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Abstract. A backdoor set is a set of variables of a propositional formula
such that fixing the truth values of the variables in the backdoor set
moves the formula into some polynomial-time decidable class. If we know
a small backdoor set we can reduce the question of whether the given
formula is satisfiable to the same question for one or several easy formulas
that belong to the tractable class under consideration. In this survey we
review parameterized complexity results for problems that arise in the
context of backdoor sets, such as the problem of finding a backdoor set
of size at most k, parameterized by k. We also discuss recent results on
backdoor sets for problems that are beyond NP.

1 Introduction

Satisfiability (SAT) is the classical problem of determining whether a
propositional formula in conjunctive normal form (CNF) has a satisfying truth
assignment. The famous Cook-Levin Theorem [22,61], stating that SAT is NP-
complete, placed satisfiability as the cornerstone of complexity theory. Despite
its seemingly specialised nature, satisfiability has proved to be extremely useful
in a wide range of different disciplines, both from the practical as well as from
the theoretical point of view. Satisfiability provides a powerful and general for-
malism for solving various important problems including hardware and software
verification and planning [8,64,99,56]. Satisfiability is the core of many reasoning
problems in automated deduction; for instance, the package dependency man-
agement for the OpenSuSE Linux distribution and the autonomous controller
for NASA’s Deep Space One spacecraft are both based on satisfiability [6,100].
Over the last two decades, SAT-solvers have become amazingly successful in
solving formulas with hundreds of thousands of variables that encode problems
arising from various application areas, see, e.g., [50]. Theoretical performance
guarantees, however, are far from explaining this empirically observed efficiency.
In fact, there is an enormous gap between theory and practice. To illustrate it
with numbers, take the exponential factor 1.308n of the currently fastest known
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exact 3SAT algorithm [53]. Already for n = 250 variables this number exceeds
by far the expected lifetime of the sun in nanoseconds.

Hidden Structure and Parameterized Complexity The discrepancy between the-
ory and practice can be explained by the presence of a certain “hidden structure”
in real-world problem instances. It is a widely accepted view that the structure
of real-world problem instances makes the problems easy for heuristic solvers.
However, classic worst-case analysis is not particularly well-suited to take this
hidden structure into account. The classical model is one-dimensional, where
only one aspect of the input (its size in bits, or the number of variables for a
SAT formula) is taken into account, and it does not differentiate whether or not
the instance is otherwise well-structured.

Parameterized Complexity, introduced by Mike Fellows together with Rod
Downey offers a two-dimensional theoretical setting. The first dimension is the
input size as usual, the second dimension (the parameter) allows to take struc-
tural properties of the problem instance into account. The result is a more fine-
grained complexity analysis that has the potential of being more relevant to
real-world computation while still admitting a rigorous theoretical treatment
and firm algorithmic performance guarantees.

There are various ways of defining the “hidden structure” in a problem in-
stance, yielding various ways to parameterize a problem.

Islands of Tractability. One way of coping with the high complexity of impor-
tant problems within the framework of classical complexity is the identification of
tractable sub-problems, i.e., of classes of instances for which the problem can be
solved in polynomial time. Each class represents an “island of tractability” within
an ocean of intractable problems. For the satisfiability problem, researchers
have identified dozens of such islands – one could speak of an archipelago of
tractability.

Usually it is quite unlikely that a real-world instance belongs to a known
island of tractability, but it may be close to one. A very natural and humble
way of parameterizing a problem is hence to take the distance to an island of
tractability as a parameter. Guo et al. [52] called this approach “distance to
triviality”. For SAT, the distance is most naturally measured in terms of the
smallest number variables that need to be instantiated or deleted such that
the instance gets moved to an island of tractability. Such sets of variables are
called backdoor sets because once we know a small backdoor set we can solve the
instance efficiently. Thus backdoor sets provide a “clever reasoning shortcut”
through the search space and can be used as an indicator for the presence of
a hidden structure in a problem instance. Backdoor sets where independently
introduced by Crama et al. [27] and by Williams et al. [101], the latter authors
coined the term “backdoor”.

The backdoor set approach to a problem consists of two steps: first a small
backdoor set is computed (backdoor detection), second the backdoor set is used to
solve the problem at hand (backdoor evaluation). It is hence natural to consider
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an upper bound on the size of a smallest backdoor set as a parameter for both
backdoor detection and backdoor evaluation.

2 Satisfiability

The propositional satisfiability problem (SAT) was the first problem shown to be
NP-hard [22,61]. Despite its hardness, SAT solvers are increasingly leaving their
mark as a general-purpose tool in areas as diverse as software and hardware
verification, automatic test pattern generation, planning, scheduling, and even
challenging problems from algebra [50].

A literal is a propositional variable x or a negated variable ¬x. We also use
the notation x = x1 and ¬x = x0. A clause is a finite set literals that does not
contain a complementary pair x and ¬x. A propositional formula in conjunctive
normal form, or CNF formula for short, is a set of clauses. An rCNF formula
is a CNF formula where each clause contains at most r literals. For a clause C
we write var(C) = { x : x ∈ C or ¬x ∈ C }, and for a CNF formula F we write
var(F ) =

⋃
C∈F var(C). An r-CNF formula is a CNF formula where each clause

contains at most r literals. For a set S of literals we write S = { x1−ε : xε ∈ S }.
We call a clause C positive if C = var(C) and negative if C = var(C).

For a set X of propositional variables we denote by 2X the set of all mappings
τ : X → {0, 1}, the truth assignments on X . For τ ∈ 2X we let true(τ) =
{ xτ(x) : x ∈ X } and false(τ) = { x1−τ(x) : x ∈ X } be the sets of literals set
by τ to 1 and 0, respectively. Given a CNF formula F and a truth assignment
τ ∈ 2X we define F [τ ] = {C \ false(τ) : C ∈ F, C ∩ true(τ) = ∅ }. If τ ∈ 2{x}

and ε = τ(x), we simple write F [x = ε] instead of F [τ ].
A CNF formula F is satisfiable if there is some τ ∈ 2var(F ) with F [τ ] = ∅,

otherwise F is unsatisfiable. Two CNF formulas are equisatisfiable if either both
are satisfiable, or both are unsatisfiable. SAT is the NP-complete problem of
deciding whether a given CNF formula is satisfiable [22,61].

Islands of Tractability and Backdoors. Backdoors are defined with respect to
a fixed class C of CNF formulas, the base class (or target class, or more more
figuratively, island of tractability). From a base class we require the following
properties: (i) C can be recognized in polynomial time, (ii) the satisfiability of
formulas in C can be decided in polynomial time, and (iii) C is closed under
isomorphisms (i.e., if two formulas differ only in the names of their variables,
then either both or none belong to C).

Several base classes considered in this survey also satisfy additional properties.
Consider a class C of CNF formulas. C is clause-induced if it is closed under
subsets, i.e., if F ∈ C implies F ′ ∈ C for each F ′ ⊆ F . C is clause-defined if for
each CNF formula F we have F ∈ C if and only if {C} ∈ C for all clauses C ∈ F .
C is closed under variable-disjoint union if for any two CNF formulas F1, F2 ∈ C
with var(F1) ∩ var(F2) = ∅, also F1 ∪ F2 ∈ C. C is self-reducible if for any F ∈ C
and any partial truth assignment τ , also F [τ ] ∈ C.

A strong C-backdoor set of a CNF formula F is a set B of variables such
that F [τ ] ∈ C for each τ ∈ 2B. A weak C-backdoor set of F is a set B of
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variables such that F [τ ] is satisfiable and F [τ ] ∈ C holds for some τ ∈ 2B. A
deletion C-backdoor set of F is a set B of variables such that F −B ∈ C, where
F −B =

{
C \ {x0, x1 : x ∈ B

}
: C ∈ F

}
.

If we know a strong C-backdoor set of F of size k, we can reduce the satisfiability
of F to the satisfiability of 2k formulas in C. Thus SAT becomes fixed-parameter
tractable in k. If we know a weak C-backdoor set of F , then F is clearly satisfiable,
and we can verify it by trying for each τ ∈ 2X whether F [τ ] is in C and satisfiable.
If C is clause-induced, any deletion C-backdoor set of F is a strong C-backdoor set
of F . For several base classes, deletion backdoor sets are of interest because they
are easier to detect than strong backdoor sets. The challenging problem is to find
a strong, weak, or deletion C-backdoor set of size at most k if it exists. For each
class C of CNF formulas we consider the following decision problems.

Strong C-Backdoor Set Detection

Instance: A CNF formula F and an integer k ≥ 0.
Parameter : The integer k.
Question: Does F have a strong C-backdoor set of size at most k?

TheproblemsWeakC-BackdoorSetDetectionandDeletionC-Backdoor

Set Detection are defined similarly.
In fact, for the backdoor approach we actually need the functional variants

of these problems, where if a backdoor set of size at most k exists, such a set
is computed. However, for all cases considered in this survey, where backdoor
detection is fixed-parameter tractable, the respective algorithms also compute a
backdoor set.

We also consider these problems for formulas with bounded clause lengths. All
such results are stated for 3CNF formulas, but hold, more generally, for rCNF
formulas, where r ≥ 3 is a fixed integer.

