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Abstract. Since its inception in the 1990’s, parameterized complex-
ity has established itself as one of the major research areas in the-
oretical computer science. Parameterized and kernelization algorithms
have proved to be very useful for solving important problems in various
domains of science and technology. Moreover, parameterized complex-
ity has shown deep connections to traditional areas of theoretical com-
puter science, such as structural complexity theory and approximation
algorithms.

In this paper, we discuss some of the recent results pertaining to
the relation between parameterized complexity and subexponential-time
computability. We focus our attention on satisfiability problems because
they play a key role in the definition of both parameterized complexity
and structural complexity classes, and because they model numerous
important problems in computer science.

1 Introduction

Parameterized complexity was established in the early 1990’s by the seminal
work of Downey and Fellows. It was instigated by the demands of real-world
applications, and by the belief that computational complexity should “serve the
community,” and should be “used not only in the pursuit of the declared ob-
jectives but also in the design of heuristic and approximation algorithms for
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problems that are hard, but for which, nevertheless, something must be done”
[24]. Today, applications of efficient parameterized and kernelization algorithms
for solving important problems that are otherwise intractable from the tradi-
tional complexity theory perspective, are prevalent. Parameterized complexity
has matured into a very exciting research area of theoretical computer science,
with applications spanning numerous domains of science and technology.

The rich positive toolkit of novel techniques for designing efficient parameter-
ized and kernelization algorithms was accompanied by a corresponding “neg-
ative” toolkit that supports a theory of parameterized intractability. While
studying the parameterized intractability of the dominating set problem [24],
Downey and Fellows sharply observed that there is a rich structure in pa-
rameterized intractability theory. A parameterized intractability hierarchy, the
W -hierarchy, was subsequently introduced to classify the level of intrinsic in-
tractability of parameterized problems [24]. Research in the last twenty years
revealed that the W -hierarchy provides a deep structural characterization of pa-
rameterized complexity [24]. In addition, the theory is remarkably applicable
to a wide range of natural computational problems. This motivated researchers
in theoretical computer science, and in parameterized complexity in particu-
lar, to investigate the structural relation between parameterized complexity and
traditional areas of theoretical computer science (e.g., structural complexity, ap-
proximation, etc).

Perhaps one of the most important problems that has deep roots in the
aforementioned areas is the satisfiability problem, including all its variants.
The currently-best algorithms for satisfiability problems are essentially based
on brute-force methods that enumerate all possible solutions, which obviously re-
quires exponential time. It has become clear that the existence of faster
exponential-time algorithms for satisfiability problems is closely related to the
computational intractability of a large class of well-known NP-hard problems,
measured from a number of different angles, such as computational time and
space, fixed-parameter tractability, and approximation. For example, Impagli-
azzo, Paturi, and Zane showed that the subexponential-time computability of
the 3-sat problem is equivalent to the subexponential time computability of
a large class of well-known NP-hard problems [31]; this class is closed under
subexponential-time preserving reductions, called serf-reductions. This led re-
searchers in theoretical computer science to formulate a hypothesis, which be-
came known as the exponential-time hypothesis, shortly ETH, conjecturing that
no member in this class is solvable in subexponential time.

The subexponential-time computability of weighted satisfiability on bounded
depth circuits is closely related to the fixed-parameter tractability of the
W -hierarchy in parameterized complexity theory (see for instance [1, 9, 12, 14,
19–21, 23, 24]). Research on parameterized complexity revealed more subtle re-
lations between the computational complexity of NP-hard problems and the
(sub)exponential-time computability of satisfiability problems [9, 12, 14, 33, 39].
For example, it is now known that efficient polynomial-time approximation
schemes of a number of NP-hard problems, and parameterized algorithms that
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are asymptotically more efficient than the brute-force enumeration for many W -
hard problems, are all dependent of the subexponential-time computability of
various satisfiability problems (see for instance [9, 12, 14, 33, 39]). In particu-
lar, due to the aforementioned research, it is now known that the classification
of parameterized intractability has a correspondence to the exact computabil-
ity of satisfiability problems on various circuit families. This line of research
deepened our understanding of the structural relation between the two compu-
tational frameworks of parameterized complexity and subexponential-time com-
putability, and resulted in new tools for deriving computational lower bounds on
parameterized computation, exact computation, and approximation algorithms.

In the current paper, we discuss some of the results related to the relation
between the parameterized intractability and the computational complexity of a
variety of satisfiability problems. This relation is not surprising, given that the
W -hierarchy in parameterized complexity was defined mainly based on weighted
satisfiability problems. Nevertheless, the close connection between these two dif-
ferent research frameworks has not been rigorously studied until very recently.

The systematic research in this direction started with the results of Abraham-
son, Downey, and Fellows [1], and Downey and Fellows [24]. In [1], it was shown
that W [P ] = FPT (W [P ] is the parameterized complexity class characterized by
the weighted satisfiability problem restricted to polynomial-size Boolean circuits)
implies that circuit satisfiability (satisfiability of polynomial-size circuits)
is computable in subexponential time. It was also shown in [1] that, for any
even t ≥ 1, the collapse of the W -hierarchy at its t-th level (i.e., W [t] = FPT )
implies that sat[t] (t-level satisfiability) is solvable in time 2o(n)mO(1) (m is the
instance size).1 This later result was refined by Downey and Fellows [24] to all
levels of the W -hierarchy. Downey and Fellows [24] showed that: (1) for any
t ≥ 2, W [t] = FPT implies that sat[t] is computable in subexponential time;
and (2) W [1] = FPT implies that ETH fails, which subsequently implies the
subexponential-time computability of several well-known problems including 3-
sat, independent set, and vertex cover. Those results were further refined
and extended in [12, 14], where it was shown that the condition W [t] = FPT
in (1) and (2) can be relaxed (see Section 4), and that the subexponential-time
computability of sat[t], in turn, implies the collapse of the W -hierarchy at its
(t − 1)-st level (W [t − 1] = FPT ) for t ≥ 2, and for t = 1 implies the fail-
ure of ETH. The previous results were exploited further in [12, 14] to derive
lower bounds on the computability and the approximation of well-known NP-
hard problems, such as independent set, clique, dominating set, based
on parameterized complexity hypotheses. Important questions along this line of
research remained open however, including the following: What is the equiva-
lent, from the parameterized complexity perspective, of the subexponential-time
computability of various satisfiability problems?

1 The o(·) notation in this paper denotes the oeff(·) notation (see, for instance, [26]).
More formally, by writing f(n) = o(g(n)) we mean that there exists a computable
nondecreasing unbounded function μ(n) : N → N, and n0 ∈ N, such that f(n) ≤
g(n)/μ(n) for all n ≥ n0.
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Downey et al. [23] were the first to try to answer this question. They defined a
parameterized complexity class, called M [1], comprised between FPT and W [1],
consisting of a “miniaturization” of weighted circuit satisfiability, and showed
that M [1] = FPT is equivalent to ETH fails. The idea of a miniaturization of a
problem was explored earlier in the work of Abrahamson et al. [1], and Cai and
Juedes [9], and Downey et al. [23] provided a formal definition for this notion
and studied it systematically. Flum and Grohe [25], Chen and Flum [19, 20],
and Chen and Grohe [21], launched a systematic study of the relation between
parameterized complexity and subexponential-time computability, using the no-
tion of miniaturization. Chen and Grohe [21] were able to give a correspondence
between the subexponential-time computability of certain satisfiability problems
and parameterized complexity classes.

We will focus on some of the key results pertaining to the relation between
parameterized complexity and subexponential-time computability, and their ap-
plications. We will also try to describe some of the problems that remain open
in this line of research. While we tried our best to include most of the recent
results on to these topics, we do apologize in advance for any relevant result that
we may have omitted; certainly, this was not our intention.

Before we close this section, we would like to mention a recent breakthrough-
result in complexity theory by Williams [42], who proved that the non-uniform
ACC class does not contain NTIME[2n], the class of languages that are solv-
able in nondeterministic time O(2n). This is regarded as a very significant ad-
vance in complexity theory, as it was even unknown whether the class EXPNP

is contained in a weaker ACC class of languages accepted by circuit families
of polynomial-size and depth 3 with more restricted modular gates. There are
at least two directions in which Williams’ result is relevant to parameterized
complexity and subexponential-time computability. First, a major component
of Williams’ approach is faster exact algorithms for satisfiability problems. In

particular, Williams developed a 2n−Ω(nδ)-time algorithm for the satisfiability
problem on subexponential-size ACC-circuits, where δ is a constant dependent
on the circuit depth. Second, the computation model considered, i.e., ACC-
circuits, is closely related to the generic complete problems for the W -hierarchy,
i.e., the weighted satisfiability on bounded depth Boolean circuits [24].

2 Preliminaries

A circuit is a directed acyclic graph. The nodes of in-degree 0 are called inputs,
and are labeled either by positive literals xi or by negative literals xi. The nodes
of in-degree larger than 0 are called gates and are labeled with Boolean operators
and or or. A special gate of out-degree 0 is designated as the output node. We
do not allow not gates in the above circuit model, since by De Morgan’s laws, a
general circuit can be effectively converted into the above circuit model. A circuit
is said to be monotone (resp. antimonotone) if all its input literals are positive
(resp. negative). The depth of a circuit is the maximum distance from an input
node to the output gate of the circuit. A circuit represents a Boolean function in



166 J. Chen and I.A. Kanj

a natural way. Using the results in [11], every circuit can be re-structured into
an equivalent circuit with the same monotonicity and number of input variables,
same depth, and such that all inputs are in level 0, all and and or gates are
organized into alternating levels with edges only going from a level to the next
level, and with at most a polynomial increase in the circuit size. Thus, without
loss of generality, we will implicitly assume that circuits are in this leveled form.
A circuit is a Π-circuit if its output gate is an and gate, and is a Πh-circuit
if it is a Π-circuit of depth h. We say that a truth assignment τ to the input
variables of a circuit C satisfies a gate g in C if τ makes the gate g have value
1, and that τ satisfies the circuit C if τ satisfies the output gate of C. A circuit
C is satisfiable if there is a truth assignment to the input variables of C that
satisfies C. The weight of an assignment τ is the number of variables assigned
value 1 by τ . A CNF formula is a conjunction of a set of clauses where each
clause is a disjunction of literals. For a CNF formula F with n input variables,
we can naturally correspond an equivalent Π2-circuit CF with n input variables.

A parameterized problem Q is a subset of Ω∗×N, where Ω is a fixed alphabet
and N is the set of all non-negative integers. Each instance of the parameterized
problem Q is a pair (x, k), where the second component, i.e., the non-negative
integer k, is called the parameter. We say that the parameterized problem Q is
fixed-parameter tractable [24] if there is a (parameterized) algorithm that decides
whether an input (x, k) is a member of Q in time f(k)|x|c, where c is a fixed
constant and f(k) is a computable function independent of the input length
|x|. Let FPT denote the class of all fixed-parameter tractable parameterized
problems.

