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Abstract. The progress in parameterized complexity has been very sig-
nificant in recent years, with new research questions and directions,
such as kernelization lower bounds, appearing and receiving consider-
able attention. This speculative article tries to identify new directions
that might become similar hot topics in the future. First, we point out
that the search for optimality in parameterized complexity already has
good foundations, but lots of interesting work can be still done in this
area. The systematic study of kernelization became a very successful re-
search direction in recent years. We look at what general conclusions one
can draw from these results and we argue that the systematic study of
other algorithmic techniques should be modeled after the study of ker-
nelization. In particular, we set up a framework for understanding which
problems can be solved by branching algorithms. Finally, we discuss that
the domain of directed graph problems is a challenging area which can
potentially see significant progress in the following years.

1 Introduction

There was a guy whose name was Mike.
Loved math, surf, wine, and the like.
Once he climbed up a graph,

Took a photograph

And said: what a wonderful hike!

Zsuzsa Martonffy

The field of parameterized complexity progressed enormously since the publica-
tion of Downey and Fellows’ monograph [44] in 1999. New techniques and new
discoveries opened up new research directions and changed the field, sometimes
in unexpected ways. Kernelization, a basic algorithmic technique for obtaining
fixed-parameter tractability results, has evolved into a subfield of its own by
better understanding of its applicability and the possibility of proving strong
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upper and lower bounds. As explained by Langston elsewhere in this volume
[73], the fact that the Graph Minors Theory of Robertson and Seymour (culmi-
nating in papers |94, 93]) implies the existence of polynomial-time algorithms in
a nonconstructive way was one of the early motivations for parameterized com-
plexity. In the past decade, an entirely different aspect of Graph Minors Theory
has been developed, which allows us for example to generalize in many cases
fixed-parameter tractability results from planar graphs to H-minor free graphs
(see the survey of Thilikos in this volume [96]). A useful product of this devel-
opment is the concept of bidimensionality, which changed substantially the way
we look at planar graph problems [36-38]. Even simple techniques can move the
field into new directions: iterative compression, introduced by Reed et al. [92],
turned out to be a key step in proving the fixed-parameter tractability of im-
portant problems such as BIPARTITE DELETION [92], ALMOST 2SAT [91], and
DIRECTED FEEDBACK VERTEX SET [25], and changed the way we look at prob-
lems involving deletions.

One could list several other aspects in which the field evolved and changed
in the past decade. However, the purpose of this article is not to review these
developments. Rather than that, the purpose of this article is to propose some
new directions for future research. Only time and further work can tell if these
directions are as fruitful as the ones listed above.

The first topic we discuss is the optimality program of parameterized com-
plexity: understanding quantitatively what is the best we can achieve for a par-
ticular problem. That is, instead of just establishing fixed-parameter tractability,
we eventually want to understand the best possible f(k) in the running time.
This is not really a new direction, as the literature contains several results of this
type. However, we feel that it is important to emphasize here that the search for
optimality is a viable and very timely research program which should be guiding
the development of the field in the following years.

Kernelization is perhaps the most practical technique in the arsenal of fixed-
parameter tractability, thus it is not surprising that its methods and applicability
have received particular attention in the literature. In the past few years, re-
search on kernelization has increased enormously after it had been realized that
the existence of polynomial kernels is a mathematically deep and very fruitful
research question, both from the algorithmic and complexity points of view. A
detailed overview of the results on kernelization is beyond the scope of this arti-
cle; the reader is referred to [84, [12, [76] for a survey of recent results. However,
we briefly review kernelization from the point of view of the optimality program.
What we would like to point out is that the study of kernelization should be
interpreted as a search for a tight understanding of the power of kernelization.
That is, the question guiding our research is not which problems can be solved
by kernelization, but rather which problems should be solved by kernelization.

Kernelization is just one technique in parameterized complexity and its sys-
tematic study opened up a whole new world of research questions. Could it be
that exploring other basic techniques turns out to be as fruitful as the study of
kernelization? Besides kernelization, branching is the most often used technique,
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thus it could be the next natural target for rigorous analysis. We propose a
framework in which one can study whether a problem can be solved by branch-
ing or not. Based on what we have learned from the study of kernelization, one
should look at the study of branching also from the viewpoint of optimality: the
goal is to understand for which problems is branching the right way of solution.
The description and discussion of this framework is the only part of the paper
containing new technical ideas. The presentation of this framework is intention-
ally kept somewhat informal, as going into the details of irrelevant technical
issues would distract from the main message.

The last direction we discuss is the study of algorithmic problems on directed
graphs. Perhaps it is premature to call such a wide area with disconnected re-
sults as a research direction. However, we would like to point out the enormous
potential in pursuing questions in this direction. Problems on directed graphs
are much more challenging than their undirected counterparts, as we are in a
completely different world where many of the usual tools do not help at all. Still,
there are directed problems that have been tackled successfully in recent years,
for example, DIRECTED FEEDBACK VERTEX SET [25] or DIRECTED MULTIWAY
CuT [26]. This suggests that it is not hopeless to expect further progress on
directed graphs, or even a general theory that is applicable for several problems.

2 The Optimality Program

Recall that a parameterized problem is fized-parameter tractable (FPT) with a
given parameterization if there is an algorithm with running time f(k) - n©®,
where n is the size of the instance, k is the value of the parameter associated with
the instance, and f is an arbitrary computable function depending only on the
parameter k (see the monographs [44, [50, I87] or the survey [41] in this volume
for more background). That is, the problem can be solved in polynomial time
for every fixed value of the parameter k£ and the exponent does mot depend on
the parameter. Intuitively, we would like fixed-parameter tractability to express
that the problem has an “efficient” or “practical” algorithm for small values of
k. However, the definition only requires that f is computable and it can be any
fast growing, ugly function. And this is not only a hypothetical possibility: the
early motivation for parameterized complexity came from algorithmic results
based on the Graph Minors Theory of Robertson and Seymour, and the f(k) in
these algorithms are typically astronomical towers of exponentials, far beyond
any hope of practical use.

