
Fixed-Parameter Tractability, A Prehistory�,��

A Festschrift Contribution Devoted to Michael R. Fellows
on the Occasion of his 60th Birthday

Michael A. Langston

Department of Electrical Engineering and Computer Science
University of Tennessee

Knoxville, TN 37996-2250
USA

langston@eecs.utk.edu

1 Overview

Many of the foundational parameterized tenets discussed in this festschrift actu-
ally predate by over a decade the first systematic treatments of fixed-parameter
tractability. In this frank, firsthand account I will, to the best of my recollection,
describe some of the earliest research avenues Mike Fellows and I pursued that
would turn out later to be highly relevant to parameterized complexity. Although
we did not know it at the time, these were the origins and formative years of
this burgeoning new field. Readers unfamiliar with the history of fixed-parameter
tractability may be surprised to learn that its initial motivations arose from, of
all things, automation and optimization for integrated circuit design.

2 A Fortuitous Collaboration

I first met Mike Fellows sometime in the spring of 1985, the year he completed his
PhD in Computer Science at the University of California, San Diego. I was then
chairing the faculty search committee at Washington State University, where we
were fortunate enough to interview and hire him. Mike and I hit it off imme-
diately. We had similar research interests in graph theory, combinatorics and
optimization. We both had families with small children. And we both had even
served in paratrooper assignments with the US military (Mike as an enlisted man
in the Air Force, I as an officer in the Army). As luck would have it, I happened
to be working at the time on a spectrum of combinatorial problems motivated by

� Prehistory (from the Latin, with præ meaning before, and historia meaning story)
is often defined as the period before a story is recorded. And that is what this tale
is all about. It is an account of the genesis of fixed-parameter tractability, before the
field had its terminology or even its name.

�� This narrative account was made possible in part by the National Science Foundation
under grants MIP-8703879 and MIP-8919312, and by the Office of Naval Research
under contract N00014-90-J-1855.

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 3–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



4 M.A. Langston

circuit layout problems in very large scale integration (VLSI) design. Meanwhile,
Mike had been reading the recent work of Neil Robertson and Paul Seymour on
Wagner’s Conjecture and what is now known as the Graph Minor Theorem. It
was a perfect confluence of technologies and ideas. As soon as Mike arrived on
campus, we put our heads together, compared notes, and decided to look around
the VLSI domain to see if we could find any interesting lower ideals in the minor
order. There was nothing particularly out of the ordinary with so inauspicious a
start. I think we viewed it as a fairly routine academic exercise. We were merely
searching for new research horizons. We could scarcely have foreseen where this
journey would eventually take us. Thus it all began.

3 Research Atmosphere

I think the algorithmic landscape at that time was relatively complacent. Most
problems of interest had already been found either to reside in P or to be NP-
complete. Thus, natural problems were largely viewed under the classic Jack
Edmonds style dichotomy as being good or bad, easy or hard, with not much
of a middle ground. Most of our colleagues in the theoretical computer science
community seemed pretty satisfied with this simple picture. Exhaustive exact
techniques and heuristic approximation algorithms remained the stalwart ana-
lytical weapons of choice. I confess that I had in fact worked on the worst-case
analysis of scheduling heuristics myself as part of my PhD dissertation a few
years earlier. Nevertheless, new possibilities beckoned. Mike and I often won-
dered out loud why all NP-complete problems were generally being tarred with
the same brush. It made little sense to us. Sure, there were notions like strong
NP-completeness [8]. But where was any systematic sort of focus on the param-
eter effect? Even well-known NP-complete problems like independent set and
graph coloring were manifestly different, starting with parameters set as low as
3. Sorting out differences in problem difficulty based on parameter specifications
was a theme that would keep working its way into, and eventually take over,
much of our research program.

4 Changes Brewing

Meanwhile, things were quickly evolving in the worlds of extremal graph theory
and well-quasi-ordered sets. Mike and I were I think a little awe struck with
the possibilities. With mere checks on various forms of graph containment, one
could now quickly show that many seemingly intractable problems, some not
previously even known to be decidable, were actually in P . Wow!

