
Lecture Notes in Computer Science 7370
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Hans L. Bodlaender Rod Downey
Fedor V. Fomin Dániel Marx (Eds.)

The Multivariate
Algorithmic Revolution
and Beyond
Essays Dedicated to Michael R. Fellows
on the Occasion of His 60th Birthday

13

Volume Editors

Hans L. Bodlaender
Utrecht University, Department of Information and Computing Sciences
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
E-mail: h.l.bodlaender@uu.nl

Rod Downey
Victoria University, School of Mathematics, Statistics and Operations Research
P.O. Box 600, Wellington, New Zealand
E-mail: rod.downey@vuw.ac.nz

Fedor V. Fomin
University of Bergen, Institute of Informatics
Postboks 7803, 5020 Bergen, Norway
E-mail: fomin@ii.uib.no

Dániel Marx
Hungarian Academy of Sciences (MTA SZTAKI)
Computer and Automation Research Institute
Pf. 63, 1518 Budapest, Hungary
E-mail: dmarx@cs.bme.hu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-30890-1 e-ISBN 978-3-642-30891-8
DOI 10.1007/978-3-642-30891-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012938949

CR Subject Classification (1998): F.2, G.2, I.3.5, E.1, F.1, F.4.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Michael R. Fellows

Preface

A Festschrift allows the scientific community to acknowledge the contributions of
a scientist turning 60. In the case of Mike Fellows, we have much to acknowledge.
Mike has made crucial contributions involving fundamental paradigm shifts in
computer science and in mathematics/computing education.

Many researchers can make a technical contribution to science, but only a
few can change the way we understand the world. Quite aside from the intrin-
sic difficulty of being able to visualize such a change in our thinking, when a
paradigm shift is involved, there is often strong resistance to the new ideas. The
initiators need vision and a strength of will to carry the program through.

Building upon early work with Mike Langston, Mike Fellows and Rod Downey
founded the field of parameterized complexity. This is an approach toward un-
derstanding the complexity of computations which occur in practice. It seeks to
use a multivariate approach to understand the exact contribution of each part
of a problem in its computational complexity.

This is now a thriving field in computational complexity. Sensitizing algo-
rithm designers to this paradigm has allowed for a distinctive set of tools to
be developed. These tools allow for a systematic and extended dialog with a
problem. This is a field consciously trying to tie together theoretical computer
science and applications in a meaningful way, and has grown exponentially in
the last 15 or so years.

The majority of contributions in this volume are in the area of parameterized
complexity, with surveys from leading experts, including a basic guide to the
area, and personal memories by those involved in the development.

It is very unusual for a world-class researcher in science to also be involved
in education, and this seems especially true of computer science. With Nancy
Casey, Tim Bell, Neil Koblitz and others, Mike began the remarkable project
that became Computer Science Unplugged. This was another paradigm shift, this
time the initiative was in computing and mathematics education. The idea was
to involve young children with insights from advanced computer science. One of
the excellent contributions to this volume is the article describing what this is
all about, how it came to be, and the trials and tribulations of getting the ideas
to be accepted.

Mike Fellows is a remarkable scientist. Not only has he made deep and lasting
contributions to human knowledge, he has been instrumental in the creation
of connected research communities throughout the world. He lectures, goes to
primary schools, interacts everywhere and is extremely generous with his ideas.
This theme comes through in the reminiscences in the present volume.

Turning 60 was traditionally a time when people slowed down, perhaps look-
ing back fondly on their lives and preparing for retirement. Nothing seems fur-
ther from the truth in Mike’s case. Mike and Fran now spend their days in hectic

VIII Preface

trans-world trips from Australia to India to Europe and the US. Mike is now
involved in more papers per year than when he was in his twenties, and keeps a
schedule that would pole-axe most people. To which we say: long may it last.

We thank a number of people that made this volume possible: Alex Downey
for artwork, all authors, all anonymous referees and proofreaders, Saket Saurabh
for the initial idea for the Festschrift, Fran Rosamond for help in many ways, and
Anna Kramer, Ronen Nugent and the other people at Springer for helping make
this possible and being enthusiastic about the project. This Festschrift contains
some superb surveys and fascinating insights into a prominent scientist. Enjoy.

April 2012 Hans Bodlaender
Rod Downey
Fedor Fomin
Dániel Marx

Curriculum Vitae Michael R. Fellows

Current position

Professor (Australian Professorial Fellow)

Adress

Charles Darwin University
Darwin, Northern Territory, Australia
phone: (international mobile) +44 7590 089314
electronic mail: michael.fellows@cdu.edu.au
fax: +61 8 8946 6680

Personal information

Born: June 15, 1952, in Upland, California
Married: to Frances Rosamond (Professor, Charles Darwin University)
Two children

Education

Ph.D., Computer Science, University of California, San Diego, 1985
M.A., Mathematics, University of California, San Diego, 1982
B.A., Mathematics, Sonoma State University, California, 1980

Experience

2010–present: Professor, Charles Darwin University, Australia
2001–2010: Professor of Computer Science, University of Newcastle,

Australia
1999–2001: Reader of Theoretical Computer Science, Victoria University,

New Zealand
1995–2001: Professor of Computer Science, University of Victoria, Canada
1990–1995: Associate Professor, University of Victoria, Canada
1987–1990: Associate Professor, University of Idaho, USA
1986–1987: Assistant Professor, University of New Mexico, USA
1985–1986: Assistant Professor, Washington State University, USA

Professional Interests

Computational Complexity Theory, Combinatorial Algorithms,
Computational Biology, Mathematical Sciences Communication

X Curriculum Vitae Michael R. Fellows

Refereed Journal Publications

1. “A Topological Parameterization and Hard Graph Problems,” Congressus
Numerantium 59 (1987), 69–78, with F. Hickling and M. Syslo.

2. “Computational Complexity of Integrity,” Journal of Combinatorial Math-
ematics and Combinatorial Computing 2 (1987), 179–191, with L. H. Clark
and R. C. Entringer.

3. “Nonconstructive Proofs of Polynomial-Time Complexity,” Information Pro-
cessing Letters 26(1987/88), 157–162, with M. A. Langston.

4. “Processor Utilization in a Linearly Connected Parallel Processing System,”
IEEE Transactions on Computers 37 (1988), 594–603, with M. A. Langston.

5. “On Finding Optimal and Near-Optimal Lineal Spanning Trees,” Algorith-
mica 3 (1988), 549–560, with D. K. Friesen and M. A. Langston.

6. “Nonconstructive Tools for Proving Polynomial-Time Complexity,” Journal
of the Association for Computing Machinery 35 (1988) 727–739, with M. A.
Langston.

7. “On the Galactic Number of a Hypercube,” Mathematical and Computer
Modelling 11 (1988), 212–215, with M. Hoover and F. Harary.

8. “Radius and Diameter in Manhattan Lattices,” Discrete Mathematics 73
(1989), 119–125, with D. J. Kleitman.

9. “Polynomial-Time Self-Reducibility: Theoretical Motivations and Practical
Results,” International Journal of Computer Mathematics 31 (1989), 1–9,
with D. J. Brown and M. A. Langston.

10. “The Robertson-Seymour Theorems: A Survey of Applications,” Contempo-
rary Mathematics 89 (1989), 1–18.

11. “Counting Spanning Trees in Directed Regular Multigraphs,” Journal of the
Franklin Institute 326 (1989), 889-896, with J. M. Wojciechowski.

12. “The Immersion Order, Forbidden Subgraphs and the Complexity of Net-
work Integrity,” Journal of Combinatorial Mathematics and Combinatorial
Computing 6 (1989), 23-32, with S. Stueckle.

13. “Transversals of Vertex Partitions in Graphs,” SIAM J. Discrete Math. 3
(1990), 206-215.

14. “Searching for K3,3 in Linear Time,” Linear and Multilinear Algebra 29
(1991), 279-290, with P. A. Kaschube.

15. “Perfect Domination,” Australasian J. Combinatorics 3 (1991), 141-150,
with M. Hoover.

16. “Fast Search Algorithms for Graph Layout Permutation Problems,” Integra-
tion, the VLSI Journal 12 (1991), 321-337, with M. A. Langston.

17. “Cycles of Length 0 Modulo 3 in Graphs,” Annals of Discrete Math. (1991),
87-101, with C. A. Barefoot, L. H. Clark, J. Douthett and R. C. Entringer.

18. “Constructive Complexity,” Discrete Applied Math. 34 (1991), 3-16, with K.
Abrahamson, M. A. Langston and B. Moret. (Also published in the book
series Annals of Discrete Mathematics, in: Combinatorics and Theoretical
Computer Science, R. Simion, ed., North-Holland, 1992, pp. 3–16.)

Curriculum Vitae Michael R. Fellows XI

19. “On the Complexity and Combinatorics of Covering Finite Complexes,” Aus-
tralasian J. Combinatorics 4 (1991), 103-112, with J. Abello and J. Stillwell.

20. “On Well-Partial-Order Theory and Its Application to Combinatorial Prob-
lems of VLSI Design,” SIAM J. Discrete Math. 5 (1992), 117-126, with M.
A. Langston.

21. “Small Diameter Symmetric Networks From Linear Groups,” IEEE Trans-
actions on Computers 40 (1992), 218-220, with L. Campbell, G. E. Carlsson,
M. J. Dinneen, V. Faber, M. A. Langston, J. W. Moore, A. P. Mullhaupt
and H. B. Sexton.

22. “Fixed-Parameter Tractability and Completeness,” Congressus Numeran-
tium 87 (1992), 161-178, with R. G. Downey.

23. “Self-Witnessing Polynomial-Time Complexity and Certificates for Primal-
ity,” Designs, Codes and Cryptography 2 (1992), 231-235, with N. Koblitz.

24. “The Private Neighborhood Cube,” SIAM J. Discrete Math. 7 (1994), 41-47,
with G. Fricke, S. Hedetniemi and D. Jacobs.

25. “Cultural Aspects of Mathematics Education Reform,” Notices of the Amer-
ican Mathematics Society 41 (1994), 5–9, with A. Hibner and N. Koblitz.

26. “On Search, Decision and the Efficiency of Polynomial-Time Algorithms,”
Journal of Computer and Systems Science 49 (1994), 769–779, with M. A.
Langston.

27. “The Complexity of Induced Minors and Related Problems,” Algorithmica
13 (1995), 266–282, with J. Kratochv́ıl, M. Middendorf and F. Pfeiffer.

28. “Large Planar Graphs with Given Diameter and Maximum Degree,” Discrete
Applied Math. 61 (1995), 133–153, with P. Hell and K. Seyffarth.

29. “Fixed-Parameter Tractability and Completeness I: Basic Theory,” SIAM J.
Computing 24 (1995), 873–921, with R. Downey.

30. “Fixed-Parameter Tractability and Completeness II: Completeness for W[1],”
Theoretical Computer Science A 141 (1995), 109–131, with R. Downey.

31. “Fixed Parameter Tractability and Completeness IV: On Completeness for
W[P] and PSPACE Analogs,” Annals of Pure and Applied Logic 73 (1995),
235–276, with K. Abrahamson and R. Downey.

32. “The Parameterized Complexity of the Longest Common Subsequence Prob-
lem,” Theoretical Computer Science A 147 (1995), 31–54, with H. Bodlaen-
der, R. Downey and H.T. Wareham.

33. “Parameterized Complexity Analysis in Computational Biology,” Computer
Applications in the Biosciences 11 (1995), 49–57, with H. Bodlaender, R.
Downey, M. Hallett, and H.T. Wareham.

34. “On the Parameterized Complexity of Problems in NP,” Information and
Computation 123 (1995), 38–49. with L. Cai, J. Chen and R. Downey.

35. “On the Complexity of k-Processor Scheduling,” Operations Research Letters
18 (1995), 93–98, with H. Bodlaender.

36. “Vertex Transversals That Dominate,” Journal of Graph Theory 21 (1996),
21–32, with N. Alon and D.O. Hare.

37. “A Simple Linear Time Algorithm for Finding Path Decompositions of Small
Width,” Information Processing Letters 57 (1996), 197–203, with K. Cattell
and M. J. Dinneen.

XII Curriculum Vitae Michael R. Fellows

38. “Sparse Parameterized Problems,” Annals of Pure and Applied Logic 82
(1996), 1–15, with M. Cesati.

39. “Approaches to Detection of Distantly Related Proteins by Database Sear-
ches,” BioTechniques 21 (1996), 1118–1125, with K. Cattell, R. Olafson, B.
Koop, I. Bailey, R.W. Olafson and C. Upton.

40. “Advice Classes of Parameterized Tractability,” Annals of Pure and Applied
Logic 84 (1997), 119–138, with L. Cai, J. Chen and R.G. Downey.

41. “The Parameterized Complexity of Short Computation and Factorization,”
Proceedings of the Sacks Symposium, in Archive for Mathematical Logic 36
(1997), 321–338, with L. Cai, J. Chen and R. Downey.

42. “A Note on the Computability of Obstruction Sets for Monadic Second Order
Ideals,” Journal of Universal Computer Science 3 (1997), 1194–1198, with
B. Courcelle and R. Downey.

43. “Parameterized Circuit Complexity and the W Hierarchy,” Theoretical Com-
puter Science A 191 (1998), 97–115, with R. G. Downey and K. W. Regan.

44. “An Improved Fixed-Parameter Algorithm for Vertex Cover,” Information
Processing Letters 65 (1998), 163–168, with R. Balasubramanian and V.
Raman.

45. “Constructions of Dense Planar Networks,” Networks 32 (1998), 275-281,
with P. Hell and K. Seyffarth.

46. “Threshold Dominating Sets and An Improved Characterization of W [2],”
Theoretical Computer Science A 209 (1998), 123–140, with R. G. Downey.

47. “The Parameterized Complexity of Some Fundamental Problems in Coding
Theory,” SIAM J. Computing 29 (1999), 545-570, with R.G. Downey, A.
Vardy and G. Whittle.

48. “On Computing Graph Minor Obstruction Sets,” Theoretical Computer Sci-
ence A 233 (2000), 107–127, with K. Cattell, M.J. Dinneen, R.G. Downey
and M.A. Langston.

49. “The Complexity of Irredundant Sets Parameterized by Size,” Discrete Ap-
plied Math. 100 (2000), 155-167, with R.G. Downey and V. Raman.

50. “The Hardness of Perfect Phylogeny, Feasible Register Assignment and Other
Problems on Thin Colored Graphs,” Theoretical Computer Science A 244
(2000), 167-188, with H. Bodlaender, M. Hallett, H. Wareham and T. Warnow.

51. “Index Sets and Parametric Reductions,” Archive for Mathematical Logic 40
(2001), 329–348, with R.G. Downey.

52. “Forbidden Minors to Graphs with Small Feedback Sets,” Discrete Mathe-
matics 230 (2001), 215–252, with K. Cattell and M. Dinneen.

53. “On the Parameterized Complexity of Minimizing Tardy Tasks,” Theoretical
Computer Science A 298 (2003), 317–324, with C. McCartin.

54. “Analogs and Duals of the MAST Problem for Sequences and Trees,” Journal
of Algorithms 49 (2003), 192–216, with M. Hallett and U. Stege.

55. “Explaining Cryptographic Ideas to the General Public,” Computers and
Education 40 (2003), 199–215, with T. Bell, I. Witten and N. Koblitz.

56. “Foreword from the Guest Editors,” Journal of Computer and Systems Sci-
ence 67 (2003), 653–654, with J. Chen.

Curriculum Vitae Michael R. Fellows XIII

57. “Cutting Up is Hard to Do: the Parameterized Complexity of k-Cut and
Related Problems,” Electronic Notes in Theoretical Computer Science 78
(2003), 205–218, with R. Downey, V. Estivill-Castro, E. Prieto-Rodriguez
and F. Rosamond.

58. “Polynomial-Time Data Reduction for Dominating Set,” Journal of the ACM
51 (2004), 363–384, with J. Alber and R. Niedermeier.

59. “The Dominating Set Problem is Fixed Parameter Tractable on Graphs of
Bounded Genus,” Journal of Algorithms 52 (2004), 152–168, with H. Fan
and J. Ellis.

60. “Refined Search Tree Technique for Dominating Sets on Planar Graphs,”
Journal of Computer and Systems Science 71 (2005), 385–405, with J. Alber,
H. Fan, H. Fernau, R. Niedermeier, F. Rosamond and U. Stege.

61. “Tight Lower Bounds for Certain Parameterized NP-Hard Problems,” In-
formation and Computation 201 (2005), 216–231, with J. Chen, B. Chor, X.
Huang, D. Juedes, I. Kanj and G. Xia.

62. “On Finding Short Resolution Refutations and Small Unsatisfiable Subsets,”
Theoretical Computer Science 351 (2006), 351–359, with S. Szeider and G.
Wrightson.

63. “On the Parameterized Intractability of Motif Search Problems,” Combina-
torica 26 (2006), 141–167, with J. Gramm and R. Niedermeier.

64. “A Fixed-Parameter Approach to Two-Layer Planarization,” Algorithmica
45 (2006), 159–182, with V. Dujmovic, M. Hallett, M. Kitching, G. Liotta, C.
McCartin, N. Nishimura, P. Ragde, F. Rosamond, M. Suderman, S. White-
sides and D. R. Wood.

65. “An O(2O(k)) FPT Algorithm for the Undirected Feedback Vertex Set Prob-
lem,” Theory of Computing Systems 41 (2007), 479–492, with F. Dehne, M.
Langston, F. Rosamond and K. Stevens.

66. “Crown Structures for Vertex Cover Kernelization,” Theory of Computing
Systems 41 (2007), 411–431, with F. Abu-Khzam, M. Langston and W.
Suters.

67. “On the Efficiency of Polynomial Time Approximation,” Theory of Comput-
ing Systems 41 (2007), 459–477, with L. Cai, D. Juedes and F. Rosamond.

68. “On the Complexity of Lobbying in Multiple Referenda,” Review of Eco-
nomic Design 11 (2007), 217–224, with R. Christian, F. Rosamond and A.
Slinko.

69. “Parameterized Approximation for Dominating Set Problems,” Information
Processing Letters 109 (2008), 68–70, with R. Downey, C. McCartin and F.
Rosamond.

70. “On the Parameterized Complexity of Layered Graph Drawing,” Algorith-
mica 52 (2008), 267–292, with V. Dujmovic, M. Kitching, G. Liotta, C. Mc-
Cartin, N. Nishimura, P. Ragde, F. Rosamond, M. Suderman, S. Whitesides
and D. R. Wood.

71. “The Computer Journal Special Issue on Parameterized Complexity: Fore-
word by the Guest Editors,” The Computer Journal 51(1) (2008), 1–6, with
R. Downey and M. Langston.

XIV Curriculum Vitae Michael R. Fellows

72. “Faster Fixed-Parameter Tractable Algorithms for Matching and Packing
Problems,” Algorithmica 52 (2008), 167–176, with C. Knauer, N. Nishimura,
P. Ragde, F. Rosamond, U. Stege, D. Thilikos and S. Whitesides.

73. “Cliquewidth is NP-Complete,” SIAM Journal on Discrete Mathematics
23(2): 909-939 (2009), with F. Rosamond, U. Rotics and S. Szeider.

74. “Derivation of Algorithms for Cutwidth and Related Graph Layout Param-
eters,” Journal of Computer and System Sciences 75 (2009), 231–244, with
H.L. Bodlaender and D.M. Thilikos.

75. “The Complexity Ecology of Parameters: An Illustration Using Bounded
Max Leaf Number,” Theory of Computing Systems 45 (2009), 822–848, with
D. Lokshtanov, N. Misra, M. Mnich, F. Rosamond and S. Saurabh.

76. “On the Fixed-Parameter Intractability and Tractability of Multiple-Interval
Graph Problems,” Theoretical Computer Science 410 (2009), 53–61, with D.
Hermelin and F. Rosamond.

77. “On Problems Without Polynomial Kernels,” Journal of Computer and Sys-
tem Sciences 75 (2009), 423–434, with H.L. Bodlaender, R. Downey and D.
Hermelin.

78. “Fixed-Parameter Algorithms for Kemeny Ranking,” Theoretical Computer
Science 410 (2009), 4554–4570, with N. Betzler, J. Guo, R. Niedermeier and
F. Rosamond.

79. “Clustering with Partial Information,” Theoretical Computer Science 411
(2010), 1202–1211, with H.L. Bodlaender, P. Heggernes, F. Mancini, C. Pa-
padopoulos and F. Rosamond.

80. “W-Hierarchies Defined by Symmetric Gates,” Theory of Computing Sys-
tems 46 (2010), 311–339, with J. Flum, D. Hermelin, M. Mueller and F.
Rosamond.

81. “The Parameterized Complexity of Some Minimum Label Problems,” Jour-
nal of Computer and System Sciences 76 (2010), 727–740, with J. Guo and
I. Kanj.

82. “Graph-Based Data Clustering with Overlaps,” Discrete Optimization 8
(2011), 2–17, with J. Guo, C. Komusiewicz, R. Niedermeier and J. Uhlmann.

83. “On the Complexity of Some Colorful Problems Parameterized by Tree-
width,” Information and Computation 209 (2011), 143–153, with F. Fomin,
D. Lokshtanov, F. Rosamond, S. Saurabh, S. Szeider and C. Thomassen.

84. “Facility Location Problems: A Parameterized View,” Discrete Applied Math-
ematics 159 (2011), 1118–1130, with H. Fernau.

85. “Preface: Special Issue on Parameterized Complexity of Discrete Optimiza-
tion,” Discrete Optimization 8 (2011), 1, with F. Fomin and G. Gutin.

86. “A Generalization of Nemhauser and Trotter’s Local Optimization Theo-
rem,” Journal of Computer and System Sciences 77 (2011), 1141–1158, with
J. Guo, H. Moser and R. Niedermeier.

87. “Parameterized Algorithmics for Finding Connected Motifs in Biological
Networks,” IEEE/ACM Transactions on Computational Biology and Bioin-
formatics 8 (2011), 1296–1308, with N. Betzler, R. van Bevern, C. Ko-
musiewicz and R. Niedermeier.

Curriculum Vitae Michael R. Fellows XV

88. “Quadratic Kernelization for Convex Recoloring of Trees,” Algorithmica 61
(2011), 362–378, with H. Bodlaender, M. Langston, M. Ragan, F. Rosamond
and M. Weyer.

89. “Upper and Lower Bounds for Finding Connected Motifs in Vertex-Colored
Graphs,” (conference version presented at ICALP 2007), Journal of Com-
puter and System Sciences 77 (2011), 799–811, with G. Fertin, D. Hermelin
and S. Vialette.

90. “Haplotype Inference Constrained by Plausible Haplotype Information,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics 8
(2011), with D. Hermelin, G. Landau, F. Rosamond, L. Rozenberg and L.
Tzvika.

91. “A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion
Problems,” ACM Transactions on Computation Theory 2 (2011), 5–25, with
J. Guo, H. Moser and R. Niedermeier.

92. “Parameterizing by the Number of Numbers,” Theory of Computing Systems
50 (2012), 675–693, with S. Gaspers and F. Rosamond.

93. “Local Search: Is brute-force avoidable?” Journal of Computer and System
Sciences 78 (2012), 707–719, with F. Fomin, D. Lokshtanov, F. Rosamond,
S. Saurabh and Y. Villanger.

94. “The Parameterized Complexity of Stabbing Rectangles,” Algorithmica 62
(2012), 564–594, with M. Dom, F. Rosamond and S. Sikdar.

95. “Well-Quasi-Orders in Subclasses of Bounded Treewidth Graphs and their
Algorithmic Applications,” Algorithmica, to appear, with D. Hermelin and
F. Rosamond.

96. “On the Parameterized Complexity of the Discrete Milling Problem with
Turn Costs,” Journal of Discrete Algorithms, to appear, with P. Giannopou-
los, C. Knauer, C. Paul, F. Rosamond, S. Whitesides and N. Yu.

97. “Towards Full Multivariate Algorithmics: Parameter Ecology and the De-
construction of Computational Complexity,” European J. Combinatorics, to
appear, with B. M. P. Jansen and F. A. Rosamond.

Books

1. This is Mega-Mathematics!, 134 pp., available for free at the World Wide
Web site: http://www.c3.lanl.gov/∼captors/mega-math, 1992, with N.
Casey.

2. Computer Science Unplugged ... offline activities and games for all ages, 231
pp., 1996, with T. Bell and I. Witten.

3. Parameterized Complexity, 530 pp., Springer-Verlag, 1999, with R.G. Downey.

Book Contributions

1. M.R. Fellows, “Parameterized complexity: new developments and research
frontiers.” In R.G. Downey and D. Hirschfeldt (eds.), Aspects of Complexity,
pp. 51–72. de Gruyter Series in Logic and Its Applications, Vol. 4, de Gruyter,
Berlin, 2000.

XVI Curriculum Vitae Michael R. Fellows

2. M. Fellows, S. Gaspers and F. Rosamond, “Multivariate Complexity The-
ory.” In E.K. Blum and A.V. Aho (eds.), Computer Science: The Hardware,
Software and Heart of It, pp. 269–294. Springer, 2011.

Refereed Conference Proceedings

1. “On Finding Obstruction Sets and Polynomial-Time Algorithms for Gate
Matrix Layout,” Proceedings of the 25th Allerton Conference on Communi-
cation, Control and Computing (1987), 397–398, with R. L. Bryant, N. G.
Kinnersley and M. A. Langston.

2. “Layout Permutation Problems and Well-Partially-Ordered Sets,” Proceed-
ings Fifth M.I.T. Conference on Advanced Research in VLSI, published as
Advanced Research in VLSI (J. Allen and F. T. Leighton, editors), The
MIT Press, 1988, 315–327, with M. A. Langston.

3. “Fast Self-Reduction Algorithms for Combinatorial Problems of VLSI De-
sign,” Proceedings Third International Workshop on Parallel Computation
and VLSI Theory, Springer-Verlag, Lecture Notes in Computer Science vol.
319 (1988), 278–287, with M. A. Langston.

4. “On Search, Decision and the Efficiency of Polynomial-Time Algorithms,”
Proceedings ACM Symposium on the Theory of Computing (STOC) (1989),
501–512, with M. A. Langston.

5. “An Analogue of the Myhill-Nerode Theorem and Its Use in Computing
Finite-Basis Characterizations,” Proceedings Thirtieth IEEE Symposium on
the Foundations of Computer Science (FOCS) (1989), 520–525, with M. A.
Langston.

6. “On the Complexity of Fixed-Parameter Problems,” Proceedings Thirtieth
IEEE Symposium on the Foundations of Computer Science (FOCS) (1989),
210–215, with K. Abrahamson, J. Ellis and M. Mata.

7. “Finite-Basis Theorems and a Computation-Integrated Approach to Ob-
struction Set Isolation,” Proceedings of the First MIT Conference on Com-
puters and Mathematics, in Computers and Mathematics (E. Kaltofen and
S.M. Watt, editors), Springer-Verlag (1989), 37–45, with N.G. Kinnersley
and M.A. Langston.

8. “Computer Science in the Elementary Schools,” Mathematicians and Edu-
cation Reform Workshop, Seattle, 1991. Proceedings published as: Mathe-
maticians and Education Reform 1990–1991, N. Fisher, H. Keynes and P.
Wagreich, eds., Conference Board of the Mathematical Sciences, Issues in
Mathematics Education 3 (1993), 143–163.

9. “Finite Automata, Bounded Treewidth and Well-Quasiordering,” in: N.
Robertson and P. Seymour (editors), Graph Structure Theory: Proceed-
ings of the Joint Summer Research Conference on Graph Minors, Seattle,
June, 1991, American Mathematical Society, Contemporary Mathematics
147 (1993), 539–564, with Karl Abrahamson.

Curriculum Vitae Michael R. Fellows XVII

10. “Algebraic Constructions of Efficient Broadcast Networks,” in: H.F. Matt-
son, T. Mora and T.R.N. Rao (editors), Proceedings of the Ninth Interna-
tional Symposium on Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes (AAECC’91), Springer-Verlag, Berlin, Lecture Notes
in Computer Science, volume 539, pp. 152-158, with M. Dinneen and V.
Faber.

11. “Two Strikes Against Perfect Phylogeny,” in: W. Kuich (editor), Proceed-
ings of the 19th International Colloquium on Automata, Languages and
Programming (ICALP’92), Springer-Verlag, Berlin, Lecture Notes in Com-
puter Science, volume 623, pp. 273-283, with H. L. Bodlaender and T. J.
Warnow.

12. “Parallel Self-Reducibility,” Proc. 4th International Conference on Com-
puting and Information, IEEE Computer Society Press (1992), 67–70, with
K. Abrahamson and C. Wilson.

13. “Self-Witnessing Polynomial-Time Complexity and Certificates for Primal-
ity,” Proceedings of the Seventh Annual IEEE Conference on Structure in
Complexity Theory (1992), 107-110, with N. Koblitz.

14. “Fixed-Parameter Intractability,” Proceedings of the Seventh Annual IEEE
Conference on Structure in Complexity Theory (1992), 36-49, with R. Downey.

15. “Kid Krypto,” Proceedings of Crypto ’92, Springer-Verlag, Lecture Notes
in Computer Science vol. 740 (1993), 371-389, with N. Koblitz.

16. “Fixed-Parameter Tractability and Completeness III: Some Structural As-
pects of the W -Hierarchy,” Proceedings of the 1992 Dagstuhl Workshop
on Structural Complexity, Complexity Theory: Current Research, ed. K.
Ambos-Spies, S. Homer and U. Schöning, Cambridge University Press (1993),
191-226, with R.G. Downey.

17. “Parameterized Computational Feasibility,” Proceedings of the Second Cor-
nell Workshop on Feasible Mathematics, Feasible Mathematics II, P. Clote
and J. Remmel (eds.), Birkhauser Boston (1995), 219–244, with R.G. Downey.

18. “Fixed-Parameter Intractability II,” Proceedings of the 10th Symposium on
Theoretical Aspects of Computer Science (STACS’93), Springer-Verlag, Lec-
ture Notes in Computer Science vol. 665 (1993), 374–385 with K. Abraham-
son and R. Downey.

19. “Fixed-Parameter Complexity and Cryptography,” Proceedings of the Tenth
International Symposium on Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes (AAECC’93), Springer-Verlag, Berlin, Lecture Notes
in Computer Science vol. 673 (1993), 121–131, with N. Koblitz.

20. “Parameterized Learning Complexity,” Proceedings of the Sixth ACM
Workshop on Computational Learning Theory (COLT’93), 51–57, with
R.G. Downey and P.A. Evans.

21. “Advice Classes of Parameterized Tractability,” Proceedings of the Asian
Logic Conference (1993), with R. Downey, L. Cai and J. Chen.

22. “DNA Physical Mapping: Three Ways Difficult,” in Algorithms — ESA ’93,
(Proceedings of the First European Symposium on Algorithms), Springer-
Verlag, Berlin, Lecture Notes in Computer Science vol. 726 (1993), 157–168,
with M.T. Hallett and H.T. Wareham.

XVIII Curriculum Vitae Michael R. Fellows

23. “Combinatorial Cryptosystems Galore!” Proceedings of the Second Inter-
national Symposium on Finite Fields, Las Vegas, Nevada, August, 1993,
Contemporary Mathematics 168 (1994), 51–61, with N. Koblitz.

24. “On the Structure of Parameterized Problems in NP,” Proceedings of the
11th Symposium on Theoretical Aspects of Computer Science (STACS’94),
Springer-Verlag, Lecture Notes in Computer Science vol. 775 (1994), 509–
520, with L. Cai, J. Chen, and R. Downey.

25. “The Parameterized Complexity of Sequence Alignment and Consensus,”
Proceedings of the Fifth Symposium on Combinatorial Pattern Matching
(CPM), Springer-Verlag, Lecture Notes in Computer Science vol. 807 (1994),
15–30, with H. Bodlaender, R. Downey, and H. T. Wareham.

26. “Beyond NP-Completeness for Problems of Bounded Width: Hardness for
the W Hierarchy,” Proceedings of the ACM Symposium on the Theory of
Computing (STOC) (1994), 449–458, with H. Bodlaender and M. Hallett.

27. “The Parameterized Complexity of Some Problems in Logic and Linguis-
tics,” Proceedings Symposium on Logical Foundations of Computer Sci-
ence (LFCS), Springer-Verlag, Lecture Notes in Computer Science vol. 813
(1994), 89–100, with R. Downey, B. Kapron, M. Hallett and H. T. Wareham.

28. “Parameterized Complexity Analysis in Computational Biology,” Proceed-
ings of the IEEE Computer Society Workshop on Shape and Pattern Recog-
nition in Computational Biology, Seattle, June 1994, IBM TJ Watson
Research Center Publication (1994), 99–116, with H. Bodlaender, R.G.
Downey, M.T. Hallett and H.T. Wareham. To be published by Plenum
Press.

29. “Obstructions to Within a Few Vertices or Edges of Acyclic,” Proceedings
WADS’95, Springer-Verlag, Lecture Notes in Computer Science vol. 955
(1995), 415–427, with K. Cattell and M.J. Dinneen.

30. “Let’s Focus on the First Four,” with N. Casey in: Discrete Mathematics
in the Schools: How Can We Have an Impact? (D. Franzblau, F. Roberts
and J. Rosenstein, eds.) DIMACS/AMS proceedings series, 1997.

31. “Finite-State Computability of Annotations of Strings and Trees,” Proceed-
ings Seventh Symposium on Combinatorial Pattern Matching (CPM ’96),
Springer-Verlag, Lecture Notes in Computer Science vol. 1075 (1996), 384–
391, with H. Bodlaender and P. Evans.

32. “The Heart of Puzzling: Mathematics and Computer Games,” Proceed-
ings of the 1996 Computer Games Developers Conference, Miller Freeman
(1996), 109–120.

33. “The Parameterized Complexity of Relational Database Queries and An
Improved Characterization of W [1],” in: Combinatorics, Complexity and
Logic, Proceedings of DMTCS ’96, (D. Bridges, C. Calude, J. Gibbons,
S. Reeves, and I. Witten, Eds.) Springer-Verlag (1996), 194-213, with R.
Downey and U. Taylor.

34. “Descriptive Complexity and the W Hierarchy,” in: Proof Complexity and
Feasible Arithmetics (P. Beame and S. Buss, Eds.) AMS-DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, American Math-
ematical Society (1997), 119-134, with R. Downey and K. Regan.

Curriculum Vitae Michael R. Fellows XIX

35. “Parameterized Complexity: A Framework for Systematically Confronting
Computational Intractability,” in: Contemporary Trends in Discrete Math-
ematics, (R. Graham, J. Kratochv́ıl, J. Nesetril and F. Roberts, eds.),
Proc. DIMACS-DIMATIA Workshop, Prague, 1997, AMS-DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, vol. 49 (1999),
49-99, with R. Downey and U. Stege.

36. “Analogs and Duals of the MAST Problem for Sequences and Trees,” Pro-
ceedings of the Sixth European Symposium on Algorithms – ESA ’98, Springer-
Verlag Lecture Notes in Computer Science, vol. 1461 (1998), 103–114, with
M. Hallett, C. Korostensky and U. Stege.

37. “On the Multiple Gene Duplication Problem,” Proceedings Ninth Interna-
tional Symposium on Algorithms and Computation – ISAAC’98, Springer-
Verlag Lecture Notes in Computer Science, vol. 1533 (1998), 347–356, with
M. Hallett and U. Stege.

38. “Explaining Cryptographic Systems to the General Public,” Proc. First
IFIP World Conference on Information Security Education (WISE), L. Yn-
gstgröm and S. Fischer-Hübner (eds.), Stockholm University Report Series
99-008 (1999), 221-233, with T. Bell, I. Witten and N. Koblitz.

39. “Parameterized Complexity After (Almost) 10 Years: Review and Open
Questions,” in: Combinatorics, Computation and Logic, DMTCS’99 and
CATS’99, Australian Computer Science Communications 21, Springer-Verlag
Singapore (1999), 1–33, with R.G. Downey.

40. “Coordinatized Kernels and Catalytic Reductions: An Improved FPT Algo-
rithm for Max Leaf Spanning Tree and Other Problems,” Proc. FST-TCS
2000, Springer-Verlag, Lecture Notes in Computer Science 1974 (2000), 240–
251, with C. McCartin, F. Rosamond and U. Stege.

41. “Refined Search Tree Techniques for the Dominating Set Problem on Pla-
nar Graphs,” Proc. 26th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS 2001), Springer-Verlag, Lecture Notes
in Computer Science 2136 (2001), 111-122, with J. Alber, H. Fan, H. Fer-
nau, R. Niedermeier, F. Rosamond and U. Stege.

42. “A Fixed-Parameter Approach to Two-Layer Planarization,” Proc. 9th In-
ternational Symposium on Graph Drawing (GD 2001), Springer-Verlag, Lec-
ture Notes in Computer Science 2265 (2001), 1–15, with V. Dujmovic, M.
Hallett, M. Kitching, G. Liotta, C. McCartin, N. Nishimura, P. Ragde, F.
Rosamond, M. Suderman, S. Whitesides and D. Wood.

43. “On the Parameterized Complexity of Layered Graph Drawing,” Proc. 9th
Annual European Symposium on Algorithms (ESA 2001), Springer-Verlag,
Lecture Notes in Computer Science 2161 (2001), 488–499, with V. Duj-
movic, M. Hallett, M. Kitching, G. Liotta, C. McCartin, N. Nishimura, P.
Ragde, F. Rosamond, M. Suderman, S. Whitesides and D. Wood.

44. “Parameterized Complexity: New Developments and Research Frontiers,”
Proc. New Zealand Mathematical Sciences Research Institute Summer Work-
shop, Kaikoura, 2000, Aspects of Complexity, R. Downey and D. Hirschfeldt
(eds.), de Gruyter (2001), 51–72 (notes on featured short course).

XX Curriculum Vitae Michael R. Fellows

45. “Some New Developments in Parameterized Complexity,” Proc. 12th Aus-
tralasian Workshop on Combinatorial Algorithms, ed. Edy Tri Baskoro
(2001), 43–44.

46. “Parameterized Complexity: Main Ideas, Connections to Heuristics and Re-
search Frontiers,” Proc. ISAAC 2001, Springer-Verlag, Lecture Notes in
Computer Science 2223 (2001), 291–307.

47. “Parameterized Complexity: The Main Ideas and Connections to Practi-
cal Computing,” Proc. CATS 2002, Computing: The Australasian Theory
Symposium, James Harland (ed.), Elsevier, Electronic Notes in Computer
Science 61 (2002), 1–17.

48. On the “Parameterized Intractability of Closest Substring and Related
Problems,” Proc. STACS 2002, Springer-Verlag, Lecture Notes in Computer
Science 2285 (2002), 262–273, with J. Gramm and R. Niedermeier.

49. “Parameterized Complexity: The Main Ideas and Connections to Practical
Computing.” In Experimental Algorithmics, Springer-Verlag, Lecture Notes
in Computer Science 2547 (2002), 51–77.

50. “Efficient Data Reduction for Dominating Set: A Linear Problem Kernel
for the Planar Case,” Proc. SWAT 2002, Springer-Verlag, Lecture Notes in
Computer Science 2368 (2002), 150–159, with J. Alber and R. Niedermeier.

51. “The Dominating Set Problem is Fixed Parameter Tractable on Graphs
of Bounded Genus,” Proc. SWAT 2002, Springer-Verlag, Lecture Notes in
Computer Science 2368 (2002), 180–189, with J. Ellis and H. Fan.

52. “Blow-Ups, Win/Win’s and Crown Rules: Some New Directions in FPT ,”
Proceedings WG 2003, Springer-Verlag, Lecture Notes in Computer Science
2880 (2003), 1–12.

53. “An FPT Algorithm for Set Splitting,” Proceedings WG 2003, Springer-
Verlag, Lecture Notes in Computer Science 2880 (2003), 180–191, with F.
Dehne and F. Rosamond.

54. “New Directions and New Challenges in Algorithm Design and Complexity,
Parameterized,” Proceedings WADS 2003, Springer-Verlag, Lecture Notes in
Computer Science 2748 (2003), 505–520.

55. “Starting with Nondeterminism: the Systematic Derivation of Linear-Time
Graph Layout Algorithms,” Proceedings MFCS 2003, Springer-Verlag, Lec-
ture Notes in Computer Science 2747 (2003), 239–248, with H. Bodlaender
and D. Thilikos.

56. “Kernelization Algorithms for the Vertex Cover Problem: Theory and Ex-
periments,” Proceedings ALENEX/ANALC 2004, Springer-Verlag, Lecture
Notes in Computer Science (2004), 62–69, with F. Abu-Khzam, R. Collins,
M. Langston and W. H. Suters.

57. “Tight Lower Bounds for Certain Parameterized NP-hard Problems,” Pro-
ceedings of the IEEE Conference on Computational Complexity (2004), 150–
160, with J. Chen, B. Chor, X. Huang, D. Juedes, I. Kanj and G. Xia.

Curriculum Vitae Michael R. Fellows XXI

58. “Greedy Localization, Iterative Compression and Modeled Crown Reduc-
tions: New FPT Techniques, an Improved FPT Algorithm for Set Splitting,
and a Novel 2k Kernelization for Vertex Cover,” Proceedings of the First In-
ternational Workshop on Parameterized and Exact Computation (IWPEC
2004), Springer-Verlag, Lecture Notes in Computer Science 3162 (2004),
271–282, with F. Dehne, F. Rosamond and P. Shaw.

59. “A Survey of FPT Algorithm Design Techniques with an Emphasis on Re-
cent Advances and Connections to Practical Computing,” Proceedings ESA
2004, Springer-Verlag, Lecture Notes in Computer Science 3221 (2004), 1–2.

60. “On Finding Short Resolution Refutations and Small Unsatisfiable Sub-
sets,” Proceedings of the First International Workshop on Parameterized
and Exact Computation (IWPEC 2004), Springer-Verlag, Lecture Notes in
Computer Science 3162 (2004), 223–234, with S. Szeider and G. Wrightson.

61. “Faster Fixed-Parameter Tractable Algorithms for Matching and Packing
Problems,” Proceedings ESA 2004, Springer-Verlag, Lecture Notes in Com-
puter Science 3221 (2004), 311–322, with C. Knauer, N. Nishimura, P.
Ragde, F. Rosamond, U. Stege, D. Thilikos and S. Whitesides.

62. “Finding k Disjoint Triangles in an Arbitrary Graph,” Proceedings WG
2004, Springer-Verlag, Lecture Notes in Computer Science 3353 (2004), 235–
244, with P. Heggernes, F. Rosamond, C. Sloper and J.-A. Telle.

63. “Linear Kernels in Linear Time, or How to Save k Colors in O(n2) Steps,”
Proceedings WG 2004, Springer-Verlag, Lecture Notes in Computer Science
3353 (2004), 257–269, with B. Chor and D. Juedes.

64. “An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set
Problem,” Proceedings COCOON 2005, Springer-Verlag, Lecture Notes in
Computer Science 3595 (2005), 859–869, with F. Dehne, M. Langston, F.
Rosamond and K. Stevens.

65. “Fixed-Parameter Tractability is Polynomial-Time Extremal Structure The-
ory I: The Case of Max Leaf,” Proceedings of ACiD 2005: Algorithms and
Complexity in Durham, Kings College London Publications, Texts in Al-
gorithmics 4 (2005), 1–41, with V. Estivill-Castro, M. Langston and F.
Rosamond.

66. “Nonblocker: Parameterized Algorithmics for Minimum Dominating Set,”
Proceedings SOFSEM 2006: 32nd Conference on Current Trends in Theory
and Practice of Computer Science, Springer-Verlag, Lecture Notes in Com-
puter Science 3831 (2006), 237–245, with F. Dehne, H. Fernau, E. Prieto
and F. Rosamond.

67. “Cliquewidth Minimization is NP-hard,” Proceedings of the ACM Sym-
posium on Theory of Computing (2006), 354–362, with F. Rosamond, U.
Rotics and S. Szeider.

68. “The Undirected Feedback Vertex Set Problem has Polynomial Kernel Size,”
Proceedings IWPEC 2006, Springer-Verlag, Lecture Notes in Computer Sci-
ence 4169 (2006), 192–202, with K. Burrage, V. Estivill-Castro, M. Langston,
S. Mac and F. Rosamond.

XXII Curriculum Vitae Michael R. Fellows

69. “Parameterized Approximation Problems,” Proceedings IWPEC 2006,
Springer-Verlag, Lecture Notes in Computer Science 4169 (2006), 121–129,
with R. Downey and C. McCartin.

70. “The Lost Continent of Polynomial Time,” Proceedings IWPEC 2006,
Springer-Verlag, Lecture Notes in Computer Science 4169 (2006), 276–277.

71. “Kernelization for Convex Recoloring of Trees,” Proc. ACiD 2006, King’s
College Publications, Texts in Algorithmics 7 (2006), 23–36, with H. Bod-
laender, M. Langston, M. Ragan and F. Rosamond.

72. “On the Complexity of Lobbying in Multiple Referenda,” Proc. First In-
ternational Workshop on Computational Social Choice, pp. 87-96, (Amster-
dam, Dec. 2006) with R. Christian, F. Rosamond and A. Slinko.

73. “Why Is P Not Equal to NP?” Computation and Logic in the Real World,
Third Conference on Computability in Europe, CiE 2007, Siena, June 2007,
Local Proceedings (Technical Report 487, Dipartimento di Scienze Math-
ematiche ed Informatiche, Universita Degli Studi Di Siena), pp. 151–160,
with F. Rosamond.

74. “The Complexity Ecology of Parameters: An Illustration Using Bounded
Max Leaf Number,” Proceedings of CiE 2007, Springer-Verlag, Lecture Notes
in Computer Science 4497 (2007), 268–277, with F. Rosamond.

75. “Quadratic Kernelization for Convex Recoloring of Trees,” Proceedings of
COCOON 2007, Springer-Verlag, Lecture Notes in Computer Science 4598
(2007), 86–96, with H. Bodlaender, M. Langston, M. Ragan, F. Rosamond
and M. Weyer.

76. “Connected Coloring Completion for General Graphs: Algorithms and Com-
plexity,” Proceedings of COCOON 2007, Springer-Verlag, Lecture Notes in
Computer Science 4598 (2007), 75–85, with B. Chor, M. Ragan, I. Razgon,
F. Rosamond and S. Snir.

77. “Sharp Tractability Borderlines for Finding Connected Motifs in Vertex-
Colored Graphs,” Proceedings of ICALP 2007, Springer-Verlag, Lecture
Notes in Computer Science 4596 (2007), 340–351, with G. Fertin, D. Her-
melin and S. Vialette.

78. “Efficient Parameterized Preprocessing for Cluster Editing,” Proceedings
of FCT 2007, Springer-Verlag, Lecture Notes in Computer Science 4639
(2007), 312–321, with M. Langston, F. Rosamond and P. Shaw.

79. “On the Complexity of Some Colorful Problems Parameterized by Treewidth,”
Proceedings of COCOA 2007, Springer-Verlag, Lecture Notes in Computer
Science 4616 (2007), 366–377, with F. Fomin, D. Lokshtanov, F. Rosamond,
S. Saurabh, S. Szeider and C. Thomassen.

80. “Parameterized Complexity via Combinatorial Circuits,” Proc. 3rd ACiD,
2007, King’s College Publications, London, Texts in Algorithmics 9 (2007),
55–67.

81. “Fixed-Parameter Algorithms for Kemeny Scores,” Proceedings of AAIM
2008, Springer-Verlag, Lecture Notes in Computer Science 5034 (2008), 60–
71, with N. Betzler, J. Guo, R. Niedermeier and F. Rosamond. Invited for
submission to a special issue of Theoretical Computer Science.

Curriculum Vitae Michael R. Fellows XXIII

82. “A Purely Democratic Characterization of W [1],” Proceedings of IWPEC
2008, Springer-Verlag, Lecture Notes in Computer Science 5018 (2008), 103–
114, with D. Hermelin, M. Müller and F. Rosamond.

83. “Facilities Location Problems: A Parameterized View,” Proceedings of AAIM
2008, Springer-Verlag, Lecture Notes in Computer Science 5034 (2008), 188-
199, with H. Fernau.

84. “Parameterized Algorithms and Hardness Results for Some Graph Motif
Problems,” CPM 2008, Lecture Notes in Computer Science 5029 (2008),
31–43, with N. Betzler, C. Komusiewicz and R. Niedermeier.

85. “On Problems Without Polynomial Kernels,” ICALP 2008, Lecture Notes
in Computer Science 5125 (2008), 563–574, with H. Bodlaender, R. Downey
and D. Hermelin.

86. “Clustering with Partial Information,” MFCS 2008, Lecture Notes in Com-
puter Science 5162 (2008), 144–155, with H.L. Bodlaender, P. Heggernes,
F. Mancini, C. Papadopoulos and F. Rosamond.

87. “Computing Kemeny Rankings, Parameterized by the Average K-T Dis-
tance,” COMSOC 2008, with N. Betzler, J. Guo, R. Niedermeier and F.
Rosamond.

88. “Graph Layout Problems Parameterized by Vertex Cover,” International
Symposium on Automata, Algorithms and Computation, ISAAC 2008, Lec-
ture Notes in Computer Science 5369 (2008), 294–305, with D. Lokshtanov,
N. Misra, F. Rosamond and S. Saurabh.

89. “Leaf Powers and Their Properties: Using the Trees,” ISAAC 2008, Lec-
ture Notes in Computer Science 5369 (2008), 402–413. with D. Meister, F.
Rosamond, R. Sritharan and J.A. Telle.

90. “Parameterized Complexity of Stabbing Rectangles and Squares in the
Plane,” Third Workshop on Algorithms and Computation, WALCOM 2009,
Lecture Notes in Computer Science 5431 (2009), 298–309, with M. Dom and
F. Rosamond.

91. “A Generalization of Nemhauser and Trotter’s Local Optimization Algo-
rithm,” Proceedings STACS 2009, 409–420, with J. Guo, H. Moser and R.
Niedermeier.

92. “How Similarity Helps to Efficiently Compute Kemeny Rankings,” Proceed-
ings 8th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2009), 657–664, with N. Betzler, J. Guo, R. Niedermeier
and F. Rosamond.

93. “Haplotype Inference Constrained by Plausible Haplotype Data,” Proceed-
ings CPM 2009, Springer-Verlag, Lecture Notes in Computer Science 5577
(2009), 339–352, with T. Hartman, D. Hermelin, G. Landau, L. Leventhal
and F. Rosamond.

94. “Local Search: Is Brute Force Avoidable?” Proceedings International Joint
Conference on Artificial Intelligence, IJCAI (2009), 486–491, with F. Fomin,
D. Lokshtanov, F. Rosamond, S. Saurabh and Y. Villanger.

95. “Graph-Based Data Clustering with Overlaps,” COCOON 2009, Springer-
Verlag, Lecture Notes in Computer Science 5609 (2009), 516–526, with J.
Guo, C. Komusiewicz, R. Niedermeier and J. Uhlmann.

XXIV Curriculum Vitae Michael R. Fellows

96. “Distortion Is Fixed-Parameter Tractable,” ICALP 2009, Springer-Verlag,
Lecture Notes in Computer Science 5555 (2009), 463–474, with F. Fomin,
D. Lokshtanov, E. Losievskaja, F. Rosamond and S. Saurabh.

97. “The Parameterized Complexity of Some Minimum Label Problems,” Pro-
ceedings WG 2009, Springer-Verlag, Lecture Notes in Computer Science
5911 (2009), 88–99, with J. Guo and I. Kanj.

98. “Well-Quasi-Ordering Bounded Treewidth Graphs,” Proceedings IWPEC
2009, Springer-Verlag, Lecture Notes in Computer Science 5917 (2009), 149–
160, with D. Hermelin and F. Rosamond.

99. “A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Dele-
tion Problems,” Proceedings MFCS 2009, Springer-Verlag, Lecture Notes
in Computer Science 5734 (2009), 319–330, with J. Guo, H. Moser and R.
Niedermeier.

100. “What Makes Equitable Connected Partition Easy?” Proceedings IWPEC
2009, Springer-Verlag, Lecture Notes in Computer Science 5917 (2009), with
R. Enciso, J. Guo, I. Kanj, F. Rosamond and A. Suchy.

101. “Towards Fully Multivariate Algorithmics: Some New Results and Direc-
tions in Parameter Ecology,” Proceedings IWOCA 2009, Springer-Verlag,
Lecture Notes in Computer Science 5874 (2009), 2–10.

102. “Fixed-Parameter Tractability, Relative Kernelization and the Effectiviza-
tion of Structural Connections,” CiE 2009, with J. Hromkovic, F. Rosamond
and M. Steinova.

103. “Milling a Graph with Turn Costs: A Parameterized Complexity Perspec-
tive,” Proceedings WG 2010, Springer-Verlag, Lecture Notes in Computer
Science 6410 (2010), 123–134, with P. Giannopoulos, C. Knauer, C. Paul,
F. Rosamond, S. Whitesides and N. Yu.

104. “A Linear Kernel for Co-Path/Cycle Packing,” Proceedings of AAIM 2010,
Springer-Verlag, Lecture Notes in Computer Science 6124 (2010), 90–102,
with Z-Z. Chen, B. Fu, H. Jiang, Y. Liu, L. Wang and B. Zhu.

105. “Parameterized Control Complexity in Bucklin Voting and in Fallback Vot-
ing,” Proceedings COMSOC 2010, with G. Erdelyi.

106. “Parameterized Hardness of Dodgson Score,” Proceedings FST-TCS 2010,
Leibniz International Proceedings in Informatics (2010), 459–468, with B.
Jansen, D. Lokshtanov and S. Saurabh.

107. “Parameterizing by the Number of Numbers,” Proceedings IPEC 2010,
Springer-Verlag, Lecture Notes in Computer Science 6478 (2010), 123–134,
with S. Gaspers and F. Rosamond.

108. “Recent Developments in the Theory of Pre-Processing,” Proceedings
FAW/AAIM 2011, Springer-Verlag, Lecture Notes in Computer Science
6681 (2011), 4–5.

109. “Constraint Satisfaction Problems: Convexity Makes AllDifferent Constraints
Tractable,” Proceedings IJCAI 2011: 522–527, with T. Friedrich, D. Her-
melin, N. Narodytska and F. Rosamond.

110. “Parameterized Complexity of the Firefighter Problem,” Proceedings ISAAC
2011, Springer-Verlag, Lecture Notes in Computer Science 7074 (2011), 643–
652, with C. Bazgan, and M. Chopin.

Curriculum Vitae Michael R. Fellows XXV

111. “Simultaneously Satisfying Linear Equations Over F [2]: MaxLin2 and Max-
r-Lin2 Parameterized Above Average,” Proceedings FST-TCS 2011 (Schloss
Dagstuhl – Liebniz Centrum fuer Informatik): 229–240, with R. Crowston,
G. Gutin, M. Jones, F. Rosamond, S. Thomasse and A. Yeo.

112. “Train Marshalling is Fixed Parameter Tractable,” accepted to AAAC 2012,
with no proceedings, and to FUN 2012, with proceedings, with L. Bruegge-
man,R. Fleischer, M. Lackner, C. Komusiewicz, Y. Koutis, A. Pfandler and
F. Rosamond.

113. “The Parameterized Complexity of Abduction,” to appear in Proceedings
AAAI 2012, with A. Pfandler, F. Rosamond and S. Ruemmele.

Recent Invited Conference Presentations

– “Parameterized Complexity,” New Zealand Mathematics Society Annual
Summer Workshop, Featured Short Course, January 2000.

– “Parameterized Complexity,” Twelfth International Symposium on Algo-
rithms and Computation (ISAAC 2001), December 2001, Christchurch, New
Zealand (Invited Plenary Lecture).

– “Parameterized Complexity and Its Applications,” Invited Plenary Lecture
at CATS 2002, Melbourne.

– Invited Plenary Lecture at WADS 2003.
– Invited Plenary Lecture at WG 2003.
– Invited Plenary Lecture at ESA 2004.
– Invited Plenary Lecture at the Algorithms and Complexity in Durham Work-

shop, July, 2005.
– Invited Special Lecture at the Third Dagstuhl Workshop on Parameterized

Complexity, July, 2005.
– Inivited Plenary Lecture at IWPEC 2006, Zurich, September 2006.
– Special Opening Lecture at the Fourth Dagstuhl Workshop on Parameterized

Complexity, July, 2007.
– Invited Plenary Lecture at ICYCS 2008, Yunan, China, November, 2008.
– Invited Special Lecture at the Dagstuhl Workshop on Communication of

Computer Science (“The Brainware Crisis”), March, 2009.
– Invited Lecturer, AGAPE Summer School on Parameterized and Exact Al-

gorithms, Corsica, May, 2009.
– Featured International Research Colloquium Speaker, Chinese University of

Hong Kong, April, 2009.
– Invited Plenary Lecture at IWOCA 2009, Czech Republic, July, 2009.
– Invited Plenary Lecture at ACCMCC 2010, December, Canberra, Australia.
– Featured Invited Lecture, DIMAP, Warwick University, UK, April, 2011.
– Invited Plenary Speaker, FAW/AAIM 2011, Jinhua, China, May, 2011.
– Keynote Address, WORKER 2011, Vienna, Austria, September, 2011.

XXVI Curriculum Vitae Michael R. Fellows

Professional Service and Honors

– Associate Editor for the Journal of Computer and Systems Sciences.
– Associate Editor for the ACM Transactions on Algorithms.
– Guest Editor for a double special issue of The Computer Journal in 2008

(Numbers 1,3).
– Guest Editor for a special issue of Discrete Optimization 8 (2011).
– Member of the Steering Committee for the conference series International

Workshop on Parameterized and Exact Computation, 2002–2012.
– Recipient of an Erskine Fellowship with the Department of Computer Science

at the University of Canterbury, 1996.
– Recipient of a Fellowship to the Institute of Advanced Study, Durham Uni-

versity, January–March, 2007.
– Recipient of a Humboldt Research Award, 2007.
– Recipient of a Australian Professorial Fellowship, 2010–2014.
– Appointment with the title “Visiting Professor in Computer Science,” to the

Royal Holloway, University of London, 2009–2011.

Conference Organization

– First Idaho ONR Workshop on Software Research, June, 1989, Conference
Chair.

– Second Idaho ONR Workshop on Software Research, June, 1990, Conference
Chair.

– STOC ’92 Conference Chair.
– Co-organizer, Dagstuhl Workshop on Parameterized Complexity, August

2001.
– Co-organizer, Workshop on Structural Aspects of Parameterized Complexity,

in conjunction with FST-TCS 2002, Kanpur, India, December 2002.
– Co-organizer, Dagstuhl Workshop on Parameterized Algorithms, July 2003.
– Co-chair, First International Workshop on Parameterized and Exact Com-

putation, Bergen, 2004.
– Co-organizer, Dagstuhl Workshop on Parameterized Complexity and Ker-

nelization, June, 2012.

Program Committees

DMTCS 2002, FST-TCS 2002, COCOON 2003, WADS 2003, CATS 2003, ACSW
2003, CATS 2004, ACSW 2004, WG 2004, IWPEC 2004 (program co-chair),
MFCS 2005, ACSW 2005, IWPEC 2006, WG 2008, COCOA 2008, FAW 2008,
ICYCS 2008 (program co-chair), ALENEX 2009, IWPEC 2009, TAMC 2009,
FAW 2009, COMSOC 2010, IWOCA 2010, LATA 2010, IPEC 2010, TAMC
2012, APEX 2012, MFCS 2012.

Curriculum Vitae Michael R. Fellows XXVII

Graduate Student Supervision

– Mark Hoover, Ph.D., 1989.
– Yasu Koda, Ph.D., 1991.
– Xiuyan Liu, M.S., 1994.
– Michael Dinneen, Ph.D., 1996.
– Michael Hallett, Ph.D., 1996.
– Todd Wareham, Ph.D., 1997.
– Patricia Evans, Ph.D., 1999.
– Elena Prieto-Rodriguez, Ph.D., 2005.

Postdoctoral Student Supervision

– Ulrike Stege

Miscellaneous

– Google scholar citations for Michael Fellows: 11027
– Google scholar H-index for Michael Fellows: 50
– Erdös number of Mike Fellows: 2 (via N. Alon, L. Clark, R. Entringer, V.

Faber, F. Harary, S. Hedetniemi, P. Hell, D. Kleitman, C. Thomassen)

Table of Contents

Part I: Memories

Fixed-Parameter Tractability, A Prehistory . 3
Michael A. Langston

The Birth and Early Years of Parameterized Complexity 17
Rod Downey

Crypto Galore! . 39
Neal Koblitz

Flyby: Life Before, During, and After Graduate Studies with Mike
Fellows . 51

Todd Wareham

The Impact of Parameterized Complexity to Interdisciplinary Problem
Solving . 56

Ulrike Stege

Vertex Cover, Dominating Set and My Encounters with Parameterized
Complexity and Mike Fellows . 69

Venkatesh Raman

Mike Fellows: Weaving the Web of Mathematics and Adventure 74
Jan Arne Telle

Passion Plays: Melodramas about Mathematics . 80
Frances Rosamond

Part II: Surveys

A Basic Parameterized Complexity Primer . 91
Rod Downey

Kernelization – Preprocessing with a Guarantee . 129
Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh

Parameterized Complexity and Subexponential-Time Computability 162
Jianer Chen and Iyad A. Kanj

Fixed-Parameter Tractability of Treewidth and Pathwidth 196
Hans L. Bodlaender

Graph Minors and Parameterized Algorithm Design 228
Dimitrios M. Thilikos

XXX Table of Contents

Constraint Satisfaction Problems Parameterized above or below Tight
Bounds: A Survey . 257

Gregory Gutin and Anders Yeo

Backdoors to Satisfaction . 287
Serge Gaspers and Stefan Szeider

Studies in Computational Aspects of Voting: A Parameterized
Complexity Perspective . 318

Nadja Betzler, Robert Bredereck, Jiehua Chen, and Rolf Niedermeier

A Parameterized Halting Problem . 364
Yijia Chen and Jörg Flum

Computer Science Unplugged and Related Projects in Math and
Computer Science Popularization . 398

Tim Bell, Frances Rosamond, and Nancy Casey

FPT Suspects and Tough Customers: Open Problems of Downey and
Fellows . 457

Fedor V. Fomin and Dániel Marx

What’s Next? Future Directions in Parameterized Complexity 469
Dániel Marx

Author Index . 497

Part I

Memories

Fixed-Parameter Tractability, A Prehistory�,��

A Festschrift Contribution Devoted to Michael R. Fellows
on the Occasion of his 60th Birthday

Michael A. Langston

Department of Electrical Engineering and Computer Science
University of Tennessee

Knoxville, TN 37996-2250
USA

langston@eecs.utk.edu

1 Overview

Many of the foundational parameterized tenets discussed in this festschrift actu-
ally predate by over a decade the first systematic treatments of fixed-parameter
tractability. In this frank, firsthand account I will, to the best of my recollection,
describe some of the earliest research avenues Mike Fellows and I pursued that
would turn out later to be highly relevant to parameterized complexity. Although
we did not know it at the time, these were the origins and formative years of
this burgeoning new field. Readers unfamiliar with the history of fixed-parameter
tractability may be surprised to learn that its initial motivations arose from, of
all things, automation and optimization for integrated circuit design.

2 A Fortuitous Collaboration

I first met Mike Fellows sometime in the spring of 1985, the year he completed his
PhD in Computer Science at the University of California, San Diego. I was then
chairing the faculty search committee at Washington State University, where we
were fortunate enough to interview and hire him. Mike and I hit it off imme-
diately. We had similar research interests in graph theory, combinatorics and
optimization. We both had families with small children. And we both had even
served in paratrooper assignments with the US military (Mike as an enlisted man
in the Air Force, I as an officer in the Army). As luck would have it, I happened
to be working at the time on a spectrum of combinatorial problems motivated by

� Prehistory (from the Latin, with præ meaning before, and historia meaning story)
is often defined as the period before a story is recorded. And that is what this tale
is all about. It is an account of the genesis of fixed-parameter tractability, before the
field had its terminology or even its name.

�� This narrative account was made possible in part by the National Science Foundation
under grants MIP-8703879 and MIP-8919312, and by the Office of Naval Research
under contract N00014-90-J-1855.

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 3–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

4 M.A. Langston

circuit layout problems in very large scale integration (VLSI) design. Meanwhile,
Mike had been reading the recent work of Neil Robertson and Paul Seymour on
Wagner’s Conjecture and what is now known as the Graph Minor Theorem. It
was a perfect confluence of technologies and ideas. As soon as Mike arrived on
campus, we put our heads together, compared notes, and decided to look around
the VLSI domain to see if we could find any interesting lower ideals in the minor
order. There was nothing particularly out of the ordinary with so inauspicious a
start. I think we viewed it as a fairly routine academic exercise. We were merely
searching for new research horizons. We could scarcely have foreseen where this
journey would eventually take us. Thus it all began.

3 Research Atmosphere

I think the algorithmic landscape at that time was relatively complacent. Most
problems of interest had already been found either to reside in P or to be NP-
complete. Thus, natural problems were largely viewed under the classic Jack
Edmonds style dichotomy as being good or bad, easy or hard, with not much
of a middle ground. Most of our colleagues in the theoretical computer science
community seemed pretty satisfied with this simple picture. Exhaustive exact
techniques and heuristic approximation algorithms remained the stalwart ana-
lytical weapons of choice. I confess that I had in fact worked on the worst-case
analysis of scheduling heuristics myself as part of my PhD dissertation a few
years earlier. Nevertheless, new possibilities beckoned. Mike and I often won-
dered out loud why all NP-complete problems were generally being tarred with
the same brush. It made little sense to us. Sure, there were notions like strong
NP-completeness [8]. But where was any systematic sort of focus on the param-
eter effect? Even well-known NP-complete problems like independent set and
graph coloring were manifestly different, starting with parameters set as low as
3. Sorting out differences in problem difficulty based on parameter specifications
was a theme that would keep working its way into, and eventually take over,
much of our research program.

4 Changes Brewing

Meanwhile, things were quickly evolving in the worlds of extremal graph theory
and well-quasi-ordered sets. Mike and I were I think a little awe struck with
the possibilities. With mere checks on various forms of graph containment, one
could now quickly show that many seemingly intractable problems, some not
previously even known to be decidable, were actually in P . Wow!

But let me not get ahead of myself. In what follows I shall consider only
finite, undirected graphs. H is a minor of G if a graph isomorphic to H can be
obtained from a subgraph of G by contracting edges. A family F of graphs is
said to be closed in the minor order if every minor of a graph in F must also
reside in F . A graph is an obstruction to F if it lies in F ’s complement and all
its proper minors lie in F . Surely the most classic and widely-known example

FPT, A Prehistory 5

is planarity, where F denotes the set of planar graphs, which is minor closed,
and where the obstructions have long been known to be K3,3 and K5. In the
interest of historical accuracy, it should probably be pointed out that planarity
was first studied in the topological order [12]. (H is topologically contained in G
if a graph isomorphic to H can be obtained from a subgraph of G by removing
subdivisions.) The obstruction sets for both orders are the same.

The most useful tool to us back then was this:

Theorem 1. [15] Any family of finite graphs that is closed in the minor order
and that excludes a planar graph can be recognized in polynomial time.

At this point a simple example of a family amenable to this powerful theorem
may be helpful. So let’s consider vertex cover, which is probably the most widely
studied problem in all of parameterized complexity. Let k denote any fixed pos-
itive integer. I will leave it as an exercise for the reader to check that (1) if G
has a vertex cover of size k, then so does any of its minors and (2) there are
planar graphs whose vertex cover size exceeds k. Thus, by Theorem 1, there is
a polynomial-time algorithm to decide whether an arbitrary graph has a vertex
cover of size k. It is important to note that there will be a different algorithm
for each fixed k. Of course vertex cover is solvable by brute force in O(nk) time
anyway, but soon Theorem 1 was superseded by even better tools [16,17,18],
limiting the degree of the polynomial to 3. Now things are beginning to sound a
lot like what would eventually become fixed-parameter tractability. Incidentally,
these improvements also eliminated the need for planar exclusion, and added the
immersion order to the mix (H is immersed in G if a graph isomorphic to H
can be obtained from a subgraph of G by lifting pairs of edges). But I digress;
let me return to the main story.

To implement the algorithm ensured by Theorem 1, one needs only to take
as input an arbitrary graph and test whether it contains any of the family’s
obstructions. If it does, then the algorithm is to answer “no.” Otherwise, it is to
answer “yes.” The run time guarantee comes from the facts that containment
for each obstruction can be tested in polynomial time, and that only a finite
battery of such tests is ever necessary3.

Of course there are substantial prices to be paid in applying such stunningly
abstract and powerful strategies. The specific algorithms provided by these emer-
gent tools impose ginormous and utterly impractical constants of proportionality.
Worse yet, they are inherently non-constructive in that each requires complete
knowledge of the relevant obstruction set. (I will have more to say on these
issues later.) Despite such grave practical drawbacks, however, these dramatic
developments helped reinforce our misgivings about any homogeneity among
NP-complete problems. Indeed, it seemed more and more plausible to us that

3 An order is a well-quasi-order if any infinite collection of objects must have a pair
of comparable elements under that order. By what is now called the Graph Minor
Theorem, we know that finite, simple graphs are well-quasi-ordered under minors.
Thus, because obstructions are incomparable (they form an antichain), their number
must be finite.

6 M.A. Langston

not all NP-complete problems were created equal, and that many might even be
sliced into easier sub-problems with the use appropriate parameters. Mike and
I frequently discussed the need for some sort of non-uniform notion of problem
complexity, usually by keeping a problem constant but applying a distinct al-
gorithm for each parameter value. Of course this is precisely what we do today
with fixed-parameter algorithms, but none of that was formalized back then.

5 Shoulders of Giants

In our many interactions with Neil Robertson and Paul Seymour, it became
increasingly clear that they had no more than a marginal interest in practicali-
ties, applications and implementations. And why should they? They were hot on
the trail of exceedingly profound advances in graph theory. Yet serious practical
applications were some of the very topics that Mike and I felt were of central
relevance to computation. So off we went, with Neil’s and Paul’s blessing. We
had a clear field in which to plow our furrows. I think it was pretty natural for
us to feel rather inadequate when stacked up against their deep and beautiful
work (as well as their joint efforts with Robin Thomas and others). In this Mike
was always self-effacing and humble, ever quick to point out that by performing
algorithm mining on well-quasi-order theory we were standing on the shoulders
of giants. One might even argue that Mike held out this attitude with a just bit
too much zeal, as he often wound up unfairly downplaying or even dismissing a
great deal of his own original and creative work in the process.

6 Armchair Polynomial Time

It wasn’t long before Mike and I started being invited around the country to
speak on our work. We took the Mike and Mike show on the road with alacrity.
At about this time I went on sabbatical leave at the University of Illinois, but
I wound up away on travel at least as much as I was in Champaign. Non-
constructive algorithm design tools were a new thing, and many wanted to find
out how they worked. On one jaunt, Mike was invited to give a talk at Princeton,
where he spoke to a computer science audience. There he humorously christened
our earliest effort “armchair polynomial time.” As he rightly pointed out, it
was sometimes embarrassingly easy to apply Theorem 1 and its extensions. To
reinforce the point, he ended the presentation of each proof with a tiny glyph of
an armchair. I liked it!

As previously mentioned, fixed k vertex cover is a handy example of an exceed-
ingly straightforward application of Theorem 1. With much subsequent work,
however, vertex cover has now migrated from O(nk) to O(n3) to O(n log n) and
of course now all the way down to O(n). See, for example, [1]. Many other prob-
lems have followed this trajectory. Probably a better example, therefore, and one
to showcase the truly astonishing power of this general approach, is knotlessness
[5]. Here we are asked whether a graph can be embedded in three dimensional
space so that none of its cycles are knotted. This sounds quite difficult. Given

FPT, A Prehistory 7

an arbitrary graph, no method is known just to bound the number of its embed-
dings that must be tested. Thus, without recourse to Theorem 1, knotlessness is
in no obvious way even known to be decidable. With the use of minor closure,
however, it is not at all difficult to show:

Theorem 2. [5] Knotlessness can be decided in polynomial time.

Notorious problems like knotlessness and others of its ilk (e.g., linklessness [5])
are further distinguished from the rest of the problems I will discuss by the
fact that they have no obvious associated parameter(s). Thus, while a problem
like vertex cover has a distinct finite obstruction set, and hence a distinct al-
gorithm, for every fixed cover size, knotlessness has but a single forbidden set.
(Of course one could probably parameterize by, say, the number of knots or the
dimensionality of the embedding space, but as far as I know no one has looked
into that.)

7 Circuit Layout Applications

While Mike and I found applications across many domains, we noticed early on
that the field of circuit design abounds with combinatorial problems amenable
to this general approach. One of the first problems we studied, and the only one
I will discuss in any detail here, is gate matrix layout. This style was introduced
in [14] for CMOS circuits. Solving the problem at its heart was, and is, a central
step in circuit synthesis. It was known at the time that gate matrix layout was
equivalent to various problems encountered in multiple PLA folding and the use
of Weinberger and one-dimensional logic arrays [4]. Gate matrix layout was later
shown also to be equivalent to pathwidth [6], vertex separation number [10] and
several other graph metrics.

The problem can be stated as follows. We are given a Boolean matrix M and
a positive integer k. We are asked whether the columns of M can be permuted
so that, if in each row every 0 lying between the leftmost and rightmost 1 is
changed to ∗, no column contains more than k 1’s and ∗’s. In this formulation,
rows denote electrical circuits, columns denote gates, and a ∗ represents the fact
that all gates within a circuit must be physically connected. Circuits are not
permitted to overlap within a track. Minimizing the maximum number of 1’s
and ∗’s in any column, over all column permutations, therefore corresponds to
minimizing the number of tracks and hence the area utilized in circuit realization.

Gate matrix layout is NP-complete [9]. Despite many years of study, however,
no algorithm is known to approximate it to within a multiplicative constant. Nor
can it be approximated to within an additive constant, unless P = NP [2]. In
order to apply Theorem 1, our first task is to transform an arbitrary instance
into a graph. To accomplish this, we expand a given matrix in the following
manner. We replace any column with more than two 1’s with a set of columns,
each with only two 1’s, representing all the possible ways to choose two 1’s from
that column. Next, we derive from this expanded matrix a finite simple graph,
where we treat rows as vertices and columns as edges. Proofs for the next three
results are rather tedious.

8 M.A. Langston

Lemma 1. [4] Matrix expansion does not affect the cost of a gate matrix layout
solution.

Lemma 2. [4] For every fixed k, the “yes” family of derived graphs is minor
closed.

Lemma 3. [4] For every fixed k, the “no” family of derived graphs contains a
planar element.

So we apply the three preceding lemmas, fortify them with Theorem 1, and now
bring on the armchair.

Theorem 3. [4] For every fixed k, gate matrix layout is solvable in polynomial
time.

We went on to find quite an assortment of well-known layout problems for which
we could prove analogs of Theorem 3. Just a short list would include disk dimen-
sion, minimum cut linear arrangement, topological bandwidth, crossing number,
maximum leaf spanning tree, search number and two dimensional grid load fac-
tor. See [7].

Thus, “trolling” for applications using this general approach became for us a
pretty standard recipe:

– look around for a provably difficult problem,
– fix parameter(s) as required,
– make sure it can’t now be solved by brute force or table lookup,
– devise problem transmogrifications as needed, and
– check for minor or immersion closure (an armchair is highly recommended

at this step).

This line of work was really quite addictive. When our quest was successful,
it usually turned out that the “yes” family was the one that was closed. But
there were exceptions. Consider, for example, longest path. For every fixed k,
the “no” family is actually minor closed. Moreover, most of the time obstructions
were highly elusive, requiring enormous effort for comprehensive analysis (see,
for example, [11]). But again there were exceptions. And again consider longest
path. For every fixed k, the only obstruction to “no” family membership is a
path of length k.

8 What the Hell Is VLSI?

At about this time Mike and I wrote several proposals, some successful and some
not. One of our early successes was at the National Science Foundation, where
we proposed to study the application of Theorem 1 along with other novel meth-
ods to combinatorial problems of relevance to VLSI design (hence our initial work

FPT, A Prehistory 9

on gate matrix layout). There the current program director, Bob Grafton4, was
most helpful and quick to sense the potential of these remarkable tools. After
describing them to him over the phone, I liked his reactions so much that I more
or less paraphrased one of his responses in our proposal abstract. Here is that
abstract, from late 1985, with emphasis added to the sentence that I think best
reflects Bob’s statement to me:

In the design and manufacturing of Very-Large-Scale Integrated (VLSI)
systems, practical problems are characterized by fixed-parameter instances.
For example, a parameter might represent the number of tracks permitted
on a chip, the number of memory cells available, the number of process-
ing elements to be employed, or other variables significant to the solution
of the problem at hand. In fixing the value of such parameters, we
focus on the physically realizable nature of the system rather
than on the purely abstract aspects of the model. In this investi-
gation, research efforts are concentrated on this central, practical feature
of real VLSI design problems, whose domains span the spectrum from
the gate to the systems architecture levels. Powerful and, in many cases,
emergent techniques from the fields of complexity, graph and group the-
ory are brought to bear on these fixed-parameter problems so as to yield
exact or guaranteed approximate solutions.

Observe from this that we were employing terms such as “fixed-parameter in-
stances” and “fixed-parameter problems” well over a dozen years before fixed-
parameter tractability had been formalized, codified and systematically pre-
sented [3] by Mike along with Rod Downey, who is also slated to contribute
to this festschrift.

By this time Mike (and I as well, probably) had become much more caught up
in the revolutionary algorithmic techniques than in the circuit problems them-
selves. So much so that by the time I learned that this particular proposal was
funded and told Mike, he looked at me excitedly and said5 “Wow that’s really
great! But what the hell is VLSI?” This was surely a curious remark from a
co-PI on a proposal written to perform research on, drum roll please, VLSI. In
fairness, we had probably not discussed that proposal since we had written it
several months earlier. And I knew of course what Mike meant by his statement.
The way he said it, however, made us both laugh out loud. Mike has always been
singularly quotable.

9 Constructive Complexity

From the beginning, Mike and I recognized the need to address the show-stopping
shortcomings of applications stemming from remarkable results such as Theorem

4 We are indebted both to Bob Grafton (NSF) and to Ralph Wachter (ONR), and
of course to their anonymous review panels, for their early feedback, understanding
and recognition of the long-term potential for what eventually has become the field
of parameterized complexity.

5 I believe this quote is verbatim. It seems like only yesterday.

10 M.A. Langston

1. For one thing, the algorithms had staggering constants of proportionality.
A little thought experiment may be useful here. Pick your favorite enormous
constant such as, let’s say, some reasonable upper bound on the number of fish
in the sea. As it turns out, that’s too small. So pick, say, a bound on the number
of grains of sand on all the world’s beaches. That’s still much too small. All
right then, let’s try a bound on the number of elementary particle interactions
that could possibly have occurred in the lifetime of the known universe. That’s
still too small! Those sorts of huge numbers are rapidly dwarfed by the “towers
of two” constants employed in the algorithms of Robertson and Seymour. In
this context, I am often reminded of a relevant statement perhaps dubiously
attributed to Disraeli: “There are three kinds of lies: lies, damned lies, and
statistics.” Around this time I began pointing out to my graduate students that
there are in fact at least four kinds of lies: lies, damned lies, statistics, and the big
“oh” notation. After all, what does it really mean to claim you have, say, even
a linear-time algorithm when its constant of proportionality is so outrageous?
Mike and I subsequently worked for quite some time on a variety of solutions
for this issue. We were generally able to mitigate constants greatly (plus reduce
degree bounds), mainly through the use of graph width metrics.

