
Chapter 7
TCHo: A Code-Based Cryptosystem

Alexandre Duc and Serge Vaudenay

Abstract TCHo is a public-key cryptosystem based on the hardness of finding a
multiple polynomial with low weight and on the hardness of distinguishing between
the output of an LFSR with noise and some random source. An early version was
proposed in 2006 by Finiasz and Vaudenay with non-polynomial (though practical)
decryption time. The latest version came in 2007 with more co-authors. It reached
competitive (heuristic) polynomial complexity and IND-CPA security. Since then, a
key-recovery chosen ciphertext attack was published by Herrmann and Leander in
2009. In this paper we review the state of the art on this cryptosystem, together with
some latest improvements regarding implementation and selection of parameters.
We provide also more formal results regarding correctness and we update the key
generation algorithm.

7.1 Introduction

Public-key cryptography first appeared with the seminal paper of Diffie and Hellman
in 1976 [21]. From this work, Rivest, Shamir, and Adleman presented the RSA
cryptosystem in 1978 [60], which is still the mostly used one nowadays. Among the
popular cryptosystems, there are the Rabin cryptosystem [56], which is very close
to RSA, and the ElGamal family of cryptosystems [25].

Every public-key cryptosystem relies on problems that are believed to be
computationally infeasible. As far as we know, all cryptosystems which are used
in practice rely on two problems: the integer factorization problem [56, 60] and the
discrete logarithm problem [25]. However, these two problems can easily be solved

A. Duc (�) • S. Vaudenay
EPFL, Lausanne, Switzerland
e-mail: alexandre.duc@epfl.ch

E. Kranakis (ed.), Advances in Network Analysis and its Applications,
Mathematics in Industry 18, DOI 10.1007/978-3-642-30904-5 7,
© Springer-Verlag Berlin Heidelberg 2013

149

150 A. Duc and S. Vaudenay

in polynomial time on a quantum computer using Shor’s algorithm [62] and its
generalizations [32]. Hence, if one can build a quantum computer with sufficiently
many qubits to solve these problems, the mostly used public-key cryptographic
systems will be broken and will have to be replaced.

To be prepared for this, we need crypto-diversity. Then, if one cryptosystem
is broken, another ideally well-studied cryptosystem will be available for use.
In particular, some of these systems should be secure on quantum computers as
well. Such cryptosystems are referred to post-quantum cryptosystems. Nowadays,
this has become a hot topic and dozens of quantum-resistant schemes have been
designed.

Several types of post-quantum cryptosystems have been proposed. Some are
based on multivariate equations [22, 36, 45, 52–54], whereas some others are code-
based [3, 29, 46, 50] or lattice-based [1, 2, 30, 34, 44, 55, 57, 58]. The former are, to
the best of our knowledge, used only to design signature schemes. In the following,
we focus on code-based and lattice-based cryptosystems.

7.1.1 Code-Based Cryptosystems

Code-based cryptosystems rely on error correcting codes and the addition of random
noise during the encryption.

The most famous code-based cryptosystem is the McEliece cryptosystem [46]. It
was introduced by McEliece in 1978 and is still unbroken. In this scheme, the private
key is the generator matrix G of a random [k,n]-Goppa code able to correct up to t
errors along with two matrices P and S, where P is a random k× k permutation and
S a random n× n non-singular matrix. The public key is then a scrambled version
Ĝ of G, defined as Ĝ := SGP. A message is encrypted by first encoding it with
the code associated to Ĝ and by adding a random noise with exactly t ones. The
security of the system relies on the hardness of decoding a scrambled Goppa code.
This problem is also known as the McEliece problem. Decryption of a ciphertext can
be performed efficiently if one is in possession of P, S, and G, since Goppa codes
are efficiently decodable.

Niderreiter described a dual variant of the McEliece cryptosystem [50]. Instead
of representing the message as a codeword, the encryption is performed with the
parity check matrix H of a Goppa code. The security of the two schemes have
been shown to be equivalent [39]. A signature scheme [19] was derived from the
Niderreiter cryptosystem by Courtois et al.

A code-based symmetric key cipher, LPN-C [29], was introduced by Gilbert et al.
This cipher is based on another problem which is believed to be hard: the Learning
from Parity with Noise problem (LPN). The LPN problem consists in finding an
unknown k-bit vector x given access to an oracle that returns (a,a ·x+ν), for some
biased noise ν and some random vector a.

The main drawback of these schemes is that the key length needed to obtain
reasonable security is pretty large. For the McEliece cryptosystem, public keys of

7 TCHo: A Code-Based Cryptosystem 151

size 216 achieve only 84.88-bit security [9]. To obtain 266.94-bit security, 220-bit
keys are needed. Note that, asymptotically, the McEliece cryptosystem has better
key sizes than RSA. For a security parameter λ, a McEliece key has size λ2+o(1)

while RSA keys have size λ3+o(1) [8], but this holds only for impractical λ. Another
drawback of these schemes is that the ciphertext length has to be bigger than
the plaintext. This comes from the use of an error-correcting code and cannot be
changed.

TCHo belongs also to the code-based cryptosystem category. However, its
security rely on a somewhat different problem: the low weight polynomial multiple
problem.

7.1.2 Lattice-Based Cryptosystems

The other category of post-quantum cryptosystems are lattice-based cryptosystems.
One of the strengths of lattice-based cryptography is that its security is often based
on the worst-case hardness of problems instead of average-case hardness.

One of the computationally hard problems on which lattice-based systems rely
on is the Shortest Vector Problem (SVP). Briefly, this problem consists of finding the
shortest non-zero vector in a lattice or an approximation of it within a polynomial
factor. Polynomial algorithms like LLL [38] or its improvements [61] can only find
subexponential approximations of it.

Lattice-based cryptography was introduced by Ajtai in 1996 [1]. Shortly after,
Ajtai and Dwork designed the first lattice-based public-key cryptosystem based on
the worst-case hardness of SVP [2]. This scheme was later improved in [30, 57].
However, they suffer from large key sizes and a large expansion factor, and are
inefficient in practice. Indeed, for a lattice of dimension n, the keys in this scheme
have size ˜O

(

n4
)

and the ciphertexts ˜O
(

n2
)

[59].1

Another class of lattice-based cryptosystems are based on the worst-case com-
plexity of the Learning With Errors (LWE) problem [44,55,58]. The LWE problem
is the following: given a dimension n, a modulus q and an error distribution χ over
Fq, the goal is to find a secret vector s ∈ F

n
q using independent LWE-samples:

(a,〈a,s〉+ ε) ∈ F
n
q×Fq, a

U←− F
n
q, ε χ←− Fq.

Reference [44] introduces the ring-LWE problem, an algebraic variant of the
LWE problem. According to the authors, it is the first truly practical lattice-based
cryptosystem based on LWE.

The most famous and efficient lattice-based cryptosystem is NTRU [34] which
is based on the work of Goldreich et al. [31]. Its security is based on the hardness

1A function is ˜O(f (n)) if it is O
(

f (n) · log(f (n))k
)

for some k.

152 A. Duc and S. Vaudenay

of SVP and the Closest Vector Problem (CVP) in convolution modular lattices, a
particular class of lattices. Unlike some schemes we named above, NTRU’s security
has not been shown equivalent to the hardness of SVP or CVP. Nevertheless, for a
security parameter λ, the asymptotic cost for encryption and decryption is O

(

λ2
)

and the key sizes is O(λ) which makes of NTRU one of the most efficient public-key
cryptosystems.

7.1.3 TCHo

It is often the case in stream cipher cryptanalysis that we need to cancel the effect
of a linear feedback shift register with noise by using a low weight multiple of its
connection polynomial. This happens in fast correlation attacks [47]. For instance,
in the cryptanalysis of Bluetooth E0 [40–43], we need to find such a multiple with
low weight for a given polynomial coming from the E0 specifications. Actually, the
lower the degree and the weight, the more efficient the attack. This happens to be
hard in practice. However, the designer of E0 could have selected the polynomial
as a factor of some secret low weight multiple. That is, a trapdoor could have been
hidden to break the cipher. Refining this idea, in 2006, Finiasz and Vaudenay [26]
came up with the notion of trapdoor cipher on which TCHo is based. Indeed,
the name “TCHo” stands for “Trapdoor Cipher, Hardware Oriented”.2 This early
version of TCHo was using a linear code based on another LFSR.

One drawback of this design was that decryption (using the trapdoor) was not
polynomially bounded, although still feasible in practice. Then, Meier suggested
using other codes. Finally, in 2007, Aumasson et al. presented the latest version [3]
with polynomial complexity using heuristic algorithms. They proved semantic
security based on some new complexity assumptions. They further proposed to
apply the Fujisaki-Okamoto construction [27] to achieve IND-CCA security.

In 2009, Herrmann and Leander [33] have shown that we can mount a key
recovery chosen ciphertext attack, which seemingly proves that the key recovery
problem and the decryption problem are somewhat equivalent.

Since then, Duc [23] has shown how to generate better parameter vectors, and
Bindschaedler [10] implemented it as a new cipher in TLS for a browser and an
HTTP server.

In this paper, we survey known results about TCHo. Additionally, we provide
more formal (i.e. non-heuristic) results regarding correctness, with an updated key
generation algorithm.

2The word “tchô” happens to come from some French slang which originated from the famous
Swiss cartoonist Zep who created a comics magazine for kids with this name in 1998.