For most FPT problems, however, there are algorithms with “well-behaving”
f(k). In many cases, f(k) is ¢* for some reasonably small constant ¢ > 0. For
example, VERTEX COVER can be solved in time 1.2738% . n®() [23]. Sometimes
the function f(k) is even subexponential, e.g., Ve Tt happens very often that by
understanding a problem better or by using more advanced techniques, better
and better FPT algorithms are developed for the same problem and a kind of
“race” is established to make f(k) as small as possible. Clearly, it would be very
useful to know if the current best algorithm can be improved further or it has
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already hit some fundamental barrier. If a problem is NP-hard, then we cannot
expect f(k) to be polynomial. But is it possible that something very close to
polynomial, say k'°81°81°6 % can be reached? Or are there problems for which the

best possible f(k) is very bad, say, of the form 222Q(k) ? The optimality program
tries to understand and answer such questions.

In recent years, a lower bound technology was developed, which, in many
cases, is able to demonstrate the optimality of fixed-parameter tractability re-
sults. We sketch how such lower bounds can be proved using a complexity-
theoretic assumption called Exponential Time Hypothesis (ETH). (An alternate
way to discuss these results is via the complexity class M[1] and for some of the
results even the weaker FPT # W[1] hypothesis is sufficient. However, to keep
our discussion focused, we describe only results based on ETH here.) For our
purposes, ETH can be stated as follows:

Conjecture 2.1 (Exponential Time Hypothesis [63]). 3-SAT cannot be
solved in time 2°0™) | where m is the number of clauses.

This conjecture was first formulated by Impagliazzo, Paturi, and Zane [63].
More precisely, they stated a version of the conjecture saying that there is no
20(n) . mOM) time algorithm, where n is the number of variables, and showed by
a reduction called the Sparsification Lemma that the two versions of the conjec-
ture are equivalent. Although there is no universal consensus in accepting ETH
(compared to more established conjectures such as P # NP), it is consistent
with our current knowledge: after several rounds of improvement, the best algo-
rithm for n-variable m-clause 3-SAT has running time O(1.30704™) [60] and no
algorithm with subexponential running time in m seems to be in sight.

If we accept ETH, then we can obtain lower bounds for other problems through
reductions. Let us observe that standard NP-hardness reductions from 3-SAT
to, say, INDEPENDENT SET are sensitive to the number of clauses in the input
instance. That is, there is a polynomial-time algorithm that, given an m-clause
3SAT instance ¢, constructs a O(m)-vertex graph G and an integer k such that ¢
is satisfiable if and only if G has an independent set of size k. Therefore, assuming
ETH, INDEPENDENT SET cannot be solved in time 2°(") on n-vertex graphs, as
this algorithm together with the reduction from 3SAT would give a 2°0™) time
algorithm for m-clause 3SAT. If we look at the literature on NP-hardness proofs,
then we can see that many other hardness proofs have this property. From these
hardness proofs, we can obtain results such as the following:

Corollary 2.2. Assuming ETH, there is no 2°") time algorithm for INDE-
PENDENT SET, CLIQUE, DOMINATING SET, HAMILTONIAN PATH on n-vertex
graphs.

This means that every algorithm for these problems has to run in time expo-
nential in the number of vertices or, in other words, there are no subexponential
FPT algorithms parameterized by the number of the vertices. A colloquial term
for algorithms that solve the problem in exponential time in the number of
vertices, possibly in a smart way, is “exact exponential-time algorithms” [52];



What’s Next? Future Directions in Parameterized Complexity 473

Corollary 2.2 can be interpreted as a lower bound on exact algorithms. However,
as the number of vertices is an upper bound on the size of the solution, it also
follows that there are no subexponential FPT algorithms parameterized by the
size of the solution:

Corollary 2.3. Assuming ETH, there is no 2°®) . n®W time algorithm for IN-
DEPENDENT SET, CLIQUE, DOMINATING SET, and k-PATH, where k is the size
of the solution to be found.

There are FPT problems for which there are subexponential-time parameter-
ized algorithms. This is very common for planar problems: all the problems in
Corollary 23] are known to be solvable in time 20(Vk) . nO) op planar graphsE
There are two main approaches for obtaining running time of this form on planar
graphs: using planar separator results [3] and bidimensionality theory [36]. On
the complexity side, if we look at the proofs showing the NP-hardness of these
problems in planar graphs, then all of them involve “crossover gadgets” to deal
with planarity. These gadgets induce a blowup in the size of the constructed in-
stance: it is no longer linear in the number of clauses, but quadratic. Therefore,
we get weaker lower bounds: we can only rule out the existence of algorithms
with running time 20(Vk) . nO(1),

Corollary 2.4. Assuming ETH, there is no 20(VK) . nOM) time algorithm for
INDEPENDENT SET, DOMINATING SET, and k-PATH on planar graphs, where k
1s the size of the solution to be found.

Note that these lower bounds match the known 20VF) . nO() time algorithms
(up to the constant hidden by the big-O notation). These matching bounds can
be considered a major success of the optimality program so far. Initially looking
at planar problems, it is not obvious why square root is the function that should
appear in the running time, but we have learned that this is an inherent feature
of planarity and now we have a good understanding of both the upper bounds
and the lower bounds.

A planar problem which is not fully understood yet is SUBGRAPH ISOMOR-
PHISM: given graphs H and G, does G has a subgraph isomorphic to H? On
planar graphs, the problem is known to be solvable in time 20(*) . O [39],
where k is the number of vertices of H (improving an earlier k°®*) . n®() algo-
rithm [45]). Could it be that square root appears in this problem as well and
the running time can be improved further to 20(Vk) . nO()? There is no known
complexity result ruling out this possibility. Furthermore, significantly new tech-
niques would be required to rule out the existence of a 2°() . O algorithm
for the problem: as the problem is planar, typical reductions need to introduce
crossover gadgets, which would create a blowup in the size of the instance.

