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Abstract. In this survey, a number of results on the fixed-parameter
tractability of treewidth and pathwidth are discussed. Some emphasis is
placed on older results, and proofs that show that treewidth and path-
width are fixed-parameter tractable. Also, a linear-time algorithm for
testing if a graph has pathwidth at most some given constant is dis-
cussed in more detail.

1 Introduction

This overview paper is on the occasion of the 60th birthday of Mike Fellows.
Already in the early development of the theory reported here, Mike’s insights
were at many points of great importance, and his work and his enthusiasm for
the topics were always a great source of inspiration. Many of the ideas discussed
in this survey were obtained from or inspired by discussions with or talks by
Mike Fellows.

Treewidth, and related notions, like pathwidth, branchwidth, cliquewidth,
rankwidth play an important role in many modern investigations in algorithmic
graph theory, and already from its early origins, in the field of parameterized
algorithms. In this survey, a look will be taken at the results that show that the
problems to decide if the treewidth or pathwidth of a given graph is at most
a given number k are fixed-parameter tractable. This question is an interesting
one, for several reasons: the result is used as a subroutine in many recent re-
sults, and the investigations for these notions show many important techniques
from the field of parameterized algorithms, and often the problem was one of
the sources of inspiration for inventing these techniques.

The notions of treewidth and pathwidth were introduced by Robertson and
Seymour [110, 113] in their fundamental work on graph minors. However, other,
equivalent notions were invented independently, and sometimes earlier by many
different authors. Already in the 1960’s, it was observed that many problems
that are intractable on general graphs become easier to solve on trees and series-
parallel graph. Several authors independently noted that these results can be
generalized to larger classes of graphs. E.g., Wimer introduced in the 1980’s the
notion of k-terminal recursive graph classes [143]. Trees can be formed by ’gluing’
1-terminal graphs together; series-parallel graphs by ’gluing’ 2-terminal graphs
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together; and a similar algorithmic behavior is obtained when using some other
constant number of vertices. An often used equivalent version of treewidth is the
notion of partial k-trees by Arnborg et al. [3, 7]. An overview of several notions
that are equivalent (or imply a constant bound) to treewidth or pathwidth can
be found in [16].

Nowadays, the notion of treewidth plays a role in many different fields of
algorithms research and graph theory. One important reason for the interest
is that many problems that are intractable (e.g., NP-hard) become linear time
(or sometimes polynomial time) solvable when restricted to graphs of bounded
treewidth. Such algorithms have been found for many combinatorial problems
(see e.g., [8, 9, 33, 94, 138, 144]), and also have been employed for problems
from computational biology (see e.g., [100]), constraint satisfaction (see e.g.,
[40, 47, 78, 94]), and probabilistic networks (see [99]). See e.g., also [3, 2, 6, 12,
32, 39, 38, 42, 50, 70, 79, 80, 82, 85, 88, 106, 105, 108, 145]. In other words:
many graph problems become fixed-parameter tractable when parameterized by
the treewidth of the input graph.

This survey is further organized as follows. Section 2 gives some definitions,
discusses equivalent notions, and some well known lemmas on treewidth and
pathwidth. In Section 3, linear-time algorithms for problems on graphs of
bounded treewidth are discussed, including the ’automata view’ on these algo-
rithms, pioneered by Fellows and Langston. Section 4 discusses some algorithmic
consequences of the theory of graph minors. Section 5 looks at the complexity of
deciding treewidth and pathwidth, with most emphasis on the fixed-parameter
case. It includes a pathwidth version of the result that the fixed-parameter case
of treewidth is linear time solvable ([14]). The paper ends with short conclusions
and a few major open problems.

For easier presentation, some arguments and proofs have technical inaccura-
cies, and at some points, an overload of notation seemed unavoidable. I still hope
that many of the ideas and techniques come across.

2 Definitions and Equivalent Notions

Throughout this paper, n denotes the number of vertices of graph G = (V,E).
Unless otherwise stated, graphs are considered to be simple and undirected.
Several of the results generalize to directed graphs, but this will not be elaborated
here.

The notions of treewidth and tree decomposition were introduced by Robert-
son and Seymour [113] in their fundamental work on graph minors.

Definition 1. A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈
I}, T = (I, F )), with {Xi | i ∈ I} a family of subsets of V (called bags) and T
a tree, such that

–
⋃

i∈I Xi = V ,
– for all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi, and
– for all v ∈ V , the set Iv = {i ∈ I | v ∈ Xi} forms a connected subtree of T .
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The width of tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi| −
1. The treewidth of a graph G, tw(G), is the minimum width among all tree
decompositions of G.

The third condition in the definition above can be replaced by the following
equivalent condition:

For all i1, i2, i3 ∈ I: if i2 is on the path from i1 to i3 in T , thenXi1∩Xi3 ⊆
Xi2 .

An example of a graph with a tree decomposition can be found in Figure 1.
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Fig. 1. A graph with a tree decomposition

A path decomposition is a tree decomposition ({Xi | i ∈ I}, T = (I, F )) with T
a path. The pathwidth of a graph is the minimum width of a path decomposition
of G.

There are several equivalent characterizations of the notions of treewidth and
pathwidth. For an overview, see e.g. [16]. We mention a few below that are useful
for the further exposition of technical ideas.

2.1 Nice Tree and Path Decompositions

A tree decomposition ({Xi | i ∈ I}, T = (I, F )) is nice, if T is a rooted tree, and
each node is of one of the four following types:

– Leaf: a leaf node i has no children and has |Xi| = 1, i.e., a bag size of one.
– Join: a join node i has two children j1, j2 with Xi = Xj1 = Xj2 , i.e., with

the same bags.
– Forget: a forget node i has one child j such that there is a v ∈ V with

Xi = Xj − {v}.
– Introduce: a forget node i has one child j such that there is a v ∈ V with

Xi = Xj ∪ {v}.
It is well known that one can transform a tree decomposition into a nice one with
the same width, and with O(n) nodes, in linear time. One of the first occurrences
of nice tree decompositions is in [91].
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We similarly have nice path decompositions. A nice path decomposition can be
represented by a series of bags (X0, . . . , Xr) with r = O(n), and withX0 = ∅ (the
only leaf node) and each Xi, i > 1 has a vertex v with Xi = Xi−1−{v} (forget
nodes) or Xi = Xi−1∪{v} (introduce nodes). While X0 is not necessary, using
an empty first bag helps for easier notation later on. One can show the following
result.

Theorem 1. Suppose we are given a graph G = (V,E) and a tree (path) de-
composition of G, ({Xi | i ∈ I}, T = (I, F )) of G of width k. Then a nice tree
(path) decomposition of G of width k can be found in O(k(n + |I|)) time, such
that the nice tree decomposition has O(n) bags.

2.2 k-Terminal Graphs

A terminal graph is a triple (V,E,X) with X ⊆ V an ordered set of vertices,
called the terminals. (V,E,X) is a k-terminal graph if |X | = k. We define the
⊕ operation on pairs of k-terminal graphs: (V,E,X) ⊕ (W,F, Y ) is obtained
by taking the disjoint union of (V,E) and (W,F ) and then identifying the ith
terminal of X with the ith terminal of X with the jth terminal of Y ; dropping
parallel edges if existing.

For the description of algorithms, it is useful to associate terminal graphs
(forming subgraphs of G) with nodes in a nice tree or path decomposition, in
the following way. Consider a nice tree decomposition ({Xi | i ∈ I}, T = (I, F )).
For each node i ∈ I, we associate a terminal graph Gi = (Vi, Ei, Xi), with Vi the
union of all bags Xj with j = i or j a descendant of i; and and Ei = {{v, w} ∈
E | v, w ∈ Vi}, (taking some arbitrary ordering on Xi).

