applications. Additionally, when a device is re-partitioned back to the
GPOS, its buffers are flushed to avoid leaking sensitive data. We evaluated both
approaches and compared them with the paravirtualization approach, popular
in cloud virtualization. We observed a trade-off between the lower overhead and
higher functionality of the re-partitioning approaches; and the shorter device
latency of the paravirtualization approach. We suggest that TrustZone hardware
could be extended to allow configuring device interfaces with finer granularity
for the hybrid approach to be implemented with near-native performance.

90 D. Sangorŕın, S. Honda, and H. Takada

In Sec. 3.1, we assumed a dual-OS system that runs on a single-core processor.
On a multi-core implementation, both re-partitioning algorithms need to address
a race condition that may occur if the GPOS accesses a device just after being
reset by the RTOS, and before being configured as a TCB resource (e.g., lines
8 and 9 of the RTOS re-partition manager in Fig. 5). To solve this problem, a
mechanism for the RTOS to block UCB accesses to the shared device, while still
configured as an UCB resource, is needed. The implementation could be done
in software by extending the VL with support for TCB critical sections; or in
hardware by adding a new flag for blocking UCB accesses to the shared device.

Acknowledgments. Part of thiswork is supportedby theKAKENHI (23700035)
and the Monbukagakusho scholarship.

References

1. Wilson, P., Frey, A., Mihm, T., Kershaw, D., Alves, T.: Implementing Embedded
Security on Dual-Virtual-CPU Systems. IEEE Design & Test of Computers 24(6),
582–591 (2007)

2. Heiser, G.: The Role of Virtualization in Embedded Systems. In: Proceedings of
the 1st Workshop on Isolation and Integration in Embedded Systems, Glasgow,
UK, pp. 11–16 (2008)

3. Sangorrin, D., Honda, S., Takada, H.: Dual Operating System Architecture for
Real-Time Embedded Systems. In: Proceedings of the 6th International Work-
shop on Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT), Brussels, Belgium, pp. 6–15 (2010)

4. Beltrame, G., Fossati, L., Zulianello, M., Braga, P., Henriques, L.: xLuna: a Real-
Time, Dependable Kernel for Embedded Systems. In: Proceedings of the 19th IP
Based Electronics System Conference and Exhibition (IP-SoC), Grenoble, France
(2010)

5. Armand, F., Gien, M.: A practical look at micro-kernels and virtual machine mon-
itors. In: Proceedings of the 6th IEEE Conference on Consumer Communications
and Networking Conference, Piscataway, USA, pp. 395–401 (2009)

6. Chisnall, D.: The Definitive Guide to the Xen Hypervisor, 1st edn. Prentice Hall
Press (2007)

7. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the Linux Virtual
Machine Monitor. In: Proceedings of the Ottawa Linux Symposium (OLS 2007),
Ottawa, Canada, pp. 225–230 (2007)

8. ARM Ltd.: ARM Security Technology. Building a Secure System using TrustZone
Technology, PRD29-GENC-009492C (2009)

9. TOPPERS project: Official website, http://www.toppers.jp/
10. ARM Ltd.: ARM1176JZF-S TRM, DDI 0301G (2008)
11. ARM Ltd.: AMBA3 TrustZone Interrupt Controller TRM, DTO 0013B (2008)
12. Hergenhan, A., Heiser, G.: Operating Systems Technology for Converged ECUs.

In: Proceedings of the 6th Embedded Security in Cars Conference (ESCAR),
Hamburg, Germany (2008)

13. Sangorrin, D., Honda, S., Takada, H.: Reliable and Efficient Dual-OS Communica-
tions for Real-Time Embedded Virtualization, Internal Report, Nagoya University,
Japan (2012)

http://www.toppers.jp/

Reliable Device Sharing Mechanisms 91

14. Popek, G., Goldberg, R.: Formal requirements for virtualizable third generation
architectures. Communications of the ACM 17(7), 412–421 (1974)

15. PCI-SIG: I/O Virtualization, http://www.pcisig.com/specifications/iov/
16. Buildroot: Official website, http://buildroot.uclibc.org/
17. ARM Ltd.: RealView Platform Baseboard for ARM1176JZF-S User Guide (2011)
18. ARM Ltd.: AMBA3 TrustZone Protection Controller TRM, DTO 0015A (2004)
19. ALSA project: Official website, http://www.alsa-project.org/
20. Sugerman, J., Venkitachalam, G., Lim, B.: Virtualizing I/O Devices on VMware

Workstation’s Hosted Virtual Machine Monitor. In: Proceedings of the USENIX
2001 Annual Technical Conference, Boston, USA, pp. 1–14 (2001)

21. Menon, A., Santos, J., Turner, Y., Janakiraman, G., Zwaenepoel, W.: Diagnosing
performance overheads in the XEN virtual machine environment. In: Proceedings
of the 1st ACM/USENIX International Conference on Virtual Execution Environ-
ments (VEE 2005), Chicago, USA, pp. 13–23 (2005)

22. Santos, J., Turner, Y., Janakiraman, G., Pratt, I.: Bridging the gap between
software and hardware techniques for I/O virtualization. In: Proceedings of the
USENIX 2008 Annual Technical Conference, Boston, USA, pp. 29–42 (2008)

23. Ram, K., Santos, J., Turner, Y.: Redesigning Xens Memory Sharing Mechanism
for Safe and Efficient I/O Virtualization. In: Proceedings of the 2nd conference on
I/O virtualization (WIOV 2010), Pittsburgh, USA (2010)

24. Gordon, A., Ben-Yehuda, M., Filimonov, D., Dahan, M.: VAMOS, Virtualization
Aware Middleware. In: Proceedings of the 3rd Conference on I/O Virtualization
(WIOV 2011), Portland, USA (2011)

25. Willmann, P., Rixner, S., Cox, A.: Protection strategies for direct access to virtu-
alized I/O devices. In: Proceedings of the USENIX 2008 Annual Technical Confer-
ence, Boston, USA, pp. 15–28 (2008)

26. Ben-Yehuda, M., Xenidis, J., Ostrowski, M., Rister, K., Bruemmer, A., Doorn,
L.: The Price of Safety: Evaluating IOMMU Performance. In: Proceedings of the
Ottawa Linux Symposium (OLS 2007), Ottawa, Canada, pp. 9–20 (2007)

27. Xia, L., Lange, J., Dinda, P., Bae, C.: Investigating Virtual Passthrough I/O on
Commodity Devices. Operating Systems Review 43(3), 83–94 (2009)

28. Willmann, P., Shafer, J., Carr, D., Menon, A., Rixner, S., Cox, A., Zwaenepoel,
W.: Concurrent Direct Network Access for Virtual Machine Monitors. In: Proceed-
ings of the 13th IEEE International Symposium on High-Performance Computer
Architecture (HPCA-13), Phoenix, USA, pp. 306–317 (2007)

29. Gordon, A., Amit, N., HarEl, N., Ben-Yehuda, M., Landau, A., Schuster, A.,
Tsafrir, D.: ELI: Bare-Metal Performance for I/O Virtualization. In: Proceedings
of the 17th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS 2012), London, UK (2012)

30. Zhai, E., Cummings, G., Dong, Y.: Live Migration with Pass-through Device for
Linux VM. In: Proceedings of the Ottawa Linux Symposium (OLS 2008), Ottawa,
Canada, pp. 261–268 (2008)

31. Kadav, A., Swift, M.: Live migration of direct-access devices. Operating Systems
Review 43(3), 95–104 (2009)

32. Raj, H., Schwan, K.: High performance and scalable I/O virtualization via self-
virtualized devices. In: Proceedings of the 16th International Symposium on High
Performance Distributed Computing, California, USA, pp. 179–188 (2007)

33. Rauchfuss, H., Wild, T., Herkersdorf, A.: A network interface card architecture for
I/O virtualization in embedded systems. In: Proceedings of the 2nd Conference on
I/O Virtualization (WIOV 2010), Pittsburgh, USA (2010)

http://www.pcisig.com/specifications/iov/
http://buildroot.uclibc.org/
http://www.alsa-project.org/

Modelling User-Centered-Trust (UCT)

in Software Systems:
Interplay of Trust, Affect and Acceptance Model

Zahid Hasan, Alina Krischkowsky, and Manfred Tscheligi

Christian Doppler Laboratory for Contextual Interfaces
HCI & Usability Unit, ICT&S Center, University of Salzburg

Sigmund-Haffner-Gasse 18, 5020 Salzburg, Austria
firstname.lastname@sbg.ac.at

Abstract. Even though trust is a frequently articulated topic in soft-
ware technology literatures, yet the user centered point of view of trust is
hardly discussed. How users perceive the trustworthiness of software sys-
tems is not trivial, in fact, if a user cannot trust a program to execute on
his behalf, then he should not run it [36]. This paper identifies a potential
lack in examination of trust in software systems from user’s perspective
and aims to develop a conceptual User-Centered-Trust (UCT) framework
to model it. This model integrates both Technology Acceptance Model
(TAM) and trust under Theory of Reasoned Action (TRA) nomological
network. In order to integrate them, trust has been conceptualized as an
attitude towards the usage of the systems having two distinct dimensions:
cognitive and affective.

Keywords: Trust, Acceptance model, Technology.

1 Introduction

The advent of World Wide Web (WWW) and the emergence of e-commerce dur-
ing the 90s [23] introduced new types of buying-selling behaviors over the Inter-
net which differ from traditional ‘face-to-face’ interaction. In this new paradigm
trust is considered as an essential component [2]. A considerable number of trust
models and frameworks have been proposed during past decades. However, the
trust targets in most of these studies are humans (e-vendor or organizations),
and the nature as well as the role of trust in technological artifacts remains un-
clear [71]. What has been generally absent from these investigations is a focus on
the effects of trust placed in the information technology (IT) artifacts-hardware
and software systems [69].

Trust in IT is an important concept because people today rely on IT more
than ever before [48], although, the nature of trust in technological artifacts
is still an under-investigated and not well understood topic [71]. Researchers
debate whether or not technological artifacts can be an object of trust [71], and
if it is valid to ascribe human characteristics to technological artifacts [71]; [10];
[48]; [49]; [13].

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 92–109, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Modelling User-Centered-Trust (UCT) in Software Systems 93

In parallel to trust aspect, another stream of research surfaced during the
80’s which is Technology Acceptance Model (TAM) - TAM assumes that how
individuals accept a new technology is based on an internal cost-benefit analy-
sis. Users assess a technology’s usefulness and evaluate whether that usefulness
exceeds the costs associated with gaining access to it or learning to use it [54].

Each of these two models explains different aspects of usages. While TAM
focuses on technological interface, trust focuses on user’s perceptions of the e-
vendor [5]. A number of attempts have been undertaken to combine these two
essential theories to predict user behavior in e-commerce environment. However,
since there is no commonly-agreed definition of trust model, these attempts
generally yield diverse interpretations (for details see [5]).

Both TAM and trust model can be explained through the Theory of Reasoned
Action (TRA), which essentially posits that behaviour is driven by intentions
where intentions are a function of an individual’s attitude and these attitudes
are derived from beliefs. However, most often in TAM and trust literatures these
attitudes are dropped out. This exclusion of attitude poses two problems, first
it has created inconsistencies between trusting beliefs and technology beliefs[5].
Second, It reduced the scope of exploring the role of affect (as a dimension of
attitude) in technology acceptance.

Considering the points mentioned above, this paper provides a conceptual
framework for understanding trust related phenomena in software systems from
users’ perspective. This hypothetical model incorporates both TAM and trust
under TRA nomological network.

2 Concept of Trust

Sociologist Diego Gambetta says:

“Trust is one of the most important social concepts that helps human
agents to cope with their social environment and is present in all human
interaction”[24].

In fact, trust helps us to make rational decisions in the real world based on the
mixture of bounded rational calculation and trust [33]. The meaning of trust is so
diverse that articulating a precise definition of trust is not a simple matter. Some
define trust as people’s behavior in a situation of vulnerability or simply their
attitude or the degree of confidence [32]. Even at worst, when researchers tried
to come up with a common definition of trust by surveying a massive number
of empirical studies, ultimately, it produced a ’conceptual confusion’ regarding
the meaning of trust [40]. The meaning of trust in the OXFORD dictionary is
defined as ’confidence in or reliance on some quality or attribute of a person
or thing, or the truth of a statement’. However this simplistic view of trust is
not often sufficient to describe the complex interaction of trust-relationship. Re-
searchers do not have a common consensus on what exactly trust is, disagreeing
even on basic definitions [72]. Moreover, trust has been studied by different dis-
ciplines - sociology, psychology, management, marketing, ergonomics, industrial

94 Z. Hasan, A. Krischkowsky, and M. Tscheligi

psychology, electronic commerce (e-commerce) where it has been defined accord-
ing to specific disciplinary jargon and conceptualized by own understanding and
findings. For example, Psychologists consider trust as an important element for
personality development. Philosophers define trust in terms of social values and
benefits. In management and business trust is related to organizational bene-
fit and believed to increase business productivity. Researchers from Marketing
field often define trust within buyer-seller relationship, branding and services.
Trust plays a central role in helping consumers overcome perceptions of risk and
insecurity.

2.1 Trust as Belief, Attitude, Intention and Psychological State

Trust has been conceptualized as belief, attitude, intention across different fields.
The following section provides a short description of each concepts.
Belief: According to Pavlou (2003) [56], trust in e-commerce is defined as the
belief that allows consumers to willingly become vulnerable to Web retailers af-
ter having taken the retailers’ characteristics into consideration.

Attitude: Jones (1996)[37] defines trust as an attitude of optimism about the
goodwill and competence of another. The attitude of optimism is based on both
beliefs about the other’s trustworthiness and emotions.

Intention: Mayer, Davis, and Schoorman (1995) [47] define trust as the inten-
tion (willingness) of a party to be vulnerable to the actions of another party
based on the expectation that the other will perform a particular action impor-
tant to the trustor, irrespective of the ability to monitor or control that other
party. Hoy and Tschannen-Moran (1999) [32] states: Trust is an individuals or
groups willingness to be vulnerable to another party based on the confidence that
the later party is benevolent, reliable, competent honest and open. Doney, Can-
non, and Mullen (1998) [19] define trust as a willingness to rely on another party
and to take action in circumstances where such action makes one vulnerable to
the other party.

Psychological State: According to Rousseau, Sitkin, et al. (1998) [58], trust
is a psychological state comprising the intention to accept vulnerability based
upon positive expectations of the intentions or behavior of another. Trust can
be defined as a state involving confident positive expectations about anothers
motives with respect to oneself in situations entailing risk ([8], appeared in [73])

Although there is no common agreement about the definition of trust, most
researchers acknowledge the importance of trust in human life. For instance, one
can decrease complexity by adopting trust since it helps reducing the number of
options one has to consider in a given situation, which enables people to live in
risky and uncertain situations [13].

2.2 Confusion about Trust and Trustworthiness

Russell Hardin (1996) [29] argued that when philosophers attempt to consider
trust, often they inadvertently consider trustworthiness, mistaking it for trust.

Modelling User-Centered-Trust (UCT) in Software Systems 95

Mayer, Davis, and Schoorman (1995) [47] separated the notion of ’trust’ (the
general beliefs) from ’trustworthiness’ (the set of specific beliefs). Colquitt, Scott,
et al. (2007) [12] distinguished trustworthiness (the ability, benevolence, and
integrity of a trustee) and trust propensity (a dispositional willingness to rely
on others) from trust (the intention to accept vulnerability to a trustee based on
positive expectations of his or her actions). Slemrod and Katuscak (2002) [60]
assert the flip side of trust is trustworthiness.

2.3 Anomalies in Trust Measures

Not surprisingly being a vague notion, trust does not provide any coherent way
of measurement. Different authors adopted different models of trust and also
tend to measure it from different conceptualizations.

Geyskens, et al. (1998)[28] noted that although there exists conceptual agree-
ment on trust in marketing channel field, however, studies differ in their oper-
ational measurement of trust. They criticized that most studies include one or
both aspects of trust in a single or global and uni-dimensional measure of trust.

Gefen (2002) [26] found that previous researches on trust had mostly used a
single dimensional scale that combines many aspects of trustworthiness into one
factor [34], or measured consumers’ assessment of their overall trust in the online
vendor[25]. The data from his experiment showed that trustworthiness and trust
should not be regarded as a single construct. According to him [26], overall trust
is a distinct construct that is the product of three trustworthiness-beliefs

McKnight, et al. (1998) [51] raised the question: ’If one researcher defines
trust in a widely different way from another researcher, how can the theoretical
formulations and the empirical results of researchers build on each other?’

3 TAM: Technology Acceptance Model

TAM is one of the most influential extensions of Ajzen and Fishbeins theory of
reasoned action (TRA) which was originated in 1975 [20]. TRA theorizes that the
relationship between beliefs and intentions is indirect and mediated by attitudes.
TRA posits that beliefs lead to attitudes, which lead to behavioral intentions,
which results in behavior itself. Ten years later, in 1985, Davis (1985)[15] adopted
this model into his Technology Acceptance Model (TAM). The goal of TAM is
to provide an explanation of the determinants of computer acceptance that is
general, capable of explaining user behavior across a broad range of end-user
computing technologies and user populations [17]. This model uses a response
that can be explained or predicted by user motivation, which is directly influ-
enced by an external stimulus comprising of the actual system’s features and
capabilities [9]. Relevant beliefs are perceived usefulness (U) and perceived ease
of use (EOU). Perceived usefulness has a causal effect on perceived usefulness.

Perceived usefulness is defined as: The degree to which an individual believes
that using a particular system would enhance his or her job performance.

Perceived ease of use is defined as: The degree to which an individual believes
that using a particular system would be free of physical and mental effort.

96 Z. Hasan, A. Krischkowsky, and M. Tscheligi

However, Venkatesh and Davis (1996) [70] found that both perceived useful-
ness and perceived ease of use have a direct effect on behavioral intentions, thus
eliminating the need for attitude construct from the TAM model.

External�
Variables�

Perceived�
Usefulness�

(U)�

Perceived�
Ease�of�Use�

(E)�

Attitude
Toward�
Using�(A)�

Behavioral
Intention�to�
Use�(BI)�

Actual�
System�
Use�

Fig. 1. Technology Acceptance Model (TAM) by [17]

3.1 Trust and TAM

These two theories Trust and TAM, are complement each other. Each model
explains a different aspect of the consumer’s relationship with an online retailer
[5]. TAM explains the effects of consumers’ technology beliefs on use, on the
other hand, trust focuses less on the technology interface and more on the users
perceptions of the e-vendor. Benamati, et al. (2010)[5] argued that in order to
explain consumers’ intentions and behaviors in a more complete way, we need
to combine these two theories (see figure 2).

Fig. 2. Trust with TAM proposed by Benamati, et al. (2010) [5]

Modelling User-Centered-Trust (UCT) in Software Systems 97

Since e-commerce is heavily technology-driven and at the same time it entails
high perceived risk, it is justifiable to combine both trust, risk and TAM into a
single model [56]. Suh and Han (2002)[63] found trust has a more direct effect
on a customer’s attitude than on perceived ease of use in the Internet banking
context.

Benamati, et al. (2010) [5] noted that past studies which tried to integrate
TAM with trust posit very different relationships between model constructs. For
example, Pavlou (2003)[56] found that trust affects technology beliefs, Suh and
Han (2002)[63] observed that technology beliefs affect trust, whereas Gefen, et
al. (2003)[27] found trust and technology beliefs affect each other.

4 Trust in Technology vs. Trust in People

Even if some scholars argue that trust in technology is inappropriate, because
technology lacks the requisite properties of a social actor, for example, accord-
ing to Friedman, et al. (2000)[22], trust requires both parties to be able to ex-
tend good will, be vulnerable and experience betrayal. However, It appears that
there is sufficient evidence to indicate that people are capable of instilling trust
in an artifact of technology, such as an information document or a computer
system [10].

Recent trust research in the information systems (IS) field has described trust
as not only a primary predictor of technology usage but also as a fundamen-
tal construct for understanding user perceptions of technology [41]. However,
trust in IS is defined in terms of trust in people (how trust in people affects IT-
acceptance) without regard for trust in the technology itself [49]. Most IS trust
research has focused on a web vendor or virtual team members and thus the
trustee has been human, or an organization of humans [41]. Trust-in-technology
is defined as the extent to which one is willing to depend on a technology be-
cause one believes the technology itself exhibits desirable attributes [48]. There
are two approaches adopted to measure trust in technology: 1) measuring trust
using interpersonal-trust variables including ability, benevolence, and in-
tegrity [41], [71]. and 2) measuring trust using system-like trust variables
including functionality, helpfulness, and reliability [48], [65], [42]. According to
Tripp, McKnight, et al. (2011)[68], even if both of these two measures work well,
it is unclear when researchers should use interpersonal versus system-like trust
in technology. They found that in human like technology (e.g. facebook) inter-
personal trust is more appropriate measure and for less human-like system (e.g.
Microsoft Access) system-like trust measure is more suitable.

McKnight (2005)[48] distinguished between trust in people and trust in
technology. They proposed a set of system-like trust variables (functionality, help-
fulness, and reliability) which is counterpart of interpersonal-trust variables (abil-
ity, benevolence, and integrity). According to him [48], since technology lacksmoral
agency, it is difficult to ascribe to IT without reverting to unwarranted anthropo-
morphisms, for example, one cannot say an IT cares (related to trusting belief-
benevolence) or tells the truth (related to trusting belief-integrity). Based on this

98 Z. Hasan, A. Krischkowsky, and M. Tscheligi

assumption McKnight, et al. (2011)[49] differentiated trusting beliefs in people
and technology in the following way:

Competence vs. Functionality: With trust in people, one assesses the effi-
cacy of the trustee to fulfill a promise in terms of their ability or power to do
something for us. With technology, users consider whether the technology de-
livers on the functionality promised by providing features needed to complete a
task.

Benevolence vs. Helpfulness: With people, one hopes they care enough to
offer help when needed. With technology, users sense no caring emotions because
technology itself has no moral agency. However, users do hope that a technol-
ogy”s help function will provide advice necessary to complete a task.

Integrity vs. Reliability: In both cases, we hope trustees are consistent, pre-
dictable or reliable. With people, predictability refers to the degree to which an
individual can be relied upon to act in a predictable manner. Although technol-
ogy has no volition, it still may not function consistently due to built-in flaws or
situational events that cause failures.

Li, et al. (2009)[42] hold similar arguments. Since attributes requiring moral
capability and volitional control may not be easily ascribed to all IT artifacts,
they [42] argued that beliefs about benevolence and integrity are not essential
dimensions of technology trust. They [42] proposed that that technology trust
is a function of beliefs regarding two generalizable attributes of all technologies
belief in capability and belief in reliability.

5 Trust in Software Systems

5.1 Trust in ISO Definition

The growing number of research regarding trust related issues indicates that
trust is an important factor in human computer interaction. Realizing this fact
the notion of Trust has been included in the new ISO standard ISO/IEC 25010
[6]. Trust has been included in ’Satisfaction in use’ and defined as the extent to
which the user is satisfied that the product will behave as intended. According to
Bevan (2010)[7], ’Trust is the stakeholders satisfaction with the perceived prag-
matic do-goal of using a system that is secure. This is satisfaction with security.’

5.2 Trust in Software Development Process

In Trusted Software Methodology (TSM) (which was held by America govern-
ment and business organizations), trusted software is defined as: ’the degree
of confidence that exists that the software will be acceptable for one’s needs’.
According to Amoroso, et al. (1991)[3], the above definition suffers from the
problem of subjectivity, that is the degree to which software is trusted will be
dependent on users past experience, education, background and so on. Amoroso,
et al (1991)[3] argued that one way to remove this subjectivity is to define a set
of specific detailed guidelines.

Modelling User-Centered-Trust (UCT) in Software Systems 99

5.3 Trustworthy Software

According to Hasselbring and Reussner (2006)[30], software trustworthiness con-
sists of five attributes, such as, correctness, safety, quality of service, security and
privacy. Zhao, et al. (2010)[75] identified five disjoint attributes: availability, re-
liability, maintainability, safety and security. Trustworthiness is a new concept
based on such attributes of software as such the accuracy, reliability, safety, time-
liness, integrity, availability, predictability, survival, controllability, and many
other concepts [64].

Becker, et al. (2006)[4] considered trustworthy systems should have the fol-
lowing attributes: Correctness, Safety, Quality of Services (Availability, Reliabil-
ity, Performance), Security and Privacy. Sommerville, et al. (2006)[61] consider
trustworthiness of a system corresponds to the technical notion of dependabil-
ity, that is, trustworthiness reflects the systems availability, reliability, safety,
confidentiality, integrity and maintainability.

6 User-Centered-Trust (UCT) in Software Systems

As we have seen, in software engineering trust has been discussed mainly in
software security and software development process. It is assumed that if a soft-
ware is secured and reliable then it would be more trustworthy [38] even though
security is one of the features of trustworthiness. In software development pro-
cess, there are several development guidelines or heuristics (auditing, testing
etc.) which are thought to make the software trusted to the developers [3]. Some
others [30] proposed software quality attributes (reliability, performance, pri-
vacy etc.) necessary for trustworthy software systems. The new ISO standard
ISO/IEC 25010 also defines trust as satisfaction with security [6] .

If a user cannot trust a program to execute on his behalf, then he should
not run it [36]. However, it is clear that trust has been studied in software
systems without taking into account the end-users perspective. We only deal with
software attributes. It seems that software built according to the specifications
of trustworthiness (e.g., [3]) will be more trustworthy from the point of view of
software designers, vendors and the software industry, but it will not have any
effects on users. Jiang, Li and Xu (2010) [35] mentioned that researchers focused
on developing new technologies to build the trust, however, users’ perspective
of trust has been hardly discussed. According to them [35] ’The researchers are
busy in dealing with sending message in a secure way, but rarely concern about
how to send message to users friendly’. So, it can be argued that there is a strong
need to have a proper trust model in software systems that incorporates both
technical and end-user perspective.

6.1 Conceptualization of Trust in Software Systems

Following Mayer, et al. (1995) [47], we would like to explain trust phenomenon
under TRA’s (Theory of Reasoned Action) nomological network. TRA-based

100 Z. Hasan, A. Krischkowsky, and M. Tscheligi

model of trust implies that trusting beliefs (competence/functionality, benev-
olence/helpfulness, integrity/reliability) affect trusting attitude (overall judge-
ment), which, in turn, influences behavioral intentions. However unlike [47], we
incorporated attitude in our model followed by Benamati, et al. (2010) [5].

Trust in software system can be categorized in the following ways :

1. Dimensions of Trust: Two dimensions of trust exist in software systems.
Trusting attitude is composed of two elements, one is cognitive and another
one is affective or emotional [37] dimension.

(a) Affective trust is rooted in a person’s emotional attitude toward soft-
ware and/or vendors. Bonding occurs through emotionally charged ex-
periences with technology; for example, if a systems failure leads to a
catastrophic loss, it is likely to have a strong emotional impact on the
user[10]. On the other, a beautiful, attractive interface may provide pos-
itive impression.

(b) Cognitive trust is provided by signals of system state (e.g., a program
is running rather than freezing or crashing, a network is operating at
normal speed) [10].

2. Levels of Trust: Three levels of trust can be identified in software technology.

(a) Dispositional trust is the general tendency to be willing to depend on
software technology across a broad spectrum of situations and technolo-
gies [49]. Dispositional trust to software system corresponds to technol-
ogy bias, the attitude a person holds toward computing technology in
general.

(b) Interpersonal trust is invoked with respect to the developer or vendor
of the system. According to Jin, et al. (2009)[36], how to obtain trust
in a program is two fold: 1. User must trust the author of the program,
and 2. he must trust that the program he is executing is the same as the
program written by the author.

(c) Societal or Institutional trust applies to underlying technology (might
be network architecture, hardware, software licenses and so on).

3. Dimensions of Trustworthiness of Vendors (trusting beliefs in ven-
dors): In accordancewithTRA,we follow themodel ofMayer, et al. (1995)[47]
where a clear distinction between trust and trustworthiness was drawn. Ac-
cording to Serva, et al. (2005)[76], trustworthiness is not the same as trust,
but rather it forms the basis for trust and downstream trust-related actions.
The three dimensions have been taken from [50].

(a) Benevolence is the belief that the developer/vendor is interested in the
well being of the user without intention of opportunistic behavior and
motivated by a search for a mutually beneficial relationship.

(b) Competence is the degreewithwhich user perceives that developer/vendor
is in possession of the necessary knowledge and skills to complete an agree-
ment or exchange.

(c) Integrity refers that user believes the developer makes good- faith agree-
ments, tells the truth, acts ethically, and fulfils promises.

Modelling User-Centered-Trust (UCT) in Software Systems 101

4. Dimensions of Trustworthiness of Technology (Trusting beliefs in
technology): These dimensions are taken from [49].

(a) Functionality represent users’ expectations about the trustee’s capabil-
ity.

(b) Helpfulness represent users’ beliefs that the technology provides ade-
quate, effective, and responsive help.

(c) Reliability assume trustees are consistent, predictable or reliable in per-
formance.

5. Preconditions: The followings are met in order to establish trust relation-
ship.

(a) Uncertainty or risk : Risk is present because there is the potential for
systems failure, in which case the user may lose valuable information
[10].

(b) Goal/Dependability: arises when user needs to perform operations on the
systems.

The following diagram illustrates the conceptions of trust:

Cog
nit

ive
 Trus

t

Affe
cti

ve
 T

rus
t

Dispositional trust

Interpersonal Trust

Societal Trust

F
u
n
c
t
i
o
n
a
l
i
t
y

H
e
l
p
f
u
l
n
e
s
s

R
e
l
i
a
b
i
l
i
t
y

Dim
en

sio
ns

 of
 tru

st

Dim
en

sio
ns

 of
 tru

stw
ort

hin
es

s

 Levels of trust

Fig. 3. Conceptualization of Trust in software systems

7 Proposition 1: Attitude, Acceptance and Affect

Technology attitude is frequently omitted from TAM studies, even though TRA
deems it a necessary mediator and empirical justification for the exclusion is
lacking [5]. Yang and Yoo (2004)[74] noted that attitude was given little value in
predicting IS use, because Davis (1989)[17] had observed no influence of attitude
on IS use when PU was considered to predict IS use. However, Yang and Yoo
(2004) [74] argued that since attitude has both affective and cognitive compo-
nents and since Davis (1989) [17] did not take affect into account, so he (Davis)
failed to observe it. According to Yang and Yoo (2004) [74]: ’Therefore, one can
argue that one of the reasons that Davis et al. did not find a significant influ-
ence of attitude in their study was because the potentially significant influence of
cognition was offset by the insignificant influence of affect.’

102 Z. Hasan, A. Krischkowsky, and M. Tscheligi

 Beliefs

PU

Technology Beliefs
(TAM)

Trusting beliefs
(Vendor)

Attitudes Intention Behavior

Trusting beliefs
(Technology)

Fig. 4. User Centered Trust (UCT) model in software system

In the context of e-commerce, Benamati, et al. (2010)[5] argued that beliefs
can only affect intentions when the user forms an attitude toward using the online
vendor. Hence, the formation of the behavioral intention becomes contingent on
the formation of an attitude toward the action.

The concept of attitude has a long history as a research topic, and defini-
tions and measures have varied [5]. According to Ajzen and Fishbein (1972) [1],
attitude refers solely to a person’s location on a bipolar evaluative or affective
dimension with respect to some object, action, or event. The meaning of attitude
is based on both evaluative (cognitive) and affective (emotional) response [5].

Affective dimension of attitude is based on emotion which describes the feel-
ings toward an object and focuses on how much the person likes the object of
thought. Thus affective attitude measures the degree of emotional attraction
toward the object. On the other hand, the cognitive dimension of attitude is
based on an objective appraisal of the properties of an object and consists of the
evaluation, judgment, reception, or perception of the object of thought based on
values (adapted from [74])

Proposition 1a: Technology attitude mediates the relationship between
perceived usefulness (PU) and intention to use.

Proposition 1b: Technology attitude mediates the relationship between
perceived ease of use (PEU) and intention to use.

Modelling User-Centered-Trust (UCT) in Software Systems 103

8 Proposition 2: Attitude, Trust and Affect

We discussed earlier that trust was conceptualized as beliefs, as attitude, as in-
tentions or hybrid-combination of both belief and intentions [51]. Since TRA
has been successfully applied in consumer behavior, technology acceptance and
system use, and a variety of instances of human behavior [56], we would like to
explain trust within TRA nomological network and for this it would be rational
to conceptualize trust as attitude, instead of beliefs or intentions. Even though
McKnight, et al. (1998)[51] explained trust in TRA model, however he excluded
attitude from trust. McKnight, et al. (2002)[50] argued thatsince[16] found
that attitudes fell out of the model empirically, making their model more par-
simonious..... Applying this more parsimonious version of TRA, we posit that
trusting beliefs lead to trusting intentions, which in turn result in trust-related
behaviors.

However, as we stated earlier that this is because of not considering affect
as a distinct dimension of attitude. So following Benamati, et al. (2010) [5]
who operationalized trust as intention and conceptualized trust as an attitude,
we define trust as the attitude based on cognitive and affective judgements of
trustworthiness that lead the trustor to be vulnerable to the actions of trustee in
risky situation.

According to this definition trust as attitude should mediate beliefs and in-
tentions. Based on this fact we formulate the following:

Proposition 2a: Trusting attitude mediates the relationship between trusting
beliefs and intention to use.

Proposition 2b: Trusting belief (trustworthiness) has positive impact on
affective attitude.

9 Proposition 3: Cognitive and Affective Attitude

Trust in everyday life is a mix of feeling and rational thinking. Excluding one
one of these two dimensions of trust would lead to misconceptions that conflate
trust with faith or prediction[40], for example if all cognitive content was removed
from emotional trust, we would be left with blind faith, on the other hand, if all
emotional content was removed from cognitive trust, we would be left with only
rational prediction or rationally calculated risk. Sonnenwald (2003)[62] argued
that cognitive trust and distrust may exist in conjunction with affective trust and
distrust. Claro, et al. (2008)[11] developed a trust model for distribution channel
comprising six mechanisms (Calculative, Affective, Belief, Embeddedness, Con-
tinuity and Capability) to build up trust on performance. While the literature of
transaction cost economics solely acknowledges the calculative mechanism, they
found evidence for the importance of the social aspects of trust (affective, belief)
in relationships.

Yang and Yoo (2004)[74] posit that upon the use of the tool, users form cog-
nitive beliefs about the usefulness and ease of use of the tool. These evaluative

104 Z. Hasan, A. Krischkowsky, and M. Tscheligi

beliefs (i.e., the cognitive attitude) in turn develop into users’ affective attitudes
(like or hate). However, Lindgaard (2006)[45] points out that emotional response
occurs before cognitive response. There are two major perspectives of dealing
with emotion in human computer interaction. One perspective refers emotions
as consequences of product use [18], [31]. Emotions are seen as the result of
cognitive appraisal processes of the product and the usage situation. The other
perspective on emotions in HCI sees emotions as antecedents of product use and
evaluative judgments [53], [66], [46]. It has been demonstrated that emotions
influence people’s attitude towards their current and next action and there is
evidence that they play an essential role in rational decision making, perception,
learning, and other cognitive functions [57]. Based on these facts we except the
following:

Proposition 3: There is a correlation between affective attitude and cognitive
attitude.

10 Proposition 4: From Aesthetics to Emotions and
Cognition

When assessing websites regarding trustworthiness, Fogg (2002)[21] found that
instead of paying attention to the rigorous criteria (e.g., privacy policy) people
pay more attention to the superficial aspects of a site, such as visual cues. In a
cross-cultural study, Cyr (2008) [14] investigated the impact of website design
(information design, navigation design, and visual design) on trust level. Their
results suggest that perceptions of visual design leading to trust vary by culture.
Moreover, Sillence, et al. (2006) [59] present a framework for understanding trust
factors in web based health advice. They found that if the websites are visually
unattractive people instantly reject them. Lindgaard et al. (2011) [44] noted
that visual appeal dominates first impression judgements of other characteristics
such as perceived usability and trustworthiness. To the extent that aesthetics
is a pleasant experience or an experience that leads to pleasure, it implies a
relationship to emotion [43].

In 1995, Kurosu and Kashimura (1995)[39] conducted one of the first exper-
iments ever to study the relationship between users’ aesthetic perceptions and
their a priori perceptions of a system’s usability. The results found that apparent
usability has a greater correlation with beauty than inherent usability. Basically
indicating that people expect things that they think look good to actually work
better. Further studies conducted by Tractinsky (1997)[66] and Tractinsky, et
al. (2000) [67] were able to replicate these results across cultures. These results
led them to propose the existence of a ’what is beautiful is usable’ stereotype.

According to Norman (2002)[52], positive emotion causes people to be more
creative in thinking and brainstorming which lead to find an alternate solu-
tion. Products designed for more relaxed, pleasant occasions can enhance their
usability through pleasant, aesthetic design. A positive emotional response to
a product increases positive attitude toward the brand, and the likelihood of
purchase.

Modelling User-Centered-Trust (UCT) in Software Systems 105

Proposition 4a: Aesthetics is an antecedent of affective attitude.

Proposition 4b: Perception of aesthetics has positive influence on perceived
ease of use (EOU).

11 Proposition 4: Trust in Vendor

Interpersonal trust exist between user and vendor (e.g. developer). It refers to
user’s beliefs regarding the trustworthiness of the vendor. Trustworthiness of a
vendor is composed of user’s perceptions of a vendor’s competence, integrity and
benevolence [47]. If a user does not trust the developer or vendor of the system,
it is unlikely that she/she is going to use the system. In the case of e-commerce,
empirical studies found that trusting beliefs in competence, benevolence and
integrity of a merchant affect customers’ attitude, purchase intention and actual
purchase behavior towards this merchant [42].

Proposition 4a: Trust in vendor positively affects trusting attitude.

Proposition 4b: Trust in vendor positively affects purchase intention.

12 Conclusions, Limitations and Future Directions

This paper pointed out that the users’ perspective of trust was largely neglected
in traditional software technology research. We present a trust model form users’
point of view that incorporates both technology acceptance model and trust.
This model also address users’ trust on vendor/developer perspective. It might
be the case that If the user do not trust the developer or vendor of the system,
he or she might not use it. When we talk about trust in technology, generally we
perceive two types of trust; trust in technology itself and traditional interpersonal
trust between user and vendor or developer of the systems. Our assumption
is based on the model of [42] who found that technology trust complements
interpersonal trust as a predictor of intention and behavior. Following [5], We
conceptualize trust as an attitude which has two distinct dimensions: cognitive
and affective.

This paper focused on the interplay of trust, TAM and affect along with a
discussion on how these influence the users to accept technology artifacts like
software systems. Therefore the research model did not consider other beliefs and
the precedents (such as, reputation, personality, disposition to trust, familiarity,
security/privacy and so on) of trust.

We believe that a common shared understanding of trust in software systems
from users’ point of view can benefit us to develop an effective measure of trust
and the trust model presented in this paper is the initial step toward achieving
that goal. This model will be evaluated and applied in two of our on going
research projects.

106 Z. Hasan, A. Krischkowsky, and M. Tscheligi

Acknowledgements. The financial support by the Federal Ministry of Econ-
omy, Family and Youth and the National Foundation for Research, Technol-
ogy and Development is gratefully acknowledged (Christian Doppler Laboratory
for Contextual Interfaces). The research was also supported by the European
Union Seventh Framework Programme (FP7/2007-2013) under grant no 257930
(Aniketos).

References

1. Ajzen, I., Fishbein, M.: Attitudes and normative beliefs as factors influencing be-
havioral intentions. Journal of Personality and Social Psychology 21(1), 1 (1972)

2. Ambrose, P., Johnson, G.: A trust based model of buying behavior in electronic
retailing (1998)

3. Amoroso, E., Nguyen, T., Weiss, J., Watson, J., Lapiska, P., Starr, T.: Toward an
approach to measuring software trust. In: Proceedings of IEEE Computer Society
Symposium on Research in Security and Privacy, pp. 198–218. IEEE (1991)

4. Becker, S., Hasselbring, W., Paul, A., Boskovic, M., Koziolek, H., Ploski, J.: Trust-
worthy software systems: a discussion of basic concepts and terminology. ACM
SIGSOFT Software Engineering Notes 31(6), 1–18 (2006)

5. Benamati, J., Fuller, M., Serva, M., Baroudi, J.: Clarifying the integration of trust
and tam in e-commerce environments: implications for systems design and man-
agement. IEEE Transactions on Engineering Management 57(3), 380–393 (2010)

6. Bevan, N.: Classifying and selecting ux and usability measures. In: International
Workshop on Meaningful Measures: Valid Useful User Experience Measurement,
pp. 13–18 (2008)

7. Bevan, N.: Extending the concept of satisfaction in iso standards. In: Proceedings
of the KEER 2010 International Conference on Kansei Engineering and Emotion
Research (2010)

8. Boon, S., Holmes, J.: The dynamics of interpersonal trust: Resolving uncertainty
in the face of risk. Cooperation and Prosocial Behavior, 190–211 (1991)

9. Calantone, R., Di Benedetto, C.: Clustering product launches by price and launch
strategy. Journal of Business & Industrial Marketing 22(1), 4–19 (2007)

10. Chopra, K., Wallace, W.: Trust in electronic environments. In: Proceedings of the
36th Annual Hawaii International Conference on System Sciences, p. 10. IEEE
(2003)

11. Claro, D.P., Claro, P.B.O.: Managing trust relationships: calculative, affective, be-
lief and performance. BAR. Brazilian Administration Review 5, 289–303 (2008)

12. Colquitt, J., Scott, B., LePine, J.: Trust, trustworthiness, and trust propensity: A
meta-analytic test of their unique relationships with risk taking and job perfor-
mance. Journal of Applied Psychology 92(4), 909 (2007)

13. Corritore, C., Kracher, B., Wiedenbeck, S.: On-line trust: concepts, evolving
themes, a model. International Journal of Human-Computer Studies 58(6), 737–758
(2003)

14. Cyr, D.: Modeling web site design across cultures: Relationships to trust, satis-
faction, and e-loyalty. Journal of Management Information Systems 24(4), 47–72
(2008)

15. Davis, F.: A technology acceptance model for empirically testing new end-user
information systems: Theory and results. Ph.D. thesis, Massachusetts Institute of
Technology, Sloan School of Management (1985)

Modelling User-Centered-Trust (UCT) in Software Systems 107

16. Davis, F.: Perceived usefulness, perceived ease of use, and user acceptance of in-
formation technology. MIS Quarterly, 319–340 (1989)

17. Davis, F., Bagozzi, R., Warshaw, P.: User acceptance of computer technology: a
comparison of two theoretical models. Management Science, 982–1003 (1989)

18. Desmet, P., Hekkert, P.: Framework of product experience. International Journal
of Design 1(1), 57–66 (2007)

19. Doney, P., Cannon, J., Mullen, M.: Understanding the influence of national culture
on the development of trust. Academy of Management Review 601–620 (1998)

20. Fishbein, M., Ajzen, I.: Belief, attitude, intention and behaviour: An introduction
to theory and research. Addison-Wesley (1975)

21. Fogg, B., Soohoo, C., Danielson, D., Marable, L., Stanford, J., Tauber, E.: How
do people evaluate a web site’s credibility? results from a large study. Consumer
WebWatch (2002)

22. Friedman, B., Khan Jr., P., Howe, D.: Trust online. Communications of the
ACM 43(12), 34–40 (2000)

23. Fung, R., Lee, M.: Ec-trust (trust in electronic commerce): Exploring the an-
tecedent factors (1999)

24. Gambetta, D.: Can we trust trust. Trust: Making and Breaking Cooperative Re-
lations 213–237 (2000)

25. Gefen, D.: E-commerce: the role of familiarity and trust. Omega-Oxford-Pergamon
Press 28, 725–737 (2000)

26. Gefen, D.: Reflections on the dimensions of trust and trustworthiness among online
consumers. ACM SIGMIS Database 33(3), 38–53 (2002)

27. Gefen, D., Karahanna, E., Straub, D.: Trust and tam in online shopping: An inte-
grated model. MIS Quarterly, 51–90 (2003)

28. Geyskens, I., Steenkamp, J., Kumar, N.: Generalizations about trust in marketing
channel relationships using meta-analysis1. International Journal of Research in
Marketing 15(3), 223–248 (1998)

29. Hardin, R.: Trustworthiness. Ethics 107(1), 26–42 (1996)
30. Hasselbring, W., Reussner, R.: Toward trustworthy software systems. Com-

puter 39(4), 91–92 (2006)
31. Hassenzahl, M.: The effect of perceived hedonic quality on product appealingness.

International Journal of Human-Computer Interaction 13(4), 481–499 (2001)
32. Hoy, W., Tschannen-Moran, M.: Five faces of trust: An empirical confirmation in

urban elementary schools. Journal of School Leadership 9, 184–208 (1999)
33. Huang, J., Fox, M.S.: An ontology of trust: formal semantics and transitivity. In:

Proceedings of the 8th International Conference on Electronic Commerce (2006)
34. Jarvenpaa, S., Tractinsky, N., Saarinen, L.: Consumer trust in an internet store:

A cross-cultural validation. Journal of Computer-Mediated Communication 5(2)
(1999)

35. Jiang, H., Li, Y., Xu, Y.: User-centered trust model visibility of trust technologies.
In: 2010 7th International Conference on Ubiquitous Intelligence & Computing and
7th International Conference on Autonomic & Trusted Computing (UIC/ATC),
pp. 456–459 (2010)

36. Jin, W., Yongjian, L., Xuyun, N., Mengjuan, L.: The trust management model of
trusted software. In: International Forum on Information Technology and Appli-
cations, IFITA 2009, vol. 3, pp. 534–537. IEEE (2009)

37. Jones, K.: Trust as an affective attitude. Ethics 107(1), 4–25 (1996)
38. Josang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for

online service provision. Decision Support Systems 43(2), 618–644 (2007)

108 Z. Hasan, A. Krischkowsky, and M. Tscheligi

39. Kurosu, M., Kashimura, K.: Apparent usability vs. inherent usability: experimental
analysis on the determinants of the apparent usability. In: Conference Companion
on Human factors in Computing Systems, pp. 292–293 (1995)

40. Lewis, J., Weigert, A.: Trust as a social reality. Social Forces 63(4), 967–985 (1985)
41. Li, X., Hess, T., Valacich, J.: Why do we trust new technology? a study of initial

trust formation with organizational information systems. The Journal of Strategic
Information Systems 17(1), 39–71 (2008)

42. Li, X., Rong, G., Thatcher, J.: Do we trust the technology? people? or both?
ruminations on technology trust (2009)

43. Lindgaard, G.: Aesthetics, visual appeal, usability, and user satisfaction: What do
the user’s eyes tell the user’s brain. Australian Journal of Emerging Technologies
and Society 5(1), 1–14 (2007)

44. Lindgaard, G., Dudek, C., Sen, D., Sumegi, L., Noonan, P.: An exploration of rela-
tions between visual appeal, trustworthiness and perceived usability of homepages.
ACM Transactions on Computer-Human Interaction (TOCHI) 18(1), 1 (2011)

45. Lindgaard, G., Fernandes, G., Dudek, C., Brown, J.: Attention web designers: You
have 50 milliseconds to make a good first impression! Behaviour & Information
Technology 25(2), 115–126 (2006)

46. Mahlke, S., Thüring, M.: Studying antecedents of emotional experiences in inter-
active contexts. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 915–918. ACM (2007)

47. Mayer, R., Davis, J., Schoorman, F.: An integrative model of organizational trust.
Academy of Management Review, 709–734 (1995)

48. McKnight, D.: Trust in information technology. The Blackwell Encyclopedia of
Management 7, 329–331 (2005)

49. Mcknight, D., Carter, M., Thatcher, J., Clay, P.: Trust in a specific technology: An
investigation of its components and measures. ACM Transactions on Management
Information Systems (TMIS) 2(2), 12 (2011)

50. McKnight, D., Choudhury, V., Kacmar, C.: Developing and validating trust
measures for e-commerce: An integrative typology. Information Systems Re-
search 13(3), 334–359 (2002)

51. McKnight, D., Cummings, L., Chervany, N.: Initial trust formation in new organi-
zational relationships. Academy of Management Review, 473–490 (1998)

52. Norman, D.: Emotion and design: attractive things work better. Interactions 9(4),
36–42 (2002)

53. Norman, D.: Emotional design: Why we love (or hate) everyday things. Basic
Civitas Books (2004)

54. Orlikowski, W., Iacono, C.: Research commentary: desperately seeking the” it” in
it research-a call to theorizing the it artifact. Information Systems Research 12(2),
121–134 (2001)

55. Papachristos, E., Avouris, N.: Are first impressions about websites only related to
visual appeal? In: Human-Computer Interaction INTERACT 2011, pp. 489–496
(2011)

56. Pavlou, P.: Consumer acceptance of electronic commerce: Integrating trust and
risk with the technology acceptance model. International Journal of Electronic
Commerce 7(3), 101–134 (2003)

57. Picard, R.: Affective computing. MIT press (1997)
58. Rousseau, D., Sitkin, S., Burt, R., Camerer, C., et al.: Not so different after all:

A cross-discipline view of trust. Academy of Management Review 23(3), 393–404
(1998)

Modelling User-Centered-Trust (UCT) in Software Systems 109

59. Sillence, E., Briggs, P., Harris, P., Fishwick, L.: A framework for understand-
ing trust factors in web-based health advice. International Journal of Human-
Computer Studies 64(8), 697–713 (2006)

60. Slemrod, J., Katuscak, P.: Do trust and trustworthiness pay off? National Bureau
of Economic Research (2002)

61. Sommerville, I., Dewsbury, G., Clarke, K., Rouncefield, M.: Dependability and
trust in organisational and domestic computer systems. Trust in Technology: A
Socio-Technical Perspective, 169–193 (2006)

62. Sonnenwald, D.: Managing cognitive and affective trust in the conceptual r&d
organization. Trust in Knowledge Management and Systems in Organizations,
82–106 (2003)

63. Suh, B., Han, I.: Effect of trust on customer acceptance of internet banking. Elec-
tronic Commerce Research and Applications 1(3-4), 247–263 (2002)

64. Tao, H., Chen, Y.: A new metric model for trustworthiness of softwares. In: In-
ternational Conference on Information Science and Applications (ICISA), pp. 1–8
(2010)

65. Thatcher, J., McKnight, D., Baker, E., Arsal, R., Roberts, N.: The role of trust in
postadoption it exploration: An empirical examination of knowledge management
systems. IEEE Transactions on Engineering Management, (99), 1–15 (2010)

66. Tractinsky, N.: Aesthetics and apparent usability: empirically assessing cultural
and methodological issues. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 115–122 (1997)

67. Tractinsky, N., Katz, A., Ikar, D.: What is beautiful is usable. Interacting with
Computers 13(2), 127–145 (2000)

68. Tripp, J., McKnight, H., Lankton, N.: Degrees of humanness in technology: What
type of trust matters? (2011)

69. Vance, A., Elie-Dit-Cosaque, C., Straub, D.: Examining trust in information tech-
nology artifacts: The effects of system quality and culture. Journal of Management
Information Systems 24(4), 73–100 (2008)

70. Venkatesh, V., Davis, F.: A model of the antecedents of perceived ease of use:
Development and test*. Decision Sciences 27(3), 451–481 (1996)

71. Wang, W., Benbasat, I.: Trust in and adoption of online recommendation agents.
Journal of the Association for Information Systems 6(3), 72–101 (2005)

72. Wang, Y., Emurian, H.: An overview of online trust: Concepts, elements, and
implications. Computers in Human Behavior 21(1), 105–125 (2005)

73. Yan, Z., Holtmanns, S.: Trust modeling and management: from social trust to dig-
ital trust. In: Computer Security, Privacy and Politics: Current Issues, Challenges
and Solutions pp. 290–323 (2008)

74. Yang, H., Yoo, Y.: It’s all about attitude: revisiting the technology acceptance
model. Decision Support Systems 38(1), 19–31 (2004)

75. Zhao, X., Shi, Y., Liu, Y., Zhang, L.: An empirical study of the influence of soft-
ware trustworthy attributes to software trustworthiness. In: 2010 2nd International
Conference on Software Engineering and Data Mining (SEDM), pp. 603–606. IEEE
(2010)

76. Serva, M.A., Benamati, J.S., Fuller, M.A.: Trustworthiness in B2C e-commerce:
An examination of alternative models. ACM SIGMIS (2005)

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 110–121, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Clockless Physical Unclonable Functions

Julian Murphy

Centre for Secure Information Technologies,
Queens University Belfast,

Belfast, BT3 9DT,
United Kingdom

j.p.murphy@qub.ac.uk

Abstract. Physically Unclonable Functions (PUFs) exploit the physical charac-
teristics of silicon and provide an alternative to storing digital encryption keys
in non-volatile memory. A PUF maps a unique set of digital inputs to a corre-
sponding set of digital outputs. In this paper, the use of asynchronous logic and
design techniques to implement PUFs is advocated for Asynchronous Physi-
cally Unclonable Functions (APUFs). A new method of using asynchronous
rings to implement PUFs is described called ASYNCPUF which features inherent
field programmability. It is a novel and holistic PUF design compared to the ex-
isting state-of-the-art as it naturally addresses the two challenges facing PUFs
to-date that prevent wide-spread adoption: robustness and entropy. Results of
electrical simulation in a 90 nano-metre lithography process are presented and
discussed.

Keywords: Cryptography, Physically Unclonable Functions, PUFs, Asynchro-
nous Physically Unclonable Functions, Clockless Physically Unclonable
Functions.

1 Introduction

Many security mechanisms are based upon the concept of a secret. Classic cryptogra-
phy applications contain a secret key as input to encryption algorithms in order to
scramble and decipher data. While they are secure against attack at the algorithm and
mathematical level, it is commonly known that digitally-stored secret keys can be
attacked or cloned relatively easily. In security tokens, such as smartcards, keys are
stored on-chip in non-volatile memory. While field-programmable gate arrays
(FPGAs) instead store keys in off-chip memory. This is because FPGA technology
cannot easily integrate non-volatile memory, and besides read latency issues, it only
acts to further increase vulnerability to attack.

Physical Unclonable Functions (PUFs) offer an efficient alternative to storing
digital keys in on or off-chip memory. They exploit the physical lithography manufac-
turing variations of silicon integrated circuits (ICs). A PUF maps a unique set of digi-
tal inputs, known as challenges, to a corresponding set of digital outputs, known as
responses, for use in challenge-response security protocols. Almost every year since
2000 there has been a new PUF design proposed as highlighted in Table 1.

 Clockless Physical Unclonable Functions 111

Table 1. Different types of PUF

Year PUF Type
2000-2004 Device mismatch [9], One-way function [10],

Physical Random Function [11], Arbiter PUF
[12]

2005-2008 Coating PUF [13], Ring Oscillator PUF [2],
SRAM PUF [14], Butterfly PUF [15]

2009-2011 Power distribution PUF [16], Glitch PUF [17],
Mecca PUF [18]

2012 ASYNCPUF (this paper)

A typical challenge-response identity authentication scenario is illustrated in
Fig. 1. Here, a challenge is given to an IC to authenticate its identity via the on-chip
PUF. If the received response is not equal to the known challenge which has been
recorded during manufacturing it is identified as fake.

Sadly, the unique benefits of silicon PUFs come with inherent stability design is-
sues. In addition, in their basic configuration PUFs lack enough entropy to prevent
modeling attacks [1]. However, it can be observed that PUFs are naturally asynchro-
nous in nature. Insomuch as that they attempt to exploit asynchronous effects such as
metastability, propagation delay or binary signal glitches. Therefore, it follows that
asynchronous techniques may deliver much better PUF designs or provide an alterna-
tive to the existing state-of-the-art.

Fig. 1. Challenge-response authentication of chip identity using a PUF

In this paper, we present ASYNCPUF which uses asynchronous rings for robust op-
eration and to replace inverter chain ring oscillators used in ring oscillator PUFs [2]
(RO-PUFs). It is fully digital and features inherent field programmability which natu-
rally addresses the two challenges facing PUFs that prevents wide-spread adoption:
robustness and entropy. Results of electrical simulation using a 90 nano-metre UMC
lithography are discussed.

1.1 Contributions and Paper Organization

Our research, technical and scientific contributions are as follows:

• We propose Asynchronous Physically Unclonable Functions (APUFs).
• We advocate the use of asynchronous logic and techniques to implement PUFs.

112 J. Murphy

• We propose ASYNCPUF, which is inherently field-programmable to address ro-
bustness and entropy challenges. It uses asynchronous rings to replace inverter ring
oscillators (IROs) used in ring oscillator PUFs [2] (RO-PUFs).

The remainder of the paper is organised as follows: Section 2 gives an overview of
asynchronous logic. Section 3 discusses asynchronous rings. Section 4 describes
ASYNCPUF. Section 5 presents results from electrical simulation. Section 6 draws
conclusions.

2 Asynchronous Logic

The design of synchronous digital circuitry is based upon the discretisation of time,
where a synchronous system changes from one state to the next at transitions of a
system clock. The state is held in a set of registers and the next state outputs are de-
rived from Boolean logic acting on the old state and present inputs. While the next
state is copied through the registers on every rising and falling edge of a global clock
signal. As such, the system exhibits deterministic behaviour as long as certain timing
constraints on the inputs are met.

On the other hand, asynchronous designs do not follow this regime. In general,
there is no global clock to govern the timing of state changes. Subsystems and com-
ponents exchange information at mutually negotiated times. Therefore, certain parts
of a design are always quiescent when they are not in use and hardware runs as faster
as computational dependencies, input rate and the lithography device switching times.

Fig. 2. The Muller C-element

As a field, it is historically seen as niche due to the profound understanding of con-
currency, hardware, and semiconductors it takes to implement functionally correct
designs. However, interest in the field has grown linearly in recent years in terms of
applications as the fringes of Moore’s Law have been reached and hardware data
security issues have become main-stream.

A plethora of design paradigms and techniques are known in literature. These
range from high performance transistor level pipelines for processor design [3] and
application to physical security [4]. The common denominator in all of which is the
hysteresis capable Muller-C element [5] shown in Fig. 2. Both inputs must be equal to
set or reset its output otherwise it holds its original state.

3 Asynchronous R

One of the most widely-use
rings (ARs) [7], which are
an alternative to inverter rin
ity and entropy.

F

To illustrate how ARs o
verter stages are connected
delay of one logical transiti

While an AR structure o
trol path of a micro-pipelin
an inverter, where for stage
is the output. The forward
verse input values are differ

3.1 Bubbles and Token

With reference to Fig. 4 the

• Stage contains a bubb
stage : .

• Stage contains a token
stage : .

Hence, for a 5 stage AR an

 ,
Which would correspond to

Clockless Physical Unclonable Functions

Rings

ed structures that use Muller-C elements are asynchron
purposely used here to implement ASYNCPUF. That is

ng oscillators (IROs) in RO-PUFs for increased PUF sta

Fig. 3. stage inverter ring oscillator

operate an IRO structure is shown in Fig. 3. Here,
d to form a ring. The oscillation time is the propagat
on all around the ring.

of stages is shown in Fig. 4 and corresponds to the c
ne [7]. Each stage is composed of a Muller C-element
e : is the forward input, is the reverse input, and
input value is written to the output if the forward and

rent otherwise the previous output is maintained.

Fig. 4. Asynchronous Ring

ns

e bubbles and tokens concept is as follows:

ble if its output is equal to the output of the previ

n if its output is different from the output of the previ

initial state could be the token-bubble tuple: , , ,

o the initial binary state:

113

nous
s, as
abil-

in-
tion

con-
and

d
d re-

ious

ious

(1)

114 J. Murphy

 , , , , 1,0,1,1,1 (2)

As each stage has a value of token or bubble determined by its output and the
output of the previous stage the mapping from (1) to (2) is: C , C 1,0 , C , C 0,1} C , C 1,1 etc.

Since it is possible to configure an AR with respect to bubbles and tokens, as ex-
plained above, they are naturally field-programmable and will increase the available
entropy in an AR based PUF design such as ASYNCPUF.

3.2 Token and Bubble Propagation

Based on the token and bubbles concept, a token propagates from the stage to the
stage 1, if, and only if, the next stage 1 contains a bubble as shown in Fig. 5.
In the same way, a bubble propagates from the stage i 1 to the previous stage , if
and only if, the previous stage contains a token. Hence, ARs will have an oscilla-
tory behaviour if the following conditions hold:

• 3 and .
• 1, where is the number of bubbles.
• is a positive even number of tokens.

The oscillation depends on the stage timing parameters determined by process vari-
ability and the ratio / . It should be understood, while it is possible to maintain
high frequencies in ARs, frequency decreases linearly with the number of stages in
IROs. That is, different AR ring configurations will result in different frequencies for
the same ring lengths.

Fig. 5. Token and bubble propagation

3.3 Noise

Both ARs and IROs exhibit thermal noise (known as jitter in the time-domain and
phase noise in the frequency domain) such that the propagation delay will resemble a
Gaussian distribution. Fig. 6. illustrates the effect of jitter on an IRO in a 90 nano-
metre SPICE transient noise analysis simulation using thermal noise with a bandwidth
of 100KHz to 10GHz. A clear 71 pico-second variance is observable.

Where ARs and IROs differ is through how jitter accumulates. An IRO’s period is
defined by two loops of one token around the ring, and accumulates jitter from the
number of crossed stages. But, in an AR, several tokens propagate in the ring simulta-
neously indicating the period is governed by the time between successive tokens. As
such, each token crossing a stage experiences a variation in its propagation delay due
to the jitter contribution of that particular stage. This is contrary to the IRO effect of

jitter accumulation. This na
bilities caused by jitter in P

In addition to Gaussian
tions in propagation delays
again in that in an AR seve
affects each event in the sam
increased robustness in AR
used instead of IROs.

4 ASYNCPUF

We present in this section
replacing IROs in RO-PUF

A 1-bit RO-PUF is com
frequencies to . They
the PUF challenge as the
generating one response bi
measured by their respectiv
wise 0, hence producing a
design in Fig. 7 produces
cascading these 1-bit RO-PU

Clockless Physical Unclonable Functions

aturally provides improved robustness against noise in
UF designs, that is, by use of ARs instead of IROs.
jitter, deterministic jitter occurs from non-random va

s due to external global influences. The main differenc
eral events propagate simultaneously, so deterministic ji
me way rather than the whole structure. This again lead

Rs versus IROs, and a more stable PUF design if ARs

Fig. 6. Effect of jitter

n how to build AsyncPUF using asynchronous rings
s.

mposed of 2 identically laid-out RO’s, 0 and 0 w
are selected using a pair of multiplexers that takes a bi
select bit. Due to process variation, and will di
it, , of the PUF from comparison of the two frequenc
ve counters. When enabled, will be 1 if oth
a single bit of a PUF response signature. The exempl
a single PUF bit - -bit PUF configurations are built
UF structures.

115

nsta-

aria-
e is
itter

ds to
are

 by

with
it of
iffer
cies
her-
lary
t by

116 J. Murphy

Fig. 7. Ring-oscillator based PUF design

Since IRO frequencies are closely matched, environmental effects can cause the
oscillators to switch their outputs, for increasing temperature and/or decreasing volt-
age resulting in incorrect responses. It can be also observed large arrays of ring oscil-
lators can cause a change in local chip temperature. These temperature stability issues
are depicted on the left in Fig. 8. The ideal scenario is that the frequency difference
should be sufficient to ensure consistent operation over temperature and voltage as
shown on the right in Fig. 8. The approach to this problem in PUFs to-date has been
to use error-correcting methods, which are expensive in terms of silicon area and add
additional complexity to the challenge-response protocol. The other disadvantage of
RO-PUFs is that they can be easily modelled to break the underlying security [1] to
permit cloning.

Fig. 8. Temperature and voltage effects on RO-PUFs

Fig. 9. ASYNCPUF

 Clockless Physical Unclonable Functions 117

ASYNCPUF is an AR based PUF, as shown in Fig. 9, and gives the opportunity to
address the above issues as well as noise. By configuring and , that is, by pur-
posely controlling , the number of stages, and their initial value by setting or reset-
ting the Muller-C elements (This can be accomplished, for example, through the load
inputs as shown in the figure and extra internal pull-up or pull-down transistors). By
determining the configuration of the ARs with the maximum frequencies differences
maximum reliability can be attained. This inherent configurable permits extremely
low error rates by tending towards the ideal scenario. A further opportunity is to cali-
brate the ASYNCPUF configurability according to different operating conditions. For
example, the entire operating range of temperature and voltage could be divided into
regions and have different AR load bit patterns.

Furthermore, AsyncPUF offers the opportunity to not only increase robustness
through tolerance to environmental effects, but also the fact they can be re-configured
increases entropy to address modelling attacks. This is because, as discussed, ARs can
be easily configured to change their frequency by controlling and . Thus vary-
ing and the load bit patterns in-field will result in completely new PUF designs,
therefore thwarting modelling as no two PUFs are the same. Another alternative is to
allocate different values randomly during manufacture and store in on-chip non-
volatile memory.

It should be noted, for correct operation the AR run-time has to be low enough so
that the counters do not overflow as is the case with all oscillator based PUFs. This
can be ensured by controlling the enable signal duty cycle accordingly. It is worth
noting also, other methods are perfectly plausible to convert the varying AR frequen-
cies to a binary bit, rather than using a pure multiplexer approach. How RO-PUFs are
cascaded for -bit PUFs may also differ (e.g. AR re-use). Extensive works exist on
this topic for RO-PUFs which the author is aware of and appreciates can be similarly
adopted here a fully parallel ASYNCPUF architecture is presented merely to correctly
and clearly convey this work.

5 Results

Experiments were performed using Monte Carlo SPICE analysis on the highest accu-
racy setting with a 90 nano-metre UMC lithography process and thermal noise with a
bandwidth of 100KHz to 10GHz. Firstly, ARs were characterized to quantify how
their oscillation frequency is affected by intra-die and inter-die process variation i.e.
to understand their response to the lithography effects PUFs exploit. Simulations were
conducted for a 6-stage AR using a 20 nano-second window and 1000 iterations for
the two types of process variation (die-to-die and within-die). They took approxi-
mately 8 hours to complete on a high-end multi-core Linux server under the Cadence
Design Framework. Fig. 10 shows the results from each of the 1000 simulations.

118 J. Murphy

Fig. 10. Die-to-die (top) and within-die (bottom) variation

The ARs exhibit clear frequency deviations confirming their suitability for use as
PUFs. For die-to-die variation an average frequency of 2.83GHz is obtained and a
standard deviation of 29.14MHz, which indicates a die-to-die variation of 1.03%. And
for within-die variation an average frequency of 2.83GHz is obtained and a standard
deviation of 2.92MHz, which indicates a within-die variation of 0.10%. Clearly, the
variation in AR frequency is greater between silicon wafers than on the same wafer
for this particular lithography process; while both results exhibit a bell-curve
Gaussian distribution.

Next 20 ASYNCPUFs of length 6, 12 and 18 each able to generate 32-bits of a re-
sponse (i.e. 64 rings) were constructed, which was found in the setup phase to allow
practical SPICE simulation. Note, using four different AR configurations a 128-bit

 Clockless Physical Unclonable Functions 119

response output can be generated, which highlights the trade-offs that are possible
with ASYNCPUF due to its inherent field-programmability.

This time both die-to-die and within-die process variation SPICE simulation
switches were activated together for analogous electrical simulation of 20 ASYNCPUF
silicon chips. Matlab was used to parse and process the simulation data obtained and
to generate random input challenges. Using two well-known PUF metrics, uniqueness
and reliability (defined below), ASYNCPUF was evaluated. Both uniqueness and reli-
ability results were captured at supply voltages between 0.4 V and 1.1 V, and tem-
peratures ranging from -30C to 100C. Note, these result graphs were produced by
Matlab rather than exported directly from Cadence as in Fig. 11. And to fit within the
paper length, the presented results highlight the effect of temperature effects only.
This is also because temperature affects PUFs silicon chips more than regulated volt-
age that can be viewed as a constant variable.

• Uniqueness is a measure of how easily an individual PUF can be differentiated;
and quantifies the hamming distance between the responses of different ICs im-
plementing the same PUF design that have been challenged with the same input. It
is characterized by the probability density distribution (PDF) of the hamming dis-
tances, where PUFs with PDF curves centred at half the number of response bits
and tall are more easily identifiable (unique) than PUFs with flatter curves.

• Reliability is a measure of how easily a given PUF can reproduce the same output
response for the same input challenge. This is measured by the bits that remain un-
changed under varying environmental conditions with the same input challenge.
The PDF representing hamming distance of the response characterizes reliability of
the same PUF subject to different environmental conditions i.e. changes in tem-
perature and supply voltage. PUFs with PDF curves centred at 0 and tall are more
stable than PUFs with flatter curves.

It was observed with increasing length of the ring, uniqueness is consistent, with a
slight tendency for a stronger PDF the longer the length, shown on the left in Fig. 11.
This result was consistent across all ASYNCPUF lengths initialized with arbitrary
token patterns that satisfy the requirements in Section 2.

Fig. 11. Uniqueness and reliability of ASYNCPUF with respect to temperature

120 J. Murphy

Fig. 11 on the right shows the effect of the stage length for ASYNCPUF for reliabil-
ity. It was observed for ASYNCPUF that 6 stages are most stable followed by 12 and
18 stages. Therefore, it can be concluded that shorter stages leads to better stability
and can be exploited for area efficient PUF implementations.

6 Conclusions

We have proposed using asynchronous logic to address the inherent issues with
physically unclonable functions. We have presented and described a method of using
asynchronous rings to implement a novel APUF architecture design, ASYNCPUF to
enable increased robustness and entropy. We presented Monte Carlo SPICE analysis
results of uniqueness and reliability. The results represent as close as possible to
physical silicon chip results.

Our future work is to consider application of asynchronous techniques to further
PUF technologies and tape-out of a silicon chip. For instance, it would be possible to
build PUF designs using elements from asynchronous elastic controllers [4] or eager
monotonic logic [5]. Or alternative structures could be used instead of C-elements to
implement ASYNCPUF ring stages that are widely published in literature e.g. GasP.

References

1. Rührmair, U., Sehnke, F., Sölter, J., Dror, G.: Modeling Attacks on Physical Unclonable
Functions. In: Proceedings of 17th ACM Conference on Computer and Communications
Security, pp. 237–249 (2010)

2. Suh, G.E., Devadas, S.: Physical Unclonable Functions for Device Authentication and Se-
cret Key Generation. In: Proceedings of the 44th annual Design Automation Conference,
DAC 2007, New York, NY, USA, pp. 9–14 (2007)

3. Sutherland, I., Fairbanks, S.: GasP: A Minimal FIFO Control. In: Seventh International
Symposium on Asynchronous Circuits and Systems, pp. 46–53 (2001)

4. Murphy, J., Yakovlev, A.: An Alternating Spacer AES Crypto-processor. In: Proceedings
of the 32nd European Solid-State Circuits Conference, pp. 126–129 (2006)

5. Muller, D.E., Bartky, W.S.: A Theory of Asynchronous Circuits. In: Proceedings of the In-
ternational Symposium on Theory of Switching, Part 1, pp. 204–243. Harvard University
Press (1959)

6. Williams, T.E., Horowitz, M.A.: A Zero-Overhead Self-Timed 160-ns 54-b CMOS Divid-
er. IEEE Journal of Solid-State Circuits 26(11), 1651–1661 (1991)

7. Sutherland, I.E.: Micropipelines. Communications of ACM 32(6), 720–738 (1998)
8. Ebergen, J.C., Fairbanks, S., Sutherland, I.E.: Predicting Performance of Micropipelines

Using Charlie Diagrams. In: Proceedings of Fourth International Conference on Asyn-
chronous Circuits and Systems, pp. 238–246 (1998)

9. Lofstrom, K., Daasch, W., Taylor, D.: IC Identication Circuit Using Device Mismatch. In:
Digest of Technical Papers, IEEE International Conference in Solid-State Circuits
(ISSCC), pp. 372–373 (2000)

10. Pappu, R.S., Recht, B., Taylor, J., Gershenfeld, N.: Physical One-way Functions.
Science 297, 2026–2030 (2002)

 Clockless Physical Unclonable Functions 121

11. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon Physical Random Functions.
In: Proceedings of the 9th ACM Conference on Computer and Communications Security
(CCS), New York, USA, pp. 148–160 (2002)

12. Lim, D., Lee, J., Gassend, B., Suh, G., van Dijk, M., Devadas, S.: Extracting Secret Keys
from Integrated Circuits. IEEE Transactions on Very Large Scale Integration Sys-
tems 13(10), 1200–1205 (2005)

13. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.: Read-
Proof Hardware from Protective Coatings. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)

14. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA Intrinsic PUFs and Their Use
for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
63–80. Springer, Heidelberg (2007)

15. Kumar, S., Guajardo, J., Maes, R., Schrijen, G.-J., Tuyls, P.: “Extended abstract: The but-
terfly PUF Protecting IP on Every FPGA. In: IEEE International Workshop on Hardware-
Oriented Security and Trust (HOST), pp. 67–70 (2008)

16. Helinski, R., Acharyya, D., Plusquellic, J.: A Physical Unclonable Function Defined Using
Power Distribution System Equivalent Resistance Variations. In: Proceedings of the 46th
Annual Design Automation Conference (DAC), New York, USA, pp. 676–681 (2009)

17. Suzuki, D., Shimizu, K.: The Glitch PUF: A New Delay-PUF Architecture Exploiting
Glitch Shapes. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225,
pp. 366–382. Springer, Heidelberg (2010)

18. Krishna, A.R., Narasimhan, S., Wang, X., Bhunia, S.: MECCA: A Robust Low-Overhead
PUF Using Embedded Memory Array. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 407–420. Springer, Heidelberg (2011)

Lightweight Distributed Heterogeneous Attested

Android Clouds

Martin Pirker, Johannes Winter, and Ronald Toegl

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

{mpirker,jwinter,rtoegl}@iaik.tugraz.at

Abstract. Moving local services into a network of Cloud nodes raises
security concerns as this affects control over data and code execution. The
Trusted Platform Module can help detect Cloud nodes running unknown
software configurations. To achieve this, we propose a node join protocol
that enforces remote attestation. We prototype our approach on both
current x86 systems with Intel Trusted Execution Technology and on
ARM hardware platforms. We use Android as common system software,
and show that it is well suited to build a chain-of-trust.

1 Introduction

The rapid advancement of virtualisation and multi-core technologies in conjunc-
tion with cheap storage and fast Internet connections has created a market for
providing computing resources as a commodity. Large, high-density data centers
can take advantage of the economics of scale and dynamically lease computing
power or storage capacities to clients on demand. This promises to more effi-
ciently utilize IT resources and reduce costs. Naturally, more and more services
are migrated to such Cloud Computing providers.

Consequently, a going-into-the-Cloud strategy should consider the effect on
all properties of a service and resist being dominated by the economic moti-
vation(s) alone. A central issue is the problem of the security of data storage
and secure data processing in a remote Cloud. For instance, leakage of customer
sensitive data may prove fatal for a business, or a least cause intervention by
data protection authorities.

A common sense property of running conventional, local IT services is that
this modus operandi implicitly offers full control over the hardware as well as
the software setup. In contrast, handing off computing and storage to a remote
Cloud facility leaves one with nothing but the service level contractually agreed
with the Cloud provider.

Such a provider can implement data center security in many different ways,
for instance with automated 24x7 network monitoring, intrusion detection tech-
nologies, a defined life-cycle for storage media, physical access restrictions with
multi-factor identification, or armed guards. Still, Cloud datacenter security may
fail eventually and expose clients’ data. This may happen e.g. through human
error, mailicious intent, or law enforcement compelled-assistance scenarios.