7 TCHo: A Code-Based Cryptosystem 153

7.1.4 Structure of This Paper

In Sect. 7.2 we describe our notation and give basic definitions used throughout the
paper. In Sect. 7.3 we present the problems on which the security of TCHo relies on
and we survey algorithms that solve them. The complexity of these algorithm will be
needed to find secure parameters for TCHo. In Sect. 7.4 we present the TCHo cipher
and prove that it is a cryptosystem with heuristic key generation. In Sect. 7.5 we
discuss the security of TCHo, we prove that TCHo is IND-CPA secure and we show
how to achieve IND-CCA security. In Sect. 7.6 we give some practical parameters
for TCHo and we discuss some implementation results. We conclude in Sect. 7.7.

7.2 Notations and Definitions

We denote by “log” the logarithm in base two and by “ln” the natural logarithm. We

write x
U←−D if an element x is drawn uniformly at random in a domain D. We write

x
χ←− D if x is drawn from domain D using distribution χ. For TCHo, we consider

only binary polynomials, i.e., polynomials with coefficients in F2. The degree of
a polynomial P ∈ F2[x] is denoted dP. We use uppercase characters to represent
polynomials and the same letter in lowercase to represent its coefficients. Hence,
we write P = p0 + p1X + p2X2 + · · ·+ pdPXdP . The number of nonzero coefficients
of P is called the weight of the polynomial and is denoted wP. In other words,
wP = ∑dP

i=0 pi, where pi’s are considered as elements in Z. A polynomial P with
wP� dP is called a sparse polynomial or a low weight polynomial.

The bias γ of a random bit B is the difference between the probability of
occurrence of a zero and the probability of occurrence of a one, i.e., γ = Pr[B =
0]−Pr[B= 1]. Hence, a source producing random bits with bias γ outputs a zero with
probability 1

2 (1+ γ) and a one with probability 1
2(1− γ). We call a finite sequence

of bits x a bitstring. We write its length |x|, which denotes its number of bits. As for
polynomials, we call the weight of a bitstring its number of ones. The concatenation
of two bitstrings x and y is written x‖y. The (possibly infinite) output of a bitsource
S is called a bitstream. If we need to specify the input (e.g. the seed) r of a source
S, we write S(r). The bitstring constructed from the first � bits produced by S is
denoted S�. We denote by Sγ a bitsource producing independent bits with bias γ.
Given a bitstring x, we denote by trunc�(x) the substring of x made by its first � bits.

Given some initial parameters Π and a predicate P, we write

Pr

⎡

⎢

⎢

⎢

⎣

P(v1, . . . ,vm;rp) :

v1← f1(Π;r1)

...

vm← fm(Π,v1, . . . ,vm−1;rm)

⎤

⎥

⎥

⎥

⎦

154 A. Duc and S. Vaudenay

to denote

Pr
r1,...,rm

rp

[

∨

v1,...,vm

P(v1, . . . ,vm;rp)∧ v1 = f1(Π;r1)∧·· ·∧ vm = fm(Π,v1, . . . ,vm;rm)

]

.

A Linear Feedback Shift Register (LFSR) can be described by its feedback
polynomial P = ∑dP

i=0 piXi. It is then denoted LP. When given an initial state
s = (s0,s1, . . . ,sdP−1), an LFSR LP produces a bitstream denoted SLP(s). Recall
that an LFSR with feedback polynomial P and initial state s = (s0,s1, . . . ,sdP−1)

produces the bitstream si with si+dP = ∑dP−1
k=0 pksi+k in F2.

Finally, we define two operations used in TCHo. The bitwise sum (in F2) of
two bitstrings x and y of same length is written x+ y. The product of a polynomial
K ∈ F2[X] of degree d, K = ∑d

j=0 k jX j and a bitstring Sd+N = (s0, . . . ,sN+d−1) is

denote K⊗Sd+N and is defined as

K⊗Sd+N = (s′0, . . . ,s
′
N−1),

with s′i := sik0 + si+1k1 + · · ·+ si+dkd . We can also associate the polynomial K with
an N× (d+N) matrix MN

K defined as

MN
K :=

⎡

⎢

⎢

⎢

⎣

k0 k1 . . . kd 0 0 . . . 0
0 k0 k1 . . . kd 0 . . . 0

. . .
. . .

0 0 . . . 0 k0 k1 . . . kd

⎤

⎥

⎥

⎥

⎦

.

Then, we have
[

s′0 . . . s′N−1

]T
= MK

[

s0 . . . sN+d−1
]T

.

Note that P ⊗ S�
LP

= 0, i.e., when the feedback polynomial is used for the
multiplication, we obtain the zero bitstring. This multiplication operator verifies
also (PQ)⊗S = P⊗ (Q⊗S). Thus, if P divides K, K⊗S�

LP
= 0.

A function f (λ) is negligible if for all d ∈ R we have f (λ) = O
(

λ−d
)

.

Definition 7.1 (Cryptosystem). A cryptosystem over a given message space M
and random coin space R consists of three polynomial-time algorithms:

• A probabilistic key-generation algorithm Gen(1λ) taking as input some security
parameter 1λ in unary representation, and producing a secret key Ks and a public
key Kp;

• A probabilistic encryption algorithm Enc(Kp,m;r) taking as input a public key
Kp and a message m ∈ M with some random coins r ∈ R , and producing a
ciphertext y in the ciphertext space C ;

• A deterministic decryption algorithm Dec(Ks,c) taking as input a secret key Ks

and a ciphertext c ∈ C , and producing a message or an error.

7 TCHo: A Code-Based Cryptosystem 155

The cryptosystem must satisfy the following correctness property:

max
m∈M

Pr
[

Dec(Ks,Enc(Kp,m;ρ)) �= m : (Ks,Kp)← Gen(1λ;ρg)
]

is negligible as λ increases.

We will also use the following security notions and acronyms. Adaptive Chosen
Ciphertext Attack is denoted CCA, Chosen Plaintext Attack CPA, Indistinguishabil-
ity IND, and One-wayness OW.

Definition 7.2 (OW-CCA-security). A cryptosystem is (t,ε)-OW-CCA-secure if
no adversary A , with access to a decryption oracle OKs,c and with running time
bounded by t, can recover the plaintext from a given ciphertext with a probability
higher than ε. More formally, for all A bounded by t,

Pr

⎡

⎢

⎢

⎢

⎣

AOKs ,c(c;ρ) = m :

m
U←−M ; r

U←− R

(Ks,Kp)← Gen(1λ)

c← Enc(Kp,m;r)

⎤

⎥

⎥

⎥

⎦

≤ ε,

where OKs,c(y) =Dec(Ks,y) for y �= c and OKs,c(y) =⊥ otherwise. Asymptotically, a
cryptosystem is OW-CCA-secure if for any polynomial t(λ) there exists a negligible
function ε(λ) such that it is (t(λ),ε(λ))-OW-CCA-secure.

Definition 7.3 (IND-CPA-security). A cryptosystem is said (t,ε)-IND-CPA-secure
or (t,ε)-semantically secure against chosen plaintext attacks if no adversary A =
(A1,A2) with running time bounded by t can distinguish the encryption of two
different plaintexts m0 and m1 with a probability higher than ε. More formally, for
all A bounded by t,

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A2(Kp,c;ρ) = b :

(Ks,Kp)← Gen(1λ)

m0,m1← A1(Kp;ρ)

r
U←− R ; b

U←− {0,1}
c← Enc(Kp,mb;r)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≤ 1
2
+ ε.

Asymptotically, a cryptosystem is IND-CPA-secure if for any polynomial t(λ) there
exists a negligible function ε(λ) such that it is (t(λ),ε(λ))-IND-CPA-secure.

IND-CPA-security can also be represented in the real-or-random game
model [5, 6].

Definition 7.4 (Real-or-random IND-CPA game security). A cryptosystem is
(t,ε)-IND-CPA-secure in the real-or-random game model if no adversary A =
(A1,A2) with running time bounded by t can distinguish the encryption of a chosen

156 A. Duc and S. Vaudenay

plaintexts m0 to a random one with a probability higher than ε. More formally, for
all A bounded by t,

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A2(Kp,c;ρ) = b :

(Ks,Kp)← Gen(1λ)

m0← A1(Kp;ρ); m1
U←−M

r
U←− R ; b

U←− {0,1}
c← Enc(Kp,mb;r)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≤ 1
2
+ ε.

Asymptotically, a cryptosystem is IND-CPA-secure in the real-or-random game
model if for any polynomial t(λ) there exists a negligible function ε(λ) such that
it is (t(λ),ε(λ))-IND-CPA-secure in the real-or-random game model.

A (t,ε)-IND-CPA-secure system in the real-or-random game model is (t,2ε)-IND-
CPA-secure in the standard model [5]. Conversely, a (t,ε)-IND-CPA-secure system
in the standard model is (t,ε)-IND-CPA-secure in the real-or-random game model.
Asymptotically, both models are equivalent.

Definition 7.5 (IND-CCA-security). A cryptosystem is said (t,ε)-IND-CCA-secure
or (t,ε)-secure against adaptive chosen plaintext attacks if no adversary A =
(A1,A2), with access to a decryption oracle OKs,c and with running time bounded
by t can distinguish the encryption of two different plaintexts m0 and m1 with a
probability higher than ε. More formally, for all A bounded by t,

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

AOKs ,c
2 (Kp,c;ρ) = b :

(Ks,Kp)← Gen(1λ)

m0,m1← AOKs
1 (Kp;ρ)

r
U←− R ; b

U←− {0,1}
c← Enc(Kp,mb;r)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≤ 1
2
+ ε,

where OKs,c(y) = Dec(Ks,y), and OKs,c(y) =Dec(Ks,y) for y �= c and OKs,c(c) =⊥.
Asymptotically, a cryptosystem is IND-CCA-secure if for any polynomial t(λ) there
exists a negligible function ε(λ) such that it is (t(λ),ε(λ))-IND-CCA-secure.