For a leaf node, the graph Gi simply consists of the unique vertex in Xi and
no edges.

If i is a join node with children j1 and j2, then the graph Gi can be obtained
from the graphs Gj1 and Gj2 by taking the disjoint union and then identifying
the vertices in Xi = Xj1 = Xj2 , i.e., Gi = Gj1 ⊕ Gj2 . An example is given in
Figure 2.

⊕ =

Xi

Xi Xi

Fig. 2. The ⊕operation, a join node and the corresponding subgraphs
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Xj

v

Xj

v

Xj

Fig. 3. An introduce node and the corresponding subgraphs

If i is an introduce node with child j with Xi = Xj ∪{v}, then Gi is formed
from Gj by adding the vertex v and some edges between v and vertices in Xj .
See for an example Figure 3.

For a forget node, the situation is simple. If i is a forget node with child j
and Xi = Xj − {v}, then Gi and Gj have the same vertices and edges; the only
difference is that v is no longer a terminal.

2.3 Representing Nice Path Decompositions by Strings

Suppose we consider graphs up to isomorphism, i.e., we ignore vertex names.
Then a nice path decomposition of a graph can be represented by a finite string
of characters. Assume the vertices in a bag are ordered by the order in which they
were introduced. An introduce node can now be characterized by the subset
of the indices of the neighbors of the introduced vertex. E.g., if Xi = {v, w, x}
and Xi+1 = {v, w, x, y}, with v introduced in a bag with a smaller index than
the bag where w is introduced, and w is likewise before x, then if {v, y} and
{x, y} are edges, and {w, y} is not an edge in G, then we can characterize node
i + 1 by the subset {1, 3}. Forget nodes can be characterize by the index of
the forgotten vertex. E.g., if in our example, Xi+2 = {v, w, y}, then node i + 2
can be characterized by the index 3. In this way, we can characterize a nice
path decomposition of width at most k by a sequence of at most 2n subsets of
{1, 2, . . . , k} and elements from {1, . . . , k+1}, i.e., by a string of length at most
2n from an alphabet Ak of size 2k+k+1. This representation has some important
consequences: several algorithms that exploit (nice) path decompositions can be
represented as finite state automata. More on this in Section 3.2.

Similarly, (nice) tree decompositions can be represented as a labeled tree, and
several algorithms on (nice) tree decomposition can be represented as a finite
state tree automaton. These latter are generalizations of finite state automata,
but have as input a labeled tree instead of a string. This view was pioneered by
Fellows and Langston [65]. Recently, the approach was moved to the notion of
rankwidth by Ganian and Hliněný [76].
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Not every string in A∗
k represents a graph of pathwidth at most k. A symbol

that tells that we forget the ith terminal should only occur when there are at
least i terminals; a symbol that tells that we introduce a vertex with edges to
terminals with indices in I ⊆ {1, . . . , k} should only occur when we have at most
k terminals, and each index in I corresponds to an existing terminal. It is a trivial
exercise to see that the set of strings that correspond to a graph of pathwidth at
most k is regular, i.e., that we can build a finite state automaton that recognizes
this set. Similarly, labeled trees that correspond to tree decompositions of width
k can be recognized by a finite state tree automaton.

2.4 Notions Equivalent to Pathwidth

Two other notions that are equivalent with pathwidth are the following. A linear
ordering of a graph G = (V,E) is a bijective function f : V → {1, . . . , n}.
Definition 2. The vertex separation number of a linear ordering f of a graph
G equals

max
v∈V

|{w ∈ V | f(w) ≤ f(v) ∧ ∃{w, x} ∈ E : f(x) > f(v)}

The vertex separation number of a graph G equals the minimum vertex separation
number of a linear ordering of G.

Theorem 2 (Kinnersley [89]). The vertex separation number of a graph G
equals the pathwidth of G.

We also have the following folklore result. For a proof, see e.g. [16].

Theorem 3. Let G be a graph. The pathwidth of G is at most k, if and only if
G = (V,E) is a subgraph of an interval graph H = (V, F ) with maximum clique
size at most k + 1.

2.5 Minors

Another important notion for the theory of treewidth is the notion of minor, see
e.g., [110]. A graph H is a minor of a graph G, if H can be obtained from G
by zero or more of the following operations: removing vertices, removing edges,
and contracting edges (an edge contraction replaces two adjacent vertices by one
that is incident to the neighbors of the contracted vertices).

More on graph minors in Section 4.

2.6 Cliques

A folklore result on treewidth is often of great help. As observed in [28], it
directly follows from the Helly property for trees.

Lemma 1. Let ({Xi | i ∈ I}, T = (I, F )) be a tree decomposition of G = (V,E)
and let W ⊆ V be a clique in G. Then there exists an i ∈ I with W ⊆ Xi.
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3 Algorithms on Tree and Path Decompositions

One of the most important reasons for the interest in the notion of treewidth
(or its related notions) its that many problems become polynomial, and often
linear solvable on graphs with some constant upper bound on their treewidth.
See e.g., [8, 9, 94, 138, 144].

Most of these algorithms employ dynamic programming in some form. These
algorithms consist of two steps. In the first step, a tree decomposition of bounded
width is found. This step will be discussed in more detail in Section 5. The tree
decomposition then is transformed to a nice one with the same width, with a
linear number of nodes, cf. Section 2. In the second step, the (nice) tree de-
composition is exploited: in some bottom-up order (e.g., postorder), a table is
computed for each node of the tree. To compute a table for a node, all what
is (usually) needed is the information of the nodes of its children and a little
”local” information (e.g., what vertices in the bag of the node are incident). The
problem then can be decided using the table of the root. Construction versions
often can be solved by going top-down in the tree, using the information stored
in the tables.

Our example of the algorithm uses the 3-coloring problem.. A 3-coloring of
a graph G = (V,E) is a function c : V → {1, 2, 3} such that for all {v, w} ∈ E,
c(v) �= c(w). In the 3-coloring problem, we are given a graph G = (V,E), and
have to decide if there exists a 3-coloring of G.

3.1 Solving 3-Coloring on Nice Tree Decompositions

For the 3-Coloring problem, we compute for each node in the tree decomposi-
tion i ∈ I, a table Ai. The table has an entry for each function f : Xi → {1, 2, 3}.
The entry maps to a Boolean value, and expresses if the function f can be ex-
tended to a 3-coloring of Gi. I.e., Ai(f) is true, if and only if there exists a
3-coloring g of Gi such that for all v ∈ Xi, f(v) = g(v).

Proposition 1. If G = (V,E) is given with a nice tree decomposition of width
at most k, and with O(n) nodes, then the 3-coloring problem on G can be solved
in O(3kn) time.

Proof. We discuss for each of the four types of nodes: leaf, introduce, forget,
join how the table Ai can be computed, given such tables of the children of i, in
O(3k) time. The algorithm then is as follows: in postorder, we compute for each
node of the nice tree decomposition the table Ai. In O(3kn) time we thus have
the table Ar for the root r of the nice tree decomposition. Finally, note that Gr

equals G, and thus, G has a 3-coloring, if and only if at least one entry in Gr is
true. So, we end the algorithm by inspecting Ar for a value true.

Computing Ai for a leaf node i is trivial. Recall that Gi just has one vertex
and no edges; each of the three possible colorings of this vertex corresponds to
a true entry in the table Ai.
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Suppose i is an introduce node with child j with Xi = Xj ∪ {v}. Consider a
coloring c : Xi → {1, 2, 3}. Let c′ be the restriction of c to Xj. It is not difficult
to see that we have:

Ai(c) ⇔ Aj(c
′) ∧ ∀w ∈ Xj : {v, w} �∈ E ∨ c(v) �= c(w).