The Πt-circuit satisfiability problem where t ≥ 2, abbreviated sat[t]
henceforth, is defined as follows: Given a Πt-circuit C, decide if C is satisfiable.
For instance, the sat[2] problem is the same as the satisfiability problem on CNF
formulas (cnf-sat). We will also study the parameterized problems based on
the “weighted version” of the satisfiability problems on circuits. In particular, for
t ≥ 2, the weighted Πt-circuit satisfiability problem, abbreviated wcs[t]
is for a given Πt-circuit C and a given parameter k, to decide if C has a satis-
fying assignment of weight k. Similarly, the weighted monotone Πt-circuit
satisfiability problem, abbreviated wcs+[t], and the weighted antimono-
tone Πt-circuit satisfiability problem, abbreviated wcs−[t] are the wcs[t]
problems on, respectively, monotone circuits and antimonotone circuits. We de-
note by wcnf 2-sat− the wcs−[2] problem with the restriction that the fan-in
of each gate at level 1 of the input circuit is bounded by 2. Equivalently, each
instance of wcnf 2-sat− consists of a parameter k and a CNF formula in which
all literals are negative and each clause is a disjunction of at most two literals.
Finally, let 3-sat be the cnf-sat problem with the restriction that each clause
in the input formula is a disjunction of at least 3 literals.

The optimization class SNP introduced by Papadimitriou and Yannakakis [38]
consists of all search problems expressible by second-order existential formulas
whose first-order part is universal. Impagliazzo and Paturi [31] introduced the
notion of completeness for the class SNP under serf-reductions, and identified a
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class of problems which are complete for SNP under serf-reductions, such that
the subexponential-time computability for any of these problems implies the
subexponential-time computability of all problems in SNP. Many well-known
NP-hard problems are proved to be complete for SNP under the serf-reduction,
including 3-sat, vertex cover, and independent set, for which extensive
efforts have been made in the last three decades to develop subexponential-
time algorithms with no success [43]. This fact has led to the exponential-time
hypothesis, ETH, which is equivalent to the statement that not all SNP problems
are solvable in subexponential-time:

Exponential-Time Hypothesis (ETH): The problem 3-sat cannot be
solved in time 2o(n), where n is the number of variables in the input
formula.

The ETH has become a standard hypothesis in the area of parameterized algo-
rithms and complexity and of exact algorithms and complexity.

To study the fixed-parameter tractability, the fpt-reduction has been intro-
duced [24]: a parameterized problem Q is fpt-reducible to a parameterized prob-
lem Q′ if there is an algorithm M that transforms each instance (x, k) of Q into
an instance (x′, g(k)) (g is a function of k only) of Q′ in time f(k)|x|c, where f
and g are computable functions and c is a constant, such that (x, k) ∈ Q if and
only if (x′, g(k)) ∈ Q′.

Based on the notion of fpt-reducibility, a hierarchy of parameterized complex-
ity, the W -hierarchy, has been introduced. At the 0-th level of the hierarchy lies
the class FPT , and at the i-th level for i > 0, the class W [i]. The original defini-
tion of the W [i] classes was based on the notion of the weft of a circuit, which is
the maximum number of “large gates” (i.e., gates whose fan-in is larger than a
prespecified constant) on any path from an input gate to the output gate of the
circuit [24]. The previous definition, however, was shown to be equivalent to the
following definition by Downey and Fellows (see [24]), which we use in this pa-
per. The class W [1] consists of all parameterized problems that are fpt-reducible
to the problem wcnf 2-sat−. For an even t ≥ 2, the class W [t] consists of
all parameterized problems that are fpt-reducible to the problem wcs+[t], and
for an odd t ≥ 3, the class W [t] consists of all parameterized problems that are
fpt-reducible to the problem wcs−[t]. To simplify our statements, we will denote
by wcs∗[t] the problem wcs+[t] if t is even and the problem wcs−[t] if t is odd.
Therefore, for all t ≥ 2, the class W [t] consists of all parameterized problems
that are fpt-reducible to the problem wcs∗[t].

A parameterized problem Q is W [i]-hard if every problem in W [i] is fpt-
reducible to Q, and is W [i]-complete if in addition Q is in W [i]. By the definition,
the problem wcnf 2-sat− is W [1]-complete, and for all t ≥ 2, the problem
wcs∗[t] is W [t]-complete. If any W [i]-hard problem is in FPT , then W [i] =
FPT , which, to the common belief of researchers in parameterized complexity,
is very unlikely [24].

We have the following relation among parameterized complexity classes [24]:

FPT ⊆ W [1] ⊆ W [2] ⊆ . . .
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For more information about parameterized complexity we refer the reader to [24,
26, 36].

3 ETH, W [1], and CNF-SAT

In this section we discuss some of the results on the relation between the parame-
terized complexity and the subexponential-time computability of important sat-
isfiability problems on Π2-circuits, and their consequences on the computability
of some natural NP-hard problems. We start with the following folklore results
that can be easily verified by the reader (see for example [9]):

Lemma 1. If a parameterized problem is solvable in time 2o(k logn)nO(1), where
n is the input length and k is the parameter, then the problem is fixed-parameter
tractable.

Fact 31. The function (c logn)O(k) is bounded above by f(k)nO(1), where f is
a function of k only.

The following result is a consequence of a result in [9]:

Theorem 1. If cnf-sat is solvable in time 2o(n)mO(1), then W [1] = FPT ,
where n is the number of variables and m is the formula size.

Proof. Suppose that cnf-sat is solvable in time 2o(n)mO(1). We consider the
wcnf 2-sat− problem. Since this problem is complete for W [1], it suffices to

show that it can be solved in time f(k)m
O(1)
1 where f is a function independent

of the circuit size m1. Note that since m1 = nO(1), where n is the number of
variables in the circuit (each gate at level-1 has fan-in at most 2), the problem
reduces to showing that wcnf 2-sat− is solvable in time f(k)nO(1).

Let (C, k) be an instance of wcnf 2-sat−, and note that the gates at level 1
in C are or gates, each of fan-in at most two. Let x1, . . . , xn be the input literals
toC. We will construct a circuitC′ fromC with k�logn� input variables, such that
C has a weight-k assignment if and only if C′ is satisfiable. The input variables in
C′ are divided into k blocks B1, . . . , Bk, where block Bi, i = 1, . . . , k, consists
of r = �logn� input variables z1i , . . . , z

r
i . Also, for every input variable zji , i ∈

{1, . . . , k}, j ∈ {1, . . . , r}, we associate the input literal zji to denote its negation.
Informally speaking, each block Bi will contain the encoding of an input variable
whose value is 1 in a weight-k assignment to C. We show how to connect the new
input variables and their negations to the level-1 or gates in C. Let g be a gate
at level-1 in C, and suppose that xp, xq, are connected to g. (We assume that g
has fan-in exactly two as the case when g has fan-in 1 is much easier to handle.)
Now xp is 1 if and only if xp is 0, if and only if none of the blocks Bi, i = 1, . . . , k
contains the binary representation of p. Thus, in C′ we will connect the new input
variables to g as follows. We introduce k new or gates g1p, . . . , g

k
p . Each gate gip,

i = 1, . . . , k, has exactly r inputs, and its input comes only from input variables
in block Bi and their negations. Informally speaking, each gate gip will be satisfied



Parameterized Complexity and Subexponential-Time Computability 169

if and only if block Bi does not contain the binary representation of p, and hence,
does not encode xp. Suppose that the binary representation of p is b1b2 . . . br. For
i = 1, . . . , k, the input to gip is determined as follows. For j = 1, . . . , r, if bj =

0, then connect zji to gip, and if bj = 1, then connect zji to gip. Now replace the

connection from xp to g by the connections from all gates gip, i = 1, . . . , k to an
and gate gp which feeds into g. We do the same for xq. Now gate g is equivalent

to gp ∨ gq, where gp =
∧k

i=1 g
i
p and gp =

∧k
i=1 g

i
q. By the distributive law, we can

write g =
∧

i,j=1,...,k(g
i
p∨giq), and the and gate in g can bemerged with the output

and gate of the circuit C. We repeat the above construction for every level-1 gate
in C. Since the gip’s and the giq’s for every level-1 gate g are or gates, the resulting
circuit is a two-level circuit, where the top level consists of or gates that all feed
into the single output and gate of C.

Now we can add enforcement circuitry to ensure that the k blocks encode
k distinct input variables. This can be simply achieved by adding a circuitry
consisting of

(
k
2

)
subcircuits, each subcircuit enforces that the two blocks that

feed into it are distinct. To do so, each subcircuit performs a bitwise xor opera-
tion to the corresponding variables in the two blocks. Since the number of input
variables to each subcircuit is O(log n), each subcircuit can be transformed into
a subcircuit in the CNF form in nO(1) time, whose output and gate can then be
merged with the output and gate of C.

LetC′ be the resulting circuit. Clearly,C′ has size nO(1) and can be constructed
in nO(1) time. Moreover, from the above discussion, we know that C′ consists of
two levels, where the top level consists only of or gates, and the bottom level con-
sists of the output and gate of the circuit. Since the k input blocks in C′ basically
encode the k input variables in C with value 1 in a weight-k assignment to C, it
is not difficult to verify that C has a weight-k truth assignment if and only if C′

is satisfiable. Now C′ is an instance of cnf-sat with k · r input variables. It fol-
lows that we can decide if C′ is satisfiable in time bounded by 2o(k logn)nO(1). By
Lemma 1, it follows that wcnf 2-sat− is fixed-parameter tractable.

Using reductions to problem kernel, and some standard self reductions, Cai and
Juedes [9] were able to preclude the existence of subexponential-time parameter-
ized algorithms for several problems under the assumption that ETH holds (n is
the instance size, and k is the natural parameter in the corresponding problem):

Theorem 2 ([9]). The following problems can be solved in time 2o(k)nO(1) if
and only if ETH fails: vertex cover, max h-sat, Δ-vertex cover (the graph
has degree bounded by the constant Δ), Δ-independent set, and
Δ-dominating set.

Note that all the above problems can be solved in time 2O(k)nO(1). So assuming
ETH, the above theorem rules out the existence of significantly-better parame-
terized algorithms for those problems than the ones that are currently known.

Using kernelization, planarization techniques, and standard reductions, Cai
and Juedes [9] were able to extend the above lower bound results to planar
graphs:
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Theorem 3 ([9]). Unless ETH fails, the following problems cannot be solved in

time 2o(
√
k)nO(1): planar vertex cover, planar independent set, planar

dominating set, and planar red/blue dominating set.

Some of the results in the previous theorem can also be extended to bounded-
degree planar graphs [17] to obtain the same lower bounds.

The following theorem can be viewed as providing a partial converse to
Theorem 1, after noting that the statement that ETH fails is equivalent to
subexponential-time computability of 3-sat. This result is due to Downey and
Fellows [24]. The proof given here, which appears in [12], is different than the
original proof, since the original proof was a corollary of a more general result.

Theorem 4. If W [1] = FPT then the hypothesis ETH fails.

Proof. Since independent set is W[1]-complete under the fpt-reduction [24]
and vertex cover is complete for SNP under serf-reductions [31], it suffices
to show that if independent set is solvable in time f(k)nO(1) then vertex
cover is solvable in time 2o(k)nO(1). Assume that there is an algorithm A which
determines whether there exists an independent set of size k in a graph G with
n vertices in f(k)nO(1) time. We will show that the vertex cover problem
can be solved in time 2o(k)nO(1). Without loss of generality, we can assume that
the function f is nondecreasing, unbounded, and that f(k) ≥ 2k. Define f−1

by f−1(h) = max{q | f(q) ≤ h}. Since the function f is nondecreasing and
unbounded, the function f−1 is also nondecreasing and unbounded, and satisfies
f(f−1(h)) ≤ h. From f(k) ≥ 2k, we have f−1(h) ≤ log h.