Definition 7.6. Given two sources S0 and S1, a distinguisher between them is an
algorithm D that takes as input one sample x from either S0 or S1 and has to decide
which source was used. Its advantage is

AdvD(S0,S1) = Pr [D(x) = 1 : x← S1]−Pr [D(x) = 1 : x← S0] .

We say that the two sources are (t,ε)-computationally indistinguishable if for any
distinguisher D with running time bounded by t,

|AdvD(S0,S1)| ≤ ε.

7 TCHo: A Code-Based Cryptosystem 157

Asymptotically, two sources are computationally indistinguishable if for any poly-
nomial t(λ) there exists a negligible function ε(λ) such that, they are (t(λ),ε(λ))-
computationally indistinguishable.

We will be using the following Chernoff bound:

Theorem 7.1 (Chernoff [14]). For X1, . . . ,Xn independent identically distributed
Bernoulli random variables with E(X1)≤ 1

2 ,

Pr

[

1
n

n

∑
i=1

Xi ≥ 1
2

]

≤ exp

(

−2n

(

E(X1)− 1
2

)2
)

.

7.3 Computational Problems

TCHo ’s security is based on computational problems which are believed to be hard.
In this section, we survey the existing algorithms used to solve these problems and
we focus on their best complexity to find suitable parameters for TCHo.

7.3.1 Low Weight Polynomial Multiple Problem

Unlike the integer factorization, efficient algorithms exist to factor polynomials over
a finite field [7, 13]. However, finding a multiple of a given polynomial that has a
bounded degree and a bounded weight can be hard. TCHo ’s security relies on the
Low Weight Polynomial Multiple problem (LWPM).

Problem 7.1 (LWPM). Let w,d,dP ∈ N be three parameters such that 0 < dP < d
and w < d. Given an instance P ∈ F2[x] of degree dP, find a multiple K of P of
degree at most d and weight at most w.

In TCHo, P will be the public key and one will be able to recover some information
about the plaintext from a ciphertext using such a low weight polynomial K. Note
that in TCHo, the private key will be one of the solutions to this problem. Hence,
we are ensured that a solution exists. In fact, the public key P is generated as an
irreducible factor of a random polynomial K of weight wK and degree at most d with
a nonzero constant factor. In this case, one can heuristically estimate the number of
solutions with nonzero constant term as

Nsol ≈ 1+ 2−dP

(

d
w− 1

)

. (7.1)

158 A. Duc and S. Vaudenay

Note that the additional solution comes from the way we generate our polynomial P.
We present now algorithms used to find low weight polynomial multiples. In what
follows, we review some existing algorithms to solve the LWPM problem in order
to derive heuristically some hard domain parameters.

To support the hardness of the LWPM problem, Giesbrecht et al. showed that
finding sparse multiple polynomials with unbounded degree in a finite field is at
least as hard as computing orders in an extension of this field [28], a problem which
is believed to be hard. Unfortunately, this result is not directly applicable to TCHo
because we consider polynomially bounded degrees and we know that a solution
exists within this bound.

7.3.1.1 Exhaustive Search

When d is close to dP, we can use exhaustive search to find all low weight
multiples of P. The exhaustive search is performed by simply checking the weight
of all multiples of P. The complexity for finding all multiples is Θ

(

Poly(d)2d−dP
)

.
However, this method is inefficient in TCHo, since d− dP is very large.

7.3.1.2 Birthday Paradox

Following Meier and Staffelbach [47], we build two lists L1 and L2 in which we
store respectively polynomials with weight �(w− 1)/2�, degree smaller than d, and
zero constant term and polynomials with weight �(w− 1)/2�, degree smaller than
d, and constant term equal to one. Once we have these lists, we look for pairs that
sum to 0 modulo P. This collision search can be done efficiently using a hash table.
Note that when w is odd (as in TCHo), one can use only the list L1 and search for
pairs (in L1) summing to 1 instead. The list size is

(d
�(w−1)/2�

)

. Hence, the memory
use is

2

(

d
�(w− 1)/2�

)

(w− 1) log(d)≈ Θ
(

d�(w−1)/2� log(d)
)

for small weights w. The time complexity is Θ
(

(d
(w−1)/2

)

)

. This strategy is clearly

faster than exhaustive search but uses a lot of memory. In the case of TCHo,
d is typically greater than 215 and w greater than 68. Hence, the lists contains
more than Ω

(

2388
)

elements, which is way too much. An improvement of this
method is proposed by Chose, Joux and Mitton to solve this problem using

Θ
(

d�(w−1)/4� log(d)
)

space instead [15]. An alternative solution was also proposed

by Didier and Laigle-Chapuy using discrete logarithms [20]. Assuming that in
practice the discrete logarithm with base element X has a negligible complexity

over F2[X]/〈P〉, they achieve a time complexity of Θ
(

d(w−1)/2−1
)

for a memory

cost equal to the original birthday paradox method.

7 TCHo: A Code-Based Cryptosystem 159

7.3.1.3 Generalized Birthday Paradox

When there is a large number of solutions, one can use Wagner’s generalized
birthday paradox [64] to find more efficiently one solution. The idea is to make use
of 2k lists of polynomial of weight (w−1)/2k instead of two lists as in the birthday
paradox algorithm. Collisions are then found in pairs of lists until one single list
remains containing a wanted solution. This algorithm will not return all possible
solutions but can find one of them. However, the lists need to have a size greater
than 2dP/(k+1). Hence, we need

(

d
(w− 1)/2k

)

≥ 2dP/(k+1),

for a k > 1. In this case, a solution can be found with time and memory complexity

Θ
(

2k2dP/(k+1)
)

.

7.3.1.4 Finding a Low Weight Multiple Using Lattices

El Ailmani and von zur Gathen [24] presented a lattice-based algorithm to solve the
LWPM problem. The set of multiples of P with degree lower than d form a lattice
Ld . More formally

Ld := {Q ∈ Z[X] : Q ∈ PZ[X]+ 2Z[X],deg(Q)< d}.

This lattice has dimension d. Now, note that a low weight polynomial multiple of P
is a short vector in Ld . Such a vector can be found by first finding a basis of Ld , then
by reducing this basis using for instance the LLL algorithm [38]. The algorithm
uses O

(

d6
)

time and O(d× dP) memory if we use LLL. However, this method is
strongly limited by the lattice dimension. When d is too large, the size of the short
vector we find using LLL becomes greater than w. This comes from the fact that
this vector is only an approximation of the shortest vector in the lattice. Hence, this
technique is inefficient to attack TCHo.

7.3.1.5 Syndrome Decoding

Syndrome decoding can also solve this problem. First, we compute the matrix H,
whose column i is defined by Xi mod P, for 1 ≤ i ≤ d − 1. Once this matrix is
computed, we search for a low weight polynomial in the preimages of 1 of this
matrix. Following Canteaut and Chabaud [11], one solution can be found in time

Θ

(

1
Nsol

(

d− 1
dP

)w−1
)

.

160 A. Duc and S. Vaudenay

By using (7.1), this approximates to

Θ

⎛

⎜

⎝

(

d−1
dP

)w−1

2−dP
(d

w−1

)

+ 1

⎞

⎟

⎠
.

7.3.1.6 Hardness of the LWPM Problem

Out of this survey, we deduce the following assumption

Assumption 7.2. Let w,d,P be an instance of the LWPM problem. Let λ be the
security parameter. The LWPM problem is believed to require a super-polynomial
complexity if

(w− 1) log
d
dp
≥ λ, (7.2)

and
(

d
w− 1

)

< 2dP . (7.3)

Indeed, these inequalities give no complexity better than Θ
(

2λ) with the previous
algorithms. Note that (7.3) implies that we shall expect no more solution than the
one which was hidden.

7.3.2 The Noisy LFSR Decoding Problem

TCHo ’s security relies also on the noisy LFSR decoding problem.

Problem 7.2 (Noisy LFSR Decoding). Let � > 0 be a length, let P be a polynomial
of degree dP, and let 0 ≤ γ ≤ 1 be a bias. Recover X , the random seed of an LFSR,
given Y := S�

LP
(X)+S�

γ , i.e., the bitwise addition between the output of this LFSR
with feedback polynomial P and seed X , and some random noise with bias γ.

In TCHo, the plaintext will be hidden by such a Y . Hence, since the noise is strongly
biased, if one can easily recover the seed of the LFSR, one can recover the plaintext.
We survey now the techniques used to solve the noisy LFSR decoding problem.

7.3.2.1 Information Set Decoding

Information set decoding is performed as follows. We pick dP random bits out of
the � output bits of Y and we solve the linear system induced by the columns of
the generator matrix of the LFSR corresponding to these bits (e.g. by performing

7 TCHo: A Code-Based Cryptosystem 161

Gaussian elimination). X can be recovered if there are no errors among the dP

selected bits. This happens with probability

(

1
2
+

γ
2

)dP

.

Hence, we can recover X with complexity3

Θ
(

1
2
+

γ
2

)−dP

. (7.4)

This is Ω(2λ) for
γ≤ 21−λ/dP− 1.

7.3.2.2 Maximum Likelihood Decoding

Maximum likelihood (ML) decoding is a bruteforce technique that consists in
computing S�

LP
(X) for all possible random seeds X and keep the one with smallest

distance to Y . This costs Θ
(

2dP�
)

and can be improved to Θ
(

2dPdP
)

by using a
fast Walsh transform [42]. More subtle ML algorithms exist that decode only a
subcode of the full code. In this case, even though we do not recover completely
the seed X , we may recover some bits of information which may threaten TCHo. It
can be shown [26] that if we take dP ≥ 2λ, these algorithms yield less than 1 bit of
information.