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 122–141, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Lightweight Distributed Heterogeneous Attested Android Clouds 123

Contribution. In this paper, we address aspects of the loss of control on re-
mote data and code execution in the Cloud. First, we assume a generic Cloud
architecture which distributes processing nodes widely, possibly over diverse sets
of physical sites, operators and hardware platforms. This raises the challenge
for focused physical manipulation attacks compared to centralized datacenters.
Second, our design integrates Trusted Computing technologies into the Cloud
formation phase, which enables us to remotely assess and report the security
state of the connecting and running Cloud nodes. This enables enforcement of
nodes to only known-good configurations. Third, we investigate not just com-
mercial off-the-shelf x86 servers which currently ship with Trusted Computing
extensions. We also investigate the potential of near-future1 ARM-based inte-
grated server designs, which promise a higher CPUs per rack density and high
power efficiency. Our contribution therefore considers heterogeneous hardware
platforms together with the hardware-abstractions offered by the more-and-more
popular Android environment.

More precisely, we improve the cloud join protocol and scenario previously
sketched in the short paper [25]. With practical prototyping we demonstrate
that secure Clouds can be assembled from heterogeneous platform architectures.
Our implementation results on both x86 and ARM-based platforms support the
viability of the approach. We use Android as the common software environment
and show that it is highly suitable for forming an effective and efficient chain-of-
trust. Also, we take a higher-level view and survey surrounding platform security
properties, trade-offs and technologies.

While there is never absolute security, we believe our proposal offers an inter-
esting trade-off between physical control and security properties for local versus
distributed data processing.

Outline. The remainder of the paper is structured into the following major sec-
tions. Section 2 offers a brief background summary of the capabilities of Trusted
Computing technologies. We then continue in Section 3 to present our architec-
ture, along with the core Cloud join protocol. Portions of our approach were
implemented in prototypes, our results are reported in Section 4. Based on the
previous sections we discuss the security implications and trade-offs achieved
in Section 5. In Section 6 we present links to related work. Finally, Section 7
concludes the paper.

2 Security Enhanced Mass-Market Platforms

Over the last years, mass-market consumer computer platforms and devices were
enhanced with dedicated functions to support advanced security concepts. In the
following we give a short introduction on Trusted Computing features available,

1 First ARM based server prototypes have been announced by commercial vendors for
the first half of 2012.

124 M. Pirker, J. Winter, and R. Toegl

which can be put to good use in the implementation of trustworthy infrastruc-
tures, meaning that every processing node in the network is based on a modern
security enhanced hardware platform.

2.1 Trusted Platform Module

The concept of Trusted Computing as promoted by the Trusted Computing
Group (TCG) extends the industry standard PC architecture with a specialised
hardware component, the Trusted Platform Module (TPM) [33].

A TPM features cryptographic primitives similar to a smartcard, but is phys-
ically bound to its host platform. The tamper-resilient chip provides functions
for public-key cryptography, key generation, cryptographic hashing, random-
number generation, and others. With these hardware crypto support, and being
a chip operating independently from other devices, the TPM can provide certain
trusted functions.

An important concept of Trusted Computing is the measurement logging and
reporting of the platform state. Upon platform hardware reset a special set of
platform configuration registers (PCRs) in the TPM are reset to a well defined
start value. PCRs cannot be directly written to. Rather, a PCR with index i,
i ≥ 0 in state t is extended with input x by setting PCRt+1

i = SHA-1(PCRt
i||x).

This enables the construction of a chain-of-trust. From the BIOS onwards, every
block of code is measured into a PCR before execution control is passed to it.
Thus, the current values in the set of PCRs represent a log of what happend
since system reboot, up to the current state of the system.

The TPM can bind data to a platform by encrypting it with a non-migratable
key, which never leaves the TPM protection. An extension to this is sealing,
where a key may only be used with a specific (trusted) PCR configuration.
Thus, decryption of sealed data can be restricted to an expected state – running
software and configuration – of the computer. The current state may also be
TPM signed with the TPM Quote operation and reported in a so-called remote
attestation protocol.

TPMs also provide a limited amount of non-volatile memory (NV-RAM) to
store user- or owner-supplied information. One specific piece in NV is the TPM
Endorsement Key (EK). It is a unique asymmetric RSA keypair of which the
private part never leaves the TPM in clear. An accompanying certificate – typi-
cally signed by the manufacturer – documents the fact that the key belongs to
a real hardware TPM on a trusted computing platform. It can also serve as a
unique identification of a platform.

2.2 Trusted Execution Technology

In the last years PC hardware manufacturers have added hardware features
which allow to realise enhanced security for specific scenarios. Recent platforms

Lightweight Distributed Heterogeneous Attested Android Clouds 125

from Intel2 extend the basic TCG model of a static chain-of-trust from hardware
reboot and trust rooted in early BIOS. They provide the option of a dynamic
switch to a well-defined, measured system state [14] at any point of execution
after platform reboot. This is called a dynamic root of trust for measurements
(DRTM). Consequently, this capability significantly cuts down the complexity
of the chain-of-trust measurements to assess the platform state by excluding the
early, messy bootup operations.

Further, the initialisation code executed upon switching to a measured system
state is capable of enforcing a Launch Control Policy (LCP). The administrator
of the TPM may store a LCP in the TPM non-volatile memory which specifies
which piece of TXT mode startup code is allowed to execute on this platform.
This capability ensures that a certain PCR state can only be reached by execut-
ing code explicitly specified by the system administrator. However, by default all
TXT platforms are shipped with a default ANY policy, which allows everyone
to startup TXT.

2.3 ARM Platforms

The ARM family of microprocessors is widely used in a wide variety of systems,
from small embedded devices, to power-efficient mobile phones and specialized
server System on Chips with high processing density.

Many of those hardware platforms include TrustZone security extensions and
native secure-boot features. Unfortunately, the actual capabilities and details of
these secure-boot features vary between vendors and are considered as confiden-
tial information by the manufacturers. Thus little documentation is available
publicly.

Typical realizations of such native secure-boot capabilities are likely to be
realized using a mask-programmed on-chip ROM which uses symmetric cryp-
tography (HMACs) to authenticate an asymmetric boot-loader verification key
(RSA), which then is employed to authenticate the external boot-code before
launching it.

3 Architecture

We now outline our secure Cloud formation architecture. First we identify the
core assumptions and properties we want to achieve, then we show how they can
be implemented with the use of Trusted Computing features, data structures
and protocols.

3.1 Cloud Node Properties

We assume a generic distributed computing scenario, oblivious to the details of
the specific middleware used. Still, we consider a Cloud setting with distributed

2 We restrict our discussion to Intel’s Trusted Execution Technology (TXT) as this is
currently the dominant technology provider – comparable features are also available
on e.g. AMD platforms.

126 M. Pirker, J. Winter, and R. Toegl

nodes that process the computation workload. In order to allow different services
and technologies to be deployed atop of the architecture we propose, we strive
for the following properties.

Distributed. We assume that the individual nodes in the Cloud may be dis-
tributed both geographically and organizationally. Nodes could be placed in
different countries and continents, and could be owned and operated by diverse
sets of operators.

Attested. Due to node distribution it is consequently more difficult to enforce
conventional security oversight on the nodes. Instead of absolute physical and
organizational control we use the Trusted Computing technique of remote at-
testation to enforce an assessment process. The result of this protocol is the
decision whether a remote node is in a trusted state and therefore allowed to
become part of the Cloud, or not.

Lightweight. In order to enable a diverse set of distributed stakeholders to be
able to participate in the Cloud, the installation of a Cloud node and joining
the Cloud network should be a simple setup and maintenance task that does not
add significant organizational overhead.

Heterogeneous. The larger the Cloud network, the more resources may be shared
among participants. Consequently, this allows to process larger tasks and im-
proves the economics of scale which reduces costs. Thus, as many nodes as pos-
sible should be able to join the Cloud. Consequently, the Cloud node software
should build on a base or primitives which are easily portable to different plat-
forms.

3.2 Entities

A Cloud infrastructure connects many computing nodes. Still, for being part
of one specific Cloud (network) there must be a central responsible entity for
commisioning nodes and performing accounting and control tasks. We call this
Cloud management service the Cloud control.

In our architecture the role of the Cloud control is served by the Cloud
provider as legal and commercial real-world entitiy. The provider’s always-online,
professionally run 24x7 datacenter manages client profiles and is responsible for
accounting, authentication and authorization. It provides an information service
on available Cloud nodes and service capacities. Our generic scenario is not re-
stricted to the potentially few processing nodes operated locally by the Cloud
provider. The vast majority of nodes is expected to be run distributed, at remote
sites, with their operators not necessarily under direct provider supervision.

We assume that essentially anyone can offer nodes to join the Cloud and
thus provide computing capacities3 and yet provide a certain level of security
assurance. In our scenario, trust is not only based on repution and contracts, but

3 And may then be compensated for doing so under some contract.

Lightweight Distributed Heterogeneous Attested Android Clouds 127

an additonal barrier protects against fraud and abuse. Cloud nodes must apply
and run system software that is well-known to and trusted by the provider.
Trusted Computing security features guarantee this. In practice this will mean
that a Cloud node software image can be downloaded from central Cloud control
and then booted at a node. If and only if the new node’s security is successfully
attested, a connection to Cloud control can be established and the node becomes
available to the Cloud.

3.3 Core Operations

Our approach focuses on the security of the Cloud formation process of dis-
tributed remote nodes joining the Cloud network via central Cloud control. We
expect every node to host a TPM as specified by the TCG (see Section 2). The
Cloud node software image is booted by a trusted boot process, meaning a mech-
anism exists which enforces measurement of system states into the TPM PCRs,
starting from a well-defined initial platform state. Our join protocol uses an ex-
tension of a modified AIK certification exchange. For space reasons we cannot
explain every detail of the TCG-specified AIK exchange and refer to [24] for an
extensive presentation.

Cloud Node Joining to Cloud Control. Assume a new Cloud node wants
to join the Cloud. The Cloud software image is booted on the node. The image
which was booted is recorded into the TPM’s PCRs. Further, the image contains
the unique asymmetric RSA public key CCpub and the network address of Cloud
control. Immediately after boot the node automatically attempts to join the
Cloud.

The join protocol is depicted in Figure 1. Four messages are required to be
exchanged between the joining node and central Cloud control:

1. The first objective is to establish a secure connection to Cloud control. The
first data blob sent to CC is symmetrically encrypted with a fresh symmetric
keyK, whileK itself is encrypted asymmetrically with CCpub. The data blob
contains the EK certificate (EKcert) of the TPM, along with AIKpub of a
newly created AIK keypair in the TPM. The standard PCA label field is
used to give an indication what hardware platform the node is running.
Cloud control receives the blob and decrypts the payload with its secret
CCpriv. A certificate validation process for EKcert, determining a valid hard-
ware TPM, is run.

2. On successful validation, Cloud control generates a fresh nonce, and other
supplemental data for challenging of the remote node platform state, de-
pending on the reported platform included in label. The return blob is again
encrypted using the hybrid scheme similar to step 1, with the asymmetric
encryption key being used the EKpub contained in the certificate presented
by the node.

128 M. Pirker, J. Winter, and R. Toegl

Node Cloud Control

(1) EKcert,AIKpub, label;
encrypted with CCpub → decrypt request with CCpriv

verify EKcert

(2) nonce+etc.,
TPM ActivateIdentity ← encrypted with EKpub

run TPM Quote

(3) quote result,
platform info → verify quoted state

(4) ← “ok”/“denied”

Fig. 1. Join Protocol (notation simplified for clarity)

The node uses the standard TPM ActiveIdentity command for decrypting
the package. With the received nonce the current system state is quoted using
the AIK previously generated. The symmetric key created by Cloud control
is used for encrypting all further message exchanges with Cloud control.

3. The signed system state obtained from the TPM, along with additional node
or platform specifications (e.g. available storage or processing power) is sent
back.
Cloud control is now able to validate the included TPM signed platform
state. The quote must be signed with the AIK presented in step 1, the nonce
must be equal to the one sent back in step 2. The reported platform state
of the node must be well-known to Cloud control, i.e. a trusted Cloud node
software image must have booted.

4. Cloud control now either welcomes the node to the Cloud or denies access.

The first two steps follow the standard TCG design for AIK certification and use
Trusted Computing primitives to establish a secure point to point connection
from Cloud control to the hardware TPM without man-in-the-middle. For com-
pliance with the TCG standards, we choose 2048-RSA as asymmetric, 128-bit
AES as symmetric and SHA-1 as hash cryptographic primitives.

Cloud control verifies that the remote platform hosts a real hardware TPM
with the non-migratable EK and a non-migratable AIK was created in it. Note
that we deliberately deviate from the TCG-proposed AIK protocol that was
designed to provide anonymity for platforms by issuing an unlimited number of
unlinkable identities. The reason for this is that cloud providers need a proof
that they actually get what they pay for, i.e. a real hardware platform with real
processing power.

Lightweight Distributed Heterogeneous Attested Android Clouds 129

The next two steps convince through the Trusted Computing quote operation
that an up-to-date PCR state is signed by the AIK. Thus, to Cloud control that
the node is in a trusted state and can subsequently join the Cloud.

After this initial join protocol the desired Cloud software platform is run and
jobs are assigned to this processing node.

Node Update / Cloud Rejoin. The joining of a new node represents the basic
step to construct a Cloud network. Yet, there are two more basic operations to
consider.

Eventually the Cloud’s requirements for the node software image will change.
Consequently, Cloud control will refuse an obsolete version, now untrusted, in
step 4 of the join protocol. The Cloud node operator must obtain an updated
software image and then try again.

If a Cloud node is rebooted and wants to rejoin the Cloud with the identical
Cloud node software image, this brings up the question of persistent node data.
It may be very inefficient to resychronize gigabytes of working data with the
Cloud over the Internet.

In order for the Trusted Computing attestation process to produce the same
measurement result every time, one can only measure read-only data in always
strictly the same input order. Naturally, any data processed and code executed
may affect a platforms’s security state. Consequently, only after successful execu-
tion of the Cloud join protocol any user related code and data may be processed
or executed. The security of data storage containing user data persisting over
reboots must be ensured.

Node Local Storage. Unencrypted temporary storage on node local mass-
media (e.g. harddisc) may cause serious security implications. Consequently,
any node-local temporary data storage should be fully encrypted, e.g. with a
transparently encrypted file system under a symmetric key. Thus, to re-access
the node storage after service interruption (e.g. reboot) the key for the local
temporary storage must only be made available to the identical Cloud node
software image running at the identical Cloud node.

This problem can be solved by encrypting the storage key with an asymmetric
TPM key sealed to a specific Cloud node software image.

For a full automatically (re-)bootable Cloud node we identify three data items
to enable persistent, secure local Cloud node user data storage.

TPM Ownership Password
For creation of the AIK keypair in the Cloud join protocol the TPM own-
ership password must be available. Consequently, for a new software image
version to be booted at a Cloud node the TPM owner must enter the TPM
ownership password at least once. It is a sensible policy that a platform owner
consents to what software is to be run on his machine. The ownership pass-
word can then be hashed into the TCG-compliant format and TPM-sealed
to the specific software version booted, so reboots and Cloud joins can be

130 M. Pirker, J. Winter, and R. Toegl

automated while restricting access to the trusted environment. Again, this is
a deviation from standard TCG assumptions, but it enables the automation
of Cloud operations.

Bulk Storage Encryption Key
If a Cloud node is booted the first time the local storage does not exist yet.
Upon first successful completion of the Cloud join protocol local encrypted
storage is created and initialised, and the encryption key sealed to the current
state.
If the identical Cloud node software image is rebooted at the identical plat-
form, in step 3 of the join process the node is able to reopen the local storage,
if available. This can yield a proof of previous state of work performed to
Cloud control and significantly speed up reintegration into the Cloud.

Storage – Image File or Partition
The encrypted storage itself.

In our architecture a Cloud node will build a chain-of-trust consisting of a
read-only, attestable Cloud software image which is booted and measured with
Trusted Computing, and three pieces of data which together enable to keep
persistent data over automated node reboots. As the three data pieces belong
together we suggest to integrate them into one image (file or partition) for ease
of maintenance.

4 Implementation

As a proof-of-concept of our approach we implemented the core chain-of-trust
measurements and the four steps in the Cloud join protocol of our architecture.

We assume that every Cloud node hosts a TPM4. Also, every platform must
provide a trusted boot feature, meaning there exists a hardware enforced chain-
of-trust root which measures what software is executed, starting from a well-
defined initial state.

We use Infineon TPMs, which come with an on-chip EK certificate by the
manufacturer. As operating system we use Android, as it is by design split into a
read-only base system image and temporary read/write areas for runtime. This
property greatly simplifies5 the modifications needed for adding the required
measurement hooks for a chain-of-trust into the platform startup process.

On our two testplatforms, on x86 and ARM, Android runs with a Linux
kernel, which provides a /dev/tpm0 device as interface to the Infineon TPM. As
software environment on top we use Java as programming language, a natural fit
to the Android environment. jTSS [22] provides the Trusted Computing library
support to access the TPM’s functions. We implemented our Cloud join protocol
by extending the AIK cycle code in jTpmTools.

4 The Trusted Platform Module is now shipping in volume for more than 5 years and
is already included in estimated 500 million PCs [34] worldwide. This is expected to
rise.

5 For a prototype on how to implement this with a regular Linux system see e.g. [23].

Lightweight Distributed Heterogeneous Attested Android Clouds 131

The following sections describe implementation details for each Cloud node
platform prototype. The Cloud control server simulation runs on a generic PC.

4.1 x86 PC Platform

As hardware platform we choose an HP Elitebook 8440p, which is Intel QM57
chipset based and fully supports Intel Trusted Execution Technology. The TPM
is an Infineon 1.2 TPM, firmware rev 3.17.

On the PC the BIOS controls the primary master switch to enable or disable
Trusted Computing features. So setup requires going into the BIOS and enabling
TXT. The default ANY TXT launch policy preloaded into every TPM by the PC
platform manufacturer suffices and does not need to be modified. The platform
owner needs to take TPM ownership once to create the storage root key (SRK)
in the TPM. We assume the common well-known secret is used as SRK password
– which is all zeros. The take ownership function may be done with the installed
OS or come as a separate utility function on the Cloud node software image.

In our proof-of-concept prototype, we use USB-connected flash memory as
medium for persistent storage as it is very simple to handle, reasonable cheap
and allows for experimentation with various software images and configurations
with little overhead.

The contents of the drive is a single VFAT formatted partition and the file
system structure is quite simple. The bootloader used is Syslinux6, which sits
in the bootsector and requires ldlinux.sys and syslinux.cfg as support files. For
display of a menu and multiboot kernel chainbooting mboot.c32 and menu.c32
are needed. A TXT boot requires tboot.gz, the trusted boot reference imple-
mentation provided by Intel [15] and a set of SINIT ACM modules, the chipset
specific initialisation code, also provided by Intel. As Android base OS software
we modified the image Android-x86 2.3 RC1 eeepc (Test build 20110828) of
the Android x86 porting effort [1]. The Android system consists of the kernel,
initrd.img, ramdisk.img and system.sfs.

The syslinux.cfg file connects all pieces together. Menu.c32 specifies as pri-
mary kernel mboot.c32, which runs tboot, which starts up TXT with the proper
SINIT ACM module. Control comes back to tboot, which executes the Android
kernel, who with help of the initrd and ramdisk starts the full system from
the system.sfs. To summarize the chain-of-trust: SINIT measures tboot, which
measures kernel, initrd and ramdisk, while the script in the initrd measures the
system.sfs image.

The modifications to the Android system to implement a trusted boot process
are as follows: The default eeepc optimized kernel is replaced by a generic kernel
supporting all common x86 hardware, including the TPM and TXT drivers.
This increases the systems.sfs from 79MB to 97MB. The init script of the initrd
is modified to load the TPM tpm tis kernel driver and measure the system.sfs
Android base system into a PCR. This measurement operation needs to load the
full system image once, however to due the small size (see above) and modern

6 http://www.syslinux.org/

http://www.syslinux.org/

132 M. Pirker, J. Winter, and R. Toegl

USB flash drives read speeds of 10 to 20MB/s this delays the boot process only
by a few seconds. Then the system partition is mounted and chroot-ed into. The
support TPM extend utility binaries increase the initrd size by about 700kb.
Consequently, we assess the impact on boot process performance and binaries
size as negligible.

For this prototype the Android cloud node.apk is then installed immediately
after bootup via adb remote instrumentation and executed. This Java-based
client accesses the TPM and runs the Cloud join protocol with the Cloud control
server simulation. Any Java-based Cloud middleware could be extended with this
functionality.

4.2 ARM Platform

Our primary hardware reference platform for the ARM implementation of our
proof of concept approach is a Freescale iMX51 evaluation kit [13]. A picture
of our setup is shown in Figure 2. The Freescale MX515D application processor
found on this board is based on ARM’s Cortex-A8 core and would offer advanced
security features, which include ARM’s TrustZone security extensions and a set
of secure boot facilities.

Unfortunately, most parts of the documentation describing the MX515D pro-
cessor is only available under NDA from Freescale. For this reason we do not
apply these advanced hardware security features in the prototype implementa-
tion we report, but focus on the TPM-based chain-of-trust instead.

Fig. 2. Experimental hardware setup (Freescale i.MX51 EVK)

As software we use Android in a similar configuration as on the x86 platform.
The open-source U-boot [9] bootloader is used to load and boot the Android
kernel, initial ramdisk and file-system images from a removeable SD card. With
the iMX51 board we use the built-in SD card boot facilities of the processor’s
integrated boot ROM to start our U-boot bootloader, without having to modify
any of the board’s flash memory chips.

Lightweight Distributed Heterogeneous Attested Android Clouds 133

TPM Support on ARM Platforms. The ARM platform used in our ex-
periment does not natively include a Trusted Platform Module. Moreover, this
platform does not provide a Low-Pin-Count (LPC) bus, which could be used to
connect a standard TPM intended for integration on desktop platforms.

Consequently, for the purpose of our distributed Cloud node prototype we de-
cided to implement a simple LPC bus adapter, to be able to attach a TPM to our
ARM platform. The adapter is based on a common off-the shelf FPGA develop-
ment board. The FPGA board used as interface adapter contains a Cypress-FX2
microcontroller with USB interface as well as a small Xilinx Spartan 3E FPGA.
The block diagram in figure 3 gives a high-level overview of our hardware setup.

Fig. 3. Hardware setup for the ARM implementation

The LPC bus controller is implemented inside the FPGA. An external control
interface is exposed via a serial peripheral interface (SPI) bus. This design allows
the FPGA-based LPC bus controller, and consequently any TPM attached to
it, to be connected to virtually any microcontroller or microprocessor system –
just like the iMX51 evaluation board we use. The FX2 microcontroller hides the
low-level details of the LPC bus protocol and offers a convenient USB interface
instead.

TPM-Based Chain of Trust on the ARM Platform. On PC platforms
TXT depends on a series of modifications to platform hardware, firmware and
CPUmicrocode in order to enable establishment of a fully measured, well-defined
system state. Common ARM platforms do not provide a direct functional equiv-
alent to Intel’s Trusted Execution Technology out of the box. They do, however,
provide the required building blocks to construct a system with comparable se-
curity capabilities.

134 M. Pirker, J. Winter, and R. Toegl

The PC version of our Android Cloud node uses TXT to construct a trusted
boot chain for the base system loaded from a removable USB thumb drive. The
ARM implementation of the Cloud node software is booted from a removable
SD card. This SD card contains the actual bootloader (u-boot), the Android
Linux kernel, an initial RAM-disk and the actual Android root filesystem. The
mechanism used to load the boot-loader from the removable SD card depends on
the hardware platform being used. In case of our prototype’s iMX51 evaluation
kit we rely on the processor’s fixed on-chip boot ROM to perform a direct boot
from the SD card.

Once the u-boot boot-loader has been loaded from the SD card, we are in
full control of all details of the remaining platform boot process. The modifica-
tions to realize a TXT-style trusted boot process on the ARM platform are as
follows: The initial RAM-disk of the Android boot image is extended to include
a system-level service for interfacing with the USB-to-TPM adapter discussed
in the previous section. This Android TPM Access Service (ATAS) is imple-
mented as native application, to allow its inclusion at a very early stage of the
platform startup phase, before the standard Android runtime environment has
been fully initialized. ATAS takes care of initializing the TPM interface hard-
ware. Moreover, it is responsible to perform the initial PCR extend operations
for constructing a chain of trust.

The outlined approach for bootstrapping the chain of trust on an ARM plat-
form suffers from one obvious problem: From a Trusted Computing perspective
ATAS takes the role of the core root of trust for measurement (CRTM). With-
out additional support from the underlying hardware and on-chip boot ROM
there is, however, no (hardware) guarantee that the initial measurements were
actually performed by the (intended) CRTM. In order to fix the deficiencies in
the bootstrapping process of the simple chain of trust some support from the
boot-ROM of the platform would be required. The Freescale i.MX51 platform
includes native secure-boot features that could accomplish a strong binding be-
tween the device and the CRTM, thus making the simple chain of trust approach
viable again.

Emulation of Trusted Execution on an ARM Platform. The preceding
section focussed on constructing a chain of trust on an ARM platform in precisely
the same way as a static root of trust (S-RTM) works on a PC platform. In case
of the relatively simple and deterministic software configuration of the mobile
Cloud node client, this will be sufficient for most practical uses.

We were able to demonstrate a working TPM integration on the ARM plat-
form as described. Once the Android base system successfully started the iden-
tical cloud node.apk was installed and ran as described with the x86 based
prototype. The Cloud join process was successful.

5 Platform Security Survey

Our approach presented in this paper offers attested (and attestable at a later
time by any client) Cloud nodes through use of Trusted Computing technologies.

Lightweight Distributed Heterogeneous Attested Android Clouds 135

The security properties of the Cloud join protocol were discussed immediately
following its presentation (see Section 3.3). In the following we reflect on the
security properties and trade-offs of the surrounding components, platforms and
technologies.

5.1 Trust Perimeter

Trust into something can be established when one can inspect it and attain an
informed opinion of its inner working. Unfortunately, the sheer size of source
code in modern operating systems makes it impossible to inspect it personally.
Consequently, it is often required that one trusts the opinion, certification or
competence of some third party. With Trusted Computing we can identify the
following components where our own inspection capabilities end.

Intel TXT initialisation of a PC platform into a well-defined state relies on
an opaque binary initialisation code blob called SINIT ACM supplied by Intel.
While it is possible to disassemble and reverse-engineer its function, it is forbid-
den by the code license to do so. Further, obviously only Intel engineers know
how their chipsets work internally.

The singular proof that a trusted platform hosts a real hardware TPM is
embodied by the EK certificate for the TPM. To our knowledge to date only In-
fineon includes an EK certificate with their TPM chip. We have to trust Infineon
that during manufacturing the EK (certificate) creation is secured and no one
gets the opportunity to see the private part of the EK injected into the TPM.

5.2 Distributed Nodes

The motivation to allow for distribution of Cloud nodes to geographically dis-
tributed operators is the value for physical platform security. While Trusted
Computing can provide a robust attestation of the booted node software, with
full physical access to a node one can defeat a state-of-the-art TXT implemen-
tation, as demonstrated by [37].

We are optimistic that not all Cloud node operators are malicious. Instead,
under the assumption that the majority of node operators is honest and/or not
technically capable of sophisticated hardware attacks, consequently malicious
forces would have to force their way. They would have to break down many
real-world doors – noisily and committing intrusion crimes – in order to gain
physical access to the Cloud nodes. Naturally, this significantly raises the re-
sources needed to accomplish surveillance or manipulations via physical attacks
on a large number of distributed Cloud nodes.

Obviously, a distributed structure with a potential share of compromised
nodes is not best suited for all tasks. Sensitive computations do not tolerate
loss of nodes, containing sensitive code and data, at all. However, other not-
so-sensitive computations may just compensate with techniques such as secret
splitting, redundancy or cross-checking approaches.

136 M. Pirker, J. Winter, and R. Toegl

5.3 Node Diversity

The distribution of Cloud nodes to a diverse mixture of parties assists the hetero-
genity of the Cloud node hardware population. Trusted Computing technology
is still a young technology and exploits are still found. If, for example, one TXT
system firmware implementation is buggy (e.g. for a SMM Bios [38]) it would be
fatal to run on a monoculture of computers. Instead, a diverse set of platform
manufactures encourages resilience. For security issues only specific models in a
platforms series should be affected and not the whole Cloud.

5.4 Attack Surface

Under the assumption that the physical platform is safe, this leaves software
attacks as primary attack surface. Runtime operating system bugs may always
exist. If e.g. the network exposed TCP/IP stack of the Linux kernel contains a
bug so that one can obtain control via remote access – well, then many servers
in the world can be compromised also.

The primary exposure of a platform to the Internet is the network card. Mod-
ern (server) network interface cards are no longer just “dumb” network packet
transfer devices. Instead, they also contain a small processor with firmware,
which allows to do remote management functions. Consequently, for these func-
tions to work the network card needs main memory access through DMA and
other powerful platform primitives. Thus, if the card firmware can be exploited
then security may be compromised remotely. A proof of concept work of this
problem was demonstrated by [11] and the problem of attesting a network card
firmware in [12].

Thus, the Internet exposed network card should be as dumb as possible to
provide a minimal attack surface. The same security argument applies to any
other “intelligent” devices or interfaces on a modern PC.

5.5 Open Source Cloud Node Platform

A Cloud node can attest what specific software image was booted and is currently
running during the Cloud join protocol. Naturally, who testifies that the software
image was engineered in a proper way?

As our prototype implementation demonstrates, a Cloud node can be as-
sembled almost solely from open-source software components, with the main
component in our prototype implementation being Android. The use of pub-
lic, well-known sources, for example a major Linux distribution, to base the
Cloud node software platform on, ensures the possibility for thorough inspec-
tion. This raises confidence that the Cloud node base software is not maliciously
manipulated.

5.6 Future Trusted Platforms

On the PC platform the current TPM v1.2 has been the Trusted Computing
basic building block for almost a decade. Its design does not accomodate for all

Lightweight Distributed Heterogeneous Attested Android Clouds 137

of the demands of modern platforms today, e.g. with virtualization scenarios.
Also, the current generation of TPM chips and Trusted Execution Technology
have been demonstrated to be compromisable [38,39,31,37]. However, we expect
many of these attacks to be fixed as the technology matures. Also, an updated
TPM revision has been announced for the near future.

With our ARM prototype we attached a dedicated hardware TPM to our plat-
form. However, any additional component increases the cost of a platform. An
alternative approach would be to take advantage of ARM TrustZone [2] tech-
nology. This ARM processor security extension provides two virtual domains,
which are the so-called secure-world and normal-world. This design allows the
placement of a software TPM emulation into the secure world domain, which is
strictly isolated from rest of the system running in the normal world. Its func-
tions can be exported via /dev/tpm0 to applications and they would not be able
to notice a difference to a hardware TPM. Consequently, this alternative ap-
proach also provides TPM functions, but the security implications, advantages
and disadvantages need to be studied carefully for each scenario, as the platform
boot process is obviously different.

6 Related Work

The Trusted Computing TPM is now becoming mainstream enough for systems
integration research and actual prototypes. For the Cloud the TPM promises
the possibility to strongly identify a single platform in the Cloud, to measure
and report the exact software configuration and to protect the integrity of data
and code stored in the Cloud.

Deployment and enrollment scenarios for trusted platforms have also been
considered by Schiffman et al. [28] and Danner and Hein [8]. A number of security
challenges occur in distributed systems. A recent report of ENISA [7] lists several
security risks, many of those are still not solved. A very promising line of research
[30,6,17,35,18] to overcome the security limitations of distributed computation
networks is to incorporate Trusted Computing based on the widely available
TPM. A pragmatic way to integrate attestation into legacy software, that is not
aware of being trusted, is to establish attested communication tunnels [19,10].

Often, virtualization platforms are used to leverage trust and security specif-
ically for the Cloud. Krishna et al. [27] propose a basic security architecture
involving trusted virtualization and present a few security protocols. No prac-
tical implementation was reported. Also, Krautheim et al. propose in [16] the
Trusted Virtual Environment Module, a software appliance that serves as vir-
tual security module for IaaS Cloud applications on virtualization platforms. As
a cryptographic module the proposal shows a potential way to allow platform
owner and Cloud user to share responsibility and control over data in the Cloud.
Brown and Chase [5] propose to use remote attestation so that users can gain
insights and trust into SaaS service applications by leveraging trust in a neutral
third party. They assume the Cloud platform and provider to be trustworthy,
without actually relying on hardware security mechanisms. SICE [3] is a novel

138 M. Pirker, J. Winter, and R. Toegl

framework to provide hardware-level isolation and protection for sensitive work-
loads running on x86 platforms in compute Clouds. It is not based on a tradi-
tional hypervisor, but it utilizes the System Management Mode (SMM) to isolate
different CPU cores. The presented prototype therefore requires a customized
platform firmware and currently does not integrate further trust mechanism such
as the TPM. The IBM Trusted Virtual Data center (TVDc) [4] is designed to
offer security guarantees in hosted data centers. It provides containment and
trust guarantees based on virtualization. Isolation and TPM-based integrity are
managed. It builds upon a Hypervisor derived from Xen and performs TPM-
based measurements of software. The UK myTrustedCloud [36] project studies
the integration of an IaaS Cloud platform with KVM-based virtualization and
hypervisor trust mechanisms built upon IBM IMA. Different levels of attesta-
tion are provided for the different layers in the software architecture. In paper
[29] Schiffman et al. propose a centralized cloud verifier (CV) service which aids
customers in verifying the integrity of a Cloud platform running the customer’s
VMs in IaaS Clouds.

Use of Intel Trusted Execution Technology for enforcement of a certain plat-
form state is still a new technology and has been used only in a few prototype
efforts. Flicker [21] isolates security sensitive code by halting the main OS,
switching into a defined system state using the DRTM switch, and execut-
ing short-lived pieces of application logics (PALs). PALs may use the TPM to
document their execution and handle their results. As a trusted hypervisor,
TrustVisor [20] is initiated via the DRTM process, assumes full control and al-
lows managing, running and attesting multiple PALs in its protection mode,
without the switch costs incurred by the Flicker approach. The acTvSM [32]
project demonstrates TXT integration into an off-the-shelf Debian Linux sys-
tem. Starting from a DRTM initiated by Tboot, a measurement chain spans
from the kernel over the initial ramdisk (initrd) into the read-only base system.
On top of the base system virtualized application images can be run with a
consistent chain-of-trust. Based on the acTvSM platform, Podesser and Toegl
[26] studied the Cloud scenario. They demonstrate seamless integration of re-
mote attestation in a SaaS Cloud for Java applications. The architecture enables
developers to annotate code with security requirements that are automatically
enforced throughout the attested Cloud.

7 Outlook and Conclusion

We have shown a feasible approach to join Cloud nodes that are in a specific,
trusted state, into a Cloud computing network. We prototyped a joining proto-
col which uses low-level Trusted Computing processes. An automatic start of a
Cloud middle-ware software package is beyond our prototype and the decision
which specific package is best suited to run the Cloud infrastructure on top of
our trusted Android Cloud nodes needs to be investigated separately. In future
work we will study whether it is more beneficial to keep Trusted Computing
things strictly separate, or integrate them directly into the Cloud framework
operations.

Lightweight Distributed Heterogeneous Attested Android Clouds 139

In our approach we propose Cloud nodes which are attested with Trusted
Computing methods. A geographical distribution of Cloud nodes raises the ef-
fort required for physical manipulation of Trusted Computing components on a
large number of nodes. Based on Trusted Computing technologies we presented a
protocol which ensures that nodes joining the Cloud can only do this if they can
attest that they are in a trusted state. Our implementation prototypes demon-
strate a lightweight setup and update procedure, which offers easy deployability.
Overcoming the limits of available hardware our ARM based prototype of a
potential future TPM enhanced ARM platform demonstrates security qualities
similar to x86-based systems. This supports the vision of future heterogeneous
networked Cloud nodes. The use of Android as a Open-Source base platform pro-
vides the common software ground and maintains the link to the highly dynamic
developments in this area.

Acknowledgements. We thank the anonymous reviewers for their feedback on
the paper. This work has been supported by the European Commission through
project FP7-SEPIA, grant agreement number 257433.

References

1. Android x86 Team: Android-x86 - porting android to x86 (2011),
http://www.android-x86.org/

2. ARM Ltd.: TrustZone Technology Overview (2011),
http://www.arm.com/products/esd/trustzone_home.html

3. Azab, A.M., Ning, P., Zhang, X.: Sice: a hardware-level strongly isolated comput-
ing environment for x86 multi-core platforms. In: Proceedings of the 18th ACM
Conference on Computer and Communications Security, CCS 2011, pp. 375–388.
ACM, New York (2011), http://doi.acm.org/10.1145/2046707.2046752

4. Berger, S., Cáceres, R., Pendarakis, D., Sailer, R., Valdez, E., Perez, R.,
Schildhauer, W., Srinivasan, D.: Tvdc: managing security in the trusted virtual
datacenter. SIGOPS Oper. Syst. Rev. 42, 40–47 (2008),
http://doi.acm.org/10.1145/1341312.1341321

5. Brown, A., Chase, J.S.: Trusted platform-as-a-service: a foundation for trustworthy
cloud-hosted applications. In: Proceedings of the 3rd ACM Workshop on Cloud
Computing Security Workshop, CCSW 2011, pp. 15–20. ACM, New York (2011),
http://doi.acm.org/10.1145/2046660.2046665

6. Cooper, A., Martin, A.: Towards a secure, tamper-proof grid platform. In: Sixth
IEEE International Symposiumon Cluster Computing and theGrid, CCGRID 2006,
vol. 1, p. 8 (2006), doi:10.1109/CCGRID.2006.103

7. Daniele Catteddu, G.H.: Cloud Computing benefits, risks and recommendations
for information security. Tech. rep., European Network and Information Security
Agency, ENISA (2009)

8. Danner, P., Hein, D.: A trusted computing identity collation protocol to sim-
plify deployment of new disaster response devices. Journal of Universal Computer
Science 16(9), 1139–1151 (2010)

9. Denk, W., et al.: Das u-boot – the universal boot loader (2010),
http://www.denx.de/wiki/U-Boot

http://www.android-x86.org/
http://www.arm.com/products/esd/trustzone_home.html
http://doi.acm.org/10.1145/2046707.2046752
http://doi.acm.org/10.1145/1341312.1341321
http://doi.acm.org/10.1145/2046660.2046665
http://www.denx.de/wiki/U-Boot

140 M. Pirker, J. Winter, and R. Toegl

10. Dietrich, K., Pirker, M., Vejda, T., Toegl, R., Winkler, T., Lipp, P.: A Practical
Approach for Establishing Trust Relationships between Remote Platforms Using
Trusted Computing. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912,
pp. 156–168. Springer, Heidelberg (2008)

11. Duflot, L., Perez, Y.A.: Can you still trust your network card. CanSecWest 2010
(2010), http://www.ssi.gouv.fr/IMG/pdf/csw-trustnetworkcard.pdf

12. Duflot, L., Perez, Y.A.: Run-time firmware integrity verification: what if you can’t
trust your network card? CanSecWest 2011 (2011),
http://www.ssi.gouv.fr/IMG/pdf/Duflot-Perez runtime-

firmware-integrity-verification.pdf

13. Freescale Semiconductor Inc.: i.mx51 evaluation kit (2010),
http://www.freescale.com/webapp/sps/site/

prod summary.jsp?code=MCIMX51EVKJ

14. Grawrock, D.: Dynamics of a Trusted Platform: A Building Block Approach. Intel
Press (February 2009)

15. Intel Corporation: Tboot - Trusted Boot (2008),
http://sourceforge.net/projects/tboot/

16. Krautheim, F.J., Phatak, D.S., Sherman, A.T.: Introducing the Trusted Virtual
Environment Module: A New Mechanism for Rooting Trust in Cloud Computing.
In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101,
pp. 211–227. Springer, Heidelberg (2010),
http://dl.acm.org/citation.cfm?id=1875652.1875667

17. Löhr, H., Ramasamy, H.V., Sadeghi, A.-R., Schulz, S., Schunter, M., Stüble, C.:
Enhancing Grid Security Using Trusted Virtualization. In: Xiao, B., Yang, L.T.,
Ma, J., Muller-Schloer, C., Hua, Y. (eds.) ATC 2007. LNCS, vol. 4610, pp. 372–384.
Springer, Heidelberg (2007)

18. Mao, W., Martin, A., Jin, H., Zhang, H.: Innovations for grid security from trusted
computing (2009), http://dx.doi.org/10.1007/978-3-642-04904-0_18

19. McCune, J.M., Jaeger, T., Berger, S., Caceres, R., Sailer, R.: Shamon: A system
for distributed mandatory access control. In: 22nd Annual Computer Security Ap-
plications Conference, ACSAC 2006, pp. 23–32 (2006)

20. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVi-
sor: Efficient TCB reduction and attestation. In: Proceedings of the IEEE Sympo-
sium on Security and Privacy (May 2010)

21. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker:
an execution infrastructure for tcb minimization. In: Proc. of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems, pp. 315–328. ACM
(2008)

22. Pirker, M., Toegl, R.: Trusted computing for the JavaTMplatform (2011),
http://trustedjava.sourceforge.net/

23. Pirker, M., Toegl, R., Gissing, M.: Dynamic Enforcement of Platform Integrity. In:
Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101,
pp. 265–272. Springer, Heidelberg (2010)

24. Pirker, M., Toegl, R., Hein, D., Danner, P.: A PrivacyCA for Anonymity and
Trust. In: Chen, L., Mitchell, C.J., Martin, A. (eds.) Trust 2009. LNCS, vol. 5471,
pp. 101–119. Springer, Heidelberg (2009)

25. Pirker, M., Winter, J., Toegl, R.: Lightweight distributed attestation for the cloud.
In: Proceedings of the 2nd International Conference on Cloud Computing and
Services Science, CLOSER (2012)

http://www.ssi.gouv.fr/IMG/pdf/csw-trustnetworkcard.pdf
http://www.ssi.gouv.fr/IMG/pdf/Duflot-Perez_runtime-firmware-integrity-verification.pdf
http://www.ssi.gouv.fr/IMG/pdf/Duflot-Perez_runtime-firmware-integrity-verification.pdf
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MCIMX51EVKJ
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MCIMX51EVKJ
http://sourceforge.net/projects/tboot/
http://dl.acm.org/citation.cfm?id=1875652.1875667
http://dx.doi.org/10.1007/978-3-642-04904-0_18
http://trustedjava.sourceforge.net/

Lightweight Distributed Heterogeneous Attested Android Clouds 141

26. Podesser, S., Toegl, R.: A Software Architecture for Introducing Trust in Java-Based
Clouds. In: Park, J.J., Lopez, J., Yeo, S.-S., Shon, T., Taniar, D. (eds.) STA 2011.
CCIS, vol. 186, pp. 45–53. Springer, Heidelberg (2011),
http://dx.doi.org/10.1007/978-3-642-22339-6_6

27. Santos, N., Gummadi, K.P., Rodrigues, R.: Towards trusted cloud computing. In:
Proceedings of the 2009 Conference on Hot Topics in Cloud Computing. USENIX
Association, Berkeley, CA, USA (2009),
http://dl.acm.org/citation.cfm?id=1855533.1855536

28. Schiffman, J., Moyer, T., Shal, C., Jaeger, T., McDaniel, P.: Justifying integrity
using a virtual machine verifier. In: ACSAC 2009: Proceedings of the 2009 Annual
Computer Security Applications Conference, pp. 83–92. IEEE Computer Society
Press, Washington, DC (2009)

29. Schiffman, J., Moyer, T., Vijayakumar, H., Jaeger, T., McDaniel, P.: Seeding
clouds with trust anchors. In: Proceedings of the 2010 ACM Workshop on Cloud
Computing Security Workshop, CCSW 2010, pp. 43–46. ACM, New York (2010),
http://doi.acm.org/10.1145/1866835.1866843

30. Smith, M., Friese, T., Engel, M., Freisleben, B.: Countering security threats in
service-oriented on-demand grid computing using sandboxing and trusted comput-
ing techniques. J. Parallel Distrib. Comput. 66(9), 1189–1204 (2006)

31. Tarnovsky, C.: Hacking the Smartcard Chip. In: Blackhat DC (2010),
http://www.blackhat.com/html/bh-dc-10/bh-dc-10-briefings.html#Tarnovsky

32. Toegl, R., Pirker, M., Gissing, M.: acTvSM: A Dynamic Virtualization Platform
for Enforcement of Application Integrity. In: Chen, L., Yung, M. (eds.) INTRUST
2010. LNCS, vol. 6802, pp. 326–345. Springer, Heidelberg (2011)

33. Trusted Computing Group: TCG TPM Specification Version 1.2 (2007),
https://www.trustedcomputinggroup.org/developers/

34. Trusted Computing Group: Do You Know? A Few Notes on Trusted Computing
Out in the World (2011),
http://www.trustedcomputinggroup.org/community/2011/03/

do you know a few notes on trusted computing out in the world

35. Vejda, T., Toegl, R., Pirker, M., Winkler, T.: Towards Trust Services for Language-
Based Virtual Machines for Grid Computing. In: Lipp, P., Sadeghi, A.-R.,
Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 48–59. Springer, Heidelberg
(2008)

36. Wallom, D., Turilli, M., Taylor, G., Hargreaves, N., Martin, A., Raun, A.,
McMoran, A.: mytrustedcloud: Trusted cloud infrastructure for security-critical
computation and data managment. In: Proeedings of Cloudcom (2011) (in print)

37. Winter, J., Dietrich, K.: A Hijacker’s Guide to the LPC Bus. In: EuroPKI 2011
Proceedings (2011) (in print)

38. Wojtczuk, R., Rutkowska, J.: Attacking Intel Trusted Execution Technology. Tech.
rep., Invisible Things Lab (2009),
http://invisiblethingslab.com/resources/bh09dc/Attacking

%20Intel%20TXT%20-%20paper.pdf

39. Wojtczuk, R., Rutkowska, J., Tereshkin, A.: Another Way to Circumvent Intel
Trusted Execution Technology. Tech. rep., Invisible Things Lab (2009),
http://invisiblethingslab.com/resources/misc09/

Another%20TXT%20Attack.pdf

http://dx.doi.org/10.1007/978-3-642-22339-6_6
http://dl.acm.org/citation.cfm?id=1855533.1855536
http://doi.acm.org/10.1145/1866835.1866843
http://www.blackhat.com/html/bh-dc-10/bh-dc-10-briefings.html#Tarnovsky
https://www.trustedcomputinggroup.org/developers/
http://www.trustedcomputinggroup.org/community/2011/03/do_you_know_a_few_notes_on_trusted_computing_out_in_the_world
http://www.trustedcomputinggroup.org/community/2011/03/do_you_know_a_few_notes_on_trusted_computing_out_in_the_world
http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-%20paper.pdf
http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-%20paper.pdf
http://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf
http://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf

Converse PUF-Based Authentication

Ünal Kocabaş1, Andreas Peter1,
Stefan Katzenbeisser1, and Ahmad-Reza Sadeghi2

1 Technische Universität Darmstadt (CASED), Germany
2 Technische Universität Darmstadt & Fraunhofer SIT Darmstadt, Germany
{unal.kocabas,ahmad.sadeghi}@trust.cased.de, andreas.peter@cantab.net,

skatzenbeisser@acm.org

Abstract. Physically Unclonable Functions (PUFs) are key tools in the
construction of lightweight authentication and key exchange protocols.
So far, all existing PUF-based authentication protocols follow the same
paradigm: A resource-constrained prover, holding a PUF, wants to au-
thenticate to a resource-rich verifier, who has access to a database of
pre-measured PUF challenge-response pairs (CRPs). In this paper we
consider application scenarios where all previous PUF-based authentica-
tion schemes fail to work: The verifier is resource-constrained (and holds
a PUF), while the prover is resource-rich (and holds a CRP-database).
We construct the first and efficient PUF-based authentication protocol
for this setting, which we call converse PUF-based authentication. We
provide an extensive security analysis against passive adversaries, show
that a minor modification also allows for authenticated key exchange and
propose a concrete instantiation using controlled Arbiter PUFs.

Keywords: Physically Unclonable Functions (PUFs), Authentication,
Key Exchange.

1 Introduction

With rapid improvements in communication technologies, networks have become
widespread, connecting both low-cost devices and high-end systems. Low-cost
devices, such as RFID-tags, sensor nodes, and smart cards are likely to form the
next generation pervasive and ubiquitous networks. Such networks are designed
to store sensitive information and transmit this information to participants over
a potentially insecure communication channel. Due to the potentially sensitive
data they handle, security features such as authentication and encrypted data
transfer and required. At the same time, the deployed security features must be
extremely lightweight to fit the application scenario.

Physically Unclonable Functions [12], security primitives that extract noisy
secrets from physical characteristics of integrated circuits (ICs), have emerged
as trust anchors for lightweight embedded devices. Instead of relying on heavy-
weight public-key primitives or secure storage for secret symmetric keys, PUFs
can directly be integrated in cryptographic protocols. PUFs have successfully

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 142–158, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Converse PUF-Based Authentication 143

been used in the context of anti-counterfeiting solutions that prevent cloning of
products, and in the construction of various cryptographic protocols, involving
identification and authentication.

In this paper we are merely concerned with PUF-based authentication pro-
tocols. All previous approaches, including [24,15,9], considered the problem of
authenticating a lightweight device (called prover) containing a PUF to a re-
mote entity (called verifier), which has more storage and processing capabili-
ties. In particular, the verifier is required to store a database of measured PUF
challenge-response pairs (CRPs). In order to perform the authentication, the
verifier sends a random challenge to the prover, who has to measure the PUF on
the challenge and respond with the measured PUF response. If the obtained re-
sponse matches the one stored in the CRP, the prover is authenticated. Note that
CRPs cannot be re-used since this would enable an adversary to mount replay
attacks; furthermore, it would allow tracing of the tag. Besides this issue, some
PUFs are subject to model-building attacks [25], which allow to obtain a model
of the PUF in use by observing the PUF challenge-response pairs contained in
the protocol messages.

In this work we consider PUF-based authentication protocols tailored towards
a different scenario in which the verifier V is a very resource-constrained (yet
PUF-enabled) device, while the prover P has comparably rich computational
resources. For example, one can consider the scenario in which a sensor node
(acting as verifier) wants to authenticate a sink (prover) in order to transmit
sensitive sensor readings. In this setting, all currently available PUF-based au-
thentication protocols are not applicable, since the roles of prover and verifier
are reversed (simply swapping the roles of verifier and prover in traditional pro-
tocols does not work either, since a resource-constrained device is not able to
keep a CRP database). In this paper we therefore propose a novel PUF-based
authentication protocol that works in this situation: The prover P holds a CRP-
database, while the lightweight verifier V has access to the PUF. Due to this
converse approach of using the PUF in authentication, we call protocols that
follow this new paradigm converse PUF-based authentication protocols. As a
second feature of our protocol, which is in contrast to all previous approaches,
our construction never needs to transmit PUF responses (or hashes thereof) over
the channel, which effectively prevents passive model-building attacks as well as
replay attacks. Since in this work, we deal with passive adversaries only, we see
our solution as the first step in this converse approach and hope to see more
work on this matter in the future.

1.1 Contributions

In summary, the paper makes the following contributions:

Introduction of a New Paradigm for PUF-Based Authentication. We introduce
the paradigm of converse PUF-based authentication: In this setting a prover P
holds a CRP-database, while a lightweight verifier V has access to a PUF.

144 Ü. Kocabaş et al.

First Construction. Based on an idea introduced in [5], we construct the first
converse PUF-based authentication protocol, which is at the same time very
efficient. It uses a controlled PUF at the verifier and a CRP database at the
prover. A key feature is that during the protocol only a random tag and two
PUF-challenges are exchanged over the communication channel; this effectively
prevents model building attacks.

Security Analysis. We provide an extensive security analysis of the new protocol
and show that it is secure against passive adversaries.We deduce precise formulae
that upper bound the success probability of a worst-case adversary after having
seen a certain number of protocol transcripts.

Authenticated Key Exchange. Finally, we show that a minor modification of our
authentication protocol allows the two participants to agree on a common secret
key. This basically comes for free, since this modification only amounts to the
evaluation of one additional hash function at both sides.

1.2 Outline

After presenting a brief summary of PUFs and their properties, fuzzy extrac-
tors, and controlled PUFs in Section 2, we introduce our converse PUF-based
authentication protocol including a proof of correctness in Section 3. Then, in
Section 4 we discuss the security model we consider and prove our protocol
secure against passive adversaries. Finally, implementation details are given in
Section 5. We conclude with a summary and some possible directions for future
work in Section 6.

2 Background and Related Work

PUFs exploit physical characteristics of a device, which are easy to measure but
hard to characterize, model or reproduce. Typically, a stimulus, called challenge
C, is applied to a PUF, which reacts with a response R. The response depends
on both the challenge and the unique intrinsic randomness contained in the de-
vice. A challenge and its corresponding response are called a challenge-response
pair (CRP). Typical security assumptions on PUFs include [21]:

– Unpredictability: An adversary A cannot predict the response to a specific
PUF challenge without modeling its intrinsic properties. Moreover, the re-
sponse Ri of one CRP (Ci,Ri) gives only a small amount of information on
the response Rj of another CRP (Cj ,Rj) with i �= j.

– Unclonability: An adversary A cannot emulate the behavior of a PUF on
another device or in software, since the behavior is fully dependent on the
physical properties of the original device.

– Robustness: The outputs of a PUF are stable over time; thus, when queried
with the same challenge several times, the corresponding responses are sim-
ilar (which opens the possibility to apply an error correcting code in order
to obtain a stable response).

Converse PUF-Based Authentication 145

PUFs meeting these assumptions provide secure, robust and low cost mechanisms
for device identification and authentication [24,30,23,26], hardware-software bind-
ing [13,16,14,7] or secure storage of cryptographic secrets [8,33,18,4]. Further-
more, they can be directly integrated into cryptographic algorithms [1] and re-
mote attestation protocols [27].

Among different PUF architectures, we focus on electronic PUFs, which can
be easily integrated into ICs. They essentially come in three flavors: Delay-
based PUFs are based on digital race conditions or frequency variations and in-
clude arbiter PUFs [17,23,19] and ring oscillator PUFs [12,29,22]. Memory-based
PUFs exploit the instability of volatile memory cells after power-up, like SRAM
cells [13,15], flip-flops [20,32] and latches [28,16]. Finally, Coating PUFs [31] use
capacitances of a special dielectric coating applied to the chip housing the PUF.

Arbiter PUFs. In this paper we use Arbiter PUFs (APUF) [17], which consist
of two logical paths, controlled by a challenge. Both paths get triggered at the
same time. Due to the inherently different propagation delays induced by man-
ufacturing variations, one of the two paths will deliver the signal faster than the
other; a digital arbiter finally determines which of the two signals was faster and
produces a one-bit response. The number of challenge-response pairs is typically
exponentially large in the dimensions of the APUF, which makes them a good
candidate to be used in authentication mechanisms.

However, it was claimed in [25] that APUFs are subject to model building
attacks that allow predicting responses with non-negligible probability, once an
attacker has full physical access to the APUF or can record sufficiently many
challenge-response pairs. Further, the response of an APUF cannot be used di-
rectly as a cryptographic key in an authentication mechanism without post-
processing, since two queries of the same challenge may give slightly different
responses due to noise. In order to counter these problems, additional primitives
must be used: Fuzzy Extractors (FE) [6] and Controlled PUFs [9].

Fuzzy Extractors. The standard approach to make the PUF responses stable,
is to use Fuzzy Extractors [6] consisting of a setup phase, an enrolment phase
and a reconstruction phase.

In the setup phase, an error-correcting binary1 linear [μ, k, d]-code C of bit
length μ, cardinality 2k, and minimum distance d is chosen. Due to the choice
of parameters, the code can correct up to

⌊
d−1
2

⌋
errors. There are many known

ways to construct such codes for given parameters [6], and we just mention here
that we need to set the parameter μ to be the bit length of the output of the
used PUF (some care has to be taken when choosing the amount of errors the
code needs to correct, see [3]).

In the enrolment phase, denoted by FE.Gen, which is carried out before the
deployment of the chip in a device in a trusted environment, for any given PUF

response R, we choose a random codeword γ
U←− C and compute the helper data

h := γ ⊕ R. Later, during the reconstruction phase (denoted by FE.Rep), for

1 We restrict our attention to binary codes (i.e., codes over the binary Galois field F2),
although the same discussion can be done for non-binary codes as well.

146 Ü. Kocabaş et al.

any given PUF response R and corresponding helper data h, we first compute
W := R ⊕ h, and then use the decoding algorithm of the error correcting code
C on W , which outputs the same codeword γ that we randomly picked in the
enrolment phase.

Controlled PUFs. If one requires a uniformly distributed output (which a
PUF usually does not provide), one can apply a cryptographic hash function
H : {0, 1}∗ −→ {0, 1}n to the output γ of the FE [3]. Here, we will always treat
such a hash function H as a random oracle [2] which ensures that the output is
uniformly distributed in {0, 1}n. Usually, an LFSR-based Toeplitz Hash function
is used in order to implement this privacy amplification phase because of its low
cost. The resulting combined primitive, i.e., applying the hash function H to
the output of the FE, which itself was applied to the PUF, is called a controlled
PUF.

3 Converse PUF-Based Authentication

All currently existing PUF-based (unilateral, two-party) authentication proto-
cols (e.g., [24,15,9]) follow the same paradigm: A prover P , who has access to
a PUF, wants to authenticate himself to a verifier V who holds a database of
challenge-response pairs (CRP) of P ’s PUF. In this section, we propose a new
PUF-based authentication protocol that actually works the other way around:
The prover P holds a (modified and reduced) CRP-database, while the verifier
V has access to a PUF. Due to this converse approach of using the PUF in
the authentication, we call protocols that follow this new paradigm Converse
PUF-based Authentication Protocols.

3.1 Protocol Description

We consider a controlled PUF consisting of an underlying physical PUF (de-
noted by PUF), the two procedures FE.Gen and FE.Rep of the underlying Fuzzy
Extractor (FE), and a cryptographic hash function H : {0, 1}∗ −→ {0, 1}n.

Now, as in usual PUF-based authentication, our protocol needs to run an
enrolment phase in order to create a CRP-database on the prover’s side. We
note that this database will not consist of the actual CRPs of PUF but of
responses of the controlled PUF (i.e., the PUF challenges C, some helper data
h and hash values H(γ) for FE outputs γ). More precisely, in the enrolment
phase the prover P sends some random PUF challenge C to the verifier V , who
runs the enrolment phase of the FE on PUF(C), which outputs a value γ and
some helper data h. Then, V returns the values R(C, h) = H(γ) and h to P .
The prover P stores this data together with the PUF challenge in a database
D. These steps are repeated ρ times in order to generate a database D of size ρ.
The described procedure is summarised in Fig. 1.

Now, whenever P needs to authenticate himself to V , the following authenti-

cation phase is run: First V sends a random 0n �= Δ
U←− {0, 1}n to P . Then, P

Converse PUF-Based Authentication 147

For a database D of size ρ, repeat the protocol ρ times

Prover P
(Creates one element in D)

Verifier V
(Hosts the PUF)

Choose random PUF challenge C

−
PUF challenge C
−−−−−−−−−−−−−−→

(γ, h)←− FE.Gen(PUF(C))

←−
R(C, h) := H(γ), h
−−−−−−−−−−−−−−−

Append (C, h,R(C, h)) to D

Fig. 1. Enrolment phase: Creating P ’s database D

searches through his database D in order to find two elements (C1, h1, R(C1, h1))
and (C2, h2, R(C2, h2)) such that Δ = R(C1, h1) ⊕ R(C2, h2), and sends the
pairs (C1, h1) and (C2, h2) to V . In other words, he is looking for two controlled
PUF outputs whose XOR is Δ. If no such elements exist in D, P just sends
(C1, h1) = (C2, h2) to V , where both the PUF challenge C1 and the helper data
h1 are chosen at random. In this case the authentication fails; we will choose
the protocol parameters in a way that this happens only with small probability.
Now, V uses the reconstruction phase of the FE twice – once on input PUF(C1)
and h1, and once on input PUF(C2) and h2 which output two code words γ1
and γ2, respectively. After applying the hash function H to this (yielding values
R(C1, h1) = H(γ1) and R(C2, h2) = H(γ2), respectively), V checks whether
R(C1, h1) ⊕ R(C2, h2) = Δ. If equality holds, V sends the message M =
back to P in order to indicate that P successfully authenticated himself to V ;
else it returns M = ⊥, signaling that the authentication failed. In a subsequent
step, the responses may optionally be used to exchange a shared secret key (see
Section 3.3). The complete authentication phase is summarised in Fig. 2.

3.2 Correctness of the Protocol

We recall that in the enrolment phase, the prover P gets a database D of size ρ
containing pairs of PUF-challenges C, helper data h and corresponding responses
R(C, h) from the verifier V . Furthermore, we recall that after applying the Fuzzy
Extractor, we input the resulting output into a cryptographic hash function H .
So if we require the FE’s outputs to have κ ≥ n bits of entropy, we can think
of the responses R(C, h) as bitstrings taken uniformly at random from the set
{0, 1}n (cf. the Random Oracle Paradigm [2]). Here, we bear in mind that κ and
n are public parameters of our authentication protocol that are being fixed in
some setup phase.

In this section, we consider how the probability of a successful authentication
of P is affected by the size ρ of P ’s database D. In other words, we will give a

148 Ü. Kocabaş et al.

Prover P
(Holds database D of size ρ)

Verifier V
(Hosts the PUF)

Choose random value 0n �= Δ
U←− {0, 1}n

←− Δ−−−−−−−−−−−−

Find two entries in D:
(C1, h1, R(C1, h1)), (C2, h2, R(C2, h2))
with Δ = R(C1, h1)⊕R(C2, h2)

If none found, choose random
C1 = C2 and h1 = h2

−
(C1, h1), (C2, h2)−−−−−−−−−−−−−−→

Compute R(C1, h1) = H(FE.Rep(PUF(C1), h1))
and R(C2, h2) = H(FE.Rep(PUF(C2), h2))
If R(C1, h1)⊕R(C2, h2) = Δ
set M = 	, else set M = ⊥

←−
Message M
−−−−−−−−−−−−

[
Compute shared key
K = H(R(C1, h1)‖R(C2, h2))

]

[
Compute shared key
K = H(R(C1, h1)‖R(C2, h2))

]

Fig. 2. Authentication phase: P authenticates himself to V. As an optional step, both
participants can compute a shared key K after the authentication.

lower bound on the size ρ of the database D in order for an authentication to be
successful with a prescribed probability (assuming that both participants P and
V honestly perform each step of the protocol). Here, successful authentication

means that given a random 0n �= Δ
U←− {0, 1}n there exist

(C1, h1, R(C1, h1)), (C2, h2, R(C2, h2)) ∈ D
in P ’s database such that R(C1, h1)⊕R(C2, h2) = Δ.

Theorem 1. If ρ denotes the size of P’s database D, then the probability of a
successful authentication is

SuccAuth
P,n (ρ) := 1−

(

1− 2

2n − 1

) ρ2−ρ
2

.

Proof. First of all, it is easy to see that only the responses R(C, h) that are
stored in the database D have an influence on the probability of a successful
authentication, and so we think of D containing only responses R = R(C, h) and
forget about the PUF-challenges C and helper data h. Now, since the ρ different
values R(C, h) in D and the value Δ are uniformly distributed and independent
in {0, 1}n, the probability of having a successful authentication amounts to the
following:

Converse PUF-Based Authentication 149

For a setM , let
(
M
2

)
denote the set of all subsets of cardinality 2 ofM , whereas

we denote elements of this set by pairs (R1, R2); so basically, this set consists
of all unordered pairs (R1, R2), excluding self-pairs (R1, R1). Here, we consider

the set
({0,1}n

2

)
which has precisely

(
2n

2

)
many elements. For the authentication,

we are only interested in the XOR of two values in D, so we want to look at the
set

(D
2

)
which has exactly

(
ρ
2

)
many elements taken uniformly at random from

({0,1}n

2

)
. We denote the set of all XOR’s of any two elements in D by D⊕, i.e.,

D⊕ = {R1 ⊕ R2 | (R1, R2) ∈ (D
2

)}. Therefore, the probability of a successful
authentication is the probability that Δ ∈ D⊕. Summing up, we have:

1. Δ
U←− {0, 1}n is sampled uniformly at random.2

2. The prover P has a database
(D
2

)
of

(
ρ
2

)
many elements taken uniformly at

random from
({0,1}n

2

)
.

3. For a random (R1, R2)
U←− ({0,1}n

2

)
, the probability that we hit on Δ when

XOR-ing R1 and R2 is q := 2n

(2
n

2)
= 2

2n−1 .

4. We are interested in the probability of a successful authentication, i.e., in the
probability SuccAuth

P,n (ρ) = Pr [Δ ∈ D⊕], where D⊕ = {R1 ⊕ R2 | (R1, R2) ∈
(D
2

)} and the latter probability is taken over all random Δ
U←− {0, 1}n and

random
(D
2

) ⊂ ({0,1}n

2

)
.

In other words, we sample
(
ρ
2

)
many times from

({0,1}n

2

)
with probability q =

2
2n−1 of success (i.e., hitting on Δ) on each trial, and ask for the probability
of having at least s = 1 successes (i.e., hits on Δ). The probability of having
exactly s successes is given by the binomial probability formula:

Pr

[

s successes in

(
ρ

2

)

trials

]

=

((
ρ
2

)

s

)

qs(1− q)(
ρ
2)−s.

Therefore, the probability of having s = 0 successes is (1− q)
ρ2−ρ

2 . Finally, this
gives us the probability of having at least s = 1 successes, i.e., a successful
authentication:

SuccAuth
P,n (ρ) = 1− Pr

[

0 successes in

(
ρ

2

)

trials

]

= 1−
(

1− 2

2n − 1

) ρ2−ρ
2

.

This proves the theorem. �

Note that this success probability is 0 for ρ = 0 and is monotonically increasing.
As a function of ρ it presents itself as an S-shaped curve with a steep slope
at approximately ρ = 2

n
2 (see Figure 3(a) for an example). Thus, for the au-

thentication to be successful with an overwhelming probability, the size ρ of P ’s

2 To simplify the discussion, we sample from the whole set {0, 1}n instead of {0, 1}n \
{0n}. This does not affect the overall analysis, since the value 0n occurs with a
negligible probability.

150 Ü. Kocabaş et al.

database D should be chosen right after this steep slope, ensuring a probability
close to 1. To give the reader an idea on how the database size ρ behaves in
practice, we state that sizes of about ρ ≈ 217 or ρ ≈ 225 are realistic in most
real-world applications. Details on this and other numerical examples can be
found in Section 5.3

3.3 Authenticated Key Exchange

A minor modification of our authentication protocol yields an authenticated key
exchange between the prover P and the verifier V (here, “authenticated” refers
to the verifier V only, since the authentication in our protocol is unilateral).
More precisely we will achieve that, if the authentication of P is successful, both
V and P compute the same shared secret key K. If the authentication fails, P
computes a random key, while V computes the “correct” key K. These two keys
will be the same with a probability that is negligible in n.

Next, we describe the modification of our protocol: Let H : {0, 1}∗ −→
{0, 1}2n be a (publicly known) cryptographic hash function. Now, the only mod-
ifications we make to our authentication protocol are (see key computation in
square brackets in Fig. 2):

1. After the prover P created the two PUF-challenges C1 and C2 together with
the corresponding helper data h1 and h2, respectively, he computes the key
K = H(R(C1, h1)‖R(C2, h2)).

2. After the verifier V checked the authenticity of P and computed the message
M , he computes the key K = H(R(C1, h1)‖R(C2, h2)).

It can be seen immediately (when H is again modelled as a random oracle) that
if the authentication of P fails, P will compute a key K that is uniformly dis-
tributed in {0, 1}2n. Therefore, the probability that P ’s key and V ’s key coincide
is 2−2n which is negligible in n. Otherwise, both parties have exchanged a secret
key.

4 Security Model and Analysis

The security model for our authentication protocol considers a passive adver-
sary A only.4 This means that the adversary A is only able to passively listen on
the communication channel, and does neither have access to the underlying PUF,

3 We stress that the generation of a database of size 225 in the enrolment phase is not
impractical. The reason for this is that the enrolment phase is not carried out with
the actual resource-constrained verifier but in a trusted environment. In particular,
this means that the database is generated before the Controlled-PUF is engineered
into the verifier-device.

4 Our authentication protocol does not rely on a confidential communication channel.
All messages are being sent in the clear. It is easy to see that, when considering an
active adversary A that can for instance manipulate these messages, the authenti-
cation will fail with overwhelming probability.

Converse PUF-Based Authentication 151

nor can do any invasive analysis on the used components. More precisely, A
is allowed to see a bounded number of protocol transcripts (a transcript is a
copy of all messages sent by the prover P and the verifier V after a complete
run of the authentication protocol), and then tries to break the protocol. Here,
breaking the protocol means that A can successfully authenticate herself to
the verifier V . We briefly recall that a successful authentication amounts to
finding two PUF-challenges C1, C2 with helper data h1, h2 such that for a given

Δ
U←− {0, 1}n,5 the corresponding responses (after applying the hash function

H and the reconstruction phase of the FE to the PUF’s outputs) satisfy that
R(C1, h1)⊕R(C2, h2) = Δ. Formally, the security of our protocol is modelled as
follows:

Definition 1. Let κ denote the (bit-) entropy of the output of the reconstruc-
tion phase of the FE in our authentication protocol. Then, our authentication
protocol is called (t, κ, ε)-secure (against passive adversaries), if for any proba-
bilistic polynomial time (PPT) adversary A who gets to see t transcripts τi =
(Δi, (Ci, C

′
i), (hi, h

′
i)), where Δi = R(Ci, hi) ⊕ R(C′

i, h
′
i), for i = 1, . . . , t, suc-

cessfully authenticates herself with probability at most ε, i.e.,

Pr [A(τ1, . . . , τt) = ((C,C′), (h, h′)) | Δ = R(C, h)⊕ R(C′, h′)] ≤ ε,

where the probability is taken over the random coin tosses of A and random

Δ
U←− {0, 1}n. We denote this success probability of A by SuccA,n,κ(t).

This section deals with the question of how many protocol transcripts τ the
adversary A has to see at least in order to successfully authenticate herself with
some prescribed probability p. In other words, we will derive a formula that
computes the success probability Succwc

A,n,κ(t) of a worst-case adversary A that
gets to see t transcripts. Before we do so, we need to clarify what the worst-
case scenario is. To this end, we first show that since an adversary A never sees
neither the PUF-responses nor the actual outputs of the complete construction
(i.e., after applying the hash function and the FE to the PUF’s outputs), the
helper data h that is included in each transcript τ is completely independent of
the PUF-challenges C and hence is of no use to A.

On the Inutility of Helper Data. We assume that the underlying PUF pro-
duces at least 2κ many different responses. The only relation of the helper
data to the PUF-challenges is the value Δ and the PUF-responses (which the
adversary A never sees): By construction, we have that R(C, h) = H(γ) and
R(C′, h′) = H(γ′) (with H(γ) ⊕H(γ′) = Δ) where γ, γ′ are outputs of the re-
construction phase of the FE each having κ bits of entropy. Since we assume that
the adversaryA does not know the behaviour of the used PUF, she does not have
any information about the PUF-responses R and R′ of C and C′, respectively.
But for each helper data h, there are at least 2κ different PUF-responses R that,

5 We include the zero element 0n as possible Δ-value, since it occurs with negligble
probability but simplifies the discussion in this section.

152 Ü. Kocabaş et al.

together with the helper data h, will lead to a valid γ in the reconstruction phase
of the FE. Then in turn, checking which γ is the correct one, the adversary A
first needs to compute H(γ) (and analogously H(γ′)) and then check whether
H(γ) ⊕H(γ′) = Δ. Since the hash function H is modelled as a random oracle,
the best A can do is to fix the first hash value H(γ) and then try all 2κ many
γ′ (brute-force) or to guess this value, which is successful with probability 2κ.
Obviously, we can do the same discussion with randomly chosen helper data,
which shows that the helper data is indistinguishable (in the parameter κ) from
random to A.

The Worst-Case Scenario. After seeing t transcripts, the adversary A has a
database of t (not necessarily different) tuples of the form (Δ, (C,C′), (h, h′))
such that R(C, h) ⊕ R(C′, h′) = Δ. We emphasize that A does not know the
actual values R(C, h). Now, the previous discussion allows us to forget about the
helper data part in A’s database, as it does not give the adversary any additional
information (from now on, we will write R(C) instead of R(C, h)). Then in turn,
we can think of A’s database as being a list of 2t PUF-challenges C1, . . . , C2t

where A knows for at least t pairs the value R(Ci)⊕R(Cj) = Δi,j .
We consider the following example and assume that one of the PUF-challenges

is always fixed, say to C1. Then, after seeing t transcripts, the adversary A gets
the following system of t equations:

R(C1)⊕R(Cj) = Δ1,j for all j = 2, . . . , t+ 1.

Adding any two of these yields a new equation of the form R(Ci)⊕R(Cj) = Δi,j

for 2 ≤ i < j ≤ t+1. This means that the adversary can construct up to
(
t
2

)− t
additional Δ-values that she has not seen before in any of the transcripts. Note
that this is all an adversary can do, since the challenges and the values Δ are
chosen uniformly at random and the PUF is unpredictable. Moreover, if one of
theseΔ’s is challenged in an authentication, the adversary can check whether she
can construct it from her known PUF-challenges in her database. We therefore
call such Δ-values A-checkable.

With this example in mind, we see that the worst-case scenario (which is
the best case for the adversary) occurs, when there are exactly

(
t
2

) A-checkable
Δ-values. On the other hand, there are only 2n different Δ-values in total, so if(
t
2

)
= t2−t

2 = 2n, all Δ-values are A-checkable and the adversary can successfully
authenticate with probability 1. This equation, however, is satisfied if and only
if t is a positive root of the degree 2 polynomial X2 −X − 2n+1, which in turn
is satisfied if and only if t = 1

2 + 1
2

√
1 + 2n+3 by using the “quadratic formula”.

This means that once the adversaryA has seen more than t =
⌊
1
2 + 1

2

√
1 + 2n+3

⌋

transcripts, she can successfully authenticate herself with probability 1 in the
worst-case scenario.

Security Analysis. Having clarified what the worst-case scenario is, considering
a passive adversary A, we can finally prove the main theorem of this section:

Converse PUF-Based Authentication 153

Theorem 2. Our authentication protocol is (t, κ, Succwc
A,n,κ(t))-secure, where

Succwc
A,n,κ(t) =

{
1 , if t >

⌊
1
2 + 1

2

√
1 + 2n+3

⌋

(2κ−1)t2−(2κ−1)t+2n+1

2n+κ+1 , else

is the probability of a worst-case adversary A successesfully authenticating herself
after having seen t transcripts, and κ is the (bit-) entropy of the FE’s output.

Proof. Let B be an arbitrary PPT adversary on our authentication protocol.
Since A is a worst-case adversary, we have that SuccB,n,κ(t) ≤ Succwc

A,n,κ(t). So
by Definition 1, it suffices to compute Succwc

A,n,κ(t). Right above the Theorem,

we have already shown that Succwc
A,n,κ(t) = 1, if t >

⌊
1
2 + 1

2

√
1 + 2n+3

⌋
by using

the “quadratic formula” to find a positive root of X2 −X − 2n+1.
On the other hand, if t ≤ ⌊

1
2 + 1

2

√
1 + 2n+3

⌋
, i.e.,

(
t
2

) ≤ 2n, we know that

there are precisely
(
t
2

) A-checkable Δ-values, by definition of the worst-case

scenario. So for a given random challenge Δ
U←− {0, 1}n (when A is trying to

authenticate herself), the probability that we hit on one of these A-checkable

Δ-values is
(t2)
2n = t2−t

2n+1 , i.e.,

Pr
Δ

U←−{0,1}n

[Δ is A-checkable] =
t2 − t

2n+1
.