But let me not get ahead of myself. In what follows I shall consider only
finite, undirected graphs. H is a minor of G if a graph isomorphic to H can be
obtained from a subgraph of G by contracting edges. A family F of graphs is
said to be closed in the minor order if every minor of a graph in F must also
reside in F . A graph is an obstruction to F if it lies in F ’s complement and all
its proper minors lie in F . Surely the most classic and widely-known example



FPT, A Prehistory 5

is planarity, where F denotes the set of planar graphs, which is minor closed,
and where the obstructions have long been known to be K3,3 and K5. In the
interest of historical accuracy, it should probably be pointed out that planarity
was first studied in the topological order [12]. (H is topologically contained in G
if a graph isomorphic to H can be obtained from a subgraph of G by removing
subdivisions.) The obstruction sets for both orders are the same.

The most useful tool to us back then was this:

Theorem 1. [15] Any family of finite graphs that is closed in the minor order
and that excludes a planar graph can be recognized in polynomial time.

At this point a simple example of a family amenable to this powerful theorem
may be helpful. So let’s consider vertex cover, which is probably the most widely
studied problem in all of parameterized complexity. Let k denote any fixed pos-
itive integer. I will leave it as an exercise for the reader to check that (1) if G
has a vertex cover of size k, then so does any of its minors and (2) there are
planar graphs whose vertex cover size exceeds k. Thus, by Theorem 1, there is
a polynomial-time algorithm to decide whether an arbitrary graph has a vertex
cover of size k. It is important to note that there will be a different algorithm
for each fixed k. Of course vertex cover is solvable by brute force in O(nk) time
anyway, but soon Theorem 1 was superseded by even better tools [16,17,18],
limiting the degree of the polynomial to 3. Now things are beginning to sound a
lot like what would eventually become fixed-parameter tractability. Incidentally,
these improvements also eliminated the need for planar exclusion, and added the
immersion order to the mix (H is immersed in G if a graph isomorphic to H
can be obtained from a subgraph of G by lifting pairs of edges). But I digress;
let me return to the main story.

To implement the algorithm ensured by Theorem 1, one needs only to take
as input an arbitrary graph and test whether it contains any of the family’s
obstructions. If it does, then the algorithm is to answer “no.” Otherwise, it is to
answer “yes.” The run time guarantee comes from the facts that containment
for each obstruction can be tested in polynomial time, and that only a finite
battery of such tests is ever necessary3.

Of course there are substantial prices to be paid in applying such stunningly
abstract and powerful strategies. The specific algorithms provided by these emer-
gent tools impose ginormous and utterly impractical constants of proportionality.
Worse yet, they are inherently non-constructive in that each requires complete
knowledge of the relevant obstruction set. (I will have more to say on these
issues later.) Despite such grave practical drawbacks, however, these dramatic
developments helped reinforce our misgivings about any homogeneity among
NP-complete problems. Indeed, it seemed more and more plausible to us that

3 An order is a well-quasi-order if any infinite collection of objects must have a pair
of comparable elements under that order. By what is now called the Graph Minor
Theorem, we know that finite, simple graphs are well-quasi-ordered under minors.
Thus, because obstructions are incomparable (they form an antichain), their number
must be finite.



6 M.A. Langston

not all NP-complete problems were created equal, and that many might even be
sliced into easier sub-problems with the use appropriate parameters. Mike and
I frequently discussed the need for some sort of non-uniform notion of problem
complexity, usually by keeping a problem constant but applying a distinct al-
gorithm for each parameter value. Of course this is precisely what we do today
with fixed-parameter algorithms, but none of that was formalized back then.

5 Shoulders of Giants

In our many interactions with Neil Robertson and Paul Seymour, it became
increasingly clear that they had no more than a marginal interest in practicali-
ties, applications and implementations. And why should they? They were hot on
the trail of exceedingly profound advances in graph theory. Yet serious practical
applications were some of the very topics that Mike and I felt were of central
relevance to computation. So off we went, with Neil’s and Paul’s blessing. We
had a clear field in which to plow our furrows. I think it was pretty natural for
us to feel rather inadequate when stacked up against their deep and beautiful
work (as well as their joint efforts with Robin Thomas and others). In this Mike
was always self-effacing and humble, ever quick to point out that by performing
algorithm mining on well-quasi-order theory we were standing on the shoulders
of giants. One might even argue that Mike held out this attitude with a just bit
too much zeal, as he often wound up unfairly downplaying or even dismissing a
great deal of his own original and creative work in the process.