3 Base Classes

In this section we define the base classes for the SAT problem that we will
consider in this survey.

3.1 Schaefer’s Base Classes

In his seminal paper, Schaefer [93] classified the complexity of generalized sat-
isfiability problems in terms of the relations that are allowed to appear in con-
straints. For CNF satisfiability, this yields the following five base classes1.

1. Horn formulas: CNF formulas where each clause contains at most one posi-
tive literal.

2. Anti-Horn formulas: CNF formulas where each clause contains at most one
negative literal.

1 Affine Boolean formulas considered by Schaefer do not correspond naturally to a
class of CNF formulas, hence we do not consider them here.
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3. 2CNF formulas: CNF formulas where each clause contains at most two lit-
erals.

4. 0-valid formulas: CNF formulas where each clause contains at least one neg-
ative literal.

5. 1-valid formulas: CNF formulas where each clause contains at least one pos-
itive literal.

We denote the respective classes of CNF formulas by Horn,
Horn

−, 2CNF, 0-Val, and 1-Val, and we write Schaefer ={
Horn,Horn

−, 2CNF, 0-Val, 1-Val
}
. We note that all these classes are

clause-defined, and by Schaefer’s Theorem, these are the only maximal clause-
defined base classes. We also note that 0-Val and 1-Val are the only two base
classes considered in this survey that are not self-reducible.

3.2 Base Classes Based on Subsolvers

State-of-the-art SAT-solvers are based on variants of the so-called
Davis-Logemann-Loveland (DPLL) procedure [29,30] (see also [23]). The DPLL
procedure searches systematically for a satisfying assignment, applying first
unit propagation and pure literal elimination as often as possible. Then, DPLL
branches on the truth value of a variable, and recurses. The algorithms stops if
either there are no clauses left (the original formula is satisfiable) or all branches
of the search lead to an empty clause (the original formula is unsatisfiable). Unit
propagation takes as input a CNF formula F that contains a “unit clause” {xε}
and outputs F [x = ε]. Pure literal elimination takes as input a CNF formula
F that has a “pure literal” xε, where x ∈ var(F ) and x1−ε /∈ ⋃

C∈F C, and
outputs F [x = ε]. In both cases F and F [x = ε] are equisatisfiable. If we omit
the branching, we get an incomplete algorithm which decides satisfiability for a
subclass of CNF formulas. Whenever the algorithm reaches the branching step,
it halts and outputs “give up”. This incomplete algorithm is an example of a
“subsolver” as considered by Williams et al. [101]. The DPLL procedure gives
rise to three non-trivial subsolvers: UP+PL (unit propagation and pure literal
elimination are available), UP (only unit propagation is available), PL (only
pure literal elimination is available). We associate each subsolver with the class
of CNF formulas for which it determines the satisfiability (this is well-defined,
since unit propagation and pure literal elimination are confluent operations).
Since the subsolvers clearly run in polynomial time, UP + PL, UP, and PL

form base classes. We write Subsolver = {UP+ PL,UP,PL}.

3.3 Miscellaneous Base Classes

Renamable Horn Let X be a set of variables and F a CNF formula. We let
rX(F ) denote the CNF formula obtained from F by replacing for every variable
x ∈ X , all occurrences of xε in F with x1−ε, for ε ∈ {0, 1}. We call rX(F )
a renaming of F . Clearly F and rX(F ) are equisatisfiable. A CNF formula is
called renamable Horn if it has a renaming which is Horn, and we denote the
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Table 1. The parameterized complexity of Weak, Strong, and Deletion C-Back-

door Set Detection for various base classes C

Base Class Weak Strong Deletion

C ∈ Schaefer W[2]-h [70] (FPT) FPT [70] FPT [70]

C ∈ Subsolver W[P]-c [96] W[P]-c [96] n/a

Forest W[2]-h [46] (FPT [46]) ?† (?) FPT

RHorn W[2]-h W[2]-h (?) FPT [82]

Clu W[2]-h [71] (FPT) W[2]-h [71] (FPT [71]) FPT [71]

( ) It is indicated in parentheses if the complexity of the problem for 3CNF formulas
is different from general CNF or unknown.

? It is open whether the problem is fixed-parameter tractable.
† Theorem 5 gives an fpt approximation for this problem.
n/a Deletion backdoor sets are undefined for base classes that are not clause-induced.

class of renamable Horn formulas as RHorn. It is easy to see that Horn is a
strict subset of RHorn. One can find in polynomial time a Horn renaming of
a given CNF formula, if it exists [62]. Hence RHorn is a further base class. In
contrast to Horn, RHorn is not clause-defined.

Forests. Many NP-hard problems can be solved in polynomial time for problem
instances that are in a certain sense acyclic. The satisfiability problem is no
exception. There are various ways of defining a CNF formula to be acyclic. Here
we consider acyclicity based on (undirected) incidence graphs: the incidence
graph of a CNF formula F is the bipartite graph whose vertices are the variables
and the clauses of F ; a variable x and a clause C are joined by an edge if
and only if x ∈ var(C). Let Forest denote the class of CNF formulas whose
undirected incidence graphs are forests. It is well known that Forest forms
islands of tractability: the satisfiability of CNF formulas whose incidence graphs
have bounded treewidth can be decided in linear time [43,91]. Forest is the
special case of formulas with treewidth at most 1.

Clusters. A CNF formula F is called a hitting if any two distinct clauses clash.
Two clauses C,C′ ∈ F clash if they contain a complimentary pair of literals,
i.e., C ∩C′ 	= ∅. A CNF formula is called a clustering formula if it is a variable
disjoint union of hitting formulas. We denote by Clu the class of clustering
formulas. Clustering formulas not only allow polynomial-time SAT decision, one
can even count the number of satisfying truth assignments in polynomial time.
This is due to the fact that each truth assignment invalidates at most one clause
of a hitting formula [54,71].

4 Detecting Weak Backdoor Sets

It turns out that for all base classes C considered in this survey, Weak C-
Backdoor Set Detection is W[2]-hard. In several cases, restricting the input
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formula to 3CNF helps, and makesWeak C-Backdoor Set Detection fixed-
parameter tractable.

In the proof of the following proposition we use a general approach that entails
previously published proofs (such as in [46,70,71]) as special cases.

Proposition 1. Weak C-Backdoor Set Detection is W[2]-hard for all
base classes C ∈ Schaefer ∪ {RHorn,Forest,Clu}.
Proof. We showW[2]-hardness for C ∈ {2CNF,Horn, 0-Val,RHorn, Forest,
Clu}. The hardness proofs for the remaining two classes 1-Val and Horn

− are
symmetric to the proofs for 0-Val and Horn, respectively.

Let G be a CNF formula with a set X ⊆ var(G) of its variables marked as
external, all other variables of G are called internal. We call G an or-gadget for
a base class C if G has the following properties:

1. G /∈ C.
2. G ∈ 1-Val.
3. G[x = 1] ∈ C holds for all x ∈ X .
4. For each clause C ∈ G either X ⊆ C or var(C) ∩X = ∅.
5. var(G) \X 	= ∅.
6. G can be constructed in time polynomial in |X |.
First, we show the following meta-result, and then we define or-gadgets for the
different base-classes.

Claim 1: If C is clause-induced, closed under variable-disjoint union, and has an
or-gadget for any number ≥ 1 of external variables, then Weak C-Backdoor

Set Detection is W[2]-hard.
We prove the claim by giving a parameterized reduction from the W[2]-com-

plete problem Hitting Set (HS) [33]. Let (S, k), S = {S1, . . . , Sm}, be an
instance of HS. Let I = {1, . . . ,m} × {1, . . . , k + 1}. For each Si we construct
k+1 or-gadgets G1

i , . . . , G
k+1
i whose external variables are exactly the elements

of Si, and whose internal variables do not appear in any of the other gadgets

Gj′
i′ for (i′, j′) ∈ I \{(i, j)}. Let F =

⋃
(i,j)∈I G

j
i . From Property 6 it follows that

F can be constructed from S in polynomial time. We show that S has a hitting
set of size k if and only if F has a weak C-backdoor set of size k.

Assume B ⊆ ⋃m
i=1 Si is a hitting set of S of size k. Let τ ∈ 2B the truth

assignment that sets all variables from B to 1. By Properties 2 and 3, Gj
i [τ ]

is satisfiable and belongs to C for each (i, j) ∈ I. By Property 4, var(Gj
i [τ ]) ∩

var(Gj′
i′ [τ ]) = ∅ for any two distinct pairs (i, j), (i′, j′) ∈ I. Consequently F [τ ] is

satisfiable, and since C is closed under variable-disjoint union, F [τ ] belongs to C.
Thus B is a weak C-backdoor set of F of size k.