7.3.2.3 Iterative Decoding

Iterative decoding [12] consists in finding low weight multiples of P forming parity
check equations. The low-weight parity check code associated to these equations
can then be solved. When dP ≥ 2λ, decoding is not possible using this technique
[26].

7.3.2.4 Hardness of the Noisy LFSR Decoding Problem

Out of this survey, we deduce the following assumption.

Assumption 7.3. Let �,P,γ be an instance of the noisy LFSR decoding problem. Let
λ be the security parameter. The problem is believed to require a super-polynomial
complexity if

dP ≥ 2λ, (7.5)

3Note that we can neglect the cost of the Gaussian elimination by using improved algorithms [11].

162 A. Duc and S. Vaudenay

and
γ≤ 21−λ/dP− 1. (7.6)

Indeed, these inequalities give no complexity better than Θ
(

2λ) with the previous
algorithms.

7.3.3 The Noisy LFSR Distinguishing Problem

The previous problem has a decisional counterpart.

Problem 7.3 (Noisy LFSR Distinguishing). Let � > 0 be a length, let P be a
polynomial of degree dP, and let 0≤ γ≤ 1 be a bias. Given an �-bit string Y , decide
whether Y was generated by Y = S�

LP
(X)+S�

γ or by a uniformly distributed source

Y = S�
0.

7.3.3.1 Linear Noise Cancellation

We can think of two strategies to distinguish S�∗ = S�
LP

+ S�
γ from S�∗ = S�

0. The
first one is to apply the solutions we presented to solve the noisy LFSR decoding
problem, i.e., to recover the random seed used by LP. We know that if (7.5) and (7.6)
hold, the problem is supposed hard.

Another solution is to multiply S�∗ by P or any of its multiple Q. If S�∗ is not S�
0,

we have
Q⊗S�

∗ ≈ S
�−dQ

γwQ .

The best advantage [4] one can get to distinguish N bits of bias γw from random ones
is Adv≈ γw

√

N/(2π). From Sect. 7.3.1, we know that the cost to find a multiple of P
with degree bounded by d and weight bounded by w is Comp= (d/dP)

w−1 if we use
syndrome decoding. It works with probability bounded by Success = 2−dP

(d
w−1

)

.
To identify the range of parameters for which this method does not work, we

want
1

Adv
+

Comp
Success

≤ 2λ.

So, N, w, dP are polynomially bounded. We have

1
Adv

+
Comp

Success
=

γ−w
√

N/2π
+

(d/dP)
w−1

2−dP
(d

w−1

) ≥ Poly(λ)

(

γ−w
√

N/2π
+

(

we−1

dP

)w

2dP

)

.

Let f (w) be the term under parentheses. The function w �→ (

we−1/dP
)w

decreases
until w = dP and then increases. Let τ be the root of γe−1 = τ2−τ. Since we will
take γ = 1− o(1), we have τ = τ0 + o(1) where τ0 :≈ 3.053. Note that τ ≥ 1 since
γ≤ 1.

7 TCHo: A Code-Based Cryptosystem 163

We assume that dP log(1/γ) ≥ λτ. Let w0 := dP/τ. If w ≤ w0, since w < dP

(because τ≥ 1), we have

f (w) ≥
(

we−1

dP

)w

2dP ≥
(

w0e−1

dP

)w0

2dP =

(

2

(

1
τ

e−1
)1/τ

)dP

= γ−dP/τ ≥ 2λ.

If w≥ w0, we have

f (w) ≥ γ−w ≥ γ−w0 = γ−dP/τ ≥ 2λ.

This leads us to the following assumption:

Assumption 7.4. Let �,P,γ be an instance of the noisy LFSR distinguishing
problem. Let λ be the security parameter. Let τ be the root of γe−1 = τ2−τ. The
problem is believed to require a super-polynomial complexity if

γ≤ 21−λ/dP− 1,

and

dP log
1
γ
≥ λτ.

Indeed, these inequalities give no complexity better than Θ
(

2λ) for advantage
Ω(2−λ) with the previous algorithms.

Note that if dP < 2λ, we have γ >
√

2− 1 so dP log(1/γ) ≤ 1.28× dP. Further-
more, we have in this case τ≥ 5 which implies that λτ≥ 5λ. We deduce from it that
1.28× dP ≥ 5λ which contradicts dP < 2λ. Hence, the hypotheses imply dP ≥ 2λ
which was used in Assumption 7.3.

7.4 Presentation of the TCHo Cryptosystem

In this section, we describe the TCHo cryptosystem and give algorithms for key
generation, encryption and decryption. We also prove that TCHo is a cryptosystem.

7.4.1 Parameters

TCHo ’s secret key consists in a low weight polynomial K over F2[X] of degree dK

bounded by d and of weight wK . The public key is a polynomial P such that P divides
K and whose degree is in a given interval [dmin,dmax]. The security of the scheme
relies on noise added by an LFSR with the public key as feedback polynomial and
some strongly biased random noise. The bias of the noise γ along with the plaintext

164 A. Duc and S. Vaudenay

length k and the ciphertext length � > d are the remaining parameters. Hence, for a
fixed system with security parameter λ, we can define a parameter vector

(k,dmin,dmax,d,wK ,γ, �) .

We require that k,dmin,dmax,d,wK , � are positive integers, polynomially bounded,
dmax > dmin, wK odd, 3 ≤ wK ≤ k, d ≥ dmax, k+ d ≤ �, and that γ is subject to the
following requirement which is needed for correctness.

γ2wK
�− d

k
= Ω(λα) (7.7)

for some constant α > 0. Later, we shall add the requirements of Assumptions 7.2
and 7.4 for security.

There are two approaches for selecting the parameters: in practice, we select
some for which we have good implementation performances and a fair understand-
ing of the security. This will be covered in Sect. 7.6. In theory, we select a family
of parameters based on λ so that algorithms are polynomially bounded and whose
security relies on complexity assumptions. This will be addressed in Theorems 7.5
and 7.6.

7.4.2 Key Generation

First, a random polynomial K of degree bounded by d and odd weight wK with
constant term 1 is generated. Nonzero coefficients in K shall be selected at positions
which are pairwise different modulo k. If K(X) is not coprime with Xk− 1 (which
would be exceptional), we try again. Then, an irreducible factor P of degree
dP ∈ [dmin,dmax] is searched. This procedure is repeated with another K until an
appropriate P is found:

Generate:
1: repeat
2: pick a random subset I of {1, . . . ,k− 1} of cardinality wK− 1
3: for each i ∈ I, pick a random ji such that ji mod k = i and 0 < ji < d
4: take K(X) = 1+∑i∈I X ji

5: if K(X) is coprime with Xk− 1 then
6: factor K as a product of irreducible polynomials over F2

7: pick an irreducible factor P of degree dP ∈ [dmin,dmax]
8: end if
9: until P found

10: return K and P

Note that since K is sparse, it can be stored efficiently using only �wK log(d)�
bits.

The number of irreducible polynomials of degree d is equivalent to 2d/d. So, a
random polynomial has an irreducible factor of degree d with probability 1/d. From

7 TCHo: A Code-Based Cryptosystem 165

that, we deduce that a random polynomial has an irreducible factor of degree in
[dmin,dmax] with probability O((dmax− dmin)/dmax). Hence, O(dmax/(dmax− dmin))
factorization attempts are needed in average. Using the Cantor-Zassenhaus [13]
factoring algorithm, every attempt costs O

(

d2 logd loglogd
)

.
The total complexity of the key generation algorithm is, thus,

O

(

dmax

dmax− dmin
d2 logd loglogd

)

.

We make the heuristic assumption that the complexity is the same when the
polynomial K is sparse instead of being fully random. This assumption will be
discussed in Sect. 7.6. However, we have no formal proof so far that this algorithm
is polynomially bounded. This is left open for future work.

7.4.3 Encryption

Let C(m) : {0,1}k→{0,1}� be the repetition code that, given an m∈ {0,1}k returns
the � bit word

m‖m‖ . . .‖m̃,

where m̃ is the bitstring m truncated such that C(m) has length �. Given a plaintext
m of length k, the ciphertext y of length � is

y := EncTCHo(P,m;r1‖r2) =C(m)+S�
LP
(r1)+S�

γ(r2),

where r1 and r2 are random seeds. Care has to be taken about the size of these seeds.
The first seed, r1, consists in a random initial state for the LFSR. Hence, it has to be
a random bitstring in {0,1}dP . The second seed, r2, is a random seed for a biased
pseudo random bit source. To ensure a proper security, this seed needs to be at least
λ-bit long, where λ is the security parameter.

The encryption cost is O(�× dP) if the random bit generator has not a higher
complexity. In the case of a dedicated hardware implementation, the encryption can
be done in O(�) time with O(dP) gates.

Encrypt(P,m;r1,r2):
1: compute y =C(m)+S�

LP
(r1)+S�

γ(r2)
2: return y

7.4.4 Decryption

Let y ∈ {0,1}� be the ciphertext, i.e., y =C(m)+S�
LP
(r1)+S�

γ(r2). We decrypt y as
follows.