6 Armchair Polynomial Time

It wasn’t long before Mike and I started being invited around the country to
speak on our work. We took the Mike and Mike show on the road with alacrity.
At about this time I went on sabbatical leave at the University of Illinois, but
I wound up away on travel at least as much as I was in Champaign. Non-
constructive algorithm design tools were a new thing, and many wanted to find
out how they worked. On one jaunt, Mike was invited to give a talk at Princeton,
where he spoke to a computer science audience. There he humorously christened
our earliest effort “armchair polynomial time.” As he rightly pointed out, it
was sometimes embarrassingly easy to apply Theorem 1 and its extensions. To
reinforce the point, he ended the presentation of each proof with a tiny glyph of
an armchair. I liked it!

As previously mentioned, fixed k vertex cover is a handy example of an exceed-
ingly straightforward application of Theorem 1. With much subsequent work,
however, vertex cover has now migrated from O(nk) to O(n3) to O(n log n) and
of course now all the way down to O(n). See, for example, [1]. Many other prob-
lems have followed this trajectory. Probably a better example, therefore, and one
to showcase the truly astonishing power of this general approach, is knotlessness
[5]. Here we are asked whether a graph can be embedded in three dimensional
space so that none of its cycles are knotted. This sounds quite difficult. Given



FPT, A Prehistory 7

an arbitrary graph, no method is known just to bound the number of its embed-
dings that must be tested. Thus, without recourse to Theorem 1, knotlessness is
in no obvious way even known to be decidable. With the use of minor closure,
however, it is not at all difficult to show:

Theorem 2. [5] Knotlessness can be decided in polynomial time.

Notorious problems like knotlessness and others of its ilk (e.g., linklessness [5])
are further distinguished from the rest of the problems I will discuss by the
fact that they have no obvious associated parameter(s). Thus, while a problem
like vertex cover has a distinct finite obstruction set, and hence a distinct al-
gorithm, for every fixed cover size, knotlessness has but a single forbidden set.
(Of course one could probably parameterize by, say, the number of knots or the
dimensionality of the embedding space, but as far as I know no one has looked
into that.)

7 Circuit Layout Applications

While Mike and I found applications across many domains, we noticed early on
that the field of circuit design abounds with combinatorial problems amenable
to this general approach. One of the first problems we studied, and the only one
I will discuss in any detail here, is gate matrix layout. This style was introduced
in [14] for CMOS circuits. Solving the problem at its heart was, and is, a central
step in circuit synthesis. It was known at the time that gate matrix layout was
equivalent to various problems encountered in multiple PLA folding and the use
of Weinberger and one-dimensional logic arrays [4]. Gate matrix layout was later
shown also to be equivalent to pathwidth [6], vertex separation number [10] and
several other graph metrics.

The problem can be stated as follows. We are given a Boolean matrix M and
a positive integer k. We are asked whether the columns of M can be permuted
so that, if in each row every 0 lying between the leftmost and rightmost 1 is
changed to ∗, no column contains more than k 1’s and ∗’s. In this formulation,
rows denote electrical circuits, columns denote gates, and a ∗ represents the fact
that all gates within a circuit must be physically connected. Circuits are not
permitted to overlap within a track. Minimizing the maximum number of 1’s
and ∗’s in any column, over all column permutations, therefore corresponds to
minimizing the number of tracks and hence the area utilized in circuit realization.

Gate matrix layout is NP-complete [9]. Despite many years of study, however,
no algorithm is known to approximate it to within a multiplicative constant. Nor
can it be approximated to within an additive constant, unless P = NP [2]. In
order to apply Theorem 1, our first task is to transform an arbitrary instance
into a graph. To accomplish this, we expand a given matrix in the following
manner. We replace any column with more than two 1’s with a set of columns,
each with only two 1’s, representing all the possible ways to choose two 1’s from
that column. Next, we derive from this expanded matrix a finite simple graph,
where we treat rows as vertices and columns as edges. Proofs for the next three
results are rather tedious.



8 M.A. Langston

Lemma 1. [4] Matrix expansion does not affect the cost of a gate matrix layout
solution.

Lemma 2. [4] For every fixed k, the “yes” family of derived graphs is minor
closed.