Another weakness of applications based solely on Theorem 1 was the lack
of any techniques for search or optimization. This theorem and its subsequent
improvements provide algorithms for decision only. So Mike and I worked on
this too. We were generally (but interestingly, not always) able to reduce search
and optimization to decision, mainly through self reduction. These results are
discussed in detail in [6].

A third shortcoming, an egregious one, and the only algorithmic deficiency I’ll
address in detail here, was non-constructivity. Theorem 1 and its analogs provide
no general means for finding (or even recognizing) the promised algorithms. All
we are told is that such algorithms must exist. So Mike and I set out to find
ways to remedy this situation. How could inherently non-constructive tools ever
be made constructive? It was a puzzler!

After many false starts, the constructivization methods we finally devised
operate in a rather counterintuitive, and perhaps even paradoxical, fashion. We
were able to prove that we could, in principle, write down an algorithm. We could
show that it was correct. We knew it relied on the finiteness of its obstruction
set. And we could watch it run as long as we liked. Yet we also could show that
we could never know for sure the obstruction set itself and, sometimes, we could
not even know an exact bound on the algorithm’s running time.

The following is a greatly simplified version of a much more general result from
[6], where we deal with arbitrary well-quasi-orders. I have stripped it down and
restricted it here; otherwise I would need to introduce several fairly cumbersome
definitions.

Theorem 4. [6] Let F denote a closed family in the minor or immersion order.
If the following are available

FPT, A Prehistory 11

1. a solution checking algorithm that runs in O(T1(n)) time,
2. order tests that need at most O(T2(n)) time, and
3. a self-reduction bounded by O(T3(n)) time,

then O(max{T1(n), T2(n)∗T3(n)}) time is sufficient to solve the decision version
of F -membership.

I should probably explicate with an example. So let me select one familiar to
most readers, and turn again to vertex cover. As previously observed, the “yes”
family for any fixed k is minor closed. First, if a putative solution is proffered,
its correctness can be checked in at most quadratic time. All one has to do is
delete the vertices in the supposed cover and look to see if the resulting graph
is edgeless. Second, we know that this family excludes a planar graph. We can
therefore test whether an arbitrary input graph contains a fixed obstruction in
at most O(n log n) time via a bounded treewidth argument [6]. And third, if a
decision oracle reports that an input is a “yes” instance, we can self-reduce to
a solution in a variety of ways. For example, we can iteratively eliminate each
vertex v in turn, and re-invoke the decision oracle for k − 1. If and only if this
oracle says “yes” do we mark v as a member of a satisfying cover and decrement
k by 1. Thus, at most a linear number of self-reduction calls6 are required.
Theorem 4 therefore guarantees that the entire procedure can be accomplished
in O(max{n2, (n logn) ∗ n}) = O(n2 logn) time.

The vast majority of problems known to be amenable to Theorem 1 are also
amenable to Theorem 4. In fact, Theorem 4 generally gives us not just a construc-
tively known algorithm, but a constructively known polynomial-time algorithm.
This is because polynomial-time checking usually comes from membership in
NP , fast tests are available for both orders, and self-reduction is most always
possible. Only those problems otherwise not even known to be decidable seem
resistant to this constructivization. Intriguingly, the algorithm guaranteed by
Theorem 4 relies on the correctness and finiteness of F’s obstruction set — but
we can never use it to learn the set! This is because no finite amount of obser-
vation will ever tell us whether the algorithm has found all the set’s elements.

Well that seems rather curious. What about just computing the set directly
somehow? Mike and I thought a lot about that. We were only able to show
that if one is given an algorithm for minor-closed F -membership in the form
of a Turing machine, then there could be no algorithm to find all the relevant
obstructions [6]. I’m sure the same is true for the immersion order. But of course
that’s not very surprising. Precious few things are computable when arguments
are reduced to the Turing machine model.

Not long after Theorem 4 became fairly well known within the community, Vi-
jaya Ramachandran kindly pointed us to an intriguing idea generally attributed
to Leonid Levin [13]. We were immediately attracted to Levin’s strategy, and
sought ways to employ it. Soon enough we managed to produce the following

6 It is important that we consult decision oracles only for non-increasing values of k,
and that we do not overly inflate the size of the graph as we modify it during self-
reduction. These are known as uniformity and honesty requirements, respectively.

12 M.A. Langston

result, which I would probably characterize as illuminating and entertaining, but
wildly impractical and unimplementable. Once again this is a simplified version
of a more general result from [6].

Theorem 5. [6] Let F denote a closed family in the minor or immersion order.
And let T0(n) denote the time complexity of any algorithm solving the search
version of F -membership. If the following are available

1. a solution checking algorithm that runs in O(T1(n)) time,
2. order tests that need at most O(T2(n)) time, and
3. a self-reduction (its time requirements are irrelevant),

then O(max{T0(n) + T1(n) ∗ logT0(n), T 2(n)}) time is sufficient to solve the
search version of F -membership.

Under reasonable assumptions about T0(n), T1(n) and T2(n), the algorithm
of Theorem 5 is asymptotically optimal — yet we may never know exactly what
sort of upper limit optimality provides. This is because we are only ensured
a runtime that’s bounded above by a multiplicative constant of any satisfying
T0(n). We hugely exploit the fact that each procedure has a constant index in
any fixed enumeration of all algorithms. But this gives us no systematic means
for learning anything useful about how an algorithm achieving a low order T0(n)
actually works.

I think constructivizations such as these remain a bit unsettling, even to this
day. Theorem 4 tells us that we can, usually, know an algorithm. We can write it
down. We can trace it as it employs a growing but finite obstruction set. We are
assured that it will not loop forever. Nevertheless, no matter how long we watch
it, we may never know the entire obstruction set upon which it relies. Similarly,
Theorem 5 tells us that we can, in principle, construct an asymptotically fastest
algorithm. We know exactly how it works. We can check its results. Yet we will
never know its time complexity. What an odd turn of events. All this reminds
me again of the fourth type of lie I mentioned earlier. Accordingly, in almost any
practical sense, I would not argue against the sentiment that much of what we
had done, especially in Theorem 5, was play a bunch of clever but dirty tricks
with the big “oh.”

And so it went. Every time Mike and I found ways to remove various forms
of non-constructivity from one arena, they would quickly seem to pop up in
another. It was as if we were playing Whack a Mole at the complexity theory
arcade. Despite all this, I think Theorems 4 and 5 (or rather their more general
versions) and others that Mike and I devised have been big hits for many years.
I am often asked about them. They seem to get at the core of what can and
cannot be made constructive using well-quasi order theory. Working on them was
a lot of fun for the two of us. They exemplify the sorts of results we obtained on
what then were challenging algorithmic paradigms in a completely new research
domain.

FPT, A Prehistory 13

10 Community Reactions

Early on, I think only a few of our colleagues expressed much interest in what
Mike and I were investigating. Fewer still gave us much in the way of encourage-
ment. Notable exceptions include Gene Lawler, Vic Klee, Manny Blum, Steve
Mahaney and a handful others (apologies to those whose names I’ve failed to re-
call). To them we are eternally grateful. We sorely needed the occasional attaboy,
and they came through for us.

A few who shall remain nameless, on the other hand, found our earliest work
somewhat blasphemous. It some quarters it took years for us to gain credibility.
Depending on whom you asked, we were either the village idiots or the lunatic
fringe. The specter of non-constructive algorithms was, I think, viewed as a bit of
a threat by some who had staked their careers on the theory ofNP-completeness.
You see, the usual response to any worry that P might somehow equal NP was
that all those published and highly cited completeness reductions would still be
important. They would simply become useful polynomial-time algorithms. But
what if there were a non-constructive proof of, gasp, P = NP? After all, the
standard approaches had long failed to resolve the question. Something radical
might be required. In that case, all those swell completeness proofs would be
meaningless. You could still map all of NP to some NP-complete problem Π
all right, solvable in polynomial time via Theorem 1. But without constructive
knowledge of the polynomial-time algorithm forΠ , you’re stuck. Of course today,
most of us would probably bet that surely P �= NP . Probably the same was true
back then too, although word on the street was that hopelessly flawed proofs
in both directions were running about 50-50. It is fairly remarkable that the
question remains open to this day.

Some in our community even dismissed our early work as mere “mathematical
curiosities.” Perhaps you have heard stories from Mike about the disingenuous
“elevator chat” at STOC, or seen the insulting “minor results” article actu-
ally produced in print. Although I would prefer not to name any names here,
I was there for these and several other early snubs, sometimes poorly disguised
as humor. It seemed to us that hubris among the theoretical computer science
intelligentsia was never in short supply back then. While all has long been for-
given, it hasn’t been forgotten. Perhaps I merely flatter myself, but I would like
to think I have a pretty thick skin. So this was to me just part of doing business
in computer science. Besides, I’m not a dyed-in-the-wool theorist, nor really very
much of a pure theorist at all. But these early affronts by the in-crowd were,
I believe, actually quite painful for Mike. They became huge and long-lasting
influencing factors on his attitude toward research in general and theoretical
computer science in particular. They helped shape his thinking, created in him
something of a firebrand for the cause against elitism, and released him from the
parochial and highly inbred model of theory as then practiced in the US. Over
time, I think they helped steel his resolve to make his work truly world class and
now so well respected around the globe. Per adversas res fortitude!

14 M.A. Langston

11 Shifting Gears

Thus, the early years were absorbed mainly with the positive side of the equa-
tion. We focused on concrete problems, speed-ups, self-reductions, constructivity
issues and the like. While we brought forward the basic notions of non-uniform
complexity and what is now known as fixed-parameter tractability, at that time
we could only struggle with a variety of feeble ideas for lower bounds. As time
marched on, Mike and I both took positions elsewhere. I stayed in the US, mov-
ing to the University of Tennessee and focusing mostly on applications. After
stints at the Universities of New Mexico and Idaho, Mike eventually moved out-
side the US, first to Canada, later to slots in New Zealand and other countries,
and finally to Australia, where he now holds a professorship at Charles Darwin
University. During all those years and across all those moves, Mike has built
up hugely successful collaborations with a coterie of renowned scientists. One of
the things that rather quickly came out of all that effort has been the much-
heralded negative side of the equation (by that I mean hardness and the W
hierarchy). Other sections of this festschrift will no doubt describe some of those
collaborations.

12 Retrospective

When I first met Mike I was working on a wide variety of topics (as I still do
today). At that time I was investigating problems in packing and scheduling
theory, parallel computation, time-space optimal algorithms and several other
areas. Maybe I have trouble committing myself just to one subject. In any case,
I think pursuing multiple research interests can make it somewhat easier to find
good collaborators, attract funding, and pique the interest of capable students.
Plus I find it to be a lot of fun. On the other hand, spreading your time across
multiple target areas is not really the best way to build brand recognition for
your research program. Instead, it’s probably a lot smarter to pick a single focus
area and concentrate on being the world’s best in that one area. (Young scientists
take note!) And this is where Mike has always excelled. I think I worked pretty
hard in those early days, but again I had several ongoing research projects. In
contrast, Mike worked almost all the time and single-mindedly, with minimal
distraction, on what eventually evolved into parameterized complexity. Except
for an occasional sideline interest (such as Computer Science Unplugged), he
generally still displays that fantastically keen focus today.

So I’ve watched Mike grow from being the voice of “What the hell is VLSI?”
to his now being the voice for a whole new computational discipline. From the
day his house self destructed when its pipes froze then re-thawed, to his now
being in such international demand that he needs no permanent house at all.
Mike and I have worked, played and laughed together for over a quarter century.
Friends and colleagues like that don’t grow on trees.

FPT, A Prehistory 15

Let me therefore say congratulations, Mike, old friend, on the completion
of your 60th year on Planet Earth. I wish you continued good health, much
happiness, and many many more fruitful and productive years to come!

Acknowledgments and Disclaimers. I would like to take this opportunity
to thank Rod Downey and Daniel Marx for their helpful suggestions in improv-
ing the presentation of this collection of reflections on Mike’s career. In fact
I would like to thank all the festschrift organizers for inviting me to prepare
this contribution. At their behest, I have done my dead level best to describe
the background and genesis of fixed-parameter tractability. Thanks also go to
Fran Rosamond. Her enthusiasm, spontaneity and consistent good humor are
positively contagious.

The opinions expressed here are mine alone, and should be foisted upon
neither Mike nor the organizers of this project. I have tried to be open and
forthright, yet politic, calling events honestly as I recall them. I have pulled only
a few punches, and those mostly in the uneasy early relationship Mike and I had
with the computer science theory establishment. I would also like to thank pro-
fusely the many who helped inspire Mike and me along the way, and apologize
again to those whose names I’ve inadvertently failed to mention.

References

1. Chen, J., Kanj, I.A., Xia, G.: Simplicity is beauty: Improved upper bounds for ver-
tex cover. Technical Report TR05-008, DePaul University, Chicago, Illinois (2005)

2. Deo, N., Krishnamoorthy, M.S., Langston, M.A.: Exact and approximate solutions
for the gate matrix layout problem. IEEE Transactions on Computer Aided De-
sign 6, 79–84 (1987)

3. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
4. Fellows, M.R., Langston, M.A.: Nonconstructive advances in polynomial-time com-

plexity. Information Processing Letters 26, 157–162 (1987)
5. Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time

decidability. Journal of the ACM 35, 727–739 (1988)
6. Fellows, M.R., Langston, M.A.: On search, decision and the efficiency of

polynomial-time algorithms. In: Proceedings of ACM Symposium on Theory of
Computing, pp. 501–512 (1989)

7. Fellows, M.R., Langston, M.A.: On well-partial-order theory and its application to
combinatorial problems of VLSI design. SIAM Journal on Discrete Mathematics 5,
117–126 (1992)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

9. Kashiwabara, T., Fujisawa, T.: An NP-complete problem on interval graphs. In:
Proceedings of IEEE Symposium on Circuits and Systems, pp. 657–660 (1979)

10. Kinnersley, N.G.: The vertex separation of a graph equals its path-width. Informa-
tion Processing Letters 42, 345–350 (1992)

11. Kinnersley, N.G., Langston, M.A.: Obstruction set isolation for the gate matrix
layout problem. Discrete Applied Mathematics 54, 169–213 (1994)

12. Kuratowski, K.: Sur le problème des courbes gaushes en topologie. Fundamenta
Mathematicae (French) 15, 271–283 (1930)

16 M.A. Langston

13. Levin, L.A.: Universal enumeration problems. Problemic Peredaci Informacii (Rus-
sian) 3, 115–116 (1972)

14. Lopez, A.D., Law, H.-F.S.: A dense gate matrix layout method for MOS VLSI.
IEEE Transactions on Electron Devices 27, 1671–1675 (1980)

15. Robertson, N., Seymour, P.D.: Disjoint paths - a survey. Journal of Algebraic and
Discrete Methods 6, 300–305 (1985)

16. Robertson, N., Seymour, P.D.: Graph minors IV. Tree-width and well-quasi-
ordering. Journal of Combinatorial Theory, Series B 48, 227–254 (1990)

17. Robertson, N., Seymour, P.D.: Graph minors XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B 63, 65–110 (1995)

18. Robertson, N., Seymour, P.D.: Graph minors XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B 92, 325–357 (2004)

The Birth and Early Years

of Parameterized Complexity�

Rod Downey

1 School of Mathematics, Statistics and Operations Research
Victoria University

P.O. Box 600, Wellington, New Zealand
2 Isaac Newton Institute for Mathematical Sciences

20 Clarkson Road Cambridge CB3 0EH, United Kingdom
rod.downey@vuw.ac.nz

Abstract. Through the hazy lens of (my) memory, I will try to recon-
struct how Mike Fellows and I, together with some co-authors in some
cases, came up with the basic papers in parameterized complexity.

1 Introduction

When I agreed to do this archaeological exercise, I was rather enthusiastic until
I tried to remember dates and places and what we did and where. Through
cunning questions of Mike, without disclosing the existence of the Festschrift, I
have confirmed many of the “facts” below. Also, I have e-mails from December
1990, and letters from 1991 and 1990. Unfortunately, many discuss “following
our phone conversation” so in many cases it’s back to memory.

I will not try to say who did what, since mostly it was a happy coalition of two
friends. Anyway, my policy has always been that “joint work” is joint work. In
our case it was definitely so : a nice interaction of complementary skills. Only as
an illustration of this complementarity, I will say what happened with the very
first papers [DF91, DF92a, DF92b]. It is both an interesting study in serendipity
and an interesting study in complementary skills.

Before I begin, I take this opportunity to salute my longtime friend, my
favourite co-author, and certainly my only co-author who understands the value
of surfing. Congratulations Mike on the occasion of your 60th.

2 Beginnings

I know to within 2-3 days when I first met Mike Fellows. It was at the ACCMCC
(a combinatorics conference series in Australia and New Zealand) conference at
Massey University. This conference was in a medium sized rural town in New
Zealand called Palmerston North, December 3-7, 1990.

� Research supported by the Marsden Fund of New Zealand. Thanks to Mike Langston
and Moshe Vardi for some helpful comments and corrections.

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 17–38, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

18 R. Downey

Palmerston North is not the most exciting place in the world. In fact, much to
the ire of the locals in 2006, John Cleese (of Monty Python fame) was quoted as
saying “If you ever do want to kill yourself, but lack the courage, I think a visit to
Palmerston North will do the trick.1” You may then ask yourself why Mike was
visiting New Zealand for this meeting? As it turns out, in his youth he had seen a
famous surfing movie called “The Endless Summer” and it featured surfing in the
apparently exotic location of New Zealand, particularly Raglan and Shipwreck
Bay2. He hoped to combine a visit here for the conference with a visit to some of
the local surfing locations. But here’s a classic case of serendipity. I did not have
too much interest in ACCMCC, but in those days there was almost no research
travel money to be had, certainly not by mathematicians or computer scientists
in New Zealand. Hence, if there was any conference near, you went to it. My
attitude was (and remains) “Who knows, maybe you might pick up an idea or
two”. In those days, you might only get one chance a year3.

I can pretty well say that I met Mike on the 4th December. I know it was the
day of the conference dinner and Mike was speaking in the afternoon. After his
talk, I recall meeting him outside of the seminar room, saying that I thought
the material was very interesting and loved the talk. I said it reminded me of a
paper I had read recently from a Contemporary Mathematics proceedings.

Mike said something to the effect that “it should remind me as he wrote that
paper and this is what it was about” (Fellows [Fe89]). It’s always wonderful to
run across someone who has actually read one of your papers, even if they don’t
recall who wrote it, and perhaps this was all to the good.

1 See, for example, http://www.abc.net.au/am/content/2006/s1586512.htm. The
silly part was that the local tourist board took it all seriously and then the locals
promptly called the local rubbish tip ”Mount Cleese.”

2 My understanding is that on this trip the film gave a false impression, in that ev-
erywhere Mike went was blown out and cold.

3 This was all before the Marsden Fund for basic science was set up in New Zealand,
under the initiative of Sir Ian Axford. In those halcyon days, I recall being ambi-
tious and hungry for the most recent ideas. There were a few small grants available.
I did get a seeding grant from a committee called ISAT enabling me to have one
overseas trip and several American mathematicians to visit me here in New Zealand.
I am forever grateful for that. To get overseas, I would write to many universities
in the US, asking would they be so kind as to give me a little money if I gave a
talk, and then cobble the trip together using money from giving seminars at maybe
6-7 universities. Once I asked the travel agent to get me to Haifa the cheapest way
he possibly could: Wellington-Sydney-Tokyo-Amsterdam-Tel Aviv with bad connec-
tions, 54 hours. (KLM had a deal for a $50 to anywhere in “Europe” side.)

There were some grants available to people via what was called the “University
Grants Committee” but any proposal needed to get out of the local university, in
those days here controlled by non-mathematicians, who everyone knew were “world
class” by some unknown mysterious mechanism. I once tried to get one of these
grants to visit Mike Fellows for collaborative research, and received the official reply
that we don’t support “Research Fellows.” This response showed how seriously they
read the proposal. Fortunately things changed once all proposals were internationally
vetted.

http://www.abc.net.au/am/content/2006/s1586512.htm.

The Birth and Early Years of Parameterized Complexity 19

Mike started telling me about his work with Langston [FL87, FL88] of us-
ing Robertson-Seymour (e.g. [RS86a]) methods to demonstrate polynomial time
complexity non-constructively. Mike asked me about my background. Hearing
it was in logic and computability theory/structural complexity he suggested a
problem I might be interested in. He gave me a copy of his paper Abrahamson,
Ellis, Fellows and Mata [AEFM89] the “PGT” (“polynomial generator tester”)
paper. The contents of the PGT paper are quite important for this story and
I will soon discuss them in detail. We decided to sit together at the conference
dinner and discovered that we also shared a love of surfing and a love of wine,
having had a couple of bottles of some Villa Maria Cabernet Merlot 1989. Mike
suggested I might like to work with him on trying to prove a Ladner style den-
sity argument for the PGT setting for the complexity classes for “families of
relations.”

Ladner’s Theorem [La75] is often quoted as being that if P �= NP then there
is an “intermediate” NP language, which is neither NP-complete, nor in P. But
in fact, Ladner proved that if A and B and computable languages with A <P

T B
then there is a computable language C with A <P

T C <B
T . In unpublished work

(a proof can be found in Downey and Fortnow [DFo03]), Shinoda and Slaman
proved that you can remove the hypothesis that A and B are computable, and
that this result holds for any languages A <P

T B.
Since it is relevant to the story at hand, I will digress as to how I got into

complexity theory at all. My background was in computable algebra and classical
computability theory. Here one calibrates the universe into classes of relative
computability under various reducibilities and in applications to algebra, you
look at things like, e.g. computable fields and ask if every computable field has
a computable algebraic closure. As with all things I study, I retain an interest
and recently showed that computing whether two finitely presented groups have
the same first three terms in their integral homology sequence is what is called
Σ1

1 complete. This shows that as an invariant it is as bad as it can possibly be.
(Downey and Montalbán [DM08].)

At a certain point in the late 1980’s, I resolved to learn some complexity
theory, as it is always interesting to work in new arenas. This is something Mike
is extremely keen on. He reads a lot. He can see many elegant applications into
new areas of, for example, biology, VLSI design, linguistics, learning theory etc4.
Branching out into a new area is something you can do at a small department like
mine, and I did this by teaching complexity theory (as per Garey and Johnson
[GJ79], and Balcazaar, Diaz and Gabarro [BDG87]). I wrote some papers on
classical “structural complexity” such as the structure of the polynomial-time
degrees (for example [DGHM89]).

Because of this background, I was familiar with Ladner’s results so I guess I
was a good candidate for Mike’s question.

4 One thing I always liked in Mike’s homes was that there were always teetering piles
of books from all kinds of areas of human endeavour, and papers from many areas
of science scattered everywhere.

20 R. Downey

The point of all of this was that Mike left me a copy of the PGT paper, and
I promised to look at it as soon as I could. I began the next day.

It had long been recognized that some kinds of intractability might be better
than others as mentioned specifically in Garey and Johnson [GJ79]. There had
been no real quantification of what this meant, except perhaps forays into av-
erage case complexity, approximation algorithms and strong NP-completeness.
There seemed no history of worrying about parameters in the input. Whilst it
seems that earlier authors such as Ken Regan in [Re89] (who talked about k-
Dominating Set in passing) and Moshe Vardi [Va82]. Vardi pointed out that
the input for database-query evaluation consists of two components, query and
database. For first-order queries, query evaluation is PSPACE-complete, and for
fixpoint queries it is EXPTIME-complete, but, if you fix the query, the complex-
ity goes down to LOGSPACE and PTIME correspondingly. In particular, the
size of the database was not the right complexity for database query complexity
and the size of parameter counted. Also in the 80’s were the papers Vardi and
Wolper [VW86] and Lichtenstein and Pnueli [LP85] who pointed out that the
input for LTL model checking consists of two componets, formula and trasition
system. LTL model checking is PSPACE-complete, but if you fix the formula,
the complexity goes down to NLOGSPACE.

So people in the database community were very aware that fixing a parameter
makes an intractable problem tractable. In retrospect the key is that they did
miss the big difference between query evaluation and model checking. In query
evaluation the dependence on the formula is exponential, while in model checking
it is multiplicative. Indeed, as was shown later, model checking is FPT and query
evaluation is likely not FPT. All this happened in the 1980s, but in spite of
the clues, these workers completely missed parameterized complexity theory. Of
course other earlier work is discussed in Mike Langston’s article in this volume.

The first real breakthrough was the PGT paper of Abrahamson, Ellis, Fel-
lows, and Mata [AEFM89]. In [AEFM89], they modeled parameterized problem
by what they called polynomially indexed relations. The crude notion of (nonuni-
form) FPT is definitely in [AEFM89] as the notion of easiness. Specifically,
Abrahamson, Ellis, Fellows and Mata defined a P -indexed family of relations
Π ⊂ Σ∗ ×Σ∗ with the n-th slice having |x| = n. Then this class is said to be5

– P -bounded if there is a polynomial p such that (x, y) ∈ Π implies |y| ≤ p(|x|).
– P -checkable meaning that there is a polynomial time algorithm to decide if

(x, y) ∈ Π , and
– P -indexed meaning that there are polynomial time algorithms to compute

(a) (1n, i) �→ y such that in(y) = i and (b) (1n, y) �→ in(y) for y ∈ ra(Πn).

Then the problem kinds they considered (“PGT=polynomially generator tester
pairs”) were of the form as follows.

5 The reader should not stress too much about the details of the definition, I only give
it for historical interest, and to show that it is extremely unwieldy.

The Birth and Early Years of Parameterized Complexity 21

Input. x ∈ Σ∗ and j ∈ N with j ≤ q(|x|).
Question. Is there a y with (x, y) ∈ Π and i|x|(y) ≤ j?

The example was Vertex Cover. In this [AEFM89] setting, deciding whether
there is a vertex cover of size ≤ k corresponds to the input (G, J) the q bounded

search problem for Π = V C and j = j(n) =
∑k

i=0

(
n
i

)
. (This is quoted straight

out of [AEFM89].)
There is a similar multi-line definition of a many-one reduction from Π to Π ′

as a function f : (x, i) �→ (x′, i′) and

– f is computable in time polynomial in |x| and log i.
– There are polynomials r, s, t with |x| ≤ r(|x′|), x′| ≤ s(|x|), and i′ ≤ t(i).
– ∃x((x, y) ∈ Π and i|x|(y) ≤ i) iff ∃y′((x′, y′ ∈ Π ′ and i′|x′|(y

′) ≤ i′).

Using this very cumbersome definition, Abrahamson, Ellis, Fellows and Mata
showed that things like k-Linear Inequalities had the same complexity as
k-Short Sat (for arbitrary formulas), and asked the question of how things like
k-Dominating Set fell into this classification. (It does not seem to as the classes
are really somehow concerned with nonuniform W [P].) Most of the reductions,
not surprisingly, look akin to recycled LOGSPACE completeness results, and
all resurface later in our paper [ADF95] with Abrahamson where we look at
W [P], and alternation. There is an error in the paper as it purports to show
that weighted sat is (essentially) W [P] complete, where in the proof of Theorem
6.5 it is claimed that unravelling of the formula is equivalent to to asking if it is
satisfiable, (which is true) but the point is that the process makes more variables
true so the reduction cannot be parametric. However, we were able to rescue a
lot of results in [ADF95], and discover a further collection of W [P]-complete
problems (this happened in 1993).

As you all know, Mike’s personal background is pretty colourful. It involves
the armed forces, jumping out of planes in parachutes, later fishing in dangerous
waters, colourful living in San Diego and then finally getting into graduate school
at UCSD due to the intervention of Michael Freedman of Fields Medal fame6.
I think that this eclectic background has enabled him to be very creative, and
I think you can see this in the [AEFM89] paper, as well as his earlier work
with Langston [FL87, FL88] (article included in this volume). Both he and I are
from relatively modest childhoods, and I believe that this often makes you quite
ambitious. Maybe this is where the initial drive came from.

The story continues as follows7. I sat and stared at the [AEFM89] paper for a
few days and thought two things. First, there is the kernel (no pun intended) of a
very exciting idea in this paper buried under layers of ugliness, which does not get
to the key issue; and second I will have a lot of trouble proving a Ladner Theorem
with such an unwieldy definition. So maybe there is a simpler formulation.

At a certain moment I recall thinking why not simply study languages L ⊆
Σ∗ × Σ∗ or Σ∗ × N, and have reductions as what we now see as parametric
connections (x, k) �→ (x′, k′). The rest of the [AEFM89] hides the core issue.

6 The occasion prompting Freedman to intervene being present in one of Mike’s plays.
7 This is the only point I will say who did what.

22 R. Downey

I am sure that this all came out of my logic training. I then figured out the
density theorem (eventually being published in [DF93] and announced in the
abstract with Karl Abrahamson [ADF93]) and wrote and maybe faxed Mike
several letters including a 26 page handwritten letter with a lot of proofs. We were
very excited and we spoke on the phone for long periods. Since our mathematical
backgrounds are quite distinct and Mike had not seen priority arguments before,
likely he had trouble following my scrawls. But after we talked through the issues
on the phone and he clearly saw many ways in which the simple definitions could
be applied to Dominating Set. It must have been by the 18th December 1990
as I have an e-mail where Mike summarizes all the definitions. In that e-mail
he sets down his ideas towards using logical depth, in the format of weft, (and
hence the W -hierarchy) as the basis of classifying parameterized complexity. So
you can see this all happened very quickly, maybe a couple of weeks. I thought
weft was a terrific idea but had seen no proofs.

Where did Mike get this nice idea from? Certainly he had been thinking about
Dominating Set and Independent Set as well as Vertex Cover. If you
look at the logical form of the first two, you can see the form of W [2] and W [1]
respectively, provided that you are prepared to use boolean circuits as a platform
for the intractability “core problems”. Only later with Liming and Jainer were
we able to get nondeterministic Turing machines into the picture. ([CCDF96].)

Even nowwe don’t have Turingmachines in the picture for the miniaturesM [1],
and this is a great open question. (Is k logn Turing machine acceptance inM [1]?)

It is also interesting that at the bottom of the e-mail of the 18th December are
the questions (i) if P �= NP does this hierarchy separate (ii) If W [t] �= W [t+ 1]
are there infinitely many equivalence classes, and (iii) Relationship between the
∪W [t] and W [P]. At the time (i) has us thinking about oracle separations, (ii)
relates to density and (iii) remains interesting even now.

At this stage, Mike had a lot of grant money, and asked me to visit him.
He thought we could work well together and work out the details of this very
attractive material. I was very excited as I could see that there was a lot of
potential. Clearly I thought that what we were doing might be important, as I
have kept some of these early e-mails8.

In early 1991, I visited Mike for the first time9. I stayed at Mike’s house in
Victoria on Vancouver Island. I recall getting there and him telling me that they
were practicing ecological front lawns (which seemed to equate to not mowing
ever). The house was occupied by Mike’s family (two nice kids Max10 and Hanna)

8 Or the other interpretation might be that I am a horder of such things. Only in 1992
did I keep some kind of e-mail file deliberately.

9 Of course, one hero here was my poor wife Kristin who had to deal with two children
under three by herself. On this trip I think she tripped carrying a baby car capsule,
and sprained her knee.

10 One great memory I have of Max was that, on a later trip, we were going over to a
place called Cox Bay on the west coast of Vancouver Island for a few days surfing
and work. Mike said to Max we had to leave soon and was he packed? Max grabs a
jacket, jumps in the car and says something to the effect of “Let’s go!” That was the
trip where Mike forgot Roberta’s clothes, something we discovered half way there.

The Birth and Early Years of Parameterized Complexity 23

and his then wife Roberta. I recall that it usually smelled of coffee, and was
covered with piles of books and papers, as I mentioned earlier. There I discovered
that Mike would get irritable if he did not eat enough eggs, and we would eat a
lot of Mexican food. I would stay in a room in the basement, next to bathroom
that Mike “fixed” with a technique which inevitably involved vast amounts of
silicone being squeezed in a large ungainly mess.

Mike essayed to me details of his ideas of using circuit weft as a basis of
classifying parameterized complexities. In particular, Mike had the key reduction
for CNF Sat, which is used throughout [DF92a, DF92b, DF95a]. During that
visit, I well remember working each day on a little white-board or maybe flip-
chart at his home where many of the details of the first paper(s) [DF91, DF92a,
DF92b] were worked out. Already, Mike had the fundamental idea here for the
W [t] classes, and for t ≥ 2 we figured out the details on this trip.

Aside from the project we talked about lots of other things ranging from
poetry to mathematics education. I had been involved in mathematics education
in New Zealand, once organizing a conference for teachers at my home university.
I found this something that totally sucked up your energy. I gave Mike the “sage
advice”, don’t do it, it will ruin your research. Well how wrong I was on both
counts! I am glad that there are nice accounts of Mike’s initiatives with Neil
Koblitz (“The Mathematics Liberation Front”), Tim Bell and Nancy Casey.

Mike also knew of my interest in surfing as we had spoken of this in Palmerston
North and on the telephone. I brought my wetsuit to Canada and we went to
this place called Sombrio. In the early 1990’s this was a place occupied by a
few guys who seemed to live like some kind of refugees from the 1960’s in old
shacks. In those days, Sombrio was somewhat difficult to get to. A couple of
hours drive, then a walk for half a kilometer through knee deep mud. Boy, was
that all fun. In 2008, Mike and I went there for old times, when STOC/IWPEC
was in Victoria. Now, it is all made up track, part of the West Coast Trail, and
there were 50 guys there surfing!11

As with all the trips, Mike and I spoke about maths most of the way. It’s a
great model for research.

I have a draft manuscript ([DF91]), dated March 25, 1991 called “A Complete-
ness Theory for Fixed Parameter Problems” which has the new definitions, weft
ideas, some hardness proofs, and many of the basic results from [DF92a, DF92b].
It is not overly well written but has problems considered like k-perfect Code,
k-Not All Equal Sat, k-CNF Sat, k-Dominating Set, k-Independent
Dominating Set, and the like. It also has a collection of FTP examples like
Feedback Vertex Set, Planar Face Cover Number, Min Cut Linear

Arrangement, Graph Genus, known mainly to Mike at that time. It has
the basic weft reductions, though I think it slurs over the “obliviousness” of the
k-CNF Sat reduction needed for the induction for the higher wefts. I also have

11 On another trip, in 1992, we took Mike Hallett, one of Mike’s PhD students, and we
put him in a dive suit. He fell off a wave and was washed across the reef (without
touching it) looking like the gingerbread man as he could not bend too well in 9-18
mm of rubber.

24 R. Downey

some copies of some old slides of Mike’s where he spoke at a meeting at Mani-
toba on this material a little later. (This was the basis of the paper [DF92a].) I
recall that we submitted [DF91] to FOCS, and it was rejected12.

It was quite early on that we noticed the issue of uniformity in the reductions.
However, it was not really till the March that we refined this to the three defini-
tions we now have. This occurred after a debate as to whether Graph Genus

was strongly uniformly FPT. Graph Genus is only nonuniformly FPT on the
face of it. Mike pointed out that it was uniformly FPT by Fellows and Langston
[FL89b]. It was only shown to be strongly uniformly FPT in 1999 by Mohar
[Mo99]. I think to some extent this shows where our “head space” was at the
time, as we were still fascinated by the Robertson-Seymour material.

Incidentally, I still think that there is a very interesting project with this
material. The hypothesis FPT �= W [1], say, has two very different meanings
depending on whether we mean uniform or nonuniform. In the nonuniform case
it says that determining whether a 3CNF formula has a weight k satisfying
assignment is not in DTIME(nc) for some fixed c, and hence from some slice
onwards, deterministic algorithmic must take more time. In the uniform case
it is apparently weaker, and apparently it “could” be that all the slices are in
DTIME(nc), but only nonuniformly. This is because the uniform case asks for a
single algorithm to witness this inclusion. When I think of the issue I think that
W [1] �= FPT nonuniformly, as the spirit of the programme.

3 Precursors

Before we move on, I guess we should look at where these ideas germinated. Yes,
it is true that the relevant event was the [AEFM89] paper but also, in retrospect,
you can see the ideas crystallizing out from earlier considerations; especially of
the work of the two Mikes, Fellows and Langston, and their co-authors.

Even though we evolved to think of this as addressing practical computing, a
real inspiration was the theorem of Robertson and Seymour which stated that
finite graphs were well quasi-ordered under the minor relation, and immersions.
Furthermore for a fixed graph H , H ≤minor G is O(|G|3). Hence any minor
closed class had a polynomial time (FPT anyway) recognition algorithm, in spite
of the fact that we did not know what it was. This is a stunning theorem, and
it has yielded a revolution in graph theory in the last 30 years. The algorithms
stemming from applications of Robertson-Seymour wqo theory are, or course,
wildly impractical. Mike tells me of a famous computer scientist saying “This
is not computer science, it is mathematical curiosity!” But there are so many
practical, nearly practical, and fascinating spin-offs.

I have something else Mike gave me. An old proposal by him and Langston
to use wqo methods to design VLSI circuits. And it was funded by the NSF,

12 I have only ever been involved in two submissions to FOCS/STOC. One was [DF91],
and the other was the recent one on kernel lower bounds [BDFH08]. Both were
rejected.

The Birth and Early Years of Parameterized Complexity 25

and later the Office of Naval Research! Wow, is that blue-sky research. But look
what it yielded : If nothing else, parameterized complexity.

The point here is maybe Mike was sensitized by his work with Langston (such
as [FL87, FL88]) on applying and effectivizing Robertson-Seymour wqo theory. It
focuses us on the issue of the parameter, then the algorithm once the parameter
is known. In the Robertson Seymour case, the parameter is the obstruction set.

Also surely related here is the paper on cutset regularity (=finite index) by
Fellows and Langston [FL89] that was quite important I believe. Fellows and
Langston used an analogue of the Myhill-Nerode Theorem combined with a
parsing language for graphs of bounded treewidth to establish a general method-
ology for fixed parameter tractability (where the parameter is treewidth) as per
Courcelle’s Theorem (as discussed here in Downey [Do12]), and a method of
establishing that something is likely hard by showing that it is not of finite
index.

Additionally, with the wisdom of hindsight, it spotlights the notion of implicit
parameters like graph width metrics. For us, however, this material was more
important when the book was being written.

On the other hand, in retrospect, it might have been a bit unfortunate to
tie the FPT material to the Robertson-Seymour material when we spoke. Many
listeners thought that what we were doing was basically applying Robertson-
Seymour. For example, it is really striking how much it is mentioned in my
Dagstuhl 1992 abstract. That is, initially, we failed to focus on practicality.

There are other precursors such as Kintala-Fischer’s [KF80] model of limited
nondeterminism, but we were unaware of this paper at the time. Also, Kintala-
Fischer approach there does not split the problem into slices, is not applied
anywhere, and has trouble dealing with the issues we deal with.

4 Figuring Out W [1] and the Great Kiwi Road Trip

We found that we worked well together. Mike decided to visit me in Wellington.
I cannot remember when, but it was almost certainly the northern summer, so
maybe May or June 1991.

At the time, we had this framework (which was submitted to FOCS), lots of
enthusiasm, and the whole of the world of NP-complete (and other) problems to
see if we could find other interesting applications. The relative complexity of the
proof of k-Dominating Set being W [2] complete showed us that the reductions
likely would not be easy.

In particular, we had not figured out the situation for W [1]. Given the relative
delicacy of the reductions, we strongly believed that W [1] would stratify into an
infinite collection of levels W [1, t]. Here W [1, t] denoted the class of problems
FPT -reducible to depth 2 weft 1 circuits with one large And gate and whose
small Or gates above have fanin bounded by t. We decided to make a surfing
road trip and work on these issues, and my wife let us go.

26 R. Downey

Thus I grabbed my “Guide to New Zealand Surfing”, surfing gear, two books
of poetry (Collected Poems by Michael Dransfield, and one called “Applesteal-
ers” about “new poetry” in Australia)13, Garey and Johnson, lots of paper, two
clipboards and some preprints, and off we went. We basically circumnavigated
the North island of New Zealand below Auckland, traveling to New Plymouth,
Raglan, Mount Maunganui and Newdick’s Beach, Gisborne, Mahia, Napier,
White Rock and then home. For about a week, we drove, worked, surfed and
had a fantastic and incredibly productive time. Contrary to our intuition, we
realized that there was no stratification of W [1]. This is the basis of the core
paper [DF95b], and contains that lovely reduction for Red/Blue Nonblocker

and hence the completeness for Clique and Independent Set.
We also discussed another question brought up by Mike in an e-mail of Febru-

ary 27, 1991. Mike says he noticed this “weird thing”, which was that a certain
problem whose unparameterized version was in ΣP

2 did not seem to fit the model
we had. He said “Maybe the whole hierarchy is some kind of analog of the poly-
nomial time hierarchy...” “Or maybe there is some kind of weird combinatorial
reduction placing this above the current hierarchy.” I don’t recall that we made
progress on this, but on my next visit to Mike in April or May 1992 we worked
on this, eventually also with Karl Abrahamson, resulting in the paper [ADF95].

Like much of our time together, that first trip had a lot of great memories.
The high point was coming over the hill at Mahia, and it looking like a surfing
movie: lines stacked to the horizon. We surfed till we dropped and then drove
that night into Napier. Mike slept most of the way. One the way in, we decided
we needed a beer, and stumbled into this bar on the highway, not noticing the
trucks and motor bikes outside. The place was full of large, tattooed and scary
people, so after a quick beer we ran like rats.

5 Getting Published and Promoting the Material

Some time late in 1991 we received the news that the abstract [DF91] had been
rejected from FOCS. We were really annoyed. Later people I spoke to like Stuart
Kurtz and Lance Fortnow said that the abstract should have been accepted. I
had been told by a number of people that this is why there are so many spin-off
conferences like CCC as STOC/FOCS has strong opinions as to what constitutes
an advance.14

Although it anticipates things somewhat, later we had reviews of some of our
papers which said really revealing things like: “What this subject really needs is

13 Mike can read while in a moving car, and with me driving, we would alternate
between a little poetry and a lot of maths.

14 Whilst I serve on many CS conference committees I don’t like the method. I always
think of the art contests in Paris in the late 19th Century, and think of the paintings
rejected; Van Gogh, Rembrandt, Rousseau, etc. Who do we remember now? I think
that these institutions are intrinsically conservative. Moshe Vardi had a very inter-
esting article about this in a recent Communications of the ACM. (Vardi [Va09].)

The Birth and Early Years of Parameterized Complexity 27

for it to be developed by someone like here unnamed famous CS professor and
their students.” Hardly interacting with the science or merit of the work.

Having found out about the rejection, we decided to try for the 1992 Confer-
ence on Computational Complexity or Structure in Complexity Theory as it was
then known. I have a version of the abstract we submitted dated December 9th
1991. Certainly it was much stronger than the earlier abstract, and includes the
W [1] collapse.

Mike was already doing what he does so well. Traveling around interacting
and spreading ideas. He had had some excellent feedback both informally and
about the material when he gave seminars.

The first time I spoke on this material was at Schloss Dagstuhl 9.00 am on
Monday the 3rd of February 1992. I was the first speaker in the whole Complexity
Theory Seminar. I was luckily invited for my early work in structural complexity.
I had flown in from Wellington the day before. I could see in the eyes of the
audience that this was a “good idea.” It does give me pleasure to go back and
read the relevant abstract from the book they have at Dagstuhl.

For some naive reason I had expected lots of workers at that meeting to stop
what they were doing and launch into the new theory. I particularly thought
would happen this after Mike and Hans Bodlaender [BF95] showed that k-
Processor Scheduling would likely not be in polynomial tme, using our
technology, without showing that it was NP-complete. More specifically, it had
long been known that if k was part of the input, then k-Processor Schedul-

ing is NP-complete, but for a fixed k, the NP-completeness or otherwise of
k-Processor Scheduling is a prominent problem in the back of Garey and
Johnson [GJ79]. What Hans and Mike did was to show that it is W [2]-hard.
This means that, assuming FPT �= W [2], there should be no feasible algorithm
for large k. The hidden message of the Bodlaender-Fellows breakthrough is that
it is possible to prove hardness without establishing NP-completeness15.

The mass parameterized migration did not happen with the exception of a
few cases like Ken Regan. In fact, I think the majority of workers in complexity
theory at the time remained and possibly remain unaware of the definitions,
which is kind of a shame since it seems one of the few successful coping strate-
gies.16 With the exception of some people such as Bill Gasarch, Alan Selman
and Eric Allender have kept track. Even for those who seemed to like it, it was
quite different from what they were doing at the time17.

15 Later this methodology was taken up by Aleknovich and Razborov [AR01] who
recognized the value of complexity classes sensitive to isues within polynomial time.

16 Notably, most texts on computational complexity don’t even mention it. Perhaps this
is because complexity theory sees itself as being concerned with showing something
can’t be done, whereas a nice aspect of parameterized complexity is the focus on
trying to serve practical computation. I am willing to believe P �= NP , and as a
consequence we need a complexity theory that “serves mankind” in the form of
practicioners.

17 But at least both Mike and I were invited to the next Complexity Theory seminar
at Dagstuhl in 1993.

28 R. Downey

In general, I think the majority of people keep doing what they do, but a
little more on this later. At that Dagstuhl meeting the big thing was Ogiwara-
Watanabe [OW91] and the leftset technique for looking at constrained reductions
from sparse sets. The other thing was to define new complexity classes. There was
an edict put out in this meeting that it should be illegal to define a complexity
class and not populate it with a concrete problem. Fortunately for us ours had
members!

Dagstuhl was very interesting in those days, as it was only the “castle” and
did not include the lovely new “ring” building joined to the castle by the bridge.
It had the worst Internet in the universe upstairs where the games rooms are
now. I recall that loading a single page over the Internet via the dial-up modem
would take an hour. I remember learning a lot about Graph Isomorphism at
that meeting. Some of us also went for a run as a group in some old tracks,
with totally out of date maps and got totally lost. An hour run turned into a
2.5 hour one.

In 1992, I had a sabbatical and was to spend May-December at Cornell Uni-
versity. I recall dropping in to Mike on the way. I did not know much about
treewidth nor about wqo theory, and Mike set about teaching me that. He
showed me Bodlaender’s (and his student’s) work on algorithms for graphs of
bounded treewidth and explained his work with Langston such as [FL89]. I re-
membered that we tried to prove that graphs of bounded treewidth were well
quasi-ordered by the minor ordering using methods from automata theory. This
is a cool project that has never worked out, but is still a fascinating possibility.
We also worked on expanding our repertoire of hardness results into other com-
binatorial problems. In particular, at that time we worked on applying this to
Angluin-type learning complexity with Mike’s student Patricia Evans [DEF93]. I
recall meeting Neil Koblitz with whom Mike had been working on parameterized
versions of cryptography [FK93]. I think it was in a car trip to Sombrio with Neil
in the car that we realized that all problems are kernelizable iff FPT, whereas
we had been trying to show that there were some problems in FPT which were
not kernelizable. Thinking about this lead to the paper with Liming Cai and
Jianer Chen (who I had not met at the time) on advice classes of parameter-
ized complexity. (That is, FPT=Polynomial time with slicewise advice.) This
eventually appeared in [CCDF97] due to the enormous backlog in the journal.
The recent WorKer18 Leiden talk by Dániel Marx has a lot to say on the issue
of Kernelizable=FPT vs e.g. search trees. Dániel has expanded this talk into a
contribution to the present volume (Marx [Ma12]).

Of course at the time we had several problems which are still with us. To wit,
collapse propagation of the W -hierarchy, approximation (e.g. 2k) FPT approxi-
mation of Dominating Set

19, how to deal with space.

18 A very nice workshop at the Leiden conference center based on topics around the
theory of kernelization.
http://www.lorentzcenter.nl/lc/web/2010/418/info.php3?wsid=418

19 To wit, is there an FPT algorithm which either says no size k domintaing set or
gives a size 2k dominating set.

http://www.lorentzcenter.nl/lc/web/2010/418/info.php3?wsid=418

The Birth and Early Years of Parameterized Complexity 29

I think at that time Mike’s interest had moved into computational biology
and string matching, such as LCS. He had the very clever student Mike Hallett,
and had connections with Tandy Warnow. I know he was also working with
Hans Bodlaender. (Certainly he and I later talked on pattern matching and the
material which resulted in [BDFW95] and [BDFHW95].)

During that visit, I began writing [DF93] and did not Latex at the time. Mike
gave me his source for [DF92a], and said “just do this”. Little did I know that I
was about to learn Latex from someone who was learning disabled in the area. It
took me a few year to discover the command “\begin{theorem}” or that Latex
would automatically number things (like theorems, bibitems, etc) or even that
there were things called bibitem, cite or ref.

We talked a lot about the programme of getting the work to penetrate. We
decided that if the work was of value then it would be seen to be so at some
stage, history would be the judge. There was no reason that some person work-
ing on their own stuff should want to change, but if we had a source for the
material (like a book) then graduate students would maybe pick it up. After
all, writing a book would “surely take only a year or two to write!” Little did
we know how wrong that timeframe was to be. I have an e-mail from July 14,
1992 indicating that I was writing a chapter on the Abrahamson-Fellows [AF93]
methods, and asking if Mike knew of any FPT applications of the minimization
of a submodular function, or of combinatorial optimization. I also mention the
beginning of Appendix 1. Clearly the book must have been started by then. So
I guess it only took seven years. I also note that around that time Liming Cai
and Jianer Chen were definitely in the frame. Almost certainly Mike had visited
Jainer, and Liming was a student at the time. They had told us of the Papadim-
itriou and Yannakakis [PY91] work on MAX SNP and their work showing how
it relates to FPT. By the 16th July we were reading Kintala-Fischer and could
see how many convolutions are needed if you try to address limited nondeter-
minism nonparametrically. At the time we were also wondering is there was a
decent stratification of the classes using FPT reductions polynomial in both the
parameter and the input. It is nice to see this concept resurface in Dániel Marx’s
material at WorKer ’ 10 (and present in Marx [Ma12]) on bounded search trees
where they are called ”Polynomial parameter transformations”.

Sometime around then, we heard that our paper was accepted by Structures
in Complexity. We also decided to write up the two papers from that abstract
[DF95a, DF95b]. I think Mike wrote the first one and I did the second one.

When I got to Cornell I spoke at the meeting for Anil Nerode’s 60th Birthday
in maybe May or June. My old advisor John Crossley, co-author Jeff Remmel,
and Anil Nerode were in the audience and immediately said what exciting stuff
this was. It could be “really important.” Nerode said he would support the
project in any way he could, especially as an editor. This certainly made Mike
(when I told him later) and I very happy as Anil has excellent taste in mathe-
matics and computer science. One of the first papers to appear [DF95c] appears
in the volume coming from this meeting.

30 R. Downey

Both Mike and I were talking about the material all over the place. I spoke
in Cornell, Chicago, Urbana, Maryland, George Washington, and a number of
other places. Were we pushing Robertson-Seymour too much? Bill Gasarch told
me that the W -hierarchy was viewed a bit as the “wierdness hierarchy.”

It is of course natural to view problem classification as a function of logical
depth. Perhaps it is the fact that NP is a syntactic class whereas ours were closure
under FPT reductions, making them more semantic. There is no difference with
respect to the intractability issue. (i.e. if, for instance, P �= NP then co-NP is
not in P so in terms of hardness co-NP hardness shows things hard just as well
as NP hardness.) But the difference does surface if you try to, for example, prove
an analog of Toda’s Theorem, where there is real trouble with ”BP ·W [P]”. This
remains a great set of problems. How do you do randomized computation with
only, for example, k log n bits of nondeterminism? It is also possible to show
something like FPT#W [P] ⊇ ∪kAWk[W [P]] where this is the k-th level of the
AW-hierarchy, or just FPT#W [P] ⊇ AW [∗]. To do this without routing through
an analog of BP would entail a new technique to prove P#P ⊇ PH . (That is,
proving it or P⊕P ⊇ PH , by counting, but using no probabilistic amplification.)
The one parameterized version of Valiant-Vazirani [VV86] by Downey, Fellows
and Regan [DFR98] hides things in the reductions. Recent papers by Moritz
Müller [Mu08a, Mu08b] describes the issues and are the state of the art.

6 Mr. Feasible

What is the value of Cook’s Theorem? (Or perhaps the “Cook-Levin Theorem”)
Why is it significant? The proof that predicate logic is undecidable by using
predicates to emulate Turing machines had been around since the 1930’s. By
Herbrand’s Theorem, we know that quantifiers can be emulated by infinitary
propositional formulas, so in some sense it is hardly surprising that a miniatur-
ization of these ideas can show that CNF Sat is NP-complete. The proof of
Cook’s Theorem is hardly difficult, but is an seminal result.

The crucial value of Cook’s Theorem is that it tells us why things like Sat are
hard, assumingNTM Acceptance is hard. Karp then shows us that hardness is
everywhere amongst natural practical problems. In terms of practical computing,
these two papers must also tell us that, if we are confronted with an NP-complete
problem, and we actually need to solve it, we should seek other coping strategies.
One of the problems with NP-completeness theory is that it really only tells us
what won’t work, not how to tackle the problem.

On the 25th February, 1991, Mike said “As for practical, I don’t know. It’s a
bad new theory. Apart from completeness there are some fun positive results...”
So whilst we discussed the practicality of the material, at the beginning we did
not see the utility of thinking parametrically for practical computation20.

20 Even as late as Downey, Fellows and Stege [DFS99], we were saying “the extent to
which FPT is really useful us unclear.” We now know that it really is. This can
clearly bee seen in, for instance, the article by Langston et. al. [LPSSV08].

The Birth and Early Years of Parameterized Complexity 31

I cannot recall when we began to realize that FPT gave more than NP. At
some stage, we realized that it could be used as a systematic method of attacking
intractability as later articulated in the paper with Mike’s student Ulrike Stege
[DFS98, DFS99]. I believe that it was then that we moved away from Robertson-
Seymour and began focusing on kernelization, bounded search trees and the
like. Of course, Mike had known of a number of examples before this. (Witness
[DF92a].) But it was sometime during 1992 that we had kind of an epiphany in
this direction.

Personally I believe that this is what is really cool about the area, and why
it has flourished. The emphasis went directly towards applications21. Our state-
ment of purpose and the delineation of these techniques is clearly found in the pa-
per [DF95c], which we called “Mr Feasible”. We referred to [DFS98] and [DFS99]
as “Sons of Feasible.”

When we write the revised teaching version ([DFta]) of the book [DF99], the
emphasis will be towards practical considerations. Industrial strength FPT is
where we should look. This was in the “manifesto” we called the story of Dr O,
in the beginning of the book.

7 1993 and Beyond

In 1993 we continued to develop both the theory and some co-authors. Papadim-
itriou and Yannakakis [PY93] wrote their paper on VC-dimension and NP [logn]
which is NP with logarithmically many bits of nondeterminism. Later we showed
how this fits into our setting. In that paper they mention our work, as they later
do in [PY97] as a basis for complexity in database theory, where of course param-
eterized complexity is a totally natural method of analysis. The real story here
was later clarified by Grohe and others as, for example, [Gr01a, Gr01b, Gr02]22

One key step that remained was to show that the k-Step Halting Prob-

lem was W [1]-complete. We finally figured the W [1]-completeness in the paper
[CCDF96] with Liming and Jianer, I presented to the Sacks Conference in MIT
in 1993. Whilst circuits were a nice basis and were likely a good enough basis
for an intractability theory, the k-step halting problem was so traditional that
it completed the picture of W [1] as a gold standard for hardness. It is unfortu-
nate that we don’t know the situation for M [1] and the acceptance problem for
Turing machines of size k logn.

I think the final really fundamental paper was [ADF95], which began with
trying to populate W [P], and also attempted a decent parameterized treatment

21 Mike Langston is an amazing study in this area. From Robertson-Seymour outer
space algorithms to concrete biological computations on supercomputers!

22 I remember being contacted by Martin by e-mail in the mid-90’s. He had worked
in bounded-variable logics and canonization. Perhaps because of this he became in-
terested in parameterized complexity. The original investigation of bounded variable
logics was in Vardi [Va95]. That paper shows that if you bound the number of queries
you get tractability.

32 R. Downey

of space. We also included some connections with subexponential time, antic-
ipating later developments by Impagliazzo, Paturi and Zane [IPZ01] by half a
decade.

Immediately when you consider space, you find that the nondeterministic
guessing in the proof that QBFSat is PSPACE complete is far from paramet-
ric. What to do? The idea was to use QBFSat parameterized as the basis for
those combinatorial problems usually found to be PSPACE-complete. I am not
sure that we have a nice treatment of space yet.

Other early authors who picked up the methodology were H. Kaplan, R.
Shamir and R. E. Tarjan, [KST94] P. Goldberg, M. Golumbic, H. Kaplan, and
R. Shamir [GGKS95], Leizhen Cai [LeC96], and the nice thesis of Bazgan [Baz95],
who was the first to connect FPT with approximation.

Later the work penetrated India through Venkatesh Raman, who had inde-
pendently constructed a parametric reduction for a version of Dominating Set

and then stumbled on to our papers. He e-mailed Mike and was enthused by
Mike’s response. Also in the mid-90’s, Phokion Kolaitis suggested to Martin
Grohe to have a look at our papers.

There were all of Mike’s students who were around at the time, and working
on aspects and applications of parameterized complexity. Mike Hallett, Mike
Dinneen, Ulrike Stege, Patricia Evans, Todd Wareham, Marco Cesati and others.

I am not completely sure why the work did not penetrate as quickly as it
might have. The charitable view is that the basic framework was already there,
and many of the basic questions were solved, at least those that were accessible. I
recall when I first heard of NP-completeness from John Stillwell at Monash Uni-
versity in the late 1970’s it was felt that there were “too many” NP-completeness
proofs. Perhaps the same held for W [1] and FPT, when the real initiative in the
early years was finding all kinds of novel applications of the framework in areas
like biology, VLSI, linguistics, pattern matching, robot motion planning and the
like. At the same time, the small but growing community began to see the simple
practical FPT methods being easily codable and widely applicable. Mr Feasible
was really important. Perhaps this is why the applications people took up the
ideas.

Unfortunately, Mike and I think there were some casualties because of the lack
of penetration into the computational complexity community. This meant that
work in the area could be difficult to publish. We believe that a few young people
working in the area in its infancy had trouble getting positions. I know that some
well-respected authors would not put “parameterized complexity” in the title of
their papers if they wanted them to be published in certain conferences/journals
even though what they were working on was parameterized complexity. Fortu-
nately this situation has all changed in the last decade.

I visited Mike a couple of more times and he visited me in Wellington two
more times also, once with Ulrike. We worked on the material on coding theory
(appearing later as [DFVW99],) the structural question about the W ∗-hierarchy

The Birth and Early Years of Parameterized Complexity 33

([DFT96, DF98]) where the parameter gives the depth of the circuits as part of
the input23, the mission statement [DFS98], and of course the book [DF99].

8 Epilogue

By about 1994-1995, the basic papers were done and we had clear paths to de-
velop. The insight that we could have this extended conversation with a problem
parametrically, and the development of the distinctive tools such as those in Mr
Feasible and his son, but also later ones like Colour Coding, crown reductions,
iterative compression have all enriched the subject. We planned to include all
the basic material around at the time on implicit parameters like treewidth,
and particularly the work of Bodlaender and his co-authors, such as Bodlaender
[Bod93, Bod96].

By the time the book [DF99] was published, I felt somewhat bruised. I was
ready for an affair with another siren to obsess over and fell into working in
Algorithmic Randomness culminating in yet another book (after having vowed
never to write one again) [DH10]24. Actually, Kolmogorov complexity is a rea-
sonable parameter to look at in graph theory. It would seem that graphs of high
Kolmogorov complexity ought to have some kind of 0-1 law for their algorithmic
behaviour. This has not been explored.

Whilst I have kept a running interest in our child’s development, serving on
PC’s, reading new papers and the most excellent books of Niedermeier [Nie06],
and Flum and Grohe [FG06], writing one or two papers a year, particularly with
new developments like online parameterization, parameterized inapproximabil-
ity, M [1] and the kernel lower bound project, Mike has really been the beating
heart of the subject, spreading the word.

For me the speed and depth of the mathematical developments of the 2010
WorKer meeting in Leiden was kind of scary. I had been finishing the randomness
book, and looked away from the subject for a year, and arrived to find that some
amazingly dramatic progress had occurred. Mainly through the activities of a
number of very talented young people. Maybe I am just getting old.

On the other hand, as a community maybe we should take Mr Feasible as a
lesson, and not get too obsessed with the beauty of complicated mathematics,
so as to lose sight of the practicality of what we are trying to do.

It was incredibly fun and rewarding to be involved in all those papers long ago.
I like to think the idea of parameterized complexity will be of lasting value to
practical computation. Looking at all the young and clever people at the Leiden
conference I think the subject is now in excellent hands.

And to finish “Congratulations Mike!”

23 Notably it is still open if W ∗[t] = W [t] for t ≥ 3.
24 By a strange twist of fate, the motivating question for my working in algorithmic

randomness was a Ladner-style density question for another degree structure about
the “degree of randomness” called Solovay reducibility, as I articulated in the preface
to [DH10].

34 R. Downey

References

[ADF93] Abrahamson, K., Downey, R., Fellows, M.: Fixed Parameter Intractability II
(Extended Abstract). In: Enjalbert, P., Wagner, K.W., Finkel, A. (eds.) STACS
1993. LNCS, vol. 665, pp. 374–385. Springer, Heidelberg (1993)

[ADF95] Abrahamson, K., Downey, R., Fellows, M.: Fixed Parameter Tractability and
Completeness IV: On Completeness for W [P] and PSPACE Analogs. Annals of
Pure and Applied Logic 73, 235–276 (1995)

[AEFM89] Abrahamson, K., Ellis, J., Fellows, M., Mata, M.: On the complexity of
fixed-parameter problems. In: Proceedings of 13th FOCS, pp. 210–215 (1989)

[AF93] Abrahamson, K., Fellows, M.: Finite Automata, Bounded Treewidth and
Wellquasiordering. In: Graph Structure Theory. Contemporary Mathematics Se-
ries, vol. 147, pp. 539–564. American Mathematical Society (1993)

[AR01] Alekhnovich, M., Razborov, A.: Resolution is Not Automatizable Unless W[P]
is Tractable. In: Proc. of the 42nd IEEE FOCS, pp. 210–219 (2001)

[AYZ94] Alon, N., Yuster, R., Zwick, U.: Color-Coding: A New Method for Finding
Simple Paths, Cycles and Other Small Subgraphs Within Large Graphs. In:
Proc. Symp. Theory of Computing (STOC), pp. 326–335. ACM (1994)

[BDG87] Balcazaar, J., Diaz, J., Gabarro, J.: Structural Complexity, vol. 1. Springer
(1987)

[Baz95] Bazgan, C.: Schémas d’approximation et complexité paramétrée. Rapport de
stage de DEA d’Informatique à Orsay (1995)

[Bod93] Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of
small treewidth. In: Proceedings of the 25th ACM Symposium on Theory of
Computing, pp. 226–234 (1993)

[Bod96] Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of
small treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

[BDFH08] Bodlaender, H., Downey, R., Fellows, M., Hermelin, D.: On Problems with-
out Polynomial Kernels (Extended Abstract). In: Aceto, L., Damg̊ard, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008); Final
version to appear in Journal of Computing and System Sciences

[BDFHW95] Bodlaender, H., Downey, R., Fellows, M., Hallett, M., Wareham, H.T.:
Parameterized Complexity Analysis in Computational Biology. Computer Ap-
plications in the Biosciences 11, 49–57 (1995)

[BDFW95] Bodlaender, H., Downey, R., Fellows, M., Wareham, H.T.: The Parame-
terized Complexity of the Longest Common Subsequence Problem. Theoretical
Computer Science A 147, 31–54 (1995)

[BF95] Bodlaender, H., Fellows, M.: On the Complexity of k-Processor Scheduling.
Operations Research Letters 18, 93–98 (1995)

[BFH94] Bodlaender, H., Fellows, M.R., Hallett, M.T.: Beyond NP-completeness for
Problems of Bounded Width: Hardness for the W Hierarchy. In: Proc. ACM
Symp. on Theory of Computing (STOC), pp. 449–458 (1994)

[La75] Ladner, R.: On the Structure of Polynomial Tine Reducibility. Journal of the
Association for Computing Machinery 22, 155–171 (1975)

[LeC96] Cai, L.: Fixed-parameter tractability of graph modification problems for
hereditary properties. Information Processing Letters 58(4), 171–176 (1996)

[CC97] Cai, L., Chen, J.: On Fixed-Parameter Tractability and Approximability of
NP-Hard Optimization Problems. J. Computer and Systems Sciences 54, 465–
474 (1997)

The Birth and Early Years of Parameterized Complexity 35

[CCDF96] Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: On the Parameterized Com-
plexity of Short Computation and Factorization. Arch. for Math. Logic 36, 321–
337 (1997)

[CCDF97] Cai, L., Chen, J., Downey, R., Fellows, M.: Advice Classes of Parameterized
Tractability. Annals of Pure and Applied Logic 84, 119–138 (1997)

[Co87] Courcelle, B.: Recognizability and Second-Order Definability for Sets of Finite
Graphs. Technical Report I-8634, Universite de Bordeaux (1987)

[CDF97] Courcelle, B., Downey, R., Fellows, M.: A Note on the Computability of
Graph Minor Obstruction Sets for Monadic Second Order Ideals. Journal of
Universal Computer Science 3, 1194–1198 (1997)

[CW95] Cesati, M., Wareham, H.T.: Parameterized Complexity Analysis in Robot
Motion Planning. In: Proceedings 25th IEEE Intl. Conf. on Systems, Man and
Cybernetics, vol. 1, pp. 880–885. IEEE Press, Los Alamitos (1995)

[Do12] Downey, R.: A Basic Parameterized Complexity Primer. In: Bodlaender, H.L.,
et al. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 91–128. Springer, Heidel-
berg (2012)

[DEF93] Downey, R., Evans, P., Fellows, M.: Parameterized Learning Complexity. In:
Proc. 6th ACM Workshop on Computational Learning Theory, pp. 51–57 (1993)

[DF91] Downey, R., Fellows, M.: A completeness theory for fixed parameter problems,
March 25 (1991) (unpublished manuscript)

[DF92a] Fellows, M.R.: Fixed parameter tractability and completeness. Congressus
Numerantium 87, 161–187 (1992)

[DF92b] Downey, R., Fellows, M.: Fixed parameter intractability. In: Proceedings
Structure in Complexity, Seventh Annual Conference, pp. 36–50. IEEE Pub-
lication (1992)

[DF93] Downey, R., Fellows, M.: Fixed Parameter Tractability and Completeness III:
Some Structural Aspects of the W -Hierarchy. In: Ambos-Spies, K., Homer, S.,
Schöning, U. (eds.) Complexity Theory: Current Research, pp. 166–191. Cam-
bridge Univ. Press (1993)

[DF95a] Downey, R.G., Fellows, M.R.: Fixed Parameter Tractability and Completeness
I: Basic Theory. SIAM Journal of Computing 24, 873–921 (1995)

[DF95b] Downey, R.G., Fellows, M.R.: Fixed Parameter Tractability and Completeness
II: Completeness for W[1]. Theoretical Computer Science A 141, 109–131 (1995)

[DF95c] Downey, R.G., Fellows, M.R.: Parametrized Computational Feasibility. In:
Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 219–244. Birkhauser,
Boston (1995)

[DF98] Downey, R.G., Fellows, M.: Threshold Dominating Sets and an Improved Char-
acterization of W [2]. Theoretical Computer Science 209, 123–140 (1998)

[DF99] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)

[DFta] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer (in preparation, 2012)

[DFS98] Downey, R., Fellows, M., Stege, U.: Parameterized Complexity: A Framework
for Systematically Confronting Computational Intractability. In: Graham, R.,
Krachovil, J., Nesetril, J., Roberts, F. (eds.) Contemporary Trends in Discrete
Mathematics. DIMACS, vol. 49, pp. 49–100. American Mathematical Society
(1999)

[DFS99] Downey, R., Fellows, M., Stege, U.: Computational Tractability: the View
from Mars. Bulletin of the European Association for Theoretical Computer Sci-
ence (69), 73–97 (1999)

36 R. Downey

[DFKHW94] Downey, R.G., Fellows, M., Kapron, B., Hallett, M., Wareham, H.T.:
The Parameterized Complexity of Some Problems in Logic and Linguistics. In:
Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, pp. 89–100.
Springer, Heidelberg (1994)

[DFR98] Downey, R.G., Fellows, M.R., Regan, K.W.: Parameterized Circuit Complex-
ity and the W Hierarchy. Theoretical Computer Science A 191, 91–115 (1998)

[DFT96] Downey, R.G., Fellows, M., Taylor, U.: The Parameterized Complexity of
Relational Database Queries and an Improved Characterization of W [1]. In:
Combinatorics, Complexity and Logic: Proceedings of DMTCS 1996, pp. 194–
213. Springer (1997)

[DFVW99] Downey, R., Fellows, M., Vardy, A., Whittle, G.: The Parameterized Com-
plexity of Some Fundamental Problems in Coding Theory. SIAM J. Comput. 29,
545–570 (1999)

[DFo03] Downey, R., Fortnow, L.: Uniformly hard languages. Theoretical Computer
Science 298(2), 303–315 (2003)

[DGHM89] Downey, R., Gasarch, W., Homer, S., Moses, M.: Honest polynomial re-
ductions, non-relativizations and P =?NP . In: Proceedings of the 4th Annual
Conference on Structures in Complexity Theory, pp. 196–207. IEEE Publ. (1989)

[DH10] Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity, pp.
xvii+855. Springer (2010)

[DM08] Downey, R., Montalbán, A.: The isomorphism problem for torsion-free abelian
groups is analytic complete. Journal of Algebra 320, 2291–2300 (2008)

[Fe89] Fellows, M.R.: The Robertson-Seymour Theorems: a Survey of Applications.
In: Contemporary Mathematics, vol. 89, pp. 1–18. AMS (1989)

[FL87] Fellows, M.R., Langston, M.: Nonconstructive Proofs of Polynomial-Time Com-
plexity. Information Processing Letters 26(88), 157–162 (1987/1988)

[FL88] Fellows, M.R., Langston, M.: Nonconstructive Tools for Proving Polynomial-
Time Complexity. Journal of the Association for Computing Machinery 35, 727–
739 (1988)

[FL89] Fellows, M.R., Langston, M.A.: An Analogue of the Myhill-Nerode Theorem
and its Use in Computing Finite-Basis Characterizations. In: Proceedings of the
IEEE Symposium on the Foundations of Computer Science, pp. 520–525 (1989)

[FL89b] Fellows, M.R., Langston, M.A.: On search, decision and nefficiency of poly-
nomial time algorithms. In: Proceedings STOC 1989, pp. 501–512 (1989)

[FK93] Fellows, M.R., Koblitz, N.: Fixed-Parameter Complexity and Cryptography.
In: Moreno, O., Cohen, G., Mora, T. (eds.) AAECC 1993. LNCS, vol. 673, pp.
121–131. Springer, Heidelberg (1993)

[FG06] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
[GJ79] Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory

of NP-completeness. W.H. Freeman, San Francisco (1979)
[GGKS95] Goldberg, P., Golumbic, M., Kaplan, H., Shamir, R.: Four Strikes Against

DNA Physical mapping. Journal of Computational Biology 2(1), 139–152 (1995)
[Gr01a] Grohe, M.: Generalized Model-Checking Problems for First-Order Logic. In:

Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 12–26.
Springer, Heidelberg (2001)

[Gr01b] Grohe, M.: The Parameterized Complexity of Database Queries. In: Proc.
PODS 2001, pp. 82–92. ACM Press (2001)

[Gr02] Grohe, M.: Parameterized Complexity for the Database Theorist. SIGMOD
Record 31(4) (2002)

[IPZ01] Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponen-
tial complexity? JCSS 63(4), 512–530 (2001)

The Birth and Early Years of Parameterized Complexity 37

[KW90] Kannan, S., Warnow, T.: Inferring Evolutionary History from DNA Sequences.
In: Proceedings of the 31st Annual Symposium on the Theory of Computing, pp.
362–378 (1990)

[KST94] Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of Parameterized Com-
pletion Problems on Chordal and Interval Graphs: Minimum Fill-In and DNA
Physical Mapping. In: Proc. 35th Annual Symposium on the Foundations of
Computer Science (FOCS), pp. 780–791. IEEE Press (1994)

[KF80] Kintala, C., Fischer, P.: Refining nondeterminism and relativized polynomial
time bounded computations. SIAM J. Comput. 9, 46–53 (1980)

[KR00] Khot, S., Raman, V.: Parameterized Complexity of Finding Subgraphs with
Hereditary properties. Theoretical Computer Science 289, 997–1008 (2002); pre-
liminary version in: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-Castro,
V. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 137–147. Springer, Heidelberg
(2000)

[LPSSV08] Langston, M., Perkins, A., Saxton, A., Scharff, J., Voy, B.: Innovative com-
putational methods for transcriptomic data analysis: A case study in the use of
FPT for practical algorithm design and implementation. The Computer Jour-
nal 51(1), 26–38 (2008)

[Le83] Lenstra, H.: Integer Programming with a Fixed Number of Variables. Mathe-
matics of Operations Research 8, 538–548 (1983)

[LP85] Lichtenstein, O., Pnueli, A.: Checking that Finite State Concurrent Programs
Satisfy their Linear Specification. In: POPL 1985, pp. 97–107 (1985)

[MR99] Mahajan, M., Raman, V.: Parameterizing Above Guaranteed Values: MaxSat
and MaxCut. J. Algorithms 31, 335–354 (1999)

[Ma12] Marx, D.: What’s Next? Future Directions in Parameterized Complexity. In:
Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift.
LNCS, vol. 7370, pp. 469–496. Springer, Heidelberg (2012)

[Mo99] Mohar, B.: A Linear Time Algorithm for Embedding Graphs in an Arbitrary
Surface. SIAM J. Discrete Math. 12, 6–26 (1999)

[Mu08a] Müller, M.: Parameterized Derandomization. In: Grohe, M., Niedermeier, R.
(eds.) IWPEC 2008. LNCS, vol. 5018, pp. 148–159. Springer, Heidelberg (2008)

[Mu08b] Müller, M.: Valiant-vazirani lemmata for various logics. Electronic Collo-
quium on Computational Complexity (ECCC) 15(063) (2008)

[Nie06] Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

[OW91] Ogiwara, M., Watanabe, O.: On Polynomial Bounded Truth-Table Reducibil-
ity of NP Sets to Sparse Sets. SICOMP, 471–483 (1991)

[PY91] Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and com-
plexity classes. J. Comput. Syst. Sci. 43, 425–440 (1991)

[PY93] Papadimitriou, C., Yannakakis, M.: On Limited Nondeterminism and the Com-
plexity of the V-C Dimension. In: Eight Annual Conference on Structure in
Complexity Theory, pp. 12–18 (1993)

[PY97] Papadimitriou, C., Yannakakis, M.: On the Complexity of Database Queries.
In: Proc. ACM Symp. on Principles of Database Systems, pp. 12–19 (1997);
Journal version in Journal of Computer System Sciences 58, 407–427 (1999)

[ST98] Shamir, R., Tzur, D.: The Maximum Subforest Problem: Approximation and
Exact Algorithms. In: Proc. ACM Symposium on Discrete Algorithms, SODA
1998, pp. 394–399. ACM Press (1998)

[St00] Stege, U.: Resolving Conflicts in Problems in Computational Biochemistry.
Ph.D. dissertation, ETH (2000)

38 R. Downey

[Ra97] Raman, V.: Parameterized Complexity. In: Proceedings of the 7th National
Seminar on Theoretical Computer Science, Chennai, India, pp. 1–18 (1997)

[Re89] Regan, K.: Finite substructure languages. In: Proceedings 4th Structure in
Complexity Annual Conference, pp. 87–96 (1989)

[RS86a] Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-
width. Journal of Algorithms 7, 309–322 (1986)

[VV86] Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. Theoret.
Comput. Sci. 47, 85–93 (1986)

[Va82] Vardi, M.: The Complexity of Relational Database Queries. In: Proc. STOC,
pp. 137–146 (1982)

[VW86] Vardi, M., Wolper, P.: An Automata-Theoretic Approach to Automatic Pro-
gram Verification. In: LICS 1986, pp. 332–344 (1986)

[Va95] Vardi, M.: On the complexity of bounded-variable queries. In: PODS 1995
(1995)

[Va09] Vardi, M.: Conferences vs. Journals in Computing Research. Communications
of the ACM 52(5), 5 (2009)

[Ya95] Yannakakis, M.: Perspectives in Database Theory. In: FOCS, pp. 224–246
(1995)

Crypto Galore!

Neal Koblitz

Department of Mathematics, Box 354350
University of Washington
Seattle, WA 98195 U.S.A.

koblitz@math.washington.edu

Abstract. I discuss three aspects of mathematical cryptography that
have been themes of Mike Fellows’ work: applications of parameterized
complexity, combinatorial systems, and Kid Krypto. At times my treat-
ment is anecdotal, and on occasion it veers toward the impractical, fan-
ciful, and even downright goofy.

Dedicated to Mike Fellows
on the occasion of his 60th birthday.

1 Crypto and Parameterized Complexity

In [12] Mike and I took a first step in applying parameterized complexity theory
to cryptography. The general idea was that in cryptography one might want
certain parameters to grow very large, while others are either fixed or vary
within a small range. Such a situation is not accurately modeled by traditional
complexity theory; parameterized complexity, we thought, might be better suited
to formalizing the study of this sort of multitiered dependence on parameters.

In [12] we did not set out to obtain new cryptographic results. Rather, we
wanted to formalize some results and conjectures that were already well known
to cryptographers on an intuitive level. The rigorous language of parameterized
complexity theory would, we hoped, help make the study of these questions more
precise and systematic.

1.1 Factorization and Discrete Logarithms

Since the invention of public-key cryptography in the 1970s the two most im-
portant conjecturally-hard computational problems upon which public-key pro-
tocols have been based have been:
• Integer Factorization, which in the setting of RSA [28] means the problem

of finding the factorization of a large integer N that is the product of two secret
primes p and q.
• Discrete Logarithm (see [9]), which in the setting of a subgroup G of prime

order q of the multiplicative group of a prime field Fp means the problem, given
g, y ∈ G, of finding an integer x such that y = gx.

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 39–50, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

40 N. Koblitz

Even though at first glance these two problems seem to be totally unrelated to
each other, in the 1980s it turned out (see [32]) that advances in solving integer
factorization almost always led to similar advances — and similar running times
— for discrete log algorithms in Fp.