Subexponential-time FPT results are fairly standard for planar problems. It
is much more surprising if a problem on general graphs admits a subexponential-
time algorithm. Very recently, this turned out to be the case for the CHORDAL

! Actually, CLIQUE can be solved in polynomial time on planar graphs.
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COMPLETION problem (given a graph G and an integer k, decide if G can be
made chordal by adding at most k edges). Various 20%) . n®() time algorithms
are known for the problem [17,165, [15]. Fomin and Villanger [54] gave a significant
improvement by presenting a 20(Vklogh) ,O(1) time algorithm. It is an interesting
question whether this running time can be further improved. As observed in [54],
the NP-hardness proofs imply that, assuming ETH, there is no 20(k'/) o)
time algorithm. Therefore, currently there is a large gap between the best upper
and lower bounds.

Obtaining lower bounds of the form 2°*)pOM) or 20(Vk)p,O(1) o parameter-
ized problems generally follows from the known NP-hardness reductions. How-
ever, there are some parameterized problems where f(k) is “slightly superexpo-
nential” in the best known running time: f(k) is of the form k9(F) = 20(klogk)
Algorithms with this running time naturally occur when a search tree of height
at most k and branching factor at most k is explored, or when all possible per-
mutations, partitions, or matchings of a k£ element set are enumerated. In many
cases, the f(k) running time was later improved to 2°®) | often with significant
extra work or with the introduction of a new technique. We have seen an example
of this with the SUBGRAPH ISOMORPHISM problem on planar graphs. Another
example: Monien [85] in 1985 gave a k! -n°(1) time algorithm for finding a cycle
of length k in a graph on n vertices. Alon, Yuster, and Zwick [6] introduced the
color coding technique in 1995 and used it to show that a cycle of length k can be
found in time 2°0).nOM) | A very recent example is the case of the HAMILTONIAN
CYCLE problem parameterized by treewidth. A w@®) . n%W) time algorithm for
graphs of treewidth w follows from standard dynamic programming techniques
(see e.g., [50]). Very recently, Cygan et al. [30] introduced an elegant new tech-
nique called cut and count, and used it to design a (randomized) algorithm that,
given a tree decomposition of width w, solves the problem in time 4% - n©®),

However, there are still a number of problems where the best running time
seems to be “stuck” at 20(*klogk) . nO)  Recently, for some of these problems
matching lower bounds excluding running times of the form 20(klogk) . ,O(1)
were obtained under ETH |75] (see also |30] for further examples), showing the
optimality of these algorithms.

— The pattern matching problem CLOSEST STRING (given k strings over an
alphabet X' and an integer d, decide if there is a string whose Hamming-
distance is at most d from each of the k strings) is known to be solvable in
time 20(dlogd) . O [57] or 20(dlog X)) . nOM) [77]. Assuming ETH, there is
no 2°(41ogd) . O) and 20(d1g1¥1) . O time algorithms [75].

— The graph embedding problem DISTORTION (decide whether a graph G has
a metric embedding into the integers with distortion at most d) can be solved
in time 20(¢10gd) ., O [47]. Assuming ETH, there is no 2°(¢1084) .0 time
algorithm [75].

— The D1sJOINT PATHS problem can be solved in time in time 2°0(wlegw).pO(1)
on graphs of treewidth at most w [95]. Assuming ETH, there is no go(wlogw)
n®M time algorithm [75].
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We expect that many further results of this form can be obtained by using
the framework of [75]. Thus the existence of parameterized problems requiring
“slightly superexponential” time 20(1gk) . |1|9() is not a shortcoming of al-
gorithm design or a pathological situation, but an unavoidable feature of the
landscape of parameterized complexity.

The results discussed so far show the optimality of some 2°0(*) . pO1) 20(Vk) .
nPW and 20k logk) ., O0() time algorithms. Are there natural problems for which
the optimum running time is of some other form, say, 20(K) . O o 927
n®M? The curious problem CLIQUE-OR-INDEPENDENT-SET (given a graph G
and an integer k, is there a set of k vertices that induce a clique or an independent
set?) can be solved in time 2°0() . nO() ysing a simple Ramsey argument ([69,
67)), thus it could be a candidate problem where this form of running time is
optimal. PLANAR DELETION (delete k vertices to make the graph planar) could
be a candidate for a natural problem where double-exponential dependence on k
is necessary. The fixed-parameter tractability results for PLANAR DELETION [83,
66] depend on solving the problem on bounded-treewidth graphs, and it seems
that the natural algorithm based on destroying all K5 and K33 subdivisions
have double-exponential dependence on treewidth.

A more ambitious project is to understand the exact constants in the function
f(k) for the problem: for example, what is the smallest ¢ > 0 such that there is
a c®-nM time algorithm for the problem? Let us note first that obtaining such
results is very different and much more challenging than proving lower bounds of
the form, say, 2°(®) . nO(1) The problem is that determining the best possible ¢
is machine-model dependent in the sense that it is not robust under polynomial-
transformations of the running time. That is, a 4% -n®(®) running time is just the
square of 28 . n®W) ETH as formulated in Conjecture 1] however, is invariant
under polynomial transformations of the running time: any polynomial of 2°0™)
is still 2°0™). Therefore, it seems unlikely that such a coarse conjecture would
give an easy way of proving the fine distinctions between running times c* - n©®)
for different values of c. A more suitable conjecture is the Strong Exponential
Time Hypothesis (SETH); for the purposes of this paper, we can state it the
following way:

Conjecture 2.5 (Strong Exponential Time Hypothesis [63, [18]). There
is no (2—¢€)"-mOPW) time algorithm for n-variable m-clause SAT for any e > 0.

Note that here SAT is the satisfiability problem with unbounded clause size.
For fixed clause size, there are better algorithms, see e.g., |60]. Lokshtanov et
al. [74] used SETH to prove tight lower bounds on algorithms working on tree
decompositions. Suppose that we want to solve a problem on a graph G and a
tree decomposition of width w of G is given in the input. Assuming SETH, for
every € > 0

— INDEPENDENT SET cannot be solved in (2 — €)*|V(G)[°W) time,
DOMINATING SET cannot be solved in (3 — €)®[V(G)|°M) time,

— Max CuT cannot be solved in (2 — €)”|V(G)|°™) time,

ODD CYCLE TRANSVERSAL cannot be solved in (3 — €)* |V (G)|°M) time,
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— For any ¢ > 3, ¢-COLORING cannot be solved in (¢ — €)*|V(G)|°™M) time,
— PARTITION INTO TRIANGLES cannot be solved in (2 — €)*|V(G)|°™) time.