Suppose i is a forget node with child j with Xi = Xj − {v}. Now we have for
all colorings c : Xi → {1, 2, 3}, that Ai(c) is true, iff there is a coloring c′ of Xj

with Aj(c
′) true and c is the restriction of c′.

For a join node i with children j′ and j′′, we have for each c : Xi → {1, 2, 3},
that Ai(c) = Aj′ (c) ∧Aj′′ (c).

Correctness can easily be derived. In each case, the wayGi is obtained from the
graphs associated with the children of i is used; see the discussion in Section 2.
It is also easy to see that the time to compute a table is linear in its size. ��
Designing an algorithm of the type given above follows a number of steps:

– What information should be stored at a table of a node? This information
characterizes the subgraph Gi. Often, the notion of a partial solution is used;
each partial solution has a characterization, and we tabulate the different
characterizations. In case of optimization problems, one can assign costs to
partial solutions, and then tabulate for each characteristic the minimum or
maximum cost of a partial solution with this characteristic. For an example
of the latter, see our discussion of the Dominating Set problem. In the
case of the 3-coloring problem, a 3-coloring of Gi is a partial solution,
which is characterized by the colors given to the vertices in Xi. A value true
implies that there is a partial solution with this characteristic.

– Design for each of the four types of nodes (leaf, introduce, forget, join),
an algorithm that computes the table for the node, given the tables of the
children.

– Show that the answer to the problem can be derived from the table for the
root r, using that G = Gr.

The second step is not always necessary: Fellows and Langston [65] introduce
the Myhill-Nerode perspective of algorithms on tree decompositions. We discuss
this briefly in the next section.

3.2 Dynamic Programming and Finite State Automata

In this section, we look at the algorithm from a perspective, first introduced by
Fellows and Langston [65], namely, we view the algorithm as running on a finite
state automaton or finite state tree automaton. For an easier exposition, we con-
sider the algorithm as running on a path decomposition of bounded width. The
discussion can be extended to tree decompositions. When using path decompo-
sitions, our algorithm corresponds to a finite state automaton; when using tree
decompositions, this generalizes to a finite state tree automaton.

Consider the algorithm that was given in the previous section. We assume
it runs on a path decomposition of width k, with k a constant; i.e., we do
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not have join nodes. For each node in the path decomposition, we computed
a table. To denote a table, we need a constant number of bits, i.e., there the
number of possible tables is a constant (only depending on the width of the
path decomposition.)

As discussed earlier, we can represent a nice path decomposition of width k
by a string in an alphabet whose size is bounded by a function of k (2k+ k+1).
Now, for a bag, the table that is computed by the algorithm for that bag only
depends on the table of the previous bag, whether the bag is an introduce
or forget node, and which vertex is forgotten, or what incidences there are to
the introduce node. Thus, the table depends on the previous table and the
’character’ of the bag.

Thus, we can view the algorithm as a finite state automaton: each possible
table corresponds to a state of the automaton, and the next state only depends
on the previous state and the character. The table for the last bag decides if the
input is accepted or rejected.

Many dynamic programming algorithms on path decompositions can be seen
as finite state automata: the main ingredients are that tables must have a number
of bits that is a function of the width, and that tables only depend on the previous
table and the type of bag, as discussed above. Algorithms on tree decompositions
can be viewed in a similar way as finite state tree automata.

This way of viewing algorithms as automata has important consequences:
several classic results of automata theory can be used. For instance, it is decidable
whether two finite state automata recognize the same set of strings, and thus,
if we have two dynamic programming algorithms of the proper form, we can
determine if these give the same output for all graphs of pathwidth at most k.
Some corollaries of this will be discussed later.

3.3 Finite Index

When designing dynamic programming algorithms for problems on graphs, usu-
ally the first step (”what should we store in tables”) is the most important. When
tables have a constant number of bits, this step gives us equivalence relations on
k-terminal graphs (for each k).

Suppose we have a decision problem Q on graphs. Let ∼Q,k be the equivalence
relation on k-terminal graphs, with for all k-terminal graphs G, H , G ∼Q,k H ,
if and only if for all k-terminal graphs K, Q(G⊕K), if and only if Q(H ⊕K).

Suppose we have a dynamic programming algorithm A, that runs in f(k)n
time when given a tree decomposition of width k, and each table has O(1) bits.
Let ∼A,k be the equivalence relation on k-terminal graphs, with G ∼A,k H
if when the table that is computed by A when G is the k-terminal subgraph
associated with a bag equals the table that is computed whenH is the k-terminal
subgraph associated with a bag. Now, by closely observing the working of the
dynamic programming algorithm, one can observe that the output of A will be
the same for G⊕K as for H ⊕K, for any K, and thus ∼A,k is a refinement of
∼Q,k.
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We say that Q is finite index, if for each k, ∼Q,k has a finite number of equiva-
lence classes. Now, the famous Myhill-Nerode theorem for regular languages tells
us that if Q is finite index, then Q is regular. In particular, the theorem tells us
that when we have established an equivalence relation that is (a refinement of)
∼Q,� for all � ≤ k, then from this, we can derive the finite state automaton, i.e.,
a dynamic programming algorithm for graphs of pathwidth at most k. As the
Myhill-Nerode theorem also holds for tree automata, we obtain the same result
for graphs of treewidth at most k.

This has two consequences: it confirms the intuition that the design of the
equivalence relation is the important step in the design of the algorithms that
run on path or tree decompositions, and it allows us to avoid in several cases
the design by hand of the procedures that tell how to compute tables for join,
introduce and forget nodes.

3.4 Courcelle’s Theorem

As said, for many problems, linear-time algorithms have been found for the
problems restricted to graphs of bounded treewidth. Often, constructing such
algorithms means to pay attention to many details. Fortunately, there are also
algorithmic meta-theorems, that allow us to establish for a large number of prob-
lems the existence of linear-time algorithms when restricted to graphs of bounded
treewidth. By far the most important of these algorithmic meta-theorems is
Courcelle’s theorem.

Theorem 4 (Courcelle [42]). For each problem P , that can be formulated in
Counting Monadic Second Order Logic, there exists an algorithm that decides P
on a given graph G, and that uses linear time for graphs of treewidth bounded by
some constant.

Counting Monadic Second Order Logic (CMSOL) is a language in which we
can express properties of graphs. The simpler version of Monadic Second Order
Logic (MSOL) has the following elements: tests if a vertex is incident with an
edge (v ∈ e), tests if two vertices are adjacent ({v, w} ∈ E), tests is a vertex
(edge) is an element of a vertex (edge) set (v ∈ W , e ∈ F ), Boolean operations
(¬, ∨, ∧, ⇒, . . . ), equality of variables, quantification over vertices and edges
(∃v ∈ V , ∃e ∈ E, ∀v ∈ V , ∀e ∈ E), and quantification over vertex and edge sets
(∃W ⊆ V , ∃F ⊆ E, ∀W ⊆ V , ∀F ⊆ E). CMSOL has in addition operations
that decide if the size of a set modulus some constant equals another constant,
i.e., for constants c1 and c2, the language has expressions |W | mod c1 = c2 and
|F | mod c1 = c2.

For example, the property that G is bipartite can be expressed as:

∃W ⊆ V : ∀e ∈ E : ∃v ∈ V : ∃w ∈ V : v ∈ e ∧ w ∈ e ∧ v ∈ W ∧ ¬(w ∈ W )

Many well known and important graph properties, including many NP-hard
properties, can be expressed in CMSOL. Besides an alternative proof of Cour-
celle’s theorem, Borie et al. [32] show how to express many graph properties is
CMSOL. See also [92] for a different proof that gives better constant factors.
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Several extensions to Courcelle’s theorem have been found. An important
one allows us to obtain linear-time algorithms for many optimization problems
restricted to graphs of bounded treewidth. Consider a CMSOL property P with
one free vertex or edge set variable. The problems to find a minimum size set of
vertices W or edges F such that P (W ) or P (F ) holds can also solved in linear
time for graphs of bounded treewidth; the same holds when we want to find
such a set of maximum weight, or if weighted variants are considered. See e.g.,
[6, 32, 31, 33, 45].