1

There was, however, one important exception. In 1985 Hendrik Lenstra an-
nounced his elliptic curve method for integer factorization (see [24]), which was
a strikingly new and elegant approach to factoring. Its appeal was not that it
could factor an RSA modulus N much faster than the best competing algorithm
available at the time (the quadratic sieve) — it could not. Rather, its appeal
was two-fold: (1) for the first time, sophisticated mathematics was used in an
important way in cryptography, and (2) Lenstra’s algorithm was the only subex-
ponential one whose running time depends not so much on the bitlength of N
as on the bitlength of its smallest prime divisor p; in fact, its heuristic running

time is (log2 N) exp
(√

(2 + o(1)) log p log log p
)
.

In [12] we considered the following parameterized search problem (with pa-
rameter denoted k).

Bounded Factor Factorization.
Input: A parameter k and an integer N that has a prime factor p < nk, where

n is the bitlength of N .
Output: A prime factor p < nk.
By making a modification in Lenstra’s algorithm, we showed that under a

very plausible number-theoretic conjecture (about smooth integers in short inter-
vals) the problem Bounded Factor Factorization is randomized fixed-parameter
tractable. In contrast, in relation to Discrete Logarithm we looked at two open
questions where one might be tempted to conjecture fixed-parameter
intractability.

Bounded Size Discrete Logarithm.
Input: A parameter k, an n-bit prime p, a subgroup G ⊂ F

×
p whose order is a

prime q, an element g ∈ G, and an element y ∈ G.
Output: The answer to the question: Is there a positive integer x < nk such

that y = gx?

Bounded Hamming Weight Discrete Logarithm.
Input: Same as in Bounded Size Discrete Logarithm.
Output: The answer to the question: Is there a positive integer x whose binary

representation has at most k 1’s such that y = gx?
We noted that in both cases tractability of the decision problem is equiva-

lent to that of the corresponding search problem, thanks to a “self-reducible”
property of discrete logs. We also remarked that the Bounded Hamming Weight
problem is of practical interest, because in some situations there might be an im-
provement in efficiency if one uses only exponents of bounded Hamming weight.

1 In more recent times the use of G ⊂ F
×
p has been largely abandoned in favor of

subgroups of elliptic curve groups. However, those groups are not relevant to this
discussion.

Crypto Galore! 41

But one would not want to do this if it would enable an adversary to find the
discrete log much faster.

In [12] we then asked the questions: Is Bounded Size Discrete Logarithm
randomized fixed-parameter tractable? How about Bounded Hamming Weight
Discrete Log? To the best of our knowledge the answer in both cases is likely to
be no — in contrast to Bounded Factor Factorization considered above.

Essentially what we were suggesting was that parameterized complexity might
separate the factorization and discrete log problems, whereas conventional com-
plexity theory did not.

Unfortunately, as far as I know the paper [12] didn’t lead to anything. I know
of no subsequent work that viewed cryptographic complexity issues from the
standpoint of parameterized complexity theory. I don’t think this is because
there is nothing to be gained from such an approach. Rather, the explanation
for the lack of interest is probably sociological: the set of cryptographers and
the set of experts on parameterized complexity form two disjoint subcultures of
computer science.

In the next subsection I’ll give an example of an important current concept in
cryptography that might benefit from a parameterized-complexity point of view.

1.2 The Bounded Retrieval Model

An information security issue that has become increasingly important in recent
years is protection against so-called “side channel” attacks. These are attacks
that are based not on weaknesses in the mathematical one-way function or the
protocol design, but rather on an analysis of such features of the hardware as elec-
tromagnetic radiation emitted, the amount of power or time used, or the effects
of induced faults. The problem of side channel vulnerability of cryptographic
devices goes back a long way — in fact, to World War II — but theoreticians
didn’t start to address the issue until just a few years ago. The term “leakage
resilience” is now used to refer to the property of remaining secure even if a lim-
ited amount of secret data leaks to the adversary. Leakage resilience has become
a “hot” area at crypto conferences.

Perhaps the most interesting concept that has been introduced in the leak-
age resilience literature is that of the “bounded retrieval model,” developed in
[7,8,10] (see also [2,3,16]). Elsewhere [23] Menezes and I have raised doubts about
whether the bounded retrieval model is really a useful approach to dealing with
side channel attacks. However, there is no doubt that it is a clever and nifty
idea. It is worthy of study for that reason alone even if it turns out ultimately
to be of no practical use whatsoever.

The idea of the bounded retrieval model is simple and elegant. Suppose that
an adversary is able somehow to acquire a certain amount of secret key data.
One countermeasure is to increase the sizes of all of the parameters of the cryp-
tosystem so that any secret key becomes larger than what the adversary is likely
to be able to capture. This would result in extremely inefficient cryptography.

But what if each user Alice could generate and store a very large number M
of secret keys, all corresponding to the same public key, and in carrying out a

42 N. Koblitz

protocol she would use only one of the those keys or a small randomly chosen
subset of them (a clue sent by her correspondent Bob would tell her which of
her secret keys she needs to use)? This stable of secret keys could be huge;
M is limited only by available storage and the time required to generate all of
the M keys during the initial set-up stage. Meanwhile, the size of the public
key and everything else (ciphertexts, signatures, etc.) — and the amount of
time to carry out protocols — would be essentially fixed and independent of
the number of secret keys. This is what the bounded retrieval model requires.
Now the adversary’s task becomes much more difficult, because any secret key
material he acquired would be unlikely to be sufficient for breaking a given
execution of the protocol. However, the cost to Alice is quite reasonable.

I don’t know whether fixed-parameter complexity applies directly to this sit-
uation. However, the “philosophy” of fixed-parameter complexity seems to be
very relevant. One way to formalize complexity in the bounded retrieval model
would be by analogy with the NC classes used to study parallel computation.
That is, as a function of the one parameter that becomes enormous — namely,
M — the running times of encryption, decryption, signature, etc. must be poly-
logarithmic, whereas as a function of the other parameters these running times
would not have to be so tightly controlled; they could be polynomial or even
superpolynomial. To put it another way, all of the parameters could be regarded
as essentially fixed except for the number M of secret keys, and the running
time for each execution of the protocol would have to be polynomial in logM .

I cannot say whether or not the bounded retrieval model would be a fruitful
area for fixed-parameter complexity research. My purpose in bringing it up is
to illustrate how the general notion of fixed-parameter complexity might have
natural applications in cryptography.

2 Combinatorial Crypto Galore

2.1 Knapsacks and Brassard’s Theorem

In the late 1970s a combinatorial cryptosystem called the Merkle-Hellman Knap-
sack [26], based on the Subset Sum problem, was viewed as holding great promise.
For public-key encryption it was much more efficient than its main competitor
at the time, which was RSA. In addition, it was thought to be almost provably
secure, since the Subset Sum problem is NP-complete. However, within a few
years Shamir [30] completely broke Merkle-Hellman, showing that the subprob-
lem of Subset Sum that its security relies upon can be solved in polynomial
time. Although modifications and generalizations were developed in an attempt
to salvage the situation, in the 1980s most of them were also broken by Shamir,
Brickell, Odlyzko, and others [6,27]. Many cryptographers were traumatized by
this experience, which at the very least taught the lesson that NP-complete prob-
lems should be used with great caution. Perhaps it would be better, many people
thought, to stick with number-theoretic problems such as Integer Factorization
and Discrete Logarithm, which are believed not to be NP-hard.

Crypto Galore! 43

There was a second reason why cryptosystems based on NP-compete combi-
natorial problems fell into disfavor. A theorem of Brassard [5] published in 1979
said — or, rather, was interpreted as saying — that if breaking a cryptosystem
is NP-hard, then NP=coNP, which nobody believes is true. A widespread con-
sensus was that, in Selman’s words [29], “There can be no hope to transform
arbitrary problems in NP \ P into public-key cryptosystems.”

Mike and I thought that this judgment was premature. In the first place,
Brassard’s theorem has a strong hypothesis that people were ignoring — namely,
the one-way construction upon which the cryptosystem is based must have image
in coNP. It seemed to us that Brassard’s theorem is essentially just a circular
tautology whose premise is as strong as its conclusion. This premise holds for
RSA, where the image of the map (p, q) �→ N = pq from

Primes× Primes −→ Integers

is clearly in coNP. However, the hypothesis of Brassard’s theorem about the
image being in coNP seems to be false for most of the combinatorial constructions
that have been proposed for public-key cryptography.

In the second place, in [13,14] Mike and I showed how to convert any NP
search problem into a system for public-key encryption that is potentially hard
to break if the problem is NP-hard. We titled the paper [14] “Combinatorial
cryptosystems galore!” (“galore” was Mike’s word) as a way of exuberantly re-
jecting the view expressed by Selman.

A public-key cryptosystem is based on a mathematical problem that is be-
lieved to be intractable. However, not just any old difficult mathematical problem
will necessarily lead to a cryptosystem. One has to find a way to convert the
problem to a “one-way” encryption function y = f(x) that without knowledge
of the secret key is easy to compute but infeasible to invert. For example, the
underlying hard mathematical problem for RSA is factorization of an integer N
that’s the product of two primes, in other words, inversion of the above map
(p, q) �→ N = pq. However, this does not immediately give us a way to encipher
messages — it took some cleverness on the part of Rivest, Shamir, and Adleman
to come up with an encryption function. The enciphering function y = f(x) in
this case is exponentiation modulo N : y = xe (mod N), where e is a publicly
known exponent. Inverting this function by finding a decryption exponent d for
which x = yd (mod N) is easy if you know the factorization of N (which is the
secret key) but is infeasible otherwise.

The method Mike and I used to construct a cryptosystem from an NP problem
was basically to algebraicize the problem— something that researchers had been
profitably doing in other areas [1,25]. We worked with multivariate polynomial
ideals that were constructed in such a way that finding a point where the ideal
vanishes is equivalent to solving the NP search problem. Alice uses a one-way
construction to come up with a hard instance of a problem for which she knows
a solution, i.e., a point where the corresponding ideal vanishes. Then in order
to send a message m to Alice, Bob randomly chooses a complicated polynomial
in her ideal and then adds m to it. Alice deciphers the message by evaluating
the polynomial at her secret point. Rather than giving details in this general

44 N. Koblitz

context, let’s look at how the cryptosystem works in a particular setting. Let’s
take the case of graph 3-coloring.

A public-key system based on graph 3-colorability. Let G = (V,E) be a graph
with vertex set V and edge set E. Let T be a set of variables with three variables
tv,1, tv,2, tv,3 corresponding to each vertex v ∈ V . Let I be the ideal of the
polynomial ring Z[T] with the following basis B = B1 ∪B2 ∪B3:

B1 = {tv,1 + tv,2 + tv,3 − 1 : v ∈ V };

B2 = {tv,itv,j : v ∈ V, 1 ≤ i < j ≤ 3};
B3 = {tu,1tv,1 + tu,2tv,2 + tu,3tv,3 : uv ∈ E}.

The vertex coloring that assigns the color iv (1 ≤ iv ≤ 3) to the vertex v ∈ V is
associated with the point whose tv,iv -coordinate is equal to 1 and whose other
two coordinates corresponding to the variables {tv,1, tv,2, tv,3} are equal to 0. One
easily checks that a point is in the affine variety V (I) (that is, every polynomial
in I vanishes at the point) if and only if the vertex coloring is a proper 3-coloring
of G.

Alice constructs a public/private key pair for encryption by using a “one-way”
construction of a graph G for which she knows a 3-coloring. Given a vertex set
V , she can start with a random partition into three colors, and then draw a lot of
edges none of which connect two vertices in the same color-set. Hopefully she’ll
be able to do this in such a way that if she keeps the partition secret no one else
can figure out a 3-coloring. Alice’s public key is the graph G; this means that
the basis B is also public. Her secret key is the 3-coloring (that is, the partition)
she started out with in her construction.

Here is how the probabilistic encryption works. Suppose that Bob wants to
send Alice a message m ∈ Z. Using the basis B, by some randomized process he
chooses a complicated polynomial in I and adds the integer m to that polyno-
mial. When Alice receives this ciphertext, all she has to do is evaluate it at the
point corresponding to her secret 3-coloring; in other words, she sets tv,i equal to
1 if v is colored i and equal to 0 otherwise. This makes Bob’s random polynomial
disappear, revealing his message m.

2.2 Polly Cracker

The NP-hard problem where we thought the most about this hybrid algebraic/
combinatorial construction was Perfect Code. This is the problem of finding a
subset V ′ ⊂ V of vertices such that every v ∈ V is in the neighborhood N [v′]
of one and only one v′ ∈ V ′. Perfect Code is NP-hard even when restricted to
3-regular graphs.

Alice can construct an instance of a graph with a perfect code as follows.
Given a vertex set V , she first randomly chooses a subset V ′ ⊂ V of suitable
size. Then she forms “stars” emanating from the vertices in V ′ such that every
v ∈ V is in one and only one star. Finally, she disguises the locations of the
v′ ∈ V ′ by drawing a lot of additional edges between vertices in V \ V ′. The
result is her public key G = (V,E). Her secret key is the subset V ′.

Crypto Galore! 45

The algebraicization of Perfect Code is the ideal in Z[T], where T = {tv : v ∈
V }, with basis B = B1 ∪B2, where

B1 = {1−
∑

u∈N [v]

tu : v ∈ V };

B2 = {tutu′ : u, u′ ∈ N [v], u �= u′, v ∈ V }.

A large part of the appeal of this cryptosystem was the name that Mike thought
of for it: Polly Cracker. I also devoted a chapter of my book [19] to these con-
structions.

Over the years there have been a lot of cruddy, worthless cryptosystems that
have never been broken because no one thought it was worth their time to go to
the effort. This was not, however, the fate of Polly Cracker. Soon a number of
cryptographers started looking for ways to break Polly Cracker without solving
the underlying instance of an NP-hard problem. Hendrik Lenstra was the first to
note that it might be possible to recover a message from Bob’s ciphertext using
“intelligent linear algebra.” I tried to suggest some guidelines for Bob’s choice
of polynomials that might resist such an attack. However, it eventually became
clear that such an effort was hopeless. After some articles were published with
rather comprehensive attacks (see, for example, [31]), there was no denying that
Polly Cracker was cracked.

Note Added in Proof: I was too hasty in saying that the only good thing about
the Polly Cracker cryptosystem was its name. Recently versions of Polly Cracker
that are apparently both useful and secure have been proposed in two papers by
Albrecht et al. and by Caboara et al.; see http://eprint.iacr.org/2011/289.pdf
and http://academic.research.microsoft.com/Paper/5626032

3 Kid Krypto

Polly Cracker lives on, however, in a simplified form that works well with chil-
dren. In the version described above suppose that we restrict Bob’s ciphertext
to linear polynomials. It’s not hard to see that the resulting encryption scheme
is equivalent to the following:

Perfect Code Cryptography. Alice’s public key is a graph G = (V,E) and her
secret key is the location of a perfect code V ′ ⊂ V . To send Alice a message
m, Bob randomly assigns integers (positive or negative) to the vertices of G
subject only to the condition that their sum is m. Call these the “blue numbers”
bv, v ∈ V . He then associates a “green number” gv to each vertex, where each
green number is the sum of all neighboring blue numbers: gv =

∑
u∈N [v] bu. His

ciphertext is the set of green numbers. Alice deciphers the message by summing
the green numbers only over perfect code vertices. This works because∑

v∈V ′
gv =

∑
v∈V

bv = m.

http://eprint.iacr.org/2011/289.pdf
http://academic.research.microsoft.com/Paper/5626032

46 N. Koblitz

In order to present Perfect Codes to children Mike invented a story. The mer-
chants of Tourist Town are getting ready for the tourist season and have to
decide at which street corners to put icecream stands. They want to build as few
as possible, except that there have to be enough so that a tourist who’s standing
at a corner with no icecream doesn’t have to walk more than one block to find
a stand. Find the minimum number of stands, and decide where to put them.2

When visiting a school in Peru, Mike and I noticed that this story didn’t
seem to make much sense to the kids. In the first place, Peruvian icecream
sellers use movable carts, not fixed stands. Moreover, in any country with large
unemployment, where many people depend on the “informal economy” for their
livelihood, there is always an overabundance of icecream vendors. The children
saw no point in trying to minimize the number of icecream sellers. So we changed
the story to Aldea con Pozos (Village with Wells), where one wants to minimize
the number of wells in order to achieve an efficient water supply for a village
or barrio. In many Third World settings such a story makes more sense than
Tourist Town. Based partly on our experiences in different countries with Kid
Krypto and other math enrichment topics, Mike, my wife Ann, and I wrote an
article [11] for the AMS Notices on “Cultural Aspects of Mathematics Education
Reform.”

When doing Kid Krypto it’s important for the kids not only to understand
how and why the encryption works, but also to think critically about how good
a system it really is. Is it secure? Supposing that Alice does a good job of
constructing a graph with a perfect code that no one is able to figure out,
is there any other way an adversary could figure out the message m from the
intercepted ciphertext {gv}v∈V ? Sad to say, the answer is: yes, easily. If the graph
is 3-regular, then

∑
v∈V gv = 4

∑
v∈V bv = 4m; in the general case just use linear

algebra, regarding the bv as unknowns and solving the system
∑

u∈N [v] bu = gv
of |V | equations in |V | unknowns.

However, young children don’t know linear algebra. So they might use Perfect
Code crypto securely until one of them, in her zeal to figure out a secret message,
essentially rediscovers a version of gaussian elimination. One can argue — and
this is a point that Mike has made many times — that at its best science and
math education should be similar to the process of creative research. Linear
algebra will be much more meaningful to a student who developed parts of it on
her own in order to decipher a secret message than it will be to someone who
sat through a boring course of lectures in college. Similarly, in [18] I showed how
a “baby version” of RSA that can be broken if one knows how to invert modulo
N could motivate students to rediscover the Euclidean algorithm on their own.

Cryptography can be an excellent vehicle for teaching basic concepts in math-
ematics and computer science. And Mike’s Perfect Code cryptosystem allows
students with no prerequisites to learn about sophisticated notions such as one-
way functions and public-key encryption. It works with almost any age group.
I’ve organized Perfect Code crypto sessions in several middle-school classes, and

2 This is actually Minimum Dominating Set of Vertices, but if the given graph has a
perfect code, then it amounts to the same thing.

Crypto Galore! 47

one year I did it as part of the University of Washington’s “Math Day” (see [18]
for details). I’ve also used it in a seminar I’ve taught for the past three years to
entering students at U.W. (see [21]). Finally, I recently suggested to the devel-
opers of an NSF-funded after-school program called “Crypto Club”3 that they
incorporate some of Mike’s Kid Krypto into their website.

3.1 Crypto 1992 Invited Talk

When I was on the program committee for Crypto ’92, I lobbied to get Mike
on the schedule as an invited speaker so that he could talk about Kid Krypto.
I was the session chair during his presentation, in which he explained his ideas
on math education (see Tim Bell’s article in this volume for more about that)
and the role that cryptography could play (see [4,15]). His talk was entertaining
and thought-provoking.

At one point Mike observed that what security means is relative to the mathe-
matical knowledge of the users. A system that can be cracked using college-level
math (such as linear algebra) might be secure for use among high school stu-
dents. Even we adults shouldn’t be too smug about our own knowledge, since to
someone from a more advanced civilization it might seem that we’re all doing
kid crypto.

To illustrate his point, Mike projected onto the screen a front-page picture
from the tabloid Weekly World News showing an extraterrestrial creature meet-
ing with then-President Clinton. Mike said that this representative from another
galaxy had told Clinton that they’d broken RSA three hundred years ago. I
blurted out, “What about ECC?4 Did the alien tell him anything about break-
ing elliptic curves?” The audience laughed at my apparent inability to refrain
from interrupting the speaker and blurting out that question.

In reality, I had been with Mike when he bought the Weekly World News, and
we’d discussed how he would use it in his talk and what would be a funny thing
for me to interject. My outburst was part of the plan. Mike has a strong sense
of education as theater. This came across in his Crypto ’92 invited talk, just as
it has in his visits to schools and math-in-the-park activities.

3.2 P=NP?

When explaining the Perfect Code problem to kids, Mike encourages them to
think algorithmically. They should try to come up with a step-by-step method
that could be used for any Tourist Town that anyone could make up. He tells
them that no one knows of a really good method that would work in all cases,
and anyone who found one would become rich and famous. The reason (which
he does not mention to the kids) is that, since Perfect Code is NP-hard, a kid
who found such an algorithm would have proved that P=NP.

3 It’s based at the University of Illinois at Chicago
(see http://cryptoclub.math.uic.edu)

4 At this time Elliptic Curve Cryptography, of which I was a passionate advocate, was
locked in a bitter rivalry with RSA.

http://cryptoclub.math.uic.edu

48 N. Koblitz

Mike is right: such a kid would become a millionaire. S/he would win not only
the million-dollar Clay Millenium Prize, but Scott Aaronson’s house as well. This
is because, when a purported solution to the P �=NP problem was announced by
V. Deolalikar in August 2010, Aaronson expressed his extreme skepticism by
promising to add the value of his house — $200,000 — to the Clay Millenium
Prize if the solution was correct.5 Undoubtedly, Scott would be equally skeptical
— and again willing to bet his house against it — if it were announced that
some 5th-grader had proved that P=NP.

4 Retrospective

Mike and I met not through mathematics, but through politics — or, more
precisely, through feminism. In the late 1980s Mike heard about the Kovalevskaia
Fund,6 a small non-profit foundation that my wife Ann directs that aims to
support and encourage women in science in developing countries, and wrote us
expressing his interest. Then in 1989 when Ann drove across the country from
Seattle to take a job at a small college in the East, she stopped for a day with
Mike’s family in Moscow, Idaho (at that time he was at the University of Idaho).
I met Mike soon after, and found that we had a lot of interests in common.

Mike was responsible for my growing involvement in K-12 education during the
1990s. He infected me with his enthusiasm about math enrichment presentations
in the schools. It was because of him that Ann and I started arranging visits
to schools in the different countries we travel to. During the 1990s we gave
math enrichment lessons — often using Mike’s examples — in Peru, El Salvador,
Belize, Cuba, Mexico, Chile, Vietnam, India, Zimbabwe, Malawi, South Africa,
Canada, and the U.S. Twice Mike came along with us to Peru and El Salvador.

Mike has also had a less tangible influence on me. He showed me that there
doesn’t have to always be a sharp line between one’s cultural and political out-
look — which for both of us came out of the radical movements of the 1960s —
and one’s mathematical style. As I commented in my book [22],

Mike, like me, is a product of the 1960s... He...had an effect on my style
because he showed that even in a serious professional setting there is
room for jokes and a camp sensibility.

I’d like to conclude by blamingMike for some things I’ve done that have gotten me
into hot water—most notably, my article [20]7 (see also http://anotherlook.ca). I
thought that an article in theAMSNotices on the relationship betweenmathemat-
ics and cryptography should be entertaining, humorous, and slightly outrageous.

5 See http://www.scottaaronson.com/blog/?p=456
6 Sofia Kovalevskaia (1850-1891) was the first woman in modern times to earn a doc-
torate in mathematics. She is best known for the Cauchy-Kovalevskaia theorem,
which is basic to the theory of partial differential equations, and for her work on
abelian integrals. See [17].

7 Available at: http://www.ams.org/notices/2007008

http://anotherlook.ca
http://www.scottaaronson.com/blog/?p=456
http://www.ams.org/notices/2007008

Crypto Galore! 49

It was in part Mike’s influence that caused me to adopt that style. To my surprise,
my innocent efforts provokeda furious reaction in the computer scienceblogosphere
(especially in the blogs of Luca Trevisan at Berkeley andDavid Eppstein at Irvine)
— and no fewer than five angry letters to the Notices. 8 While licking my wounds
from their harsh words, at least I could tell myself that it was all Mike’s fault.

Mike has had a long-lasting influence on me. My own background in computer
science was weak, and yet in 1985 my interests had shifted from pure math to
cryptography, in which computer science was an equal partner (or greater-than-
equal partner) with mathematics. For me Mike has been a role model of someone
who combines mathematical and computer science ways of thinking and moves
seamlessly between the two. It’s a rare talent to be able to mediate effortlessly
between those two cultures.

Acknowledgments. I wish to thank Ann Hibner Koblitz and Alfred Menezes
for helpful comments and suggestions.

References

1. Alon, N., Tarsi, M.: Colorings and orientations of graphs. Combinatorica 12, 125–
134 (1992)

2. Alwen, J., Dodis, Y., Wichs, D.: Leakage-Resilient Public-Key Cryptography in the
Bounded-Retrieval Model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 36–54. Springer, Heidelberg (2009)

3. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-Key
Encryption in the Bounded-Retrieval Model. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)

4. Bell, T., Fellows, M.R., Koblitz, N., Powell, M., Thimbleby, H., Witten, I.: Explain-
ing cryptographic systems to the general public. Computers and Education 40,
199–215 (2003)

5. Brassard, G.: A note on the complexity of cryptography. IEEE Trans. Information
Theory 25, 232–233 (1979)

6. Brickell, E.F.: Breaking Iterated Knapsacks. In: Blakely, G.R., Chaum, D. (eds.)
CRYPTO 1984. LNCS, vol. 196, pp. 342–358. Springer, Heidelberg (1985)

7. Cash, D., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R.J., Walfish, S.: Intrusion-
Resilient Key Exchange in the Bounded Retrieval Model. In: Vadhan, S.P. (ed.)
TCC 2007. LNCS, vol. 4392, pp. 479–498. Springer, Heidelberg (2007)

8. Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly Secure Password Protocols in
the Bounded Retrieval Model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 225–244. Springer, Heidelberg (2006)

9. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Information
Theory 22, 644–654 (1976)

10. Dziembowski, S.: Intrusion-Resilience Via the Bounded-Storage Model. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg
(2006)

8 See http://in-theory.blogspot.com/2007/08/
swift-boating-of-modern-cryptography.html;
http://11011110.livejournal.com/114876.html#cutid1;
http://www.ams.org/notices/200711; and http://www.ams.org/notices/200801

http://in-theory.blogspot.com/2007/08/swift-boating-of-modern-cryptography.html
http://in-theory.blogspot.com/2007/08/swift-boating-of-modern-cryptography.html
http://11011110.livejournal.com/114876.html#cutid1
http://www.ams.org/notices/200711
http://www.ams.org/notices/200801

50 N. Koblitz

11. Fellows, M.R., Koblitz, A.H., Koblitz, N.: Cultural aspects of math education re-
form. Notices of the Amer. Math. Soc. 41, 5–9 (1994)

12. Fellows, M.R., Koblitz, N.: Fixed-parameter Complexity and Cryptography. In:
Moreno, O., Cohen, G., Mora, T. (eds.) AAECC 1993. LNCS, vol. 673, pp. 121–
131. Springer, Heidelberg (1993)

13. Fellows, M.R., Koblitz, N.: Combinatorially based cryptography for children (and
adults). In: Proc. 24th Southeastern Intern. Conf. Combinatorics, Graph Theory
and Computing, Boca Raton, Florida (February 1993); Congressus Numerantium
99, 9–41 (1994)

14. Fellows, M.R., Koblitz, N.: Combinatorial cryptosystems galore! In: Finite Fields:
Theory, Applications, and Algorithms, Second Intern. Conf. Finite Fields, Las Ve-
gas (August 1993); Contemporary Math. 168, 51–61 (1994)

15. Fellows, M.R., Koblitz, N.: Kid Krypto. In: Brickell, E.F. (ed.) CRYPTO 1992.
LNCS, vol. 740, pp. 371–389. Springer, Heidelberg (1993)

16. Katz, J.: Signature schemes with bounded leakage resilience,
http://eprint.iacr.org/2009/220.pdf

17. Koblitz, A.H.: A Convergence of Lives: Sofia Kovalevskaia — Scientist, Writer,
Revolutionary. Birkhaüser (1983)

18. Koblitz, N.: Cryptography as a teaching tool. Cryptologia 21, 317–326 (1997)
19. Koblitz, N.: Algebraic Aspects of Cryptography. Springer (1998)
20. Koblitz, N.: The uneasy relationship between mathematics and cryptography. No-

tices of the Amer. Math. Soc. 54, 972–979 (2007)
21. Koblitz, N.: Secret codes and online security: A seminar for entering students.

Cryptologia 34, 145–154 (2010)
22. Koblitz, N.: Random Curves: Journeys of a Mathematician. Springer (2007)
23. Koblitz, N., Menezes, A.J.: Another look at security definitions (to appear),

http://anotherlook.ca

24. Lenstra Jr., H.W.: Factoring integers with elliptic curves. Annals Math. 126, 649–
673 (1987)

25. Lund, C., Fortnow, L., Karkoff, H., Nisan, N.: Algebraic methods for interactive
proof systems. In: Proc. 31st IEEE Symp. on Foundations of Computer Science,
pp. 2–10 (1990)

26. Merkle, R., Hellman, M.: Hiding information and signatures in trapdoor knapsacks.
IEEE Trans. Information Theory 24, 525–530 (1978)

27. Odlyzko, A.: The rise and fall of knapsack crpyptosystems. In: Cryptology and
Computational Number Theory, Proc. Symp. Appl. Math., vol. 42, pp. 75–88.
Amer. Math. Soc. (1990)

28. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

29. Selman, A.L.: Complexity issues in cryptography. In: Computational Complexity
Theory, Proc. Symp. Appl. Math., vol. 38, pp. 92–107. Amer. Math. Soc. (1988)

30. Shamir, A.: A polynomial time algorithm for breaking the basic Merkle Hellman
cryptosystem. IEEE Trans. Information Theory 30, 699–704 (1984)

31. Steinwandt, R., Geiselmann, W., Endsuleit, R.: Attacking a polynomial-based cryp-
tosystem: Polly Cracker. Intern. J. Information Security 1, 143–148 (2002)

32. van Oorschot, P.: A comparison of practical public-key cryptosystems based on
integer factorization and discrete logarithm. In: Simmons, G. (ed.) Contemporary
Cryptology: The Science of Information Integrity, pp. 289–322. IEEE Press (1992)

http://eprint.iacr.org/2009/220.pdf
http://anotherlook.ca

Flyby: Life Before, During, and After

Graduate Studies with Mike Fellows

Todd Wareham

Department of Computer Science
Memorial University of Newfoundland

St. John’s, NL A1B 3X5 Canada
harold@mun.ca

I am a child of the space age. Growing up in the 1960’s, this was perhaps in-
evitable. Despite the overwhelming focus on the manned missions to the moon,
I was always most fascinated with the deep space planetary probes. The multi-
decade journeys of Pioneer and Voyager measured out my high school and uni-
versity undergraduate years and later the Galileo and Huygens missions saw
me through graduate school and becoming faculty. I am currently awaiting the
arrival of New Horizons at Pluto in 2015, wondering where and what I’ll be then.

The common event in each such mission is, after years of traveling alone
through space, a planetary encounter. Such encounters are often flybys, brief
visits characterized by a few tantalizing (and possibly unrepresentative) impres-
sions which end when, after stealing some of the gravitational energy locked up
in the planet, the probe is flung outward in a new direction, changed forever and
never to return.

Graduate studies with Mike Fellows was a lot like that.

I first met Mike over the Internet. On finishing my MSc, I attended the IEEE
Structure in Complexity Theory conference in Boston in the summer of 1992.
Among the talks I made notes to follow up on when I got home was one given by
Rod Downey on parameterized complexity. When I got a chance to look at the
conference paper, I realized it was the neatest thing I’d read in ages and decided
to ask for some of the manuscripts cited therein. As Mike was the Canadian
author and I was in Canada, I wrote to him. Just before I sent the message,
I added a brief postscript that I might have solutions to some of the open prob-
lems mentioned in the Structure paper. Mike wrote back immediately, promising
to put the requested manuscripts in the mail, and, with what I came to realize
was his typical generosity, offered to fly me out to Victoria to give a talk.

After several months of e-mails back and forth, I went out to meet Mike.
At the airport, I saw his characteristic goofy slightly-open-mouthed grin for the
first time. The next three days were a whirlwind, the prototypical Mike Fellows
Experience. I saw Mike teach, enthralling an undergraduate class. I got a first-
hand taste of his intensity when working, when we spent a day together analyzing
the complexity of a graph layout problem from computational biology. What I
remember most is Mike talking research, babbling with almost insane energy
and joy about all sorts of things I didn’t understand (though he kindly assumed

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 51–55, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

52 T. Wareham

that I did), skipping effortlessly from topic to topic, amazingly free and open
with ideas and collaborative opportunities.

On the third day, I was exhausted. After I gave a talk on my MSc work, Mike
and I had a very frank chat in the campus grad bar. Though he said I wasn’t
great at mathematics because I didn’t have the killer instinct when working on
proofs (with which I agreed), he liked my breadth of interests and offered to
supervise me in a PhD. I thanked him, said I’d think about it, and we parted.
Over the next six months, we worked on several papers together, I thought a
long time about it, and finally decided a PhD with Mike just might work out.

When I arrived in Victoria to start my PhD in January 1994, I was pleasantly
startled by both the extraordinarily mild (by my standards) winter weather and
being in a computer science department that had a large and vibrant theory
group. I got to know Mike’s other PhD students, Mike Dinneen (MikeD), Mike
Hallett (MikeH), and Patricia Evans (who with Fellows (MikeF) were known
as Patricia and the Three Mikes). After we agreed that I would not have to
change my name to Mike but could (despite the breaking of convention) remain
Todd, I settled into what would become my routine for the next several years
— courses, marking, research, evenings at the truly excellent on-campus cinema,
and, of course, time spent with Mike Fellows.

Much of that time was spent in Mike’s office. It was a corner office on the
second floor of the Engineering Office Wing, with two walls as windows looking
out on the lush West Coast forest that surrounds the UVic campus and the
other two walls as long whiteboards with overflowing bookcases beneath. There
were relatively neat piles of papers on every available horizontal surface of suf-
ficient size, often capped with Mike’s many manuscripts in progress. Boxes en-
closing cryptic descriptions of ongoing and future projects clustered on the edges
of each whiteboard, framing the overlapping half-erased scrawls in the centers
that characterized Mike’s thoughts of the previous month or so. Facing Mike’s
L-shaped desk was a ragged half-circle of well-used and constantly changing office
chairs, which were more often than not occupied. Mike’s door was almost always
open, and anyone could (and often did) come in, mixing with undergraduate and
graduate students and Mike’s parade of visitors from other universities.

We had more or less weekly meetings one-and-one with Mike, almost always
in the morning, to discuss what we we were working on, be it thesis project
or a related paper. When we had little to show for the last week, Mike eagerly
launched into an energetic explanation of whatever he was working on, with in-
vitations to contribute and be part of the fun. These sessions frequently evolved
into impromptu group meetings, sucking in whoever was walking by in the cor-
ridor outside. Given Mike’s enthusiasm, one-on-one meetings could run long and
get a bit intense. If this was a possibility, MikeD, MikeF, Patricia and myself had
an agreement that, about 30 or so minutes into the meeting, (1) one of us would
walk by Mike’s office to see how things were going and, if necessary, (2) distract
Mike long enough to give the one in the meeting a chance to either gather their

Flyby: Graduate Studies with Mike Fellows 53

thoughts or escape. This agreement was infrequently invoked, but did highlight
one of the unofficial advantages of large theory groups.

I loved watching Mike teach, and took whatever graduate courses that I could
from him. When he intimately knew the topic, as in the Computational Com-
plexity course, it was invariably enthralling. As he was often running a bit behind
and had not fully prepared his notes, he would spend the first 10 minutes sketch-
ing a story point by point in a stream-of-consciousness soliloquy on the left-hand
side of the board, and then (with periodic consultations) give several hours of
beautifully-constructed and delivered lecture. I still remember his 2 1/2-hour ex-
planation (if not the details) of the complex chain of parameterized reductions
underlying the W[2]-hardness of the Dominating Set problem. When he didn’t
quite know what he was talking about, as in the Computational Biology course,
it was just as fascinating — the unexpected ways he would jumble together those
concepts he knew well with those that he didn’t, if not always viable, was invari-
ably both entertaining and intriguing, and gave me insight into how truly new
and innovative ideas emerge. When you walked into a lecture Mike gave, as with
Forest Gump’s box of chocolates, you never knew what you were gonna get, but
you knew it would be good.

I also spent a lot of time in the UVic grad bar with Mike, both after class
and work. These get-togethers had anywhere between three and nine people,
but were always intimate. The back-and-forth of ideas was even more varied and
playful then in the office meetings and courses, fueled in part by generous plates
of nachos and jugs of Rickard’s Red (which Mike insisted on paying for, saying
it was his duty as a supervisor). Many of these ideas died (a much-loved proof
of the collapse of the W-hierarchy to W[2] lasted only 24 hours), but many also
survived to appear later in print. Interspersed through it all was our realization
that we were in the middle of something new and beautiful, and we wondered
aloud (especially as the level of beer in the jugs lowered) when the rest of the
world would see the parameterized light as we already had.

After all this time together, I got to know, appreciate, and occasionally
puzzle over some of Mike’s other interests outside of research. His passion for
CS and Mathematics education was awe-inspiring. I spent many evenings help-
ing out with this, both putting materials together beforehand (to this day
I cannot look at rolls of hockey tape without remembering the hours we spent in
the living room of Mike’s house putting together neon-bright executable illustra-
tions of sorting networks and graph problems on room-sized blue tarpaulins) and
running the associated activities in school auditoriums in and around
Victoria. I still have pictures of Mike encouraging children and their parents
as they worked through these activities and discovered (without proof, but feel-
ing their rightness) classical CS algorithms and complexity-theoretic distinctions.
I heard of, but never experienced first-hand, his love of surfing, as he could never
find a wet-suit big enough to fit me. This was perhaps fortunate. MikeH (who
was wet-suitable) later told me about Mike’s habit of, just as a wave you were
trying to catch was getting interesting and hence potentially dangerous, starting
distracting discussions on mathematical proofs.

54 T. Wareham

If you hung around long enough, you got to glimpse Mike’s loopier aspects.
Sometimes they clung tenuously to the side of valid academia. I once narrowly
talked Mike out of his brilliant idea of having me illustrate the finer points of
parameterized analysis at an annual student-industry get-together in Vancouver
by standing on a multicolored Rock of Complexity while wearing a clown suit.
There were his surreal Passion Plays, written to bring home the beauty of var-
ious lesser-known branches of mathematics to the general public. Other times
these aspects were part of his decidedly unconventional life. One day he brought
in videotapes in which, over two sessions and about 7 1/2 hours, he told part of
the story of how he volunteered for, went AWOL (several times) from, was im-
prisoned by, and was finally discharged (first dishonorably and then honorably)
from the US Air Force during the Vietnam War. They were filmed by a cousin
of his as working notes for a movie screenplay. They were amazing. Perhaps
inevitably, they vanished from circulation after copies were given to several local
schools. I wish I had kept one.

There were darker aspects as well. Mike can be both laid back and intense,
personable and dispassionate. I think this is all part of what makes him an
excellent and innovative mathematician. However, when unexpectedly combined,
these aspects can be disconcerting. I remember a lunch-time meeting in which
Mike evaluated an outline of one of my thesis chapters. He became more and
uncomfortable trying to be nice about it until I gave him permission to stop
being diplomatic, at which point he sighed, relaxed, and happily tore what I had
written to shreds. There was a picture of Mike at that time in front of the CS
General Office at UVic in which he looked directly at the camera with his usual
smile and half his face was in perfect shadow. I felt then (and still feel) that
there is truth in that picture.

Ultimately, though, it was good being around him. I was deeply impressed
by Mike’s generosity with ideas and his willingness to share authorship. As his
students, we were always given the opportunity to become part of whatever
papers Mike was working on. Perhaps even better was his not requiring that
he be author on what we ourselves produced unless he contributed — if what
we wrote got accepted, he would gladly pay to send us to meetings with single-
author papers. I did not realize until years later just how special and unusual
that was, and it is these things, among others above, that I carry forward.

Eventually, it came to an end. By the time my thesis was submitted, Mike
was traveling a lot, on the verge of leaving Victoria for good, and I had taken
a postdoc in Ontario. With the additional complication of an external examiner
from South Africa, it was hard to arrange a defense date; at one point, we joked
that it could only be held in a to-be-specified airport boarding lounge. However,
it all came together in April 1999, 6 1/2 years after I first talked to Mike.

I’m faculty now, and it is the job of my dreams. I teach and have my own
students, and enjoy both very much. Courtesy of my being one of Mike’s early

Flyby: Graduate Studies with Mike Fellows 55

graduate students, I’ve had the privilege of attending several of the parameterized
complexity workshops at Dagstuhl. I see Mike at these workshops and he is as
amazing and full of neat ideas and energetic as ever.

Looking back, Mike is the most fascinating person I have ever met and one of
the greatest influences on my academic life. Being around him changed and
gave form to my research, and his theories underlie much of my own work
and intellectual outlook. Almost all of my research collaborators are people
I have met either through Mike or by association with parameterized complexity.
In my dealings with graduate students, I aim for his generosity and openness.
In my teaching, to the best I can, I try to be passionate and convey to students
the excitement in every subject that Mike does whenever he talks.

All told, pretty good results for one e-mail.
Happy birthday, Mike, and thank you. Please keep on thinking and doing

beautiful things.

The Impact of Parameterized Complexity

to Interdisciplinary Problem Solving

Ulrike Stege�

Department of Computer Science
University of Victoria
stege@cs.uvic.ca

Abstract. We discuss interdisciplinary parameterized complexity re-
search in biology and cognitive science.

1 Introduction

Thinking back to my time as a PhD student in the Bioinformatics group at ETH
Zürich, my first true encounter with Parameterized Complexity was when my
colleague Chantal Korostensky and I followed an invitation from Mike Fellows
to visit his research group in Victoria, British Columbia. We were both working
on problems that were computationally hard—Chantal investigated methods
to compute multiple sequence alignments [62] and I studied evolutionary tree
reconciliation problems—and were fascinated hearing Mike’s novel ideas of how
to deal with NP-hard problems without necessarily sacrificing optimality.

In the fall of 1997, Mike explained to us his vision to view NP-hard compu-
tational problems in a more refined way and challenged us to study these pa-
rameterized versions in a new framework, called parameterized complexity [27].
Using graph theoretic examples such as Vertex Cover, Independent Set

and Dominating Set he illustrated that parameterization can provide a better
understanding of why a problem, which is characterized as intractable in the
first place, may not be truly intractable, and what aspect of the problem may
or may not contribute to its intractability. All these foundational illustrations
can be found in the famous book by Downey and Fellows, which was at the time
almost completed [18].

When considering complexity in the classical sense, the time complexity of
an algorithm is measured in the input size n of the problem input. That is, if a
problem is identified to be NP-hard, there is likely no polynomial time algorithm.
In other words, there is no algorithm with a running time O(nc) where c is a
constant.

In contrast, in the parameterized world, the problem input is considered in
terms of the input size n and a parameter k. If there exists an algorithm solv-
ing the problem with a running time of O(f(k)nc), then this parameterization
of the problem is fixed-parameter tractable or a member of the parameterized

� Research supported by an NSERC Discovery Grant.

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 56–68, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Impact of Parameterized Complexity 57

complexity class FPT [18]. f(k) can be a super-polynomial time function; in
this case, the “intractability” of the problem is “trapped,” that is, it depends on
parameter k only and not on input size n. If f(k) can be kept small for practical
applications such that f(k) is not “too big,” then the algorithm should behave
just like a polynomial-time algorithm!

I was intrigued by this radical idea. The realization that the (in)tractability
of hundreds of computational problems could be (re)considered, and that many
of these problems might have efficient parameterized algorithms and therefore
might not be that intractable—or not that impractical—after all, opened up
a world of possibilities for me, and gave me ideas for plenty of PhD topics.
Particularly, the attraction to consider parameterizations from the application
perspective of the problem gave me new hope to escape heuristic approaches in
interdisciplinary areas, such as bioinformatics.

This lead me directly to the for me most convincing argument why we should
continue to pursue parameterized complexity: namely because of the great po-
tential of parameterized algorithms to be used to solve applied problems, by users
from many different fields, including researchers in sciences and social sciences,
as well as developers in industry.

My first aha-experience back then was that the NP-hardness property of a
computational problem is by no means evidence for solid intractability but rather
an encouragement to refine the problem statement using thoughtful parameteri-
zations and to design parameterized algorithms. This was especially fascinating
as it appeared to be counter to how I was taught and as I understood compu-
tational intractability at that time. Bodlaender et al. articulated this argument
well in their 1995 article in Computer Applications in the Biosciences [5]. They
argue that parameterized complexity (and not NP-completeness) is the appro-
priate tool for studying intractability. They further point out that parameterized
intractability results can provide insights in possibly restricted versions of the
problem as intractability results suggest (with respect to practical results) useful
constraints.

Researchers who know Mike can easily guess that the first parameterized
algorithm he showed to me to prove that a parameterized NP-complete prob-
lem can be in FPT was the bounded-search tree algorithm for Vertex Cover

with its promising practical running time of O(2kn) [21].1 An other powerful
method from the FPT-toolkit to apply to Vertex Cover is efficient prepro-
cessing, such as kernelization (cf. [9] for the first polynomial-time kernelization
algorithm of Vertex Cover). Kernelization preprocesses the input with guar-
antees, namely it reduces a problem instance to an equivalent problem instance
whose size is bounded by some function of the parameter, or it solves the param-
eterized problem: In the case of Vertex Cover parameterized by the size of the
vertex cover to be determined, kernelization determines too large instances as
no-instances [18]. For other parameterized problems, such as Max Leaf Span-

ning Tree parameterized by the number of leaves, kernelization reports large
enough instances as yes-instances [28]. Especially desirable is polynomial-time

1 Mehlhorn already described the basic idea of this elegant algorithm in 1984 [51].

58 U. Stege

kernelization. One of the most convincing arguments for the use of parameter-
ized complexity in practice should be that a parameterized problem is in FPT
if and only if it is kernelizable [19].

In general, preprocessing is a useful first step for solving any computational
problem when dealing with large inputs or intractability properties. The beauty
about Vertex Cover is not just its presentability for all kinds of parameterized
algorithmic techniques (e.g., [43,54,13]), and its impressive sequence of parame-
terized algorithms [21,9,58,18,17,2,19,55,70,69,12,13], but also its applicability—
it is a powerful model for, for example, conflict graph resolution as it can be
applied in post processing of gaps multiple sequence alignments [69] or in clean-
ing data of a character matrix when building phylogenetic trees (also called
Compatibility [16]).

During my PhD studies, Mike provided me with many opportunities to meet
and have discussions with biologists (e.g., Joe Felsenstein, University of Wash-
ington in Seattle, USA; my now colleague and collaborator Chris Upton, Uni-
versity of Victoria in British Columbia, Canada; Jack Heinemann, University of
Canterbury in Christchurch, New Zealand, with whom we had most fascinat-
ing conversations about horizontal gene transfer) to explore how the message
of parameterized complexity could be applied in sciences, and what collabora-
tion with scientists could look like. He also introduced me to Todd Wareham
who was finishing his PhD studies with Mike, and my future graduate student
Iris van Rooij who introduced me to another favourite application area of mine,
viz. Cognitive Psychology.2 I fondly remember these memorable meetings and
experiences.

The biggest challenge in these meetings was the research communication be-
tween the parties from the different areas: At the time, I became aware of the
fact that academic groups develop their own particular science language, that is,
for example, the “biology language” or the “computer science language,”3 and
that an English sentence is often interpreted very differently by different scien-
tific communities. For this reason alone, to succeed4 in interdisciplinary research,
some of the necessary properties an interdisciplinary academic must possess are
patience, the ability to question the (maybe existing) common grounds over and
over again, and, therefore, one needs plenty of time to do well.

2 Parameterized Complexity and Interdisciplinary
Research

A key during the problem solving process—when the goal is to design an algo-
rithm or to provide even an implementation for an applied research problem—is

2 Iris who had just finished her M.A. in Psychology was visiting Mike in Victoria
during one of my later visits.

3 Some sciences have many “dialects” as my collaboration with people from networks
and software engineering has demonstrated to me.

4 If you are bilingual, that is educated rigorously in both areas, then you can be a
translator.

The Impact of Parameterized Complexity 59

the ability to come up with a precise abstract problem description. Sometimes
the algorithm designer may expect a formulation as a computational problem de-
livered by the user. However, formulating the problem can be challenging for the
user. The algorithm designer must truly understand the problem at hand when
making it abstract. Here, the translation between the different science languages
is probably the most challenging part.

Even after a problem description is agreed upon, many times the first draft is
just a stepping stone. To confirm that the right computational problem descrip-
tion has been found, often algorithmic results from real data inputs solving the
problem are needed. If unsuccessful, the problem description must be revised.
This process is part of the typical problem solving design cycle (such as the
classic hypothetico-deductive method [83,84] used by scientists).

The task is not finished with the successful implementation of an algorithm.
Practitioners typically rely on the integration of the implementation in a user-
friendly and well-documented software package. Further, we want users to know
what the advantages are of using optimal (or exact) algorithms compared to
heuristics: for example, exact algorithms allow—in contrast to heuristics—an
accurate evaluation of a computational problem when considered as a model of
an applied research question. Therefore, our practical parameterized algorithms
should be readily available for the user: we require user-friendly packages that
combine parameterized and heuristic approaches and allow the user to opt for
the exact approach whenever its running time is feasible. Efficient preprocessing
in the form of data reduction should be applied as much as possible, even in
cases where exact computation is impractical. Today, in many practical applica-
tions (such as sequence alignment problems), heuristic approaches are commonly
applied to the underlying hard problems. One of the mission statements of ap-
plied parameterized complexity should be to offer additional exact approaches
wherever possible as an alternative to heuristic approaches.

That parameterized algorithms can be practical is (still) best illustrated
using the Vertex Cover problem: Vertex Cover instances containing a
vertex cover of size up to at least k = 200 are considered practical. Best
practices for implementations and use in bioinformatics for parameterized al-
gorithms are the Vertex Cover ones implemented in Langston’s and Dehne’s
groups [42,44,43,15,11].

While the FPT-toolkit is great for solving computational problems algorith-
mically, parameterized complexity may also inform science when studying com-
putational models in the search for models of cognitive capacities and cognitive
processes [76,75]. The tractability design cycle is suggested as method to support
this process.

We now turn our attention to the art of parameterization. For a given NP-
hard computational problem, what parameterizations should be studied? While
some parameter choices may seem natural, other choices appear less obvious.
Of course, often the application can shed light on natural parameterizations
that are not obvious otherwise. When, for example, parameterizing Vertex

Cover by the size of the cover to be determined (aka k-Vertex Cover, the

60 U. Stege

natural parameterization ofVertex Cover), the problem is in FPT, while when
parameterizing by the number of vertices not to be included in the cover—aka
k-Independent Set, a parameterization of Vertex Cover that is dual to
k-Vertex Cover—the problem turns out to be complete for the class W[1] [18].
If we choose as the parameter a less obvious (but also dual) variant, namely
the number of edges covered minus the number of vertices in the cover (aka
p-Profit Cover [71]), then the problem is again in FPT.

In terms of the practicality of FPT algorithms, parameters should be small to
achieve acceptable running times [54]: that is, to solve the problem’s optimiza-
tion version, the optimum value for the parameter, when solving the problem’s
optimization version, should be small.5 Do the same limitations on the choice
of parameters hold for all purposes of parameterized complexity? First, finding
tractable parameterized algorithms for different parameterizations of a prob-
lem may improve practical running times [71]. Second, the application can shed
light on the practicality of a parameter: If Vertex Cover is used to model
a conflict graph to clean a data set (c.f. [69]), then we expect k, the number
of data points (vertices) to be removed from the data set (set of vertices of the
graph), to be small as otherwise the data set can be considered as too noisy to be
kept. We may want to use Profit Cover to verify that a data set is profitable
(enough). Further, a complete parameterized analysis can be useful when for ex-
ample evaluating computational models as models for cognitive theories [81,76].
When studying the cognitive limitation of humans in human problem solving, an
exhaustive study of the complexity of possible parameterizations may prove in-
formative. In particular, even tractable parameterized results that are considered
trivial, such as parameterizations above or below the optimum solution [47], may
be of interest when the goal is to evaluate possible cognitive theories as efficiently
computable functions.

Niedermeier discusses the issue of how to parameterize in his book Invi-
tations to Fixed-Parameter Algorithms from the perspective of an algorithm
designer [54], and later distinguishes different ways of identifying parameters,
namely solution quality driven ones (such as the size of a solution), and struc-
tural ones (parameterizing by distance from triviality, based on data analysis,
by deconstructing hardness proofs, by dimensions,6 and averaging out) [53]. Pa-
rameterizations that depend on the real data sets may be most effective when
developing a data-driven algorithmic implementation for the user. However, this
way of parameterizing involves strong interdisciplinary collaboration: in [22],
Fellows et al. say

“Identifying parameters relevant to real-world datasets is something
of an art [53] and essential to the useful deployment of the multivariate
outlook on NP-hard problems. In some sense, the search for relevant
parameters brings this part of theoretical computer science to the fields
of Heuristics and Algorithms Engineering and Artificial Intelligence.”

5 This discussion is closely related to the, in the early years discussed, klam value [18].
6 e.g., dimensions of input objects.

The Impact of Parameterized Complexity 61

Niedermeier observes that the identification of parameterizations based on data
analysis is still underdeveloped [53]. This might be one of the strongest expecta-
tions that is expected from interdisciplinary parameterized complexity research.
A rigorous understanding of the data sets will yield an improved data-driven
algorithm design-process by combining theoretical approaches with data facts.

3 Parameterized Complexity and Its Contributions
to Computational Biology

Computational biology has received considerable attention from parameterized
complexity researchers who have attacked a number of computational problems
from the area. Early work considered the Perfect Phylogeny problem [6],
DNA Physical Mapping [26], and sequence or alignment problems [5]; variants
of maximum agreement subtree problems were studied in [23,24]. Tree reconcil-
iation problems for gene and species trees are studied in [25,68,69,35,3]. Over
the years, many problems in computational biology have been considered in
the parameterized framework. There is a number of PhD theses with significant
contributions in this area, including [34,8,20,69,37,7,31,67,33,64], with Hallett’s
thesis being the first [34]. For a survey summarizing results on parameterized
algorithms in phylogenetics we refer to the article by Gramm et al. [32]. Typi-
cal problem parameters in these problems include the number of input objects
to be considered, the number of evolutionary events (following the parsimony
assumption this number should be small), and combinations thereof.

Most parameterized complexity work in bioinformatics or computational bi-
ology is of theoretical nature. However, in addition to the practical work by the
groups of Langston and Dehne mentioned above, Hüffner and his collaborators
have done recent work in algorithmic engineering with focus on the bioinformat-
ics area [38,36].

As discussed in Section 2, deep knowledge of the problem structure, the ap-
plication domain and the properties of the real data sets are crucial for the
design of algorithms and implementations driven by specific applications. In-
terdisciplinary collaboration and knowledge of both domains for all parties are
useful if not necessary for success. It appears that most results in the intersec-
tion of parameterized complexity and computational biology are published in
computer science conferences and journals, with some exceptions: examples are
the work by Hallett et al. with their publication at the computational biology
conference Recomb on identifying duplications and lateral gene transfers, van
Brevern et al. with the recent article on motif search in Transactions on Com-
putational Biology and Bioinformatics [4], and Hüffner et al. on clustering in
Biological Networks [40]. The article Developing Fixed-Parameter Algorithms to
Solve Combinatorially Explosive Biological Problems by Hüffner et al. published
in Bioinformatics [39] is probably the one that best introduces the techniques of
parameterized complexity to the biology community.

62 U. Stege

4 The Role of Parameterized Complexity in Cognitive
Science

Human problem solving is a subarea of cognitive science that studies human
problem solving in terms of problem solving strategies and performance, and
looks for models of cognitive capacities (also denoted computational-level theo-
ries [48,76,75]) as well as cognitive processes. In the past, results from compu-
tational complexity have influenced this research,7 and were used in particular
to justify the rejection of computational problems as potential computational-
level theories according to what van Rooij denoted the P-cognition thesis [75]:
only computational problems that can be solved in polynomial time can serve as
computational-level theories. That is, computational problems that are shown to
be NP-hard were either rejected or inexact solution strategies were suggested as
explanations for people dealing with the intractability of these problems (e.g., ap-
proximation algorithms or heuristic). Wareham was the first arguing in his 1996
paper that parameterized complexity is the better tool than classical computa-
tional complexity when measuring the complexity of computational models for
cognitive systems or identifying the sources that isolate the model power [80]. In
recent years, the consideration of parameterized complexity has lead to a relax-
ation of the P-cognition thesis, resulting in the FPT-cognition thesis: NP-hard
but fixed-parameter tractable parameterized computational decision problems
can also be considered candidates for computational-level theories [76,75].

Modelling Cognitive Capacities. A common assumption amongst a group of
cognitive scientists is that cognitive capacities consist of input/output functions
that are “efficiently computable” (cf. the works by van Rooi [76,75] as well as
articles by Cherniak [14], Frixione [29], Levesque [45] and Tsotsos [73]). Further,
it is widely assumed that computational complexity can aid cognitive science
research [1,49,50,52,56,57,61,65,66,73]. As Tsotsos noted in his author’s response
to the commentaries of his article from 1990, complexity analysis is an important
dimension of study when modelling vision [73].

Typical questions when investigating cognitive capacities and studying human
problem solving include: What computational problems are good candidates
for models of cognitive capacities? How do people solve these computational
problems? What are people’s limitations w.r.t. instance sizes and properties?
What are plausible models for the human solution process?

Many computational problems that are discussed in the literature as
candidates for models of cognitive capacities are characterized as NP-
hard [66,73,59,46,80,50,81,30,72,76,79,78,77,82]. As a consequence, to serve as
models for cognitive capacities, these problems are either disregarded in their
general form, or they decoy the researcher to assume that people use approxi-
mation algorithms or heuristics to solve the tasks. Complexity analysis as such
has lead to criticism of its relevance for this purpose (cf. commentaries to [73]).
The use of parameterized complexity in this area has shed a different light on
problems that are NP-hard but have parameterizations that are members of the

7 The dissertations by Wareham and van Rooij are examples surveying this literature.

The Impact of Parameterized Complexity 63

class FPT and thus put the plausibility of computational problems as cognitive
models into a different perspective: since there exist exact algorithms that are
tractable for some NP-hard problems, heuristics and approximation algorithms
may not be the only possible explanation for approaches that humans choose
when tackling certain problems.

Parameterized complexity was first suggested by Wareham as a tool to eval-
uate models of cognitive systems [80]. He argues that a refined analysis using
parameterized complexity proves more useful than classical complexity analysis
alone. To evaluate an NP-hard problem systematically as a model of a cogni-
tive capacity—that is, to fully characterize a computational problem by showing
what and what does not make it tractable—Wareham suggest to use what he
calls systematic parameterized complexity analysis [81].

Some of the first discussed computational problems as models of cognitive
capacities using parameterized complexity were phonological models in linguis-
tics [80,81]—namely Declarative Phonology problems [63] and Optimality The-
ory [60]. Both are constraint-based theories: Optimality Theory has a priority
order for constraint satisfaction while in Computational Declarative Phonology
problems all constraints must be satisfied; described are rule based phonological
mechanisms that manipulate the (mental or spoken) phonological representa-
tion. Wareham discusses two distinct processes for a declarative phonology system
S =< P,D >, that is a pair of constraint sets where P encodes the phonological
mechanisms of a language and D encodes the lexicon of the language: encod-
ing with its corresponding computational problem DP-Encode and decoding
with DP-Decode [81]. A systematic parameterized complexity analysis over a
spectrum of input and solution driven parameterizations for both theories re-
veals several tractable parameterizations that may be investigated further as
plausible models in linguistics [81].

Van Rooij et al. studied Subset Choice problems that model decision making
tasks [76,78]. Subset choice problems can arise in a variety of settings: choice
situations in everyday settings (e.g., when selecting toppings for a pizza) as
well as highly specialized ones (e.g., prescribing medication). Different models
of the task of choosing a subset of items from among a set of available items are
investigated [76,78].

Most recent work includes the discussion of the complexity of self-organiza-
tion of cognitive behaviour using Constraint Satisfaction by van Rooij [74],
on Bayesian Intractability by Kwisthout et al. [41] and the human performance
of Vertex Cover by Carruthers et al. [10].

5 Conclusions

Many hard problems in practical applications exhibit a rich structure that allows
a number of realistic parameterizations that permit the design of parameterized
algorithms. In bioinformatics, there is a tremendous need for developing exact
algorithms for problems with very large data inputs. To move even more of
the highly evolved algorithmic results from parameterized complexity in bioin-
formatics towards sophisticated practical implementations, the area will profit

64 U. Stege

from: continued interdisciplinary collaboration, a push in parameterized algo-
rithmic engineering, and a series of publications in the biology community to
publicize the methods and enlighten an even larger number of researchers about
the advantages of optimal algorithms compared to heuristics. To succeed, from
the applied user’s standpoint, more practical parameterized algorithms should
be readily available.

The research findings in cognitive modeling have the potential to signifi-
cantly impact the ability of cognitive psychologists to identify new theories that
model cognitive capacities and problem solving processes. In contrast to the
computational biology field, the majority of parameterized complexity research
in cognitive science is published in cognitive science and psychology journals.
In particular van Rooij has began to publicize findings in the cognitive science
community.8

While parameterized complexity results in computational biology mainly fo-
cus on the development of fast algorithms, in cognitive psychology the main
focus is on the modelling of cognitive capacities. Computational biology can
learn from the the modeling research done in cognitive science to improve the
process of formalizing of computational problems.

Acknowledgements. I want to thank Hausi Müller and my research group at
UVic, in particular Sarah Carruthers, for lots of interesting discussions on the
subject.

References

1. Anderson, J.R.: The Adaptive Character of Thought. Lawrence Erlbaum Asso-
ciates (1990)

2. Balasubramanian, R., Fellows, M.R., Raman, V.: An Improved Fixed-Parameter
Algorithm for Vertex Cover. Information Processing Letters 65, 163–168 (1998)

3. Bansal, M.S., Shamir, R.: A Note on the Fixed Parameter Tractability of the
Gene-Duplication Problem. IEEE/ACM Trans. Comput. Biol. Bioinformatics 8(3),
848–850 (2011)

4. Betzler, N., van Bevern, R., Komusiewicz, C., Fellows, M.R., Niedermeier, R.: Pa-
rameterized Algorithmics for Finding Connected Motifs in Biological Networks.
IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(5),
1296–1308 (2011)

5. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hallett, M.T., Wareham, H.T.:
Parameterized Complexity Analysis in Computational Biology. Computer Appli-
cations in the Biosciences 11(2), 49–57 (1995)

6. Bodlaender, H.L., Fellows, M.R., Warnow, T.J.: Two Strikes Against Perfect Phy-
logeny. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer,
Heidelberg (1992)

7. Boucher, C.A.: Combinatorial and Probabilistic Approaches to Motif Recognition.
PhD thesis, University of Waterloo (2010)

8 Parameterized complexity was used by several participants in their presentations
at the recent interdisciplinary Seminar Computer Science & Problem Solving: New
Foundations that took place Dagstuhl in 2011.

The Impact of Parameterized Complexity 65

8. Bryant, D.: Building Trees, Hunting for Trees, and Comparing Trees—Theory and
Methods in Phylogenetic Analysis. PhD thesis, University of Canterbury (1997)

9. Buss, J.F., Goldsmith, J.: Nondeterminism within P. SIAM J. Comput. 22(3),
560–572 (1993)

10. Carruthers, S., Masson, M., Stege, U.: Human Performance on Hard Non-Euclidean
Graph Problems: Vertex Cover. Accepted to the Journal of Problem Solving (2012)

11. Cheetham, J., Dehne, F., Rau-Chaplin, A., Stege, U., Taillon, P.J.: Solving Large
FPT Problems on Coarse Grained Parallel Machines. Journal of Computer and
System Sciences 67(4), 691–706 (2003)

12. Chen, J., Kanj, I.A., Jia, W.: Vertex Cover: Further Observations and Further
Improvements. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS,
vol. 1665, pp. 313–324. Springer, Heidelberg (1999)

13. Chen, J., Kanj, I.A., Xia, G.: Improved Parameterized Upper Bounds for Vertex
Cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
238–249. Springer, Heidelberg (2006)

14. Cherniak, C.: Minimal Rationality. MIT Press (1986)
15. ClustalXP, http://clustalxp.cgmlab.org/ (retrieved 2012)
16. Day, W.H.E., Sankoff, D.: Computational Complexity of Inferring Phylogenies by

Compatibility. Syst. Zool. 35(2), 224–229 (1986)
17. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness II:

Completeness for W[1]. Theoretical Computer Science A 141, 109–131 (1995)
18. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
19. Downey, R.G., Fellows, M.R., Stege, U.: Parameterized Complexity: a Framework

for Systematically Confronting Computational Intractability. In: Graham, R., Kra-
tochvil, J., Nesetril, J., Roberts, F. (eds.) Proc. DIMACS-DIMATIA Workshop,
Prague. Contemporary Trends in Discrete Mathematics (1997), AMS-DIMACS Se-
ries in Discrete Mathematics and Theoretical Computer Science 49, 49–99 (1999)

20. Evans, P.: Algorithms and Complexity for Annotated Sequence Analysis. PhD
thesis, University of Victoria (1999)

21. Fellows, M.R.: On the Complexity of Vertex Set Problems. Technical Report, Com-
puter Science Department, University of New Mexico (1988)

22. Fellows, M.R., Gaspers, S., Rosamond, F.: Multivariate Complexity Theory. In:
Blum, E.K., Aho, A.V. (eds.) Computer Science, pp. 269–293. Springer, New York
(2011)

23. Fellows, M.R., Hallett, M.T., Korostensky, C., Stege, U.: Analogs and Duals of
the MAST Problem for Sequences and Trees. In: Bilardi, G., Pietracaprina, A.,
Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 103–114. Springer,
Heidelberg (1998)

24. Fellows, M.R., Hallett, M.T., Stege, U.: Analogs and Duals of the MAST Problem
for Sequences and Trees. Journal of Algorithms 49(1), 192–216 (2003)

25. Fellows, M.R., Hallett, M.T., Stege, U.: On the Multiple Gene Duplication Prob-
lem. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 347–
357. Springer, Heidelberg (1998)

26. Fellows, M.R., Hallett, M.T., Wareham, H.T.: DNA Physical Mapping: Three Ways
Difficult. In: Lengauer, T. (ed.) ESA 1993. LNCS, vol. 726, pp. 157–168. Springer,
Heidelberg (1993)

27. Fellows, M.R., Langston, M.: Nonconstructive Advances in Polynomial Time Com-
plexity. Information Processing Letters 26, 157–162 (1987)

http://clustalxp.cgmlab.org/

66 U. Stege

28. Fellows, M.R., McCartin, C., Rosamond, F.A., Stege, U.: Coordinatized kernels and
Coordinatized Kernels and Catalytic Reductions: An Improved FPT Algorithm for
Max Leaf Spanning Tree and Other Problems. In: Kapoor, S., Prasad, S. (eds.)
FST TCS 2000. LNCS, vol. 1974, pp. 240–251. Springer, Heidelberg (2000)

29. Frixione, M.: Tractable competence. Minds and Machines 11, 379–397 (2001)
30. Graham, S.M., Joshi, A., Pizlo, Z.: The Traveling Salesman Problem: A Hierarchi-

cal Model. Memory & Cognition 28(7), 1191–1204 (2000)
31. Gramm, J.: Fixed-Parameter Algorithms for the Consensus Analysis of Genomic

Data. PhD thesis, Universität Tübingen (2003)
32. Gramm, J., Nickelsen, A., Tantau, T.: Fixed-Parameter Algorithms in Phylogenet-

ics. The Computer Journal 51(1), 79–101 (2008)
33. Guo, J.: Algorithm Design Techniques for Parameterized Graph Modification Prob-

lems. PhD thesis, Friedrich-Schiller-Universität Jena (2006)
34. Hallett, M.T.: An Integrated Complexity Analysis of Problems from Computa-

tional Biology. PhD thesis, University of Victoria (1996)
35. Hallett, M., Lagergren, J., Tofigh, A.: Simultaneous Identification of Duplications

and Lateral Transfers. In: RECOMB 2004, pp. 47–356 (2004)
36. Helwig, S., Hüffner, F., Rössling, I., Weinard, M.: Chapter 3. Selected Design Is-

sues. In: Müller-Hannemann, M., Schirra, S. (eds.) Algorithm Engineering. LNCS,
vol. 5971, pp. 58–126. Springer, Heidelberg (2010)

37. Hermelin, D.: New Results in Parameterized Complexity. PhD thesis, University
of Haifa (2009)

38. Hüffner, F.: Algorithm Engineering for Optimal Graph Bipartization. Journal of
Graph Algorithms and Applications 13(2), 77–98 (2009)

39. Hüffner, F., Niedermeier, R., Wernicke, S.: Developing Fixed-Parameter Algo-
rithms to Solve Combinatorially Explosive Biological Problems. Bioinformatics,
395–421 (2007)

40. Hüffner, F., Niedermeier, R., Wernicke, S.: Fixed-parameter algorithms for graph-
modeled data clustering. In: Clustering Challenges in Biological Networks, pp.
3–28. World Scientific (2009)

41. Kwisthout, J., Wareham, T., van Rooij, I.: Bayesian Intractability is not an Ailment
that Approximation Can Cure. Cognitive Science 35(5), 779–784 (2011)

42. Langston, M.A.: Homepage, http://web.eecs.utk.edu/~langston/ (retrieved
2012)

43. Langston, M.A., Abu-Khzam, F.N., Collins, R.L., Fellows, M.R., Suters, W.H.,
Symons, C.T.: Kernelization Algorithms for the Vertex Cover Problem: Theory
and Experiments. In: ALENEX 2004, pp. 62–69 (2004)

44. Langston, M.A., Abu-Khzam, F.N., Shanbhag, P.: Scalable Parallel Algorithms for
Difficult Combinatorial Problems: a Case Study in Optimization. In: PDCS 2003,
pp. 649–654 (2003)

45. Levesque, H.J.: Logic and the complexity of reasoning. Journal of Philosophical
Logic 17, 355–389 (1988)

46. MacGregor, J.N., Ormerod, T.C., Chronicle, E.P.: A Model of Human Perfor-
mance on the Traveling Salesperson Problem. Memory & Cognition 28(7), 1183–
1190 (2000)

47. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing Above or Below Guaranteed
Values. J. Comput. Syst. Sci. 75(2), 137–153 (2009)

48. Marr, D.: Vision: A Computational Investigation into the Human Representation
and Processing Visual Information. W.H. Freeman (1982)

49. Martignon, L., Hoffrage, U.: Fast, Frugal, and Fit: Simple Heuristics for Paired
Comparison. Theory and Decision 52, 29–71 (2002)

http://web.eecs.utk.edu/~langston/

The Impact of Parameterized Complexity 67

50. Martignon, L., Schmitt, M.: Simplicity and Robustness of Fast and Frugal Heuris-
tics. Minds and Machines 9, 565–593 (1999)

51. Mehlhorn, K.: Data Structures and Efficient Algorithms. Graph Algorithms and
NP-Completeness, vol. 2. Springer (1984)

52. Millgram, E.: Coherence: The Price of the Ticket. Journal of Philosophy 97, 82–93
(2000)

53. Niedermeier, R.: Reflections on Multivariate Algorithmics and Problem Parame-
terization. In: STACS 2010, pp. 17–32 (2010)

54. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

55. Niedermeier, R., Rossmanith, P.: Upper Bounds for Vertex Cover Further Im-
proved. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 561–570.
Springer, Heidelberg (1999)

56. Oaksford, M., Chater, N.: Reasoning Theories and Bounded Tationality. In: Mank-
telow, K.I., Over, D.E. (eds.) Rationality: Psychological and Philosophical Perspec-
tives, pp. 31–60 (1998)

57. Oaksford, M., Chater, N.: Rationality in an uncertain world: Essays on the cogni-
tive science of human reasoning. Psychology Press, Hove (1993)

58. Papadimitriou, C.H., Yannakakis, M.: On limited nondeterminism and the com-
plexity of the V-C dimension. Journal of Computer and System Sciences 53(2),
161–170 (1996)

59. Parberry, I.: Knowledge, Understanding, and Computational Complexity. In:
Levine, D.S., Elsberry, W.R. (eds.) Optimality in Biological and Artificial Net-
works?, pp. 125–144. Lawrence Erlbaum Publishers, Hillsdale (1997)

60. Prince, A., Smolensky, P.: Optimality Theory Constraint Interaction in Genera-
tive Grammar. Tech. Rep. RuCCS TR-2, Center for Cognitive Science, Rutgers
University (1993)

61. Rensink, R.A., Provan, G.: The Analysis of Resource-Limited Vision Systems. In:
Proceedings of the 13th Annual Conference of the Cognitive Science Society, pp.
311–316 (1991)

62. Roth-Korostensky, C.: Algorithms for Building Multiple Sequence Alignments and
Evolutionary Trees. PhD thesis, ETH Zürich (2000)

63. Scobbie, J.M.: Towards Declarative Phonology. In: Bird, S. (ed.) Declarative Per-
spectives in Phonology. Edinburgh Working Papers in Cognitive Science, vol. 7,
pp. 1–27. University of Ediburgh (1992)

64. Shaw, P.: Advances in Cluster Editing: Linear FPT Kernels and Comparative Im-
plementations. PhD thesis, The University of Newcastle (2010)

65. Simon, H.A.: Rationality as Process and as Product of Thought. In: Bell, D.E.,
Raiffa, H., Tversky, A. (eds.) Decision Making: Descriptive, Normative, and Pre-
scriptive Interactions, pp. 58–77. Cambridge University Press, Cambridge (1988)

66. Simon, H.A.: Invariants of human behavior. Annual Review of Psychology 41(1),
1–19 (1990)

67. Snir, S.: Computational Issues in Phylogenetic Reconstruction: Analytic Maximum
Likelihood Solutions, and Convex Recoloring. PhD thesis, Technion (2004)

68. Stege, U.: Gene Trees and Species Trees: The Gene-Duplication Problem is Fixed-
Parameter Tractable. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.)
WADS 1999. LNCS, vol. 1663, pp. 288–293. Springer, Heidelberg (1999)

69. Stege, U.: Resolving Conflicts from Computational Biology. PhD thesis, ETH
Zürich (2000)

68 U. Stege

70. Stege, U., Fellows, M.R.: An Improved Fixed-Parameter Tractable Algorithm for
Vertex Cover. Technical Report 318, Department of Computer Science, ETH Zürich
(April 1999)

71. Stege, U., van Rooij, I., Hertel, A., Hertel, P.: An O(pn + 1.151p)-Algorithm for
p-Profit Cover and Its Practical Implications for Vertex Cover. In: Bose, P., Morin,
P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 249–261. Springer, Heidelberg (2002)

72. Thagard, P.: Coherence in Thought and Action. MIT Press (2000)
73. Tsotsos, J.K.: Analyzing Vision at the Complexity Level. Behavioral and Brain

Sciences 13(3), 423–469 (1990)
74. Rooij, I.: Self-Organization Takes Time too. Topics in Cognitive Science 4, 63–71

(2012)
75. van Rooij, I.: The tractable Cognition Thesis. Cognitive Science (2008)
76. van Rooij, I.: Tractable Cognition: Complexity Theory in Cognitive Psychology.

Ph.D. Thesis, Department of Psychology, University of Victoria (2003)
77. van Rooij, I., Schactman, A., Kadlec, H., Stege, U.: Perceptual or Analytical Pro-

cessing? Evidence from Children’s and Adult’s Performance on the Euclidean Trav-
eling Salesman Problem. Journal of Problem Solving 1(1), 44–73 (2006)

78. van Rooij, I., Stege, U., Kadlec, H.: Sources of Complexity in Subset Choice. Jour-
nal of Mathematical Psychology 49(2), 160–187 (2005)

79. van Rooij, I., Stege, U., Schactman: Convex hull and Tour Crossings in the Eu-
clidean Traveling Salesperson Problem: Implications for Human Performance Stud-
ies. Memory & Cognition 31(2), 215–220 (2003)

80. Wareham, H.T.: The role of Parameterized Computational Complexity Theory
in Cognitive Modeling. In: AAAI 1996 Workshop Working Notes: Computational
Cognitive Modeling: Source of the Power (1996)

81. Wareham, H.T.: Systematic Parameterized Complexity Analysis in Computational
Phonology. Ph.D. Thesis, Department of Computer Science, University of Victoria
(1999)

82. Wareham, H.T., Evans, P., van Rooij, I.: What does (and doesn’t) make analogical
problem solving easy? Journal of Problem Solving 3(2), 30–71 (2011)

83. Whewell, W.: History of the Inductive Sciences, from the Earliest to the Present
Times, London, vol. 3 (1837)

84. Whewell, W.: The Philosophy of the Inductive Sciences, founded upon their history,
London, vol. 2 (1840)

Vertex Cover, Dominating Set

and My Encounters with Parameterized
Complexity and Mike Fellows

Venkatesh Raman

The Institute of Mathematical Sciences,
Chennai, India 600 113
vraman@imsc.res.in

Abstract. In this report, I start with a historic view of how, the two
problems Vertex Cover and Dominating Set that were influential
to the birth of the area of parameterized complexity, also led me to this
area and introduced me to Mike Fellows. I also discuss early research and
meetings in Parameterized Complexity, Mike’s influence in community
building and some personal anecdotes with Mike. I conclude with some
recent results on these two problems and also discuss open problems in
the area.

1 Introduction (How It All Started for Me!)

Having done my PhD on Sorting algorithms, I took a natural liking to the family
of directed graphs called tournaments, as a transitive tournament exactly models
a totally ordered set. I started looking at papers [2] that showed connections be-
tween sorting algorithms and finding directed hamiltonian paths in tournaments.
With some colleagues, I wrote a couple of papers describing efficient algorithms
and lower bounds to find vertices with specific degrees in tournaments. Along
the way, I stumbled into the paper [10] that discussed the complexity of domi-
nating set in tournaments. From the paper, I learnt that every tournament on n
vertices has a dominating set of size at most �logn�, and I found it interesting
that there are tournaments [6] on n vertices, constructed using simple number
theoretic properties where the minimum dominating set size is Ω(logn).

Using these properties (particularly the existence of tournaments with large
dominating sets), I managed to give a reduction from dominating set in general
directed graphs to dominating set in tournaments.. The reduction, pretty much,
preserved the parameter (k went to k+1), but it used O(2kn) additional vertices
and time. Essentially I had proved that the dominating set problem is W [2]-hard
in tournaments [14], though, at that time, I didn’t know the terminology of W -
hardness.

This led me to the paper by Papadimitriou and Yannakakis [13] where this
problem was discussed in the context of needing limited non-determinism. There,
I got the notions of parameterized complexity (in the last paragraph) and O∗(4k)

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 69–73, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

70 V. Raman

algorithm for Vertex Cover (Theorem 5 in that paper). I could quickly im-
prove this to O∗(2k) through a different algorithm. With these two results (W [2]-
hardness result for dominating set in tournaments and O∗(2k) algorithm for
Vertex Cover), I sent a mail to Mike Fellows explaining what I had proved.