These lower bounds match the best known algorithms for the problem (up to
the € in the base of the exponent). Some further lower bounds of this form
can be found in [30]. It seems to be a very different and significantly more
challenging task to prove such tight results for problems parameterized by the
size of the solution (instead of treewidth). The natural targets for such lower
bounds are problems where the best known algorithms have running times of
the form ¥ - n©™) for some integer c. Cygan et al. [30] gave such (randomized)
algorithms for a number of problems using the technique of cut and count.

The optimality results we have discussed so far make fixed-parameter tractabil-
ity quantitative: we not only know now that the problem is FPT, but we also
know what the best f(k) in the running time can be. Another aspect of the op-
timality program is to make W[1]-hardness results quantitative. That is, instead
of just knowing that the problem is not FPT and therefore the parameter has to
appear in the exponent of the running time, we would like to know how exactly
the exponent should depend on the parameter. A W[1]-hardness result by itself
does not rule out the possibility that the problem can be solved in, say, time
2k . pOlloglogloglogk) \which would be “morally equivalent” to fixed-parameter
tractability.

The Exponential Time Hypothesis can be used to give a tight lower bound on
the exponent of the running time. Chen et al. [22] showed that for the CLIQUE
problem the n®®*) brute force algorithm is already optimal in this respect:

Theorem 2.6. Assuming ETH, CLIQUE cannot be solved in time f(k) - n°*)
for any computable function f.

Using parameterized reductions, we can transfer the lower bound of Theorem 2.6]
to other problems. The exact form of the lower bound depends on how the
parameterized reduction changes the parameter. For the following problems, the
reductions increase the parameter at most by a constant factor, thus we get a
lower bound of the same form:

Theorem 2.7. Assuming ETH, INDEPENDENT SET and DOMINATING SET can-
not be solved in time f(k)-n°® for any computable function f.

On the other hand, if the reduction increases the parameter by more than a
constant factor, then the lower bound gets weaker. For example, a reduction
from CLIQUE (on general graphs) to DOMINATING SET on unit disk graphs was
presented in [79], which increases the parameter from k to O(k?). Therefore, we
have the following lower bound:

Theorem 2.8. Assuming ETH, DOMINATING SET on unit disk graphs cannot
be solved in time f(k) - neVk) for any computable function f.

As DOMINATING SET on unit disk graphs can be solved in time nOWk) ],
Theorem 2.8 is tight. Thus, similarly to many planar problems, the appearance
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of the square root in the running time can be an inherent feature of geometric
problems.

Most W[1]-hardness results in the literature are from CLIQUE (or INDEPEN-
DENT SET, which is the same). Therefore, by analyzing how the parameter
changes in the reduction, we can extract lower bounds similar to the ones above
by transfering Theorem to the problem at hand. One should examine it sep-
arately for each problem whether the lower bound obtained this way is tight or
not. Many of the more involved reductions from CLIQUE use edge selection gad-
gets (see e.g., |48,151,/79]). As a clique of size k has ©(k?) edges, this means that
the reduction typically increases the parameter to ©(k?) at least and, similarly
to Theorem [Z.8 what we can conclude is that there is no f (k‘)n"(\/k) time algo-
rithm for the target problem (unless ETH fails). If we want to obtain stronger
bounds on the exponent, then we have to avoid the quadratic blow up of the pa-
rameter and do the reduction from a different problem. Many of the reductions
from CLIQUE can be turned into a reduction from the more general SUBGRAPH
IsoMORPHISM (Given two graphs H and G, decide if H is a subgraph of G).
In a reduction from SUBGRAPH ISOMORPHISM, we need |E(H)| edge selection
gadgets, which usually implies that the new parameter is ©(|E(H)|). Thus the
following lower bound on SUBGRAPH ISOMORPHISM, parameterized by the num-
ber of edges in H, could be used to obtain tighter lower bounds compared to
those coming from the reduction from CLIQUE.

Theorem 2.9 ([81]). If SUBGRAPH ISOMORPHISM can be solved in time
f(k)nek/1oek) “where fis an arbitrary function and k is the number of edges
of the smaller graph H, then ETH fails.

We remark that it is an interesting open question if the factor logk in the
exponent can be removed, making this result tight (and also making the results
following from Theorem [Z.9] tighter).

CLOSEST SUBSTRING (a generalization of CLOSEST STRING) is an extreme
example where reductions increase the parameter exponentially or even double
exponentially, and therefore we obtain very weak lower bounds. In this problem,
the input consists of strings si, ..., s; over an alphabet X' and integers L and
d. The task is to find a string s of length L such that every s; has a consecutive
substring s of length L with Hamming-distance at most d from s.

Let us restrict our attention to the case where the alphabet is of constant size,
say binary. Marx [80] gave a reduction from CLIQUE to CLOSEST SUBSTRING
where d = 200 and t = 22°" in the constructed instance (k is the size of the
clique we are looking for in the original instance). Therefore, we get weak lower
bounds with only o(logd) and o(loglogk) in the exponent. Surprisingly, these
lower bounds are actually tight, as there are algorithms matching these bounds.

Theorem 2.10 ([80]). CLOSEST SUBSTRING over an alphabet of constant size
can be solved in time f(d)n®1°84) orin f(d, k)nCU°8108k) - Fyrthermore, assuming
ETH, there are no algorithms for the problem with running time f(k, d)n°(°8® of
f(k, d)no(log log k) .



478 D. Marx

While the results in Theorems and are asymptotically tight, they do
not tell us the exact form of the exponent, that is, we do not know what the
smallest c is such that the problems can be solved in time n*. However, assuming
SETH, stronger bounds of this form can be obtained. Specifically, Patragcu and
Williams [88] obtained the following bound for DOMINATING SET under SETH.

Theorem 2.11 ([88]). Assuming SETH, there is no O(n*=<) time algorithm
for DOMINATING SET for any € > 0 and k > 2.