Lemma 3. [4] For every fixed k, the “no” family of derived graphs contains a
planar element.

So we apply the three preceding lemmas, fortify them with Theorem 1, and now
bring on the armchair.

Theorem 3. [4] For every fixed k, gate matrix layout is solvable in polynomial
time.

We went on to find quite an assortment of well-known layout problems for which
we could prove analogs of Theorem 3. Just a short list would include disk dimen-
sion, minimum cut linear arrangement, topological bandwidth, crossing number,
maximum leaf spanning tree, search number and two dimensional grid load fac-
tor. See [7].

Thus, “trolling” for applications using this general approach became for us a
pretty standard recipe:

– look around for a provably difficult problem,
– fix parameter(s) as required,
– make sure it can’t now be solved by brute force or table lookup,
– devise problem transmogrifications as needed, and
– check for minor or immersion closure (an armchair is highly recommended

at this step).

This line of work was really quite addictive. When our quest was successful,
it usually turned out that the “yes” family was the one that was closed. But
there were exceptions. Consider, for example, longest path. For every fixed k,
the “no” family is actually minor closed. Moreover, most of the time obstructions
were highly elusive, requiring enormous effort for comprehensive analysis (see,
for example, [11]). But again there were exceptions. And again consider longest
path. For every fixed k, the only obstruction to “no” family membership is a
path of length k.

8 What the Hell Is VLSI?

At about this time Mike and I wrote several proposals, some successful and some
not. One of our early successes was at the National Science Foundation, where
we proposed to study the application of Theorem 1 along with other novel meth-
ods to combinatorial problems of relevance to VLSI design (hence our initial work



FPT, A Prehistory 9

on gate matrix layout). There the current program director, Bob Grafton4, was
most helpful and quick to sense the potential of these remarkable tools. After
describing them to him over the phone, I liked his reactions so much that I more
or less paraphrased one of his responses in our proposal abstract. Here is that
abstract, from late 1985, with emphasis added to the sentence that I think best
reflects Bob’s statement to me:

In the design and manufacturing of Very-Large-Scale Integrated (VLSI)
systems, practical problems are characterized by fixed-parameter instances.
For example, a parameter might represent the number of tracks permitted
on a chip, the number of memory cells available, the number of process-
ing elements to be employed, or other variables significant to the solution
of the problem at hand. In fixing the value of such parameters, we
focus on the physically realizable nature of the system rather
than on the purely abstract aspects of the model. In this investi-
gation, research efforts are concentrated on this central, practical feature
of real VLSI design problems, whose domains span the spectrum from
the gate to the systems architecture levels. Powerful and, in many cases,
emergent techniques from the fields of complexity, graph and group the-
ory are brought to bear on these fixed-parameter problems so as to yield
exact or guaranteed approximate solutions.

Observe from this that we were employing terms such as “fixed-parameter in-
stances” and “fixed-parameter problems” well over a dozen years before fixed-
parameter tractability had been formalized, codified and systematically pre-
sented [3] by Mike along with Rod Downey, who is also slated to contribute
to this festschrift.

By this time Mike (and I as well, probably) had become much more caught up
in the revolutionary algorithmic techniques than in the circuit problems them-
selves. So much so that by the time I learned that this particular proposal was
funded and told Mike, he looked at me excitedly and said5 “Wow that’s really
great! But what the hell is VLSI?” This was surely a curious remark from a
co-PI on a proposal written to perform research on, drum roll please, VLSI. In
fairness, we had probably not discussed that proposal since we had written it
several months earlier. And I knew of course what Mike meant by his statement.
The way he said it, however, made us both laugh out loud. Mike has always been
singularly quotable.

9 Constructive Complexity

From the beginning, Mike and I recognized the need to address the show-stopping
shortcomings of applications stemming from remarkable results such as Theorem

4 We are indebted both to Bob Grafton (NSF) and to Ralph Wachter (ONR), and
of course to their anonymous review panels, for their early feedback, understanding
and recognition of the long-term potential for what eventually has become the field
of parameterized complexity.