Then again, if we hit on aΔ that is not A-checkable, we know by definition of the
worst case that it cannot be the XOR of two responses to values in A’s database
at all. This is because if there are precisely

(
t
2

)
many A-checkable Δ-values, the

adversaryA can only construct precisely t linearly dependent equations from the
t transcripts she has seen. However, this means that there are

(
t
2

)
many Δ-values

that can be constructed as the XOR of two responses to values in A’s database.
But since there are precisely

(
t
2

)
many A-checkable Δ-values, these must have

been all such values.
Now that we know the probability of hitting on an A-checkable Δ-value, we

also know the probability of not hitting on one, namely:

Pr
Δ

U←−{0,1}n

[Δ is not A-checkable] = 1− t2 − t

2n+1
=

2n+1 − t2 + t

2n+1
.

In such a case though, the adversary A cannot do better than guessing two
PUF-challenges C1, C2 (and actually some random helper data that we neglect
here, although it would actually reduce the success probability of A even more).
But the probability of guessing correctly (meaning that R(C1) ⊕ R(C2) = Δ)
is upper bounded by the probability of guessing two outputs γ1, γ2 of the FE
such that H(γ1) ⊕H(γ2) = Δ, which is 1

2κ where κ is the (bit-) entropy of the
outputs of the FE. So if Δ is not A-checkable, the success probability of A is

less or equal to 2n+1−t2+t
2n+1 · 1

2κ .

154 Ü. Kocabaş et al.

In total, this shows that if t ≤ ⌊
1
2 + 1

2

√
1 + 2n+3

⌋
, A’s probability of success-

fully authenticating herself is upper bounded by

(2κ − 1)t2 − (2κ − 1)t+ 2n+1

2n+κ+1
.

This completes the proof. �

We stress that by considering a worst-case adversary, the probability in Theorem
2 is overly pessimistic since the described worst-case scenario does happen with
a very small probability only. Furthermore, we want to mention that in many
existing authentication schemes, a passive adversary can perform model-building
attacks on the used PUF [25]. This is done by collecting a subset of all CRPs,
and then trying to create a mathematical model that allows emulating the PUF
in software. However, for this attack to work, the adversary needs to have access
to the PUF’s responses. We counter this problem in our protocol by using a
controlled PUF which hides the actual PUF responses from the adversary. This
way of protecting protocols against model-building attacks is well-known and
also mentioned in [25].

Replay Attacks. We stress that our above worst-case analysis captures replay
attacks as well. In fact, by the birthday paradox, the probability of a successful

replay attack (after having seen t transcripts) equals 1− e−
t2

2n+1 . But this term
grows more slowly than Succwc

A,n,κ(t) and is always smaller than this for relevant
sizes of t. For realistic values, such as n = 32 and κ = 48 (cf. Section 5), the
probability of a successful replay attack is always smaller than Succwc

A,n,κ(t) when
the adversary has seen more than t = 2581 transcripts. But even if the adversary
sees t = 9268 transcripts, this probability is still to small to raise any realistic
security concerns.

5 Instantiation of the Protocol

In this section,wegive a concrete instantiationof our authenticationprotocolwhich
involves choosing appropriate PUFs, Fuzzy Extractors, Random Number Gener-
ators, and hash functions. Starting with the first of these, we note that we will use
Arbiter PUFswhich, according to [17], have a bit error rate � of 3%.We stress again
that our authentication protocol hides the PUF-responses, so the existing model-
building attacks [25] do notwork.Based on thePUF’s error rate,we choose a binary
linear [μ, k, d]-code that can correct at least the errors that the PUF produces, for
the Fuzzy Extractor. In practice, we use a certain Golay code from [3] for this im-
plementation. An example step-by-step implementation is as follows:

1. Fix a desired output length n of the controlled PUF and the desired entropy κ
we want the FE to have – these lengths basically are the security parameters
as they determines the amount of protocol transcripts a worst-case adversary
is allowed to see before she can break the protocol with a prescribed success

Converse PUF-Based Authentication 155

(a)

10 12 14 16 18 20 22 24 26
0

0.2

0.4

0.6

0.8

1

Size log2(ρ) of prover’s database

P
ro

b
a

b
ili

ty
 o

f
a

 s
u

c
c
e

s
s
fu

l
a

u
th

e
n

ti
c
a

ti
o

n

n = 32

n = 48

(b)

10 15 20 25
0

0.2

0.4

0.6

0.8

1

Adversary collected log2(t) transcripts

P
ro

b
a

b
ili

ty
 o

f
a

 s
u

c
c
e

s
s
fu

l
a

u
th

e
n

ti
c
a

ti
o

n

n = 32

n = 48

Fig. 3. (a) Probability SuccAuth
P,n (ρ) of a successful authentication for varying sizes ρ of

P ’s database D and fixed values n = 32 and n = 48. (b) Success probability Succwc
A,n,κ(t)

of a worst-case adversary A for a growing number of protocol transcripts t she has seen
and fixed values n = 32 and n = 48, while κ = 48. Note the logarithmic x-axis.

156 Ü. Kocabaş et al.

probability (cf. Theorem 2). Here, we fix n = 32, κ = 48 and want to bound
the success probability by 0.01. As an alternative, we also provide the case
where n = 48 for the same κ = 48.

2. Choose a cryptographic hash function H : {0, 1}∗ −→ {0, 1}n. Here, we use
an LFSR-based Toeplitz Hash function of output length 32 (cf. [9]). In our
alternative parameter setting, we need an output length of 48 bits.

3. Choose κ Arbiter PUFs – this ensures precisely 2κ many PUF-responses.
4. Choose a binary linear [μ, k, d]-code C which can correct at least �·κ

100 errors.
Here, we choose a [23, 12, 7]-Golay code (from [3]) which can correct up to
3 ≥ 3·48

100 ≈ 2 errors. In order to get an entropy of κ = 48 bits in the
FE’s output, we divide an output of the PUF into 4 parts containing 12
bits each. Then, we append 11 zeros to each part to ensure a length of 23.
After this we continue with the usual protocol, which means that we have
to use the reconstruction phase of the FE 4 times and create 4 helper data.
In each authentication round, the prover then needs to send 4 helper data
instead of just 1. As we have shown in Section 4, this does not affect the
security of our scheme. The reconstruction phase of the FE also needs to run
4 times which creates 4 code words γ1, . . . , γ4 of length 23 containing 12 bits
of entropy each. The final evaluation of the hash function H will then be
on the concatenation of these 4 code words, i.e., H(γ1‖ . . . ‖γ4). We notice
that the input γ1‖ . . . ‖γ4 to H has 48 bits of entropy which means that in
Theorem 2, we can use the paramater κ = 48 as we desired.

According to Theorem 1, when our protocol is instatiated with these parameters
where n = 32, κ = 48 (or n = 48), the prover P ’s database D can be constructed
to have size ρ = 140639 (or ρ = 36003337) which ensures a successful authenti-
cation with probability SuccAuth

P,n (ρ) ≥ 0.99 (or SuccAuth
P,n (ρ) ≥ 0.99), cf. Fig. 3(a).

Concerning the security of our protocol in this instantiation, Fig. 3(b) tells us
that a worst-case adversary is allowed to see at most t = 9268 (or t = 2372657)
protocol transcripts to ensure a success probability Succwc

A,n,κ(t) < 0.01 (or
Succwc

A,n,κ(t) < 0.01), cf. Theorem 2.
Depending on the application scenario, we can arbitrarily vary the above

parameters in order to get a higher level of security but on the cost of efficiency.

6 Conclusion

Motivated by the fact that previous PUF-based authentication protocols fail to
work in some application scenarios, we introduced the new notion of converse
PUF-based authentication: opposed to previous solutions, in our approach the
verifier holds a PUF while the prover does not. We presented the first such pro-
tocol, gave an extensive security analysis, and showed that it can also be used for
authenticated key exchange. Besides the mentioned application examples in the
present paper, future work includes the employment of our new protocol to other
applications. Additionally, we consider an actual implementation on resource-
constraint devices (such as sensor nodes) as an interesting work to pursue.

Acknowledgement. This work has been supported in part by the European
Commission through the FP7 programme under contract 238811 UNIQUE.

Converse PUF-Based Authentication 157

References

1. Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., Tuyls, P.: Memory Leakage-
Resilient Encryption Based on Physically Unclonable Functions. In: Matsui, M.
(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 685–702. Springer, Heidelberg
(2009)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM (1993)

3. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient Helper
Data Key Extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)

4. Bringer, J., Chabanne, H., Icart, T.: On Physical Obfuscation of Cryptographic
Algorithms. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922,
pp. 88–103. Springer, Heidelberg (2009)

5. Das, A., Kocabaş, Ü., Sadeghi, A.-R., Verbauwhede, I.: PUF-based Secure Test
Wrapper Design for Cryptographic SoC Testing. In: Design, Automation and Test
in Europe (DATE). IEEE (2012)

6. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate Strong Keys
from Biometrics and Other Noisy Data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

7. Eichhorn, I., Koeberl, P., van der Leest, V.: Logically reconfigurable PUFs:
Memory-based secure key storage. In: ACM Workshop on Scalable Trusted Com-
puting (ACM STC), pp. 59–64. ACM, New York (2011)

8. Gassend, B.: Physical Random Functions. Master’s thesis, MIT, MA, USA
(January 2003)

9. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical random
functions. In: Computer Security Applications Conference (ACSAC), pp. 149–160.
IEEE (2002)

10. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical random
functions. In: Computer Security Applications Conference (ACSAC), pp. 149–160.
IEEE (2002)

11. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: Proceedings of the 9th ACM Conference on Computer and Communica-
tions Security (CCS 2002), pp. 148–160. ACM (2002)

12. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: ACM Conference on Computer and Communications Security (ACM
CCS), pp. 148–160. ACM, New York (2002)

13. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA Intrinsic PUFs and
Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

14. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: Brand and IP protection with
physical unclonable functions. In: IEEE International Symposium on Circuits and
Systems (ISCAS) 2008, pp. 3186–3189. IEEE (May 2008)

15. Holcomb, D.E., Burleson, W.P., Fu, K.: Initial SRAM state as a fingerprint and
source of true random numbers for RFID tags. In: Conference on RFID Security
2007, Malaga, Spain, July 11-13 (2007)

16. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.-J., Tuyls, P.: Extended abstract:
The butterfly PUF protecting IP on every FPGA. In: Workshop on Hardware-
Oriented Security (HOST), pp. 67–70. IEEE (June 2008)

158 Ü. Kocabaş et al.

17. Lee, J.W., Lim, D., Gassend, B., Suh, E.G., van Dijk, M., Devadas, S.: A technique
to build a secret key in integrated circuits for identification and authentication
applications. In: Symposium on VLSI Circuits, pp. 176–179. IEEE (June 2004)

18. Lim, D., Lee, J.W., Gassend, B., Suh, E.G., van Dijk, M., Devadas, S.: Extract-
ing secret keys from integrated circuits. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 13(10), 1200–1205 (2005)

19. Lin, L., Holcomb, D., Krishnappa, D.K., Shabadi, P., Burleson, W.: Low-power
sub-threshold design of secure physical unclonable functions. In: International
Symposium on Low-Power Electronics and Design (ISLPED), pp. 43–48. IEEE
(August 2010)

20. Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from flip-flops on reconfig-
urable devices (November 2008)

21. Maes, R., Verbauwhede, I.: Physically unclonable functions: A study on the state
of the art and future research directions. In: Towards Hardware-Intrinsic Security
(2010)

22. Maiti, A., Casarona, J., McHale, L., Schaumont, P.: A large scale characteriza-
tion of RO-PUF. In: International Symposium on Hardware-Oriented Security and
Trust (HOST), pp. 94–99. IEEE (June 2010)

23. Öztürk, E., Hammouri, G., Sunar, B.: Towards robust low cost authentication
for pervasive devices. In: International Conference on Pervasive Computing and
Communications (PerCom), pp. 170–178. IEEE, Washington, DC (2008)

24. Ranasinghe, D.C., Engels, D.W., Cole, P.H.: Security and privacy: Modest propos-
als for Low-Cost RFID systems. In: Auto-ID Labs Research Workshop (September
2004)

25. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Mod-
eling attacks on physical unclonable functions. In: ACM Conference on Computer
and Communications Security (ACM CCS), pp. 237–249. ACM, New York (2010)

26. Sadeghi, A.-R., Visconti, I., Wachsmann, C.: Enhancing RFID security and pri-
vacy by physically unclonable functions. In: Towards Hardware-Intrinsic Security.
Information Security and Cryptography, pp. 281–305. Springer, Heidelberg (2010)

27. Schulz, S., Sadeghi, A.-R., Wachsmann, C.: Short paper: Lightweight remote at-
testation using physical functions. In: Proceedings of the Fourth ACM Conference
on Wireless Network Security (ACM WiSec), pp. 109–114. ACM, New York (2011)

28. Su, Y., Holleman, J., Otis, B.P.: A digital 1.6 pJ/bit chip identification circuit
using process variations. IEEE Journal of Solid-State Circuits 43(1), 69–77 (2008)

29. Suh, E.G., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: ACM/IEEE Design Automation Conference (DAC),
pp. 9–14. IEEE (June 2007)

30. Tuyls, P., Batina, L.: RFID-Tags for Anti-counterfeiting. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 115–131. Springer, Heidelberg (2006)

31. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.:
Read-Proof Hardware from Protective Coatings. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)

32. van der Leest, V., Schrijen, G.-J., Handschuh, H., Tuyls, P.: Hardware intrinsic
security from D flip-flops. In: ACM Workshop on Scalable Trusted Computing
(ACM STC), pp. 53–62. ACM, New York (2010)

33. Škorić, B., Tuyls, P., Ophey, W.: Robust Key Extraction from Physical Uncloneable
Functions. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 407–422. Springer, Heidelberg (2005)

Trustworthy Execution on Mobile Devices:
What Security Properties Can My Mobile

Platform Give Me?

Amit Vasudevan, Emmanuel Owusu, Zongwei Zhou,
James Newsome, and Jonathan M. McCune

CyLab/Carnegie Mellon University
{amitvasudevan,eowusu,stephenzhou,jnewsome,jonmccune}@cmu.edu

Abstract. We are now in the post-PC era, yet our mobile devices are insecure.
We consider the different stake-holders in today’s mobile device ecosystem, and
analyze why widely-deployed hardware security primitives on mobile device
platforms are inaccessible to application developers and end-users. We system-
atize existing proposals for leveraging such primitives, and show that they can
indeed strengthen the security properties available to applications and users, all
without reducing the properties currently enjoyed by OEMs and network carriers.
We also highlight shortcomings of existing proposals and make recommendations
for future research that may yield practical, deployable results.

1 Introduction

We are putting ever more trust in mobile devices. We use them for e-commerce and
banking, whether through a web browser or specialized apps. Such apps hold high-
value credentials and process sensitive data that need to be protected. Meanwhile, mo-
bile phone OSes are untrustworthy. While in principle they attempt to be more secure
than desktop OSes (e.g., by preventing modified OSes from booting, by using safer
languages, or by sandboxing mechanisms for third-party apps such as capabilities), in
practice they are still fraught with vulnerabilities.

Mobile OSes are as complex as desktop OSes. Isolation and sandboxing provided
by the OS is routinely broken, c.f. Apple iOS jail-breaking by clicking a button on
a web page [11, 42]. Mobile OSes often share code with open-source OSes such as
GNU/Linux, but often lag behind in applying security fixes, meaning that attackers
need only look at recent patches to the open-source code to find vulnerabilities in the
mobile device’s code. Therefore, there is a need for isolation and security primitives
exposed to application developers in such a way that they need not trust the host OS.

We argue that this problem is severe enough to have garnered significant attention
outside of the security community. Demand for mobile applications with stronger se-
curity requirements has given rise to add-on hardware with stronger security properties
(§2). However, many current mobile devices already have hardware support for isolated
execution environments and other security features. Unfortunately, these features are
not made available to all parties who may benefit from their presence.

Today’s mobile device hardware and software ecosystem consists of multiple stake-
holders, primarily comprising the OEM (handset manufacturer), telecommunications

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 159–178, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

160 A. Vasudevan et al.

provider or carrier, application developers, and the device’s owner (the human user).
Carriers typically also serve in the role of platform integrator, customizing an OEM’s
handset with additional features and branding (typically via firmware or custom apps).
To date, security properties desirable from the perspectives of application developers
and users have been secondary concerns to the OEMs and carriers [10, 33, 45]. The
historically closed partnerships between OEMs and carriers have lead to a monolithic
trust model within today’s fielded hardware security primitives. Everything “inside” is
assumed to be trustworthy, i.e., the software modules executing in the isolated envi-
ronment often reside in each other’s trusted computing base (TCB). As long as this
situation persists, OEMs and carriers will not allow third-party code to leverage these
features. Only in a few cases, where the OEM has partnered with a third party, are these
features used to protect the user’s data (c.f. §2, Google Wallet).

We approach this scenario optimistically, and argue that there is room to meet the
needs of application developers and users while adding negligible cost. We thus define
the principal challenge for the technical community: to present sound technical evi-
dence that application developers and users can simultaneously benefit from hard-
ware security features without detracting from the security properties required for
the OEMs and carriers.1 Our goal in this paper is to systematize deployed (or readily
available) hardware security features, and to provide an extensive and realistic evalu-
ation of existing (largely academic) proposals for multiplexing these features amongst
all stake-holders.

We proceed in §3 by defining a set of security features that may be useful for appli-
cation developers that need to process sensitive data. Our focus is on protecting secrets
belonging to the user, such as credentials used to authenticate to online services and
locally cached data.

We next provide an overview of hardware security features available on today’s mo-
bile platforms (§4). We show that hardware security features that can provide the desired
properties to application developers are prevalent, but they are typically not accessible
in COTS devices’ default configurations.

We then move on to evaluate existing proposals (given the hardware security features
available on mobile devices) for creating a trustworthy execution environment that is
able to safely run sensitive applications that are potentially considered untrustworthy
by other stake-holders (§5). We show that multiplexing these secure execution envi-
ronments for mutually-distrusting sensitive applications is quite possible if the threat
model for application developers and users is primarily software-based attacks (§6).

Finally (§7), we provide an end-to-end analysis and recommendations for the current
best practices for making the most of mobile hardware-based security features, from
the points of view of each stake-holder. Unfortunately, without firmware or software
changes by OEMs and carriers, individual application developers today have little op-
portunity to leverage the hardware security primitives in today’s mobile platforms. The
only real options are either to partner with a mobile platform integrator, to distribute

1 We wish to distinguish this challenge from proposals that OEMs increase their hardware costs
by including additional hardware security features that are exclusively of interest to application
developers and users. Our intention in this paper is to emphasize practicality, and thus define
such proposals to be out of scope.

Trustworthy Execution on Mobile Devices 161

a customized peripheral (e.g., a smart-card-like device that can integrate with a phone,
such as a storage card with additional functionality), or to purchase unlocked devel-
opment hardware. We provide recommendations for OEMs and carriers for how they
can make hardware-based security capabilities more readily accessible to application
developers without compromising the security of their existing uses.

2 Demand for Applications Requiring Hardware Security

Does providing third-party developers with access to hardware-supported security fea-
tures make sense for the OEMs or carriers? This is an important consideration for an
industry where a few cents in cost savings can be the deciding factor for features. We
show that there are many applications on mobile devices that require strong security
features, and that must currently work around the lack of those features. Being forced
to deal with these work-arounds stifles the market for security-sensitive mobile appli-
cations, and endangers the security of the applications that are deployed anyways.

Google Wallet2 allows consumers to use their mobile phones as a virtual wallet. The
application stores users’ payment credentials locally, which are then used to make trans-
actions via near field communication (NFC) with point-of-sale (POS) devices. To store
the users’ credentials securely, Wallet relies on a co-processor called a Secure Element
(SE) which provides isolated execution (§3), secure storage (§3), and a trusted path (§3)
to the on-board NFC radio. Unfortunately, the SE only runs code that is signed by the
device manufacturer. This may be because the SE lacks the ability to isolate authorized
modules from each-other, or it may simply be considered a waste of time. As a result,
developers without Google’s clout will not be able to leverage these capabilities for their
own applications. There is evidence that Apple has similar plans for its products; they
recently published a patent for an embedded SE with space allocated for both a Univer-
sal Subscriber Identity Module (USIM) application and “other” applications [41].

Services such as Square and GoPay allow merchants to complete credit card trans-
actions with their mobile device using an application and a magnetic stripe reader [34].
While Square’s security policies3 indicate that they do not store credit card data on
the mobile device, the data does not appear to be adequately protected when it passes
through the mobile device. Researchers have verified that the stripe reader does not
protect the secrecy or integrity of the read-data [37]. This implies that malware on the
mobile device could likely eavesdrop on credit-card data for swiped cards or inject
stolen credit-card information to make a purchase [37].

These applications could benefit greatly from the hardware-backed security features
we describe in §3. A trusted path (§3) could enforce that the intended client applica-
tion has exclusive access to the audio port (with which the card readers interface), thus
protecting the secrecy and integrity of that data from malware. They could also ben-
efit greatly from a remote attestation mechanism (§3), which the servers could use to
ensure that received-data is actually from the authorized client-application, and that it
used a trusted-path to the reader, thus helping to ensure that the physical credit card was

2 http://www.google.com/wallet/how-it-works-security.html
3 https://squareup.com/security

http://www.google.com/wallet/how-it-works-security.html
https://squareup.com/security

162 A. Vasudevan et al.

actually present. OEMs could provide a more tightly integrated experience for devel-
opers, and avoid potential security vulnerabilities by opening up pre-existing hardware
security primitives to application developers.

3 Desired Security Features

Here we describe a set of features intended to enable secure execution on mobile de-
vices. This can be interpreted as the wish-list for a security-conscious application devel-
oper. The strength of these features can typically be measured by the size, complexity,
and attack surface of the components that must be relied upon for a given security prop-
erty to hold. This is often referred to as the trusted computing base (TCB). On many
systems, the OS provides security-relevant APIs for application developers. However,
this places the OS in the TCB, meaning that a compromised OS voids the relevant se-
curity properties. We briefly discuss whether and how the security features below are
provided on today’s mobile platforms, and some strategies for providing these proper-
ties to applications without including the OS in the TCB.

Isolated Execution. Isolated execution gives the application developer the ability to
run a software module in complete isolation from other code. It provides secrecy and
integrity of that module’s code and data at run-time. Today’s mobile OSes provide
process-based isolation to protect applications’ address spaces and other system re-
sources. However, these mechanisms are circumventable when the OS itself is com-
promised. To provide isolated execution that does not depend on the operating system,
some alternative execution environment not under control of the OS is required. Such
an environment could be provided by a layer running under the OS on the same hard-
ware (i.e., a hypervisor), or in a parallel environment (such as a separate coprocessor).
We examine some candidate isolated execution environments and their suitability for
mobile platforms in §5. Regarding today’s mobile platforms, the Meego Linux distribu-
tion for mobile devices does include provisions for isolated execution. Meego’s Mobile
Simplified Security Framework (MSSF) implements a trusted execution environment
(TrEE) that is protected from the OS [29]. However, this environment is not open to
third party developers.

Secure Storage. Secure storage provides secrecy, integrity, and/or freshness for a soft-
ware module’s data at rest (primarily when the device is powered off, but also under
certain conditions based upon which software has loaded). The most common exam-
ple demonstrating the need for secure storage is access credentials, such as a cached
password or a private asymmetric key. Most mobile OSes provide this property at least
using file system permissions, which are enforced by the operating system. However,
this can be circumvented by compromising the OS or by removing the storage media
and accessing it directly.

A stronger form of secure storage can be built using a storage location that is physi-
cally protected, and with access control implemented independently of the OS – called
a root of trust for storage, or RTS. A RTS can be used to bootstrap a larger secure stor-
age mechanism, using sealed storage. The sealed storage primitive uses a key protected
by the RTS to encrypt the given data, and to protect the authenticity of that data and of

Trustworthy Execution on Mobile Devices 163

attached meta-data. The metadata includes an access-control-policy for which code is
authorized to request decryption (e.g., represented as a hash over the code), and poten-
tially other data such as which software module sealed the data in the first place. Sealed
data (ciphertext) can then be stored on an unprotected storage device.

Symbian and Meego make use of protected memory and sealed storage [29]. MSSF
uses keys kept in its Trusted Execution Environment (TrEE) (§3) to protect the integrity
of application binaries, and to provide a sealed storage facility, which is available to
third party developers [29]. While this offers protection against offline attacks, since
third party applications are not allowed to execute in the TrEE, data protected by this
mechanism is vulnerable to online attacks via a compromised OS. Recent versions
of iOS combine a user-secret with a protected device-key to implement secure stor-
age [3]. However, the device-key does not appear to be access-controlled by code iden-
tity, meaning that an attacker can defeat this mechanism if he is able to obtain the user
secret, e.g., via malware, or via performing an online brute-force attack [17, 25]. An-
droid offers an AccountManager API [2]. The model used by this API supports code
modules that perform operations on the stored credential rather than releasing them
directly, which would make it amenable to a model with sealed storage and isolated ex-
ecution. Unfortunately, it appears that the data is currently stored in plaintext, and can
be retrieved via direct access to the storage device or by compromising the operating
system [1, 50].

Remote Attestation. Remote attestation allows remote parties to verify that a particular
message originated from a particular software module. For an application running on a
normal OS, the attestation would necessarily include a measurement of the OS kernel,
which is part of that TCB, and of the application itself. A remote party, such as an online
banking service, could use this information, if it knew a list of valid OS kernel identities
and a list of valid client banking-app identities, to ensure that the system had booted a
known-good kernel, and that the OS had launched a known-good version of the client
banking app. Remote attestations are more meaningful when the TCB is relatively small
and stable. In the example of a banking application, if a critical component of the app
ran as a module in an isolated execution environment with a remote-attestation capa-
bility, then the attestation would only need to include a measurement of the smaller
isolated execution environment code, and of the given module. Not only would it be
easier to keep track of a list of known-good images but the attestation would be more
meaningful because the isolated execution environment is presumed to be less suscep-
tible to run-time compromise. This is important because the attestation only tells the
verifier what code was loaded; it would not detect if a run-time exploit overwrote that
code with unauthorized code.

Attestation mechanisms are typically built using a private key that is only accessible
by a small TCB (§3) and kept in secure storage (§3). A certificate issued by a trusted
party, such as the device manufacturer, certifies that the corresponding public key be-
longs to the device. One or more platform configuration registers store measurements
of loaded code. The private key can then be used to generate signed attestations about
its state or the state of the rest of the system. Some forms of remote attestation are

164 A. Vasudevan et al.

implemented and used on today’s mobile platforms [29]. However, as far as we know,
no such mechanisms are made available to arbitrary third-party developers.

Secure Provisioning. Secure provisioning is a mechanism to send data to a specific
software module, running on a specific device, while protecting that data’s secrecy and
integrity. This is useful for migrating data between a user’s devices. For example, a
user may have a credential database that he wishes to migrate or synchronize across
devices while ensuring that only the corresponding credential-application running on
the intended destination device will be able to access that data. One way to build a
secure provisioning mechanism is to use remote attestation (§3) to attest that a public
encryption key belongs to a particular software module running on a particular device.
The sender can then use that key to protect data to be sent to the target software mod-
ule on the target device. Some of today’s mobile platforms implement mechanisms to
authenticate external information from the hardware stake-holders (e.g., software up-
dates), with the hash of the public portion of the signing key stored immutably on the
device [29]. Other secure provisioning mechanisms are likely implemented and used by
device manufacturers to implement features such as digital rights management. As far
as we know, however, secure provisioning mechanisms are not available for direct use
by arbitrary third-party developers on mobile platforms.

Trusted Path. Trusted path protects authenticity, and optionally secrecy and availabil-
ity, of communication between a software module and a peripheral (e.g., keyboard or
touchscreen) [18,24,32,46,52]. When used with human-interface devices, this property
allows a human user to ascertain precisely the application with which she is currently
interacting. With full trusted path support, malicious applications that attempt to spoof
legitimate applications by creating identical-looking user interfaces will conceivably
become ineffective. Building secure trusted paths is a challenging problem. Zhou et. al.
propose a trusted path on commodity x86 computers with a minimal TCB [52]. Their
system enables users to verify the states and configurations of one or more trusted-paths
using a simple, secret-less, hand-held device. In principle, many mobile platforms also
support a form of trusted path, but the TCB is relatively large and untrustworthy. For
example, the Home button on iOS and Android devices constitutes a secure attention
sequence that by design uncircumventably transfers control of the user interface to the
OS’s “Home” screen. Once there, the user can transfer control to the desired applica-
tion. However, the TCB for such mechanisms includes the entire OS and third-party
apps. The OS can be removed from the TCB of such trusted paths by preventing the
OS from communicating directly with the device and running the device driver in an
isolated environment. This requires the platform to support a low-level access-control
policy for access to peripherals. ARM’s TrustZone extensions facilitate this type of
isolation (§4.1).

4 Available Hardware Primitives

In this section we discuss currently-available hardware security primitives with a focus
on existing smartphone and tablet platforms. As the vast majority of these platforms are

Trustworthy Execution on Mobile Devices 165

Fig. 1. Generic ARM platform hardware and security architecture

built for the ARM architecture4, we first present a generic ARM platform hardware and
security architecture, focusing our discussion on platform hardware components that
help realize the features discussed in §3. We then identify design gaps and implementa-
tion challenges in off-the-shelf mobile devices that prevent third-party application de-
velopers from fully realizing the desired security properties. Finally, we provide details
of inexpensive mobile development platforms with myriad security features, to serve as
references against which to compare mass-market devices.

ARM’s platform architecture comprises the Advanced Microcontroller Bus Archi-
tecture (AMBA) and different types of interconnects, controllers and peripherals. ARM
calls these the “CoreLink”, which has four major components (Figure 1). Network in-
terconnects are the low-level physical on-chip interconnection primitives that bind var-
ious system components together. AMBA defines two basic types of interconnects: (i)
the Advanced eXtensible Interface (AXI) – a high performance master and slave in-
terconnect interface, and (ii) the Advanced Peripheral Bus (APB)—a low-bandwidth
interface to peripherals. Memory controllers correspond to the predominant memory
types: (i) static memory controllers (SMC) interfaced with SRAM, and (ii) dynamic
memory controllers (DMC) interfaced with DRAM. System controllers include the:
(i) Generic interrupt controller (GIC)—for managing device interrupts, (ii) DMA con-
trollers (DMAC)—for direct memory access by peripheral devices, and (iii) TrustZone

4 Intel ATOM [26] line of embedded processors are based on commodity x86 architecture and
are also targetted towards smartphone and tablet platforms. While a few models contain secu-
rity features such as hardware virtualization, the ATOM System-on-Chip (SoC) that is targetted
at smartphone platforms currently does not seem to include such support [27]. We therefore
focus our attention on the more widely spread ARM architecture and its security extensions.

166 A. Vasudevan et al.

Monitor Mode

Secure-World

Supervisor Mode Supervisor Mode

HYP Mode

User ModeUser Mode

Normal-World

Fig. 2. ARM Isolated Execution Hardware Primitives. Split-world-based isolation enables both
secure and normal processor worlds. Virtualization-based isolation adds a higher-privileged layer
for a hypervisor in the normal world.

Address Space Controller (TZASC) and TrustZone Memory Adapter (TZMA)—for
partitioning memory between multiple “worlds” in a split-world architecture (§4.1).
System peripherals include LCDs, timers, UARTs, GPIO pins, etc. These peripherals
can be further assigned to specific “worlds”). We now proceed to discuss the above
components in the context of each of the security features described in §3.

4.1 Isolated Execution

Multiple hardware primitives exist for isolated execution on ARM architecture devices
today. ARM first introduced their TrustZone Security Extensions in 2003 [4], enabling
a “two-world” model, whereby both secure and non-secure software can coexist on the
same processor. ARM recently announced hardware support for virtualization for their
Cortex A15 CPU family [8]. These extensions enable more traditional virtualization
solutions in the form of hypervisors or virtual machine monitors [39].

Split-World-Based Isolated Execution. ARM’s TrustZone Security Extensions [5]
enable a single physical processor core to safely and efficiently execute code in two
“worlds”—the secure world for security sensitive application code and the normal
world for non-secure applications (Figure 2). CPU state is banked between both worlds;
the secure-world can access all normal-world state, but not vice-versa. A new processor
mode, called the monitor mode, supports context switching between the secure-world
and the normal-world. The monitor mode software is responsible for context-switching
CPU state that is not automatically banked.

Memory Isolation. ARM’s TrustZone Security Extensions split CPU state into two dis-
tinct worlds, but they alone cannot partition memory between the two worlds. Memory
isolation is achieved using a combination of TrustZone-aware Memory Management
Units (MMU), TrustZone Address Space Controllers (TZASC), TrustZone Memory
Adapters (TZMA), and Tightly Coupled Memory (TCM).

A TrustZone-aware MMU provides a distinct MMU interface for each processor
world, enabling each world to have a local set of virtual-to-physical memory address
translation tables. The translation tables have protection mechanisms which prevent the
normal-world from accessing secure-world memory. The TZASC interfaces devices
such as Dynamic Memory Controllers (DMC) to partition DRAM into distinct memory
regions. The TZASC has a secure-world-only programming interface that can be used

Trustworthy Execution on Mobile Devices 167

to designate a given memory region as secure or normal. The TZMA provides similar
functionality for off-chip ROM or SRAM. With a TZMA, ROM or SRAM can be par-
titioned between the two worlds. Tightly Coupled Memory (TCM) is memory that is
in the same physical package as the CPU, so that physical tampering with the external
pins of an integrated circuit will be ineffective in trying to learn the information stored
in TCM. Secure-world software is responsible for configuring access permissions (se-
cure vs. normal) for a given TCM block.

Peripheral Isolation. Peripherals in the ARM platform architecture can be designated
as secure or normal. ARM’s “CoreLink” architecture connects high-speed system de-
vices such as the CPU and memory controllers using the Advanced eXtensible Inter-
face (AXI) bus [7]. The rest of the system peripherals are typically connected using
the Advanced Peripheral Bus (APB). The AXI-to-APB bridge device is responsible for
interfacing the APB interconnects with the AXI fabric and contains address decode
logic that selects the desired peripheral based on the security state of the incoming AXI
transaction; the bridge rejects normal-world transactions to peripherals designated to
be used by the secure-world. A TrustZone AXI-to-APB bridge can include an optional
software programming interface that allows dynamic switching of the security state of
a given peripheral. This can be used for sharing a peripheral between both the secure
and normal worlds.

DMA Protection. Certain peripherals (e.g., LCD controllers and storage controllers)
can transfer data to and from memory using Direct Memory Access (DMA), which is
not access-controlled by the AXI-to-APB bridge. A TrustZone-aware DMA controller
(DMAC) supports concurrent secure and normal peripheral DMA accesses, each with
independent interrupt events. Together with the TZASC, TZMA, GIC, and the AXI-to-
APB bridge, the DMAC can prevent a peripheral assigned to the normal-world from
performing a DMA transfer to or from secure-world memory regions.

Hardware Interrupt Isolation. As peripherals can be assigned to either the secure or
normal world, there is a need to provide basic interrupt isolation so that interrupts from
secure peripherals are always handled in secure world. Hardware interrupts on the cur-
rent ARM platforms can be categorized into: IRQ (normal interrupt request) and FIQ
(fast interrupt request). The Generic Interrupt Controller (GIC) can configure interrupt
lines as secure or normal and enables secure-world software (in monitor mode) to selec-
tively trap such system hardware interrupts. This enables flexible interrupt partitioning
models. For example, IRQs can be assigned for normal-world operations and FIQs for
secure-world operations. The GIC hardware also includes logic to prevent normal-world
software from modifying secure interrupt line configurations. Thus, secure world code
and data can be protected from potentially malicious normal-world interrupt handlers,
but TrustZone by itself is not sufficient to implement device virtualization.

Virtualization-Based Isolated Execution. ARM’s Virtualization Extensions provide
hardware virtualization support to normal-world software starting with the Cortex A15
CPU family [8]. The basic model for a virtualized system involves a hypervisor, that
runs in a new normal-world mode called Hyp mode (Figure 2). The hypervisor is re-
sponsible for multiplexing guest OSes, which run in the normal world’s traditional OS
and user modes. Note that software using the secure world is unchanged by this model,

168 A. Vasudevan et al.

as the hypervisor has no access to secure world state. The hypervisor can optionally
trap any calls from a guest OS to the secure world. As hardware-supported virtualiza-
tion architectures have been studied for over four decades [39], we elide further detail
on the ARM specifics.

4.2 Secure Storage

Current ARM platform specifications do not include a root of trust for long-term se-
cure storage. Platform hardware vendors are free to choose and implement a propri-
etary mechanism if desired. The Secure Element (SE) is one such proprietary solution
for establishing a root of trust for mobile devices. SEs provide storage and process-
ing of digital credentials and sensitive data in a physically separate protected module
such as a smart-card, thereby reducing the physical attack surface. Embedded SEs are
commonly used to provide security for near field communication (NFC) applications
such as automated access control, ticketing, and mobile payment systems. For example,
Google Wallet uses embedded secure elements to store and manage encrypted payment
card credentials,5 so that they are never available to a compromised mobile device OS.
Development platforms such as the FreeScale i.MX53 (§4.7) and Texas Instruments
M-Shield (§4.7), employ an embedded SE to provide a tamper-resistant secure execu-
tion and storage environment. Giesecke & Devrient and Tyfone are notable vendors
currently selling removable SEs. Using these, third-party developers can develop appli-
cations against a single platform-independent interface. However, removable SEs are
readily physically separated from the mobile device (e.g., the SE may be independently
lost or stolen).

4.3 Remote Attestation

A remote attestation primitive relies on a private key that is exclusively accessible by a
small TCB, and the presence of one or more registers to store measurements (crypto-
graphic hashes) of the loaded code (§3). A vast majority of off-the-shelf mobile devices
include support for secure or authenticated boot. The boot-ROM is a small immutable
piece of code which has access to a public key (or its hash) and authenticates boot
components that are signed by the device authority’s private key. Platforms such as the
FreeScale i.MX53 (§4.7) and Texas Instruments’ M-Shield (§4.7) contain secure on-
chip keys (implemented using e-fuses) that are one-time-programmable keys accessible
only from inside a designated secure environment for such authentication purposes.
However, none of the hardware platforms, to the best of our knowledge, support plat-
form registers to accumulate measurements of the loaded code. In principle, this support
could be added in software by leveraging the hardware isolation primitives and secure
storage described previously.

4.4 Secure Provisioning

Current mobile platforms implement mechanisms to authenticate external informa-
tion, with the hash of the public portion of the signing key stored immutably on the

5 http://www.google.com/wallet/faq.html

http://www.google.com/wallet/faq.html

Trustworthy Execution on Mobile Devices 169

device [29]. However, such capabilities are currently restricted to OEMs or carriers
(e.g., software updates, assigning different identities to the device) and remain unavail-
able for use by arbitrary third-party developers.

4.5 Trusted Path

Platforms such as M-Shield (§4.7) provide basic hardware primitives to realize a trusted
path. A special chip interconnect allows peripheral and memory accesses only by the
designated secure environment, and secure DMA channels to guarantee data confiden-
tiality from origin to destination. Such capabilities are being used for DRM (video
streaming) on certain off-the-shelf mobile devices [22], but it remains unclear if they
are available to third-party developers.

4.6 Design Gaps and Challenges

Having described the ARM hardware platform and security architecture and how the
different components interplay to provide various hardware security features, we now
identify design gaps and implementation challenges in off-the-shelf mobile devices
that prevent third-party application developers from fully realizing the desired security
features.

ARM’s hardware platform architecture is only a specification, leaving the OEMs
free to customize a specific implementation to suit their business needs. This means that
OEMs could leave out components whose absence can severely constrain some security
features and in some cases even break feature correctness. For example, the absence of
a TZASC (and/or TZMA) leaves main memory (DRAM/SRAM) accessible to both
the secure and normal worlds. The only way to enforce memory isolation between the
worlds is to use TCM (§ 4.1), which has a very limited size (typically 16-32 KB).
Similarly, DMA protection requires a TrustZone-aware DMA controller, GIC, TZASC
(and/or TZMA), and a TrustZone-aware AXI-to-APB bridge. The absence of one of
these components will result in the DMA protection being ineffective.

Unfortunately, most of today’s off-the-shelf mobile devices include a single set of de-
vices shared between the secure and normal worlds and do not include all the
required components to fully realize the hardware security primitives described pre-
viously. This results in a huge gap between functional specification and device imple-
mentation. OEMs and carriers are generally not concerned with DMA-style attacks or
including a TZASC (and/or TZMA) because their physical security requirements al-
ready force them to process sensitive data in TCM or other device-specific isolated
environments unreachable via DMA.

Many OEMs explicitly lock-out platform security features. For example, TrustZone
secure-world is enabled or disabled by a single bit in the system configuration regis-
ter [5]. Once this bit is set to 1 (disabling secure-world), it can no longer be cleared
until a device reset. In many off-the-shelf mobile devices such as the Droid, Droid-X,
BeagleBoard, and some Gumstix platforms, this bit is set to 1 by the boot-ROM code,
in essence allowing only normal-world operations.

From a developer’s perspective, an abundance of documentation and open-source
(or low-cost) development tools are two key factors that facilitate device and platform

170 A. Vasudevan et al.

adoption. While ARM offers decent documentation and development tools (Fast-
Model/RVDS/RTSM) to leverage the hardware security primitives, the cost of the tools
(outside of academia) is greater than cost of a typical device. We believe this to be a
significant reason why the open-source and hobbyist community has not rallied around
ARM’s tools.

4.7 Platform Case Studies

We now describe readily available, inexpensive development platforms that come with
a host of interesting security features. These examples serve to show that there is no
shortage of security potential in mobile device platforms.

The FreeScale i.MX53 is a $149 MSRP development board with an ARM Cortex A8
CPU and many security features. The i.MX53 supports a High Assurance Boot (HAB)
process where the system boot-ROM prevents the platform from executing unautho-
rized software during the boot sequence. The i.MX53 Security Controller provides a
small Secure RAM (self-clearing on tamper detection or software deallocation) area for
secure cryptographic key storage. The i.MX53 Security Accelerator (SAHARA) pro-
vides a dedicated cryptographic engine for importing data to or exporting data from
Secure RAM. The SAHARA has a dedicated TrustZone-aware DMA controller and
accelerates several cryptographic functions such as AES, DES, HMAC, SHA-256 etc.

Texas Instruments M-Shield mobile security technology [9] is a system-level security
solution with hardware and software components. The M-Shield secure environment
has a secure state machine (SSM) as well as secure ROM and RAM. The SSM enforces
isolation by enforcing the system’s security policy rules during secure environment en-
try, execution, and exit. M-Shield provides one-time programmable on-chip keys (using
e-fuses) that are accessible only from inside the secure environment, and are typically
used for authentication and encryption. M-Shield also provides hardware cryptographic
accelerators, and hardware primitives for trusted path. The platform exposes the Trust-
Zone API (§6) for managing secure services. According to the white-paper [9], there
are associated middleware and developer APIs for developing such secure services.

5 Isolated Execution Environments

An execution environment that is isolated from the device operating system (§3) is per-
haps the most critical security feature described in §3. Such an environment can be
used to run secure services that multiplex hardware-backed security features, such as
secure storage (§3), amongst the various stake-holders, including third party applica-
tion developers. Greater flexibility can be offered to third-party developers by allow-
ing them to run modules inside that environment. While this increases the size and
complexity of the isolated environment’s trusted-computing-base, such an environment
remains smaller and more trustworthy than a full-featured OS. The available isolated-
execution hardware primitives (§4.1) offer several options for implementing isolated
execution environments. We consider two high-level approaches: either using a parallel
execution environment, or multiplexing a single execution environment using a
hypervisor.

Trustworthy Execution on Mobile Devices 171

5.1 Parallel Isolated Execution

One strategy for isolated execution is to put sensitive code in a distinct, parallel envi-
ronment. As described in §4.1, current ARM platforms that support TrustZone offer a
mechanism by which secure software can execute in isolation within a special processor
world. Several research proposals [14–16, 30, 48, 51] employ TrustZone to achieve iso-
lation and provide a subset of the security properties discussed in §3. Other approaches
make use of a physically separate protected module such as a smart-card to achieve
isolation [12, 13, 43]. We provide a detailed discussion of the above frameworks in §6.

5.2 Hypervisors

A hypervisor is a microkernel that can run other OSes as deprivileged processes. OSes
can run unmodified if the environment provided by the hypervisor (optionally with help
from some of its deprivileged services) matches the physical hardware expected by that
OS. Otherwise we say that the OS must be para-virtualized—modified to run in the
environment that is provided by the hypervisor. A hypervisor can be used to implement
an execution environment that is isolated from the main OS by running the operating
system as one process (a virtual machine), and by running the modules to-be-isolated
as separate processes.

We now briefly summarize some noteworthy existing ARM hypervisor projects.
Current closed-source hypervisors include Winter [48], seL4 [28], OKL4 [35], and
INTEGRITY [23]. Winter outlines an approach to merge TCG-style Trusted Comput-
ing concepts with ARM TrustZone technology in order to build an open Linux-based
embedded trusted computing platform. The seL4 project gained notoriety in 2009 when
they announced a formally verified microkernel for the ARM architecture. OKL4 is a
microkernel-based embedded hypervisor with a small footprint and CPU support to tar-
get mobile telephony. The INTEGRITY multivisor uses a security kernel to provide
domain isolation and is targeted at in-vehicle infotainment and next-generation mobile
devices. Codezero6, XenARM [49], and KVMARM7 are some noteworthy open-source
hypervisor initiatives. The CodeZero project proposes a hypervisor based on the L4 mi-
crokernel, written in C/C++ in under 10K SLOC. Samsung has supported the Xen hy-
pervisor project to produce an open-source variant of the Xen hypervisor for the ARM
architecture. A port is underway of the popular Linux KVM (Kernel Virtual Machine)
to the ARM architecture.

Hypervisor frameworks potentially hold value for all stake-holders (OEMs, carriers
developers, and users). From an OEM perspective, secure hypervisor frameworks allow
multiplexing security-critical baseband functionality on the same processor as popular
unmodified OSes and user-facing applications, thereby reducing the cost of materials
in a smartphone [35, 38]. From a developer stand-point, hypervisor frameworks allow
creation of custom security applications that can benefit from improved isolation (e.g.,
mobile banking and payments or anti-malware). From a user’s perspective, a hypervisor
framework may enable simultaneous execution of different OSes, offering a rich set of

6 http://www.l4dev.org
7 http://wiki.ncl.cs.columbia.edu/wiki/KVMARM:MainPage

http://www.l4dev.org
http://wiki.ncl.cs.columbia.edu/wiki/KVMARM:MainPage

172 A. Vasudevan et al.

security features and execution environments on a single mobile device. Hypervisors
are deployed in custom (OEM- and carrier-specific) environments on roughly 1 bil-
lion off-the-shelf mobile devices [35, 38]. These can be, and likely already are, used to
run security-critical services in isolation from a fully-featured OS running on the same
CPU. Unfortunately, we observe that this is done transparently to the user and to third-
party developers. These devices do not provide an open API to third-party developers to
run their own modules in an isolated execution environment provided by the hypervisor.

6 API Architectures

Having discussed the hardware primitives available on today’s mobile platforms in §4,
and how those can be used to implement reduced-TCB isolated execution environments
in §5, we now discuss potential application programmer interfaces (APIs) that those
isolated execution environments may expose to developers. We distinguish between two
types of APIs: App-IEE APIs and Module-IEE APIs. App-IEE APIs specify how normal
applications running on the main OS interact with the isolated execution environment.
Module-IEE APIs specify how to develop modules running inside the isolated execution
environment.

A minimal way to make hardware security features available to application develop-
ers is for OEMs or network carriers to provide security-relevant services running inside
the isolated execution environment, and expose them via App-IEE APIs. This approach
may be attractive to OEMs and carriers, who may not want to bear the risk of allowing
third-party code to run in the device’s isolated environment, or the cost of implementing
strong isolation between modules in that environment. We now summarize the benefits
to application developers that arise from OEM- or carrier-provided security services
exposed through an App-IEE interface. Secure storage (§3) can be implemented by
allowing direct access to a secure storage location, or by implementing a sealed-data
API. Data sealed in this way would be protected from offline attacks, and attacks where
a different OS is booted (since the sealed-data-service would refuse to unseal for the
modified OS). Remote attestation (§3) implemented in the App-IEE-only model can
attest that a known OS image booted. This can provide some assurance to remote par-
ties that they are communicating with a client that started in a known configuration.
However, such mechanisms cannot detect if the OS has been compromised after it was
booted. Similarly, a secure provisioning (§3) service built in the App-IEE-only model
can ensure that exported data can only be accessed by a known device that booted a
known OS. However, it would have to trust that OS to not compromise the data itself
or to allow unauthorized applications to access that data. A trusted-path service (§3)
implemented in the App-IEE-only model can ensure to the user that an authorized OS
booted, but not that the OS remains uncompromised after it has booted.

Module-IEE API for running custom code in the isolated execution environment
mitigates some of the concerns above. We summarize the desirable properties that arise
when a Module-IEE API for running custom code in the isolated execution environment
is available to application developers. Module-IEE APIs for secure storage enable de-
velopers to ensure that only their module can access sealed data, even if the OS is com-
promised. Module-IEE APIs for remote attestation can run code isolated from the OS,

Trustworthy Execution on Mobile Devices 173

and need not include the OS’s measurements in their remote attestations. Module-IEE
APIs for secure provisioning can ensure that only the intended module running in the
isolated execution environment will be able to access provisioned data. A trusted path
implemented via Module-IEE APIs can provide assurance to the user that he is commu-
nicating with the intended module running in the isolated execution environment. We
now discuss several published APIs. All of these specify App-IEE APIs; some of them
additionally specify Module-IEE APIs.

Mobile Trusted Module. The Mobile Trusted Module (MTM) is a specification by
the Trusted Computing Group (TCG) for a set of trusted computing primitives [44].
Like the Trusted Platform Module on PCs, the MTM provides APIs for secure storage
and for attestation, but does not by itself provide an isolated execution environment
for third-party code or facilities for trusted path. Unlike the TPM, the MTM is ex-
plicitly designed to be implemented in software. In particular, it is amenable to being
implemented as a module running inside an isolated execution environment on a mobile
platform. Also unlike the TPM, the MTM explicitly supports the instantiation of sev-
eral parallel instances. This feature is intended to support an instance for each of a few
stake-holders on a mobile platform. Adding an MTM alone to a mobile platform and al-
lowing third-party developers to access it via App-IEE APIs would serve to expose the
underlying hardware security features in a uniform way across hardware platforms. The
MTM could also be used in architectures where third-party code is allowed to execute
in an isolated execution environment by instantiating a fresh, private, MTM instance for
each module that runs. This is similar to the approach taken by previous research on x86
platforms, with the MTM taking the place of the TPM [36, 40]. Another, orthogonal,
way to use an MTM is for the isolated execution environment itself to use the MTM as
a back-end. This strategy could provide a uniform interface for implementing the iso-
lated execution environment itself across multiple hardware platforms. While several
researchers have implemented the MTM [13, 16, 31, 48, 51], it is not to our knowledge
implemented on any off-the-shelf mobile platforms.

OnBoard Credentials. OnBoard Credentials (ObC) [14, 30] is an architecture to pro-
vide an isolated execution environment to third-party software modules written in the
Lua scripting language [14]. It includes both App-IEE and Module-IEE APIs. ObC pro-
vides most of the features described in §3: an isolated execution environment, secure
(sealed) storage, and secure provisioning. It also provides a form of trusted path, imple-
mented using a management application with a customizable interface. Unfortunately it
does not provide a remote attestation API, though adding one would be straightforward.

ObC’s key provisioning design seems to be optimized for DRM use-cases, where it is
undesirable to have to re-encrypt media for each individual device, As a result, it relies
heavily on the physical security of all participating devices. Secured data is provisioned
or migrated between devices by encrypting it under a global program-family symmet-
ric key. In this model, compromising the program-family key from any participating
device is sufficient to compromise the confidentiality and integrity of data migrated by
that program-family on any device—a break-once, run-anywhere attack. It may be pos-
sible to extend ObC to support a user-centric trust model, by replacing program-family-
keys with user-keys, and putting the user in charge of provisioning those keys to the

174 A. Vasudevan et al.

devices that the user owns or otherwise trusts. Such a provisioning mechanism could be
built using a remote-attestation mechanism; while ObC assumes the existence of such
a mechanism (using device-keys), its API does not expose a remote attestation feature
to secure software modules. However, adding such an API would be straightforward.
While multiple commodity smartphones are equipped with the necessary hardware sup-
port for ObC, enabling it requires a specially signed device firmware image from the
OEM or carrier, and is outside the reach of third-party developers and device owners.

TrustZone API. The TrustZone API (not to be confused with the TrustZone hard-
ware features) is an App-IEE API for managing and invoking modules in an isolated
execution environment [6]. The TrustZone API model is fairly abstract and provides
interfaces for selecting which secure “device” or “world” to communicate with (§4.1).
Hence, the TrustZone API could conceivably be implemented to communicate with se-
cure services backed with other protection mechanisms, or even services running on a
remote device. The (publicly available) TrustZone API does not include Module-IEE
APIs. Hence, while it could be a useful set of APIs to expose to app developers, allow-
ing them to communicate with services running in an isolated execution environment,
by itself it does not fully specify the APIs needed for developing such service mod-
ules. We are not aware of any mobile platforms where the TrustZone API is open to
third-party developers.

GP Trusted Execution Environment (TEE). The GlobalPlatform consortium is de-
veloping a set of standards for a Trusted Execution Environment (TEE) [21]. It includes
both App-IEE APIs for applications to interact with isolated modules [19], and Module-
IEE APIs for developing such modules [20]. While the system architecture specifically
suggests options where the environment is created by multiplexing resources with an
untrusted OS, to our knowledge the only implementations of the TEE use a dedicated
device such as a Secure Element (§4.2) or smartcard, and only run applications in the
secure environment that are pre-approved by the entity deploying that device. The TEE
client specification [19] includes APIs for connecting to and invoking a secure applica-
tion. The TEE internal specification [20] defines the runtime support available to secure
applications running inside the TEE. Of the security features from §3, those missing are
remote attestation, secure provisioning, and trusted path. In principle remote attestation
can be added, which, as discussed in (§3), can be used to build secure provisioning.

7 Analysis and Recommendations

We now give our analysis of the security properties that today’s mobile devices can
provide, and offer recommendations to the research community, to app developers, to
platform integrators, and to hardware vendors. The set of primary stake-holders to-
day includes only the OEMs and telecommunications carriers (and their immediate
business partners). Thus, the hardware security primitives that are actually included in
mass-market mobile devices are only those of interest to the OEMs and telecommuni-
cations providers. It is our primary recommendation that application developers and de-
vice owners be considered first-class stake-holders by OEMs and telecommunications
service providers. While economics may prevent the inclusion of additional hardware

Trustworthy Execution on Mobile Devices 175

security primitives in mass-market devices without a compelling business reason, those
primitives which are present should be leveraged to offer additional security features to
application developers and devices owners.

Research Community Recommendations. It is our recommendation to the research
community to continue to investigate viable architectures for multiplexing mutually-
distrusting stake-holders on resource-constrained hardware security primitives (§6).
This is especially important as virtualization extensions make their way to the ARM ar-
chitecture (§4.1), opening up the possibility for two divergent approaches (split-world
vs. virtualization). Special attention should be paid to the possibility for a heteroge-
neous threat model: OEMs and carriers are concerned about defenses against physical
attacks, whereas many use-cases for protecting the end-user’s data are primarily con-
cerned with software-based attacks that arrive via a network connection. Development
hardware with a multitude of unlocked security features is now readily available and in-
expensive (§4.7). Though hardware with virtualization extensions remains unavailable
at the time of this writing, ARM’s toolkit enables emulation of Cortex A15 platforms
today. The fear of fragmentation of security APIs can be addressed by developing con-
sistent interfaces. We recommend the adoption of consistent Module-IEE and App-IEE
APIs, so that application developers that endeavor to privilege-separate their programs
today can continue to reap the security benefits into the future without significant risk
of incompatibility or maintenance / support nightmares.

Application Developer Recommendations. It is our recommendation to application
developers to continue to demand improved security APIs and primitives in the devel-
opment environment for popular mobile device platforms. We encourage application
developers to learn about existing proposals for Module-IEE and App-IEE APIs, and
to consider their implications for the architecture of their applications. Especially those
developers with an interest in open-source can produce reference implementations that
we expect may be rapidly adopted by other developers.

Platform Integrator Recommendations. We recommend that platform integrators
(typically network carriers) take an interest in the security of applications on their de-
vices. We argue that they should adopt a realistic perspective regarding the robustness
of the OS APIs for security. Existing Module-IEE and App-IEE proposals should be
adopted, to avoid fragmentation and a lack of developer buy-in. These security features
will enable application developers to add new value to the mobile device platforms as a
whole, resulting in an overall increase in the utility of mobile devices. We strongly urge
platform integrators to make hardware security features available that are otherwise
included in the silicon but disabled immediately during every boot. As a viable first
step, we recommend an implementation of the TCG’s Mobile Trusted Module (MTM)
in devices with TrustZone capabilities that are otherwise unused (§6). This suggestion
is consistent with the App-IEE-only approach discussed in §6, and offers new secu-
rity features to application developers. Note that it does not give application developers
the ability to directly execute their own code inside of an isolated execution environ-
ment (§3 and §6). Thus, it is a reasonable compromise between conservative, risk-averse
OEMs and carriers, and a useful set of APIs for application developers.

176 A. Vasudevan et al.

Hardware Vendor Recommendations. Unconstrained memory isolation and improved
protection against DMA-based attacks (§4.6) are significant needs in current device
hardware. It is more difficult for us to justify the added expense in device hardware at
the present time. If the market does indeed parallel our recommendations in the preced-
ing sections, and existing hardware security features begin to enable new applications,
then the logical next step is to offer additional hardware security features. To this end,
our recommendation is to address the DMA insecurity problem (§4.6). This will not
only add protection against currently prevalent attacks from malicious peripherals [47],
but will also result in the automatic inclusion of memory address-space controllers such
as a TZASC and/or TZMA (§4.1), so that security-sensitive modules that execute in iso-
lation need not grapple with today’s dearth of Tightly Coupled Memory.

Acknowledgement. This research was supported by CyLab at Carnegie Mellon Uni-
versity (CMU), Northrup Grumman Corp. and Google Inc. The views and conclusions
contained here are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either express or implied, of CyLab,
CMU, Northrup Grumman Corp., Google Inc., or the U.S. Government or any of its
agencies.

References

1. Android – An Open Handset Alliance Project. Issue 10809: Password is stored on disk in
plain text (August 2010), http://code.google.com

2. Android Developers. Android API: AccountManager, developer.android.com
(accessed November 2011)

3. Apple. iOS: Understanding data protection. Article HT4175 (October 2011)
4. ARM Limited. ARM builds security foundation for future wireless and consumer devices.

ARM Press Release (May 2003)
5. ARM Limited. ARM security technology: Building a secure system using TrustZone tech-

nology. WhitePaper PRD29-GENC-009492C (April 2009)
6. ARM Limited. TrustZone API specification 3.0. Technical Report PRD29-USGC-000089

3.1, ARM (February 2009)
7. ARM Limited. AMBA 4 AXI4-Stream protocol version 1.0 specification (March 2010)
8. ARM Limited. Virtualization extensions architecture specification (October 2010),

http://infocenter.arm.com
9. Azema, J., Fayad, G.: M-Shield mobile security: Making wireless secure. Texas Instruments

WhitePaper (June 2008)
10. Becher, M., Freiling, F.C., Hoffman, J., Holz, T., Uellenbeck, S., Wolf, C.: Mobile security

catching up? revealing the nuts and bolts of the security of mobile devices. In: Proceedings
of the IEEE Symposium on Security and Privacy (2011)

11. comex. JailbreakMe, jailbreakme.com (accessed, November 2011)
12. Costan, V., Sarmenta, L.F.G., van Dijk, M., Devadas, S.: The Trusted Execution Module:

Commodity General-Purpose Trusted Computing. In: Grimaud, G., Standaert, F.-X. (eds.)
CARDIS 2008. LNCS, vol. 5189, pp. 133–148. Springer, Heidelberg (2008)

13. Dietrich, K., Winter, J.: Towards customizable, application specific mobile trusted modules.
In: Proceedings of the ACM Workshop on Scalable Trusted Computing (2010)

http://code.google.com
developer.android.com
http://infocenter.arm.com
jailbreakme.com

Trustworthy Execution on Mobile Devices 177

14. Ekberg, J.E., Asokan, N., Kostiainen, K., Rantala, A.: Scheduling execution of credentials in
constrained secure environments. In: Proceedings of the ACM Workshop on Scalable Trusted
Computing (2008)

15. Ekberg, J.-E., Kylänpää, M.: Mobile trusted module (mtm) – an introduction. Technical
Report NRC-TR-2007-015, Nokia Research Center (November 2007)

16. Ekberg, J.-E., Kylänpää, M.: MTM implementation on the TPM emulator. Source code
(February 2008), http://mtm.nrsec.com

17. ElcomSoft: Proactive Software. iOS forensic toolkit (November 2011)
18. Gligor, V.D., Chandersekaran, C.S., Chapman, R.S., Dotterer, L.J., Hecht, M.S., Jiang, W.-D.,

Johri, A., Luckenbaugh, G.L., Vasudevan, N.: Design and implementation of Secure Xenix.
IEEE Transactions on Software Engineering 13, 208–221 (1986)

19. Global Platform Device Technology. TEE client API specification version 1.0. Technical
Report GPD SPE 007 (July 2010), http://globalplatform.org

20. Global Platform Device Technology. TEE internal API specification version 0.27. Technical
Report GPD SPE 010 (September 2011), http://globalplatform.org

21. Global Platform Device Technology. TEE system architecture version 0.4. Technical Report
GPD SPE 009 (October 2011), http://globalplatform.org

22. GottaBeMobile. Texas Instruments ARM OMAP4 becomes first mobile CPU to get Netflix
certification for Android HD streaming (2011), http://gottabemobile.com

23. Green Hills Software. Emergence of the mobile multivisor (2011), http://ghs.com
24. Hecht, M.S., Carson, M.E., Chandersekaran, C.S., Chapman, R.S., Dotterrer, L.J., Gligor,

V.D., Jiang, W.D., Johri, A., Luckenbaugh, G.L., Vasudevan, N.: UNIX without the supe-
ruser. In: Proceedings of USENIX Technical Conference, pp. 243–256 (1987)

25. Heider, J., Boll, M.: Lost iPhone? Lost passwords! Practical consideration of iOS device
encryption security. Technical report, Fraunhofer SIT (February 2011)

26. Intel Corp. Intel atom processor,
http://www.intel.com/content/www/us/en/processors/atom/
atom-processor.html (accessed, March 2012)

27. Intel Corp. Intel atom processor z2460 (March 2012)
28. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,

Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: formal
verification of an OS kernel. In: Proceedings of the ACM Symposium on Operating Systems
Principles, SOSP (2009)

29. Koistiainen, K., Reshetova, E., Ekberg, J.-E., Asokan, N.: Old, new, borrowed, blue—a per-
spective on the evolution of mobile platform security architectures. In: Proceedings of the
First ACM Conference on Data and Application Security and Privacy, CODASPY (2011)

30. Kostiainen, K., Ekberg, J.E., Asokan, N., Rantala, A.: On-board credentials with open
provisioning. In: Proceedings of ASIACCS (2009)

31. Kursawe, K., Schellekens, D.: Flexible MicroTPMs through disembedding. In: Proceedings
of ASIACCS (2009)

32. Lampson, B.: Usable security: How to get it. Communications of the ACM 52(11) (2009)
33. Lineberry, A., Strazzere, T., Wyatt, T.: Inside the Android security patch lifecycle. Presented

at BlackHat (August 2011)
34. Mastin, M.: Square vs. intuit gopayment: Mobile credit card systems compared. PCWorld

(September 2011),
http://www.pcworld.com/businesscenter/article/239250/

35. McCammon, R.: How to build a more secure smartphone with mobile virtualization and
other commercial off-the-shelf technology. Open Kernel Labs Technology White Paper
(September 2010)

http://mtm.nrsec.com
http://globalplatform.org
http://globalplatform.org
http://globalplatform.org
http://gottabemobile.com
http://ghs.com
http://www.intel.com/content/www/us/en/processors/atom/atom-processor.html
http://www.intel.com/content/www/us/en/processors/atom/atom-processor.html
http://www.pcworld.com/businesscenter/article/239250/

178 A. Vasudevan et al.

36. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVisor: Efficient
TCB reduction and attestation. In: Proceedings of the IEEE Symposium on Security and
Privacy (May 2010)

37. Mills, E.: Researchers find avenues for fraud in square. CNET (August 2011),
http://news.cnet.com/8301-27080_3-20088441-245/

38. Open Kernel Labs. OK Labs company datasheet (2010), http://www.ok-labs.com
39. Popek, G.J., Goldberg, R.P.: Formal requirements for virtualizable third generation architec-

tures. Communications of the ACM, 17 (July 1974)
40. Sailer, R., Jaeger, T., Valdez, E., Cáceres, R., Perez, R., Berger, S., Griffin, J., van Doorn, L.:

Building a MAC-based security architecture for the Xen opensource hypervisor. In: Proceed-
ings of the Annual Computer Security Applications Conference (December 2005)

41. Schell, S.V., Narang, M., Caballero, R.: US Patent 2011/0269423 Al: Wireless Network Au-
thentication Apparatus and Methods (November 2011)

42. Schwartz, M.J.: Apple iOS zero-day PDF vulnerability exposed. InformationWeek
(July 2011), http://www.informationweek.com/news/231001147

43. Sun Microsystems, Inc. Java card specifications v3.0.1: Classic edition, Connected edition
(May 2009)

44. TCG Mobile Phone Working Group. TCG mobile trusted module specification. Version 1.0,
Revision 7.02 (April 2010)

45. Texas Instruments E2E Community. Setup of secure world environment using TrustZone.
OMAP35X Processors Forum (August 2010), http://e2e.ti.com

46. US Department of Defense. Trusted computer system evaluation criteria (orange book).
DoD 5200.28-STD (December 1985)

47. Wang, Z., Stavrou, A.: Exploiting smart-phone usb connectivity for fun and profit. In: Pro-
ceedings of the Annual Computer Security and Applications Conference, ACSAC (2010)

48. Winter, J.: Trusted computing building blocks for embedded linux-based ARM TrustZone
platforms. In: Proceedings of the ACM Workshop on Scalable Trusted Computing (2008)

49. Xen.org. Xen ARM project, wiki.xen.org/wiki/XenARM. (accessed November 2011)
50. Yao, Y.: Security issue exposed by android accountmanager (January 2011),

http://security-n-tech.blogspot.com/2011/01/security-
issue-exposed-by-android.html

51. Zhang, X., Aciicmez, O., Seifert, J.P.: A trusted mobile phone reference architecture via
secure kernel. In: Proceedings of the ACM Workshop on Scalable Trusted Computing (2007)

52. Zhou, Z., Gligor, V.D., Newsome, J., McCune, J.M.: Building verifiable trusted path on com-
modity x86 computers. In: Proceedings of the IEEE Symposium on Security and Privacy
(May 2012)

http://news.cnet.com/8301-27080_3-20088441-245/
http://www.ok-labs.com
http://www.informationweek.com/news/231001147
http://e2e.ti.com
wiki.xen.org/wiki/XenARM
http://security-n-tech.blogspot.com/2011/01/security-issue-exposed-by-android.html
http://security-n-tech.blogspot.com/2011/01/security-issue-exposed-by-android.html

Verifying System Integrity by Proxy�

Joshua Schiffman, Hayawardh Vijayakumar, and Trent Jaeger

Pennsylvania State University
{jschiffm,hvijay,tjaeger}@cse.psu.edu

Abstract. Users are increasingly turning to online services, but are concerned for
the safety of their personal data and critical business tasks. While secure commu-
nication protocols like TLS authenticate and protect connections to these services,
they cannot guarantee the correctness of the endpoint system. Users would like
assurance that all the remote data they receive is from systems that satisfy the
users’ integrity requirements. Hardware-based integrity measurement (IM) pro-
tocols have long promised such guarantees, but have failed to deliver them in
practice. Their reliance on non-performant devices to generate timely attestations
and ad hoc measurement frameworks limits the efficiency and completeness of
remote integrity verification. In this paper, we introduce the integrity verification
proxy (IVP), a service that enforces integrity requirements over connections to
remote systems. The IVP monitors changes to the unmodified system and im-
mediately terminates connections to clients whose specific integrity requirements
are not satisfied while eliminating the attestation reporting bottleneck imposed
by current IM protocols. We implemented a proof-of-concept IVP that detects
several classes of integrity violations on a Linux KVM system, while imposing
less than 1.5% overhead on two application benchmarks and no more than 8% on
I/O-bound micro-benchmarks.

1 Introduction

Traditionally in-house computing and storage tasks are becoming increasingly inte-
grated with or replaced by online services. The proliferation of inexpensive cloud com-
puting platforms has lowered the barrier for access to cheap scalable resources, but at
the cost of increased risk. Instead of just defending locally administered systems, cus-
tomers must now rely on services that may be unable or unwilling to adequately secure
themselves. Recent attacks on cloud platforms [8] and multinational corporations [55]
have eroded the public’s willingness to blindly trust these companies’ ability to protect
their clients’ interests. As a result, the need for effective and timely verification of these
services is greater than ever.

Recent advances in trusted computing hardware [64,22,1] and integrity measurement
(IM) protocols [39] aim to achieve this goal, but current approaches are insufficient for
several reasons. First, existing protocols depend on remote attestation to convey in-
formation about a proving system’s configuration to a relying party for verification.
However, an attested configuration is only valid at the time the attention was generated,

� This material is based upon work supported by the National Science Foundation under Grant
No. CNS-0931914 and CNS-1117692.

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 179–200, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

180 J. Schiffman, H. Vijayakumar, and T. Jaeger

and any changes to that configuration may invalidate it. Since the proving system’s
components may undergo changes at anytime, a relying party must continually request
fresh information to detect a potential violation of system integrity. This problem is
made worse by the significant delay introduced by many IM protocols’ reliance on the
Trusted Platform Module [64] (TPM), a widely-deployed and inexpensive coproces-
sor, to generate attestations. Since the TPM was designed for cost and not speed, it is
only capable of producing roughly one attestation per second [59,33,34]. This renders
TPM-based protocols far too inefficient for interactive applications and high demand
scenarios.

Another limitation of current IM approaches is how integrity-relevant events are
monitored on the proving system. Systems undergo numerous changes to their con-
figurations due to events ranging from new code execution to dynamic inputs from
devices. While various measurement frameworks have been developed to enable these
components to report arbitrary events and its associated content (e.g., memory pages
and network packets), conveying everything is impractical due to the sheer volume of
data and effort placed on relying parties to reason about it. Moreover, not every event
may have a meaningful effect on the system and communicating such events is a further
waste. Thus, proving systems often make implicit assumptions to remove the need to
collect particular measurements (e.g., programs can safely handle all network input),
which may not be consistent with the trust assumptions of the relying party. This prob-
lem stems from the onus placed on the proving system’s administrator to choose and
configure how the various IM components will collect information without knowledge
of relying party’s requirements.

To improve the utility of existing IM mechanisms, we propose shifting verification
from the relying party to a verification proxy at the proving system. Doing so eliminates
the bottleneck caused by remote attestation (and thus the TPM) from the critical path,
by using traditional attestation protocols to verify the proxy and the proxy to verify
the proving system’s runtime integrity is maintained. Monitoring the system locally
also permits the proxy to examine information relevant to the relying party’s integrity
requirements. Moreover, this approach supports the integration of fine-grain monitoring
techniques like virtual machine introspection (VMI) into remote system verification that
would otherwise be difficult to convey over traditional attestation protocols [16,17,30]
or require modification to the monitored system.

In this paper, we present the integrity verification proxy (IVP), an integrity monitor
framework that verifies system integrity at the proving system on behalf of the relying
party clients. The IVP is a service resident in a virtual machine (VM) host that monitors
the integrity of its hosted VMs for the duration of their execution through a combina-
tion of loadtime and VMI mechanisms. Client connections to the monitored VM are
proxied through IVP and are maintained so long as the VM satisfies the client’s sup-
plied integrity criteria. The IVP framework is able to verify a variety of requirements
through an extensible set of measurement modules that translate a client’s requirements
into VM-specific properties that are then tracked at runtime. When an event on the VM
violates a connected client’s criteria, immediate action is taken to protect that client by
terminating the connection.

Verifying System Integrity by Proxy 181

However, we faced several challenges in designing an IVP that can be trusted to ver-
ify the target system. First, the proxy itself must be simple to verify and able to maintain
its integrity without the need for frequent attestation. We employed previous efforts in
deploying static, verifiable VM hosts [46] to achieve this. Second, introspecting directly
on the running VM can introduce significant performance overhead if done naively. In-
stead, we monitor the integrity of the VM’s enforcement mechanisms by leveraging
practical integrity models [28,60,49] to identify specific enforcement points that are
critical for protecting the system’s integrity. By monitoring these enforcement points,
we reduce the frequency and impact of verification. Finally, managing multiple chan-
nels from the same and different clients introduces redundant criteria verification. We
eliminate this redundancy by aggregating multiple connections for a single criteria.

We implement a proof-of-concept IVP for an Ubuntu VM running on a Linux Kernel-
based Virtual Machine (KVM) host. We constructed both loadtime and custom CPU
register-based VMI modules for monitoring VM enforcement mechanisms. We vali-
dated our proxy’s ability to detect violations correctly by building and attacking a VM
designed to satisfy integrity criteria based on a practical integrity models and several
kernel integrity requirements. We further evaluated the performance impact the IVP
imposed on monitored VMs, finding that it introduced less than 1.5% overhead on two
application-level benchmarks.

The rest of this paper is organized as follows. Section 2 provides background on cur-
rent IM approaches and elaborates on the limitation of current IM protocols. Section 3
enumerates our design goals, presents the IVP architecture broadly, and highlights the
main design challenges. Section 4 describes of our implementation, which is followed
by evaluation of functionality and performance in Section 5. Finally, we provide related
work in Section 6 before concluding in Section 7.

2 Remote Integrity Verification

In this section, we present background on remote integrity verification and its building
blocks: measurement and attestation. We then discuss the challenges current approaches
face and show why they are insufficient for monitoring dynamic systems.

2.1 Integrity Verification Overview

Figure 1 provides a conceptual view of the remote integrity verification, where a re-
lying party wants to determine whether a proving system’s current configuration (e.g.,
running code and data) satisfies the verifier’s integrity criteria for a trustworthy system.
The proving system has integrity measurement for its early boot layers that then mea-
sures the operating system code and data, which in turn may measure user code, data,
and operations (e.g., VMs and processes). Each individual layer aims to measure the
integrity-relevant events occurring at the layer above. The relying party monitors these
events by requesting attestations of the measured events to evaluate satisfaction against
the integrity criteria. If the proving system fails to satisfy the criteria, the monitor pro-
tects the relying party by denying access to the untrustworthy system. Thus, the monitor
enforces an integrity policy (the criteria) over the communication to proving systems.

182 J. Schiffman, H. Vijayakumar, and T. Jaeger

Proving System

OS Layers (Kernel, Hypervisor)

Early Boot Layers (CRTM, BIOS, Grub)

Measure

Measure

Relying Party

Integrity
Monitor

Attestation

... More Complex
More Frequent

Events

Fig. 1. A relying party’s integrity monitor inspects a remote system’s integrity by requesting
attestations of integrity-relevant events collected by the proving system’s layers of integrity
measurement

Its role is similar to that of a reference monitor [2] that enforces access control policies
over resources.