166 A. Duc and S. Vaudenay

First, we remove the contribution of the noise induced by the LFSR LP. This
is done by computing t := trunc�−d(K ⊗ y). The resulting t is truncated to �− d
bits.4 Since the multiplication operator is distributive and since K is a multiple of
P, which is the feedback polynomial of LP, this operation completely removes the
noise generated by the LFSR. However, this operation has also an effect on C(m)
and Sγ(r2). We have K⊗ S�γ ≈ S�−d

γwK in the sense that every bit of K⊗ S�γ has a bias
of γwK but they are not perfectly independent. Hence, if the weight of K is low, the
noise remains strongly biased. We have also K⊗C(m) =C(m′), where m′ =ψK(m),
for some linear map ψK . Thus, t ≈C(ψK(m))+S�−d

γwK . Under some conditions, ψK

is invertible.
Since the noise S�−d

γwK is strongly biased, we can recover ψK(m) by performing
majority logic decoding (MJD), i.e., by taking for each bit its majority value in the
repetition code. For a proper choice of wK ,γ and �, the probability of error will be
negligible.

MJD decodes the correct ψK(m) if for every i = 0, . . . ,k− 1, there is a majority
of j’s such that (K⊗S�

γ)i+k j = 0.
Finally, we invert ψK to recover m. Recall that the operation K⊗C(m) can also

be written as M�−d
K C(m), with

M�−d
K :=

⎡

⎢

⎢

⎢

⎣

k0 k1 . . . kd 0 0 . . . 0
0 k0 k1 . . . kd 0 . . . 0

. . .
. . .

0 0 . . . 0 k0 k1 . . . kd

⎤

⎥

⎥

⎥

⎦

.

Since C(m) is a repetition code, ψK(m) can be written as CKm, with

CK =

⎡

⎢

⎢

⎢

⎣

c0 c1 . . . ck−1

ck−1 c0 . . . ck−2
...

. . .
...

c1 c2 . . . c0

⎤

⎥

⎥

⎥

⎦

,

where

c j = ∑
{i∈[0,d] : i≡ j mod k}

ki.

The matrix CK is invertible if and only if c0 + c1X + · · ·+ ck−1Xk−1 is coprime with
Xk−1, which is equivalent to K(X) being coprime with Xk−1, which is a condition
in our key generation algorithm. Hence, m =C−1

K m′.

4Since K may have a degree less than d, K ⊗ y may have more than �− d bits. To avoid side
channels, we only use the first �−d bits, as if K had degree d.

7 TCHo: A Code-Based Cryptosystem 167

The decryption complexity is O
(

wK× �+ k3
)

since the first operation takes
O(wK × �), the second O(�− d) and the third O

(

k3
)

time.

Decrypt(K,y):
1: compute t = trunc�−d(K⊗ y)
2: for i = 0 to k− 1 do
3: set ψ(m)i = majority(ti+k j ; 0≤ i+ k j < �− d)
4: end for
5: compute m =C−1

K ψ(m)
6: return m

7.4.5 TCHo Is a Cryptosystem

In this section, we show that TCHo is a cryptosystem as defined in Definition 7.1.

Lemma 7.1. The probability that a correctly generated ciphertext is badly de-
crypted satisfies

Pr[bad decoding]≤ k× exp

(

−1
2

⌊

�− d
k

⌋

γ2wK

)

.

Proof. We note from the requirement on K that nonzero coefficients have indices
which are pairwise different modulo k. Hence, for a fixed i, all bits (K⊗S�

γ)i+k j are
independent. So,

Pr[bad decoding]≤ ρ,

where

ρ :=
k−1

∑
i=0

1
2 � �−d−i

k �
∑

w=0

(� �−d−i
k �
w

)(

1+ γwK

2

)w (

1− γwK

2

)� �−d−i
k �−w

. (7.8)

We conclude thanks to the Chernoff bound (Theorem 7.1). ��
Theorem 7.5. There are some parameter selections making TCHo a cryptosystem
with heuristic key generation that verifies the inequalities in Assumptions 7.2–7.4.

Proof. Let λ be the security parameter. We select parameters satisfying

wK = aλ k = wK +Θ(λ) d = Θ
(

λ2× k
)

dmin = Θ
(

λ2
)

dmax = dmin +Θ
(

λ2
)

�= d+Θ
(

λ2× k
)

γ = λ−c/λ,

such that these are positive integers, wK is odd, a,c > 0 and with the following
condition:

0 < ac < 1.

168 A. Duc and S. Vaudenay

With these parameters, key generation takes O
(

λ4× k2× logλ× loglogλ
)

(heuris-
tically), encryption takes O

(

λ4× k
)

, decryption O
(

λ3× k
)

and (7.7) is verified.
Furthermore, these parameters satisfy the inequalities in Assumptions 7.2 and 7.4,
which will be needed to show the security of our scheme.

Since the parameters satisfy (7.7), there exists a constant f ≥ 0 such that

Pr[bad decoding]≤ k× exp(− f λα)

when λ is large enough. So, this probability is negligible. Hence, the cryptosystem
satisfies also the correctness property. ��

7.5 Security of TCHo

In this section, we show results on the security of TCHo. In particular, we show that
TCHo is IND-CPA-secure and not OW-CCA-secure. We show also how to achieve
IND-CCA security.

7.5.1 TCHo Is IND-CPA-Secure

Theorem 7.6 (Aumasson et al. [3]). Let S0 be an unbiased source of random bits.
There exists a constant µ such that, for every TCHo parameters, if S�

LP
+S�

γ cannot

be distinguished from S�
0 in time t with an advantage larger than ε, then TCHo is

(t− µ�,2ε)-IND-CPA-secure.

Proof. Instead of proving the semantic security directly, we prove it in the real-
or-random game model. Recall that in this model, the adversary submits first a
chosen plaintext x following an algorithm A ror

1 (Kp;ρ). Then, given a ciphertext z, the
adversary has to decide using an algorithm A ror

2 (Kp,z;ρ) whether z is a ciphertext
corresponding to x or to another random plaintext.

We show that using this adversary A ror = (A ror
1 ,A ror

2), we can build a distin-
guisher between S�

LP
+ S�

γ and S�
0. Let S�∗ be the unknown instance we have to

distinguish. First we recover a plaintext x = A ror
1 (P). Let z = C(x) + S�∗. If S�∗ is

random, then z is also a totally random bitstring. Note that this z corresponds also
to a valid ciphertext, since every bitstring in {0,1}� is valid. On the other hand,
if S�∗ is S�

LP
+ S�

γ, then z is a valid ciphertext of x. Hence, using A ror
2 (P,z), we

can decide, whether z is a ciphertext corresponding to x or not. The cost of this
simulation is µ�, for µ > 0 large enough. Thus, since we know by assumption that
we cannot distinguish S�

LP
+S�

γ from S�
0 in time t with an advantage larger than ε,

A ror has complexity at least t− µ�. Hence, TCHo is (t− µ�,ε)−IND-CPA secure in
the real-or-random game model. This implies that TCHo is (t− µ�,2ε)−IND-CPA
secure. ��

7 TCHo: A Code-Based Cryptosystem 169

Now, we just have to find suitable parameters such that the Noisy LFSR
Distinguishing Problem is hard to obtain an IND-CPA-secure scheme.

7.5.2 TCHo Is Not OW-CCA Secure

We recall two negative results from [3] regarding the security of TCHo.

Lemma 7.2. TCHo is malleable.

Proof. Given a ciphertext y corresponding to a plaintext x, y +C(x′) is a valid
ciphertext of x+ x′ with correct distribution. ��
This result implies also that TCHo is not IND-CCA secure as we can just use the
malleability of ciphertexts and call the decryption oracle on the modified ciphertext
to play the IND-CCA game.

Lemma 7.3. TCHo is not OW-CCA secure.

Proof. Given a ciphertext y to invert, modify the first bit an submit it to the
decryption oracle. With high probability, the obtained plaintext will correspond to
the original one. ��

7.5.3 The Herrmann-Leander Attack

In PKC 2009, Herrmann and Leander presented a chosen ciphertext key recovery
attack on TCHo [33]. They were able to recover the secret key in about d3/2

queries to a decryption oracle. As shown in Lemma 7.3, TCHo is not OW-CCA
secure. However, their attack is by far worse than the traditional OW-CCA message
recovery attack since it reveals the private key. It is important to notice that their
attack does not solve the LWPM problem but extracts this low weight polynomial
by querying the decryption oracle in a clever way.

This proves that the key recovery problem is easy with a DecK oracle. This does
not prove that decryption and key recovery are equivalent because we are using
the DecK oracle with some inputs which do not follow the distribution of genuine
ciphertexts. So, a decryption oracle able to decrypt ciphertexts may not fully emulate
the DecK oracle for our purpose. We briefly present Herrmann and Leander’s attack
here.

The attack is an adaptive differential attack, i.e., pairs of ciphertexts with a well-
chosen difference are submitted to the decryption oracle. Let the private key be
K = ∑d

j=0 k jX j. Let also N := �− d. For simplicity, we assume that �N
k � is odd

so that there is always a non-ambiguous majority among �N
k � bits. The idea is to

recover every bit one after the other starting from k1 to kdK . (Note that k0 is fixed
to 1.) To recover the key bit ki knowing k0, . . . ,ki−1, two ciphertexts y and y′ are

170 A. Duc and S. Vaudenay

submitted to the decryption oracle such that the difference between them before the
MJD step during the decryption process is t⊕ t ′ = Δ := (1⊕ ki,0, . . . ,0,1,0, . . . ,0),
where the 1 is at index i. Let the two obtained plaintexts be respectively m and
m′. If m and m′ differ, this means that the MJD algorithm made different decisions
for the two ciphertexts. With a clever choice of the ciphertexts y and y′ and using
our knowledge of the previous bits of K, we can ensure that t = (b,0,r), with b =
trunci(1,0(2k−1),1,0(2k−1), . . .) and r an uniformly distributed random bitstring of
length �− i− d− 1. The b part ensures that the first sum in the majority decoding
algorithm is as much balanced as possible.