Let (G = (V,E), k) be an instance of vertex cover. By the kernelization
result for vertex cover [16], we can assume that G has at most n ≤ 2k vertices.
We partition the n vertices of G into k′ = 	f−1(k)
 blocks B1, B2, . . . , Bk′ each
of size at most � n

�f−1(k)��. (Without loss of generality, we shall assume that

	f−1(k)
 ≥ 1.) Observe that G has a vertex cover of size k if and only if there
exists a way to partition k into k1, . . . , kk′ (i.e., k = k1+k2+ · · ·+kk′ ), and there

are subsets V ′
i ⊆ Bi, i = 1, . . . , k′ with |V ′

i | = ki, such that
⋃k′

i=1 V
′
i is a vertex

cover for G. Since |Bi| ≤ � n
�f−1(k)��, this approach converts the single question

“does G have a vertex cover of size k?” into at most

(� n

	f−1(k)
�)
k′

≤ (� 2k

	f−1(k)
�)
�f−1(k)�

≤ (2k)f
−1(k)

≤ 2log (2k)·f−1(k)

≤ 2log (2k)·log k = 2o(k)

more restrictive questions of the type “does G have a vertex cover V ′ of size
k = k1 + k2 + · · ·+ kk′ with |Bi ∩ V ′| = ki?”. Hence, we can determine whether
G has a vertex cover of size k by answering at most 2o(k) questions individually.
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To answer each of the 2o(k) questions, we use the algorithm A for indepen-
dent set. Given G, k, and k1, . . . , kk′ such that k = k1 + k2 + · · · + kk′ , we
construct a graph G∗ = (V ∗, E∗) as follows. For each block of vertices Bi in G,
and for each subset Bij ⊆ Bi with |Bij | = ki, add a vertex vij to V ∗ if Bij is
a vertex cover of G(Bi) (the subgraph of G induced by Bi). Add edges to E∗

so that the collection of the vertices vij associated with block Bi, i = 1, . . . , k′,
forms a clique. In addition, for each vij , vkl ∈ V ∗, where i �= k, add the edge
(vij , vkl) to E∗ if Bij ∪ Bkl does not form a vertex cover for G(Bi ∪ Bk). This
completes the construction of G∗. To determine if G has a vertex cover of size k
with the properties mentioned above, it suffices to use algorithm A to determine
if G∗ has an independent set of size k′. We prove the correctness of this claim.

Assume that G∗ has an independent set I of size k′. Since G∗ has k′ disjoint
cliques, exactly one vertex from each set V ∗

i = {vij | vij ∈ V ∗} is in I. Let
V ′ = ∪vij∈IBij . Since |Bij | = ki, and at most one Bij is included in V ′, it
follows that |V ′ ∩ Bi| = ki, and |V ′| = k. Thus, it suffices to prove that V ′ is a
vertex cover of G. Let (u, v) ∈ E, and let u ∈ Bi and v ∈ Bk. If i = k, then it
must be the case that either u or v ∈ V ′. To see this, note that there exists a
vij ∈ I ⊆ V ∗, which means that Bij ⊆ V ′ by the definition of V ′. Since vij ∈ V ∗,
Bij is a vertex cover of G(Bi), and either u or v must be in Bij ⊆ V ′. Suppose
now that i �= k, and let vij , vkl be the two vertices in V ∗

i and V ∗
j , respectively,

that are in I. Then it must be the case that u ∈ Bij or v ∈ Bkl, otherwise
Bij ∪Bkl is not a vertex cover of G(Bi∪Bk), which would imply that there is an
edge between vij and vkl in G∗, contradicting the fact that I is an independent
set of G∗. It follows that either u or v is in V ′. This shows that V ′ is a vertex
cover of G. To prove the converse, assume that G has a vertex cover V ′ of size
k = k1 + k2 + · · ·+ kk′ with |Bi ∩ V ′| = ki. Let I = {vij | Bij = Bi ∩ V ′}. It is
clear that I ⊆ V ∗ and |I| = k′, since for each i, Bij has ki vertices and it is a
vertex cover of G(Bi). Furthermore, I is an independent set in G∗ because for
each vij , vkl ∈ I, (vij , vkl) �∈ E∗. This is true since Bij ∪Bkl = V ′ ∩ (Bi ∪Bk) is
a vertex cover of G(Bi ∪Bk).

Therefore, we can use algorithm A to determine whether G has a vertex cover
V ′ of size k = k1+k2+· · ·+kk′ , by checking whether G∗ has an independent set I

of size k′. The graph G∗ has at most N = 2
	 2k

�f−1(k)� 
 · k′ ≤ 2
	 2k

�f−1(k)� 
 · f−1(k) =
2o(k) vertices because |Bi| ≤ � 2k

�f−1(k)��, and there are at most 2|Bi| possible

subsets Bij of size ki. Therefore, the time taken by applying the algorithm A to
the instance (G∗, k′) is of the order

f(k′)NO(1) ≤ f(f−1(k))NO(1) ≤ k ·NO(1) = 2o(k)nO(1)

after observing that NO(1) = 2o(k). Noting that the time needed to construct
G∗ is NO(1) = 2o(k), and that applying the kernelization algorithm for vertex
cover takes polynomial time in n, it follows that the vertex cover problem
can be solved in time nO(1)+2o(k) ·2o(k) ·nO(1) = 2o(k)nO(1). This completes the
proof.

In fact, Theorem 4 can be strengthened to the following result:
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Theorem 5. If the W [1]-complete problem wcnf 2-sat− is solvable in time
f(k)mo(k), where m is the size of the input formula, then the hypothesis ETH
fails.

The interested readers are referred to [12, 14] for a detailed proof.

4 A General Framework

In this section, we present two generic results that establish certain relations be-
tween the parameterized complexity of weighted satisfiability problems and the
subexponential-time computability of their unweighted versions. Since weighted
satisfiability problems are complete for the W -hierarchy, this leads to a relation
between the subexponential-time computability of natural satisfiability problems
and the collapse of the W -hierarchy. In Section 6, we will present some appli-
cations of these results to obtain computational lower bounds on the parame-
terized complexity and on the approximation of natural problems. The results
are mainly due to the work in [12, 14], and can be viewed as generalizations and
strengthening of the results in the previous section.

We start with the following lemma, which will be used in the proof of the
next theorem:

Lemma 2. Let t ≥ 2 be an integer. There is an algorithm A1 that, for a given
integer r > 0, transforms each Πt-circuit C1 of n1 input variables and size m1

into an instance (C2, k) of wcs∗[t], where k = �n1/r� and the Πt-circuit C2

has n2 = 2rk input variables and size m2 ≤ 2m1 + 22r+1k, such that C1 is
satisfiable if and only if (C2, k) is a yes-instance of wcs∗[t]. The running time
of the algorithm A1 is bounded by O(m2

2).

Proof. Let k = �n1/r�. Divide the n1 input variables x1, . . . , xn1 of the Πt-
circuit C1 into k blocks B1, . . . , Bk, where block Bi consists of input variables
x(i−1)r+1, . . . , xir , for i = 1, . . . , k − 1, and block Bk consists of input variables
x(k−1)r+1, . . . , xn1 . Denote by |Bi| the number of variables in block Bi. Then

|Bi| = r, for 1 ≤ i ≤ k − 1, and |Bk| ≤ r. For an integer j, 0 ≤ j ≤ 2|Bi| − 1,
denote by bini(j) the length-|Bi| binary representation of j, which can also be
interpreted as an assignment to the variables in block Bi.

We construct a new set of input variables in k blocksB′
1, . . . , B

′
k. Each blockB′

i

consists of s = 2r variables zi,0, zi,1, . . ., zi,s−1. The Πt-circuit C2 is constructed
from the Πt-circuit C1 by replacing the input gates in C1 by the new input
variables in B′

1, . . . , B
′
k. We consider two cases.

Case 1. t is even. Then all level-1 gates in the Πt-circuit C1 are or gates. We
connect the new variables zi,j to these level-1 gates to construct the circuit C2

as follows. Let xq be an input variable in C1 such that xq is the h-th variable in
block Bi. If the positive literal xq is an input to a level-1 or gate g1 in C1, then
all positive literals zi,j in block B′

i such that 0 ≤ j ≤ 2|Bi| − 1 and the h-th bit
in bini(j) is 1 are connected to gate g1 in the circuit C2. If the negative literal
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xq is an input to a level-1 or gate g2 in C1, then all positive literals zi,j in block
B′

i such that 0 ≤ j ≤ 2|Bi| − 1 and the h-th bit in bini(j) is 0 are connected to
gate g2 in the circuit C2.

Note that if the size |Bk| of the last block Bk in C1 is smaller than r, then
the above construction for block B′

k is only on the first 2|Bk| variables in B′
k,

and the last s − 2|Bk| variables in B′
k have no output edges, and hence become

“dummy variables”.
We also add an “enforcement” circuitry to the circuit C2 to ensure that every

satisfying assignment to C2 assigns the value 1 to at least one variable in each
block B′

i. This can be achieved by having an or gate for each block B′
i, whose

inputs are connected to all positive literals in block B′
i and whose output is an

input to the output gate of the circuit C2 (for block B′
k, the inputs of the or

gate are from the first 2|Bk| variables in B′
k). This completes the construction of

the circuit C2. It is easy to see that the circuit C2 is a monotone Πt-circuit (note
that t ≥ 2 and hence the enforcement circuitry does not increase the depth of
C2). Thus, (C2, k) is an instance of the problem wcs+[t].

We verify that the circuit C1 is satisfiable if and only if the circuit C2 has
a satisfying assignment of weight k. Suppose that the circuit C1 is satisfied by
an assignment τ . Let τi be the restriction of τ to block Bi, 1 ≤ i ≤ k. Let ji
be the integer such that bini(ji) = τi. Then according to the construction of
the circuit C2, by setting zi,ji = 1 and all other variables in B′

i to 0, we can
satisfy all level-1 or gates in C2 whose corresponding level-1 or gates in C1 are
satisfied by the assignment τi. Doing this for all blocks Bi, 1 ≤ i ≤ k, gives a
weight-k assignment τ ′ to the circuit C2 that satisfies all level-1 or gates in C2

whose corresponding level-1 or gates in C1 are satisfied by τ . Since τ satisfies
the circuit C1, the weight-k assignment τ ′ satisfies the circuit C2.

Conversely, suppose that the circuit C2 is satisfied by a weight-k assignment
τ ′. Because of the enforcement circuitry in C2, τ

′ assigns the value 1 to exactly
one variable in each block B′

i (in particular, in block B′
k, this variable must be

one of the first 2|Bk| variables in B′
k). Now suppose that in block B′

i, τ
′ assigns

the value 1 to the variable zi,ji . Then we set an assignment τi to the block Bi

in C1 such that τi = bini(ji). By the construction of the circuit C2, the level-1
or gates satisfied by the variable zi,ji = 1 are all satisfied by the assignment τi.
Therefore, if we make an assignment τ to the circuit C1 such that the restriction
of τ to block Bi is τi for all i, then the assignment τ will satisfy all level-1 or
gates in C1 whose corresponding level-1 or gates in C2 are satisfied by τ ′. Since
τ ′ satisfies the circuit C2, we conclude that the circuit C1 is satisfiable.