3 Kernelization from the Viewpoint of Optimality

Kernelization is one of the most basic and most practical algorithmic techniques
in parameterized complexity. Recall that a kernelization for a parameterized
problem P is a polynomial-time algorithm that, given an instance I of P with
parameter k, produces another instance I’ of P with parameter &’ such that (1)
I is a yes-instance if and only if I’ is a yes-instance, (2) the size of I’ is at most
f (k) for some computable function f, and (3) &’ is at most f(k). Intuitively, one
can think of a kernelization as a fast preprocessing algorithm producing a small
“hard core” of the problem that needs to be solved. We say that a kernelization
is an f(k)-kernel if the size of I’ is at most f(k). For graph problems, we also
use the term f(k)-vertez-kernel to indicate that I’ has at most f(k) vertices.

If a parameterized problem admits a kernel, then this immediately implies
that the problem is FPT. We can use the kernelization algorithm to produce an
equivalent instance I’ of size at most f(k), and then we can use any brute force
algorithm to solve I’ in time that can be bounded by a function of &k (assuming
the problem is decidable). More surprisingly, a folklore result shows that the
reverse direction is also true:

Theorem 3.1. A decidable parameterized problem has a kernel if and only if it
is FPT.

Proof. We have seen the forward direction above. For the reverse direction, sup-
pose that a parameterized problem can be solved in time f(k) - n¢ for some
computable function f(k) and constant c. Given an instance I of the problem,
let us simulate this algorithm for nt! steps. If the algorithm terminates during
this simulation, then we can produce a kernel by outputing a trivial yes- or a
trivial no-instance. If the f(k) - n¢ time algorithm does not terminate in n+!
steps, then n < f(k). This means that I itself is a kernel with size at most

(k). 0

What does Theorem B tell us? It suggests that every FPT result can be ex-
plained as a kernelization together with an exact algorithm. Thus the study of
fixed-parameter tractability can be reduced to the study of kernelization
algorithms and exact exponential-time algorithms (or in other words, parameter-
ization by the size of the instance). Given the breadth of techniques in param-
eterized complexity that does not seem to have anything to do with these two
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concepts (e.g., color coding, iterative compression, and algebraic techniques), this
is a somewhat disheartening and suspicious claim.

Let us revisit this claim from the viewpoint of the optimality program. It is
true that every fixed-parameter tractability result can be obtained as a combina-
tion of kernelization and exact algorithms, but is it the right way of solving the
problem? That is, can we get the best possible (or at least a reasonable good)
f(k) in the running time this way? For some problems this seems to be the case.
For example, a classical result of Nemhauser and Trotter [86] shows that VER-
TEX COVER admits a 2k-vertex-kernel and can be solved trivially in time 20(%)
on n-vertex graphs. This results in a 2°0%) . nM) time algorithm, which is the
optimal form of the running time by Corollary 23l For DOMINATING SET on
planar graphs, several O(k)-vertex-kernels are known and the problem can be
solved in time 20V on n-vertex planar graphs either by treewidth techniques
or by using planar separator theorems. This combination gives us 20(Vk) . o)
time algorithms, which matches the lower bound of Corollary [Z4]

For other problems, however, we cannot reach the best possible running time
using this combination. In order to show this, we need a way of proving lower
bounds on the size of kernels that can be achieved. Bodlaender et al. [13], using
the work of Fortnow and Santhanam [55], developed a technique for showing
(modulo a complexity assumption) that certain problems do not admit kernels
of polynomial sizes. This result started a whole new line of research and the
technique has been subsequently used in several papers to prove similar lower
bounds. We state only one such result here:

Theorem 3.2 ([13]). Assuming coNP & NP /poly, there is no kO -kernel for
k-PATH.

The assumption coNP Z NP /poly is a fairly standard complexity assumption,
for example, if it is false, then the polynomial hierarchy collapses [9].

The k-PATH problem is known to be solvable in time 2°®*) . n.O() by various
techniques [6, [10, 97]. Can we match this running time by a combination of
kernelization and exact algorithms? Clearly, we can solve k-Path by a brute
force exact algorithm in time n®*). By Theorem 3.2 we cannot produce a kernel
with k€ vertices for any constant ¢, thus this combination cannot even guarantee
a running time of k% - n©W) for any constant ¢. In other words, even though
Theorem [3.I] shows that k-PATH has a kernelization algorithm and therefore
in principle we could obtain FPT algorithms for the problem by kernelization
followed by an exact algorithm, this is not the right combination of techniques to
solve the problem, as it cannot reach the best possible running time 2°0®*) . nO1)

We can argue similarly for other problems where the existence of a polynomial
kernel can be ruled out by a result analogous to Theorem But what about
problems for which polynomial kernels do exist? Very recently, some results ap-
peared that give tight lower bounds for problems admitting polynomial kernels.
Recall that given a collection of sets of size d of a set of elements and an integer
k, the d-SET COVER asks for a set of at most k elements that intersects every
set in the input, while the d-SET PACKING problem asks for k pairwise-disjoint
sets from the collection. For both problems, algorithms based on the Sunflower
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Lemma give kernels containing at most k? sets (see e.g., [34]). The following
results show that this is essentially best possible:

Theorem 3.3 ([35]). Assuming coNP ¢ NP /poly, there is no O(k*~¢)-kernel
for d-SET COVER for any d > 3 and € > 0.

Theorem 3.4 ([34]). Assuming coNP ¢ NP /poly, there is no O(k*~€)-kernel
for d-SET PACKING for any d > 3 and € > 0.

The d-SET COVER problem can be solved in time d* - n®(") by simple branching
and d-SET PACKING can be solved in time 2°() . nO() for example by color
coding. Can we match these running times by a combination of kernelization
and exact algorithms? It is not clear at this point. Both problems can be solved
in time 2°(") if n is the number of elements (this is obvious for d-SET COVER,
as we can try every subset of the elements; for d-SET PACKING, this follows
from standard dynamic programming techniques). Therefore, the questions is
whether kernels with O(k) elements exist for these problems. Theorems
do not rule out this possibility, as they give a lower bound on the number sets
only. Note that the current best upper bounds on the number of elements in
the kernel are far from being O(k) [1, 2]. It is a very interesting and challenging
question for further research to understand what the best possible bound is in
terms of the number of elements. From the viewpoint of the optimality program,
one needs to answer this question in order to evaluate whether kernelization is
the right way of solving these problems, or other techniques such as branching
and color coding are inherently necessary to achieve the best possible running
time.