Let

M′ :=

⎡

⎢

⎢

⎢

⎣

k0 k1 . . . ki−1

0 k0 . . . ki−2
...

. . .
...

0 . . . 0 k0

⎤

⎥

⎥

⎥

⎦

.

To construct y, we take y := (ŷ,0(d+1),r), where ŷ is the solution of M′ŷ = b and r
is a random bit string of size N− i− 1. For y′, let δ be defined as

δ0 =
i−2

∑
j=0

δ′jk j+1⊕ 1,

δ j = δ′j−1 for 1≤ j ≤ i,

δ j = 0 for i+ 1≤ j < �,

where δ′ is the solution of M′δ′ = (0, . . . ,0,1)t . Then, y′ := y+δ. We refer the reader
to [33] for a proof of correctness of this construction. These two ciphertexts produce
the required t and t ′.

To recover ki, we distinguish two cases:

• When i≡ 0 (mod k), both the difference 1⊕ki and 1 in Δ contribute to the same
bit during MJD. Since t0 = 1 and ti = 0, we have t ′0 = ki and t ′i = 1. Hence,
m �= m′ implies that ki = 1. Thus, the resulting plaintext will be different only

when ∑�N/k�
j=0 tk j =

⌊

1
2

⌊

N
k

⌋⌋

and ki = 1. However, in the case ki = 0, the majority
cannot change. By repeating this attack with a sufficient number of ciphertext
pairs we recover ki with negligible probability of error by making statistics.

• When i �≡ 0 (mod k), the difference 1 ⊕ ki and the difference 1 does not
contribute to the same bit during MJD. If ki = 0, t and t ′ differ in their coordinates

at index 0 and i and the majority at index 0 changes if ∑�N/k�
j=0 tk j =

⌊ 1
2

⌊

N
k

⌋⌋

and
ki = 1. When ki = 1, this majority cannot change. The one at index i may change

depending on ∑�(N−i)/k�
j=0 tk j+i. However, the difference m⊕m′ will not be the

same as when the majority changes at index 0, so it can be filtered out. Like in
the previous case, we recover ki by submitting sufficiently many ciphertext pairs.

We refer the reader to [33] for further details.

7 TCHo: A Code-Based Cryptosystem 171

This attack implies that TCHo cannot be used in its original form. We show in
the next section how TCHo can be transformed into an IND-CCA secure scheme.

7.5.4 Achieving IND-CCA Security

Following the Fujisaki-Okamoto construction [27], we can obtain an IND-CCA
secure scheme using TCHo. For this, we need first to define Γ-uniformity.

Definition 7.7 (Γ-uniformity). Let Asym be an asymmetric encryption scheme,
with key generation algorithm Gen(1λ) and encryption algorithm EncAsym(Kp,m;r)
over the message space M and the random coins space R . Asym is Γ-uniform if for
any plaintext m ∈M , for any keys drawn by Gen, and for any y ∈ {0,1}∗, we have

Pr
[

h
U←− R : y = EncAsym(Kp,m;h)

]

≤ Γ,

i.e., the probability that a plaintext and a ciphertext match is bounded.

Now, we recall the Fujisaki-Okamoto paradigm: Given an OW-CPA and Γ-uniform
asymmetric cipher Asym with public (resp. private) key Kp (resp. Ks), a one-time
secure symmetric cipher Sym, and two random oracles G and H, the following con-
struction is IND-CCA secure in the random oracle model:

Encryption: Given a message m:

1: Let σ U←− {0,1}k.
2: Let ψ←G(σ) be the symmetric key.
3: Encrypt the message using the symmetric cipher: y = EncSym(ψ,m).
4: Encapsulate the key with the asymmetric cipher: χ← EncAsym(Kp,σ;H(σ‖m)).
5: return (χ,y).

Decryption: Given a ciphertext (χ,y):
1: Decrypt the asymmetric part: σ̂ = DecAsym(Ks,χ).
2: Recover the symmetric key: ψ̂ = G(σ̂).
3: Recover the message: m̂ = DecSym(ψ̂,y).
4: if χ = EncAsym(Kp, σ̂;H(σ̂‖m̂)) then
5: return m̂.
6: else
7: return ⊥.
8: end if

Note that the check done at Step 4 during the decryption is necessary to obtain an
IND-CCA secure scheme.

To use this construction with TCHo, we need to show that TCHo is Γ-uniform.

Lemma 7.4. TCHo is ((1+ γ)/2)�-uniform.

172 A. Duc and S. Vaudenay

Proof. Recall that the TCHo encryption of x is y = C(x) + S�
LP
(r1) + S�

γ(r2), for
random coins r1 and r2. We need to bound the probability (taken over r1 and r2) that
a given plaintext x and ciphertext y match. Since in TCHo we consider only positive
bias, the most probable ciphertext corresponds to y=C(x)+S�

LP
, i.e., when S�

γ is the

zero bitstring. This happens with probability ((1+ γ)/2)�. When we take the average
on the possible r1, this probability can only decrease. Hence, TCHo is ((1+ γ)/2)�-
uniform. ��
Since TCHo is ((1+ γ)/2)�-uniform and since IND-CPA security implies OW-
CPA security, we can use the Fujisaki-Okamoto paradigm to obtain a IND-CCA
secure scheme. An example of a simple one-time secure symmetric cipher one could
use is EncSym(ψ,m) = m+F(ψ) for a random oracle F . We obtain the following
cryptosystem:

Encryption: Given a message m:

1: Let σ U←− {0,1}k.
2: Let ψ←G(σ) be the symmetric key.
3: Encrypt the message using the symmetric cipher: y = m+F(ψ).
4: Encapsulate the key with the asymmetric cipher: χ← EncTCHo(P,σ;H(σ‖m)).
5: return (χ,y).

Decryption: Given a ciphertext (χ,y):
1: Decrypt the asymmetric part: σ̂ = DecTCHo(K,χ).
2: Recover the symmetric key: ψ̂ = G(σ̂).
3: Recover the message: m̂ = y+F(ψ̂).
4: if χ = EncTCHo(P, σ̂;H(σ̂‖m̂)) then
5: return m̂.
6: else
7: return ⊥.
8: end if

7.6 Implementation Results

In this section, we discuss various topics regarding the implementation of TCHo.
First we describe a way to find good parameters and give some examples. Next we
discuss our heuristic assumption used in the key generation algorithm. Finally, we
comment on TCHo software and hardware implementation.

7.6.1 Parameter Selection

We show now how to find good parameters vectors that can be used for TCHo in
practice. Recall from Sect. 7.4.4 that the probability that a message is incorrectly

7 TCHo: A Code-Based Cryptosystem 173

Table 7.1 Example of parameter vectors for TCHo

ID k λ dmin dmax d wK γ � ρmax

I 128 80 15,000 16,000 37,069 69 0.98862 55,000 2−20

II 128 128 23,740 24,740 67,805 91 0.98853 100,233 2−20

III 256 256 63,500 64,500 221,169 147 0.99141 326,100 2−20

IV 384 384 145,000 146,000 455,356 237 0.99433 644,900 2−20

V 512 512 155,000 156,000 845,405 213 0.99243 1,291,800 2−20

decoded is bounded by ρ, defined by (7.8). We call this value the unreliability of the
system. This value has an huge impact on the ciphertext length and the maximum
unreliability accepted ρmax has to be selected carefully depending on the application
we consider. Recall that the parameters have to verify

(wK − 1) log
d

dmax
≥ λ and

(

d
wK − 1

)

< 2dmin

from Assumption 7.2 and

dmin log
1
γ
≥ λτ and γ≤ 21−λ/dmin− 1,

where τ is the root of γe−1 = τ2−τ, from Assumption 7.4. We need also to verify

ρ≤ ρmax.

Inequalities in Assumption 7.3 are consequences of the ones in Assumption 7.4 as
already observed.

To find the best possible parameters, we used the following approach. We fix first
the plaintext length k, the security parameter λ, and ρmax, the maximum unreliability
accepted, since all these three values will clearly depend on the application we
consider and will drastically modify the ciphertext length. Then, we search for the
best dmin that minimizes the ciphertext length. Indeed, dmin has a huge impact on the
ciphertext length: a too small dmin implies that semantic security is harder to achieve,
which leads to a smaller γ and finally to a larger � too keep a tolerable unreliability.
Similarly, a too large dmin implies a larger d or wK , which leads also to a larger
ciphertext length. Table 7.1 shows possible parameter vectors for k = 128,256,384
and 512 bits. We also set λ = k for 4 of the 5 vectors, since TCHo will mostly be
used to encrypt symmetric keys and, hence, should provide at least as much security
as the key length.

7.6.2 Heuristic Assumption for the Key Generation Algorithm

In Sect. 7.4.2, we made the heuristic assumption that the probability for a random
sparse polynomial to have an irreducible polynomial factor of degree in [dmin,dmax]

174 A. Duc and S. Vaudenay

Fig. 7.1 Comparison between dmax/(dmax − dmin) (continuous line) and the average number of
iterations N for the key generation algorithm with parameters k = 128, wK = 69, d = 32,069 and
dmin = 4,800 and using 40 samples (points)

is the same than when the polynomial is fully random, i.e., this probability
is O((dmax− dmin)/dmax). To verify this heuristic assumption, we made some
simulations in which we compared the average number of iterations N needed to
generate the public key P with dmax/(dmax−dmin). The result is depicted in Fig. 7.1.
We can see that both distributions are quite similar and, hence, that our heuristic
assumption seems reasonable.