The response I got was initially dampening, as Mike cited his paper [4] with
Rod Downey, where both these results (Theorem 2.1 and Theorem 4.1) had
already been proved. However, the response also opened me to the exciting
world of parameterized complexity and got me in touch with Mike.

Later, Mike followed up by sending me a lot of his surveys, and some excerpts
of the book he was writing with Rod Downey. He also invited me to visit him
in Victoria if I was interested in working in the area. I jumped at the offer as I
was scheduled to visit Waterloo, Canada that summer (of 1995) anyway.

In his response, Mike also asked whether 2k for the f(k) for Vertex Cover

can be improved further. I discussed this with my colleague R. Balasubramanian
(who is the current director of our institute) and together we could improve the
2k function to ck for some constant c < 2. After my visit to Victoria, and
discussions with Mike, we could exhibit a much improved c (close to 1.32) in
ck [1] which was the beginning of the long race of improvements for Vertex

Cover. Subsequently, I was quite happy to start the races for MaxSAT, and
Undirected Feedback Vertex Set. Jianer Chen’s group at Texas, and Rolf
Niedermier’s group at Jena were the early participants in these races.

2 Early Meetings in Parameterized Complexity

I visited Mike again at Victoria two years later, and there had been big changes
in his life since my previous visit (but one could hardly notice anything about
them in discussions with him). I also visited him at New Zealand (on the way to
COCOON at Australia to present our paper [8]) and there I got to meet Fran.
Also during that visit1 we worked on irredundant sets [5] and planar directed
feedback vertex set (with not much progress on the later problem).

During those times, Mike was giving invited talks at various conferences and
workshops and his infectious enthusiasm for giving talks caught my attention.
I gave talks in this area at various places including the University of Waterloo,
Canada, Max Planck Insitute for Informatik, Saarbrucken, National Seminar [15]
in India and IMSc. In fact our work on parameterizing above the guarantee [9]
grew out of a question asked by someone during one of my talks. He felt cheated
when I was showing that the standard parameterized question for MaxSAT was
fixed-parameter tractable without giving a new algorithm.

While most of the parameterized complexity community maybe aware of
the first meeting on parameterized complexity at Chennai in December 2000
(Mike mentions about this in the preface of the first IWPEC proceedings), not

1 Interestingly, I landed up in a court with Mike and Fran in Wellington, as a witness
to help them; the subtenant, to whom they had rented their apartment during their
visit to Canada, refused to vacate and Mike and Fran had to settle that in the court;
coincidentally the judge in the case was an Indian!

Vertex Cover, Dominating Set and My Encounters 71

many would know about the ‘mini-symposium’ on parameterized complexity
that Mike organized at the SIAM Discrete Mathematics conference at Toronto
(www.siam.org/meetings/dm98/ms6.htm) in which some of us participated and
gave talks. This is a flagship conference for Discrete Mathematics, and it is
usually attended by big names in the field.

The first ‘workshop’ on Parameterized Complexity at IMSc Chennai in 2000
was organized at a short notice. This was organized largely by Mike and Fran
during their first visit to India. Apart from a set of excellent talks (including
by Jochen Alber, Marco Cesati and Liezhen Cai to name a few), the highlight
of the meeting was a ‘problem solving’ workshop and an ‘auto-rickshaw’ trip to
the Chennai beach, all organized by Mike and Fran.

Then again in 2002, we had a meeting on parameterized complexity as a pre-
conference workshop to FSTTCS 2002 at IIT Kanpur. The big news at that time
was the polynomial time algorithm for primality that came from IIT Kanpur.
The first Dagstuhl workshop on parameterized complexity was eventful with the
dissection of the new lower bound result by Cai and Juedes [3] that had appeared
at that time. The series of IWPEC (which later became IPEC) workshops was
born in that Dagstuhl meeting.

3 Conclusions

Parameterized complexity is a paradigm whose time has arrived. The large num-
ber of papers in almost all algorithms conference is a witness to this fact. While
some of us may have been anguished by the lack of speed at which the area
has penetrated among the theory community, even the current spread would not
have been possible if not for Mike’s vigorous campaign, in all possible platforms,
the practical uses of the paradigm, his efforts in community building at various
places and his eagerness to encourage and work with anyone interested in the
field.

Let me conclude by saying a few words about Mike and then with some recent
developments on both the problems – Vertex Cover and Dominating Set.

3.1 Mike Fellows

An article dedicated to Mike’s birthday can not do justice if it doesn’t mention
Mike’s generosity. Mike’s generosity in readily sharing his ideas, perceptions,
open problems, and his time and even money (even though he was living ‘on
the edge’ most of the time) are well known. During my visits to Victoria and
in some of his sessions in Chennai, I could see his deep passion for popularizing
Mathematics. And I have seen first hand some of his Mathematics ‘fairs’ at
Victoria. In Chennai, we could get to see the other side of Mike and Fran, as they
were quite popular among the vendors, helpers, waiters and the auto rickshaw
drivers, as their compassion to them knew no bounds. Mike’s breadth and passion
for science in general was quite visible when he was rubbing shoulders with the
physicists and mathematicians at our institute during his various visits. He was

72 V. Raman

quite an enthusiastic player in the team that did a review of our entire institute,
a few years ago. Personally I have been inspired by many of his qualities, and
let me use this occasion to say, ‘Thank you and Happy birthday Mike!’.

3.2 Recent Work on (above Matching Guarantee) Vertex Cover

A brief look at the table of FPT races [12] shows that Vertex Cover continues
to be one of the very few problems having an FPT running time < 2k (not includ-
ing problems that have subexponential algorithms on special classes of graphs)
which grew out of a question by Mike quite early on. For example, the running
time of the closely related feedback vertex set problem in undirected graphs,
is still above O∗(3k) and it required a new technique (iterated compression) to
even reach this stage.

Recent attempts [11] to use linear programming to get improved parameter-
ized algorithms for vertex cover above the matching size (AGVC) could
pave for a new direction and race, to get improved parameterized algorithms for
Vertex Cover as well as for other problems. I am also glad that the ‘above
guarantee parameterization’ is not just a natural paradigm (that took a life of
its own), but AGVC in particular, has become a central parameterized problem
to which several other natural problems could be reduced [11].

3.3 Recent Work on Dominating Set (in Graphs with Excluded
Subgraphs)

The W -hardness proof of dominating set in tournaments continues to be one of
the few parameterized reductions that is NOT a polynomial time reduction, but
simple enough to be done in a first lecture on parameterized reductions.

On the algorithmic front on dominating sets, while a number of fixed param-
eter algorithms are known for planar, bounded genus and bounded treewidth
graphs, I’d like to point to a (perhaps not so well known) result that the prob-
lem is fixed-parameter tractable in graphs having no ‘short’ cycles [16]. This
has been generalized to graphs not having Ki,j as a subgraph for fixed values
of i and j, and this result eventually led to a polynomial kernel for bounded
degenerate graphs [7]. These continue to be one of the few classes of graphs that
are characterized by ‘forbidden subgraphs’ (as opposed to forbidden minors) for
which fixed parameter algorithms are known for the dominating set problem.

3.4 Open Problems

I end with a couple of concrete problems that are still open from our first work-
shop on Parameterized complexity in Chennai. What is the parameterized com-
plexity of the following problems (here k is the parameter)?

1. Given an undirected graph G and an integer k, does G have a complete
bipartite graph as an induced subgraph with k vertices in each part?

2. Given an undirected planar graph G and an integer k, does G have an
independent set on n/4 + k vertices?

Vertex Cover, Dominating Set and My Encounters 73

References

1. Balasubramanian, R., Fellows, M., Raman, V.: An improved fixed parameter algo-
rithm for Vertex Cover. Information Processing Letters 65, 163–168 (1998)

2. Bar-Noy, A., Naor, J.: Sorting, minimal feedback sets, and Hamiltonial paths in
Tournaments. SIAM J. Discrete Mathematics 3(1), 7–20 (1990)

3. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms.
Journal of Computer and Systems Sciences 67(4), 789–807 (2003); preliminary
version in ICALP 2001

4. Downey, R., Fellows, M.: Parameterized Computational Feasibility. In: Clote, P.,
Remmel, J. (eds.) Proceedings of the Second Cornell Workshop on Feasible Math-
ematics, Feasible Mathematics II, pp. 219–244. Birkhauser, Boston (1995)

5. Downey, R., Fellows, M.R., Raman, V.: The complexity of irredundant sets param-
eterized by size. Discrete Applied Mathematics 100, 155–167 (2000)

6. Graham, R.L., Spencer, J.H.: A constructive solution to a tournament problem.
Canadian Mathematics Bulletin 14, 45–48 (1971)

7. Philip, G., Raman, V., Sikdar, S.: A polynomial kernel for dominating set in Ki,j-
free and d-degenerate graphs. To appear in ACM Transactions on Algorithms; a
preliminary version in Proceedings of ESA 2009

8. Khot, S., Raman, V.: The Parameterized complexity of findng subgraphs with
hereditary properties. Theoretical Computer Science 289, 997–1008 (2002); a pre-
liminary version appeared in Proceedings of COCOON 2000

9. Mahajan, M., Raman, V.: Parameterizing above the guarantee: maxsat and max-
cut. Journal of Algorithms 31, 335–354 (1999)

10. Megiddo, N., Vishkin, U.: On finding a minimum dominating set in a tournament
(Note). Theoretical Computer Science 61(2-3), 307–316 (1988)

11. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S.,
Saurabh, S.: Faster Parameterized Algorithms using Linear Programming,
http://arXiv.org/abs/1203.0833; preliminary version appeared as LP can be
a cure for parameterized algorithms. In: The Proceedings of STACS 2012

12. Table of FPT races, http://fpt.wikidot.com/fpt-races
13. Papadimitriou, C.H., Yannakakis, M.: On Limited non-determinism and the com-

plexity of the V-C Dimension. Journal of Computer and Systems Sciences 53(2),
161–170 (1996)

14. Raman, V.: Some hard problems in (weighted) tournaments. In: Proceedings of
the Fifth National Seminar on Theoretical Computer Science, Bombay, pp. 115–
122 (1995)

15. Raman, V.: Parameterized Complexity. In: Proceedings of the Seventh National
Seminar on Theoretical Computer Science, Chennai, pp. I1–I18 (June 1997)

16. Raman, V., Saurabh, S.: Short cycles makeW -hard problems hard; FPT algorithms
for hard problems in graphs with no short cycles. Algorithmica 52(2), 203–225
(2008); preliminary version in the Proceedings of SWAT 2006

http://arXiv.org/abs/1203.0833
http://fpt.wikidot.com/fpt-races

Mike Fellows: Weaving the Web

of Mathematics and Adventure

Jan Arne Telle

Department of Informatics, University of Bergen, Norway

Abstract. This informal tribute in honor of Mike Fellows’ 60th birthday
is based on some personal recollections.

Mike Fellows is one of the founding fathers of parameterized complexity and
among the few mathematicians who have really shaped theoretical computer
science. This informal tribute in honor of his 60th birthday will mention a few
of his lesser known deeds. It is based on personal recollections and will not even
attempt to do justice to Mike’s broad influence.

Michael Ralph Fellows was born near Los Angeles in California on 15th June,
1952. His family name derives from the Old Norse word félagi, mentioned on
runic inscriptions in the meaning of comrade or weapon brother. As a young
man he quite literally lived up to this nominative feature when he trained as a
paratrooper in the Pararescue special forces outfit of the US Air Force. He soon
turned his efforts to the more contemporary meaning of his name: ”a fellow is
often part of an elite group of learned people who work together as peers in the
pursuit of knowledge or practice” [16]. However, also within the safe haven of
academia Mike Fellows remains a fighter and a comrade in arms, fearless in his
pursuit of knowledge and friendship alike.

Mike did his graduate studies in the 1980s at the University of California in
San Diego, receiving a Master of Arts in Mathematics and a Ph.D. in Com-
puter Science. In many Eastern religious traditions, one can attain Knowledge
and Enlightenment only through a teacher already possessing these traits, with
the Sanskrit word parampara denoting ”the line of spiritual gurus in authentic
succession of initiation; the chain of mystical power and authorized continuity,
passed from guru to guru” [16]. A computer scientist will see here a recursive
definition. While leaving the base case undefined, suffice it to say that Mike’s
ancestral line of supervisors contains some very famous names in mathematics,
amongst them the Norwegians Sophus Lie, Axel Thue and Thoralf Skolem, via
the graph theorist Øystein Ore, to the Americans Marshall Hall, Donald Knuth,
and Mike’s own supervisor Michael Fredman [13].

In the 1980s the pursuit of faster computing was tied to message-passing
parallellism, which involved the mapping of a parallel computation to a parallel
architecture and opened the way for some graph theory. Mike’s thesis ”Encoding
graphs in graphs” was motivated by these issues. In general, you have a compu-
tation graph G and an architecture graph H and ask for a mapping of vertices
f : V (G)→ V (H) and a mapping of edges of G to paths in H so that uv ∈ E(G)

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 74–79, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Mike Fellows: Weaving the Web of Mathematics and Adventure 75

is mapped to a path between f(u) and f(v). The goal is a load-balanced map-
ping with low dilation and contention. A mathematician at heart, Mike’s main
interest seems to have been the very structured cases. The above mapping is
called a covering of H by G if the edges of G are mapped to edges of H , i.e.
paths of length one, in such a way that edges incident with a vertex v in G are
mapped bijectively onto the edges incident with f(v) in H . For connected H the
mapping is in this case perfectly load balanced and the related computational
question is called the H-COVER problem: given a graph G, does there exist a
covering ofH by G? A paper by Mike with co-authors Abello and Stillwell [1] was
the first to show existence of a graph H for which H-COVER is NP-complete:
take H the graph on two adjacent vertices and a loop on each vertex. But there
are also polynomial-time cases, e.g. only cycles of length a multiple of q will
have a covering to the cycle of length q. For k-regular graphs we actually have
a dichotomy: unless P=NP, H-cover for a k-regular graph H is polynomial-time
solvable if and only if k ≤ 2, see the survey [11]. However, a characterization
of the graphs H defining a polynomial-time solvable H-COVER problem is still
a wide open problem. What about taking H as a parameter? It is actually an
open question if the parameterized viewpoint contributes anything in this case,
since any graph H for which we know H-COVER to be FPT parameterized by
H we also know it to be polynomial with H as part of the input.

The most famous open problem concerning graph coverings is probably
Negami’s conjecture from 1988 stating that a graph H has a planar cover (i.e. a
finite planar graph G coveringH) if and only if H embeds in the projective plane
[14]. The ’if’ direction is easy, and graphs embeddable in the projective plane
are characterized by 32 connected forbidden minors. The main line of attack on
the conjecture consider each of these forbidden minors to show that they do not
have a planar cover. After many years of work a single graph remains, and the
Negami conjecture has been reduced to showing that the graph K1,2,2,2 does
not have a planar cover, see the survey [12]. In an unpublished manuscript from
1988 [9] Mike made a related conjecture. An emulation is a mapping slightly less
structured than a covering, requiring only that edges incident with each vertex v
in G map surjectively (rather than requiring bijectivity) onto the edges incident
with f(v) in H . Mike showed that the property of having a planar emulator is
preserved under taking minors and under Y Δ-transformations and conjectured
that a graph has a planar emulator if and only if it has a planar cover. This
conjecture has remained firmly tied to Negami’s conjecture over the years. How-
ever, in a surprising turn of events (called a ”breakthrough” by one of the main
experts on Negami’s conjecture [12]) Rieck and Yamashita showed very recently
[15] that K4,5-4K2 and K1,2,2,2 have planar emulators, and since the first of these
graphs has been shown not to have a planar covering, this disproves Mike’s bold
conjecture. Mike seems to have been the first to introduce the concept of em-
ulators, which has later been studied under the name of role assignments with
applications in the theory of social behavior [6]. In that case H models roles
and their relationships in a society, G represents relations between a group of

76 J.A. Telle

individuals, and the task is to assign roles to individuals so that each individual
with a particular role has, among its neighbors, every role prescribed by H , and
no other roles.

At a conference in New Zealand in 1990 Mike meets a local complexity theo-
rist over a bottle of Villa Maria Cabernet Merlot and discover that they share
many interests [5]. The resulting Downey-Fellows collaboration in parameter-
ized complexity is still going strong and is our field’s nearest equivalent of a
Lennon-McCartney trademark. Being the new kid on the block, parameterized
complexity has had to fight hard for its recognition, and Mike has been forced to
put several of his talents into play, including his interests in theatre and educa-
tion. In his Advice to Students he writes: ”Story is central. Story is a bigger force
than science. Everybody lives by stories. They are a primal force. In mathemat-
ics, we add formalism. We have equations that lead to solutions but story has its
own logic. Find the story in what you are telling and presenting. This will help
the listener meet you more than half-way” [10]. In every talk of Mike Fellows
there is a clear storyline, and there are many of us who have been hooked on the
parameterized viewpoint ever since first hearing about this suggested deal with
the devil of intractability. In 1997 Mike spent a couple of weeks at the Depart-
ment of Informatics at the University of Bergen in Norway and inspired us not
only to do research in parameterized complexity, but also in education of chil-
dren. Applying exercises taken from his book ’Computers Unplugged’ (written
with Tim Bell and Ian Witten) [2] we visited elementary schools to teach con-
cepts like graph coloring. I vividly remember the local head teacher looking at
the classroom of 11-year-olds merilly coloring the various graphs given to them
on hand-outs and wondering aloud if this really had anything at all to do with
mathematics or computers. Meanwhile, one of those kids produced a proof that
a graph is 2-colorable if and only if it has no odd cycles.

When rumors started circulating in 1999 that Mike was getting married there
were many of us who thought his days as a travelling mathematician were over.
How wrong we were proven to be! Whereas the travelling mathematician par
excellence is Paul Erdős, the travelling mathematical couple of the last decade is
surely Mike and Fran. Frances Rosamond is Mike’s life companion in all aspects,
and shares his adventurous spirit and love for mathematics and education. Not
only did they keep up the round-the-world weaving of the parameterized web by
their own travelling, they also invited groups of young researchers for prolonged
stays in their own home, and here I am stumped in my search for previous role
models. In 2002 my then PhD student Christian Sloper was invited to work with
Mike in Newcastle, Australia. Below is a report he recently sent me of his visit.
Keep in mind that the Australian-based couple and their young visitors are a
generation apart and that young mathematicians/computer scientists are not
likely to prioritize household chores like cleaning, cooking or laundry.

They are both very inclusive, not excluding anyone. I remember knocking
on their door the first day, but nobody opened, so I just went in and found
them in the living room. I was very well received and was immediately
served some food. The next day Mike would teach me surfing, which for

Mike Fellows: Weaving the Web of Mathematics and Adventure 77

a bad swimmer like me was a scary experience. Not that he thought it a
problem that I did not get to surf, he was rather more upset about how
little I knew of world litterature. There was one bedroom upstairs, two
bedrooms downstairs for the guests, and a storage room for surfboards
and wetsuits. Either Mike or Fran would cook, and the meals were always
matched with some wine.

While I was there we were only two guests, me and David, but at
other times there were more. The furnishing of the house had a rather
spartan aspect to it, with a flipchart being one of the essential items.
Mike really likes to stand by a board and explain, ”the man needs an
audience” as Fran said. So he drew figures and explained, and was open
to our comments. He was responsive to suggestions. I later came to see
that he often gave our ideas a lot more praise than they really deserved.
He was good at viewing the little things that we came up with in a
positive light. In this sense he was very encouraging.

We lived there for a few weeks, but one day when they arrived back
from one of their camping tours up and down the coast it became clear
to all that it was time for me and David to move on. On these camping
tours the surfboards naturally went along and also a flipchart, so Mike
could explain his ideas to Fran. Surfing is supposedly best done in the
morning before the sun has warmed the air over land and turned the
wind, so Mike surfed mostly in the morning. But even in the middle of
discussions he would follow the beaches by webcam and now and then
suddenly disappear when the wind conditions improved.

After I moved out I met with Mike almost every day at the University.
How much we actually accomplished together is less clear, as I did not
produce massive amounts of articles down there, and most of them were
with Elena. When we did things together with Mike, he was always
very clear that anybody who had participated should be a co-author,
so that’s very good. To illustrate how inclusive they were I recall they
incorporated in some discussions also the wife of a colleague since she
apparently was good at problem-solving, in particular crossword puzzles.
To me this seemed really more an inconvenience than anything else as
she did not know any computer science. I don’t think she made it as co-
author, though. (by C.Sloper, translated from Norwegian by the author)

Many young researchers can testify to Mike and Fran’s inclusiveness. On later
visits to our by now burgeoning algorithms research group in Bergen, Mike has
always been accompanied by Fran, and the two of them have kept up a schedule
that would be unimaginable to most. Not only in the amount of travelling from
place to place, but also for their mode of work, where they invite collaboration
from anyone, and could end up with five research meetings on the same day, with
different groups of people. Lucky are all the young people who have benefited
from these opportunities to work with the leading figure in the field. At least for
our research group this collaboration with Mike has been indispensable.

78 J.A. Telle

Here is another quote from Mike’s Advice to Students: ”Some problems have
important applications, while others have the potential to build theory. Some
people are natively problem solvers with sharp tools and others are theory
builders with a big picture view, although probably all are a bit of both.” Safe to
say that Mike is a lot of both! He is never afraid of delving deeply into a technical
reduction. A prime example is the problem of computing the cliquewidth of a
graph, a parameter first introduced in 1993 [4], with virtually everyone realizing
it must be NP-complete, but aach, nobody able to show it. Cliquewidth is a
slippery fish. For all that anybody knows it may even be that removing a single
vertex may drop its value by half. In 2006, in a technical tour-de-force, by forcing
the optimal cliquewidth expressions of a class of graphs into a more compliant
linear structure, Mike, Fran, Udi Rotics and Stefan Szeider managed to hold
the cliquewidth fish long enough to make an NP-completeness reduction [8]. As
regards Mike and theory building, history speaks for itself. Possibly the notion
of kernels will turn out to be the most lasting. At least they are the simplest
to explain. Every practitioner knows that confronted with a difficult problem
instance you first do some easy pre-processing to reduce the instance down to
its hard kernel. How can we model this for an NP-hard problem? Could we ask
for a reduction of each instance to a smaller one in polynomial-time? Alas no,
that would imply P=NP. But surely there must be cases where we can reduce at
least the big instances? Yes, indeed, and we are forced to introduce a parameter
k besides input size n to define ”big” as n > f(k) for some function f(). So
the parameter appears naturally for two reasons, one practical, since for many
applications the instances come equipped with a small parameter, and the other
also practical, as the only way to account for the pre-processing that we do in
any case. The notion of polynomial-sized kernels has the added benefit of ty-
ing into classical complexity theory [3], and today it is clear that parameterized
complexity is no longer the new kid on the block.

Congratulations Mike, may you continue weaving the web of mathematics and
adventure for many new generations of young scientists!

References

1. Abello, J., Fellows, M., Stillwell, J.: On the Complexity and Combinatorics of
Covering Finite Complexes. Australasian Journal of Combinatorics 4 (1991)

2. Bell, T., Fellows, M., Witten, I.: Computer Science Unplugged: offline activities
and games for all ages (1996)

3. Bodlaender, H., Downey, R., Fellows, M., Hermelin, D.: On problems without poly-
nomial kernels. J. Comput. Syst. Sci. 75, 8 (2009)

4. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph gram-
mars. J. Comput. System Sci. 46, 218–270 (1993)

5. Downey, R., Fellows, M.: Parameterized Complexity. Springer (1999)
6. Everett, M., Borgatti, S.: Role colouring a graph. Mathematical Social Sci-

ences 21(2), 183–188 (1991)
7. Fellows, M.: Encoding Graphs in Graphs. Ph.D. Dissertation, Univ. of California,

San Diego (1985)

Mike Fellows: Weaving the Web of Mathematics and Adventure 79

8. Fellows, M., Rosamond, F., Rotics, U., Szeider, S.: Clique-Width Minimization is
NP-Hard. In: Proceedings of the 38th Annual Symposium on Theory of Computing,
STOC 2006 (2006)

9. Fellows, M.: Planar Emulators and Planar Covers (1988) (manuscript)
10. Fellows, M.: Advice to Students,

http://www.mrfellows.net/wordpress/advice-to-students-2/

11. Fiala, J., Kratochv́ıl, J.: Locally constrained graph homomorphisms - structure,
complexity, and applications. Computer Science Review 2, 97–111 (2008)

12. Hlinêný, P.: 20 Years of Negamis Planar Cover Conjecture. Graphs and Combina-
torics 26, 525–536 (2010)

13. The Mathematics Genealogy Project
14. Negami, S.: The Spherical Genus and Virtually Planar Graphs. Discrete Math. 70,

159–168 (1988)
15. Rieck, Y., Yamashita, Y.: Finite planar emulators for K4,5-4K2 and K1,2,2,2 and

Fellows’ Conjecture. Eur. J. Comb. 31, 903–907 (2010)
16. Wikipedia

http://www.mrfellows.net/wordpress/advice-to-students-2/

Passion Plays: Melodramas about Mathematics

Frances Rosamond

School of Engineering and Information Technology
Charles Darwin University

Darwin, Northern Territory 0909 Australia
frances.rosamond@cdu.edu.au

Abstract. Most people don’t know that Michael Fellows’ efforts to in-
troduce mathematics to the public went beyond Computer Science Un-
plugged and engaged a bold, new venue — inventive, inquisitive theatre.
He wrote several plays, but this chapter will only give a brief description
of the Four Cowboy Melodramas of Mathematics. The term “melodrama”
refers to a dramatic work that exaggerates plot and characters in order
to appeal to the emotions. Each play proves at least one mathematical
theorem. The dramas have been played on stage only a few times.

1 Introduction

Mike began to consider how best to communicate the metaphors of mathematics
through theatre. In notes about mathematics and theatre, Mike wrote, “What is
mathematical science really all about? I believe it is about the unfolding of our
collective abstract cognitive abilities, as part of our natural instinct to develop
rich and expressive, as well as useful language. Mathematical science is therefore
destined for the theatre, as it is powerfully and inherently metaphorical.”1

In a 39 page unpublished manifesto on mathematical communication written
about 1995, Mike described the potential of mathematical theatre for explor-
ing the “cultural politics of curiosity” and “new cultural energies circulating in
the world of mathematical science,” particularly attracting and engaging the
intellectual interests of wider audiences. Mike began to experiment with how to
communicate sophisticated technical information on stage. He thought of this as
“content-driven” theatre.

In 1997, Mike was awarded a fellowship to the Centre for Studies in Religion
and Society at the University of Victoria. It was the first given to anyone in
computer science. The title of his application was Religious Imagery, Mathemat-
ical Metaphor and Popular Participation in Science: An Exploration of Passion
Plays. His abstract points out that “The use of mathematical metaphor in reli-
gious contexts is striking and has a long and important history, including perhaps
the roots of the dominant modern scientific world view (that the intellect is su-
perior to the senses in discerning timeless truths) in the Pythagorean religion of
mathematics”.
1 In addition to the original play scripts and transparencies, I have had access to
Mike’s hand-written notes and papers to use for this chapter.

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 80–87, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Passion Plays: Melodramas about Mathematics 81

2 The Four Melodramas

Mike wrote four cowboy melodramas (think virtue tied to the railroad track
by mustached villain). At a superficial level, the plays are almost vaudeville.
They may be considered satires on standardized aspects of the school system.
At a more serious level, they address issues in the politics of curiosity and are
expected to be provocative. Each play dramatizes deep mathematics that has
been part of Mike’s professional research. Mathematics is feared by most people.
Mike understood that putting mathematics on stage in any form would challenge
the audience. He hoped to expose mathematics as a source of beauty, surprise
and humility, and of fresh metaphorical insight into problems of every possible
kind. He wrote:

Mathematics is at the heart of the scientific and technological Mega-
Machine that we have created. Part of our task is to own this Machine,
joyfully and not in terror. We must come to grips with issues such as
expressed by Gödel in interpreting his own beautiful theorem:
“Either Mathematics is more thanMan, or Man is more than a Machine.”

Todd Wareham suggested that the Cowboy Melodramas belonged to the genre
of “passion plays,” in the sense of A. C. Cawley. Cawley described the primary
concern of the medieval playwright as instruction to the audience through dra-
matic entertainment on the stage. Medieval morality stories were imbued with
the folk-tale in order to include comic and human popular influences. Mike’s love
of literature and Heraclitus sense of culture shows free reign in the creation of
poetic, fantastic and folk-tale elements in the plays.

The moralities in Mike’s plays revolve around the ownership of science, and
the opportunities for participation. Indifference of science professionals, and the
tendency to treat knowledge as a ‘secret’, have contributed to the widespread
alienation of the public from science. Mathematical science, which is the engine
of modern life, which is more a culture of questions than answers, which consists
of childlike curiosity, has been kept hidden from children.

3 The Helen Keller of Arithmetic Story

The first play is called The Helen Keller of Arithmetic Story. The second play
is titled Dragons. Together they make a volume called Visions of Joanna, A
Cowgirl at the Edge of the Millennium. (Helen Keller was an American author,
political activist, and lecturer. She was the first deaf-blind person to earn a
Bachelor of Arts degree.)

The mathematical theme of the Helen Keller of Arithmetic Story is the well-
quasi-ordering of finite trees and Kruskal’s Theorem. The Peano Arithmetic
independent miniaturization and its associated fast-growing function plays a role
in the showdown scene. Other topics making brief appearances inlude sorting
networks, partial orders and Goldbach’s conjecture.

82 F. Rosamond

The satire in the Helen Keller of Arithmetic Story is evident in the following
description by University of Victoria, Canada Professor Maarten van Emden,
from his 1998 diary.

The play only makes its appearance after an enactment of a summary
of Fellows’ personal experiences in being exposed to the conventional
wisdom in Education Land. Choice snippets: Piaget having proved that
children only become ready for Infinity at the age of 15 and a half, the
experiences of Joanna, age 7 are shown to contradict this. The games
Joanna thinks up include tying a rope to a table leg and producing single
waves at a time, then standing waves. She plays a game with her dog in
which perverts like computer scientists recognize a formal grammar.

Just as lecturers are advised to start with a transparency giving an
outline, Fellows tells about a play being planned, gives the outline on
a transparency in the traditional professorial style and starts explaining
how the play goes, whereupon the play, well, goes. In between scenes
he goes back to the colourful, clever transparencies, which were created
by Lisa Whittle. The transparencies and a bit of costume help Mike, in
these one-man shows, change quickly from one character to another.

An early scene relates the traumatic experience of two children. While
they are in the charge of the resident clown of the shopping Mall, their
parents are swallowed by the Mall. This is illustrated by a transparency
showing a monstrous Mall. Overlays show exclamatory clouds in the vein
of: “23% off, 312 days warranty!” against “18% off, 777 days warranty!!!”
Obviously, Math is important. As a result, the children go blind and deaf
to arithmetic.

In the story, an old hermit (a transparency of Erdös in cowboy garb), visits the
orphan children who have tragically become blind and deaf to arithmetic. He
describes the notion of topological embeddings of trees, of one tree including
another inside of itself, with the same root, and instructs the children that they
have “the job of growing until your personal tree has grown big enough and
rich enough in structural form to include all the trees that you have loved and
tragically lost...until those lost trees that you have loved, live again inside of
you.”

The Good Cowboy demands that the standardized math exam be offered in
Braille. All the children pass. The widow’s lands are saved, and the villain is
booed.

In 1999, Geri Lorway and I helped Mike presentHelen Keller to 400 teachers at
the California Mathematics Teachers Association at Asilomar. Mike constructed
a special sorting network by putting thick cord under the tape that defined
the network (the Sorting Network is described in the chapter on Computer Sci-
ence Unplugged). Teachers pretended to be the blind and deaf children, and we
had them take off their shoes, close their eyes, and with their toes feel their way

Passion Plays: Melodramas about Mathematics 83

along the network. Geri remembers being impressed that Mike spontaneously
asked if anyone played piano, finding a volunteer and then just asking her to do
some cowboy music at his cue.

After the presentation, several teachers came up to Mike crying. They were
quite emotional, saying that the plays reached their deep inner feelings, confu-
sions and brought back memories of early school days. The emotive power of the
plays was very high, and likely was related to the Paranoid Theory (described
in Section 3 of the chapter on Computer Science Unplugged).

Geri Lorway writes about the plays:

I believe it is a critical part of the whole that is not just Mike, but his
work and the thing that is mathematics, the sciences and CS..... there is
something so important in the deep emotional and if I can say spiritual
impact that the idea of the passion plays brings to understanding why
things like CS Unplugged are such phenomenal works.... the opportunity
to bring the whole into one’s understanding of learning, thinking, being
human.

We must stop being such snobs about the entireness that feeds into
genius.... the creative spirit is so intense it has to be allowed free reign
and that is what those plays were.... they made some people catch their
breath and say: My god there is way more to what I thought was the
most horrible thing ever imagined: “mathematics”....

4 Dragons

The second play in the Visions of Joanna series is called Dragons. The satire
is darker, and begins with parents being burned at the stake. They had been
subversively pleading for “thinking skills.” Their daughter runs into the forest.
She returns disguised as a baby dragon, to lead a children’s education revolution.

The mathematics is a dream-story centered on the Circular Braid Theorem
(CBT). Props for the CBT are three tangled pieces of heavy, large-diameter
ship-mooring rope, colored red, green and blue, which a shepherd dumps from his
duffel bag, signifying the confusions of his village. The green rope symbolizes the
work of the villagers in the fields. The blue symbolizes their collective community,
and the red rope symbolizes terrifying dragons of which everyone lives in fear.
The story of the shephard’s vision (and the proof of the CBT) begins with a
“lightning flash” staged by a camera bulb, together with yellow construction
tape that flutters down from above the stage onto the tangle of ropes, with the
initial tangle being the Boromean rings.

In addition to the proof of the CBT, mathematical content includes cameos
about fractals and cryptographic one-way constructions to create computation-
ally hard puzzles with which to paralyze the dragons.

The CBT proof involves marking positive and negative crossings of the yel-
low construction ribbon (the path of illumination) and each of the colored ropes.

84 F. Rosamond

To illustrate this, the shepherd describes wandering the hills as a young man,
following old paths of confusion (a metaphor for the school system). He kneels
down as if studying a large map, and makes a walking figure with his fingers that
walks along the green rope, musing “The path of fields and work: day and night,
day and night (As he talks, he marks with pieces of silver tape the positive and
negative crossings of the green rope with the yellow ribbon)...and remembering
each encounter with the vision.

He continues on the blue rope. “Remembering each time the path of our
people met the illumination. The pride, the shame, the pride, the shame.”
(Now marking the positive and negative crossings of the blue rope with the
yellow ribbon).

He does the same with the red rope path of the dragons. “What are these
dragons? How do they live? The burning curiosity, the fear, the curiosity, the
fear...!

In the next step of the proof, the shepherd takes a long thin multicoloured cord
from his bag, and uses it to weave over and under through the tangle according
to the markings. As he weaves, the shepherd uses the words “over” and “under”
to describe the possibility of a life that has overcome the confusion in the village.

“I imagined a life that would follow the path of the illumination, yet a
life not just knowing what is, uncaring -- but a life of value! Under the
shame, and over the pride, under the darkness, and over the light, under
the fear, and over the curiosity...

“A life that could separate the bright from the dark. A spirit that could
soar above in the brightness, and delve deeply to rest in the darkness....

“A life that could separate the pride from the shame. A spirit that
could reach beneath the shames and know them, and overcome the
shallow prides....

“A life that could separate the fear from the curiosity. A spirit that
could reach down beneath the fears to touch their shivering roots, and
reach above the curiosities towards enlightenment....

“And then I reached out my hand to see where that life, if I chose to
live it, would take me...”

While speaking, the shepherd has been putting his hand along the multi-
coloured path, over and under the big ropes and creating the circular braid. The
story and the proof reach a crescendo, with mathematics (the CBT) empowering
a new way of seeing reality.

“And this is what I have found! Do you see how the circles of our lives and
work in the fields - our peoples - and the dragons - are all woven in hidden
parallels together in the same circle of being - do you see? This is our life. There
is no confusion.”

Passion Plays: Melodramas about Mathematics 85

There are other mathematical elements in Dragons, such as graph three–
coloring, enacted during a children’s revolution with colors indicated by body
positions: arms raised overhead, arms stretched out from the sides, squatting.
As with all the plays, Mike is the only actor.

4.1 Bob, Cowboy Mathematician of the Yukon

In the third play, Bob, Cowboy Mathematician of the Yukon, Mike used Pa-
rameterized Complexity and religion to address big issues of ownership and
participation in mathematics. The first scene shows Cowboy Bob explaining
computational complexity to interested children in a local school. Towns-people
are horrified when they become aware of Bob’s religious metaphor, that param-
eterized complexity “exploits thin zones of parametric viability” – small ranges
of parameters, for which we can work out a “deal with the Devil.” They be-
gin to mumble, “Devil-worshipper.” When Bob makes an isomorphic relation to
biological life, which also inhabits a largely hostile universe, the towns-people
become increasingly intolerant (think of America’s “evolution vs creationism”
controversy). A third interlocking theme becomes the gradual accretion of layers
of understanding and meaning, the stories we attach to the rock of fact. Bob
calls this “The Talmud of Story Science.”

The meanings that various people have of mathematics come out when they
answer Cowboy Bob’s question, “Would Space Aliens have the same theorems
we do?” (This question was raised in one of Mike’s classes at UVIC. By “Space
Aliens” is meant beings with enough mathematical sophistication to design and
fly spacecraft through the universe. Mike was taken aback that there were a
variety of answers – even when the question was rephrased to be more specific,
“Would Space Aliens have the same theorems about the prime numbers?” He
began to carry the question around to scientific colleagues, who also had a variety
of answers.)

The last scene finds Cowboy Bob in a saloon talking to his son. “Each of
us is a computational creature, faced with the fundamental problem of being
finite. The most important parameter of all is the individual.” Bob concludes
that when the Space Aliens arrive, they are going to want to talk to scientists,
the people who are “interested in the Devil”. A crowd has gathered outside.
They are shouting: “Den of iniquity! Send out the devil worshipper!” The hymn
Onward Christian Soldiers is heard.

Bob, Cowboy Mathematician of the Yukon, and the two plays in Visions of
Joanna, A Cowgirl at the Edge of the Millennium, were a response to what Mike
saw as a school math curriculum that had been stripped down to, as Mike put
it, “18th century shopkeeper arithmetic – grocery arithmetic.” He pointed out
that while there is nothing wrong with arithmetic, mathematics is much, much
more — the essential engine of modern science. Teaching such a narrow view of
mathematics is a tragedy and a crime against children.

86 F. Rosamond

4.2 Wagon Train to Infinity

The final melodrama, Wagon Train to Infinity, is the only one of the four plays
that is not a satire on schools. This play focuses on what it means to be a spiritual
individual in modern science and society. One might say that Mike’s personal
moral imperative is compassion and a creative attitude toward life. Sometimes
Mike says, “There is a lot to be said about Attitude.”

Wagon Train to Infinity stars the Lovasz Local Lemma, some appearances of
Kestens Theorem on percolation in the plane, and results on graphical evolution.
The wagon train is going to Infinity, which represents mathematical literacy for
everyone (It’s like Oregon, with lands that go on and on and on). The reason
for going is that it is fun there. It gives a useful perspective. Because we get the
odd bit of comfort there. Because it is a fair place. Along the way, the Wagon
Train is attacked by the Intuits (e.g., fundamentalists).

A Wagon Train is not just about where one is going, but what one is leaving
behind. In this story, they are leaving behind artists ignorant of mathematics,
cultures with no curiosity, and teachers who give you a “C” because they don’t
like your opinions.

The Preacher character equates Infinity with the New Testament, and a yearn-
ing to “get beyond the finite numbers” on the way. The finite numbers to go
beyond are those of modern atrocities, such as the number of deaths in Ar-
gentina, or the number of minutes before unconsciousness from electroshock
torture. These are all intoned as if from the Book of Numbers, in Old Testa-
ment style. The Preacher’s sermons correspond to basic theorems about Cantor
diagonalization, and he enacts the ghost dance of the uncountable.

4.3 Diagonalization

The notion of diagonalization is a powerful metaphor for Mike. In a festschrift
chapter in honor of the humanistic mathematics educator Stephen I. Brown,
Mike used diagonalization to describe Christianity (partly as a means of de-
scribing Steve’s work). Each person who accepted the Invitation to take up their
(individual) cross and follow, contributed to the power of the invitation. In the
extended metaphor, each person was a “row” and the Invitation the diagonal.
Moving beyond ancient religious human sacrifice cults, the metaphor witnesses
a new kind of civilization formed when a creative response comes from each in-
dividual. All the individual sacrifices became embodied in the “new” sacrifice.
Each individual human being is a creative collaborator with God.

Mike has even used diagonalization as a metaphor for his favourite sport,
surfing! In surfing, the analogue of one of Cantor’s rows is: “heading directly
into the beach.” Instead of taking that ride, diagonalizing “tweaks” it, and we
move a bit sideways. Now from our new spot we could still go directly to the
shore. We don’t take that one either. We go on a diagonal. We enjoy going on a
diagonal to explore the complexities of real currents.

Passion Plays: Melodramas about Mathematics 87

The steadfast confidence that Michael Fellows has in human curiosity, and his
sense of justice that the natural curiosity of children not be impeded or thwarted,
drive his plays forward. His belief that mathematics is a metaphor on multiple
layers makes his theater relevant to everyone in all phases of their lives.2

References

1. Rosamond, F.: On-line and off-line computer games and mathematical sciences pop-
ularization. In: Rosamond, F., Copes, L. (eds.) Educational Transformations: The
Influences of Stephen I. Brown, Authorhouse, Bloomington, Indiana, pp. 407–426
(2006)

2. Fellows, M.: A short meditation on Steve Brown’s main pedagogical idea, as related
by Frances Rosamond. In: Rosamond, F., Copes, L. (eds.) Educational Transforma-
tions: The Influences of Stephen I, Brown, Authorhouse, Bloomington, Indiana, pp.
400–406 (2006)

3. Cawley, A.C. (ed.): Everyman and Medieval Miracle Plays. Introduction by J.M.
Dent 1974, Everyman 1956, Orion Publishing group, Orion House 5, Upper St.
Martin’s Lane, London WC2H 9EA, ISBN 046087280X

2 On a personal note, although Mike and I had corresponded about mathematics
popularization activities, we had not met until he invited me to come up from San
Diego to see the plays. They were being presented at the 1998 Fringe Theatre Festival
in Victoria, Canada. By the end of that weekend, we had decided to get married.

We have enjoyed the visits of many researchers to our home in Australia. Quite
often, Mike receives an email saying something like, “You don’t know me, but I have
become interested in Parameterized Complexity, and I have this question...” Mike’s
response is to arrange for the person to come visit, and to set up the flip-charts.
We have a couple of traditions, in addition to sharing Unplugged, the plays, and
“Mr. Opinion” (The Guide to Modern World Literature, a reference book by Martin
Seymour-Smith.) One is for students to cook a meal from their native country,
and this has resulted in charming phone calls home asking Mom for recipes and
instructions. Another is teaching the visitor to surf – but we haven’t asked them to
diagonalize! Yet, many do so naturally.

Part II

Surveys

A Basic Parameterized Complexity Primer

Rod Downey�

School of Mathematics, Statistics and Operations Research
Victoria University

P.O. Box 600, Wellington, New Zealand
rod.downey@vuw.ac.nz

Abstract. This article was prepared for Mike Fellows Festschrift for his
60th Birthday. Since many of the contributed articles revolve around
the concept of parameterized complexity, it seems reasonable to give the
reader a (short) primer to this area. It is not intended as a complete sur-
vey of this very broad area in its current state; rather it is intended to give
a flavour of the techniques used and the directions taken. Whilst not do-
ing the area justice, the basics of the techniques for proving tractability,
establishing hardness, and the philosophy are given. The basics from this
paper will be amplified by many other articles in this Festschrift. Much
fuller accounts can be found in the books Downey-Fellows [DF98, DFta],
Niedermeier [Nie06], Flum-Grohe [FG06], the two issues of the Computer
Journal [DFL08] and the recent survey Downey-Thilikos [DTH11].

1 Introduction

1.1 The Idea

The story of classical complexity, as witnessed by the classic cartoons in the
beginning of Garey and Johnson’s book [GJ79], begins with some problem we
wish to find an efficient algorithm for. Now, what do we mean by efficient?
It seems a reasonable idea to idealize the notion of being efficient by being in
polynomial time. Having done this, we discover that the only algorithm we have
for the given problem is to try all possibilities and this takes Ω(2n) for instances
of size n. What we would like is to prove that there is no algorithm running in
feasible time. Using our idealization that feasible=polynomial, this equates to
showing that there is no algorithm running in polynomial time.

Suppose that we succeed in showing that there is no polynomial time algo-
rithm. This would mean to us is that we would (i) need to try some other method
to solve the problem such as some kind of approximate solution because (ii) we
could give up on showing that there was a polynomial time algorithm.

The story continues with the following rhetoric. In spite of the efforts of a
number of researchers, for many problems whose best solution known was com-
plete search, there was no proof that the problem is not in polynomial time

� Research supported by the Marsden Fund of New Zealand. Dedicated to my old
friend Mike on the occasion of his 60th Birthday.

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 91–128, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

92 R. Downey

found. It was the key realization of Cook, Levin and crucially Karp [Ka72] that
many of these problems could be shown to be polynomial-time reducible to each
other, and to the problem of acceptance for a polynomial time nondeterministic
Turing machine. That is, they are NP-complete. This means that we have a
practical “proof” of hardness in that if any of the problems were in polynomial
time, all would be; and secondly showing them to be in polynomial time would
show that acceptance for a polynomial time nondeterministic Turing machine
would be also. The philosophical argument is that a nondeterministic Turing
machine is such an opaque object, without any obvious algebraic structure, that
it seems impossible to see if it has an accepting path without trying all of them.
That’s the philosophy anyway.

The methodology above seems fine as a first foray into feasible computation.
However, for practical computation, it seems that we ought to refine the analysis
to make it more fine grained. Firstly, when we show that something is NP-
complete or worse, what we are focusing on is the worst case behaviour. Second,
the analysis takes the input as being measured by its size alone. You can ask
yourself the question: when in real life do we know nothing else about a problem
than its size? The answer is never. For instance, the problem is planar, tree-like,
has many parameters bounded, etc. The idea behind parameterized complexity
is to try to exploit the structure of the input to get some practical tractability.
That is, we try to understand what aspect of the problem is to blame for the
combinatorial explosion which occurs. If this parameter can be controlled then
we would have achieved practical tractability.

Anybody working in software engineering will know that it is important to
design tools specific to the type of problem at hand. Suppose that you are con-
cerned with relational databases. Typically the database is huge, and the queries
are relatively small. Moreover, “real life” queries are queries people actually ask.
Hence, such queries tend to be also of low logical complexity (see, for example
Papadimitriou and Yannakakis [PY97], which posits parameterized complexity
as the correct complexity for such analyses). Furthermore, in areas like com-
putational biology, the number 4 is typical, and structure of things like DNA
is far from random. The main idea of parameterized complexity is to design a
paradigm that will address complexity issues in the situation where we know in
advance that certain parameters will be likely bounded and this might signifi-
cantly affect the complexity. Thus in the database example, an algorithm that
works very efficiently for small formulas with low logical depth might well be
perfectly acceptable in practice.

Thus, parameterized complexity is a refined complexity analysis, driven by
the idea that in real life data is often given to us naturally with an underlying
structure which we might profitably exploit. The idea is not to replace poly-
nomial time as the underlying paradigm of feasibility, but to provide a set of
tools that refine this concept, allowing some exponential aspect in the running
times by allowing us either to use the given structure of the input to arrive at
feasibility, or develop some relevant hardness theory to show that the kind of
structure is not useful for this approach.

A Basic Parameterized Complexity Primer 93

As I remarked in [Do03], “This simple idea is pretty obvious once you think
about it. For example, when we teach a first course in automata theory we show
the students that regular language acceptance is in linear time. But this is really
not quite true: it is only true if the language is presented to us as, say, a regular
expression, whereas it could be a language presented as the output of a Turing
machine, in which case acceptance is undecidable. The point is that we only
really care about regular languages when they are given to us in a structured
way, namely via regular expressions.”

1.2 Some Definitions

I will now discuss the standard examples which we use for the theory. As I discuss
in the companion paper [Do12], Mike Fellows and my early work had the three
problems Vertex Cover, Dominating Set,Independent Set in our hearts.

For a graph G a vertex cover is where vertices cover edges: that is C =
{v1, . . . , vk} is a vertex cover iff for each e ∈ E(G), there is a vi ∈ C such that
vi ∈ e. They should recall that a dominating set is where vertices cover vertices:
D = {v1, . . . , vk} is a dominating set iff for all v ∈ V (G), either v ∈ D or there
is an e ∈ E(G) such that e = 〈vi, v〉 for some vi ∈ D. Finally an independent
set is a collection of vertices no pair of which are connected. Of course, these are
some of the basic NP -complete problems identified by Karp [Ka72].

As in [Do03], and earlier [DF98] and [DFS98], I will motivate the definitions
by looking at a problem in computational biology. As discussed in [Do12] in this
volume, and as seen by [GGKS95, KST94, St00, DFS98, BDFHW95] compu-
tational biology has been interacting with parameterized complexity from the
beginning, and this interaction has continued with throughout, with the work
Langston and his group (who have contracts throughout the world to analyse
biological data, and use Vertex Cover and other FPT techiques routinely),
of Niedermeier and his group, and others. This volume describes many of the
applications to computational biology in Stege [St12]. Suppose we had a conflict
graph of some data from this area. Because of the nature of the data we know
that it is likely the conflicts are at most about 50 or so, but the data set is large,
maybe 1012 points. We wish to eliminate the conflicts, by identifying those 50 or
fewer points. Let’s examine the problem depending on whether the identification
turns out to be a dominating set problem or a vertex cover problem.

Dominating Set. Essentially the only known algorithm for this problem is to try
all possibilities. Since we are looking at subsets of size 50 or less then we will need
to examine all (1012)50 many possibilities. Of course this is completely impossible.

Vertex Cover. There is now an algorithm running in time O(1.2738k + kn)
([CKX10]) for determining if anG has a vertex cover of size k. This and and struc-
turally similar algorithms has been implemented and is practical for n of unlimited
practical size and k large. The relevant k has been increasing all the time, evolving
from about 400 in [CDRST03], to Langston’s team [LPSSV08, ELRW11] who now
routinely solve instances on graphs with millions of nodes and vertex covers in the
thousands. Moreover, this last work is on actual biological data.

94 R. Downey

As well as using bounded branching (and parallelization [ALSS06]), the
method used for this algorithm for Vertex Cover is called kernelization and
is based on reduction rules1, which tend to be easy to implement and perform
often much better than anticipated in practice. We will discuss this method in
detail soon. The following table from Downey-Fellows [DF98] exhibits the dif-
ference between the parameter k being part of the exponent like Dominating

Set or as part of the constant like Vertex Cover. This table compares of a
running time of Ω(nk) vs 2kn.

Table 1. The Ratio nk+1

2kn
for Various Values of n and k

n = 50 n = 100 n = 150

k = 2 625 2,500 5,625

k = 3 15,625 125,000 421,875

k = 5 390,625 6,250,000 31,640,625

k = 10 1.9 × 1012 9.8 × 1014 3.7 × 1016

k = 20 1.8 × 1026 9.5 × 1031 2.1 × 1035

In classical complexity a decision problem is specified by two items of
information:

(1) The input to the problem.
(2) The question to be answered.

In parameterized complexity there are three parts of a problem specification:
(1) The input to the problem.
(2) The aspects of the input that constitute the parameter.
(3) The question.

Thus one parameterized version of Vertex Cover is the following:

Vertex Cover

Instance: A graph G = (V,E).
Parameter: A positive integer k.
Question: Does G have a vertex cover of size ≤ k?

We could, for instance, parameterize the problem in other ways. For example,
we could parameterize by some width metric, some other shape of the graph,
planarity etc. Any of these would enable us to seek hidden tractability in the
problem at hand.

For a formal definition, for simplicity I will stick to the strongly uniform
definition of being fixed-parameter tractable. There are other definitions of less
importance in practice, and I refer the reader to [DF98] or [FG06] for more
details.

A parameterized language is L ⊆ Σ∗ × Σ∗ where we refer to the second
coordinate as the parameter. It does no harm to think of L ⊆ Σ∗×N. Flum and

1 There are other FPT methods based around reduction rules such as Leizhen Cai
[LeC96] and Khot and Raman [KR02], which work on certain hereditary properties.

A Basic Parameterized Complexity Primer 95

Grohe have an alternative formulation where the second coordinate is a function
κ : Σ∗ → Σ∗, but I prefer to keep the second parameter as a string or number.

Definition 1. A parameterized language L is (strongly) fixed parameter
tractable (FPT), iff there is a computable function f , a constant c, and a (de-
terministic) algorithm M such that for all x, k,

〈x, k〉 ∈ L iff M(x, k) accepts,

and the running time of M(x, k) is ≤ f(k)|x|c.

It is not difficult to show that the multiplicative constant in the definition can be
replaced by an additive one, so that L ∈ FPT iff L can be accepted by a machine
in time O(|x|c) + f(k) for some computable f . In the case of Vertex Cover

we have f(k) = 1.2738k, and the O is 2. One nice notation useful here is the O∗

notation which ignores the polynomial part be it additive or multiplicative and
is only concerned with the exponential part. The algorithm would be said to be
O∗(2k). The table on the web site

http://fpt.wikidot.com/fpt-races

lists 35 (at the time of writing) basic problems which are fixed parameter
tractable with (mostly) practical algorithms, and for which there are current
“races” for algorithms with the best run times.

Now you might (in some cases validly) complain about the presence of an
arbitrarily bad computable function f . Could this not be like, for example Ack-
ermann’s function? This is a true enough complaint, but the argument also
applies to polynomial time. Could not polynomial time allow for running times
like n30,000,000? As noted by Edmonds [Ed65], the practical algorithm builder’s
answer tends to be that “in real life situations, polynomial time algorithms tend
to have small exponents and small constants.” That certainly was true in 1965,
but as we will see this is no longer true. The same heuristic applies here. By and
large, for most practical problems, at least until recently, the f(k)’s tended to
be manageable and the exponents reasonable.

In fact, an important offshoot of parameterized complexity theory is that it
does (sometimes) provide tools to show that bad constants or bad exponents
for problems with algorithms running in polynomial time cannot be eliminated,
modulo some reasonable complexity assumption. As articulated by Alehknovich
and Razborov [AR01] who were considering lower bounds for the automizability2

of resolution and tree-like resolution, what they needed was a complexity the-
ory sensitive to the structure of polynomial time. We emphasize that exploring

2 Alehknovich and Razborov studied proof systems P called in [BPR01] automatizable
meaning that there is a deterministic algorithm A which, when give a tautology τ
returns its shortest proof in time polynomial in the size of the shortest P -proof of τ.
They proved neither resolution nor tree-like resolution is automatizable unless W [P]
is randomized FPT by a randomized algorithm with one-sided error, where W [P] is
a class we will meet in Section 2

96 R. Downey

feasible computation requires something like parameterized complexity as it is a
theory giving hardness within polynomial time. More on this in Section 2.

One of the key features of the theory is a wide variety of associated techniques
for proving parametric tractability. We will discuss them in Section 3, but before
we do so, let’s examine the associated hardness theory.

2 Parametric Intractability

Since we are woefully bad at proving problems to be not in polynomial time,
we have invented a hardness theory, as mentioned in Section 1, based on the
assumption that certain canonical problems are not in polynomial time. The
two key ingredients of a hardness theory are (i) a notion of hardness and (ii) a
notion of “problem A could be solved efficiently if we could solve problem B”;
that is a notion of reducibility.

In the classic theory of NP completeness (i) is achieved by the following:
Nondeterministic Turing Machine Acceptance

Input: A nondeterministic Turing Machine M and a number e.
Question: Does M have an accepting computation in ≤ |M |e steps?

The Cook-Levin argument is that a Turing machine is such an opaque ob-
ject that it seems that there would be no way to decide if M accepts, without
essentially trying the paths. If we accept this thesis, then we probably should
accept that the following problem is not O(|M |c) for any fixed c and is probably
Ω(|M |k) since again our intuition would be that all paths would need to be tried:

Short Nondeterministic Turing Machine Acceptance

Input: A nondeterministic Turing Machine M
Parameter: A number k.
Question: Does M have an accepting computation in ≤ k steps?

So here is a notion of hardness. Personally I would find it difficult to believe
that NP is not P, but that Short Nondeterministic Turing Machine Ac-

ceptance could be in FPT, for example, solved in O(|M |3) for any path length
k. In fact, as we will soon see, Short Nondeterministic Turing Machine

Acceptance not in FPT is closely related to the statement n-variable 3Sat

not being solvable in subexponential time.
Thus to show Dominating Set is likely not FPT could be achieved by show-

ing that if we could solve it in time O(nc) by for each fixed k, then we could have
a O(nc) for Short Nondeterministic Turing Machine Acceptance. Our
principal working definition for parameterized reductions is the following.

Definition 2. Let L,L′ be two parameterized languages. We say that L ≤fpt L
′

iff there is an algorithm M , a computable function f and a constant c, such that

M : 〈G, k〉 �→ 〈G′, k′〉,

A Basic Parameterized Complexity Primer 97

so that
(i) M(〈G, k〉) runs in time ≤ g(k)|G|c.
(ii) k′ ≤ f(k).
(iii) 〈G, k〉 ∈ L iff 〈G′, k′〉 ∈ L′.

A simple example of a parametric reduction is from k-Clique to k-Independent
Set, where the standard reduction is parametric (a situation not common). The
following is a consequence of Cai, Chen, Downey and Fellows [CCDF96], and
Downey and Fellows [DF95b]; as I discuss in [Do12], elsewhere in this volume.

Theorem 1. The following are hard for Short Nondeterministic Turing

Machine Acceptance: Independent Set, Dominating Set.

Following Karp [Ka72], and then four decades of work, we know that thousands
of problems are all NP-complete. They are all reducible to one another and
hence seem to have the same classical complexity. On the other hand, with pa-
rameterized complexity, we have theory which separates Vertex Cover from
Dominating Set and Independent Set. With such refined reducibilties, it
seems highly unlikely that the hardness classes would coalesce into a single
class like NP-complete. And indeed we think that this is the case. We have
seen in the theorem above that Short Nondeterministic Turing Machine

Acceptance≡fpt Independent Set. However, we do not think that Domi-

nating Set≤fpt Independent Set.
A standard parameterized version of the satisfiability problem of Cook-Levin

is the following. (Other parameterized versions are discussed in the article by
Chen and Flum [CF12] in this volume.)

Weighted Cnf Sat

Input: A CNF formula X .
Parameter: A number k.
Question: Does X have a true assignment of weight k (here the weight is the
number of variables set to true)?

Similarly, we can define Weighted 3 Cnf Sat where the clauses have only 3
variables. Classically, using a padding argument, we know that Cnf Sat≡P

m3

Cnf Sat. Recall that to do this for a clause of the form {q1, . . . , qk} we add extra
variables zj and turn the clause into several as per: {q1, q2, z1}, {z1, q3, z2}, etc.

Now this is definitely not a parametric reduction from Weighted Cnf Sat

to Weighted 3 Cnf Sat because a weight k assignment could go to any other
weight assignment for the corresponding instance of 3 Cnf Sat.

Now, early on, as I mention in [Do12], Fellows and I came to the belief that
there is no parametric reduction at all from Weighted Cnf Sat to Weighted

3 Cnf Sat. Fellows and I proved that Dominating Set≡fptWeighted Cnf

Sat. Extending this reasoning further, we can view Weighted Cnf Sat as a
formula that is a product of sums. We can similarly define Weighted t-PoS
Sat as the weighted satisfiability problem for a formula X in product of sums of
product of sums... with t alternations. Fellows and I then definedWeighted Sat

if we have no restriction on the formula. Downey and Fellows [DF95a] called the

98 R. Downey

collection of parameterized languages FPT-equivalent to Weighted 3 Cnf Sat

W [1], the collection of languages FPT-equivalent to Weighted Cnf Sat W [2],
the collection of languages FPT-equivalent to Weighted t-PoS Sat W [t], and
the collection of languages FPT-equivalent to Weighted Sat W [SAT]. There
are some other classes W [P], the weighted circuit satisfiability class, and XP
which has as its defining problem the class whose k-th slice is complete for
DTIME(nk), this being provably distinct from FPT and akin to exponential
time. This gave the W -hierarchy below

W [1] ⊆W [2] ⊆W [3] . . .W [SAT] ⊆W [P] ⊆ XP.

There are many, many problems hard for W [1] and complete at many
levels of this hierarchy. I won’t list them here, but examples can be found in
this volume, and in the papers and books listed above. The basic papers are
[DF92a, DF92b, DF93, ADF95], and there we define the basic W-classes and
essay the completeness programme.

The reader might ask about parameterizing space. This issue was addressed
by Abrahamson, Downey and Fellows [ADF93, ADF95], where the complexity
of k-move games was addressed. (It could be argued that a proper treatment
of space is yet to be done.) The complexity of k-move games was addressed
by extending the hierarchy above using ideas of alternation of parameterized
quantifiers, giving a hierarchy called the AW-hierarchy. Again we refer to the
books and survey articles.

There are also other hierarchies based on other ideas of logical depth. One im-
portant hierarchy of this kind was found by Flum and Grohe is the A-hierarchy
which is also based on alternation like the AW-hierarchy but works differently.
For a class Φ of formulae, we can define the following parameterized problem.

p-MC(Φ)
Instance: A structure A and a formula ϕ ∈ Φ.
Parameter: |ϕ|.
Question: Decide if φ(A) �= ∅, where this denotes the evaluation of φ in A.

Flum and Grohe define

A[t] = [p-MC(Σt)]
FPT.

For instance, for k ≥ 1, k-Clique can be defined by

cliquek = ∃x1, . . . xk(
∧

1≤i<j≤k

xi �= xj ∧
∧

1≤i<j≤k

Exixj)

in the language of graphs3, and the interpretation of the formula in a graph G
would be that G has a clique of size k. Thus the mapping (G, k) �→ (G, cliquek) is
a fixed parameter reduction showing that parameterized Clique is in A[1]. Flum
and Grohe populate various levels of the A-hierarchy and show the following.

3 For narrative flow, I will assume that the reader is familiar with logic, but a more
precise discussion will be given in Section 4.5.

A Basic Parameterized Complexity Primer 99

Theorem 2 (Flum and Grohe [FG02a, FG04]). The following hold:

(i) A[1] =W[1].
(ii) A[t] ⊆W[t].

Clearly A[t] ⊆XP, but no other containment with respect to other classes of
the W-hierarchy is known. It is conjectured by Flum and Grohe that no other
containments than those given exist. This conjecture is not apparently related to
any other conjecture. One other important hierarchy, called the M -hierarchy will
be discussed later, but in any case it is completely evident that the fine-grained
nature of the notion of parametric complexity will lead to significant structure
within polynomial time. There is still a great deal to do here.

2.1 Connection with PTAS’s

The reader may note that parameterized complexity is addressing intractability
within polynomial time. In this vein, the parameterized framework can be used
to demonstrate that many classical problems that admit a PTAS do not, in fact,
admit any PTAS with a practical running time, unless W[1] =FPT. The idea

here is that if a PTAS has a running time such as O(n
1
ε), where ε is the error

ratio, then the PTAS is unlikely to be useful. For example if ε = 0.1 then the
running time is already n to the 10th power for an error of 10%. Here is a table
from Downey [Do03]

– Arora [Ar96] gave a O(n
3000

ε) PTAS for Euclidean Tsp

– Chekuri and Khanna [CK00] gave a O(n12(log(1/ε)/ε8)) PTAS for Multiple

Knapsack

– Shamir and Tsur [ST98] gave a O(n22
1
ε −1)) PTAS forMaximum Subforest

– Chen and Miranda [CM99] gave a O(n(3mm!)
m
ε

+1

) PTAS forGeneral Mul-

tiprocessor Job Scheduling

– Erlebach et al. [EJS01] gave a O(n
4
π (1

ε2
+1)2(1

ε2
+2)2) PTAS for Maximum

Independent Set for geometric graphs.

Table 2 below calculates some running times for these PTAS’s with a 20% error.

Table 2. The Running Times for Some Recent PTAS’s with 20% Error

Reference Running Time for a 20% Error

Arora [Ar96] O(n15000)

Chekuri and Khanna [CK00] O(n9,375,000)

Shamir and Tsur [ST98] O(n958,267,391)

Chen and Miranda [CM99] > O(n1060)
(4 Processors)

Erlebach et al. [EJS01] O(n523,804)

100 R. Downey

In Downey [Do03], I argue as follows.

“By anyone’s measure, a running time of n500,000 is bad and n9,000,000 is
even worse. The optimist would argue that these examples are important
in that they prove that PTAS’s exist, and are but a first foray. The
optimist would also argue that with more effort and better combinatorics,
we will be able to come up with some n logn PTAS for the problems. For
example, Arora [Ar97] also came up with another PTAS for Euclidean
Tsp, but this time it was nearly linear and practical.

But this situation is akin to P vs NP. Why not argue that some ex-
ponential algorithm is just the first one and with more effort and bet-
ter combinatorics we will find a feasible algorithm for Satisfiability?
What if a lot of effort is spent in trying to find a practical PTAS’s with-
out success? As with P vs NP, what is desired is either an efficient4

PTAS (EPTAS), or a proof that no such PTAS exists5. A primary use
of NP-completeness is to give compelling evidence that many problems
are unlikely to have better than exponential algorithms generated by
complete search.”

To use the hardness theory to eliminate the possibility of feasible PTAS’s, what
we could do is regard 1

ε as a parameter and show that the problem is W[1]-hard
with respect to that parameterization. In that case there would likely be no
method of removing the 1

ε from the exponent in the running time and hence no
efficient PTAS, a method first used by Bazgan [Baz95]. For many more details
of the method we refer the reader to the surveys [Do03, DTH11].

It was an insight of Cai and Juedes that tight lower bounds for approxima-
tion and parameterized complexity are intimately related; and indeed, are also
related to classical questions about NP and subexponential time. In particu-
lar, Cai et. al. [CFJR07] who showed that the method of using planar formulae
tends to give PTAS’s that are never practical. The exact calibration of PTAS’s
and parameterized complexity comes through yet another hierarchy called the
M-hierarchy.

The base level of the hierarchy is the problem M[1] defined by the core prob-
lem below.

Instance: A CNF circuit C (or, equivalently, a CNF formula) of size k logn, with
n in unary.
Parameter: A positive integer k.
Question: Is C satisfiable?

That is, we are parameterizing the size of the problem rather than some aspect
of the problem. The idea naturally extends to higher levels for that, for example,

4 An Efficient Polynomial-Time Approximation Scheme (EPTAS) is an (1 + ε)-
approximation algorithm that runs in f(1/ε) · nO(1) steps. If, additionally, f is a
polynomial function then we say that we have a Fully Polynomial-Time Approxima-
tion Scheme (FPTAS).

5 The same issue can also be raised if we consider FPTAS’s instead of EPTA S’s.

A Basic Parameterized Complexity Primer 101

M [2] would be a product of sums of product formula of size k logn and we are
asking whether it is satisfiable. The basic result is thatFPT⊆ M[1]⊆W[1]. The
hypothesis FPT �=M[1] is equivalent to a classical conjecture called the exponential
time hypothesis, ETH. This hypothesis is due to Impagliazzo, Paturi and Zane
[IPZ01] and asserts that n-variable 3Sat cannot be solved in “subexponential
time”, DTime (2o(n)). This conjecture accords with the intuition that not only
does P �= NP but actually NP is really at exponential level.

One example of a lower bound was the original paper of Cai and Juedes
[CJ01, CJ03] who proved the following definitive result.

Theorem 3 (Cai and Juedes [CJ01, CJ03]). k-Planar Vertex Cover,
k-Planar Independent Set, k-Planar Dominating Set, and k-Planar

Red/Blue Dominating Set cannot be in O∗(2o(
√
k))-FPT unless FPT=M[1]

(or, equivalently, unless ETH fails).

We remark that Theorem 3 is optimal as all the problems above have been

classified as O∗(2O(
√
k) (see e.g. Downey and Thilikos [DTH11])

The obvious connection between subexponential complexity and parameter-
ized complexity classes as formalized by Chen and Grohe [CG07] by constructing
an isomorphism, the so-called miniaturization, between exponential time com-
plexity (endowed with a suitable notion of reductions) and XP (endowed with
FPT reductions) such that the respective notions of tractability correspond, that
is, subexponential time on the one and FPT on the other side. Other connections
between classical complexity and “canonical” miniaturizations can be found in
Downey, Flum, Grohe and Weyer [DFGW07].

2.2 XP-Optimality

There is a new programme akin to the above establishing tight lower bounds on
parameterized problems, assuming various non-collapses of the parameterized
hierarchies. A powerful example of this is what is called XP optimality. This
new programme regards the classes like W[1] as artifacts of the basic problem
of proving hardness under reasonable assumptions, and strikes at membership
ofXP. We illustrate this via Independent Set and Dominating Set which
certainly are in XP. But what’s the best exponent we can hope for for slice k?

Theorem 4 (Chen et. al [CCFHJKX05]). The following hold:

(i) Independent Set cannot be solved in time no(k) unless FPT=M[1].
(ii) Dominating Set cannot be solved in time no(k) unless FPT=M[2].

More on parameterized intractability and its development over time can be found
in the article by Jianer Chen and Iyad Kanj [CK12] in this volme.

3 Positive Techniques

3.1 Bounded Search Trees

A fundamental source of high running times is branching in algorithms. A very
crude idea to limit the running time is to keep this branching small and a function

102 R. Downey

of the parameter. For instance, for Vertex Cover, we can do this as follows.
Take any edge e = vw, and begin a search tree, by having leaves labeled by v
and w, and for each leaf recursively do this for the graphs gotten by deleting any
edge covered by v and w respectively. The depth of this process for a k-vertex
cover is k and then we can decide of G has a vertex cover in time O(2k|G|) using
this method.

At a certain point in any of these algorithms, you need to appeal to some
kind of combinatorics to improve performance. A simple illustration of this idea
is that if we can make the search tree smaller than the complete binary tree of
length k, then the performance will improve. Notice that, if G has no vertex of
degree three or more, then G consists of a collection of cycles, and this is pretty
trivial to check. Thus we can assume we have vertices of higher degree than 2.
For vertex cover of G we must have either v or all of its neighbours, so we create
children of the root node corresponding to these two possibilities. The first child
is labeled with {v} and G− v, the second with {w1, w2, . . . , wp}, the neighbours
of v, and G− {w1, w2, . . . , wp}. In the case of the first child, we are still looking
for a size k − 1 vertex cover, but in the case of the second child we need only
look for a vertex cover of size k − p, where p is at least 3. Thus, the bound on
the size of the search tree is now somewhat smaller than 2k. It can be shown
that this algorithm runs in time O(5k\4 ·n), and in typical graphs, there are lots
of vertices of higher degree than 3, and hence this works even faster.

The best algorithms along these lines use more complex branching rules. For
example, Niedermeier [Nie02] uses the following branching rules.

Branching Rule VC1:

If there is a degree one vertex v in G, with single neighbour u, then there is a
minimum size cover that contains u. Thus, we create a single child node labeled
with {u} and G− u.

Branching Rule VC2:

If there is a degree two vertex v inG, with neighbours w1 and w2, then either both
w1 and w2 are in a minimum size cover, or v together with all other neighbours
of w1 and w2 are in a minimum size cover.

Branching Rule VC3:

If there is a degree three vertex v in G, then either v or all of its neighbours are in.
We remark that using these three rules, (using a recurrence relation) it can

be shown that if there is a solution of size at most k then the size of the corre-
sponding search tree has size bounded above by O(1.47k). More involved rules
of similar ilk exploring the local structure of neighbourhoods in graphs, result
in the algorithm of Chen et. al. [CKX10]) with running time O(1.2738k) for the
branching.

There are a number of problems for which this technique is the only method,
or at least the best method, for parameterized algorithms. The method has
been particularly successful in computational biology with problems like the

A Basic Parameterized Complexity Primer 103

Closest String problem [GNR01] and Maximum Agreement Forest prob-
lem [HM07].

In passing I remark that this method is inherently parallelizable and as we
see is often used in conjunction with other techniques. The method for Vertex

Cover can be found discussed in [ALSS06].
The paper in this volume by Marx [Ma12] explores the applicability of this

technique against other methods like kernelizability discussed in the next section.

3.2 Kernelization

This is again a pretty simply basic idea. If we can make the problem smaller
then the search will be quicker. This is a data reduction or pre-processing idea,
and is the heart of many heuristics.

Whilst there are variations of the idea below, the simplest version of kernel-
ization is the following.

Definition 3 (Kernelization)
Let L ⊆ Σ∗×Σ∗ be a parameterized language. A reduction to a problem kernel,

or kernelization, comprises replacing an instance (I, k) by a reduced instance
(I ′, k′), called a problem kernel, such that

(i) k′ ≤ k,
(ii) |I ′| ≤ g(k), for some function g depending only on k, and
(iii) (I, k) ∈ L if and only if (I ′, k′) ∈ L.

The reduction from (I, k) to (I ′, k′) must be computable in time polynomial in
|I|+ |k|.

There are other notions, where the kernel may be another problem (often “an-
notated”) or the parameter might increase, but, crucially, the size of the kernel
depends only on k.

Here are some natural reduction rules for a kernel for Vertex Cover.
Reduction Rule VC1:

Remove all isolated vertices.

Reduction Rule VC2:

For any degree one vertex v, add its single neighbour u to the solution set and
remove u and all of its incident edges from the graph.

These rules are obvious. Sam Buss (see [DF98]) originally observed that, for a
simple graph G, any vertex of degree greater than k must belong to every k-
element vertex cover of G (otherwise all the neighbours of the vertex must be
included, and there are more than k of these).

This leads to our last reduction rule.

Reduction Rule VC3:

If there is a vertex v of degree at least k+1, add v to the solution set and remove
v and all of its neighbours.

104 R. Downey

After exhaustively applying these rules, we get to a graph (G′, k′), where no
vertex in the reduced graph has degree greater than k′ ≤ k, or less than two.
Then simple combinatorics shows that if such a reduced graph has a size k vertex
cover, its must have size ≤ k2. This is the size k2 kernelization.

Now we can apply the bounded depth search tree rule to this reduced graph,
and get an algorithm for vertex cover running in time O(1.2738k)k2. As observed
by Langston and his team in problems in sequence analysis, and articulated by
Niedermeier and Rossmanith [NR00] better running times can be obtained by
interleaving depth-bounded search trees and kernelization. That is, first kernel-
ize, begin a bounded search tree, and the rekernelize the children, and repeat.
This really does make a difference. In [Nie02] the 3-Hitting Set problem is
given as an example. An instance (I, k) of this problem can be reduced to a
kernel of size k3 in time O(|I|), and the problem can be solved by employing a
search tree of size 2.27k. Compare a running time of O(2.27k · k3 + |I|) (without
interleaving) with a running time of O(2.27k + |I|) (with interleaving).

In actual implementations there are other considerations such as load sharing
amongst processors and the like. We refer to the articles in the Computer Journal
special issue concerning practical FPT.

We also remark that there are many strategies of reduction rules to shrink the
kernel. these include things like crown reductions (Abu-Khzamet. al. [ACFLSS04]),
and other crown structures (such asN.Abu-Khzamet. al.[AFLS07])which general-
ize the notion of a degree 1 vertex having its neighbours in the vertex cover, tomore
complicated structures which resemble “crowns” attached to the graph6. In fact
generalizing this to even more complex structures called protrusions
which have a well-behaved structure of small “treewidth” (we will soon meet in
Section 5.1) is an excellent source of theoretically efficient algorithms as evidenced
by the“metakernelization”paperBodlaender et. al. [BFLPST09], though theprac-
ticality of such is not at all explored.

Clearly, another game is to seek the smallest kernel. For instance, we know by
Nemhauser and Trotter [NT75] a size 2k kernel is possible forVertex Cover. A
natural question is “can we do better?”. As we later see, modulo some complexity
considerations, sometimes we can show lower bounds on kernels. (Clearly, if
P = NP then all have constant size kernels, so some assumption is needed.) We
refer to the site

6 Specifically, a crown in a graph G = (V,E) consists of an independent set I ⊆ V (no
two vertices in I are connected by an edge) and a set H containing all vertices in V
adjacent to I . A crown in G is formed by I ∪ H iff there exists a size |H | maximum
matching in the bipartite graph induced by the edges between I and H , that is, every
vertex of H is matched. It is clear that degree-1 vertices in V , coupled with their sole
neighbours, can be viewed as the most simple crowns in G. If we find a crown I ∪ H
in G, then we need at least |H | vertices to cover all edges in the crown. Since all edges
in the crown can be covered by admitting at most |H | vertices into the vertex cover,
there is a minimum size vertex cover that contains all vertices in H and no vertices in
I . These observations lead to the reduction rules based on deleting crowns.

A Basic Parameterized Complexity Primer 105

http://fpt.wikidot.com/fpt-races

for lots of kernel races.
The state of the art in the theory of kernelization can be found in the article by

Daniel Lokshtanov, Neeldhara Misra and Saket Saurabh [LMS12] in this volume.
It is not hard to show that a problem is FPT iff it is kernelizable. However, it

is not true that FPT=polynomial size kernelizable, and this is discussed in the
article by Marx [Ma12] in this volume, along with a future agenda for parame-
terized complexity.

Another practical technique for establishing parameterized tractability is the
following.

3.3 Iterative Compression

This technique was first introduced in a paper by Reed, Smith and Vetta in 2004
[RSV04] and more or less re-discovered by Karp [Ka11]. Although currently only
a small number of results are known, it seems to be applicable to a range of
parameterized minimization problems, where the parameter is the size of the
solution set. Most of the currently known iterative compression algorithms solve
feedback set problems in graphs, problems where the task is to destroy certain
cycles in the graph by deleting at most k vertices or edges. In particular, the
k-Graph Bipartisation problem, where the task is to find a set of at most
k vertices whose deletion destroys all odd-length cycles, has been shown to be
FPT by means of iterative compression [RSV04]. This had been a long-standing
open problem in parameterized complexity theory.

Definition 4 (Compression Routine)
A compression routine is an algorithm that, given a problem instance I and a
solution of size k, either calculates a smaller solution or proves that the given
solution is of minimum size.

Here is a compression routine for Vertex Cover. Begin with (G = (V,E), k),
we build the graph G vertex by vertex. We start with an initial set of vertices
V ′ = ∅ and an initial solution C = ∅. At each step, we add a new vertex v to
both V ′ and C, V ′ ← V ′ ∪ {v}, C ← C ∪ {v}. We then call the compression
routine on the pair (G[V ′], C), where G[V ′] is the subgraph induced by V ′ in G,
to obtain a new solution C′. If |C′| > k then we output NO, otherwise we set
C ← C′.