Traditionally, the monitor resides on the relying party and receives measurements
provided by the proving system. Remote attestation protocols enable proving systems
to attest to the integrity and authenticity of measurements collected on the system to
relying parties. The Trusted Computing Group specifications use a request-response
protocol to ensure freshness of attestations as well [43].

In order to assess system integrity accurately, the integrity monitor must observe
events relevant to its integrity criteria. For example, criteria demanding enforcement
of an information flow lattice might require that only trustworthy code are loaded into
privileged processes and critical system files may only be written to by such processes.
Thus, the monitor would require the combination of measurement mechanisms on the
proving system (its integrity measurement (IM) framework) to record these events. We
now provide a brief overview of existing measurement and attestation techniques to
illustrate how an integrity monitor would use them, but provide a broader review in
Section 6.

Measurement. A relying party’s ability to judge system integrity is limited by which
events are recorded and their detail. A framework with greater coverage of system
events will be more capable of measuring the required integrity criteria for more com-
plex configurations at higher layers. We divide these measurement techniques into two
categories: (1) loadtime and (2) runtime. Loadtime measurements involve capturing
changes to the system like code loading and data input before they occur. For exam-
ple, the Integrity Measurement Architecture (IMA) measures binaries before they are
mapped into a running process [43] and Terra hashes VM disk blocks before they are
paged into memory [16]. Others like Flicker [33] and TrustVisor [32] leverage hardware
isolation to reduce the TCB down to a single running process. To measure other events,
such as the data read and written by processes, some IM approaches measure other load-
time events. For example, PRIMA [23] measures the mandatory access control policy
governing processes at loadtime.

Loadtime only frameworks assume that system integrity is maintained if all loadtime
measurements are trustworthy. However, unexpected runtime events like code injection
attacks or difficult to assess inputs like arbitrary network packets can subvert system in-
tegrity. To address this, runtime measurement techniques have been designed to record

Verifying System Integrity by Proxy 183

this class of events. Furthermore, mechanisms like Trousers [65] for userspace pro-
cesses and the vTPM [9] for virtual machines (VMs) enable these entities to report
integrity-relevant events to an external IM framework.

However, mechanisms that report on a component’s integrity from within run the
risk of being subverted if the processes or VM is compromised. As an alternative, exter-
nal approaches like VM introspection (VMI) enables a hypervisor to observe runtime
events isolated from the watched VM [41,20,40]. Recent VMI techniques [30,50,25]
use hardware memory protection and trampoline code to trap execution back to the host
for further inspection. While runtime measurement can detect changes at a finer gran-
ularity than loadtime measurements, they also introduce greater complexity. In partic-
ular, external approaches introduce a semantic gap that require domain knowledge like
memory layouts to detect malicious modifications [7].

Attestation. Early remote attestation efforts like Genuinity [26] and Pioneer [48] demon-
strated the feasibility of software-based attestation, but were limited to specific, con-
trolled environments. Specialized hardware approaches offered increased protection for
the measurement framework by isolating it from the monitored system [4,42]. Hard-
ware security modules (HSMs) like the IBM 4758 used an early attestation technique
called Outbound Authentication [54] to certify the integrity of installed code entities via
certificate chains. However, such specialized hardware imposed a significantly higher
deployment cost and complexity.

The Trusted Platform Module (TPM) [64] was introduced to provide commodity
HSMs across numerous consumer electronic devices. The TPM facilitates several cryp-
tographic features like key generation, signing, and encryption. It also supports remote
attestation through a set of platform configuration registers (PCRs) that store measure-
ments (e.g., SHA-1 hashes) of integrity- relevant events. Measurements taken on the
system are extended into the PCRs to form an append-only hash-chain. A relying party
then requests an attestation of the recorded measurements by first providing a nonce
for freshness. In response, the TPM generates a digital signature, called a quote, over
its PCR values and the nonce. An asymmetric private key called an Attestation Identity
Key (AIK) is used to sign this quote. The AIK is certified by a unique key burned into
the TPM by the device’s manufacturer, thereby binding the attestation to the physical
platform. The proving system then provides the quote and list of measurements to the
relying party. If the quote’s signature is valid and the measurement list produces the same
hash-chain as the quoted PCRs, then the measurements came from the proving system.

2.2 Integrity Monitoring Challenges

For the integrity monitor to verify system integrity accurately, its view of the proving
system must be both fresh and complete. Stale or incomplete measurements limit the
utility of the verification process. However, we find that current attestation-based veri-
fication model are insufficient for several reasons.

Stale Measurements. Attestation-based protocols introduce a window of uncertainty,
which we illustrate in Figure 2. Here, the integrity monitor residing on the relying party
requests an attestation at time t and finds it satisfies its integrity criteria. Since the prover

184 J. Schiffman, H. Vijayakumar, and T. Jaeger

Unverified Window

Proving
System

t t+2

AttestationAttestationRelying
Party

Integrity
Monitor Data

t+1

Fig. 2. A window between each attestation exists where the integrity of the proving system is
unknown

is verified, the monitor permits it to send data to the relying party at t + 1. Later, the
monitor requests a second attestation at t+2 and finds the prover no longer satisfies the
criteria. Because this violation could have happened at anytime between t and t + 2, it
is not clear without additional information if the data at t + 1 was generated when the
system was unacceptable. Classic attestation protocols like IMA [43] avoid this issue
by buffering inputs until a later attestation is received, but this is not an option for high
throughput or interactive applications.

Hardware Bottleneck. Many systems are dynamic and undergo numerous changes at
any time. Thus, the monitor must continually poll for new attestations to detect changes.
This problem is exacerbated by the TPM’s design as a low performance device for at-
testing infrequent loadtime measurements like the boot process. In fact, current TPM
implementations take approximately one second to generate a quote leading to major
bottlenecks in any high demand scenario [59]. Designs that batch remote attestations
to eliminate queueing delays have been proposed [34], but still incur a significant over-
head.

Criteria Insensitive Measurements. A relying party’s ability to assess system integrity
is also limited by what events are measured. Since the proving system’s administrator
decides what the measurement framework will record, a remote verifier must often set-
tle for the information provided by proving system. If that system provides only hashes
of code loading operations, then a criteria requiring knowledge the possible runtime
operations of those processes cannot be satisfied. However, it is difficult to know what
information arbitrary clients require, which is especially challenging for public-facing
services used across multiple administrative domains. On the other hand, designing an
IM framework to record excessive measurements may be wasteful if they are inconse-
quential to the verifier’s integrity criteria. Moreover, complex events occurring within
an entity like may be difficult to assess. For example changes to kernel memory may
indicate a rootkit, but it is hard to make that judgement without knowledge of where
certain data structures are located. However, providing this context (i.e., entire memory
layouts) via attestation can be impractical.

3 Integrity Verification Proxy

We now present the design of the integrity verification proxy (IVP), an integrity monitor
framework that verifies system integrity at the proving system on behalf of the relying

Verifying System Integrity by Proxy 185

Proving System

Integrity Verification Proxy

 Resident VM

Measure

Relying Party

IVP Integrity
Monitor Attestation Monitor

Measure

Fig. 3. The integrity verification proxy (IVP) acts as an integrity monitor on the proving system
that monitors the resident VM to enforce the relying party’s criteria over the communication
channel. The long-term integrity of the IVP and its host (i.e., layers below the resident VM) is
verified by traditional loadtime attestation.

party. By shifting a portion of the integrity monitor to the proving system, the IVP
eliminates the need for continuous remote attestation and provides direct access to the
system’s IM framework to support a broad range of integrity criteria. We begin by
describing our design goals and trust assumptions. We then give an overview of the
IVP’s architecture and detail how it achieves these goals.

3.1 Design Goals

Our aim is to extend the traditional notion of an integrity monitor into the proving sys-
tem to overcome the limitations of current attestation-based verification protocols. Fig-
ure 3 shows the conceptual model of this approach. This model supports the following
design goals.

Enforce Integrity Criteria at the Proving System. Monitoring system integrity remotely
is insufficient because stale knowledge of the remote system’s more complex events un-
dermines the monitor’s ability to correctly enforce its criteria. Instead, a relying party
can establish trust in an integrity monitor on the proving system that enforces its in-
tegrity criteria. The IVP has direct access to resident VM’s IM framework to eliminate
the window of uncertainty caused by attestation protocols. Moreover, the IVP can ter-
minate connections immediately when an integrity violation is detected to protect the
relying party. If the relying party is also the administrator of the VM, the IVP can take
further remedial measures such as rebooting the VM. However, the relying party must
still monitor the IVP itself to justify such trust. Thus, the IVP must be deployed at a
software layer whose integrity can be verified by the relying party without the need
for continual attestation, or the purpose of moving monitoring to the proving system is
defeated.

Criteria-Relevant Measurement. The problem with traditional IM frameworks is that
they measure events irrespective of what the relying party requires. Moreover, entities
on the resident VM may be implicitly trusted by the administrator and thus are not moni-
tored. An effective IVP must support various integrity criteria that may even differ from
administrator’s criteria. To do this, the IVP leverages the available information about

186 J. Schiffman, H. Vijayakumar, and T. Jaeger

the resident VM to capture a broad set of integrity-relevant events to support differing
criteria. In Figure 3, the IVP extracts information from both the IM framework on the
proving system and additional information through external measurement techniques
like VM introspection.

3.2 Assumptions

We make the following trust assumptions in the IVP design. First, we do not consider
physical attacks on hardware, denial-of-service attacks, or weaknesses in cryptographic
schemes. Next, we assume that the relying party and all the events allowed by the in-
tegrity criteria to be trustworthy. Moreover, we treat events that cannot be captured by
the IM framework to be acceptable because we cannot say anything about their exis-
tence. It is important to note that such unobserved events may be harmful, but unless a
mechanism can detect the degradation, it is hard to know the harm that has occurred.
We consider the following threats in the IVP design. We assume a powerful external
adversary who can produce external events upon the proving system that may exploit
vulnerabilities. Such external events may affect both loadtime (e.g., modify files in a
downloaded distribution) and runtime events (e.g., network communications). Finally,
we consider attacks that modify remote storage and offline attacks on the proving sys-
tem’s local disk.

3.3 Architecture Overview

Figure 4 illustrates our architecture for enforcing the integrity criteria of a relying party
(the client) over a network connection to an application VM. Here, the IVP is a service
resident in the VM’s host that verifies the integrity of the VM on behalf of the client.
The client first (1) registers her integrity criteria with the IVP service. Next, (2) she
establishes trust in the VM’s host and IVP service by verifying their integrity through
traditional attestation protocols. These components are designed to maintain their in-
tegrity at runtime, thereby enabling simple verification through loadtime measurements
similar to existing protocols like IMA [43]. This verification is needed to trust the IVP
to correctly enforce her criteria.

The client then requests a connection to a specific hosted VM the criteria to en-
force over the channel. The IVP’s integrity monitor is responsible for tracking the
ongoing integrity of the hosted VMs relative to the client’s criteria. It uses a set of
measurement modules to interface directly with the host’s IM framework and capture

Client

VM Host

VM

Channel
Mediator

IVP(1) Register criteria

(2) Verify IVP

(3) Verify VM

(4) Connect

(5) Report Violation

Integrity
Monitor

Modules
Monitor VM

Fig. 4. Integrity verification proxy architecture

Verifying System Integrity by Proxy 187

integrity-relevant events, which are reported back to the monitor. If the monitor (3)
determines that the VM satisfies the client’s criteria, it then (4) establishes a secured
network tunnel between the client and VM through the IVP’s channel mediator. The
mediator associates each tunnel with the client’s criteria. If the integrity monitor detects
a that a VM has violated the criteria of any connect client, it notifies the mediator to (5)
terminate each associated connection.

3.4 Verifying the IVP Platform

The IVP verifies VM integrity on behalf of the client, thereby requiring trust in the
IVP. Since our aim is to reduce client verification effort and eliminate the need for
repeated remote attestation, we want an IVP that can be verified by a single attestation
at channel setup unless a reboot occurs. The challenge is then building IVPs and their
hosting platform in such a way that they maintain their integrity to obviate the need for
remote monitoring.

This endeavor is difficult in general because systems often have large TCBs con-
sisting of numerous components that may not be trusted. Moreover, changes to these
systems at runtime like upgrades may be overlooked without frequent monitoring. How-
ever, various research projects have explored techniques for building VM hosting plat-
forms that may be small enough to verify formally [27,3,5,57,32,58]. While the design
of a specific platform is outside the scope of this paper, we envision a host would incor-
porate such approaches. As for the IVP, it only relies on a small number of services, such
as networking, the introspection interface, and VM management. Research projects like
Proxos [61] and work by Murray et. al. [35], have demonstrated that it is possible to
build minimal VMs that depend only on the VMM and use untrusted services in other
VMs securely (e.g., by encrypting and integrity-protecting the data). This would enable
the IVP to function as an independent service in the host without depending on a large
host VM like in Xen Dom0. We intend to develop future IVP prototypes for various
hypervisors that support this separation.

3.5 Channel Mediation

The IVP is responsible for mediating connections to ensure they are active only when
their respective client’s criteria are satisfied. The channel mediator creates an integrity
association (IA) for each tunnel as the tuple (C, V, I), where C is the client, V is the
VM, and I is the integrity criteria to check. Before a tunnel is brought up, the IA is
registered with the integrity monitor to verify that V continues to satisfy I . If it does,
the tunnel is brought up and shutdown either voluntarily or when the integrity monitor
notifies the mediator that an I has been violated.

One challenge in designing the channel mediator is proving to clients that the channel
is controlled and protected by the proxy. The connection is formed as an Ethernet tunnel
between the client and the VM through a virtual network managed by the mediator.
This effectively places the client and VM on the same local subnet. Other mediated
connections to the VM connect over the same virtual network, but are isolated from
each other by the mediator using VLAN tagging. During setup, the tunnel is protected
via cryptographic protocols like TLS that mutually authenticate the client and mediator.

188 J. Schiffman, H. Vijayakumar, and T. Jaeger

The VM is provided a certificate signed by the host’s TPM at boot time to bind the
platform’s identity to the VM’s credentials. This binding approach is similar to previous
work on VM attestation [9,19]. The client can then setup further protections directly
with the VM over the tunnel. Having direct control over the network tunnel also lets the
mediator tear down the connections as soon as a violation is detected.

3.6 Integrity Monitoring

The IVP’s integrity monitor is tasked with verifying each VM’s integrity against in-
tegrity criteria registered by clients connected to it. To do this, the monitor collects
events from its measurement modules (see Section 3.7) to update its view of each VM’s
configuration. When the mediator registers an IA, the monitor first checks if the IA’s
criteria is satisfied by the current VM configuration. If so, the monitor adds a reference
to the IA to a list of IAs to verify. When the VM’s configuration changes, (e.g., through
code loading) the integrity monitor pauses the VM and checks whether any registered
IA has been violated. If so, the channel mediator is notified of the invalid IA, so it may
tear down the tunnel before the VM can send data on it. The monitor then resumes
execution of the VM.

In order to verify a VM’s integrity, the monitor must be able to capture all integrity-
relevant changes from VM creation until shutdown. To monitor loadtime events, we
give the integrity monitor direct control over VM creation through the platform inde-
pendent virtualization API, libvirt. This lets the monitor collect information about the
VM’s virtual hardware, initial boot parameters, kernel version, and disk image. The
monitor spawns individual watcher threads for each VM and registers with the IVP’s
measurement modules. When the modules capture an event at runtime, the watcher is
alerted with the details of the change. Since multiple IAs to the same VM may have
redundant requirements to verify, the monitor keeps a lookup table that maps IAs with
the same criterion together. When a change to the VM is detected that violates one of
these conditions, all IAs mapped to that criterion are invalidated by the monitor.

3.7 Measurement Modules

Integrity criteria consist of various loadtime and runtime requirements. The integrity
monitor divides up these criteria into a set of discrete measurement modules tasked
with tracking changes to specific aspects of the VM’s configuration. The modules in-
terface directly with the available IM framework to measure events in real time. For
example, loadtime modules measure information like boot time parameters of the VM,
while runtime modules attach a VMI to watch critical data structures. Since IM frame-
works often consist of several components responsible for measuring various events,
modularizing the interface allows for a more flexible design. Administrators can then
write or obtain modules for the specific IM mechanism installed on the host without
having to modify the monitor.

Capturing Runtime Events. Detecting violations at runtime requires modules to be
able to capture events as they happen. The module must then notify the integrity mon-
itor’s watcher of the event before the VM continues to execute. We employ VMI to

Verifying System Integrity by Proxy 189

enable our modules to monitor runtime criterion. Many hypervisors now offer VMI
mechanisms like xenaccess [40,15,21] in Xen and VMSafe [66] for VMware that en-
able direct access to VM resources. In addition, QEMU supports introspection through
debugging tools like gdb and previous work has demonstrated the feasibility of VMI
in KVM [50].

Each runtime module monitors a specific property on the VM. The modules actively
monitor the VMs by setting watchpoints (e.g., locations in memory) that are triggered
by integrity-relevant operations. Watchpoints can be set on sensitive data structures or
regions of memory such as enforcement hooks [53], and policy vectors [37] stored
in kernel memory. Other structures like function pointers and control flow variables
are possible candidates [11]. Triggering a watchpoint pauses the executing VM so the
module that set the watchpoint can examine the how the configuration has been al-
tered. Pausing the VM prevents the VM from sending any data on the connection until
the module can assess if the event violated an IA’s criteria. After the module finishes
invalidating any IAs, the VM is permitted to resume execution.

Improving Efficiency. VMI gives runtime modules direct memory access, but creates a
semantic gap [12] when reading directly from the VM’s memory. Since the module does
not have the full context of the running system, changes to complex and userspace data
structures are difficult to assess. Our modules leverage the VM’s extant enforcement
mechanisms to report events without having to pause the VM as often. For example,
instead of pausing the VM to measure every executed program, we use Linux kernel’s
Integrity Module (LIM) [29] framework to record hashes of every previously unseen
program and executable memory-mapped file before loading them. We set a watchpoint
on the in-kernel measurement list to catch each addition to it. This way, the module can
avoid pausing except when LIM detects new binaries. Other in-VM monitor techniques
could be leveraged to report integrity measurements to the modules to reduce the over-
head of pausing the VM. Virtual devices like the vTPM [9] and co-resident monitors
like SIM [50] provide potential reporting frameworks.

4 Implementing an IVP

We implemented a proof-of-concept IVP for a Linux KVM system. Figure 5 illustrates
the IVP’s services residing in the host. Clients interact with the IVP through a proxy
manager to (1) register their criteria, (2) request attestations of the host’s configuration,
and (3) manage connections to VMs. We used a TLS-protected VPN tunnel to the VM’s
virtualized private network to implement the IVP’s channel mediator. Initially, VMs are
firewalled from the client’s tunnel and all clients are isolated from each other through
the VPN as well. Once the tunnel is active, a client can establish an IA with a specific
VM by first (3a) sending a request to the proxy manager and specifying which criteria
previously registered should be used to mediate that connection. The proxy manager
then creates the IA tuple and (3b) registers it with the integrity monitor, which in turn
checks if the client’s criteria are satisfied by the VM. If it is, the monitor (3c) informs the
proxy manager to change the VPN firewall to allow the VM to send data to the client
over the tunnel. The client can now receive data from the monitored VM as well as
(4) authenticate the identity of the VM to establish an encrypted connection if desired.

190 J. Schiffman, H. Vijayakumar, and T. Jaeger

Host

Integrity
Monitor

VPN
Server

Proxy
Manager

Guest DomainClient
Application

(2) Verify
host's integrity

(3c) Confirms that
new IA is valid

Virtualized
Hardware

Endpoint
Authentication

Userspace

Set hardware
watchpoints

(3a) Request
new IA

(5) Kill invalid IAs

(1) Register
criteria

(4) Authenticate
endpoint

GDB / MI

Modules

(3b) Registers new IA

Fig. 5. IVP implementation and protocol

Finally, if at anytime the VM violates the IA’s criteria, the integrity monitor (5) deletes
the IA and informs the VPN server to firewall the client tunnel from the VM.

4.1 Verifying the Host

To verify the IVP platform’s integrity, we use the Root of Trust for Installation (ROTI)
approach to attest to the trusted distribution of the host [46]. At install time, a TPM
signed proof is generated that binds the installed filesystem to the installer that
produced it. We also employ the tboot bootloader to establish a measured launch
environment (MLE) for the host using Intel’s Trusted eXecution Technology (TXT)
in recent CPUs [22]. The MLE establishes a dynamic root of trust for measurement
(DRTM) through the processor that isolates, measures, and executes the kernel and ini-
tial ramdisk (initrd). This allows the boot process to be started from a trusted starting
point. The initrd loads the system enforcement policies into the kernel and takes a mea-
surement of the current filesystem before passing execution off to the root filesystem.
When a client requests an attestation of the IVP platform, the ROTI proof is included
with the normal attestation. The client then checks that the proof indicates no tamper-
ing with the installation has occurred and that the installer source is trusted to produce
a system designed to maintain its integrity at runtime to meet the long-term integrity
requirements of the IVP platform.

4.2 Channel Mediator

We implemented the channel mediator using OpenVPN server to manage Ethernet tun-
nels from remote clients to the internal virtualized network for the hosted VMs. All
mediated connections from the client are aggregated through a single VPN tunnel with
the individual VM endpoints permitted to transmit on that tunnel if a corresponding IA

Verifying System Integrity by Proxy 191

exists. VPN tunnels are established by first mutually authenticating the client’s account
certificate and a host certificate signed by the host’s AIK. Each connection is TLS-
protected and uses a Linux tap device to provide kernel supported Ethernet tunneling
from the physical network interface to the virtual network bridge. Once connected, the
OpenVPN server opens the firewall for traffic from the VM’s virtual interface to the
tunnel for each VM in the active IAs to the client. When the integrity monitor deletes
an IA, it tells the OpenVPN server to firewall the VM from the client in the deleted IA.

4.3 Integrity Monitor

We created the integrity monitor as a 439 SLOC Python daemon that manages VM ex-
ecution and monitors VM integrity. The daemon uses the hypervisor independent inter-
face, libvirt, to start and stop VMs, collect information about virtual device settings, and
control loadtime VM parameters. When the daemon receives a request to start a VM, it
spawns a separate watcher thread to control the VM and monitor integrity information.
When the proxy manager registers a new IA with the monitor, the monitor forwards the
IA to the appropriate VM’s watcher, which in turn checks that each criterion is satisfied
by querying the registered measurement modules for current VM configuration. If all
the modules indicate the requirements are satisfied, the watcher notifies the VPN server
that the IA is valid.

The watcher registers with loadtime measurement modules to collect information
about the VM before the VM is started. Next, the VM is created and the watcher at-
taches gdb to running VM process, which pauses the VM. We use gdb as a proof of
concept VMI interface because VMs in Linux KVM run as userspace processes, mak-
ing them it simple to monitor. Moreover,gdb can determine where kernel structures are
in memory by reading debug information in the kernel or from a separate system map
file that is easily obtained. The watcher then loads the runtime modules, which collect
the necessary context from the paused VM and set any desired watchpoints through the
gdb interface. After the runtime modules are registered, the VM resumes execution.
When watchpoints are triggered at runtime, the VM is paused and control is passed
from the watcher to the runtime module that set it. The module then introspects into the
VM’s memory and updates the accumulated VM configuration with any modified val-
ues detected during introspection. The module notifies the watcher if any values have
changed, which checks if those changes have violated any of the registered IA’s criteria.
Finally, the module resumes the VM’s execution.

We use hardware-assisted watchpoints in gdb to avoid modifying the VM code and
introducing additional overhead. This raises an issue because the x86 architecture only
contains 4 debug registers, which limits the number of hardware-assisted watchpoints
that can be set for a process. Since software watchpoints require single stepping through
the VM’s execution, they are not a viable option. However, similar watchpoint function-
ally is feasible by using memory protection features of the KVM shadow page table for
VMs as demonstrated in SIM [50]. While we did not implement this VMI approach, we
plan to explore it and further implementation options in future work.

192 J. Schiffman, H. Vijayakumar, and T. Jaeger

5 Evaluation

We evaluated our IVP implementation in terms of functionality and performance. First,
we validated the IVP’s ability enforce relying party criteria correctly by performing
attacks that violated various integrity requirements. We then evaluated the performance
overhead imposed on the monitored VM using both micro-benchmarks and application-
level benchmarks performance.

Our experimental testbed consisted of a Dell OptiPlex 980 with a 3.46GHz Intel
Core i5 Dual Core Processor, 8GB of RAM, and a 500GB SATA 3.0Gb/s hard disk.
The Linux KVM host ran in an Ubuntu 10.10 distribution using a custom 2.6.35 Linux
kernel. Our guest VMs were allocated a single 3.46GHz vCPU without SMP, 1GB of
RAM, and an 8GB QCOW2 disk image connected via virtio drivers. Each VM ran an
Ubuntu Linux 10.10 server distribution with default SELinux policy and a custom LIM
module.

5.1 Functionality

To test the IVP’s functionality, we designed a target application VM running the Apache
webserver. We constructed a VM image that approximates the CW-Lite [49] integrity
model and designed an integrity criteria for verifying that approximation. We then had
a client connect to the VM through a mediated channel associated with the CW-Lite
criteria. We performed several attacks on the VM’s loadtime and runtime integrity both
before and after the connection was established to see if the IVP would correctly detect
the violations and terminate the connection.

Building a CW-Lite Enforcing VM. We constructed an application VM that satisfies
the CW-Lite integrity model. This practical integrity model differs from strict integrity
models like Biba [10] and Clark-Wilson [13] by allowing for an integrity policy that
identifies trusted exceptions where illegal flows are required for the system to function
properly. Other practical integrity models would also be viable [28,60]. To enforce CW-
Lite, trusted processes with high integrity labels (e.g. privileged daemons) must only (1)
load trustworthy code, (2) receive trustworthy inputs, and (3) handle untrusted inputs
through designated filtering interfaces that can upgrade or discard low integrity data.

We configured our Apache VM with SELinux, which enforces a mandatory access
control policy through Domain Type Enforcement [6]. This labels every process and
system object with policy-defined types. We use the Gokyo [24] policy analysis tool
to identify 79 labels from which data can flow to the Apache process and system TCB
labels [49]. This included processes that access critical resources like kernel interfaces
and privileged daemons. We then modified SELinux LSM to hook into the kernel’s
LIM [29] to receive hashes of code executed in trusted processes. The modified LSM
module then denies execution of hashes that are not on a white list obtained from the
Ubuntu 10.10 main repository. This secure execution monitor satisfies the first CW-Lite
requirement because only trusted code from the hash list may run in trusted processes.

In addition to the identified trusted processes, several untrusted sources like the net-
work provide necessary input to Apache. Per the third CW-Lite requirement, we must

Verifying System Integrity by Proxy 193

ensure untrusted inputs are only received by interfaces1 designed to properly handle
(e.g. sanitize) such input. To do this, we added additional checks to the LIM policy to
whitelist only the Apache binary, designed to handle such inputs, to be loaded into the
process with labels to access these interfaces. Before the interface is permitted to read
data, our modified SELinux LSM checks if the interface is intended to receive untrusted
data based on a CW-Lite policy and deny the read if it is not.

Specifying Integrity Criteria. We defined our client’s integrity criteria with both load-
time and runtime requirements. For loadtime criteria, we specified hashes of a trusted
VM disk image, kernel, initrd, and CW-Lite enforcement policies to match those we
created above. The runtime criteria, by contrast, checks for common signs of intrusion
by rootkits and unexpected modification of the VM’s enforcement mechanisms and
policies at runtime.

For example, previous research [7] has shown that some rootkits modify the netfilter
hook in the kernel to enable remote control of the system via specially crafted network
packets [36]. Other attacks replace the binary format handlers to obtain privilege es-
calation triggered by program execution. We specified runtime criteria that require no
changes to the kernel structures located by the kernel symbols nf hooks for the netfil-
ter andformats for binary format handlers attacks. We also identified function pointers
used to hook execution by SELinux and LIM and in-kernel policy structures that should
not be modified at runtime. Furthermore, we specified that only the Ubuntu repository
code was to be executed in the TCB, which would catch the case where the secure exe-
cution protections were bypassed. To do this, we specified that all measurements of code
loads taken by the LIM hooks should match the hash list we specified above.

Building Measurement Modules. We constructed several measurement modules to
monitor various integrity requirements on the target VM. The modules were written in
an inheritable base class that exposes a register function for setting watchpoints and a
callback handler that is called when the watchpoint is triggered. Each module averaged
25 additional lines over the base class definition. The integrity monitor’s watcher thread
instantiates and registers loadtime modules before the VM is first created to measure
the kernel, disk image, and enforcement policies.

Runtime modules are instantiated after VM initialization and set watchpoints through
the gdb interface. When a watchpoint is triggered, the watcher is notified and invokes
the appropriate module’s callback to inspect the event. We placed watchpoints on var-
ious kernel structures including SELinux, LIM, and netfilter function pointers and the
binary format handler list. We also monitored the in-kernel LIM policy by set a watch-
point on the kernel’s ima measurements list head. This traps to the runtime module
whenever a new binary is executed. The module reads the hash from the list tail and adds
it to the module’s list of measured code. Doing this, we can monitor all code loaded in
the TCB and check for inconsistencies between the expected LIM policy and executing
programs. Leveraging the LIM framework to record new code hashes lets the integrity
monitor pause the VM only when new binaries are loaded.

1 Interface here refers to the read-like syscalls. While programs have many interfaces, only some
are intended to handle untrusted inputs.

194 J. Schiffman, H. Vijayakumar, and T. Jaeger

Detecting Violations. We tested if the IVP properly mediates the CW-Lite criteria be-
fore and after connecting a client to the VM over the mediated channel. We exercised
each measurement module through a series of attacks on the VM’s integrity. For load-
time modules, we modified boot parameters, kernel versions, disk image contents, and
policy files to values not permitted by the criteria. The modules then recorded these con-
figuration values at VM creation. When the client initiated connection request to the IVP,
the integrity monitor’s watcher compared the measured values to the criteria and correctly
rejected the connection. For our runtime modules, deployed attacks on the monitored data
structures using attack code that exploits an x86 compatibility vulnerability in Linux ker-
nels older than 2.6.36 [14]. This let us illegally change an unprivileged process’ SELinux
label to the full privileged kernel t label, thereby enabling arbitrary code execution.
We used this vector to easily modify kernel memory and modify the monitored struc-
tures to violate our runtime requirements. The IVP correctly detected these changes and
disconnected the connection to the VM and prevented future connection requests.

5.2 Performance

Next, we examined the performance impact the IVP has on monitored application VMs.
We first performed a series of CPU and I/O micro-benchmarks within the monitored
VM to identify any overhead in system performance indicators. We then performed
macro-benchmarks with a webserver and distributed compilation VM to see the impact
at the application-level.

Passive Overhead. We first evaluated the impact of runtime monitoring on the VM
when integrity-relevant events are not occurring. We used three types of benchmarks to
test CPU, network, and disk performance of the VM with and without the IVP active.
For CPU-bound benchmarking, we used the SPECINT 2006 test suite (see Table 1),
which performs several training runs to identify the expected standard deviation (under
1.1%) before sampling. Most tests show negligible overhead with the IVP with the
largest at 0.61%.

Table 3 shows our results for network and disk benchmarks after 30 runs of each.
We used netperf to evaluate network overhead. It samples maximum throughput
and transactions per second after saturating the network link. These tests also indi-
cated negligible impact on networking. For disk I/O performance, we used the dbench
benchmarking tool, which simulates a range of filesystem level operations using a con-
figurable range of parallel processes. It presents results as the average throughput for
the client processes. We found that the throughput was negatively affected as we in-
creased the number of simultaneous clients. Our intuition for this trend was that more
client processes led to more syscalls that, in turn, cause the VM process to raise signals
to perform I/O through virtual devices. We profiled the VM with systrace while the
benchmarks were executing and confirm this correlation. Since gdb uses the ptrace
interface in the kernel to monitor processes for debug signals, every syscall incurred
a small processing overhead by gdb to parse the signal and resume process execu-
tion. A possible solution for this would be to modify the ptrace interface to notify the
gdb process only when debug signals are raised. Even with this overhead, our disk I/O
benchmarks demonstrate overhead under 8% for 50 clients.

Verifying System Integrity by Proxy 195

Table 1. Benchmarks with and without the
IVP obtained by the median of three runs, as
reported by the SPECINT 2006. The test suite
does training and test runs in addition to the
actual runs so the results are reproducible.

SPECINT ’06 Median (sec) Diff
Benchmarks Base Test (%)
perlbench 403 404 0.25
bzip2 683 686 0.43
gcc 367 369 0.54
mcf 557 560 0.53
gobmk 467 467 0.00
hmmer 544 545 0.18
sjeng 575 576 0.17
libquantum 664 667 0.45
h264ref 762 763 0.13
omnetpp 494 497 0.61
astar 664 667 0.45

Table 2. Active Overhead Micro-benchmarks
of overhead incurred when watchpoint is trig-
gered. World switches and GDB contributes
82.2% of the trigger overhead excluding mod-
ules. Collected from 100 runs.

Operation Mean (± 95% CI) (ms)
Watchpoint Trigger
VM Exit and Entry .006 (± 0.000)
QEMU overhead .496 (± 0.081)
GDB overhead .327 (± 0.054)
Monitor Overhead 0.172 (± 0.028)
Runtime Modules
Collect LIM Hash 66.76 (± 0.215)
Read kernel variable 0.132 (± 0.002)

We also tested the effect of our IVP on two real-world applications, an Apache web-
server and a distcc compilation VM. We initiated all of our tests from a separate
computer over the TLS-protected VPN tunnel setup by the IVP. We ran 30 runs of the
ab tool to simulate 100 concurrent clients performing 100,000 requests on the Apache
VM. For the distcc test, we compiled Apache-2.2.19 across 3 identical VMs on sep-
arate machines with 8 concurrent threads. Again, the average of 30 such runs are taken.
Our results show that the IVP introduced a 1.44% and 0.38% overhead on Apache and
distcc VMs, respectively. We suspect the primary cause for the Apache overhead is the
frequent network requests and disk accesses made to service the requests.

Active Overhead. Finally, we explored the delays introduced by the IVP when han-
dling changes to monitored data structures. We profiled our measurement modules us-
ing the ftrace framework in the Linux kernel by setting markers to synchronize timings
between our userspace monitor and events happening in the kernel, such as VM exits
and enters. Table 2 shows that interrupting the VM on a tripped watchpoint introduces
a 1 ms pause regardless of the measurement module involved. For simple runtime mod-
ules that read single variables, approximately 100μs additional overhead is incurred.
However, more complex measurement modules take more time. For example, the LIM
measurement module reads a SHA1 hash from a nested kernel list, which causes a 67 ms
delay. We found the majority of this is caused by gdb parsing the kernel symbol table
to locate the memory addresses in the VM to read. Caching these addresses when the
monitor is registered would greatly speed this measurement process. Regardless, mea-
surement modules that perform more complex measurements like reading and parsing
multiple structures will increase the time the VM is paused. Moreover, watchpoints on
frequently modified memory locations will result in more pauses.

196 J. Schiffman, H. Vijayakumar, and T. Jaeger

6 Related Work

Introduction of the TPM has led to numerous IM techniques (see the comprehensive
survey by Parno et. al. [39]). Initial approaches focused on TCG-style verification of
the boot process, the OS kernel, modules, userspace binaries [43,29] and system poli-
cies [23]. Application-level measurements through frameworks like Trousers [65] en-
able processes to pass measurements to the TPM for integrity protection and report-
ing. Other techniques measured VM integrity through hypervisor support [16,44,31]
and even virtualized the TPM for VMs [9]. More recently, Sirer et. al. [52] proposed
an authorization logic supported by a custom OS kernel that enables verification us-
ing high-level statements instead of binary hashes. This approach greatly simplifies the
complexity of verifying attestations and provides a richer measurement framework for
both local and remote entities. However, these approaches place the verification burden
on the relying party to interpret potentially stale and incomplete information. The IVP
can leverage these disparate measurement techniques to verify a relying party’s criteria
at the proving system and supplement them with more fine-grain monitoring.

Other approaches have focused on reducing the TCB that must be verified. Bind [51],
Flicker [33], and TrustVisor [32] use CPU hardware support to measure and protect
the execution environment of application code and associate it with the computation’s
result. These approaches provide guarantees to the relying party that the result was
protected from external threats during execution, but still require verification of each
result’s attestation.

Instead of attesting system configurations, other research has focused on maintaining
runtime integrity guarantees [47,30,17,50,45,5,56] that remote parties can verify are
being enforced. For example, Terra’s Optimistic Attestation ensure certain VM disk
blocks are unaltered by shutting down the VM if a modification is detected at loadtime.
These approaches offer a strong foundation for monitoring runtime integrity, but do not
support verifying remote verifier specified requirements. Our IVP can leverage these
runtime enforcement mechanisms to maintain the IVP host’s integrity. Furthermore,
remote parties can use the IVP to monitor the integrity of enforcement mechanisms in
the VM and their policies. Also, our design does not explicitly provide remediation like
shutting down the VM because we assume the remote clients are not administrators of
the VM and may have differing criteria.

IM has also been incorporated into secure communication channels. Trusted Net-
work Connect [63] requests periodic attestations of clients before and after they join
a private network and evicts systems with invalid attestations. OpenTC PET [38] uses
SSL proxies in a VM host to provide attestations of the VM to the remote client. How-
ever, the proxy simply provides attestations instead of verifying the VM’s integrity on
behalf of the connected client. Other work [19,62,9,18] has incorporated TPM attesta-
tions into public key certificates to bind integrity states to platform identities. However,
the reported integrity of these approaches is only valid as long as the attested system’s
configuration does not change. This requires the client to continually request new cer-
tificates that function exactly like attestations. Our IVP eliminates the need for continual
polling by enforcing the client’s criteria at the VM’s host.

Verifying System Integrity by Proxy 197

Table 3. Network and disk benchmarks. netperf measures throughput (tcp stream) and
transactions per second (tcp rr) after 30 second network saturation. dbench measures 20 sec-
onds disk throughput intervals during a 10 minute read / write workload after 2 minute warmup.
30 runs per benchmark.

Benchmarks Mean ± 95% CI Diff
Baseline With IVP (%)

Network: netperf
TCP STREAM (Mb/s) 268 ± 0.23 269 ± 0.22 0.2
TCP RR (Trans/s) 1141 ± 5.65 1141 ± 1.96 0.05
Disk: dbench
1 Client (Mb/s) 11.14 ± 0.02 11.12 ± 0.14 0.18
5 Clients (Mb/s) 32.64 ± 0.67 32.49 ± 0.76 0.46
10 Clients (Mb/s) 40.94 ± 1.01 40.21 ± 0.98 1.78
20 Clients (Mb/s) 47.46 ± 1.50 44.69 ± 1.12 5.83
50 Clients (Mb/s) 40.58 ± 3.09 37.41 ± 1.86 7.81

7 Conclusion

In this paper, we presented the integrity verification proxy (IVP), a service resident in
a proving system that mediates connections on behalf of remote clients. By shifting the
task of monitoring a client’s integrity criteria to the proving system’s host, we enable
relying parties to connect to remote systems without the need for frequent attestations
or further verification. We designed and implemented a proof of concept IVP for a
Linux KVM host and evaluated its effectiveness and impact on performance. Our results
show the IVP incurs only minor overhead for network and CPU-bound applications,
but with additional delay that increases modestly as a function of I/O load. As future
work, we plan to improve our VMI interface to minimize passive overhead and increase
expressiveness of client’s integrity criteria.

References

1. Processor-Based Virtualization, AMD64 Style,
http://developer.amd.com/documentation/articles/pages/
630200615.aspx

2. Anderson, J.P.: Computer Security Technology Planning Study. Tech. Rep. ESD-TR-73-51,
The Mitre Corporation, Air Force Electronic Systems Division, Hanscom AFB, Badford,
MA (1972)

3. Andronick, J., Greenaway, D., Elphinstone, K.: Towards Proving Security in the Presence
of Large Untrusted Components. In: Proc. 5th Workshop on Systems Software Verification
(2010)

4. Arbaugh, W.A., Farber, D.J., Smith, J.M.: A Secure and Reliable Bootstrap Architecture. In:
Proc. IEEE SSP (1997)

5. Azab, A.M., Ning, P., Wang, Z., Jiang, X., Zhang, X., Skalsky, N.C.: HyperSentry: Enabling
Stealthy In-Context Measurement of Hypervisor Integrity. In: Proc. 17th ACM Conference
on Computer and Communications Security (2010),
http://doi.acm.org/10.1145/1866307.1866313

http://developer.amd.com/documentation/articles/pages/630200615.aspx
http://developer.amd.com/documentation/articles/pages/630200615.aspx
http://doi.acm.org/10.1145/1866307.1866313

198 J. Schiffman, H. Vijayakumar, and T. Jaeger

6. Badger, L., Sterne, D.F., Sherman, D.L., Walker, K.M., Haghighat, S.A.: Practical domain
and type enforcement for unix. In: IEEE Symposium on Security and Privacy (1995)

7. Baliga, A., Ganapathy, V., Iftode, L.: Automatic Inference and Enforcement of Kernel Data
Structure Invariants. In: Proc. ACSAC (2008),
http://dx.doi.org/10.1109/ACSAC.2008.29

8. BBC: Amazon apologises for cloud fault one week on,
http://www.bbc.co.uk/news/business-13242782

9. Berger, S., et al.: vTPM: Virtualizing the Trusted Platform Module. In: USENIX Security
Symposium (2006)

10. Biba, K.J.: Integrity Considerations for Secure Computer Systems. Tech. Rep. MTR-3153,
MITRE (1975)

11. Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., Jiang, X.: Mapping kernel objects to
enable systematic integrity checking. In: Proceedings of the 16th ACM Conference on Com-
puter and Communications Security

12. Chen, P.M., Noble, B.D.: When Virtual Is Better Than Real. In: Proc. HotOS (2001)
13. Clark, D.D., Wilson, D.R.: A Comparison of Commercial and Military Computer Security

Policies. Security and Privacy (1987)
14. CVE-2010-3081,

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3081
15. Fraser, T., Evenson, M.R., Arbaugh, W.A.: VICI Virtual Machine Introspection for Cognitive

Immunity. In: Proceedings of the 2008 ACSAC (2008),
http://dx.doi.org/10.1109/ACSAC.2008.33

16. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A Virtual Machine-Based
Platform for Trusted Computing. In: Proc. 19th ACM SOSP (2003)

17. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture for In-
trusion Detection. In: Proc. NDSS (2003)

18. Gasmi, Y., Sadeghi, A.R., Stewin, P., Unger, M., Asokan, N.: Beyond Secure Channels. In:
Proc. ACM Workshop on Scalable Trusted Computing (2007)

19. Goldman, K., Perez, R., Sailer, R.: Linking Remote Attestation to Secure Tunnel
Endpoints. In: Proc. First ACM Workshop on Scalable Trusted Computing (2006),
http://doi.acm.org/10.1145/1179474.1179481

20. Haldar, V., Chandra, D., Franz, M.: Semantic remote attestation: a virtual machine directed
approach to trusted computing. In: Proceedings of the 3rd Conference on Virtual Machine
Research And Technology Symposium (2004)

21. Hay, B., Nance, K.: Forensics examination of volatile system data using virtual introspection.
SIGOPS Oper. Syst. Rev. 42, 74–82 (2008)

22. Trusted Execution Technology, http://www.intel.com/technology/security/
23. Jaeger, T., Sailer, R., Shankar, U.: PRIMA: Policy-Reduced Integrity Measurement Archi-

tecture. In: Proc. 11th ACM SACMAT (2006)
24. Jaeger, T., Sailer, R., Zhang, X.: Analyzing Integrity Protection in the SELinux Example

Policy. In: Proc. 12th USENIX-SS (2003)
25. Joshi, A., King, S.T., Dunlap, G.W., Chen, P.M.: Detecting past and present intrusions

through vulnerability-specific predicates. In: SOSP. ACM (2005)
26. Kennell, R., Jamieson, L.H.: Establishing the genuinity of remote computer systems. In:

USENIX Security Symposium (2003),
http://portal.acm.org/citation.cfm?id=1251353.1251374

27. Klein, G., et al.: seL4: Formal Verification of an OS Kernel. In: SOSP (2009)
28. Li, N., Mao, Z., Chen, H.: Usable Mandatory Integrity Protection for Operating Systems. In:

Proc. IEEE SSP (2007)
29. Integrity: Linux Integrity Module(LIM), http://lwn.net/Articles/287790/

http://dx.doi.org/10.1109/ACSAC.2008.29
http://www.bbc.co.uk/news/business-13242782
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3081
http://dx.doi.org/10.1109/ACSAC.2008.33
http://doi.acm.org/10.1145/1179474.1179481
http://www.intel.com/technology/security/
http://portal.acm.org/citation.cfm?id=1251353.1251374
http://lwn.net/Articles/287790/

Verifying System Integrity by Proxy 199

30. Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor Support for Identifying Covertly Execut-
ing Binaries. In: Proc. 17th Usenix Security Symposium (2008)

31. Maruyama, H., Seliger, F., Nagaratnam, N., Ebringer, T., Munetoh, S., Yoshihama, S., Naka-
mura, T.: Trusted Platform on Demand. Tech. Rep. RT0564. IBM (2004)

32. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVisor: Efficient
TCB Reduction and Attestation. In: Proc. IEEE SSP (2010),
http://dx.doi.org/10.1109/SP.2010.17

33. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An Execution In-
frastructure for TCB Minimization. In: Proc. 3rd ACM SIGOPS/EuroSys (2008)

34. Moyer, T., Butler, K., Schiffman, J., McDaniel, P., Jaeger, T.: Scalable Asynchronous Web
Content Attestation. In: ACSAC 2009 (2009)

35. Murray, D.G., Milos, G., Hand, S.: Improving xen security through disaggregation. In: VEE.
VEE 2008. ACM (2008)

36. Linux Kernel Backdoors And Their Detection,
http://invisiblethings.org/papers/ITUnderground2004
Linux kernel backdoors.ppt

37. Security-enhanced linux, http://www.nsa.gov/selinux
38. OpenTC: OpenTC PET,

http://www.opentc.net/publications/OpenTC PET prototype
documentation v1.0.pdf

39. Parno, B., McCune, J.M., Perrig, A.: Bootstrapping Trust in Commodity Computers. In:
IEEE SP 2010 (2010)

40. Payne, B.D., Carbone, M., Lee, W.: Secure and Flexible Monitoring of Virtual Machines. In:
ACSAC (2007)

41. Payne, B.D., Carbone, M., Sharif, M., Lee, W.: Lares: An architecture for secure active mon-
itoring using virtualization. In: IEEE Symposium on Security and Privacy (May 2008)

42. Petroni, N.L., Timothy, J., Jesus, F., William, M., Arbaugh, A.: Copilot - A Coprocessor-
based Kernel Runtime Integrity Monitor. In: Proc. 13th USENIX Security Symposium
(2004)

43. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of a TCG-based
Integrity Measurement Architecture. In: USENIX Security Symposium (2004)

44. Santos, N., Gummadi, K.P., Rodrigues, R.: Towards Trusted Cloud Computing. In: HOT-
CLOUD (2009)

45. Schiffman, J., Moyer, T., Shal, C., Jaeger, T., McDaniel, P.: Justifying integrity us-
ing a virtual machine verifier. In: Annual Computer Security Applications Conference,
pp. 83–92(December 2009)

46. Schiffman, J., Moyer, T., Jaeger, T., McDaniel, P.: Network-based Root of Trust for Installa-
tion. IEEE Security & Privacy (2011)

47. Seshadri, A., Luk, M., Qu, N., Perrig, A.: Secvisor: A Tiny Hypervisor To Provide Lifetime
Kernel Code Integrity For Commodity Oses. In: Proceedings of Twenty-First ACM SOSP
(2007)

48. Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pioneer: Verifying Code
Integrity And Enforcing Untampered Code Execution On Legacy Systems. In: Proceedings
of the 20th ACM SOSP (2005)

49. Shankar, U., Jaeger, T., Sailer, R.: Toward Automated Information-Flow Integrity Verification
for Security-Critical Applications. In: Proc. 2006 NDSS (2006)

50. Sharif, M.I., Lee, W., Cui, W., Lanzi, A.: Secure in-vm monitoring using hardware virtu-
alization. In: Proceedings of the 16th ACM Conference on Computer and Communications
Security (2009)

51. Shi, E., Perrig, A., van Doorn, L.: BIND: A Fine-Grained Attestation Service for Secure
Distributed Systems. In: IEEE SP 2005 (2005)

http://dx.doi.org/10.1109/SP.2010.17
http://invisiblethings.org/papers/ITUnderground2004_Linux_kernel_backdoors.ppt
http://invisiblethings.org/papers/ITUnderground2004_Linux_kernel_backdoors.ppt
http://www.nsa.gov/selinux
http://www.opentc.net/publications/OpenTC_PET_prototype_documentation_v1.0.pdf
http://www.opentc.net/publications/OpenTC_PET_prototype_documentation_v1.0.pdf

200 J. Schiffman, H. Vijayakumar, and T. Jaeger

52. Sirer, E.G., de Bruijn, W., Reynolds, P., Shieh, A., Walsh, K., Williams, D., Schneider, F.B.:
Logical attestation: an authorization architecture for trustworthy computing. In: Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, New York, NY,
USA, pp. 249–264 (2011), http://doi.acm.org/10.1145/2043556.2043580

53. Smalley, S., Vance, C., Salamon, W.: Implementing SELinux as a Linux Security Module.
Tech. Rep. 01-043, NAI Labs (2001)

54. Smith, S.W.: Outbound Authentication for Programmable Secure Coprocessors. In: Goll-
mann, D., Karjoth, G., Waidner, M. (eds.) ESORICS 2002. LNCS, vol. 2502, pp. 72–89.
Springer, Heidelberg (2002)

55. Sony: Update on playstation network and qriocity (April 2011),
http://blog.us.playstation.com/2011/04/26/update-
on-playstation-network-and-qriocity

56. Srinivasan, D., Wang, Z., Jiang, X., Xu, D.: Process out-grafting: an efficient ”out-of-vm”
approach for fine-grained process execution monitoring. In: Proceedings of the 18th ACM
Conference on Computer and Communications Security, New York, NY, USA, pp. 363–374
(2011), http://doi.acm.org/10.1145/2046707.2046751

57. St. Clair, L., Schiffman, J., Jaeger, T., McDaniel, P.: Establishing and Sustaining System In-
tegrity via Root of Trust Installation. In: Annual Computer Security Applications Conference
(2007)

58. Steinberg, U., Kauer, B.: Nova: a microhypervisor-based secure virtualization architecture.
In: Proceedings of the 5th European Conference on Computer Systems, EuroSys 2010, pp.
209–222. ACM, New York (2010)

59. Stumpf, F., Fuchs, A., Katzenbeisser, S., Eckert, C.: Improving the scalability of platform
attestation. In: ACM Workshop on Scalable Trusted Computing (2008)

60. Sun, W., Sekar, R., Poothia, G., Karandikar, T.: Practical Proactive Integrity Preservation: A
Basis for Malware Defense. In: Proc. 2008 IEEE SSP (2008)

61. Ta-Min, R., Litty, L., Lie, D.: Splitting interfaces: making trust between applications and
operating systems configurable. In: OSDI. USENIX Association, Berkeley (2007)

62. TCG: Infrastructure Subject Key Attestation Evidence Extension Version 1.0, Revision 5.
Tech. report (2005)

63. TCG: Trusted Network Connect: Open Standards for Integrity-based Network Access Con-
trol. Technical report (2005), http://www.trustedcomputinggroup.org

64. TCG: Trusted Platform Module (2005),
https://www.trustedcomputinggroup.org/specs/TPM/

65. Trousers, http://trousers.sourceforge.net/
66. VMWare VMsafe, http://www.vmware.com/go/vmsafe

http://doi.acm.org/10.1145/2043556.2043580
http://blog.us.playstation.com/2011/04/26/update-on-playstation-network-and-qriocity
http://blog.us.playstation.com/2011/04/26/update-on-playstation-network-and-qriocity
http://doi.acm.org/10.1145/2046707.2046751
http://www.trustedcomputinggroup.org
https://www.trustedcomputinggroup.org/specs/TPM/
http://trousers.sourceforge.net/
http://www.vmware.com/go/vmsafe

Virtualization Based Password Protection
against Malware in Untrusted Operating Systems

Yueqiang Cheng and Xuhua Ding

School of Information Systems,
Singapore Management University

{yqcheng.2008,xhding}@smu.edu.sg

Abstract. Password based authentication remains as the mainstream user au-
thentication method for most web servers, despite its known vulnerability to
keylogger attacks. Most existing countermeasures are costly because they re-
quire a strong isolation of the browser and the operating system. In this paper,
we propose KGuard, a password input protection system. Its security is based
on the hardware-based virtualization without safeguarding the browser or OS. A
security-conscious user can conveniently and securely activate or deactivate the
password protection by using key combinations. We have implemented KGuard
and experimented our prototype on Windows with Firefox. The results show that
no significant performance loss is induced by our protection mechanism when a
user authenticates to commercial web servers.

1 Introduction

Password based authentication is the primary method for a remote server to check a
user’s identity. In a typical web authentication, a user password is transferred from the
keyboard to the kernel, then to the browser before being sent out over the network to the
web server through an SSL channel. One of the main threats to password authentication
is kernel/application keyloggers which steal the password from its transferring path.

Any countermeasure to keyloggers must cope with both the attacks on the application
which forwards the password to a remote server, and the attacks on the I/O path, namely
from the keyboard to the application. Virtualization based isolation is the main approach
as used in [6,9,8,3], where either the browser or the entire OS is isolated as a protected
environment. This approach usually incurs significant cost due to the large code to
isolate and the security assurance is not strong, though it addresses other related security
problems, e.g., phishing attacks. Another approach, as suggested in Bumpy [16] and
BitE [15], is to use an encryption-capable keyboard to protect the I/O path and rely
on the latest processor features to isolate the application. However, most commodity
platforms at present are not equipped with the needed keyboard.

In this paper, we propose a novel system to protect passwords against keyloggers
in remote authentication without using a special keyboard or isolation like [6,9,8,3].
Note that in the remote authentication setting, it is unnecessary for the user’s platform
(including the OS and the application) to know the actual password as long as it can for-
ward the authentication information to the server properly. Therefore, the high level idea
of our work is that a hypervisor intercepts the user’s password input; and whenever the

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 201–218, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

202 Y. Cheng and X. Ding

application needs to submit the password to the server through an SSL channel, it traps
to the hypervisor which performs the desired encryption. In other words, the normal
SSL connection between the application and the server is split into non-cryptographic
operations and cryptographic operations, such that the latter are accomplished by the
hypervisor holding the password.

In our system, the cleartext password is never exposed to the operating system or
the application. As a result, a keylogger can only get a ciphertext version. The system
is highly efficient because no extra computation or communication cost is incurred as
compared to normal password authentication, except the keyboard interception and the
trapping. It is entirely transparent to the operating system, though the application needs
to have a plug-in in order to split the SSL operations. Furthermore, the system is user
friendly as it results in little user experience change. (Note that anti-phishing is not in
the scope of our work.)

In the rest of the paper, we present the design and implementation details of our pass-
word protection system named as KGuard. It is for password based web authentication
using Firefox. We also report its performance in experiments with commercial web-
sites such as Gmail. A novel building block of our system is a secure user-hypervisor
interaction channel that allows a user to authenticate a hypervisor, which in itself is of
research value as it addresses one of the challenges recently identified in [30]. KGuard
can be extended for other password authentication systems (e.g., SSH) by replacing the
browser plugin with the one for the application.

ORGANIZATION. In the next section, we discuss the related work. Then we present
an overview in Section 3 with the emphasis on the methodology used in our design.
In Section 4, we describe the details of our design. The implementation details and
performance results are shown in Section 5 and Section 6, respectively. We discuss
several important issues in Section 7 and conclude this paper in Section 8.

2 Related Work

BitE [15] and Bumpy [16] are two isolation based systems that defend user input against
malware attacks. Both of them require an encryption-capable keyboard. BitE suffers
from a large TCB since it contains the legacy OS and Window Manager. Bumpy reduces
the TCB size by using Flicker [14]. However, it has a higher computation latency. The
KGuard system does not leverage the encryption-capable keyboard, and the TCB size
of the KGuard is larger than Bumpy, and smaller than BitE.

Password protection against malware is a sub problem of password management
which deals with other issues like phishing attacks. A widely used approach in [19,8,3]
is to set up a secure compartment which functions as a proxy to help the user’s au-
thentication. For instance, TruWallet [8] and TruWalletM [3] use different techniques
to secure the authentication proxy which securely stores the user credentials and prop-
erly submits them to a remote server. The main disadvantages of these schemes are the
architectural change (e.g., GUI parts are required to moved from the legacy OS) on the
platform and the high cost (e.g., longer data flow path comparing with the legacy one).
In addition, it is challenging to isolate the browser and the user interface due to the

Virtualization Based Password Protection against Malware in Untrusted OSs 203

enormous code size. Oprea et. al. in [19] propose an approach to allow users possess-
ing a trusted mobile device (e.g., PDA) to delegate their credentials (e.g., password) for
performing a task (e.g., login). Other works in password management include PwdHash
[22] which uses cryptographic techniques to cope with phishing attacks, and WebWallet
[29] which checks user information submission and determines phishing attacks. Note
that most secure password management systems are complementary to our work which
focuses on password input.

Our work is also related to I/O protection in the kernel space. DriverGuard system [5]
provides a generic solution to protect the confidentiality of I/O data from being attacked
by a compromised kernel. However, it does not solve the password protection problem
because it cannot protect the password residing in the application.

3 Overview

This section presents an overview of our work. We explain the design criteria and the
rationale we follow, including the trust model and a high level explanation of our ap-
proach. We also show the architecture of the proposed system.

3.1 Design Criteria

Ideally, a password protection system should meet the following criteria. Firstly, the
protection should offer the strongest security assurance. It should be able to defeat at-
tacks from rootkits which subvert the operating system, as kernel rootkit keyloggers are
not uncommon in the cyberspace. From the practicability perspective, the protection
should induce little or no modification on the operating system and is fully compatible
with existing browsers. This is due to the fact that proprietary operating systems such as
Windows and Mac OS are more widely used than open-source operating systems. Fur-
thermore, the password security should not be attained at the price of the easy-of-use of
password authentication. On the user side, the protection scheme should be as simple
as possible and does not require user possession of extra devices, such as a USB token
and a mobile phone. On the server side, no changes should be needed. Last but not the
least, the protection system should incur low cost. The cost is measured in terms of both
the time delay during the password authentication session and the overall computation
load on the platform. It is crucial that the user should not experience noticeable delay
in an authentication session.

3.2 Design Rationale

In order to meet the criteria, we carefully assess a variety of design options. The fore-
most issue to consider is the trust model, i.e. which component in the platform can be
considered as trustworthy.

Trust Model. We do not trust the operating system and applications running on top
of it, in the sense that they can be compromised and attempt to steal user passwords.

204 Y. Cheng and X. Ding

Therefore, safeguarding user password necessitates a root of trust which should not
be subverted by rootkits. One candidate for the root of trust is the TPM chip [28],
which is expected to resist all software attacks. Nonetheless, despite of its high security
assurance, the TPM chip offers rather primitive and inflexible functionalities and is slow
in computation. These drawbacks make it ill-suited for password protection.

In this work, we choose the hypervisor (a.k.a. virtual machine monitor or VMM)
as the root of trust, as in [24,25,4]. The main benefit is that it allows us to develop
desirable protection functions within the hypervisor, and therefore facilitates the design
and the implementation. The hypervisor is not as secure as the TPM chip since several
attacks have been discovered to compromise some versions of hypervisors [27,7,11,21].
However, the security of the hypervisor can be ensured by three measures. Our design
is based on hardware-assisted virtualization, such as Intel VT-x and AMD V, which
significantly reduces the virtualization code of the hypervisor. In addition, TPM-based
authenticated bootup can verify the integrity of the hypervisor when being launched.
Thirdly, the hypervisor in our system is only for protection in a normal personal desktop
setting, rather than a cloud server with a full-fledged virtualization for multiple VMs.
Therefore, those unneeded services from the hypervisor are turned off so that only a
minimal attack surface is exposed to the guest OS.

A secure hypervisor is capable to dynamically protect memory regions and I/O ports
against direct malware accesses. In addition to that, the hypervisor also uses IOMMU to
enforce the similar policies against malicious DMA operations launched by malware.

Protection Method. There exist several candidate methods to protect user passwords
against rootkits. One is to follow the isolation approach as shown in [13]. The execution
of routines processing the password is isolated from the rest of the platform to cordon
off attacks. This method is not compatible with our design criteria because of its low
performance. The frequent interrupt caused by user keystrokes for password inputting
induces the expensive system thrashing between the protection mode and the regular
mode. In addition, the isolation approach faces the difficulty of extracting appropriate
Pieces of Application Logic (PAL) due to the complexity of the kernel’s keyboard in-
put processing and the browser’s web page processing. Another possible method could
be to escort the password data flow as shown in DriverGuard [5]. Nonetheless, this
approach requires code modifications on the drivers, which does not satisfy our com-
patibility requirement. Moreover, DriverGuard by itself does not guarantee the security
of password in the application level.

In this work, our method is based on the characteristics of the password authenti-
cation. Firstly, passwords are typically sent to a remote server through an SSL/TLS
connection. It is not necessary for the local host to know the password in use. Sec-
ondly, passwords are fed to a system through keystrokes which can be intercepted by
the hypervisor.

Based on these two observations, the basic idea of our protection method is to intercept
the password keystrokes and then securely inject them back to the SSL/TLS connection
established by the browser, however, with its cryptographic operations performed by the
hypervisor. Therefore, the password is encapsulated using the web server’s public key
following the SSL/TLS specification without any exposure to the operating system or
the browser.

Virtualization Based Password Protection against Malware in Untrusted OSs 205

Security Properties. The main challenge of realizing the proposed protection method
is the gap between the hypervisor and the security-conscious user. In existing platforms,
a user only interfaces with the operating system through the application, e.g., a browser.

This gap entails three problems to solve. The first is about the timing for protection.
It is undesirable for the hypervisor to intervene in all keyboard inputs. Ideally, the pro-
tection is only activated by the user whenever needed. The on-demand protection brings
up the second challenge: how the user is assured that the hypervisor is protecting the
password input. Note that the operating system may cheat the user by simulating the hy-
pervisor’s behavior. Last but not the least, the hypervisor’s SSL traffic assembling must
use a proper public key certificate for encapsulation. Ideally, the hypervisor is capable
of verifying whether the certificate belongs to the intended web server.

In this work, we design a dynamic secure channel for user-hypervisor interaction
which bypasses the operating system. While the hypervisor’s protection mechanism
is dormant, the channel allows a security-conscious user to activate it through a key
combination. In addition, the channel allows the user to verify whether it is indeed
active. Note that it is not necessary for the hypervisor to authenticate the origin of the
keystrokes, because a faked activation key combination, e.g., from the malware instead
of the user, does not lead to password leakage1.

For the aforementioned third problem, our design achieves the same level of security
as the standard browser’s dealing with SSL certificates, because a certificate misuse
is essentially the traditional man-in-the-middle attack on SSL. Similar to the browser’s
certificate verification, the hypervisor ensures that the certificate is genuine and matches
the SSL connection.

3.3 The Architecture

We consider a platform with an operating system running on top of a hypervisor. A user
uses a web browser to login to a remote server by supplying the password. KGuard is
designed to protect the user password from being stolen by kernel/application rootkits.
The architecture of KGuard consists of three components:

1. A secure user-hypervisor interaction channel allows the user to activate or deac-
tivate the password protection and authenticate the hypervisor. A user toggles the
protection by pressing a prescribed key combination. In response, the hypervisor
securely displays (on the screen) a secret message pre-shared with the user.

2. A routine in the hypervisor intercepts user keystrokes after the protection is acti-
vated. It also validates the authentication server’s public key certificate supplied by
the browser and encapsulates the password using encryption.

3. A browser plugin splits the SSL connection for password submission. Specifically,
it requests the hypervisor to perform the needed cryptographic operations in a SSL
connection and handles other non-cryptographic operations by itself.

Note that the hypervisor only performs cryptographic operations. It does not establish
any SSL connection with the server. In a web authentication, the browser may establish

1 The faked activation key combination can be considered as a denial of service attack. It will be
quickly spotted by a user because as shown later, the hypervisor will respond to the user with
a secret message pre-shared with the user.

206 Y. Cheng and X. Ding

multiple SSL connections. Only the one submitting the password is split by the plugin to
get the needed cryptograms from the hypervisor. The benefit of this design is that it does
not entail extra computation and communication cost and it can keep the hypervisor
small without including the support for SSL.

4 The Design Details

4.1 User-Hypervisor Interaction

The user-hypervisor interaction channel is a duplex channel. In one direction, a user
sends an activation command to the hypervisor by requesting the operating system to
issue a hypercall. In the other direction, the hypervisor (on receiving the user’s com-
mand) securely displays a secret message on the screen. Therefore, the user can verify
whether the hypervisor receives the command or not.

Hypervisor Protection Activation. There exist several approaches for activation. One
alternative design is for the hypervisor to listen to a prescribed hardware event, such as
keystrokes, plugging a USB device etc. These methods can bypass the operating system.
Nevertheless, it requires extra work from the hypervisor which has to keep listening to
all events and filter them properly. In our system, we do not favor this approach because
1) we aim to minimize the load on the hypervisor, especially when the protection is
not needed; and 2) bypassing the operating system is not necessary because no data is
sent to the hypervisor for activation. In addition, the user can verify the activation by
checking the returned secret message from the hypervisor.

In our design, the operation system is the medium transferring the user’s activation
command to the hypervisor. Specifically, we design an application routine, e.g. a browser
extension, and install a new module to the OS, e.g. a virtual device in Windows. The ap-
plication routine listens to a prescribed key combination (i.e., the activation command).
When the event is captured, it issues a hypercall to inform the hypervisor. Specifically, in
the system initialization phase, the hypervisor prepares a hypercall table and then the in-
stalled OS module maps the table into the kernel space. The module exports an interface
(i.e., a system call) to applications. After getting input parameters from an application
via the exported system call, the module is invoked and forwards these parameters to the
hypervisor through a hypercall as the Xen Hypercall mechanism [1].

In response to the activation hypercall, the hypervisor clears the keyboard input
buffer, starts to intercept the keyboard strokes as described in Section 4.2, and authen-
ticates itself to the user as shown in the next subsection.

Visual Verification of Hypervisor Protection. The verification of hypervisor protec-
tion requires an output interface. To ensure its security, the output should not be cap-
tured or manipulated by malware in the guest OS. Otherwise, the guest can impersonate
the hypervisor and give the user an illusion that the protection is activated.

The basic idea of our visual verification is that the hypervisor securely outputs to the
monitor a secret text message priorly chosen by the user. Note that without involving the
operating system, the monitor automatically and periodically fetches the display data

Virtualization Based Password Protection against Malware in Untrusted OSs 207

directly from a memory region called the display buffer, whose location is determined
by the hardware [10], and then it renders them on the screen. The hypervisor shows the
secret message to the user by writing it into the display buffer. To prevent the operating
system from attacking the secret, the hypervisor clears the PAGE PRESENT attribute
bit of the corresponding page table entries. As a result, any guest access will be denied
by the hardware.

The details of the visual verification are described below. Initially, the user chooses
a random text message as his/her long term secret shared with the hypervisor. When
the hypervisor boots up, the secret message is passed to the hypervisor as a booting
parameter, which is the reason why the secret has to be text. Once taking control, the
hypervisor stores the secret message into its own space. Since the hypervisor boots up
before the operating system, the OS is not able to access this secret. To display it on a
monitor in the graphics mode, the hypervisor derives the graphic version of the secret
message by using the corresponding font bitmap for each character.

After receiving the activation hypercall, the hypervisor substitutes a part of the dis-
play buffer with the secret graphic data. As a result, the user secret message is displayed
on the screen. The location of the message on the screen depends on its offset in the
display buffer. Note that it is unnecessary to choose random locations. In addition, the
hypervisor properly sets the attribute bits of the page table entries covering the graphic
secret. Secret uploading and attribute bit setting up are an atomic operation. In other
words, the hypervisor occupies the CPU without yielding it to the operating system
until the attributes are set.

The hypervisor then sets up a timer whose duration is configured by the user during
bootup. When the timer expires, the hypervisor restores the original display data, and
finally returns the page access rights back to the guest OS.

Hypervisor Protection Deactivation. Protection deactivation requires a stronger au-
thentication on the user than protection activation, since malware may attempt to im-
personate the user to terminate the protection. Note that once the protection is activated,
the hypervisor has cleared all previous data in the keyboard input buffer and intercepts
all new keystrokes. As a result of the interception, no software can access the keyboard
input buffer, either directly or through DMA operations, as explained in Section 4.2.
Only the physical keyboard strokes can place inputs to the buffer.

Therefore, the hypervisor in KGuard is pre-configured with a deactivation command.
Once it intercepts the command during its protection, it switches to the no-protection
state by releasing the access control on the keyboard input buffer.

4.2 Keystroke Interception

After getting the activation key-combination command from the user, the hypervisor
starts keystroke interception. Since the key stroke code is directly delivered to the
guest’s memory by the hardware using DMA, keystroke interception means that the
hypervisor retrieves the keyboard scan code before the guest.

One potential approach is for the hypervisor to intercept all interrupts and intervenes
if needed. The main drawbacks of this approach are twofold. This approach may fail
because the guest OS can keep scanning the keyboard input buffer without waiting for

208 Y. Cheng and X. Ding

the interrupt. Therefore, the guest OS may have the luck of getting the data prior to
the interrupt. Secondly, the interrupt number can be shared by several devices. The
hypervisor has to determine whether the interrupt is for the keyboard. Furthermore, the
interrupt by itself does not provide sufficient information for the hypervisor to locate
the data.

Since locating the keyboard input buffer is an indispensable step, we let the hypervisor
intercept the guest access on the keyboard input buffer, rather than interrupt interception.
This method reduces the burden of the hypervisor as the guest OS manages all interrupts
and is forced by the hardware to alert the hypervisor for the scan code retrieval. For this
purpose, the hypervisor sets up page-table based access control on both the keyboard I/O
control region storing I/O commands and the keyboard input buffer storing the scan code.
IOMMU is also configured such that no DMA command can be issued to access these
protected regions. Consequently, both the guest OS’s keyboard I/O command issuance
and its data retrieval are intercepted by KGuard. For the I/O control, KGuard emulates
the operations; for the data retrieval, it replaces the user keystroke with a dummy one
and saves the original input into a buffer in the hypervisor space.

The actual access control mechanism for the keyboard input buffer depends on the
keyboard interface. A PS/2 keyboard usually uses PIO to transfer data whereas a USB-
keyboard uses DMA. It is easy to deal with port I/O keyboards. The technique for con-
trolling I/O port has been demonstrated in [5]. The access control for USB-keyboard
is more complex due to the USB architecture. The so-called Universal Host Controller
hardware uses a 32-bit register called FLBASEADD to locate a list of frame pointers.
A frame pointer points to a list of Transfer Descriptors (TDs). A TD specifies the nec-
essary I/O parameters for one DMA operation, including the input buffer address. After
completing one keyboard I/O, the guest OS must either update the current TD or insert
a new TD in order to read the next keyboard input. The keystroke interception for a
USB keyboard follows the steps below.

Step 1. KGuard freezes the present frame list and all TDs by setting FLBASEADD
and all memory regions occupied by the frame list data structure as read-only using
I/O bitmap and page table respectively. Therefore, any attempts from the guest OS
to relocate the input buffer will be monitored by KGuard.

Step 2. KGuard locates the keyboard input buffer following the path used by the host
controller. The keyboard input buffer is then set as inaccessible.

Step 3. When the guest OS attempts to read the keyboard input buffer, a page-fault is
generated and passes the control to KGuard which saves the scan code (which is
one password character) in the input buffer and replaces it with a dummy one, and
sets the buffer as read-write. The guest OS can have a full access to this buffer.

Step 4. When the guest OS prepares for the next keyboard I/O by updating the TD,
a page-fault is generated. In response, KGuard emulates the update operation. To
prevent malware from providing faked keystrokes, the hypervisor clears the content
in the keyboard input buffer, which ensures that the data fetched in Step 3 is indeed
from the keyboard.

Note that KGuard responds differently on the keyboard input buffer and the I/O re-
gion because one keyboard I/O only involves one TD update but may incur multiple

Virtualization Based Password Protection against Malware in Untrusted OSs 209

accesses to the buffer depending on the driver’s needs. Our approach avoids unneces-
sary hypervisor involvements.

We further remark that the keyboard interception is only activated based on the user’s
command. With the cooperation from the user, the incurred cost is therefore minimal
to the platform’s overall performance and it is reasonable for KGuard to treat all the
intercepted keystrokes as the password. Even in case that the user and KGuard are out
of synchronization, no user secret is compromised and the user can easily reset the
protection.

4.3 Handling SSL Session

A normal web authentication may involve one SSL session comprising one or multiple
SSL connections. Typically, when the user clicks a button for password submission, the
browser sends out the encrypted password with other necessary information through an
SSL connection.

In our system, the browser is deprived of the privilege of handling the password,
because the encryption of the password and other authentication information must be
performed in the hypervisor space, instead of in the untrusted guest domain. For this
purpose, we design a dedicated browser extension for posting authentication informa-
tion to the server through SSL. To achieve both security and compatibility, the extension
is only responsible for non-critical operations in the SSL connection, while all crypto-
graphic operations, such as master key generation and data encryption, are exported to
KGuard.

The extension captures the login event and initiates a new SSL connection with the
server. All keys used in this SSL connection are newly derived and only known by
KGuard and the server. Note that this new connection will be immediately closed after
the login event. Therefore, the browser does not need to maintain any extra connection.
In the new SSL connection, the extension obtains the server’s public key certificate.
At the same time, it prepares a data blob containing all the data needed by the web
server (except the password), e.g., the user name. It then submits to the hypervisor the
data blob together with the server certificate. The hypervisor merges the blob with the
intercepted user password, and encrypts them following the SSL specifications, on the
condition that the provided public key certificate is valid. On receiving the resulting
ciphertext from the hypervisor, the extension prepares the SSL data and sends them to
the server. If the authentication succeeds, the server usually returns a URL with some
cookies, which are decrypted by the hypervisor and forwarded to the extension. The
extension then sets the cookies and redirects the browser to the URL. Now the extension
terminates its SSL connection. Since neither the extension nor the browser possesses the
keys for the SSL connection used for password submission, this SSL connection cannot
be reused by the browser.

To avoid verbosity, we do not recite how the hypervisor generates the master key and
performs the encryption, because it strictly follows the SSL/TLS specification. Out of
the same reason, we do not explain how the extension prepares the data blob and the
SSL traffic. However, it is worthwhile to elaborate how the server’s public key certifi-
cate is validated by the hypervisor. Since we do not trust any software in the guest do-
main, the certificate forward by the extension to the hypervisor can be a malicious one.

210 Y. Cheng and X. Ding

If the adversary has the corresponding private key, the hypervisor’s password encryp-
tion will be decrypted by the adversary. We leave the details of the browser extension
in Section 5 because it is browser specific and more relevant to usability than security.

Server Certificate Verification. Certificate verification has long been considered as a
thorny problem due to the trust on the public key infrastructure. The problem is even
more complicated in our case because limited information is provided to the hypervisor
for the sake of minimizing the hypervisor’s size. Note that phishing detection is not
within the scope of our study. Therefore, the criterion of a certificate’s validity is not
whether it matches the web server the user intends to login. Instead, a certificate is
deemed as trusted as long as its root CA is trusted by the user.