Conversely, assume that B ⊆ var(F ) is a weak C-backdoor set of F of size k.
Hence, there exists a truth assignment τ ∈ 2B such that F [τ ] is satisfiable and
belongs to C. Clearly for each (i, j) ∈ I, Gj

i [τ ] is satisfiable (since Gj
i [τ ] ⊆ F ),

and Gj
i [τ ] ∈ C (since C is clause-induced). However, since Gj

i /∈ C by Property 1,

B ∩ var(Gj
i ) 	= ∅ for each (i, j) ∈ I. Let 1 ≤ i ≤ m. By construction, F contains
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k + 1 copies G1
i . . . , G

k+1
i of the same gadget. From Property 5 it follows that

all the k+1 copies are different. Since |B| ≤ k, there must be some xi ∈ B such

that there are 1 ≤ j′ < j′′ ≤ k+1 with xi ∈ var(Gj′
i )∩ var(Gj′′

i ). It follows that

xi is an external variable of Gj′
i , hence xi ∈ B ∩Si. Consequently, B is a hitting

set of S.
Hence we have indeed a parameterized reduction from HS to Weak C-

Backdoor Set Detection, and Claim 1 is shown true. We define for each
class C ∈ {2CNF, Horn, 0-Val, RHorn, Forest, Clu} an or-gadget F (C)
where X = {x1, . . . , xs} is the set of external variables; internal variables are
denoted zi.

– G(2CNF) = {X ∪ {z1, z2}}.
– G(Horn) = G(0-Val) = {X ∪ {z1}}.
– G(RHorn) = {X ∪ {¬z1,¬z2}, {z1,¬z2}, {¬z1, z2}, {z1, z2}}.
– G(Forest) = {X ∪ {¬z1,¬z2}, {z1, z2}}.
– G(Clu) = {X ∪ {z1}, {z1}}.

Since the considered classes C are clearly clause-induced and closed under
variable-disjoint union, the proposition now follows from Claim 1. ��
For base classes based on subsolvers, weak backdoor set detection is even W[P]-
hard. This is not surprising, since the subsolvers allow a propagation through
the formula which is similar to the propagation in problems like Minimum Ax-

iom Set or Degree 3 Subgraph Annihilator [33]. The proof of the follow-
ing theorem is based on a reduction from the W[P]-complete problem Cyclic

Monotone Circuit Activation.

Theorem 1 ([96]). Weak C-Backdoor Set Detection is W[P]-complete
for all base classes C ∈ Subsolver. This even holds if the input formula is in
3CNF.

In summary, we conclude that Weak C-Backdoor Set Detection is at least
W[2]-hard for all considered base classes. If we restrict our scope to 3CNF for-
mulas, we obtain mixed results.

Proposition 2. For every clause-defined class C, Weak C-Backdoor Set

Detection is fixed-parameter tractable for input formulas in 3CNF.

Proof. The result follows by a standard bounded search tree argument, sketched
as follows. Assume we are given a CNF formula F /∈ C and an integer k. We
want to decide whether F has a weak C-backdoor set of size ≤ k. Since C is
clause-defined, F contains a clause C such that {C} /∈ C. Hence some variable
of var(C) must belong to any weak C-backdoor set of F . There are at most 3
such variables, each of which can be set to true or to false. Hence we branch
in at most 6 cases. By iterating this case distinction we build a search tree T ,
where each node t of T corresponds to a partial truth assignment τt. We can
stop building the tree at nodes of depth k and at nodes t where F [τt] ∈ C. It is
now easy to see that F has a weak C-backdoor set of size at most k if and only
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if T has a leaf t such that F [τt] ∈ C and F [τt] is satisfiable. For each leaf we can
check in polynomial time whether these properties hold. ��
In particular, Weak C-Backdoor Set Detection is fixed-parameter
tractable for C ∈ Schaefer if the input formula is in 3CNF.

The proof of Proposition 2 can be extended to the class Clu of clustering
formulas. Nishimura et al. [71] have shown that a CNF formula is a clustering
formula if and only if it does not contain (i) two clauses C1, C2 that overlap
(C1 ∩ C2 	= ∅) but do not clash (C1 ∩ C2 = ∅), or (ii) three clauses D1, D2, D3

where D1 and D2 clash, D2 and D3 clash, but D1 and D3 do not clash. {C1, C2}
is called an overlap obstruction, {D1, D2, D2} is called a clash obstruction. Each
weak Clu-backdoor set of a CNF formula F must contain at least one variable
from each overlap and each clash obstruction. However, if F is a 3CNF formula,
the number of variables of an overlap obstruction is at most 5, and the num-
ber of variables of a clash obstruction is at most 7. Hence we can find a weak
Clu-backdoor set of size at most k with a bounded search tree, which gives the
following result.

Proposition 3. Weak Clu-Backdoor Set Detection is fixed-parameter
tractable for 3CNF formulas.

Proposition 4. Weak RHorn-Backdoor Set Detection is W[2]-hard,
even for 3CNF formulas.

Proof. Similarly to the proof of Proposition 1 we reduce from HS. As gadgets we
use formulas of the formG = {{z1,¬x1,¬z2}, {z2,¬x2,¬z3}, . . . , {zs,¬xs,¬zs+1},
{¬z1, zs+1}, {¬z1,¬zs+1}, {z1, zs+1}}, where x1, . . . , xs are external variables
and z1, . . . , zs+1 are internal variables. G can be considered as being obtained
form the complete formula { {zε1, zδs+1} : ε, δ ∈ {0, 1} } by “subdividing” the
clause {z1,¬zs+1}. G /∈ RHorn but G[xi = 0] ∈ RHorn. In fact, rX(G[xi =
0]) ∈ Horn for X = {zi+1, . . . , zs+1}, hence no external variable needs to be
renamed. Moreover, we can satisfy G[xi = 0] by setting all external variables
and z1 to 0, and by setting zs+1 to 1.

Let (S, k), S = {S1, . . . , Sm}, be an instance of HS. For each Si we construct
k + 1 gadgets G1

i , . . . , G
k+1
i , each having Si as the set of its external variables,

and the internal variables are new variables only used inside a gadget. We let F
to be the union of all such gadgets Gj

i for 1 ≤ i ≤ m and 1 ≤ j ≤ k + 1.
Similar to the proof of Proposition 1 we can easily show that S has a hitting

set of size k if and only if F has a weak RHorn-backdoor set of size k. The
proposition follows. ��
According to Propositions 2 and 3, Weak C-Backdoor Set Detection is
fixed-parameter tractable for certain base classes C and input formulas in 3CNF.
For the classes C covered by Propositions 2 and 3 it holds that for every 3CNF
formula F /∈ C we can find a set of variables of bounded size, an “obstruction”,
from which at least one variable must be in any weak C-backdoor set of F . Hence
a weak C backdoor set of size at most k can be found by means of a bounded
search tree algorithm. The next result shows that fixed-parameter tractability
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also prevails for the base class Forest. However, the algorithm is considerably
more complicated, as in this case we do not have obstructions of bounded size.

Theorem 2 ([46]). Weak Forest-Backdoor Set Detection is
fixed-parameter tractable for 3CNF formulas.

Proof (Sketch). We sketch the fpt algorithm from [46] deciding whether a 3CNF
formula has a weak Forest-backdoor set of size k. We refer to [46] for the
full details and the correctness proof. Let G denote the incidence graph of F .
The first step of the algorithm runs an fpt algorithm (with parameter k′) by
Bodlaender [9] that either finds k′ = 2k + 1 vertex-disjoint cycles in G or a
feedback vertex set of G of size at most 12k′2 − 27k′ + 15.

In case a feedback vertex set X is returned, a tree decomposition of G \ X
of width 1 is computed and X is added to each bag of this tree decomposition.
As the Weak Forest-Backdoor Set Detection problem can be defined in
Monadic Second Order Logic, a meta-theorem by Courcelle [26] can use this tree
decomposition to conclude.

In case Bodlaender’s algorithm returns k′ vertex-disjoint cycles, the algorithm
finds a set S∗ of O(4kk6) variables such that any weak Forest-backdoor set of
size k contains at least one variable from S∗. In this case, the algorithm recurses
by considering all possibilities of assigning a value to a variable from S∗.

Let C1, . . . , Ck′ denote the variable-disjoint cycles returned by Bodlaender’s
algorithm. Consider a variable x ∈ var(F ) and a cycle C. We say that x kills C
internally if x ∈ C. We say that x kills C externally if x /∈ C and C contains a
clause u ∈ F such that x ∈ var(u).

As our k′ cycles are all vertex-disjoint, at most k cycles may be killed in-
ternally. The algorithm goes through all choices of k cycles among C1, . . . , Ck′

that may be killed internally. All other cycles, say C1, . . . , Ck+1, are not killed
internally and need to be killed externally. The algorithm now computes a set
S ⊆ var(F ) of size O(k6) such that any weak Forest-backdoor set of size k,

which is a subset of var(F )\⋃k+1
i=1 var(Ci), contains at least one variable from S.

The union of all such S, taken over all choices of cycles to be killed internally,
forms then the set S∗ that was to be computed.

For each cycle from C1, . . . , Ck+1, compute its set of external killers in var(F )\
⋃k+1

i=1 var(Ci). Only these external killers are considered from now on. If one
such cycle has no such external killer, then there is no solution with the current
specifications and the algorithm backtracks. For each i, 1 ≤ i ≤ k + 1, let xi

denote an external killer of Ci with a maximum number of neighbors in Ci. The
algorithm executes the first applicable from the following rules.

Multi-Killer Unsupported. If there is an index i, 1 ≤ i ≤ k + 1 such that xi

has � ≥ 4k neighbors in Ci and at most 4k2 + k external killers of Ci have
at least �/(2k) neighbors in Ci, then include all these external killers in S.