5 I believe this quote is verbatim. It seems like only yesterday.



10 M.A. Langston

1. For one thing, the algorithms had staggering constants of proportionality.
A little thought experiment may be useful here. Pick your favorite enormous
constant such as, let’s say, some reasonable upper bound on the number of fish
in the sea. As it turns out, that’s too small. So pick, say, a bound on the number
of grains of sand on all the world’s beaches. That’s still much too small. All
right then, let’s try a bound on the number of elementary particle interactions
that could possibly have occurred in the lifetime of the known universe. That’s
still too small! Those sorts of huge numbers are rapidly dwarfed by the “towers
of two” constants employed in the algorithms of Robertson and Seymour. In
this context, I am often reminded of a relevant statement perhaps dubiously
attributed to Disraeli: “There are three kinds of lies: lies, damned lies, and
statistics.” Around this time I began pointing out to my graduate students that
there are in fact at least four kinds of lies: lies, damned lies, statistics, and the big
“oh” notation. After all, what does it really mean to claim you have, say, even
a linear-time algorithm when its constant of proportionality is so outrageous?
Mike and I subsequently worked for quite some time on a variety of solutions
for this issue. We were generally able to mitigate constants greatly (plus reduce
degree bounds), mainly through the use of graph width metrics.

Another weakness of applications based solely on Theorem 1 was the lack
of any techniques for search or optimization. This theorem and its subsequent
improvements provide algorithms for decision only. So Mike and I worked on
this too. We were generally (but interestingly, not always) able to reduce search
and optimization to decision, mainly through self reduction. These results are
discussed in detail in [6].

A third shortcoming, an egregious one, and the only algorithmic deficiency I’ll
address in detail here, was non-constructivity. Theorem 1 and its analogs provide
no general means for finding (or even recognizing) the promised algorithms. All
we are told is that such algorithms must exist. So Mike and I set out to find
ways to remedy this situation. How could inherently non-constructive tools ever
be made constructive? It was a puzzler!

After many false starts, the constructivization methods we finally devised
operate in a rather counterintuitive, and perhaps even paradoxical, fashion. We
were able to prove that we could, in principle, write down an algorithm. We could
show that it was correct. We knew it relied on the finiteness of its obstruction
set. And we could watch it run as long as we liked. Yet we also could show that
we could never know for sure the obstruction set itself and, sometimes, we could
not even know an exact bound on the algorithm’s running time.

The following is a greatly simplified version of a much more general result from
[6], where we deal with arbitrary well-quasi-orders. I have stripped it down and
restricted it here; otherwise I would need to introduce several fairly cumbersome
definitions.

Theorem 4. [6] Let F denote a closed family in the minor or immersion order.
If the following are available



FPT, A Prehistory 11

1. a solution checking algorithm that runs in O(T1(n)) time,
2. order tests that need at most O(T2(n)) time, and
3. a self-reduction bounded by O(T3(n)) time,

then O(max{T1(n), T2(n)∗T3(n)}) time is sufficient to solve the decision version
of F -membership.

I should probably explicate with an example. So let me select one familiar to
most readers, and turn again to vertex cover. As previously observed, the “yes”
family for any fixed k is minor closed. First, if a putative solution is proffered,
its correctness can be checked in at most quadratic time. All one has to do is
delete the vertices in the supposed cover and look to see if the resulting graph
is edgeless. Second, we know that this family excludes a planar graph. We can
therefore test whether an arbitrary input graph contains a fixed obstruction in
at most O(n log n) time via a bounded treewidth argument [6]. And third, if a
decision oracle reports that an input is a “yes” instance, we can self-reduce to
a solution in a variety of ways. For example, we can iteratively eliminate each
vertex v in turn, and re-invoke the decision oracle for k − 1. If and only if this
oracle says “yes” do we mark v as a member of a satisfying cover and decrement
k by 1. Thus, at most a linear number of self-reduction calls6 are required.
Theorem 4 therefore guarantees that the entire procedure can be accomplished
in O(max{n2, (n logn) ∗ n}) = O(n2 logn) time.

The vast majority of problems known to be amenable to Theorem 1 are also
amenable to Theorem 4. In fact, Theorem 4 generally gives us not just a construc-
tively known algorithm, but a constructively known polynomial-time algorithm.
This is because polynomial-time checking usually comes from membership in
NP , fast tests are available for both orders, and self-reduction is most always
possible. Only those problems otherwise not even known to be decidable seem
resistant to this constructivization. Intriguingly, the algorithm guaranteed by
Theorem 4 relies on the correctness and finiteness of F’s obstruction set — but
we can never use it to learn the set! This is because no finite amount of obser-
vation will ever tell us whether the algorithm has found all the set’s elements.