In our system, the user may choose to trust all pre-loaded root CA certificates or
import CA certificates she trusts. Once the user obtains a repository of trusted (root)
certificates, the crux of our system is how the user securely passes them to the hypervi-
sor. The difficulty is that the hypervisor does not have a file system and the whole guest
is not trusted. The solution we propose relies on an additional trusted platform, or al-
ternatively, the user may consider his/her platform in the initial state is trustworthy. On
such a trusted platform, cryptographic tools such as OpenSSL, can be used to compute
a HMAC key Hk and computes HMACs for each of the trusted certificate. Then, the
user imports all trusted certificates as well as their corresponding HMAC tags into a file
on the untrusted platform running with KGuard. During the platform’s rebooting, the
HMAC key Hk is passed to the hypervisor as a parameter. Therefore, the hypervisor
knows whether a certificate is trusted by the user by checking its HMAC tag. Instead
of using HMAC, the user may also apply digital signatures and pass the public key
to the hypervisor, though this approach is not preferred because of its longer key and
higher computation cost. Note that these above procedure is only executed once, i.e.
for the first time using KGuard. All HMAC tags in the file are able to be reused after
rebooting.

In runtime, the certificate verification proceeds as follows.

Step 1. The browser extension receives the public key certificate from the server and
composes a certificate chain such that the last certificate in the chain is a trusted
certificate imported by the user. For ease of description, we denote the certificate
chain as (Cert0, · · · , Certk) where Cert0 is the server’s certificate and Certi is
the issuer of Certi−1 for 1 ≤ i ≤ k. In most cases in practice, k = 1 or 2. Note
that only Certk is the trusted certificate while all others are not. It is not necessary
to obtain the issuer for Certk even if it is not a root, because it is already trusted.

Step 2. The extension transfers (Cert0, · · · , Certk, σ) to KGuard, where σ is the
HMAC tag for Certk. In addition, the extension transfers the server’s host name to
KGuard. The transferring is accomplished by a hypercall.

Step 3. In response, KGuard first checks whether σ is a valid HMAC for Certk using
the HMAC key provided by the user during bootup. If the checking fails, KGuard
rejects the certificate chain and aborts.

Step 4. KGuard then verifies the certificate chain in the same ways as the browser’s ver-
ification, by treating Certk as a trusted CA. Namely, it checks Certi’s signatures
with the public key in Certi+1 for 0 ≤ i ≤ k − 1, and make sure that they are not

Virtualization Based Password Protection against Malware in Untrusted OSs 211

expired, and checks whether Cert0’s subject name matches the given server host-
name (domain name). If all certificates pass the checking, KGuard accepts Cert0
as the server’s public key and uses it to encrypt the pre-master secret key in the
current SSL connection.

The hypervisor calculates an HMAC value of each certificate in the verified certification
chain, and returns them back to the guest if the certificate chain passes all checks. The
browser inserts the certificate with its HMAC tag into the trusted certificate repository.
This is to save the hypervisor’s verification time when this certificate is reused in the
user’s future logins. Note that the new website certificates are accepted once the root
certificate is trusted by the user.

4.4 Security Analysis

The security of the proposed password protection mechanism relies on the security of
the hypervisor and the user cooperation. With the assumption on both conditions, the
user-hypervisor channel ensures that the password is typed in only when KGuard is
in position for keystroke interception, which saves the real password in the hypervisor
space. The hypervisor and the guest space isolation enabled by the virtualization tech-
niques prevents the guest from accessing the password. When the browser runs an SSL
connection to submit the password, all cryptographic operations are performed by the
hypervisor. The browser and the guest OS only get the ciphertext of the password. The
hypervisor security is discussed in the Section 7.

5 Implementation

5.1 KGuard in the Hypervisor

We have built a prototype of KGuard on Xen 4.1.0 on a desktop with an Intel(R)
Core(TM) i7 CPU-860 @2.80GHz processor and 4GB main memory. We choose a
USB-keyboard as the experiment device. The implementation of KGuard does not de-
pend on the design of Xen and can be easily migrated to other hypervisors.

KGuard consists of around 1500 SLOC for its main functions except cryptographic
functions. We import the needed crypto functions (about 5000 SLOC) from [23]. The
main cost is due to AES and RSA algorithms which need about 3500 SLOC. Nonethe-
less, comparing with the Xen code base (around 225,000 SLOC), we only increase the
code size 2.885%. In fact, most of the code in Xen are not used by our system. There-
fore, it is one of our future work to customize Xen for KGuard.

Visual Verification. One of the implementation issues about the user’s visual verifi-
cation of the hypervisor verification is to choose a proper secret message. It is similar
to a password in the sense that it should not be random enough to resist dictionary at-
tacks, and it should be easy to remember. Since the user does not type in the message
at runtime, the message can be much longer than a password. For instance, we choose
the string ”ApBlE@8s BaeuT ifu10O” as the user secret in our experiment.

212 Y. Cheng and X. Ding

Another issue is the position of the text message on the screen. We do not change
the position for two reasons. Firstly, it does not enhance the security. If malware can
breach the access control, it may grab the entire display buffer data. Secondly, from
the usability perspective, it is inconvenient for users to find the message over the whole
screen. We choose the top-left corner of the screen as the location because it is less
likely to be overlapped with the web page in use.

The third concerns in visual verification is the performance overhead due to the slow
speed of the display memory. It requires twice display memory access for the hypervisor
to save the present content and to write the secret message. In our implementation, we
use the following trick to save one display memory access. We do not save the original
data. Instead, we impose the font bitmap of characters in the message upon the existing
content. By performing the XOR operation, all the bits corresponding to the characters
are flipped. As a result, the shape of the character is displayed on the screen. Although
the content is not saved, it can be recovered by running the XOR operations again.

Note that our current implementation requires to work with the VGA compatible
graphics cards.

5.2 Browser Extension and Plugin

Benefiting from the virtualization features of the Intel processor, we launch a hardware
virtual machine (HVM) running Windows. The HVM guest domain runs a installation
of Windows 7 Professional version with default configuration. We choose the popular
firefox (version 3.6) as the test browser, and extend it with a plug-in and an extension.

The main part of the browser plug-in is based on CyaSSL v22. It interacts with the
hypervisor using hypercalls to build a separated SSL channel with a web server. Specif-
ically, The plug-in interacts the hypervisor in the SSL handshake phase for four times:
to transfer the server certificate chain; to provide the key materials for pre-master key
generation; to provide the authentication data for encryption; and to provide a finish-
message to terminate the SSL handshake phase. The plugin finishes the SSL protocol
and forwards the server response data to the browser extension.

The browser extension is implemented using Firefox XML User interface Language
(XUL) and JavaScript. One of the tasks of the extension is to listening to the user acti-
vation key combination and then sends a hypercall to KGuard. The other two tasks are
to integrate the password protection with the browser. The first task is to intercept the
authentication data submitted to the server. Since KGuard is transparent to the browser,
it proceeds as usual in password submission though with a dummy password.

The events generated by Firefox after the login button is clicked are shown in
Figure 1. We choose to intercept the HTTP Request Event, the last event right before
Firefox is about to pass the data to the SSL layer. The benefit of this choice is that this
event implies that the browser has prepared all the data (including the HTTP header) ex-
pected by the web server. Therefore, the extension does not need to handle the nuisance
of gathering all kinds of POST data required by the web server.

2 CyaSSL is a C-Langue SSL library for embedded and realtime operating systems, and in reg-
ular desktop and enterprise environments [12].

Virtualization Based Password Protection against Malware in Untrusted OSs 213

Post Data Checking
And Adjustment

HTTP Header
Generation And

Post Data Collection

HTTP Request Event

A Separated SSL
Channel In Plug-in

1
Click Login Button

The Browser SSL
Connection

Mouse Click Event

Web Services (e.g.,
Twitter)

2

3

Form Submit Event

Fig. 1. Firefox events in the login session where the third one is intercepted by the extension

The second task is to navigate the browser to the destination URL that is in the
server response packages. After receiving the response packages returned by the plug-in
from its own SSL channel, the extension extracts the cookies and the redirection URL
by parsing the header and body. It updates the cookies in the browser, and requests
it to refresh the current page to the redirection URL. For the following connections,
no matter whether they are HTTPS or HTTP connections, the browser will send the
request with corresponding cookies, and continue the web session as normal. Note that
the browser is not aware of the existence of the separated SSL connection, thanks to the
statelessness of HTTP and HTTPS protocols.

5.3 Hypercall Support in the HVM

In the Windows kernel space, we build a virtual device module using the Windows
Driver Kit (WDK) [17]. The module first uses the instruction CPUID to find registers
that contain the size and the location of the hypercall table. Then it maps the hypercall
table into its own memory space. Using the mapped hypercall table, the module is able
to issue hypercalls to communicate with the hypervisor.

The module also exports a DeviceIOControl interface for application usage. Accord-
ing to the dwIoControlCode parameter in the DeviceIOControl interface, the module
can request different services by issuing different types of hypercalls to the hypervisor.

6 Performance Evaluation

We have run experiments and evaluated the performance and usability with legitimate
web servers, including Google, Groupon, Twitter and Amazon, and Microsoft Hotmail.
We divide the total authentication session into two phases to facilitate the evaluation.
The first phase is user password input and the second is password submission. We have
measured the time overhead in each of them. Note that our protection is the ”on-demand”
mode, therefore, there are no extra cost for the system when the protection is inactive.

214 Y. Cheng and X. Ding

6.1 Overhead for Password Input

Table 1 lists the time costs for the procedures taking place during a user’s password
inputting. The password input phase begins with protection activation and ends with
protection deactivation. The main overhead is due to the hypervisor’s responses to the
activation/deactivation command and its interception of keyboard strokes. The activa-
tion cost mainly includes a guest system call, a hypercall, a series of access control
setup, and two accesses on the display memory. The deactivation cost only includes the
removal of access control on the relevant regions. The keystroke-interception cost is the
CPU time spent for intercepting one keystroke. It includes two exceptions, emulation
of the refreshing of TD and processing the keystroke.

Note that the user secret message is written to the display memory, instead of the
main memory. Its speed is only 27 MHZ, much slower than the main memory chip.
Therefore, the secret message displaying dominates the overhead of protection activa-
tion. Nonetheless, it is still negligible to the user as compared to the human keystroke
speed. The removal of the secret message is not considered as the overhead, because
with a high likelihood, it is completed between the user’s two keystrokes.

Table 1. The performance overhead for password input protection in KGuard

Components
Protection
Activation

Protection
Deactivation

Keystroke
Interception

Displaying
Message

Time 1.71ms 3.5μs 0.12μs 1.67ms

6.2 Overhead for Password Submission

In the password submission procedure, we evaluate the extra operations introduced by
our scheme, i.e. those not appearing in normal web authentication. The extra operations
include the extension’s HTTP Request event interception and extracting data from the
login (POST) request, which cost about 4ms in total. Note that the extension is written
in JavaScript, whose best timing granularity is in milliseconds. The extra operations
also include transferring data between the guest and the hypervisor; HMAC verification
for the certificate’s trustworthiness. The measurement results are listed in Table 2.

We have also measured the turnaround time to evaluate the overall delay a user may
experience with KGuard. The turnaround time refers to the period from the moment
when the login button is clicked, to the moment when the browser begins refreshing the
page. We have tested KGuard with Twitter and a local web server which resides in the
same platform with the browser so that no network delay variation disturbs the results.
The results are shown in Table 3. Note that the results from the tests with Twitter are
not sufficiently accurate due to the large variance of network round trip time.

Table 2. The performance overhead of each component for password submission

Event interception and
data extraction

Data transferring cost
during in hypercalls

HMAC computation

Time 4ms 1.38ms 0.02ms

Virtualization Based Password Protection against Malware in Untrusted OSs 215

Table 3. The overall performance measurement in the login procedure

Login without KGuard Login with KGuard Extra Cost
Twitter 1.10s 1.11s 10ms

Local Web Site 201ms 207ms 6ms

7 Discussions

7.1 Hypervisor Security

The hypervisor security is the bedrock of the proposed password protection system. It is
known that both the code size and the interfaces affect the hypervisor security. Accord-
ing to [2,20], the size of the source code is proportional to the number of vulnerabilities
(bugs). We choose Xen for our prototype building instead of the other mainstream hy-
pervisor VMware ESXi, because the former has a smaller code size according to [26]
and is open source. In principle, KGuard can also be built on those tiny hypervisors
developed by researchers, such as SecVisor [24], BitVisor [25] and Nova [26]. Unfortu-
nately, they are not supported by the Intel processor used in our platform. As mentioned
in [18], interfaces are the main source of critical errors. In the current Xen hypervisor,
all default hypercalls for a HVM domain are only used during HVM loading. Therefore,
we turn off all of them to enhance security to minimize the attack surface.

In the future work, we aim to reduce the hypervisor code size by removing unneces-
sary code. Besides the basic hardware virtualization functions, our initial study shows
that the functionalities required by KGuard include: 1) memory management, including
data transferring and address translation between the guest and the hypervisor; 2) access
control on all I/O ports and memory regions; 3) interceptions on interrupts and excep-
tions; 4) basic crypto algorithms, such as RSA, AES and SHA1; 5) certain instruction
emulations; and 6) asynchronization support (e.g., timer).

7.2 Trusted Certificate Updates

The user may need to insert or delete entries in the trusted certificate repository. It is
relatively straightforward to add a new trusted certificate. The user simply calculates
the HMAC value on a clean system and adds the certificate and its HMAC into the
repository.

However, it is costly to revoke a trusted certificate from the repository. One solution
is that the user chooses a new HMAC key and re-computes the HMAC tags for all
trusted certificates excluding those revoked ones. Once the new key is updated to the
hypervisor, the revoked certificates will not pass the verification. Alternatively, the user
can prepare a Certificate Revocation List (CRL) whose integrity is protected by the
HMAC tag. Whenever the plugin sends the server certificate to the hypervisor, the CRL
is attached. The hypervisor then checks whether the certificate in use is on the CRL.
Both methods have pros and cons. The former requires more user involvement while
the latter increases the hypervisor’s code size and causes more runtime overhead.

216 Y. Cheng and X. Ding

7.3 Sensitive Keyboard Input Protection

The KGuard system proposed in this paper focuses on password protection. We can
easily extend it to protect other sensitive inputs from the keyboard, such as CAPTCHA,
credit card numbers or driver license numbers. KGuard is able to intercept and replace
the sensitive inputs whenever the user activates the protection. By inserting them back
into an SSL/TLS connection or forwarding them to a trusted domain, all sensitive inputs
are free from malware attacks.

The challenge is to maintain the user’s experience. For a normal password input, the
browser only displays a string of ’∗’. The user feels the same even if KGuard replaces
the original password with dummy ones. However, for other types of inputs, the user
may feel discomfort when seeing dummy characters instead of the expected ones. An-
other issue on the user interface is how a user determines the correctness of the input,
since a wrong key may have been pressed accidentally. One possible solution is that
KGuard echoes each input on the screen in the same ways as in the visual verification.
Alternatively, KGuard can display the entire input string and ask for user confirma-
tion. This method does not work well for protecting a large amount of sensitive inputs
(e.g., private document editing) due to the heavy load on the hypervisor and the slow
responses. In addition, it would add too much code into the hypervisor and possibly
weakens the security strength.

8 Conclusion

To conclude, this paper has presented a virtualization based password input protection
system, which is composed of a novel user-hypervisor interaction channel, a keyboard
stroke interception mechanism, and a hypervisor-based SSL client. Our method does
not require specialized hardware and is fully transparent to the operating system and
the browser. The prototype implementation and testing have demonstrated that the pro-
tection system incurs insignificant overhead on the platform and maintains the user-
friendliness of password authentication in web services.

Acknowledgements. The authors are grateful to anonymous reviewers for their
valuable feedback. This work is partially supported by Centre for Strategic Infocomm
Technology (CSIT) Technology Innovation Fund (TIF) Project #PO2011240001 and by
Singapore Management University (SMU) Office of Research under the project #12-
C220-SMU-003.

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, pp. 164–177. ACM, New York (2003)

2. Basili, V.R., Perricone, B.T.: Software errors and complexity: an empirical investigation.
Commun. ACM 27, 42–52 (1984)

Virtualization Based Password Protection against Malware in Untrusted OSs 217

3. Bugiel, S., Dmitrienko, A., Kostiainen, K., Sadeghi, A.-R., Winandy, M.: TruWalletM: Se-
cure Web Authentication on Mobile Platforms. In: Chen, L., Yung, M. (eds.) INTRUST 2010.
LNCS, vol. 6802, pp. 219–236. Springer, Heidelberg (2011)

4. Chen, X., Garfinkel, T., Christopher Lewis, E., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., Dwoskin, J., Ports, D.R.K.: Overshadow: A virtualization-based approach to
retrofitting protection in commodity operating systems. In: Proceedings of the 13th Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2008), Seattle, WA, USA (March 2008)

5. Cheng, Y., Ding, X., Deng, R.H.: DriverGuard: A Fine-Grained Protection on I/O Flows.
In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 227–244. Springer,
Heidelberg (2011)

6. Cox, R.S., Hansen, J.G., Gribble, S.D., Levy, H.M.: A safety-oriented platform for web ap-
plications. In: Proceedings of IEEE Symposium on Security and Privacy (2006)

7. CVE-2008-0923 (2008),
http://cve.mitre.org/cgi-bin/cvename.cgi-?name=cve-2008-0923

8. Gajek, S., Löhr, H., Sadeghi, A.-R., Winandy, M.: Truwallet: trustworthy and migratable
wallet-based web authentication. In: Proceedings of the 2009 ACM workshop on Scalable
trusted computing, STC 2009, pp. 19–28. ACM, New York (2009)

9. Grier, C., Tang, S., King, S.: Secure web browsing with the OP web browser. In: Proceedings
of IEEE Symposium on Security and Privacy (2008)

10. IBM. IBM VGA Technical Reference Manual,
http://www.mca-mafia.de/pdf/ibm_vgaxga_trm2.pdf

11. King, S.T., Chen, P.M., Wang, Y.-M., Verbowski, C., Wang, H.J., Lorch, J.R.: Subvirt: Im-
plementing malware with virtual machines. In: Proceedings of the 2006 IEEE Symposium
on Security and Privacy, pp. 314–327. IEEE Computer Society, Washington, DC (2006)

12. Sawtooth Consulting Limited. CyaSSL Embedded SSL Library,
http://www.yassl.com/yaSSL/Products-cyassl.html

13. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: Trustvisor: Efficient
tcb reduction and attestation. In: Proceedings of the 2010 IEEE Symposium on Security and
Privacy, SP 2010, pp. 143–158. IEEE Computer Society, Washington, DC (2010)

14. McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An execution infras-
tructure for TCB minimization. In: EuroSys 2008 (2008)

15. McCune, J.M., Perrig, A., Reiter, M.K.: Bump in the ether: a framework for securing sensi-
tive user input. In: Proceedings of the Annual Conference on USENIX 2006 Annual Techni-
cal Conference, p. 17. USENIX Association, Berkeley (2006)

16. McCune, J.M., Perrig, A., Reiter, M.K.: Safe passage for passwords and other sensitive data.
In: Proceedings of the Symposium on Network and Distributed Systems Security (NDSS)
(February 2009)

17. Microsoft. About the Windows Driver Kit (WDK), http://goo.gl/DfSRi
18. Murray, D.G., Milos, G., Hand, S.: Improving xen security through disaggregation. In: Pro-

ceedings of the Fourth ACM SIGPLAN/SIGOPS International Conference on Virtual Exe-
cution Environments, VEE 2008, pp. 151–160. ACM, New York (2008)

19. Oprea, A., Balfanz, D., Durfee, G., Smetters, D.K.: Securing a remote terminal application
with a mobile trusted device. In: 20th Annual Computer Security Applications Conference,
pp. 438–447. IEEE (2004)

20. Ostrand, T.J., Weyuker, E.J.: The distribution of faults in a large industrial software system.
In: Proceedings of the 2002 ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2002, pp. 55–64. ACM, New York (2002)

21. Rafal, W., Joanna, R., Alexander, T.: Xen 0wning trilogy (2008),
http://invisible-thingslab.com/itl/Resources.html

http://cve.mitre.org/cgi-bin/cvename.cgi-?name=cve-2008-0923
http://www.mca-mafia.de/pdf/ibm_vgaxga_trm2.pdf
http://www.yassl.com/yaSSL/Products-cyassl.html
http://goo.gl/DfSRi
http://invisible-thingslab.com/itl/Resources.html

218 Y. Cheng and X. Ding

22. Ross, B., Jackson, C., Miyake, N., Boneh, D., Mitchell, J.: Stronger password authentication
using browser extensions. In: Proceedings of the 14th USENIX Security Symposium (2005)

23. Limited Sawtooth, Consulting. Ctaocrypt embedded cryptography library,
http://www.yassh.com/yaSSL/Docs_CTaoCrypt_Usage_Reference.html

24. Seshadri, A., Luk, M., Qu, N., Perrig, A.: Secvisor: a tiny hypervisor to provide lifetime
kernel code integrity for commodity oses. In: Proceedings of Twenty-First ACM SIGOPS
Symposium on Operating Systems Principles, SOSP 2007, pp. 335–350. ACM, New York
(2007)

25. Shinagawa, T., Eiraku, H., Tanimoto, K., Omote, K., Hasegawa, S., Horie, T., Hirano, M.,
Kourai, K., Oyama, Y., Kawai, E., Kono, K., Chiba, S., Shinjo, Y., Kato, K.: Bitvisor: a
thin hypervisor for enforcing i/o device security. In: Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments, VEE 2009,
pp. 121–130. ACM, New York (2009)

26. Steinberg, U., Kauer, B.: Nova: a microhypervisor-based secure virtualization architecture.
In: Proceedings of the 5th European Conference on Computer Systems, EuroSys 2010,
pp. 209–222. ACM, New York (2010)

27. The Blue Pill, http://blackhat.com/presentations/bh-usa-06/
BH-US-06-Rutkowska.pdf

28. Trusted Computing Group. TPM main specification. Main Specification Version 1.2 rev. 85
(February 2005)

29. Wu, M., Miller, R.C., Little, G.: Web wallet: Preventing phishing attacks by revealing user
intentions. In: Proceedings of the Symposium on Usable Privacy and Security (SOUPS),
pp. 102–113. ACM Press (2006)

30. Zaharia, M., Katti, S., Grier, C., Paxson, V., Shenker, S., Stoica, I., Song, D.: Hypervisors as
a foothold for personal computer security: An agenda for the research community. Technical
report (January 2012)

http://www.yassh.com/yaSSL/Docs_CTaoCrypt_Usage_Reference.html
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf

SmartTokens: Delegable Access Control
with NFC-Enabled Smartphones

Alexandra Dmitrienko1, Ahmad-Reza Sadeghi2,
Sandeep Tamrakar3, and Christian Wachsmann4

1 Fraunhofer SIT Darmstadt, Germany
2 Technische Universität Darmstadt & Fraunhofer SIT Darmstadt, Germany

3 Aalto University School of Science, Finland
sandeep.tamrakar@aalto.fi

4 Technische Universität Darmstadt (CASED), Germany
{alexandra.dmitrienko,christian.wachsmann,

ahmad.sadeghi}@trust.cased.de

Abstract. Today’s smartphones and tablets offer compelling computing
and storage capabilities enabling a variety of mobile applications with
rich functionality. The integration of new interfaces, in particular near
field communication (NFC) opens new opportunities for new applications
and business models, as the most recent trend in industry for payment
and ticketing shows. These applications require storing and processing
security-critical data on smartphones, making them attractive targets for
a variety of attacks. The state of the art to enhance platform security
concerns outsourcing security-critical computations to hardware-isolated
Trusted Execution Environments (TrEE). However, since these TrEEs
are used by software running in commodity operating systems, malware
could impersonate the software and use the TrEE in an unintended way.
Further, existing NFC-based access control solutions for smartphones are
either not public or based on strong assumptions that are hard to achieve
in practice. We present the design and implementation of a generic access
control system for NFC-enabled smartphones based on a multi-level secu-
rity architecture for smartphones. Our solution allows users to delegate
their access rights and addresses the bandwidth constraints of NFC. Our
prototype captures electronic access to facilities, such as entrances and of-
fices, and binds NFC operations to a software-isolated TrEE established
on the widely used Android smartphone operating system. We provide
a formal security analysis of our protocols and evaluate the performance
of our solution.

1 Introduction
Modern smartphones are equipped with a variety of communication interfaces
and enable mobile access to many different services, including Internet, web ser-
vices, e-mail, multi-media entertainment, navigation and location-based services.
The integration of additional communication interfaces, in particular near field

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 219–238, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

220 A. Dmitrienko et al.

communication (NFC) [36], greatly enlarges the application area of smart devices.
NFC-based access control systems on smartphones and commercial NFC-based
applications for ticketing and payment are particularly promoted by industry.

Electronic access control tokens for smartphones offer a variety of appealing
features: they can be distributed and revoked remotely, delegated by users, and
may support context-aware and time-limited access control policies. There are
already some commercial systems on the market, including electronic hotel room
keys [1,7,15] that are sent to the customer via SMS or email, and electronic car
keys [14,41]. These applications require storing and processing security-critical
data on smartphones, raising risks of being targeted by attacks. However, the
security properties of current solutions are unclear, in particular because their
design and implementation details are not publicly available and most operating
systems for smartphones are vulnerable to malware [32,33].

A vast amount of research (such as in [16,26,11]) has been performed on
hardening platform security based on secure hardware that is already available
in many smartphones, such as M-Shield [3] and ARM TrustZone [2] on Nokia
devices. Existing security hardware typically provides a trusted execution envi-
ronment (TrEE) that enforces secure and isolated execution of small programs.
However, currently available TrEEs are typically resource-constrained and pre-
vent the implementation of important security functionalities, such as secure
user interfaces [11]. Further, even the verification of X.509 certificates within
a TrEE is challenging and requires a number of subsequent invocations of the
TrEE [11], which introduces additional performance overhead. Hence, practical
security architectures built on top of existing TrEEs must rely on additional
trusted components in the operating system.

The secure implementation of security critical NFC-based applications on
smartphones, such as electronic payment, ticketing and access control systems,
requires the underlying security architecture to isolate trusted and untrusted
components to prevent leakage and unintended manipulation of security-critical
data, such as authentication secrets. Furthermore, the underlying protocol design
must consider the bandwidth constraints of NFC.

Contribution and Outline. We present the design and implementation of an
access control system for NFC-enabled smartphones. The unique feature of our
scheme is that users can delegate (part of) their access rights to other users
without contacting a central token issuer. Our contributions are as follows:

Multi-level Platform Security Architecture. Our SmartToken application runs on
top of a security architecture that protects the underlying authentication secrets.
The architecture combines a hardware-supported trusted execution environment
(TrEE) to handle cryptographic keys with software-based isolation of trusted
code controlling access to the TrEE (Section 2). The architecture provides a
two-line defense against software attacks and a trade-off between security and
resource constraints of common security hardware.

Delegatable SmartToken System. We present a generic token-based access control
system for NFC-enabled smartphones that, in contrast to previous solutions,

SmartTokens: Delegable Access Control 221

supports delegation of access rights without contacting a central token issuer
and that addresses the bandwidth constraints of NFC (Section 3). Our solution
is suitable for various applications, ranging from access control solutions for
digital objects, such as electronic documents, to physical resources like rooms or
cars. Further, we prove the security properties of our system (Section 4).

Reference Implementation. We instantiate the SmartToken system for electronic
access control tokens (Section 5). The implementation is based on TrustDroid [10],
which extends the widely used Android smartphone operating system with
software-based isolation of trusted and untrusted compartments. Further, we
conceptually consider binding NFC operations to a hardware-based trusted exe-
cution environment (TrEE).

2 Multi-level Security Architecture
In this section we describe our multi-level security platform architecture, which
we deploy to protect user credentials on the device.

2.1 Model and Requirement Analysis

In the following, we describe our system model, formulate security objectives
and requirements, and define our trust and adversary model.

System Model. We consider mobile platforms that (1) run untrusted code,
such as user applications downloaded from untrusted sources, (2) store user
credentials, such as user passwords and cryptographic secrets that are used in
cryptographic protocols to authenticate the user to some service provider, and
that (3) run security-critical code that, e.g., operates on security sensitive data,
such as cryptographic keys.

Security Objectives and Requirements. The objective of our overall solu-
tion is to prevent the adversary from being able to authenticate to a service
provider. While attacks against the authentication protocols must be prevented
by protocol design (Section 3), the platform security architecture must ensure
(1) that the adversary cannot access user credentials stored on the platform and
(2) that he cannot exploit or modify code using them. More specifically, the
objective of the platform security architecture is to ensure confidentiality of and
to enforce access control to credentials, i.e., that any application on the plat-
form can use only those credentials that have been created or enrolled by this
application before. This results in the following security requirements:

– Confidentiality of user credentials: User credentials created or enrolled by
security-critical code must not be accessible by untrusted and other security-
critical code while stored or used on the platform.

– Code isolation: Security-critical code that processes user credentials must be
isolated from untrusted and other security-critical code on the platform.

– Code access control: Only authorized code instances must be able to invoke
execution of security-critical code that has access to user credentials.

222 A. Dmitrienko et al.

�������	

��������
��	�
�����

�����	�

��	������
��������	�� ������

�������	�

��������	��
������

��������

���

!������	

����"

�����	�

��������	�� �����

���� ���	��
��� "

�	���	
��

���� ��� ����� ��	� �����

�#��# ���� $#�

%	���	
&	��

Fig. 1. Generic multi-level platform security architecture

– Code integrity: The integrity of security-critical code that has access to user
credentials and the integrity of untrusted code that can invoke security-
critical code must be preserved.

Trust and Adversary Model. The adversary can perform software attacks
and install, modify or compromise arbitrary code on the device. However, he
cannot access or modify the hardware of the platform and its trusted computing
base, i.e., the code that enforces access control or isolation on the device.

2.2 Generic Security Architecture

Figure 1 illustrates our multi-level security platform architecture. At a high level,
the execution environment of the device is split into three isolated compartments
(Figure 1): an untrusted compartment UTrC, a trusted compartment TrC and a
trusted execution environment TrEE. TrEE is isolated from the rest of the sys-
tem by the underlying security hardware and protected against software-based
attacks. However, TrEE is a resource-constrained component. UTrC is free of strict
resource constraints and isolated from the untrusted compartment by means of
software, which is less reliable compared to hardware-based isolation since isola-
tion can be broken upon successful compromise of the software isolation layer.
TrEE is used to run secure code that operates on user credentials, while TrC
handles system components that exceed the capabilities of TrEE. Particularly,
TrC provides a secure user interface SecureUI, which is used to collect security-
sensitive user input (such as passwords) or to display output. Further, TrC in-
cludes the TrAC component, which enforces access control to the code running
within TrEE.1

Security-sensitive applications are split into an untrusted host application
Appi running in UTrC and one or more security-sensitive algorithms Algj that
are executed by TrEE and that can be invoked by Appi when necessary (Figure 1).
Communication between Appi and the algorithms Algj within TrEE is mediated
1 Note, that both SecureUI and TrAC have been shown to exceed resource-constraints

of commodity TrEEs [28,11].

SmartTokens: Delegable Access Control 223

by TrAC, which ensures that Appi can communicate only to those Algj Appi is
supposed to communicate to. The software isolation layer verifies the integrity
of host applications (e.g., by comparing the hash digest of the application binary
to a reference value or by verifying the application’s signature upon application
loading) and reports it to TrAC, which then grants or denies access to the TrEE
based on the integrity of the host application.

Algorithms executed within TrEE may belong to different host applications
and thus are mutually untrusted. Thus, they are isolated from each other, which
is enforced by the TrEE isolation layer. Furthermore, TrEE includes the TrEEMgr
component, which has direct access to platform keys stored in secure memory and
that provides a sealing/unsealing functionality to the algorithms. More specifi-
cally, TrEEMgr encrypts/decrypts user credentials with a key that is cryptograph-
ically bound to the platform key and the identity of the algorithm (such as the
hash digest of its binary).

The trusted computing base of our architecture includes the software isolation
layer, trusted compartment, TrEE isolation layer and the TrEE manager.

Fulfillment of the Security Requirements. Our security architecture
achieves the security requirements described in Section 2.1: confidentiality of
user credentials is ensured by a trusted TrEEMgr component, which stores user
credentials only in an encrypted form and such that they can be decrypted
only by authorized algorithms (sealing). Isolation of security-critical code from
untrusted code is enforced by a hardware-isolated TrEE, while isolation from
other security-critical code is provided by the trusted isolation layer within the
TrEE. Access control to security-critical code is enforced by the TrAC component.
The integrity of security-critical code is ensured by the sealing functionality of
TrEEMgr, which ensures that user credentials can be decrypted only if the in-
tegrity of the algorithm is preserved. Integrity of untrusted code is enforced by
the software isolation layer, which measures and verifies the application integrity
upon loading the application and denies access to TrC if the application has been
modified.

Our security architecture provides higher security guarantees than approaches
using pure software-based isolation and solutions that rely only on hardware-
based TrEEs (such as [29,20,26,11]), where the secure user interface and access
control to the TrEE is typically outsourced to the untrusted commodity operat-
ing system that is vulnerable to various attacks.

2.3 Architecture Instantiation

Our security architecture can be instantiated based on different types of security
hardware and different approaches to software-based isolation. For instance, the
TrEE can be instantiated using ARM TrustZone [2], M-Shield [3], embedded
or removable secure elements, such as SIM cards, universal integrated circuit
cards (UICC), or secure memory cards (SMC). A detailed discussion of different
types of hardware security modules can be found in [35].

Software-enforced isolation can be implemented based on virtualization
technology or hardened operating systems that enforce domain isolation by

224 A. Dmitrienko et al.

mandatory access control. Examples include the OKL4 microvisor [24], domain
isolation based on security kernels [43], and the TrustDroid [10] security enhance-
ment of the Android operating system.

Instantiation for Android Devices. We aim to instantiate our multi-level secu-
rity architecture on Android-powered devices, since Android is the most popular
smartphone operating system worldwide [19] and first NFC-enabled Android
devices appear on the market. On the other hand, most secure NFC-based ap-
plications target Nokia smartphones, most probably since NFC-enabled Nokia
smartphones are already available for some time and equipped with secure hard-
ware. At the time of writing, we are not aware of any instantiation of a secure
access control application for Android devices and aim to fill this gap.

To enforce the software isolation required by our architecture, we could follow
the virtualization approach, e.g., based on the OKL4 microvisor that can run
multiple instances of L4Android, as well as native applications. However, as
supported by OKL4-based developments [17], a number of challenges has to be
solved with regard to performance, power consumption and drivers portability
before virtualization approaches become a practical solution for mobile devices.
Thus, we opted for a more practical solution and adopted the TrustDroid security
extensions [10] to enforce isolation.

TrustDroid applies a coloring approach to isolation that has its origins in
information-flow theory [37]. Particularly, it uses the concept of application
identifiers on Android and colors (tags) applications and application data upon
application installation. Based on the assigned colors, TrustDroid organizes ap-
plications along with their data in logical domains. At runtime, communication
across domains is prevented by means of mandatory access control applied on
all communication channels between applications, including inter-process com-
munication (IPC) calls, Linux sockets, file system access and local network
connections. We extended TrustDroid to form isolated domains and enabled
inter-domain communication through well-defined interfaces, as required by our
architecture. The details of our implementation can be found in Section 5.

3 Smart Token System
We present a generic access control system that allows users to maintain their
access credentials for different resources on their smartphone. One of the key
features of our scheme is that users can delegate their credentials to other users
without contacting a central token issuer. The system is applicable to various
applications, ranging from access control solutions for digital objects, such as
electronic documents, to physical resources like rooms and cars.

3.1 Overview

The entities in our system are at least a token issuer I, a set of resources R (such
as electronic documents or doors) and a set of users U (Figure 2). We denote the
adversary with A. Each U possesses a mobile platform PU , such as a smartphone
or tablet. I is a central authority that defines which U is allowed to access which

SmartTokens: Delegable Access Control 225

Registered User U

Issuer I

Resource R

(2) TU ,RevList

(3) TD

Mobile Platform PU

Defines access control policy

Issues credentials (token) TU

RevList

(1) Registration

(2a) Authentication

Delegated User D
Mobile Platform PD

(3a) Authentication
Stores TD

Host HD TrEE SD

Delegates TDStores TU

Host HU TrEE SU

Fig. 2. SmartToken system overview

R. Further, I issues credentials (SmartTokens) TU to each U , which are used
later by U to authenticate to R. We distinguish between registered users and
delegated users. A registered user U can delegate his token TU to a delegated
user D, while a delegated user D cannot delegate his token TD.

Objectives. The objectives of our solution are as follows:

– Access control. Access to a resource R is granted only (1) to a registered user
U , who got a token TU for R from issuer I, and (2) to a delegated user D,
who got a token TD for R from a registered user U with TU for R.

– Delegation. Issuer I can allow registered users to delegate (share) their tokens
with other users.

– Revocation. Issuer I can revoke tokens of regular and/or delegated users.
Revoking token TU of a registered user U automatically revokes all delegated
tokens TD based on TU .

Note that our scheme provides basic protection against denial-of-service attacks
that permanently prevent a user from using the SmartToken scheme. However,
since the focus of this paper is delegatable authentication for NFC-enabled smart-
phones, we did not consider countermeasures against denial of-service attacks.

Protocols. Our scheme is composed of the following protocols:

– System initialization: Issuer I generates its authentication secrets and en-
cryption keys. Moreover, I generates and initializes each resource R with an
authentication secret and encryption key.

– User registration: User U registers its mobile platform PU with I and be-
comes a registered user.

– Token issuing: I generates and sends the authentication key, the delegation
key and token TU to the mobile platform PU of a registered user U .

226 A. Dmitrienko et al.

– Token delegation: A registered user U delegates its smart token (its access
rights) to a user D, who then becomes a delegated user.

– User authentication: U or D authenticate to R. Access to R is granted or
denied based on the result of the authentication protocol.

– Token and user revocation: I revokes one or all tokens of U by updating the
revocation list RevList on each R.

Our scheme is inspired by Kerberos [31], which is a widely deployed and exten-
sively analyzed authentication protocol. Kerberos provides strong authentication
for client/server applications based on symmetric cryptography. Our protocols
follow a similar approach to distribute authentication secrets with tokens issued
by a key distribution center (KDC), which corresponds to the issuer in our
scheme. However, in contrast to Kerberos our scheme enables delegation of to-
kens by clients (mobile devices) without contacting the KDC. Further, tokens
are bound to the identity and the platform of their user by means of a one-time
password and a device-specific platform key, respectively.

Trust Model and Assumptions. We assume that each registered user U
and each delegated user D possesses a mobile platform P , which consists of
an untrusted operating environment (host) H and a trusted execution environ-
ment (TrEE) S (Figure 2). In Section 5, we show how the TrEE can be imple-
mented based on an isolated trusted software compartment. Further, we assume
issuer I, resource R and S to be trusted. Moreover, we assume that an authentic
and confidential out-of-band channel between I and U is available once before
the user registration protocol, and between U and D once before the token del-
egation protocol. Note that this is very natural since in many access control
scenarios users typically have to prove their identity (e.g., by showing their iden-
tity card) to I during registration and/or will get a personal welcome letter
with their access credentials from I. Furthermore, S provides countermeasures
against dictionary attacks.

Adversary Model. We consider adversaries A that have full control over the
communication between I, R, U and D, which means that A can eavesdrop,
modify, insert, delete and re-route protocol messages.2 Further, A can compro-
mise the untrusted part H of the user’s mobile platform P and gain access to
all information stored in H. However, as mentioned in assumptions, A cannot
compromise issuer I, resource R or TrEE S of P . In particular, A cannot change
the functionality of S and A cannot obtain any secret information stored in S.

3.2 Notation and Preliminaries

We denote with a ∈R A the uniform sampling of an element a from a set A. Let
A be a probabilistic algorithm. Then y ← A(x) means that on input x, algorithm
2 Note that we exclude relay attacks since the focus of this paper is delegatable authen-

tication for NFC-enabled smartphones. Relay attacks can be mitigated by distance
bounding techniques, which can be integrated into our scheme.

SmartTokens: Delegable Access Control 227

A assigns its output to variable y. Probability ε(l) is called negligible if for all
polynomials f() it holds that ε(l) ≤ 1/f(l) for all sufficiently large l. Further,
IDX is the unique identifier, skX the secret key, and pkX the public key of entity
X , respectively.

Encryption Schemes. An encryption scheme ES is a tuple of algorithms
(Genkey, Enc, Dec) where Genkey is the key generation, Enc is the encryption
and Dec is the decryption algorithm. A public-key encryption scheme is said to
be CPA-secure [22,4] if every probabilistic polynomial time (p.p.t.) adversary A
has at most negligible advantage of winning the following security experiment: an
algorithm CCPA

sk (CPA-challenger), generates an encryption key pk and decryp-
tion key sk using Genkey(1l), chooses b ∈R {0, 1}, encrypts cb ← Enc(pk ; mb)
and returns cb to A. Eventually, A must return a bit b′ that indicates whether
cb encrypts m0 or m1. A wins if b′ = b. Note that for symmetric encryption
schemes sk = pk .

Random Oracles. A random oracle RO [6] is an oracle that responds with a
random output to each given input. More precisely, RO starts with an empty
look-up table Γ . When queried with input m, RO first checks if it already knows
a value Γ [m]. If this is not the case, RO chooses r ∈R {0, 1}α and updates Γ
such that Γ [m] = r. Finally, RO returns Γ [m]. Random oracles model the ideal
security properties of cryptographic hash functions.

Note that our protocols use the MAC-then-encrypt paradigm [5], where for a
given plaintext m, first the message digest σ = RO(m) is computed and then
(m, σ) is encrypted with a CPA-secure encryption scheme.

3.3 Protocol Specification

System Initialization. Each mobile platform P has a unique platform key pair
(skP , pkP), where skP is only known to trusted execution environment (TrEE) S
of platform P . Further, host H of P stores a certificate certP issued by, e.g., the
platform manufacturer, which contains pkP and attests that pkP is the public
key of a genuine TrEE S and that skP is securely stored in and never leaves S.
Issuer I initializes the revocation list RevList ← ∅ and each resource R with
RevList , a resource-specific authentication key KR

Auth and a resource-specific
encryption/decryption key KR

Enc.

User Registration. When a user U wants to register, I sends a new one-time
password pwdU to U over an authentic and confidential out-of-band channel.
After that, U can register as follows (Figure 3): U sends its identifier IDU and
pwdU to TrEE SU of its mobile platform PU = (HU ,SU). Then SU sends IDU and
a random NU

reg to host HU , which sends both values and the platform certificate
certUP to I. Next, I verifies certUP and generates a new authentication secret
KU ,I

Auth and an encryption/decryption key KU
Enc for U , which are used later in the

token issuing protocol. Further, I derives a temporary authentication secret K

228 A. Dmitrienko et al.

Reg. user U TrEE SU Host HU Issuer I
skU

P pwdU

IDU , pwdU
IDU , NU

reg, cert
U
P

cregcreg

KU,I
Auth ∈R {0, 1}α

certUP valid?

certUP

KU
Enc ← Genkey(1δ)

certUP
?
�∈ RevList

(KU,I
Auth,K

U
Enc, N

I
reg, σreg) ← Dec(skU

P ; creg)

pwdU

NU
reg ∈R {0, 1}μ IDU , NU

reg

creg ← Enc(pkU
P ;KU,I

Auth,K
U
Enc, N

I
reg, σ

I
reg)

Extract pkU
P from certUP

Abort if the above check fails

Store (KU,I
Auth,K

U
Enc)

K ← RO(NI
reg, N

U
reg, pwdU)

K ← RO(NI
reg, N

U
reg, pwdU)

σI
reg ← RO(K, IDI , IDU ,KU,I

Auth,K
U
Enc)

σI
reg

?
= RO(K, IDI , IDU ,KU,I

Auth,K
U
Enc)

Abort if any of the above checks fails

NI
reg ∈R {0, 1}μ

Store (KU,I
Auth,K

U
Enc)

σU
reg

σU
regσU

reg ← RO(NI
reg, IDU , IDI)

IDU
?
�∈ RevList

σU
reg

?
= RO(NI

reg, IDU , IDI)

Abort if the above check fails

Fig. 3. User registration protocol

from pwdU , computes authenticator σI
reg for KU ,I

Auth and KU
Enc, encrypts both keys

and σI
reg with the platform key pkU

P of SU , and sends the resulting ciphertext creg

to SU . On receipt of creg SU decrypts creg and, in case the verification of σreg is
successful, stores (KU ,I

Auth, K
U
Enc). Then, SU sends authenticatior σU

reg to I, which
verifies σU

reg and, in case the verification was successful, stores (KU ,I
Auth, K

U
Enc). In

case I already stores an authentication secret and encryption/decryption key for
U , I deletes the old keys and stores the newly generated ones.

Token Issuing. The token issuing protocol is depicted in Figure 4: user U ini-
tiates the protocol at TrEE SU of its mobile platform PU , which then sends
IDU and a random Niss to I. Next, I generates authentication secret KU ,R

Auth,
delegation secret KU

Del and token TU for U , which are used later by U in the
authentication and delegation protocols. Further, I computes σiss that authen-
ticates KU ,R

Auth, KU
Del and TU , encrypts these keys, TU and σiss with KU

Enc, and
sends the resulting ciphertext ciss to host HU of PU , which passes ciss to SU .
Next, SU decrypts ciss and, in case the verification of σiss is successful, stores
(KU ,R

Auth, K
U
Del). Eventually, SU sends TU to HU .

Authentication of Registered Users. The authentication protocol for reg-
istered users is depicted in Figure 5: user U initiates the protocol at TrEE SU
of its mobile platform PU , which sends an authentication request to resource R.

SmartTokens: Delegable Access Control 229

Reg. user U TrEE SU Host HU Issuer I
KU,I

Auth,K
U
Enc KR

Auth,K
R
Enc,K

U,I
Auth,K

U
Enc,RevList , pwdU

IDU
IDU , Niss

cissciss

KU,R
Auth ∈R {0, 1}α

IDU
?
�∈ RevList

KU
Del ← Genkey(1δ)

(TU ,KU,R
Auth,K

U
Del, σiss) ← Dec(KU

Enc; ciss)

σI := RO(KR
Auth,mI)

TU := Enc(KR
Enc;mI , σI)

pwdU

Niss ∈R {0, 1}μ IDU , Niss

sn ∈R {0, 1}β

mI := (sn, IDU ,KU,R
Auth,K

U
Del)

ciss ← Enc(KU
Enc;TU ,KU,R

Auth,K
U
Del, σiss)

TU

Abort if the above check fails

Else store (KU,R
Auth,K

U
Del)

Store TU

σiss ← RO(KU,I
Auth,TU ,KU,R

Auth,K
U
Del, Niss)

σiss
?
= RO(KU,I

Auth,TU ,KU,R
Auth,K

U
Del, Niss)

Abort if above check fails

Fig. 4. Token issuing protocol

Then R sends its identifier IDR and a random N to SU , which replies with σU to
HU that sends (σU ,TU) to R. Next, R decrypts TU with KR

Enc to obtain KU ,R
Auth,

verifies σI and σU using KR
Auth and KU ,R

Auth, respectively, and accepts only if both
verifications are successful. Otherwise, R rejects.

Token Delegation. Registered user U and delegated user D establish a new
one-time secret pwdD over an authentic and confidential out-of-band-channel.
Then, the token delegation protocol (Figure 6) starts: D sends its identifier IDD
and pwdD to TrEE SD of its mobile platform PD = (SD,HD), which then
sends a random ND

del to host HD that passes (IDD, ND
del) together with the plat-

form certificate certDP of PD to host HU of the registered user’s mobile platform
PU = (SU ,HU). HU then sends (IDD, ND

del, cert
D
P) and token TU of U to SU .

Next, SU verifies certDP , generates authentication secret KD
Auth for D, computes

authenticator σU and delegated token TD. Further, SU derives a temporary au-
thentication secret K from pwdD and uses K to compute authenticator σdel.
Moreover, SU encrypts (KD

Auth,TD,TU) with the platform key pkD
P of SD and

sends the resulting ciphertext cdel to SD. Next, SD decrypts and, in case the
verification of σ is successful, stores KD

Auth and sends (TD,TU) to HD, which are
used later in the authentication protocol.

Authentication of Delegated Users. Authentication of delegated users is
similar to authentication of registered users (Figure 5). The only difference is
that a delegated user D sends in addition to its delegated token TD also the
token TU of user U that created TD. Further, R first decrypts TU to obtain KU

Del,
which is then used to decrypt KD

Auth from TD. The rest of the authentication
protocol is the same as in Figure 5.

230 A. Dmitrienko et al.

Reg. user U TrEE SU Host HU Resource R
KU,R

Auth,K
U
Enc

TU KR
Enc,K

R
Auth,RevList

N ∈R {0, 1}μ
start auth

start auth

IDR, N
IDR, N

m := (IDU , IDR, N)

σU σU ,TU
(sn, IDU ,KU,R

Auth,K
U
Del, σI) ← Dec(KR

Enc;TU)

σI
?
= RO(KR

Auth, sn, IDU ,KU,R
Auth,K

U
Del)

sn
?
�∈ RevList

IDU
?
�∈ RevList

Reject if any of the above checks fails

Else accept

σU ← RO(KU,R
Auth,m)

σU
?
= RO(KU,R

Auth, IDU , IDR, N)

Fig. 5. Authentication protocol for registered users

Reg. user U
pwdD

TrEE SU

KU,R
Auth,K

U
Del,RevList

Host HD

certDP

Host HU
TU

TrEE SD

skD
P

Del. user D
pwdD

IDD, pwdD
IDD, ND

del
IDD, ND

del, cert
D
P ,TU

cdel
cdel

KD
Auth ∈R {0, 1}α

certDP valid?

certDP
?
�∈ RevList

(TD,TU ,KD
Auth, σdel) ← Dec(skD

P ; cdel)

σU := RO(KU,R
Auth,mU)

TD := Enc(KU
Del;mU , σU)

ND
del ∈R {0, 1}μ

sn ∈R {0, 1}β

mU := (sn, IDD,KD
Auth)

cdel ← Enc(pkD
P ;TD,TU ,KD

Auth, σdel)

Extract pkD
P from certDP

TD,TU

Abort if the above check fails

Else store KD
Auth

Store (TD,TU)

σdel ← RO(pwdD,TD,TU ,KD
Auth, N

U
del, N

D
del)

σdel
?
= RO(pwdD,TD,TU ,KD

Auth, N
U
del, N

D
del)

Abort if any of the above checks fails

IDD, ND
del, cert

D
P

cdel

pwdD, IDD

NU
del ∈R {0, 1}μ

Fig. 6. Token delegation protocol

Token and User Revocation. To revoke a token TU (or all tokens of user U),
sn (or IDU) is added to RevList .

4 Security Analysis
The security goal of the authentication scheme in Section 3.3 is token authentica-
tion, which means that only registered and delegated users, whose smartphone
has a valid token T and knows the corresponding authentication secret KAuth,
can make an honest resource R accept. This can be formalized by a security
experiment ExpAuth

A (q) = outπ
R, where a probabilistic polynomial time (p.p.t.)

adversary A must make an honest resource R to authenticate A either as a
registered user U or delegated user D by returning outπ

R = 1 in some instance
π of one of the authentication protocols (Section 3.3). Following the approach

SmartTokens: Delegable Access Control 231

by Canetti et al. [12], A can arbitrarily interact a limited number of times q
with I, U , D and their mobile platforms P = (H,S) and knows all information
stored on H. However, since we do not consider relay attacks, A is not allowed
to just forward all messages from S to R in instance π. Hence, at least some of
the protocol messages that made R accept must have been (partly) computed
by A without knowing the secrets of S. Note that, as discussed in Section 3.1,
by assumption A does not know any value, including intermediate computation
results, stored in S at any time and can only obtain the messages sent to S and
its responses.

Definition 1. A token-based authentication scheme achieves token authentica-
tion if for every p.p.t. adversary A Pr

[
ExpAuth

A (q) = 1
]

is negligible in q.

Theorem 1. The authentication scheme in Section 3.3 achieves token authenti-
cation (Definition 1) in the random oracle model under the assumption that the
underlying encryption schemes are CPA-secure (Section 3.2).

We give only a proof sketch here, while the full proof can be found in the full
version of the paper [18].

Proof (Sketch). Assume by contradiction that A is an adversary with non-negli-
gible success probability. We show that A can be used to construct an adversary
B that violates the definition of the underlying random oracle RO or the CPA-
security of the underlying encryption schemes (Section 3.2). More detailed, B
simulates the protocols in Section 3.3 according to their specification except
that B simulates all ciphertexts and tokens by encrypting random plaintexts.
Following the approach by Shoup [38], we show that the CPA-security of the
underlying encryption schemes ensures that the simulation by B has a negligible
effect on A’s success probability. A is allowed to arbitrarily interact with RO and
the simulation by B. Eventually, in protocol session π, A responds to message
(IDR, N) generated by B with outAπ , which is used by B to compute either a colli-
sion for RO or to predict the output of RO with non-negligible probability, which
violates the definition of RO (Section 3.2). Hence, RO and the CPA-security of
the underlying encryption schemes ensure that there is no p.p.t. A that violates
token authentication (Definition 1) with non-negligible probability. ��

5 SmartTokens Reference Implementation
In this section, we describe the implementation of the SmartToken design pre-
sented in Section 3.3 based on the security architecture described in Section 2.
We exemplarily consider the scenario, where a company plays the role of issuer I,
while users U correspond to employees and delegated users D to temporary vis-
itors or other employees. The resources R are the company premises, including
buildings and rooms.

5.1 Instantiation of the Multi-level Platform Security Architecture

In our current implementation, we instantiated a modified multi-level security
architecture that slightly differs from the one described in Section 2. The reason

232 A. Dmitrienko et al.

!������	

�������	
�����������	�

%�����

�������'	��
���

����������
	�	

�������'	��
�	���	
���

(�
	�	

!������	

�������
���)
�����%���� 	��	������

*+�

���� ���	��
������

,�+�

�����	�
%����� �����	�
%�����

���� $#�-
&	�
�����#	

Fig. 7. Implemented Platform Security Architecture

is that we could not identify any Android device featuring both NFC and secu-
rity hardware that can be used by third party developers. In particular, we could
not find Android devices with M-Shield or ARM TrustZone, while Android plat-
forms with SIM cards or universal integrated circuit cards (UICC) do not allow
accessing the secure hardware. Moreover, there seems to be no Android device
on the market that provides both an NFC interface and a microSD slot, which
would have allowed using a removable secure memory card (SMC) as TrEE. How-
ever, we envision the availability of such devices in the near future and designed
our implementation such that it can be easily ported to these security modules
upon availability.

Due to this temporal limitation, our current prototype uses software-based
isolation to establish a trusted execution environment (TrEE) on the device.
The refined security platform architecture is depicted in Figure 7. It builds on
the top of TrustDroid [10], a security framework that enhances the standard
Android operating system with mandatory access control at all operating sys-
tem levels, wich allows to establish isolated compartments (or domains) on the
device. Further, TrustDroid allows to define inter-domain communication rules
by specifying system-centric security policies.3 We realized acces control to the
TrEE as a security service of TrustDroid (thus, it resides at the level of the
operating system), while TrEE is realized as a number of application-level iso-
lated compartments. One TrEE-based compartment contains the TrEE Manager,
while other compartments are intended to run secure code associated with host
applications running in an untrusted compartment.

Implementation Details. We implemented the SmartToken scheme in
Section 3.3 on Nexus S smartphones running Android 2.3.3 patched with Trust-
Droid security extensions. The prototype implementation of resources uses a
3 TrustDroid applies very simple rules that restrict inter-domain communication. How-

ever, the TrustDroid framework itself allows defining more sophisticated security
policies, e.g., to prevent application-level privilege escalation attacks [9,8].

SmartTokens: Delegable Access Control 233

commodity NFC reader (ACS ACR 122 U) connected to a Linux PC running
Ubuntu Oneiric.

NFC Communication Mode. We implemented our protocols using Android NFC
card reader and writer APIs, which provide direct access to different NFC tag
technologies using tag-specific application protocol data unit (APDU) command
and response structures. Specifically, we use the ISO Dep Android API that al-
lows direct access to smartcard properties and read/write operations according
to the widely used ISO 14443-4 standard for contactless smartcards. The NFC
reader emulates NFC Forum type 4 contactless smartcards that communicate
according to ISO 14443-4. We used libnfc open source libraries4 for accessing
the NFC reader from the Linux PC. The implementation of the token authenti-
cation and user delegation protocol (Figure 5 and 6) uses ISO/IEC 7816-4 and
ISO/IEC 7816-8 specific APDUs. ISO/IEC 7816-4 defines a standard interface
for identifying applications and accessing files and data on smartcards, while
ISO/IEC 7816-8 defines commands for security operations on smartcards. Fur-
ther, we implemented an application on the Linux PC emulating the resource in
the token authentication protocols.

Primitives and Parameter Sizes. Random oracle RO is implemented as HMAC
based on SHA-1, where α = 160. For the symmetric encryption scheme ES
we used AES, i.e., δ = 128. To achieve CPA-security (Section 3.2), which is
required by the MAC-then-encrypt paradigm [5] used in our protocols and our
security proof, AES is used in CBC mode with random padding. The public-key
encryption scheme is implemented based on RSA with random padding, which
means that platform keys are 2, 048 bit RSA keys. Further, we use β = 64 for
token serial numbers sn and μ = 128 for nonces. All identifiers ID are random
64 bit strings. For the one-time passwords pwd used in the user registration
(Figure 3) and token delegation protocol (Figure 6), we use ρ = 128. Note that
long passwords can be encoded in a barcode or data-matrix that can be printed
on the user’s welcome letter and scanned with the smartphone’s camera. For
delegated users, the barcode can be shown on the display of the registered user’s
smartphone and scanned by the camera of the delegated user’s phone.

Performance Analysis. We measured the time required to complete an authen-
tication protocol session between the NFC reader and the phone for a registered
user and a delegated user. Table 1 shows the time for exchanging different proto-
col messages and the overall authentication session completion time. The average
data transmission rate between NFC reader and phone is around 10 kbps. Our
measurements show that it requires about 540 ms to complete an authentication
session for a registered user and about 565 ms for a delegated user.

6 Related Work
There are several NFC-based applications for smartphones, including key storage
and management, payment and ticketing systems, and remote attestation.
4 www.libnfc.org

www.libnfc.org

234 A. Dmitrienko et al.

Table 1. Transmission times for authentication protocol messages (units are in mil-
liseconds with 95% confidence interval)

User Connection Start Reading Sending Session
Type Estb. Msg. (IDR, N) (σD,TD,TU) Time

Registered 245.17(± .18) 42.19(±.52) 59.6 (± .51) 98.4 (± .53) 441.8(± .54)
Delegated 245.17(± .18) 42.19(±.52) 59.6 (± .51) 121.6 (± .54) 473.55 (± .54)

Key Storage and Management. Mantoro et al. [30] propose a scheme to protect
the cryptographic keys of a PC by securely storing them in the SIM card of an
NFC-enabled phone. However, the scheme protects only against offline attacks
aiming to recover keys from the PC memory and is vulnerable to runtime attacks
since keys are uploaded to the PC when used and thus can be accessed by
malware. Noll et al. [34,27] propose a key management architecture that uses a
SIM card to securely manage the authentication secrets of a smartphone. They
describe several use cases, including an NFC-based access control system that
allows distributing electronic keys via SMS. However, the security of their scheme
is unclear since the use case is only sketched and neither protocols nor a security
analysis is provided.

NFC-Based Payment Systems. Chen et al. [13] propose an NFC-based mobile
payment system leveraging SIM-based authentication capabilities of GSM net-
works. However, their scheme requires all involved parties to be subscribed
to the same mobile operator, which is not always guaranteed in practice and
not required in our scheme. Another NFC-based mobile payment system by
Kadambi et al. [26] is based on payment authorization tokens that are used to
authorize transactions. Their scheme protects privacy-sensitive user data, such
as credit card numbers, even against merchants. Although their solution uses
secure hardware, access to the secure environment is controlled by a commodity
operating system that may be vulnerable to various attacks [32,33]. In contrast,
in our scheme access control to the TrEE is enforced by trusted software com-
ponents. Gauthier et al. [20] propose an offline payment system based on digital
vouchers that can be transferred from one to another device over NFC. However,
their scheme heavily relies on public-key operations resulting in low performance,
while our scheme uses only efficient symmetric techniques and tackles the band-
width limitations of the NFC interface (for the protocol running over NFC). The
Merx system [39] provides a solution for delegated electronic payments. Its sys-
tem model involves four parties: (1) a customer, (2) a concierge, (3) a merchant
and (4) a bank, which can be mapped to the entities of our model as follows:
(1) a user, (2) a delegated user, (3) a resource and (4) an issuer, respectively.
The system requires online interactions between merchant and bank on each
purchase, which is common for payment systems. However, when mapped into
our use case, this scheme would require an online connection between the issuer
and the resource upon each access of the user to the resource, which is highly
undesirable in our use case and not required by our scheme.

SmartTokens: Delegable Access Control 235

NFC-Based Ticketing Systems. Tamrakar et al. [40] present an NFC-based au-
thentication scheme for electronic transport tickets. However, their scheme is
vulnerable to replay attacks and assumes the mobile device to be equipped with
a trusted time source, which is hard to achieve in practice and not required in
our scheme. Ghìron et al. [21] present a prototype implementation of an NFC-
enabled ticketing system. However, their work focuses on usability rather than
security aspects.

NFC-Enabled Remote Attestation. Toegl et al. [25,42] propose verifying the in-
tegrity of public terminals, such as ticket vending machines, using NFC-enabled
smartphones. Their scheme requires terminals to be equipped with NFC-enabled
TPMs, which are not conform to the latest TPM specification [23] and not avail-
able on the market.

7 Conclusion and Future Work
We present the design of a token-based access control system for NFC-enabled
smartphones that can be used in many applications. The scheme allows users to
delegate (part of) their access rights to other smartphone users without involve-
ment of a central authority (a token issuer). Our scheme considers the bandwidth
constraints of NFC by using only symmetric cryptographic primitives for the pro-
tocols running over NFC. We provide a formal security analysis of our scheme
and instantiate it in the application scenario, where access control tokens are
used as electronic door keys. We propose an implementation of our system for
Android-powered Nexus S smartphones. Our performance analysis shows that
authentication can be performed within 474 ms. Furthermore, we present a multi-
level security architecture to protect the underlying authentication secrets of our
protocols. The architecture combines a hardware-assisted trusted execution en-
vironment (TrEE) with software-based isolation and overcomes the drawbacks
of existing solutions.

Future work includes extending the implementation of our multi-level security
architecture for Android-based smartphones with security hardware, when these
devices are available on the market. Moreover, we are implementing the token-
based access control system and the multi-level security architecture on Nokia C7
phones, which feature an NFC interface and ARM TrustZone security hardware.

Acknowledgements. We thank our anonymous reviewers for their helpful
comments and Raphael Friedrich, Stephan Heuser and Daniel Steinmetzer for
supporting the implementation. This work has been supported in part by the Eu-
ropean Commission through the FP7 programme under contract 238811 UNIQUE.

References

1. VingCard Elsafe’s NFC locking solution wins prestigious gaming industry
technology award,
http://www.hotel-online.com/News/PR2011_3rd/Aug11_VingCardHOT.html

http://www.hotel-online.com/News/PR2011_3rd/Aug11_VingCardHOT.html

236 A. Dmitrienko et al.

2. Alves, T., Felton, D.: TrustZone: Integrated hardware and software security. Infor-
mation Quaterly 3(4) (2004)

3. Azema, J., Fayad, G.: M-Shield mobile security technology: making wireless secure.
Texas Instruments White Paper (2008),
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf

4. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among Notions of
Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

5. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among No-
tions and Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security (ACM CCS), pp. 62–73. ACM, New York (1993)

7. Brown, C.: NFC room keys find favour with hotel guests,
http://www.nfcworld.com/2011/06/08/37869/nfc-room-keys-
find-favour-with-hotel-guests/

8. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R.: Xmandroid: A
new Android evolution to mitigate privilege escalation attacks. Technical Report
TR-2011-04, Technische Universität Darmstadt (2011)

9. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.: To-
wards taming privilege-escalation attacks on Android. In: 19th Annual Network &
Distributed System Security Symposium, NDSS (2012)

10. Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S., Sadeghi, A.R., Shastry, B.: Prac-
tical and lightweight domain isolation on Android. In: ACM CCS Workshop on
Security and Privacy in Mobile Devices (SPSM). ACM Press (2011)

11. Bugiel, S., Dmitrienko, A., Kostiainen, K., Sadeghi, A.-R., Winandy, M.: TruWal-
letM: Secure Web Authentication on Mobile Platforms. In: Chen, L., Yung, M.
(eds.) INTRUST 2010. LNCS, vol. 6802, pp. 219–236. Springer, Heidelberg (2011)

12. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

13. Chen, W., Hancke, G.P., Mayes, K.E., Lien, Y., Chiu, J.H.: NFC mobile transac-
tions and authentication based on GSM network. In: International Workshop on
Near Field Communication (NFC), pp. 83–89. IEEE Computer Society, Washing-
ton, DC (2010)

14. Clark, S.: NXP launches NFC car key,
http://www.nfcworld.com/2011/06/22/38196/nxp-launches-nfc-car-key/

15. Clark, S.: VingCard launches NFC room key system for hotels,
http://www.nfcworld.com/2011/06/28/38366/vingcard-launches-
nfc-room-key-system-for-hotels/

16. Costan, V., Sarmenta, L.F.G., van Dijk, M., Devadas, S.: The Trusted Execu-
tion Module: Commodity General-Purpose Trusted Computing. In: Grimaud, G.,
Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 133–148. Springer,
Heidelberg (2008)

17. Davi, L., Dmitrienko, A., Kowalski, C., Winandy, M.: Trusted virtual domains on
OKL4: Secure information sharing on smartphones. In: ACM Workshop on Scalable
Trusted Computing (ACM STC). ACM Press (2011)

18. Dmitrienko, A., Sadeghi, A.R., Tamrakar, S., Wachsmann, C.: Smarttokens: Dele-
gable access control with NFC-enabled smartphones (extended version). Cryptology
ePrint Archive, Report 2012/187 (2012)

http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://www.nfcworld.com/2011/06/08/37869/nfc-room-keys-find-favour-with-hotel-guests/
http://www.nfcworld.com/2011/06/08/37869/nfc-room-keys-find-favour-with-hotel-guests/
http://www.nfcworld.com/2011/06/22/38196/nxp-launches-nfc-car-key/
http://www.nfcworld.com/2011/06/28/38366/vingcard-launches-nfc-room-key-system-for-hotels/
http://www.nfcworld.com/2011/06/28/38366/vingcard-launches-nfc-room-key-system-for-hotels/

SmartTokens: Delegable Access Control 237

19. Gartner Inc.: (2011), http://www.gartner.com/it/page.jsp?id=1689814
20. Gauthier, V.D., Wouters, K.M., Karahan, H., Preneel, B.: Offline NFC payments

with electronic vouchers. In: ACM Workshop on Networking, Systems, and Appli-
cations for Mobile Handhelds (MobiHeld), pp. 25–30. ACM, New York (2009)

21. Ghìron, S.L., Sposato, S., Medaglia, C.M., Moroni, A.: NFC ticketing: A prototype
and usability test of an NFC-based virtual ticketing application. In: International
Workshop on Near Field Communication (NFC), pp. 45–50. IEEE Computer Soci-
ety, Washington, DC (2009)

22. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28, 270–299 (1984)

23. Trusted Computing Group: TPM Main Specification, Version 1.2 rev. 103 (2007),
https://www.trustedcomputinggroup.org

24. Heiser, G., Leslie, B.: The OKL4 microvisor: Convergence point of microkernels
and hypervisors. In: ACM Asia-pacific Workshop on Systems (APSys), pp. 19–24.
ACM, New York (2010)

25. Hutter, M., Toegl, R.: A trusted platform module for near field communication. In:
International Conference on Systems and Networks Communications (ICSNC), pp.
136–141. IEEE Computer Society, Washington, DC (2010)

26. Kadambi, K.S., Li, J., Karp, A.H.: Near-field communication-based secure mobile
payment service. In: International Conference on Electronic Commerce (ICEC), pp.
142–151. ACM, New York (2009)

27. Kalman, G., Noll, J., UniK, K.: SIM as secure key storage in communication
networks. In: International Conference on Wireless and Mobile Communications,
ICWMC (2007)

28. Kostiainen, K., Asokan, N., Afanasyeva, A.: Towards User-Friendly Credential
Transfer on Open Credential Platforms. In: Lopez, J., Tsudik, G. (eds.) ACNS
2011. LNCS, vol. 6715, pp. 395–412. Springer, Heidelberg (2011)

29. Kostiainen, K., Ekberg, J.E., Asokan, N., Rantala, A.: On-board credentials with
open provisioning. In: ACM Symposium on Information, Computer, and Commu-
nications Security (ASIACCS), pp. 104–115. ACM (2009)

30. Mantoro, T., Milisic, A.: Smart card authentication for Internet applications using
NFC enabled phone. In: International Conference on Information and Communi-
cation Technology for the Muslim World, ICT4M (2010)

31. Massachusetts Institute of Technology: Kerberos: The network authentication pro-
tocol, http://web.mit.edu/kerberos/

32. McAfee Labs: McAfee threats report: Second quarter (2011),
http://www.mcafee.com/us/resources/reports/
rp-quarterly-threat-q2-2011.pdf

33. McAfee Labs: McAfee threats report: Third quarter (2011),
http://www.mcafee.com/us/resources/reports/
rp-quarterly-threat-q3-2011.pdf

34. Noll, J., Lopez Calvet, J.C., Myksvoll, K.: Admittance services through mobile
phone short messages. In: International Multi-Conference on Computing in the
Global Information Technology, pp. 77–82. IEEE Computer Society, Washington,
DC (2006)

35. Reveilhac, M., Pasquet, M.: Promising secure element alternatives for NFC technol-
ogy. In: International Workshop on Near Field Communication (NFC), pp. 75–80.
IEEE Computer Society, Washington, DC (2009)

36. Robertson, T.: Eight industries that will benefit from NFC technology,
https://www.x.com/devzone/articles/eight-industries-
will-benefit-nfc-technology

http://www.gartner.com/it/page.jsp?id=1689814
https://www.trustedcomputinggroup.org
http://web.mit.edu/kerberos/
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2011.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2011.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q3-2011.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q3-2011.pdf
https://www.x.com/devzone/articles/eight-industries-will-benefit-nfc-technology
https://www.x.com/devzone/articles/eight-industries-will-benefit-nfc-technology

238 A. Dmitrienko et al.

37. Rushby, J.M.: Design and verification of secure systems. In: ACM Symposium on
Operating Systems Principles, SOPS (1981)

38. Shoup, V.: Sequences of games: A tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004)

39. Soghoian, C., Aad, I.: Merx: Secure and Privacy Preserving Delegated Payments.
In: Chen, L., Mitchell, C.J., Martin, A. (eds.) Trust 2009. LNCS, vol. 5471,
pp. 217–239. Springer, Heidelberg (2009)

40. Tamrakar, S., Ekberg, J.E., Asokan, N.: Identity verification schemes for public
transport ticketing with NFC phones. In: ACM workshop on Scalable Trusted
Computing (STC), pp. 37–48. ACM, New York (2011)

41. Telecom Innovation Laboratories: Mobile Wallet turns cell phones into digital car
keys (2011),
http://www.laboratories.telekom.com/public/English/Newsroom/news/Pages/
digitaler_Autoschluessel_Mobile_Wallet.aspx

42. Toegl, R., Hutter, M.: An approach to introducing locality in remote attestation
using near field communications. J. Supercomput. 55(2), 207–227 (2011)

43. Zhang, X., Acıiçmez, O., Seifert, J.P.: A trusted mobile phone reference architecture
via secure kernel. In: ACM workshop on Scalable Trusted Computing (ACM STC),
pp. 7–14. ACM, New York (2007)

http://www.laboratories.telekom.com/public/English/Newsroom/news/Pages/digitaler_Autoschluessel_Mobile_Wallet.aspx
http://www.laboratories.telekom.com/public/English/Newsroom/news/Pages/digitaler_Autoschluessel_Mobile_Wallet.aspx

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 239–254, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Belief Logic for Analyzing Security of Web Protocols

Apurva Kumar

IBM Research, India
kapurva@in.ibm.com

Abstract. Many useful transactions on the web are implemented as a sequence
of interactions that a user performs with multiple collaborating providers. Safe-
ty of such transactions requires the user to not only trust individual providers
and communication channels, but also the web protocols that manage security
of these transactions. A protocol can be trusted for a particular usage, if the
guarantees that it provides its participants are considered acceptable in the con-
text. An important set of approaches for cryptographic protocol analysis are
based on the so-called BAN logic which is used to reason about beliefs estab-
lished at protocol participants. In this paper, we attempt at providing a similar
approach for web protocols. The new logic extends BAN and supports key con-
cepts that simplify security analysis of web protocols. It also takes into account
additional challenges introduced due to browser-based interaction. Through ex-
amples of two leading cross-domain identity and access management protocols,
we demonstrate efficacy of our analysis in establishing precisely what a proto-
col achieves, in deciding whether it can be trusted for a particular need and in
proposing fixes that improve trust levels.

Keywords: security protocol analysis, belief logic, identity federation,
delegated authorization.

1 Introduction

While most security protocols are relatively simple to describe, the problem of ensur-
ing that they can achieve certain guarantees in the presence of intruders that are al-
lowed to intercept, alter, delete messages and collude with dishonest principals has
proven to be a hard one. Analysis of cryptographic protocols (i.e. protocols that use
cryptographic techniques for distributing keys and authenticating principals over a
network) has been an active research area over the past three decades.

Approaches for security protocol analysis can be broadly classified under two cat-
egories. Inference construction approaches, first popularized by the publication of
Burrows, Abadi, Needham (BAN) [1] logic, attempt to use inference in specialized
logics to establish required beliefs at protocol participants. Attack construction ap-
proaches attempt to construct attacks by modeling an intruder and using algebraic
properties of the messages being transmitted.

In the last decade or so, a new set of protocols has emerged that manage specific
transactions on the web. The protocols are characterized by a user interacting with

240 A. Kumar

multiple collaborating providers using standard web security mechanisms over a web-
browser. Examples of such transactions are cross-domain single sign-on, electronic
payments, sharing content with third parties etc. Some popular protocols that have
been used to implement such transactions are Security Assertion Markup Language
(SAML) [2], OpenID [3] and OAuth [4].

Security analysis of such web 'transaction protocols' poses several new challenges.
Firstly, there is a need to model users without identifying keys and identities that are
not global. Secondly, there is need for a framework for reasoning about user actions.
Users contribute in these protocols through actions like submitting a request, signing
in, accepting terms, clicking a link etc. When identities are not global, establishing
that a user has recently performed an action is often more important than knowing its
identity. Thirdly, browser-based communication allows new types of attacks based on
using the browser as a confused deputy which have to be accounted for. Finally, there
is a need to support common security mechanisms such as SSL/TLS based transport
layer as a primitive construct to simplify modeling of web protocols. Due to the above
challenges, there is lack of an established framework for modeling and analyzing
security of web protocols.

We feel that inference construction based approaches (also termed as belief logics)
are ideally suited for analyzing security of web protocols. The higher abstraction level
and their ability to establish what a protocol achieves without explicitly modeling the
intruder make them attractive for analyzing complex web environments. However,
little work has been done in extending belief logics to the web domain. In this paper,
our aim is to provide a robust logic for analyzing security of web protocols.

While there have been several extensions to BAN logic, our work generalizes some
basic concepts of the logic, e.g. the type of beliefs that it can represent and the types
of principals it can support. We define a set of intuitive inference rules that greatly
simplify analysis of web based protocols. We also address implications of common
browser based attacks such as request forgery. The vocabulary of the logic is extensi-
ble through constructs like actions and parameters that allow problem domain specific
elements to be introduced.