7.6.3 Software Implementation

TCHo was implemented in software [10] as an extension of Network Security
Services (NSS) [48] so that it can be used as a TLS/SSL cipher suite in browsers
making use of NSS. One implementation issue concerning the LFSR was raised
there. LFSRs are a very efficient component in hardware since a bit can be produced
every clock cycle. However, in software, the complexity necessary to compute a bit
is proportional to the weight of the feedback polynomial used to describe the LFSR.
Hence, for TCHo, this complexity is proportional to wP, the weight of the public
key. Note that wP = dP/2 in average.

The trivial software implementation can be improved by considering blocks of
outputs instead of a single bit. Typically, the size of the block b will be a small
multiple of the machine word size. Then, using methods described in [16, 17], it is
possible to obtain a cost of O(wP/b) operations per bit. However, the cost needed to
compute the output of the LFSR is still large and dominates the cost of encryption.

This issue shows that TCHo is meant to be a hardware-oriented cipher and is,
hence, less efficient in software.

7 TCHo: A Code-Based Cryptosystem 175

Table 7.2 Performances of TCHo

Key generation Encryption Decryption Secret Public
ID (s) (ms) (ms) key (bit) key (bit)

I 882 54 11 1,048 16,000
II 7,033 158 42 1,461 24,740
III 46,994 253 120 2,610 64,500

Table 7.2 shows performances for the first three parameter vectors of TCHo
presented in Table 7.1. These results were performed on a 2.66 GHz Core 2 Duo
with a C++ implementation using the NTL library [63].

7.6.4 Hardware Implementation

We discuss in this section how to implement the encryption and the decryption in
hardware.

For encryption, the implementation of the repetition code is straightforward. The
LFSR can be efficiently implemented using integrated circuits. However, the length
of the LFSRs we are dealing with is unusually big and we assume that this length
does not alter the performances too much. Encryption requires also a biased source
of noise. As mentioned in [3], this can be implemented using a precomputed binary
tree where each leaf corresponds to a biased sequence of bits. Then, using a uniform
random bitstream fed with physical entropy, one can decide which branch to take in
the binary tree and output the biased bits.

Decryption is harder to implement. However, the product K ⊗ y consists of a
sequence of dot products and can, hence, be implemented using some library able
to do linear algebra computations for FPGA devices—for instance [65]. Similarly,
such a library can be used to compute C−1

K ψ(m). Majority logic decoding is easy to
implement but requires some additional memory—k× log((�−d)/k))—to store the
number of occurrences of each bit.

Reference [3] estimates that a 128 bit key with λ = 80 can be encrypted with a
circuit of about 10,000 gates. Hence, TCHo is well suited for RFID.

7.7 Conclusion

TCHo is still a young cryptosystem and has a large margin of progression. We
indicate directions for further work.

Complexity. We are still missing a rigorous complexity analysis about the key
generation algorithm, although we have a heuristic complexity matching well
experimental results.

176 A. Duc and S. Vaudenay

A Shorter Ciphertext Length. The use of a repetition code during the encryption
process leads to a very simple decryption algorithm. However, the length of the
ciphertexts is quite long. A possible solution would be to replace the repetition code
with a code with a smaller overhead size.

A More Efficient IND-CCA Scheme. One drawback of the Fujisaki-Okamoto
construction is that a TCHo encryption has to be performed during the decryption
process. If we neglect the cost of the hash functions, this increases the cost of
decryption to O

(

(wK + dP)× �+ k3+ρ
)

, where ρ is the complexity of decryption
of the symmetric scheme. This complexity can be reduced by using other hybrid
constructions like, for instance, REACT [51] or GEM [18]. For this, we need the
asymmetric scheme to be OW-PCA-secure, i.e., one-way against an adversary with
an plaintext-checking oracle. Hence, we wonder whether TCHo is OW-PCA-secure.

Generalization. Another further work is to generalize the TCHo construction by
replacing the LFSR with a random linear code. We wonder also if we can link TCHo
to lattice-based cryptography.

In conclusion, TCHo is asymptotically an efficient encryption scheme based on
a new hard problem, the low weight polynomial multiple problem. It is IND-CPA
secure and can be used to obtain an IND-CCA scheme. However, it still suffers from
two drawbacks: the key generation algorithm is expensive and the expansion factor
is huge. In this paper, we reviewed the existing previous work on TCHo. We also
provided new non-heuristic proofs of correctness and new parameters for different
plaintext sizes.

References

1. Ajtai, M.: Generating Hard Instances of Lattice Problems (Extended Abstract). In: STOC, pp.
99–108 (1996)

2. Ajtai, M., Dwork, C.: A Public-Key Cryptosystem with Worst-Case/Average-Case Equiva-
lence. In: STOC, pp. 284–293 (1997)

3. Aumasson, J.P., Finiasz, M., Meier, W., Vaudenay, S.: TCHo: A Hardware-Oriented Trapdoor
Cipher. In: J. Pieprzyk, H. Ghodosi, E. Dawson (eds.) ACISP, Lecture Notes in Computer
Science, vol. 4586, pp. 184–199. Springer (2007)

4. Baignères, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear Cryptanalysis? In:
Lee [37], pp. 432–450

5. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of Symmetric
Encryption: Analysis of the DES Modes of Operation (Full Version) (1997). Available at http://
cseweb.ucsd.edu/users/mihir

6. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of Symmetric
Encryption (Extended Abstract). In: FOCS, pp. 394–403 (1997)

7. Berlekamp, E.: Factoring polynomials over large finite fields. Mathematics of Computation
24(111), 713–735 (1970)

8. Bernstein, D.J.: Introduction to post-quantum cryptography. In: D.J. Bernstein, J. Buchmann,
E. Dahmen (eds.) Post-Quantum Cryptography, pp. 1–14. Springer (2009)

9. Bernstein, D.J., Lange, T., Peters, C.: Attacking and Defending the McEliece Cryptosystem.
In: J. Buchmann, J. Ding (eds.) PQCrypto, Lecture Notes in Computer Science, vol. 5299,
pp. 31–46. Springer (2008)

http://cseweb.ucsd.edu/users/mihir
http://cseweb.ucsd.edu/users/mihir

7 TCHo: A Code-Based Cryptosystem 177

10. Bindschaedler, V.: TCHo Software Implementation: Extending Firefox’s Security Services
Library. EPFL Bachelor Thesis (unpublished) (2010)

11. Canteaut, A., Chabaud, F.: A New Algorithm for Finding Minimum-Weight Words in a Linear
Code: Application to McEliece’s Cryptosystem and to Narrow-Sense BCH Codes of Length
511. IEEE Transactions on Information Theory 44(1), 367–378 (1998)

12. Canteaut, A., Trabbia, M.: Improved Fast Correlation Attacks Using Parity-Check Equations
of Weight 4 and 5. In: B. Preneel (ed.) EUROCRYPT, Lecture Notes in Computer Science,
vol. 1807, pp. 573–588. Springer (2000)

13. Cantor, D., Zassenhaus, H.: A new algorithm for factoring polynomials over finite fields.
Mathematics of Computation 36(154), 587–592 (1981)

14. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. The Annals of Mathematical Statistics 23(4), 493–507 (1952)

15. Chose, P., Joux, A., Mitton, M.: Fast Correlation Attacks: An Algorithmic Point of View.
In: L.R. Knudsen (ed.) EUROCRYPT, Lecture Notes in Computer Science, vol. 2332, pp. 209–
221. Springer (2002)

16. Chowdhury, S., Maitra, S.: Efficient Software Implementation of Linear Feedback Shift
Registers. In: C.P. Rangan, C. Ding (eds.) INDOCRYPT, Lecture Notes in Computer Science,
vol. 2247, pp. 297–307. Springer (2001)

17. Chowdhury, S., Maitra, S.: Efficient Software Implementation of LFSR and Boolean Function
and Its Application in Nonlinear Combiner Model. In: J. Zhou, M. Yung, Y. Han (eds.) ACNS,
Lecture Notes in Computer Science, vol. 2846, pp. 387–402. Springer (2003)

18. Coron, J.S., Handschuh, H., Joye, M., Paillier, P., Pointcheval, D., Tymen, C.: GEM: A Generic
Chosen-Ciphertext Secure Encryption Method. In: B. Preneel (ed.) CT-RSA, Lecture Notes in
Computer Science, vol. 2271, pp. 263–276. Springer (2002)

19. Courtois, N., Finiasz, M., Sendrier, N.: How to Achieve a McEliece-Based Digital Signature
Scheme. In: C. Boyd (ed.) ASIACRYPT, Lecture Notes in Computer Science, vol. 2248,
pp. 157–174. Springer (2001)

20. Didier, F., Laigle-Chapuy, Y.: Finding low-weight polynomial multiples using discrete
logarithm. In: IEEE International Symposium on Information Theory, 2007 (ISIT 2007),
pp. 1036–1040 (2007)

21. Diffie, W., Hellman, M.: New directions in cryptography. Information Theory, IEEE Transac-
tions on 22(6), 644–654 (1976)

22. Ding, J., Schmidt, D.: Rainbow, a New Multivariable Polynomial Signature Scheme. In:
J. Ioannidis, A.D. Keromytis, M. Yung (eds.) ACNS, Lecture Notes in Computer Science,
vol. 3531, pp. 164–175 (2005)

23. Duc, A.: TCHo: a Postquantum Public-Key Cryptography Toolkit. Unpublished Report (2010)
24. El Aimani, L., von zur Gathen, J.: Finding low weight polynomial multiples using lattices.