Finally, for problems that admit linear (vertex-)kernels, one would like to
know the best possible constant factor. For example, is there a (2 — €)k-vertex-
kernel for VERTEX COVER? There is a simple 2-approximation for this problem
and there is no (2 — €)-approximation under the Unique Games Conjecture [68].
It seems to be too much of a coincidence that the same number appears both in
the best kernel and the best approximation. This could be the sign that there
are some deep connections that we are unaware of at the moment.

Chen et al. [20] proposed an elegant argument for proving lower bounds on
kernel size. The parametric dual of a parameterized problem with respect to a
size function s is the same problem, but now we consider s — k the parameter
instead of k. For example, the parametric dual of VERTEX COVER with respect
to the number of vertices is INDEPENDENT SET (since there is a vertex cover
of size k in an n-vertex graph if and only if there is an independent set of size
n—k). Chen et al. [20] showed that if a parameterized problem and its dual both
admit small kernels of linear size, then one can solve the instance by repeated
applications of the two kernelization algorithms. This technique is very useful
for planar or bounded-degree problems, as for these classes it is fairly natural
that both the problem and its parametric dual have linear kernels. Let us state
as an example a few lower bounds that follow from this technique:
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Theorem 3.5. [20] Assuming P # NP, for any e >0

VERTEX COVER on planar graphs does not have a (‘3l — e)k-vertez-kernel.

— VERTEX COVER on planar triangle-free graphs does not have a (g — €)k-
vertez-kernel.

— INDEPENDENT SET on planar graphs does not have a (2 — €)k-vertex-kernel.

DOMINATING SET on planar graphs does not have a (2 — €)k-vertez-kernel.

Note, however, that these result do not give lower bounds on kernelization for
general graphs: a kernelization algorithm for general graphs can transform a
planar instance into a nonplanar one, hence it is not necessarily a correct ker-
nelization algorithm for the planar problem as well.

We conclude this section by pointing out two technical issues that have arisen
in the study of kernelization. In the definition of kernelization, we want to bound
the size of the constructed instance. However, we might want to bound some
other measure instead, for example, the number of vertices in the graph. From
the practical point of view, for most graph-theoretical problems the time required
for the exact solution of the kernel is mainly influenced by the number of vertices,
thus it makes sense to focus on reducing the number of vertices. On the other
hand, bounding the size of the instance seems to be mathematically more robust
question, for example, the techniques of [13,35] give primarily lower bounds on
the size of the instance. Both kind of bounds are worth studying, but we have to
make a clear distinction between the two types of results and realize the different
consequences.

Another technical issue is the bound on the parameter in the kernel. Origi-
nally, Downey and Fellows [44] required that the parameter of the kernel is at
most the parameter of the original instance. This makes sense: as we imagine
that the parameter measures the hardness of the instance, we do not want the
preprocessing to increase it. Later, e.g., in [14, [13] a more liberal definition is
given, where we only require that the new parameter is bounded by a function
of the old parameter (we used this definition in the beginning of the section). An
advantage of this definition is that it is robust with respect to polynomial trans-
formations of the kernel. For example, we can create a polynomial-size kernel
that is an instance of some other problem (this is sometimes called a bikernel)
and then use a polynomial-time reduction to transform it into an instance of the
original problem. This results in a polynomial-size kernel, but the parameter can
increase in the reduction. Allowing such arguments in proving the existence of
polynomial-size kernels makes the theory more robust and mathematically more
natural, although it weakens the connection with practical preprocessing. One
has to be aware of this difference and interpret the results accordingly.

4 Branching Algorithms

Besides kernelization, the technique of “bounded-depth search trees” is perhaps
the most basic method for showing that a problem is fixed-parameter tractable.
Let us recall how this technique works in the case of VERTEX COVER. Let G
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be a graph where a vertex cover of size k has to be found. Let e = uv be an
arbitrary edge of G. Clearly, every vertex cover contains either « or v (or both).
Therefore, we branch into two directions. In the first branch, we assume that
u is in the vertex cover, hence we try to find recursively a vertex cover of size
k —1in G\ u. In the second branch, we assume that v is in the vertex cover
and try to find recursively a vertex cover of size k — 1 in G \ v. Clearly, if there
is a solution, at least one of the two branches finds a solution. We repeat this
branching step until there is no edge in the graph or k£ becomes 0. Running this
recursive process creates a search tree where each node has at most two children.
The crucial property to observe is that the height of the search tree is at most
k: the parameter strictly decreases in each step. Therefore, the search tree has
at most 2* leaves and hence O(2*) nodes. Each recursion step can be done in
polynomial time, hence it follows that the total running time is 2¥ - n™) . The
d-SET COVER problem is a generalization of VERTEX COVER: given sets of size
d, we have to find k elements that hit every set. In a similar way, one can obtain
a d* - n°M algorithm for d-SET COVER by selecting a set and branching on
which element of the set is included in the solution.

In summary, the main idea of the bounded-depth search tree technique is to
reduce the instance into a bounded number of instances with strictly smaller
parameter values. If the reduction creates at most ¢ instances, then the running
time is ¢*-n®M . In some cases, the number of directions we branch into depends
also on the parameter. For example, if we create at most k instances in each step,
then we can bound the running time by &*-n®® . The d*-n°M) time algorithm for
CLOSEST STRING [57] mentioned in Section 2lis an example of such a branching
algorithm.

Seeing how fruitful the systematic analysis of kernelization turned out to be,
one wonders why there haven’t been any systematic analysis of the applicability
of branching algorithms. The purpose of this section is to propose a framework
in which this question can be studied. What we have learned in the study of
kernelization is that one should pay attention to optimality: the question is not
whether branching algorithms can be used to solve a problem, but whether it
is the right way of solving the problem. Therefore, here we stick to the study
of ¢# - n®W time algorithms that branch into a constant number of directions.
In particular, we are not interested in the question whether there is a k* - n©)
time branching algorithm for a problem that can be solved in time ¢* - n®) by
other techniques (because such a branching algorithm would be far from being
the optimal way of solving the problem).