This completes the proof that when t is even, the circuit C1 is satisfiable if
and only if the constructed pair (C2, k) is a yes-instance of wcs+[t].

Case 2. t is odd. Then all level-1 gates in the Πt-circuit C1 are and gates. We
connect the new variables zi,j to these level-1 gates to construct the circuit C2

as follows. Let xq be an input variable in C1 and be the h-th variable in block
Bi. If the positive literal xq is an input to a level-1 and gate g1 in C1, then all
negative literals zi,j in block B′

i such that 0 ≤ j ≤ 2|Bi| − 1 and the h-th bit in
bini(j) is 0 are inputs to gate g1 in C2. If the negative literal xq is an input to
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a level-1 and gate g2 in C1, then all negative literals zi,j in block B′
i such that

0 ≤ j ≤ 2|Bi| − 1 and the h-th bit in bini(j) is 1 are inputs to gate g2 in C2.
For the last s − 2|Bk| variables in the last block B′

k in C2, we connect the
negative literals zk,j , 2

|Bk| ≤ j ≤ s − 1, to the output gate of the circuit C2

(thus, the variables zk,j , 2
|Bk| ≤ j ≤ s− 1, are forced to have the value 0 in any

satisfying assignment to C2).
An enforcement circuitry is added to C2 to ensure that every satisfying as-

signment to C2 assigns the value 1 to at most one variable in each block B′
i. This

can be achieved as follows. For every two distinct negative literals zi,j and zi,h
in B′

i, 0 ≤ j, h ≤ 2|Bi| − 1, add an or gate gj,h. Connect zi,j and zi,h to gi,h and
connect gi,h to the output and gate of C2. This completes the construction of
the circuit C2. The circuit C2 is an antimonotone Πt-circuit (again the enforce-
ment circuitry does not increase the depth of C2). Thus, (C2, k) is an instance
of the problem wcs−[t].

We verify that the circuit C1 is satisfiable if and only if the circuit C2 has a
satisfying assignment of weight k. Suppose that the circuit C1 is satisfied by an
assignment τ . Let τi be the restriction of τ to block Bi, 1 ≤ i ≤ k. Let ji be the
integer such that bini(ji) = τi. Consider the weight-k assignment τ ′ to C2 that
for each i assigns zi,ji = 1 and all other variables in B′

i to 0. We show that τ ′

satisfies the circuit C2. Let g1 be a level-1 and gate in C1 that is satisfied by
the assignment τ . Since C2 is antimonotone, all inputs to g1 in C2 are negative
literals. Since all negative literals except zi,ji in block B′

i have the value 1, we
only have to prove that no zi,ji from any block B′

i is an input to g1. Assume to
the contrary that zi,ji in block B′

i is an input to g1. Then by the construction
of the circuit C2, there is a variable xq that is the h-th variable in block Bi such
that either xq is an input to g1 in C1 and the h-th bit of bini(ji) is 0, or xq is an
input to g1 in C1 and the h-th bit of bini(ji) is 1. However, by our construction
of the index ji from the assignment τ , if the h-th bit of bini(ji) is 0 then τ assigns
xq = 0, and if the h-th bit of bini(ji) is 1 then τ assigns xq = 1. In either case, τ
would not satisfy the gate g1, contradicting our assumption. Thus, for all i, no
zi,ji is an input to the gate g1, and the assignment τ ′ satisfies the gate g1. Since
g1 is an arbitrary level-1 and gate in C2, we conclude that the assignment τ ′

satisfies all level-1 and gates in C2 whose corresponding gates in C1 are satisfied
by the assignment τ . Since τ satisfies the circuit C1, the weight-k assignment τ ′

satisfies the circuit C2.
Conversely, suppose that the circuit C2 is satisfied by a weight-k assignment

τ ′. Because of the enforcement circuitry in C2, the assignment τ ′ assigns the
value 1 to exactly one variable in each block B′

i (in particular, this variable in
block B′

k must be one of the first 2|Bk| variables in B′
k since the last s − 2|Bk|

variables in B′
k are forced to have the value 0 in the satisfying assignment τ ′).

Suppose that in block B′
i, τ

′ assigns the value 1 to the variable zi,ji . Then we set
an assignment τi = bini(ji) to block Bi in C1. Let τ be the assignment whose
restriction on block Bi is τi. We prove that τ satisfies the circuit C1. In effect, if a
level-1 and gate g2 in C2 is satisfied by the assignment τ ′, then no negative literal
zi,ji is an input to g2. Suppose that g2 is not satisfied by τ in C1, then either a
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positive literal xq is an input to g2 and τ assigns xq = 0, or a negative literal xq

is an input to g2 and τ assigns xq = 1. Let xq be the h-th variable in block Bi. If
τ assigns xq = 0 then the h-th bit in bini(ji) is 0. Thus, xq cannot be an input
to g2 in C1 because otherwise by our construction the negative literal zi,ji would
be an input to g2 in C2. On the other hand, if τ assigns xq = 1 then the h-th
bit in bini(ji) is 1, thus, xq cannot be an input to g2 in C1 because otherwise
the negative literal zi,ji would be an input to g2 in C2. This contradiction shows
that the gate g2 must be satisfied by the assignment τ . Since g2 is an arbitrary
level-1 and gate in C2, we conclude that the assignment τ satisfies all level-1
and gates in C1 whose corresponding level-1 and gates in C2 are satisfied by
the assignment τ ′. Since τ ′ satisfies the circuit C2, the assignment τ satisfies the
circuit C1 and hence the circuit C1 is satisfiable.

This completes the proof that when t is odd, the Πt-circuit C1 is satisfiable
if and only if the pair (C2, k) is a yes-instance of wcs−[t].

Summarizing the above discussion, we conclude that for any t ≥ 2, from a
Πt-circuit C1 of n1 input variables and size m1, we can construct an instance
(C2, k) of the problem wcs∗[t] such that C1 is satisfiable if and only if (C2, k)
is a yes-instance of wcs∗[t]. Here k = �n1/r�, and C2 has n2 = 2rk input
variables and size m2 ≤ m1 + n2 + k + k22r ≤ 2m1 + k22r+1 (where the term
k + k22r is an upper bound on the size of the enforcement circuitry). Finally,
it is straightforward to verify that the pair (C2, k) can be constructed from the
circuit C1 in time O(m2

2).

Theorem 6. Let t ≥ 2 be an integer. For any function f , if the problem wcs∗[t]
is solvable in time f(k)no(k)mO(1), then the problem sat[t] can be solved in time
2o(n)mO(1).

Proof. Suppose that there is an algorithm Mwcs of running time bounded by
f(k)nk/λ(k)p(m) that solves the problem wcs∗[t], where λ(k) is a nondecreasing
and unbounded function and p is a polynomial. Without loss of generality, we can
assume that the function f is nondecreasing, unbounded, and that f(k) ≥ 2k.
Define f−1 by f−1(h) = max{q | f(q) ≤ h}. Since the function f is nondecreasing
and unbounded, the function f−1 is also nondecreasing and unbounded, and
satisfies f(f−1(h)) ≤ h. From f(k) ≥ 2k, we have f−1(h) ≤ log h.

Now we solve the problem sat[t] as follows. For an instance C1 of sat[t],
where C1 is a Πt-circuit of n1 input variables and size m1, we set the integer
r = 	3n1/f

−1(n1)
, and call the algorithm A1 in Lemma 2 to convert C1 into
an instance (C2, k) of the problem wcs∗[t]. Here k = �n1/r�, C2 is a Πt-circuit
of n2 = 2rk input variables and size m2 ≤ 2m1 + 22r+1k, and the algorithm
A1 takes time O(m2

2). According to Lemma 2, we can determine if C1 is a yes-
instance of sat[t] by calling the algorithm Mwcs to determine if (C2, k) is a
yes-instance of wcs∗[t]. The running time of the algorithm Mwcs on (C2, k) is

bounded by f(k)n
k/λ(k)
2 p(m2). Combining all above we get an algorithm Msat

of running time f(k)n
k/λ(k)
2 p(m2) + O(m2

2) for the problem sat[t]. We analyze
the running time of the algorithm Msat in terms of the values n1 and m1.



176 J. Chen and I.A. Kanj

Since k = �n1/r� ≤ f−1(n1) ≤ logn1,
2 we have f(k) ≤ f(f−1(n1)) ≤ n1.

Moreover,

k = �n1/r� ≥ n1/r ≥ n1/(3n1/f
−1(n1)) = f−1(n1)/3.

Therefore if we set λ′(n1) = λ(f−1(n1)/3), then λ(k) ≥ λ′(n1). Since both λ and
f−1 are nondecreasing and unbounded, λ′(n1) is a nondecreasing and unbounded
function of n1. We have (note that k ≤ f−1(n1) ≤ logn1),

n
k/λ(k)
2 = (k2r)k/λ(k) ≤ kk2kr/λ(k) ≤ kk23kn1/(λ(k)f

−1(n1)) ≤ kk23n1/λ(k)

≤ kk23n1/λ
′(n1) = 2o(n1).

Finally, consider the factor m2. Since f−1 is nondecreasing and unbounded,

m2 ≤ 2m1 + k22r+1 ≤ 2m1 + 2 logn12
6n1/f

−1(n1) = 2o(n1)m1.

Therefore, both terms p(m2) and O(m2
2) in the running time of the algorithm

Msat are bounded by 2o(n1)p′(m1) for a polynomial p′. Combining all these, we

conclude that the running time f(k)n
k/λ(k)
2 p(m2) + O(m2

2) of Msat is bounded
by 2o(n1)p′(m1) for a polynomial p′. Hence, the problem sat[t] can be solved in
time 2o(n)mO(1). This completes the proof of the theorem.

The following corollary follows directly from the above theorem, and can be seen
as as a generalization of Theorem 4 to higher levels of the W -hierarchy and the
satisfiability problem. This result is due to Abrahamson et al. [1], and to Downey
and Fellows [24]:

Corollary 1. Let t ≥ 2 be an integer. If W [t] = FPT then the problem sat[t]
can be solved in time 2o(n)mO(1).

In fact, Theorem 6 remains valid even if we restrict the parameter values to be
bounded by an arbitrarily small function, as shown in the following theorem,
whose proof is omitted and can be found in [14]:

Theorem 7. Let t ≥ 2 be an integer, and μ(n) a nondecreasing and unbounded
function. If for a function f , the problemwcs∗[t] is solvable in time f(k)no(k)mO(1)

for parameter values k ≤ μ(n), then the problem sat[t] can be solved in time
2o(n)mO(1).

The following theorem can be viewed as a generalization of Theorem 1:

Theorem 8. For any t ≥ 2, if sat[t] can be solved in time 2o(n)h(m) for some
polynomial h, then W [t− 1] = FPT .