Multi-Killer Supported. If there is an index i, 1 ≤ i ≤ k+1 such that xi has
� ≥ 4k neighbors in Ci and more than 4k2 + k external killers of Ci have at
least �/(2k) neighbors in Ci, then set S = {xi}.
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Large Overlap. If there are two cycles Ci, Cj , 1 ≤ i 	= j ≤ k + 1, with at least
16k4 + k common external killers, then set S = ∅.

Small Overlap. Otherwise, include in S all vertices that are common external
killers of at least two cycles from C1, . . . , Ck+1.

The algorithm recursively checks for each s ∈ S∗ whether the formulas F [s = 0]
and F [s = 1] have a weak Forest-backdoor set of size k− 1 and returns Yes if
any such recursive call was successful and No otherwise. ��

5 Detecting Strong Backdoor Sets

Proposition 5 ([70]). Strong C-Backdoor Set Detection is fixed-
parameter tractable for every base class C ∈ Schaefer. For C ∈ {0-Val, 1-Val},
the problem is even solvable in polynomial time.

Proof. Consider a CNF formula F . Strong Horn-backdoor sets of F are ex-
actly the vertex covers of the positive primal graph of F , whose vertex set is
var(F ), two variables are joined by an edge if they appear together positively
in a clause. Strong Horn

−-backdoor sets can be characterized symmetrically.
Strong 2CNF-backdoor sets of F are exactly the hitting sets of the hypergraph
whose vertex set is var(F ) and whose hyperedges are all the subsets e ⊆ var(F ) of
size three such that e ⊆ var(C) for a clause C ∈ F . Thus Strong C-Backdoor

Set Detection for C ∈ {Horn, Horn
−, 2CNF} can be accomplished by

fpt algorithms for Vertex Cover [19] and 3-Hitting Set [40]. The smallest
strong 1-Val-backdoor set of F is exactly the union of var(C) for all negative
clauses C ∈ F , the smallest strong 0-Val-backdoor set of F is exactly the union
of var(C) for all positive clauses C ∈ F . ��
Proposition 6. Strong RHorn-Backdoor Set Detection is W[2]-hard.

Proof. The proof uses a reduction from HS similar to the proof of Proposition 1.
An instance (S, k), S = {S1, . . . , Sm}, of HS is reduced to a formula F which is
the union of certain gadgetsGj

i for 1 ≤ i ≤ m and 1 ≤ j ≤ k+1. Let V =
⋃m

i=1 Si.

A gadget Gj
i contains the four clauses Si ∪ {z1, z2}, {z1,¬z2}, {¬z1, z2}, and

V ∪ {¬z1,¬z2}, where z1, z2 are internal variables that do not occur outside the
gadget. Let B ⊆ V be a hitting set of S and let τ ∈ 2B. If τ sets at least one
variable to 0, then τ removes from each gadget the only negative clause, hence
rvar(F )(F [τ ]) ∈ Horn. On the other hand, if τ sets all variables from B to 1,
then it removes from each gadget the only positive clause (B is a hitting set).
Hence, F [τ ] ∈ Horn in this case. Consequently B is a strong RHorn-backdoor
set of F . Conversely, assume B is a strong RHorn-backdoor set of F . Let τ ∈ 2B

be the all-1-assignment. For the sake of contradiction, assume there is a set Si

such that B∩Si = ∅. Since |B| = k, B∩var(Gj
i ) = ∅ for some 1 ≤ j ≤ k+1. Now

F [τ ] contains the subset Gj
i [τ ] = {Si ∪ {z1, z2}, {z1,¬z2}, {¬z1, z2}, {¬z1,¬z2}}

which is not renamable Horn, hence B is not a strong RHorn-backdoor set of
F , a contradiction. Hence B is a hitting set of S. ��
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It is not known whether Strong Forest-Backdoor Set Detection is
fixed-parameter tractable nor whether Strong RHorn-Backdoor Set De-

tection is fixed-parameter tractable for 3CNF formulas. For the former prob-
lem, however, we know at least an fpt approximation [46]; see Theorem 5 below.

The following result is shown by a reduction from Cyclic Monotone Cir-

cuit Activation, similarly to Theorem 1.

Theorem 3 ([96]). Strong C-Backdoor Set Detection is W[P]-complete
for every base class C ∈ Subsolver, even for formulas in 3CNF.

The bounded search tree method outlined above for Weak Clu-Backdoor

Set Detection for 3CNF formulas can clearly be adapted for strong backdoors.
Hence we get the following result.

Proposition 7. Strong Clu-Backdoor Set Detection is fixed-parameter
tractable for 3CNF formulas.

5.1 Empty Clause Detection

Dilkina et al. [31] suggested to strengthen the concept of strong backdoor sets
by means of empty clause detection. Let E denote the class of all CNF formulas
that contain the empty clause. For a base class C we put C{} = C ∪E ; we call C{}
the base class obtained from C by adding empty clause detection. Formulas often
have much smaller strong C{}-backdoor sets than strong C-backdoor sets [31].
Dilkina et al. show that, given a CNF formula F and an integer k, determining
whether F has a strong Horn

{}-backdoor set of size k, is both NP-hard and
co-NP-hard (here k is considered just as part of the input and not as a param-
eter). Thus, the non-parameterized search problem for strong Horn-backdoor
sets gets harder when empty clause detection is added. It turns out that also the
parameterized problem gets harder when empty clause detection is added.

Theorem 4 ([97]). For every clause-induced base class C such that at least one
satisfiable CNF formula does not belong to C the problem strong C{}-back-
door set is W[1]-hard.

The theorem clearly applies to all base classes in Schaefer∪{RHorn,Forest}.
The proof from [97] relies on a reduction from [39], where a reduction to 3CNF
formulas is also given. Thus, Theorem 4 also holds for 3CNF formulas.

6 Detecting Deletion Backdoor Sets

In this section we consider the parameterized complexity of Deletion C-Back-

door Set Detection for the various base classes C from above. For most of
the classes the complexity is easily established as follows. For Schaefer classes,
strong and deletion backdoor sets coincide, hence the FPT results carry over.
The subsolver classes are not clause-induced, hence it does not make sense to



Backdoors to Satisfaction 299

consider deletion backdoor sets. Deletion Forest-Backdoor Set Detec-

tion can be solved by algorithms for a slight variation of the feedback vertex
set problem, and is therefore FPT. One has only to make sure that the feedback
vertex set contains only variables and no clauses. This, however, can be achieved
by using algorithms for Weighted Feedback Vertex Set [81,17].

It is tempting to use Chen et al.’s FPT algorithm for directed feedback ver-
tex set [20] for the detection of deletion backdoor sets. The corresponding base
class would contain all CNF formulas with acyclic directed incidence graphs (the
orientation of edges indicate whether a variable occurs positively or negatively).
Unfortunately this class is not suited as a base class since it contains formulas
where each clause contains either only positive literals or only negative literals,
and SAT is well known to be NP-hard for such formulas [45].

Hence we are left with the classes Clu and RHorn.
For the detection of deletion Clu-backdoor sets we can use overlap obstruc-

tions and clash obstructions, as defined before Proposition 3. With each obstruc-
tion, we associate a deletion pair which is a pair of sets of variables. With an
overlap obstruction {C1, C2}, we associate the deletion pair

{var(C1 ∩C2), var((C1 \ C2) ∪ (C2 \ C1))},

and with a clash obstruction {D1, D2, D3}, we associate the deletion pair

{var((D1 \D3) ∩D2), var((D3 \D1) ∩D2)}.

For a formula F , let GF denote the graph with vertex set var(F ) that has an edge
xy if and only if there is a deletion pair {X,Y } of F with x ∈ X and y ∈ Y .
Nishimura et al. [71] have shown that a set X ⊆ var(F ) is a deletion Clu-
backdoor set of F if and only if X is a vertex cover of GF . Thus, the detection of
a deletion Clu-backdoor set of size k can be reduced to the problem of checking
whether GF has a vertex cover of size k, for which there exist very fast algorithms
(see for example [19]).

Proposition 8 ([71]). Deletion Clu-Backdoor Set Detection is fixed-
parameter tractable.

The remaining case is the class RHorn. As noted by Gottlob and Szeider [51]
without proof (see also [82]), one can show fixed-parameter tractability of Dele-

tion RHorn-Backdoor Set Detection by reducing it to the problem 2SAT

Deletion. The latter problem takes as input a 2CNF formula and an integer k
(the parameter), and asks whether one can make the formula satisfiable by delet-
ing at most k clauses. 2SAT Deletion was shown fixed-parameter tractable by
Razgon and O’Sullivan [82]. Here we give the above mentioned reduction.

Lemma 1. There is a parameterized reduction from Deletion RHorn-

Backdoor Set Detection to 2SAT Deletion.

Proof. Let (F, k) be a given instance of Deletion RHorn-Backdoor Set

Detection. We construct a graph G = (V,E) by taking as vertices all literals
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xε, for x ∈ var(F ) and ε ∈ {0, 1}, and by adding two groups of edges. The first
group consists of all edges x0, x1 for x ∈ var(F ), the second group consists of
all edges xεyδ for x, y ∈ var(F ), ε, δ ∈ {0, 1}, such that xε, yδ ∈ C for some
C ∈ F . Observe that the edges of the first group form a perfect matching M of
the graph G.