Well that seems rather curious. What about just computing the set directly
somehow? Mike and I thought a lot about that. We were only able to show
that if one is given an algorithm for minor-closed F -membership in the form
of a Turing machine, then there could be no algorithm to find all the relevant
obstructions [6]. I’m sure the same is true for the immersion order. But of course
that’s not very surprising. Precious few things are computable when arguments
are reduced to the Turing machine model.

Not long after Theorem 4 became fairly well known within the community, Vi-
jaya Ramachandran kindly pointed us to an intriguing idea generally attributed
to Leonid Levin [13]. We were immediately attracted to Levin’s strategy, and
sought ways to employ it. Soon enough we managed to produce the following

6 It is important that we consult decision oracles only for non-increasing values of k,
and that we do not overly inflate the size of the graph as we modify it during self-
reduction. These are known as uniformity and honesty requirements, respectively.



12 M.A. Langston

result, which I would probably characterize as illuminating and entertaining, but
wildly impractical and unimplementable. Once again this is a simplified version
of a more general result from [6].

Theorem 5. [6] Let F denote a closed family in the minor or immersion order.
And let T0(n) denote the time complexity of any algorithm solving the search
version of F -membership. If the following are available

1. a solution checking algorithm that runs in O(T1(n)) time,
2. order tests that need at most O(T2(n)) time, and
3. a self-reduction (its time requirements are irrelevant),

then O(max{T0(n) + T1(n) ∗ logT0(n), T 2(n)}) time is sufficient to solve the
search version of F -membership.

Under reasonable assumptions about T0(n), T1(n) and T2(n), the algorithm
of Theorem 5 is asymptotically optimal — yet we may never know exactly what
sort of upper limit optimality provides. This is because we are only ensured
a runtime that’s bounded above by a multiplicative constant of any satisfying
T0(n). We hugely exploit the fact that each procedure has a constant index in
any fixed enumeration of all algorithms. But this gives us no systematic means
for learning anything useful about how an algorithm achieving a low order T0(n)
actually works.

I think constructivizations such as these remain a bit unsettling, even to this
day. Theorem 4 tells us that we can, usually, know an algorithm. We can write it
down. We can trace it as it employs a growing but finite obstruction set. We are
assured that it will not loop forever. Nevertheless, no matter how long we watch
it, we may never know the entire obstruction set upon which it relies. Similarly,
Theorem 5 tells us that we can, in principle, construct an asymptotically fastest
algorithm. We know exactly how it works. We can check its results. Yet we will
never know its time complexity. What an odd turn of events. All this reminds
me again of the fourth type of lie I mentioned earlier. Accordingly, in almost any
practical sense, I would not argue against the sentiment that much of what we
had done, especially in Theorem 5, was play a bunch of clever but dirty tricks
with the big “oh.”

And so it went. Every time Mike and I found ways to remove various forms
of non-constructivity from one arena, they would quickly seem to pop up in
another. It was as if we were playing Whack a Mole at the complexity theory
arcade. Despite all this, I think Theorems 4 and 5 (or rather their more general
versions) and others that Mike and I devised have been big hits for many years.
I am often asked about them. They seem to get at the core of what can and
cannot be made constructive using well-quasi order theory. Working on them was
a lot of fun for the two of us. They exemplify the sorts of results we obtained on
what then were challenging algorithmic paradigms in a completely new research
domain.



FPT, A Prehistory 13

10 Community Reactions

Early on, I think only a few of our colleagues expressed much interest in what
Mike and I were investigating. Fewer still gave us much in the way of encourage-
ment. Notable exceptions include Gene Lawler, Vic Klee, Manny Blum, Steve
Mahaney and a handful others (apologies to those whose names I’ve failed to re-
call). To them we are eternally grateful. We sorely needed the occasional attaboy,
and they came through for us.