Another important variant is the result by Courcelle et al. [44] who show that a
similar result holds for graphs of bounded cliquewidth for CMSOL without edge
set quantifications. As bounded cliquewidth is equivalent (with different bounds)
to bounded NLC-width, bounded rankwidth, or bounded booleanwidth, we have
for each of these graph measures many problems that can be solved in linear or
polynomial time when they have bounded ’width’.

The ’automaton view’ also helps to see another result by Courcelle: for each
graph property P in CMSOL and integer k, it is decidable if all (or no) graphs
of treewidth (or pathwidth) at most k fulfill property P . The main idea of the
proof (sketched here for the case of pathwidth) is the following: build the finite
state automaton for path (tree) decompositions of width at most k. Also, build
the finite state automaton that checks if a sequence of bag types represents a
possible path decomposition (cf. the discussion in Section 2). Now use Myhill-
Nerode theory to check if these two automata accept the same set of strings.

Theorem 5. Let P be a property in CMSOL, and k be an integer. It is decid-
able whether all graphs of pathwidth (treewidth) at most k have property P , and
whether no graphs of pathwidth (treewidth) at most k have property P .

3.5 Courcelle’s Conjecture

Courcelle’s theorem (Theorem 4) shows that expressibility in CMSOL implies
finite index. Courcelle conjectured that the reverse also holds. (See also e.g.,
[43].) Proofs of the conjecture for special cases were obtained by Kabanets [86]
(graphs of bounded pathwidth) and Kaller [87] (graphs of treewidth 3 and k-
connected graphs of treewidth k). In 1998, Lapoire [98] announced a proof for
the conjecture, but a refereed full version of the proof has not been published.

3.6 Running Times as Function of Pathwidth and Treewidth

For many problems, Courcelle’s theorem gives a relatively fast way of establishing
that the problem is fixed-parameter tractable with respect to treewidth, i.e.,
that there is an algorithm that solves the problem in linear time for graphs
of bounded treewidth. The constant factors of such algorithms will however be
large, and better constant factors can often be obtained when designing tailor-
made algorithms for specific problems.

For some problems, the running time can be improved with help of additional
techniques. One of these was introduced by van Rooij et al. [142], see also [30].
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Here, a generalization of fast subset convolution is used to speed up algorithms
on tree decompositions, in particular the join operation. The main idea is the
following: the information stored in a table in the dynamic programming algo-
rithm can often be represented in different ways. Some of these allow for a faster
join operation, while others allow for faster introduce (or forget). With help
of fast subset convolution or generalizations of it, one can quickly transform a
table in one representation to its equivalent table in the other representation.
Tables are again computed in postorder, i.e., bottom-up, but when necessary,
the representation is changed.

Very recently, Cygan et al. [46] introduced a new technique that speeds up
several computations on tree decompositions, which they call Cut and Count.
Here, algorithms on tree decompositions are made faster by using a randomized
approach. In this way, Cygan et al. [46] obtain randomized algorithms whose
dependence on the width of the given tree decomposition is only single expo-
nential, (i.e., of the form O∗(ck) for some constant c) while the known ‘classic’
dynamic programming algorithms have a running time Θ∗(2k log k) or worse for
these problems.

3.7 Lower Bounds

For a number of problems, there are also lower bounds known (for the depen-
dency of the running time on the treewidth). Lokshtanov et al. [104] have shown
such lower bounds for a large number of problems. For instance, consider the
3-coloring problem. We have seen that this problem can be solved in O(3kn)
time; Lokshtanov et al. [104] prove that there exists no algorithm that uses
(3 − ε)tw(G)nO(1) time for any ε > 0, unless the Strong Exponential Time Hy-
pothesis [84, 48] does not hold. Other problems where the known upper bound
matches this type of lower bound include Dominating set, q-coloring for
constant q; Independent Set. See also [46].

3.8 Special Classes of Graphs

Efficient algorithms for graphs of bounded treewidth can also help to obtain
fast(er) algorithms for problems on special types of graphs. Two important ex-
amples of this are the planar graphs and graphs of bounded degree.

Planar graphs have treewidth O(
√
n). The fact can be shown to follow from

the Lipton-Tarjan planar separator theorem [102, 103]; and vice versa, the pla-
nar separator theorem can be obtained as corollary from the fact that planar
graphs have treewidth O(

√
n), see [16]. Fomin and Thilikos [74] showed that the

treewidth of a planar graph is bounded by 3.182
√
n, and also showed that the

branchwidth of a planar graph is at most 2.122
√
n.

As a consequence, for many graph problems, there are O(c
√
n) algorithms,

and sometimes O(c
√
n logn) time algorithms when the inputs are restricted to

planar graphs. An example is 3-coloring, see Section 3.1.
For several problems, dynamic programming as discussed above leads to algo-

rithms that use O(c
√
n logn) time. With help of additional arguments, algorithms
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that use O(c
√
n logn) time can be obtained for several problems on planar graphs,

likeHamiltonian Circuit. One can either exploit planarity (leading to an anal-
ysis with Catalan structures), see e.g., [53, 52]; or use the probabilistic approach
byCygan et al. [46] which was discussed above. Other algorithms for planar graphs
that exploit treewidth (or the related notion of branchwidth) can be found
in e.g., [74, 95, 136].

For graphs ofboundeddegree,wehave the following theorembyFominet. al. [71].

Theorem 6 (Fomin et al. [71]). For ε > 0, there exists an nε, such that for
all graphs G with n ≥ nε vertices of which n3 have degree 3, n4 have degree 4, n5

have degree 5, n6 have degree 6, and n>6 have degree more than 6, the pathwidth
of G is at most

1

6
n3 +

1

3
n4 +

13

30
n5 +

23

45
n6 + n>6 + ε · n

The result can in several cases be used to obtain faster exact (exponential time)
algorithms for graph problems (i.e., ‘problems parameterized by the number
of vertices n’), see e.g., [71, 141]. Kneis et al. [93] showed that graphs have
pathwidth at most m/5.769 + O(log n), m the number of edges. This also has
several algorithmic consequences, e.g., faster exact algorithms for sparse graphs
for Max Cut and for Max 2SAT.

4 Graph Minors

In this section, we briefly review a few results from graph minor theory, with
some emphasis on its role for the theory of treewidth and related notions. For
more extensive overviews, see e.g., [10, 75, 112], or [54, Chapter 7].

In a long series of papers [110, 113, 111, 117, 114–116, 119, 118, 120, 122–
126, 128, 127, 129–132, 121, 133], Robertson and Seymour obtained a number
of important and fundamental results on graph minors. The central result is the
graph minor theorem. (A graph G is minor minimal in a set of graphs if no
other graph in the set is a minor of it. Isomorphic graphs are considered to be
identical.)

Theorem 7 (Robertson and Seymour). Any set of graphs has a finite num-
ber of minor-minimal elements.

Equivalent to Theorem 7 is the following.

Theorem 8 (Robertson and Seymour [128]). Let G be a collection of graphs
that is closed under taking minors. Then there exists a finite set ob(G), called
the obstruction set of G, such that for each graph G, we have that G ∈ G, if and
only if there is no graph H ∈ ob(G) that is a minor of G.