Claim 1. F has a deletion RHorn-backdoor set of size at most k if and only
if G has a vertex cover with at most |M |+ k vertices.

(⇒) Let B be a deletion RHorn-backdoor set of F of size at most k and
X ⊆ var(F )\B such that rX(F −B) ∈ Horn. Let N = { x0 : x ∈ var(F )\X }∪
{ x1 : x ∈ X }. Let K = { x0, x1 : x ∈ B } ∪N . By definition, |K| = |M |+ |B| ≤
|M |+k. We show that K is a vertex cover of G. Consider an edge e = x0x1 ∈M
of the first group. If x ∈ X , then x1 ∈ N ⊆ K and if x /∈ X , then x0 ∈ N ⊆ K.
Hence e is covered by K. It remains to consider an edge f = xεyδ of the second
group. If x ∈ B or y ∈ B, then this edge is covered by K. Hence assume x, y /∈ B.
By construction of G, there is a clause C ∈ F with xε, yδ ∈ C. Since x, y /∈ B,
there is also a clause C′ ∈ F − B with xε, yδ ∈ C. Since C′ corresponds to a
Horn clause C′′ ∈ rX(F − B), at least one of the literals xε, yδ belongs to N ,
and hence K covers the edge f . Hence the first direction of Claim 1 follows.

(⇐) LetK be a vertex cover ofG with at most |M |+k vertices. LetB ⊆ var(F )
be the set of all variables x such that both x0, x1 ∈ K. Clearly |B| ≤ k. Let
X ⊆ var(F ) \B such that x1 ∈ K. We show that rX(F −B) ∈ Horn. Let xδ, yε

be two literals that belong to a clause C′′ of rX(F −B). We show that ε = 0 or
δ = 0. Let C′ ∈ F −B the clause that corresponds to C′′, and let xε′ , yδ

′ ∈ C′. It
follows that xε′yδ

′ ∈ E, and since K is a vertex cover of G, xε′ ∈ K or yδ
′ ∈ K.

If xε′ ∈ K then ε = 0, if yδ
′ ∈ K then δ = 0. Since xδ, yε ∈ C′′ ∈ rX(F − B)

were chosen arbitrarily, we conclude that rX(F −B) ∈ Horn. Hence Claim 1 is
shown.

Mishra et al. [68] already observed that a reduction from [16] can be adapted
to show that this above-guarantee vertex cover problem can be reduced to 2SAT

Deletion. For completeness, we give a reduction here as well.
We construct a 2CNF formula F2 from G. For each vertex xε of G we take a

variable xε. For each edge x0x1 ∈ M we add a negative clause {¬x0,¬x1}, and
for each edge xεyδ ∈ E \M we add a positive clause {xε, yδ}.

Claim 2. G has a vertex cover with at most |M |+ k vertices if and only if we
can delete at most k negative clauses from F2 to obtain a satisfiable formula.

(⇒) Let K be a vertex cover of G. We delete from F2 all negative clauses
{¬x0,¬x1} where both x0, x1 ∈ K (there are at most k such clauses) and obtain
a 2CNF formula F ′

2. We define a truth assignment τ ∈ 2var(F
′
2) by setting a

variable to 1 if and only if it belongs to K. It remains to show that τ satisfies F ′
2.

The negative clauses are satisfied since τ sets exactly one literal of a negative
clause {¬x0,¬x1} ∈ F ′

2 to 1 and exactly one to 0. The positive clauses are
satisfied since each positive clause {xε, yδ} corresponds to an edge xεyδ ∈ E,
and since K is a vertex cover, τ sets at least one of the variables xε, yδ to 1.

(⇐) Let F ′
2 be a satisfiable formula obtained from F2 by deleting at most

k negative clauses. Let D = { x ∈ var(F ) : {¬x0,¬x1} ∈ F2 \ F ′
2 }. Let τ
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be a satisfying truth assignment of F ′
2. We define a set K of vertices of G by

setting K = { x0, x1 : x ∈ D } ∪ { xτ(x) : x ∈ var(F ) \D }, and we observe that
|K| ≤ |M | + k. It remains to show that K is a vertex cover of G. Consider an
edge e = x0x1 ∈ M of the first group. If x ∈ D then x0, x1 ∈ K; if x /∈ D then
xτ(x) ∈ K, hence e is covered by K. Now consider an edge f = xεyδ ∈ E \M
of the second group. If x ∈ D or y ∈ D then f is clearly covered by K. Hence
assume x, y /∈ D. By definition, there is a positive clause {xε, yδ} ∈ F ′

2 ⊆ F2.
Since τ satisfies F ′

2, it follows that τ(xε) = 1 or τ(yδ) = 1. Consequently xε ∈ K
or yδ ∈ K, thus K covers f . Hence Claim 2 is shown.

Next we modify F2 by replacing each positive clause C = {xε, yδ} with 2k+2
“mixed” clauses {xε, z

i
C}, {¬ziC , yδ}, for 1 ≤ i ≤ k + 1, where the ziC are new

variables. Let F ∗
2 denote the 2CNF formula obtained this way from F2.

Claim 3. We can delete at most k negative clauses from F2 to obtain a satis-
fiable formula if and only if we can delete at most k clauses from F ∗

2 to obtain
a satisfiable formula.

The claim follows easily from the following considerations. We observe that
each pair of mixed clauses {xε, z

i
C}, {¬ziC , yδ} is semantically equivalent with

C = {xε, yδ}. Hence, if F2 can be made satisfiable by deleting some of the
negative clauses, we can also make F ∗

2 satisfiable by deleting the same clauses.
However, deleting some of the mixed clauses does only help if we delete at least
one from each of the k + 1 pairs that correspond to the same clause C. Hence
also Claim 3 is shown true. Claims 1–3 together establish the lemma. ��
Razgon and O’Sullivan’s result [82] together with Lemma 1 immediately give
the following.

Proposition 9. Deletion RHorn-Backdoor Set Detection is fixed-
parameter tractable.

7 Permissive Problems

We consider any function p that assigns nonnegative integers to CNF formulas
as a satisfiability parameter. In particular we are interested in such satisfiability
parameters p for which the following parameterized problem is fixed-parameter
tractable:

SAT(p)
Instance: A CNF formula F and an integer k ≥ 0.
Parameter : The integer k.
Task : Determine whether F is satisfiable or determine that p(F ) > k.

Note that an algorithm that solves the problem has the freedom of deciding the
satisfiability of some formulas F with p(F ) > k, hence the exact recognition of
formulas F with p(F ) ≤ k can be avoided. Thus SAT(p) is not a usual decision
problem, as there are three different outputs, not just two. If SAT(p) is fixed-
parameter tractable then we call p an fpt satisfiability parameter, and we say that
“the satisfiability of CNF formulas of bounded p is fixed-parameter tractable”
(cf. [95]). We write 3SAT(p) if the input is restricted to 3CNF formulas.
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Backdoor sets provide a generic way to define satisfiability parameters. Let C
be a base class and F a CNF formula. We define wbC(F ), sbC(F ) and dbC(F ) as
the size of a smallest weak, strong, and deletion C-backdoor set of F , respectively.

Of course, if the detection of the respective C-backdoor set is fixed-parameter
tractable, then wbC , sbC , and dbC are fpt satisfiability parameters. However,
it is possible that wbC , sbC , or dbC are fpt satisfiability parameters but the
corresponding C-backdoor set detection problem is W[1]-hard. The problems
SAT(wbC), SAT(sbC), and SAT(dbC) can therefore be considered as more
“permissive” versions of the “strict” problems Weak, Strong, and Deletion

C-Backdoor Set Detection, the latter require to find a backdoor set even if
the given formula is trivially seen to be satisfiable or unsatisfiable. The distinc-
tion between permissive and strict versions of problems have been considered in a
related context by Marx and Schlotter [66,67] for parameterized k-neighborhood
local search. Showing hardness for permissive problems SAT(p) seems to be a
much more difficult task than for the strict problems. So far we could establish
only few such hardness results.

Proposition 10. SAT(wbC) is W[1]-hard for all C ∈ Schaefer ∪ {RHorn}.
Proof. We will show a more general result, that W[1]-hardness holds for all base
classes that contain all anti-monotone 2CNF formulas. A CNF formula is anti-
monotone if all its clauses are negative. Let C be a base class that contains all
anti-monotone 2CNF formulas.

We show that SAT(wbC) is W[1]-hard by reducing from Partitioned

Clique, also known as Multicolored Clique. This problem takes as input
a k-partite graph and asks whether the graph has a clique on k vertices. The
integer k is the parameter. The problem is well-known to be W[1]-complete [78].

LetH = (V,E) with V =
⋃k

i=1 Vi be an instance of this problem.We construct
a CNF formula F as follows. We consider the vertices of H as variables and
add clauses {¬u,¬v} for any two distinct vertices such that uv /∈ E. For each
1 ≤ i ≤ k, we add the clause Vi. This completes the construction of F .
We show that the following statements are equivalent:

(1) F is satisfiable
(2) H contains a k-clique.
(3) F has a weak C-backdoor set of size at most k.