2 Without loss of generality, we assume that in our discussions, all values under the
ceiling function “�·�” and the floor function “�·	” are greater than or equal to 1.
Therefore, we will always assume the inequalities �β� ≤ 2β and �β	 ≥ β/2 for any
value β.
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Proof. If t = 2, the theorem states that if cnf-sat can be solved in time
2o(n)h(m) then W [1] = FPT . This is basically the result in Theorem 1, which
was proved in the previous section. Thus, we can assume that t ≥ 3. Suppose
that sat[t] is solvable in time 2o(n)h(m). Then there exists an unbounded non-
decreasing function s(n) such that sat[t] can be solved in time bounded by
2n/s(n)h(m). We distinguish two cases based on the parity of t.

Case 1. t is odd. We consider the wcs+[t − 1] problem. Since this problem is
complete for W [t − 1], it suffices to show that this problem can be solved in
time f(k)h′(m) where f is a function independent of the circuit size m, and h′

is a polynomial. Let (C, k) be an instance of wcs+[t− 1], where C has n input
variables and size m. Since t−1 is even, the gates at level 1 in C are or gates. Let
x1, . . . , xn be the input variables to C. We will construct a circuit C′ from C with
k�logn� input variables, such that C has a weight k assignment if and only if C′ is
satisfiable. The input variables in C′ are divided into k blocks B1, . . . , Bk, where
block Bi, i = 1, . . . , k, consists of r = �logn� input variables z1i , . . . , z

r
i . Also,

for every input variable zji , i ∈ {1, . . . , k}, j ∈ {1, . . . , r}, we associate the input

literal zji to denote its negation. Informally speaking, each block Bi will contain
the encoding of an input variable whose value is 1 in a weight-k assignment to C.
We show how to connect the new input variables and their negations to the level-
1 or gates in C. Let g be a level-1 or gate in C. Let xp be an input to g, and let
b1b2 . . . br be the binary representation of the number p (if there are fewer than r
bits in the binary representation of p, we pad the binary representation of p with
the appropriate number of 0’s on the left to make it consist of exactly r bits).
We introduce k new and gates g1p, . . . , g

k
p . Each gate gip, i = 1, . . . , k, has exactly

r inputs, and its input comes only from input variables in block Bi and their
negations. Informally speaking, each gate gip will be satisfied if and only if block
Bi contains the binary representation of p, and hence, encodes xp. The input to

gate gip is determined as follows. For j = 1, . . . , r, if bj = 0, then connect zji to

gip, and if bj = 1, then connect zji to gip. Now replace the connection from xp to g

by the connections from all gates gip, i = 1, . . . , k, to g. We repeat this process for
every level-1 gate g in C and every input variable in {x1, . . . , xn} to g. Clearly,
this construction only adds a single level to the circuit C consisting of and
gates, and hence, the resulting circuit is a Πt circuit. We also add enforcement
circuitry to ensure that the k blocks Bi, i = 1, . . . , k, encode distinct k variables.
This can be simply achieved by adding a circuitry that performs a bitwise xor
operation to the corresponding variables in every two blocks, which can be done
by adding a 3-level and-of-or-of-and subcircuits to every two blocks (note that
the last and can be merged with the output and gate of the circuit if t = 3).
Clearly, the resulting circuit is still a Πt-circuit. Moreover, the size of C is
only increased by a polynomial factor in its original size. Let C′

F be the circuit
resulting from this construction. From the above discussion we know that C′ is
a Πt-circuit of size h

′(m) for some polynomial h′. Since the k input blocks in C′

basically encode the k input variables in C with value 1 in a weight-k assignment
to C, it is not difficult to verify that C has a weight-k truth assignment if
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and only if C′ is satisfiable. Now C′ is an instance of sat[t] with kr input
variables. It follows that we can decide if C′ is satisfiable in time bounded by
T (n) = 2kr/s(kr)h(h′(m)) = 2k	log n
/s(k	log n
)h(h′(m)) ≤ 2k(logn+1)/s′(n)h′′(m),
for some unbounded non-decreasing function s′(n), and some polynomial h′′.
Thus T (n) ∈ 2o(logn)kh′′(m), and wcs+[t− 1] is solvable in time 2o(logn)kh′′(m)
for some polynomial h′′. It follows that wcs+[t− 1] is fixed parameter tractable
(see Lemma 1), and hence, W [t− 1] = FPT .

Case 2. t is even, and hence t − 1 ≥ 3 is odd. We consider the wcs−[t − 1]
problem, which is complete for W [t − 1]. The proof proceeds in a very similar
fashion to the proof of Case 1 above. Let (C, k) be an instance of wcs−[t− 1],
and note that the gates at level 1 in C are and gates. Let x1, . . . , xn be the
input literals to C, and let r and Bi, i = 1, . . . , k, be as defined above. Again,
block Bi will be used to encode the indices of the input variables in C that are
set to 1 in a weight-k assignment to C. Let g be a gate at level-1 in C, and
suppose that xp, where p ∈ {1, . . . , n}, is connected to g. Now xp is 1 if and only
if xp is 0, if and only if none of the blocks Bi, i = 1, . . . , k contains the binary
representation of p. Thus, in C′ we will connect the new input variables to g as
follows. We introduce k new or gates g1p, . . . , g

k
p . Each gate gip, i = 1, . . . , k, has

exactly r inputs, and its input comes only from input variables in block Bi and
their negations. Informally speaking, each gate gip will be satisfied if and only if
block Bi does not contain the binary representation of p, and hence, does not
encode xp. Suppose the binary representation of p is b1b2 . . . br. For i = 1, . . . , k,
the input to gip is determined as follows. For j = 1, . . . , r, if bj = 0, then connect

zji to gip, and if bj = 1, then connect zji to gip. Now replace the connection from

xp to g by the connections from all gates gip, i = 1, . . . , k to g, and repeat that
for every level-1 gate in C and every original input literal to that gate. This adds
an or-level to C, thus increasing the number of levels in C by 1, and resulting
in a Πt-circuit. Now we can add the enforcement circuitry to ensure that all k
blocks encode k distinct input variables. This can be simply achieved by adding
a circuitry that performs a bitwise xor operation to the corresponding variables
in every two blocks. The resulting circuitry that tests that no two blocks are the
same can be implemented by an or-of-and-of-and-of-or subcircuit (the last
and gate can be identified with the output gate of C if t = 4). Since t ≥ 4, the
resulting circuit C′ is a Πt-circuit whose size is not more than a polynomial in
the size of C. The proof from this point on proceeds in exactly the same fashion
as in Case 1 above.

It follows that W [t− 1] = FPT . This completes the proof.

5 The Miniaturization Classes

As we have seen in the previous section, the subexponential-time computabil-
ity of the satisfiability problem on circuits of depth t, for t ≥ 2, implies the
fixed-parameter tractability of the class W [t − 1], and is implied by the fixed-
parameter tractability of the class W [t]. Also, the failure of the ETH hypothesis



Parameterized Complexity and Subexponential-Time Computability 179

is implied by the fixed-parameter tractability of the class W [1]. One may nat-
urally ask whether the subexponential-time computability of these satisfiability
problems, and also of other important NP-hard problems, is equivalent to the
fixed-parameter tractability of some parameterized problems. In particular, is
the hypothesis ETH equivalent to the fixed-parameter intractability of a partic-
ular parameterized problem?

The problem was initially considered in [9]. Downey et al. [23] formally
proposed a process, named parameterized miniaturization, that establishes the
equivalence between the subexponential-time computability of problems and the
fixed-parameter tractability of their corresponding miniaturized parameterized
problems. To describe this process, we need to be more careful in the use of
the “size” of problem instances. Note that this had not been a problem for
polynomial-time computation because any reasonable choice of instance size is
polynomially related to the length of a reasonable encoding of the instance, and
polynomial-time computation is robust for these variations. On the other hand,
when we study subexponential-time computation, we implicitly allow only linear
changes in the metric based on which the complexity of the computation is mea-
sured. Therefore, we have to be very careful in the use of certain conventional
metrics for instance size, such as the number of Boolean variables in a satisfi-
ability problem and the number of vertices in a graph. For example, if we use
the number n of variables as a metric in the cnf-sat problem, then cnf-sat is
certainly not solvable in subexponential-time in terms of n (i.e., in time 2o(n))
because the length of any encoding of an instance can be 2Ω(n). On the other
hand, if we use the length l of a binary encoding of an instance of n variables and
m clauses of cnf-sat as the metric, then, because l ≥ (n+m) logn, cnf-sat can
be obviously solved in subexponential-time in l: a simple brute-force algorithm
takes time O(2nnm logn) = 2o(l).

In the following discussion, we shall assume that we use a “natural” size for
the problem instances. In particular, the size of a circuit will be the number
of input variables plus the number of links in the circuit, the size of a Boolean
formula will be the number of occurrences of literals in the formula, and the size
of a graph is the number of its vertices plus the number of its edges.

We first consider the 3-sat problem in terms of the size s of the input formula.
The miniaturization process of the 3-sat problem gives the following parame-
terized problem:

mini(3-sat):
Given nonnegative integers m and k in unary, and an instance F of size
bounded by k logm for 3-sat, where k is the parameter, decide if F is
satisfiable.

The following theorem follows from a similar proof by Downey et al. [23] for
circuit satisfiability:

Theorem 9 ([23]). The parameterized problem mini(3-sat) is fixed parameter
tractable if and only if the 3-sat problem is solvable in subexponential time, i.e.,
in time 2o(s), where s is the formula size.
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Proof. Suppose that 3-sat is solvable in time 2o(s) by an algorithm A. Given an
instance (F,m, k) of mini(3-sat), where the Boolean formula F has size bounded
by s = k logm, we simply invoke the algorithm A on the formula F to decide, in
time 2o(s) = 2o(k logm), whether F is satisfiable or not. By Lemma 1, this shows
that mini(3-sat) is fixed-parameter tractable.

Conversely, suppose that mini(3-sat) is fixed parameter tractable, and hence
is solvable by an algorithm A′ in time f(k)|x|O(1), where f is a computable
function of k, and |x| = O(km) is the length of (any reasonable encoding of)
the instance x = (F,m, k) of mini(3-sat). Without loss of generality, we can
assume that f(k) ≥ k for all k and that f is a strictly increasing function, from
which we derive that the inverse function f−1 is well-defined and unbounded,
and satisfies the condition f−1(n) ≤ n. For an instance F ′ of size s for the
3-sat problem, let k = f−1(s) and m = 2s/k, and consider the instance x =
(F ′,m, k) of mini(3-sat) (note that the size of F ′ is s = k logm, and that

|x| = O(m + k + s log s) = O(2s/f
−1(s)s2). By invoking the algorithm A′ on

(F ′,m, k), we can decide whether F ′ is satisfiable or not in time

f(k)|x|O(1) = sO(1)2O(s/f−1(s)) = 2o(s),

where the last equality holds true because f−1 is a non-decreasing and un-
bounded function. This proves that 3-sat can be solved in time 2o(s), and hence,
completes the proof of the theorem.