If we successfully complete the nth step where V ′ = V , we output C with
|C| ≤ k. Note that C will be an optimal solution for G.

The compression routine takes a graph G and a vertex cover C for G and
returns a smaller vertex cover for G if there is one, otherwise, it returns C
unchanged. Each time the compression routine is used it is provided with an
intermediate solution of size at most k + 1.

The implementation of the compression routine proceeds as follows. We con-
sider a smaller vertex cover C′ as a modification of the larger vertex cover C.
This modification retains some vertices Y ⊆ C while the other vertices S = C\Y

106 R. Downey

are replaced with |S| − 1 new vertices from V \ C. The idea is to try by brute
force all 2|C| partitions of C into such sets Y and S. For each such partition, the
vertices from Y along with all of their adjacent edges are deleted. In the resulting
instance G′ = G[V \Y], it remains to find an optimal vertex cover that is disjoint
from S. Since we have decided to take no vertex from S into the vertex cover, we
have to take that endpoint of each edge that is not in S. At least one endpoint of
each edge in G′ is in S, since S is a vertex cover for G′. If both endpoints of some
edge in G′ are in S, then this choice of S cannot lead to a vertex cover C′ with
S ∩ C′ = ∅. We can quickly find an optimal vertex cover for G′ that is disjoint
from S by taking every vertex that is not in S and has degree greater than zero.
Together with Y , this gives a new vertex cover C′ for G. For each choice of Y
and S, this can be done in time O(m), leading to O(2|C|m) = O(2km) time
overall for one call of the compression routine. With at most n iterations of the
compression algorithm, we get an algorithm for k-Vertex Cover running in
time O(2kmn).

The parametric tractability of the method stems from the fact that each
intermediate solution considered has size bounded by some k′ = f(k), where k is
the parameter value for the original problem. It works very with with monotone
problems, where if we get an intermediate no then the answer is definitely no.
Note that many minimization problems are not monotone in this sense. For
example, a NO instance (G = (V,E), k) for k-Dominating Set can be changed
to a YES instance by means of the addition of a single vertex that is adjacent
to all vertices in V .

Niedermeier [Nie06] has an excellent discussion of this technique, which would
seem to have a lot of applications.

4 Not-Quite-Practical FPT Algorithms

There are a number of distinctive techniques used in parameterized complexity
which are “not-quite-practical” FPT algorithms, in the sense that the running
times are not feasible in general, but can be in certain circumstances. Addition-
ally, some can be randomized and ones using logical metatheorems can later
admit considerable refinement in practice for a specific problem. These tech-
niques include color-coding and dynamic programming on bounded width graph
decompositions. Since this survey is meant to be brief, I will only allude to these
techniques.

4.1 Colour-Coding

This technique is useful for problems that involve finding small subgraphs in
a graph, such as paths and cycles. Introduced by Alon et al. [AYZ94], it can
be used to derive seemingly efficient randomized FPT algorithms for several
subgraph isomorphism problems.

It remains in the “not quite practical” basket due to the large numbers needed
to implement it. Here is a brief description of how the method works. We will

A Basic Parameterized Complexity Primer 107

apply the problem to k-Path which seeks to find a (simple) path of k vertices
in G. What we do is to randomly color the whole graph with k colors, and look
for a colorful solution, namely one with k vertices of one of each color.

The two keys to this idea are

(i) we can check for colorful paths quickly.
(ii) if there is a simple path then the probability that it will have k colors for a
random coloring is k!

kk which is bounded by e−k.

Then, given (i) and (ii), we only need repeat process enough to fast probabilistic
algorithm. We prove (i) by using dynamic programming: simply add a vertex
v0 with color 0, connect to those of color 1, then generate the colorful paths
of length i starting from v0 inductively, rather like Dijkstra’s algorithm, the
running time being O(k2k|E|).

Theorem 5 (Alon, Yuster and Zwick [AYZ94]). k-Path can be solved in
expected time 2O(k)|E|.

Alon, Yuster and Zwick demonstrated that this technique could be applied to
a number of problems of the form asking “is G′ a subgraph of G?” The desired
FPT algorithm can now be obtained by a process of derandomization. A k-
perfect family of hash functions is a family F of functions (colorings) taking
[n] = {1, . . . n} onto [k], such that for all S ⊆ [n] of size k there is a f ∈ F
whose restriction to is bijective (colourful). It is known that k-perfect families of
2O(k) logn linear time hash functions. This gives a deterministic 2O(k)|E| log |V |
algorithm for k-Path. More such applications can be found in Downey and
Fellows [DF98], and Niedermeier [Nie02, Nie06]. The O(k) in the exponent hides
evil, and the derandomization method at present seems far from practical.

Note that the method does not work when applied to things like k-Clique

to be shown randomized FPT because (i) above fails. The important part of the
dynamic programming method was that a path was represented by its beginning
v0 and some vertex vi, and to extend the path only needed local knowledge;
namely the colors used so far and vi. This fails for Clique, and would need

(
n
i

)
at step i in the clique case.

We remark that recent work ([BDFH08, BDFH09]) has shown, assuming a
reasonable complexity assumption (namely that the polynomial time hierarchy
does not collapse to two or fewer levels), there is no polynomial size kernel for
k-Path. We meet this result in Section 6.

4.2 Bounded Integer Programming

One technique, not discussed in [DF98, FG06], is the use of Integer Pro-

gramming in the design of FPT algorithms. This is discussed in Niedermeier
[Nie02, Nie06].

Theorem 6 (Lenstra [Le83]). The integer programming feasibility problem

can be solved with O(p
9p
2 L) arithmetical operations in Z of O(p2pL) bits in size,

where p is the number of variables, and L the number of bits of the input.

108 R. Downey

Niedermeier [Nie02, Nie06] gave one example of the use of this method for estab-
lishing parametric tractability. He showed that the following problem is FPT.

Closest String (parameterized by the number of strings and length)

Input: k strings s1, . . . sk over an alphabet Σ each having length L, and a non-
negative integer d.
Parameter: k, L, d.
Question: is there a string s of distance ≤ d from si for all i?

We remark that the method’s practicality is far from explored. We also refer the
reader to Gramm, Niedermeier and Rossmanith [GNR01].

4.3 Bounded Width Metrics

Anyone who has done any course in algorithms has seen various algorithms for
planar this and bounded degree, dimension, pathwidth, bandwidth, etc that.
Clearly, what is going on is some kind of quest to try to map the boundary of
intractability, and using some kind of regularity in the data to get tractability.

Planarity is natural since a road map of a city is more or less planar subject
to a few exceptions. One could view the number of exceptions as a parameter,
or simply view the every increasing genus as the relevant parameter. Similarly
degree. How does the running time vary for the problem at hand as the degree
varies.

Two sweeping generalizations of the notions of bounded global parameters are
found in the notions of width metrics, and in particular through treewidth and
local treewidth (defined in the next section). Treewidth is part of the change
from ad hoc graph theory to structural, topological graph theory which has
revolutionized the area in the last decade or so. The following definition is now
quite mainstream in modern graph theory.

Definition 5 (Robertson and Seymour [RS86a])

(a) A tree-decomposition of a graph G = (V,E) is a tree T together with a
collection of subsets Tx (called bags) of V labeled by the vertices x of T such
that ∪x∈T Tx = V and (i) and (ii) below hold:
(i) For every edge uv of G there is some x such that {u, v} ⊆ Tx.
(ii) (Interpolation Property) If y is a vertex on the unique path in T from x
to z then Tx ∩ Tz ⊆ Ty.

(b) The width of a tree decomposition is the maximum value of |Tx| − 1 taken
over all the vertices x of the tree T of the decomposition.

(c) The treewidth of a graph G is the minimum treewidth of all tree decomposi-
tions of G.

The point of the notion is that it is a measure of how treelike the graph is.
One can similarly define path decomposition where T must be a path. A tree
decomposition is a road map as to how to build the graph. Knowing a tree or

A Basic Parameterized Complexity Primer 109

a

b

c

d

e

h

i

g

f

b c d

a b d e b d

d e h

h i g e h

f e g

Fig. 1. Example of Tree Decomposition of Width 2

path decomposition of a graph allows for dynamic programming since what is
important is the “information flow” across a relatively narrow cut in the graph.

Figure 1 gives an example of a tree decomposition of width 2.
Authors often discovered that intractable problems became tractable if the

problems were restricted to say, “outerplanar” graphs. As we have seen, such
restriction is not purely an academic exercise since, in many practical situations,
the graphs that arise do not in fact demonstrate the full pathology of the class
of all graphs. Families of graph that have been studied which turn out to have
bounded treewidth include Almost Trees (k) (width k+1), Bandwidth k (width
k), Cutwidth k (width k), Planar of Radius k (width 3k), Series Parallel (width
2), Outerplanar (width 2), Halin (width 3) k-Outerplanar (width 3k−1), Chordal
with Maximum Clique Size k (width k − 1), and many others.

4.4 Algorithms for Graphs of Bounded Treewidth

We sketch how to run algorithms on graphs of bounded treewidth. This can be
viewed as dynamic programming a very important algorithmic technique. Many
classical problems are known to be algorithmically infeasible on general graphs
(in that they take exponential time) but become polynomial time when restricted
to some bounded treewidth class. A good introduction to this technique is Bi-
enstock and Langston [BL95], Bodlaender and Kloks [BK96], Bodlaender and
Koster [BoK08], or Babette de Fluiter [deF70]. I am always surprised when I
meet people who are unaware of this technique, since it has been around so
long. But for completeness it seems worthwhile to describe the method.

We describe the technique for the Independent Set. Whilst this problem is
classically W [1]-complete, in the case of graphs of bounded treewidth, we can
give a linear time algorithm. So suppose that we have a tree decomposition of
G. Consider the one below

Now what we will do is to use tables to grow the independent set up the tree
starting at the leaves of the decomposition. Notice that once a vertex leaves the
bags it will never come back, and hence we don’t really need to keep track of
its effect. Thus we can work with tables corresponding to all the subsets of the
current bag and need only consider independent sets I relative to the current
bag. That is, we would consider all the subsets of the bag and see how the size
of independent sets relative to in the information flow across the boundary.

110 R. Downey

e

hgi

egh

egdegh

egfce

abc

a b

c
d

f

g

ih

Fig. 2. A tree decomposition

Thus at the leaf corresponding to the triangle abc we could have the table
below. Here, for instance ab denotes the set {a, b}, meaning that the independent
set should contain both a and b, and would have cardinality 2, and bc corresponds
to {b, c} and this entry has a line since {b, c} is not an independent set.‘

∅ a b c ab ac bc abc
0 1 1 1 2 - - -

The table for the next box would have only 4 columns since there are only 4
subsets of {c, d} and we consider maximal independent sets I containing the
specified subset

∅ c e ce
2 1 3 -

The first entry has value 2 since this means neither of c or d in included in this
I and hence we take the maximal one below, namely 2.

The second entry says that I must contain c, and this corresponds to the
entry from below containing c, which is 1. The third one corresponds to the

A Basic Parameterized Complexity Primer 111

independent set containing e and not c, and hence we get 3, by choosing the
largest one with this property from below (namely the entry for ab contains no
c, and this together with e gives 1 + 2 = 3.)

Finally, the last entry is 0 since I would need to contain both c and d and no
independent set has this property.

The rest of the table if filled in similarly. With pointers you can also keep
track of the relevant independent set.

The next table is a join node

∅ e g h eg eh gh egh
0 1 1 1 2 - - -

This table corresponds to I ∩ {e, g, h} being the specified set. The first entry
corresponds to I having nothing from this set. It has value 3 since we get that
from the 2 on the left and 1 on the right. (We must add here.)

The second entry corresponds to the intersection being {e}, meaning that it
must have e and cannot have h or g. Note e is present in both branches and
hence we get 3. Next is g with e and h not present. There are 2 from the left
(corresponding to the ∅), and g is present on the right so we take its entry giving
3. the next is h and neither e or g, giving 2 from the left branch, 2 from the
right (using f since h is not present) and h itself; giving the total of 4. etc

The final table looks like:

2 1 3
o c e ce

o e g h eg eh gh egh

o a b c ab bc ac abc

o e g h eg eh gh egh

o h g i hg hi hg hid

o e g d eg ed gd egd

o e g f eg ef gf egf

3 5 3 4

3 3 3 4

3 3 3 5

0 1 1 1

0 1 1 1 2

0 1 1 1 2

Fig. 3. Dynamic programming

112 R. Downey

We remark that a sly feature we have not mentioned here is that to run this
method, we need a tree decomposition for the graph G. It turns out that for a
fixed t there is a linear time algorithm determining if G has width t, and then
finds the tree decomposition of G should the graph actually have one. However,
the algorithm has really terrible constants and there is no actually feasible one for
this problem. For more on this we refer the reader to Bodlaender [Bod93, Bod96],
Bodlaender-Kloks [BK96] and Bodlaender’s web site. John Fouhy in his MSc
Thesis [Fou03] looked at computational experiments for treewidth heuristics.
(See www.mcs.vuw.ac.nz/∼downey/students.html.) There is a lot of work to be
done here.

Actually, this whole process can be implemented by automata acting on trees.
We refer the reader to Downey and Fellows [DF98], Fellows and Langston [FL89],
or Abrahamson-Fellows [AF93].

Treewidth is the archetype of a number of graph width metrics7 naturally arise
in this context which restrict the inherent complexity of a graph in various senses.
The idea here is that a useful width metric should admit efficient algorithms for
many (generally) intractable problems on the class of graphs for which the width
is small. This leads to consideration of these measures from a parameterized point
of view. The corresponding naturally parameterized problem has the following
form:

Let w(G) denote any measure of graph width.

Instance: A graph G = (V,E).
Parameter: A positive integer k.
Question: Is w(G) ≤ k?

The hope is that this problem is FPT, and then, equipped with the relevant
decomposition, we can run algorithms. Another important example of a width
metric is cliquewidth where a clique decomposition works as follows. We induc-
tively define graphs using sets of k + 1 colours and parse operators as follows.
The first operator is ci which says “create a vertex of colour i.” The second one
is j(i, j) which says “join all vertices of colour i to all vertices of colour j.” The
is dj which says “form the disjoint union of all graphs constructed so far”, and
finally r(i, j) which says “recolour all vertices of colour i to j.” The width of the
decomposition is the smallest number of colours necessary minus 1. For exam-
ple, a clique has with 1 : to make a clique of size n, create a vertex coloured 1,
and then one of colour 2, apply j(1, 2), then r(1, 2), then create a new vertex of
colour 1, and repeat enough times. It is not hard to show that if G has bounded
treewidth then it also has bounded cliquewith.

It is unknown if Cliquewidth is FPT or W [1] hard. It is known to be NP-
complete forkvaryingbyFellows,Rosamond,Rotics andSzeider [FRRS06,FRRS09].
There is a lot of evidence that it is parametrically hardsuchasFominet. al. [FGLS10].

7 And have been used in other settings such as matroids where the width corresponds
to the dimension of the intersection of “subspaces” in some decomposition, See, for
example Hlineny Whittle [HW06].

A Basic Parameterized Complexity Primer 113

However, sometimes we are lucky and are supplied with a clique decompo-
sition. The point is that given a clique decomposition we can run linear time
algorithms for some problems. Thus the certificated problem where we input G
and its clique decomposition, and ask questions is often FPT.

For much more on treewidth and other width parameters, we refer the article
in this volume by Bodlaender [Bod12].

4.5 Logic

One source of (often impractical) FPT results is the use of metatheorems from
logic. The idea is that to feed in some logical description of the problem, and use
some algorithmic machine to given an FPT algorithm for it. The generality of
the methodology often means that the algorithms obtained have large constants,
and implementations need fine tuning. Sometimes you can use methods from
(parameterized) complexity to show that the large constants can’t be removed,
but more on this later.

We tend to look at problems defined in first-order logic and monadic second-
order logic. We remind the reader that first order logic uses individual variables
and form the logic by the following rules.

1. Atomic formulas: x = y and R(x1, ..., xk), where R is a k-ary relation symbol
and x, y, x1, ..., xk are individual variables, are FO-formulas.

2. Conjunction, Disjunction: If φ and ψ are FO-formulas, then φ ∧ ψ is an
FO-formula and φ ∨ ψ is an FO-formula.

3. Negation: If φ is an FO-formula, then ¬φ is an FO-formula.
4. Quantification: If φ is an FO-formula and x is an individual variable, then
∃x φ is an FO-formula and ∀x φ is an FO-formula.

First order logic allows for the description of local behaviour of structures. For
instance to say that a graph has an independent set of size k,

∃x1 . . . xk

∧
1≤i≤j≤k

¬E(xi, xj),

where E(x, y) denoted the edge relation on the graph.
For monadic second order logic we add set variables, one for each subset of

vertices in the graph. Formulas of monadic second-order logic (MSO) are formed
by the rules for FO and the following additional rules:

1. Additional atomic formulas: For all set variables X and individual variables
y, Xy is an MSO-formula.

2. Set quantification: If φ is an MSO-formula and X is a set variable, then ∃Xφ
is an MSO-formula, and ∀X φ is an MSO-formula.

We can state that a graph is k-colorable using an MSO-formula,

∃X1 . . . ∃Xk

(
∀x

k∨
i=1

Xix ∧ ∀x∀y
(
E(x, y)→

k∧
i=1

¬(Xix ∧Xiy)
))

114 R. Downey

Actually I am being sloppy here as there are variations of the meaning of this
depending on whether individual and set variables are allowed for edges; and if
so this is denoted by MS2. There is a whole industry here devoted to the use of
logic in algorithmc for computer science, and I will concentrate on MS2 only to
give the flavour of the methodology. For more on this see [DF98, FG06].

Now, whilst model checking for even first order formulae is already PSPACE
complete, we have the following.

Theorem 7 (Courcelle 1990). The model-checking problem for MS2 restricted
to graphs of bounded treewidth is linear-time fixed-parameter tractable.

Thus, the Independent Set problem above can easily be obtained from Cour-
celle’s Theorem by simply writing a formula in monadic second order logic de-
scribing that G has a k-independent set.

Actually Courcelle’s Theorem is true for a mild extension of MS2 called MS+2
where certain “counting” relations are added. The result gives the flavour of
the methods from logic. If we have a suitably restricted class of graphs, then
model checking becomes FPT. Examples include first order logic for families of
graphs of bounded local treewidth. This is the notion of how fast the treewidth
grows in a neighbourhood of an vertex of any graph in the family. This is called
bounded if there is a function f , such that for all n, the treewidth of the n-
neighbourhood of a vertex of any member of the family is bounded by f(n).
Examples of classes of graphs that have bounded local treewidth include graphs
of bounded treewidth (naturally), graphs of bounded degree, planar graphs, and
graphs of bounded genus.

Theorem 8 (Frick and Grohe [FrG01]). Parameterized problems that can
be described as model-checking problems for FO are fixed-parameter tractable on
classes of graphs of bounded local treewidth.

There are other notions of bounded with where this works. In general, things like
treewidth, cliquewith, and any other of these metrics indicate the the member
of of the graph family will be built by certain inductive methods. Such methods
clearly have reflections in reality when we consider how, for example, computer
chips are designed. It is not surprising that such inductive families tend to have
better algorithmics than general graphs. For more on this we refer the reader to
[GK11].

5 Exotica, WQO Theory

In this last section we look at exotic methods for proving problems to be FPT.
These tend to only give membership of FPT and no practical algorithms. As
discussed in Downey [Do12] and Langston [La12] in this Festschrift, this material
is the parent of parameterized complexity, in a sense made clear in those papers,
and emanating from material such as [FL87, FL88].

A Basic Parameterized Complexity Primer 115

A quasi-ordering on a set S is a reflexive transitive relation on S. We will
usually represent a quasi-ordering as ≤S or simply ≤ when the underlying set S
is clear. Let 〈S,≤〉 be a quasi-ordered set. We will write x < y if x ≤ y and y �≤ x,
x ≡ y if x ≤ y and y ≤ x and finally x|y if x �≤ y and y �≤ x. Note that if 〈S,≤〉 is
a quasi-ordered set then S/ ≡ is partially ordered by the quasi-order induced by
≤. Recall that a partial ordering is a quasi-ordering that is also antisymmetric.

Definition 6 (Ideal and Filter). Let 〈S,≤〉 be a quasi-ordered set. Let S′ be
a subset of S.

(i) We say that S′ is a filter if it is closed under ≤ upwards. That is, if
x ∈ S′ and y ≥ x then y ∈ S′. The filter generated by S′ is the set
F (S′) = {y ∈ S : ∃x ∈ S′(x ≤ y)}.8

(ii) We say that S′ is a (lower) ideal if S′ is ≤ closed downwards. That is
if x ∈ S′ and y ≤ x then y ∈ S′. The ideal generated by S′ is the set
I(S′) = {y ∈ S : ∃x ∈ S′(x ≥ y)}.

(iii) Finally, if S′ is a filter (an ideal) that can be generated by a finite subset
of S′ then we say that S′ is finitely generated.

We will need some distinguished types of sequences of elements.

Definition 7. Let 〈S,≤〉 be a quasi-ordered set. Let A = {a0, a1, ...} be a se-
quence of elements of S. Then we say the following.

(i) A is good if there is some i < j with ai ≤ aj.
(ii) A is bad if it is not good.
(iii) A is an ascending chain if for all i < j, ai ≤ aj.
(iv) A is an antichain if for all i �= j ai|aj.
(v) 〈S,≤〉 is Noetherian if S contains no infinite (strictly) descending se-

quences. (i.e. there is no sequence b0 > b1 > b2....)
(vi) 〈S,≤〉 has the finite basis property if for all subsets S′ ⊆ S, F (S′) is

finitely generated.

The following result is relevant to our work.

Theorem 9 (Folklore, after Higman [Hi52]). Let 〈S,≤〉 be a quasi-ordered
set. The following are equivalent.

(i) 〈S,≤〉 has no bad sequences.
(ii) Every infinite sequence in S contains an infinite chain.
(iii) 〈S,≤〉 is Noetherian and S contains no infinite antichain.
(iv) 〈S,≤〉 has the finite basis property.

Definition 8 (Well Quasi-Ordering). Let 〈S,≤〉 be a quasi-ordering. If 〈S,≤
〉 satisfies any of the characterizations of Theorem 9, then we say that 〈S,≤〉 is
a well quasi-ordering (WQO).

8 Sometimes, filters are called upper ideals.

116 R. Downey

The reader might well wonder what any of this abstract pure mathematics has
to do with algorithmic considerations. The key is provided by the finite basis
characterizations of a WQO. Suppose that ≤ is the relevant quasi-ordering and
for a fixed x the question “Qy: Is x ≤ y?” is FPT (resp. polynomial time). Then
for a WQO, if F is a filter, then F has a finite basis {b1, ..., bn}. Then to decide
if y ∈ F we need only ask “∃i ≤ n(bi ≤S y)?” That is, membership of each filter
is FPT (resp. polynomial time) (even though we don’t know the finite basis!).

Often the argument is phrased in terms of obstruction sets. Let 〈S,≤〉 be a
quasi-ordering. Let I be an ideal of 〈S,≤〉. We say that a set O ⊆ S forms an
obstruction set for I if

x ∈ I iff ∀y ∈ O(y �≤ x).

That is O is an obstruction set for I if I is the complement of F (O). The WQO
principle says all ideals have finite obstruction sets.

So here is our new engine for demonstrating that problems are in P . Prove
that the problem is characterized by a WQO with a finite obstruction set in a
quasi-ordering with Qy in P .

The best known example of an obstruction set is provided by topological
ordering.

Definition 9 (Topological Ordering). A homeomorphic or topological em-
bedding of a graph G1 = (V1, E1) in a graph G2 = (V2, E2) is an injection from
vertices V1 to V2 with the property that the edges E1 are mapped to disjoint paths
of G2. (These disjoint paths in G2 represent possible subdivisions of the edges of
G1.) The set of homeomorphic embeddings between graphs gives a partial order,
called the topological order. We write G1 ≤top G2.

While topological ordering is not a WQO, there are a number of important
finite basis results. The most famous is the following (which was independently
discovered by Pontryagin).

Theorem 10 (Kuratowski’s Theorem, Kuratowski [Ku30]). The graphs
K3,3 and K5 of Figure 4 form an obstruction set for the ideal of planar graphs
in the topological ordering.

K3,3 K5

Fig. 4. Obstructions for planarity

A Basic Parameterized Complexity Primer 117

Very recently, Grohe, Marx, Kawarbayashi, and Wollan,[GMKW11] proved
that ≤top is FPT, with G ≤top H O(|H |3) for a fixed G. A consequence of that
result is that any filter with a finite basis in the topological quasi-ordering has
an FPT membership algorithm. The [GMKW11] argument is very difficult, and
the algorithm has horrendous constants. We remark that graphs of pathwidth 2
are well-quasi-ordered by ≤top, and hence those graphs have FPT membership
for any ideal.

A generalization of topological ordering is much more amenable to being a
WQO. An equivalent formulation of ≤top is the following. G ≤top H iff G can
be obtained from H by a sequence of the following two operations.
(i) (deletions) Deleting vertices or edges.
(ii) (degree 2 contractions) The contraction of an edge xy in a graph W is
obtained by identifying x with y. A contraction has degree 2 iff one of x or y has
degree 2.

The minor ordering is a generalization of ≤top is obtained by relaxing the
degree 2 requirement in (ii).

Definition 10 (Minor Ordering). We say that G is a minor of H if G can be
obtained from H by a sequence of deletions and contractions. We write G ≤minor

H.

An example of the minor ordering is given in Figure 5
The proof of Kuratowski’s Theorem also gives the following.

Theorem 11 (Kuratowski’s Theorem (II)). K3,3 and K5 are an obstruction
set for the ideal of planar graphs under ≤minor.

The way to think of ≤minor is to think of G ≤minor H as taking |G| many
collections Ci of connected vertices of H , and coalescing each collection Ci to
a single vertex, then H being topologically embeddable into the new coalesced
graph, so that the edges of G become disjoint paths from coalesced vertices.
Sometimes this is called the “folio” definition of the minor ordering. Figure 6
below demonstrates this idea.

Notice thatH has no vertices of degree 4 and hence there can be no topological
embedding of G into H .

Wagner [Wa37] conjectured the following.

Wagner’s Conjecture:Finite graphs are well quasi-ordered by the minor
ordering.

Notice that graphs of genus ≤ g for a fixed g form an ideal in the minor order-
ing. Hence a consequence of Wagner’s conjecture is a Kuratowski Theorem for
surfaces. Graphs of genus ≤ g have a finite obstruction set. One of the triumphs
of 20th century mathematics is the following great theorem of Neil Robertson
and Paul Seymour.

Theorem 12 (Graph Minor Theorem, Robertson and Seymour). Wag-
ner’s Conjecture holds: Finite graphs are well quasi-ordered by the minor
ordering.

118 R. Downey

A Contraction.

G

H

a

c d

b

f(c)

f(a) f(b)

f(d)

x y

A Topological Embedding.

f(c)

f(a) f(b)

f(d)

Degree 2 Contractions for the Embedding.

Fig. 5. A contraction and a Topological Embedding

E

BA

E

DC

G

H

C D

B

A

Fig. 6. The folio definition

A Basic Parameterized Complexity Primer 119

Remarkably, Robertson and Seymour showed that x ≤minor y is O(|y|3) for a
fixed x. Thus every minor ideal has a cubic time recognition algorithm!.

For example, the problem of determining if a graph has genus k for a fixed
k becomes FPT immediately. This is, of course, not the best algorithm, and a
constructive linear time FPT one was given by Mohar [Mo99].

Multiple applications of this metatheorem can be obtained by the following.We
call a parameter p of graphs treewidth bounded if the treewidth ofG is bounded by
f(p(G)) for some computable f . We say that p is MSO definable if {G : p(G) ≤ k}
is monadic second order definable by a formula φk for each fixed k.

Theorem 13 (Adler, Grohe and Kreutzer [AGK08]). If p is a treewidth
bounded MSO definable parameter, then the obstruction set for {G : p(G) ≤ k}
is finite and bounded by g(k) for some computable g. Thus if p is a treewidth
bounded minor closed graph parameter, then checking p(G) ≤ k is construc-
tively9 in FPT with time bound g(k).n

5.1 Protrusions

Using this notion we can prove a structural lemma about the structure of graphs
involving what are called protrusions. In my mind this is an extension of the
concept of a crown.

Definition 11 (Bodlaender et. al. [BFLPST09]). Given a graph G, X ⊂
V (G) is called an r-protrusion if the treewidth of G[X] is ≤ r and the boundary
of X intersection G is ≤ r.

Protrusions are good because they allow for efficient kernelizations in the same
way that crowns do. Here is an archetypical theorem.

Theorem 14 (Bodlaender et. al. [BFLPST09]). If P is a problem of finite
integer index, there is a computable function f and an algorithm which, given an
instance (G, k) and an r-protrusion X of size at least f(r) produces an instance
(G∗, k∗) such that |V (G∗)| < |V (G)|, k∗ ≤ k and (G, k) ∈ P iff (G∗, k∗) ∈ P .
Furthermore this runs in time O(|X |).

The idea here is that we can apply this iteratively to show that methods from
the graph minor project can be used efficiently, at least insofar as the side of
kernels is concerned.

Algorithms based on the structural idea of finding protrusions and kernel-
izing has seen a lot of development here. In the next section we will give one
illustration, and be content with that for this basic introduction.

9 Given the definition of FPT we have used this seems a strange statement. However,
simply applying the graph minor machinery establishes that some problem has a
cubic time algorithm and we don’t know what it is. To know it requires knowledge
of the relevant obstruction set. Hence we usually get FPT results for a class known
as nonuniform FPT.

120 R. Downey

5.2 Bidimensionality

This is an area that grew from results about excluded minor theorems. Excluded
minor theorems are of the kind that say if we exclude a certain graph or graphs
from being a minor of a members of that family, then that family is well-behaved.
It is one of the underlying intuitions for the Robertson Seymour theory. The
archetype result is the following

Theorem 15 (Robertson and Seymour). For every n > 0 there is a cn such
that every graph of treewidth ≥ cn has an n-grid as a minor.

This result was extended as follows.

Theorem 16 (Demaine and Hajiaghayi [DeH08]). For every fixed H there
is a cH such that every H-minor-free graph or treewidth ≥ cH · n has an n-grid
as a minor.

This result can be seen as the first part of a theory called bidimensionality
theory. This is again a large undertaking and we refer the reader to Demaine
and Hajiaghayi [DeH08] for details of the theory.

Here is one example. We say a graph parameter p is minor bidimensional if
p is closed under minors and p evaluated on the k-grid is Ω(k2). A problem Π
is called subgraph separable if its solutions can be described in terms of vertex
subsets of the input graph, and there is some constant d such that for each G
and S ⊆ V (G), every optimal solution Z for G, every union H of some subsets
of connected components of G\S, and every optimal solution Z ′ for H , we have

|Z ′| − d|S| ≤ |Z ∩H | ≤ |Z ′|+ d|S|.

The conditions above tend to be relatively easy to apply. The relevant structural
lemma is the following.

Lemma 1 (Separation Lemma). Suppose Π is a problem that is subgraph
separable and minor-bidimensional. Fix a graph H. Then there is a constant cH,Π

such that for every H-minor-free graph (G, k) ∈ Π, there is a subset S ⊂ V (G),
with |S| = O(k) and the treewidth of G[V \ S] ≤ cH,Π .

The lemma allows us to kernelize by using protrusion like actions on the non-core
part of the graph. Skipping details, this allows us to show the following.

Theorem 17 (Demaine, Fomin, Hajiaghayi and Thilikos). Every sub-
graph separable minor-bidimensional problem Π with finite index has a linear
kernel on graphs excluding some fixed graph as a minor.

Further details and applications of these ideas are beyond the scope of this
basic survey and we refer the reader to [DeH08, GK11] for further details of
bidimensionality theory and other algorithmic metatheorems.

For much more on the methods for constructivising results on graph minors,
we refer to the article by Dimitrios Thilikos [T12] in this volume.

A Basic Parameterized Complexity Primer 121

6 Limitations and Lower Bounds

Many of the results above gave FPT algorithms but an analysis of the algorithms
reveal very bad running times. For many of these if the unparameterized problem
is NP complete then they would have a polynomial running time. However, as-
suming that NP �=P, or something akin to that, we can ask if these running times
can be improved. Similarly, we have seen that kernelization to a small kernel is
a valuable way to generate practical algorithms (although the kernels and algo-
rithms are far from practical in the case of the algorithms from bidimensionality
theory). Again we can ask the same question.

The combinatorics of FPT are sensitive to the issues of polynomial time, and
can often be used in this way.

For example, we have seen that Frick and Grohe proved that deciding first-
order statements is FPT for every fixed class of graphs of bounded local treewidth.
Courcelle shows a similar result for MS2 for graphs of bounded treewidth. In
each case the algorithmic metatheorem gives algorithms where each alternation
of quantifier (roughly) gives another power of two in towers of powers of two
for the constants. In the case of, for example, local treewidth Frick and Grohe
[FrG02] prove such towers of two’s cannot be removed unlessW[P]=FPT. Similar
results were established by Flum and Grohe for treewidth based around P �=NP.

In terms bounds for kernelizations, there has been a lots of progress in the
last few years. Bodlaender, Downey, Fellows and Hermelin [BDFH08, BDFH09]
gave general methods for establishing that classes of problems (distillable) did
not have polynomial kernels assuming certain unlikely things don’t happen to
complexity classes. For example, using a lemma of Fortnow and Santhanam
[FS11] they showed that no Or-compositional parameterized problem can have
a polynomial sized kernel assuming co-NP �⊆ NP/Poly. Here we refer to
[BDFH09, CFM11, FS11, BTY08, HKSWWta] for more details.

7 Left Out

I have left out many things, likely close to various researcher’s hearts. For ex-
ample, there is work on parameterized counting (McCartin [McC06] and Flum
and Grohe [FG02b]) where we count the number of paths of length k to define,
for instance, #W [1]. One nice theorem here is the following.

Theorem 18 (Flum and Grohe [FG02b]). Counting the number of cycles
of size k in a bipartite graph is #W[1]-complete.

This result can be viewed as a parameterized analog of Valiant’s theorem on the
permanent. Another area is parameterized randomization, such as Downey, Fel-
lows and Regan [DFR98], and Müller [Mu06, Mu08], but here problems remain.
Parameterized approximation looks at questions like: Is it possible to have an
FPT algorithm which, on parameter k, either outputs a size 2k dominating set
forG, or says no dominating set of size k? Such algorithms famously exist for Bin

Packing and don’t exist for most natural W [P] complete problems. Here we

122 R. Downey

refer to Downey, Fellows, McCartin and Rosamond [DFMR08] and Eickmeyer,
Grohe and Grüber [EGG08] for more details. We have left out discussions of
parameterizing above guaranteed values such as Mahajan and Raman [MR99],
plus discussions of the breadth of applications. For the last, we can only point
at the relevant books, and the Computer Journal issues [DFL08]. In this volume
we do look at areas such as artificial intelligence (Gaspers and Szeider [GS12]),
biology (Stege [St12]), cryptography (Koblitz [Ko12]), and social choice (Betzler
et al. [BBCN12]). But of course, there are many other applications.

There are many other important topics such as implementations, connections
with exact algorithms, connections with classical complexity and the like. Space
limitations preclude this material being included. Hopefully this brief survey
gives the reader the ability to appreciate the articles of this Festschrift.

References

[ACFLSS04] Abu-Khzam, F., Collins, R.L., Fellows, M.R., Langston, M.A., Suters,
W.H., Symons, C.T.: Kernelization Algorithms for the Vertex Cover Problem:
Theory and Experiments. In: Proceedings of the 6th ALENEX 2004, pp. 62–69
(2004)

[AFLS07] Abu-Khzam, F., Fellows, M., Langston, M., Suters, W.: Crown Structures
for Vertex Cover Kernelization. Theory Comput. Syst. 41(3), 411–430 (2007)

[ALSS06] Abu-Khzam, F., Langston, M., Shanbhag, P., Symons, C.: Scalable Parallel
Algorithms for FPT Problems. Algorithmica 45, 269–284 (2006)

[ADF93] Abrahamson, K., Downey, R., Fellows, M.: Fixed Parameter Intractability II
(Extended Absrtact). In: Enjalbert, P., Wagner, K.W., Finkel, A. (eds.) STACS
1993. LNCS, vol. 665, pp. 374–385. Springer, Heidelberg (1993)

[ADF95] Abrahamson, K., Downey, R., Fellows, M.: Fixed Parameter Tractability and
Completeness IV: On Completeness for W [P] and PSPACE Analogs. Annals of
Pure and Applied Logic 73, 235–276 (1995)

[AF93] Abrahamson, K., Fellows, M.: Finite Automata, Bounded Treewidth and
Wellquasiordering. In: Graph Structure Theory. Contemporary Mathematics Se-
ries, vol. 147, pp. 539–564. American Mathematical Society(1993)

[AGK08] Adler, I., Grohe, M., Kreutzer, S.: Computing excluded minors. In: Proceed-
ings of the of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2008), pp. 641–650 (2008)

[AR01] Alekhnovich, M., Razborov, A.: Resolution is Not Automatizable Unless W[P]
is Tractable. In: Proc. of the 42nd IEEE FOCS, pp. 210–219 (2001)

[AYZ94] Alon, N., Yuster, R., Zwick, U.: Color-Coding: A New Method for Finding
Simple Paths, Cycles and Other Small Subgraphs Within Large Graphs. In: Proc.
Symp. Theory of Computing (STOC), pp. 326–335. ACM (1994)

[Ar96] Arora, S.: Polynomial Time Approximation Schemes for Euclidean TSP and
Other Geometric Problems. In: Proceedings of the 37th IEEE Symposium on
Foundations of Computer Science, pp. 2–12 (1996)

[Ar97] Arora, S.: Nearly Linear Time Approximation Schemes for Euclidean TSP and
Other Geometric Problems. In: Proc. 38th Annual IEEE Symposium on the
Foundations of Computing (FOCS 1997), pp. 554–563. IEEE Press (1997)

[Baz95] Bazgan, C.: Schémas d’approximation et complexité paramétrée, Rapport de
stage de DEA d’Informatique à Orsay (1995)

A Basic Parameterized Complexity Primer 123

[BBCN12] Betzler, N., Bredereck, R., Chen, J., Niedermeier, R.: Studies in Compu-
tational Aspects of Voting – a Parameterized Complexity Perspective. In: Bod-
laender, H.L., et al. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 318–363.
Springer, Heidelberg (2012)

[BL95] Bienstock, D., Langston, M.: Algorithmic Implications of the Graph Minor
Theorem. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.)
Handbook of Operations Research and Management Science: Network Models,
pp. 481–502. North Holland (1995)

[Bod93] Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of
small treewidth. In: Proceedings of the 25th ACM Symposium on Theory of
Computing, pp. 226–234 (1993)

[Bod96] Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of
small treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

[Bod12] Bodlaender, H.L.: Fixed-Parameter Tractability of Treewidth and Pathwidth.
In: Bodlaender, H.L., et al. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 196–
227. Springer, Heidelberg (2012)

[BDFH08] Bodlaender, H.L., Downey, R., Fellows, M., Hermelin, D.: On Problems
without Polynomial Kernels (Extended Abstract). In: Aceto, L., Damg̊ard, I.,
Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.)
ICALP 2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)

[BDFH09] Bodlaender, H.L., Downey, R., Fellows, M., Hermelin, D.: On Problems
without Polynomial Kernels. Journal of Computing and System Sciences 75(8),
423–434 (2009)

[BDFHW95] Bodlaender, H.L., Downey, R., Fellows, M., Hallett, M., Wareham, H.T.:
Parameterized Complexity Analysis in Computational Biology. Computer Appli-
cations in the Biosciences 11, 49–57 (1995)

[BFH94] Bodlaender, H.L., Fellows, M.R., Hallett, M.T.: Beyond NP-completeness for
Problems of Bounded Width: Hardness for the W Hierarchy. In: Proc. ACM
Symp. on Theory of Computing (STOC), pp. 449–458 (1994)

[BFLPST09] Bodlaender, H.L., Fomin, F., Lokshtanov, D., Pennick, E., Saurabh, S.,
Thilikos, D.: (Meta)kernelization. In: 50th IEEE FOCS (2009)

[BK96] Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the path-
width and treewdith of graphs. Algorithms 21, 358–402 (1996)

[BoK08] Bodlaender, H.L., Koster, A.: Combinatorial optimization on graphs of
bounded treewidth. The Computer Journal 51, 256–269 (2008)

[BTY08] Bodlaender, H.L., Thomasse, S., Yeo, A.: Analysis of data reduction, trans-
formations give evidence for non-existence of polynomial kernels, Tech. Rept,
UU-CS-2008-030, Utrecht Univ. (2008)

[BPR01] Bonnet, M., Pitazzi, T., Raz, R.: On Interpolation and Axiomatization for
Frege Systems. SIAM J. Comput. 29, 1939–1967 (2000)

[LeC96] Cai, L.: Fixed-parameter tractability of graph modification problems for
hereditary properties. Information Processing Letters 58(4), 171–176 (1996)

[CC97] Cai, L., Chen, J.: On Fixed-Parameter Tractability and Approximability of
NP-Hard Optimization Problems. Computer and Systems Sciences 54, 465–474
(1997)

[CCDF96] Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: On the Parameterized Com-
plexity of Short Computation and Factorization. Arch. for Math. Logic 36, 321–
337 (1997)

[CFJR07] Cai, L., Fellows, M., Juedes, D., Rosamond, F.: The complexity of polyno-
mial time approximation. Theoretical Computer Science 41, 459–477 (2007)

124 R. Downey

[CJ01] Cai, L., Juedes, D.W.: Subexponential Parameterized Algorithms Collapse the
W-Hierarchy. In: Yu, Y., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001.
LNCS, vol. 2076, pp. 273–284. Springer, Heidelberg (2001)

[CJ03] Cai, L., Juedes, D.W.: On the existence of subexponential parameterized algo-
rithms. Journal of Computing snd Systems Science 67, 789–807 (2003)

[CDRST03] Cheetham, J., Dehne, F., Rau-Chaplin, A., Stege, U., Taillon, P.J.: Solving
Large FPT Problems on Coarse Grained Parallel Machines. Journal of Computer
and Systems Sciences 67(4), 691–706 (2003)

[CK00] Chekuri, C., Khanna, S.: A PTAS for the Multiple Knapsack Problem. In: Pro-
ceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA 2000),
pp. 213–222 (2000)

[CCFHJKX05] Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D.W., Kanj, A.,
Xia, G.: Tight lower bounds for certain parameterized NP-hard problems. Infor-
mation and Computation 201, 216–231 (2005)

[CFM11] Chen, Y., Flum, J., Müller, M.: Lower Bounds for Kernelizations and Other
Preprocessing Procedures. Theory Comput. Syst. 48(4), 803–839 (2011)

[CK12] Chen, J., Kanj, I.: Parameterized Complexity and Subexponential-Time Com-
putability. In: Bodlaender, H.L., et al. (eds.) Fellows Festschrift. LNCS, vol. 7370,
pp. 162–195. Springer, Heidelberg (2012)

[CM99] Chen, J., Miranda, A.: A Polynomial-Time Approximation Scheme for General
Multiprocessor Scheduling. In: Proc. ACM Symposium on Theory of Computing
(STOC 1999), pp. 418–427. ACM Press (1999)

[CKX10] Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411, 3736–3756 (2010)

[CF12] Chen, J., Flum, J.: A Parameterized Halting Problem. In: Bodlaender, H.L., et
al. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 364–397. Springer, Heidelberg
(2012)

[CG07] Chen, J., Grohe, M.: An isomorphism between subexponential and parameter-
ized complexity theory. SIAM. J. Comput. 37, 1228–1258 (2007)

[Co87] Courcelle, B.: Recognizability and Second-Order Definability for Sets of Finite
Graphs, Technical Report I-8634, Universite de Bordeaux (1987)

[CDF97] Courcelle, B., Downey, R.G., Fellows, M.: A Note on the Computability of
Graph Minor Obstruction Sets for Monadic Second Order Ideals. Journal of Uni-
versal Computer Science 3, 1194–1198 (1997)

[DeH08] Demaine, E., Hajiaghayi, M.: The Bidimensionality Theory and Its Algorith-
mic Applications. Comput. J. 51(3), 292–302 (2008)

[Do03] Downey, R.G.: Parameterized complexity for the skeptic. In: 18th Annual Con-
ference on Computational Complexity, pp. 147–169. IEEE (2003)

[Do12] Downey, R.: The Birth and Early Years of Parameterized Complexity. In:
Bodlaender, H.L., et al. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 17–38.
Springer, Heidelberg (2012)

[DF92a] Fellows, M.R.: Fixed parameter tractability and completeness. Congressus
Numerantium 87, 161–187 (1992)

[DF92b] Downey, R.G, Fellows, M.: Fixed parameter intractability. In: Proceedings of
Seventh Annual Conference on Structure in Complexity. IEEE Publication, pp.
36–50 (1992)

[DF93] Downey, R.G, Fellows, M.: Fixed Parameter Tractability and Completeness III:
Some Structural Aspects of the W -Hierarchy. In: Ambos-Spies, K., Homer, S.,
Schöning, U. (eds.) Complexity Theory: Current Research, pp. 166–191. Cam-
bridge Univ. Press (1993)

A Basic Parameterized Complexity Primer 125

[DF95a] Downey, R.G., Fellows, M.R.: Fixed Parameter Tractability and Completeness
I: Basic Theory. SIAM Journal of Computing 24, 873–921 (1995)

[DF95b] Downey, R.G., Fellows, M.R.: Fixed Parameter Tractability and Completeness
II: Completeness for W[1]. Theoretical Computer Science A 141, 109–131 (1995)

[DF95c] Downey, R.G., Fellows, M.R.: Parametrized Computational Feasibility. In:
Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 219–244. Birkhauser,
Boston (1995)

[DF98] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1998)
[DFta] Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.

Springer (2012) (in preparation)
[DFL08] Downey, R.G., Fellows, M., Langston, M.: Two special issue of The Computer

Journal devoted to Parameterized Complexity 58(1,3) (2008)
[DFKHW94] Downey, R.G., Fellows, M., Kapron, B., Hallett, M., Wareham, H.T.:

The Parameterized Complexity of Some Problems in Logic and Linguistics. In:
Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, pp. 89–100.
Springer, Heidelberg (1994)

[DFMR08] Downey, R.G., Fellows, M., McCartin, C., Rosamond, F.: Parameter-
ized approximation of dominating set problems. Information Processing Let-
ters 109(1), 68–70 (2008)

[DFR98] Downey, R.G., Fellows, M., Regan, K.: Parameterized circuit complexity and
the W-hierarchy. Theoretical Computer Science 191, 97–115 (1998)

[DFS98] Downey, R.G., Fellows, M., Stege, U.: Parameterized Complexity: A Frame-
work for Systematically Confronting Computational Intractability. DIMACS se-
ries on Combinatorics in the 21st Century. AMS Publ. (1998)

[DFGW07] Downey, R., Flum, J., Grohe, M., Weyer, M.: Bounded fixed-parameter
tractability and reducibility. Annals of Pure and Applied Logic 148, 1–19 (2007)

[DTH11] Downey, R.G., Thilikos, D.: Confronting intractability via parameters. Com-
puter Science Review 5, 279–317 (2011)

[ELRW11] Eblen, J.D., Langston, M.A., Rogers, G.L., Weerapurage, D.P.: Parallel
Vertex Cover: A Case Study in Dynamic Load Balancing. In: Proceedings of
Australasian Symposium on Parallel and Distributed Computing, Perth, Aus-
tralia (January 2011)

[Ed65] Edmonds, J.: Paths, trees and flowers. Canadian J. Math. 17, 449–467 (1965)
[EGG08] Eickmeyer, K., Grohe, M., Grüber, M.: Approximation of Natural W[P]-

Complete Minimisation Problems Is Hard. In: IEEE Conference on Computa-
tional Complexity, pp. 8–18 (2008)

[EJS01] Erlebach, T., Jansen, K., Seidel, E.: Polynomial Time Approximation Schemes
for Geometric Graphs. In: Proc. ACM Symposium on Discrete Algorithms
(SODA 2001), pp. 671–679 (2001)

[FL87] Fellows, M., Langston, M.: Nonconstructive Proofs of Polynomial-Time Com-
plexity. Information Processing Letters 26, 157–162 (1987/1988)

[FL88] Fellows, M., Langston, M.: Nonconstructive Tools for Proving Polynomial-Time
Complexity. Journal of the Association for Computing Machinery 35, 727–739
(1988)

[FL89] Fellows, M.R., Langston, M.A.: An Analogue of the Myhill-Nerode Theorem
and its Use in Computing Finite-Basis Characterizations. In: Proceedings of the
IEEE Symposium on the Foundations of Computer Science, pp. 520–525 (1989)

[FRRS06] Fellows, M., Rosamond, F., Rotics, U., Szeider, S.: Cliquewidth minimiza-
tion is NP-hard. In: Proceedings STOC 2006, pp. 354–362 (2006)

[FRRS09] Fellows, M., Rosamond, F., Rotics, U., Szeider, S.: Cliquewidth NP-
complete. SIAM J. on Discrete Mathematics 23, 909–939 (2009)

126 R. Downey

[FG02a] Flum, J., Grohe, M.: Describing Parameterized Complexity Classes. In: Alt,
H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 359–371. Springer,
Heidelberg (2002)

[FG02b] Flum, J., Grohe, M.: The Parameterized Complexity of Counting Problems.
In: Conference version appeared in Proceedings of the 43rd IEEE Symposium on
Foundations of Comupter Science (FOCS 2002), pp. 538–547 (2002)

[FG04] Flum, J., Grohe, M.: Parameterized Complexity and Subexponential Time.
Bulletin of the European Association for Theoretical Computer Science 84 (Oc-
tober 2004)

[FG06] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
[deF70] de Fluiter, B.: Algorithms for graphs of small treewidth, PhD Thesis, Utrecht

Univ. (1970)
[FGLS10] Fomin, F., Golovach, P., Lokshtanov, D., Saurabh, S.: Intractability of

Clique-Width Parameterizations. SIAM J. Comput. 39(5), 1941–1956 (2010)
[FS11] Fortnow, L., Santhanam, R.: Infeasible instances of compression and sucinct

pcp’s. Journal of Computing and System Sciences 77, 91–106 (2011)
[FrG01] Frick, M., Grohe, M.: Deciding First Order Properties of Locally Tree-

Decomposable Structures. J. ACM 48, 1184–1206 (2001)
[FrG02] Frick, M., Grohe, M.: The Complexity of First-Order and Monadic Second-

Order Logic Revisited. In: LICS, pp. 215–224 (2002)
[Fou03] Fouhy, J.: Computational Experiments on Graph Width Metrics, MSc Thesis,

Victoria University, Wellington (2003)
[GJ79] Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory

of NP-completeness. W.H. Freeman, San Francisco (1979)
[GS12] Gaspers, S., Szeider, S.: Backdoors to Satisfaction. In: Bodlaender, H.L., et al.

(eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 287–317. Springer, Heidelberg
(2012)

[GGKS95] Goldberg, P., Golumbic, M., Kaplan, H., Shamir, R.: Four Strikes Against
DNA Physical mapping. Journal of Computational Biology 2(1), 139–152 (1995)

[GNR01] Gramm, J., Niedermeier, R., Rossmanith, P.: Exact Solutions for Closest
String and Related Problems. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001.
LNCS, vol. 2223, pp. 441–453. Springer, Heidelberg (2001)

[Gr01a] Grohe, M.: Generalized Model-Checking Problems for First-Order Logic. In:
Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 12–26. Springer,
Heidelberg (2001)

[GK11] Grohe, M., Kreutzer, S.: Methods for Algorithmic Meta Theorems. In: Grohe,
M., Makowsky, J. (eds.) Model Theoretic Methods in Finite Combinatorics. Con-
temporary Mathematics, vol. 558. American Mathematical Society (2011)

[GMKW11] Grohe, M., Marx, D., Kawarbayashi, K., Wollan, P.: Finding Topologi-
cal Subgraphs is Fixed-Parameter Tractable. In: Proceedings of the 43rd ACM
Symposium on Theory of Computing (STOC 2011), pp. 479–488 (2011)

[GY12] Gutin, G., Yeo, A.: Constraint Satisfaction Problems Parameterized Above
or Below Tight Bounds: A Survey. In: Bodlaender, H.L., et al. (eds.) Fellows
Festschrift. LNCS, vol. 7370, pp. 257–286. Springer, Heidelberg (2012)

[HM07] Hallett, M., McCartin, C.: A Faster FPT Algorithm for the Maximum Agree-
ment Forest Problem. Theory of Computing Systems 41(3) (2007)

[HKSWWta] Hermelin, D., Kratsch, S., Soltys, K., Whalstrom, M., Wu, X.: Hierarchies
of inefficient kernelization (to appear)

[Hi52] Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math.
Soc. 2, 326–336 (1952)

A Basic Parameterized Complexity Primer 127

[HW06] Hlineny, P., Whittle, G.: Matroid tree-width. Eur. J. Comb. 27(7), 1117–1128
(2006)

[IPZ01] Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponen-
tial complexity? JCSS 63(4), 512–530 (2001)

[KW90] Kannan, S., Warnow, T.: Inferring Evolutionary History from DNA Sequences.
In: Proceedings of the 31st Annual Symposium on the Theory of Computing, pp.
362–378 (1990)

[KST94] Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of Parameterized Com-
pletion Problems on Chordal and Interval Graphs: Minimum Fill-In and DNA
Physical Mapping. In: Proc. 35th Annual Symposium on the Foundations of
Computer Science (FOCS), pp. 780–791. IEEE Press (1994)

[Ka72] Karp, R.: Reducibility Among Combinatorial Problems. In: Complexity of
Computer Computations, pp. 85–103 (1972)

[Ka11] Karp, R.: Heuristic algorithms in computational molecular biology. J. Comput.
Syst. Sci. 77(1), 122–128 (2011)

[KR02] Khot, S., Raman, V.: Parameterized Complexity of Finding Subgraphs with
Hereditary properties. Theoretical Computer Science 289, 997–1008 (2002)

[Ko12] Koblitz, N.: Crypto Galore! In: Bodlaender, H.L., Downey, R., Fomin, F.V.,
Marx, D. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 39–50. Springer, Hei-
delberg (2012)

[Ku30] Kuratowski, K.: Sur le probleme des courbes gauches en topologie. Fund.
Math. 15, 271–283 (1930)

[La12] Langston, M.: Fixed-Parameterized Tractability, a Prehistory. In: Bodlaen-
der, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift. LNCS,
vol. 7370, pp. 3–16. Springer, Heidelberg (2012)

[LPSSV08] Langston, M., Perkins, A., Saxton, A., Scharff, J., Voy, B.: Innovative Com-
putational Methods for Transcriptomic Data Analysis: A Case Study in the Use
of FPT for Practical Algorithm Design and Implementation. The Computer Jour-
nal 51, 26–38 (2008)

[Le83] Lenstra, H.: Integer Programming with a Fixed Number of Variables. Mathe-
matics of Operations Research 8, 538–548 (1983)

[LMS12] Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization – Preprocessing with
A Guarantee. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.)
Fellows Festschrift. LNCS, vol. 7370, pp. 129–161. Springer, Heidelberg (2012)

[MR99] Mahajan, M., Raman, V.: Parameterizing Above Guaranteed Values: MaxSat
and MaxCut. J. Algorithms 31, 335–354 (1999)

[Ma12] Marx, D.: What’s Next? Future Directions in Parameterized Complexity. In:
Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift.
LNCS, vol. 7370, pp. 469–496. Springer, Heidelberg (2012)

[McC06] McCartin, C.: Parameterized counting problems. Annals of Pure and Applied
Logic 138, 147–182 (2006)

[Mo99] Mohar, B.: A Linear Time Algorithm for Embedding Graphs in an Arbitrary
Surface. SIAM J. Discrete Math. 12, 6–26 (1999)

[Mu06] Müller, M.: Randomized Approximations of Parameterized Counting Prob-
lems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169,
pp. 50–59. Springer, Heidelberg (2006)

[Mu08] Müller, M.: Valiant-Vazirani Lemmata for Various Logics. Electronic Collo-
quium on Computational Complexity (ECCC) 15(063) (2008)

[Nie02] Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Habilitation-
schrift, University of Tübingen (September 2002)

128 R. Downey

[Nie06] Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

[NR00] Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-
parameter tractable algorithms. Information Processing Letters 73, 125–129
(2000)

[NT75] Nemhauser, G., Trotter Jr., L.: Vertex packings: Structural properties and
algorithms. Mathematical Programming 8, 232–248 (1975)

[PY97] Papadimitriou, C., Yannakakis, M.: On the Complexity of Database Queries.
In: Proc. ACM Symp. on Principles of Database Systems, pp. 12–19 (1997);
Journal version in Journal of Computer System Sciences 58, 407–427 (1999)

[ST98] Shamir, R., Tzur, D.: The Maximum Subforest Problem: Approximation and
Exact Algorithms. In: Proc. ACM Symposium on Discrete Algorithms, pp. 394–
399. ACM Press (1998)

[St00] Stege, U.: Resolving Conflicts in Problems in Computational Biochemistry.
Ph.D. dissertation, ETH (2000)

[St12] Stege, U.: The Impact of Parameterized Complexity to Interdisciplinary Prob-
lem Solving. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.)
Fellows Festschrift. LNCS, vol. 7370, pp. 56–68. Springer, Heidelberg (2012)

[RSV04] Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations
Research Letters 32, 299–301 (2004)

[RS86a] Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-
width. Journal of Algorithms 7, 309–322 (1986)

[T12] Thilikos, D.: Graph Minors and Parameterized Algorithm Design. In: Bodlaen-
der, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift. LNCS,
vol. 7370, pp. 228–256. Springer, Heidelberg (2012)

[Wa37] Wagner, K.: Uber einer eigenshaft der eberner complexe. Math. Ann. 14, 570–
590 (1937)

Kernelization – Preprocessing with a Guarantee

(For the 60th Birthday of Prof. Mike Fellows)

Daniel Lokshtanov1, Neeldhara Misra2, and Saket Saurabh2

1 University of California, San Diego, USA
daniello@ii.uib.no

2 The Institute of Mathematical Sciences, Chennai, India
{neeldhara,saket}@imsc.res.in

Abstract. Data reduction techniques are widely applied to deal with
computationally hard problems in real world applications. It has been
a long-standing challenge to formally express the efficiency and accu-
racy of these “pre-processing” procedures. The framework of parameter-
ized complexity turns out to be particularly suitable for a mathematical
analysis of pre-processing heuristics. A kernelization algorithm is a pre-
processing algorithm which simplifies the instances given as input in
polynomial time, and the extent of simplification desired is quantified
with the help of the additional parameter.

We give an overview of some of the early work in the area and also
survey newer techniques that have emerged in the design and analysis of
kernelization algorithms. We also outline the framework of Bodlaender et
al. [9] and Fortnow and Santhanam [38] for showing kernelization lower
bounds under reasonable assumptions from classical complexity theory,
and highlight some of the recent results that strengthen and generalize
this framework.

1 Introduction

Preprocessing (data reduction or kernelization) as a strategy of coping with hard
problems is universally used in almost every implementation. The history of pre-
processing, such as applying reduction rules to simplify truth functions, can be
traced back to the 1950’s [58]. A natural question in this regard is how to mea-
sure the quality of preprocessing rules proposed for a specific problem. For a long
time the mathematical analysis of polynomial time preprocessing algorithms was
neglected. A possible explanation for this phenomenon is that if we start with
an instance I of an NP-hard problem and can show that in polynomial time we
can replace this with an equivalent instance I ′ with |I ′| < |I| then that would
imply P=NP. This makes it difficult to design the right definitions of efficient
processing within classical complexity. The situation changed drastically with
advent of parameterized complexity [26]. Combining tools from parameterized
complexity and classical complexity it has become possible to derive upper and
lower bounds on the sizes of reduced instances, or so called kernels. The impor-
tance of preprocessing and the mathematical challenges it poses is beautifully
expressed in the following quote by Fellows [30]:

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 129–161, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

130 D. Lokshtanov, N. Misra, and S. Saurabh

It has become clear, however, that far from being trivial and uninter-
esting, that pre-processing has unexpected practical power for real world
input distributions, and is mathematically a much deeper subject than
has generally been understood.

Historically, the study of kernelization is rooted in parameterized complexity
but it appeared soon that the challenges of kernelization tractability are deeply
linked to classical polynomial time tractability. In the classical computational
complexity originated from 1970s, we distinguish between tractable computa-
tional problems and intractable. This theory classifies problems according to
how much time or space is required by algorithms to solve these problems, as
a function of the size of the input. Tre tractability border is drawn at poly-
nomial time solvability - a problem which has a polynomial time algorithm is
considered tractable, while one that does not is considered intractable. However,
ignoring the structural information about the input and defining intractability
based only on input size can make some problems appear harder than they re-
ally are. Parameterized complexity attempts to address this issue by measuring
computational resources such as time and space in terms of input size and addi-
tional parameters. In parameterized complexity the central notion of efficiency
is “fixed parameter tractability”. The notion may be thought of as a generaliza-
tion of polynomial time to a multivariate setting. The running time of a fixed
parameter tractable algorithm is polynomial in the size of the input but can be
exponential in terms of parameters. A surprisingly large number of intractable
problems have been shown to exhibit fixed parameter tractable algorithms. A
kernelization algorithm is a polynomial time algorithm reducing instances of pa-
rameterized problems to equivalent instances whose size can be upper bounded
by a function of the parameter. Thus kernelization can be seen as a refinement
of the notion of the classical polynomial time tractability from a parameter-
ized perspective. The development of kernelization algorithms demonstrate the
importance of the second (and maybe even other) measures and indicate that
polynomial time computation is much more powerful than previously suggested.

Informally, in parameterized complexity each problem instance comes with a
parameter k. As a warm-up, let us consider a few examples of parameterized
problems. Our first example is about vertex cover. A set of vertices S in a graph
is a vertex cover if every edge of the graph contains at least one vertex from
S. In the parameterized vertex cover problem, we call it p-Vertex Cover the
parameter is an integer k and we ask whether the input graph has a vertex
cover of size at most k. We will use p− to emphasise that we are considering a
parameterized problem, rather than its classical counterpart. Another problem,
p-Longest Path asks whether a given graph contains a path of length at least
k. And finally, p-Dominating Set is to decide whether a given graph has a
dominating set of size k, that is, a set of vertices such that every vertex of the
input graph is either in this set or is adjacent to some vertex from the set.

The parameterized problem is said to admit a kernel if there is a polynomial
time algorithm (the degree of polynomial is independent of k), called a ker-
nelization algorithm, that reduces the input instance down to an instance with

Kernelization – Preprocessing with a Guarantee 131

size bounded by some function h(k) of k only, while preserving the answer. If
the function h(k) is polynomial in k, then we say that the problem admits a
polynomial kernel.

In our examples, p-Vertex Cover admits a polynomial kernel—there is a
polynomial time algorithm that for any instance (G, k) of the problem outputs
a new instance (G′, k′) such that G′ has at most 2k vertices and G has a vertex
cover at most k if and only if G′ has a vertex cover of size at most k′ [17]. The
second example, p-Longest Path, admits a kernel but the bounding function
h(k) is exponential. It is possible to show that up to some assumptions from
complexity theory, the problem does not admit a polynomial kernel [9], even if
the input graph G is required to be planar. Our last example, p-Dominating
Set admits no kernel unless FPT=W[2] yielding a collapse of several levels
in the parameterized complexity hierarchy [26]. However, on planar graph p-
Dominating Set admits a kernel of size h(k) = O(k), i.e. a linear kernel.

In this survey we discuss some of the classical and recent algorithmic tech-
niques for obtaining kernels, and discuss some of the recent developments in
deriving lower bounds on the sizes of the kernels. We do not try to give a com-
prehensive overview of all significant results in the area—doing this will require
at least a book. Our objective is simply to give a glimpse into the exciting world
of kernelization [27,52,6,36,12,38,9,13,22,50,11,20]. We refer to the surveys of Fel-
lows [30] and Guo and Niedermeier [30,41] for further reading on kernelization
algorithms. For a more detailed survey of kernelization lower bounds we refer to
survey of Misra et al. [55].

2 Basic Definitions

A parameterized problem is a language L ⊆ Σ∗×N, where Σ is a finite alphabet
and N is the set of non-negative integers. The second component is called the
parameter of the problem. The central notion in parameterized complexity is
that of fixed-parameter tractability, which means given an instance (x, k) of a
parameterized language L, deciding whether (x, k) ∈ L in time f(k) · p(|x|),
where f is an arbitrary function of k alone and p is a polynomial function.
Such an algorithm is called a fixed-parameter tractable algorithm and we call a
problem that admits an algorithm of this kind fixed-parameter tractable (FPT).

We now turn to the formal notion that captures the notion of simplification,
which is what most heuristics do when applied to a problem. A data reduction
rule for a parameterized language L is a function φ : Σ∗ × N → Σ∗ × N that
maps an instance (x, k) of L to an equivalent instance (x′, k′) of L such that

1. φ is computable in time polynomial in |x| and k;
2. |x′| ≤ |x|.

Two instances of L are equivalent if (x, k) ∈ L if and only if (x′, k′) ∈ L.
In general, a kernelization algorithm consists of a finite set of data reduction

rules such that by applying the rules to an instance (x, k) (in some specified
order) one obtains an instance (x′, k′) with the property that |x′| ≤ g(k) and

132 D. Lokshtanov, N. Misra, and S. Saurabh

k′ ≤ g(k), for some function g only depending on k. Such a “reduced” instance
is called a problem kernel and g(k) is called the kernel size. Formally, this is
defined as follows.

Definition 1. [Kernelization, Kernel] [9] A kernelization algorithm for a pa-
rameterized problem Π ⊆ Σ∗ × N is an algorithm that, given (x, k) ∈ Σ∗ × N,
outputs, in time polynomial in (|x| + k), a pair (x′, k′) ∈ Σ∗ × N such that: (a)
(x, k) ∈ Π if and only if (x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k), where g is some
computable function. The output instance x′ is called the kernel, and the func-
tion g is referred to as the size of the kernel. If g(k) = kO(1), then we say that
Π admits a polynomial kernel.

It is important to mention here that the early definitions of kernelization re-
quired that k′ ≤ k. On an intuitive level this makes sense, as the parameter k
measures the complexity of the problem — thus the larger the k, the harder the
problem. This requirement was subsequently relaxed, notably in the contest of
lower bounds. An advantage of the more liberal notion of kernelization is that
it is robust with respect to polynomial transformations of the kernel. However,
it limits the connection with practical preprocessing. All the kernels obtained
in this paper respect the fact that the output parameter is at most the input
parameter, that is, k′ ≤ k.

The following lemma tells use that a parameterized problem Π is in FPT if
and only if there exists a computable function g such that Π admits a kernel of
size g(k).

Lemma 1 ([27]). If a parameterized problem Q is FPT via a computable func-
tion then it admits kernelization.

Proof. Suppose that there is an algorithm deciding if x ∈ Q in time f(k)|x|c
time for some computable function f and constant c. If |x| ≥ f(k), then we run
the decision algorithm on the instance in time f(k)|x|c ≤ |x|c+1. If the decision
algorithm outputs YES, the kernelization algorithm outputs a constant size YES
instance, and if the decision algorithm outputs NO, the kernelization algorithm
outputs a constant size NO instance. On the other hand, if |x| < f(k), then
the kernelization algorithm outputs x. This yields a kernel of size f(k) for the
problem. ��

However, kernels obtained by this theoretical result are usually of exponential
(or even worse) size, while problem-specific data reduction rules often achieve
quadratic (g(k) = O(k2)) or even linear-size (g(k) = O(k)) kernels. So a natural
question for any concrete FPT problem is whether it admits polynomial-time
kernelization to a problem kernel that is bounded by a polynomial function of
the parameter (g(k) = O(kO(1))).

Polynomial kernels form our basic notion of efficient kernelization. For a com-
prehensive study of fixed-parameter tractability and kernelization, we refer to
the books [26,34,56] and the surveys [41,55].

Kernelization – Preprocessing with a Guarantee 133

Notations. We conclude this section with some graph-theoretic notations. We
follow the style of [24]. Let G = (V, E) be a graph. For a vertex v in G, we
write NG(v) to denote the set of v’s neighbors in G, and we write dG(v) to
denote the degree of v, that is, the number of v’s neighbors in G. If it is clear
from the context which graph is meant, we write N(v) and d(v), respectively,
for short. A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. The
subgraph G′ is called an induced subgraph of G if E′ = {{u, v} ∈ E | u, v ∈ V ′},
in this case, G′ is also called the subgraph induced by V ′ and denoted with G[V ′].
A vertex v dominates a vertex u if u ∈ N(v).

3 Classical Techniques Explained via Simple Examples

In this section we give several examples of techniques used to obtain kernels,
often polynomial kernels. Some of them are almost trivial and some of them
are more involved. We start with the parameterized version of Max-3-Sat.
Our other examples in this section include a polynomial kernel for p-Feedback
Arc Set in Tournaments (p-FAST), d-Hitting Set using the Sunflower
Lemma, kernels for p-Dual Vertex Coloring and p-Max-SAT using crown
decomposition and an exponential kernel for p-Edge Clique Cover.

3.1 Max-3-Sat

Let F be a given boolean CNF 3-SAT formula with n variables and m clauses.
In the optimization version of the problem the task is to find a truth assignment
satisfying the maximum number of clauses. The parameterized version of the
problem is the following.

p-Max-3-Sat
Instance: A 3-CNF formula F , and a non-negative integer k.

Parameter: k.
Problem: Decide whether F has a truth assignment satisfying

at least k clauses.

Let (F, k) be an instance of p-Max-3-Sat and let m be the number of clauses
in F and n the number of variables. It is well known that in any boolean CNF
formula, there is an assignment that satisfies at least half of the clauses (given
any assignment that does not satisfy half the clauses, its bitwise complement
will). So if the parameter k is less than m/2, then there is always an assignment
to the variables that satisfies at least k of the clauses. In this case, we reduce the
instance to the trivial instance with one clause and the parameter k = 1, which
is always a YES instance. Otherwise, m ≤ 2k. By deleting all variables that do
not occur in any clause we obtain that n ≤ 6k, implying that the input instance
is a kernel of polynomial size..

134 D. Lokshtanov, N. Misra, and S. Saurabh

3.2 Kernelization for FAST

In this section we discuss a kernel for p-FAST. A tournament is a directed graph
T such that for every pair of vertices v, u ∈ V (T), either uv or vu is an arc of T .
A set of arcs A of T is called a feedback arc set, if every cycle of T contains an
arc from A. In other words, removal of A from T turns it into an acyclic graph.

p-FAST
Instance: A tournament T and a non-negative integer k.

Parameter: k.
Problem: Decide whether T has a feedback arc set of size at most k.

Lemma 2 ([25]). p-FAST admits a kernel with at most k2 + 2k vertices.

Proof. The following observation is useful. A graph is acyclic if and only if it is
possible to order its vertices in such a way such that for every arc uv, we have
u < v. Hence a set of arcs A is an inclusion minimal feedback arc set if and only
if A is an inclusion minimal set such that reversing directions of all arcs from A
results in an acyclic tournament.

In what follows by a triangle we mean a directed triangle. We give two simple
reduction rules.

Rule 1. If an arc e is contained in at least k + 1 triangles, then reverse e and
reduce k by 1.

Rule 2. If a vertex v is not contained in any triangle, then delete v from T .

Let us remark that after applying any of the two rules, the resulting graph is
again a tournament.

The first rule is sound because if we do not reverse e, we have to reverse at
least one arc from each of k + 1 triangles containing e. Thus e belongs to every
feedback arc set of size at most k.

For the correctness of the second rule. Let X be the set of heads of arcs
with tail in v and let Y be the sets of tails of arcs with head in v. Because T
is a tournament, X and Y is a partition of V (T) \ {v}. Since v is not a part
of any triangle in T , we have that there is no arc from X to Y . Moreover, for
any feedback arc set A1 of tournament T [X] and any feedback arc set A2 of
tournament T [Y], the set A1 ∪A2 is feedback arc set of T . Thus (T, k) is a YES
instance if and only if (T \ v, k) is.

Finally we show that any reduced YES instance T has at most k(k+2) vertices.
Let A be a feedback arc set of T of size at most k. For every arc e ∈ A, aside
from the two endpoints of e, there are at most k vertices that are contained in a
triangle containing e, because otherwise the first rule would have applied. Since
every triangle in T contains an arc of A and every vertex of T is in a triangle,
we have that T has at most k(k + 2) vertices. ��

3.3 p-d-Hitting Set

Our next example is a kernelization for the p-d-Hitting Set problem, estab-
lished in [1]. We follow the presentation in [34].

Kernelization – Preprocessing with a Guarantee 135

p-d-Hitting Set
Instance: A family F of sets over an universe U , each of

cardinality d and a positive integer k
Parameter: k

Problem: Decide whether there is a subset U ⊆ U of size at most k
such that U contains at least one element from each set in F .

The kernelization algorithm is based on the following widely used Sunflower
Lemma. We first define the terminology used in the statement of the lemma. A
sunflower with k petals and a core Y is a collection of sets S1, S2, . . . , Sk such
that Si ∩ Sj = Y for all i �= j; the sets Si \ Y are petals and we require none
of them to be empty. Note that a family of pairwise disjoint sets is a sunflower
(with an empty core). We need the following classical result of Erdős and Rado
[29], see also [34].

Lemma 3 ([29,34]). [Sunflower Lemma] Let F be a family of sets over an
universe U each of cardinality d. If |F | > d!(k−1)d then F contains a sunflower
with k petals and such a sunflower can be computed in time polynomial in the
size of F and U .

Now we are ready to prove the following theorem about kernelization for p-d-
Hitting Set

Theorem 1 ([34]). p-d-Hitting Set admits a kernel with O(kd ·d!) sets and
O(kd · d! · d) elements.

Proof. The crucial observation is that if F contains a sunflowerS ={S1, · · · , Sk+1}
of cardinality k + 1 then every hitting set H of F of cardinality k must intersect
with the core Y of the sunflower S. Indeed, if H does not intersect C, it should in-
tersect each of the k+1 disjoint petals Si\C. Therefore if we let F ′ = (F \S)∪Y ,
then the instances (U , F , k) and (U , F ′, k) are equivalent.

Now we apply the Sunflower Lemma for all d′ ∈ {1, · · · , d} on collections of
sets with d′ elements by repeatedly replacing sunflowers of size at least k + 1
with their cores until the number of sets for any fixed d′ ∈ {1, · · · , d} is at most
O(kd′

d′!). We also remove elements which do not belong to any set. Summing
over all d′, we obtain that the new family of sets F ′ contains O(kd · d!) sets.
Every set contains at most d elements, and thus the amount of elements in the
kernel is O(kd · d! · d). ��

3.4 Kernels via Crown Decomposition

Crown decomposition is a general kernelization technique that can be used to ob-
tain kernels for many problems. The technique is based on the classical matching
theorems of Kőnig and Hall [44,49].

Definition 2. A crown decomposition of a graph G = (V, E) is a partitioning
of V as C, H and R, where C and H are nonempty and the partition satisfies
the following properties.

136 D. Lokshtanov, N. Misra, and S. Saurabh

1. C is an independent set.
2. There are no edges between vertices of C and R, i.e. H separates C and R;
3. Let E′ be the set of edges between vertices of C and H. Then E′ contains a

matching of size |H |.
Set C can be seen as a crown put on head H of the remaining part R of the Royal
body. Fig. 1 provides an example of a crown decomposition. Let us remark that
the fact that E′ contains a matching of size |H | implies that there is a matching of
H into C, i. e. a matching in the bipartite subgraph G′ = (C ∪H, E′) saturating
all the vertices of H .

R

H

C

Fig. 1. Example of a crown decomposition. Set C is an independent set, H separates
C and R, and H has a matching into C.

The following lemma, which establishes that crown decompositions can be
found in polynomial time, is the basis for kernelization algorithms using crown
decompositions.

Lemma 4 ([18]). [Crown Lemma] Let G be a graph without isolated vertices
and with at least 3k+1 vertices. There is a polynomial time algorithm that either

– Find a matching of size k + 1 in G; or
– Find a crown decomposition of G.

We demonstrate the application of crown decompositions on kernelization for
p-Dual Vertex Coloring and p-Max-SAT.

Dual of Coloring. In this section we show how Crown Lemma can be used to
obtain kernel for p-Dual Vertex Coloring. This problem concerns coloring
of the vertex set of a graph. A k-coloring c of an undirected graph G = (V, E)
assigns a color to each vertex of the graph c : V → {1, 2, . . . , k} such that
adjacent vertices have different colours. The smallest k for which G has a k-
coloring is called the chromatic number of G, denoted by χ(G). It is well known
that deciding if χ(G) is at most 3 is an NP-complete problem. Thus from the
Parameterized Complexity perspective, the following parameterization is more
interesting.

Kernelization – Preprocessing with a Guarantee 137

p-Dual Vertex Coloring
Instance: A graph G = (V, E) and a non-negative integer k.

Parameter: k
Problem: Decide whether G has a (|V | − k)-coloring.

It is easier to apply Crown Decomposition to the complement of the input graph.
The complement of undirected graph G = (V, E) is denoted by G; its vertex set
is V and its edge set is E = {uv : uv /∈ E, u �= v}. coloring an n-vertex graph
in (n− k) colours is equivalent to covering its complement by (n− k) cliques.

Given a crown decomposition (C, H, R) of G, we apply the following Rule.

Crown Rule for Dual Vertex Coloring: Construct a new instance of the
problem (G′, k′) by removing H ∪ C from G and reducing k by |H |. In
other words, G′ = G[R] and k′ = k − |H |.

The Rule is sound by the following lemma.

Lemma 5 ([18]). Let (C, H, R) be a crown decomposition of G. Then (G =
(V, E), k) is a YES instance if and only if (G′ = (V ′, E′), k′) is a YES instance.

Proof. We want to show that G is (|V | − k)-colorable if and only if G′ = G[R]
is (|V ′| − k′)-colorable, where k′ = k − |H |.

Let c be a (|V | − k)-coloring of G. Because C is a clique, all vertices of C are
assigned to different colours by c. None of these colours can be used on vertices
of R because every vertex from R is adjacent to all vertices of C. Thus c uses
on G′ = G[R] at most

|V | − k − |C| = |V | − (|C|+ |H |)− (k − |H |) = |V ′| − k′

colors.
Now let c′ be a (|V ′| − k′)-coloring of G′. We take |C| new colors to color

vertices of C. Because there is a matching M of H into C in G, we can use the
same |C| colors that were used on C to color H . For every vertex u ∈ H , we
select a color of the vertex from C matched by M to u. To color G, we used at
most

|V ′| − k′ + |C| = |V | − (|C|+ |H |)− (k − |H |) + |C| = |V | − k

colors. This completes the proof. ��
Theorem 2 ([18]). p-Dual Vertex Coloring has a kernel with at most
3k − 3 vertices.