(1)⇒(2). Let τ be a satisfying assignment of F . Because of the clause Vi, τ sets
at least one variable of Vi to 1, for each 1 ≤ i ≤ k. As each Vi is an independent
set, F contains a clause {¬u,¬v} for every two distinct vertices in Vi. Thus, τ
sets exactly one variable of Vi to 1, for each 1 ≤ i ≤ k. The clauses of F also
imply that vivj ∈ E for each 1 ≤ i < j ≤ k, since otherwise τ would falsify the
clause {¬vi,¬vj}. Hence v1, . . . , vk induce a clique in H .

(2)⇒(3). Assume v1, . . . , vk induce a clique in H , with vi ∈ Vi. We show
that B = {v1, . . . , vk} is a weak C-backdoor set of F . Let τ ∈ 2B be the truth
assignment that sets all variables of B to 1. This satisfies all the clauses Vi, 1 ≤
i ≤ k. Thus, F [τ ] is an anti-monotone 2CNF formula. Therefore it is in C and it
is satisfiable as it is 0-valid. Hence B is a weak C-backdoor set of F .
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(3)⇒(1). Any formula that has a weak backdoor set is satisfiable.
Since all three statements are equivalent, we conclude that SAT(wbC) is W[1]-

hard. This shows the proposition for the base classes Horn, 2CNF, 0-Val, and
RHorn, as they contain all anti-monotone 2CNF formulas. The hardness for
Horn

− and 1-Val follows by symmetric arguments from the hardness of Horn

and 0-Val, respectively. ��

In general, if we have an fpt approximation algorithm [14,21,34] for a strict back-
door set detection problem, then the corresponding permissive problem SAT(p)
is fixed-parameter tractable. For instance, if we have an fpt algorithm that, for a
given pair (F, k) either outputs a weak, strong, or deletion C-backdoor set of F
of size at most f(k) or decides that F has no such backdoor set of size at most
k, then clearly wbC , sbC , and dbC , respectively, is an fpt satisfiability parameter.

This line of reasoning is used in the next theorem to show that sbForest is an
fpt satisfiability parameter. This result labels Forest as the first nontrivial base
class C for which sbC is an fpt satisfiability parameter and sbC 	= dbC . Hence the
additional power of strong Forest-backdoor sets over deletion Forest-back-
door sets is accessible.

Theorem 5 ([46]). Strong Forest-Backdoor Set Detection admits a
2k fpt-approximation. Hence SAT(sbForest) is fixed-parameter tractable.

Proof (Sketch). We sketch the fpt-approximation algorithm from [46] which ei-
ther concludes that a CNF formula F has no strong Forest-backdoor set of size
k or returns one of size at most 2k. We refer to [46] for the full details and the
correctness proof. Let G denote the incidence graph of F . The first step of the
algorithm runs, similarly to the proof of Theorem 2, the fpt algorithm (with pa-
rameter k′) by Bodlaender [9] that either finds k′ = k22k−1+k+1 vertex-disjoint
cycles in G or a feedback vertex set of G of size at most 12k′2 − 27k′ + 15.

In case a feedback vertex set X is returned, a tree decomposition of G \X of
width 1 is computed and X is added to each bag of this tree decomposition. As
the Strong Forest-Backdoor Set Detection problem can be defined in
Monadic Second Order Logic, a meta-theorem by Courcelle [26] can be used to
decide the problem in linear time using this tree decomposition.

In case Bodlaender’s algorithm returns k′ vertex-disjoint cycles, the algorithm
finds a set S∗ of O(k2k2k

2−k) variables such that every strong Forest-backdoor
set of size k contains at least one variable from S∗. In this case, the algorithm
recurses by considering all possibilities of including a variable from S∗ in the
backdoor set.

Let C1, . . . , Ck′ denote the variable-disjoint cycles returned by Bodlaender’s
algorithm. Consider a variable x ∈ var(F ) and a cycle C. We say that x kills C
internally if x ∈ C. We say that x kills C externally if x /∈ C and C contains
two clause u, v ∈ F such that x ∈ u and ¬x ∈ v. We say in this case that x kills
C externally in u and v.

The algorithm goes through all
(
k′

k

)
ways to choose k cycles among C1, . . . , Ck′

that may be killed internally. All other cycles, say C1, . . . , Ck′′ with k′′ = k′− k,
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are not killed internally. We refer to these cycles as C′′-cycles. The algorithm
now computes a set S ⊆ var(F ) of size at most 2 such that any strong Forest-

backdoor set of size k, which is a subset of var(F ) \ ⋃k′′

i=1 var(Ci), contains at
least one variable from S. The union of all such S, taken over all choices of cycles
to be killed internally, forms then the set S∗ that was to be computed.

From now on, consider only killers in var(F ) \ ⋃k′′

i=1 var(Ci). For each C′′-
cycle Ci, consider vertices xi, ui, vi such that xi kills Ci externally in ui and
vi and there is a path Pi from ui to vi along the cycle Ci such that if any
variable kills Ci externally in two clauses u′

i and v′i such that u′
i, v

′
i ∈ Pi, then

{ui, vi} = {u′
i, v

′
i}. Note that any variable that does not kill Ci internally, but

kills the cycle Cxi = Pi ∪ {xi} also kills the cycle Ci externally in ui and vi. We
refer to such external killers as interesting.

The algorithm executes the first applicable from the following rules.

No External Killer. If there is an index i, 1 ≤ i ≤ k′′, such that Cxi has no
external killer, then set S := {xi}.

Killing Same Cycles. If there are variables y and z and at least 2k−1 +1 C′′-
cycles such that both y and z are interesting external killers of each of these
C′′-cycles, then set S := {y, z}.

Killing Many Cycles. If there is a variable y that is an interesting external
killer of at least k · 2k−1 + 1 C′′-cycles, then set S := {y}.

Too Many Cycles Otherwise, set S = ∅.
For each s ∈ S∗ the algorithm calls itself recursively to compute a strong
Forest-backdoor set for F [s = 0] and for F [s = 1] with parameter k − 1.
If both recursive calls return backdoor sets, the union of these two backdoor
sets and {s} is a strong Forest-backdoor set for F . It returns the smallest such
backdoor set obtained for all choices of s, or No if for each s ∈ S∗ at least one
recursive call returned No. ��
Very recently, Theorem 5 has been extended to the base classes Nested [47] and
W≤t, for every fixed t ≥ 0 [48]. The class Nested was introduced by Knuth [59].
It is the class of all CNF formulas whose variables can be linearly ordered such
that no pair of clauses straddle each other; a clause c straddles a clause c′ if
there are variables x, y ∈ var(c) and z ∈ var(c′) such that x < z < y in the linear
ordering under consideration. The class W≤t contains all CNF formulas whose
incidence graph has treewidth at most t. These results generalize Theorem 5
since W≤1 = Forest ⊆ Nested ⊆ W≤3. The overall outline of the algorithms
from [47,48] resembles the algorithm presented in the proof of Theorem 5, but
the case where the incidence graph has large treewidth requires significantly
more involved arguments.

8 Comparison of Parameters

Satisfiability parameters can be compared with respect to their generality. Let
p, q be satisfiability parameters. We say that p is at least as general as q, in
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symbols p � q, if there exists a function f such that for every CNF formula F
we have p(F ) ≤ f(q(F )). Clearly, if p � q and SAT(p) is fpt, then so is SAT(q).
If p � q but not q � p, then p is more general than q. If neither p � q nor q � p
then p and q are incomparable.

As discussed above, each base class C gives rise to three satisfiability param-
eters wbC(F ), sbC(F ) and dbC(F ). If C is clause-induced, then sbC � dbC ; and
if C ⊆ C′, then sbC′ � sbC and dbC′ � dbC .

By associating certain graphs with CNF formulas one can use graph parame-
ters to define satisfiability parameters. The most commonly used graphs are the
primal, dual, and incidence graphs. The primal graph of a CNF formula F has as
vertices the variables of F , and two variables are adjacent if they appear together
in a clause. The dual graph has as vertices the clauses of F , and two clauses C,C′

are adjacent if they have a variable in common (i.e., if var(C)∩var(C′) 	= ∅). The
incidence graph, as already defined above, is a bipartite graph, having as vertices
the variables and the clauses of F ; a variable x and a clause C are adjacent if
x ∈ var(C). The directed incidence graph is obtained from the incidence graph
by directing an edge xC from x to C if x ∈ C and from C to x if ¬x ∈ C.

The treewidth of the primal, dual, and incidence graph gives fpt satisfiability
parameters, respectively. The treewidth of the incidence graph is more general
than the other two satisfiability parameters [60]. The clique-width of the three
graphs provides three more general satisfiability parameters. However, these sat-
isfiability parameters are unlikely fpt: It is easy to see that SAT remains NP-hard
for CNF formulas whose primal graphs are cliques, and for CNF formulas whose
dual graphs are cliques. Moreover, SAT, parameterized by the clique-width of the
incidence graph is W[1]-hard, even if a decomposition is provided [72]. However,
the clique-width of directed incidence graphs is an fpt satisfiability parameter
which is more general than the treewidth of incidence graphs [25,43].

How do fpt satisfiability parameters based on decompositions and fpt satisfi-
ability parameters based on backdoor sets compare to each other?