The 3-sat problem measured by formula size is complete for the class SNP un-
der serf-reductions, in the sense that if 3-sat is solvable in subexponential time,
then all problems in SNP are solvable in exponential time [30]. As mentioned
before, there is a large number of important NP-hard problems that are com-
plete for the class SNP under the serf-reduction, including the 3-sat problem
measured by the number of input variables. Therefore, the ETH hypothesis is
equivalent to the statement that the 3-sat problem measured by formula size is
not subexponential-time solvable. This, combined with Theorem 9, gives us:

Theorem 10 ([23]). The hypothesis ETH fails if and only if the parameterized
problem mini(3-sat) is fixed-parameter tractable.

The parameterized miniaturization process on SNP-complete problems under the
serf-reduction enables the discovery of a class of parameterized problems whose
fixed parameterized tractability is equivalent to the failure of the ETH hypothe-
sis, for which the mini(3-sat) problem is a typical representative. Based on this
observation, Downey et al. [23] introduced a new parameterized class M [1] that
consists of all parameterized problems that are fpt-reducible to the mini(3-sat)
problem. In particular, the fixed parameter tractability of any M [1]-complete
problem (under the fpt-reduction) is equivalent to the failure of the ETH hy-
pothesis. The following are some examples of M [1]-complete problems, obtained
based on the parameterized miniaturization process on “size-constrained” SNP-
complete problems under serf-reductions [30]:
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mini(circ-sat):
Given nonnegative integers k and m in unary, and a circuit C of size
bounded by k logm, where k is the parameter, decide if C is satisfiable.
mini(is):
Given nonnegative integers k and m in unary, a graph G of size bounded
by k logm, and a parameter r, decide if G have an independent set of at
least r vertices.
mini(vc):
Given nonnegative integers k and m in unary, a graph G of size bounded
by k logm, and a parameter r, decide if G have a vertex cover of at most
r vertices.

The class M [1] has the following relationships with the existing parameterized
classes:

Theorem 11 ([23]). FPT ⊆ M [1] ⊆ W [1].

Although the work of Cai and Juedes [9] implicitly hinted at the following result
without reference to the class M [1], the result was explicitly stated in Downey
et al. [23], and follows from Theorem 10:

Theorem 12 ([23]). FPT = M [1] if and only if 3-sat is solvable in time 2o(n),
where n is the number of variables in the input formula, and if and only if the
hypothesis ETH fails.

Theorem 12 provides a nice and precise characterization of the subexponential-
time computability of many SNP-complete problems (under the serf-reduction)
in terms of the fixed-parameter tractability of their corresponding miniaturized
parameterized problems. However, there are still other important satisfiability
problems, whose subexponential-time computability cannot be characterized by
the theorem. Observing this, Chen, Flum, and Grohe have further considered the
parameterized miniaturization process and derived the equivalence between the
subexponential-time computability of problems and the fixed-parameter tractabil-
ity of their corresponding miniaturized parameterized problems, for higher levels
of the W -hierarchy [19–21, 25]. To describe this extension, we have to be further
more careful with the notation of the instance size onwhich the exponential part in
the computational complexity of a problem Q is measured. Typically, the search-
size ν(x) of an instance x of Q is referred to the cardinality of a universal set U of
which the instance x seeks a subset as its solution, and the length |x| of x is the
length of any reasonable encoding of the instance x. Thus, the computational com-
plexity of the problemQ is measured by a function of the two metrics ν(x) and |x|.
Note that in the above case, a simple enumeration algorithm of the subsets of the
universal set U solves the problem in time 2ν(x)|x|O(1). We say that the problem
Q is solvable in subexponential-time if it can be solved in time 2o(ν(x))|x|O(1).

For two integers t ≥ 1 and d ≥ 1, let us call a circuit C a Πt,d-circuit if C is a
Πt+1-circuit in which the fan-in of each gate in level-1 is bounded by the integer
constant d. Consider the satisfiability problem Πt,d-sat, which for a given Πt,d-
circuit C, asks if C is satisfiable. Chen and Grohe [21] introduced the following
miniaturized problems:
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mini(Πt,d-sat):
Given an instance C ofΠt,d-sat, with a parameter k = �n/ logm�, where
m is the size of C and n is the number of variables in C, decide if C is
satisfiable.

We have the following theorem:

Theorem 13 ([21]). For all t ≥ 1, the satisfiability problem Πt,d-sat is
subexponential-time solvable if and only if the parameterized problem mini(Πt,d-
sat) is fixed-parameter tractable.

Similar to the definition of the classM [1], we can define new miniaturized classes
of parameterized problems based on the fpt-reduction:

Definition 1. For each integer t ≥ 2, let M [t] be the class of all parameterized
problems that are fpt-reducible to the problem mini(Πt,d-sat) for some constant
d ≥ 1.

Similar to Theorem 11, we obtain:

Theorem 14 ([21]). For all t ≥ 2, we have W [t− 1] ⊆ M [t] ⊆ W [t].

The hierarchy
⋃

t≥1 M [t] is called theM -hierarchy, which, by Theorem 14, refines
the W -hierarchy:

FPT ⊆ M [1] ⊆ W [1] ⊆ · · · ⊆ M [t− 1] ⊆ W [t− 1] ⊆ M [t] ⊆ W [t] · · ·
This study has also motivated the introduction of the following classification in
nonparameterized problems that are solvable in exponential time.

Definition 2. For t ≥ 1, let S[t] be the class consisting of all the problems that
are serf-reducible to the problem Πt,d-sat, for some constant d ≥ 1.

For each t ≥ 1, the parameterized class M [t] is the image of the nonparame-
terized class S[t] under the miniaturization mapping. The hierarchy

⋃
t≥1 S[t] is

called the S-hierarchy. The miniaturization process serves as a very nice mapping
from nonparameterized problems solvable in exponential time to parameterized
problems. More specifically, it maps an equivalence class E1 of exponential-time
solvable problems (under the serf-reduction) to an equivalence class E2 of param-
eterized problems (under the fpt-reduction) such that E1 is subexponential-time
solvable if and only if E2 is fixed parameter tractable. In particular, this map-
ping induces an “isomorphism” between the S-hierarchy, a nonparameterized
complexity class, and the M -hierarchy, a parameterized complexity class [21].

6 Computational Lower Bounds

Theorem 5 shows that if the W [1]-complete problem wcnf 2-sat− is solvable
in time f(k)mo(k), then ETH fails. Theorem 6 states that for any t ≥ 2, if
the W [t]-complete problem wcs∗[t] is solvable in time f(k)no(k)mO(1) then the
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satisfiability problem sat[t] can be solved in subexponential time. Note that
the assumptions in these theorems are weaker than that of collapsing the W -
hierarchy. On the other hand, they specify more detailed computational time
bounds for the problems. Because of the hypothesis ETH, subexponential-time
algorithms for 3-sat and sat[t] for all t ≥ 2 are unlikely. In this sense, Theorems
5 and 6 offer convincing lower bounds on the parameterized complexity for prob-
lems that are hard or complete for each level in the W -hierarchy. Interestingly
enough, this line of research also implies lower bounds on computational com-
plexity of approximation algorithms for several NP-hard optimization problems.
In this section, we shall discuss recent developments in this line of research.

6.1 Lower Bounds on Parameterized Complexity

To discuss lower bounds for parameterized problems, we again need a more
careful description of problem instances. For example, the wcs∗[t] problem now
has three different metrics for each of its instance (C, k): the length m of the
instance (C, k), the parameter k, and the search-size n that is the number of
input variables in C. We have seen from the previous section that, unless unlikely
collapses occur in parameterized complexity theory, the problemswcs∗[t] require
computational time f(k)nΩ(k)p(m), for any polynomial p and any function f .
The dominating term in the time bound depends on the search-size n and the
parameter k, instead of the instance length m.

Many well-known NP-hard problems have similar formulations. We list some
of them here:

weighted cnf-sat (abbreviated wcnf-sat):
Given a CNF formula F , and an integer k, decide if there is an assign-
ment of weight k that satisfies the formula F . Here the search-size is the
number of input variables in F .

set cover:
Given a collection F of subsets in a universal set U , and an integer k,
decide whether there is a subcollection of k subsets in F whose union is
equal to U . Here the search-size is the cardinality of the collection F .

hitting set:
Given a collection F of subsets in a universal set U , and an integer k,
decide if there is a subset S of k elements in U such that S intersects
every subset in F . Here the search-size is the cardinality of the universal
set U .

Many parameterized problems share the property that they seek a subset of k
elements in a set of search-size n satisfying certain properties. In most of the
problems that we consider, the search space can be easily identified. For example,
for the problems independent set and clique, the search space is the vertex
set. Thus, each instance of a parameterized problems is associated with a triple
(k, n,m), where k is the parameter, n is the search-size of the instance, and m
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is the length (of any reasonable encoding) of the instance. We will call such an
instance a (k, n,m)-instance.

Theorems 5 and 6 suggest that the W [1]-complete problem wcnf 2-sat−

and the W [t]-complete problem wcs∗[t] for t ≥ 2 seem to have very high pa-
rameterized complexity. In the following, we introduce a new reduction to iden-
tify problems in the corresponding classes that are at least as difficult as these
problems.

Definition 3. A parameterized problem Q is linearly fpt-reducible (shortly fptl-
reducible) to a parameterized problem Q′ if there exist a function f and an al-
gorithm A such that on each (k, n,m)-instance x of Q, the algorithm A pro-
duces, in time f(k)no(k)mO(1), a (k′, n′,m′)-instance x′ of Q′, where k′ = O(k),
n′ = nO(1), m′ = mO(1), and x is a yes-instance of Q if and only if x′ is a
yes-instance of Q′.

The fptl-reduction naturally introduces the hardness of parameterized
problems.

Definition 4. A parameterized problem Q1 is W [1]-hard under the linear fpt-
reduction, shortly Wl[1]-hard, if the problem wcnf 2-sat− is fptl-reducible to
Q1. A parameterized problem Qt is W [t]-hard under the linear fpt-reduction,
shortly Wl[t]-hard, for t ≥ 2 if the problem wcs∗[t] is fptl-reducible to Qt.

Based on the above definitions and using Theorem 5 and Theorem 6, we imme-
diately derive:

Theorem 15. For t ≥ 2, no Wl[t]-hard parameterized problem can be solved in
time f(k)no(k)mO(1) for a function f , unless the problem sat[t] is solvable in
time 2o(n)mO(1), which implies the collapsing W [t− 1] = FPT .

Theorem 16. No Wl[1]-hard parameterized problem can be solved in time
f(k)mo(k) for a function f , unless the ETH hypothesis fails, which is equivalent
to the collapsing M [1] = FPT .

In fact, many known fpt-reductions on parameterized problems proposed in the
literature are fptl-reductions, or can be modified to become fptl-reductions. Us-
ing these fptl-reductions, we can immediately derive computational lower bounds
for a large number of parameterized problems.

Theorem 17. The following parameterized problems are Wl[2]-hard: wcnf-sat,
set cover, hitting set, and dominating set. Thus, unless the problem
sat[2] is solvable in time 2o(n)mO(1), none of them can be solved in time
f(k)no(k)mO(1) for any function f .

To consider Wl[1]-hard problems, define wcnf h-sat, where h > 0 is a fixed
integer, to be the parameterized problem consisting of the pairs (F, k), where F
is a CNF formula in which each clause is a disjunction of at most h literals and
F has a satisfying assignment of weight k.