Cryptology ePrint Archive, Report 2007/423 (2007). http://eprint.iacr.org
25. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete

Logarithms. In: CRYPTO, pp. 10–18 (1984)
26. Finiasz, M., Vaudenay, S.: When Stream Cipher Analysis Meets Public-Key Cryptography. In:

E. Biham, A.M. Youssef (eds.) Selected Areas in Cryptography, Lecture Notes in Computer
Science, vol. 4356, pp. 266–284. Springer (2006)

27. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric Encryption
Schemes. In: M.J. Wiener (ed.) CRYPTO, Lecture Notes in Computer Science, vol. 1666,
pp. 537–554. Springer (1999)

28. Giesbrecht, M., Roche, D.S., Tilak, H.: Computing Sparse Multiples of Polynomials. In:
O. Cheong, K.Y. Chwa, K. Park (eds.) ISAAC (1), Lecture Notes in Computer Science,
vol. 6506, pp. 266–278. Springer (2010)

29. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: How to Encrypt with the LPN Problem. In: L. Aceto,
I. Damgård, L.A. Goldberg, M.M. Halldórsson, A. Ingólfsdóttir, I. Walukiewicz (eds.) ICALP
(2), Lecture Notes in Computer Science, vol. 5126, pp. 679–690. Springer (2008)

30. Goldreich, O., Goldwasser, S., Halevi, S.: Eliminating Decryption Errors in the Ajtai-Dwork
Cryptosystem. In: Kaliski Jr. [35], pp. 105–111

http://eprint.iacr.org

178 A. Duc and S. Vaudenay

31. Goldreich, O., Goldwasser, S., Halevi, S.: Public-Key Cryptosystems from Lattice Reduction
Problems. In: Kaliski Jr. [35], pp. 112–131

32. Hallgren, S., Vollmer, U.: Quantum computing. In: D.J. Bernstein, J. Buchmann, E. Dahmen
(eds.) Post-Quantum Cryptography, pp. 15–34. Springer (2009)

33. Herrmann, M., Leander, G.: A Practical Key Recovery Attack on Basic TCHo. In: S. Jarecki,
G. Tsudik (eds.) Public Key Cryptography, Lecture Notes in Computer Science, vol. 5443,
pp. 411–424. Springer (2009)

34. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A Ring-Based Public Key Cryptosystem. In:
J. Buhler (ed.) ANTS, Lecture Notes in Computer Science, vol. 1423, pp. 267–288. Springer
(1998)

35. Kaliski Jr., B.S. (ed.): Advances in Cryptology - CRYPTO ’97, 17th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17–21, 1997, Proceedings,
Lecture Notes in Computer Science, vol. 1294. Springer (1997)

36. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes. In: J. Stern
(ed.) EUROCRYPT, Lecture Notes in Computer Science, vol. 1592, pp. 206–222. Springer
(1999)

37. Lee, P.J. (ed.): Advances in Cryptology - ASIACRYPT 2004, 10th International Conference
on the Theory and Application of Cryptology and Information Security, Jeju Island, Korea,
December 5–9, 2004, Proceedings, Lecture Notes in Computer Science, vol. 3329. Springer
(2004)

38. Lenstra, A., Lenstra, H., Lovász, L.: Factoring polynomials with rational coefficients. Mathe-
matische Annalen 261(4), 515–534 (1982)

39. Li, Y.X., Deng, R.H., Wang, X.M.: On the equivalence of McEliece’s and Niederreiter’s public-
key cryptosystems. IEEE Transactions on Information Theory 40(1), 271 (1994)

40. Lu, Y., Meier, W., Vaudenay, S.: The Conditional Correlation Attack: A Practical Attack
on Bluetooth Encryption. In: V. Shoup (ed.) CRYPTO, Lecture Notes in Computer Science,
vol. 3621, pp. 97–117. Springer (2005)

41. Lu, Y., Vaudenay, S.: Cryptanalysis of Bluetooth Keystream Generator Two-Level E0. In: Lee
[37], pp. 483–499

42. Lu, Y., Vaudenay, S.: Faster Correlation Attack on Bluetooth Keystream Generator E0. In:
M.K. Franklin (ed.) CRYPTO, Lecture Notes in Computer Science, vol. 3152, pp. 407–425.
Springer (2004)

43. Lu, Y., Vaudenay, S.: Cryptanalysis of an E0-like Combiner with Memory. Journal of
Cryptology 21(3), 430–457 (2008)

44. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with Errors over
Rings. In: H. Gilbert (ed.) EUROCRYPT, Lecture Notes in Computer Science, vol. 6110, pp.
1–23. Springer (2010)

45. Matsumoto, T., Imai, H.: Public Quadratic Polynominal-Tuples for Efficient Signature-
Verification and Message-Encryption. In: C.G. Günther (ed.) EUROCRYPT, Lecture Notes
in Computer Science, vol. 330, pp. 419–453. Springer (1988)

46. McEliece, R.: A public-key cryptosystem based on algebraic coding theory. DSN progress
report 42(44), 114–116 (1978)

47. Meier, W., Staffelbach, O.: Fast correlation attacks on certain stream ciphers. Journal of
Cryptology 1(3), 159–176 (1989)

48. Mozilla Corporation: Network Security Services (NSS) (2009). http://www.mozilla.org/
projects/security/pki/nss/

49. Naccache, D. (ed.): Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track at RSA
Conference 2001, San Francisco, CA, USA, April 8–12, 2001, Proceedings, Lecture Notes in
Computer Science, vol. 2020. Springer (2001)

50. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Problems of
Control and Information Theory 15(2), 159–166 (1986)

51. Okamoto, T., Pointcheval, D.: REACT: Rapid Enhanced-Security Asymmetric Cryptosystem
Transform. In: Naccache [49], pp. 159–175

http://www.mozilla.org/projects/security/pki/nss/
http://www.mozilla.org/projects/security/pki/nss/

7 TCHo: A Code-Based Cryptosystem 179

52. Patarin, J.: Asymmetric Cryptography with a Hidden Monomial. In: N. Koblitz (ed.) CRYPTO,
Lecture Notes in Computer Science, vol. 1109, pp. 45–60. Springer (1996)

53. Patarin, J., Courtois, N., Goubin, L.: FLASH, a Fast Multivariate Signature Algorithm. In:
Naccache [49], pp. 298–307

54. Patarin, J., Courtois, N., Goubin, L.: QUARTZ, 128-Bit Long Digital Signatures. In: Naccache
[49], pp. 282–297

55. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended
abstract. In: M. Mitzenmacher (ed.) STOC, pp. 333–342. ACM (2009)

56. Rabin, M.: Digitalized signatures and public-key functions as intractable as factorization
(1979)

57. Regev, O.: New lattice-based cryptographic constructions. J. ACM 51(6), 899–942 (2004)
58. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: H.N.

Gabow, R. Fagin (eds.) STOC, pp. 84–93. ACM (2005)
59. Regev, O.: Lattice-Based Cryptography. In: C. Dwork (ed.) CRYPTO, Lecture Notes in

Computer Science, vol. 4117, pp. 131–141. Springer (2006)
60. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-

key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)
61. Schnorr, C.P.: A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms. Theoret-

ical Computer Science 53, 201–224 (1987)
62. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on

a Quantum Computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
63. Shoup, V.: NTL: A Library for doing Number Theory. http://www.shoup.net/ntl/
64. Wagner, D.: A Generalized Birthday Problem. In: M. Yung (ed.) CRYPTO, Lecture Notes in

Computer Science, vol. 2442, pp. 288–303. Springer (2002)
65. Zhuo, L., Prasanna, V.K.: High Performance Linear Algebra Operations on Reconfigurable

Systems. In: SC, p. 2. IEEE Computer Society (2005)

http://www.shoup.net/ntl/

	Chapter 7 TCHo: A Code-Based Cryptosystem
	7.1 Introduction
	7.1.1 Code-Based Cryptosystems
	7.1.2 Lattice-Based Cryptosystems
	7.1.3 TCHo
	7.1.4 Structure of This Paper

	7.2 Notations and Definitions
	7.3 Computational Problems
	7.3.1 Low Weight Polynomial Multiple Problem
	7.3.1.1 Exhaustive Search
	7.3.1.2 Birthday Paradox
	7.3.1.3 Generalized Birthday Paradox
	7.3.1.4 Finding a Low Weight Multiple Using Lattices
	7.3.1.5 Syndrome Decoding
	7.3.1.6 Hardness of the LWPM Problem

	7.3.2 The Noisy LFSR Decoding Problem
	7.3.2.1 Information Set Decoding
	7.3.2.2 Maximum Likelihood Decoding
	7.3.2.3 Iterative Decoding
	7.3.2.4 Hardness of the Noisy LFSR Decoding Problem

	7.3.3 The Noisy LFSR Distinguishing Problem
	7.3.3.1 Linear Noise Cancellation

	7.4 Presentation of the TCHo Cryptosystem
	7.4.1 Parameters
	7.4.2 Key Generation
	7.4.3 Encryption
	7.4.4 Decryption
	7.4.5 TCHo Is a Cryptosystem

	7.5 Security of TCHo
	7.5.1 TCHo Is IND-CPA-Secure
	7.5.2 TCHo Is Not OW-CCA Secure
	7.5.3 The Herrmann-Leander Attack
	7.5.4 Achieving IND-CCA Security

	7.6 Implementation Results
	7.6.1 Parameter Selection
	7.6.2 Heuristic Assumption for the Key Generation Algorithm
	7.6.3 Software Implementation
	7.6.4 Hardware Implementation

	7.7 Conclusion
	References