Each base class C considered above, except for the class Forest, contains
CNF formulas whose directed incidence graphs have arbitrarily large clique-
width. Hence none of the decomposition based parameters is at least as general
as the parameters sbC and dbC . On the other hand, taking the disjoint union of
n copies of a CNF formula multiplies the size of backdoor sets by n but does not
increase the width. Hence no backdoor based parameter is more general than
decomposition based parameters.

Thus, almost all considered backdoor based fpt satisfiability parameters are
incomparable with almost all considered decomposition based fpt satisfiability
parameters. A notable exception is the satisfiability parameter dbForest. It is
easy to see that the treewidth of the incidence graph of a CNF formula is no
greater than the size of a smallest deletion Forest-backdoor set plus one, as the
latter forms a feedback vertex set of the incidence graph. Thus the treewidth
of incidence graphs is a more general satisfiability parameter than the size of
a smallest deletion Forest-backdoor sets. However, one can construct CNF
formulas F with sbForest(F ) = 1 whose directed incidence graph has arbitrarily
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large clique-width. Just take a formula whose incidence graph is a subdivision
of a large square grid, and add a further variable x such that on each path
which is a subdivision of one edge of the grid there is a clause containing x
and a clause containing ¬x. Thus, the satisfiability parameter sbForest, which is
fpt by Theorem 5, is incomparable to all the decomposition based satisfiability
parameters considered above.

Figure 1 shows the relationship between some of the discussed fpt satisfiability
parameters.

treewidth of incidence graphstreewidth of primal graphs

treewidth of dual graphs

deletion Forest-backdoor sets strong Forest-backdoor sets

Fig. 1. Relationship between some fpt satisfiability parameters. An arrow from A to
B means that B is more general than A. If there is now arrow between A and B then
A and B are incomparable.

9 Kernels

The use of strong or deletion backdoor sets for SAT decision, with respect to a
base class C, involves two tasks:

1. backdoor detection, to find a strong (or deletion) backdoor set of size at most
k, or to report that such a backdoor set does not exist,

2. backdoor evaluation, to use a given strong (or deletion) backdoor set of size
at most k to determine whether the CNF formula under consideration is
satisfiable.

In each case where backdoor detection is fixed-parameter tractable, one can now
ask whether the detection problem admits a polynomial kernel. For instance, for
the classes Horn and 2CNF, backdoor detection can be rephrased as Vertex

Cover or as 3-Hitting Set problems, as discussed above, and therefore admits
polynomial kernels [18,1].

Backdoor evaluation is trivially fixed-parameter tractable for any base class,
but it is unlikely that it admits a polynomial kernel.

Proposition 11 ([98]). C-Backdoor Set Evaluation does not admit a
polynomial kernel for any self-reducible base class C unless NP ⊆ co-NP/poly.

This proposition is a trivial consequence of the well-known result that SAT

parameterized by the number of variables has no polynomial kernel unless NP ⊆
co-NP/poly [10,44], and the fact that var(F ) is always a strong C-backdoor set
of F if C is self-reducible.
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Less immediate is the question whether C-Backdoor Set Evaluation ad-
mits a polynomial kernel if the inputs are restricted to 3CNF formulas, as 3SAT
parameterized by the number of variables has a cubic kernel by trivial reasons.
However, for Horn and 2CNF this question can be answered negatively.

Proposition 12 ([98]). C-Backdoor Set Evaluation does not admit a
polynomial kernel for C ∈ {Horn, 2CNF} unless NP ⊆ co-NP/poly, even if
the input formula is in 3CNF.

10 Backdoor Trees

Backdoor trees are binary decision trees on backdoor variables whose leaves
correspond to instances of the base class. Every strong backdoor set of size k
gives rise to a backdoor tree with at least k + 1 and at most 2k leaves. It is
reasonable to rank the hardness of instances in terms of the number of leaves
of backdoor trees, thus gaining a more refined view than by just comparing the
size of backdoor sets.

Consider the CNF formula F with variables x1, . . . , x2n and y1, . . . , yn con-
sisting of all clauses of the form

{yi,¬x1, . . . ,¬x2i−2, x2i−1,¬x2i, . . . ,¬x2n},
{yi,¬x1, . . . ,¬x2i−1, x2i,¬x2i+1, . . . ,¬x2n},

for 1 ≤ i ≤ n. The set B = {y1, . . . , yn} is a strong Horn-backdoor set
(in fact, B is the smallest possible). However, every Horn-backdoor tree T
with var(T ) = {y1, . . . , yn} has 2n leaves. On the other hand, the formula F has
a Horn-backdoor tree T ′ with only 2n+1 leaves where var(T ′) = {x1, . . . , x2n}.
Thus, when we want to minimize the number of leaves of backdoor trees, we
must not restrict ourselves to variables of a smallest strong backdoor set.

The problem C-Backdoor Tree Detection now takes as input a CNF
formula F , a parameter k, and asks whether F has a C-backdoor tree with at
most k leaves.

A base class C is said to admit a loss-free kernelization if there exists a
polynomial-time algorithm that, given a CNF formula F and an integer k, either
correctly decides that F has no strong C-backdoor set of size at most k, or com-
putes a set X ⊆ var(F ) such that the following conditions hold: (i) X contains
all minimal strong C-backdoor sets of F of size at most k; and (ii) the size of X
is bounded by a computable function that depends on k only.

Samer and Szeider [88] have shown that C-Backdoor Tree Detection

is fixed-parameter tractable for every base class C that admits a loss-free ker-
nelization. Since Buss-type kernelization is loss-free, the two classes Horn and
2CNF admit a loss-free kernelization. Hence C-Backdoor Tree Detection

is fixed-parameter tractable for C ∈ {2CNF,Horn}.

11 Backdoors for Problems beyond NP

The backdoor approach has been successfully applied to obtain fixed-parameter
tractability for problems whose unparameterized worst-case complexity lies
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beyond NP. In particular, FPT results have been obtained for the #P -complete
problem Propositional Model Counting, the PSPACE-complete QBF-SAT prob-
lem, and problems of nonmonotonic reasoning and abstract argumentation that
are located on the second level of the Polynomial Hierarchy. In this section we
briefly survey these results.

11.1 Propositional Model Counting

The #SAT problem asks to compute for a given CNF formula F the number of
assignments τ ∈ 2var(F ) that satisfy F . This problem arises in several areas of Ar-
tificial Intelligence, in particular in the context of probabilistic reasoning [3,86].
The problem is #P-complete and remains #P-hard even for monotone 2CNF
formulas and Horn 2CNF formulas. It is NP-hard to approximate the number of
satisfying assignments of a CNF formula with n variables within 2n

1−ε

for any
ε > 0. This approximation hardness holds also for monotone 2CNF formulas and
Horn 2CNF formulas [86]. However, if #SAT can be solved in polynomial time
O(nc) for the formulas of a base class C, and if we know a strong C-backdoor
set of a formula F of size k, then we can compute the number of satisfying as-
signments of F in time O(2knc) [71,90]. For some applications in probabilistic
reasoning one is interested in the weighted model counting (WMC) problem,
which is more general than #SAT (see, e.g., [92,15]). Since the backdoor set ap-
proach applies also to the more general problem, we will use it for the following
discussions.

A weighting w of a CNF formula F is a mapping w that assigns each variable
x ∈ var(F ) a rational number 0 ≤ w(x) ≤ 1; this generalizes to literals by
w(x) = 1 − w(x) and to truth assignments τ ∈ 2X by w(τ) =

∏
x∈X w(xτ(x)).

We define #w(F ) as the sum of the weights of all assignments τ ∈ 2var(F ) that
satisfy F . The WMC problem asks to compute #w(F ) for a given CNF formula
F and weighting w. WMC is clearly at least as hard as computing #(F ) as
we can reduce #SAT to WMC by using the weight 1/2 for all n variables and
multiplying the result by 2n. A strong C-backdoor set X of a CNF formula F
can be used to compute #w(F ) via the equation

#w(F ) =
∑

τ∈2X

w(τ) ·#w(F [τ ]).

It is easy to see that WMC is polynomial for the base classes Clu and
Forest as the corresponding algorithms for deciding satisfiability for these
classes as discussed above allow a straightforward generalization to WMC. From
Theorem 5 and Proposition 8 we conclude that WMC is fixed-parameter
tractable parameterized by sbForest and dbClu.

11.2 Quantified Boolean Formulas

Many important computational tasks like planning, verification, and sev-
eral questions of knowledge representation and automated reasoning can be



Backdoors to Satisfaction 309

naturally encoded as the evaluation problem of quantified Boolean formulas
(QBF) [74,84,87]. A QBF consists of a propositional CNF formula F (the
“matrix”) and a quantifier prefix. For instance F = ∀y ∀z ∃x∃wF with F =
{{¬x, y,¬w}, {x,¬y, w}, {¬y, z}, {y,¬z}} is a QBF. The evaluation of quanti-
fied Boolean formulas constitutes a PSPACE-complete problem and is therefore
believed to be computationally harder than the NP-complete propositional sat-
isfiability problem [58,76,94]. Only a few tractable classes of quantified Boolean
formulas are known where the number of quantifier alternations is unbounded.
For example, the time needed to solve QBF formulas whose primal graph has
bounded treewidth grows non-elementarily in the number of quantifier alterna-
tions [75]. Two prominent tractable classes with unbounded quantifier alterna-
tions are QHorn and Q2CNF which are QBFs where the matrix is a Horn
or 2CNF formula, respectively. QHorn formulas and Q2CNF formulas can be
evaluated in polynomial time due to well-known results of Kleine Büning et al.
[13] and of Aspvall et al. [2], respectively.