Parameterized Complexity and Subexponential-Time Computability 185

Theorem 18. The following problems are Wl[1]-hard: wcnf h-sat for any in-
teger h ≥ 2, clique, and independent set. Thus, unless the ETH hypothesis
fails, none of them can be solved in time f(k)mo(k) for any function f .

Each of the problems in Theorem 17 and Theorem 18 can be solved by a trivial
brute-force algorithm of running time cnkm2, where c is an absolute constant,
which simply enumerates all possible subsets of k elements in the search space. A
lot of research has sought new approaches to improve this trivial upper bound.
One of the common approaches is to apply a more careful branch-and-bound
search process trying to optimize the manipulation of local structures before
each branch. Continuously improved algorithms for these problems have been
developed based on improved local structure manipulations. It has even been
proposed to automate the manipulation of local structures [40] in order to further
improve the computational time.

Theorem 17 and Theorem 18, however, provide strong evidence that the power
of this approach is quite limited in principle. The lower bound
f(k)nΩ(k)p(m) for the problems in Theorem 17 and the lower bound f(k)mΩ(k)

for the problems in Theorem 18, where f can be any function and p can be any
polynomial, indicate that no local structure manipulation running in polynomial
time or in time depending only on the target value k will obviate the need for
exhaustive enumerations.

One might suspect that a particular parameter value (e.g., a very small pa-
rameter value or a very large parameter value) would help solving the problems
in Theorem 17 and Theorem 18 more efficiently. This possibility is, unfortu-
nately, denied by the following theorems, which indicate that, essentially, the
problems are difficult for every parameter value.

Theorem 19. For any constant ε, 0 < ε < 1, and for any nondecreasing and
unbounded function μ satisfying μ(n) ≤ nε, and μ(2n) ≤ 2μ(n), none of the
problems in Theorem 17 can be solved in time no(k)mO(1) even if we restrict the
parameter values k to μ(n)/8 ≤ k ≤ 16μ(n), unless the problem sat[2] is solvable
in time 2o(n)mO(1), which implies W [1] = FPT.

Note that the conditions on the function μ in Theorem 19 are satisfied by most
complexity functions, such as μ(n) = log logn and μ(n) = n4/5. Therefore,
for example, unless the problem sat[2] is solvable in time 2o(n)mO(1), for any
polynomial p(m), constructing a hitting set of log logn elements requires time
nΩ(log logn)p(m), and constructing a hitting set of

√
n elements requires time

nΩ(
√
n)p(m), where n is the size of the universal set U and m is the instance

length.
Similar results hold for the problems in Theorem 18.

Theorem 20. For any constant ε, 0 < ε < 1, and any nondecreasing and un-
bounded function μ satisfying μ(n) ≤ nε, and μ(2n) ≤ 2μ(n), none of the prob-
lems in Theorem 18 can be solved in time mo(k) even if we restrict the parameter
values k to μ(m)/8 ≤ k ≤ 16μ(m), unless the ETH hypothesis fails.
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6.2 Refinements and Further Lower Bounds

The lower bounds on parameterized complexity in the previous subsection can be
further strengthened based on more careful examinations of the relation between
satisfiability problems and parameterized problems. Some of these strengthened
results also require a stronger assumption on the complexity of satisfiability
problems.

The efforts on achieving faster algorithms for satisfiability have been tremen-
dous [37]. The current best algorithm for the cnf-sat problem runs in time
2n(1−1/O(log(m/n))mO(1) [10]. Moreover, the current approaches do not seem to
lead to break the time upper bound of the form 2n−o(n)mO(1) for solving the
problem. In particular, designing an algorithm of running time 2δnmO(1), where
δ < 1 is a constant, seems to require a breakthrough. Impagliazzo and Paturi
[30] conjectured that the cnf-sat problem does not have an algorithm of run-
ning time 2δnmO(1), for a constant δ < 1. Based on this conjecture, stronger
computational lower bounds for parameterized problems can be achieved.

First, consider the dominating set problem: given a graph G of n vertices
and a parameter k, decide if the graph G has a dominating set of at most k ver-
tices. It is straightforward to solve the problem in time O(nk+1) by enumerating
every subset of at most k vertices in the graph and verifying if the subset makes a
dominating set for the graph G. Based on fast matrix multiplication algorithms,
we can slightly improve the above straightforward enumeration algorithm:

Proposition 1. ([39]) The dominating set problem can be solved in time
nk+o(1) for k ≥ 7.

One may suspect that by applying some algorithmic tricks, we may be able
to further improve the algorithm for dominating set. Note that this was the
case for the problem of finding a clique of size k, which can be solved in time
O(n(ω/3)k) = O(n0.793k), where ω < 2.376 is the fastest matrix multiplication
exponent. However, Patrascu and Williams have shown that such improvements
would lead to a significant advancement in the research on cnf-sat algorithms:

Theorem 21. ([39]) For any constant ε > 0, the dominating set problem
cannot be solved in time O(nk−ε) unless the cnf-sat problem can be solved in
time 2δnmO(1) for some constant δ < 1.

Theorem 21 can be extended to other NP-hard problems based on effective
reductions. For example, consider the set cover problem: given a collection C
of n subsets of a universal set U of size m, decide if there are k subsets in C
whose union is equal to U . Since the dominating set problem can be easily
reduced to the set cover problem without changing the parameter value k, we
derive directly that the set cover problem cannot be solved in time O(nk−ε)
unless the cnf-sat problem can be solved in time 2δnmO(1) for a constant δ < 1.

These techniques have led to computational lower bounds for other interesting
problems. The reader is referred to [39] for more results.

Recent research has further considered developing super-linear exponential-
time lower bounds on parameterized problems.
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A number of well-known parameterized problems went through the process
of starting with super-linear exponential-time algorithms before advanced al-
gorithmic techniques were developed that resulted in linear exponential-time
algorithms for these problems. For example, the k-path problem (given a graph
G and a parameter k, decide if the graph contains a simple path of length k)
started with an algorithm of running time 2kk!mO(1), proposed in 1985 [35]. It
was actually an open problem posted by Papadimitriou and Yannakakis whether
k-path admits an algorithm running in time 2O(k)mO(1). Today, there is num-
ber of algorithms, based on at least three different new algorithmic techniques,
for the k-path problem that run in time ckmO(1), where c is a small constant
[2, 4, 18, 41]. Other examples of this kind include the 3-d matching and the
3-set packing problems [13, 24, 32].

Therefore, the research in exponential-time algorithms could be still in a very
premature stage, and one has to be very careful in conjecturing a super-linear
exponential-time lower bound for a parameterized problem. On the other hand,
very recent research shows that in certain cases, we can derive super-linear
exponential-time lower bounds for parameterized problems based on certain be-
liefs about the complexity of satisfiability problems.

Consider the following closest string problem:

closest string:
Given a set of strings s1, s2, . . ., st of the same length, and a parameter
k, decide if there is a string s of the same length such that the Hamming
distance between s and every si is bounded by k.

It has been known for a while [28] that the closest string problem can be
solved in time O(2k log km), where m is the size of the input instance. A natural
question is whether the exponential part, i.e., 2k log k = kk, in the complexity
O(2k log km) can be improved to ck for a constant c. Recent work by Lokshtanov,
Marx, and Saurabh, shows that this is unlikely:

Theorem 22. ([33]) Unless the hypothesis ETH fails, there is no 2o(k log k)mO(1)-
time algorithm for the closest string problem.

It was shown in [33] that for some other parameters the closest string prob-
lem also has super-linear exponential-time lower bounds. Other parameterized
problems with super-linear exponential-time lower bounds can also be found in
[33].

6.3 Lower Bounds on Approximation Algorithms

An interesting extension of the approach described in the previous subsections
is deriving lower bounds on the computational complexity of approximation
algorithms for NP-hard problems. We first give a brief review on the terminolo-
gies in approximation algorithms.
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An NP optimization problem Q is a quadruple (IQ, SQ, fQ, optQ), where

– IQ is the set of input instances. It is recognizable in polynomial time;
– For each instance x ∈ IQ, SQ(x) is the set of feasible solutions for x, which

is defined by a polynomial p and a polynomial time computable predicate π
(p and π only depend on Q) as SQ(x) = {y : |y| ≤ p(|x|) and π(x, y)};

– fQ(x, y) is the objective function mapping a pair x ∈ IQ and y ∈ SQ(x) to
a non-negative integer. The function fQ is computable in polynomial time;

– optQ ∈ {max,min}. Q is called a maximization problem if optQ = max, and
a minimization problem if optQ = min.

An optimal solution y0 for an instance x ∈ IQ is a feasible solution in SQ(x)
such that fQ(x, y0) = optQ{fQ(x, z) | z ∈ SQ(x)}. We will denote by optQ(x)
the value optQ{fQ(x, z) | z ∈ SQ(x)}.

An algorithm A is an approximation algorithm for an NP optimization prob-
lem Q if, for each input instance x in IQ, the algorithm A returns a feasible
solution yA(x) in SQ(x). The approximation algorithm A has an approximation
ratio r(m) if for any instance x in IQ, the solution yA(x) constructed by the
algorithm A satisfies the following condition:

– optQ(x)/fQ(x, yA(x)) ≤ r(|x|) if Q is a maximization problem;
– fQ(x, yA(x))/optQ(x) ≤ r(|x|) if Q is a minimization problem.

An NP optimization problem Q has a polynomial-time approximation scheme
(PTAS) if there is an algorithm AQ(x, ε) such that for each fixed real number
ε0 > 0, AQ(x, ε0) is a polynomial-time approximation algorithm for the problem
Q whose approximation ratio is bounded by 1 + ε0.

The following “parameterization process” for NP optimization problems has
been proposed in the literature.

Definition 5. Let Q = (IQ, SQ, fQ, optQ) be an NP optimization problem. The
parameterized version of Q is defined as follows:

– If Q is a maximization problem, then the parameterized version of Q is de-
fined as Q≥ = {(x, k) | x ∈ IQ and optQ(x) ≥ k};

– If Q is a minimization problem, then the parameterized version of Q is de-
fined as Q≤ = {(x, k) | x ∈ IQ and optQ(x) ≤ k}.

The above definition offers the possibility to study the relationship between the
approximability and the parameterized complexity of NP optimization problems.

Theorem 23. Let Q be an NP optimization problem. If the parameterized ver-
sion of Q is Wl[1]-hard, then Q has no PTAS of running time f(1/ε)mo(1/ε) for
any function f , unless the ETH hypothesis fails.

Proof. We consider the case that Q = (IQ, SQ, fQ, optQ) is a maximization prob-
lem such that the parameterized version Q≥ of Q is Wl[1]-hard.

Suppose to the contrary that Q has a PTAS AQ of running time f(1/ε)mo(1/ε)

for a function f . We show how to use the algorithmAQ to solve the parameterized
problem Q≥. Consider the following algorithm A≥ for Q≥:
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Algorithm A≥:
On an instance (x, k) of Q≥, call the PTAS algorithm AQ on the instance
x of Q with the real number ε = 1/(2k). Suppose that AQ returns a
solution y in SQ(x). If fQ(x, y) ≥ k, then return “yes”, otherwise return
“no”.