Theorem 8 has important algorithmic consequences. Several such results were
established in the 1980’s and 1990’s by Fellows and Langston, see e.g., [62, 64,
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66, 63, 60, 67, 68]. As also for fixed graphs H , testing if H is a minor can be
done in O(n3) time [124], there exists for each set of graphs that is closed under
taking of minors an O(n3) time membership test. This result however is non-
constructive: we know that the algorithm exists but do not know the algorithm
itself, as we may not know the obstruction set.

For graphs of bounded treewidth, faster algorithms exist: for a fixed H and
fixed integer �, there is a (dynamic programming) algorithm that tests in linear
time whether H is a minor of an input graph G, given with a tree decomposition
of width at most �. Combined with the result discussed in Section 5.6, we have
that each class of graphs that is closed under minors and has bounded treewidth
can be recognized in linear time. Then, we use the following result.

Theorem 9 (Robertson et al. [114, 134]). For each planar graph H, there
is a constant cH , such that each graph G that does not have H as a minor has
treewidth at most cH .

(A similar result bounds the pathwidth of graphs that do not have some fixed
forest H as a minor [110, 11].) Thus, any minor closed class of graphs that does
not include all planar graphs has a linear-time recognition algorithm. This result,
however, is again non-constructive.

Theorem 10. Let G be a class of graphs that is closed under taking of minors.
Suppose we can construct a dynamic programming algorithm on tree decompo-
sitions of bounded width, that uses O(1) bits per table/node for the problem to
recognize graphs in G. Suppose an integer k is known such that all graphs in G
have treewidth at most k. Then the obstruction set of G is computable.

Proof. The result follows from the Myhill-Nerode perspective, as discussed in
Section 3.2, as introduced by Fellows and Langston [65]. The dynamic program-
ming algorithm on tree decompositions corresponds to a finite state tree automa-
ton. For each finite set of graphs Z, the property that an input graph G has no
graph from Z as a minor can be formulated in monadic second order logic (see
e.g., the discussion in [32]) and thus, by Courcelle’s theorem (Theorem 4), we
can construct a tree automaton that gets as input the representation of a nice
tree decomposition of width at most k, and tests whether G has a tree decompo-
sition of width at most k. We now can decide, using a tree automaton equivalent
of the classic Myhill Nerode theorem for finite state automata, whether the two
machines accept the same language. Thus, for each finite set of graphs, we can
check if this is the obstruction set of G. By enumerating all finite sets of graphs,
we eventually find the obstruction set. ��
See also e.g., [37].

5 Deciding Treewidth and Pathwidth

In this section, we discuss the problems, for fixed integers k, to decide for a
given graph G = (V,E) whether its treewidth is at most k. We also look at the



210 H.L. Bodlaender

constructive variant: if the answer is yes, the algorithm also has to output a tree
decomposition of width at most k, and we consider the variants of this problem
where we consider pathwidth and path decompositions instead.

The problem to determine for a given graph G and integer k, whether the
treewidth of G is at most k is NP-complete [4]. The NP-completeness proof of
Arnborg et al. [4] shows that treewidth is NP-complete for co-bipartite graphs,
i.e., graphs that are obtained by adding some edges between vertices in two
cliques. They also show that for these graphs, the treewidth equals the path-
width, and thus obtain also the NP-completeness of pathwidth. An independent
NP-completeness proof of pathwidth (or, more precisely, for a notion equivalent
to pathwidth) was found by Lengauer [101].

In the remainder of this section, we consider the fixed-parameter cases for
Treewidth and Pathwidth.

5.1 Membership in XP

Downey and Fellows [54] define the class XP, as the class of parameterized prob-
lems that are solvable in time O(nf(k)) for some function f .

The result that Treewidth belongs to XP dates from far before the terminol-
ogy. In the 1980s, Arnborg et al. [4] give a clever dynamic programming algorithm
for Treewidth that uses O(nk+2) time. The first algorithm whose running time
is in XP for Pathwidth was found by Ellis et al.; this complicated algorithm
(formulated on the equivalent notion of vertex separation number) only appears
in a technical report in 1987 [58]. Both algorithms solve the constructive versions
of the problem, i.e., they also give tree or path decompositions of width at most
k, if existing.

5.2 Nonconstructive Advances

The fact that Treewidth is fixed-parameter tractable was first obtained as a
consequence from the work of Robertson and Seymour on graph minors. We
briefly discuss how the results discussed in Section 4 show that Treewidth and
Pathwidth are (non uniform) fixed-parameter tractable. We use Pathwidth

as running example.

Lemma 2. For each fixed k, the class of graphs with pathwidth at most k is
closed under minor taking.

Proof. Suppose H is a minor of G, and G has pathwidth at most k. Consider a
path decomposition of G of width at most k. Consider the sequence of operations
that shows that H is a minor of G. For a deletion of a vertex v, we remove v from
all bags of the path decomposition. For a deletion of an edge, we do nothing.
For the contraction of an edge {v, w} to a vertex x, we replace each occurrence
of v and/or w in a bag by an occurrence of x. As a result, we obtain a path
decomposition of H of the same or smaller width. ��
Thus we have by the results in Section 4:
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Proposition 2. For each fixed k, there is an O(n3) time algorithm, that given
a graph, tests if G has pathwidth at most k.

The result can be improved in several ways: the cubic time can be brought back
to linear time. But also: this algorithm is non-uniform, and non-constructive in
two ways: it does not provide a corresponding path decomposition, and we do
not have the algorithm itself: as the proof of Theorem 8 is non-constructive, we
know that the obstruction set and thus the algorithm exists, but we do not know
this set and thus this algorithm (so far). In later parts of this section, we will
overcome these points.

To speed up the algorithm, we can use the fact that the treewidth of graphs
is bounded by its pathwidth, and that we can formulate for each fixed graph H ,
the property that H is a minor of a given graph G = (V,E) in monadic second
order logic. Thus, by Courcelle’s theorem (see Section 3.4), we have that for fixed
k, there exist a linear-time algorithm, that given a tree or path decomposition
of bounded width of the input graph G, tests if the pathwidth of G is at most
k, by verifying whether G contains any of the graphs from the obstruction set
of graphs of pathwidth at most k as a minor.

To find such a tree or path decomposition, one could either use an approxima-
tion algorithm for treewidth (or pathwidth); such an algorithm should use time
that is polynomial in n but can be exponential in k. The first such algorithm
was given in terms of branchwidth and branch decompositions by Robertson and
Seymour in [124]: this algorithm finds in O(33kn2) time a branch decomposition
of width 3k. This result can easily be transferred to a similar result giving tree
decompositions (with factor 4.5 instead of 3 for treewidth). Similar results with
some improvements in bounds or running times were obtained by different au-
thors, see e.g., [1, 51, 96, 109] or [90, Sec. 10.5]. Reed [109] obtained a running
time of O(n logn).

Further speedup can be obtained with different methods, which will be dis-
cussed later.

5.3 Fighting Non-constructiveness: Self-reduction

One approach to overcome non-constructiveness is by the use of self-reduction.
Fellows and Langston [69] (see also [36]) introduced a general technique to turn
a non-constructive proof of the existence of an algorithm into a constructive one.
We showcase the technique by using the pathwidth problem as example.