To illustrate effectiveness of the extended logic in analyzing security of web proto-
cols, we analyze two relatively complex browser-based protocols. SAML Identity
Linking protocol is an extension of the more popular SAML single sign-on (SSO)
protocol. Our analysis shows that the protocol is unable to establish required belief to
securely link identities. We describe an attack that can be used to exploit this weak-
ness. Next, we consider the OAuth protocol which is fast becoming the ad-hoc stan-
dard for authorizing third parties on the web. We determine the guarantees that the
protocol provides and show that they can be inadequate in some situations. In both
cases, the attacks identified have not been reported earlier. We also use insight from
the analyses to propose fixes for the broken protocols.

We discuss related work in Section 2 and overview of BAN logic in Section 3. In
Section 4, we introduce syntax and axioms of the proposed logic. In Sections 5 and 6,
we take up the example analyses and discuss our contribution in Section 7.

 A Belief Logic for Analyzing Security of Web Protocols 241

2 Related Work

In the previous section, we mentioned two types of approaches for security protocol
analysis. In this section, we review existing work in each type of approach.

Inference construction approaches attempt to use inference in specialized logics to
establish required beliefs at the protocol participants. The logic of authentication de-
scribed in [1], commonly known as BAN, was one of the first successful attempts at
representing and reasoning about security properties of protocols. In [6], minor
improvements to the logic’s syntax and inference rules suggested to remove some
ambiguity. Authors of [7] introduced the concept of ‘recognizability’. Logic in [5]
introduces the concept of possession along with belief and uses it to support con-
structs like ‘not originated here’. In [8] authors attempt to consolidate good features
from earlier belief logic approaches. These logics have the advantage of being usually
decidable and efficiently computable. There have been efforts to automate verification
for these logics. In [9], a transformation of BAN logic and inference rules to first
order formula is performed and theorem prover SETHEO is used for finding proofs.
In [10], the authors attempt to embed BAN logic in EVES theorem prover.

Attack construction approaches on the other hand do not try to establish beliefs at
the participants but use model-checking techniques to construct attacks. The states
and transitions used for modeling the protocol include modeling the structure of the
message passing over the channel and a model of the intruder. The intruder is usually
based on a Dolev-Yao model [11], and is allowed to perform any sequence of opera-
tions such as data interception, concatenation, deconcatenation, encryption, decryp-
tion etc. These complexities result in such approaches suffering from state-space
explosion problem. We note that protocol modeling is usually quite complex in these
approaches and even automated analysis often depends on user inputs at various stag-
es of the state exploration process.

Few works that are representative of this class of approaches are mentioned below.
The first such approach was introduced in [11], but the class of protocols studied in
this work was very limited. In [12] the author modeled an extension of Dolev-Yao
model in a specialized Prolog based model-checker, the NRL protocol analyzer. Other
approaches in this area include the use of FDR model checker for CSP [13], use of
SAT based model-checking techniques to solve a simplified version of the protocol
insecurity problem [14] and on-the-fly model-checker (OFMC) [18], a semi-decision
procedure which explores the search space system in a demand-driven way. [14] and
[18] have been employed as backend model-checkers in the AVISPA tool [19] for
automated validation of security protocols. An alternative to state-based analysis is
the strand-space based approach [20] which uses a graph-theoretic interpretation of
Dolev-Yao model. The protocol analyzer, Athena [21] is based on this approach. Also
noteworthy is [22], in which authors propose some new threat models for the web
platform. They use an attack construction approach to analyze effectiveness of some
proposed web mechanisms against attacks targeting the browser.

Another relevant work which analyzes an important browser based protocol is the
analysis of SAML in [15]. However, the author does not propose a framework for
analyzing similar protocols. Finally, in our earlier work [23] a logic for analysis of

242 A. Kumar

web protocols is proposed. However, the logic introduced in this preliminary work is
not robust enough to address challenges specific to browser based communication e.g.
requests forgery by third parties. We build upon the approach of [23] and address its
shortcomings. The protocols analyzed in [23] (SAML SSO and OAuth Core 1.0) are
different from those analyzed in this paper (SAML Identity Linking and OAuth 1.0
revision A). In this paper, we are driven by the goal of providing a robust logic for
analyzing security in web protocols. We refer to [9], [10], [23] for automating analy-
sis for such logics.

3 Overview of Logic of Authentication

BAN Statements. A formula in BAN logic [1] is constructed using operators from
Table 1. P and Q range over principals. The three statements about keys and secrets
represent atomic statements. X represents a BAN formula constructed using one or
more BAN operators. The expression X means that the message X is fresh and has
not been used before the current run of the protocol. This is especially true for a nonce,
a sequence number or timestamp generated with this specific purpose. Nonces are used
in protocols to defeat replay attacks from previous executions of the protocol.

Table 1. Operators in BAN Logic. X is a statement of the logic

Notation Meaning Notation Meaning

|P X≡ P believes X KP Q←→ Shared key K

P X P sees X K Q Q has public key K

|~P X P said X Y
P Q Shared secret Y

|P X P controls X X X is fresh.

{ }KX X encrypted by K YX X combined with Y

Inference Rules. There is a set of inference rules for deriving new beliefs from old
ones. E.g. the message-origin inference rule below states that if P knows that K is a
secret key between itself and Q and it sees a message X encrypted by K, then P is
entitled to believe that Q said X. Similar inference rules about public keys and shared
secrets are also provided, as shown below. K-1 represents the private key correspond-
ing to public key K.

1| , { }{ }| ,

|

| | | |

| |

,

~ ~

~

KK K

Y

Y

K
P Q P P

P

P Q P XX

P Q X P Q X

X

P Q X

Q P P

−≡

≡

≡

≡

≡

≡

←→

 (R1)

 A Belief Logic for Analyzing Security of Web Protocols 243

A nonce-verification rule (R2) states that, in addition if the message is known to be
fresh, then P believes that Q must still believe X. Further, the jurisdiction rule (R3)
states that, if in addition, P also believes that Q is an authority on the subject of X (i.e.
Q controls X), then P is entitled to believe X itself.

| | , |

| |

~P Q X P X

P Q X

≡ ≡

≡ ≡

 (R2)

| | , | |

|

P Q X P Q X

P X

≡ ≡ ≡

≡ (R3)

Idealization. Each message exchanged in the protocol is idealized into a BAN formu-
la representing meaning of the message including any facts that the sending of the
message implies. Consider for example, the second message in the Needham-
Schroeder Symmetric Key protocol [17] in which a server S sends a response to an
initiator A containing a session key Kab, along with a message for another principal B
encrypted using B’s key containing the same session key and A’s identity. In typical
Alice-Bob notation used in literature this can be expressed as:

: { , , ,{ , } }
asbsa ab ab K KS A N B K K A→

where Na is a nonce value. Kas and Kbs represent keys shared between A and S, B and S
respectively. The message is idealized in [1] as follows:

: { (), (),{ } }, K Kab bKab a
Kbs asa KA B AS A N A B B→ ←→ ←→←→

The idealization makes explicit that the server says that Kab is a shared key for com-
munication between A and B and also that it is fresh (due to the presence of the
nonce).

Analysis. Protocol analysis in inference construction approaches involves two main
tasks: (i) identification of an initial set of beliefs i.e. assumptions at each principal. (ii)
message-by-message manual reasoning based on combining formula (idealized mes-
sages) that a principal sees with what it knows using inference rules of the logic.

4 Extending Belief Logic

4.1 Introducing New Concepts and Syntax

Our goal is to extend BAN for analysis of generic browser based web transactions.
This involves extending logic of authentication in the following ways.

Support for Principals without Identifying Keys. Existing techniques for security
protocol analysis require principals to possess identifying keys. However, it is

244 A. Kumar

common for users to authenticate to websites using passwords over secure connec-
tions. A secure channel in this paper refers to a transport layer security mechanism
e.g. SSL, TLS that provides server authentication, confidentiality and integrity in
message exchanges. We introduce a new sort (type) in the many sorted BAN logic
called user which represents the client side of a secure connection.

Support for Passing Domain Specific Information. We also allow for parameters
to be used in idealized expressions representing a protocol. These are named variables
belonging to a particular sort of the logic and assigned to a constant symbol of that
sort in a particular execution of the protocol.

Support for User Actions and Secrets. While principals make statements signed
using identifying keys, users interact with principals (usually servers) over secure
channels. We define the concept of an action and allow it to be associated with a user.
We allow secrets to be associated with actions in order to identify a user that per-
formed the action (possibly at a different place or time). An action has a type and can
be parameterized by a set of arguments belonging to the sorts of the logic. E.g. the act
of signing in as principal Q is represented as SignIn(Q).

The new concepts are represented using the notation described in Table 2. Aname
ranges over action types while Pname ranges over parameter names.

Table 2. Additional operators used in our extended belief logic

Notation Meaning Notation Meaning

C
P U

Δ←→
C is a secure channel
between Uc and P. X action

Secret X is associated
with action.

CX
Formula X exchanged
over secure channel C. CU X Uc possesses secret X.

CU action UC performs action Pname val= Pname has value ‘val’.

4.2 Implications of Forged Requests

An additional challenge, that belief logics for the web must contend with, is request
forgery. In cryptographic protocols a principal is always aware of the content of mes-
sages it sends (unless it is relaying an encrypted message). In browser-based protocols
a user can be induced into clicking a link or submitting a form at a malicious website.
Both the content of the message and the receiving end-point can thus be controlled by
an attacker. Moreover, an HTTP cookie identifying any context information (e.g.
login context) is automatically included by the browser if the request is directed to a
URL within the scope (defined as a combination of domain and path) of the cookie.
Such attacks are termed as cross-site request forgery (CSRF). Since secrets and ac-
tions are also message content, this has an obvious implication on the reasoning in our
logic. There are two cases to handle:

 A Belief Logic for Analyzing Security of Web Protocols 245

(i) Faked actions: Since user performs actions on web pages created by a server, we
assume that the server always knows whether an action was forged or not by
checking for a secret that it has included in the web page. An action act seen by a
principal P who knows it was not forged is represented as actP in our notation.

(ii) Faked secrets: In our analysis we make the assumption that the attacker cannot
tamper with cookies stored in a user's browser. We assume that any other secrets
carried in a user request might be faked. We allow a user to assert actions corres-
ponding to faked secrets. However, if a request contains two secrets s1 and s2
corresponding to actions act1 and act2, we do not conclude that principal who per-
formed act1 performed also performed act2. To be able to make such conclusions,
we require one of the actions to be additionally associated with a valid cookie
which the server believes to be associated with the action. In a common scenario
one of the actions is a sign-in action and the logic is used to associate the other ac-
tion with the signed in principal.

4.3 Reasoning about Users, Actions and Secrets

The following new inference rules have been defined to reason about users, their ac-
tions and associated secrets. Rule R4 says that if a principal (usually server) believes
that a user UC communicates over a secure channel C, then any actions it sees over the
secure channel C can be attributed to user UC. The superscript P over the action name
represents that P believes the action is not forged (through verification of a secret as
described in Section 4.2).

|)

)

(,

| (

C

C

C

P
action

P U actio

P P U P

n

Δ≡

≡

←→

 (R4)

The above rule requires the believer to be a direct observer of the action. Rule R5, on
the other hand, allows belief about an action based on a secret associated with the
action. It says if P believes that secret S is associated with an action, and it sees that
user UC connected over a secret channel possesses the secret, then it believes that the
action was performed by UC.

), | (),

| (

(

)

|
C

C

Caction UP P P SP S

P U action

Δ≡

≡

≡ ←→

 (R5)

Rules R4 and R5 do not require a user to be authenticated. Rule R6 and R7 are cor-
responding rules for authenticated users. Rule R6 says that if P is connected to UC
over a secure channel and believes that UC is currently signed in as Q, then P can
attribute any actions performed on the channel to the principal Q. We use the predi-
cate SignedIn(UC, Q) to denote that UC is signed in as Q.

(),| (), |

| ()

,
C

P
c CQSignedIn U P action

P Q acti

P U

on

P P
Δ≡ ≡

≡

←→

 (R6)

246 A. Kumar

For browser based protocols, there is a simple check for SignedIn. If the request con-
tains a valid cookie (ck) which is associated with the SignIn(Q) action, then P as-
sumes UC to be signed in as Q. In addition, if the principal is the direct observer of the
action over a secure channel and the action is not forged, then P is entitled to believe
that action was performed by Q.

(),| (), | { , }

| ()

C

P
CSignIn Q P ck actionP P U

P Q act n

c

o

P k

i

Δ≡ ≡

≡

←→

 (R6.1)

R7 is the rule for attributing actions not directly observed by P to an authenticated
user. Like R7 it postulates that P is connected to UC over a secure channel and be-
lieves that UC is currently signed in as Q. If P then sees a secret T which it believes to
be associated with a particular action, then P believes that Q performed action.

(), | (| (), |),

| ()

,
C c CQSignedIn U P T action P TP P U

P Q actio

P

n

Δ ≡

≡

≡ ≡←→

 (R7)

We now translate this rule for browser based protocols. The above rule can be seen as
associating another action with a principal who is believed to perform sign-in action.
As per handling described in Section 4.2, we use another secret (S) shared with the
signed in principal (Q) and contained in the message body along with the secret T to
ensure that T is not faked. This results in the following rule:

(), , , { , }

| () (R

| (), | | |

7.1)

C

S

CSSignIn Q Q P action P ck T

P Q acti

P P U P ck P P T

on

Δ≡ ≡ ≡ ≡

≡

←→

A more generic form of the rule does not require one of the actions to be sign-in ac-
tion. The notation Raction is used to identify an unauthenticated principal who is aware
of performing action.

1

1

1, , 2, { , }| (), |

| (

|

2)

|
C

S

CSact

act

act R P act P ck T

P R

P P U P ck P P

ct

T

a

Δ≡ ≡ ≡ ≡

≡

←→

(R7.2)

5 Analysis of SAML Identity Linking Protocol

5.1 Protocol Description

In addition to the well-known web single sign-on (SSO) protocol, the SAML specifi-
cation also features an identity linking protocol. The objective of this protocol is to
allow linking of user identity across security domains. Despite being a widely dep-
loyed identity federation protocol, it does not appear to be the subject of scrutiny in a
prior security analysis work.

 A Belief Logic for Analyzing Security of Web Protocols 247

A user authenticated at an identity provider (IdP) as principal Qp, chooses to be
transferred to the service provider (SP) site. The redirect includes a signed SAML
token asserting the identity of the user at IdP (i.e. Qp). Once at the service provider
(SP) site, user is requested to sign-in. The user signs in as principal Rc. SP links local
principal name Rc with remote principal name Qp. In future, when SP sees a user car-
rying a SAML token from IdP asserting identity Qp, it automatically signs in the user
as Rc. The message exchange is illustrated in Fig. 1.

Fig. 1. SAML identity linking protocol

5.2 Modeling and Analysis

The idealized protocol shown below retains only messages received by either SP or
IdP. SP is denoted as principal C, while IdP is denoted as P. All communication is
assumed to take place on secure (SSL/TLS) channel. Message 1 represents the sign-in
action user performs at the IdP. Message 3 is the redirect from IdP being received at
SP. The message contains SAML token (T) signed by IdP which is associated with the
action SignIn(Qp). We combine a request identifier and timestamp sent in the message
in a single nonce value Ncp. Two domain specific parameters prov and cons are intro-
duced representing protocol roles of assertion provider (IdP) and assertion consumer
(SP) respectively. Message 5 represents user sign-in action at SP:

1

1 1

2 2

2 2

Message 1 : ()

Message 3 : { , , (), , }

Message 5 : ()
P

C C

C CK

C C

cp

c

p

p

U P SignIn Q

U C N T T SignIn Q prov P cons C

U C SignIn R

−

→
→ = =

→

Assumptions for the protocol can be expressed by the following statements.

2 1

() ()
| |

| (| ())

| |
| |

P C

C C

cp cp

K K

N N
C P P C

C P Sig

C C U P P

nIn x

U
C P

≡ ≡

≡ ≡
≡ ≡

≡

←→ ←→

The first two assumptions are about secure channels C1 and C2. The next four are
beliefs about nonces and keys while the last one is the belief that IdP (P) controls the
sign-in action.

248 A. Kumar

The goal of the protocol is to establish (|)pc SigC nInR Q≡ . Details of analysis

of the protocol are provided in Table 3. We observe that using inference rules of the
logic, C can only associate actions with UC2 and not with principal Rc. R7.1 cannot be
applied on receipt of message 3 because it requires user to be signed in locally at C.
Hence, we conclude that the protocol does not establish sufficient beliefs for the iden-
tity linking operation to be considered safe. Using this knowledge, we were also able
to construct the following attack on SAML identity linking.

Table 3. Analysis of SAML Identity Linking. Recipient is shown in parentheses

Msg. Rule Used Inference Reasoning

3(C) R1,R2 | ,)(P prov P cons C≡ = = Combine message with assumptions
about Kc and Ncp

3(C) R5 2 ()C pSiginIn QU
Using assumption about jurisdiction
of P over sign-in.

5(C) R4 2 ()C cSiginIn RU
Combine message with assumption
about channel C2.

Attack Description. An attacker having a valid account A at IdP authenticates itself
and chooses to be redirected to SP. However, instead of following the redirect request
from IdP, it extracts the request parameters and induces the victim into clicking a link
or submitting a form (depending on whether HTTP redirect binding or POST binding
is used for the exchange). Following the link takes the victim to the SP site, unwit-
tingly carrying the SAML token issued to the attacker. The victim has an account (say
V) at the SP site and is requested to sign-in. On signing in, SP links local identity V
with attacker’s identity A at IdP. In future, attacker can sign-in at IdP, get redirected
to SP and automatically get access to the victim’s account at SP.

5.3 Fixing Identity Linking

The analysis above provides a hint to the possible fix of the protocol. R7.1 can only
be applied at C if user is already signed in locally. Thus the token from IdP must be
received after step 5 of the protocol. One simple way to achieve this is for SP to simp-
ly initiate an SSO flow after step 5. This is exactly what is shown in the modified
protocol of Fig. 2. However, since the user already has a valid login context at IdP (it
signed in at P in step 1), it does not need to sign-in again.

The additional steps of the protocol (with recipient as C or P) can be idealized as
follows:

1

1

3 3

4 4'

Message 7 : { ' , , } ,

Message 9 : { ' , ' (), , } ,
C

P

C C

C p Ccp

K

K

cp q

rN

U P N prov P cons C ck

U C T T SignIn Q prov P cons C ck
−

−

→ = =
→ = =

Additional assumptions are noted below. Cookies ckq and ckr are assumed to be asso-
ciated with sign-in actions SignIn(Qp) and SignIn(Rc) respectively. In addition, N’cp
the unique identifier of the SAML request is assumed to be a secret shared with Rc.

 A Belief Logic for Analyzing Security of Web Protocols 249

Fig. 2. Modified Identity Linking Flow

'

(| (| |),)
Ncp

c cr pqSiginIn R C C R SiginIC P n Qck ck≡ ≡ ≡

Combining the assumptions with message 9 using R7.1, we have all the premises
satisfied, leading to the conclusion (|)pc SigC nInR Q≡ which satisfies the goal.

6 Analysis of OAuth Protocol

6.1 Protocol Description

The OAuth protocol [4] provides a web based workflow that allows a user to tempo-
rarily delegate privileges of his account at a provider to a third party without sharing
his login credentials. Privileges could for example mean access to pictures, friend list,
blogs etc. OAuth is the primary protocol used by Google, Facebook and Twitter to
allow third party access to their users’ content.

In [23], the original version of the protocol, OAuth Core 1.0 [24], was analyzed us-
ing a belief logic. Model driven analysis was used to demonstrate insecurity of the
protocol which explained a known session-fixation attack [16]. The issue was identi-
fied and fixed which resulted in OAuth Core 1.0 Revision A. This version was later
approved and published as an IETF RFC [4] OAuth 1.0 Protocol1. This improved
version [4], is the subject of analysis in this paper. The protocol flow is shown in Fig.
3 and described below.

Steps 1-4, user requests service S from consumer (C). The service requires a set of
privileges (permissions) Priv to the user account at provider (P). Consumer registers
delegation request with P and gets returned a request token Nb. C redirects user to P

1 We note that some providers like Google and Facebook have moved to OAuth 2.0 [25] which

bears little resemblance with the original protocol. Other providers e.g. Twitter have chosen
to stay with the IETF approved version [4].

250 A. Kumar

Fig. 3. The OAuth 1.0 protocol (as described in RFC 5849)

with this token. Steps 5-10, user is requested to sign in and delegate set of privileges
Priv to C. User signs in as principal Q and performs requested delegation. User is
redirected back to C with the request token and another verifier token Np. Steps 11-14,
C uses the two tokens Nb and Np to access a protected resource at P. All communica-
tion happens over secure SSL/TLS channels and requests from consumer are signed
and verifiable at the provider. The secure channels used are identified as C1-C5 in
Fig. 3.

6.2 Modeling and Analysis

The protocol is idealized as shown below. As usual only messages received by either C
or P are idealized because we are interested in beliefs at only these principals.

1

2 1 2

2 2

3

3

4

1 1

3

3

3 3

4

1 : ()

2 : { , Priv}

3 :

5 :

7 : ()
9 : (,),

11 :

,

,

C C

C b C

b C

C

Q

C b p

C C

c

C

C

C C

C

KC N

Message U C Request S

Message C P scope

Message P C N

Message U P N

Message U P SiginIn Q

Message U P Delegate scope C Ck

Message U C N N

Me

−

→
→ =

→
→
→
→
→

5 2

5

5

5

,

)

12 : , , 1

13 : (, (Priv,)

, }{C b p

C b p

C

C

ssage C P C N N N p

Message P C N N Delegate C

→
→

Apart from the sign-in action, we have two other actions. Requesting service S is
represented as Request(S) while delegating a set of permissions Priv to C is
represented as Delegate(Priv, C). The parameter scope is assigned to a set of privileg-
es to be delegated in an execution of the protocol.

 A Belief Logic for Analyzing Security of Web Protocols 251

Idealization of messages 1, 7 and 9 represent the user actions performed in the
protocol. Cookie CkQ represents login context for user signed in as principal Q at P.
Messages 2 and 12 are direct requests from C to P for request token and protected
resource respectively. In message 2, the set of privileges Priv, for which delegation is
required, is included. In message 12, a protected resource requiring a privilege p1
∈Priv is requested. If the provider allows access to protected resource in message 13,
it is interpreted as verifying association of secrets Nb and Np with the delegation ac-
tion. This is made explicit in the idealization. N1 and N2 are nonces (combination of a
timestamp and nonce in actual protocol). Assumptions at C and P are given below:

1 4 3

2 5 2 5

1 1

2 2

| |
| |
| | ()

| ((Priv,)

| (

| | |

| | |

| (,)

|

()

)

),

,
, ,

C C C

C C C C

b Q

b p

C N P N
C N P N
C

C C U C C U P P U

C P C C P C P P C P P C

RequN P Ck SignIn Q

P N Delegate C

C P Dele

es

ga

t

e y

S

t r

N

≡ ≡
≡ ≡

≡ ≡ ≡
≡

≡

≡

≡

≡

≡

≡

≡
←→ ←→ ←→
←→ ←→ ←→ ←→

The first seven assumptions are about secure channels C1-C5. The next four assump-
tions are about freshness of nonces N1 and N2. The next three are beliefs about secrets
Np, Nb and cookie Ckq being associated with the three user actions. The last belief says
that C trusts P for the delegation action. A reasonable goal for the protocol seems to
be to establish the following belief:

(Priv| ,)DelegateP CQ≡ and 4 (Pri| v,)C DelegateC CU≡ (G1)

G1 requires P to establish that delegation was performed by the resource owner and
that C should provide service (in step 14) to a user (UC4) that it believes has per-
formed the delegation action. We consider a stricter goal of additionally satisfying:

() (Pri| v,)Request S DelegateC CR≡ (G2)

G2 requires C to believe that the principal performing request action in step 1 has also
performed the delegation action.

Analysis of the protocol is described in Table 4. We can easily see that goal state-
ment G1 is satisfied by inferences made in step 9 at P and step 13 at C. We also ob-
serve that the belief required by G2 has not been established.

While satisfying G1 may be sufficient in most applications using the protocol,
there are cases where the additional goal G2 is important. This is demonstrated by the
following attack, not reported previously.

An attacker performs steps 1-10 of the protocol and delegates access to its account
X at P for a limited period of time to C. However, instead of getting redirected to C, it
induces a victim - having a valid account V at C – to click a link that contains both
request token and verifier. On clicking the link, V is transferred to C, where it either
starts a new session or continues with an existing session. C thinks that the valid

252 A. Kumar

Table 4. Analyzing the OAuth 1.0 protocol

Msg. Rule Used Inference Reasoning

7(P) R4
3

()
C

SiginInU Q Combining received message with
assumption about C3.

9(P) R6 ,)(Q Delegate R C Combining received message with
assumption about C3 and Ck.

11(C) R6
4

()
C

U Request S
Combining received message with
assumption about C4 and Nb.

13(C) R3 (
(Priv,)
),

b pN
Delegate C
N

Combining message 13 with C’s trust in
P for delegation action.

13(C) R5
4

(Priv,)
C

U Delegate C Using previous conclusion with mes-
sage 11, assumption about C4.

request token and verifier are for V’s account at P, while they are actually associated
with the attacker’s account X. If V accesses a service at C that requires information to
be shared with a remote account at P (e.g. backing up an address book), C releases the
sensitive information to the attacker.

6.3 Fixing OAuth Protocol

Clearly the attack could be averted if we had been able to establish G2 since it ensures
that the same principal performs steps 1 and 11 of the protocol. From the discussion
in Section 4.2, we recall that making statements linking more than one action with the
same user requires that at least one of them is associated with a valid cookie. The fix
we propose introduces a cookie, ck, which is returned by C to the user (in step 2) who
executed the request action. Rewriting idealization for messages 11-13 below:

4 4

5 2 5

5 5

,

)

11 : ,

12 : , , 1

13 : (, (,)

, }
Priv

,

{
C b p C

b

C b p C

C b p C

N
Message U C N N k

Message C P C N N N p

Message P C N N Delegate C

c→

→
→

We write the additional assumptions about cookie ck. RRequest(S) is used to identify the
unnamed principal who performed the request action.

()|),(Request S

ck
C ck CRequest S R≡

Combining messages 11, 13 with the new assumptions about ck using R7.2 results in
the following belief being established which achieves the additional goal G2 (while
still satisfying G1).

() (Pri| v,)Request S DelegateC CR≡

 A Belief Logic for Analyzing Security of Web Protocols 253

7 Conclusions

We have proposed a new logic for analyzing security in web protocols. It extends the
BAN logic which has been successfully used to analyze many cryptographic authenti-
cation and key exchange protocols. Our logic supports several concepts like principals
without identifying keys, secure channels and user actions that greatly simplify mod-
eling of web protocols. It provides a framework for reasoning about user actions
based on cookies, tokens, secrets thus allowing belief logics to move beyond analyz-
ing authentication protocols to addressing security of a wide range of business trans-
actions. The framework is designed to be resilient in a realistic web environment
where requests can be forged.

We use the extended logic to analyze two important web protocols. SAML Identity
Linking protocol is seen to be deficient in its goal of securely linking identities across
domains and a previously unreported attack against the protocol is discovered. We
also analyze OAuth, a mainstream web protocol used for third party authorization.
We analyze a version of the protocol which addresses a known session-fixation bug
and is believed to be secure. Our analysis reveals that the protocol suffers from anoth-
er insecurity not reported earlier and the corresponding attack. For both protocols we
use insights from our analysis to propose fixes that resolve security issues.

Belief logic based security protocol analysis results in decidable and efficiently
computable formulations and analysis can be easily automated. We believe that our
work will allow benefits of these approaches to become available to web protocols.

References

1. Burrows, M., Abadi, M., Needham, R.: A Logic of Authentication. ACM Transactions on
Computer Systems (TOCS) 8(1), 18–36 (1990)

2. OASIS SAML Specifications. SAML v2.0, Core,
http://saml.xml.org/saml-specifications

3. OpenID 2.0 Specifications,
http://openid.net/specs/openid-authentication-2_0.html

4. Hammer, E.: The OAuth 1.0 Protocol, Internet Engineering Task Force, Request for
Comments (RFC): 5849, http://www.rfc-editor.org/rfc/rfc5849.txt

5. Gong, L., Needham, R., Yahalom, R.: Reasoning about Belief in Cryptographic Protocols.
In: Proceedings 1990 IEEE Symposium on Research in Security and Privacy (1990)

6. Abadi, M., Tuttle, M.R.: A semantics for a logic of authentication. In: Proceedings of the
ACM Symposium of Principles of Distributed Computing (1991)

7. Kessler, V., Wedel, G.: AUTLOG: An advanced logic of authentication. In: Proceedings
of Computer Security Foundation Workshop VII, pp. 90–99 (1994)

8. Syverson, P., van Oorschot, P.: On unifying some cryptographic protocol logics. In: Pro-
ceedings of the Symposium on Security and Privacy, Oakland, CA, pp. 14–28 (1994)

9. Schumann, J.: Automatic Verification of Cryptographic Protocols with SETHEO. In:
McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 831–836. Springer, Heidelberg
(1997)

10. Craigen, D., Saaltink, M.: Using EVES to analyze authentication protocols. Technical
Report TR-96-5508-05, ORA Canada (1996)

254 A. Kumar

11. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inform.
Theory IT-29, 198–208 (1983)

12. Meadows, C.: Applying formal methods to the analysis of a key management protocol.
Journal of Computer Security 1, 5–53 (1992)

13. Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR.
In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–166. Springer,
Heidelberg (1996)

14. Armando, A., et al.: An Optimized Intruder Model for SAT-based Model-Checking of Se-
curity Protocols. Elec. Notes in Theoret. Comp. Sci. 125(1) (March 2005)

15. Groß, T.: Security analysis of the SAML single sign-on browser/artifact profile. In: Pro-
ceedings of 19th ACSAC 2003, pp. 298–307. IEEE Computer Society Press (2003)

16. Hammer-Lahav, E.: Explaining the OAuth Session Fixation Attack,
http://hueniverse.com/2009/04/explaining-the-oauth-
sessionfixation-attack/

17. Needham, R., Schroeder, M.: Using encryption for authentication in large networks of
computers. Communications of the ACM 21(12), 993–999 (1978)

18. Basin, D., Mödersheim, S., Viganò, L.: An On-the-Fly Model-Checker for Security Proto-
col Analysis. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808,
pp. 253–270. Springer, Heidelberg (2003)

19. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J., Drielsma,
P.H., Heám, P.C., Kouchnarenko, O., Mantovani, J., Mödersheim, S., von Oheimb, D.,
Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron, L.: The AVISPA Tool
for the Automated Validation of Internet Security Protocols and Applications. In: Etessa-
mi, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 281–285. Springer, Hei-
delberg (2005)

20. Javier, F., Fabrega, T., Herzog, J.C., Guttman, J.D.: Strand spaces: Why a security proto-
col is correct? In: Proceedings of IEEE Symposium on Security and Privacy, pp. 160–171
(1998)

21. Dawn, S., Berezin, S., Perrig, A.: Athena: a novel approach to efficient automatic security
protocol analysis. Journal of Computer Security 9, 47–74 (2001)

22. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a Formal Foundation of
Web Security. In: Proceedings of 23rd IEEE Computer Security Foundations Symposiym
(CSF), pp. 290–304 (2010)

23. Kumar, A.: Model Driven Security Analysis of IDaaS Protocols. In: Kappel, G., Maamar,
Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 312–327. Springer,
Heidelberg (2011)

24. The OAuth Core 1.0 Specification, http://oauth.net/core/1.0
25. Hammer, E., Reardon, D., Hardt, D.: The OAuth 2.0 Authorization Protocol, Network

Working Group, Internet Draft (work in progress),
http://tools.ietf.org/html/draft-ietf-oauth-v2-xx

Provenance-Based Model for Verifying

Trust-Properties

Cornelius Namiluko and Andrew Martin

Oxford University Department of Computer Science,
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

firstname.lastname@cs.ox.ac.uk

Abstract. Trust establishment requires evidence about the system’s
ability to operate as expected. However, the nature of this evidence and
its representation and usage in trust evaluation still remains an open
problem. Current mechanisms for collecting this evidence, such as the
TCG integrity schema, do not support the linkage of this evidence and
therefore limit the kinds of properties that can be verified. We argue
that provenance provides more comprehensive evidence that can be rep-
resented in a manner that eases trust evaluation. Towards this end, we
propose a provenance-based model for reasoning about a system’s ability
to satisfy trust properties of interest. This approach enables interoper-
ability, supports multiple abstractions and enables evaluation of varying
trust properties. Its application on verifying properties of platforms for
use in a trust domain demonstrate its feasibility and flexibility.

1 Introduction

Distributed systems have the potential to deliver cheaper, flexible and scalable
computation and data storage solutions. However, security and trust still pose a
significant challenge towards their wider adoption [3]. This subject has received
considerable attention and several systems that use trusted computing [1,10]
have been proposed to address this challenge. These systems provide information
about their configurations, which can be used to determine whether or not the
system’s behaviour conforms to expectations. However, the question of what
information is necessary, how it can be represented and how it can be used in
trust evaluation is still an open problem.

We argue that provenance provides more comprehensive evidence (including
integrity of the components and activities that occur on the system such as
events, processes, interactions e.t.c.) which can be captured in a manner that
eases trust evaluation. Towards this end, and motivated by the realisation that
trusted computing and provenance seek to address similar issues [7], we propose
a provenance-based model which captures activities on a system as a prove-
nance graph. The model extends the Open Provenance Model (OPM) [9] to
enable provenance to be captured in a manner that supports verification of trust
properties.

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 255–272, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

256 C. Namiluko and A. Martin

This approach has a number of advantages including: i) ability to provide a
more comprehensive view of a system; ii) support for multiple abstractions; iii)
support for interoperability; and iv) support for varying complexity in the types
of properties that can be expressed. We apply this approach to the verification
of platforms for use in a trust domain.

1.1 Virtual Platforms for Trust Domains

Information sharing is crucial for any successful collaboration. However, the
sensitive nature of certain information may prevent or discourage entities from
sharing it. To overcome this challenge, the Trust Domains Project1 proposes
the concept of a trust domain as a means of capturing the state and processes
that allow information to be shared among entities that exhibit shared and
predictable behaviour to protect the information.

Fig. 1. A shared infrastructure used to execute experiments. Ex is an experiment set-up
and QEx is the completed experiment containing results.

Figure 1 illustrates an application of such a concept. In this scenario, re-
searchers collaborate on a number of projects, each of which is comprised of a
number of experiments. Researchers from university X may create an exper-
iment which might be validated or used in the next series of experiments by
other researchers from Y . To facilitate this, experiments are created as virtual
appliances (VA) — ready-to-use virtual machine images configured with an op-
erating system and a software stack necessary for a particular experiment. How-
ever, since the virtual appliances are created outside of their control, researchers
need to establish whether or not virtual appliances will enforce appropriate data
flow control before entrusting them with data for the experiment. This can be
achieved by collecting evidence that could support a VA’s behavioural character-
istics and representing such evidence in a manner suitable for trust evaluation.

1 The Trust Domains project is a TSB and EPSRC funded project that aims to build
a framework for controlled information sharing. Further details are available on
http://www.hpl.hp.com/research/cloud_security/TrustDomains.pdf

http://www.hpl.hp.com/research/cloud_security/TrustDomains.pdf

Provenance-Based Model for Verifying Trust-Properties 257

2 Related Work

Our work is motivated by Lyle and Martin [7] who note that provenance and
trusted computing could complement each other. We build on our previous work
[4] on a trace-based model for verifying properties of virtual appliances and on
an open provenance model (OPM) [9]. This work proposes the semantics of a
model that can be used to capture trust-relevant evidence. It differs from our
previous work in that it is more general, i.e. the trace of events considered is
in fact a subset of provenance, and has a simplified means of specifying trust
properties, as opposed to the CSP specifications mechanism proposed in [4].

The idea of collecting provenance from virtual appliances has also been inves-
tigated by Wei [8]. Our work differs in that we are interested in the evaluation
of trustworthiness of a system using the generated provenance rather than the
trustworthiness of provenance records. The idea of developing a more compre-
hensive view of the system configurations has also been discussed in [14,2]. Presti
[14] proposes the notion of a tree of trust as a mechanism for representing veri-
fication data. Schmidt et. al. [2] builds on this structure and proposes modifica-
tions to the TPM command set and data structures to support the derivation of
tree-formed verification data. In our case, the TPM does not require any modifi-
cations. Instead it is simply used to validate the authenticity of the nodes in the
graph. Whereas in a tree structure there is only one way of getting to a particular
node, our graph-based approach provides a richer semantics — enabling verifiers
to consider multiple paths to a node. Furthermore, our model is extensible and
supports interoperability.

The TCG Infrastructure Working Group recognises that trust establishment
must consider the origin, condition and history of components used to construct
the platform. However, the proposed architecture2 is limited to capturing com-
ponents that exist on a system rather than how those components interact or
how they are related. Our approach is more comprehensive in that it includes the
activities that occur on the system in question and relations among components
involved in those activities.

3 Trust Properties and Evidence

The TCG defines trust in terms of the expectations of a relying party on the be-
haviour of the system they wish to rely on. These expectations can be considered
constraints on the behaviour of the system being relied on. We call these con-
straints trust properties and define them as constraints that capture a trustor’s
expectations on the behaviour of the system. But what kinds of constraints are
necessary to arrive at a particular trustworthiness decision? What kind of infor-
mation is necessary to support such decisions?

The answers to these questions will depend on a number of factors such as
the level of trust desired, the amount of information available and the ability

2 http://www.trustedcomputinggroup.org/files/resource_files/

87651761-1D09-3519-AD6C5B3E41547285/IWG_ArchitecturePartII_v1.0.pdf

http://www.trustedcomputinggroup.org/files/resource_files/
87651761-1D09-3519-AD6C5B3E41547285/IWG_ArchitecturePartII_v1.0.pdf

258 C. Namiluko and A. Martin

of the trustor to use this information. In this section, we describe the kind of
information, which we refer to as evidence that can be collected in the scenario
described in Section 1.1 and the trust properties applicable to it.

3.1 Trust Properties

We identify four categories of trust properties as follows:

1. Possible future behaviour : seek to determine whether or not a VA will ex-
hibit certain behavioural patterns when executed. Examples include: i) an
executable will use known configurations; ii) a given executable will run be-
fore another executable; or iii) cryptographic keys will be reset at start-up.

2. Processes performed and parameters used : identify the processes carried out
during the creation of a VA, the order in which they were performed and
the parameters that were used as input to the processes. Examples include:
i) a certain package was installed; ii) a package was configured as expected;
or iii) certain privileges were assigned to a given object.

3. Data sources and integrity: seek to establish the authenticity of data such
as packages included on a VA. Some examples include: i) packages installed
were downloaded from trusted sources; ii) all critical packages installed were
of a known integrity; or iii) a given file was obtained from a known package.

4. Integrity of processes: seek to determine whether or not the software compo-
nents that executed as part of the build process, described below, behaved as
expected. These may include: i) the executed programs have known integrity
values; or ii) a particular process used the expected executable files.

3.2 Evidence Classification

The properties discussed above can be determined by collecting evidence from
three main sources: build platform; build process ; and verification meta-data.

1. Build platform — provides services for creating VAs and thus determines
the behaviour of the resulting VA. Evidence from the build platform may
include: i) components executed e.g. VA build tools, package managers; ii)
configurations of the components e.g. ports open, digital signature checks
or enabled services; or iii) dependency resolution among components e.g.
versions of libraries used by the components.

2. Build process — involves a number of steps including package download and
installation, configuration changes and execution of specified scripts. Evi-
dence from this process might include: i) integrity values of the input and
output e.g. command line parameters, environment variables; ii) configura-
tion settings for virtual appliance, e.g. user accounts and privileges, network
configurations and start-up scripts; and iii) virtual appliance contents e.g.
software packages installed or files copied to the disk image.

3. Verification metadata —provides information about the format or validity of
other pieces of evidence. Examples include: i) integrity schemas and reference
manifests; ii) digital signatures; and iii) meta-data about the repositories
from where packages are downloaded.

Provenance-Based Model for Verifying Trust-Properties 259

4 Graph-Based Representation

To enable meaningful trust evaluation, the evidence, discussed above, must be
captured in an interoperable manner (since the producer may be different from
the consumer of the evidence) and must include relationships among the parts
of the evidence. Towards this end, we propose a provenance-based model that
extends the open provenance model (OPM) [9] to capture the evidence.

The model is based on the idea that information about the data used, pro-
cesses performed, entities that perform these processes and any new data gen-
erated is captured as a set of RDF triples, where each triple (X, Y, Z) specifies
that a component X was related to another component Z through the property
Y . In the rest of this section, we describe the extensions to OPM necessary to
support reasoning about trust properties.

4.1 A Summary of OPM Semantics

Since our model builds on OPM, we begin with a summary of the main semantics
of OPM, a detailed discussion of which can be found in Groth and Moreua [9].

OPM defines three main entities in a provenance record. These include: Agent,
Artifact and Process, where an agent is an entity capable of performing a process,
an artifact is an immutable piece of state and a process is a series of actions that use
artifacts and generate new artifacts. These entities are related through a number of
properties as depicted in Figure 2. The wasTriggeredBy (WTB) defines a relation-
ship in which one process is made operational by another process. A process can be
specified to have been controlled by multiple agents through the wasControlledBy
(WCB) property. Artifacts used in a process are indicated through the used prop-
ertywhile those that are created by a process are related to the process that created
them through the wasGeneratedBy (WGB) property. The used andWGB proper-
ties must occur after the process has been created. To maintain the link between
those artifacts that are used and those created, the wasDerivedFrom (WDF) prop-
erty is used to specify that one artifact was derived from another. However, these
semantics introduce some limitations (as discussed in the following sections) to-
wards capturing the evidence for the purpose of trust evaluation.

4.2 Program Execution

A program can be captured as an agent in OPM. However, the semantics of the
properties defined in OPM limit the ability to express execution relationships

Fig. 2. An illustration of the main components of OPM. Artifacts are illustrated with
a circle, agents by a hexagon and processes by rectangles.

260 C. Namiluko and A. Martin

Fig. 3. Capturing the boot phase using OPM. Shows that a process can be controlled
by multiple programs.

among programs. Consider the boot phase of a system in which the BIOS exe-
cutes the boot loader, which in turn executes the operating system kernel. Using
OPM, this scenario can be captured as illustrated in Figure 3. The BIOS con-
trols a process, P1, which triggers another process, P2, controlled by the boot
loader. P2 triggers P3, which is controlled by the operating system kernel. The
semantics of the WCB property, however, imply that a single process can in fact
be controlled by multiple programs (e.g. P3 wasControlledBy OS Kernel and
Rootkit in Figure 3). Alternatively, the concept of role defined in OPM could
be used to specify the role played by each program linked through the WCB
property. However, roles are defined as labels and would still require a similar
effort in defining semantics to make them useful in trust evaluation.

An alternative approach would be to use the TCG integrity architecture to
create a chain of trust which captures the notion that a program in the chain
executed and transferred control to the next program in the chain. However,
such an approach is not sufficient to capture the idea that other activities could
have been happening at the same time as the execution of programs in the chain.
To overcome these limitations, we propose an extension to OPM that captures
aspects about program execution. The extension, illustrated in Figure 5.A, en-
ables programs to be related to the processes through which they are executed
and the component executing them. This has an advantage that when estab-
lishing trust not only is the resulting chain of execution checkable, but also the
processes in which the chain was created. We formally define the extension to
include ExecutionProcess and BootstrapProcess processes and a number of prop-
erties that relate programs to the processes through which they were executed

(A) Program execution (B) Program configuration

Fig. 4. Conceptual representation of extensions to support program execution and
configuration

Provenance-Based Model for Verifying Trust-Properties 261

as well as to the program that initiated the execution (note: ran is a Z function
which returns the range of a given relation).

wasPerformedBy : Process → Program
ExecutionProcess : PProcess
wasExecutedThrough : Program → Process
wasExecutedBy : Program → Program
wasExecutedAt : Program → Time
BootstrapProcess : PExecutionProcess

ExecutionProcess = ranwasExecutedThrough
∀ p1, p2 : Program •

wasExecutedBy p2 = p1 ⇔ (∃ e : ExecutionProcess •
wasPerformedBy e = p1 ∧ wasExecutedThrough p2 = e)

∀ e : ExecutionProcess •
e ∈ BootstrapProcess ⇔ (∃ p1 : Program •

wasPerformedBy e = p1 ∧ wasExecutedThrough p1 = e)

Intuitively, an ExecutionProcess is performed by a specific program and yields
another program (i.e. the new program goes into the running state). A special
type of execution process in which the program that performs the execution is
the same as the program that is yielded is referred to as a BootstrapProcess.

4.3 Program Configuration

Configuration settings play an important role in determining the behaviour of
a program. Grawrock [5] notes that in any non-trivial system, there will be a
number of configuration options that may affect how a system behaves. For
this reason, configuration settings used in a system must be considered when
evaluating the system’s trustworthiness.

In OPM, configuration settings can be captured as a type of Artifact. This
artifact can then be linked to the process that uses it through the used property
to capture the idea that a process is configured with the configuration settings
specified. However, as discussed in the previous section, the semantics of WCB
imply that configuration settings used by a process cannot be linked to the spe-
cific program being configured because multiple programs are linked to the same
process that uses the artifact. Furthermore, the semantics of used imply that a
process has to start its operation before it can be configured. However, for trust
evaluation it is important to capture the idea that a program was configured in a
certain way before it engaged in some other activities. To achieve this, we define
an extension to OPM, illustrated in Figure 5.B, in which ConfigurationSettings is
defined as a type of artifact that can be used to configure a program in a process
called ConfigurationProcess . We capture this extension formally as follows.

262 C. Namiluko and A. Martin

ConfigurationSettings : PArtifact
ConfigurationProcess : PProcess
wasAppliedTo : ConfigurationSettings �→ Program
wasConfiguredBy : Program �→ Program
wasConfiguredThrough : Program �→ ConfigurationProcess

∀ p : Process • p ∈ ConfigurationProcess ⇔
(∃ c : ConfigurationSettings • c ∈ used(| p |))

∀ c : ConfigurationSettings; p : Program • p ∈ wasAppliedTo (| c |) ⇔
(∃ e : ConfigurationProcess • c ∈ used(| e |) ∧ e ∈ wasConfiguredThrough(| p |))

∀ p1, p2 : Program • p1 ∈ wasConfiguredBy(| p2 |)) ⇔
(∃ e : ConfigurationProcess, c : ConfigurationSettings •

wasPerformedBy e = p2 ∧ p1 ∈ wasAppliedTo (| c |))

This extension allows us to capture properties such as “a program X configured
another program Y with settings Z”.

4.4 Integrity Measurement

Integrity measurement can be captured as a process using OPM, so that the
entity being measured is linked to the integrity measurement process through
the used property while the resulting integrity value is linked to the process that
performs the measurement through the WGB property. However, the semantics
of used imply that only artifacts can be integrity measured because the used re-
lationship can only be applied to artifacts. To overcome this limitation, we intro-
duce an extension to OPM, illustrated in Figure 5.A and formally defined below,
which includes a type of process referred to as IntegrityMeasurementProcess , an
artifact called IntegrityValue, a Measurable type and a number of properties that
relate these concepts (and those already defined in OPM).

IntegrityMeasurementProcess : PProcess
performedOn : IntegrityMeasurementProcess → Measurable
IntegrityValue : PArtifact
integrityOf : IntegrityValue �→ Measurable
measured : Program �→ Measurable

Measurable = (Artifact ∪ Agent)
∀ p : Program; m : Measurable • measured p = m ⇔

(∃ e : IntegrityMeasurementProcess • performedOn e = m
∧ performedBy e = p)

The extension specifies that IntegrityMeasurementProcess is a process that can
take agents, in addition to artifacts, as input and produce another artifact of
type IntegrityValue. The entity whose integrity is being taken can be linked
to the resulting integrity value through the integrityOf property and to the
IntegrityMeasurementProcess through the performedon property.

Provenance-Based Model for Verifying Trust-Properties 263

4.5 Communication

Components on a system communicate through various means to provide ser-
vices to one another (e.g. remote procedure calls), inform each other about their
activities or observations (e.g. events, message broadcasts) and exchange infor-
mation for use in computations. For example, in the scenario described in Section
1.1 a package manager communicates with the repository to download packages
for installation on a virtual appliance. This communication creates interactions
which determine the flow of information within and across systems. Of particu-
lar interest to the scenario is the ability to track the source of packages that are
installed on a VA.

To cater for communication aspects of the system, we make use of a com-
bination of the D-profile proposed by Groth and Moreau [13] and the com-
mon module defined for the open provenance model vocabulary (OPMV)3. The
D-profile defines the relationship between a sender process and the message
it sends as well as the receiver process and the message it receives. This is
useful for capturing communication. However, if we need to capture interac-
tions resulting from this communication, the D-Profile falls short. To solve
this, we complement it with concepts defined in the common module. More
specifically, we use Download , downloadUri , connection defined in the names-
pace, http://purl.org/net/opmv/types/common# and Connection defined in the
namespace, http://www.w3.org/2006/http#.

4.6 Assertion Model

We have so far defined a way of capturing the various kinds of evidence as
provenance statements. However, these statements are only sound if they can be
traced to a root of trust. Groth and Moreau [13] note that in distributed sys-
tems, where there may be multiple monitoring and reporting components, each
provenance entry must be linked to the entity that reports it. They introduce the
attributedTo property to link an account of provenance to an entity responsible
for it. However, the soundness of these attributions can only be determined if a
link can be created between the attributing (assertor) entity and a root of trust,
i.e. a root of trust for assertion.

To achieve this, we propose an extension to OPM, called Assertion Model,
which makes use of the earlier defined extensions to create links between the
assertor to other components which could potentially serve as roots of trust. In
other words, this can be used to create multiple chain of trust (based on different
aspects of the system, not just the measure-before-load [5] as is the case for TCG
based chain of trust) with the assertor at one end of the chain and a root of trust
for assertion at the other end.

In this model, each triple (s , p, o) is linked to an assertor to create a pair
(A, (s , p, o)), which we refer to as an assertion. This specifies that an agent A

3 Common Module is a specialisation of OPMV that defines commonly used terms
not defined in the OPM specifications, see
http://code.google.com/p/opmv/wiki/GuideOfCommonModule for details.

http://code.google.com/p/opmv/wiki/GuideOfCommonModule

264 C. Namiluko and A. Martin

(A) Integrity measurement (B) Structure of Assertion

Fig. 5. (A) depicts the integrity measurement extension while (B) shows the structure
of an assertion for use in the assertion model

asserts that a subject s is related to an object o through a property p. Figure
5.B depicts how each assertion is captured.

Property == {wasConfiguredBy,wasPerformedBy ,wasExecutedThrough,
wasExecutedBy,}

Assertor : PAgent
Assertion : (Assertor × (Node × Property × Node))
attributedTo : (Node × Property ×Node) → Assertor
occuredAt : (Node × Property ×Node) → Time

Node = (Process ∪Agent ∪ Artifact)
∀ x , y : Node; p : Property ; a : Assertor •

(a, (x , p, y)) ∈ Assertion ⇔ y ∈ p(| x |) ∧ attributedTo (x , p, y) = a

5 Reasoning about Trust-Properties

The graph representation discussed above provides a means of representing the
evidence about the activities on a system. But how useful is this evidence and
how does the graph representation help in trust evaluation? This section ad-
dresses these questions by proposing an approach in which the evidence is val-
idated against a set of criteria which aim to determine its soundness before
verifying it to determine if certain properties can be satisfied by the graph.

5.1 Evidence Validation

The evidence presented in a provenance graph can come from multiple sources.
As discussed in Section 4.6, for the purpose of trust evaluation, this evidence
must be linked to the entities that generate it. Therefore, we consider evidence
to be valid if it can be liked to an entity that can be securely identified. The use
of the assertion model simplifies this by providing a link between the assertions
and the assertors so that validation is based on the ability to securely identify
assertors for either the entire set of evidence or a subset of it. To achieve this, we

Provenance-Based Model for Verifying Trust-Properties 265

develop three validation rules, which when taken together specify that evidence
presented in a particular subset of the graph is sound.

G = {(A, (s , p, o)) | s , o ∈ Node; p ∈ Property ; A ∈ Assertor}
1. RULE 1 : each assertion (s , p, o) must have been asserted by some agent

that exists within the system (SystemComponents is a set of components in
a system’s architecture).

∀ a : G | valid(a) ⇔ a.1 ∈ SystemComponents

2. RULE 2 : if the assertor is a program, then it must have been executed before
performing the assertion.

∀ g : G | g.1 ∈ Program •
valid(a) ⇔ wasExecutedAt a.1 < occuredAt a.2

3. RULE 3 : the assertor must be securely identifiable (this does not necessary
mean that the identity is the expected one, this is checked during verifica-
tion).

∀ g : G | valid(g) ⇒ (∃ iv : IntegrtiyValue • integrityOf iv = g.1)

5.2 Property Specification and Verification

Our verification model is based on RDF graph pattern matching provided in
SPARQL [6]. First, each property specification, discussed in the previous section,
is captured as a basic graph pattern (BGP) — a set of triples which may have
some of the elements represented by variables. Then the obtained BGP is mapped
to the graph (or a sub-graph) to determine if there is an entailment relationship
between the BGP and the graph. In the remainder of this section, we discuss
how properties are specified and verified on a given graph.

Presence/Absence of Triple Patterns: properties can be specified in terms
of the presence or absence of certain triples. For example, to specify that a firewall
was installed, one can check the graph to determine whether or not the triples
(installProcess ,wasPerformedBy , rpm) and (installProcess , used , firewall .rpm)
exist. This is achieved by specifying the triples to be checked as a BGP (when
the values of the triple elements are important) or graph templates (when cer-
tain values can be ignored). Verification is achieved by performing a query in the
form of ASK , which returns true or false, depending on whether the specified
triples can be found in the graph. Listing 1.1 shows how the example of firewall
installation can be verified.

Listing 1.1. Example query for determining presence/absence of triples

�

ASK
{ : i n s t a l l P r o c e s s :wasPerformedBy :rpm . }
{ : i n s t a l l P r o c e s s :used : f i r e w a l l . rpm . }

� �

266 C. Namiluko and A. Martin

Values of Triple Elements: elements of a triple have values which can be used
to infer certain information about the behaviour of a system. In the TCG-based
integrity mechanism, for instance, trust is based on the presence of components
with known integrity values. We support specification of triple element values
using the FILTER feature of SPARQL. For example, to determine that in a
given execution, the installed firewall had a certain integrity value, a query such
as that shown in Listing 1.2 can be specified.

Listing 1.2. Example query for determining triple element values

�

ASK
{ : i n s t a l l P r o c e s s :used : f i r e w a l l . rpm .

? i v : i n t e g r i t yO f : f i r e w a l l . rpm .
FILTER (? i v = ” cdf84324 ”ˆˆ x sd : s t r i n g)}

� �

Supporting Multiple Abstractions: the property that any set of triples can
be defined as a graph enables us to provide multiple abstractions. So that a sub-
graph that concentrates on certain types of assertions can be obtained from a
provenance graph. This is achieved by specifying a graph template that includes
properties useful for a certain abstraction. For example, to capture a graph
that can be used to determine an execution chain of trust on a system, a graph
template such as ?x :wasExecutedBy ?y can be used to return all triples that have
a wasExecutedBy property between any two entities (represented by the variables
x and y). Such a graph can be obtained by using the CONSTRUCT query form
on a provenance graph, which returns a graph matching the triples specified. For
example, the query in Listing 1.3 returns a graph which only includes assertions
related to programs executed on a system. The resulting graph can be subjected
to further analysis as discussed above.

Listing 1.3. Example query to create abstraction for executions

�

CONSTRUCT { ?x ?p ?y .}
WHERE { ?x :wasExecutedBy ?y .}
� �

Sequencing of Triples: in most cases, a triple taken in isolation does not
provide much information. To develop a more meaningful judgement of the be-
haviour of the system requires a way of relating the triples. One such relation-
ship is the sequencing of triples. For example, to specify that a given program
was configured in a certain way before it participated in a process, would involve
checking that the program configuration occurred before a particular process was
performed. Triple sequencing can be specified using the assertion model, where
each assertion is linked to the time instance at which a particular triple occurred,
using the occuredAt property. Given a sequence of triples T =< t1, t2, ...tn >,
the FILTER construct can be used to relate the times at which each triple occurs.
Listing 1.4 shows an example (s = subject, p = property and o = object).

Provenance-Based Model for Verifying Trust-Properties 267

Listing 1.4. Example query to determine sequence of triples

�

ASK
{ t1 . s t1 . p t1 . o .
t1 . (s , p , o) :occuredAt ?x1 .
t2 . s t2 . p t2 . o .
t2 . (s , p , o) :occuredAt ?x2 .
. . .
tn . s tn . p tn . o .
tn . (s , p , o) :occuredAt ?xn .
FILTER (?x1 < ?xn <...<?xn)}

�� �

6 Verifying Virtual Appliances

In this section, we describe an experiment that demonstrates how our proposed
model can be used to verify trust properties of platforms before they can be
admitted into a trust domain.

6.1 Set-Up and Provenance Collection

The experiment was set-up as illustrated in Figure 6. A build platform was setup
using openSUSE 11.3 running on a kernel compiled with IMA support. Kiwi
imaging system4 and strace5 packages were installed and a simple shell script
was set-up to execute Kiwi using strace as a tracing tool. Execution traces were
collected including log files from Kiwi, integrity measurement log (an extract of
which appears in Listing 1.5) and a trace generated by strace (an extract appears
in Listing 1.6), which were processed and verified on a separate platform.

Fig. 6. An experimental setup for generating provenance for virtual appliances that
will be used in a trust domain

4 Kiwi is a tool, from openSUSE Build Services, used for creating VM images.
5 Strace is a UNIX tool for tracing system calls.

268 C. Namiluko and A. Martin

Listing 1.5. Example IMA log showing a selected list of log entries with hash values
truncated to six digits

�

10 000000 ima 000000 boot aggregate
10 7ba06b ima 095 baf / i n i t
. . .
10 ba0922 ima bb4476 . / bu i ld . sh
10 f80069 ima e54a84 / usr /bin/ s t r a c e
10 f97bd8 ima e10ec0 / usr / sb in / k iwi
. . . .
10 1125 be ima 908990 c on f i g . xml
10 b97636 ima 185 cb1 KIWIConfig . sh
. . . .
10 6b81fa ima cc622c / usr /bin/ zypper
. . . .
10 988080 ima bddd59 zypper . con f
10 229 eb6 ima 6 bf998 opensuse . o r g d i s t r x x . repo
. . .
10 2d6856 ima 3b2310 openSUSE−xx−. i 586 . rpm
10 e828ee ima b0d515 f i l e sy s t em−xx−. i 586 . rpm
10 827556 ima bc4d2a vim−base −7.xx . i586 . rpm
. . . .
10 d9545c ima f56808 c on f i g . sh

�� �

Listing 1.6. Example entries in strace output

�

3056 18 : 1 9 : 0 8 c lone (ch i l d s t a c k =0 ,) = 3057
3057 18 : 1 9 : 0 8 execve (”/ usr /bin/ zypper ” ,) = 0
. . .
3057 18 : 1 9 : 4 2 c lone (ch i l d s t a c k =0 ,) = 3069
3069 18 : 1 9 : 4 2 execve (”/bin/rpm” , . . , http:download .

opensuse . org . . openSUSE−xx−. i 586 . rpm
. . .
4354 18 : 2 1 : 5 1 open (”/tmp/prov−va/tmp/ c on f i g . sh” , . .

�� �

6.2 Graph Representation

A provenance graph that conforms to the model described in Section 4 was
generated from the collected traces. The integrity measurement log provides
integrity values of the components on the platform and therefore enables us
to create instances of IntegrityValue and specify the integrityOf property. The
trace generated by strace provides information about relationships among the
programs executed and the data they use.

A slice of the resulting graph is shown in Figure 7. The graph shows how
programs and data used in various processes that occurred on a VA are related
and how IMA provides assertions about integrity values.

6.3 Verification

We demonstrate some of the trust properties that can be verified for VAs.

Verifying Package Authenticity: can be determined in two ways: check the
integrity values recorded for each of the“.rpm” packages or determine whether
they were obtained from a trusted repository. Listing 1.7 and 1.9 shows two
queries and the results obtained are shown in Listing 1.8 and 1.10, respectively.

Provenance-Based Model for Verifying Trust-Properties 269

Fig. 7. A simplified provenance graph — showing only a small number of integrity
values. The full graph includes a link between an integrity value for each of the artifacts
and programs to the IMA.

Listing 1.7. Query that returns the integrity of all the packages installed

�

SELECT {?pkg ? i v }
WHERE {?pkg :wasGeneratedBy ?x .

? i v : i n t e g r i t yO f ?pkg .
FILTER regex (?x , ”rpm”)}

� �

Listing 1.8. Results of package source query

�

Ar t i f a c t In t e g r i t yVa lu e
” f i l e sy s t em−xx−. i 586 . rpm” ”b0d515”
”vim−base−7.xx . i586 . rpm” ”bc4d2a”
”openSUSE−xx−. i 586 . rpm” ”3b2310”
� �

Listing 1.9. Query to return the mapping of the packages to the source

�

SELECT {?pkg ?y }
WHERE {?x : c onne c t i on ?y .

? x rd f : t yp e :Download .
?pkg :wasGeneratedBy ?x .}

� �

Listing 1.10. Results of package source query

�

Ar t i f a c t Connection
” f i l e sy s t em−xx−. i 586 . rpm” opensuse . o r g d i s t r x x . repo
”vim−base−7.xx . i586 . rpm” opensuse . o r g d i s t r x x . repo
”openSUSE−xx−. i 586 . rpm” opensuse . o r g d i s t r x x . repo
� �

270 C. Namiluko and A. Martin

Verifying Configurations Applied: can be verified by checking the integrity
values of the configuration settings that have a wasAppliedTo relationship with
programs. Listing 1.11 shows the query performed.

Listing 1.11. Example query to check configurations

�

SELECT { ?y ?x ? z}
WHERE { ?x : i n t e g r i t yO f ?y .

?p r d f : t y pe :Con f i gu ra t i onProc e s s .
?p :used ?y .
? z :wasConfiguredThrough ?p .
?y :wasAppliedTo ? z}

� �

Listing 1.12. Results of the checking program configurations

�

Con f i gu ra t i onSe t t i ng s In t e g r i t yVa lu e Program
”zypper . con f ” ”bddd59” ” zypper ”
”KIWIConfig . sh” ”185 cb1” ”Kiwi”
� �

Verifying Startup Scripts : is accomplished by checking the integrity of the
programs or artifacts that have been placed in a certain location. Listing 1.13

Listing 1.13. Example query to determine the scripts that will be executed

�

SELECT {?x ?y }
WHERE {?x r d f : t y p e : a r t i f a c t .

?y : i n t e g r i t yO f ?x
FILTER regex (?x , ”ˆ i n i t ”) }

� �

Listing 1.14. Results of checking scripts copied

�

Ar t i f a c t In t e g r i t yVa lu e
” c on f i g . sh ” ”3de324”
” image . sh” ”359 aa3”
� �

7 Discussion

7.1 Interoperability and Extensibility

Our model can be extended with semantics useful for a given application domain
by defining new concepts or extending existing concepts. The new concepts can
then be linked to concepts that exist in the model or to other new ones by defin-
ing or using existing properties. For example, entities in the TCG schemas can
be mapped to either programs or artifacts to take advantage of the interrela-
tions among components and thus enable a more comprehensive verification of
platform configurations.

Provenance-Based Model for Verifying Trust-Properties 271

7.2 Collecting and Securing the Evidence

One key issue with the use of provenance in verifying trustworthiness is estab-
lishing the trustworthiness of the provenance itself. Considerable effort [12,11]
has been directed towards this end and it is not our intention to provide a solu-
tion for this problem. Instead, we have assumed that this information is secured
and concentrated on developing a model that enables one to use this information
in trustworthiness verification. The evidence can further be tagged with trust
values to indicate the belief that the assertor has in the assertions [11], allowing
quantitative measurement of trust.

7.3 Assumption on Infrastructure

In this paper, we consider trust properties that can be established through evi-
dence obtained from the build platform. There are other aspects that could affect
the behaviour of a virtual appliance when launched. For example, two identically
configured VAs could behave differently if the runtime parameters passed from
the hypervisor are different. We assume that the hypervisor would launch all
VAs with identical parameters. We intend to investigate how such parameters
could affect the behaviour as part of our future work.

8 Conclusions and Future Work

The nature of evidence for use in trust evaluation and how it can be represented
and used is still an open problem. Existing mechanisms such as the TCG in-
tegrity schema are limited to a specific aspect of a system’s operation (e.g. chain
of program execution). We have proposed a provenance-based model in which
evidence is represented as a provenance graph which captures activities that oc-
cur on a system. This model specifies relationships among system components
and data to enable evaluation against certain trust properties. Our application
to virtual platforms for use in a trust domain demonstrate that the approach
enables verification of more comprehensive properties. The model will be incor-
porated as part of the trust domain framework.

Acknowledgements. The work described here was supported by the Trust
Domains project funded by UK TSB and EPSRC, reference TS/I002634/1. We
thank David Power and the anonymous reviewers for their insightful comments.

References

1. Cooper, A.: Towards a Trusted Grid Architecture. PhD thesis, Oxford University
(2008)

2. Schmidt, A.U., Leicher, A., Shah, Y., Cha, I.: Tree-formed verification data for
trusted platforms. CoRR, abs/1007.0642 (2010)

272 C. Namiluko and A. Martin

3. Kandukuri, B.R., Paturi, V.R., Rakshit, A.: Cloud security issues. In: IEEE Inter-
national Conference on Services Computing, SCC 2009, pp. 517–520 (September
2009)

4. Namiluko, C., Huh, J.H., Martin, A.: Verifying Trustworthiness of Virtual Appli-
ances in Collaborative Environments. In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 1–15.
Springer, Heidelberg (2011)

5. Grawrock, D.: Dynamics of a Trusted Platform: A Building Block Approach. Intel
Press (2009)

6. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. Technical
report, World Wide Web Consortium (January 2008)

7. Lyle, J., Martin, A.: Trusted computing and provenance: better together. In: Pro-
ceedings of the 2nd Conference on Theory and Practice of Provenance, TAPP 2010,
p. 1. USENIX Association, Berkeley (2010)

8. Wei, J., Zhang, X., Ammons, G., Bala, V., Ning, P.: Managing security of virtual
machine images in a cloud environment. In: Proceedings of the 2009 ACM Work-
shop on Cloud Computing Security, CCSW 2009, pp. 91–96. ACM, New York
(2009)

9. Moreau, L., Freire, J., Futrelle, J., McGrath, R., Myers, J., Paulson, P.: The open
provenance model (December 2007)

10. Santos, N., Gummadi, K.P., Rodrigues, R.: Towards trusted cloud computing. In:
Proceedings of the 2009 Conference on Hot Topics in Cloud Computing, HotCloud
2009. USENIX Association, Berkeley (2009)

11. Hartig, O.: Querying Trust in RDF Data with tSPARQL. In: Aroyo, L., Traverso,
P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E.,
Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 5–20. Springer,
Heidelberg (2009), doi:10.1007/978-3-642-02121-3 5

12. Groth, P., Moreau, L.: Recording process documentation for provenance. IEEE
Transactions on Parallel and Distributed Systems 20(9), 1246–1259 (2009)

13. Groth, P., Moreau, L.: Representing distributed systems using the open provenance
model. Future Generation Computer Systems 27(6), 757–765 (2011)

14. Presti, S.L.: A tree of trust rooted in extended trusted computing. In: Proceed-
ings of the Second Conference on Advances in Computer Security and Forensics
Programme (ACSF), pp. 13–20 (2007)

On the Practicality of Motion Based Keystroke

Inference Attack

Liang Cai and Hao Chen

University of California, Davis
lngcai@ucdavis.edu, hchen@cs.ucdavis.edu

Abstract. Recent researches have shown that motion sensors may be
used as a side channel to infer keystrokes on the touchscreen of smart-
phones. However, the practicality of this attack is unclear. For example,
does this attack work on different devices, screen dimensions, keyboard
layouts, or keyboard types? Does this attack depend on specific users
or is it user independent? To answer these questions, we conducted a
user study where 21 participants typed a total of 47,814 keystrokes on
four different mobile devices in six settings. Our results show that this
attack remains effective even though the accuracy is affected by user
habits, device dimension, screen orientation, and keyboard layout. On a
number-only keyboard, after the attacker tries 81 4-digit PINs, the prob-
ability that she has guessed the correct PIN is 65%, which improves the
accuracy rate of random guessing by 81 times. Our study also indicates
that inference based on the gyroscope is more accurate than that based
on the accelerometer. We evaluated two classification techniques in our
prototype and found that they are similarly effective.

1 Introduction

Modern mobile devices, such as smartphones and tablets, are equipped with
multiple sensors. While these sensors enable exciting new applications, they also
pose new security and privacy risks. The risks of some of these sensors are easily
understood. For example, when an attacker can access the microphone, camera,
or GPS, she can eavesdrop on the sound, image, and location of the user [5,24,23].
Therefore, most mobile platforms protect these sensors by requiring access per-
missions to these sensors. By contrast, the security risks of motion sensors, such
as the accelerometer and gyroscope, are not as well understood. For example,
applications need no permission to access motion sensors on Android. As another
example, W3C’s DeviceOrientation Event Specification [19] allows any web ap-
plication to access the accelerometer and gyroscope, which was adopted by both
Android since version 3.0 and iOS since version 4.2.

However, recent researches have shown that motion sensors can leak sensi-
tive information [4,17]. The attacker may use motion sensors as a side channel
to infer keystrokes typed on on-screen keyboards, which may help the attacker
recover important information about the user, such as his passwords or credit
card numbers. This motion-based keystroke inference attack is based on the ob-
servation that device vibration during a keystroke is correlated to the key typed.

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 273–290, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

274 L. Cai and H. Chen

Although previous studies showed that motion sensors leak information about
keystrokes, they have yet to demonstrate the practicality of this attack. Those
studies were based on a single smartphone and a few users. However, for this
attack to be practical, we must evaluate whether it is robust against:

– Hardware variation: Different devices may use different sensor chips,
which may have different sampling rates and precisions. Also the motion
sensors may be embedded at different locations on the mobile devices. Does
this attack work on different devices?

– Dimension variation: Previous work studied only smartphones. Lately,
larger devices, such as tablets, are becoming popular. Does this attack work
better or worse on these larger devices?

– Keyboard layout variation: Device vibration during a keystroke is cor-
related to the location of the key, which is determined by both the key and
the keyboard layout. Furthermore, keyboard layout often affects how the
user holds the device and types. During our experiment, we observed that
on regular keyboards in portrait mode, users usually held the device in one
hand and typed with fingers in the other hand; however, on split keyboards
in landscape mode, users usually held the device using both hands and typed
with both thumbs. Does this attack work on different keyboard layouts?

– User variation: Device vibration during keystrokes may depend on the
user’s typing style, such as the force of her finger, the tilt angle of the device,
and anchor of her holding hand on the device. Does this attack work on
different users?

Besides the above questions regarding the robustness of this attack, a successful
attack must address the following questions in its design and implementation:

– Extracting keystroke-relevant signal from motion sensor data. Al-
though the attacker, through his malware installed on the victim device, can
read from the motion sensors, he does not know when a keystroke starts and
ends in the continuous data stream. To recognize keystrokes, he must divide
the continuous sensor data stream into segments for each keystroke.

– Selecting the motion sensor. A device may have multiple motion sensors,
such as an accelerometer and a gyroscope. Previous work studied only the
accelerometer, but a shrewd attacker would choose the sensor that provides
the best results.

– Selecting the inference techniques. Multiple techniques exist for in-
ferring keystrokes based on device motion. No previous study compared
the alternative techniques, but a shrewd attacker would choose the best
technique.

To answer the above questions and to evaluate the practicality of the motion-
based keystroke inference attack, we conducted a user study where 21 partici-
pants typed on four different mobile devices consisting of two smartphones and
two tablets. We asked each participant to type in each of six settings to evalu-
ate various factors affecting the attack and collected a total of 47,814 keystrokes.

On the Practicality of Motion Based Keystroke Inference Attack 275

We developed a prototype attack and applied the attack on the collected
keystrokes. We evaluated how variations in hardware, device dimension, key-
board layout, and user habit affect the attack. To make the attack more effec-
tive, we investigated how to extract data segments representing keystrokes from
a continuous stream of motion sensor data, the difference between different mo-
tion sensors, and the difference between two classifiers. Our evaluation shows
that on a number-only keyboard, after the attacker tries 81 4-digit PINs, the
probability that she has guessed the correct PIN is 65%, which improves the
accuracy rate of the random guessing attack by 81 times.

2 Background

2.1 Motion Based Keystroke Inference Attack

Keyboards are the most common input device. We use keyboards to input a
variety of information, some of which is highly valuable, such as passwords,
PINs, social security numbers, and credit card numbers. It came as no surprise
that keystroke logging [1] is a favorite tool of the trade by attackers. The attacker
can install a Trojan program on the victim computer to log keystrokes, or use
out-of-band channels to infer keystrokes. An acoustic key logger, for example,
can infer keystrokes from acoustic frequency signatures [2], timings between two
keystrokes [8], or language models [25]. Electromagnetic emanations of keyboards
have also been studied for keylogging [21].

Touch screen mobile devices have changed the paradigm of user interaction.
Most touch screen mobile devices have no physical keyboard. Instead, the user
types on the software keyboard on the screen. Since there is neither sound nor
electromagnetic emanation from a virtual keyboard, the attacker can no longer
infer keystrokes based on these signals. Moreover, mobile operating systems, such
as Android and iOS, have security design that thwarts Trojan based keyloggers.
For instance, on the Android platform, each app runs in its own Linux process
and is assigned a unique user ID. An application cannot read keystrokes unless
it is active and receives the focus on the screen. In most cases, it seems that key
loggers, at least the traditional ones described above, face severe obstacles on
touch screen mobile devices.

However, a new approach for keystroke logging on touch screen smart phones
has been recently proposed in [4,17]. The new attack exploits the output of
motion sensors, such as accelerometers, to infer keystrokes. When the user types
on the soft keyboard on her smartphone (especially when she holds her phone by
hand rather than placing it on a fixed surface) it causes slight phone vibrations,
which can be detected by motion sensors. The keystroke induced vibration on
touch screens is correlated with the location of keys being typed. This can be
observed from the shifting reflection of distant objects on the device screen when
we type. It is possible to estimate the approximate location where a user’s finger
hit the screen by analyzing the output of motion sensors. Given the keyboard
layout is known, it is then straightforward to infer the keystroke value from the
location.

276 L. Cai and H. Chen

Fig. 1. Architecture of a motion based keystroke inference app

A keystroke inference malware should have at least four components– sensor
sniffer, preprocessor, classifier and dispatcher, as shown in Figure 1. The sniffer
reads the motion sensor output from a background process. After preprocessing,
the sensor data is sent to the classifier, which extracts features and maps the
data to a keystroke value. The dispatcher eventually sends the inference result
to a remote server controlled by the attacker. If the attack is user dependent, the
attacking program should also contain a component to collect a certain amount
of training data (sensor data labeled with key values). The training data set is
sent to generate templates or parameters used in classification.