Proof. For an input n-vertex graph G and a positive integer k, we take the
complement of G. If complement G contains an isolated vertex v, then in G this
vertex v is adjacent to all other vertices, and thus (G, k) is a YES instance if
and only if (G \ v, k − 1) is a YES instance.

Let us assume that G has no isolated vertices. We apply Crown Lemma on
G. If G has a matching M of size k, then G is (n − k)-colorable. Indeed, the
endpoints of every edge of M can be colored with the same color. If G has no
matching M of size k, then either n ≤ 3(k− 1), or G can be reduced by making
use of the Crown Rule for p-Dual Vertex Coloring. ��

138 D. Lokshtanov, N. Misra, and S. Saurabh

Maximum Satisfiability. Our next example concerns Max-SAT. We are in-
terested in the following parameterized version of Max-SAT.

p-Max-SAT
Instance: A CNF formula F , and a non-negative integer k.

Parameter: k
Problem: Decide whether F has a truth assignment satisfying

at least k clauses.

Theorem 3 ([53]). p-Max-SAT admits a kernel with at most k variables and
2k clauses.

Proof. Let F be a CNF formula with n variables and m clauses. If we assign
values to the variables uniformly at random, linearity of expectation yields that
the expected number of satisfied clauses is at least m/2. Since there has to be
at least one assignment satisfying at least the expected number of clauses this
means that if m ≥ 2k then (F, k) is a YES instance. In what follows we show how
to give a kernel with n < k variables. Whenever possible we apply a cleaning
rule; if some variable does not occur in any clauses, remove the variable.

Let GF be the variable-clause incidence graph of F . That is, GF is a bipartite
graph with bipartition (X, Y). The set X corresponds to the variables of F and
Y corresponds to the clauses. For a vertex x ∈ X we will refer to x as both
the vertex in GF and the corresponding variable in F . Similarly, for a vertex
c ∈ Y we will refer to c as both the vertex in GF and the corresponding clause
in F . In GF there is an edge between a variable x ∈ X and a clause c ∈ Y
if and only if either x, or its negation is in c. If there is a matching of X into
Y in GF , then there is a truth assignment satisfying at least |X | clauses. This
is true because we can set each variable in X in such a way that the clause
matched to it becomes satisfied. Thus at least |X | clauses are satisfied. Hence,
in this case if k ≤ |X | then (F, k) is a YES instance. We now show that if F
has at least k variables, then we can in polynomial time, either reduce F to an
equivalent smaller instance or find an assignment to the variables satisfying at
least k clauses.

Suppose F has at least k variables. Using Hall’s Theorem and a polynomial
time algorithm computing maximum-size matching, we can in polynomial time
find either a matching of X into Y or an inclusion minimal set C ⊆ X such
that |N(C)| < |C|. If we found a matching we are done, as we can satisfy at
least |X | ≥ k clauses. So suppose we found a set C as described. Let H be
N(C) and R = V (GF) \ (C ∪ H). Clearly, N(C) ⊆ H , N(R) ⊆ H and G[C]
is an independent set. Furthermore, for a vertex x ∈ C we have that there is
a matching of C \ x into H since |N(C′)| ≥ |C′| for every C′ ⊆ C \ x. Since
|C| > |H |, we have that the matching from C \ x to H is in fact a matching of
H into C. Hence (C, H, R) is a crown decomposition of GF .

We prove that all clauses in H are satisfied in every truth assignment to the
variables satisfying the maximum number of clauses. Indeed, consider any truth
assignment t that does not satisfy all clauses in H . For every variable y in C\{x}

Kernelization – Preprocessing with a Guarantee 139

change the value of y such that the clause in H matched to y is satisfied. Let t′

be the new assignment obtained from t in this manner. Since N(C) ⊆ H and t′

satisfies all clauses in H , more clauses are satisfied by t′ than by t. Hence t can
not be an assignment satisfying the maximum number of clauses.

The argument above shows that (F, k) is a YES instance to p-Max-SAT if
and only if (F \ (C ∪H), k − |H |) is. This gives rise to a simple reduction rule:
remove (C ∪H) from F and decrease k by |H |. This completes the proof of the
theorem. ��

3.5 Clique Cover

Unfortunately, not all known problem kernels are shown to have polynomial size.
Here, we present the example of p-Edge Clique Cover, and the reduction
rules presented here lead to an exponential-size kernel. It has been a pressing
challenge for a long time to find out if this can be improved to a polynomial
sized kernel. In recent news, the answer to this question has been announced to
be in the negative, that is to say, the problem is unlikely to admit a polynomial
kernel under reasonable complexity-theoretic assumptions [20]. The problem is
the following.

p-Edge Clique Cover
Instance: A graph G = (V, E), and a non-negative integer k.

Parameter: k
Problem: Decide whether edges of G can be covered by at most k cliques.

We use N(v) to denote the neighborhood of vertex v in G, namely, N(v) := {u |
uv ∈ E}. The closed neighborhood of vertex v, denoted by N [v], is N(v) ∪ {v}.
We describe data reduction rules for a generalized version of p-Edge Clique
Cover, in which already some edges may be marked as “covered”. Then, the
question is to find a clique cover of size k that covers all uncovered edges. We
apply the following data reduction rules from [40]:

Rule 1. Remove isolated vertices and vertices that are only adjacent to covered
edges.

Rule 2. If there is an edge uv whose endpoints have exactly the same closed
neighborhood, that is, N [u] = N [v], then mark all edges incident to u as
covered. To reconstruct a solution for the non-reduced instance, add u to
every clique containing v.

Theorem 4 ([40]). p-Edge Clique Cover admits a kernel with at most 2k

vertices.

Proof. Let G = (V, E) be a graph that has a clique cover C1, . . . , Ck and such
that none of two Rules can be applied to G. We claim that G has at most 2k ver-
tices. Targeting towards a contradiction, let us assume that G has more than 2k

vertices. We assign to each vertex v ∈ V a binary vector bv of length k where
bit i, 1 ≤ i ≤ k, is set to 1 if and only if v is contained in clique Ci. Since there are

140 D. Lokshtanov, N. Misra, and S. Saurabh

only 2k possible vectors, there must be u �= v ∈ V with bu = bv. If bu and bv are
zero vectors, the first rule applies; otherwise, u and v are contained in the same
cliques. This means that u and v are adjacent and share the same neighborhood,
and thus the second rule applies. Hence, if G has more than 2k vertices, at least
one of the reduction rules can be applied to it, which is a contradiction to the
initial assumption. ��

4 Recent Upper Bound Machinery

In this section we survey recent methods to obtain polynomial kernels. This in-
cludes reduction rules based on protrusions, probabilistic methods and matroids.

4.1 Protrusion Based Replacement

In this part we discuss kernelization for different classes of sparse graphs. An
important result in the area of kernelization is by Alber et al. [2]. They obtained
a linear sized kernel for the p-Dominating Set problem on planar graphs.
This work triggered an explosion of papers on kernelization, and in particular
on kernelization of problems on planar and different classes of sparse graphs.
Combining the ideas of Alber et al. with problem specific data reduction rules,
linear kernels were obtained for a variety of parameterized problems on planar
graphs including p-Connected Vertex Cover, p-Induced Matching and
p-Feedback Vertex Set. In 2009 Bodlaender et al. [7] obtained meta ker-
nelization algorithms that eliminated the need for the design of problem specific
reduction rules by providing an automated process that generates them. They
show that all problems that have a “distance property” and are expressible in
a certain kind of logic or “behave like a regular language” admit a polynomial
kernel on graphs of bounded genus. In what follows we give a short description
of these meta theorems.

Informal Description. The notion of “protrusions and finite integer index” is
central to recent meta kernelization theorems. In the context of problems on
graphs, there are three central ideas that form the undercurrent of all protrusion-
based reduction rules:

– describing an equivalence that classifies all instances of a problem in an useful
manner,

– the ability to easily identify, given a problem, whether the said equivalence
has finite index,

– given an instance of a problem, finding large subgraphs that “can be re-
placed” with smaller subgraphs that are equivalent to the original.

One of the critical aspects of this development is coming up with the right
definition for describing the circumstances in which a subgraph may be replaced.
This is captured by the notion of a protrusion.

Kernelization – Preprocessing with a Guarantee 141

In general, an r-protrusion in a graph G is simply a subgraph H = (VH , EH)
such that the number of vertices in H that have neighbours in G \H is at most
r and the treewidth of H is at most r. The size of the protrusion is the number
of vertices in it, that is, |VH |. The vertices in H that have neighbours in G \H
comprise the boundary of H . Informally, H may be thought of as a part of the
graph that is separated from the “rest of the graph” by a small-sized separator,
and everything about H may be understood in terms of the graph induced by H
itself and the limited interaction it has with G \H via its boundary vertices. If
the size of the protrusion is large, we may want to replace it with another graph
X that is much smaller but whose behaviour with respect to G \H is identical
to H in the context of the problem that we are studying. Specifically, we would
like that the solution to the problem in question does not change after we have
made the replacement (or changes in a controlled manner that can be tracked
as we make these replacements). This motivates us to define an equivalence that
captures the essence of what we hope to do in terms the replacement. We would
like to declare H equivalent to X if the size of the solution of G and (G\H)∪∗X
is exactly the same, where ∪∗ is some notion of a replacement operation that
we have not defined precisely yet. Notice, however, that a natural notion of
replacement would leave the boundary vertices intact and perform a cut-and-
paste on the rest of H . This is precisely what the protrusion based reduction
rules do. Combined with some combinatorial properties of graphs this results in
polynomial and in most cases linear kernels for variety of problems.

Overview of Meta Kernelization Results. Given a graph G = (V, E), we define
Br

G(S) to be the set of all vertices of G whose distance from some vertex in S
is at most r. Let G be the family of planar graphs and let integer k > 0 be a
parameter. We say that a parameterized problem Π ⊆ G ×N is compact if there
exist an integer r such that for all (G = (V, E), k) ∈ Π , there is a set S ⊆ V
such that |S| ≤ r · k, Br

G(S) = V and k ≤ |V |r. Similarly, Π is quasi-compact
if there exists an integer r such that for every (G, k) ∈ Π , there is a set S ⊆ V
such that |S| ≤ r ·k, tw(G \Br

G(S)) ≤ r and k ≤ |V |r where tw(G) denotes the
treewidth of G. Notice that if a problem is compact then it is also quasi-compact.
For ease of presentation the definitions of compact and quasi-compact are more
restrictive here than in the following paper [7].

The following theorem from [7] yields linear kernels for a variety of problems
on planar graphs. To this end they utilise the notion of finite integer index.
This term first appeared in the work by Bodlaender and van Antwerpen-de
Fluiter [14] and is similar to the notion of finite state. We first define the notion
of t-boundaried graphs and the gluing operation. A t-boundaried graph is a graph
G = (V, E) with t distinguished vertices, uniquely labelled from 1 to t. The set
∂(G) of labelled vertices is called the boundary of G. The vertices in ∂(G) are
referred to as boundary vertices or terminals. Let G1 and G2 be two t-boundaried
graphs. By G1 ⊕ G2 we denote the t-boundaried graph obtained by taking the
disjoint union of G1 and G2 and identifying each vertex of ∂(G1) with the vertex
of ∂(G2) with the same label; that is, we glue them together on the boundaries.
In G1 ⊕ G2 there is an edge between two labelled vertices if there is an edge

142 D. Lokshtanov, N. Misra, and S. Saurabh

between them in G1 or in G2. For a parameterized problem, Π on graphs in G
and two t-boundaried graphs G1 and G2, we say that G1 ≡Π G2 if there exists
a constant c such that for all t-boundaried graphs G3 and for all k we have
G1 ⊕ G3 ∈ G if and only if G2 ⊕ G3 ∈ G and (G1 ⊕ G3, k) ∈ Π if and only if
(G2 ⊕ G3, k + c) ∈ Π . Note that for every t, the relation ≡Π on t-boundaried
graphs is an equivalence relation. A problem Π has finite integer index (FII),
if and only if for every t, ≡Π is of finite index, that is, has a finite number of
equivalence classes. Compact problems that have FII include Dominating Set
and Connected Vertex Cover while Feedback Vertex Set has FII and
is quasi-compact but not compact. We are now in position to state the theorem.

Theorem 5. Let Π ⊆ G × N be quasi-compact and has FII. Then Π admits a
linear kernel.

Overview of the Methods. We give an outline of the main ideas used to prove
Theorem 5. For a problem Π and an instance (G = (V, E), k) the kernelization
algorithm repeatedly identifies a part of the graph to reduce and replaces this
part by smaller equivalent part. Since each such step decreases the number of
vertices in the graph the process stops after at most |V | iterations. In partic-
ular, the algorithm identifies a constant size separator S that cuts off a large
chunk of the graph of constant treewidth. This chunk is then considered as a
|S|-boundaried graph G′ = (V ′, E′) with boundary S. Let G∗ be the other side
of the separator, that is G′ ⊕G∗ = G. Since Π has FII there exists a finite set
S of |S|-boundaried graphs such that S ⊆ G and for any |S|-boundaried graph
G1 there exists a G2 ∈ S such that G2 ≡Π G1. The definition of “large chunk”
is that G′ should be larger than the largest graph in S. Hence we can find a |S|-
boundaried graph G2 ∈ S and a constant c such that (G, k) = (G′ ⊕G∗, k) ∈ Π
if and only if (G2 ⊕G∗, k − c) ∈ Π . The reduction is just to change (G, k) into
(G2⊕G∗, k− c). Given G′ we can identify G2 in time linear in |V ′| by using the
fact that G′ has constant treewidth and that all graphs in S have constant size.

We now proceed to analyze the size of any reduced yes-instance of Π . We
show that if Π is compact (not quasi-compact), then the size of a reduced yes-
instance (G, k) must be at most O(k). Since (G = (V, E), k) ∈ Π and Π is
compact, there is an O(k) sized set S′ ⊆ V such that Br

G(S′) = V for some
constant r depending only on Π . One can show that if such a set S′ exists there
must exist another O(k) sized set S such that the connected components of
G[V \S] can be grouped into O(k) chunks as described in the paragraph above.
If any of these chunks have more vertices than the largest graph in S we could
have performed the reduction. This implies that any reduced yes-instance has
size at most ck for some fixed constant c. Hence if a reduced instance is larger
than ck the kernelization algorithm returns NO.

Finally to prove Theorem 5 even when Π is quasi-compact, they show that the
set of reduced instances of a quasi-compact problem is in fact compact. Observe
that it is the set of reduced instances that becomes compact and not Π itself.
The main idea is that if G = (V, E) has a set S ⊆ V such that the treewidth of
G[V \Br

G(S)] is constant and there exists a vertex v which is far away from S,
then we can find a large subgraph to reduce.

Kernelization – Preprocessing with a Guarantee 143

The parameterized versions of many basic optimization problems have fi-
nite integer index, including problems like Dominating Set, (Connected)
r-Dominating Set, (Connected) Vertex Cover, Feedback Vertex Set,
Edge Dominating Set, Independent Set, Min Leaf Spanning Tree, In-
duced Matching, Triangle Packing, Cycle Packing, Maximum Full-
Degree Spanning Tree, and many others [7,21].

There are problems like Independent Dominating Set, Longest Path,
Longest Cycle, Maximum Cut, Minimum Covering by Cliques, Inde-
pendent Dominating Set, and Minimum Leaf Out-branching and various
edge packing problems which are known not to have FII [21]. It was shown in
[7] that compact problems expressible in an extension of Monadic Second Order
Logic, namely Counting Monadic Second Order Logic, have polynomial kernels
on planar graphs. This implies polynomial kernels for Independent Dominat-
ing Set, Minimum Leaf Out-branching, and some edge packing problems on
planar graphs. The results from [7] hold not only for planar graphs but for graphs
of bounded genus. It was shown in [37] that if instead of quasi-compactness, we
request another combinatorial property, bidimensionality with certain separabil-
ity properties, then an analogue of Theorem 5 can be obtained for much more
general graph classes, like graphs excluding some fixed (apex) graph as a minor.

Bodlaender et al. [7] were the first to use protrusion techniques (or rather
graph reduction techniques) to obtain kernels, but the idea of using graph re-
placement for algorithms has been around for long time. The idea of graph
replacement for algorithms dates back to Fellows and Langston [31]. Arnborg et
al. [6] essentially showed that effective protrusion reduction procedures exist for
many problems on graphs of bounded treewidth. Using this, Arnborg et al. [6]
obtained a linear time algorithm for MSO expressible problems on graphs of
bounded treewidth. Bodlaender and Fluiter [8,14,21] generalized these ideas in
several ways — in particular, they applied it to some optimization problems. It
is also important to mention the work of Bodlaender and Hagerup [10], who used
the concept of graph reduction to obtain parallel algorithms for MSO expressible
problems on bounded treewidth graphs.

4.2 Algebraic and Probabilistic Methods

A r-CNF formula F = c1 ∧ · · · ∧ cm on variable set V (F) is a boolean formula
where each clause has size exactly r and each clause is a disjunction of literals.
In the parameterized Max-r-SAT problem

p-Max-r-Sat
Instance: A r-CNF formula F , and a non-negative integer k.

Parameter: k
Problem: Decide whether F has a truth assignment satisfying

at least k clauses.

144 D. Lokshtanov, N. Misra, and S. Saurabh

Observe that the expected number of clauses satisfied by a random truth assign-
ment that sets each variable of F to one or zero is equal to

μF = (1 − 2−r)m

and thus there is always an assignment satisfying at least μF clauses. This implies
that at least m/2 clauses are always satisfied and hence this parameterization of
Max-r-SAT always has a polynomial kernel because of the following argument.
If k ≤ m/2 then the answer is yes else we have that m ≤ 2k and hence n ≤
2kr. Thus given a r-CNF formula F , the more meaningful question is whether
there exists a truth assignment for F satisfying at least μF + k clauses. We
call this version of the Max-r-SAT problem as p-AG-Max-r-SAT, that is,
problem where the parameterization is beyond the guaranteed lower bound on
the solution.

p-AG-Max-r-Sat
Instance: A r-CNF formula F , and a non-negative integer k.

Parameter: k
Problem: Decide whether F has a truth assignment satisfying

at least μF + k clauses.

The parameterized study of problems above a guaranteed lower bound was ini-
tiated by Mahajan and Raman [54]. They showed that several above guarantee
versions of Max-Cut and Max-Sat are FPT and provided a number of open
problems around parameterizations beyond guaranteed lower and upper bounds.
In a breakthrough paper Gutin et al [42] developed a probabilistic approach to
problems parameterized above or below tight bounds. Alon et al. [3] combined
this approach with methods from algebraic combinatorics and Fourier analysis
to obtain FPT algorithm for parameterized Max-r-SAT beyond the guaran-
teed lower bound. Other significant results in this direction include quadratic
kernels for ternary permutation constraint satisfaction problems parameterized
above average and results around system of linear equations modulo 2 [19,43].
In what follows we outline the method and an then illustrate the method using
an example.

Informal Description of the Method. We give a brief description of the proba-
bilistic method with respect to a given problem Π parameterized above a tight
lower bound or below a tight upper bound. We first apply some reductions rules
to reduce Π to its special case Π′. Then we introduce a random variable X such
that the answer to Π is yes if and only if X takes, with positive probability, a
value greater or equal to the parameter k. Now using some probabilistic inequal-
ities on X , we derive upper bounds on the size of NO-instances of Π′ in terms of
a function of the parameter k. If the size of a given instance exceeds this bound,
then we know the answer is YES; otherwise, we produce a problem kernel.

Probabilistic Inequalities. A random variable is discrete if its distribution func-
tion has a finite or countable number of positive increases. A random variable X

Kernelization – Preprocessing with a Guarantee 145

is a symmetric if −X has the same distribution function as X . If X is discrete,
then X is symmetric if and only if Prob(X = a) = Prob(X = −a) for each real
a. Let X be a symmetric variable for which the first moment E(X) exists. Then
E(X) = E(−X) = −E(X) and, thus, E(X) = 0. The following is easy to prove
[42].

Lemma 6. If X is a symmetric random variable and E(X2) <∞, then

Prob(X ≥
√
E(X2)) > 0.

Unfortunately, often X is not symmetric, but Lemma 7 provides an inequality
that can be used in many such cases. This lemma was proved by Alon et al. [4];
a weaker version was obtained by H̊astad and Venkatesh [45].

Lemma 7. Let X be a random variable and suppose that its first, second and
fourth moments satisfy E(X) = 0, E(X2) = σ2 > 0 and E(X4) ≤ bσ4, respec-
tively. Then Prob(X > σ

4
√

b
) ≥ 1

44/3b
.

Since it is often rather nontrivial to evaluate E(X4) in order to check whether
E(X4) ≤ bσ4 holds, one can sometimes use the following extension of Khinchin’s
Inequality by Bourgain [15].

Lemma 8. Let f = f(x1, . . . , xn) be a polynomial of degree r in n variables
x1, . . . , xn with domain {−1, 1}. Define a random variable X by choosing a vec-
tor (ε1, . . . , εn) ∈ {−1, 1}n uniformly at random and setting X = f(ε1, . . . , εn).
Then, for every p ≥ 2, there is a constant cp such that

(E(|X |p))1/p ≤ (cp)r(E(X2))1/2.

In particular, c4 ≤ 23/2.

An Illustration. Consider the following problem: given a digraph D = (V, A)
and a positive integer k, does there exist an acyclic subdigraph of D with at
least k arcs? It is easy to prove that this parameterized problem has a linear
kernel. Observe that D always has an acyclic subdigraph with at least |A|/2 arcs.
Indeed, consider a bijection α : V → {1, . . . , |V |} and the following subdigraphs
of D: (V, { xy ∈ A : α(x) < α(y) }) and (V, { xy ∈ A : α(x) > α(y) }). Both
subdigraphs are acyclic and at least one of them has at least |A|/2 arcs. Thus
the input D itself is a kernel with 2k arcs and at most 4k vertices. Thus a more
natural interesting parameterization is following: decide whether D = (V, A)
contains an acyclic subdigraph with at least |A|/2+ k arcs. We choose |A|/2+ k
because |A|/2 is a tight lower bound on the size of a largest acyclic subdigraph.
Indeed, the size of a largest acyclic subdigraph of a symmetric digraph D =
(V, A) is precisely |A|/2. A digraph D = (V, A) is symmetric if xy ∈ A implies
yx ∈ A. More precisely we study the following problem.

146 D. Lokshtanov, N. Misra, and S. Saurabh

p-Linear Ordering Above Tight Lower Bound (LOALB)
Instance: A digraph D with each arc ij with integer positive

weight wij , and a positive integer k.
Parameter: k

Problem: Decide whether there is an acyclic subdigraph of D
of weight at least W/2 + k, where W =

∑
ij∈A wij .

Consider the following reduction rule:

Reduction Rule 1. Assume D has a directed 2-cycle iji; if wij = wji delete
the cycle, if wij > wji delete the arc ji and replace wij by wij − wji, and if
wji > wij delete the arc ij and replace wji by wji − wij .

It is easy to check that the answer to LOALB for a digraph D is yes if and
only if the answer to LOALB is yes for a digraph obtained from D using the
reduction rule as long as possible.

Let D = (V, A) be an oriented graph, let n = |V | and W =
∑

ij∈A wij .
Consider a random bijection: α : V → {1, . . . , n} and a random variable X(α) =
1
2

∑
ij∈A εij(α), where εij(α) = wij if α(i) < α(j) and εij(α) = −wij , otherwise.

It is easy to see that X(α) =
∑{wij : ij ∈ A, α(i) < α(j) } −W/2. Thus, the

answer to LOALB is YES if and only if there is a bijection α : V → {1, . . . , n}
such that X(α) ≥ k. Since E(εij) = 0, we have E(X) = 0. Let W (2) =

∑
ij∈A w2

ij .
Then one can prove the following:

Lemma 9 ([42]). E(X2) ≥W (2)/12.

Using Lemma 9 we prove the following main result of this section.

Theorem 6 ([42]). The problem LOALB admits a kernel with O(k2) arcs.

Proof. Let H be a digraph. We know that the answer to LOALB for H is YES
if and only if the answer to LOALB is YES for a digraph D obtained from H
using Reduction Rule 1 as long as possible. Observe that D is an oriented graph.
Let B be the set of bijections from V to {1, . . . , n}. Observe that f : B → B
such that f(α(v)) = |V | + 1 − α(v) for each α ∈ B is a bijection. Note that
X(f(α)) = −X(α) for each α ∈ B. Therefore, Prob(X = a) = Prob(X = −a)
for each real a and, thus, X is symmetric. Thus, by Lemmas 6 and 9, we have
Prob(X ≥

√
W (2)/12) > 0. Hence, if

√
W (2)/12 ≥ k, there is a bijection

α : V → {1, . . . , n} such that X(α) ≥ k and, thus, the answer to LOALB (for
both D and H) is YES. Otherwise, |A| ≤W (2) < 12 · k2. ��

4.3 Randomized Kernels

A question whether the following problem has a polynomial kernel or not had
remained elusive for a few years until recently.

p-Odd Cycle Transversal
Instance: An undirected graph G = (V, E) and a positive integer k.

Parameter: k
Problem: Decide whether there exist a set S ⊆ V such that

G \ S does not contain odd cycles?

Kernelization – Preprocessing with a Guarantee 147

Using techniques from matroid theory it has been recently shown that this prob-
lem admits a randomized polynomial kernel [52]. The main part of this kernel-
ization algorithm is to adapt the steps in the FPT algorithm for Odd Cycle
Transversal as “independent sets” of the matroid called “gammoid”. This ex-
ploits the duality between max-flow and min-cut. Recently using another tech-
nique from matroid theory a combinatorial kernel has been proposed [51]. This
approach works for several other problems including Almost-2-SAT. Even a
short description on this algorithm is beyond the scope of this article. We refer
the interested readers to the following articles [52,51].

5 Lower Bound Machinery

Lemma 1 implies that a problem has a kernel if and only if it is fixed parameter
tractable. However, we are interested in kernels that are as small as possible, and
a kernel obtained using Lemma 1 has size that equals the dependence on k in the
running time of the best known FPT algorithm for the problem. The question
is — can we do better? In particular, can we get polynomial sized kernels for
problems that admit FPT algorithms? The answer is that quite often we can,
as we saw in the previous section, but it turns out that there are a number of
problems which are unlikely to have polynomial kernels. It is only very recently
that a methodology to rule out polynomial kernels has been developed [9,38]. The
existence of polynomial kernels are ruled out, in this framework, by linking the
availability of a polynomial kernel to an unlikely collapse in classical complexity.
These developments deepen the connection between classical and parameterized
complexity.

In this section we survey the techniques that have been developed to show
kernelization lower bounds. To begin with, we consider the following problem.

p-Longest Path
Instance: An undirected graph G = (V, E) and a non-negative integer k.

Parameter: k
Problem: Does G have a path of length k?

It is well known that the p-Longest Path problem can be solved in time
O(cknO(1)) using the well known method of Color-Coding [5]. Is it feasible
that it also admits a polynomial kernel? We argue that intuitively this should not
be possible. Consider a large set (G1, k), (G2, k), . . . , (Gt, k) of instances to the
p-Longest Path problem. If we make a new graph G by just taking the disjoint
union of the graphs G1, . . . , Gt we see that G contains a path of length k if and
only if Gi contains a path of length k for some i ≤ t. Suppose the p-Longest
Path problem had a polynomial kernel, and we ran the kernelization algorithm
on G. Then this algorithm would in polynomial time return a new instance
(G′ = (V ′, E′), k′) such that |V ′| = kO(1), a number potentially much smaller
than t. This means that in some sense, the kernelization algorithm considers the
instances (G1, k), (G2, k), . . . , (Gt, k) and in polynomial time figures out which of
the instances are the most likely to contain a path of length k. However, at least

148 D. Lokshtanov, N. Misra, and S. Saurabh

intuitively, this seems almost as difficult as solving the instances themselves and
since the p-Longest Path problem is NP-complete, this seems unlikely. We
now formalize this intuition.

Definition 3. [Distillation [9]]

– An OR-distillation algorithm for a language L ⊆ Σ∗ is an algorithm that
receives as input a sequence x1, . . . , xt, with xi ∈ Σ∗ for each 1 ≤ i ≤ t, uses
time polynomial in

∑t
i=1 |xi|, and outputs y ∈ Σ∗ with (a) y ∈ L ⇐⇒ xi ∈

L for some 1 ≤ i ≤ t and (b) |y| is polynomial in maxi≤t |xi|. A language L
is OR-distillable if there is a OR-distillation algorithm for it.

– An AND-distillation algorithm for a language L ⊆ Σ∗ is an algorithm that
receives as input a sequence x1, . . . , xt, with xi ∈ Σ∗ for each 1 ≤ i ≤ t,
uses time polynomial in

∑t
i=1 |xi|, and outputs y ∈ Σ∗ with (a) y ∈ L ⇐⇒

xi ∈ L for all 1 ≤ i ≤ t and (b) |y| is polynomial in maxi≤t |xi|. A language
L is AND-distillable if there is an AND-distillation algorithm for it.

Observe that the notion of distillation is defined for unparameterized problems.
Bodlaender et al. [9] conjectured that no NP-complete language can have an
OR-distillation or an AND-distillation algorithm.

Conjecture 1. [OR-Distillation Conjecture [9]] No NP-complete language L is
OR-distillable.

Conjecture 2. [AND-Distillation Conjecture [9]] No NP-complete language L is
AND-distillable.

One should notice that if any NP-complete language is distillable, then so are all
of them. Fortnow and Santhanam [38] were able to connect the OR-Distillation
Conjecture to a well-known conjecture in classical complexity. In particular they
proved that if the OR-Distillation Conjecture fails, then coNP ⊆ NP/poly,
implying that the polynomial time hierarchy [59] collapses to the third level,
a collapse that is deemed unlikely. Until very recently, establishing a similar
connection for the AND-Distillation Conjecture was one of the central open
problems of the area. It is now established that both conjectures hold up to
reasonable complexity-theoretic assumptions (see also Section 6.4).

Theorem 7 ([38,28])

– If the OR-Distillation Conjecture fails, then coNP ⊆ NP/poly.
– If the AND-Distillation Conjecture fails, then coNP ⊆ NP/poly.

We are now ready to define the parameterized analogue of distillation algorithms
and connect this notion to the Conjectures 1 and 2.

Definition 4. [Composition [9]]

– A composition algorithm (also called OR-composition algorithm) for a pa-
rameterized problem Π ⊆ Σ∗ × N is an algorithm that receives as input a

Kernelization – Preprocessing with a Guarantee 149

sequence ((x1, k), . . . , (xt, k)), with (xi, k) ∈ Σ∗×N+ for each 1 ≤ i ≤ t, uses
time polynomial in

∑t
i=1 |xi| + k, and outputs (y, k′) ∈ Σ∗ × N+ with (a)

(y, k′) ∈ Π ⇐⇒ (xi, k) ∈ Π for some 1 ≤ i ≤ t and (b) k′ is polynomial in
k. A parameterized problem is compositional (or OR-compositional) if there
is a composition algorithm for it.

– An AND-composition algorithm for a parameterized problem Π ⊆ Σ∗ × N

is an algorithm that receives as input a sequence ((x1, k), . . . , (xt, k)), with
(xi, k) ∈ Σ∗×N+ for each 1 ≤ i ≤ t, uses time polynomial in

∑t
i=1 |xi|+ k,

and outputs (y, k′) ∈ Σ∗ × N+ with (a) (y, k′) ∈ Π ⇐⇒ (xi, k) ∈ Π
for all 1 ≤ i ≤ t and (b) k′ is polynomial in k. A parameterized problem is
AND-compositional if there is an AND-composition algorithm for it.

Composition and distillation algorithms are very similar. The main difference
between the two notions is that the restriction on output size for distillation
algorithms is replaced by a restriction on the parameter size for the instance
the composition algorithm outputs. We define the notion of the unparameterized
version of a parameterized problem L. The mapping of parameterized problems
to unparameterized problems is done by mapping (x, k) to the string x#1k,
where # /∈ Σ denotes the blank letter and 1 is an arbitrary letter in Σ. In this
way, the unparameterized version of a parameterized problem Π is the language
Π̃ = {x#1k | (x, k) ∈ Π}. The following theorem yields the desired connection
between the two notions.

Theorem 8 ([9,28]). Let Π be a compositional parameterized problem whose
unparameterized version Π̃ is NP-complete. Then, if Π has a polynomial kernel
then coNP ⊆ NP/poly. Similarly, let Π be an AND-compositional parameter-
ized problem whose unparameterized version Π̃ is NP-complete. Then, if Π has
a polynomial kernel, coNP ⊆ NP/poly.

We can now formalize the discussion from the beginning of this section.

Theorem 9 ([9]). p-Longest Path does not admit a polynomial kernel unless
coNP ⊆ NP/poly.

Proof. The unparameterized version of p-Longest Path is known to be NP-
complete [39]. We now give a composition algorithm for the problem. Given
a sequence (G1, k), . . . , (Gt, k) of instances we output (G, k) where G is the
disjoint union of G1, . . . , Gt. Clearly G contains a path of length k if and only if
Gi contains a path of length k for some i ≤ t. By Theorem 8 p-Longest Path
does not have a polynomial kernel unless coNP ⊆ NP/poly. ��
An identical proof can be used to show that the p-Longest Cycle problem does
not admit a polynomial kernel unless coNP ⊆ NP/poly. For many problems, it
is easy to give AND-composition algorithms. For instance, the “disjoint union”
trick yields AND-composition algorithms for the p-Treewidth, p-Pathwidth
and p-Cutwidth problems, among many others. Coupled with Theorem 8 this
implies that these problems do not admit polynomial kernels unless coNP ⊆
NP/poly.

150 D. Lokshtanov, N. Misra, and S. Saurabh

For some problems, obtaining a composition algorithm directly is a difficult
task. Instead, we can give a reduction from a problem that provably has no
polynomial kernel unless coNP ⊆ NP/poly to the problem in question such
that a polynomial kernel for the problem considered would give a kernel for the
problem we reduced from. We now define the notion of polynomial parameter
transformations.

Definition 5 ([13]). Let P and Q be parameterized problems. We say that P
is polynomial parameter reducible to Q, written P ≤ppt Q, if there exists a
polynomial time computable function f : Σ∗ ×N→ Σ∗ ×N and a polynomial p,
such that for all (x, k) ∈ Σ∗×N (a) (x, k) ∈ P if and only (x′, k′) = f(x, k) ∈ Q
and (b) k′ ≤ p(k). The function f is called polynomial parameter transformation.

Proposition 1 ([13]). Let P and Q be the parameterized problems and P̃ and
Q̃ be the unparameterized versions of P and Q respectively. Suppose that P̃ is
NP-complete and Q̃ is in NP. Furthermore if there is a polynomial parameter
transformation from P to Q, then if Q has a polynomial kernel then P also has
a polynomial kernel.

Proposition 1 shows how to use polynomial parameter transformations to show
kernelization lower bounds. A notion similar to polynomial parameter trans-
formation was independently used by Fernau et al. [33] albeit without being
explicitly defined. We now give an example of how Proposition 1 can be useful
for showing that a problem does not admit a polynomial kernel. In particular,
we show that the p-Path Packing problem does not admit a polynomial kernel
unless coNP ⊆ NP/poly. In this problem you are given a graph G together with
an integer k and asked whether there exists a collection of k mutually vertex-
disjoint paths of length k in G. This problem is known to be fixed parameter
tractable [5] and is easy to see that for this problem the “disjoint union” trick
discussed earlier does not directly apply. Thus we resort to polynomial parameter
transformations.

Theorem 10. p-Path Packing does not admit a polynomial kernel unless
coNP ⊆ NP/poly.

Proof. We give a polynomial parameter transformation from the p-Longest
Path problem. Given an instance (G, k) to p-Longest Path we construct a
graph G′ from G by adding k − 1 vertex disjoint paths of length k. Now G
contains a path of length k if and only if G′ contains k paths of length k. This
concludes the proof. ��

6 Recent Developments in Lower Bounds

In this section, we provide a brief exposition of some of the more recent develop-
ments that have emerged in pursuing lower bounds, namely, cross-compositions,
the notion of co-nondeterminism in compositions, and the development that
linked the failure of the AND conjecture with an unexpected collapse in classical
complexity.

Kernelization – Preprocessing with a Guarantee 151

6.1 Cross Composition

Recall that an OR-composition algorithm works by composing multiple instances
of a parameterized problem Q into a single instance of Q̃ with a parameter value
bounded by a polynomial function of k, the common parameter of all input
instances. Further, we also had the constraint that the parameter of the output
instance may not depend on the size of the largest input instance, and also should
be independent of the number of instances that are input to the algorithm.

It turns out that a variation of the OR-composition algorithm, where the
requirements on the output instance are more “relaxed”, can still be used to
argue lower bounds. This variant was introduced in [11], and is called cross-
composition. The technique is akin to OR-composition to the extent that it is
meant to output the boolean OR of a number of instances. On the other hand, a
cross-composition is less restrictive than the standard OR-composition in various
ways:

– The source and target problem of the composition need no longer be the
same.

– The input to a cross-composition algorithm is a list of classical instances
instead of parameterized instances, the inputs do not have a parameter in
which the output parameter of the composition must be bounded; instead
we require that the size of the output parameter is polynomially bounded in
the size of the largest input instance.

– The output parameter may depend polynomially on the logarithm of the
number of input instances.

With cross-composition, it is sufficient to compose (via a boolean OR) any classi-
cal NP-hard problem into an instance of the parameterized problem Q for which
we want to prove a lower-bound, and the parameter of the output instance is
permitted to depend on the number of input instances, and the size of the largest
instance as well.

For establishing the technique of cross-composition, the notion of a polynomial
equivalence relation is introduced. Informally, an equivalence relation on Σ∗ is a
polynomial equivalence relation if it can be “identified” in polynomial time and
if the number of equivalence classes of any finite subset are polynomially many
in the maximum element of the subset. The formal definition is the following:

Definition 6 (Polynomial equivalence relation, [11]). An equivalence re-
lation R on Σ∗ is called a polynomial equivalence relation if the following two
conditions hold:

1. There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x
and y belong to the same equivalence class in (|x|+ |y|)O(1) time.

2. For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements
of S into at most (maxx∈S |x|)O(1) classes.

We now turn to the definition of cross-composition:

152 D. Lokshtanov, N. Misra, and S. Saurabh

Definition 7 ([11]). Let L ⊆ Σ∗ be a set and let Q ⊆ Σ∗ × N be a parame-
terized problem. We say that L cross-composes into Q if there is a polynomial
equivalence relation R and an algorithm which, given t strings x1, x2, . . . , xt be-
longing to the same equivalence class of R, computes an instance (x, k) ∈ Σ∗×N
in time polynomial in

∑t
i=1 |xi| such that:

1. (x, k) ∈ Q⇒ xi ∈ L for some 1 ≤ i ≤ t,
2. k is bounded by a polynomial in maxt

i=1 |xi|+ log t.

The existence of a cross-composition from a NP-complete problem into a pa-
rameterized problem implies kernel lower bounds for the parameterized prob-
lem because a distillation for SAT can be inferred from the cross-composition
and the assumption of a polynomial kernel for the parameterized problem. Re-
call that the existence of a distillation for any NP-complete problem implies
that coNP ⊆ NP/poly, which completes the argument for the infeasibility
of polynomial kernels for problems that admit a cross-composition. Formally,
we would say that unless coNP ⊆ NP/poly, a problem that admits a cross-
composition does not have apolynomial kernel. We now turn to an overview of
the argument that leads to a distillation starting from a cross-composition and
a polynomial kernel.

Assume that we have a cross-composition from a NP-complete language L
to a parameterized language Q. Let m denote the size of the largest input to
the distillation algorithm. We describe informally how a cross-composition and
a polynomial kernel for Q can be used to devise a distillation algorithm for SAT.
For a more formal argument, the reader is referred to [11].

– First, duplicate instances are eliminated from the sequence of inputs to en-
sure that t ≤ (|Σ| + 1)m, or that log t ∈ O(m). All instances of SAT are
transformed into equivalent instances of L (this can be done since L is NP-
complete) — note that the sizes of the instances of L are also polynomial in
m.

– Wenowpairwise compare instances using thepolynomial-time equivalence test
of R (whose existence is guaranteed by the definition of a cross-
composition) topartition theL-instances (y1, . . . , yt) intopartite setsY1, . . . , Yr

such that all instances from the same partite set are equivalent under R. The
properties of a polynomial equivalence relation guarantee that r is polynomial
in m and that this partitioning step takes polynomial time in the total
input size.

– Subsequently, a cross-composition is applied to each group of instances in Yi.
In all the parameterized instances that are output by the cross-composition,
we have that the parameter is a polynomial function of m, since log t ∈ O(m).

– We now apply the kernelization algorithm to obtain polynomial kernels for
each instance of Q that is output by the cross-composition. Note that there
are polynomially many instances, and each instance after kernelization is
also polynomial in size.

– These instances can now be converted back to SAT instances, which can
be combined in a straightforward manner to a single instance reflecting the
Boolean OR of the original sequence of instances.

Kernelization – Preprocessing with a Guarantee 153

Having established what a cross-composition algorithm is, and why it implies
kernel lower bounds, we now state some applications of this technique. In [11],
the problems considered include p-Chromatic Number and p-Clique param-
eterized by vertex cover number and p-Feedback Vertex Set parameterized
by deletion distance to cluster graphs or co-cluster graphs.

In the case of p-Clique it was already known [9] that the problem does not
admit a polynomial kernel parameterized by the treewidth of the graph; since
the vertex cover number is at least as large as the treewidth, this is a stronger
result. For the unweighted p-Feedback Vertex Set problem, which admits a
polynomial kernel parameterized by the target size of the feedback set [16,60],
it can be shown, using cross-composition, that there is no polynomial kernel for
the parameterization by deletion distance to cluster graphs or co-cluster graphs.

6.2 Finer Lower Bounds

In [23], the kernel lower bound established by Theorem 8 was generalized further
to provide for lower bounds based on different polynomial functions for the
kernel size. The OR of a language L is the language OR(L) that consists of all
tuples (x1, . . . , xt) for which there is an i ∈ {1, . . . , t} with xi ∈ L. Instance
x = (x1, . . . , xt) for OR(L) has two parameters: the length t of the tuple and the
maximum bitlength s = maxi |xi| of the individual instance for L. The following
lemma was established in [23] to prove conditional lower bounds on the kernel
sizes.

Lemma 10 ([23]). Let Π be a problem parameterized by k and let L be an NP-
hard problem. Assume that there is a polynomial-time mapping reduction f from
OR(L) to Π and a number d > 0 with the following property: given an instance
x = (x1, . . . , xt) for OR(L) in which each xi has size at most s, the reduction
produces an instance f(x) for whose parameter k is at most t

1
d +o(1)·poly(s). Then

L does not have kernels of size O(kd−ε) for any ε > 0 unless coNP ⊆ NP/poly.

Bodlaender et al. [9] formulated this method without the dependency on t. This
suffices to prove polynomial kernel lower bounds since d can be chosen as an
arbitrarily large constant. It was observed in [23] that the proofs in [9,38] can be
easily adapted to obtain the formulation above, and that it can be generalized
to an oracle communication setting. See [23,22] for more details.

We describe an application of the lemma above to the problem of p-Vertex
Cover in graphs, where we have d = 2. Following the presentation in [22], we set
L to be the p-Multicolored Biclique problem, where the input is a bipartite
graph B on the vertex set U ∪ W , an integer k, and partitions of U and W
into k parts, namely (U1, . . . , Uk) and (W1, . . . , Wk), respectively. We wish to
decide if B contains a biclique Kk,k that has one vertex from each Ui and Wi

for 1 ≤ i ≤ k. This is a problem on bipartite graphs and it is NP-complete [22].

Theorem 11 ([23,22]). p-Vertex Cover does not have kernels of size O(k2−ε)
unless coNP ⊆ NP/poly.

154 D. Lokshtanov, N. Misra, and S. Saurabh

Proof. We apply Lemma 10 where we set L to be p-Multicolored Biclique.
Given an instance (B1, . . . , Bt) for OR(L), we can assume that every instance
Bi has the same number k of groups in the partitions and every group in every
instance Bi has the same size n: by simple padding arguments. Furthermore, we
can assume that

√
t is an integer. In the following, we refer to the t instances of

p-Multicolored Biclique in the OR(L) instance as B(i,j) for 1 ≤ i; j ≤ √t;
let U(i,j) and W(i,j) be the two bipartite classes of B(i,j) .

First, we modify each instance B(i,j) in such a way that U(i,j) and W(i,j)

become complete k-partite graphs: if two vertices U(i,j) or two vertices in W(i,j)

are in different groups, then we make them adjacent. It is clear that there is a
2k-clique in the new graph B′

(i,j) if and only if there is a correctly partitioned

Kk,k in B(i,j). We construct a graph G by introducing 2
√

t sets (U1, . . . , U
√

t),
W 1, . . . , W

√
t of kn vertices each. For every 1 ≤ i ≤ j ≤ √t, we copy the graph

B′
(i,j) to the vertex set U i ∪W j by mapping U(i,j) to U i and W(i,j) to W j . Note

that U(i,j) and W(i,j) induces the same complete k-partite graph in B′
(i,j) for

every i and j, thus this copying can be done in such a way that G[U i] receives
the same set of edges when copying B′

(i,j) for any j (and similarly for G[W j]).
Therefore, G[U i ∪W j] is isomorphic to B′

(i,j) for every 1 ≤ i ≤ j ≤ √t.
It can be verified that G has a 2k-clique if and only if at least one B′

(i,j) has
a 2k-clique (and therefore at least one B(i,j) has a correctly partitioned Kk,k).

Let N = 2
√

tkn be the number of vertices in G. Note that N = t1/2 · poly(s),
where s is the maximum bitlength of the t instances in the OR(L) instance. The
graph G has a 2k-clique if and only if its complement G has a vertex cover of
size N − 2k. Thus OR(L) can be reduced to an instance of p-Vertex Cover
with parameter at most t1/2 · poly(s), as required. ��

6.3 Co-nondeterminism in Compositions

In [50], the notion of co-nondeterministic composition is introduced, and it
is shown that this concept excludes polynomial kernels, assuming coNP �⊆
NP/poly. The technique was applied to show that the Ramsey(k) problem
does not admit a polynomial kernel. This is an interesting question posed by Rod
Downey — and it asks if the following combination of the well-known Clique
and Independent Set, known to be NP-complete and FPT, admits a polyno-
mial kernel.

Ramsey(k)
Instance: An undirected graph G and a non-negative integer k.

Parameter: k.
Problem: Does G contain an independent set or a clique of size k?

Unlike for p-Longest Path [9] (see also Section 5), the disjoint union of t in-
stances of Ramsey(k) does not work satisfactorily as a composition algorithm
(and neither would a join of the instances) as it would contain independent sets

Kernelization – Preprocessing with a Guarantee 155

of size ω(t). The intricate Packing Lemma due to Dell and van Melkebeek [23,
Lemma 1], although designed in a different context, does not seem to be applica-
ble either as it constructs an n-partite graph containing independent sets of size
n which cannot be bounded in O(log t) when t := t(n) is polynomially-bounded.
Generally, it appears to be unlikely that one could pack the instances in such a
way that solutions are confined to a part representing a single original instance.

In the context of establishing lower bounds for this problem, the notion of co-
nondeterminism in compositions was formulated. A “co-nondeterministic” com-
position is formally defined as follows:

Definition 8. Let Q ⊆ Σ∗ × N . A co-nondeterministic polynomial-time algo-
rithm C is a coNP composition for Q if there is a polynomial p such that on input
of t instances (x1, k), . . . , (xt, k) ∈ Σ∗×N the algorithm C takes time polynomial
in Σt

i=1|xi| and outputs on each computation path an instance (y, k′) ⊆ Σ∗ ×N
with k′ ≤ to(1)p(k) and such that the following holds:

– If at least one instance (xi, k) is a yes-instance then all computation paths
lead to the output of a yes-instance (y, k′).

– Otherwise, if all instances (xi, k) are no-instances, then at least one compu-
tation path leads to the output of a no-instance.

The main tool for establishing that the existence of a coNP composition for a
parameterized problem implies a polynomial kernel lower bound for it is a lemma
due to Dell and van Melkebeek [23].

It turns out that the combination of a co-nondeterministic composition and
a polynomial kernel for a parameterized problem (whose classical version is NP-
omplete) implies the existence of an an oracle communication protocol of a
suitable kind. This further implies that the corresponding classical problem is in
coNP/poly, and that finally leads us to the conclusion that NP ⊆ coNP/poly,
establishing the lower bound.

6.4 The AND Conjecture

As we explained in Section 5, the failing of the AND conjecture did not have
any significant implications in classical complexity. If it did have a connection
analogous to the one that is enjoyed by the OR conjecture, then this would have
several implications in settling the status of the kernelization complexity of a
number of problems, to the extent that we make assumptions that are reasonable
in the context of classical complexity. For example, in [20], it is shown that p-
Edge Clique Cover has no polynomial kernel unless the AND conjecture
fails. A number of AND-based-compositions exist for graph layout problems
like p-Treewidth, p-Pathwidth, p-Cutwidth and other problems like p-
Independent Set, p-Dominating Set when parameterized by the treewidth
of the input graph. A more comprehensive discussion can be found in [9]. With
this new development, all these problems do not have polynomial kernels unless
NP ⊆ coNP/poly.

156 D. Lokshtanov, N. Misra, and S. Saurabh

In a talk titled On the Hardness of Compressing an AND of SAT Instances,
Andrew Drucker revealed that efficient AND-compression would also imply that
NP ⊆ coNP/poly. To prove this result (and some extensions), any compression
scheme is interpreted as a communication channel so as to exploit a certain
bottleneck. This entails a new method to “disguise” information being fed into
a compressive mapping. At the time of this writing, this work is unpublished,
but the details that are available can be found in [28].

7 Conclusion and Discussion

In this section we mention several directions of possible development of kernel-
ization.

Parameterization Vs Parameterizations. In parameterized complexity there are
many reasonable possibilities to “parameterize a problem”. For an example for a
graph optimization problem a parameter could be the solution size, the structure
of the graph (like treewidth or pathwidth), distance of the graph from some
polynomially solvable subclasses (for an example deleting at most k vertices
makes the graph interval). Other parameters could be obtained by analyzing
the hardness proof, or analyzing the data or the dimension. We refer to the
survey of Niedermeier [57] for more detailed exposition on this. Bodlaender and
Jansen [47] parameterized p-Vertex Cover by the size of a feedback vertex
set. The reason for this parameterization of the p-Vertex Cover is interesting
because the minimum size of a feedback vertex is always at most the size of
the vertex cover number. It was shown in [47] that this parameterized problem
admits a cubic kernel. See [11,12,47,48] for other studies of kernelization for
parameterizing one problem by the solution to the other problem. Parameterizng
a graph optimization problem with other graph optimization problem like vertex
cover number, max-leaf number have been studied before from the algorithmic
perspective [32] but so far there are very few results from the view point of
kernelization complexity.

F-Deletion problem. Let F be a finite set of graphs. In an p-F -Deletion prob-
lem, we are given an n-vertex graph G and an integer k as input, and asked
whether at most k vertices can be deleted from G such that the resulting graph
does not contain a graph from F as a minor. We refer to such subset as F -hitting
set. The p-F -Deletion problem is a generalization of several fundamental
problems. For example, when F = {K2}, a complete graph on two vertices, this
is p-Vertex Cover. When F = {C3}, a cycle on three vertices, this is the
p-Feedback Vertex Set problem. It is known that p-Vertex Cover and
p-Feedback Vertex Set admit polynomial kernels [17,60]. It was shown in
[36] that when F is a graph with two vertices connected by constant number of
parallel edges, then p-F -Deletion also admits a polynomial kernel. Recently,
it has been shown that p-F -Deletion admits a polynomial kernel whenever
F contains a planar graph [35]. This generalizes several results in the area in-
cluding for p-Vertex Cover, p-Feedback Vertex Set and p-Pathwidth

Kernelization – Preprocessing with a Guarantee 157

1-Deletion. Finally, an interesting direction for further research here is to in-
vestigate p-F -Deletion when none of the graphs in F is planar. The most
interesting case here is when F = {K5, K3,3} aka the Vertex Planarization
problem. Surprisingly, we are not aware even of a single case of p-F -Deletion
with F containing no planar graph admitting a polynomial kernel.

Kernelization Lower Bounds. It is known that p-Leaf Out-Branching admits
n independent kernels of size O(k3) [33]. It is not a kernel in the usual “many to
one” sense, but it is a kernel in the “one to many” sense. We can generalize the
notion of many to one kernels to Turing kernelization. In order to define this we
first define the notion of t-oracle.

Definition 9. A t-oracle for a parameterized problem Π is an oracle that takes
as input (I, k) with |I| ≤ t, k ≤ t and decides whether (I, k) ∈ Π in constant
time.

Definition 10. A parameterized problem Π is said to have g(k)-sized turing
kernel if there is an algorithm which given an input (I, k) together with a g(k)-
oracle for Π decides whether (I, k) ∈ Π in time polynomial in |I| and k. |x′|, k′ ≤
g(k).

Observe that both the well known notion of kernels and many to one kernels
are special cases of turing kernelization. In particular, many to one kernels are
equivalent to turing kernels where the kernelization algorithm is only allowed to
make one oracle call and must return the same answer as the oracle.

Problem 1. Is there a framework to rule out the possibility of having one to
many or Turing kernels similar to the framework developed in [9,38]?

Problem 2. Which other problems admit a Turing kernelization like the quadratic
kernels for k-Leaf Out-Branching and k-Leaf Out-Tree? Does the prob-
lem of finding a path of length at most k admit a Turing kernel (even on planar
graphs)?

Problem 3. Does there exist a problem for which we do not have a linear many-
to-one kernel, but does have linear kernels from the viewpoint of Turing kernel-
ization?

Recently, there has been an attempt to answer the first question in [46] by
organizing problems into complexity classes which are closed under polynomial
parameter transformations. It is shown that many of the problems which are
known not to have polynomial kernels unless CoNP ⊆ NP/poly are equivalent
with respect to Turing kernels. Specifically, either all of them have Turing kernels
or all of them do not. The problems belonging to this class include Connected
Vertex Cover and Min Ones Sat. Interestingly, Longest Path is not shown
to belong to this class, leaving some hope that the problem might have a Turing
kernel.

We conclude the survey with the following concrete open problem.

Problem 4. Does p-Directed Feedback Vertex Set admit a polynomial
kernel?

158 D. Lokshtanov, N. Misra, and S. Saurabh

References

1. Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. Comput. Syst.
Sci. 76(7), 524–531 (2010)

2. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dom-
inating set. Journal of the ACM 51(3), 363–384 (2004)

3. Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a
tight lower bound. In: Proceedings of the 21st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2010), pp. 511–517. SIAM (2010)

4. Alon, N., Gutin, G., Krivelevich, M.: Algorithms with large domination ratio. J.
Algorithms 50, 118–131 (2004)

5. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. Assoc. Comput. Mach. 42(4),
844–856 (1995)

6. Arnborg, S., Courcelle, B., Proskurowski, A., Seese, D.: An algebraic theory of
graph reduction. J. ACM 40(5), 1134–1164 (1993)

7. Bodlaender, H., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos,
D.M.: (Meta) Kernelization. In: Proceedings of the 50th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2009), pp. 629–638. IEEE (2009)

8. Bodlaender, H.L., de Fluiter, B.: Reduction Algorithms for Constructing Solutions
in Graphs with Small Treewidth. In: Cai, J.-Y., Wong, C.K. (eds.) COCOON 1996.
LNCS, vol. 1090, pp. 199–208. Springer, Heidelberg (1996)

9. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

10. Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for
bounded treewidth. SIAM J. Comput. 27, 1725–1746 (1998)

11. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new tech-
nique for kernelization lower bounds. In: Proceedings of the 28th International
Symposium on Theoretical Aspects of Computer Science (STACS 2011). LIPIcs,
vol. 9, pp. 165–176. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

12. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for Treewidth: A
Combinatorial Analysis through Kernelization. In: Aceto, L., Henzinger, M., Sgall,
J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 437–448. Springer, Heidelberg
(2011)

13. Bodlaender, H.L., Thomassé, S., Yeo, A.: Analysis of data reduction: Transforma-
tions give evidence for non-existence of polynomial kernels, Tech. Report CS-UU-
2008-030, Department of Information and Computer Sciences, Utrecht University,
Utrecht, The Netherlands (2008)

14. Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Reduction algorithms for graphs
of small treewidth. Inf. Comput. 167(2), 86–119 (2001)

15. Bourgain, J.: Walsh subspaces of lp-product space. Seminar on Functional Analysis,
Exp. (4A), 9 (1980)

16. Burrage, K., Estivill-Castro, V., Fellows, M.R., Langston, M.A., Mac, S., Rosa-
mond, F.A.: The Undirected Feedback Vertex Set Problem Has a Poly(k) Kernel.
In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp.
192–202. Springer, Heidelberg (2006)

17. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further im-
provements. Journal of Algorithms 41, 280–301 (2001)

Kernelization – Preprocessing with a Guarantee 159

18. Chor, B., Fellows, M., Juedes, D.W.: Linear Kernels in Linear Time, or How to
Save k Colors in o(n2) Steps. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.)
WG 2004. LNCS, vol. 3353, pp. 257–269. Springer, Heidelberg (2004)

19. Crowston, R., Gutin, G., Jones, M., Kim, E.J., Ruzsa, I.Z.: Systems of Linear
Equations over F2 and Problems Parameterized above Average. In: Kaplan, H.
(ed.) SWAT 2010. LNCS, vol. 6139, pp. 164–175. Springer, Heidelberg (2010)

20. Cygan, M., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M.: Clique cover
and graph separation: New incompressibility results. CoRR, abs/1111.0570 (2011)

21. de Fluiter, B.: Algorithms for Graphs of Small Treewidth. PhD thesis, Utrecht
University (1997)

22. Dell, H., Marx, D.: Kernelization of packing problems. In: SODA, pp. 68–81 (2012)

23. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. In: STOC, pp. 251–260 (2010)

24. Diestel, R.: Graph theory, 3rd edn. Graduate Texts in Mathematics, vol. 173.
Springer, Berlin (2005)

25. Dom, M., Guo, J., Hüffner, F., Niedermeier, R., Truß, A.: Fixed-Parameter
Tractability Results for Feedback Set Problems in Tournaments. In: Calamoneri,
T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 320–331.
Springer, Heidelberg (2006)

26. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, Heidelberg
(1999)

27. Downey, R.G., Fellows, M.R., Stege, U.: Computational tractability: the view from
Mars. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS (69), 73–97 (1999)

28. Drucker, A.: On the hardness of compressing an AND of SAT instances, Theory
Lunch, February 17, Center for Computational Intractability (2012),
http://intractability.princeton.edu/blog/

2012/03/theory-lunch-february-17/

29. Erdős, P., Rado, R.: Intersection theorems for systems of sets. J. London Math.
Soc. 35, 85–90 (1960)

30. Fellows, M.R.: The Lost Continent of Polynomial Time: Preprocessing and Ker-
nelization. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS,
vol. 4169, pp. 276–277. Springer, Heidelberg (2006)

31. Fellows, M.R., Langston, M.A.: An analogue of the myhill-nerode theorem and its
use in computing finite-basis characterizations (extended abstract). In: FOCS, pp.
520–525 (1989)

32. Fellows, M.R., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F.A., Saurabh,
S.: The complexity ecology of parameters: An illustration using bounded max leaf
number. Theory Comput. Syst. 45(4), 822–848 (2009)

33. Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.:
Kernel(s) for problems with no kernel: On out-trees with many leaves. In: STACS
2009, pp. 421–432. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik (2009)

34. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science, An EATCS Series, Springer, Berlin (2006)

35. Fomin, F., Lokshtanov, D., Misra, N., Saurabh, S.: Planar-F Deletion: Approxima-
tion, Kernelization and Optimal FPT algorithms (2012) (unpublished manuscript)

36. Fomin, F.V., Lokshtanov, D., Misra, N., Philip, G., Saurabh, S.: Hitting forbidden
minors: Approximation and kernelization. In: Proceedings of the 28th International
Symposium on Theoretical Aspects of Computer Science (STACS 2011). LIPIcs,
vol. 9, pp. 189–200. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

http://intractability.princeton.edu/blog/2012/03/theory-lunch-february-17/
http://intractability.princeton.edu/blog/2012/03/theory-lunch-february-17/

160 D. Lokshtanov, N. Misra, and S. Saurabh

37. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and
kernels. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2010), pp. 503–510. SIAM (2010)

38. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. In: STOC 2008: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, pp. 133–142. ACM (2008)

39. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

40. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Data reduction and exact algo-
rithms for clique cover. ACM Journal of Experimental Algorithmics 13 (2008)

41. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
SIGACT News 38, 31–45 (2007)

42. Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: A probabilistic approach to problems
parameterized above or below tight bounds. J. Comput. Syst. Sci. 77, 422–429
(2011)

43. Gutin, G., van Iersel, L., Mnich, M., Yeo, A.: All Ternary Permutation Constraint
Satisfaction Problems Parameterized above Average Have Kernels with Quadratic
Numbers of Variables. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS,
vol. 6346, pp. 326–337. Springer, Heidelberg (2010)

44. Hall, P.: On representatives of subsets. J. London Math. Soc. 10, 26–30 (1935)
45. H̊astad, J., Venkatesh, S.: On the advantage over a random assignment. In: Pro-

ceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC
2002), pp. 43–52. ACM (2002)

46. Hermelin, D., Kratsch, S., Soltys, K., Wahlström, M., Wu, X.: Hierarchies of inef-
ficient kernelizability. CoRR, abs/1110.0976 (2011)

47. Jansen, B.M.P., Bodlaender, H.L.: Vertex cover kernelization revisited: Upper and
lower bounds for a refined parameter. In: Proceedings of the 28th International
Symposium on Theoretical Aspects of Computer Science (STACS 2011). LIPIcs,
vol. 9, pp. 177–188. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

48. Jansen, B.M.P., Kratsch, S.: Data Reduction for Graph Coloring Problems. In:
Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 90–101.
Springer, Heidelberg (2011)

49. Kőnig, D.: Über Graphen und ihre Anwendung auf Determinantentheorie und Men-
genlehre. Math. Ann. 77, 453–465 (1916)

50. Kratsch, S.: Co-nondeterminism in compositions: a kernelization lower bound for
a ramsey-type problem. In: SODA, pp. 114–122 (2012)

51. Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: New tools
for kernelization. CoRR, abs/1111.2195 (2011)

52. Kratsch, S., Wahlström, M.: Compression via matroids: a randomized polynomial
kernel for odd cycle transversal. In: SODA, pp. 94–103 (2012)

53. Lokshtanov, D.: Phd thesis, New Methods in Parameterized Algorithms and Com-
plexity (2009)

54. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: Maxsat and
maxcut. J. Algorithms 31(2), 335–354 (1999)

55. Misra, N., Raman, V., Saurabh, S.: Lower bounds on kernelization. Discrete Op-
tim. 8, 110–128 (2011)

56. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in
Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

Kernelization – Preprocessing with a Guarantee 161

57. Niedermeier, R.: Reflections on multivariate algorithmics and problem parame-
terization. In: Proceedings of the 27th International Symposium on Theoretical
Aspects of Computer Science (STACS 2010). LIPIcs, vol. 5, pp. 17–32. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

58. Quine, W.V.: The problem of simplifying truth functions. Amer. Math. Monthly 59,
521–531 (1952)

59. Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comp. Sc. 3, 1–22 (1976)
60. Thomassé, S.: A quadratic kernel for feedback vertex set. ACM Transactions on

Algorithms 6 (2010)

Parameterized Complexity

and Subexponential-Time Computability�

Jianer Chen1,�� and Iyad A. Kanj2,���

1 Department of Computer Science and Engineering, Texas A&M University,
College Station, TX 77843

chen@cs.tamu.edu
2 School of Computing, DePaul University, 243 S. Wabash Avenue,

Chicago, IL 60604-2301
ikanj@cs.depaul.edu

Abstract. Since its inception in the 1990’s, parameterized complex-
ity has established itself as one of the major research areas in the-
oretical computer science. Parameterized and kernelization algorithms
have proved to be very useful for solving important problems in various
domains of science and technology. Moreover, parameterized complex-
ity has shown deep connections to traditional areas of theoretical com-
puter science, such as structural complexity theory and approximation
algorithms.

In this paper, we discuss some of the recent results pertaining to
the relation between parameterized complexity and subexponential-time
computability. We focus our attention on satisfiability problems because
they play a key role in the definition of both parameterized complexity
and structural complexity classes, and because they model numerous
important problems in computer science.

1 Introduction

Parameterized complexity was established in the early 1990’s by the seminal
work of Downey and Fellows. It was instigated by the demands of real-world
applications, and by the belief that computational complexity should “serve the
community,” and should be “used not only in the pursuit of the declared ob-
jectives but also in the design of heuristic and approximation algorithms for

� This paper is dedicated to the 60th birthday of Michael R. Fellows. Many of the
results examined in this paper were authored or co-authored by Michael, and those
that were not, would probably never have existed without his efforts. If parameter-
ized complexity would not have started without Michael, Rodney, and two bottles
of 1989 Villa Maria Merlot/Cabarnet Sauvignon, then it definitely would not have
flourished and matured into such an important area of theoretical computer science
without Michael’s great ideas, efforts, and inspirations.

�� This work was supported in part by the USA National Science Foundation under
the grants CCF-0830455 and CCF-0917288.

��� Supported in part by a DePaul University Competitive Research Grant.

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 162–195, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Parameterized Complexity and Subexponential-Time Computability 163

problems that are hard, but for which, nevertheless, something must be done”
[24]. Today, applications of efficient parameterized and kernelization algorithms
for solving important problems that are otherwise intractable from the tradi-
tional complexity theory perspective, are prevalent. Parameterized complexity
has matured into a very exciting research area of theoretical computer science,
with applications spanning numerous domains of science and technology.

The rich positive toolkit of novel techniques for designing efficient parameter-
ized and kernelization algorithms was accompanied by a corresponding “neg-
ative” toolkit that supports a theory of parameterized intractability. While
studying the parameterized intractability of the dominating set problem [24],
Downey and Fellows sharply observed that there is a rich structure in pa-
rameterized intractability theory. A parameterized intractability hierarchy, the
W -hierarchy, was subsequently introduced to classify the level of intrinsic in-
tractability of parameterized problems [24]. Research in the last twenty years
revealed that the W -hierarchy provides a deep structural characterization of pa-
rameterized complexity [24]. In addition, the theory is remarkably applicable
to a wide range of natural computational problems. This motivated researchers
in theoretical computer science, and in parameterized complexity in particu-
lar, to investigate the structural relation between parameterized complexity and
traditional areas of theoretical computer science (e.g., structural complexity, ap-
proximation, etc).

Perhaps one of the most important problems that has deep roots in the
aforementioned areas is the satisfiability problem, including all its variants.
The currently-best algorithms for satisfiability problems are essentially based
on brute-force methods that enumerate all possible solutions, which obviously re-
quires exponential time. It has become clear that the existence of faster
exponential-time algorithms for satisfiability problems is closely related to the
computational intractability of a large class of well-known NP-hard problems,
measured from a number of different angles, such as computational time and
space, fixed-parameter tractability, and approximation. For example, Impagli-
azzo, Paturi, and Zane showed that the subexponential-time computability of
the 3-sat problem is equivalent to the subexponential time computability of
a large class of well-known NP-hard problems [31]; this class is closed under
subexponential-time preserving reductions, called serf-reductions. This led re-
searchers in theoretical computer science to formulate a hypothesis, which be-
came known as the exponential-time hypothesis, shortly ETH, conjecturing that
no member in this class is solvable in subexponential time.

The subexponential-time computability of weighted satisfiability on bounded
depth circuits is closely related to the fixed-parameter tractability of the
W -hierarchy in parameterized complexity theory (see for instance [1, 9, 12, 14,
19–21, 23, 24]). Research on parameterized complexity revealed more subtle re-
lations between the computational complexity of NP-hard problems and the
(sub)exponential-time computability of satisfiability problems [9, 12, 14, 33, 39].
For example, it is now known that efficient polynomial-time approximation
schemes of a number of NP-hard problems, and parameterized algorithms that

164 J. Chen and I.A. Kanj

are asymptotically more efficient than the brute-force enumeration for many W -
hard problems, are all dependent of the subexponential-time computability of
various satisfiability problems (see for instance [9, 12, 14, 33, 39]). In particu-
lar, due to the aforementioned research, it is now known that the classification
of parameterized intractability has a correspondence to the exact computabil-
ity of satisfiability problems on various circuit families. This line of research
deepened our understanding of the structural relation between the two compu-
tational frameworks of parameterized complexity and subexponential-time com-
putability, and resulted in new tools for deriving computational lower bounds on
parameterized computation, exact computation, and approximation algorithms.

In the current paper, we discuss some of the results related to the relation
between the parameterized intractability and the computational complexity of a
variety of satisfiability problems. This relation is not surprising, given that the
W -hierarchy in parameterized complexity was defined mainly based on weighted
satisfiability problems. Nevertheless, the close connection between these two dif-
ferent research frameworks has not been rigorously studied until very recently.

The systematic research in this direction started with the results of Abraham-
son, Downey, and Fellows [1], and Downey and Fellows [24]. In [1], it was shown
that W [P] = FPT (W [P] is the parameterized complexity class characterized by
the weighted satisfiability problem restricted to polynomial-size Boolean circuits)
implies that circuit satisfiability (satisfiability of polynomial-size circuits)
is computable in subexponential time. It was also shown in [1] that, for any
even t ≥ 1, the collapse of the W -hierarchy at its t-th level (i.e., W [t] = FPT)
implies that sat[t] (t-level satisfiability) is solvable in time 2o(n)mO(1) (m is the
instance size).1 This later result was refined by Downey and Fellows [24] to all
levels of the W -hierarchy. Downey and Fellows [24] showed that: (1) for any
t ≥ 2, W [t] = FPT implies that sat[t] is computable in subexponential time;
and (2) W [1] = FPT implies that ETH fails, which subsequently implies the
subexponential-time computability of several well-known problems including 3-

sat, independent set, and vertex cover. Those results were further refined
and extended in [12, 14], where it was shown that the condition W [t] = FPT
in (1) and (2) can be relaxed (see Section 4), and that the subexponential-time
computability of sat[t], in turn, implies the collapse of the W -hierarchy at its
(t − 1)-st level (W [t − 1] = FPT) for t ≥ 2, and for t = 1 implies the fail-
ure of ETH. The previous results were exploited further in [12, 14] to derive
lower bounds on the computability and the approximation of well-known NP-
hard problems, such as independent set, clique, dominating set, based
on parameterized complexity hypotheses. Important questions along this line of
research remained open however, including the following: What is the equiva-
lent, from the parameterized complexity perspective, of the subexponential-time
computability of various satisfiability problems?

1 The o(·) notation in this paper denotes the oeff(·) notation (see, for instance, [26]).
More formally, by writing f(n) = o(g(n)) we mean that there exists a computable
nondecreasing unbounded function μ(n) : N → N, and n0 ∈ N, such that f(n) ≤
g(n)/μ(n) for all n ≥ n0.

Parameterized Complexity and Subexponential-Time Computability 165

Downey et al. [23] were the first to try to answer this question. They defined a
parameterized complexity class, called M [1], comprised between FPT and W [1],
consisting of a “miniaturization” of weighted circuit satisfiability, and showed
that M [1] = FPT is equivalent to ETH fails. The idea of a miniaturization of a
problem was explored earlier in the work of Abrahamson et al. [1], and Cai and
Juedes [9], and Downey et al. [23] provided a formal definition for this notion
and studied it systematically. Flum and Grohe [25], Chen and Flum [19, 20],
and Chen and Grohe [21], launched a systematic study of the relation between
parameterized complexity and subexponential-time computability, using the no-
tion of miniaturization. Chen and Grohe [21] were able to give a correspondence
between the subexponential-time computability of certain satisfiability problems
and parameterized complexity classes.

We will focus on some of the key results pertaining to the relation between
parameterized complexity and subexponential-time computability, and their ap-
plications. We will also try to describe some of the problems that remain open
in this line of research. While we tried our best to include most of the recent
results on to these topics, we do apologize in advance for any relevant result that
we may have omitted; certainly, this was not our intention.

Before we close this section, we would like to mention a recent breakthrough-
result in complexity theory by Williams [42], who proved that the non-uniform
ACC class does not contain NTIME[2n], the class of languages that are solv-
able in nondeterministic time O(2n). This is regarded as a very significant ad-
vance in complexity theory, as it was even unknown whether the class EXPNP

is contained in a weaker ACC class of languages accepted by circuit families
of polynomial-size and depth 3 with more restricted modular gates. There are
at least two directions in which Williams’ result is relevant to parameterized
complexity and subexponential-time computability. First, a major component
of Williams’ approach is faster exact algorithms for satisfiability problems. In

particular, Williams developed a 2n−Ω(nδ)-time algorithm for the satisfiability
problem on subexponential-size ACC-circuits, where δ is a constant dependent
on the circuit depth. Second, the computation model considered, i.e., ACC-
circuits, is closely related to the generic complete problems for the W -hierarchy,
i.e., the weighted satisfiability on bounded depth Boolean circuits [24].

2 Preliminaries

A circuit is a directed acyclic graph. The nodes of in-degree 0 are called inputs,
and are labeled either by positive literals xi or by negative literals xi. The nodes
of in-degree larger than 0 are called gates and are labeled with Boolean operators
and or or. A special gate of out-degree 0 is designated as the output node. We
do not allow not gates in the above circuit model, since by De Morgan’s laws, a
general circuit can be effectively converted into the above circuit model. A circuit
is said to be monotone (resp. antimonotone) if all its input literals are positive
(resp. negative). The depth of a circuit is the maximum distance from an input
node to the output gate of the circuit. A circuit represents a Boolean function in

166 J. Chen and I.A. Kanj

a natural way. Using the results in [11], every circuit can be re-structured into
an equivalent circuit with the same monotonicity and number of input variables,
same depth, and such that all inputs are in level 0, all and and or gates are
organized into alternating levels with edges only going from a level to the next
level, and with at most a polynomial increase in the circuit size. Thus, without
loss of generality, we will implicitly assume that circuits are in this leveled form.
A circuit is a Π-circuit if its output gate is an and gate, and is a Πh-circuit
if it is a Π-circuit of depth h. We say that a truth assignment τ to the input
variables of a circuit C satisfies a gate g in C if τ makes the gate g have value
1, and that τ satisfies the circuit C if τ satisfies the output gate of C. A circuit
C is satisfiable if there is a truth assignment to the input variables of C that
satisfies C. The weight of an assignment τ is the number of variables assigned
value 1 by τ . A CNF formula is a conjunction of a set of clauses where each
clause is a disjunction of literals. For a CNF formula F with n input variables,
we can naturally correspond an equivalent Π2-circuit CF with n input variables.

A parameterized problem Q is a subset of Ω∗×N, where Ω is a fixed alphabet
and N is the set of all non-negative integers. Each instance of the parameterized
problem Q is a pair (x, k), where the second component, i.e., the non-negative
integer k, is called the parameter. We say that the parameterized problem Q is
fixed-parameter tractable [24] if there is a (parameterized) algorithm that decides
whether an input (x, k) is a member of Q in time f(k)|x|c, where c is a fixed
constant and f(k) is a computable function independent of the input length
|x|. Let FPT denote the class of all fixed-parameter tractable parameterized
problems.

The Πt-circuit satisfiability problem where t ≥ 2, abbreviated sat[t]
henceforth, is defined as follows: Given a Πt-circuit C, decide if C is satisfiable.
For instance, the sat[2] problem is the same as the satisfiability problem on CNF
formulas (cnf-sat). We will also study the parameterized problems based on
the “weighted version” of the satisfiability problems on circuits. In particular, for
t ≥ 2, the weighted Πt-circuit satisfiability problem, abbreviated wcs[t]
is for a given Πt-circuit C and a given parameter k, to decide if C has a satis-
fying assignment of weight k. Similarly, the weighted monotone Πt-circuit

satisfiability problem, abbreviated wcs
+[t], and the weighted antimono-

tone Πt-circuit satisfiability problem, abbreviated wcs
−[t] are the wcs[t]

problems on, respectively, monotone circuits and antimonotone circuits. We de-
note by wcnf 2-sat

− the wcs
−[2] problem with the restriction that the fan-in

of each gate at level 1 of the input circuit is bounded by 2. Equivalently, each
instance of wcnf 2-sat

− consists of a parameter k and a CNF formula in which
all literals are negative and each clause is a disjunction of at most two literals.
Finally, let 3-sat be the cnf-sat problem with the restriction that each clause
in the input formula is a disjunction of at least 3 literals.

The optimization class SNP introduced by Papadimitriou and Yannakakis [38]
consists of all search problems expressible by second-order existential formulas
whose first-order part is universal. Impagliazzo and Paturi [31] introduced the
notion of completeness for the class SNP under serf-reductions, and identified a

Parameterized Complexity and Subexponential-Time Computability 167

class of problems which are complete for SNP under serf-reductions, such that
the subexponential-time computability for any of these problems implies the
subexponential-time computability of all problems in SNP. Many well-known
NP-hard problems are proved to be complete for SNP under the serf-reduction,
including 3-sat, vertex cover, and independent set, for which extensive
efforts have been made in the last three decades to develop subexponential-
time algorithms with no success [43]. This fact has led to the exponential-time
hypothesis, ETH, which is equivalent to the statement that not all SNP problems
are solvable in subexponential-time:

Exponential-Time Hypothesis (ETH): The problem 3-sat cannot be
solved in time 2o(n), where n is the number of variables in the input
formula.

The ETH has become a standard hypothesis in the area of parameterized algo-
rithms and complexity and of exact algorithms and complexity.

To study the fixed-parameter tractability, the fpt-reduction has been intro-
duced [24]: a parameterized problem Q is fpt-reducible to a parameterized prob-
lem Q′ if there is an algorithm M that transforms each instance (x, k) of Q into
an instance (x′, g(k)) (g is a function of k only) of Q′ in time f(k)|x|c, where f
and g are computable functions and c is a constant, such that (x, k) ∈ Q if and
only if (x′, g(k)) ∈ Q′.

Based on the notion of fpt-reducibility, a hierarchy of parameterized complex-
ity, the W -hierarchy, has been introduced. At the 0-th level of the hierarchy lies
the class FPT , and at the i-th level for i > 0, the class W [i]. The original defini-
tion of the W [i] classes was based on the notion of the weft of a circuit, which is
the maximum number of “large gates” (i.e., gates whose fan-in is larger than a
prespecified constant) on any path from an input gate to the output gate of the
circuit [24]. The previous definition, however, was shown to be equivalent to the
following definition by Downey and Fellows (see [24]), which we use in this pa-
per. The class W [1] consists of all parameterized problems that are fpt-reducible
to the problem wcnf 2-sat

−. For an even t ≥ 2, the class W [t] consists of
all parameterized problems that are fpt-reducible to the problem wcs

+[t], and
for an odd t ≥ 3, the class W [t] consists of all parameterized problems that are
fpt-reducible to the problem wcs

−[t]. To simplify our statements, we will denote
by wcs

∗[t] the problem wcs
+[t] if t is even and the problem wcs

−[t] if t is odd.
Therefore, for all t ≥ 2, the class W [t] consists of all parameterized problems
that are fpt-reducible to the problem wcs

∗[t].
A parameterized problem Q is W [i]-hard if every problem in W [i] is fpt-

reducible to Q, and is W [i]-complete if in addition Q is in W [i]. By the definition,
the problem wcnf 2-sat

− is W [1]-complete, and for all t ≥ 2, the problem
wcs

∗[t] is W [t]-complete. If any W [i]-hard problem is in FPT , then W [i] =
FPT , which, to the common belief of researchers in parameterized complexity,
is very unlikely [24].