Self-reduction is a well known technique to turn algorithms for decision prob-
lems into algorithms for the constructive version of the problem: by running the
decision algorithm multiple times on slightly modified inputs, the output for the
constructive version is generated (e.g., we construct a certificate for a problem
in NP.) In the approach of Fellows and Langston, the technique is taken one step
further: besides constructing the certificate (in this case, a path decomposition of
width at most k, or, equivalently, an interval supergraph with maximum clique
size at most k + 1), but we also circumvent the fact that we do not know the
obstruction set in advance.
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First, suppose we have a decision algorithm A for the problem to test for
a given graph G if the pathwidth of G is at most k. First, run A on G. If A
tells that the pathwidth of G is more than k, we halt. Otherwise, we use O(n2)
runs of A to build an interval graph H with maximum clique size k. (Recall
Theorem 3.) Take an auxiliary graph H , which we initially set to be equal to
G. Now, for each pair of disjunct vertices v, w ∈ V , {v, w} �∈ E, we test if the
pathwidth of the graph, obtained by adding {v, w} to H is at most k. If so, we
add the edge {v, w} to H . Call this algorithm B. The output of algorithm B is a
maximal supergraph H of of G that has pathwidth at most k; more specifically,
this graph H is an interval graph with maximum clique size k + 1.

Suppose we have a set of graphs X that is a subset of the obstruction set
of the graphs of pathwidth at most k. We build an algorithm C that, given a
graph G, either decides that the pathwidth of G is at most k, or gives a path
decomposition of G of width at most k, or decides that X is a proper subset of
the obstruction set of graphs of pathwidth at most k, as follows: run the following
modification of algorithm B: instead of using A, we test if the input graph has a
minor in X . If this algorithm tells that G has pathwidth more than k, then this
is because a graph from X is a minor of G, and thus this is a correct output.
Otherwise, we check if the output is indeed an interval graph with maximum
clique size k. (This can be done in polynomial time, see e.g. [77].) If so, we are
done; if not, we know that X was not equal to the obstruction set of graphs of
pathwidth at most k.

We now can build an algorithm D, that given a graph G, either correctly
decides that G has pathwidth more than k, or outputs a path decomposition of
G of width at most k, as follows. Initially, let X be the empty set. Now, repeat
the following step, until we are done. Enumerate all graphs G, and for each,
test if G is not in X , and if G is a member of the obstruction set of graphs
of pathwidth at most k, i.e., if the pathwidth of G is k + 1 and if each proper
minor of G has pathwidth at most k. (We can use any algorithm for this.) If not,
continue the enumeration of graphs. If the test succeeds, add G to X ; stop the
enumeration of graphs, and run algorithm C with X . If algorithm C produces
as output that G has pathwidth more than k, or a path decomposition of G,
we are done; otherwise, we restart the enumeration of graphs, but now with the
larger set X .

This is an fpt-algorithm, i.e., its running time is bounded by a function of k
times a polynomial in n: we never have to enumerate graphs beyond the last
graph in the obstruction set of pathwidth-k graphs, and thus X and the time
for enumeration of graphs are bounded by a function of k. The algorithm is, of
course, highly impractical, but showcases an important idea how we can turn
non-constructive algorithms into constructive ones.

With some addition techniques, one can modify this algorithm such that it
runs in O(f(k)n2) time, see [13]. The technique works for a large number of
problems; see [69] for more details. For pathwidth, there exist more efficient
algorithms, which will be discussed in later sections.
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5.4 Graph Reduction Techniques

In this subsection, we discuss some algorithmic results for graphs of bounded
treewidth that are based on the technique of graph reduction, now known under
the name of protrusions. A simple example of this technique is the following
algorithm that recognizes the graphs of treewidth at most one, i.e., the set of
forests: while possible, remove vertices of degree one with their incident edge
and vertices of degree zero. The empty graph results, if and only if the input
graph was a forest.

If we add the reduction rule that removes vertices of degree two while adding
an edge between their neighbors (if not already present), we obtain a recognition
algorithm for graphs of treewidth at most two. Arnborg and Proskurowski gave
a fast reduction algorithm for graphs of treewidth at most three [7], see also
[107]. For treewidth 4, Sanders [135] found a linear-time recognition algorithm.
An experimental evaluation of this algorithm by Hein and Koster [83] shows that
this algorithm is practical.

In a more generalized setting, consider the equivalence relation ∼Q,k discussed
in Section 3.2 for some decision problem Q on graphs. If we have k-terminal
graphs G1 and G2 with G1 ∼Q,k G2 and G2 is smaller than G1, then this leads
to the following algorithmic step: if we have G1 as subgraph, with terminals
of G1 the only vertices in the subgraph with neighbors outside the subgraph,
then we can replace G1 by G2; i.e., we transform G = G1 ⊕H to G2 ⊕ H . As
Q(G) = Q(G2 ⊕H), the step is safe, as the answer to the problem at hand does
not change.

A graph reduction algorithm can thus be based on a collection of such safe
reduction rules. In 1993, Arnborg et al. [5] showed that for each fixed k, each
graph problem that is finite state (and thus, including, all problems that can
be formulated in monadic second order logic) there is a collection of reduction
rules that give a linear time (on a random access machine with the uniform cost
model) algorithm for graphs of treewidth at most k. Bodlaender and Hagerup [22]
showed that one can obtain parallel algorithms based on graph reduction that
use O(log n) time and O(n) work; their version leads to linear-time sequential
algorithms on the more standard pointer machine model. Bodlaender and van
Antwerpen-de Fluiter [29, 49] showed that the technique can also be applied to
some optimization problems (terming these finite integer index); a reduction rule
not only changes the graph, but also adds a constant to one integer variable.

Graph reduction techniques are often used for preprocessing and kernelization.
For the problem to determine the treewidth of a graph, graph reduction has
been used in the setting of preprocessing [27, 56] and, recently, in the setting
of kernelization [23]. Recently, graph reduction techniques were used to obtain
kernelization results for other problems, including ’meta-kernelization’ results:
proofs that large collections of problems have kernelization algorithms when
restricted to certain special graph classes (e.g., graphs embeddable on a fixed
surface) [20, 72, 73].
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A very recent (spring 2012) result by Drucker [55], combined with the ker-
nelization lower bound techniques from [17], shows that Treewidth (in its
standard parameterization) does not have a polynomial kernel, unless NP ⊆
coNP/poly.

5.5 An Explicit Finite Congruence

The use of non-constructive methods can be avoided altogether by giving an ex-
plicit equivalence relation on path decompositions for certain types of subgraphs.
The techniques can be generalized for treewidth and tree decompositions; we
briefly discuss what additional technical difficulties are to be faced at the end of
this section.

The results shown here were obtained by Bodlaender and Kloks [24] and
Lagergren and Arnborg [97] in 1991; Fellows and Langston obtained similar
results independently at the same time. Bodlaender et al. [19] discussed how
such algorithms can be automatically be derived, and part of the discussion
below is based on the ideas from [19].

Theorem 11. Let k, � be constants. There is (and we can explicitly describe)
an algorithm, that given a graph G = (V,E) with a path decomposition of G of
width at most �, decides if the pathwidth of G is at most k, and if so, finds a
path decomposition of G of width at most k.

Of course, we may assume that k < �, otherwise the problem is trivial.
We define a simple operation on sequences of integers, which we call compact-

ing: if (a1, . . . , aq) is an sequence of integers, its compacted sequence is obtained
by repeating the following step:

– If there are i, j, j ≥ i+2, such that ai = mini≤i′≤j ai′ and aj = maxi≤i′≤j ai′ ,
then remove the numbers ai+1, . . . , aj−1 from the sequence.

– If there are i, j, j ≥ i+2, such that ai = maxi≤i′≤j ai′ and aj = mini≤i′≤j ai′ ,
then remove the numbers ai+1, . . . , aj−1 from the sequence.

E.g., the compacted sequence of 3, 5, 7, 4, 2, 6 is 3, 7, 2, 6. The compacted sequence
is unique, i.e., it does not depend on the order in which the steps are carried
out.