2.2 Motion Sensor Data

There are two possible hardware motion sensors available on mobile devices: ac-
celerometer and gyroscope. Accelerometers are already widely adopted by mobile
devices. Recently, a gyroscope has been integrated in a number of smartphones
and tablets to allow for more accurate recognition of rotating movement within a
3D space. The device movement caused by keystroke is the combination of both
shift and rotation. However, since we have observed that the rotation is more
related to the key locations, precisely capturing the device rotation is of more
interests in keystroke inference. In general it is believed that the accelerometer is
designed for recognizing the linear shift component of device movement and the
gyroscope is better at recognizing device rotation. But the reality is both of them
can detect rotation. With a fixed reference from gravity, accelerometers provide
a better measurement tracking pitch and roll when the device is not moving.
Gyros provide a higher accuracy when the device is in motion [15]. In this pa-
per, we compared the keystroke inference results based both on accelerometer
and gyroscope.

Another important specification of motion sensor data is the sampling rate.
Unlike audio input, the motion data is not sampled in a fixed rate. Instead, all
of the motion sensors return multi-dimensional arrays of sensor values in terms
of sensor events, i.e. new sensor values are reported only when they are different
from those reported in the previous event. We list the average and standard
deviation of intervals in motion sensor data from different devices we used for
evaluation in Table 1.

Mobile platforms allow applications to specify different data delays when read-
ing motion sensor output to trade off between efficiency and accuracy. In this

On the Practicality of Motion Based Keystroke Inference Attack 277

Table 1. Interval of motion sensor output for difference devices

Device
Accelerometer Gyroscope

average (ms) stdev average (ms) stdev

Google Nexus S 20.07 0.77 1.18 0.11

HTC Evo 4G 22.04 1.93 n/a n/a

Galaxy Tab 10.1 10.10 0.23 10.10 0.23

Motorola Xoom 10.05 0.36 1.15 0.18

paper we focus mainly on the inference rate rather than the efficiency so that
the sensor data delay has been always set to zero.

3 Related Works

Previous research [5] has raised the awareness of privacy attacks on smartphone
sensors. Besides the obvious privacy concern over the GPS sensor, researchers
have shown attacks using the camera [23] and microphone [24]. These attacks
are less insidious because these sensors are protected with access permission by
mobile operating systems.

Researchers have studied keystroke inference based on side channels, such as
sound [2,25], electromaganetic wave [21], and timing [20]. Since these attacks
exploit characteristics of physical keyboards, they become ineffective on smart-
phones with soft keyboards.

Applications exploiting motion sensors have been extensively researched. Most
of these works focus on human activity or gesture recognition. Activity recogni-
tion is an important topic in the area of pervasive computing. Researchers have
proposed schemes to detect user’s activity in choreography [3], food prepara-
tion [18], and in medical research [14]. In [11], Lester, etc. tried to determine
whether two devices are worn by the same person based on motion signals. The
main application for gesture recognition is user interaction [12,6,10,22]. Some also
use it for authentication[16,7]. In [13], users can authenticate two devices by at-
taching them together and shaking. It is also based on accelerometer data. These
works use a wide variety of approaches for classification, ranging from frequency
domain analysis[11,3,13], Time series analysis [14], Template matching[12,18]
to statistical learning[22]. Although their experience on processing motion sen-
sor signal can be borrowed, several major differences between these researches
and motion based keystroke inference must be noticed. First, the duration of
keystroke induced device movement is much shorter than that caused by a ges-
ture or human activity such as walking or dancing. Second, many of the previous
research collect sensor data from a customized devices or Wii remote. The mo-
tion sensor signals from these devices usually have constant sampling rate. On a
smartphone, the motion data is reported via motion events asynchronously. Fi-
nally, the movement caused by keystrokes are not perceptible as user activity or
gesture. For example, it is hard for users to control the magnitude of movement.

278 L. Cai and H. Chen

This paper is directly related to [4] and [17], as they all focus specifically on
motion based keystroke inference attack. However, our paper provides a more
thorough investigation on the practicality of such attack. We conducted a user
study of many more users, devices and settings, and compared the performance
of different classification schemes. To the best of our knowledge, this paper is
also the first one to investigate output of gyroscopes on mobile devices.

4 Methodology

4.1 Data Acquisition

The attacker can read the motion sensor data through either a web application
or an application installed on the victim mobile device. For example, the attacker
can embed the code for sniffing the motion sensors in an otherwise legitimate
application. Since Android requires no permission for reading motion sensors,
these applications are unlikely to raise suspicion.

We record the stream of motion sensor events in a sequence of tuples (ti, V i =
{vix, viy, viz}), i = 1 . . .N , where ti is the time when the ith sensor event occurs,

V i contains sensor reading on three dimensions, and N is the total number of
sensor events. For the accelerometer, Vi contains the acceleration force in m/s2

along the x, y and z axis, respectively. For the gyroscope, V i contains the rate
of rotation in rad/s around the x, y and z axis.

4.2 Preprocessing

De-jittering: Many signal analysis methods require constant-interval sampling.
However, motion sensors usually do not generate new events until the reading
has changed (Table 1). Therefore, we dejitterize the motion events as follows:

1. Calculate the average interval Δ of sensor events in each stream.
2. For any event ei = {ti, V i}, if ti − ti−1 > 4

3Δ, we insert M events evenly

between ei−1 and ei such that 2
3Δ ≤ ti−ti−1

M+1 < 4
3Δ. We set the sensor values

in all these new events to be equal to that in V i−1, because a long interval
with no event indicates that the sensor reading has not changed.

3. For any event ei = {ti, V i}, if ti+1 − ti−1 < 2
3Δ, then we delete ei.

Low-pass Filtering: The interpolation in the previous step converts the stream
of sensor events into a time series. To remove spurious high frequency spikes, we
apply an IIR Low-pass filter whose cutoff frequency is 30Hz.

Calibration: When the motion data is received from the accelerometer, we must
calibrate it to remove the projection of gravity on each axis. Although typing
may cause slight device movement, the total rotation and shift of the device
are negligible during the short time of each keystroke. Therefore, we calibrate
the accelerometer data by subtracting the average value from each data point on

On the Practicality of Motion Based Keystroke Inference Attack 279

each axis, resulting in (ti, V i = {vix− v̄x, v
i
y− v̄y, v

i
z− v̄z}). In theory, the average

gyroscope value on each axis is zero. In our experiments, however, we observed
that the average values were small but non-zero, possibly due to hardware or
driver imprecision. Thus we must calibrate the gyroscope data similarly.

Segmentation: After calibration, we obtain a series of motion sensor data, from
which we must extract segments of motion data where each segment corresponds
to one keystroke. In other words, we must recognize the start and end of each
keystroke from the motion data series. We build a library of waveform patterns
of keystroke motion and use them to determine the segment of each keystroke
in the motion data.

4.3 Classification

Weuse and compare two classification techniques: Dynamic TimeWarping(DTW)
and Support Vector Machine(SVM). They have been extensively used in user ac-
tivity and gesture recognition. DTW is a template matching technique that uses
a time function as the feature, while SVM is a statistical learning technique that
uses a vector of parameters as the feature.

Feature Selection. Feature selection extracts relevant information from input
data to feed to classifiers. The input to our keystroke inference tool is motion
data, which may look similar to the input to user activity or gesture recognition
superficially. However, a key difference is in the magnitude and stability of the
data. In user activity and gesture recognition, the user perceives and controls the
device motion consciously; therefore, the magnitude of motion data can often
be used as a good feature in recognizing activities or gestures. By contrast,
magnitude is a poor feature in keystroke inference, as motion is a byproduct of
typing and is never controlled by the user consciously. Therefore, we need to
explore features other than magnitude.

The motion data on the z-axis from the accelerometer mainly reflect the shift
component of the device movement, and the motion data on the z-axis from the
gyroscope reflect the rotation around the z-axis. Since neither of them is closely
related to the keys being typed, we drop them from further consideration.

Dynamic Time Warping. Dynamic Time Warp is a common template match-
ing approach for motion sensor analysis [12,18,6,10]. Likely because of the rela-
tively high variance in the sampling rate of our data, we find that DTW works
better than other template matching algorithms, such as Euclidean Distance.
Another factor in favor of DTW is the varying number of motion data points
for different key presses. For example, when the user types continuously and
quickly, a new keystroke can interrupt the device vibration caused by the previ-
ous keystroke. We observed in our data that the duration of a keystroke can be
as short as 100ms, less than half of the duration of a typical keystroke. DTW
substring matching handles varying length of input nicely.

280 L. Cai and H. Chen

Fig. 2. Sample DTW features extracted from the data by same user

Existing works on activity or gesture recognition based on DTW use the
magnitude of motion data on the three dimensions as input to DTW. However, as
we discussed earlier, magnitude of motion data is not a good feature in inferring
keystrokes, and neither is motion data on the z-axis. Therefore, from the motion
data, we compute hi = arctan(viy/v

i
x)× 180/π as the DTW feature. Figure 2

plots the values of this feature on sample keystrokes. Our experiments show
that this feature gives better results than the magnitudes on three axes.

During training, among all the data segments of the same key, we choose as a
template the segment that minimizes its total distance to all the other segments.

Support Vector Machine. Support Vector Machine(SVM) is a statistical
learning technique used in related research [22]. Unlike template matching, Sup-
port Vector Machine uses parameter features extracted from the motion data.
Common features used in SVM can be either from time domain or frequency do-
main. We choose to use time domain features only because the relatively small
number of data points in the motion data segment of each keystroke makes fre-
quency domain features unreliable. We also avoid features that are determined
solely by the magnitude of motion, as discussed earlier. Our features include:

– Segment duration: the duration of the motion data segment.
– Peak time difference: px − py, where vpx

x and v
py
y are the first peaks on

the x-axis and y-axis respectively.
– Spike number on X (and Y): the number of spikes on X(and Y) axis.
– Peak interval on X (and Y) axis: px′ − px (and p′y − py), where vpx

x and

v
px′
x (and v

py
y and v

py′
y) are the first and second peaks on X (and Y) axis.

– Attenuation rate on X (and Y) axis: vpx
x /v

px′
x (and v

py
y /v

py′
y).

– Vertex angles: arctan(vpy/v
p
x) and arctan(vp

′
y /vp

′
x) , where p and p′ is the

time of the first and second peaks on (vx)
2 + (vy)

2.

On the Practicality of Motion Based Keystroke Inference Attack 281

The basic form of SVM makes binary classification decisions. To apply SVM as
a multi-classifer to infer keystrokes, we build a binary decision tree [9] based on
the geometric distribution of keys on each keyboard.

5 Evaluation

To answer the questions raised in Section 1, we conducted a user study in which
we collected typing-induced motion data from 21 users on 4 mobile devices in 6
settings. We designed and implemented a prototype system for keystroke infer-
ence as described in Section 4. We ran the system on the data collected in our
user study.

5.1 User Study

Participants. With the approval of our university IRB, we recruited 21 partici-
pants for our user study. They were all undergraduate students. Before the user
study, we told them that the purpose was to study the usability of onscreen key-
boards. We purposely did not disclose the true purpose of this study so as not
to prime the participants to our security evaluation. All the participants have
used smartphones and 1/3 of them have also used tablets.

Procedure. We developed an application for recording keystrokes and their cor-
responding motion data and installed it on two smartphones and two tablets all
running Android. We gave each participant a set of random strings and ask him
to type each string in six different settings with regard to device type, key set,
device orientation, and keyboard layout (Table 2). In each setting, we collected
around 30 keystrokes per key from each participant.

It took each participant around one hour to finish the study. To prevent
fatigue, our application reminded the participant to take a break after every few
strings. Before the application started to record keystrokes, we allowed all the
participants enough time to play with the devices to find the most comfortable
way to type. The only restriction is that they could not place the devices on
any fixed surfaces. We found that all the participants held the devices with one
hand and typed with the other in every setting except the one that used a split
software keyboard. However, the typing styles, such as the tilt of the devices and
the anchor points of their hands on the devices, varied greatly between different
participants and even between different strings typed by the same participant.

Settings. Participants type each string in each of six settings, which differ in
device type, key set, device orientation, and keyboard layout.

– Device types : We used four Android devices in the user study: two smart-
phones (Nexus S and HTC Evo) and two tablets (Motorola Xoom and Sam-
sung Galaxy Tab 10.1). All the devices except the HTC Evo have both an
accelerometer and a gyroscope. Table 1 shows that the motion sensors in

282 L. Cai and H. Chen

(a) Using dynamic time warping (b) Using supporting vector machine

Fig. 3. Keystroke inference accuracy in different settings. There are only three bars in
Setting 5 and 6 of Group 2 because HTC Evo has no gyroscope.

different devices have different sampling rates. The OS on both smartphones
is Android 2.3.1 (Gingerbread) and on both tablets is Android 3.0 (Honey-
comb). We randomly divided all the users into two groups: 10 Users were
in group 1 while the remaining were in group 2. Users in group 1 typed on
Nexus S and Motorola Xoom while users in group 2 typed on HTC Evo and
Samsung Galaxy Tab.

– Key sets : The keystroke inference attacker may know the set of keys in
certain scenarios. For example, during phone calls the user can type only
numbers because phone dialing pads have only numbers. Intuitively, one
expects lower inference rate on an alphabet-only keyboard than on a number-
only keyboard because the former has more keys to distinguish between. To
evaluate this conjecture, we chose only alphabet characters in all the strings
in setting 1 of our study, and chose only numbers in all the rest 5 settings of
our study.

– Screen orientation: All software keyboards have different layouts for different
orientations of the screen. Typically the keyboard is larger in landscape mode
than in portrait mode. The screen was in portrait mode in one setting and
in landscape mode for the other five.

– Keyboard layout : On an Android smartphone, the layout of the default soft-
ware keyboard can be configured. For instance, an app can display the
keyboard with the QWERTY layout by choosing text class, or with phone
dialing pad layout by choosing phone class. Users can enter numbers in ei-
ther layout. In the text class, number keys are located only in the first row of
the keyboard while in the phone class, number keys occupy most area of the
keyboard. In our user study, uses entered numbers in both keyboard layouts
on smartphones.

We compared two keyboard layouts on tablets. One is the QWERTY
layout of default Android keyboard. The other is a split layout provided by
a third party input method called Tablet Keyboard Free. In the split layout,
the QWERTY keyboard is divided into a left pane and a right pane, located

On the Practicality of Motion Based Keystroke Inference Attack 283

Table 2. Users type each key in all six settings, varied by device, orientation, keyboard
layout, and key set

Devices
Key set Orientation Keyboard Layout

Group 1 Group 2

1 Motorola Xoom Galaxy tab 10.1 alphabet only landscape default keyboard

2 Motorola Xoom Galaxy tab 10.1 number only landscape default keyboard

3 Motorola Xoom Galaxy tab 10.1 number only portrait default keyboard

4 Motorola Xoom Galaxy tab 10.1 number only landscape split keyboard

5 Nexus S HTC Evo number only landscape default keyboard, text class

6 Nexus S HTC Evo number only landscape default keyboard, phone class

in the lower left and right corners of the screen, respectively. A split keyboard
allows users to hold the device with two hands and to type with both thumbs.

Table 2 lists the six settings for both participant groups. The order of settings
in which each participant types is randomized.

5.2 Finding

Overview. We collected valid data for 47,814 keystrokes in total. Figure 3 shows
the inference accuracy rate for each setting. It shows that we correctly inferred
30% - 33% of the keystrokes within 26 letters (from the gyroscope reading),
which is more than 8 times as good as a random guess. The average inference
accuracy on number only keystrokes is as high as 55%, which is 5.5 times as good
as a random guess. Even on a smartphone with a smaller screen, the inference
accuracy on number-only keystrokes is 49%. These results confirmed that motion
sensors are a significant side channel for leaking sensitive information.

Fig. 4. Average inference accuracy of each key on the default QWERTY keyboard in
setting 1 on Motorola Xoom using dynamic time warping

284 L. Cai and H. Chen

Figure 4 shows that the average inference accuracies of different keys on the
default keyboard are close to each other except for one key. We have found
no evidence to suggest that inference accuracy differs on different areas on the
keyboard.

User Dependency. The above results are based on user-dependent inference,
where the training and testing data sets are from the same user. Figure 5 com-
pares the accuracy of user dependent inference with that of user independent
inference. In user independent inference, we picked a random user and used his
data to train all the classifiers, and then tested the classifiers on all the other
users’ data. Figure 5 shows that user independent inference has much lower ac-
curacy. It indicates that keystroke inference depends heavily on the user’s typing
style. However, even though user independent inference is less accurate, it still
leaks useful information about keystrokes. For example, the average accuracy
rate in Setting 1 is 12%, which is 3 times as good as random guessing.

Minimum Training Set Size. To evaluate the effect of training set size on
the accuracy in user dependent inference, we repeated the classification with
training sets of different sizes. For each size, the test was done in repeated random
sub-sampling cross validation. Figure 6 shows the results using dynamic time
warping. Initially, the inference accuracy increases when the training set becomes
larger. However, the curves become flat when the training set reaches a certain
size (12 for the alphabet-only keyboard and 8 for the number-only keyboard).
We found a similar correlation between training set size and inference accuracy
when using support vector machine as the classifier.

Device Variation. The participants in our user study were divided into two
groups. Each group was assigned a different set of devices, which use different
motion sensor chips. Although the precision and sampling rate of sensor data
that we obtained from the two groups are different, the results on keystroke
inference were very close.

Layout Variation. In Figure 3 we can see the accuracies in setting 2 is slightly
higher than those in setting 3. It suggests that keystroke inference is more ac-
curate on a keyboard in landscape mode than in portrait mode. This is not
surprising because the keyboard in landscape mode is larger and the keys are
separated farther.

Device Dimension Variation. Comparing the results in setting 2 and those
in setting 5 shows that the inference accuracy is affected by device dimension. In
both settings the users were typing number-only strings on the default keyboard
(text class) in landscape mode. Using dynamic time warping, the inference ac-
curacy based on the output of tablet gyroscope is 50%, while that of inference
based on the smartphone gyroscope is 41%. Using support vector machine, the
accuracies are 45% and 36% respectively. In both cases, the inference accuracy

On the Practicality of Motion Based Keystroke Inference Attack 285

Fig. 5. Average inference accuracy is much higher when the attack is user dependent

on a tablet is higher. Because all other factors — keyboard layout, key set, de-
vice orientation, data sampling rate, and users — are identical, we believe the
difference in accuracy is caused by device dimension.

The variables in setting 5 and 6 are all the same except the keyboard layout.
In setting 5, the number keys use only one row of the QWERTY keyboard.
By contrast, the number keys almost occupy the whole keyboard in setting 6.
Intuitively, the inference accuracies in setting 6 are higher than those in setting
5, which is confirmed in Figure 3. Comparing the results in setting 2 and 4
further supports our conclusion.

Finally, keystroke inference is affected by the size of the key set, as we ex-
pected. The users typed alphabet-only strings in setting 1 and number-only
strings in setting 2, with all other variables identical. The inference accuracies
in setting 1 are always lower than those in setting 2.

5.3 Motion Sensor Selection

Figure 3 suggests that the gyroscope is a better side channel than the accelerom-
eter for keystroke inference. In almost every setting, gyroscope data result in
higher inference accuracy. In the beginning, we suspected that it is due to the
higher sampling rate of the gyroscope sensors in both Motorola Xoom and Nexus
S, but comparing the results between Setting 1 and Setting 4 of Group 2 dis-
approved our suspicion because both motion sensors on Samsung Galaxy Tab
1.0 have exactly the same sampling rate. One possible explanation for the supe-
riority of gyroscope data is the effect of gravity on the accelerometer data. We
can see from the recorded data that the projection of gravity on each axis of the
accelerometer data is changing over time, which makes it hard to eliminate the
gravity during data calibration. It suggests that the angle between the device
and the desk surface is changing when users type. Such movement introduces

286 L. Cai and H. Chen

Fig. 6. Average inference accuracy by the size of training set used in dynamic time
warping when the inference is user dependent

noise to the accelerometer output and reduces keystroke inference accuracy. On
the other hand, type induced device movement includes both rotation and shift-
ing. Ideally we want to extract the rotation to differentiate keystrokes because it
is better related to the location of the key on the screen. Both the accelerometer
and the gyroscope can be used to measure device rotation, but the gyroscope
is better at capturing high frequency rotation (> 0.5Hz) while the accelerom-
eter is more accurate when the rotation has a lower frequency (< 0.1Hz) [15].
The data we collected indicate that typing-induced movement lasts only about
200ms, which supports the observed superiority of gyroscope data. In the rest
of the paper, we focus on keystroke inference based on gyroscope data.

5.4 Classification Techniques

We chose both dynamic time warping and support vector machine as the clas-
sifer in our prototype. Our results show no strong evidence that one is superior
to the other. Other than these two classifiers, we also tried time series analysis
techniques, such as Linear predictive coding. All of them have inferior perfor-
mance.

6 Discussions

6.1 Inference Precision

Our evaluation shows that the accuracy for inferring a single keystroke is about
33% for the alphabet only keyboard and about 50% for the number only key-
board. Moreover, when the inference is incorrect, the probability that the falsely
inferred key belongs to a small set of keys surrounding the correct key is high.

On the Practicality of Motion Based Keystroke Inference Attack 287

Figure 7a shows that on a number-only keyboard, the probability that the in-
ferred key belongs to a set of three keys (including the correct key) is about
90%. Therefore, after the attacker records the motion data of a four-key PIN on
this keyboard, he can try 34 = 81 different PINs and the probability that one
of these PINs is correct is 0.94 = 0.65. By comparison, when the attacker has
no motion data and therefore has to guess each key randomly, after 81 tries the
probably that he has guessed a correct PIN is 0.34 = 0.0081. Our motion-based
keystroke inference has improved the success probability by 81 times.

(a) (b)

Fig. 7. Inference precision: (a)Probability that the inferred key belongs to a set of keys
(the correct key and its neighboring keys) using dynamic time warping; (b)Accuracy
rate described by the distance of the inferred key from the correct key using dynamic
time warping

The incorrectly inferred keys are usually nearby the actual key. Figure 7b
shows the distribution of key distance [17]. It indicates that almost 90% of in-
ferred keys are either the actual key pressed or only one key distance away.

6.2 Multiple Templates in DTW

We observed in the user study that many participants switched among a set
of fixed typing style rather than changing randomly. This reminds us that a
user may feel comfortable typing in several styles. To account for this, we tried
matching multiple templates in dynamic time warping classification and found
that it works better than matching a single template. Figure 8a shows the DTW
classifier has a higher accuracy when the data is matched against multiple tem-
plates. However, the classification takes longer as the template number increases.
We chose to use three templates in setting 1 and two templates in setting 6 even
though the accuracy is higher if 7 templates are used as in setting 6.

6.3 Multi-class SVM

SVM is a binary classifier. To apply it to keystroke inference, a variety of tech-
niques are available for decomposition of the multi-class problem. We compared

288 L. Cai and H. Chen

(a) (b)

Fig. 8. Classifier parameters slection: (a)Average inference accuracy by different tem-
plate number using dynamic time warping; (b)Average inference accuracy by the level
binary tree SVMs(BTS). The more levels of the BTS the lower the accuray.

two approaches: One-against-all(OvA) and Binary tree of SVM (BTS) and the
latter shows a much better performance. Moreover, BTS has a useful feature in
keystroke inference. The SVM on the first level only determines whether the key
is on the left side or the right side of the keyboard. But the SVM on the last
level need to make a decision between two adjacent keys. Thus it is reasonable
that SVM on the lower level node has lower inference accuracy. As shown in
Figure 8b, the inference accuracy decreases when the input goes through more
classifiers. The results suggest that the medium output of BTS can be used for
determining approximation of the key. For example, the accuracy inferring a key
on the alphabet only keyboard with a BTS classification of 5 levels is only 22%,
but the accuracy after the 4th SVM is 50%, i.e, the chance that the actual key is
one of two keys is 50%. This is consistent to what we observed from Figure 7a.

7 Conclusion

To evaluate the practicality of motion-based keystroke inference attack, we con-
ducted a user study where 21 participants typed a total of 47,814 keystrokes on
four different mobile devices in six settings. We developed a prototype attack
and applied the attack on the users’ keystrokes. Our results show that this attack
remains effective even though the accuracy is affected by user habits, device di-
mension, screen orientation, and keyboard layout. On a number-only keyboard,
after the attacker tries 81 4-digit PINs, the probability that she has guessed the
correct PIN is 65%, which improves the accuracy rate of random guessing by 81
times. Our study also indicates that inference based on the gyroscope is more
accurate than that based on the accelerometer. We evaluated two classification
techniques in our prototype and found that they are similarly effective.

On the Practicality of Motion Based Keystroke Inference Attack 289

Acknowledgments. This material is based in part upon work supported by
the National Science Foundation under Grant Numbers 0644450 and 1018964.
Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

References

1. Keystroke logging wiki page, http://en.wikipedia.org/wiki/Keystroke_logging

2. Asonov, D., Agrawal, R.: Keyboard acoustic emanations. In: Proceedings of IEEE
Symposium on Security and Privacy, pp. 3–11 (May 2004)

3. Aylward, R., Lovell, S.D., Paradiso, J.A.: A compact, wireless, wearable sensor
network for interactive dance ensembles. In: International Workshop on Wearable
and Implantable Body Sensor Networks, BSN 2006, pages 4, p. 70 (April 2006)

4. Cai, L., Chen, H.: Touchlogger: inferring keystrokes on touch screen from smart-
phone motion. In: Proceedings of the 6th USENIX Conference on Hot Topics in
Security, HotSec 2011, p. 9 (2011)

5. Cai, L., Machiraju, S., Chen, H.: Defending against sensor-sniffing attacks on mo-
bile phones. In: Proceedings of the 1st ACM Workshop on Networking, Systems,
and Applications for Mobile Handhelds, MobiHeld 2009, pp. 31–36 (2009)

6. Choe, B., Min, J.-K., Cho, S.-B.: Online Gesture Recognition for User Interface on
Accelerometer Built-in Mobile Phones. In: Wong, K.W., Mendis, B.S.U., Bouzer-
doum, A. (eds.) ICONIP 2010, Part II. LNCS, vol. 6444, pp. 650–657. Springer,
Heidelberg (2010)

7. Chong, M.K., Marsden, G., Gellersen, H.: Gesturepin: using discrete gestures for
associating mobile devices. In: Proceedings of the 12th International Conference on
Human Computer Interaction with Mobile Devices and Services, MobileHCI 2010,
pp. 261–264 (2010)

8. Kune, D.F., Kim, Y.: Timing attacks on pin input devices. In: Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS 2010,
pp. 678–680 (2010)

9. Madzarov, D.G.G., Chorbev, I.: A multiclass svm classifier utilizing binary decision
tree. In: Informatica33, pp. 233–241 (2009)

10. Hancke, G.P.: Gesture recognition as ubiquitous input for mobile phones (2008)
11. Lester, J., Hannaford, B., Borriello, G.: “Are You with Me?” - Using Accelerom-

eters to Determine If Two Devices Are Carried by the Same Person. In: Ferscha,
A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 33–50. Springer,
Heidelberg (2004)

12. Liu, J., Wang, Z., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uwave:
Accelerometer-based personalized gesture recognition and its applications. Per-
vasive and Mobile Computing 5, 1–9 (2009)

13. Mayrhofer, R., Gellersen, H.-W.: Shake Well Before Use: Authentication Based
on Accelerometer Data. In: LaMarca, A., Langheinrich, M., Truong, K.N. (eds.)
Pervasive 2007. LNCS, vol. 4480, pp. 144–161. Springer, Heidelberg (2007)

14. Min, C.-H., Tewfik, A.H.: Automatic characterization and detection of behavioral
patterns using linear predictive coding of accelerometer sensor data. In: Proceed-
ings of the International Conference of IEEE Engineering in Medicine and Biology
Society, vol. 2010, pp. 220–223 (2010)

http://en.wikipedia.org/wiki/Keystroke_logging

290 L. Cai and H. Chen

15. Nasiri, S., Sachs, D., Maia, M.: Selection and integration of mems-based motion
processing in consumer apps (July 2009),
http://invensense.com/mems/gyro/documents/whitepapers/

Selection-and-integration-of-MEMS-based-motion-processing-in-

consumer-apps-070809-EE-Times.pdf

16. Niu, Y., Chen, H.: Gesture authentication with touch input for mobile devices. In:
3rd International Conference on Security and Privacy in Mobile Information and
Communication Systems, MobiSec 2011 (May 2011)

17. Owusu, E., Han, J., Das, S., Perrig, A., Zhang, J.: Accessory: password inference
using accelerometers on smartphones. In: Proceedings of the Twelfth Workshop on
Mobile Computing Systems and Applications, HotMobile 2012, pp. 9:1–9:6. ACM,
New York (2012)

18. Pham, C., Plötz, T., Olivier, P.: A Dynamic Time Warping Approach to Real-Time
Activity Recognition for Food Preparation. In: de Ruyter, B., Wichert, R., Keyson,
D.V., Markopoulos, P., Streitz, N., Divitini, M., Georgantas, N., Mana Gomez, A.
(eds.) AmI 2010. LNCS, vol. 6439, pp. 21–30. Springer, Heidelberg (2010)

19. Popescu, A., Block, S.: DeviceOrientation event specification, editor’s draft 9
(February 2011), http://dev.w3.org/geo/api/spec-source-orientation.html

20. Song, D.X., Wagner, D., Tian, X.: Timing analysis of keystrokes and timing attacks
on ssh. In: Proceedings of the 10th conference on USENIX Security Symposium,
vol. 10, p. 25 (2001)

21. Vuagnoux, M., Pasini, S.: Compromising electromagnetic emanations of wired and
wireless keyboards. In: Proceedings of the 18th Conference on USENIX Security
Symposium, SSYM 2009, pp. 1–16 (2009)

22. Wu, J., Pan, G., Zhang, D., Qi, G., Li, S.: Gesture Recognition with a 3-DAccelerom-
eter. In: Zhang, D., Portmann, M., Tan, A.-H., Indulska, J. (eds.) UIC 2009. LNCS,
vol. 5585, pp. 25–38. Springer, Heidelberg (2009)

23. Xu, N., Zhang, F., Luo, Y., Jia, W., Xuan, D., Teng, J.: Stealthy video capturer: a
new video-based spyware in 3G smartphones. In: Proceedings of the Second ACM
Conference on Wireless Network Security, WiSec 2009, pp. 69–78 (2009)

24. Zhang, K., Zhou, X., Intwala, M., Kapadia, A., Wang, X.: Soundcomber: A stealthy
and context-aware sound trojan for smartphones. In: Proceedings of the 18th An-
nual Networkand Distributed System Security Symposium, NDSS 2011 (2011)

25. Zhuang, L., Zhou, F., Tygar, J.D.: Keyboard acoustic emanations revisited. ACM
Transactions on Information and System Security 13, 3:1–3:26 (2009)

http://invensense.com/mems/gyro/documents/whitepapers/Selection-and-integration-of-MEMS-based-motion-processing-in-consumer-apps-070809-EE-Times.pdf
http://invensense.com/mems/gyro/documents/whitepapers/Selection-and-integration-of-MEMS-based-motion-processing-in-consumer-apps-070809-EE-Times.pdf
http://invensense.com/mems/gyro/documents/whitepapers/Selection-and-integration-of-MEMS-based-motion-processing-in-consumer-apps-070809-EE-Times.pdf
http://dev.w3.org/geo/api/spec-source-orientation.html

AndroidLeaks: Automatically Detecting

Potential Privacy Leaks in Android Applications
on a Large Scale

Clint Gibler1, Jonathan Crussell1,2, Jeremy Erickson1,2, and Hao Chen1

1 University of California, Davis
{cdgibler,jcrussell,jericks}@ucdavis.edu, hchen@cs.ucdavis.edu

2 Sandia National Labs�, Livermore, CA
{jcrusse,jericks}@sandia.gov

Abstract. As mobile devices become more widespread and powerful,
they store more sensitive data, which includes not only users’ personal
information but also the data collected via sensors throughout the day.
When mobile applications have access to this growing amount of sensitive
information, they may leak it carelessly or maliciously.

Google’s Android operating system provides a permissions-based se-
curity model that restricts an application’s access to the user’s private
data. Each application statically declares the sensitive data and function-
ality that it requires in a manifest, which is presented to the user upon
installation. However, it is not clear to the user how sensitive data is used
once the application is installed. To combat this problem, we present An-
droidLeaks, a static analysis framework for automatically finding poten-
tial leaks of sensitive information in Android applications on a massive
scale. AndroidLeaks drastically reduces the number of applications and
the number of traces that a security auditor has to verify manually.

We evaluate the efficacy of AndroidLeaks on 24,350 Android applica-
tions from several Android markets. AndroidLeaks found 57,299 poten-
tial privacy leaks in 7,414 Android applications, out of which we have
manually verified that 2,342 applications leak private data including
phone information, GPS location, WiFi data, and audio recorded with
the microphone. AndroidLeaks examined these applications in 30 hours,
which indicates that it is capable of scaling to the increasingly large set
of available applications.

1 Introduction

As smartphones have become more popular, the focus of mobile computing has
shifted from laptops to phones and tablets. There are several competing mo-
bile platforms. As of this writing, Android has the highest market share of any

� Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energys National Nuclear Security Administration under
contract DE-AC04-94AL85000.

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 291–307, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

292 C. Gibler et al.

smartphone operating system in the U.S. [8]. Android provides the core smart-
phone experience, but much of a user’s productivity depends on third-party
applications. To this end, Android has numerous marketplaces where users can
download third-party applications. In contrast to the market policy for iOS,
in which every application is reviewed before it can be published [15], most
Android markets allow developers to post their applications with no review pro-
cess. This policy has been criticized for its potential vulnerability to malicious
applications. Google instead allows the Android Market to self-regulate, with
higher-rated applications more likely to show up in search results and reported
malicious applications removed.

Android sandboxes each application from the rest of the system’s resources
in an effort to protect the user [2]. This attempts to ensure that one application
cannot tamper with another application or the system as a whole. If an applica-
tion needs to access a restricted resource, the developer must statically request
permission to use that resource by declaring it in the application’s manifest file.
When a user attempts to install the application, Android will warn the user
that the application requires certain restricted resources (for instance, location
data), and that by installing the application, she is granting permission for the
application to use the specified resources. If the user declines to authorize these
permissions, the application will not be installed.

However, statically requiring permissions does not inform the user how the
resource will be used once granted. A maps application, for example, will require
access to the Internet in order to download updated map tiles, route information
and traffic reports. It will also require access to the phone’s location in order
to adjust the displayed map and give real-time directions. The application’s
functionality requires sending location data to the maps server, which is expected
and acceptable given the purpose of the application. However, if the application
is ad-supported it may also leak location data to advertisers for targeted ads,
which may compromise a user’s privacy. Given the only information currently
presented to users is a list of required permissions, a user will not be able to tell
how the maps application is handling her location information.

To address this issue, we present AndroidLeaks, a static analysis framework
designed to identify potential leaks of personal information in Android applica-
tions on a large scale. Leveraging WALA [7], a program analysis framework for
Java source and byte code, we create a call graph of an application’s code and
then perform a reachability analysis to determine if sensitive information may
be sent over the network. If there is a potential path, we use dataflow analysis
to determine if private data reaches a network sink.

Our contributions in this paper are as follows:

– We have created a set of mappings between Android API methods and the
permissions they require to execute using static techniques. We use a subset
of this mapping as the sources and sinks of private data for our dataflow
analysis.

– We present AndroidLeaks, a static analysis framework for finding potential
leaks of private information in Android applications. We evaluated

AndroidLeaks: Automatically Detecting Potential Privacy Leaks 293

AndroidLeaks on 24,350 Android applications, finding potential privacy leaks
involving uniquely identifying phone information, location data, WiFi data,
and audio recorded with the microphone. AndroidLeaks identifies APKs and
provides a set of leaks most likely to be of interest to a security researcher.

– We designed and implemented taint-aware slicing and an approach for iden-
tifying taint sources in callbacks, which is used extensively in Android ap-
plications.

– We compare the prevalence of several popular ad libraries and the private
data they leak.

2 Background

Android applications are primarily written in Java. Unlike standard Java ap-
plications, after being compiled into Java bytecode Android applications are
converted into the Dalvik Executable (DEX) format. This conversion occurs be-
cause Android applications run in the Dalvik [6] virtual machine, rather than the
Java virtual machine. We use ded [11] and dex2jar [17] to convert applications
back into Java source code or byte code, respectively.

Android applications are distributed in compressed packages called Android
Packages (APKs). APKs contain everything that the application needs to run,
including the code, icons, XML files specifying the UI, and application data.
Android applications are available both through the official Android Market
and other third-party markets. These alternative markets allow users freedom
to select the source of their applications.

The official Android Market is primarily user regulated. The ratings of ap-
plications in the market are determined by the positive and negative votes of
users. Higher ranked applications are shown first in the market and therefore
are more likely to be discovered. Users can also share their experiences with an
application by submitting a review. This can alert other users to avoid poorly
behaving applications. Google is able to remove any application not only from
the market, but also from users’ phones directly, and has done so when users
reported malicious applications [16,20]. However, recent research [10] shows that
many popular applications still leak their users’ private data.

Android applications are composed of several standard components which are
responsible for different parts of the application functionality. These components
include: Activities, which control UI screens; Services, which are background pro-
cesses for functionality not directly tied to the UI; BroadcastReceivers, which
passively receive messages from the Android application framework; and Con-
tentProviders, which provide CRUD operations1 to application-managed data.
In order to communicate and coordinate between components, Android provides
a message routing system based on URIs. The sent messages are called Intents.
Intents can tell the Android framework to start a new Service, switch to a dif-
ferent Activity, or to pass data to another component.

1 Create, Read, Update, and Delete operations.

294 C. Gibler et al.

Fig. 1. Creating a Mapping between API Methods and Permissions

Each Android application contains an important XML file called a mani-
fest [1]. The manifest file informs the Android framework of the application
components and how to route Intents between components. It also declares the
specific screen sizes handled, available hardware and most importantly for this
work, the application’s required permissions.

Android uses a permission scheme to restrict the actions of applications [2].
Each permission corresponds to protecting a type of sensitive data or specific
OS functionality. For example, the internet permission is required to initiate
network communications and read phone state gives access to phone-specific
information. Upon application installation, the user is presented with a list of
required permissions. The user will be able to install the application only if
she grants the application all the permissions. Without modifying the Android
OS, there is currently no way to install applications with only a subset of the
permissions they require. Additionally, Android does not allow any further re-
striction of the capabilities of a given application beyond the permission scheme.
For example, one cannot limit the internet permission to only certain URLs.
This permission scheme provides a general idea of an application’s capabilities;
however, it does not show how an application uses the resources to which it has
been allowed access.

3 Threat Model

In this work we consider a privacy leak to be any transfer of personal or phone-
identifying information off of the phone. We do not attempt to distinguish per-
sonal data used by an application for user-expected application functionality

AndroidLeaks: Automatically Detecting Potential Privacy Leaks 295

from unintended or malicious use; nor do we attempt to differentiate between
benevolent and malicious leaks. Identifying if personal data is used for expected
functionality requires understanding the purpose of the application as well as
the intention of the developer during its creation, neither of which we attempt
to do. Thus we classify transfer of personal information off of the phone as a
privacy leak regardless of its use, e.g., malware authors may maliciously leak
private data, ad libraries may leak it for more targeted ads, and applications
may use it for their functionality. We focus on tracking private information flow
in real applications at a large scale, but leave determining the intent of private
information leaks to future work.

Our work focuses on Android applications leaking private data within the
scope of the Android security model [2]. We are not concerned with vulnera-
bilities or bugs in Android OS code, the SDK, or the Dalvik VM which runs
applications. For example, a Webkit2 bug that causes a buffer overflow in the
browser leading to arbitrary code execution is outside the scope of our work. Our
trusted computing base is the Linux kernel and libraries, the Android framework,
and the Dalvik VM.

We do not attempt to track private data specific to an application, such as saved
preferences or files, since determining which application-specific data is private re-
quires knowledge of the application’s purpose and therefore is difficult to automate.
We also do not attempt to find leaks enabled by the collaboration of applications.
To find such leaks, we would need to extend AndroidLeaks to analyze potential
interactions between applications, which we leave for future work.

Currently AndroidLeaks does not analyze native code. We do not believe this
significantly affects our results as only 7% of our Android applications include
native code. Even if an application is written in native code to defeat Java-based
analyses such as AndroidLeaks, it cannot hide its access of private data because
it may read private data only through Android’s Java APIs. AndroidLeaks could
be extended so that, when an application reads private data and then passes it to
native code, AndroidLeaks would pass the analysis on to existing binary analysis
tools, such as BitBlaze [3].

4 Methodology

In this section we discuss the architecture and implementation of AndroidLeaks.
First, we create a permission mapping — a mapping between Android API calls
and permissions they require to execute — to be used in all application analyses.
We use a subset of this mapping for our dataflow sources and sinks. A source is a
method that accesses personal data; for example, a phone number, unique device
ID, or the phone’s GPS location. A sink is a method that can transmit local
data to an external entity; for instance, submitting a HTTP request. Next, for
each application, AndroidLeaks generates a call graph to determine the call sites
which invoke source or sink methods. Applications without at least one source
and sink are not analyzed, as they cannot leak private data. For applications

2 Webkit is a rendering engine used by Android’s browser.

296 C. Gibler et al.

Fig. 2. AndroidLeaks Analysis Process. 1. Preprocessing. 2. Recursive call stack gen-
eration to determine where permissions are required. 3. Dataflow analysis between
sources and sinks.

that have the potential to leak, we perform static taint analysis to determine if
data from a source method reaches a sink.

4.1 Permission Mapping

To determine if an application is leaking sensitive data, first one must define what
should be considered sensitive. Intuition and common sense may give a good start-
ing point; however, in Android we can do much better since access to restricted
resources is protected by permissions. Of these restricted resources, some control
access to sensitive data, such as precise geographic location. It is likely that API
calls that require sensitive permissions are sources of private data.

Ideally this mapping between API methods and the permissions they require
would be stated directly in the documentation for Android. It would be useful
for developers because it would help them better understand the permissions re-
quired by their desired functionality. Unfortunately, the Android documentation
is incomplete, and only a partial mapping is provided. To address this issue, we
attempt to automatically build this mapping by directly analyzing the Android
framework source code. Figure 1 visualizes our process.

Intuitively, for a permission to protect restricted functionality, there must be
points in the code where the permission is checked. In manual analysis of the
Android source, we found a number of helper functions that enforce a permission,
such as Context.enforcePermission(String, int, int), where the first parameter
is the name of the permission. For every method in every class of the Android
framework, we recursively determined the methods called by each method in the
framework, building a call stack, a process we call mining. Our miner will use
all possible targets of virtual methods, erring on the side of completeness, rather
than precision. If our mining encounters one of these enforcement methods, we
inspect the value of the first parameter in order to determine the name of the

AndroidLeaks: Automatically Detecting Potential Privacy Leaks 297

permission being enforced. We then propagate the permission requirement to all
the methods in the current call stack. After the permission mining is complete,
we have a mapping between methods and the permissions they require. A subset
of the methods in this mapping are API methods which are directly available to
developers through the SDK.

Though this process gave us many mappings, it does not find permission
checks that are implemented outside the Android framework and can not prop-
agate permission requirements along edges connected by Intents or by IPC to
a system process. To supplement our programmatic analysis, we manually re-
viewed the Android documentation to add mappings we may have missed. While
this may seem significant, we note that we only found two permissions enforced
outside of Java. The first of these two permissions is internet, for which we
manually added a very complete mapping. The second is write external
storage, which is unimportant for our current work. Additionally, at some
points in the Android framework, it may check, but not enforce a permission us-
ing a method such as Context.checkPermission(String, int, int). For each of these
points in the code, we determined how the check was used and what method
actually requires that permission and add it to our permission mapping before
the mining process. Currently we have mappings between over 2000 methods
and the permissions they require. To check the completeness of our mapping, we
plan to collaborate with the group that worked on [12], which has also created
a permission mapping but with dynamic testing.

4.2 Android Leaks

In this section we describe AndroidLeaks’ analysis process. See Fig. 2 for a
visual representation. Before we attempt to find privacy leaks, we perform several
preprocessing steps. First, we convert the Android application code (APK) from
the DEX format to a JAR using ded [11] or dex2jar [17]. AndroidLeaks can also
use any other tool that converts DEX to a JAR or to Java source.

Using WALA, AndroidLeaks then builds a call graph of the application code
and its included libraries. It iterates through the application classes and deter-
mines the application methods that call source and sink API methods. It also
keeps track of which other application methods can call these application meth-
ods that require permissions, as reviewing the call stacks can give insight into the
flow of the application’s use of permissions. If the application contains a combi-
nation of permissions that could leak private data, such as read phone state
and internet, it then performs dataflow analysis to determine if information
from a source of private data may reach a network sink.

Taint Problem Setup. The two main components of taint problems are de-
termining the sources and sinks.

Sources. We have selected all the API methods requiring permissions for location,
network state, phone state, and audio recording as sources, as discussed in Sect. 4.1.
Android has two categories of location data: coarse and fine. Coarse location data

298 C. Gibler et al.

uses triangulation from the cellular network towers and nearby wireless networks
to approximate a device’s location,whereas fine locationdata uses theGPSmodule
on the device itself. We do not differentiate between coarse and fine location data
as we believe any leakage of location information to be important.

Sinks. We have selected methods that require access to the Internet as sinks.
We discovered that the Internet permission is enforced by the Android sandbox,
which will cause any open socket command to fail if the internet permission has
not been granted. As discussed in Sect. 4.1, we manually reviewed the standard
APIs available to Android applications to ensure our mapping contained every
method that allows an application to send network data.

Taint Analysis. First, we use WALA to construct a context-sensitive System
Dependence Graph (SDG). Since context-sensitive pointer analysis is resource in-
tensive, we chose to use a context-insensitive overlay to show heap dependencies in
the SDG. The SDG is a graph that describes the inter- and intraprocedural control
and data dependencies of an application. Using the SDG, for each source method,
we compute forward slices from our set of tainted data, initially populated by the
return value of the source method. We use the return value because all the sources
that we have identified return sensitive data through the return values only (and
not through other means, such as side-effects on the parameters). On each itera-
tion, we obtain a new slice of tainted data to which we apply supplemental taint-
forwarding procedures. We then analyze the slice to determine if any parameters
to sink methods are tainted, i.e., if they are data dependent on the source method.
If so, we report a potential leak of private data.

WALA’s built-in SDG and forward slicing algorithms are insufficient for an-
alyzing Android applications, because they fail to handle callbacks, which are
used extensively in Android applications, or do taint-aware slicing.

Handling Callbacks. Private data may enter Android applications via API meth-
ods identified as sources in Sect. 4.2. However, they may also enter applications
via callback parameters, which are used extensively in Android. For example, an
application may access location information either by asking the LocationMan-
ager for the last known location or by registering with the LocationManager as
a listener. For the latter, the LocationManager provides regular updates of the
current location to the registered listener. For API methods labeled as sources,
we can taint the return values of these methods; however, this approach does
not work for callbacks since neither the return value of the callback nor the re-
turn value of the registration is tainted. Therefore, we automatically identified
calls to the register listener method while mining the application code and then
inspected the parameters to determine the type of the listener. We then tainted
the parameters of the callback method for the listener’s class. This approach
allows us to compute forward slices for both types of access in the same way.

Taint-Aware Slicing. Rather than modify WALA internally as done in [19]
to achieve taint-aware slicing, we decided to analyze the computed slices and

AndroidLeaks: Automatically Detecting Potential Privacy Leaks 299

compute new statements from which to slice. We implemented the following
logic to compute these new statements:

1. Taint all objects whose constructor parameters are tainted data.
2. Taint entire collections if any tainted object is added to them.
3. Taint whole objects which have tainted data stored inside them.

By applying these propagation rules to the slice computed for the source method,
we create a set of statements that are tainted but would not be included in the
original slice. This is because the original slice only shows statements that are
data dependent, which is only part of how taint propagates. We then compute
forward slices for each of these new statements and all others derived in the same
manner from subsequent slices until we encounter a sink method or run out of
statements from which to slice.

Preventing over-tainting without missing taint propagation is a difficult prob-
lem in static analysis, especially when complex objects handle both tainted and
untainted data. Since we do not wish to miss any taint propagation, we conser-
vatively track all potential taint propagation, which may result in false positives.
We note that [19] also has high false positives in certain cases.

5 Evaluation

We evaluated AndroidLeaks on 25,976 unique free Android applications obtained
from thirteen Android markets, including the official Android Market [14] and
third-party American and Chinese markets.3 We exclude multiple versions of
the same application and duplicate copies of the same application on multiple
markets.

1,626 applications require no permissions. Since these applications cannot
access private data nor leak it, we exclude them from the analysis. We found
potential privacy leaks in 7,414 of the remaining 24,350 applications.

Running AndroidLeaks on one server-grade computer we were able to analyze
all 24,350 applications in 30 hours- over 800 APKs per hour. Collectively we
processed over 531,249 unique Java classes.

We chose to focus on 4 types of privacy leaks: uniquely identifying phone
information, location data, WiFi state and recorded audio. Examples of uniquely
identifying phone information include the unique device ID (IMEI for GSM
phones, MEID or ESN for CDMA phones) and the subscriber ID (IMSI for
GSM phones). For location data, AndroidLeaks tracks accesses to both “coarse”
and “fine” GPS data. WiFi state information includes the SSID and BSSID
of the current access point as well as the MAC address of the phone’s WiFi
adapter. Though information about the WiFi networks seen by a phone may
not seem sensitive, correlating this with a broad knowledge of the location of
wireless networks can yield a device’s specific location. In fact, Android phones
already offer the option in the phone’s “Location and Security” settings to use

3 Including SlideMe [18] and GoApk [4].

300 C. Gibler et al.

Table 1. Breakdown of Leaks by Type

Leak Type # Leaks % of all Leaks # apps with leak % apps with leak

Phone 53,281 92.99% 6912 28.39%
Location 3,405 5.94% 969 3.98%
WiFi 266 0.46% 79 0.32%
Record Audio 347 0.61% 115 0.47%

nearby wireless networks to determine the phone’s location. Finally, we include
audio recorded with the phone’s microphone.

The importance of a given privacy leak varies depending on the sensitivity
of the data being leaked and the privacy concerns of the user. We designed
AndroidLeaks to find leaks ranging in sensitivity to allow users of AndroidLeaks
to focus on findings at their desired level of privacy.

5.1 Potential Privacy Leaks Found

We found a total of 57,299 leaks in 7,414 Android applications. 7,870 of these are
unique leaks, varying by source, sink or code location (Table 1). 36,388 were leaks
found in ad code,which comprises 63.51%of the total leaks found. InFig. 3we show
the source of leaks of phone and location data, divided into leaks found in applica-
tion code and ad libraries. We do not include pie charts for WiFi and record audio
leaks because all of these leaks were found in application code. Ad libraries were re-
sponsible for 65%of the total phone data-related leakswith the top four ad libraries
accounting for 43%. Application code contained 46% of the location-related pri-
vacy leaks and the top four ad libraries were responsible for 51%. Figure 4a shows a
breakdown of the leaks found by the type of leak and its source. Figure 4b displays
the number of applications we found containing each type of leak, organized by the
source of the leak.We found that inmost caseswhere phone identifying information
is leaked, the advertising library is solely responsible.

Verification. Due to the large number of APKs analyzed and leaks found, it
is difficult to manually verify all the leaks. Therefore, we prioritize the task by
initially focusing on verifying leaks in ad code. By verifying one leak in a given
ad library we can extend that result to identical leaks in other applications
containing the same version of the same ad library. We determine leaks to be
identical if they share the same source and sink method as well as the class and
method where each is called.

We manually verified 60 leaks, most of which occurred in the ad libraries shown
in Fig. 3. Of these, we found 39 to be true positives, yielding a false positive rate
of 35%. The false positives tended to occur most commonly in applications that
contained ad libraries in addition to the one containing the leak being verified.
As multiple ad libraries may populate UI components on the same screen, our
analysis may conservatively say that it is possible for sensitive data accessed by
one ad library to propagate to its containing Activity or other ad libraries that

AndroidLeaks: Automatically Detecting Potential Privacy Leaks 301

Application

Mobclix

Youmi

Wooboo

adHUBS

Other Advertisers

(a) Sources of leaks of phone id

Application

Google Ads

Other Advertisers

Mobclix

Flurry

AdWhirl

(b) Sources of leaks of location
information

Fig. 3. Source of leaks

share the same Activity. The 39 leaks we verified are repeated 5,007 times and
occur in 2,342 unique applications. Therefore, at least 32% of the leaky APKs
AndroidLeaks found have confirmed leaks.

Additionally, we verified a random set of 15 applications collectively contain-
ing several leaks of each type in application code. Several of the microphone leaks
we verified turned out to be in IP camera applications, such as “SuperCam” or
“IP Cam Viewer Lite.” Figure 5 and Table 3 show the total number of verified
leaks and leaky applications.

After AndroidLeaks reports potential privacy leaks, a security auditor can
manually verify these leaks. To help with the manual verification, AndroidLeaks
specifies the containing class and method as well as each leak’s source and sink.

Ad Libraries. Nearly every ad library we looked at leaked phone data and, if
available, location information as well. We hypothesize that nearly any access of
sensitive data inside ad code will end up being leaked, as ad libraries provide no
separate application functionality which requires accessing such information.

As an application developer, knowledge of the types of private information
an ad library may leak is valuable. One may use this knowledge to select the
ad library that best respects the privacy of users and possibly warn users of
potential uses of private information by the advertising library.

One solution is to watch an application that uses a given ad library using
dynamic analysis, such as TaintDroid. However, one runs into limitations of
dynamic analysis, such as difficulty in achieving high code coverage. Manually
driving applications through all code paths is infeasible at the rate new An-
droid applications are being published, between 7,500 and 22,500 per month
according to [5]. But even with maximum possible code coverage using dynamic
taint analysis, there are further challenges on Android. Many ad libraries we

302 C. Gibler et al.

Phone Location Wifi Audio

Advertisers
Application

Type of Leak

N
u
m

b
e
r

o
f
L
e
a
k
s

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

(a) Number of unique leaks broken down
by their sources

Phone Location Wifi Audio

Advertisers
Both
Application

Type of Leak

N
u
m

b
e
r

o
f
A

p
p
lic

a
ti
o
n
s

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

(b) Number of applications that leak in ad
code, app code, or both

Fig. 4. Number of unique leaks and leaky applications

examined check if the application they were bundled with has a given permis-
sion, oftentimes the ability to access location data. Using this information, they
could localize ads, potentially increasing ad revenue by improving click through
rates. However, there is nothing preventing ad libraries from checking if they
have access to any number of types of sensitive information and attempting to
leak them only if they are able. A dynamic analysis approach could watch many
applications with a malicious advertising library and never see this functionality
if none of the applications declared the relevant permissions. Using our static
analysis approach we do not have this limitation and would be able to find these
leaks regardless of the permissions required by the application being analyzed.

Ad libraries tend to be distributed to developers in a precompiled format,
so it is not easy for an application developer to determine the information the
ad library uses for user analytics. This is important for developers that include
ad libraries in highly sensitive applications because the developer is ultimately
responsible for any information leaked by libraries they choose to include. Addi-
tionally, a developer wanting to use an ad library is forced to use the ad library
as it comes, with no option to remove features or modify the code. Since there is
no mechanism in Android that allows one to restrict the capabilities of a specific
portion of code within an application — all ad libraries have privilege equal to
the application with which they are packaged. We note that a need for sand-
boxing a subset of an application’s code is not an issue specific to Android; it is
an open issue for many languages and platforms. However, the issue is especially
relevant on mobile platforms because applications commonly include unverified
third-party code to add additional features, such as ads.

Table 2 and Fig. 5 shows the total verified number of unique leaks and number
of leaky applications.

AndroidLeaks: Automatically Detecting Potential Privacy Leaks 303

Table 2. Verified number of unique leaks and leaky applications

Leak Type # verified leaks # apps with verified leak

Phone 3731 (84.91%) 2083 (8.55%)
Location 646 (14.70%) 323 (1.33%)
WiFi 0 (0%) 0 (0%)
Record Audio 17 (0.39%) 9 (0.04%)

Phone Location Wifi Audio

Type of Leak

N
u
m

b
e
r

o
f
L
e
a
k
s

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

3731

646

0 17

(a) Verified number of unique leaks

Phone Location Wifi Audio

Type of Leak

N
u
m

b
e
r

o
f
A

p
p
lic

a
ti
o
n
s

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2083

323

0 9

(b) Verified number of leaky applications

Fig. 5. Verified number of unique leaks and leaky applications

Table 3 shows the number of unique leaks of each data type in the 15 appli-
cations that we manually verified. Of these data types, device ID, subscriber ID,
line one number, and SIM serial number all uniquely identify a phone.

After AndroidLeaks reports potential privacy leaks, a security auditor can
manually verify these leaks. To help with the manual verification, AndroidLeaks
specifies the containing class and method as well as each leak’s source and sink.
AndroidLeaks drastically reduces the number of applications and the number of
traces that a security auditor needs to verify manually.

5.2 Miscellaneous Findings

UniqueAndroid Static Analysis Issues. During the course of our analysis, we found
several issues unique to Android that impacted our false positive and false negative
rate. A common programming construct in ad libraries is to check if the currently
running application has a certain permission before executing functionality that
requires this permission. Many ad libraries do this to serve localized ads to users
if the application has access to location data. An analysis that does not take this
into account would find all such libraries as requiring access to location data and
would possibly find leaks involving location data when in reality neither are valid
because the application does not have access to location data.

304 C. Gibler et al.

Table 3. Number of leaks by data type in 15 manually verified applications

Leak Type # Verified leaks

Device ID 9
Line 1 Number 3
Subscriber ID 2
SIM Serial Number 2
Other Phone Data 10

Location Data 9
Recorded Audio 4

Native Code. Native code is outside the scope of our analysis, however, it is
interesting to see how many applications use native code. The use of native code
is discouraged by Android as it increases complexity and may not always result
in performance improvements. Additionally, all Android APIs are accessible to
developers at the Java layer, so the native layer provides no extra functionality.
We found that 1,988 out of 25,976 applications (7%) have at least one native
code file included in their APK. Of the total 3,902 shared objects in APKs, a
majority (2,014, 52%) of them were not stripped. This is interesting because
stripping has long been used to reduce the size of shared libraries and to make
them more difficult to reverse engineer, however, a majority of the applications
we downloaded contained unstripped shared objects. This may be a result of
developers using C/C++ who aren’t familiar with creating libraries.

6 Limitations

Approach Limitations. There are several inherent limitations to static analysis.
Tradeoffs are often made between speed, precision, and false positives. Androi-
dLeaks errs on the side of false positives rather than false negatives, as we intend
AndroidLeaks to provide potential leaks to security auditors.

While a dynamic approach would have high precision due to the fact that
privacy leaks are directly observed at run-time, achieving high path coverage is
challenging. Moreover, dynamic analysis tools [10] tend to be manually driven,
which does not scale to the massive number of Android applications. Combin-
ing AndroidLeaks with a dynamic approach would have great potential, as An-
droidLeaks can quickly analyze a larger number of applications and then feed
potential leaky applications to further dynamic analysis. We leave combining
AndroidLeaks with a dynamic analysis approach for future work.

Implementation Limitations. AndroidLeaks does not yet analyzeAndroid-specific
control and data flows. This includes Intents, which are used for communication
between Android and application components, and Content Providers, which pro-
vide access to database-like structures managed by other components.

AndroidLeaks: Automatically Detecting Potential Privacy Leaks 305

7 Related Work

Chaudhuri et al. present a methodology for static analysis of Android applica-
tions to help identify privacy violations in Android with SCanDroid [13]. They
used WALA to analyze the source code of applications, rather than Java byte
code as we do. While their paper described mechanisms to handle Android spe-
cific control flow paths such as Intents which our work does not yet handle, their
analysis was not tested on real Android applications.

Egele et al. perform similar analyses with their tool PiOS [9], a static analysis
tool for detecting privacy leaks in iOS applications. AndroidLeaks and PiOS
both found privacy leaks related to device ID, location and phone number. PiOS
additionally considered the address book, browser history and photos while we
consider several other types of phone data, WiFi data and audio recorded with
the microphone. PiOS ignored leaks in ad libraries, claiming that they always
leak, while one of the focuses of our work is giving developers insights into the
behavior of ad libraries.

In comparison to AndroidLeaks’s static analysis approach, TaintDroid [10]
detects privacy leaks using dynamic taint tracking. Enck et al. built a modi-
fied Android operating system to add taint tracking information to data from
privacy-sensitive sources. They track private data as it propagates through ap-
plications during execution. If private data is leaked from the phone, the taint
tracker records the event in a log which can be audited by the user. Many of the
differences between AndroidLeaks and TaintDroid are fundamental differences
between static and dynamic analysis. Static analysis has better code coverage
and is faster at the cost of having a higher false positive rate. One benefit of
AndroidLeaks over the implementation of TaintDroid is that AndroidLeaks is
entirely automated, while TaintDroid requires manual user interaction to trigger
data leaks. We believe that AndroidLeaks and TaintDroid are in fact comple-
mentary approaches, AndroidLeaks can be used to quickly eliminate applications
from consideration for dynamic testing while flagging areas to test on applica-
tions that are not eliminated.

Zho et al. presented a patch to the Android operating system that would allow
users to selectively grant permissions to applications [21]. Their patch gives users
the ability to revoke access to, falsify, or anonymize private data. While this is
an effective way to limit permissions granted to applications, it requires flashing
the phone’s ROM, which voids most phone warranties and is too technical for
many users.

Enck et al. [11] created ded, a tool that decompiles DEX to Java source code.
They used ded to convert 1,100 free Android applications to Java source code
that they then analyzed with a commercial static analysis tool. Because they
used a commercial tool but never described its analysis algorithms, it is difficult
to compare the merit of our analyses directly. From their preliminary results,
we can note that Androidleaks is faster and therefore can run on a much larger
scale. While just ded ’s decompilation took approximately 20 days on 1,100 ap-
plications, our conversion and analysis time for 24,000 applications was approx-
imately 30 hours. Their analysis time was not specified.

306 C. Gibler et al.

Felt et al. investigated permission usage in 940 Android applications using
their tool STOWAWAY [12]. In order to determine the API method to permis-
sions mapping, they generated unit tests for each method in the Android API
and observed if the execution caused a permission check. This dynamic approach
is very precise, however, it may be incomplete if the automated test construction
failed to call API methods with arguments that cause the method to perform a
permission check. Selectively combining their mapping with our statically gen-
erated one could produce a very complete and precise mapping.

8 Conclusion

Android users need a way to determine if applications are leaking their per-
sonal information. To this end we present AndroidLeaks, a static analysis tool
for finding potential privacy leaks in Android applications. In order to make
AndroidLeaks, we created a mapping between API calls and the permissions
they require. AndroidLeaks is scalable to the current rate of new applications
being submitted to markets, capable of analyzing 24,350 in 30 hours. During
analysis, AndroidLeaks found 57,299 potential privacy leaks in over 7,400 ap-
plications, out of which we have manually verified that 2,342 applications leak
private data. AndroidLeaks drastically reduces the number of applications and
the number of traces that a security auditor has to verify manually.

Acknowledgments. The authors would like to thank Ben Sanders and Justin
Horton for helping us obtain Android applications and our anonymous review-
ers for their input. This material is based in part upon work supported by the
National Science Foundation under Grant Numbers 0644450 and 1018964. Any
opinions, findings, and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

References

1. Android developer reference, http://d.android.com/ (accessed March 30, 2012)
2. Android security and permissions,

http://d.android.com/guide/topics/security/security.html

(accessed March 30, 2012)
3. Bitblaze, http://bitblaze.cs.berkeley.edu/
4. Go Apk. Go apk market, http://market.goapk.com (accessed March 2011)
5. AppBrain. Number of available android applications,

http://www.appbrain.com/stats/number-of-android-apps

(accessed August 15, 2011)
6. Bornstein, D.: Dalvik vm internals (2008), http://goo.gl/knN9n

(accessed March 18, 2011)
7. IBM T.J. Watson Research Center. T.j. watson libraries for analysis (wala)

(March 2011) (accessed March 30, 2012)

http://d.android.com/
http://d.android.com/guide/topics/security/security.html
http://bitblaze.cs.berkeley.edu/
http://market.goapk.com
http://www.appbrain.com/stats/number-of-android-apps
http://goo.gl/knN9n

AndroidLeaks: Automatically Detecting Potential Privacy Leaks 307

8. The Nielsen Company. Who is winning the u.s. smartphone battle?,
http://blog.nielsen.com/nielsenwire/online mobile/

who-is-winning-the-u-s-smartphone-battle (accessed March 17, 2011)
9. Egele, M., Kruegel, C., Kirda, E., Vigna, G.: Pios: Detecting privacy leaks in

ios applications. In: Proceedings of the Network and Distributed System Security
Symposium (2011)

10. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. In: Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, pp. 1–6. USENIX Association (2010)

11. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application
security. In: Proc. of the 20th USENIX Security Symposium (2011)

12. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: Proceedings of the 18th ACM Conference on Computer and Communi-
cations Security, pp. 627–638. ACM (2011)

13. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: Automated security certifica-
tion of android applications. Univ. of Maryland (2009) (manuscript),
http://www.cs.umd.edu/~avik/projects/scandroidascaa

14. Google. Google play , http://market.android.com (accessed March, 2011)
15. Apple Inc. App store review guidelines,

http://developer.apple.com/appstore/guidelines.html (accessed March 30,
2012)

16. Pachal, P.: Google removes 21 malware apps from android market (March 2011),
http://www.pcmag.com/article2/0,2817,2381252,00.asp (accessed March 18,
2011)

17. pxb1988. dex2jar: A tool for converting android’s .dex format to java’s .class for-
mat, https://code.google.com/p/dex2jar/ (accessed March 30, 2012)

18. SlideMe. Slideme: Android community and application marketplace,
http://slideme.org/ (accessed March 30, 2012)

19. Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: Taj: effective taint
analysis of web applications. In: ACM Sigplan Notices, vol. 44, pp. 87–97. ACM
(2009)

20. Yin, S.: ’most sophisticated’ android trojan surfaces in china (December 2010),
http://www.pcmag.com/article2/0,2817,2374926,00.asp (accessed March 18,
2011)

21. Zhou, Y., Zhang, X., Jiang, X., Freeh, V.W.: Taming Information-Stealing Smart-
phone Applications (on Android). In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 93–107.
Springer, Heidelberg (2011)

 http://blog.nielsen.com/nielsenwire/online_mobile/who-is-winning-the-u-s-smartphone-battle
http://blog.nielsen.com/nielsenwire/online_mobile/who-is-winning-the-u-s-smartphone-battle
http://www.cs.umd.edu/~avik/projects/scandroidascaa
http://market.android.com
http://developer.apple.com/appstore/guidelines.html
 http://www.pcmag.com/article2/0,2817,2381252,00.asp
https://code.google.com/p/dex2jar/
http://slideme.org/
 http://www.pcmag.com/article2/0,2817,2374926,00.asp

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 308–324, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Why Trust Seals Don’t Work:
A Study of User Perceptions and Behavior

Iacovos Kirlappos1, M. Angela Sasse1, and Nigel Harvey2

1 University College London, Department of Computer Science,
London, United Kingdom

{i.kirlappos,a.sasse}@cs.ucl.ac.uk
2 University College London, Department of Psychology,

London, United Kingdom
n.harvey@ucl.ac.uk

Abstract. Trust seals, such as the VeriSign and TRUSTe logos, are widely used
to indicate a website is reputable. But how much protection do they offer to on-
line shoppers? We conducted a study in which 60 experienced online shoppers
rated 6 websites – with and without trust seals - based on how trustworthy they
perceived them to be. Eye tracking data reveals that 38% of participants failed
to notice any of the trust seals present. When seals were noticed, the ratings as-
signed to each website were significantly higher than for the same website
without a seal, but qualitative analysis of the interview data revealed significant
misconceptions of their meaning (e.g. “presence of seals automatically legiti-
mizes any website”). Participants tended to rely on self-developed – but inaccu-
rate – heuristics for assessing trustworthiness (e.g. perceived investment in
website development, or references to other recognizable entities). We conclude
that trust seals currently do not offer effective protection against scam websites;
and suggest that other mechanisms – such as automatic verification of authen-
ticity are required to support consumers’ trust decisions.

Keywords: trust signaling, e-commerce, trust seals.

1 Introduction

Trust plays a vital role in the commercial world: people and organizations cooperate
to achieve mutual benefits, and the success of business transactions depends on both
parties behaving in a collaborative way. The wide success of e-commerce since the
early 2000’s [1] posed a major challenge for consumers and merchants: how to reach
a transaction-enabling level of trust between them, without the traditional trust devel-
opment medium - face-to-face interaction [2]. Attackers soon exploited the opportun-
ities this new setting created: they started setting up fake online stores, pretending to
sell popular products at tempting prices, but actually stealing consumers’ money and
credit card details [3],[1]. At best, consumers receive counterfeit goods. At worst,
they receive no goods, lose money and suffer identity theft. Some financial institu-
tions, like credit card issuers, have introduced buyer protection mechanisms that cover

 Why Trust Seals Don’t Work: A Study of User Perceptions and Behavior 309

their customers for any monetary losses [4], but consumers still have to go through
time-consuming processes to obtain new credit cards, and monitor their accounts and
credit reports to prevent identity theft using their stolen credentials.

A number of different measures have been introduced to address this problem: an-
ti-phishing tools, trust seals and user education. But the number of scam websites and
the reported losses are still alarmingly high [5-8] – UK card fraud crime amounted to
£365.4 million in 2011 [9], and in the US online merchants lost $2.7 billion to fraud
in 2010 only [10]. The persistence of criminals operating online suggests that it is
worth their effort.

Trust seals were created to make it easier for consumers to identify trustworthy
websites. Their effectiveness has been discussed by a number of research reports [11-
18], but all used experimental designs that explicitly drew respondents’ attention to
presence of the trust seals (e.g. surveys). This paper presents an experiment in which
we observed participants’ reaction to the same websites with and without trust seals,
without directing their attention to them. We also conducted a detailed debrief to
elicit their “folk perceptions” [19] of trustworthiness indicators in a website, including
trust seals. We identified a number of trust-development heuristics consumers use to
verify a website’s authenticity, and identify those as targets for future security
awareness approaches.

2 Background

2.1 E-Commerce and Trust

Trust plays a significant role in online environments, as it enables transactions between
parties that are separated in both space and time. Riegelsberger et al. [2] outline the basic
trustor-trustee interaction in technology-mediated interactions (Figure 1): a consumer
(trustor) uses the signals (1) emitted by the merchant (trustee) to assess their trustworthi-
ness before proceeding to the trusting action (2a) [2], which increases their exposure to a
trustee’s potential misbehavior, but provides the potential for positive gains if the
merchant fulfills (3a). In e-commerce, increased exposure comes as a result of sharing
financial and personal details with a website, as consumers now rely on the merchant’s
behavior to reduce the likelihood of a negative outcome (e.g. goods not arriving, selling
of counterfeit products, credit card details compromised, identity theft) [20]. As a result,
the higher the perceived trustworthiness of the website, the more likely a consumer is to
proceed to initiating a transaction.

Other researchers have also stressed the importance of trust to enable successful
commercial transactions over the Internet. Nielsen [21] defines e-commerce related
trust as “A user’s willingness to risk time, money and personal data on a website”,
and others have underlined its importance for the success of e-commerce
[11-13],[22]: the lower the transaction-related uncertainty appears to be to a consum-
er, the more likely they are to act in a way that renders them vulnerable to the
behavior of an online merchant.

310 I. Kirlappos, M.A. Sasse, and N. Harvey

Fig. 1. The basic trustor-trustee interaction (Source: Riegelsberger et al. [2])

Another challenge to designing for trust in e-commerce environments is that, after
a small number of successful transactions, consumers expect all further transactions to
be successful, too – they now are in a state of reliance, rather than trust [2]. They
extrapolate their past positive or negative experiences with some websites to new
ones, resulting to a “trust spillover” effect: After a number of successful transactions,
consumers are less likely to check for the trust-warranting [2] properties they
searched for on the very first time they bought something online, or they may spend
less time doing so. As a result trustworthy behavior of some merchants can lead to
trust in the entire online market [23-25].

2.2 How Attackers Exploit Trust

Consumers shopping online are looking for ‘good deals’: trying to save money on
regular purchases, or acquire something they would otherwise not be able to afford.
In this situation, the classic economics problem of information asymmetry [26] ap-
plies: the lack of personal interaction results to consumers having less knowledge on
the intentions of the merchant to fulfill in the transaction or the quality of the products
offered [14],[27],[28]. The merchant, on the other hand possesses the advantage to
wait until they have received full payment before shipping out any products [20].
This asymmetric nature of the interaction makes the exploitation of human needs
easier for attackers, who are extremely skillful in exploiting human vulnerabilities
[29]: Once they know what consumers want, they tempt them with “too good to miss”
deals, but ship either counterfeit products or nothing at all.

2.3 Trust Signaling

The trustor’s perceived uncertainty in the outcome of a transaction can be reduced by
communicating information about the trustee’s ability and motivation to fulfill. In online
markets, technology is not only the medium over which an interaction happens, but also

 Why Trust Seals Don’t Work: A Study of User Perceptions and Behavior 311

the medium over which both parties signal the trust-warranting properties required to
allow the formation of positive expectations on the behavior of each other, which then
provide the level of trust required by the trustor to initiate the interaction. Riegelsberger
et al. [30] identify two main types of signals of trustworthiness trustees can emit:

● Symbols: They have arbitrarily assigned meaning, and were designed specifically
to signal the presence of trust-warranting properties, so the trustor needs certain
knowledge be able decode them. In e-commerce, trust symbols are all the mechan-
isms that aim to directly signal a merchant’s trustworthiness to potential customers
(e.g. trust seals issued by certification authorities - CAs).

● Symptoms: These are trust signals that were not specifically designed to signal
trust-warranting properties; they are given off as by-products when honest actors
go about their business, at little or no cost to honest actors. But if an attacker were
to try and mimic these, it would be at great cost. In an e-commerce setting, symp-
toms are all the website properties and information consumers draw on to assess
the trustworthiness of a merchant (e.g. well-known brand name and reputation
amongst friends and relatives).

The opportunistic attempt of non-trustworthy actors to appear trustworthy by emitting
manipulated signals (symptoms or symbols) is defined as mimicry [31]. Mimicry will
occur only if emitting the signal required to appear trustworthy comes to a lower cost
to untrustworthy actors than the potential benefit of doing so [2]. Symbols are much
easier to mimic than symptoms, as attackers can simply place those in their websites
at minimal costs, while symptoms require more effort, which can outweigh any poten-
tial benefits for an attacker.

2.4 Trust Symptoms - User Trust Assessment Heuristics

Consumers use a wide range of symptoms to assess the trustworthiness of a merchant.
Those are mostly based on self-developed heuristics1, a number of which have been
reported by past research:

• Perceived professionalism and reputation of a company, e.g. well-known branding
[13],[22],[28]

• Ability of the merchant to fulfill – usually revealed by positive user reviews
[22],[32]

• Relationship with other known entities e.g. other well-known merchants [33]
• Willingness to customize products and services [13]
• Usefulness and ease of use of the website [21],[28],[32]
• Perceived security control e.g. providing reassurances in case of fraud [32]

The major drawback of all the aforementioned reports is that the proposed heuristics
are either not supported by experimental verification ([21],[28],[32]), or were based
on experimental designs that did not accurately capture the complete picture of the
actual trust development process:

1 Merriam Webster heuristic definition: “involving or serving as an aid to learning, discovery,

or problem-solving by experimental and especially trial-and-error methods”.

312 I. Kirlappos, M.A. Sasse, and N. Harvey

1) Experiments in [22] and [13] were based on pre-defined hypotheses by researchers
(i.e. “Would you trust this website if it had this property?”), which results to re-
porting only the effect the properties they targeted have on a website’s perceived
legitimacy (e.g. [22] tested for the effect of size and reputation on trust develop-
ment, but explicitly presented size and reputation information for each website to
the participants). This setup also hinders the ecological validity of the results as it
explicitly draws the participants’ attention to website properties they may have
failed to notice by themselves.