Let us formalize first the notion of a branching rule.

Definition 4.1. Let (I, k) be an instance of a parameterized problem with k > 1.
A c-way branching rule for some constant ¢ is a polynomial-time algorithm that,
given instance I, produces instances (I1,k1), ..., (Ic, k) such that

1. L] < || for every 1 <i <c¢,

2. ki <k for every1 <i <eg,

3. (I, k) is a yes-instance if and only if (I;, k;) is a yes-instance for at least one
1<i<e.
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It is easy to see that if a parameterized problem has a c-way branching rule, then
we can solve the problem in time c*-n?(1) (assuming the problem is polynomial-
time solvable for k = 1, which is the case for the problems we are interested in).
The algorithm described at the beginning of the section shows that VERTEX
COVER has a 2-way branching rule. Thus it seems that we have a simple frame-
work for formally studying which problems can be solved by the technique of
bounded-depth search trees.

Unfortunately, there are parameterized problems that do not have branching
rules in the sense of Definition Il for pathological reasons. For example, consider
the (artificial) problem VERTEX COVERT defined as follows: given a graph G
and an integer k, the task is to decide of G has a vertex cover of size k and,
additionally, if k& = 2¢ for some integer i (i.e., k is a power of 2). Clearly, this
problem is not more complicated than VERTEX COVER: all we need is the trivial
extra check whether k is a power of 2. Still, this problem has no branching rule:

Proposition 4.2. Assuming P # NP, VERTEX COVERT does not have a branch-
ing rule.

Proof. A simple padding argument shows that VERTEX COVERT is NP-hard.
Suppose that A is a branching algorithm for VERTEX COVERT that produces a
constant number ¢ of instances. We can assume that for every instance (I;, k;)
created by A, parameter k; is a power of 2, since otherwise (I;, k;) is trivially
a no-instance. Furthermore, we can assume that we run A only on instances
whose parameter is a power of 2. Therefore, if the parameter is 2¢, algorithm
A creates c instances with parameter at most 2'~!. This means that the height
of the search tree is at most log, k and therefore the size of the search tree is
O(cloe2k) = O(k'°82¢), which is polynomial in k (as c is a fixed constant). Thus
we can solve VERTEX COVERT in polynomial time, implying P = NP. O

To avoid situations like Proposition 2], we have to allow that a branching algo-
rithm solves a modified version of the problem (e.g., VERTEX COVER instead of
VERTEX COVERT). We express this by saying that we are interested in problems
that can be reduced to a problem that has a branching rule. The right notion of
reduction for this purpose is a restriction of parameterized reduction that runs in
polynomial time and the parameter can be increased only by at most a constant
factor:

Definition 4.3. A linear-parameter polynomial-time parameterized transfor-
mation (LPPT) from a parameterized problem Py to a parameterized problem
P, is a polynomial-time algorithm that, given an instance (I1, k1) of Py, creates
an instance (Iz, ko) of Py such that

1. (I, k1) is a yes-instance of Py if and only if (I2, ka) is a yes-instance of Po,
and
2. ko < c-ky for some constant c.

Now we can define the class BFPT (where B stands for “branching”), which
formalizes the notion of branching:
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Definition 4.4. The class BEFPT contains a parameterized problem Pj if there
s a parameterized problem P that has a branching rule and there is an LPPT
from Py to Ps.

Let us observe that VERTEX COVERT is in BFPT as expected: there is a trivial
LPPT from this problem to VERTEX COVER.

Before discussing further examples of problems in BFPT, let us show a simple
equivalent characterization of BFPT with linear-size witnesses. Recall that a
language P is in NP if there is a polynomial-time decidable language P’ and a
polynomial p such that = € P if and only if there is a string w (the witness) of
length at most p(|z|) such that (x,w) € P’. Informally, we can say that w is a
polynomial-size witness for x that can be verified in polynomial. The following
lemma shows that BFPT contains those NP languages where there is a witness
whose length is linear in the parameter.

Lemma 4.5. A parameterized problem is in BFPT if and only if there is a
polynomial-time decidable language P’ and a constant ¢ such that (z,k) € P if
and only if there is a string w of length at most c|k| such that (z,k,w) € P’.

Proof. For the forward direction, suppose that parameterized problem P can
be LPPT-reduced to a parameterized problem () that has a c-way branching
algorithm A. Given an instance (I, k) of P, let (I’,k’) be the instance of @
created by the LPPT reduction. If (I’ k') € @, then one of the branches of A
is successful, i.e., produced a yes-instance with parameter k = 1. As A branches
into ¢ directions, we can describe with [log, c|-k" = O(k) bits a successful branch.
This description is a good witness for (I,k): one can verify it in polynomial-
time by computing the instance (I, k') given by the LPPT-reduction and then
verifying that this branch of the search tree of A is indeed successful.

For the reverse direction, let us define the language P” such that (x, k,w,£) €
P" if there is a string ¢ of length at most £ such that (z,k,wq) € P’. In other
words, (z,k,w,?) € P"” means that w can be extended with at most ¢ bits to a
witness of (z, k). The problem P” parameterized by ¢ has a branching rule: we
try to append a 0 or a 1 to w. Formally, (z,k,w,¢) € P"” if and only if either
(z,k,w) € P’ (which can be checked in polynomial time), or (x, k,w0,¢ — 1) €
P” or (z,k,wl,¢ — 1) € P”. By assumption, (z,k) € P if and only if there
is a string w of length at most c|k| such that (z,k,w) € P’, or equivalently,
(x,k, € clk]) € P” (where € is the empty word). This gives an LPPT-reduction
from P to P”, a problem that has a branching algorithm. O

Lemma L5 gives a more convenient way of showing that a problem is in BFPT.
There are many examples of branching algorithms where the parameter does not
necessarily decrease after each branching step, but we can show that some other
measure strictly decreases. In such a case, it would be awkward to use directly
the definition of BFPT, since we need to define an artificial problem where
the parameter is the measure bounding the height of the search tree. On the
other hand, with Lemma [£.5] all we need to do is to observe that we branch into
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a constant number of directions in each step and the height of the search tree is
bounded by a linear function of the parameter. Therefore, a string describing the
successfully branch is a correct witness whose length is linear in the parameter.