Recall that pathwidth is equivalent to vertex separation number (Theorem 2.)
The uncompacted fingerprint of a linear ordering f of a terminal graph

(V ′, Ei, X) is defined as follows. We partition f in pieces as follows: the first
piece starts with the first vertex in the ordering, f−1(1). Now, visit the vertices
from low to high number. Start a new piece when we see a terminal, i.e., a vertex
in X , and start a new piece directly after a vertex that is the highest numbered
neighbor of a vertex in X . We have for each piece an uncompacted fingerprint,
and the uncompacted fingerprint of f is the sequence of uncompacted fingerprints
of the pieces: Suppose we have the piece f−1(i), f−1(i+1), . . . , f−1(j). The first
part of the uncompacted fingerprint is X∩{f−1(i)}, i.e., it tells whether the first
vertex is a terminal and if so, what terminal; the second part is the sequence
ni, ni+1, . . . , nj , with nr = |{w ∈ V | f(w) ≤ r ∧ ∃{w, x} ∈ E : f(x) > r}|.
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The compacted fingerprint is obtained by taking the uncompacted fingerprint
and then compacting in each piece its sequence of numbers.

Lemma 3. Let f and g be linear orderings of �-terminal graph (V ′, E′, X), and
let H be an �-terminal graph, and G = (V ′, E′, X)⊕H. Let k be an integer.

(i). Suppose f and g have the same uncompacted fingerprints. There exists a
linear ordering of G with vertex separation number at most k that con-
tains f as a subsequence, if and only if a linear ordering of G with vertex
separation number at most k that contains g as a subsequence.

(ii). Suppose f and g have the same compacted fingerprints. There exists a
linear ordering of G with vertex separation number at most k that con-
tains f as a subsequence, if and only if a linear ordering of G with vertex
separation number at most k that contains g as a subsequence.

The first part of the lemma is more or less trivial (except for an overload of
terminology and notation). The second part contains the essential insight of the
algorithms in [97, 24, 19]: the numbers that are forgotten when compacting are
not essential when we need to determine if we can extend the ordering to an
ordering of G of vertex separation number at most k.

Compacted sequences of integers in {0, . . . , k} have length O(k) [24], and thus
for fixed �, the number of compacted fingerprints of �-terminal graphs is bounded
by a constant.

The main idea of the algorithm of Theorem 11 is the following. Suppose we
have a nice path decomposition (X1, . . . , Xr) of width � of G. For each i, we
compute the set of compacted fingerprints of the linear orderings of the terminal
graphs (Vi, Ei, Xi) of vertex separation number at most k. For introduce and
for forget nodes, we have a subroutine that tells how such a set can be computed
from the previous set. The pathwidth of G is at most k, if and only if the last of
these sets (for (Vr, Er, Xr)) is nonempty; note that V = Vr and E = Er. Similar
as for many other dynamic programming algorithms, we can also construct (if
existing) a corresponding linear ordering of width at most k, by going backwards
through the tables. This linear ordering can easily be transformed to a path
decomposition of width at most k (as in [89].)

Corollary 1. For each k, the obstruction set of graphs of pathwidth at most k
is computable.

Proof. This follows directly from Theorem 10 and the discussion above. We have
two �-terminal subgraphs in the same equivalence class if they have the same set
of fingerprints of linear orderings of vertex separation number at most k. ��

Similar results hold for treewidth. There are however several additional technical
difficulties: the fingerprints are much harder to describe because of the tree
structure, and a procedure has to be built for the join nodes. Similar results
have been designed for other width parameters, e.g., [139, 140].
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5.6 A Win-Win Theorem and a Linear-Time Algorithm

In this section, we sketch a linear-time algorithm for the fixed-parameter case
of pathwidth. The algorithm follows the main ideas of the linear-time algorithm
for the fixed-parameter case of treewidth [14]; some arguments are somewhat
simpler for the case of pathwidth.

We denote with G + {v, w} the graph obtained from G by adding the edge
{v, w}. The following lemma is well known in its variant for treewidth, see e.g.,
[14]. Its statement and proof are identical for pathwidth.

Lemma 4. Let G = (V,E) be a graph, and k ≥ 0. Suppose v and w have at
least k+1 common neighbors., Each path decomposition of width at most k of G
is also a path decomposition of width at most k of G+ {v, w}, and the pathwidth
of G is at most k, if and only if the pathwidth of G+ {v, w} is at most k.

Proof. Suppose v and w have at least k + 1 common neighbors.
Now, suppose that (X1, . . . , Xr) is a path decomposition of G of width at most

k. If there is a bag Xi with v, w ∈ Xi, then this is also a path decomposition of
G + {v, w} and hence the pathwidth of G + {v, w} is at most k. Suppose such
a bag does not exist. W.l.o.g., suppose the first bag that contains v is before
the first bag that contains w. Let v ∈ Xi with i maximal; and let w ∈ Xj

with j minimal. Now all common neighbors of v and w must belong to a bag
containing v and to a bag containing w, and hence must belong to the first bag
that contains w: this bag hence has size at least k + 2 as it contains w and at
least k + 1 common neighbors of v and w, contradiction. The equivalence now
follows from this, and the trivial observation that the pathwidth of G is never
larger than the pathwidth of G+ {v, w}. ��
Lemma 4 allows us to add edges between vertices with at least k + 1 common
neighbors, without changing the answer to the question if the graph at hand has
pathwidth at most k. In order to get a linear-time algorithm, we only look at
neighbors of bounded degree. In this case, we define a number bk and use it as
upper bound for the degree of neighbors to make the proof work.

Define ak = k
2 (2k + 2)(2k + 1) + k + 2, and bk = ak + k + 1.

The k-improved graph of a graph G = (V,E) is obtained from G by adding an
edge between each pair of nonadjacent vertices v, w such that there are at least
k + 1 vertices of degree at most bk that are a common neighbor of v and w.

Building the k-improved graph is not an iterative process: the new edges
are added simultaneously for all pairs in one round. It is well possible that
the k-improved graph of the k-improved graph of G has more edges than the
k-improved graph of G, but taking the closure of the improvement operation
might take too much time.

Suppose we have a graph G = (V,EG) and its k-improved graphH = (V,EH).
We say that a vertex is i-simplicial, if its neighbors in G form a clique in H , i.e.,
for each pair of edges {v, w} ∈ EG, {v, x} ∈ EG, we have w = x or {w, x} ∈ EH .

The following theorem gives us a ‘win-win’ approach to computing treewidth:
we first make the improved graph; then greedily compute some maximal match-
ing M . The theorem shows that we either have ’a large maximal matching’ or
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’many simplicial vertices’; in both cases, we can solve the problem by first solv-
ing the problem on a graph with linearly many fewer vertices and then running
the algorithm that was discussed in Section 5.5. (For other win-win theorems,
see e.g., [66],[54, Chapter 8.1].)

Theorem 12. Let G = (V,E) be a graph of pathwidth at most k. Let H be the
k-improved graph of G. Let M be a maximal matching in H. Let X be the set of
i-simplicial vertices in G. Then 2|M |+ |X | ≥ �n/ak�.
Proof. By Lemma 4, the pathwidth of H is at most k. Consider a nice path
decomposition (X1, . . . , Xr) of H (and hence also of G) of width at most k.
This path decomposition has n introduce nodes or leaf nodes: each vertex is
introduced exactly once (with one vertex introduced in X1). A piece of the path
decomposition is a collection of successive nodes that contains exactly ak intro-
duce nodes. Note that the path decomposition contains �n/ak� non-overlapping
pieces. A central part of the proof is the following claim.

Claim. Let (Xi, Xi+1, . . . , Xj) be a piece. Let W =
⋃j−1

s=i+1 Xi − (Xi ∪Xj). W
contains a vertex that is an endpoint of an edge in M or that is i-simplicial.