A few who shall remain nameless, on the other hand, found our earliest work
somewhat blasphemous. It some quarters it took years for us to gain credibility.
Depending on whom you asked, we were either the village idiots or the lunatic
fringe. The specter of non-constructive algorithms was, I think, viewed as a bit of
a threat by some who had staked their careers on the theory ofNP-completeness.
You see, the usual response to any worry that P might somehow equal NP was
that all those published and highly cited completeness reductions would still be
important. They would simply become useful polynomial-time algorithms. But
what if there were a non-constructive proof of, gasp, P = NP? After all, the
standard approaches had long failed to resolve the question. Something radical
might be required. In that case, all those swell completeness proofs would be
meaningless. You could still map all of NP to some NP-complete problem Π
all right, solvable in polynomial time via Theorem 1. But without constructive
knowledge of the polynomial-time algorithm forΠ , you’re stuck. Of course today,
most of us would probably bet that surely P �= NP . Probably the same was true
back then too, although word on the street was that hopelessly flawed proofs
in both directions were running about 50-50. It is fairly remarkable that the
question remains open to this day.

Some in our community even dismissed our early work as mere “mathematical
curiosities.” Perhaps you have heard stories from Mike about the disingenuous
“elevator chat” at STOC, or seen the insulting “minor results” article actu-
ally produced in print. Although I would prefer not to name any names here,
I was there for these and several other early snubs, sometimes poorly disguised
as humor. It seemed to us that hubris among the theoretical computer science
intelligentsia was never in short supply back then. While all has long been for-
given, it hasn’t been forgotten. Perhaps I merely flatter myself, but I would like
to think I have a pretty thick skin. So this was to me just part of doing business
in computer science. Besides, I’m not a dyed-in-the-wool theorist, nor really very
much of a pure theorist at all. But these early affronts by the in-crowd were,
I believe, actually quite painful for Mike. They became huge and long-lasting
influencing factors on his attitude toward research in general and theoretical
computer science in particular. They helped shape his thinking, created in him
something of a firebrand for the cause against elitism, and released him from the
parochial and highly inbred model of theory as then practiced in the US. Over
time, I think they helped steel his resolve to make his work truly world class and
now so well respected around the globe. Per adversas res fortitude!



14 M.A. Langston

11 Shifting Gears

Thus, the early years were absorbed mainly with the positive side of the equa-
tion. We focused on concrete problems, speed-ups, self-reductions, constructivity
issues and the like. While we brought forward the basic notions of non-uniform
complexity and what is now known as fixed-parameter tractability, at that time
we could only struggle with a variety of feeble ideas for lower bounds. As time
marched on, Mike and I both took positions elsewhere. I stayed in the US, mov-
ing to the University of Tennessee and focusing mostly on applications. After
stints at the Universities of New Mexico and Idaho, Mike eventually moved out-
side the US, first to Canada, later to slots in New Zealand and other countries,
and finally to Australia, where he now holds a professorship at Charles Darwin
University. During all those years and across all those moves, Mike has built
up hugely successful collaborations with a coterie of renowned scientists. One of
the things that rather quickly came out of all that effort has been the much-
heralded negative side of the equation (by that I mean hardness and the W
hierarchy). Other sections of this festschrift will no doubt describe some of those
collaborations.

12 Retrospective

When I first met Mike I was working on a wide variety of topics (as I still do
today). At that time I was investigating problems in packing and scheduling
theory, parallel computation, time-space optimal algorithms and several other
areas. Maybe I have trouble committing myself just to one subject. In any case,
I think pursuing multiple research interests can make it somewhat easier to find
good collaborators, attract funding, and pique the interest of capable students.
Plus I find it to be a lot of fun. On the other hand, spreading your time across
multiple target areas is not really the best way to build brand recognition for
your research program. Instead, it’s probably a lot smarter to pick a single focus
area and concentrate on being the world’s best in that one area. (Young scientists
take note!) And this is where Mike has always excelled. I think I worked pretty
hard in those early days, but again I had several ongoing research projects. In
contrast, Mike worked almost all the time and single-mindedly, with minimal
distraction, on what eventually evolved into parameterized complexity. Except
for an occasional sideline interest (such as Computer Science Unplugged), he
generally still displays that fantastically keen focus today.

So I’ve watched Mike grow from being the voice of “What the hell is VLSI?”
to his now being the voice for a whole new computational discipline. From the
day his house self destructed when its pipes froze then re-thawed, to his now
being in such international demand that he needs no permanent house at all.
Mike and I have worked, played and laughed together for over a quarter century.
Friends and colleagues like that don’t grow on trees.