We have the following relation among parameterized complexity classes [24]:

FPT ⊆W [1] ⊆W [2] ⊆ . . .

168 J. Chen and I.A. Kanj

For more information about parameterized complexity we refer the reader to [24,
26, 36].

3 ETH, W [1], and CNF-SAT

In this section we discuss some of the results on the relation between the parame-
terized complexity and the subexponential-time computability of important sat-
isfiability problems on Π2-circuits, and their consequences on the computability
of some natural NP-hard problems. We start with the following folklore results
that can be easily verified by the reader (see for example [9]):

Lemma 1. If a parameterized problem is solvable in time 2o(k logn)nO(1), where
n is the input length and k is the parameter, then the problem is fixed-parameter
tractable.

Fact 31. The function (c logn)O(k) is bounded above by f(k)nO(1), where f is
a function of k only.

The following result is a consequence of a result in [9]:

Theorem 1. If cnf-sat is solvable in time 2o(n)mO(1), then W [1] = FPT ,
where n is the number of variables and m is the formula size.

Proof. Suppose that cnf-sat is solvable in time 2o(n)mO(1). We consider the
wcnf 2-sat

− problem. Since this problem is complete for W [1], it suffices to

show that it can be solved in time f(k)m
O(1)
1 where f is a function independent

of the circuit size m1. Note that since m1 = nO(1), where n is the number of
variables in the circuit (each gate at level-1 has fan-in at most 2), the problem
reduces to showing that wcnf 2-sat

− is solvable in time f(k)nO(1).
Let (C, k) be an instance of wcnf 2-sat

−, and note that the gates at level 1
in C are or gates, each of fan-in at most two. Let x1, . . . , xn be the input literals
toC. We will construct a circuitC′ fromC with k�logn� input variables, such that
C has a weight-k assignment if and only if C′ is satisfiable. The input variables in
C′ are divided into k blocks B1, . . . , Bk, where block Bi, i = 1, . . . , k, consists
of r = �logn� input variables z1i , . . . , z

r
i . Also, for every input variable zji , i ∈

{1, . . . , k}, j ∈ {1, . . . , r}, we associate the input literal zji to denote its negation.
Informally speaking, each block Bi will contain the encoding of an input variable
whose value is 1 in a weight-k assignment to C. We show how to connect the new
input variables and their negations to the level-1 or gates in C. Let g be a gate
at level-1 in C, and suppose that xp, xq, are connected to g. (We assume that g
has fan-in exactly two as the case when g has fan-in 1 is much easier to handle.)
Now xp is 1 if and only if xp is 0, if and only if none of the blocks Bi, i = 1, . . . , k
contains the binary representation of p. Thus, in C′ we will connect the new input
variables to g as follows. We introduce k new or gates g1p, . . . , g

k
p . Each gate gip,

i = 1, . . . , k, has exactly r inputs, and its input comes only from input variables
in block Bi and their negations. Informally speaking, each gate gip will be satisfied

Parameterized Complexity and Subexponential-Time Computability 169

if and only if block Bi does not contain the binary representation of p, and hence,
does not encode xp. Suppose that the binary representation of p is b1b2 . . . br. For
i = 1, . . . , k, the input to gip is determined as follows. For j = 1, . . . , r, if bj =

0, then connect zji to gip, and if bj = 1, then connect zji to gip. Now replace the

connection from xp to g by the connections from all gates gip, i = 1, . . . , k to an
and gate gp which feeds into g. We do the same for xq. Now gate g is equivalent

to gp ∨ gq, where gp =
∧k

i=1 g
i
p and gp =

∧k
i=1 g

i
q. By the distributive law, we can

write g =
∧

i,j=1,...,k(g
i
p∨giq), and the and gate in g can bemerged with the output

and gate of the circuit C. We repeat the above construction for every level-1 gate
in C. Since the gip’s and the giq’s for every level-1 gate g are or gates, the resulting
circuit is a two-level circuit, where the top level consists of or gates that all feed
into the single output and gate of C.

Now we can add enforcement circuitry to ensure that the k blocks encode
k distinct input variables. This can be simply achieved by adding a circuitry
consisting of

(
k
2

)
subcircuits, each subcircuit enforces that the two blocks that

feed into it are distinct. To do so, each subcircuit performs a bitwise xor opera-
tion to the corresponding variables in the two blocks. Since the number of input
variables to each subcircuit is O(log n), each subcircuit can be transformed into
a subcircuit in the CNF form in nO(1) time, whose output and gate can then be
merged with the output and gate of C.

LetC′ be the resulting circuit. Clearly,C′ has size nO(1) and can be constructed
in nO(1) time. Moreover, from the above discussion, we know that C′ consists of
two levels, where the top level consists only of or gates, and the bottom level con-
sists of the output and gate of the circuit. Since the k input blocks in C′ basically
encode the k input variables in C with value 1 in a weight-k assignment to C, it
is not difficult to verify that C has a weight-k truth assignment if and only if C′

is satisfiable. Now C′ is an instance of cnf-sat with k · r input variables. It fol-
lows that we can decide if C′ is satisfiable in time bounded by 2o(k logn)nO(1). By
Lemma 1, it follows that wcnf 2-sat

− is fixed-parameter tractable.

Using reductions to problem kernel, and some standard self reductions, Cai and
Juedes [9] were able to preclude the existence of subexponential-time parameter-
ized algorithms for several problems under the assumption that ETH holds (n is
the instance size, and k is the natural parameter in the corresponding problem):

Theorem 2 ([9]). The following problems can be solved in time 2o(k)nO(1) if
and only if ETH fails: vertex cover, max h-sat, Δ-vertex cover (the graph
has degree bounded by the constant Δ), Δ-independent set, and
Δ-dominating set.

Note that all the above problems can be solved in time 2O(k)nO(1). So assuming
ETH, the above theorem rules out the existence of significantly-better parame-
terized algorithms for those problems than the ones that are currently known.

Using kernelization, planarization techniques, and standard reductions, Cai
and Juedes [9] were able to extend the above lower bound results to planar
graphs:

170 J. Chen and I.A. Kanj

Theorem 3 ([9]). Unless ETH fails, the following problems cannot be solved in

time 2o(
√
k)nO(1): planar vertex cover, planar independent set, planar

dominating set, and planar red/blue dominating set.

Some of the results in the previous theorem can also be extended to bounded-
degree planar graphs [17] to obtain the same lower bounds.

The following theorem can be viewed as providing a partial converse to
Theorem 1, after noting that the statement that ETH fails is equivalent to
subexponential-time computability of 3-sat. This result is due to Downey and
Fellows [24]. The proof given here, which appears in [12], is different than the
original proof, since the original proof was a corollary of a more general result.

Theorem 4. If W [1] = FPT then the hypothesis ETH fails.

Proof. Since independent set is W[1]-complete under the fpt-reduction [24]
and vertex cover is complete for SNP under serf-reductions [31], it suffices
to show that if independent set is solvable in time f(k)nO(1) then vertex

cover is solvable in time 2o(k)nO(1). Assume that there is an algorithm A which
determines whether there exists an independent set of size k in a graph G with
n vertices in f(k)nO(1) time. We will show that the vertex cover problem
can be solved in time 2o(k)nO(1). Without loss of generality, we can assume that
the function f is nondecreasing, unbounded, and that f(k) ≥ 2k. Define f−1

by f−1(h) = max{q | f(q) ≤ h}. Since the function f is nondecreasing and
unbounded, the function f−1 is also nondecreasing and unbounded, and satisfies
f(f−1(h)) ≤ h. From f(k) ≥ 2k, we have f−1(h) ≤ log h.

Let (G = (V,E), k) be an instance of vertex cover. By the kernelization
result for vertex cover [16], we can assume that G has at most n ≤ 2k vertices.
We partition the n vertices of G into k′ = �f−1(k)� blocks B1, B2, . . . , Bk′ each
of size at most � n

	f−1(k)
�. (Without loss of generality, we shall assume that

�f−1(k)� ≥ 1.) Observe that G has a vertex cover of size k if and only if there
exists a way to partition k into k1, . . . , kk′ (i.e., k = k1+k2+ · · ·+kk′), and there

are subsets V ′
i ⊆ Bi, i = 1, . . . , k′ with |V ′

i | = ki, such that
⋃k′

i=1 V
′
i is a vertex

cover for G. Since |Bi| ≤ � n
	f−1(k)
�, this approach converts the single question

“does G have a vertex cover of size k?” into at most

(� n

�f−1(k)��)
k′

≤ (� 2k

�f−1(k)��)
	f−1(k)

≤ (2k)f
−1(k)

≤ 2log (2k)·f−1(k)

≤ 2log (2k)·log k = 2o(k)

more restrictive questions of the type “does G have a vertex cover V ′ of size
k = k1 + k2 + · · ·+ kk′ with |Bi ∩ V ′| = ki?”. Hence, we can determine whether
G has a vertex cover of size k by answering at most 2o(k) questions individually.

Parameterized Complexity and Subexponential-Time Computability 171

To answer each of the 2o(k) questions, we use the algorithm A for indepen-

dent set. Given G, k, and k1, . . . , kk′ such that k = k1 + k2 + · · · + kk′ , we
construct a graph G∗ = (V ∗, E∗) as follows. For each block of vertices Bi in G,
and for each subset Bij ⊆ Bi with |Bij | = ki, add a vertex vij to V ∗ if Bij is
a vertex cover of G(Bi) (the subgraph of G induced by Bi). Add edges to E∗

so that the collection of the vertices vij associated with block Bi, i = 1, . . . , k′,
forms a clique. In addition, for each vij , vkl ∈ V ∗, where i �= k, add the edge
(vij , vkl) to E∗ if Bij ∪ Bkl does not form a vertex cover for G(Bi ∪ Bk). This
completes the construction of G∗. To determine if G has a vertex cover of size k
with the properties mentioned above, it suffices to use algorithm A to determine
if G∗ has an independent set of size k′. We prove the correctness of this claim.

Assume that G∗ has an independent set I of size k′. Since G∗ has k′ disjoint
cliques, exactly one vertex from each set V ∗

i = {vij | vij ∈ V ∗} is in I. Let
V ′ = ∪vij∈IBij . Since |Bij | = ki, and at most one Bij is included in V ′, it
follows that |V ′ ∩ Bi| = ki, and |V ′| = k. Thus, it suffices to prove that V ′ is a
vertex cover of G. Let (u, v) ∈ E, and let u ∈ Bi and v ∈ Bk. If i = k, then it
must be the case that either u or v ∈ V ′. To see this, note that there exists a
vij ∈ I ⊆ V ∗, which means that Bij ⊆ V ′ by the definition of V ′. Since vij ∈ V ∗,
Bij is a vertex cover of G(Bi), and either u or v must be in Bij ⊆ V ′. Suppose
now that i �= k, and let vij , vkl be the two vertices in V ∗

i and V ∗
j , respectively,

that are in I. Then it must be the case that u ∈ Bij or v ∈ Bkl, otherwise
Bij ∪Bkl is not a vertex cover of G(Bi∪Bk), which would imply that there is an
edge between vij and vkl in G∗, contradicting the fact that I is an independent
set of G∗. It follows that either u or v is in V ′. This shows that V ′ is a vertex
cover of G. To prove the converse, assume that G has a vertex cover V ′ of size
k = k1 + k2 + · · ·+ kk′ with |Bi ∩ V ′| = ki. Let I = {vij | Bij = Bi ∩ V ′}. It is
clear that I ⊆ V ∗ and |I| = k′, since for each i, Bij has ki vertices and it is a
vertex cover of G(Bi). Furthermore, I is an independent set in G∗ because for
each vij , vkl ∈ I, (vij , vkl) �∈ E∗. This is true since Bij ∪Bkl = V ′ ∩ (Bi ∪Bk) is
a vertex cover of G(Bi ∪Bk).

Therefore, we can use algorithm A to determine whether G has a vertex cover
V ′ of size k = k1+k2+· · ·+kk′ , by checking whether G∗ has an independent set I

of size k′. The graph G∗ has at most N = 2
� 2k

�f−1(k)� � · k′ ≤ 2
� 2k

�f−1(k)� � · f−1(k) =
2o(k) vertices because |Bi| ≤ � 2k

	f−1(k)
�, and there are at most 2|Bi| possible

subsets Bij of size ki. Therefore, the time taken by applying the algorithm A to
the instance (G∗, k′) is of the order

f(k′)NO(1) ≤ f(f−1(k))NO(1) ≤ k ·NO(1) = 2o(k)nO(1)

after observing that NO(1) = 2o(k). Noting that the time needed to construct
G∗ is NO(1) = 2o(k), and that applying the kernelization algorithm for vertex
cover takes polynomial time in n, it follows that the vertex cover problem
can be solved in time nO(1)+2o(k) ·2o(k) ·nO(1) = 2o(k)nO(1). This completes the
proof.

In fact, Theorem 4 can be strengthened to the following result:

172 J. Chen and I.A. Kanj

Theorem 5. If the W [1]-complete problem wcnf 2-sat
− is solvable in time

f(k)mo(k), where m is the size of the input formula, then the hypothesis ETH
fails.

The interested readers are referred to [12, 14] for a detailed proof.

4 A General Framework

In this section, we present two generic results that establish certain relations be-
tween the parameterized complexity of weighted satisfiability problems and the
subexponential-time computability of their unweighted versions. Since weighted
satisfiability problems are complete for the W -hierarchy, this leads to a relation
between the subexponential-time computability of natural satisfiability problems
and the collapse of the W -hierarchy. In Section 6, we will present some appli-
cations of these results to obtain computational lower bounds on the parame-
terized complexity and on the approximation of natural problems. The results
are mainly due to the work in [12, 14], and can be viewed as generalizations and
strengthening of the results in the previous section.

We start with the following lemma, which will be used in the proof of the
next theorem:

Lemma 2. Let t ≥ 2 be an integer. There is an algorithm A1 that, for a given
integer r > 0, transforms each Πt-circuit C1 of n1 input variables and size m1

into an instance (C2, k) of wcs
∗[t], where k = �n1/r� and the Πt-circuit C2

has n2 = 2rk input variables and size m2 ≤ 2m1 + 22r+1k, such that C1 is
satisfiable if and only if (C2, k) is a yes-instance of wcs

∗[t]. The running time
of the algorithm A1 is bounded by O(m2

2).

Proof. Let k = �n1/r�. Divide the n1 input variables x1, . . . , xn1 of the Πt-
circuit C1 into k blocks B1, . . . , Bk, where block Bi consists of input variables
x(i−1)r+1, . . . , xir , for i = 1, . . . , k − 1, and block Bk consists of input variables
x(k−1)r+1, . . . , xn1 . Denote by |Bi| the number of variables in block Bi. Then

|Bi| = r, for 1 ≤ i ≤ k − 1, and |Bk| ≤ r. For an integer j, 0 ≤ j ≤ 2|Bi| − 1,
denote by bini(j) the length-|Bi| binary representation of j, which can also be
interpreted as an assignment to the variables in block Bi.

We construct a new set of input variables in k blocksB′
1, . . . , B

′
k. Each blockB′

i

consists of s = 2r variables zi,0, zi,1, . . ., zi,s−1. The Πt-circuit C2 is constructed
from the Πt-circuit C1 by replacing the input gates in C1 by the new input
variables in B′

1, . . . , B
′
k. We consider two cases.

Case 1. t is even. Then all level-1 gates in the Πt-circuit C1 are or gates. We
connect the new variables zi,j to these level-1 gates to construct the circuit C2

as follows. Let xq be an input variable in C1 such that xq is the h-th variable in
block Bi. If the positive literal xq is an input to a level-1 or gate g1 in C1, then
all positive literals zi,j in block B′

i such that 0 ≤ j ≤ 2|Bi| − 1 and the h-th bit
in bini(j) is 1 are connected to gate g1 in the circuit C2. If the negative literal

Parameterized Complexity and Subexponential-Time Computability 173

xq is an input to a level-1 or gate g2 in C1, then all positive literals zi,j in block
B′

i such that 0 ≤ j ≤ 2|Bi| − 1 and the h-th bit in bini(j) is 0 are connected to
gate g2 in the circuit C2.

Note that if the size |Bk| of the last block Bk in C1 is smaller than r, then
the above construction for block B′

k is only on the first 2|Bk| variables in B′
k,

and the last s − 2|Bk| variables in B′
k have no output edges, and hence become

“dummy variables”.
We also add an “enforcement” circuitry to the circuit C2 to ensure that every

satisfying assignment to C2 assigns the value 1 to at least one variable in each
block B′

i. This can be achieved by having an or gate for each block B′
i, whose

inputs are connected to all positive literals in block B′
i and whose output is an

input to the output gate of the circuit C2 (for block B′
k, the inputs of the or

gate are from the first 2|Bk| variables in B′
k). This completes the construction of

the circuit C2. It is easy to see that the circuit C2 is a monotone Πt-circuit (note
that t ≥ 2 and hence the enforcement circuitry does not increase the depth of
C2). Thus, (C2, k) is an instance of the problem wcs

+[t].
We verify that the circuit C1 is satisfiable if and only if the circuit C2 has

a satisfying assignment of weight k. Suppose that the circuit C1 is satisfied by
an assignment τ . Let τi be the restriction of τ to block Bi, 1 ≤ i ≤ k. Let ji
be the integer such that bini(ji) = τi. Then according to the construction of
the circuit C2, by setting zi,ji = 1 and all other variables in B′

i to 0, we can
satisfy all level-1 or gates in C2 whose corresponding level-1 or gates in C1 are
satisfied by the assignment τi. Doing this for all blocks Bi, 1 ≤ i ≤ k, gives a
weight-k assignment τ ′ to the circuit C2 that satisfies all level-1 or gates in C2

whose corresponding level-1 or gates in C1 are satisfied by τ . Since τ satisfies
the circuit C1, the weight-k assignment τ ′ satisfies the circuit C2.

Conversely, suppose that the circuit C2 is satisfied by a weight-k assignment
τ ′. Because of the enforcement circuitry in C2, τ

′ assigns the value 1 to exactly
one variable in each block B′

i (in particular, in block B′
k, this variable must be

one of the first 2|Bk| variables in B′
k). Now suppose that in block B′

i, τ
′ assigns

the value 1 to the variable zi,ji . Then we set an assignment τi to the block Bi

in C1 such that τi = bini(ji). By the construction of the circuit C2, the level-1
or gates satisfied by the variable zi,ji = 1 are all satisfied by the assignment τi.
Therefore, if we make an assignment τ to the circuit C1 such that the restriction
of τ to block Bi is τi for all i, then the assignment τ will satisfy all level-1 or

gates in C1 whose corresponding level-1 or gates in C2 are satisfied by τ ′. Since
τ ′ satisfies the circuit C2, we conclude that the circuit C1 is satisfiable.

This completes the proof that when t is even, the circuit C1 is satisfiable if
and only if the constructed pair (C2, k) is a yes-instance of wcs

+[t].

Case 2. t is odd. Then all level-1 gates in the Πt-circuit C1 are and gates. We
connect the new variables zi,j to these level-1 gates to construct the circuit C2

as follows. Let xq be an input variable in C1 and be the h-th variable in block
Bi. If the positive literal xq is an input to a level-1 and gate g1 in C1, then all
negative literals zi,j in block B′

i such that 0 ≤ j ≤ 2|Bi| − 1 and the h-th bit in
bini(j) is 0 are inputs to gate g1 in C2. If the negative literal xq is an input to

174 J. Chen and I.A. Kanj

a level-1 and gate g2 in C1, then all negative literals zi,j in block B′
i such that

0 ≤ j ≤ 2|Bi| − 1 and the h-th bit in bini(j) is 1 are inputs to gate g2 in C2.
For the last s − 2|Bk| variables in the last block B′

k in C2, we connect the
negative literals zk,j , 2

|Bk| ≤ j ≤ s − 1, to the output gate of the circuit C2

(thus, the variables zk,j , 2
|Bk| ≤ j ≤ s− 1, are forced to have the value 0 in any

satisfying assignment to C2).
An enforcement circuitry is added to C2 to ensure that every satisfying as-

signment to C2 assigns the value 1 to at most one variable in each block B′
i. This

can be achieved as follows. For every two distinct negative literals zi,j and zi,h
in B′

i, 0 ≤ j, h ≤ 2|Bi|− 1, add an or gate gj,h. Connect zi,j and zi,h to gi,h and
connect gi,h to the output and gate of C2. This completes the construction of
the circuit C2. The circuit C2 is an antimonotone Πt-circuit (again the enforce-
ment circuitry does not increase the depth of C2). Thus, (C2, k) is an instance
of the problem wcs

−[t].
We verify that the circuit C1 is satisfiable if and only if the circuit C2 has a

satisfying assignment of weight k. Suppose that the circuit C1 is satisfied by an
assignment τ . Let τi be the restriction of τ to block Bi, 1 ≤ i ≤ k. Let ji be the
integer such that bini(ji) = τi. Consider the weight-k assignment τ ′ to C2 that
for each i assigns zi,ji = 1 and all other variables in B′

i to 0. We show that τ ′

satisfies the circuit C2. Let g1 be a level-1 and gate in C1 that is satisfied by
the assignment τ . Since C2 is antimonotone, all inputs to g1 in C2 are negative
literals. Since all negative literals except zi,ji in block B′

i have the value 1, we
only have to prove that no zi,ji from any block B′

i is an input to g1. Assume to
the contrary that zi,ji in block B′

i is an input to g1. Then by the construction
of the circuit C2, there is a variable xq that is the h-th variable in block Bi such
that either xq is an input to g1 in C1 and the h-th bit of bini(ji) is 0, or xq is an
input to g1 in C1 and the h-th bit of bini(ji) is 1. However, by our construction
of the index ji from the assignment τ , if the h-th bit of bini(ji) is 0 then τ assigns
xq = 0, and if the h-th bit of bini(ji) is 1 then τ assigns xq = 1. In either case, τ
would not satisfy the gate g1, contradicting our assumption. Thus, for all i, no
zi,ji is an input to the gate g1, and the assignment τ ′ satisfies the gate g1. Since
g1 is an arbitrary level-1 and gate in C2, we conclude that the assignment τ ′

satisfies all level-1 and gates in C2 whose corresponding gates in C1 are satisfied
by the assignment τ . Since τ satisfies the circuit C1, the weight-k assignment τ ′

satisfies the circuit C2.
Conversely, suppose that the circuit C2 is satisfied by a weight-k assignment

τ ′. Because of the enforcement circuitry in C2, the assignment τ ′ assigns the
value 1 to exactly one variable in each block B′

i (in particular, this variable in
block B′

k must be one of the first 2|Bk| variables in B′
k since the last s − 2|Bk|

variables in B′
k are forced to have the value 0 in the satisfying assignment τ ′).

Suppose that in block B′
i, τ

′ assigns the value 1 to the variable zi,ji . Then we set
an assignment τi = bini(ji) to block Bi in C1. Let τ be the assignment whose
restriction on block Bi is τi. We prove that τ satisfies the circuit C1. In effect, if a
level-1 and gate g2 in C2 is satisfied by the assignment τ ′, then no negative literal
zi,ji is an input to g2. Suppose that g2 is not satisfied by τ in C1, then either a

Parameterized Complexity and Subexponential-Time Computability 175

positive literal xq is an input to g2 and τ assigns xq = 0, or a negative literal xq

is an input to g2 and τ assigns xq = 1. Let xq be the h-th variable in block Bi. If
τ assigns xq = 0 then the h-th bit in bini(ji) is 0. Thus, xq cannot be an input
to g2 in C1 because otherwise by our construction the negative literal zi,ji would
be an input to g2 in C2. On the other hand, if τ assigns xq = 1 then the h-th
bit in bini(ji) is 1, thus, xq cannot be an input to g2 in C1 because otherwise
the negative literal zi,ji would be an input to g2 in C2. This contradiction shows
that the gate g2 must be satisfied by the assignment τ . Since g2 is an arbitrary
level-1 and gate in C2, we conclude that the assignment τ satisfies all level-1
and gates in C1 whose corresponding level-1 and gates in C2 are satisfied by
the assignment τ ′. Since τ ′ satisfies the circuit C2, the assignment τ satisfies the
circuit C1 and hence the circuit C1 is satisfiable.

This completes the proof that when t is odd, the Πt-circuit C1 is satisfiable
if and only if the pair (C2, k) is a yes-instance of wcs

−[t].
Summarizing the above discussion, we conclude that for any t ≥ 2, from a

Πt-circuit C1 of n1 input variables and size m1, we can construct an instance
(C2, k) of the problem wcs

∗[t] such that C1 is satisfiable if and only if (C2, k)
is a yes-instance of wcs

∗[t]. Here k = �n1/r�, and C2 has n2 = 2rk input
variables and size m2 ≤ m1 + n2 + k + k22r ≤ 2m1 + k22r+1 (where the term
k + k22r is an upper bound on the size of the enforcement circuitry). Finally,
it is straightforward to verify that the pair (C2, k) can be constructed from the
circuit C1 in time O(m2

2).

Theorem 6. Let t ≥ 2 be an integer. For any function f , if the problem wcs
∗[t]

is solvable in time f(k)no(k)mO(1), then the problem sat[t] can be solved in time
2o(n)mO(1).

Proof. Suppose that there is an algorithm Mwcs of running time bounded by
f(k)nk/λ(k)p(m) that solves the problem wcs

∗[t], where λ(k) is a nondecreasing
and unbounded function and p is a polynomial. Without loss of generality, we can
assume that the function f is nondecreasing, unbounded, and that f(k) ≥ 2k.
Define f−1 by f−1(h) = max{q | f(q) ≤ h}. Since the function f is nondecreasing
and unbounded, the function f−1 is also nondecreasing and unbounded, and
satisfies f(f−1(h)) ≤ h. From f(k) ≥ 2k, we have f−1(h) ≤ log h.

Now we solve the problem sat[t] as follows. For an instance C1 of sat[t],
where C1 is a Πt-circuit of n1 input variables and size m1, we set the integer
r = �3n1/f

−1(n1)�, and call the algorithm A1 in Lemma 2 to convert C1 into
an instance (C2, k) of the problem wcs

∗[t]. Here k = �n1/r�, C2 is a Πt-circuit
of n2 = 2rk input variables and size m2 ≤ 2m1 + 22r+1k, and the algorithm
A1 takes time O(m2

2). According to Lemma 2, we can determine if C1 is a yes-
instance of sat[t] by calling the algorithm Mwcs to determine if (C2, k) is a
yes-instance of wcs

∗[t]. The running time of the algorithm Mwcs on (C2, k) is

bounded by f(k)n
k/λ(k)
2 p(m2). Combining all above we get an algorithm Msat

of running time f(k)n
k/λ(k)
2 p(m2) + O(m2

2) for the problem sat[t]. We analyze
the running time of the algorithm Msat in terms of the values n1 and m1.

176 J. Chen and I.A. Kanj

Since k = �n1/r� ≤ f−1(n1) ≤ logn1,
2 we have f(k) ≤ f(f−1(n1)) ≤ n1.

Moreover,

k = �n1/r� ≥ n1/r ≥ n1/(3n1/f
−1(n1)) = f−1(n1)/3.

Therefore if we set λ′(n1) = λ(f−1(n1)/3), then λ(k) ≥ λ′(n1). Since both λ and
f−1 are nondecreasing and unbounded, λ′(n1) is a nondecreasing and unbounded
function of n1. We have (note that k ≤ f−1(n1) ≤ logn1),

n
k/λ(k)
2 = (k2r)k/λ(k) ≤ kk2kr/λ(k) ≤ kk23kn1/(λ(k)f

−1(n1)) ≤ kk23n1/λ(k)

≤ kk23n1/λ
′(n1) = 2o(n1).

Finally, consider the factor m2. Since f−1 is nondecreasing and unbounded,

m2 ≤ 2m1 + k22r+1 ≤ 2m1 + 2 logn12
6n1/f

−1(n1) = 2o(n1)m1.

Therefore, both terms p(m2) and O(m2
2) in the running time of the algorithm

Msat are bounded by 2o(n1)p′(m1) for a polynomial p′. Combining all these, we

conclude that the running time f(k)n
k/λ(k)
2 p(m2) + O(m2

2) of Msat is bounded
by 2o(n1)p′(m1) for a polynomial p′. Hence, the problem sat[t] can be solved in
time 2o(n)mO(1). This completes the proof of the theorem.

The following corollary follows directly from the above theorem, and can be seen
as as a generalization of Theorem 4 to higher levels of the W -hierarchy and the
satisfiability problem. This result is due to Abrahamson et al. [1], and to Downey
and Fellows [24]:

Corollary 1. Let t ≥ 2 be an integer. If W [t] = FPT then the problem sat[t]
can be solved in time 2o(n)mO(1).

In fact, Theorem 6 remains valid even if we restrict the parameter values to be
bounded by an arbitrarily small function, as shown in the following theorem,
whose proof is omitted and can be found in [14]:

Theorem 7. Let t ≥ 2 be an integer, and μ(n) a nondecreasing and unbounded
function. If for a function f , the problemwcs

∗[t] is solvable in time f(k)no(k)mO(1)

for parameter values k ≤ μ(n), then the problem sat[t] can be solved in time
2o(n)mO(1).

The following theorem can be viewed as a generalization of Theorem 1:

Theorem 8. For any t ≥ 2, if sat[t] can be solved in time 2o(n)h(m) for some
polynomial h, then W [t− 1] = FPT .

2 Without loss of generality, we assume that in our discussions, all values under the
ceiling function “
·�” and the floor function “�·” are greater than or equal to 1.
Therefore, we will always assume the inequalities
β� ≤ 2β and �β ≥ β/2 for any
value β.

Parameterized Complexity and Subexponential-Time Computability 177

Proof. If t = 2, the theorem states that if cnf-sat can be solved in time
2o(n)h(m) then W [1] = FPT . This is basically the result in Theorem 1, which
was proved in the previous section. Thus, we can assume that t ≥ 3. Suppose
that sat[t] is solvable in time 2o(n)h(m). Then there exists an unbounded non-
decreasing function s(n) such that sat[t] can be solved in time bounded by
2n/s(n)h(m). We distinguish two cases based on the parity of t.

Case 1. t is odd. We consider the wcs
+[t − 1] problem. Since this problem is

complete for W [t − 1], it suffices to show that this problem can be solved in
time f(k)h′(m) where f is a function independent of the circuit size m, and h′

is a polynomial. Let (C, k) be an instance of wcs
+[t− 1], where C has n input

variables and size m. Since t−1 is even, the gates at level 1 in C are or gates. Let
x1, . . . , xn be the input variables to C. We will construct a circuit C′ from C with
k�logn� input variables, such that C has a weight k assignment if and only if C′ is
satisfiable. The input variables in C′ are divided into k blocks B1, . . . , Bk, where
block Bi, i = 1, . . . , k, consists of r = �logn� input variables z1i , . . . , z

r
i . Also,

for every input variable zji , i ∈ {1, . . . , k}, j ∈ {1, . . . , r}, we associate the input

literal zji to denote its negation. Informally speaking, each block Bi will contain
the encoding of an input variable whose value is 1 in a weight-k assignment to C.
We show how to connect the new input variables and their negations to the level-
1 or gates in C. Let g be a level-1 or gate in C. Let xp be an input to g, and let
b1b2 . . . br be the binary representation of the number p (if there are fewer than r
bits in the binary representation of p, we pad the binary representation of p with
the appropriate number of 0’s on the left to make it consist of exactly r bits).
We introduce k new and gates g1p, . . . , g

k
p . Each gate gip, i = 1, . . . , k, has exactly

r inputs, and its input comes only from input variables in block Bi and their
negations. Informally speaking, each gate gip will be satisfied if and only if block
Bi contains the binary representation of p, and hence, encodes xp. The input to

gate gip is determined as follows. For j = 1, . . . , r, if bj = 0, then connect zji to

gip, and if bj = 1, then connect zji to gip. Now replace the connection from xp to g

by the connections from all gates gip, i = 1, . . . , k, to g. We repeat this process for
every level-1 gate g in C and every input variable in {x1, . . . , xn} to g. Clearly,
this construction only adds a single level to the circuit C consisting of and

gates, and hence, the resulting circuit is a Πt circuit. We also add enforcement
circuitry to ensure that the k blocks Bi, i = 1, . . . , k, encode distinct k variables.
This can be simply achieved by adding a circuitry that performs a bitwise xor

operation to the corresponding variables in every two blocks, which can be done
by adding a 3-level and-of-or-of-and subcircuits to every two blocks (note that
the last and can be merged with the output and gate of the circuit if t = 3).
Clearly, the resulting circuit is still a Πt-circuit. Moreover, the size of C is
only increased by a polynomial factor in its original size. Let C′

F be the circuit
resulting from this construction. From the above discussion we know that C′ is
a Πt-circuit of size h

′(m) for some polynomial h′. Since the k input blocks in C′

basically encode the k input variables in C with value 1 in a weight-k assignment
to C, it is not difficult to verify that C has a weight-k truth assignment if

178 J. Chen and I.A. Kanj

and only if C′ is satisfiable. Now C′ is an instance of sat[t] with kr input
variables. It follows that we can decide if C′ is satisfiable in time bounded by
T (n) = 2kr/s(kr)h(h′(m)) = 2k�log n�/s(k�log n�)h(h′(m)) ≤ 2k(logn+1)/s′(n)h′′(m),
for some unbounded non-decreasing function s′(n), and some polynomial h′′.
Thus T (n) ∈ 2o(logn)kh′′(m), and wcs

+[t− 1] is solvable in time 2o(logn)kh′′(m)
for some polynomial h′′. It follows that wcs

+[t− 1] is fixed parameter tractable
(see Lemma 1), and hence, W [t− 1] = FPT .

Case 2. t is even, and hence t − 1 ≥ 3 is odd. We consider the wcs
−[t − 1]

problem, which is complete for W [t − 1]. The proof proceeds in a very similar
fashion to the proof of Case 1 above. Let (C, k) be an instance of wcs

−[t− 1],
and note that the gates at level 1 in C are and gates. Let x1, . . . , xn be the
input literals to C, and let r and Bi, i = 1, . . . , k, be as defined above. Again,
block Bi will be used to encode the indices of the input variables in C that are
set to 1 in a weight-k assignment to C. Let g be a gate at level-1 in C, and
suppose that xp, where p ∈ {1, . . . , n}, is connected to g. Now xp is 1 if and only
if xp is 0, if and only if none of the blocks Bi, i = 1, . . . , k contains the binary
representation of p. Thus, in C′ we will connect the new input variables to g as
follows. We introduce k new or gates g1p, . . . , g

k
p . Each gate gip, i = 1, . . . , k, has

exactly r inputs, and its input comes only from input variables in block Bi and
their negations. Informally speaking, each gate gip will be satisfied if and only if
block Bi does not contain the binary representation of p, and hence, does not
encode xp. Suppose the binary representation of p is b1b2 . . . br. For i = 1, . . . , k,
the input to gip is determined as follows. For j = 1, . . . , r, if bj = 0, then connect

zji to gip, and if bj = 1, then connect zji to gip. Now replace the connection from

xp to g by the connections from all gates gip, i = 1, . . . , k to g, and repeat that
for every level-1 gate in C and every original input literal to that gate. This adds
an or-level to C, thus increasing the number of levels in C by 1, and resulting
in a Πt-circuit. Now we can add the enforcement circuitry to ensure that all k
blocks encode k distinct input variables. This can be simply achieved by adding
a circuitry that performs a bitwise xor operation to the corresponding variables
in every two blocks. The resulting circuitry that tests that no two blocks are the
same can be implemented by an or-of-and-of-and-of-or subcircuit (the last
and gate can be identified with the output gate of C if t = 4). Since t ≥ 4, the
resulting circuit C′ is a Πt-circuit whose size is not more than a polynomial in
the size of C. The proof from this point on proceeds in exactly the same fashion
as in Case 1 above.

It follows that W [t− 1] = FPT . This completes the proof.

5 The Miniaturization Classes

As we have seen in the previous section, the subexponential-time computabil-
ity of the satisfiability problem on circuits of depth t, for t ≥ 2, implies the
fixed-parameter tractability of the class W [t − 1], and is implied by the fixed-
parameter tractability of the class W [t]. Also, the failure of the ETH hypothesis

Parameterized Complexity and Subexponential-Time Computability 179

is implied by the fixed-parameter tractability of the class W [1]. One may nat-
urally ask whether the subexponential-time computability of these satisfiability
problems, and also of other important NP-hard problems, is equivalent to the
fixed-parameter tractability of some parameterized problems. In particular, is
the hypothesis ETH equivalent to the fixed-parameter intractability of a partic-
ular parameterized problem?

The problem was initially considered in [9]. Downey et al. [23] formally
proposed a process, named parameterized miniaturization, that establishes the
equivalence between the subexponential-time computability of problems and the
fixed-parameter tractability of their corresponding miniaturized parameterized
problems. To describe this process, we need to be more careful in the use of
the “size” of problem instances. Note that this had not been a problem for
polynomial-time computation because any reasonable choice of instance size is
polynomially related to the length of a reasonable encoding of the instance, and
polynomial-time computation is robust for these variations. On the other hand,
when we study subexponential-time computation, we implicitly allow only linear
changes in the metric based on which the complexity of the computation is mea-
sured. Therefore, we have to be very careful in the use of certain conventional
metrics for instance size, such as the number of Boolean variables in a satisfi-
ability problem and the number of vertices in a graph. For example, if we use
the number n of variables as a metric in the cnf-sat problem, then cnf-sat is
certainly not solvable in subexponential-time in terms of n (i.e., in time 2o(n))
because the length of any encoding of an instance can be 2Ω(n). On the other
hand, if we use the length l of a binary encoding of an instance of n variables and
m clauses of cnf-sat as the metric, then, because l ≥ (n+m) logn, cnf-sat can
be obviously solved in subexponential-time in l: a simple brute-force algorithm
takes time O(2nnm logn) = 2o(l).

In the following discussion, we shall assume that we use a “natural” size for
the problem instances. In particular, the size of a circuit will be the number
of input variables plus the number of links in the circuit, the size of a Boolean
formula will be the number of occurrences of literals in the formula, and the size
of a graph is the number of its vertices plus the number of its edges.

We first consider the 3-sat problem in terms of the size s of the input formula.
The miniaturization process of the 3-sat problem gives the following parame-
terized problem:

mini(3-sat):
Given nonnegative integers m and k in unary, and an instance F of size
bounded by k logm for 3-sat, where k is the parameter, decide if F is
satisfiable.

The following theorem follows from a similar proof by Downey et al. [23] for
circuit satisfiability:

Theorem 9 ([23]). The parameterized problem mini(3-sat) is fixed parameter
tractable if and only if the 3-sat problem is solvable in subexponential time, i.e.,
in time 2o(s), where s is the formula size.

180 J. Chen and I.A. Kanj

Proof. Suppose that 3-sat is solvable in time 2o(s) by an algorithm A. Given an
instance (F,m, k) of mini(3-sat), where the Boolean formula F has size bounded
by s = k logm, we simply invoke the algorithm A on the formula F to decide, in
time 2o(s) = 2o(k logm), whether F is satisfiable or not. By Lemma 1, this shows
that mini(3-sat) is fixed-parameter tractable.

Conversely, suppose that mini(3-sat) is fixed parameter tractable, and hence
is solvable by an algorithm A′ in time f(k)|x|O(1), where f is a computable
function of k, and |x| = O(km) is the length of (any reasonable encoding of)
the instance x = (F,m, k) of mini(3-sat). Without loss of generality, we can
assume that f(k) ≥ k for all k and that f is a strictly increasing function, from
which we derive that the inverse function f−1 is well-defined and unbounded,
and satisfies the condition f−1(n) ≤ n. For an instance F ′ of size s for the
3-sat problem, let k = f−1(s) and m = 2s/k, and consider the instance x =
(F ′,m, k) of mini(3-sat) (note that the size of F ′ is s = k logm, and that

|x| = O(m + k + s log s) = O(2s/f
−1(s)s2). By invoking the algorithm A′ on

(F ′,m, k), we can decide whether F ′ is satisfiable or not in time

f(k)|x|O(1) = sO(1)2O(s/f−1(s)) = 2o(s),

where the last equality holds true because f−1 is a non-decreasing and un-
bounded function. This proves that 3-sat can be solved in time 2o(s), and hence,
completes the proof of the theorem.

The 3-sat problem measured by formula size is complete for the class SNP un-
der serf-reductions, in the sense that if 3-sat is solvable in subexponential time,
then all problems in SNP are solvable in exponential time [30]. As mentioned
before, there is a large number of important NP-hard problems that are com-
plete for the class SNP under the serf-reduction, including the 3-sat problem
measured by the number of input variables. Therefore, the ETH hypothesis is
equivalent to the statement that the 3-sat problem measured by formula size is
not subexponential-time solvable. This, combined with Theorem 9, gives us:

Theorem 10 ([23]). The hypothesis ETH fails if and only if the parameterized
problem mini(3-sat) is fixed-parameter tractable.

The parameterized miniaturization process on SNP-complete problems under the
serf-reduction enables the discovery of a class of parameterized problems whose
fixed parameterized tractability is equivalent to the failure of the ETH hypothe-
sis, for which the mini(3-sat) problem is a typical representative. Based on this
observation, Downey et al. [23] introduced a new parameterized class M [1] that
consists of all parameterized problems that are fpt-reducible to the mini(3-sat)

problem. In particular, the fixed parameter tractability of any M [1]-complete
problem (under the fpt-reduction) is equivalent to the failure of the ETH hy-
pothesis. The following are some examples of M [1]-complete problems, obtained
based on the parameterized miniaturization process on “size-constrained” SNP-
complete problems under serf-reductions [30]:

Parameterized Complexity and Subexponential-Time Computability 181

mini(circ-sat):
Given nonnegative integers k and m in unary, and a circuit C of size
bounded by k logm, where k is the parameter, decide if C is satisfiable.
mini(is):
Given nonnegative integers k and m in unary, a graph G of size bounded
by k logm, and a parameter r, decide if G have an independent set of at
least r vertices.
mini(vc):
Given nonnegative integers k and m in unary, a graph G of size bounded
by k logm, and a parameter r, decide if G have a vertex cover of at most
r vertices.

The class M [1] has the following relationships with the existing parameterized
classes:

Theorem 11 ([23]). FPT ⊆M [1] ⊆W [1].

Although the work of Cai and Juedes [9] implicitly hinted at the following result
without reference to the class M [1], the result was explicitly stated in Downey
et al. [23], and follows from Theorem 10:

Theorem 12 ([23]). FPT = M [1] if and only if 3-sat is solvable in time 2o(n),
where n is the number of variables in the input formula, and if and only if the
hypothesis ETH fails.

Theorem 12 provides a nice and precise characterization of the subexponential-
time computability of many SNP-complete problems (under the serf-reduction)
in terms of the fixed-parameter tractability of their corresponding miniaturized
parameterized problems. However, there are still other important satisfiability
problems, whose subexponential-time computability cannot be characterized by
the theorem. Observing this, Chen, Flum, and Grohe have further considered the
parameterized miniaturization process and derived the equivalence between the
subexponential-time computability of problems and the fixed-parameter tractabil-
ity of their corresponding miniaturized parameterized problems, for higher levels
of the W -hierarchy [19–21, 25]. To describe this extension, we have to be further
more careful with the notation of the instance size onwhich the exponential part in
the computational complexity of a problem Q is measured. Typically, the search-
size ν(x) of an instance x of Q is referred to the cardinality of a universal set U of
which the instance x seeks a subset as its solution, and the length |x| of x is the
length of any reasonable encoding of the instance x. Thus, the computational com-
plexity of the problemQ is measured by a function of the two metrics ν(x) and |x|.
Note that in the above case, a simple enumeration algorithm of the subsets of the
universal set U solves the problem in time 2ν(x)|x|O(1). We say that the problem
Q is solvable in subexponential-time if it can be solved in time 2o(ν(x))|x|O(1).

For two integers t ≥ 1 and d ≥ 1, let us call a circuit C a Πt,d-circuit if C is a
Πt+1-circuit in which the fan-in of each gate in level-1 is bounded by the integer
constant d. Consider the satisfiability problem Πt,d-sat, which for a given Πt,d-
circuit C, asks if C is satisfiable. Chen and Grohe [21] introduced the following
miniaturized problems:

182 J. Chen and I.A. Kanj

mini(Πt,d-sat):
Given an instance C ofΠt,d-sat, with a parameter k = �n/ logm�, where
m is the size of C and n is the number of variables in C, decide if C is
satisfiable.

We have the following theorem:

Theorem 13 ([21]). For all t ≥ 1, the satisfiability problem Πt,d-sat is
subexponential-time solvable if and only if the parameterized problem mini(Πt,d-

sat) is fixed-parameter tractable.

Similar to the definition of the classM [1], we can define new miniaturized classes
of parameterized problems based on the fpt-reduction:

Definition 1. For each integer t ≥ 2, let M [t] be the class of all parameterized
problems that are fpt-reducible to the problem mini(Πt,d-sat) for some constant
d ≥ 1.

Similar to Theorem 11, we obtain:

Theorem 14 ([21]). For all t ≥ 2, we have W [t− 1] ⊆M [t] ⊆W [t].

The hierarchy
⋃

t≥1 M [t] is called theM -hierarchy, which, by Theorem 14, refines
the W -hierarchy:

FPT ⊆M [1] ⊆W [1] ⊆ · · · ⊆M [t− 1] ⊆W [t− 1] ⊆M [t] ⊆W [t] · · ·

This study has also motivated the introduction of the following classification in
nonparameterized problems that are solvable in exponential time.

Definition 2. For t ≥ 1, let S[t] be the class consisting of all the problems that
are serf-reducible to the problem Πt,d-sat, for some constant d ≥ 1.

For each t ≥ 1, the parameterized class M [t] is the image of the nonparame-
terized class S[t] under the miniaturization mapping. The hierarchy

⋃
t≥1 S[t] is

called the S-hierarchy. The miniaturization process serves as a very nice mapping
from nonparameterized problems solvable in exponential time to parameterized
problems. More specifically, it maps an equivalence class E1 of exponential-time
solvable problems (under the serf-reduction) to an equivalence class E2 of param-
eterized problems (under the fpt-reduction) such that E1 is subexponential-time
solvable if and only if E2 is fixed parameter tractable. In particular, this map-
ping induces an “isomorphism” between the S-hierarchy, a nonparameterized
complexity class, and the M -hierarchy, a parameterized complexity class [21].

6 Computational Lower Bounds

Theorem 5 shows that if the W [1]-complete problem wcnf 2-sat
− is solvable

in time f(k)mo(k), then ETH fails. Theorem 6 states that for any t ≥ 2, if
the W [t]-complete problem wcs

∗[t] is solvable in time f(k)no(k)mO(1) then the

Parameterized Complexity and Subexponential-Time Computability 183

satisfiability problem sat[t] can be solved in subexponential time. Note that
the assumptions in these theorems are weaker than that of collapsing the W -
hierarchy. On the other hand, they specify more detailed computational time
bounds for the problems. Because of the hypothesis ETH, subexponential-time
algorithms for 3-sat and sat[t] for all t ≥ 2 are unlikely. In this sense, Theorems
5 and 6 offer convincing lower bounds on the parameterized complexity for prob-
lems that are hard or complete for each level in the W -hierarchy. Interestingly
enough, this line of research also implies lower bounds on computational com-
plexity of approximation algorithms for several NP-hard optimization problems.
In this section, we shall discuss recent developments in this line of research.

6.1 Lower Bounds on Parameterized Complexity

To discuss lower bounds for parameterized problems, we again need a more
careful description of problem instances. For example, the wcs

∗[t] problem now
has three different metrics for each of its instance (C, k): the length m of the
instance (C, k), the parameter k, and the search-size n that is the number of
input variables in C. We have seen from the previous section that, unless unlikely
collapses occur in parameterized complexity theory, the problemswcs

∗[t] require
computational time f(k)nΩ(k)p(m), for any polynomial p and any function f .
The dominating term in the time bound depends on the search-size n and the
parameter k, instead of the instance length m.

Many well-known NP-hard problems have similar formulations. We list some
of them here:

weighted cnf-sat (abbreviated wcnf-sat):
Given a CNF formula F , and an integer k, decide if there is an assign-
ment of weight k that satisfies the formula F . Here the search-size is the
number of input variables in F .

set cover:
Given a collection F of subsets in a universal set U , and an integer k,
decide whether there is a subcollection of k subsets in F whose union is
equal to U . Here the search-size is the cardinality of the collection F .

hitting set:
Given a collection F of subsets in a universal set U , and an integer k,
decide if there is a subset S of k elements in U such that S intersects
every subset in F . Here the search-size is the cardinality of the universal
set U .

Many parameterized problems share the property that they seek a subset of k
elements in a set of search-size n satisfying certain properties. In most of the
problems that we consider, the search space can be easily identified. For example,
for the problems independent set and clique, the search space is the vertex
set. Thus, each instance of a parameterized problems is associated with a triple
(k, n,m), where k is the parameter, n is the search-size of the instance, and m

184 J. Chen and I.A. Kanj

is the length (of any reasonable encoding) of the instance. We will call such an
instance a (k, n,m)-instance.

Theorems 5 and 6 suggest that the W [1]-complete problem wcnf 2-sat
−

and the W [t]-complete problem wcs
∗[t] for t ≥ 2 seem to have very high pa-

rameterized complexity. In the following, we introduce a new reduction to iden-
tify problems in the corresponding classes that are at least as difficult as these
problems.

Definition 3. A parameterized problem Q is linearly fpt-reducible (shortly fptl-
reducible) to a parameterized problem Q′ if there exist a function f and an al-
gorithm A such that on each (k, n,m)-instance x of Q, the algorithm A pro-
duces, in time f(k)no(k)mO(1), a (k′, n′,m′)-instance x′ of Q′, where k′ = O(k),
n′ = nO(1), m′ = mO(1), and x is a yes-instance of Q if and only if x′ is a
yes-instance of Q′.

The fptl-reduction naturally introduces the hardness of parameterized
problems.

Definition 4. A parameterized problem Q1 is W [1]-hard under the linear fpt-
reduction, shortly Wl[1]-hard, if the problem wcnf 2-sat

− is fptl-reducible to
Q1. A parameterized problem Qt is W [t]-hard under the linear fpt-reduction,
shortly Wl[t]-hard, for t ≥ 2 if the problem wcs

∗[t] is fptl-reducible to Qt.

Based on the above definitions and using Theorem 5 and Theorem 6, we imme-
diately derive:

Theorem 15. For t ≥ 2, no Wl[t]-hard parameterized problem can be solved in
time f(k)no(k)mO(1) for a function f , unless the problem sat[t] is solvable in
time 2o(n)mO(1), which implies the collapsing W [t− 1] = FPT .

Theorem 16. No Wl[1]-hard parameterized problem can be solved in time
f(k)mo(k) for a function f , unless the ETH hypothesis fails, which is equivalent
to the collapsing M [1] = FPT .

In fact, many known fpt-reductions on parameterized problems proposed in the
literature are fptl-reductions, or can be modified to become fptl-reductions. Us-
ing these fptl-reductions, we can immediately derive computational lower bounds
for a large number of parameterized problems.

Theorem 17. The following parameterized problems are Wl[2]-hard: wcnf-sat,
set cover, hitting set, and dominating set. Thus, unless the problem
sat[2] is solvable in time 2o(n)mO(1), none of them can be solved in time
f(k)no(k)mO(1) for any function f .

To consider Wl[1]-hard problems, define wcnf h-sat, where h > 0 is a fixed
integer, to be the parameterized problem consisting of the pairs (F, k), where F
is a CNF formula in which each clause is a disjunction of at most h literals and
F has a satisfying assignment of weight k.

Parameterized Complexity and Subexponential-Time Computability 185

Theorem 18. The following problems are Wl[1]-hard: wcnf h-sat for any in-
teger h ≥ 2, clique, and independent set. Thus, unless the ETH hypothesis
fails, none of them can be solved in time f(k)mo(k) for any function f .

Each of the problems in Theorem 17 and Theorem 18 can be solved by a trivial
brute-force algorithm of running time cnkm2, where c is an absolute constant,
which simply enumerates all possible subsets of k elements in the search space. A
lot of research has sought new approaches to improve this trivial upper bound.
One of the common approaches is to apply a more careful branch-and-bound
search process trying to optimize the manipulation of local structures before
each branch. Continuously improved algorithms for these problems have been
developed based on improved local structure manipulations. It has even been
proposed to automate the manipulation of local structures [40] in order to further
improve the computational time.

Theorem 17 and Theorem 18, however, provide strong evidence that the power
of this approach is quite limited in principle. The lower bound
f(k)nΩ(k)p(m) for the problems in Theorem 17 and the lower bound f(k)mΩ(k)

for the problems in Theorem 18, where f can be any function and p can be any
polynomial, indicate that no local structure manipulation running in polynomial
time or in time depending only on the target value k will obviate the need for
exhaustive enumerations.

One might suspect that a particular parameter value (e.g., a very small pa-
rameter value or a very large parameter value) would help solving the problems
in Theorem 17 and Theorem 18 more efficiently. This possibility is, unfortu-
nately, denied by the following theorems, which indicate that, essentially, the
problems are difficult for every parameter value.

Theorem 19. For any constant ε, 0 < ε < 1, and for any nondecreasing and
unbounded function μ satisfying μ(n) ≤ nε, and μ(2n) ≤ 2μ(n), none of the
problems in Theorem 17 can be solved in time no(k)mO(1) even if we restrict the
parameter values k to μ(n)/8 ≤ k ≤ 16μ(n), unless the problem sat[2] is solvable
in time 2o(n)mO(1), which implies W [1] = FPT.

Note that the conditions on the function μ in Theorem 19 are satisfied by most
complexity functions, such as μ(n) = log logn and μ(n) = n4/5. Therefore,
for example, unless the problem sat[2] is solvable in time 2o(n)mO(1), for any
polynomial p(m), constructing a hitting set of log logn elements requires time
nΩ(log logn)p(m), and constructing a hitting set of

√
n elements requires time

nΩ(
√
n)p(m), where n is the size of the universal set U and m is the instance

length.
Similar results hold for the problems in Theorem 18.

Theorem 20. For any constant ε, 0 < ε < 1, and any nondecreasing and un-
bounded function μ satisfying μ(n) ≤ nε, and μ(2n) ≤ 2μ(n), none of the prob-
lems in Theorem 18 can be solved in time mo(k) even if we restrict the parameter
values k to μ(m)/8 ≤ k ≤ 16μ(m), unless the ETH hypothesis fails.

186 J. Chen and I.A. Kanj

6.2 Refinements and Further Lower Bounds

The lower bounds on parameterized complexity in the previous subsection can be
further strengthened based on more careful examinations of the relation between
satisfiability problems and parameterized problems. Some of these strengthened
results also require a stronger assumption on the complexity of satisfiability
problems.

The efforts on achieving faster algorithms for satisfiability have been tremen-
dous [37]. The current best algorithm for the cnf-sat problem runs in time
2n(1−1/O(log(m/n))mO(1) [10]. Moreover, the current approaches do not seem to
lead to break the time upper bound of the form 2n−o(n)mO(1) for solving the
problem. In particular, designing an algorithm of running time 2δnmO(1), where
δ < 1 is a constant, seems to require a breakthrough. Impagliazzo and Paturi
[30] conjectured that the cnf-sat problem does not have an algorithm of run-
ning time 2δnmO(1), for a constant δ < 1. Based on this conjecture, stronger
computational lower bounds for parameterized problems can be achieved.

First, consider the dominating set problem: given a graph G of n vertices
and a parameter k, decide if the graph G has a dominating set of at most k ver-
tices. It is straightforward to solve the problem in time O(nk+1) by enumerating
every subset of at most k vertices in the graph and verifying if the subset makes a
dominating set for the graph G. Based on fast matrix multiplication algorithms,
we can slightly improve the above straightforward enumeration algorithm:

Proposition 1. ([39]) The dominating set problem can be solved in time
nk+o(1) for k ≥ 7.

One may suspect that by applying some algorithmic tricks, we may be able
to further improve the algorithm for dominating set. Note that this was the
case for the problem of finding a clique of size k, which can be solved in time
O(n(ω/3)k) = O(n0.793k), where ω < 2.376 is the fastest matrix multiplication
exponent. However, Patrascu and Williams have shown that such improvements
would lead to a significant advancement in the research on cnf-sat algorithms:

Theorem 21. ([39]) For any constant ε > 0, the dominating set problem
cannot be solved in time O(nk−ε) unless the cnf-sat problem can be solved in
time 2δnmO(1) for some constant δ < 1.

Theorem 21 can be extended to other NP-hard problems based on effective
reductions. For example, consider the set cover problem: given a collection C
of n subsets of a universal set U of size m, decide if there are k subsets in C
whose union is equal to U . Since the dominating set problem can be easily
reduced to the set cover problem without changing the parameter value k, we
derive directly that the set cover problem cannot be solved in time O(nk−ε)
unless the cnf-sat problem can be solved in time 2δnmO(1) for a constant δ < 1.

These techniques have led to computational lower bounds for other interesting
problems. The reader is referred to [39] for more results.

Recent research has further considered developing super-linear exponential-
time lower bounds on parameterized problems.

Parameterized Complexity and Subexponential-Time Computability 187

A number of well-known parameterized problems went through the process
of starting with super-linear exponential-time algorithms before advanced al-
gorithmic techniques were developed that resulted in linear exponential-time
algorithms for these problems. For example, the k-path problem (given a graph
G and a parameter k, decide if the graph contains a simple path of length k)
started with an algorithm of running time 2kk!mO(1), proposed in 1985 [35]. It
was actually an open problem posted by Papadimitriou and Yannakakis whether
k-path admits an algorithm running in time 2O(k)mO(1). Today, there is num-
ber of algorithms, based on at least three different new algorithmic techniques,
for the k-path problem that run in time ckmO(1), where c is a small constant
[2, 4, 18, 41]. Other examples of this kind include the 3-d matching and the
3-set packing problems [13, 24, 32].

Therefore, the research in exponential-time algorithms could be still in a very
premature stage, and one has to be very careful in conjecturing a super-linear
exponential-time lower bound for a parameterized problem. On the other hand,
very recent research shows that in certain cases, we can derive super-linear
exponential-time lower bounds for parameterized problems based on certain be-
liefs about the complexity of satisfiability problems.

Consider the following closest string problem:

closest string:
Given a set of strings s1, s2, . . ., st of the same length, and a parameter
k, decide if there is a string s of the same length such that the Hamming
distance between s and every si is bounded by k.

It has been known for a while [28] that the closest string problem can be
solved in time O(2k log km), where m is the size of the input instance. A natural
question is whether the exponential part, i.e., 2k log k = kk, in the complexity
O(2k log km) can be improved to ck for a constant c. Recent work by Lokshtanov,
Marx, and Saurabh, shows that this is unlikely:

Theorem 22. ([33]) Unless the hypothesis ETH fails, there is no 2o(k log k)mO(1)-
time algorithm for the closest string problem.

It was shown in [33] that for some other parameters the closest string prob-
lem also has super-linear exponential-time lower bounds. Other parameterized
problems with super-linear exponential-time lower bounds can also be found in
[33].

6.3 Lower Bounds on Approximation Algorithms

An interesting extension of the approach described in the previous subsections
is deriving lower bounds on the computational complexity of approximation
algorithms for NP-hard problems. We first give a brief review on the terminolo-
gies in approximation algorithms.

188 J. Chen and I.A. Kanj

An NP optimization problem Q is a quadruple (IQ, SQ, fQ, optQ), where

– IQ is the set of input instances. It is recognizable in polynomial time;
– For each instance x ∈ IQ, SQ(x) is the set of feasible solutions for x, which

is defined by a polynomial p and a polynomial time computable predicate π
(p and π only depend on Q) as SQ(x) = {y : |y| ≤ p(|x|) and π(x, y)};

– fQ(x, y) is the objective function mapping a pair x ∈ IQ and y ∈ SQ(x) to
a non-negative integer. The function fQ is computable in polynomial time;

– optQ ∈ {max,min}. Q is called a maximization problem if optQ = max, and
a minimization problem if optQ = min.

An optimal solution y0 for an instance x ∈ IQ is a feasible solution in SQ(x)
such that fQ(x, y0) = optQ{fQ(x, z) | z ∈ SQ(x)}. We will denote by optQ(x)
the value optQ{fQ(x, z) | z ∈ SQ(x)}.

An algorithm A is an approximation algorithm for an NP optimization prob-
lem Q if, for each input instance x in IQ, the algorithm A returns a feasible
solution yA(x) in SQ(x). The approximation algorithm A has an approximation
ratio r(m) if for any instance x in IQ, the solution yA(x) constructed by the
algorithm A satisfies the following condition:

– optQ(x)/fQ(x, yA(x)) ≤ r(|x|) if Q is a maximization problem;
– fQ(x, yA(x))/optQ(x) ≤ r(|x|) if Q is a minimization problem.

An NP optimization problem Q has a polynomial-time approximation scheme
(PTAS) if there is an algorithm AQ(x, ε) such that for each fixed real number
ε0 > 0, AQ(x, ε0) is a polynomial-time approximation algorithm for the problem
Q whose approximation ratio is bounded by 1 + ε0.

The following “parameterization process” for NP optimization problems has
been proposed in the literature.

Definition 5. Let Q = (IQ, SQ, fQ, optQ) be an NP optimization problem. The
parameterized version of Q is defined as follows:

– If Q is a maximization problem, then the parameterized version of Q is de-
fined as Q≥ = {(x, k) | x ∈ IQ and optQ(x) ≥ k};

– If Q is a minimization problem, then the parameterized version of Q is de-
fined as Q≤ = {(x, k) | x ∈ IQ and optQ(x) ≤ k}.

The above definition offers the possibility to study the relationship between the
approximability and the parameterized complexity of NP optimization problems.

Theorem 23. Let Q be an NP optimization problem. If the parameterized ver-
sion of Q is Wl[1]-hard, then Q has no PTAS of running time f(1/ε)mo(1/ε) for
any function f , unless the ETH hypothesis fails.

Proof. We consider the case that Q = (IQ, SQ, fQ, optQ) is a maximization prob-
lem such that the parameterized version Q≥ of Q is Wl[1]-hard.

Suppose to the contrary that Q has a PTAS AQ of running time f(1/ε)mo(1/ε)

for a function f . We show how to use the algorithmAQ to solve the parameterized
problem Q≥. Consider the following algorithm A≥ for Q≥:

Parameterized Complexity and Subexponential-Time Computability 189

Algorithm A≥:
On an instance (x, k) of Q≥, call the PTAS algorithm AQ on the instance
x of Q with the real number ε = 1/(2k). Suppose that AQ returns a
solution y in SQ(x). If fQ(x, y) ≥ k, then return “yes”, otherwise return
“no”.

We verify that the algorithm A≥ solves the parameterized problem Q≥. Since Q
is a maximization problem, if fQ(x, y) ≥ k then obviously optQ(x) ≥ k. Thus,
the algorithm A≥ returns a correct decision in this case. On the other hand,
suppose fQ(x, y) < k. Since fQ(x, y) is an integer, we have fQ(x, y) ≤ k − 1.
Since AQ is a PTAS for Q and ε = 1/(2k), we must have

optQ(x)/fQ(x, y) ≤ 1 + 1/(2k).

From this we get (note that fQ(x, y) < k)

optQ(x) ≤ fQ(x, y) + fQ(x, y)/(2k) ≤ k − 1 + 1/2 = k − 1/2 < k.

Thus, in this case the algorithm A≥ also returns a correct decision. This proves
that the algorithm A≥ solves the parameterized version Q≥ of the problem Q.
The running time of the algorithm A≥ is dominated by that of the algorithm
AQ, which by our hypothesis is bounded by f(1/ε)mo(1/ε) = f(2k)mo(k). Thus,
the Wl[1]-hard problem Q≥ is solvable in time f(2k)mo(k). By Theorem 16, this
implies that the ETH hypothesis fails.

The proof is similar for the case when Q is a minimization problem, and hence
is omitted.

We demonstrate an application for Theorem 23. We pick the problem distin-

guishing substring selection as an example, which has drawn a lot of at-
tention recently because of its applications in computational biology such as in
drug generic design [22].

Consider all strings over a fixed alphabet. Denote by |s| the length of the string
s. The distance D(s1, s2) between two strings s1 and s2, |s1| ≤ |s2|, is defined as
follows. If |s1| = |s2|, then D(s1, s2) is the Hamming distance between s1 and s2;
and if |s1| ≤ |s2|, then D(s1, s2) is the minimum of D(s1, s

′
2) over all substrings

s′2 of length |s1| in s2.
Based on the standard formulation of NP optimization problems, the (opti-

mization version of the) distinguishing substring selection problem (dssp)
is defined as follows:

Definition 6. The dssp problem is a quadruple (ID, SD, fD, optD), where

– The instance set ID is the set of tuples of the form (n, Sb, Sg, db, dg), where n,
db, and dg are integers, db ≤ dg, Sb = {b1, . . . , bnb

} is a set of (bad) strings,
|bi| ≥ n, and Sg = {g1, . . . , gng} is a set of (good) strings, |gj | = n;

– For an instance x = (n, Sb, Sg, db, dg) in ID, the solution set SD(x) consists
of all strings of length n;

190 J. Chen and I.A. Kanj

– For an instance x = (n, Sb, Sg, db, dg) in ID and a solution s ∈ SD(x), the
objective function value fD(x, s) is defined to be the largest non-negative
integer d such that (i) d ≤ dg; (ii) D(s, bi) ≤ db(2−d/dg) for all bi ∈ Sb; and
(iii) D(s, gj) ≥ d for all gj ∈ Sg. If such an integer d does not exist, then
define fD(x, s) = 0;

– optD = max

Note that for x ∈ ID and s ∈ SD(x), the value fD(x, s) can be computed in
polynomial time by checking each number d = 0, 1, . . . , dg ≤ n.

Note that the objective of the dssp problem is to find a string s that maximizes
the value fD(x, s), which is bounded by dg. In particular, if a string s can achieve
fD(x, s) = dg, then s satisfies D(s, bi) ≤ db for all bi ∈ Sb (i.e., the string s is
similar enough to all bad strings) and D(s, gj) ≥ dg for all gj ∈ Sg (i.e., the
string s is sufficiently different from all good strings).

The dssp problem is NP-hard [27]. Deng et al. [22] developed a PTAS for dssp

whose running time is bounded by O(m(nb + ng)
O(1/ε6)), where m is the size of

the instance.3 Obviously, such an algorithm is not practical even for moderate
values of the error bound ε. The question is, can we develop significantly faster
PTAS for the dssp problem?

Using the above parameterization process, we can parameterize the dssp

problem, and study the complexity of the corresponding parameterized prob-
lem dssp≥.

Lemma 3. ([14]) The parameterized problem dssp≥ is Wl[1]-hard.

From Lemma 3 and Theorem 23, we get the following result.

Theorem 24. Unless the ETH hypothesis fails, the problem dssp has no PTAS
whose running time is bounded by f(1/ε)mo(1/ε) for any function f .

Therefore, Theorem 24 implies that any PTAS for dssp cannot run in time
f(1/ε)mo(1/ε) for any function f . Thus essentially, no PTAS for dssp can be
practically efficient even for moderate values of the error bound ε. This is the
first time a specific lower bound is derived on the running time of a PTAS for
an NP-hard problem.

Lemma 3 is proved by a linear fpt-reduction from the dominating set prob-
lem to the problem dssp≥, which leads to the computational lower bounds on
PTAS for the dssp problem in Theorem 24. This approach demonstrates an in-
teresting property of this technique. In most cases, computational lower bounds
and inapproximability of optimization problems are derived based on approx-
imation ratio-preserving reductions [3], by which if a problem Q1 is reduced
to another problem Q2, then Q2 is at least as hard as Q1. In particular, if

3 In fact, the formulations of the optimization versions of the dssp problem and its
PTAS given in [22] look very different from the versions presented here. A proof is
given in [14] that shows the equivalences of the problem formulation and PTAS given
in [22] and that presented here.

Parameterized Complexity and Subexponential-Time Computability 191

Q1 is reduced to Q2 under an approximation ratio-preserving reduction, then
the approximability of Q2 is at least as difficult as that of Q1. Therefore, the
intractability of an “easier” problem in general cannot be derived using such a
reduction from a “harder” problem. On the other hand, our computational lower
bound on dssp was obtained by a linear fpt-reduction from dominating set.
It is well-known that dominating set has no polynomial time approximation
algorithms of constant ratio [3], while dssp has a PTAS. Thus, from the view-
point of approximation, dominating set is much harder than dssp, and our
linear fpt-reduction reduces a harder problem to an easier problem. This hints
that this approach for deriving computational lower bounds cannot be simply
replaced by the standard approaches based on approximation ratio-preserving
reductions.

Readers who are interested in the relation between fixed-parameter tractabil-
ity and the efficiency of approximation algorithms for NP-hard optimization
problems are referred to [8, 15, 34] for more discussions and details.

7 Concluding Remarks and Open Problems

The study of parameterized intractability and subexponential-time computabil-
ity has significantly promoted new research directions in both complexity theory
and algorithms. From the computational complexity viewpoint, this study has
motivated the development of new frameworks whose intrinsic relations are being
studied. From the algorithmics viewpoint, this study has motivated the invention
of new algorithmic tools, beyond the world of polynomial-time computation, and
has established connections among a large variety of computational problems.
This demonstrates the robustness of computational intractability, thus providing
convincing evidence of the existing computational lower bounds on problems of
theoretical and practical importance, based on parameterized complexity and
subexponential-time hypotheses.

The classification of parameterized intractability, i.e., the W -hierarchy, offers
a framework for the study of computational intractability, which is a refinement
of that of classical complexity theory. On the other hand, little is known about
the structural properties of this hierarchy. For example, any natural “hierar-
chy collapsing” results about the W -hierarchy are still lacking. In particular,
the following question remains unanswered: Does FPT = W [t] (t ≥ 1) imply
FPT = W [s] for s > t? Note that because of the close connections between
the W -hierarchy and the computational complexity of circuit satisfiability, the
corresponding questions about circuit satisfiability problems are also important
and significant: Would the subexponential-time computability of sat[t] imply
the subexponential-time computability of sat[s] for s > t? In particular, would
the failure of the ETH hypothesis imply the subexponential-time computability
of cnf-sat?

The current state of knowledge about the complexity of satisfiability prob-
lems seems to provide no hints on the above questions. For example, the 3-sat

problem can be solved in time 2δnmO(1), where δ < 0.56 [5]. However, this does

192 J. Chen and I.A. Kanj

not seem to offer any ideas for solving the general cnf-sat problem in time
2δ

′nmO(1) for any constant δ′ < 1. In fact, the current techniques used for solv-
ing 3-sat do not even seem to be generalizable to cnf-sat with bounded fan-in
of level-1 gates (i.e., h-sat for integer constants h ≥ 3). It will be very interesting
to investigate this direction. For example, is there a relation between the ETH
hypothesis and the hypothesis “cnf-sat is not solvable in time 2δnmO(1) for
any constant δ < 1”? Would a subexponential-time algorithm for 3-sat imply a
2δnmO(1)-time algorithm for cnf-sat for some constant δ < 1, or vice versa?

This reminds us of the well-known research line in complexity theory on the
computational lower bounds for bounded-depth circuit computation, where it
has been known that depth-t circuits are strictly more powerful than depth-s
circuits for t > s [29]. In fact, the fan-in of level-1 gates of a circuit is determi-
native of its computational power: for any h ≥ 2, depth-h circuits in which the
fan-in of level-1 gates is bounded by t is strictly more powerful than depth-h
circuits in which the fan-in of level-1 gates is bounded by s, if t > s [7]. Note
that, these significant results are on the difference of computational power of cir-
cuit models. On the other hand, in the study of parameterized complexity and
the complexity of satisfiability problems, the circuit depths in the problems are
part of the “descriptive complexity” of the problems. Are there any correlations
that can provide further insight in this direction? If we view a nondeterministic
computation as a “guess-then-check” process [6], then the sat[t] problems for all
t ≥ 2 require the same guessing power (i.e., picking a proper subset of the input
variables), but differ strictly in the verification power (sat[t] requires depth-t
circuits for verification). The current research status in satisfiability algorithms
seems to suggest that the difference in the verification power forces a difference
in the deterministic computational complexity of the problems.

Another interesting research direction is on the algorithmics side. As stated
in Theorem 21, a very sharp parameterized lower bound (such as Ω(nk)) for the
dominating set problem seems to have consequences on exact algorithms for
the important satisfiability problem cnf-sat. This line of research has yielded a
collection of results, formulated as “if problem A can be solved in time t(·) then
problem B can be solved in time s(·),” where t(·) and s(·) are precise functions
(without hidden constants in their asymptotic notations). Is there a systematic
method to relate such results? Such method will bear significant impact on the
existence of more efficient exact algorithms for certain problems, and can be
read from two angles. From the positive angle, those results suggest a way for
improving the algorithms for a problem B under a certain framework (such as
exact computability) by improving the algorithms for another problem A with
respect to (possibly) a different computational framework (such as parameterized
complexity). From the negative angle, such a result can serve as an indicator of
the intricate difficulty of the computability of a problem A with respect to a
certain computational framework, based on that of another problem B with
respect to a different framework.

We also want to remark that the above discussions provide “observations”
based on the current understanding and techniques in complexity theory and

Parameterized Complexity and Subexponential-Time Computability 193

algorithmic research. For instance, the statement that the cnf-sat problem
cannot be solved in time 2δnmO(1) for a constant δ < 1 seems to be very strong,
and perhaps needs further investigation. One has to be more careful when using
such statements as “hypotheses.” Instead, these studies and observations should
provide an impetus for new research insights, new ideas, and new techniques. All
our algorithmic techniques for solving NP-hard problems, such as the satisfiabil-
ity problems, are more or less based on enumerations. Thus, a more ambitious
question would be to investigate new approaches for tackling NP-hard problems.

References

1. Abrahamson, K., Downey, R., Fellows, M.: Fixed-parameter tractability and com-
pleteness IV: On completeness for W[P] and PSPACE analogues. Annals of Pure
and Applied Logic 73(3), 235–276 (1995)

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42, 844–856
(1995)

3. Ausiello, G., Protasi, M., Marchetti-Spaccamela, A., Gambosi, G., Crescenzi, P.,
Kann, V.: Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties, 1st edn. Springer-Verlag New York, Inc.,
Secaucus (1999)

4. Björklund, A.: Determinant sums for undirected hamiltonicity. In: Proceedings
of the 51th Annual IEEE Symposium on Foundations of Computer Science, pp.
173–182 (2010)

5. Brüggemann, T., Kern, W.: An improved deterministic local search algorithm for
3SAT. Theoretical Computer Science 329, 303–313 (2004)

6. Cai, L., Chen, J.: On the amount of nondeterminism and the power of verifying.
SIAM Journal on Computing 26(3), 733–750 (1997)

7. Cai, L., Chen, J., H̊astad, J.: Circuit bottom fan-in and computational power.
SIAM Journal on Computing 27(2), 341–355 (1998)

8. Cai, L., Fellows, M., Juedes, D., Rosamond, F.: The complexity of polynomial-time
approximation. Theory of Computing Systems 41(3), 459–477 (2007)

9. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms.
Journal of Computer and System Sciences 67(4), 789–807 (2003)

10. Calabro, C., Impagliazzo, R., Paturi, R.: A duality between clause width and clause
density for SAT. In: IEEE Conference on Computational Complexity, pp. 252–260
(2006)

11. Chen, J.: Characterizing parallel hierarchies by reducibilities. Information Process-
ing Letters 39(6), 303–307 (1991)

12. Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D., Kanj, I., Xia, G.: Tight
lower bounds for certain parameterized NP-hard problems. Information & Com-
putation 201(2), 216–231 (2005)

13. Chen, J., Feng, Q., Liu, Y., Lu, S., Wang, J.: Improved deterministic algorithms for
weighted matching and packing problems. Theoretical Computer Science 412(23),
2503–2512 (2011)

14. Chen, J., Huang, X., Kanj, I., Xia, G.: Strong computational lower bounds via
parameterized complexity. Journal of Computer and System Sciences 72(8), 1346–
1367 (2006)

15. Chen, J., Huang, X., Kanj, I., Xia, G.: Polynomial time approximation schemes and
parameterized complexity. Discrete Applied Mathematics 155(2), 180–193 (2007)

194 J. Chen and I.A. Kanj

16. Chen, J., Kanj, I., Jia, W.: Vertex cover: further observations and further improve-
ments. Journal of Algorithms 41, 280–301 (2001)

17. Chen, J., Kanj, I., Xia, G.: On parameterized exponential time complexity. Theo-
retical Computer Science 410(27-29), 2641–2648 (2009)

18. Chen, J., Kneis, J., Lu, S., Molle, D., Richter, S., Rossmanith, P., Sze, S.-H.,
Zhang, F.: Randomized divide-and-conquer: improved path, matching, and packing
algorithms. SIAM Journal on Computing 38, 2526–2547 (2009)

19. Chen, Y., Flum, J.: On miniaturized problems in parameterized complexity theory.
Theoretical Computer Science 351(3), 314–336 (2006)

20. Chen, Y., Flum, J.: Subexponential time and fixed-parameter tractability: Exploit-
ing the miniaturization mapping. Journal of Logic and Computation 19(1), 89–122
(2009)

21. Chen, Y., Grohe, M.: An isomorphism between subexponential and parameterized
complexity theory. SIAM Journal on Computing 37(4), 1228–1258 (2007)

22. Deng, X., Li, G., Li, Z., Ma, B., Wang, L.: Genetic design of drugs without side-
effects. SIAM Journal on Computing 32, 1073–1090 (2003)

23. Downey, R., Estivill-Castro, V., Fellows, M., Prieto-Rodriguez, E., Rosamond, F.:
Cutting up is hard to do: the parameterized complexity of k-Cut and related prob-
lems. Electronic Notes in Theoretical Computer Science 78, 205–218 (2003)

24. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)
25. Flum, J., Grohe, M.: Parametrized complexity and subexponential time (column:

Computational complexity). Bulletin of the EATCS 84, 71–100 (2004)
26. Flüm, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2010)
27. Gramm, J., Guo, J., Niedermeier, R.: On Exact and Approximation Algorithms for

Distinguishing Substring Selection. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003.
LNCS, vol. 2751, pp. 195–209. Springer, Heidelberg (2003)

28. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for clos-
est string and related problems. Algorithmica 37(1), 25–42 (2003)

29. H̊astad, J.: Computational limitations of small depth circuits. Technical report,
MIT Press (1986)

30. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. Journal of Computer
and System Sciences 62(2), 367–375 (2001)

31. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)

32. Koutis, I.: Faster Algebraic Algorithms for Path and Packing Problems. In: Aceto,
L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg
(2008)

33. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized
problems. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 760–776 (2011)

34. Marx, D.: Parameterized complexity and approximation algorithms. The Computer
Journal 51(1), 60–78 (2008)

35. Monien, B.: How to find long paths efficiently. Ann. Discrete Math. 25, 239–254
(1985)

36. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, USA (2006)

37. International Conference on Theory and Applications of Satisfiability Testing,
http://www.satisfiability.org/

38. Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity
classes. Journal of Computer and System Sciences 43, 425–440 (1991)

http://www.satisfiability.org/

Parameterized Complexity and Subexponential-Time Computability 195

39. Patrascu, M., Williams, R.: On the possibility of faster SAT algorithms. In: Pro-
ceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1065–1075 (2010)

40. Robson, J.M.: Algorithms for maximum independent sets. Journal of Algorithms 7,
425–440 (1986)

41. Williams, R.: Finding paths of length k in O∗(2k) time. Information Processing
Letters 109(6), 315–318 (2009)

42. Williams, R.: Non-uniform ACC circuit lower bounds. In: IEEE Conference on
Computational Complexity, pp. 115–125. IEEE Computer Society Press (2011)

43. Woeginger, G.: Exact Algorithms for NP-Hard Problems: A Survey. In: Jünger, M.,
Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization (Edmonds Festschrift).
LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

Fixed-Parameter Tractability

of Treewidth and Pathwidth

Hans L. Bodlaender

Department of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

h.l.bodlaender@uu.nl

Abstract. In this survey, a number of results on the fixed-parameter
tractability of treewidth and pathwidth are discussed. Some emphasis is
placed on older results, and proofs that show that treewidth and path-
width are fixed-parameter tractable. Also, a linear-time algorithm for
testing if a graph has pathwidth at most some given constant is dis-
cussed in more detail.