In order to evaluate a QBF formula with a small strong Horn- or 2CNF-
backdoor set X efficiently, we require that X is closed under variable dependen-
cies. That is, if x depends on y and x ∈ X , then also y ∈ X , where we say that
x depends on y if the quantifier for y appears to the left of the quantifier for x,
and one cannot move the quantifier for y to the right of x without changing the
validity of the QBF. In general deciding whether a variable depends on the other
is PSPACE complete, but there are “over-approximations” of dependencies that
can be computed in polynomial time. Such over-approximations can be formal-
ized in terms of dependency schemes. Indeed, it is fixed-parameter tractable to
detect strong Horn or 2CNF-backdoor sets of size at most k that are closed
with respect to any fixed polynomial-time decidable dependency scheme [89].
This fpt result allows an unbounded number of quantifier alternations for each
value of the parameter, in contrast to the results for parameter treewidth.

11.3 Nonmonotonic Reasoning

Answer-Set Programming (ASP) is an increasingly popular framework for declar-
ative programming [65,69]. ASP allows to describe a problem by means of rules
and constraints that form a disjunctive logic program P over a finite universe U
of atoms. A rule r is of the form (x1 ∨ · · · ∨ xl ← y1, . . . , yn,¬z1, . . . ,¬zm). We
write {x1, . . . , xl} = H(r) (the head of r) and {y1, . . . , yn, z1, . . . , zm} = B(r)
(the body of r), B+(r) = {y1, . . . , yn} and B−(r) = {z1, . . . , zn}. A set M of
atoms satisfies a rule r if B+(r) ⊆M and M ∩B−(r) = ∅ implies M ∩H(r) 	= ∅.
M is a model of P if it satisfies all rules of P . The GL reduct of a program P
under a set M of atoms is the program PM obtained from P by first removing
all rules r with B−(r) ∩M 	= ∅ and second removing all ¬z where z ∈ B−(r)
from all remaining rules r [49]. M is an answer set of a program P if M it is a
minimal model of PM .

For instance, from the program P = {(tweety-flies ← tweety-is-a-bird,
¬tweety-is-a-penguin), (tweety-is-a-bird←)} we may conclude that tweety-flies,
since this fact is contained in the only answer set {tweety-is-a-bird, tweety-flies}



310 S. Gaspers and S. Szeider

of P . If we add the fact tweety-is-a-penguin to the program and obtain P ′ =
P ∪ {(tweety-is-a-penguin ←)}, then we have to retract our conclusion tweety-
flies since this fact is not contained in any answer set of P ′ (the only answer set
of P ′ is {tweety-is-a-bird, tweety-is-a-penguin}). This nonmonotonic behaviour
that adding a fact may allow fewer conclusions is typical for many applications
in Artificial Intelligence. The main computational problems for ASP (such as
deciding whether a program has a solution, or if a certain atom is contained
in at least one or in all answer sets) are of high worst-case complexity and are
located at the second level of the Polynomial Hierarchy [38].

Also for ASP several islands of tractability are known, and it is possible to
develop a backdoor approach [42]. Similar to SAT one can define partial truth
assignments τ on a set of atoms and solve a disjunctive logic program P by
solving all the reduced programs P [τ ]. However, the situation is trickier than for
satisfiability. Although every answer set of P corresponds to an answer set of
P [τ ] for some truth assignment τ , the reverse direction is not true. Therefore,
one needs to run a check for each answer set of P [τ ] whether it gives rise to an
answer set of P . Although this correctness check is polynomial, we must ensure
that we do not need to carry it out too often. A sufficient condition for bounding
the number of checks is that we can compute all answer sets of a program P ∈ C
in polynomial time (“C is enumerable”). In particular, this means that P ∈ C has
only a polynomial number of answer sets, and so we need to run the correctness
check only a polynomial number of times.

Several enumerable islands of tractability have been identified and studied
regarding the parameterized complexity of backdoor set detection [42]. For in-
stance, programs where each rule head contains exactly one atom and each rule
body is negation-free are well-known to have exactly one answer set. Such pro-
grams are called Horn programs, and similar to satisfiability, one can use vertex
covers to compute backdoor sets with respect to Horn. Further enumerable is-
lands of tractability can be defined by forbidding cycles in graphs, digraphs,
and mixed graphs associated with disjunctive logic programs. Now, one can use
feedback vertex set (fvs) algorithms for the considered graphs to compute back-
door sets: undirected fvs [33], directed fvs [20], and mixed fvs [12]. One can get
even larger enumerable islands of tractability by labeling some of the vertices or
edges and by only forbidding “bad” cycles, namely cycles that contain at least
one labeled edge or vertex. For the undirected case one can use subset feedback
vertex set algorithms to compute backdoor sets [28,57]. Currently it is open
whether this problem is fixed-parameter tractable for directed or mixed graphs.
Even larger islands can be obtained by only forbidding bad cycles with an even
number of labeled vertices or edges [41]. This gives rise to further challenging
feedback vertex set problems.

11.4 Abstract Argumentation

The study of arguments as abstract entities and their interaction in form of at-
tacks as introduced by Dung [35] has become one of the most active research
branches within Artificial Intelligence, Logic and Reasoning [5,7,80]. Abstract
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argumentation provides suitable concepts and formalisms to study, represent,
and process various reasoning problems most prominently in defeasible reasoning
(see, e.g., [79,11]) and agent interaction (see, e.g., [77]). An abstract argumenta-
tion system can be considered as a directed graph, where the vertices are called
“arguments” and a directed edge from a to b means that argument a “attacks”
argument b.

A main issue for any argumentation system is the selection of acceptable sets
of arguments, called extensions. Whether or not a set of arguments is accepted
is considered with respect to certain properties of sets of arguments, called se-
mantics [4]. For instance, the preferred semantics requires that an extension is
a maximal set of arguments with the properties that (i) the set is independent,
and (ii) each argument outside the set which attacks some argument in the set
is itself attacked by some argument in the set. Property (i) ensures that the set
is conflict-free, property (ii) ensures that the set defends itself against attacks.

Important computational problems are to determine whether an argument
belongs to some extension (credulous acceptance) or whether it belongs to all
extensions (skeptical acceptance) [32,37]. For most semantics, including the pre-
ferred semantics, the problems are located on the second level of the Polynomial
Hierarchy [36].

It is known that the acceptance problems can be solved in polynomial time if
the directed graph of the argumentation framework is acyclic, noeven (contains
no even cycles), symmetric, or bipartite [35,4,24,36]. Thus, these four properties
give rise to islands of tractability for abstract argumentation, and one can ask
whether a backdoor approach can be developed to solve the acceptance problems
for instances that are close to an island. Here it is natural to consider deletion
backdoor sets, i.e., we delete arguments to obtain an instance that belongs to the
considered class. For the islands of acyclic, symmetric, and bipartite argumen-
tation frameworks we can find a backdoor using the fixed-parameter algorithms
for directed feedback vertex set [20], vertex cover [33] and for graph bipartiza-
tion [83], respectively. For finding a vertex set of size k that kills all directed
cycles of even length we only know an XP algorithm which is based on a deep
result [85].

However, it turns out that using the backdoor set is tricky and quite different
from satisfiability and answer set programming [73]. The acceptance problems
remain (co-)NP-hard for instances that can be made symmetric or bipartite by
deleting one single argument. On the other hand, if an instance can be made
acyclic or noeven by deleting k arguments, then the acceptance problems can
be solved in time 3knc. The base 3 of the running time comes from the fact
that the evaluation algorithm considers three different cases for the arguments
in the backdoor set: (1) the argument is in the acceptable set, (2) the argument
is not in the set and is attacked by at least one argument from the set, and
(3) the argument is not in the set but is not attacked by any argument from
the set.
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12 Conclusion

Backdoor sets aim at exploiting hidden structures in real-world problem in-
stances. The effectiveness of this approach has been investigated empirically in
[31,42,63,88] and in many cases, small backdoor sets were found for large indus-
trial instances.

As several backdoor set problems reduce to well-investigated core problems
from parameterized complexity, such asVertex Cover, 3-Hitting Set, Feed-
back Vertex Set, and their variants, a few decades of focused research efforts
can be used to detect backdoor sets efficiently. Nevertheless, several questions re-
main open. In particular, the parameterized complexity classification of several
permissive problems seems challenging.As discussed at the end of Subsection 11.3,
the classification of variants of the Feedback Vertex Set problem would also
shed some light on backdoor set detection problems in nonmonotonic reasoning.

We believe that more research in this direction is necessary if we want to
explain the good practical performance of heuristic SAT solvers. Directions for
future research could involve multivariate parameterizations of backdoor prob-
lems and the consideration of backdoors to combinations of different base classes.

Acknowledgment. We thank Ryan Williams for his comments on an earlier
version of this survey.
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