FPT, A Prehistory 15

Let me therefore say congratulations, Mike, old friend, on the completion
of your 60th year on Planet Earth. I wish you continued good health, much
happiness, and many many more fruitful and productive years to come!

Acknowledgments and Disclaimers. I would like to take this opportunity
to thank Rod Downey and Daniel Marx for their helpful suggestions in improv-
ing the presentation of this collection of reflections on Mike’s career. In fact
I would like to thank all the festschrift organizers for inviting me to prepare
this contribution. At their behest, I have done my dead level best to describe
the background and genesis of fixed-parameter tractability. Thanks also go to
Fran Rosamond. Her enthusiasm, spontaneity and consistent good humor are
positively contagious.

The opinions expressed here are mine alone, and should be foisted upon
neither Mike nor the organizers of this project. I have tried to be open and
forthright, yet politic, calling events honestly as I recall them. I have pulled only
a few punches, and those mostly in the uneasy early relationship Mike and I had
with the computer science theory establishment. I would also like to thank pro-
fusely the many who helped inspire Mike and me along the way, and apologize
again to those whose names I’ve inadvertently failed to mention.

References

1. Chen, J., Kanj, I.A., Xia, G.: Simplicity is beauty: Improved upper bounds for ver-
tex cover. Technical Report TR05-008, DePaul University, Chicago, Illinois (2005)

2. Deo, N., Krishnamoorthy, M.S., Langston, M.A.: Exact and approximate solutions
for the gate matrix layout problem. IEEE Transactions on Computer Aided De-
sign 6, 79–84 (1987)

3. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
4. Fellows, M.R., Langston, M.A.: Nonconstructive advances in polynomial-time com-

plexity. Information Processing Letters 26, 157–162 (1987)
5. Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time

decidability. Journal of the ACM 35, 727–739 (1988)
6. Fellows, M.R., Langston, M.A.: On search, decision and the efficiency of

polynomial-time algorithms. In: Proceedings of ACM Symposium on Theory of
Computing, pp. 501–512 (1989)

7. Fellows, M.R., Langston, M.A.: On well-partial-order theory and its application to
combinatorial problems of VLSI design. SIAM Journal on Discrete Mathematics 5,
117–126 (1992)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

9. Kashiwabara, T., Fujisawa, T.: An NP-complete problem on interval graphs. In:
Proceedings of IEEE Symposium on Circuits and Systems, pp. 657–660 (1979)

10. Kinnersley, N.G.: The vertex separation of a graph equals its path-width. Informa-
tion Processing Letters 42, 345–350 (1992)

11. Kinnersley, N.G., Langston, M.A.: Obstruction set isolation for the gate matrix
layout problem. Discrete Applied Mathematics 54, 169–213 (1994)

12. Kuratowski, K.: Sur le problème des courbes gaushes en topologie. Fundamenta
Mathematicae (French) 15, 271–283 (1930)



16 M.A. Langston

13. Levin, L.A.: Universal enumeration problems. Problemic Peredaci Informacii (Rus-
sian) 3, 115–116 (1972)

14. Lopez, A.D., Law, H.-F.S.: A dense gate matrix layout method for MOS VLSI.
IEEE Transactions on Electron Devices 27, 1671–1675 (1980)

15. Robertson, N., Seymour, P.D.: Disjoint paths - a survey. Journal of Algebraic and
Discrete Methods 6, 300–305 (1985)

16. Robertson, N., Seymour, P.D.: Graph minors IV. Tree-width and well-quasi-
ordering. Journal of Combinatorial Theory, Series B 48, 227–254 (1990)

17. Robertson, N., Seymour, P.D.: Graph minors XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B 63, 65–110 (1995)

18. Robertson, N., Seymour, P.D.: Graph minors XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B 92, 325–357 (2004)


	Fixed-Parameter Tractability, A Prehistory
	Overview
	A Fortuitous Collaboration
	Research Atmosphere
	Changes Brewing
	Shoulders of Giants
	Armchair Polynomial Time
	Circuit Layout Applications
	What the Hell Is VLSI?
	Constructive Complexity
	Community Reactions
	Shifting Gears
	Retrospective
	References