We verify that the algorithm A≥ solves the parameterized problem Q≥. Since Q
is a maximization problem, if fQ(x, y) ≥ k then obviously optQ(x) ≥ k. Thus,
the algorithm A≥ returns a correct decision in this case. On the other hand,
suppose fQ(x, y) < k. Since fQ(x, y) is an integer, we have fQ(x, y) ≤ k − 1.
Since AQ is a PTAS for Q and ε = 1/(2k), we must have

optQ(x)/fQ(x, y) ≤ 1 + 1/(2k).

From this we get (note that fQ(x, y) < k)

optQ(x) ≤ fQ(x, y) + fQ(x, y)/(2k) ≤ k − 1 + 1/2 = k − 1/2 < k.

Thus, in this case the algorithm A≥ also returns a correct decision. This proves
that the algorithm A≥ solves the parameterized version Q≥ of the problem Q.
The running time of the algorithm A≥ is dominated by that of the algorithm
AQ, which by our hypothesis is bounded by f(1/ε)mo(1/ε) = f(2k)mo(k). Thus,
the Wl[1]-hard problem Q≥ is solvable in time f(2k)mo(k). By Theorem 16, this
implies that the ETH hypothesis fails.

The proof is similar for the case when Q is a minimization problem, and hence
is omitted.

We demonstrate an application for Theorem 23. We pick the problem distin-
guishing substring selection as an example, which has drawn a lot of at-
tention recently because of its applications in computational biology such as in
drug generic design [22].

Consider all strings over a fixed alphabet. Denote by |s| the length of the string
s. The distance D(s1, s2) between two strings s1 and s2, |s1| ≤ |s2|, is defined as
follows. If |s1| = |s2|, then D(s1, s2) is the Hamming distance between s1 and s2;
and if |s1| ≤ |s2|, then D(s1, s2) is the minimum of D(s1, s

′
2) over all substrings

s′2 of length |s1| in s2.
Based on the standard formulation of NP optimization problems, the (opti-

mization version of the) distinguishing substring selection problem (dssp)
is defined as follows:

Definition 6. The dssp problem is a quadruple (ID, SD, fD, optD), where

– The instance set ID is the set of tuples of the form (n, Sb, Sg, db, dg), where n,
db, and dg are integers, db ≤ dg, Sb = {b1, . . . , bnb

} is a set of (bad) strings,
|bi| ≥ n, and Sg = {g1, . . . , gng} is a set of (good) strings, |gj | = n;

– For an instance x = (n, Sb, Sg, db, dg) in ID, the solution set SD(x) consists
of all strings of length n;
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– For an instance x = (n, Sb, Sg, db, dg) in ID and a solution s ∈ SD(x), the
objective function value fD(x, s) is defined to be the largest non-negative
integer d such that (i) d ≤ dg; (ii) D(s, bi) ≤ db(2−d/dg) for all bi ∈ Sb; and
(iii) D(s, gj) ≥ d for all gj ∈ Sg. If such an integer d does not exist, then
define fD(x, s) = 0;

– optD = max

Note that for x ∈ ID and s ∈ SD(x), the value fD(x, s) can be computed in
polynomial time by checking each number d = 0, 1, . . . , dg ≤ n.

Note that the objective of the dssp problem is to find a string s that maximizes
the value fD(x, s), which is bounded by dg. In particular, if a string s can achieve
fD(x, s) = dg, then s satisfies D(s, bi) ≤ db for all bi ∈ Sb (i.e., the string s is
similar enough to all bad strings) and D(s, gj) ≥ dg for all gj ∈ Sg (i.e., the
string s is sufficiently different from all good strings).

The dssp problem is NP-hard [27]. Deng et al. [22] developed a PTAS for dssp

whose running time is bounded by O(m(nb + ng)
O(1/ε6)), where m is the size of

the instance.3 Obviously, such an algorithm is not practical even for moderate
values of the error bound ε. The question is, can we develop significantly faster
PTAS for the dssp problem?

Using the above parameterization process, we can parameterize the dssp
problem, and study the complexity of the corresponding parameterized prob-
lem dssp≥.

Lemma 3. ([14]) The parameterized problem dssp≥ is Wl[1]-hard.

From Lemma 3 and Theorem 23, we get the following result.

Theorem 24. Unless the ETH hypothesis fails, the problem dssp has no PTAS
whose running time is bounded by f(1/ε)mo(1/ε) for any function f .

Therefore, Theorem 24 implies that any PTAS for dssp cannot run in time
f(1/ε)mo(1/ε) for any function f . Thus essentially, no PTAS for dssp can be
practically efficient even for moderate values of the error bound ε. This is the
first time a specific lower bound is derived on the running time of a PTAS for
an NP-hard problem.

Lemma 3 is proved by a linear fpt-reduction from the dominating set prob-
lem to the problem dssp≥, which leads to the computational lower bounds on
PTAS for the dssp problem in Theorem 24. This approach demonstrates an in-
teresting property of this technique. In most cases, computational lower bounds
and inapproximability of optimization problems are derived based on approx-
imation ratio-preserving reductions [3], by which if a problem Q1 is reduced
to another problem Q2, then Q2 is at least as hard as Q1. In particular, if

3 In fact, the formulations of the optimization versions of the dssp problem and its
PTAS given in [22] look very different from the versions presented here. A proof is
given in [14] that shows the equivalences of the problem formulation and PTAS given
in [22] and that presented here.
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Q1 is reduced to Q2 under an approximation ratio-preserving reduction, then
the approximability of Q2 is at least as difficult as that of Q1. Therefore, the
intractability of an “easier” problem in general cannot be derived using such a
reduction from a “harder” problem. On the other hand, our computational lower
bound on dssp was obtained by a linear fpt-reduction from dominating set.
It is well-known that dominating set has no polynomial time approximation
algorithms of constant ratio [3], while dssp has a PTAS. Thus, from the view-
point of approximation, dominating set is much harder than dssp, and our
linear fpt-reduction reduces a harder problem to an easier problem. This hints
that this approach for deriving computational lower bounds cannot be simply
replaced by the standard approaches based on approximation ratio-preserving
reductions.

Readers who are interested in the relation between fixed-parameter tractabil-
ity and the efficiency of approximation algorithms for NP-hard optimization
problems are referred to [8, 15, 34] for more discussions and details.

7 Concluding Remarks and Open Problems

The study of parameterized intractability and subexponential-time computabil-
ity has significantly promoted new research directions in both complexity theory
and algorithms. From the computational complexity viewpoint, this study has
motivated the development of new frameworks whose intrinsic relations are being
studied. From the algorithmics viewpoint, this study has motivated the invention
of new algorithmic tools, beyond the world of polynomial-time computation, and
has established connections among a large variety of computational problems.
This demonstrates the robustness of computational intractability, thus providing
convincing evidence of the existing computational lower bounds on problems of
theoretical and practical importance, based on parameterized complexity and
subexponential-time hypotheses.

The classification of parameterized intractability, i.e., the W -hierarchy, offers
a framework for the study of computational intractability, which is a refinement
of that of classical complexity theory. On the other hand, little is known about
the structural properties of this hierarchy. For example, any natural “hierar-
chy collapsing” results about the W -hierarchy are still lacking. In particular,
the following question remains unanswered: Does FPT = W [t] (t ≥ 1) imply
FPT = W [s] for s > t? Note that because of the close connections between
the W -hierarchy and the computational complexity of circuit satisfiability, the
corresponding questions about circuit satisfiability problems are also important
and significant: Would the subexponential-time computability of sat[t] imply
the subexponential-time computability of sat[s] for s > t? In particular, would
the failure of the ETH hypothesis imply the subexponential-time computability
of cnf-sat?

The current state of knowledge about the complexity of satisfiability prob-
lems seems to provide no hints on the above questions. For example, the 3-sat
problem can be solved in time 2δnmO(1), where δ < 0.56 [5]. However, this does
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not seem to offer any ideas for solving the general cnf-sat problem in time
2δ

′nmO(1) for any constant δ′ < 1. In fact, the current techniques used for solv-
ing 3-sat do not even seem to be generalizable to cnf-sat with bounded fan-in
of level-1 gates (i.e., h-sat for integer constants h ≥ 3). It will be very interesting
to investigate this direction. For example, is there a relation between the ETH
hypothesis and the hypothesis “cnf-sat is not solvable in time 2δnmO(1) for
any constant δ < 1”? Would a subexponential-time algorithm for 3-sat imply a
2δnmO(1)-time algorithm for cnf-sat for some constant δ < 1, or vice versa?

This reminds us of the well-known research line in complexity theory on the
computational lower bounds for bounded-depth circuit computation, where it
has been known that depth-t circuits are strictly more powerful than depth-s
circuits for t > s [29]. In fact, the fan-in of level-1 gates of a circuit is determi-
native of its computational power: for any h ≥ 2, depth-h circuits in which the
fan-in of level-1 gates is bounded by t is strictly more powerful than depth-h
circuits in which the fan-in of level-1 gates is bounded by s, if t > s [7]. Note
that, these significant results are on the difference of computational power of cir-
cuit models. On the other hand, in the study of parameterized complexity and
the complexity of satisfiability problems, the circuit depths in the problems are
part of the “descriptive complexity” of the problems. Are there any correlations
that can provide further insight in this direction? If we view a nondeterministic
computation as a “guess-then-check” process [6], then the sat[t] problems for all
t ≥ 2 require the same guessing power (i.e., picking a proper subset of the input
variables), but differ strictly in the verification power (sat[t] requires depth-t
circuits for verification). The current research status in satisfiability algorithms
seems to suggest that the difference in the verification power forces a difference
in the deterministic computational complexity of the problems.

Another interesting research direction is on the algorithmics side. As stated
in Theorem 21, a very sharp parameterized lower bound (such as Ω(nk)) for the
dominating set problem seems to have consequences on exact algorithms for
the important satisfiability problem cnf-sat. This line of research has yielded a
collection of results, formulated as “if problem A can be solved in time t(·) then
problem B can be solved in time s(·),” where t(·) and s(·) are precise functions
(without hidden constants in their asymptotic notations). Is there a systematic
method to relate such results? Such method will bear significant impact on the
existence of more efficient exact algorithms for certain problems, and can be
read from two angles. From the positive angle, those results suggest a way for
improving the algorithms for a problem B under a certain framework (such as
exact computability) by improving the algorithms for another problem A with
respect to (possibly) a different computational framework (such as parameterized
complexity). From the negative angle, such a result can serve as an indicator of
the intricate difficulty of the computability of a problem A with respect to a
certain computational framework, based on that of another problem B with
respect to a different framework.

We also want to remark that the above discussions provide “observations”
based on the current understanding and techniques in complexity theory and
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algorithmic research. For instance, the statement that the cnf-sat problem
cannot be solved in time 2δnmO(1) for a constant δ < 1 seems to be very strong,
and perhaps needs further investigation. One has to be more careful when using
such statements as “hypotheses.” Instead, these studies and observations should
provide an impetus for new research insights, new ideas, and new techniques. All
our algorithmic techniques for solving NP-hard problems, such as the satisfiabil-
ity problems, are more or less based on enumerations. Thus, a more ambitious
question would be to investigate new approaches for tackling NP-hard problems.
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