As an example, let us use Lemma to show that NODE MurLTiwAay CUT
(Given a graph G, a set of terminals 7' C V(G), and an integer k, the task is
to find a set S of at most k vertices that separates the terminals, that is, every
component of G\ T contains at most one vertex of T') is in BFPT. This problem
is known to be FPT |78, 24,31, [58]. Observation of, say, the 4% - n®™) algorithm
of Chen et al. [24] shows that the search tree in the proof has height at most 2k
and branching factor 2, thus there is a witness of 2k bits.

Proposition 4.6. NODE MuLTIWAY CUT is in BFPT.

A standard technique in the design of parameterized algorithms is to solve the
compression problem first. For example, let us consider the FEEDBACK VERTEX
SET problem (given a graph G and an integer k, the task is to find a feedback
vertex set of size k, that is, a set S of at most k vertices such that G\ S is a
forest). A randomized 4% - n®M) time algorithm was given in [8] and determin-
istic 20(klogk) . nO() time algorithms were given already in [42, 11]. However,
deterministic ¢* - n®M time algorithms appeared only much later and they all
use the technique of compression [33, 159, 121, 130].

In the compression version of FEEDBACK VERTEX SET, the input contains ad-
ditionally a feedback vertex set Sy of size k+1. Intuitively, we have to “compress”
a solution of size k + 1 into a solution of size k. The compression problem can
be easier than the original problem, as the initial solution Sy can give us useful
structural information about the graph. More generally, instead of starting with
a solution having the specific size k4 1, we can formulate the compression prob-
lem as starting with a solution of an arbitrary size ¢ > k, and we parameterize
by the problem by ¢, the size of the initial solution.

There are two ways of using the compression algorithm to solve the original
problem. The first method is to use the elegant technique of iterative compres-
sion, introduced by Reed et al. |92]. For a detailed explanation of this technique,
see for example the survey [61]. The second method is to use a polynomial-
time approximation algorithm to obtain a solution of size f(k) and then use the
compression algorithm to compress the initial solution of size f(k) to a solu-
tion of size k (if such a solution exists). Let us observe that if we start with a
constant-factor approximation and the compression is performed by a branching
algorithm, then this combination yields a branching algorithm for the original
problem. Therefore, we can state the following (somewhat informal) observation:

Proposition 4.7. If a parameterized problem P has a polynomial-time constant-
factor approximation and the compression version of P parameterized by the size
of the initial solution is in BFPT, then P is in BFPT.

FEEDBACK VERTEX SET has a 2-approximation and inspection of the proof,
e.g., in |21] shows that the compression problem is in BFPT.
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Proposition 4.8. FEEDBACK VERTEX SET is in BFPT.

There is an interesting connection between branching and kernelization. Suppose
that a problem has a linear-vertex-kernel. Then the problem can be solved by
computing the kernel and doing a brute force search on it. If this brute force
search can be done by branching, then this gives a branching algorithm for the
problem. We can formalize this by the following statement:

Proposition 4.9. If a parameterized problem P admits a linear-vertex-kernel

and the version of the problem parameterized by the number of vertices is in
BFPT, then P is in BFPT.

For example, this gives an alternate way of seeing that VERTEX COVER is in
BEFPT: it has a 2k-vertex-kernel [86] and VERTEX COVER parameterized by the
number n of vertices can be trivially solved by branching, as it has a witness of n
bits. Proposition 9 also applies to a wide range of planar problems. On planar
graphs, many of the standard NP-hard problems become FPT and in fact admit
linear-vertex-kernels; this follows for example from the powerful meta result of
Bodlaender et al. [14]. For problems where the solution is a subset of vertices,
it is usually trivial that the problem is FPT parameterized by the number of
vertices, as a branching algorithm can enumerate all possible subsets. Therefore,
we get for example the following results:

Proposition 4.10. INDEPENDENT SET, DOMINATING SET, CONNECTED DOM-
INATING SET, CONNECTED VERTEX COVER, INDUCED MATCHING on planar
graphs are in BFPT.

However, let us note that Proposition [£.10] is somewhat unsatisfactory from the
viewpoint of the optimality program. As these planar problems can be solved in
time cV* . nP® it can be considered as irrelevant whether there are ¢* - n@™)
time branching algorithms for them.

Max INTERNAL SPANNING TREE (given a graph G and an integer k, the
task is to find a spanning tree where at least k vertices are non-leaves, that is,
have degree more than one) admits a 3k-vertex-kernel, thus we might try to use
Proposition for this problem. However, it is not obvious if MAX INTERNAL
SPANNING TREE parameterized by the number of vertices has a branching algo-
rithm. A branching algorithm can guess the internal vertices, but then one has
to enforce somehow that the degrees of these vertices are more than one. It is
therefore an interesting open question whether the problem, parameterized by k
or by the number of vertices, is in BFPT.

The example of MAX INTERNAL SPANNING TREE shows that the search for
branching algorithms parameterized by the number n of vertices is also an in-
teresting research question. This is particularly true for problems that can be
solved in ¢" time by dynamic programming techniques, for example, HAMIL-
TONIAN PATH, CHROMATIC NUMBER, PARTITION INTO TRIANGLES for graphs
having n vertices, SET PACKING over a universe of n elements, HITTING SET
with n sets, etc. Paturi and Pudldk [89] raised a similar question: they ask if
HAMILTONIAN PATH has a polynomial-time randomized algorithm with success
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n

probability ¢™" on n-vertex graphs. Note that if k-PATH parameterized by the
length k& of the path is in BFPT, then this implies that k-PATH parameterized
by the number n of vertices is in BFPT, which further implies that HAMILTO-
NIAN PATH has the required randomized algorithm: we can replace branching
by random choices. This means that a negative answer to the question of Paturi
and Pudlak would imply that k-PATH is not in BFPT. Therefore, if one wants
to show that there is no such randomized algorithm, probably it makes sense
to concentrate on first showing that k-PATH is not in BFPT, as this can be an
easier question.

Branching algorithms are sometimes able to solve the more general counting
version of the problem as well. This depends 