2) In [33] the focus of the experiment conducted was to test for the effectiveness of an
anti-phishing indicator; trust development factors were identified afterwards, based
on analysis of self-reports by participants in post-experiment interviews.

2.5 Trust Seals

Trust seals are extra-legal, symbol-based trust-signaling mechanisms, introduced to
provide trustworthiness information on a merchant to potential customers from
Trusted Third Parties (TTPs) – Certification Authorities (CA). They are logos added
in websites to signal that a certified organization (TTP) has granted the right to use
those, based on some rules of conduct (e.g. reliability as a merchant, correct private
data handling or website security). They are used to facilitate trust-building in online
commerce environments [14], decreasing the perceived transaction-related risk by
consumers, thus increasing their willingness to engage in it [12].

The purpose of trust signaling mechanisms is similar to the way risk communica-
tion is used to advise the general public on issues of public concern: they act as advi-
sors to consumers on the risk they accept by engaging in a transaction. Twyman et al.
[34] classify trust in advisors in two major categories:

● Trust in Motives: Consumers identify the similarity of values between them and the
TTP: they both benefit from successful interactions and it is of interest to the TTP
to provide them with reliable information.

● Trust in Competence: Consumers have received reliable information from a specif-
ic TTP in the past so they are more likely to trust the information they receive from
it. This explains past research reports that consumers are more likely to buy from
an unknown website that bears a trust seal than one which does not [11].

Both forms of trust can be destroyed, if they are manipulated by untrustworthy actors.
Attackers can easily add trust seals to their websites (mimicry – [31]) and negative
experiences with trust seals will result to the corresponding signals losing significance
[2]. This can undermine trust in the competence of the seals, and the trust
certification approach in general.

Research opinion on the effectiveness of trust seals is divided: some researchers
report that trust seals help to improve consumer purchasing decisions [11],[15-17],
but others report that they fail to do so [13][18]. The problem with all the previous
research is that they drew participants’ attention to the presence of trust seals and
explicitly asked if they influenced their decision to trust a website. Testing if con-
sumers take trust seals into account if they notice their presence, is a valid question,
but accounts only for a sub-set of the decision-making process. Previous experiments

 Why Trust Seals Don’t Work: A Study of User Perceptions and Behavior 313

also did not test whether trust seals lead to correct trust decisions; if a trust seal is
present, consumers are more likely to buy from it - but that might include buying
from fraudulent sites that carry mimicked seals. We need trust signals that help con-
sumers to make better decisions, not just manipulate their trust perceptions.

2.6 Public Awareness Campaigns

A number of awareness campaigns have been set up by governments and commercial
organizations to inform consumers on the potential dangers they may face while
shopping online [35-38]. They provide a range of advice on what consumers can use
to protect themselves:

• Make sure they have antivirus, firewall and anti-spyware software installed and
keep operating system and browser up to date.

• Check merchants out before first time purchases. Locate contact details and
whether refunds are provided in case things go wrong.

• Verify the website’s legitimacy using https:// indicators and closed padlocks; also
never make purchases through unsecured wireless networks.

• Only provide a website with the information required to complete the transaction.
• Check who the website is registered to and how long has it been registered.
• Check for website reviews on the Internet.

Whilst we would not argue that this advice is wrong, it ignores some key factors that
drive consumers’ behavior in these situations:

● When presented with a ‘good deal’, consumers may be tempted to accept a higher
risk in order to reap the potential benefits. This risk propensity can be leveraged
by attackers emphasizing the “limited offer duration” (time principle – [29]),
putting time pressure on consumers to quickly seize the deal, otherwise lose it.

● Providing consumers with widely varying advice ([36] mentions 9 different web-
site properties that require 3-4 verification checks each) causes confusion. Faced
with too much information, consumers try to reduce it to a manageable level, but
the process of selecting factors is haphazard [39]. Finally, consumers can follow
the advice, and still fall for a scam, as many scam websites are well-designed and
resemble legitimate ones, in their attempt to appear trustworthy. When this hap-
pens, consumers’ trust in the competence of the advisors is undermined, making it
less likely that they will pay attention to advice from that source next time [34].

2.7 Summary

The continuing high level of online scams suggests that existing security measures
and advice are not working. Even though trust seals are widely used, there are con-
flicting reports on their effectiveness. Past research lacked ecological validity: to
accurately capture the trust development process, consumers need to be presented
with trust seals in the same way as they would in a home setting, without the
experimenters drawing their attention to any specific trust development factors.

314 I. Kirlappos, M.A. Sasse, and N. Harvey

3 Experiment

3.1 Aim

The aim of our experiment was to evaluate the effectiveness of trust seals in a realistic
setting (see 3.2) that would improve on the validity and applicability of our findings.
We designed a study to test the following hypothesis:

H1: Website ratings will increase when participants notice the presence of
trust seals

We used eye-tracking and screen recordings to guide a set of post-experiment inter-
views, where we questioned our participants on their eye-gaze fixations during the
experiment. We analyzed interview data using qualitative methods, aiming to:

• Capture the participants’ perception of the meaning of trust seals.
• Identify other elements they used to assess the trustworthiness of a website.

3.2 Method

We asked participants to browse through six websites that sell tickets for a music
festival in London (Wireless Festival in Hyde Park) and asked them to rate each web-
site based on how likely they were to buy from it. We chose online ticket sales for
our study because they represent a large and constantly growing number of online
scams: the UK National Fraud Authority reported a number of half a million ticket
scam victims in the UK in 2010, each losing an average of £80 [40].

Apparatus and Materials. A pre-experiment questionnaire was designed to identify
participant demographics, computer experience, online shopping habits and past expe-
rience with internet scams. During the experiment, screen and eye-gaze recordings
were taken using a Tobii X50 eye tracker and Tobii Studio 2.0.4 software. The expe-
riment took place in a usability laboratory on a computer running Windows XP and
websites were displayed using Mozilla Firefox 3.5 web browser. Post-experiment
interviews with participants were audio recorded.

Websites. Using a search engine, 6 websites selling tickets for the event were identi-
fied, and downloaded locally using the HTTRack free website copier tool
(http://www.httrack.com). Three of the websites had a trust seal positioned on the
main page and other parts of the ticket selection process. To test for the effectiveness
of trust seals two different conditions were created (Table 1):

● Original: All websites were used unmodified in the experiment.
● Modified: Trust seals were removed from the websites that originally carried those

and a fake trust symbol was placed in the other three websites (that originally did
not have them) as a plain image, without any links to verify its authenticity. The
fake symbol was positioned in easy to spot positions in the websites.

 Why Trust Seals Don’t Work: A Study of User Perceptions and Behavior 315

Table 1. The conditions assigned to the websites used in the experiment

Website name Original Modified

www.eventim.co.uk No trust seal Trust seal

www.getmein.com Trust seal No trust seal

www.gigantic.com No trust seal Trust seal

www.hmvtickets.com Trust seal No trust seal

www.seetickets.com No trust seal Trust seal

www.skiddle.com Trust seal No trust seal

The local copies of the websites were setup on a university server and the DNS map-
ping was modified so that the participants could see the real website URL
(e.g. www.eventim.co.uk) in the address bar.

Participants. Participants were recruited through the university’s psychology de-
partment subject pool. They had to be over 18, use online shopping regularly, and be
available to visit the lab for a 1-hour session. They all received payment of £12 for
their time. The university’s ethics procedures on experiments involving human
participants were followed. (No application to the Research Ethics Committee was
required since our participants were not identifiable, no personal information was kept
after the experiment, and there was no deception involved).

62 participants took part in the study, but data from two had to be discarded due to
lack of accurate eye-tracking recordings. Of the remaining 60:

● 36 (60%) were female and 24 (40%) male.
● Their average age was 24 years (Standard Deviation = 4.9).
● They had an average computer experience of 12 years (SD = 3.3).
● They browse the Internet daily for 4.9 hours (SD = 2.88).
● They receive 18 (SD = 14.7) emails per day.
● 51 (85%) of them have checked their account balance online.
● 50 (83%) had transferred money to other people’s accounts using online banking

services.
● 11 (18%) had configured a firewall in the past.
● 21 (35%) had designed a website.
● 15 (25%) had registered a domain name.
● 17 (28%) had been victims of an online scam, or knew someone that has been.

Procedure. A between-subjects design was chosen to prevent habituation effects.
Participants were equally divided between the two conditions. The websites were
pre-opened in six browser tabs in randomized order, and participants had 5 minutes to
browse through those. After signing the consent form and completing a screening
questionnaire, they were presented with the experiment scenario: “You want to attend
the Wireless Festival 2011 in Hyde Park. You have used a search engine to find six
websites that claim to sell tickets. Friends have warned you that festival tickets sell
out very quickly so you only have five minutes to look at the websites. You can
browse through the websites with no limitations. Warnings will be given to you when

316 I. Kirlappos, M.A. Sasse, and N. Harvey

two and one minutes are left. After the end of the 5-minute period you will be asked
to indicate how much you trust each of the websites presented to you. To do so you
need to assign a grade between -2 and +2 (-2,-1,0,1,2) to each website with -2 being
the lowest and 2 the highest”. After reading the scenario, they were asked to confirm
they understood how the rating grades reflect their level of trust for each website.

During the 5-minute browsing period the experimenter was present, but partici-
pants were told they could not ask questions during this part of the session. They
were allowed to distribute their browsing period in any way they wanted across web-
sites, so they carry out all the checks as if they were shopping on their own computers
(e.g. check delivery policy, FAQs etc.) and when they had enough information to
make a decision proceed to the next website. Participants were not prohibited from
using external sources (i.e. other websites) to check for a website’s reputation, but
none attempted to do so during the experiment.

After participants rated the websites, there was a de-briefing session: the eye-
tracking recording of their browsing period was replayed to them, and questions about
their behavior asked, based on their eye-gaze fixations. When the recordings showed
a fixation on any visual element of a website (e.g. reading through the text on a page),
participants were asked to explain how each of those elements affected the trust rating
they assigned to each website. Participants were then pointed to the trust seals in the
sites and were asked to explain what they signal to them, and whether they knew how
to verify their authenticity. This aimed to provide data that could be used to identify
whether consumers perceive the meaning of trust seals correctly, which is important if
trust seals affect their decisions, as incorrect understanding can result to misplaced
trust. The questions on trust seals were asked at the final part of the interview, to
avoid drawing the participants’ attention to their presence. The interviews were audio
recorded and analyzed after the experiment, using a Grounded Theory analysis
combining open, axial and selective coding procedures [41].

4 Results

4.1 Effectiveness of Trust Seals

The analysis of eye-tracking data revealed that only 12 (20%) participants noticed all
three trust seals they encountered during their browsing session (Table 2), and more
than a third did not notice any of them (23 – 38%). We
tested our H1 hypothesis by comparing the ratings
participants assigned to a website when they noticed
the presence of the trust seal in it against the ratings
when the trust seal was not noticed or was not present.
This revealed a significant tendency (t(5) = 3.3786,
p = 0.0099) to rate websites higher when participants
noticed a trust seal on a website (Table 3).

Table 2. Number of trust
seals noticed by participants

No of seals

noticed

No of

participants
0 23
1 12
2 13
3 12

 Why Trust Seals Don’t Work: A Study of User Perceptions and Behavior 317

Table 3. The assigned ratings on websites when trust seals were present

Website name Number of partici-
pants who noticed

Rating when
noticed seals

Rating when not noticed
seals or seals not present

www.eventim.co.uk 18 0.94 0.00
www.getmein.com 15 0.73 -0.04
www.gigantic.com 14 0.64 -0.11
www.hmvtickets.com 8 1.25 1.04
www.seetickets.com 11 0.27 0.37
www.skiddle.com 5 0.40 -0.40

After participants’ attention was drawn to the presence of trust seals, we asked
what they signified, and received a variety of responses - all incorrect (see Table 4).

Table 4. The responses participants gave on the meaning of trust symbols

Comment No of participants

Seals mean a website is safe for Credit Card details 18 (30%)

Completely ignore what trust seals are and what they mean 15 (25%)

They know that trust seals can be spoofed 11 (18%)

Payment method symbols mean the website is verified by the payment
method company (e.g. VISA, PayPal, MasterCard)

11 (18%)

Seals provide confirmation that website is genuine (could not explain why) 10 (17%)

Authority exists that grants rights to use the seal to trustworthy merchants,
punishing the misuse of those

9 (15%)

Seen some trust symbols in websites they use often, assumed that their
presence in a website automatically signifies its legitimacy

7 (12%)

Seals are meaningless as they could be copied by anyone 6 (10%)

Seals mean a website has no viruses 1 (2%)

4.2 Factors Affecting Trust in Websites

The Grounded Theory analysis of the interview data revealed a number of factors
other than trust seals that affected the participants’ trust development decisions.
These factors can be classified in two major categories: Those that affected the per-
ceived professionalism of the company and those that affected the perceived
competence of it as an online merchant.

1. Trustee’s Professionalism. Participants attempted to assess the professionalism
of the company running a website, which they reported as a combination of many
different factors (Table 5):

318 I. Kirlappos, M.A. Sasse, and N. Harvey

Table 5. The factors affecting the perceived professionalism of a website

Comment No of
participants

Perceived amount of effort invested in a website - indicated by factors like
aesthetically pleasing design, well-formed layout.

45 (75%)

Presence of company information e.g. physical location, contact details etc 43 (72%)

Variety of products available 23 (38%)

Inclusion of Terms and Conditions/Privacy Policy 16 (27%)

Large amount of information on event of interest (opening times, venue
information etc), good presentation of it with rich media (e.g. maps and pictures)

14 (23%)

Ease of use, self-explanatory labeling - to aid navigation around the website 8 (13%)

Well-formed URL - participants argued that scam websites have long, non-
meaningful URLs

6 (10%)

2. Trustee’s Competence. Participants attempted to assess a website’s competence
by looking for a number of different website properties (Table 6):

Table 6. The factors affecting the perceived competence of a website

Comment No of
participants

Indicators of past trustworthy behavior - Name and reputation of a company
were the major factors participants used to assess this: positive expectation
about a merchant’s behavior was formed if participants recognized a compa-
ny’s name or had previous experience with it (online or in the real-world).

45 (75%)

Trust transfer - Inclusion of other recognizable entities affected the decisions
of participants e.g. claims by a website that they are subsidiary of Ticketmaster
(UK’s biggest ticket merchant), advertisements of known companies or pres-
ence of a charity logo together with claims that part of the profits is donated to
them.

30 (50%)

Social Networking links - Believed that they could find information on the
merchant’s past behavior by following those links

28 (47%)

Assurances provided – The ticket purchases and financial details are safe and
that tickets will be sent via secure postage

19 (32%)

User reviews – Present inside the website (did not check for off-site reviews) 16 (27%)

5 Discussion

5.1 Trust Seals Are Not Effective

Our findings suggest that trust seals do not improve on consumers’ ability to make
accurate trust assessment of websites: despite a significantly increased rating amongst
participants who noticed trust seals, only 20% noticed those on all 3 websites they
encountered, and over a third of participants (38%) did not notice any of the 3. It is
reasonable to suspect that the same is true for consumers - unless their attention is
specifically drawn to the presence of a seal on a site. Our participants also had

 Why Trust Seals Don’t Work: A Study of User Perceptions and Behavior 319

significant misconceptions about what the seals stood for (see Table 4). Those partic-
ipants who noticed trust seals during the experiment interpreted the mere presence of
those as proof of a website’s competence (hence the statistical significance in
Table 3), and felt no need to check that they were genuine.

We also observed a trust “spillover effect”. Early research on trust seal effective-
ness [42] pointed out that their presence does not legitimize a website, but consumers
are still not aware of this: seven participants (12%) had previously seen some trust
seals in websites they use, and incorrectly assumed that these mean the website is
legitimate. This misconception makes consumers highly vulnerable to mimicry
attempts.

Another problem with trust seals can be attributed to bad practice by merchants. In
one of the websites we presented to participants, the trust seal present was a plain
image, instead of linking to the verification pages provided by the seal issuers (e.g.
whenever a VeriSign trust seal is present, it should be a clickable link, bringing up a
verification page with the details of the company to which the website was registered
[43]). If legitimate merchants implement trust seals incorrectly, the task of identify-
ing mimicry attacks becomes almost impossible for consumers (even though our
participants did not attempt to verify the seals).

The large number of different trust seals used is a further source of confusion for
consumers, and thus undermines the effectiveness of trust seals. The www.truste.com
[44] website lists 9 different certifications covering Privacy, Security (2 for SSL en-
cryption, 2 for malware and vulnerability scans), Reputation and Reliability (which
can be either review-based or granted by another authority). Such a complex system
does not help consumers trying to detect online fraud - and how many consumers
know what SSL encryption is, or what risks malware presents to them?

The creators of trust seals and website owners who use them expect consumers to
search for trust seals, check their authenticity, and understand what protection their
offer. Based on our results, we argue that these expectations are unrealistic. Usable
security researchers have long argued that security is not the primary concern of
people using computer systems [45],[46]: the need to be careful about scams is a mi-
nor consideration in the context of the consumer’s main activity – to find and buy
something they want. Expecting consumers to interrupt this activity to find and check
trust seals before every purchase is expecting too much. Like most security mechan-
isms, the effort involved is just too high for ordinary consumers [47] – so they either
ignore them altogether, or associate those with a simple, but incorrect meaning. In
both cases, consumers are left vulnerable.

5.2 Trust Assessment Heuristics and Consumer Awareness

The trust assessment heuristics we present in Section 4 partly confirm past research
findings [13],[21],[22],[28],[32],[33], but the most worrying observation is that none
of our participants attempted to verify the authenticity of the signals they used. This
means that even simple mimicry attacks can succeed: attackers copy genuine web-
sites, register well-formed web addresses and use search engine advertisements or
phishing emails to direct consumers to them [7],[48]. None of the websites used in
our experiment included a way to verify claimed affiliations (social network links,
charity organizations or advertisements), which means that even if consumers were

320 I. Kirlappos, M.A. Sasse, and N. Harvey

prepared to check for their authenticity, there would be little they could do. An ex-
ample of how the identified heuristics can be manipulated by attackers are account
takeovers, reported by eBay as a major source of threat for their customers [49], as
consumers blindly trusting reputable retailers are left vulnerable against those attacks.

Our observations demonstrate that the advice given by awareness campaigns is not
effective, either: No participant checked for https:// indicators, padlocks in the ad-
dress bar or who the website owner is. The advice “Only provide a website with the
information required to complete the transaction” also seems ill-posed: what is more
sensitive than the credit card information required to complete a transaction? Con-
sumers transfer trust perceptions from physical world settings (e.g. the reputability of
a brand name or claimed affiliations with other well-known organizations), unaware
that these are easily and cheaply mimicked in the online world. This leaves them
vulnerable to the techniques attackers use, like including well-known names in their
website without any proof for their affiliations, and which awareness campaigns fail
to address effectively: despite telling consumers to look for specific trust signals, they
fail to equip them with the skills required to verify their authenticity, doing nothing to
protect them from any potential mimicry attempts.

6 Conclusions

Our results demonstrate that trust seals do not effectively support consumers making
decisions about websites. A significant part of consumers does not notice them, and
most of those who do, do not understand what protection they offer and how to verify
their authenticity. We thus argue that trust seals may currently do more harm than
good, because they leave consumers vulnerable against even the simplest attacks (e.g.
inclusion of fake trust seals in websites). To overcome these problems, a significant
shift is required from the way trust signaling mechanisms are used today. Technolo-
gy needs be used to aid correct trust placement by automatically performing any veri-
fication required, alerting consumers when potential risks are identified, aiding their
accurate assessment of the dangers they may face when they need to make trust-
related decisions and reducing the potential of being victimized by online scams.

6.1 What Needs to Be Done

Use Automatic Verification Mechanisms. More radical measures are required to
reduce the potential of successful mimicry attempts. Mechanisms that automatically
verify a seal’s authenticity need to be developed, which will alert consumers when
seal misuse is detected. The backbone of this technology already exists: The SOLID
authentication tool (developed by the UK firm First Cyber Security) “gives the owner
of a logo, trademark or certificate the ability to authenticate its use on other web-
sites”, using a Secure On Line ID 3rd Party Validation mechanism, which identifies
unauthorized use of symbols registered by their original owners [50]. This, or other
similar systems, can be used as the basis of a larger implementation, developed in
collaboration with web browser creators, which will automatically alert crime
prevention authorities and Internet Service Providers (ISPs) when scam websites are

 Why Trust Seals Don’t Work: A Study of User Perceptions and Behavior 321

detected, who can then act to block traffic to those and take them offline. A widely-
adopted automatic verification approach can also be used to provide shoppers with
merchant information, like registration details of the company owning the domain
name, contact details, where the product will be shipped from etc. – eliminating the
need to find that information by looking around various websites on the Internet. The
technology to implement this also exists - organizations like VeriSign already provide
information on the owner of a website when consumers click on the VeriSign trust
logo, but currently require consumers to notice the presence of that logo to do so.

The alerts an automatic verification mechanism presents to consumers should use
meaningful messages, explaining what the identified problem is and how to protect
themselves. Those messages should appear as active warnings, which are proven to
be more effective than asking the consumers to stop and search for security indicators
[51]. To avoid habituation issues, consumers’ should only be interrupted when seal
misuse is detected and presented with a short and clear warning that the website they
are browsing is using unauthorized symbols. When no problem exists a passive win-
dow can be present in the consumer’s browser providing information on the merchant.
This will minimize the cognitive load imposed on them when they attempt to assess a
merchant’s trustworthiness and can result to more accurate trust-placement decisions.
The success of any attempt to implement a mechanism like this requires the involve-
ment of all interested stakeholders (merchants, certification authorities, ISPs, crime
prevention authorities) and a good implementation can significantly improve on the
public perception of e-commerce as a safe and trustworthy service.

Re-focus Awareness Campaigns. Research has already reported that current security
awareness campaigns are not well-aligned with actual consumer behavior in online
environments [33]; future campaigns should focus on widely-held misconceptions.
Automatic website verification can significantly reduce the amount of information
that needs to be communicated to consumers, and the effort they have to make to
check the authenticity of a site. They only need to be made aware of the fact that they
may be targeted by scams (e.g. a website you access may be fraudulent and you may
receive nothing for the money you pay) and what they need to do to protect them-
selves (e.g. make sure your browser is up to date). This can result to a significant
decrease in the confusion amongst them and aid safer decisions when shopping
online.

6.2 Research Limitations

The study aimed to create a scenario that would closely resemble the conditions under
which consumers shop online: The need for them to accurately assess the trustwor-
thiness of a merchant to avoid being victimized. A potential limitation that may have
affected the ecological validity of our quantitative results is the fact that participants
did not risk losing any money or having any personal details compromised, which
would be the consequences of incorrect trust decisions while shopping online. This
could have an effect on the ratings participants assigned to websites, but testing for
this was not possible due to time and resource limitations. Despite that, the main
issues we raise on the ineffectiveness of trust seals (failure to notice those and

322 I. Kirlappos, M.A. Sasse, and N. Harvey

misunderstanding of their purpose) and the failure of awareness campaigns are well
supported by the qualitative analysis of the interview data, where the identified mis-
conceptions on trust seal meaning and trust development heuristics are unlikely to
have been affected by this limitation.

References

1. The UK Cards Association,
http://www.financialfraudaction.org.uk/cms/assets/1/be%20car
d%20smart%20release%20final%20-%2024%20nov%2011%20(nfa).pdf

2. Riegelsberger, J., Sasse, M.A., McCarthy, J.D.: The mechanics of trust: a framework for
research and design. International Journal of Human-Computer Studies 62(3), 381–422
(2005)

3. Financial Fraud Action UK,
http://www.financialfraudaction.org.uk/cms/assets/1/fraud%20
figures%20release%2010%20mar%2010.pdf

4. DirectGov, UK,
http://www.direct.gov.uk/en/Governmentcitizensandrights/Cons
umerrights/Howtocomplainaboutgoodsandservices/DG_196229

5. Publicservice.co.uk,
http://www.publicservice.co.uk/news_story.asp?id=18293

6. Mail Online,
http://www.dailymail.co.uk/femail/article-2073344/
Will-fall-Santa-frauds-Britain-flooded-designer-Christmas-
gifts-actually-dangerous-fakes.html?ito=feeds-newsxml

7. Retail Digital,
http://www.retail-digital.com/consumer_trends/
top-retail-scams

8. BBC News, http://news.bbc.co.uk/2/hi/8392600.stm
9. UK Cards Association,

http://www.theukcardsassociation.org.uk/
media_centre/press_releases_new/-/page/1323/

10. http://www.internetretailer.com/2011/01/18/fraud-losses-fall
11. Hu, X.R., Lin, Z.X., Zhang, H.: Myth or reality: effect of trust promoting seals in electron-

ic markets. In: Proceeding of the Eleventh Annual Workshop on Information Technologies
and Systems (WITS), New Orleans, Louisiana, pp. 65–70 (2001)

12. Resnick, P., Zeckhauser, R., Friedman, E., Kuwabara, K.: Reputation systems: facilitating
trust in internet interactions. Communications of the ACM 43(12), 45–48 (2000)

13. Kim, D., Ferrin, D., Rao, H.: A trust-based consumer decision-making model in electronic
commerce: The role of trust, perceived risk, and their antecedents. Decision Support Sys-
tems 44(2), 544–564 (2008)

14. Ba, S., Whinston, A.B., Zhang, H.: Building trust in online auction markets through an
economic incentive mechanism. Decis. Support Syst. 35(3), 273–286 (2003)

15. Kimery, K.M., McCard, M.: Third-party assurances: mapping the road to trust in e-
retailing. Journal of Information Technology Theory and Application 4(2), 63–82 (2002)

16. Rifon, N.J., LaRose, R., Choi, S.M.: Your Privacy Is Sealed: Effects of Web Privacy Seals
on Trust and Personal Disclosures. Journal of Consumer Affairs 39, 339–362 (2005)

 Why Trust Seals Don’t Work: A Study of User Perceptions and Behavior 323

17. Bakos, J.Y., Dellarocas, C.: Cooperation without enforcement? A comparative analysis of
litigation and online reputation as quality assurance mechanisms. In: Proc. Internat. Conf.
In-form. Systems, Barcelona, Spain, pp. 127–141 (2002)

18. Peterson, D., Meinert, D., Criswell II, J., Crossland, M.: Consumer trust: privacy policies
and third-party seals. Journal of Small Business and Enterprise Development 14(4),
654–669 (2007)

19. Wash, R.: Folk models of home computer security. In: SOUPS 2010: Proceedings of the
6th Symposium on Usable Privacy and Security, SOUPS 2010, pp. 1–16. ACM, New York
(2010)

20. Tan, Y., Thoen, W.: Toward a Generic Model of Trust for Electronic Commerce. Interna-
tional Journal of Electronics Commerce 5, 61–74 (2000)

21. Nielsen, J., Molich, R., Snyder, S., Farrell, C.: E-Commerce User Experience:Trust.
Nielsen Norman Group, Fremont (2000)

22. Jarvenpaa, S., Tractinsky, N., Vitale, M.: Consumer trust in an internet store. Information
Technology and Management 1(1-2), 45–71 (2000)

23. Hoffman, D.L.: Building consumer trust online. Communications of the ACM 42(4),
80–85 (1999)

24. Bolton, G.E., Katok, E., Ockenfels, A.: How Effective Are Electronic Reputation Mechan-
isms? An Experimental Investigation. Manage. Sci. 50(11), 1587–1602 (2004)

25. Ratnasingam, P., Pavlou, P.A.: Technology Trust in Internet-Based Interorganizational
Electronic Commerce. Journal of Electronic Commerce in Organizations 1(1), 17–41
(2004)

26. Akerlof, G.: The market for lemons: quality uncertainty and the market mechanism. Quar-
terly Journal of Economics 84(3), 488–500 (1970)

27. Handy, C.: Trust and the Virtual Organization. Harvard Business Review 73(3), 40–50
(1995)

28. Shneiderman, B.: Designing trust into online experiences. Communications of the
ACM 43(12), 57–59 (2000)

29. Stajano, F., Wilson, P.: Understanding scam victims: seven principles for systems security.
Communications of the ACM 54(3), 70–75 (2011)

30. Riegelsberger, J., Sasse, M.A., McCarthy, J.D.: The researcher’s dilemma: evaluating trust
in computer-mediated communication. Int. J. Hum.-Comput. Stud. 58(6), 759–781 (2003)

31. Bacharach, M., Gambetta, D.: Trust as Type Detection. In: Castelfranchi, C., Tan, Y. (eds.)
Trust and Deception in Virtual Societies, pp. 1–26. Kluwer, Dordrecht (2001)

32. Egger, F.N.: Affective Design of E-Commerce User Interfaces: How to maximise per-
ceived trustworthiness. In: Proceedings of International Conference on Affective Human
Factors Design, pp. 317–324 (2001)

33. Kirlappos, I., Sasse, M.A.: Security education against phishing: A modest proposal for a
major re-think. IEEE Security and Privacy, 99(preprints) (2011)

34. Twyman, M., Harvey, N., Harries, C.: Trust in motives, trust in competence: Separate fac-
tors determining the effectiveness of risk communication. Judgment and Decision
Making 3, 111–120 (2008)

35. Google Good to Know,
http://www.google.co.uk/goodtoknow/online-safety/shopping/

36. Stay Safe, http://www.staysafeonline.org/
37. DirectGov UK, http://www.direct.gov.uk/en/Nl1/Newsroom/DG_180506
38. DirectGov UK,

http://www.direct.gov.uk/en/Governmentcitizensandrights/
Consumerrights/Protectyourselffromscams/DG_195960

324 I. Kirlappos, M.A. Sasse, and N. Harvey

39. Harvey, N., Harries, C., Fischer, I.: Using advice and assessing its quality. Organizational
Behavior and Human Decision Processes 81, 252–273 (2000)

40. Action Fraud, UK,
http://www.actionfraud.org.uk/festival-lovers-must-
beware-of-ticketing-fraud-mar11

41. Strauss, A., Corbin, J.: Basics of Qualitative Research: Techniques and Procedures for De-
veloping Grounded Theory. SAGE publications, London (1998)

42. Edelman, B.: Adverse selection in online ”trust” certifications. In: Proceedings of the 11th
International Conference on Electronic Commerce (ICEC 2009), pp. 205-212. ACM,
New York (2009)

43. Verisign: Report Seal Misuse,
https://www.verisign.com/support/contact/
seal-abuse/index.html

44. TRUSTe,
http://www.truste.com/consumer-privacy/
comparing-web-privacy-seals

45. Beautement, A., Sasse, M.A., Wonham, M.: The compliance budget: managing secu-rity
behaviour in organisations. In: NSPW 2008: Proceedings of the 2008 Workshop on New
Security Paradigms, pp. 47–58 (2008)

46. Herley, C.: So long, and no thanks for the externalities: The rational rejection of Secu-
rity advice by users. In: Proceedings of the New Security Paradigms Workshop 2009,
pp. 133–144 (2009)

47. Whitten, A., Tygar, J.D.: Why Johnny can’t encrypt: a usability evaluation of PGP 5.0. In:
Proceedings of the 8th Conference on USENIX Security Symposium (SSYM 1999), vol. 8,
p. 14. USENIX Association, Berkeley (1999)

48. GHD Repair, http://www.ghd-repair.co.uk/fake_ghds.html
49. Ebay, http://pages.ebay.com/help/account/securing-account.html
50. SOLID Authentication, https://www.solidauthentication.com
51. Wu, M., Miller, R.C., Garfinkel, S.L.: Do security toolbars actually prevent phishing at-

tacks? In: Grinter, R., Rodden, T., Aoki, P., Cutrell, E., Jeffries, R., Olson, G. (eds.) Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI 2006), pp. 601–610. ACM, New York (2006)

S. Katzenbeisser et al. (Eds.): TRUST 2012, LNCS 7344, pp. 325–339, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Launching the New Profile on Facebook: Understanding
the Triggers and Outcomes of Users’ Privacy Concerns

Saijing Zheng1, Pan Shi1, Heng Xu1, and Cheng Zhang2

1 The Pennsylvania State University, University Park, Pennsylvania, United States
{suz128,pzs125,hxu}@ist.psu.edu

2 Fudan University, Shanghai, China
zhangche@fudan.edu.cn

Abstract. While the body of privacy research on online social networks has
been growing over the past several years, privacy problems emerged from the
dynamism inherent in the launch of new features or interfaces have not been
widely discussed. Drawing on the grounded theory approach, we aim to fill this
gap by investigating the trigger conditions under which users may perceive the
introduction of a new IT artifact as privacy threats. With the specific case of the
New Profile introduced by Facebook, we conducted a content analysis of user
responses posted on the official blog of Facebook. Results can be constructed as
a process model including two stages. The first stage of the model presented
four broad categories of trigger conditions of privacy concerns—information
processing, increased accessibility, intrusion, and loss of control. The second
stage describes three types of outcomes, including psychological outcomes,
behavior outcomes, and suggested privacy mechanisms.

Keywords: Privacy Concerns, Online Social Networks (OSNs), Facebook,
Grounded Theory, and Interface Design.

1 Introduction

The extensive display and sharing of personal information by users of social media
such as online social networks (OSNs) span a number of years. During this time, sig-
nificant changes and redesigns of various features and user interfaces have been made
by the systems. This dynamism can trigger multiple expected and unexpected conse-
quences that users of a site may experience and perceive. In particular, privacy prob-
lems emerged from the dynamism inherent in many changes of features and interfaces
in OSNs have attracted significant attention. In 2006, the introduction of “News
Feed” feature by Facebook resulted in an immediate privacy outcry from users [13].
Google Buzz, launched as an add-on to Gmail, was initially designed to opt-in its user
base by publicly disclosing a friend list generated from users’ Gmail contacts. The
rollout of Google Buzz was strongly criticized for inadequate privacy protection [12].
Recently, Facebook is close to a settlement with the U.S. government [1], which
stems from changes Facebook made to its privacy settings in December 2009 to make
aspects of users' profile (i.e., name, picture, and friends list) public by default.

326 S. Zheng et al.

While the body of privacy research on OSNs has been growing over the past sev-
eral years, privacy issues associated with the launch of new features or changes of
interfaces have not been widely discussed in current literature. To our best knowl-
edge, many privacy studies in social sciences and related disciplines [e.g., 15, 25]
have focused on examining users’ general privacy concerns without connecting to a
specific IT event such as interface changes or specific feature launch. Drawing on
the grounded theory approach, our work aims to fill this gap by investigating the trig-
ger conditions under which users may perceive the changes of features and interfaces
as privacy problems. With the specific case of the New Profile introduced by Face-
book, we conducted a content analysis of user responses posted on sections of
introducing the New Profile from the official blog of Facebook.

Contributions of this work are two-fold. First, our research will propose a process
model to understand the emergence and outcome processes of users’ privacy concerns
triggered by the changes of features and interfaces in OSNs. Second, research find-
ings can inspire technology-oriented researchers to develop more feasible privacy
enhancing technologies that are embedded into the design specifications of systems,
as well as aligned with organizational practices and user behaviors.

2 Conceptual Background

Solove [20] developed a taxonomy of information practices and activities, which
maps out various types of privacy problems resulting from information collection,
information processing, information dissemination, and invasion activities. These
information practices and data activities “can potentially threaten an individual’s abil-
ity to maintain a condition of limited access to his/her personal information”
[2, p. 675]. Smith et al. [19] has identified four data-related dimensions to conceptual-
ize and quantitatively measure individuals’ privacy concerns on organizational infor-
mation practices: data collection, unauthorized secondary use of information, data
errors, and improper access to information.

In the context of OSNs, a service provider’s success depends predominately on us-
ers’ continuous interactions on its site, e.g., self-disclosure, information sharing, and
communication [4, 15]. However, “organizational information practices (or poor or-
ganizational privacy programs) can result in a variety of privacy problems that can
associate with consumers’ concerns for information privacy” [23, p. 799]. From the
end-user’s perspective, many studies have been conducted to investigate users’ pri-
vacy attitudes [e.g., 13, 14] and the possible risks that users face when they fail to
adequately protect their information [e.g., 11].

Privacy concerns not only affect a user’s willingness to disclose personal informa-
tion, but also affect his or her acceptance of technology [24]. In the wake of privacy
invasion, technologies “that are perceived as being privacy intrusive may also be per-
ceived as being plagued with performance problems and usage uncertainties” [24, p.
140]. Thus, we argue that it is important to understand the trigger conditions under
which an introduction of a new technological artifact (e.g., the change of an interface
or the launch of a new feature) are perceived as a privacy threat.

 Launching the New Profile on Facebook 327

3 Methodology

To achieve our research objectives, we adopted the grounded theory approach to un-
derstand privacy problems resulting from changes of interface and features in OSNs.
Grounded theory approach has proved to be useful in developing contextual descrip-
tions and explanations of phenomenon [8]. This methodology not only allows for the
emergence of findings that are strictly tied to the data [17], but also offers a systemat-
ic approach for generating conceptual frameworks that are firmly grounded in
empirical phenomena [22].

3.1 Research Context

The context of our study is Facebook, a popular social networking platform for
information sharing, video sharing, photo sharing, tagging, blogging, creating and
joining groups. According to the Facebook Statistics, Facebook has more than 800
million active users, fifty percent of whom log on to the site in any given day and
people spend over seven hundred billion minutes per month [7]. Facebook’s world-
wide popularity and adoption make its frequent interface change and launch of new
features susceptible to public criticisms.

In October 2010, Facebook introduced the New Profile, and gave users the option
to upgrade to the New Profile early. Starting from Jan 10, 2011, Facebook was rolling
out the New Profile to everyone in a compulsory manner. See Figures 1-2 for a com-
parison between early version of user profile and the New Profile on Facebook. The
New Profile features [5]:

 A quick summary of who you are (like where you live, work and grew up),
right at the top of your profile,

 A row of recently tagged photos so friends can see what you have been up to
lately,

 Room to highlight meaningful friendships (like teammates, co-workers or
roommates),

 More of your favorite activities and interests, and
 The ability to tag your friends in events and life experiences.

3.2 Data Collection

As soon as the New Profile was introduced to users on Facebook, it triggered users’
privacy concerns, discontent, anxiety, as well as mass media’s questioning of privacy
issues. In Spring 2011, we conducted a content analysis of user comments posted on
the Facebook Blog in response to the launch of the New Profile. Facebook Blog is not
only a public platform for introducing new features and announcing significant
events, but also enables users to discuss and give feedbacks towards these topics. We
believe that analyzing actual users’ reactions by using such a rich dataset enabled us
to better understand users’ collective privacy concerns. Such approach allowed us to
not only obtain a large data set but also reach users who are sensitive in protecting
their personal information.

328 S. Zheng et al.

Fig. 1. Early Version of User Profile on Facebook

Fig. 2. The Facebook New Profile

We collected users’ comments using Facebook API from two Facebook Blog en-
tries: Introducing the New Profile (Blog #1) [5] and New Profile is Here (Blog #2)
[6], both of which are the official channels that Facebook provided for users to ex-
press their opinions and suggestions on the New Profile. Blog #1 was released on
December 15th of 2010, which included 13,304 entries of user comments. Blog #2 was

 Launching the New Profile on Facebook 329

released on January 10th of 2011, the date which Facebook started rolling out the New
Profile to everyone in a compulsory manner. We crawled 8,949 pieces of user
comments from Blog #2.

3.3 Grounded Theory Approach

In this section, for the purpose of clarity, we provide a brief overview of the steps
undertaken using the grounded theory approach:

• Data Filtering: Data filtering was performed by two steps. First, we only included
those user comments written in English. In addition, we eliminated those com-
ments which were purely emotional icons (e.g.,), or offensive words, or adver-
tisements. The first-step data filtering resulted in a data set of 8545 comments,
with 4450 comments from Blog #1 and 4095 comments from Blog #2. Second,
we manually scanned the data set by searching for specific comments related to
users’ privacy concerns or their perceived privacy violations. This process pro-
vided 835 comments related to privacy issues for in-depth review and coding
(493 comments from Blog #1 and 342 comments from Blog #2).

• First Order Analysis: Two coders first developed a coding guideline with mul-
tiple concept categories and their corresponding explanations. This was followed
by their independent grouping of the 835 privacy related comments into their
identified categorizations. The coders were allowed to assign multiple categories
to each user comment. For the first order analysis, we embraced an open coding
approach in order to further identify new concepts that had arisen from the data.
Our coding involved the identification and comparison of key concepts using
Strauss and Corbin’s constant comparative approach [21].

• Second Order Analysis: Based on results from our first order analysis, we found
that there was the emergence of certain categories but not all relationships were
defined. Corbin and Strauss refer to this step as axial coding which is the act of
relating concepts and categories to each other and constructing a higher theoreti-
cal level of abstraction. This step involved an iterative process of collapsing our
first order codes into conceptually distinct themes [3]. In terms of inter-coder re-
liability, Cohen’s Kappa of 0.827 (p<0.001) suggested a high level of agreement
between the coders.

• Conceptual Framework: Our final stage of data analysis consisted of determining
how various themes we identified could be linked into a coherent framework
identifying the trigger conditions under which the introduction of a new technol-
ogical artifact (i.e., the launch of the New Profile on Facebook) are perceived as a
privacy threat.

4 Findings

Results of data analysis could be summarized as a process model (Figure 3). This
framework interweaved results from first and second order analyses to explain emer-
gence and outcomes of a privacy problem resulting from the introduction of a new
technological artifact (i.e., the New Profile) on Facebook.

330 S. Zheng et al.

Fig. 3. Data Structure

4.1 First Stage: Emergence of a Privacy Problem

Our data analysis revealed a categorization of conditions that trigger users’ privacy
concerns due to the changes introduced by the New Profile. These trigger conditions
include privacy problems resulting from information processing, increased accessibil-
ity, intrusion, and loss of control.

1) Information Processing refers to “the use, storage, and manipulation of data that
has been collected” [20, p.504]. According to Solove [20], the practice of information
processing often creates privacy problems through the consolidation of the informa-
tion and linking it to the individual to whom it pertains. In the case of the New Pro-
file, we identified two forms of information processing which triggered users’ privacy
concerns: aggregation and insecurity.

Aggregation refers to the combination of various pieces of users’ personal data, such as
their photos, videos, and basic information [20]. In the case of the New Profile, the new
interface pulled tagged photos from a user’s album and randomly displayed the newest
five ones together with the user’s profile information. Such change of the interface con-
siderably triggered users’ privacy concerns.

“I'm sure F/B creators are aware by now how utterly upset people are of the
changes you focus on us. F/B had no right to select what displays in my account
and you are so rude…”

“The display of tagged photos is the most stupid thing, if someone tags me in some-
thing offensive, that's the first thing people will see.”

In our data set, aggregation was identified as the most salient concern triggered by the
launch of the New Profile. A total of 203 comments were categorized as users’ con-
cerns over data aggregation, which led to their discomfort, distrust, even indignation

 Launching the New Profile on Facebook 331

toward Facebook. These users believed that the aggregation practice employed by
Facebook invaded their privacy: “aggregation will supply the stalkers paradise to
invade users’ privacy.”

Why did the aggregation of tagged photos stir up big complaints? In the old inter-
face, the tagged photos were already located in users’ albums. Why was it a problem
for the New Profile to pull those tagged photos from users’ albums and display them
on users’ profiles? The problem is on the activity of aggregating information – “the
whole becomes greater than the parts” [20, p.506]. Combining data together could
result in synergies, which can potentially reveal more details about a person in new
and unexpected ways. Therefore, the aggregation practice introduced by the New
Profile can cause privacy harms because it can potentially upset users’ privacy boun-
dary expectations on “what is known about them and on what others will find out”
[20, p.507].

Insecurity describes the set of concerns over a service provider’s “carelessness in pro-
tecting stored information from leaks and improper access” [20, p.516]. Results of our
analysis revealed that users believe that Facebook should be responsible for preventing
improper access to their disclosed data. In the context of the New Profile, privacy harms
can potentially be introduced by the new feature of displaying tagged photos on users’
profiles. For example, one user complained about the inadequate data protection:

“I had my pictures set for a certain "LIST" to view and found that someone else (who
was not a friend on my page) was getting my pics and reposting them!!! There was a
"mutual friend" between us but that person was not in the "LIST" that was allowed to
view my pics and somehow with the changes they were able to do it. So they were
allowing the other person to get the pictures.”

With the compulsory adoption of the New Profile on January 10th of 2011, more and
more users paid attention to the new feature of displaying tagged photos on users’
profiles and complained about such change:

“It’s ridiculous! You know what, today when I click my friend’s tagged photo on her
profile, I could access to the whole album of my friend’s friend! Then, I made a test with
my other two friends B and S, even S kick me out of her Facebook, and B is not in S’s list
who could access her album, I still could see the album! I can’t believe this!!!”

In our dataset, a total of 124 comments were categorized as users’ concerns over inse-
curity. According to Solove [20], insecurity is naturally related to aggregation, as “it
creates risks of downstream harm that can emerge from inadequate protection of
compendiums of personal data” (p.515). In the case of launching New Profile, al-
though Facebook claimed that it did not change users’ privacy settings and accessibil-
ity of information, the redesign of information display carelessly triggered users’
security concerns by integrating tagged photos with their profile information. To us-
ers, this data practice in fact opened a new way to access information and potentially
resulted in information leaks and improper access.

2) Increased Accessibility creates problems such as the enlarged scope of informa-
tion disclosure and the enhanced risk of disclosure [20]. The New Profile reorganized
the display of user information with a more visually attractive way to display a cluster

332 S. Zheng et al.

of tagged photos and personal information on the top panel of the profile page.
Although Facebook believed that this change could help users better portray them-
selves efficiently [10], some users disagreed with Facebook by arguing that the new
interfaces would amplify the scope of information that may be viewed and accessed
by unwanted audience. For example, some users pointed out that the aggregated in-
formation and tagged photos “shortened” the distance or “simplified” the procedures
for “stalkers” to obtain information:

“Unless you are on purpose to search this stuff, otherwise you cannot see them di-
rectly. And in fact, your friends seldom go to see such kind of information; they just
want to know what are you doing now? So this really increased the risk and
possibility for stalkers to access.”

Another user complained about increased accessibility:

“It seems that Facebook make a huge sign for every user, which reminds every visitor
to look at here! Just one click! It makes me so uncomfortable! It’s a violation of
privacy!”

The breach of privacy often happened after users volitionally but unwittingly publi-
cized information to a wider audience than they actually intended. The new design
may increase the harms of unforeseeable visibility which was not only reflected in
tagged photos, but also in newsfeeds. For example, if User A connected and interacted
with a friend B, and B set his or her privacy settings to 'friends of friends' or 'every-
one', then everything A did on B’s page would be broadcasted by the newsfeeds to all
of A’s friends, no matter how tight A’s privacy settings were.

“Stop intruding on our privacy!!! What I post on a friend's wall is meant for that friend,
not for everyone, please, quit posting stuff on my wall that i didn't intend to go there…”

Another user replied to this comment by saying that:

“I agree!!! When i go to a friend’s house, and have a conversation with them, it isn't
broadcast to everyone i know! it didn't used to be that way here either.”

In our dataset, a total of 356 comments were labelled as users’ worries on increased
accessibility introduced by the New Profile. Interestingly, although the New Profile
did not disclose any new personal information, increased accessibility widely trig-
gered users’ privacy concerns. Why? Disclosed information is made easier to exploit
for purposes other than those for which it was initially made accessible [20]. As So-
love notes: “Unlike disclosure, the harm (of increased accessibility) is not a direct
revealing of information to another. Confidentiality is not breached; the cat is already
out of the bag. With increased accessibility, a difference in quantity becomes a
difference in quality—it enhances the risk of the harms of disclosure” [20, p.537].

3) Intrusion is defined as concern over invasions or incursions into one’s life, making
him or her uncomfortable and uneasy [20]. In the case of launching the New Profile,
we identified two types of intrusion practices from our data. First, users considered
the introduction of the New Profile as an intrusion to their information space because
they viewed their profile page as their own belongings, in which Facebook has no
right to change without users’ explicit permissions.

 Launching the New Profile on Facebook 333

“…i have begun deleting my photos online, and have untagged myself and all of my
friends because … i do not like the fact that you have a row of pictures at the top of
my page that i did not approve”

Second, users believed that they themselves should have control to decide what types
of information to be displayed on their profile. However, with the introduction of the
New Profile, users were able to tag their friends in events and life experiences. In
addition, those comments users posted on their friends’ walls were also posted on
their own walls. In our data set, some users considered the introduction of those new
features as an intrusion to their information space, and believed that unwanted
information cannot be posted by others.

“i don't need everyone to be able to see what i am commenting on. let that be the
decision of each user … as many fb users do, i have groups designated for games that
i have blocked from seeing anything personal, but now they have access … merely by
the design of the page. not cool.”

It seems that users have considered their online profiles as their virtual territory on
Facebook. In offline settings, individuals often desire spatial distance, which provides
comfort and relaxation, and enables them to stay away from the pressure of being in
public. Similarly, in the context of Facebook, users claim ownership of their digital
belongings that they are entitled to or that are created by them [25]. A user’s profile
page on Facebook is therefore considered as part of the virtual realm of the user.
Therefore, interface changes which enable inappropriate access, unwanted posts, or
information reorganization without users’ explicit permissions, could be considered as
intrusion.

4) Loss of Control. The element of control has been identified as an important pre-
dictor of individuals’ privacy concerns [23]. In the context of privacy research, con-
trol has been defined as an individual’s beliefs in one’s ability to determine to what
extent information about the self will be released and disseminated onto a website
[23]. In the context of Facebook, Facebook offers its members with granular control
on the searchability and visibility of their personal information and activities, which
represents a large range of genres – including status information, photos, posts, bio
and hobbies, family and relationships, permission to comment, places the user
checked in, and contact information, etc. However, the privacy research community
has criticized privacy control settings on Facebook to be too difficult to use, and to be
inadequate for the protection of users’ information [9].

Unusable Privacy Control Features: Given the frequent changes of user interfaces on
Facebook, users have had difficulties in keeping pace to the corresponding changes of
privacy settings. For example, some users were unclear about the changes of privacy
settings introduced by the New Profile:

“so--if we switch to/are forced to switch to this new format, do all of our privacy set-
tings automatically go back to 'allow,' forcing us to go back and redo them all?
maybe folks who have made the switch can fill us in on this...”

Another user complained about the general complexity of privacy settings:

334 S. Zheng et al.

“is there any way to make a suggestion/request? i'd like to request one page with direct
links to all the fb settings. it's crazy that we have to go to one place to set the privacy
settings on our photos, and another place to set the privacy settings on apps, and another
place for privacy settings on posts, etc. every website designer knows that navigation is
supposed to work like a menu. and granted, you've got the little drop down menu in the
upper right...but there's a lot of settings that aren't accessible from that (like photo album
settings).”

In sum, even though Facebook did provide various settings to control privacy, users
may not be able to make use of these settings due to their poor usability and thus users
still perceived their privacy being jeopardized.

Inadequate Privacy Control Features: In our data set, users complained about the
inadequate privacy control features to facilitate privacy management for different
categories of information displayed on the New Profile. A large number of users ex-
pressed their discontent of losing control as well as great need for better privacy
control mechanisms. For example:

“…we are feeling more and more like we have no control over what information is
shared (despite privacy settings, which i am very familiar with given that i must now
find ways to hide information that the site seems to think is important to share) and no
way to personalize our profile.”

Users’ concerns about tagged photos displayed on the New Profile were mentioned
most intensively. Users were bothered by the fact that tagged photos randomly ap-
peared in the New Profile and that users cannot decide its visibility and arrangement
of these photos. For users who care about their images, having no control over tagged
photos (except untagging or deleting photos) made them angry:

“… i don't like that i don't really have control over which five pictures show in the line. i
want to be able to select and order them as i can in an album. the five pictures you select
aren't necessarily the ones i want and if i hide them until i get five i like, i'd still like to
put them in the order i want. this random selection makes the pictures look sloppy...”

Another aspect of inadequate privacy control was revealed by users’ needs for notifi-
cation and consent for each change that Facebook made. For example, users want to
be notified with the launch of new features, with options to accept or decline these
new features. According to users’ comments in our data set, losing right to consent
new features is considered as an important aspect of inadequate privacy control.

“why no option to change back - there are so many flaws in this new design you
should be ashamed of it not proud at all - actually you have invaded my privacy by
putting my details in plain site without my permission.”

4.2 Second Stage: Outcomes of a Privacy Problem

Users not only uttered their privacy concerns triggered by the New Profile, but also
indicated their needs for desired control mechanisms as well as intended conse-
quences or outcomes. As shown in Figure 4, we classified these comments as three
categories of outcomes: 1) Psychological Outcomes, 2) Behavioral Outcomes, and
3) Suggested Privacy Mechanisms.

 Launching the New Profile on Facebook 335

Fig. 4. Distribution of Psychological and Behavioral Outcomes, and Suggested Mechanisms

Psychological Outcomes

Psychological outcomes refers to affective reactions which include indignation to
profile changes (99 comments), discomfort (71 comments) and dissatisfaction in us-
ing the platform and its services (115 comments), confusion in terms of how to use
privacy settings (60 comments), insecurity during the interactions with the platform
(49 comments), and distrust to the platform (20 comments). For example, a user can-
not figure out how the new features worked and thus complained that “I do not know
how it changed...it is confusing cause of my security settings...i want to set it back.”

Some users indicated their distrust beliefs toward Facebook: “it is obvious from the
lack of response that fb doesn't care how many people hate the less informative and
more intrusive new profile. what they do care about is income from their ads.”

Behavioral Outcomes

Behavioral outcomes refer to practical reactions which will be or have been done by
users. These actions include quitting the platform, limiting socializing (e.g., online
social interactions with friends, fan pages, groups etc.), locking account until Face-
book grant them reasonable privacy control, deleting as much personal information as
they can, untagging photos of themselves, and protesting Facebook with other users.
Users applied an array of behavioral strategies to balance the tradeoff between
publicness and privacy. For example, one user mentioned that:

“Our status from the top of the page is so you could get to our information first for ad-
vertisiing, so i removed mine too....hahaha...and i untagged all of my pictures, and re-
moved everything you want to see...apps no longer allowed to..no more games to steal
information...now i am strictly just friends i talk to...and i am getting bored with.”

336 S. Zheng et al.

Other behavioral outcomes triggered by users’ privacy concerns include less use of
Facebook and even leaving the platform.

“While it's true that i won't immediately stop using facebook, because it has become a
useful tool and has reached that critical mass where it seems that it's what everyone
uses, i will in fact use it less if this new format is forced on us. and i will delete my
personal info and untag photos of me rather than have them displayed in a manner
that's beyond my control.”

“This website has no privacy left what-so-ever. if this continues, screw facebook, i
won't use it anymore.”

Users even protested Facebook to fight against the introduction of the New Profile:

“Protest the forced 'New Profile' by deactivating your account for 2 hours. Perhaps that
will finally get their attention. February 1, 2011 is 'Deactivation Day' Click here, like the
page, and pass it on. Facebook is deleting these posts and shuffling the rest so fast it's
very hard to keep track.”

Suggested Privacy Mechanisms

As shown in Figure 4, users’ suggested privacy mechanisms are those changes that users
hope Facebook could make, including developing useful privacy control features, adding
opt-out or opt-in, going back to the old profile, launching an “unlike” button on the feed-
back page, and promoting privacy awareness within user community.

“Change can be good, but putting the changes within the users' control would be a
much wiser choice.”

“Wish they'd make it optional or give the user more control over how things are
displayed. the new layout looks lame.”

5 Discussion

This work depicts the emergence and outcomes of privacy concerns triggered by the
changes of interface and features brought by the launch of the New Profile on Facebook.
We argue that understanding the emergence and outcomes of a privacy problem is very
important in understanding users’ privacy needs and evaluating current designs of pri-
vacy enhancing features. Our findings indicate that changes of interface and features
have different dynamics that may result in arousal of unique privacy challenges and
interpretations.

In the emergence stage, there is no data showing that Facebook users would consider
information collection as a harmful information practice, which is distinct from prior
privacy literature [16, 19, 20] that usually considered information collection as a key
dimension of privacy concerns perceived by users. This difference can be explained by
the characteristics of the user population in this research, i.e., experienced users who have
acquiesced to the data collection practices of Facebook.com. In an IT event which intro-
duced various changes of interfaces and features, users’ privacy concerns were found to

 Launching the New Profile on Facebook 337

be determined by the practice of information aggregation, as well as their perceptions of
insecurity, ease of information access, intrusion, and privacy control.

Among the trigger conditions we derived from the users’ comments, we found that
Solove’s taxonomy [20] is a useful framework that can cover most harmful informa-
tion practices identified by our data set, e.g., information aggregation, insecurity,
increased accessibility, and intrusion. Nevertheless, Facebook users interpreted these
information practices with new meanings. Take the dimension of intrusion as an ex-
ample. Solove’s taxonomy interpreted intrusion from a non-territorial perspective,
including the harmful practices of spam, junk mail, or telemarketing [20]. In our re-
search context, users considered their online profiles as their virtual territory and thus
claimed ownership of their digital belongings that they were entitled to or that were
created by them. Interface changes which enabled inappropriate access, unwanted
posts, or information reorganization without users’ permissions, were considered as
intrusion by Facebook users.

Loss of control, which is not covered by Solove’s taxonomy, emerged as a very
important trigger condition in this work, which raised users’ privacy concerns in the
launch of the New Profile. We identified two causes of loss of control—i) unusable
privacy control features, and ii) inadequate privacy control features. Our results have
indicated that even though Facebook did provide various settings to control privacy,
users still complained about loss of privacy because they cannot make use of these
settings due to their poor usability. In addition, many users expressed their discontent
of losing control as well as great need for better privacy control mechanisms designed
for new features launched by Facebook.

The outcomes of privacy problems revealed by our data vocalize a strong appeal
toward practitioners of OSNs. Users are in great need of being notified and staying
aware of new features and potential risks. However, it seems that users do not have
much choice in reality. Practitioners of OSNs should be responsible to offer users
with better control mechanisms and freedom of usage for the new features.

Another lens of defining privacy in the context of OSNs is from a boundary man-
agement perspective [23]. From this aspect, individual users make decisions in their
information disclosure for the purpose of identity management [18]. The privacy
issues introduced by the New Profile added complexity in privacy boundary manage-
ment in OSNs. For example, tagged photos can potentially depict interaction informa-
tion among tagged users, which automatically involves more stakeholders in privacy
boundary formation and negotiation. The property of linking information from mul-
tiple parties blurs and complicates the process of privacy boundary management
among users who co-own and co-manage their shared information. Thus, investigat-
ing users’ interpersonal privacy concerns over shared information expects more
careful designs to manage these privacy boundaries.

6 Limitations and Conclusion

The analysis of user comments posted on the official Blog of Facebook provides an
overall picture of users’ privacy concerns, attitudes, and intended behaviors pertaining
to the launch of the New Profile on Facebook. However, this data set is not sufficient
to provide us with insights regarding users’ actual behaviour and social interactions in

338 S. Zheng et al.

their daily online activities on Facebook. In future work, we should explore these
issues at a fine-grained level through interview or field studies. In addition, our work
is only limited with a specific IT event (i.e., the launch of the New Profile) on a spe-
cific social networking platform (i.e., Facebook.com). Future research should study
other social networking platforms that offer similar sets of features to examine the
generalizability of our findings. Third, our study focused on the user comments writ-
ten in English and those non-English comments were excluded from data coding and
analysis. Future work should extend to those non-English comments to explore cross-
language or cross-culture differences. Lastly, the user population in our work is
limited to a sub-sample of Facebook users who had posted their comments on Face-
book’s blog during the launch of the New Profile. In other words, data was only
collected from those users who were willing to post their comments to express their
privacy concerns. Care must be taken in any effort to generalize our results beyond
the boundary of our sample.

Existing theories of privacy are conductive to understand the concept of informa-
tion privacy in general terms. Our work goes beyond this high level of conceptualiza-
tions and explores the trigger conditions under which users perceive the changes of
features and interfaces as privacy problems. In conclusion, our work not only adds to
the growing literature of privacy in the context of social networking sites, but also
offers practitioners wake-up calls and insights for further improvement.

Acknowledgements. The authors gratefully acknowledge the financial support of the
U.S. National Science Foundation under grant CNS-0953749. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

References

1. Angwin, J., Raice, S., Spencer, E.A.: Facebook Retreats on Privacy. The Wall Street Journal
(2011)

2. Culnan, M.J., Williams, C.C.: How Ethics Can Enhance Organizational Privacy: Les-sons
from the ChoicePoint and TJX Data Breaches. MIS Quarterly 33(4), 673–687 (2009)

3. Eisenhardt, K.M.: Building Theories from Case Study Research. The Academy of Man-
agement Review 14(4), 532–550 (1989)

4. Ellison, N.B., Steinfield, C., Lampe, C.: The Benefits of Facebook “Friends”: Social Capi-
tal and College Students’ Use of Online Social Network Sites. Journal of Computer-
Mediated Communication 12(4), 1143–1168 (2007)

5. Facebook Blog: Introducing New Profile (2010),
http://blog.facebook.com/blog.php?post=462201327130

6. Facebook Blog: New Profile Is Here (2011),
http://blog.facebook.com/blog.php?post=479551972130

7. Facebook Statistics, http://facebook.com/press/info.php?statistics
8. Goulielmos, M.: Systems development approach: transcending methodology. Information

Systems Journal 14, 363–386 (2004)
9. Grimmelmann, J.: Saving Facebook. Iowa Law Review 94, 1137–1206 (2009)

 Launching the New Profile on Facebook 339

10. Gross, D.: Explaining Facebook’s new profile pages,
http://articles.cnn.com/2010-12-
06/tech/facebook.profile.update_1_profile-photo-facebook-
friends-facebook-page?_s=PM:TECH

11. Gross, R., Acquisti, A.: Information revelation and privacy in online social networks. In:
Workshop on Privacy in the Electronic Society. ACM, New York (2005)

12. Helft, M.: Critics Say Google Invades Privacy With New Service,
http://www.nytimes.com/2010/02/13/technology/internet/
13google.html

13. Hoadley, C.M., Xu, H., Lee, J.J., Rosson, M.B.: Privacy as information access and illusory
control: The case of the Facebook News Feed privacy outcry. Electronic Commerce Re-
search and Applications 9(1), 50–60 (2010)

14. Jagatic, T.N., Johnson, N.A., Jakobsson, M., Menczer, F.: Social Phishing. Communica-
tions of the ACM 50(10), 94–100 (2007)

15. Krasnova, H., Hildebrand, T., Günther, O., Kovrigin, S., Nowobilska, A.: Why Par-ticipat.
In: An Online Social Network: An Empirical Analysis. In: European Conference on In-
formation Systems, Galway, Ireland (2008)

16. Malhotra, N.K., Kim, S.S., Agarwa, J.: Internet Users’ Information Privacy Concerns
(IUIPC): The Construct, the Scale, and a Causal Model. Information Systems Re-
search 15(4), 336–355 (2004)

17. Orlikowski, W.J.: Case Tools as Organizational Change: Investigating Incremental and
Radical Changes in Systems Development. MIS Quarterly 17(3), 309–340 (1993)

18. Palen, L., Dourish, P.: Unpacking “privacy” for a networked world. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 129–136. ACM Press,
Ft. Lauderdale (2003)

19. Smith, H.J., Milberg, J.S., Burke, J.S.: Information Privacy: Measuring Individuals’
Concerns About Organizational Practices. MIS Quarterly 20(2), 167–196 (1996)

20. Solove, D.J.: A Taxonomy of Privacy. University of Pennsylvania Law Review 154, 3
(2006)

21. Strauss, A.L., Corbin, J.: Basics of Qualitative Research: Grounded Theory Procedures and
Techniques. Sage (2008)

22. Urquhart, C., Lehmann, H., Myers, M.D.: Putting the ‘theory’ back into grounded theory:
guidelines for grounded theory studies in information systems. Information Systems Jour-
nal 20, 357–381 (2010)

23. Xu, H., Dinev, T., Smith, H.J., Hart, P.: Information Privacy Concerns: Linking Indi-
vidual Perceptions with Institutional Privacy Assurances. Journal of the Association for In-
formation Systems 12(12), 798–824 (2011)

24. Xu, H., Gupta, S.: The Effects of Privacy Concerns and Personal Innovativeness on Poten-
tial and Experienced Customers’ Adoption of Location-Based Services. Electronic
Markets 19(2), 137–140 (2009)

25. Zhang, N., Wang, C., Xu, Y.: Privacy in Online Social Networks. In: International
Conference on Information System, Shanghai, China (2011)

Author Index

Afanasyeva, Alexandra 1
Asokan, N. 1

Cai, Liang 273
Chen, Hao 273, 291
Cheng, Yueqiang 201
Crussell, Jonathan 291

De Cristofaro, Emiliano 55
Ding, Xuhua 201
Dmitrienko, Alexandra 219

Ekberg, Jan-Erik 1
Erickson, Jeremy 291

Gibler, Clint 291
Gligor, Virgil D. 34

Harvey, Nigel 308
Hasan, Zahid 92
Honda, Shinya 74

Jaeger, Trent 179

Katzenbeisser, Stefan 142
Kirlappos, Iacovos 308
Kocabaş, Ünal 142
Krischkowsky, Alina 92
Kumar, Apurva 239

Martin, Andrew 255
McCune, Jonathan M. 159
Murphy, Julian 110

Namiluko, Cornelius 255
Newsome, James 159

Owusu, Emmanuel 159

Parno, Bryan 34
Perrig, Adrian 34
Peter, Andreas 142
Pirker, Martin 122

Qu, Ning 34

Ritter, Eike 19

Sadeghi, Ahmad-Reza 142, 219
Sangorŕın, Daniel 74
Sasse, M. Angela 308
Schiffman, Joshua 179
Shi, Pan 325
Smart, Matt 19

Takada, Hiroaki 74
Tamrakar, Sandeep 219
Toegl, Ronald 122
Tscheligi, Manfred 92
Tsudik, Gene 55

Vasudevan, Amit 34, 159
Vijayakumar, Hayawardh 179

Wachsmann, Christian 219
Winter, Johannes 122

Xu, Heng 325

Zhang, Cheng 325
Zheng, Saijing 325
Zhou, Zongwei 159

	Title
	Preface
	Organization
	Table of Contents
	Technical Strand
	Authenticated Encryption Primitives for Size-Constrained Trusted Computing
	Introduction
	Motivation and System Models
	Assumptions and Requirements
	Proof of Security
	Technique
	Analysis

	Implementation Pitfalls
	Security for the External User
	Mapping of Memory Locations

	Reference Implementation
	Related Work
	Interpretation and Proposal
	Conclusion
	References

	Auditable Envelopes: Tracking Anonymity �Revocation Using Trusted Computing
	Introduction
	Related Work
	Motivation and Contribution
	Structure

	Background: Trusted Computing
	Physical and Virtual Monotonic Counters

	Trust Model
	Protocol
	Implementation Steps

	Applicability
	When Does Alice Request a Pseudonym?
	Digital Cash Examples
	Electronic Voting Example

	Analysis
	Conclusions and Future Work
	References

	Lockdown: Towards a Safe and Practical Architecture for Security Applications on Commodity Platforms
	Introduction
	Problem Definition
	Lockdown's Architecture
	Hyper-partitioning
	Trusted Environment Protection

	External Verification and Trusted Path
	Security Analysis
	Other Attacks

	Implementation
	Hyper-partitioning
	Protecting the Trusted Environment
	External Verification and Trusted Path

	Evaluation
	Trusted Computing Base (TCB)
	Performance Measurements

	Related Work
	Conclusion
	References

	Experimenting with Fast Private Set Intersection
	Introduction
	The DT10-v4 PSI Protocol
	Notation
	Protocol Specification
	Precomputation

	Implementing DT10-v4
	Important Design Choices
	Prototype Implementation
	Additional Performance-Optimizing Techniques

	Performance Evaluation
	Protocol Total Running Time
	Micro-benchmarking

	Comparison to NDSS12
	Performance Comparison
	The Choice of Protocols from FC10
	Evaluation Criteria

	Conclusion
	References

	Reliable Device Sharing Mechanisms for Dual-OS Embedded Trusted Computing
	Introduction
	Background
	SafeG: A Dual-OS System Based on ARM TrustZone
	Motivational Example

	Reliable Device Sharing
	Requirements and Assumptions
	Suitability of Existing Device Sharing Approaches
	Reliable Device Sharing through Re-partitioning
	Pure Re-partitioning
	Hybrid Re-partitioning

	Implementation
	Evaluation
	Overhead
	Device Latency
	Code Modifications

	Related Work
	Conclusions and Future Work
	References

	Modelling User-Centered-Trust (UCT) in Software Systems: Interplay of Trust, Affect and Acceptance Model
	Introduction
	Concept of Trust
	Trust as Belief, Attitude, Intention and Psychological State
	Confusion about Trust and Trustworthiness
	Anomalies in Trust Measures

	TAM: Technology Acceptance Model
	Trust and TAM

	Trust in Technology vs. Trust in People
	Trust in Software Systems
	Trust in ISO Definition
	Trust in Software Development Process
	Trustworthy Software

	User-Centered-Trust (UCT) in Software Systems
	Conceptualization of Trust in Software Systems

	Proposition 1: Attitude, Acceptance and Affect
	Proposition 2: Attitude, Trust and Affect
	Proposition 3: Cognitive and Affective Attitude
	Proposition 4: From Aesthetics to Emotions and Cognition
	Proposition 4: Trust in Vendor
	Conclusions, Limitations and Future Directions
	References

	Clockless Physical Unclonable Functions
	Introduction
	Contributions and Paper Organization

	Asynchronous Logic
	Asynchronous Rings
	Bubbles and Tokens
	Token and Bubble Propagation

	ASYNCPUF
	Results
	Conclusions
	References

	Lightweight Distributed Heterogeneous Attested Android Clouds
	Introduction
	Security Enhanced Mass-Market Platforms
	Trusted Platform Module
	Trusted Execution Technology
	ARM Platforms

	Architecture
	Cloud Node Properties
	Entities
	Core Operations

	Implementation
	x86 PC Platform
	ARM Platform

	Platform Security Survey
	Trust Perimeter
	Distributed Nodes
	Node Diversity
	Attack Surface
	Open Source Cloud Node Platform
	Future Trusted Platforms

	Related Work
	Outlook and Conclusion
	References

	Converse PUF-Based Authentication
	Introduction
	Contributions
	Outline

	Background and Related Work
	Converse PUF-Based Authentication
	Protocol Description
	Correctness of the Protocol
	Authenticated Key Exchange

	Security Model and Analysis
	Instantiation of the Protocol
	Conclusion
	References

	Trustworthy Execution on Mobile Devices: What Security Properties Can My Mobile Platform Give Me?
	Introduction
	Demand for Applications Requiring Hardware Security
	Desired Security Features
	Available Hardware Primitives
	Isolated Execution
	Secure Storage
	Remote Attestation
	Secure Provisioning
	Trusted Path
	Design Gaps and Challenges
	Platform Case Studies

	Isolated Execution Environments
	Parallel Isolated Execution
	Hypervisors

	API Architectures
	Analysis and Recommendations
	References

	Verifying System Integrity by Proxy
	Introduction
	Remote Integrity Verification
	Integrity Verification Overview
	Integrity Monitoring Challenges

	Integrity Verification Proxy
	Design Goals
	Assumptions
	Architecture Overview
	Verifying the IVP Platform
	Channel Mediation
	Integrity Monitoring
	Measurement Modules

	Implementing an IVP
	Verifying the Host
	Channel Mediator
	Integrity Monitor

	Evaluation
	Functionality
	Performance

	Related Work
	Conclusion
	References

	Virtualization Based Password Protection against Malware in Untrusted Operating Systems
	Introduction
	Related Work
	Overview
	Design Criteria
	Design Rationale
	The Architecture

	The Design Details
	User-Hypervisor Interaction
	Keystroke Interception
	Handling SSL Session
	Security Analysis

	Implementation
	KGuard in the Hypervisor
	Browser Extension and Plugin
	Hypercall Support in the HVM

	Performance Evaluation
	Overhead for Password Input
	Overhead for Password Submission

	Discussions
	Hypervisor Security
	Trusted Certificate Updates
	Sensitive Keyboard Input Protection

	Conclusion
	References

	SmartTokens: Delegable Access Control with NFC-Enabled Smartphones
	Introduction
	Multi-level Security Architecture
	Model and Requirement Analysis
	Generic Security Architecture
	Architecture Instantiation

	SmartTokenSystem
	Overview
	Notation and Preliminaries
	Protocol Specification

	Security Analysis
	SmartTokens Reference Implementation
	Instantiation of the Multi-level Platform Security Architecture

	Related Work
	Conclusion and Future Work
	References

	A Belief Logic for Analyzing Security of Web Protocols
	Introduction
	Related Work
	Overview of Logic of Authentication
	Extending Belief Logic
	Introducing New Concepts and Syntax
	Implications of Forged Requests
	Reasoning about Users, Actions and Secrets

	Analysis of SAML Identity Linking Protocol
	Protocol Description
	Modeling and Analysis
	Fixing Identity Linking

	Analysis of OAuth Protocol
	Protocol Description
	Modeling and Analysis
	Fixing OAuth Protocol

	Conclusions
	References

	Provenance-Based Model for Verifying Trust-Properties
	Introduction
	Virtual Platforms for Trust Domains

	Related Work
	Trust Properties and Evidence
	Trust Properties
	Evidence Classification

	Graph-Based Representation
	A Summary of OPM Semantics
	Program Execution
	Program Configuration
	Integrity Measurement
	Communication
	Assertion Model

	Reasoning about Trust-Properties
	Evidence Validation
	Property Specification and Verification

	Verifying Virtual Appliances
	Set-Up and Provenance Collection
	Graph Representation
	Verification

	Discussion
	Interoperability and Extensibility
	Collecting and Securing the Evidence
	Assumption on Infrastructure

	Conclusions and Future Work
	References

	Socio-economic Strand
	On the Practicality of Motion Based Keystroke Inference Attack
	Introduction
	Background
	Motion Based Keystroke Inference Attack
	Motion Sensor Data

	Related Works
	Methodology
	Data Acquisition
	Preprocessing
	Classification

	Evaluation
	User Study
	Finding
	Motion Sensor Selection
	Classification Techniques

	Discussions
	Inference Precision
	Multiple Templates in DTW
	Multi-class SVM

	Conclusion
	References

	AndroidLeaks: Automatically Detecting Potential Privacy Leaks in Android Applications on a Large Scale
	Introduction
	Background
	Threat Model
	Methodology
	Permission Mapping
	Android Leaks

	Evaluation
	Potential Privacy Leaks Found
	Miscellaneous Findings

	Limitations
	Related Work
	Conclusion
	References

	Why Trust Seals Don’t Work: A Study of User Perceptions and Behavior
	Introduction
	Background
	E-Commerce and Trust
	How Attackers Exploit Trust
	Trust Signaling
	Trust Symptoms - User Trust Assessment Heuristics
	Trust Seals
	Public Awareness Campaigns
	Summary

	Experiment
	Aim
	Method

	Results
	Effectiveness of Trust Seals
	Factors Affecting Trust in Websites

	Discussion
	Trust Seals Are Not Effective
	Trust Assessment Heuristics and Consumer Awareness

	Conclusions
	What Needs to Be Done
	Research Limitations

	References

	Launching the New Profile on Facebook: Understanding the Triggers and Outcomes of Users’ Privacy Concerns
	Introduction
	Conceptual Background
	Methodology
	Research Context
	Data Collection
	Grounded Theory Approach

	Findings
	First Stage: Emergence of a Privacy Problem
	Second Stage: Outcomes of a Privacy Problem

	Discussion
	Limitations and Conclusion
	References

	Author Index