Proof. Let W ′ be the set of vertices that are ’introduced’ by an introduce node
in the piece. As we have ak introduce nodes in the piece, |W ′| = ak. Vertices in
Xi are introduced in a node with index at most i, so W = W ′ −Xj , and hence
W ≥ ak − (k + 1) = k

2 (2k + 2)(2k + 1) + 1.
Consider a vertex v ∈ W . If v is i-simplicial, then the claim holds, so suppose

v is not i-simplicial. Thus, v must have two neighbors in G that are not adjacent
in H , say x and y. As v belongs to a bag Xi′ with i < i′ < j, but v does
not belong to Xi or Xj , the only bags v can belong to are the bags Xi′′ with
i < i′′ < j, and hence all neighbors of v belong to W ∪Xi ∪Xj, and hence v has
degree at most ak + k + 1 = bk.

First, suppose x ∈ W . Then either v is an endpoint of an edge in M , x is
an endpoint of an edge in M , or M is not a maximal matching. So, the claim
holds in this case. Similarly if y ∈ M . The case that remains is that both x and
y belong to Xi ∪Xj.

I.e., we have that each vertex in W has two nonadjacent neighbors in Xi∪Xj ,
and degree at most bk. As there are at most 1

2 (2k + 2)(2k + 1) pairs of vertices
in Xi ∪ Xj , there must be a pair of nonadjacent vertices in Xi ∪ Xj that has
at least k + 1 common neighbors in W , each with of degree at most bk. But
then the edge {v, w} must have been added during the improvement step, i.e.,
{v, w} ∈ EH , contradiction. ��
The proof of Theorem 12 can now easily be concluded: we have �n/ak� nonover-
lapping pieces. Each of these pieces contains a vertex that is i-simplicial or end-
point of an edge in the matching M . As these vertices never belong to the first
or last bag of a piece, none of these vertices can belong to two or more pieces,
and hence we have �n/ak� vertices that are i-simplicial or endpoint of an edge
in M , which implies that 2|M |+ |X | ≥ �n/ak�. ��
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We now sketch the linear-time algorithm. The algorithm gets as input a graph
G = (V,E), and either outputs no (the pathwidth of G is more than k), or
outputs a path decomposition of width at most k of G. It uses the algorithm of
Section 5.5 as a subroutine. Correctness and running time will be argued later.

(i). If G has at most 3ak vertices, then solve the pathwidth problem by any
deterministic algorithm, e.g., [4].

(ii). Compute the k-improved graph H = (V,EH).
(iii). Compute a maximal matching M in H .
(iv). Compute the set X of i-simplicial vertices of degree at most k in H .
(v). If 2|M |+ |X | < �n/ak� then output no.
(vi). If |X | ≥ |M | then

(a) Let H ′ be obtained from H by removing all vertices in X from H .
(b) Recursively call the algorithm on H ′.
(c) If the pathwidth of H ′ is larger than k, then output no.
(d) Otherwise, transform the path decomposition of H ′ of width at most k

to a path decomposition of width at most k + 1 of H .
(vii). Else (|X | < |M |)

(a) Let H ′′ be obtained from H by contracting all edges in M .
(b) Recursively call the algorithm on H ′′.
(c) If the pathwidth of H ′′ is larger than k, then output no.
(d) Otherwise, transform the path decomposition of H ′′ of width at most k

to a path decomposition of width at most 2k + 1 of H .
(viii). (Now, we have a path decomposition ofH of width at most 2k+1.) Use the

algorithm of Section 5.5 on H using the path decomposition constructed
in the earlier step.

Several of the steps need more detail, and a proof that they can be performed
in linear time. First, we argue correctness of the algorithm. We first consider
Step 3. If the pathwidth of G is at most k, then the pathwidth of H is at most
k (Lemma 4). Thus H has no clique of size k + 1 or more, and hence there
cannot be i-simplicial vertices of degree more than k. Thus, by Theorem 12,
2|M |+ |X | ≥ �n/ak�. So, if we decide no in Step 3, the pathwidth of G indeed
is more than k. H ′ is a subgraph of H , so if H ′ has pathwidth more than k,
then H and hence G has treewidth more than k. H ′′ is a minor of H , and as
pathwidth cannot increase when taking minors (see Section 4), if the pathwidth
of H ′′ is more than k, then the pathwidth of H and thus G is more than k.

We now discuss a few of the steps in more detail. Computing the k-improved
graph can be done in linear time with help of the use of radix sort techniques
(see [41, Chapter 8.3]). Take an initially empty multiset S. For each vertex v of
degree at most bk, insert each pair of neighbors of v in S. Radix sort S, and then
detect which pairs appear at least k + 1 times. Add these pairs to G. By radix
sorting the set of edges of G, we can remove parallel edges.

Computing i-simplicial vertices again needs to use of radix sort. We leave the
details as an easy exercise.

For step (vi)(d), we must find for each i-simplicial vertex v ∈ X a bag Xiv in
the path decomposition of H ′ that contains all neighbors of v. Such a bag exists,



Fixed-Parameter Tractability of Treewidth and Pathwidth 219

by Lemma 1. To find the bags, one can either again exploit radix sort, or note
that v ∈ Xi with

i = min
w∈NH(v)

max{j | w ∈ Xj}

Add a bag with vertex set Xiv ∪{v}, directly after Xiv . (When more vertices are
mapped to the same bag, we add a number of bags, each with one new vertex.)

Consider now step (vii)(d). For each edge {v, w} ∈ M , replace in each bag,
each occurrence of the newly formed vertex by the contraction by v and w. In
this way, bag sizes at most double, so the width is at most 2k + 1.

We now can argue that the algorithm uses linear time. As 2|M |+|X | ≥ �n/ak�,
we have |M | ≥ 1

3n/ak� or |X | ≥ 1
3�n/ak�. So, when we recursively call the

algorithm on H ′ or H ′′, this graph has at most (1 − � 1
3ak

�)n vertices. So, the
time of the algorithm on a graph with n vertices fulfills:

T (n) = T ((1− 1

3ak
)n) +O(n)

which implies T (n) = O(n).
We now have shown the following result.

Theorem 13. Let k be a constants. There is (and we can explicitly describe)
an algorithm, that given a graph G = (V,E) decides if the pathwidth of G is at
most k, and if so, finds a path decomposition of G of width at most k.

A generalization of the techniques shown above lead to a similar result for
treewidth and tree decompositions [15].

6 Conclusions

In this paper, a number of results have been surveyed on algorithmic aspects of
treewidth. There are still a large number of topics that have not been touched
here, including most practical aspects of treewidth computations (see e.g., [25,
26]), computing treewidth on special graph classes (including the celebrated
results of Bouchitté and Todinca on potential maximal cliques [34, 35]), the
role of treewidth for bidimensionality theory, logspace algorithms [57], W [1]-
hardness proofs for some problems on graphs of bounded treewidth (e.g., [18,
61]), dynamic algorithms [81], and much much more. The area of algorithmic
research of treewidth is a very lively one, but can already look back to a lively
history with several intriguing aspects, like the special role on nonconstructive
results.

I end with mentioning a few probably very hard challenges:

– What is the complexity of Treewidth, restricted to planar graphs. For
the related Branchwidth problem, the famous ratcatcher algorithm by
Seymour and Thomas [137] solves it in polynomial time; for Treewidth on
planar graphs, neither a polynomial time algorithm nor an NP-completeness
proof is known.
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– Is it possible to approximate treewidth up to a constant factor? There is
an approximation with ratio O(

√
logn) [59], and it is easy to show that

approximation with an additive constant term is not possible assuming P �=
NP [21].

– An accessible proof for Courcelle’s conjecture, i.e., that shows that each
problem that is finite index can be formulated in CMSOL.

– Is it possible to find an algorithm for Treewidth that runs in O(cknc′) for
constants c and c′? Perhaps a probabilistic algorithm using ideas from [46]?
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