1 Introduction

This overview paper is on the occasion of the 60th birthday of Mike Fellows.
Already in the early development of the theory reported here, Mike’s insights
were at many points of great importance, and his work and his enthusiasm for
the topics were always a great source of inspiration. Many of the ideas discussed
in this survey were obtained from or inspired by discussions with or talks by
Mike Fellows.

Treewidth, and related notions, like pathwidth, branchwidth, cliquewidth,
rankwidth play an important role in many modern investigations in algorithmic
graph theory, and already from its early origins, in the field of parameterized
algorithms. In this survey, a look will be taken at the results that show that the
problems to decide if the treewidth or pathwidth of a given graph is at most
a given number k are fixed-parameter tractable. This question is an interesting
one, for several reasons: the result is used as a subroutine in many recent re-
sults, and the investigations for these notions show many important techniques
from the field of parameterized algorithms, and often the problem was one of
the sources of inspiration for inventing these techniques.

The notions of treewidth and pathwidth were introduced by Robertson and
Seymour [110, 113] in their fundamental work on graph minors. However, other,
equivalent notions were invented independently, and sometimes earlier by many
different authors. Already in the 1960’s, it was observed that many problems
that are intractable on general graphs become easier to solve on trees and series-
parallel graph. Several authors independently noted that these results can be
generalized to larger classes of graphs. E.g., Wimer introduced in the 1980’s the
notion of k-terminal recursive graph classes [143]. Trees can be formed by ’gluing’
1-terminal graphs together; series-parallel graphs by ’gluing’ 2-terminal graphs

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 196–227, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Fixed-Parameter Tractability of Treewidth and Pathwidth 197

together; and a similar algorithmic behavior is obtained when using some other
constant number of vertices. An often used equivalent version of treewidth is the
notion of partial k-trees by Arnborg et al. [3, 7]. An overview of several notions
that are equivalent (or imply a constant bound) to treewidth or pathwidth can
be found in [16].

Nowadays, the notion of treewidth plays a role in many different fields of
algorithms research and graph theory. One important reason for the interest
is that many problems that are intractable (e.g., NP-hard) become linear time
(or sometimes polynomial time) solvable when restricted to graphs of bounded
treewidth. Such algorithms have been found for many combinatorial problems
(see e.g., [8, 9, 33, 94, 138, 144]), and also have been employed for problems
from computational biology (see e.g., [100]), constraint satisfaction (see e.g.,
[40, 47, 78, 94]), and probabilistic networks (see [99]). See e.g., also [3, 2, 6, 12,
32, 39, 38, 42, 50, 70, 79, 80, 82, 85, 88, 106, 105, 108, 145]. In other words:
many graph problems become fixed-parameter tractable when parameterized by
the treewidth of the input graph.

This survey is further organized as follows. Section 2 gives some definitions,
discusses equivalent notions, and some well known lemmas on treewidth and
pathwidth. In Section 3, linear-time algorithms for problems on graphs of
bounded treewidth are discussed, including the ’automata view’ on these algo-
rithms, pioneered by Fellows and Langston. Section 4 discusses some algorithmic
consequences of the theory of graph minors. Section 5 looks at the complexity of
deciding treewidth and pathwidth, with most emphasis on the fixed-parameter
case. It includes a pathwidth version of the result that the fixed-parameter case
of treewidth is linear time solvable ([14]). The paper ends with short conclusions
and a few major open problems.

For easier presentation, some arguments and proofs have technical inaccura-
cies, and at some points, an overload of notation seemed unavoidable. I still hope
that many of the ideas and techniques come across.

2 Definitions and Equivalent Notions

Throughout this paper, n denotes the number of vertices of graph G = (V,E).
Unless otherwise stated, graphs are considered to be simple and undirected.
Several of the results generalize to directed graphs, but this will not be elaborated
here.

The notions of treewidth and tree decomposition were introduced by Robert-
son and Seymour [113] in their fundamental work on graph minors.

Definition 1. A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈
I}, T = (I, F)), with {Xi | i ∈ I} a family of subsets of V (called bags) and T
a tree, such that

–
⋃

i∈I Xi = V ,
– for all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi, and
– for all v ∈ V , the set Iv = {i ∈ I | v ∈ Xi} forms a connected subtree of T .

198 H.L. Bodlaender

The width of tree decomposition ({Xi | i ∈ I}, T = (I, F)) is maxi∈I |Xi| −
1. The treewidth of a graph G, tw(G), is the minimum width among all tree
decompositions of G.

The third condition in the definition above can be replaced by the following
equivalent condition:

For all i1, i2, i3 ∈ I: if i2 is on the path from i1 to i3 in T , thenXi1∩Xi3 ⊆
Xi2 .

An example of a graph with a tree decomposition can be found in Figure 1.

a b c d

e f

g

a

b

b

c e

c

e f

f

g

c

d

Fig. 1. A graph with a tree decomposition

A path decomposition is a tree decomposition ({Xi | i ∈ I}, T = (I, F)) with T
a path. The pathwidth of a graph is the minimum width of a path decomposition
of G.

There are several equivalent characterizations of the notions of treewidth and
pathwidth. For an overview, see e.g. [16]. We mention a few below that are useful
for the further exposition of technical ideas.

2.1 Nice Tree and Path Decompositions

A tree decomposition ({Xi | i ∈ I}, T = (I, F)) is nice, if T is a rooted tree, and
each node is of one of the four following types:

– Leaf: a leaf node i has no children and has |Xi| = 1, i.e., a bag size of one.
– Join: a join node i has two children j1, j2 with Xi = Xj1 = Xj2 , i.e., with

the same bags.
– Forget: a forget node i has one child j such that there is a v ∈ V with

Xi = Xj − {v}.
– Introduce: a forget node i has one child j such that there is a v ∈ V with

Xi = Xj ∪ {v}.

It is well known that one can transform a tree decomposition into a nice one with
the same width, and with O(n) nodes, in linear time. One of the first occurrences
of nice tree decompositions is in [91].

Fixed-Parameter Tractability of Treewidth and Pathwidth 199

We similarly have nice path decompositions. A nice path decomposition can be
represented by a series of bags (X0, . . . , Xr) with r = O(n), and withX0 = ∅ (the
only leaf node) and each Xi, i > 1 has a vertex v with Xi = Xi−1−{v} (forget
nodes) or Xi = Xi−1∪{v} (introduce nodes). While X0 is not necessary, using
an empty first bag helps for easier notation later on. One can show the following
result.

Theorem 1. Suppose we are given a graph G = (V,E) and a tree (path) de-
composition of G, ({Xi | i ∈ I}, T = (I, F)) of G of width k. Then a nice tree
(path) decomposition of G of width k can be found in O(k(n + |I|)) time, such
that the nice tree decomposition has O(n) bags.

2.2 k-Terminal Graphs

A terminal graph is a triple (V,E,X) with X ⊆ V an ordered set of vertices,
called the terminals. (V,E,X) is a k-terminal graph if |X | = k. We define the
⊕ operation on pairs of k-terminal graphs: (V,E,X) ⊕ (W,F, Y) is obtained
by taking the disjoint union of (V,E) and (W,F) and then identifying the ith
terminal of X with the ith terminal of X with the jth terminal of Y ; dropping
parallel edges if existing.

For the description of algorithms, it is useful to associate terminal graphs
(forming subgraphs of G) with nodes in a nice tree or path decomposition, in
the following way. Consider a nice tree decomposition ({Xi | i ∈ I}, T = (I, F)).
For each node i ∈ I, we associate a terminal graph Gi = (Vi, Ei, Xi), with Vi the
union of all bags Xj with j = i or j a descendant of i; and and Ei = {{v, w} ∈
E | v, w ∈ Vi}, (taking some arbitrary ordering on Xi).

For a leaf node, the graph Gi simply consists of the unique vertex in Xi and
no edges.

If i is a join node with children j1 and j2, then the graph Gi can be obtained
from the graphs Gj1 and Gj2 by taking the disjoint union and then identifying
the vertices in Xi = Xj1 = Xj2 , i.e., Gi = Gj1 ⊕ Gj2 . An example is given in
Figure 2.

⊕ =

Xi

Xi Xi

Fig. 2. The ⊕operation, a join node and the corresponding subgraphs

200 H.L. Bodlaender

Xj

v

Xj

v

Xj

Fig. 3. An introduce node and the corresponding subgraphs

If i is an introduce node with child j with Xi = Xj ∪{v}, then Gi is formed
from Gj by adding the vertex v and some edges between v and vertices in Xj .
See for an example Figure 3.

For a forget node, the situation is simple. If i is a forget node with child j
and Xi = Xj − {v}, then Gi and Gj have the same vertices and edges; the only
difference is that v is no longer a terminal.

2.3 Representing Nice Path Decompositions by Strings

Suppose we consider graphs up to isomorphism, i.e., we ignore vertex names.
Then a nice path decomposition of a graph can be represented by a finite string
of characters. Assume the vertices in a bag are ordered by the order in which they
were introduced. An introduce node can now be characterized by the subset
of the indices of the neighbors of the introduced vertex. E.g., if Xi = {v, w, x}
and Xi+1 = {v, w, x, y}, with v introduced in a bag with a smaller index than
the bag where w is introduced, and w is likewise before x, then if {v, y} and
{x, y} are edges, and {w, y} is not an edge in G, then we can characterize node
i + 1 by the subset {1, 3}. Forget nodes can be characterize by the index of
the forgotten vertex. E.g., if in our example, Xi+2 = {v, w, y}, then node i + 2
can be characterized by the index 3. In this way, we can characterize a nice
path decomposition of width at most k by a sequence of at most 2n subsets of
{1, 2, . . . , k} and elements from {1, . . . , k+1}, i.e., by a string of length at most
2n from an alphabet Ak of size 2k+k+1. This representation has some important
consequences: several algorithms that exploit (nice) path decompositions can be
represented as finite state automata. More on this in Section 3.2.

Similarly, (nice) tree decompositions can be represented as a labeled tree, and
several algorithms on (nice) tree decomposition can be represented as a finite
state tree automaton. These latter are generalizations of finite state automata,
but have as input a labeled tree instead of a string. This view was pioneered by
Fellows and Langston [65]. Recently, the approach was moved to the notion of
rankwidth by Ganian and Hliněný [76].

Fixed-Parameter Tractability of Treewidth and Pathwidth 201

Not every string in A∗
k represents a graph of pathwidth at most k. A symbol

that tells that we forget the ith terminal should only occur when there are at
least i terminals; a symbol that tells that we introduce a vertex with edges to
terminals with indices in I ⊆ {1, . . . , k} should only occur when we have at most
k terminals, and each index in I corresponds to an existing terminal. It is a trivial
exercise to see that the set of strings that correspond to a graph of pathwidth at
most k is regular, i.e., that we can build a finite state automaton that recognizes
this set. Similarly, labeled trees that correspond to tree decompositions of width
k can be recognized by a finite state tree automaton.

2.4 Notions Equivalent to Pathwidth

Two other notions that are equivalent with pathwidth are the following. A linear
ordering of a graph G = (V,E) is a bijective function f : V → {1, . . . , n}.

Definition 2. The vertex separation number of a linear ordering f of a graph
G equals

max
v∈V

|{w ∈ V | f(w) ≤ f(v) ∧ ∃{w, x} ∈ E : f(x) > f(v)}

The vertex separation number of a graph G equals the minimum vertex separation
number of a linear ordering of G.

Theorem 2 (Kinnersley [89]). The vertex separation number of a graph G
equals the pathwidth of G.

We also have the following folklore result. For a proof, see e.g. [16].

Theorem 3. Let G be a graph. The pathwidth of G is at most k, if and only if
G = (V,E) is a subgraph of an interval graph H = (V, F) with maximum clique
size at most k + 1.

2.5 Minors

Another important notion for the theory of treewidth is the notion of minor, see
e.g., [110]. A graph H is a minor of a graph G, if H can be obtained from G
by zero or more of the following operations: removing vertices, removing edges,
and contracting edges (an edge contraction replaces two adjacent vertices by one
that is incident to the neighbors of the contracted vertices).

More on graph minors in Section 4.

2.6 Cliques

A folklore result on treewidth is often of great help. As observed in [28], it
directly follows from the Helly property for trees.

Lemma 1. Let ({Xi | i ∈ I}, T = (I, F)) be a tree decomposition of G = (V,E)
and let W ⊆ V be a clique in G. Then there exists an i ∈ I with W ⊆ Xi.

202 H.L. Bodlaender

3 Algorithms on Tree and Path Decompositions

One of the most important reasons for the interest in the notion of treewidth
(or its related notions) its that many problems become polynomial, and often
linear solvable on graphs with some constant upper bound on their treewidth.
See e.g., [8, 9, 94, 138, 144].

Most of these algorithms employ dynamic programming in some form. These
algorithms consist of two steps. In the first step, a tree decomposition of bounded
width is found. This step will be discussed in more detail in Section 5. The tree
decomposition then is transformed to a nice one with the same width, with a
linear number of nodes, cf. Section 2. In the second step, the (nice) tree de-
composition is exploited: in some bottom-up order (e.g., postorder), a table is
computed for each node of the tree. To compute a table for a node, all what
is (usually) needed is the information of the nodes of its children and a little
”local” information (e.g., what vertices in the bag of the node are incident). The
problem then can be decided using the table of the root. Construction versions
often can be solved by going top-down in the tree, using the information stored
in the tables.

Our example of the algorithm uses the 3-coloring problem.. A 3-coloring of
a graph G = (V,E) is a function c : V → {1, 2, 3} such that for all {v, w} ∈ E,
c(v) �= c(w). In the 3-coloring problem, we are given a graph G = (V,E), and
have to decide if there exists a 3-coloring of G.

3.1 Solving 3-Coloring on Nice Tree Decompositions

For the 3-Coloring problem, we compute for each node in the tree decomposi-
tion i ∈ I, a table Ai. The table has an entry for each function f : Xi → {1, 2, 3}.
The entry maps to a Boolean value, and expresses if the function f can be ex-
tended to a 3-coloring of Gi. I.e., Ai(f) is true, if and only if there exists a
3-coloring g of Gi such that for all v ∈ Xi, f(v) = g(v).

Proposition 1. If G = (V,E) is given with a nice tree decomposition of width
at most k, and with O(n) nodes, then the 3-coloring problem on G can be solved
in O(3kn) time.

Proof. We discuss for each of the four types of nodes: leaf, introduce, forget,
join how the table Ai can be computed, given such tables of the children of i, in
O(3k) time. The algorithm then is as follows: in postorder, we compute for each
node of the nice tree decomposition the table Ai. In O(3kn) time we thus have
the table Ar for the root r of the nice tree decomposition. Finally, note that Gr

equals G, and thus, G has a 3-coloring, if and only if at least one entry in Gr is
true. So, we end the algorithm by inspecting Ar for a value true.

Computing Ai for a leaf node i is trivial. Recall that Gi just has one vertex
and no edges; each of the three possible colorings of this vertex corresponds to
a true entry in the table Ai.

Fixed-Parameter Tractability of Treewidth and Pathwidth 203

Suppose i is an introduce node with child j with Xi = Xj ∪ {v}. Consider a
coloring c : Xi → {1, 2, 3}. Let c′ be the restriction of c to Xj. It is not difficult
to see that we have:

Ai(c)⇔ Aj(c
′) ∧ ∀w ∈ Xj : {v, w} �∈ E ∨ c(v) �= c(w).

Suppose i is a forget node with child j with Xi = Xj − {v}. Now we have for
all colorings c : Xi → {1, 2, 3}, that Ai(c) is true, iff there is a coloring c′ of Xj

with Aj(c
′) true and c is the restriction of c′.

For a join node i with children j′ and j′′, we have for each c : Xi → {1, 2, 3},
that Ai(c) = Aj′ (c) ∧Aj′′ (c).

Correctness can easily be derived. In each case, the wayGi is obtained from the
graphs associated with the children of i is used; see the discussion in Section 2.
It is also easy to see that the time to compute a table is linear in its size. �

Designing an algorithm of the type given above follows a number of steps:

– What information should be stored at a table of a node? This information
characterizes the subgraph Gi. Often, the notion of a partial solution is used;
each partial solution has a characterization, and we tabulate the different
characterizations. In case of optimization problems, one can assign costs to
partial solutions, and then tabulate for each characteristic the minimum or
maximum cost of a partial solution with this characteristic. For an example
of the latter, see our discussion of the Dominating Set problem. In the
case of the 3-coloring problem, a 3-coloring of Gi is a partial solution,
which is characterized by the colors given to the vertices in Xi. A value true
implies that there is a partial solution with this characteristic.

– Design for each of the four types of nodes (leaf, introduce, forget, join),
an algorithm that computes the table for the node, given the tables of the
children.

– Show that the answer to the problem can be derived from the table for the
root r, using that G = Gr.

The second step is not always necessary: Fellows and Langston [65] introduce
the Myhill-Nerode perspective of algorithms on tree decompositions. We discuss
this briefly in the next section.

3.2 Dynamic Programming and Finite State Automata

In this section, we look at the algorithm from a perspective, first introduced by
Fellows and Langston [65], namely, we view the algorithm as running on a finite
state automaton or finite state tree automaton. For an easier exposition, we con-
sider the algorithm as running on a path decomposition of bounded width. The
discussion can be extended to tree decompositions. When using path decompo-
sitions, our algorithm corresponds to a finite state automaton; when using tree
decompositions, this generalizes to a finite state tree automaton.

Consider the algorithm that was given in the previous section. We assume
it runs on a path decomposition of width k, with k a constant; i.e., we do

204 H.L. Bodlaender

not have join nodes. For each node in the path decomposition, we computed
a table. To denote a table, we need a constant number of bits, i.e., there the
number of possible tables is a constant (only depending on the width of the
path decomposition.)

As discussed earlier, we can represent a nice path decomposition of width k
by a string in an alphabet whose size is bounded by a function of k (2k+ k+1).
Now, for a bag, the table that is computed by the algorithm for that bag only
depends on the table of the previous bag, whether the bag is an introduce
or forget node, and which vertex is forgotten, or what incidences there are to
the introduce node. Thus, the table depends on the previous table and the
’character’ of the bag.

Thus, we can view the algorithm as a finite state automaton: each possible
table corresponds to a state of the automaton, and the next state only depends
on the previous state and the character. The table for the last bag decides if the
input is accepted or rejected.

Many dynamic programming algorithms on path decompositions can be seen
as finite state automata: the main ingredients are that tables must have a number
of bits that is a function of the width, and that tables only depend on the previous
table and the type of bag, as discussed above. Algorithms on tree decompositions
can be viewed in a similar way as finite state tree automata.

This way of viewing algorithms as automata has important consequences:
several classic results of automata theory can be used. For instance, it is decidable
whether two finite state automata recognize the same set of strings, and thus,
if we have two dynamic programming algorithms of the proper form, we can
determine if these give the same output for all graphs of pathwidth at most k.
Some corollaries of this will be discussed later.

3.3 Finite Index

When designing dynamic programming algorithms for problems on graphs, usu-
ally the first step (”what should we store in tables”) is the most important. When
tables have a constant number of bits, this step gives us equivalence relations on
k-terminal graphs (for each k).

Suppose we have a decision problem Q on graphs. Let ∼Q,k be the equivalence
relation on k-terminal graphs, with for all k-terminal graphs G, H , G ∼Q,k H ,
if and only if for all k-terminal graphs K, Q(G⊕K), if and only if Q(H ⊕K).

Suppose we have a dynamic programming algorithm A, that runs in f(k)n
time when given a tree decomposition of width k, and each table has O(1) bits.
Let ∼A,k be the equivalence relation on k-terminal graphs, with G ∼A,k H
if when the table that is computed by A when G is the k-terminal subgraph
associated with a bag equals the table that is computed whenH is the k-terminal
subgraph associated with a bag. Now, by closely observing the working of the
dynamic programming algorithm, one can observe that the output of A will be
the same for G⊕K as for H ⊕K, for any K, and thus ∼A,k is a refinement of
∼Q,k.

Fixed-Parameter Tractability of Treewidth and Pathwidth 205

We say that Q is finite index, if for each k, ∼Q,k has a finite number of equiva-
lence classes. Now, the famous Myhill-Nerode theorem for regular languages tells
us that if Q is finite index, then Q is regular. In particular, the theorem tells us
that when we have established an equivalence relation that is (a refinement of)
∼Q,
 for all � ≤ k, then from this, we can derive the finite state automaton, i.e.,
a dynamic programming algorithm for graphs of pathwidth at most k. As the
Myhill-Nerode theorem also holds for tree automata, we obtain the same result
for graphs of treewidth at most k.

This has two consequences: it confirms the intuition that the design of the
equivalence relation is the important step in the design of the algorithms that
run on path or tree decompositions, and it allows us to avoid in several cases
the design by hand of the procedures that tell how to compute tables for join,
introduce and forget nodes.

3.4 Courcelle’s Theorem

As said, for many problems, linear-time algorithms have been found for the
problems restricted to graphs of bounded treewidth. Often, constructing such
algorithms means to pay attention to many details. Fortunately, there are also
algorithmic meta-theorems, that allow us to establish for a large number of prob-
lems the existence of linear-time algorithms when restricted to graphs of bounded
treewidth. By far the most important of these algorithmic meta-theorems is
Courcelle’s theorem.

Theorem 4 (Courcelle [42]). For each problem P , that can be formulated in
Counting Monadic Second Order Logic, there exists an algorithm that decides P
on a given graph G, and that uses linear time for graphs of treewidth bounded by
some constant.

Counting Monadic Second Order Logic (CMSOL) is a language in which we
can express properties of graphs. The simpler version of Monadic Second Order
Logic (MSOL) has the following elements: tests if a vertex is incident with an
edge (v ∈ e), tests if two vertices are adjacent ({v, w} ∈ E), tests is a vertex
(edge) is an element of a vertex (edge) set (v ∈ W , e ∈ F), Boolean operations
(¬, ∨, ∧, ⇒, . . .), equality of variables, quantification over vertices and edges
(∃v ∈ V , ∃e ∈ E, ∀v ∈ V , ∀e ∈ E), and quantification over vertex and edge sets
(∃W ⊆ V , ∃F ⊆ E, ∀W ⊆ V , ∀F ⊆ E). CMSOL has in addition operations
that decide if the size of a set modulus some constant equals another constant,
i.e., for constants c1 and c2, the language has expressions |W | mod c1 = c2 and
|F | mod c1 = c2.

For example, the property that G is bipartite can be expressed as:

∃W ⊆ V : ∀e ∈ E : ∃v ∈ V : ∃w ∈ V : v ∈ e ∧ w ∈ e ∧ v ∈ W ∧ ¬(w ∈ W)

Many well known and important graph properties, including many NP-hard
properties, can be expressed in CMSOL. Besides an alternative proof of Cour-
celle’s theorem, Borie et al. [32] show how to express many graph properties is
CMSOL. See also [92] for a different proof that gives better constant factors.

206 H.L. Bodlaender

Several extensions to Courcelle’s theorem have been found. An important
one allows us to obtain linear-time algorithms for many optimization problems
restricted to graphs of bounded treewidth. Consider a CMSOL property P with
one free vertex or edge set variable. The problems to find a minimum size set of
vertices W or edges F such that P (W) or P (F) holds can also solved in linear
time for graphs of bounded treewidth; the same holds when we want to find
such a set of maximum weight, or if weighted variants are considered. See e.g.,
[6, 32, 31, 33, 45].

Another important variant is the result by Courcelle et al. [44] who show that a
similar result holds for graphs of bounded cliquewidth for CMSOL without edge
set quantifications. As bounded cliquewidth is equivalent (with different bounds)
to bounded NLC-width, bounded rankwidth, or bounded booleanwidth, we have
for each of these graph measures many problems that can be solved in linear or
polynomial time when they have bounded ’width’.

The ’automaton view’ also helps to see another result by Courcelle: for each
graph property P in CMSOL and integer k, it is decidable if all (or no) graphs
of treewidth (or pathwidth) at most k fulfill property P . The main idea of the
proof (sketched here for the case of pathwidth) is the following: build the finite
state automaton for path (tree) decompositions of width at most k. Also, build
the finite state automaton that checks if a sequence of bag types represents a
possible path decomposition (cf. the discussion in Section 2). Now use Myhill-
Nerode theory to check if these two automata accept the same set of strings.

Theorem 5. Let P be a property in CMSOL, and k be an integer. It is decid-
able whether all graphs of pathwidth (treewidth) at most k have property P , and
whether no graphs of pathwidth (treewidth) at most k have property P .

3.5 Courcelle’s Conjecture

Courcelle’s theorem (Theorem 4) shows that expressibility in CMSOL implies
finite index. Courcelle conjectured that the reverse also holds. (See also e.g.,
[43].) Proofs of the conjecture for special cases were obtained by Kabanets [86]
(graphs of bounded pathwidth) and Kaller [87] (graphs of treewidth 3 and k-
connected graphs of treewidth k). In 1998, Lapoire [98] announced a proof for
the conjecture, but a refereed full version of the proof has not been published.

3.6 Running Times as Function of Pathwidth and Treewidth

For many problems, Courcelle’s theorem gives a relatively fast way of establishing
that the problem is fixed-parameter tractable with respect to treewidth, i.e.,
that there is an algorithm that solves the problem in linear time for graphs
of bounded treewidth. The constant factors of such algorithms will however be
large, and better constant factors can often be obtained when designing tailor-
made algorithms for specific problems.

For some problems, the running time can be improved with help of additional
techniques. One of these was introduced by van Rooij et al. [142], see also [30].

Fixed-Parameter Tractability of Treewidth and Pathwidth 207

Here, a generalization of fast subset convolution is used to speed up algorithms
on tree decompositions, in particular the join operation. The main idea is the
following: the information stored in a table in the dynamic programming algo-
rithm can often be represented in different ways. Some of these allow for a faster
join operation, while others allow for faster introduce (or forget). With help
of fast subset convolution or generalizations of it, one can quickly transform a
table in one representation to its equivalent table in the other representation.
Tables are again computed in postorder, i.e., bottom-up, but when necessary,
the representation is changed.

Very recently, Cygan et al. [46] introduced a new technique that speeds up
several computations on tree decompositions, which they call Cut and Count.
Here, algorithms on tree decompositions are made faster by using a randomized
approach. In this way, Cygan et al. [46] obtain randomized algorithms whose
dependence on the width of the given tree decomposition is only single expo-
nential, (i.e., of the form O∗(ck) for some constant c) while the known ‘classic’
dynamic programming algorithms have a running time Θ∗(2k log k) or worse for
these problems.

3.7 Lower Bounds

For a number of problems, there are also lower bounds known (for the depen-
dency of the running time on the treewidth). Lokshtanov et al. [104] have shown
such lower bounds for a large number of problems. For instance, consider the
3-coloring problem. We have seen that this problem can be solved in O(3kn)
time; Lokshtanov et al. [104] prove that there exists no algorithm that uses
(3 − ε)tw(G)nO(1) time for any ε > 0, unless the Strong Exponential Time Hy-
pothesis [84, 48] does not hold. Other problems where the known upper bound
matches this type of lower bound include Dominating set, q-coloring for
constant q; Independent Set. See also [46].

3.8 Special Classes of Graphs

Efficient algorithms for graphs of bounded treewidth can also help to obtain
fast(er) algorithms for problems on special types of graphs. Two important ex-
amples of this are the planar graphs and graphs of bounded degree.

Planar graphs have treewidth O(
√
n). The fact can be shown to follow from

the Lipton-Tarjan planar separator theorem [102, 103]; and vice versa, the pla-
nar separator theorem can be obtained as corollary from the fact that planar
graphs have treewidth O(

√
n), see [16]. Fomin and Thilikos [74] showed that the

treewidth of a planar graph is bounded by 3.182
√
n, and also showed that the

branchwidth of a planar graph is at most 2.122
√
n.

As a consequence, for many graph problems, there are O(c
√
n) algorithms,

and sometimes O(c
√
n logn) time algorithms when the inputs are restricted to

planar graphs. An example is 3-coloring, see Section 3.1.
For several problems, dynamic programming as discussed above leads to algo-

rithms that use O(c
√
n logn) time. With help of additional arguments, algorithms

208 H.L. Bodlaender

that use O(c
√
n logn) time can be obtained for several problems on planar graphs,

likeHamiltonian Circuit. One can either exploit planarity (leading to an anal-
ysis with Catalan structures), see e.g., [53, 52]; or use the probabilistic approach
byCygan et al. [46] which was discussed above. Other algorithms for planar graphs
that exploit treewidth (or the related notion of branchwidth) can be found
in e.g., [74, 95, 136].

For graphs ofboundeddegree,wehave the following theorembyFominet. al. [71].

Theorem 6 (Fomin et al. [71]). For ε > 0, there exists an nε, such that for
all graphs G with n ≥ nε vertices of which n3 have degree 3, n4 have degree 4, n5

have degree 5, n6 have degree 6, and n>6 have degree more than 6, the pathwidth
of G is at most

1

6
n3 +

1

3
n4 +

13

30
n5 +

23

45
n6 + n>6 + ε · n

The result can in several cases be used to obtain faster exact (exponential time)
algorithms for graph problems (i.e., ‘problems parameterized by the number
of vertices n’), see e.g., [71, 141]. Kneis et al. [93] showed that graphs have
pathwidth at most m/5.769 + O(log n), m the number of edges. This also has
several algorithmic consequences, e.g., faster exact algorithms for sparse graphs
for Max Cut and for Max 2SAT.

4 Graph Minors

In this section, we briefly review a few results from graph minor theory, with
some emphasis on its role for the theory of treewidth and related notions. For
more extensive overviews, see e.g., [10, 75, 112], or [54, Chapter 7].

In a long series of papers [110, 113, 111, 117, 114–116, 119, 118, 120, 122–
126, 128, 127, 129–132, 121, 133], Robertson and Seymour obtained a number
of important and fundamental results on graph minors. The central result is the
graph minor theorem. (A graph G is minor minimal in a set of graphs if no
other graph in the set is a minor of it. Isomorphic graphs are considered to be
identical.)

Theorem 7 (Robertson and Seymour). Any set of graphs has a finite num-
ber of minor-minimal elements.

Equivalent to Theorem 7 is the following.

Theorem 8 (Robertson and Seymour [128]). Let G be a collection of graphs
that is closed under taking minors. Then there exists a finite set ob(G), called
the obstruction set of G, such that for each graph G, we have that G ∈ G, if and
only if there is no graph H ∈ ob(G) that is a minor of G.

Theorem 8 has important algorithmic consequences. Several such results were
established in the 1980’s and 1990’s by Fellows and Langston, see e.g., [62, 64,

Fixed-Parameter Tractability of Treewidth and Pathwidth 209

66, 63, 60, 67, 68]. As also for fixed graphs H , testing if H is a minor can be
done in O(n3) time [124], there exists for each set of graphs that is closed under
taking of minors an O(n3) time membership test. This result however is non-
constructive: we know that the algorithm exists but do not know the algorithm
itself, as we may not know the obstruction set.

For graphs of bounded treewidth, faster algorithms exist: for a fixed H and
fixed integer �, there is a (dynamic programming) algorithm that tests in linear
time whether H is a minor of an input graph G, given with a tree decomposition
of width at most �. Combined with the result discussed in Section 5.6, we have
that each class of graphs that is closed under minors and has bounded treewidth
can be recognized in linear time. Then, we use the following result.

Theorem 9 (Robertson et al. [114, 134]). For each planar graph H, there
is a constant cH , such that each graph G that does not have H as a minor has
treewidth at most cH .

(A similar result bounds the pathwidth of graphs that do not have some fixed
forest H as a minor [110, 11].) Thus, any minor closed class of graphs that does
not include all planar graphs has a linear-time recognition algorithm. This result,
however, is again non-constructive.

Theorem 10. Let G be a class of graphs that is closed under taking of minors.
Suppose we can construct a dynamic programming algorithm on tree decompo-
sitions of bounded width, that uses O(1) bits per table/node for the problem to
recognize graphs in G. Suppose an integer k is known such that all graphs in G
have treewidth at most k. Then the obstruction set of G is computable.

Proof. The result follows from the Myhill-Nerode perspective, as discussed in
Section 3.2, as introduced by Fellows and Langston [65]. The dynamic program-
ming algorithm on tree decompositions corresponds to a finite state tree automa-
ton. For each finite set of graphs Z, the property that an input graph G has no
graph from Z as a minor can be formulated in monadic second order logic (see
e.g., the discussion in [32]) and thus, by Courcelle’s theorem (Theorem 4), we
can construct a tree automaton that gets as input the representation of a nice
tree decomposition of width at most k, and tests whether G has a tree decompo-
sition of width at most k. We now can decide, using a tree automaton equivalent
of the classic Myhill Nerode theorem for finite state automata, whether the two
machines accept the same language. Thus, for each finite set of graphs, we can
check if this is the obstruction set of G. By enumerating all finite sets of graphs,
we eventually find the obstruction set. �

See also e.g., [37].

5 Deciding Treewidth and Pathwidth

In this section, we discuss the problems, for fixed integers k, to decide for a
given graph G = (V,E) whether its treewidth is at most k. We also look at the

210 H.L. Bodlaender

constructive variant: if the answer is yes, the algorithm also has to output a tree
decomposition of width at most k, and we consider the variants of this problem
where we consider pathwidth and path decompositions instead.

The problem to determine for a given graph G and integer k, whether the
treewidth of G is at most k is NP-complete [4]. The NP-completeness proof of
Arnborg et al. [4] shows that treewidth is NP-complete for co-bipartite graphs,
i.e., graphs that are obtained by adding some edges between vertices in two
cliques. They also show that for these graphs, the treewidth equals the path-
width, and thus obtain also the NP-completeness of pathwidth. An independent
NP-completeness proof of pathwidth (or, more precisely, for a notion equivalent
to pathwidth) was found by Lengauer [101].

In the remainder of this section, we consider the fixed-parameter cases for
Treewidth and Pathwidth.

5.1 Membership in XP

Downey and Fellows [54] define the class XP, as the class of parameterized prob-
lems that are solvable in time O(nf(k)) for some function f .

The result that Treewidth belongs to XP dates from far before the terminol-
ogy. In the 1980s, Arnborg et al. [4] give a clever dynamic programming algorithm
for Treewidth that uses O(nk+2) time. The first algorithm whose running time
is in XP for Pathwidth was found by Ellis et al.; this complicated algorithm
(formulated on the equivalent notion of vertex separation number) only appears
in a technical report in 1987 [58]. Both algorithms solve the constructive versions
of the problem, i.e., they also give tree or path decompositions of width at most
k, if existing.

5.2 Nonconstructive Advances

The fact that Treewidth is fixed-parameter tractable was first obtained as a
consequence from the work of Robertson and Seymour on graph minors. We
briefly discuss how the results discussed in Section 4 show that Treewidth and
Pathwidth are (non uniform) fixed-parameter tractable. We use Pathwidth

as running example.

Lemma 2. For each fixed k, the class of graphs with pathwidth at most k is
closed under minor taking.

Proof. Suppose H is a minor of G, and G has pathwidth at most k. Consider a
path decomposition of G of width at most k. Consider the sequence of operations
that shows that H is a minor of G. For a deletion of a vertex v, we remove v from
all bags of the path decomposition. For a deletion of an edge, we do nothing.
For the contraction of an edge {v, w} to a vertex x, we replace each occurrence
of v and/or w in a bag by an occurrence of x. As a result, we obtain a path
decomposition of H of the same or smaller width. �

Thus we have by the results in Section 4:

Fixed-Parameter Tractability of Treewidth and Pathwidth 211

Proposition 2. For each fixed k, there is an O(n3) time algorithm, that given
a graph, tests if G has pathwidth at most k.

The result can be improved in several ways: the cubic time can be brought back
to linear time. But also: this algorithm is non-uniform, and non-constructive in
two ways: it does not provide a corresponding path decomposition, and we do
not have the algorithm itself: as the proof of Theorem 8 is non-constructive, we
know that the obstruction set and thus the algorithm exists, but we do not know
this set and thus this algorithm (so far). In later parts of this section, we will
overcome these points.

To speed up the algorithm, we can use the fact that the treewidth of graphs
is bounded by its pathwidth, and that we can formulate for each fixed graph H ,
the property that H is a minor of a given graph G = (V,E) in monadic second
order logic. Thus, by Courcelle’s theorem (see Section 3.4), we have that for fixed
k, there exist a linear-time algorithm, that given a tree or path decomposition
of bounded width of the input graph G, tests if the pathwidth of G is at most
k, by verifying whether G contains any of the graphs from the obstruction set
of graphs of pathwidth at most k as a minor.

To find such a tree or path decomposition, one could either use an approxima-
tion algorithm for treewidth (or pathwidth); such an algorithm should use time
that is polynomial in n but can be exponential in k. The first such algorithm
was given in terms of branchwidth and branch decompositions by Robertson and
Seymour in [124]: this algorithm finds in O(33kn2) time a branch decomposition
of width 3k. This result can easily be transferred to a similar result giving tree
decompositions (with factor 4.5 instead of 3 for treewidth). Similar results with
some improvements in bounds or running times were obtained by different au-
thors, see e.g., [1, 51, 96, 109] or [90, Sec. 10.5]. Reed [109] obtained a running
time of O(n logn).

Further speedup can be obtained with different methods, which will be dis-
cussed later.

5.3 Fighting Non-constructiveness: Self-reduction

One approach to overcome non-constructiveness is by the use of self-reduction.
Fellows and Langston [69] (see also [36]) introduced a general technique to turn
a non-constructive proof of the existence of an algorithm into a constructive one.
We showcase the technique by using the pathwidth problem as example.

Self-reduction is a well known technique to turn algorithms for decision prob-
lems into algorithms for the constructive version of the problem: by running the
decision algorithm multiple times on slightly modified inputs, the output for the
constructive version is generated (e.g., we construct a certificate for a problem
in NP.) In the approach of Fellows and Langston, the technique is taken one step
further: besides constructing the certificate (in this case, a path decomposition of
width at most k, or, equivalently, an interval supergraph with maximum clique
size at most k + 1), but we also circumvent the fact that we do not know the
obstruction set in advance.

212 H.L. Bodlaender

First, suppose we have a decision algorithm A for the problem to test for
a given graph G if the pathwidth of G is at most k. First, run A on G. If A
tells that the pathwidth of G is more than k, we halt. Otherwise, we use O(n2)
runs of A to build an interval graph H with maximum clique size k. (Recall
Theorem 3.) Take an auxiliary graph H , which we initially set to be equal to
G. Now, for each pair of disjunct vertices v, w ∈ V , {v, w} �∈ E, we test if the
pathwidth of the graph, obtained by adding {v, w} to H is at most k. If so, we
add the edge {v, w} to H . Call this algorithm B. The output of algorithm B is a
maximal supergraph H of of G that has pathwidth at most k; more specifically,
this graph H is an interval graph with maximum clique size k + 1.

Suppose we have a set of graphs X that is a subset of the obstruction set
of the graphs of pathwidth at most k. We build an algorithm C that, given a
graph G, either decides that the pathwidth of G is at most k, or gives a path
decomposition of G of width at most k, or decides that X is a proper subset of
the obstruction set of graphs of pathwidth at most k, as follows: run the following
modification of algorithm B: instead of using A, we test if the input graph has a
minor in X . If this algorithm tells that G has pathwidth more than k, then this
is because a graph from X is a minor of G, and thus this is a correct output.
Otherwise, we check if the output is indeed an interval graph with maximum
clique size k. (This can be done in polynomial time, see e.g. [77].) If so, we are
done; if not, we know that X was not equal to the obstruction set of graphs of
pathwidth at most k.

We now can build an algorithm D, that given a graph G, either correctly
decides that G has pathwidth more than k, or outputs a path decomposition of
G of width at most k, as follows. Initially, let X be the empty set. Now, repeat
the following step, until we are done. Enumerate all graphs G, and for each,
test if G is not in X , and if G is a member of the obstruction set of graphs
of pathwidth at most k, i.e., if the pathwidth of G is k + 1 and if each proper
minor of G has pathwidth at most k. (We can use any algorithm for this.) If not,
continue the enumeration of graphs. If the test succeeds, add G to X ; stop the
enumeration of graphs, and run algorithm C with X . If algorithm C produces
as output that G has pathwidth more than k, or a path decomposition of G,
we are done; otherwise, we restart the enumeration of graphs, but now with the
larger set X .

This is an fpt-algorithm, i.e., its running time is bounded by a function of k
times a polynomial in n: we never have to enumerate graphs beyond the last
graph in the obstruction set of pathwidth-k graphs, and thus X and the time
for enumeration of graphs are bounded by a function of k. The algorithm is, of
course, highly impractical, but showcases an important idea how we can turn
non-constructive algorithms into constructive ones.

With some addition techniques, one can modify this algorithm such that it
runs in O(f(k)n2) time, see [13]. The technique works for a large number of
problems; see [69] for more details. For pathwidth, there exist more efficient
algorithms, which will be discussed in later sections.

Fixed-Parameter Tractability of Treewidth and Pathwidth 213

5.4 Graph Reduction Techniques

In this subsection, we discuss some algorithmic results for graphs of bounded
treewidth that are based on the technique of graph reduction, now known under
the name of protrusions. A simple example of this technique is the following
algorithm that recognizes the graphs of treewidth at most one, i.e., the set of
forests: while possible, remove vertices of degree one with their incident edge
and vertices of degree zero. The empty graph results, if and only if the input
graph was a forest.

If we add the reduction rule that removes vertices of degree two while adding
an edge between their neighbors (if not already present), we obtain a recognition
algorithm for graphs of treewidth at most two. Arnborg and Proskurowski gave
a fast reduction algorithm for graphs of treewidth at most three [7], see also
[107]. For treewidth 4, Sanders [135] found a linear-time recognition algorithm.
An experimental evaluation of this algorithm by Hein and Koster [83] shows that
this algorithm is practical.

In a more generalized setting, consider the equivalence relation ∼Q,k discussed
in Section 3.2 for some decision problem Q on graphs. If we have k-terminal
graphs G1 and G2 with G1 ∼Q,k G2 and G2 is smaller than G1, then this leads
to the following algorithmic step: if we have G1 as subgraph, with terminals
of G1 the only vertices in the subgraph with neighbors outside the subgraph,
then we can replace G1 by G2; i.e., we transform G = G1 ⊕H to G2 ⊕ H . As
Q(G) = Q(G2⊕H), the step is safe, as the answer to the problem at hand does
not change.

A graph reduction algorithm can thus be based on a collection of such safe
reduction rules. In 1993, Arnborg et al. [5] showed that for each fixed k, each
graph problem that is finite state (and thus, including, all problems that can
be formulated in monadic second order logic) there is a collection of reduction
rules that give a linear time (on a random access machine with the uniform cost
model) algorithm for graphs of treewidth at most k. Bodlaender and Hagerup [22]
showed that one can obtain parallel algorithms based on graph reduction that
use O(log n) time and O(n) work; their version leads to linear-time sequential
algorithms on the more standard pointer machine model. Bodlaender and van
Antwerpen-de Fluiter [29, 49] showed that the technique can also be applied to
some optimization problems (terming these finite integer index); a reduction rule
not only changes the graph, but also adds a constant to one integer variable.

Graph reduction techniques are often used for preprocessing and kernelization.
For the problem to determine the treewidth of a graph, graph reduction has
been used in the setting of preprocessing [27, 56] and, recently, in the setting
of kernelization [23]. Recently, graph reduction techniques were used to obtain
kernelization results for other problems, including ’meta-kernelization’ results:
proofs that large collections of problems have kernelization algorithms when
restricted to certain special graph classes (e.g., graphs embeddable on a fixed
surface) [20, 72, 73].

214 H.L. Bodlaender

A very recent (spring 2012) result by Drucker [55], combined with the ker-
nelization lower bound techniques from [17], shows that Treewidth (in its
standard parameterization) does not have a polynomial kernel, unless NP ⊆
coNP/poly.

5.5 An Explicit Finite Congruence

The use of non-constructive methods can be avoided altogether by giving an ex-
plicit equivalence relation on path decompositions for certain types of subgraphs.
The techniques can be generalized for treewidth and tree decompositions; we
briefly discuss what additional technical difficulties are to be faced at the end of
this section.

The results shown here were obtained by Bodlaender and Kloks [24] and
Lagergren and Arnborg [97] in 1991; Fellows and Langston obtained similar
results independently at the same time. Bodlaender et al. [19] discussed how
such algorithms can be automatically be derived, and part of the discussion
below is based on the ideas from [19].

Theorem 11. Let k, � be constants. There is (and we can explicitly describe)
an algorithm, that given a graph G = (V,E) with a path decomposition of G of
width at most �, decides if the pathwidth of G is at most k, and if so, finds a
path decomposition of G of width at most k.

Of course, we may assume that k < �, otherwise the problem is trivial.
We define a simple operation on sequences of integers, which we call compact-

ing: if (a1, . . . , aq) is an sequence of integers, its compacted sequence is obtained
by repeating the following step:

– If there are i, j, j ≥ i+2, such that ai = mini≤i′≤j ai′ and aj = maxi≤i′≤j ai′ ,
then remove the numbers ai+1, . . . , aj−1 from the sequence.

– If there are i, j, j ≥ i+2, such that ai = maxi≤i′≤j ai′ and aj = mini≤i′≤j ai′ ,
then remove the numbers ai+1, . . . , aj−1 from the sequence.

E.g., the compacted sequence of 3, 5, 7, 4, 2, 6 is 3, 7, 2, 6. The compacted sequence
is unique, i.e., it does not depend on the order in which the steps are carried
out.

Recall that pathwidth is equivalent to vertex separation number (Theorem 2.)
The uncompacted fingerprint of a linear ordering f of a terminal graph

(V ′, Ei, X) is defined as follows. We partition f in pieces as follows: the first
piece starts with the first vertex in the ordering, f−1(1). Now, visit the vertices
from low to high number. Start a new piece when we see a terminal, i.e., a vertex
in X , and start a new piece directly after a vertex that is the highest numbered
neighbor of a vertex in X . We have for each piece an uncompacted fingerprint,
and the uncompacted fingerprint of f is the sequence of uncompacted fingerprints
of the pieces: Suppose we have the piece f−1(i), f−1(i+1), . . . , f−1(j). The first
part of the uncompacted fingerprint is X∩{f−1(i)}, i.e., it tells whether the first
vertex is a terminal and if so, what terminal; the second part is the sequence
ni, ni+1, . . . , nj , with nr = |{w ∈ V | f(w) ≤ r ∧ ∃{w, x} ∈ E : f(x) > r}|.

Fixed-Parameter Tractability of Treewidth and Pathwidth 215

The compacted fingerprint is obtained by taking the uncompacted fingerprint
and then compacting in each piece its sequence of numbers.

Lemma 3. Let f and g be linear orderings of �-terminal graph (V ′, E′, X), and
let H be an �-terminal graph, and G = (V ′, E′, X)⊕H. Let k be an integer.

(i). Suppose f and g have the same uncompacted fingerprints. There exists a
linear ordering of G with vertex separation number at most k that con-
tains f as a subsequence, if and only if a linear ordering of G with vertex
separation number at most k that contains g as a subsequence.

(ii). Suppose f and g have the same compacted fingerprints. There exists a
linear ordering of G with vertex separation number at most k that con-
tains f as a subsequence, if and only if a linear ordering of G with vertex
separation number at most k that contains g as a subsequence.

The first part of the lemma is more or less trivial (except for an overload of
terminology and notation). The second part contains the essential insight of the
algorithms in [97, 24, 19]: the numbers that are forgotten when compacting are
not essential when we need to determine if we can extend the ordering to an
ordering of G of vertex separation number at most k.

Compacted sequences of integers in {0, . . . , k} have length O(k) [24], and thus
for fixed �, the number of compacted fingerprints of �-terminal graphs is bounded
by a constant.

The main idea of the algorithm of Theorem 11 is the following. Suppose we
have a nice path decomposition (X1, . . . , Xr) of width � of G. For each i, we
compute the set of compacted fingerprints of the linear orderings of the terminal
graphs (Vi, Ei, Xi) of vertex separation number at most k. For introduce and
for forget nodes, we have a subroutine that tells how such a set can be computed
from the previous set. The pathwidth of G is at most k, if and only if the last of
these sets (for (Vr, Er, Xr)) is nonempty; note that V = Vr and E = Er. Similar
as for many other dynamic programming algorithms, we can also construct (if
existing) a corresponding linear ordering of width at most k, by going backwards
through the tables. This linear ordering can easily be transformed to a path
decomposition of width at most k (as in [89].)

Corollary 1. For each k, the obstruction set of graphs of pathwidth at most k
is computable.

Proof. This follows directly from Theorem 10 and the discussion above. We have
two �-terminal subgraphs in the same equivalence class if they have the same set
of fingerprints of linear orderings of vertex separation number at most k. �

Similar results hold for treewidth. There are however several additional technical
difficulties: the fingerprints are much harder to describe because of the tree
structure, and a procedure has to be built for the join nodes. Similar results
have been designed for other width parameters, e.g., [139, 140].

216 H.L. Bodlaender

5.6 A Win-Win Theorem and a Linear-Time Algorithm

In this section, we sketch a linear-time algorithm for the fixed-parameter case
of pathwidth. The algorithm follows the main ideas of the linear-time algorithm
for the fixed-parameter case of treewidth [14]; some arguments are somewhat
simpler for the case of pathwidth.

We denote with G + {v, w} the graph obtained from G by adding the edge
{v, w}. The following lemma is well known in its variant for treewidth, see e.g.,
[14]. Its statement and proof are identical for pathwidth.

Lemma 4. Let G = (V,E) be a graph, and k ≥ 0. Suppose v and w have at
least k+1 common neighbors., Each path decomposition of width at most k of G
is also a path decomposition of width at most k of G+ {v, w}, and the pathwidth
of G is at most k, if and only if the pathwidth of G+ {v, w} is at most k.

Proof. Suppose v and w have at least k + 1 common neighbors.
Now, suppose that (X1, . . . , Xr) is a path decomposition of G of width at most

k. If there is a bag Xi with v, w ∈ Xi, then this is also a path decomposition of
G + {v, w} and hence the pathwidth of G + {v, w} is at most k. Suppose such
a bag does not exist. W.l.o.g., suppose the first bag that contains v is before
the first bag that contains w. Let v ∈ Xi with i maximal; and let w ∈ Xj

with j minimal. Now all common neighbors of v and w must belong to a bag
containing v and to a bag containing w, and hence must belong to the first bag
that contains w: this bag hence has size at least k + 2 as it contains w and at
least k + 1 common neighbors of v and w, contradiction. The equivalence now
follows from this, and the trivial observation that the pathwidth of G is never
larger than the pathwidth of G+ {v, w}. �

Lemma 4 allows us to add edges between vertices with at least k + 1 common
neighbors, without changing the answer to the question if the graph at hand has
pathwidth at most k. In order to get a linear-time algorithm, we only look at
neighbors of bounded degree. In this case, we define a number bk and use it as
upper bound for the degree of neighbors to make the proof work.

Define ak = k
2 (2k + 2)(2k + 1) + k + 2, and bk = ak + k + 1.

The k-improved graph of a graph G = (V,E) is obtained from G by adding an
edge between each pair of nonadjacent vertices v, w such that there are at least
k + 1 vertices of degree at most bk that are a common neighbor of v and w.

Building the k-improved graph is not an iterative process: the new edges
are added simultaneously for all pairs in one round. It is well possible that
the k-improved graph of the k-improved graph of G has more edges than the
k-improved graph of G, but taking the closure of the improvement operation
might take too much time.

Suppose we have a graph G = (V,EG) and its k-improved graphH = (V,EH).
We say that a vertex is i-simplicial, if its neighbors in G form a clique in H , i.e.,
for each pair of edges {v, w} ∈ EG, {v, x} ∈ EG, we have w = x or {w, x} ∈ EH .

The following theorem gives us a ‘win-win’ approach to computing treewidth:
we first make the improved graph; then greedily compute some maximal match-
ing M . The theorem shows that we either have ’a large maximal matching’ or

Fixed-Parameter Tractability of Treewidth and Pathwidth 217

’many simplicial vertices’; in both cases, we can solve the problem by first solv-
ing the problem on a graph with linearly many fewer vertices and then running
the algorithm that was discussed in Section 5.5. (For other win-win theorems,
see e.g., [66],[54, Chapter 8.1].)

Theorem 12. Let G = (V,E) be a graph of pathwidth at most k. Let H be the
k-improved graph of G. Let M be a maximal matching in H. Let X be the set of
i-simplicial vertices in G. Then 2|M |+ |X | ≥ �n/ak�.

Proof. By Lemma 4, the pathwidth of H is at most k. Consider a nice path
decomposition (X1, . . . , Xr) of H (and hence also of G) of width at most k.
This path decomposition has n introduce nodes or leaf nodes: each vertex is
introduced exactly once (with one vertex introduced in X1). A piece of the path
decomposition is a collection of successive nodes that contains exactly ak intro-
duce nodes. Note that the path decomposition contains �n/ak� non-overlapping
pieces. A central part of the proof is the following claim.

Claim. Let (Xi, Xi+1, . . . , Xj) be a piece. Let W =
⋃j−1

s=i+1 Xi − (Xi ∪Xj). W
contains a vertex that is an endpoint of an edge in M or that is i-simplicial.

Proof. Let W ′ be the set of vertices that are ’introduced’ by an introduce node
in the piece. As we have ak introduce nodes in the piece, |W ′| = ak. Vertices in
Xi are introduced in a node with index at most i, so W = W ′ −Xj , and hence
W ≥ ak − (k + 1) = k

2 (2k + 2)(2k + 1) + 1.
Consider a vertex v ∈W . If v is i-simplicial, then the claim holds, so suppose

v is not i-simplicial. Thus, v must have two neighbors in G that are not adjacent
in H , say x and y. As v belongs to a bag Xi′ with i < i′ < j, but v does
not belong to Xi or Xj , the only bags v can belong to are the bags Xi′′ with
i < i′′ < j, and hence all neighbors of v belong to W ∪Xi ∪Xj, and hence v has
degree at most ak + k + 1 = bk.

First, suppose x ∈ W . Then either v is an endpoint of an edge in M , x is
an endpoint of an edge in M , or M is not a maximal matching. So, the claim
holds in this case. Similarly if y ∈M . The case that remains is that both x and
y belong to Xi ∪Xj.

I.e., we have that each vertex in W has two nonadjacent neighbors in Xi∪Xj ,
and degree at most bk. As there are at most 1

2 (2k + 2)(2k + 1) pairs of vertices
in Xi ∪ Xj , there must be a pair of nonadjacent vertices in Xi ∪ Xj that has
at least k + 1 common neighbors in W , each with of degree at most bk. But
then the edge {v, w} must have been added during the improvement step, i.e.,
{v, w} ∈ EH , contradiction. �

The proof of Theorem 12 can now easily be concluded: we have �n/ak� nonover-
lapping pieces. Each of these pieces contains a vertex that is i-simplicial or end-
point of an edge in the matching M . As these vertices never belong to the first
or last bag of a piece, none of these vertices can belong to two or more pieces,
and hence we have �n/ak� vertices that are i-simplicial or endpoint of an edge
in M , which implies that 2|M |+ |X | ≥ �n/ak�. �

218 H.L. Bodlaender

We now sketch the linear-time algorithm. The algorithm gets as input a graph
G = (V,E), and either outputs no (the pathwidth of G is more than k), or
outputs a path decomposition of width at most k of G. It uses the algorithm of
Section 5.5 as a subroutine. Correctness and running time will be argued later.

(i). If G has at most 3ak vertices, then solve the pathwidth problem by any
deterministic algorithm, e.g., [4].

(ii). Compute the k-improved graph H = (V,EH).
(iii). Compute a maximal matching M in H .
(iv). Compute the set X of i-simplicial vertices of degree at most k in H .
(v). If 2|M |+ |X | < �n/ak� then output no.
(vi). If |X | ≥ |M | then

(a) Let H ′ be obtained from H by removing all vertices in X from H .
(b) Recursively call the algorithm on H ′.
(c) If the pathwidth of H ′ is larger than k, then output no.
(d) Otherwise, transform the path decomposition of H ′ of width at most k

to a path decomposition of width at most k + 1 of H .
(vii). Else (|X | < |M |)

(a) Let H ′′ be obtained from H by contracting all edges in M .
(b) Recursively call the algorithm on H ′′.
(c) If the pathwidth of H ′′ is larger than k, then output no.
(d) Otherwise, transform the path decomposition of H ′′ of width at most k

to a path decomposition of width at most 2k + 1 of H .
(viii). (Now, we have a path decomposition ofH of width at most 2k+1.) Use the

algorithm of Section 5.5 on H using the path decomposition constructed
in the earlier step.

Several of the steps need more detail, and a proof that they can be performed
in linear time. First, we argue correctness of the algorithm. We first consider
Step 3. If the pathwidth of G is at most k, then the pathwidth of H is at most
k (Lemma 4). Thus H has no clique of size k + 1 or more, and hence there
cannot be i-simplicial vertices of degree more than k. Thus, by Theorem 12,
2|M |+ |X | ≥ �n/ak�. So, if we decide no in Step 3, the pathwidth of G indeed
is more than k. H ′ is a subgraph of H , so if H ′ has pathwidth more than k,
then H and hence G has treewidth more than k. H ′′ is a minor of H , and as
pathwidth cannot increase when taking minors (see Section 4), if the pathwidth
of H ′′ is more than k, then the pathwidth of H and thus G is more than k.

We now discuss a few of the steps in more detail. Computing the k-improved
graph can be done in linear time with help of the use of radix sort techniques
(see [41, Chapter 8.3]). Take an initially empty multiset S. For each vertex v of
degree at most bk, insert each pair of neighbors of v in S. Radix sort S, and then
detect which pairs appear at least k + 1 times. Add these pairs to G. By radix
sorting the set of edges of G, we can remove parallel edges.

Computing i-simplicial vertices again needs to use of radix sort. We leave the
details as an easy exercise.

For step (vi)(d), we must find for each i-simplicial vertex v ∈ X a bag Xiv in
the path decomposition of H ′ that contains all neighbors of v. Such a bag exists,

Fixed-Parameter Tractability of Treewidth and Pathwidth 219

by Lemma 1. To find the bags, one can either again exploit radix sort, or note
that v ∈ Xi with

i = min
w∈NH(v)

max{j | w ∈ Xj}

Add a bag with vertex set Xiv ∪{v}, directly after Xiv . (When more vertices are
mapped to the same bag, we add a number of bags, each with one new vertex.)

Consider now step (vii)(d). For each edge {v, w} ∈ M , replace in each bag,
each occurrence of the newly formed vertex by the contraction by v and w. In
this way, bag sizes at most double, so the width is at most 2k + 1.

We now can argue that the algorithm uses linear time. As 2|M |+|X | ≥ �n/ak�,
we have |M | ≥ 1

3n/ak� or |X | ≥ 1
3�n/ak�. So, when we recursively call the

algorithm on H ′ or H ′′, this graph has at most (1 − � 1
3ak

�)n vertices. So, the
time of the algorithm on a graph with n vertices fulfills:

T (n) = T ((1− 1

3ak
)n) +O(n)

which implies T (n) = O(n).
We now have shown the following result.

Theorem 13. Let k be a constants. There is (and we can explicitly describe)
an algorithm, that given a graph G = (V,E) decides if the pathwidth of G is at
most k, and if so, finds a path decomposition of G of width at most k.

A generalization of the techniques shown above lead to a similar result for
treewidth and tree decompositions [15].

6 Conclusions

In this paper, a number of results have been surveyed on algorithmic aspects of
treewidth. There are still a large number of topics that have not been touched
here, including most practical aspects of treewidth computations (see e.g., [25,
26]), computing treewidth on special graph classes (including the celebrated
results of Bouchitté and Todinca on potential maximal cliques [34, 35]), the
role of treewidth for bidimensionality theory, logspace algorithms [57], W [1]-
hardness proofs for some problems on graphs of bounded treewidth (e.g., [18,
61]), dynamic algorithms [81], and much much more. The area of algorithmic
research of treewidth is a very lively one, but can already look back to a lively
history with several intriguing aspects, like the special role on nonconstructive
results.

I end with mentioning a few probably very hard challenges:

– What is the complexity of Treewidth, restricted to planar graphs. For
the related Branchwidth problem, the famous ratcatcher algorithm by
Seymour and Thomas [137] solves it in polynomial time; for Treewidth on
planar graphs, neither a polynomial time algorithm nor an NP-completeness
proof is known.

220 H.L. Bodlaender

– Is it possible to approximate treewidth up to a constant factor? There is
an approximation with ratio O(

√
logn) [59], and it is easy to show that

approximation with an additive constant term is not possible assuming P �=
NP [21].

– An accessible proof for Courcelle’s conjecture, i.e., that shows that each
problem that is finite index can be formulated in CMSOL.

– Is it possible to find an algorithm for Treewidth that runs in O(cknc′) for
constants c and c′? Perhaps a probabilistic algorithm using ideas from [46]?

Acknowledgment. I thank Mike Fellows and numerous other colleagues for
collaboration, discussions, and inspiration! It is hard to be sufficiently complete
for a survey like this one, and I apologize to those whose work was not but should
have been mentioned here.

References

1. Amir, E.: Approximation algorithms for treewidth. Algorithmica 56, 448–479
(2010)

2. Andrzejak, A.: An algorithm for the Tutte polynomials of graphs of bounded
treewidth. Discrete Mathematics 190, 39–54 (1998)

3. Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with
bounded decomposability – A survey. BIT 25, 2–23 (1985)

4. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM Journal on Algebraic and Discrete Methods 8, 277–284 (1987)

5. Arnborg, S., Courcelle, B., Proskurowski, A., Seese, D.: An algebraic theory of
graph reduction. Journal of the ACM 40, 1134–1164 (1993)

6. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable
graphs. Journal of Algorithms 12, 308–340 (1991)

7. Arnborg, S., Proskurowski, A.: Characterization and recognition of partial 3-trees.
SIAM Journal on Algebraic and Discrete Methods 7, 305–314 (1986)

8. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems
restricted to partial k-trees. Discrete Applied Mathematics 23, 11–24 (1989)

9. Bern, M.W., Lawler, E.L., Wong, A.L.: Linear time computation of optimal sub-
graphs of decomposable graphs. Journal of Algorithms 8, 216–235 (1987)

10. Bienstock, D., Langston, M.A.: Algorithmic implications of the graph minor the-
orem. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.)
Handbook of Operations Research and Management Science: Network Models,
pp. 481–502. North-Holland, Amsterdam (1995)

11. Bienstock, D., Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a
forest. Journal of Combinatorial Theory, Series B 52, 274–283 (1991)

12. Bodlaender, H.L.: Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. Journal of Algorithms 11, 631–643 (1990)

13. Bodlaender, H.L.: Improved self-reduction algorithms for graphs with bounded
treewidth. Discrete Applied Mathematics 54, 101–115 (1994)

14. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

Fixed-Parameter Tractability of Treewidth and Pathwidth 221

15. Bodlaender, H.L.: Treewidth: Algorithmic Techniques and Results. In: Privara, I.,
Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg
(1997)

16. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-
oretical Computer Science 209, 1–45 (1998)

17. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. Journal of Computer and System Sciences 75, 423–434
(2009)

18. Bodlaender, H.L., Fellows, M.R., Hallett, M.T., Wareham, H.T., Warnow, T.J.:
The hardness of perfect phylogeny, feasible register assignment and other prob-
lems on thin colored graphs. Theoretical Computer Science 244, 167–188 (2000)

19. Bodlaender, H.L., Fellows, M.R., Thilikos, D.M.: Derivation of algorithms for
cutwidth and related graph layout parameters. Journal of Computer and System
Sciences 75, 231–244 (2009)

20. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thi-
likos, D.M.: (Meta) kernelization. In: Proceedings of the 50th Annual Symposium
on Foundations of Computer Science, FOCS 2009, pp. 629–638. IEEE Computer
Society (2009)

21. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating
treewidth, pathwidth, frontsize, and minimum elimination tree height. Journal
of Algorithms 18, 238–255 (1995)

22. Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for
bounded treewidth. SIAM J. Comput. 27, 1725–1746 (1998)

23. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for Treewidth: A
Combinatorial Analysis through Kernelization. In: Aceto, L., Henzinger, M., Sgall,
J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 437–448. Springer, Heidelberg
(2011)

24. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the path-
width and treewidth of graphs. Journal of Algorithms 21, 358–402 (1996)

25. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper bounds.
Information and Computation 208, 259–275 (2010)

26. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations II. Lower bounds.
Information and Computation 209, 1103–1119 (2011)

27. Bodlaender, H.L., Koster, A.M.C.A., Van den Eijkhof, F.: Pre-processing rules for
triangulation of probabilistic networks. Computational Intelligence 21(3), 286–305
(2005)

28. Bodlaender, H.L., Möhring, R.H.: The pathwidth and treewidth of cographs.
SIAM Journal on Discrete Mathematics 6, 181–188 (1993)

29. Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Reduction algorithms for graphs
of small treewidth. Information and Computation 167, 86–119 (2001)

30. Bodlaender, H.L., van Leeuwen, E.J., van Rooij, J.M.M., Vatshelle, M.: Faster
Algorithms on Branch and Clique Decompositions. In: Hliněný, P., Kučera, A.
(eds.) MFCS 2010. LNCS, vol. 6281, pp. 174–185. Springer, Heidelberg (2010)

31. Borie, R.B.: Generation of polynomial-time algorithms for some optimization
problems on tree-decomposable graphs. Algorithmica 14, 123–137 (1995)

32. Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algo-
rithms from predicate calculus descriptions of problems on recursively constructed
graph families. Algorithmica 7, 555–581 (1992)

33. Borie, R.B., Parker, R.G., Tovey, C.A.: Solving problems on recursively con-
structed graphs. ACM Computing Surveys 41(4) (2008)

222 H.L. Bodlaender

34. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal
separators. SIAM Journal on Computing 31, 212–232 (2001)

35. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. The-
oretical Computer Science 276, 17–32 (2002)

36. Brown, D.J., Fellows, M.R., Langston, M.A.: Polynomial-time self-reducibility:
Theoretical motivations and practical results. International Journal of Computer
Mathematics 31, 1–9 (1989)

37. Cattell, K., Dinneen,M.J., Downey, R.G., Fellows, M.R., Langston, M.A.: On com-
puting graph minor obstruction sets. Theoretical Computer Science 233, 107–127
(2000)

38. Chaudhuri, S., Zaroliagis, C.D.: Shortest paths in digraphs of small treewidth.
Part II: Optimal parallel algorithms. Theoretical Computer Science 203, 205–223
(1998)

39. Chaudhuri, S., Zaroliagis, C.D.: Shortest paths in digraphs of small treewidth.
Part I: Sequential algorithms. Algorithmica 27, 212–226 (2000)

40. Chen, H.: Quantified constraint satisfaction and bounded treewidth. In: de
Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 17th European Conference
on Artificial Intelligence, ECAI 2004, pp. 161–165 (2004)

41. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algo-
rithms, 2nd edn. MIT Press, Cambridge (2001)

42. Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of
finite graphs. Information and Computation 85, 12–75 (1990)

43. Courcelle, B.: The monadic second-order logic of graphs V: On closing the gap be-
tween definability and recognizability. Theoretical Computer Science 80, 153–202
(1991)

44. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique width. Theoretical Computer Science 33, 125–150
(2000)

45. Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-
decomposable graphs. Theoretical Computer Science 109, 49–82 (1993)

46. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J., Wojtaszczyk,
J.O.: Solving connectivity problems parameterized by treewidth in single expo-
nential time. In: Proceedings of the 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, pp. 150–159 (2011)

47. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint Satisfaction, Bounded
Treewidth, and Finite-Variable Logics. In: Van Hentenryck, P. (ed.) CP 2002.
LNCS, vol. 2470, pp. 310–326. Springer, Heidelberg (2002)

48. Dantsin, E., Wolpert, A.: On Moderately Exponential Time for SAT. In: Strich-
man, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 313–325. Springer,
Heidelberg (2010)

49. de Fluiter, B.: Algorithms for Graphs of Small Treewidth. PhD thesis, Utrecht
University (1997)

50. Dı́az, J., Serna, M., Thilikos, D.M.: Counting H-colorings of partial k-trees. The-
oretical Computer Science 281, 291–309 (2002)

51. Diestel, R., Jensen, T.R., Gorbunov, K.Y., Thomassen, C.: Highly connected sets
and the excluded grid theorem. Journal of Combinatorial Theory, Series B 75,
61–73 (1999)

52. Dorn, F.: Dynamic programming and planarity: Improved tree-decomposition
based algorithms. Discrete Applied Mathematics 158, 800–808 (2010)

Fixed-Parameter Tractability of Treewidth and Pathwidth 223

53. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms
on planar graphs: Exploiting sphere cut decompositions. Algorithmica 58, 790–810
(2010)

54. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
55. Drucker, A.: New limits to classical and quantum instance compression (prelimi-

nary draft) (2012) (manuscript)
56. van den Eijkhof, F., Bodlaender, H.L., Koster, A.M.C.A.: Safe reduction rules for

weighted treewidth. Algorithmica 47, 138–158 (2007)
57. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bod-

laender and Courcelle. In: Proceedings of the 51st Annual Symposium on Foun-
dations of Computer Science, FOCS 2010, pp. 143–152 (2010)

58. Ellis, J.A., Sudborough, I.H., Turner, J.: Graph separation and search number.
Report DCS-66-IR, University of Victoria (1987)

59. Feige, U., Hajiaghayi, M., Lee, J.R.: Improved approximation algorithms for min-
imum weight vertex separators. SIAM Journal on Computing 38, 629–657 (2008)

60. Fellows, M.R.: The Robertson-Seymour theorems: A survey of applications. Con-
temporary Mathematics 89, 1–18 (1989)

61. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F., Saurabh, S., Szeider,
S., Thomassen, C.: On the complexity of some colorful problems parameterized
by treewidth. Information and Control 209, 143–153 (2011)

62. Fellows, M.R., Langston, M.A.: Nonconstructive advances in polynomial-time
complexity. Information Processing Letters 26, 157–162 (1987)

63. Fellows, M.R., Langston, M.A.: Fast Self-reduction Algorithms for Combinato-
rial Problems of VLSI Design. In: Reif, J.H. (ed.) AWOC 1988. LNCS, vol. 319,
pp. 278–287. Springer, Heidelberg (1988)

64. Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-
time decidability. Journal of the ACM 35, 727–739 (1988)

65. Fellows, M.R., Langston, M.A.: An analogue of the Myhill-Nerode theorem and its
use in computing finite-basis characterizations. In: Proceedings of the 30th Annual
Symposium on Foundations of Computer Science, FOCS 1989, pp. 520–525 (1989)

66. Fellows, M.R., Langston, M.A.: On search, decision and the efficiency of
polynomial-time algorithms. In: Proceedings of the 21st Annual Symposium on
Theory of Computing, STOC 1989, pp. 501–512 (1989)

67. Fellows, M.R., Langston, M.A.: Fast search algorithms for layout permutation
problems. International Journal on Computer Aided VLSI Design 3, 325–340
(1991)

68. Fellows, M.R., Langston, M.A.: On well-partial-order theory and its application to
combinatorial problems of VLSI design. SIAM Journal on Discrete Mathematics 5,
117–126 (1992)

69. Fellows,M.R., Langston,M.A.:On search, decision and the efficiency of polynomial-
time algorithms. Journal of Computer and System Sciences 49, 769–779 (1994)

70. Fernández-Baca, D., Slutzki, G.: Parametic problems on graphs of bounded
treewidth. Journal of Algorithms 16, 408–430 (1994)

71. Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On two techniques of
combining branching and treewidth. Algorithmica 54, 181–207 (2009)

72. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and
kernels. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, pp. 503–510 (2010)

224 H.L. Bodlaender

73. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Linear kernels for (con-
nected) dominating set on H-minor-free graphs. In: Proceedings of the 22nd An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 82–93
(2012)

74. Fomin, F.V., Thilikos, D.M.: New upper bounds on the decomposability of planar
graphs. Journal of Graph Theory 51, 53–81 (2006)

75. Friedman, H., Robertson, N., Seymour, P.D.: The metamathematics of the graph
minor theorem. Contemporary Mathematics 65, 229–261 (1987)

76. Ganian, R., Hliněný, P.: On parse trees and Myhill-Nerode-type tools for handling
graphs of bounded rank-width. Discrete Applied Mathematics 158, 851–867 (2010)

77. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

78. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decompo-
sition methods. Acta Informatica 124, 243–282 (2000)

79. Gupta, A., Nishimura, N.: The complexity of subgraph isomorphism for classes
of partial k-trees. Theoretical Computer Science 164, 287–298 (1996)

80. Gustedt, J., Mæhle, O.A., Telle, J.A.: The Treewidth of Java Programs. In:
Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 86–97.
Springer, Heidelberg (2002)

81. Hagerup, T.: Dynamic algorithms for graphs of bounded treewidth. Algorith-
mica 27, 292–315 (2000)

82. Hagerup, T., Katajainen, J., Nishimura, N., Ragde, P.: Characterizing multiter-
minal flow networks and computing flows in networks of small treewidth. Journal
of Computer and System Sciences 57, 366–375 (1998)

83. Hein, A., Koster, A.M.C.A.: An Experimental Evaluation of Treewidth at Most
Four Reductions. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS,
vol. 6630, pp. 218–229. Springer, Heidelberg (2011)

84. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. Journal of Computer
and System Sciences 62, 367–375 (2001)

85. Isobe, S., Zhou, X., Nishizeki, T.: A polynomial-time algorithm for finding total
colorings of partial k-trees. International Journal of Foundations of Computer
Science 10, 171–194 (1999)

86. Kabanets, V.: Recognizability Equals Definability for Partial k-Paths. In: Degano,
P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256,
pp. 805–815. Springer, Heidelberg (1997)

87. Kaller, D.: Definability equals recognizability of partial 3-trees and k-connected
partial k-trees. Algorithmica 27, 348–381 (2000)

88. Kashem, M.A., Zhou, X., Nishizeki, T.: Algorithms for generalized vertex-
rankings of partial k-trees. Theoretical Computer Science 240, 407–427 (2000)

89. Kinnersley, N.G.: The vertex separation number of a graph equals its path width.
Information Processing Letters 42, 345–350 (1992)

90. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley, Boston (2005)
91. Kloks, T.: Treewidth. Computations and Approximations. LNCS, vol. 842.

Springer, Heidelberg (1994)
92. Kneis, J., Langer, A., Rossmanith, P.: Courcelle’s theorem - a game-theoretic

approach. Discrete Optimization 8(4), 568–594 (2011)
93. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: A bound on the pathwidth of

sparse graphs with applications to exact algorithms 23, 407–427 (2009)
94. Koster, A.M.C.A., van Hoesel, S.P.M., Kolen, A.W.J.: Solving partial constraint

satisfaction problems with tree decomposition. Networks 40(3), 170–180 (2002)

Fixed-Parameter Tractability of Treewidth and Pathwidth 225

95. Koutsonas, A., Thilikos, D.M.: Planar feedback vertex set and face cover: combi-
natorial bounds and subexponential algorithms. Algorithmica 60, 987–1003 (2011)

96. Lagergren, J.: Efficient parallel algorithms for graphs of bounded tree-width. Jour-
nal of Algorithms 20, 20–44 (1996)

97. Lagergren, J., Arnborg, S.: Finding Minimal Forbidden Minors Using a Finite
Congruence. In: Albert, J.L., Monien, B., Rodŕıguez-Artalejo, M. (eds.) ICALP
1991. LNCS, vol. 510, pp. 532–543. Springer, Heidelberg (1991)

98. Lapoire, D.: Recognizability Equals Definability, for Every Set of Graphs of
Bounded Tree-width. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS,
vol. 1373, pp. 618–628. Springer, Heidelberg (1998)

99. Lauritzen, S.J., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. The Journal of the
Royal Statistical Society, Series B (Methodological) 50, 157–224 (1988)

100. Leaver-Fay, A., Liu, Y., Snoeyink, J.: Faster placement of hydrogen atoms in pro-
tein structures by dynamic programming. In: Proceedings of the 6th Workshop on
Algorithm Engineering and Experimentation and the 1st Workshop on Analytic
Algorithmics and Combinatorics, ALENEX/ANALCO 2004, pp. 39–48 (2004)

101. Lengauer, T.: Black-white pebbles and graph separation. Acta Informatica 16,
465–475 (1981)

102. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal
on Applied Mathematics 36, 177–189 (1979)

103. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM
Journal on Computing 9, 615–627 (1980)

104. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs on bounded
treewidth are probably optimal. In:Randall,D. (ed.)Proceedings of the 21stAnnual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp. 777–789 (2011)

105. Makowsky, J.A.: Coloured Tutte polynomials and Kauffman brackets for graphs
of bounded tree width. Discrete Applied Mathematics 145, 276–290 (2004)

106. Mata-Montero, E.: Resilience of partial k-tree networks with edge and node fail-
ures. Networks 21, 321–344 (1991)

107. Matoušek, J., Thomas, R.: Algorithms for finding tree-decompositions of graphs.
Journal of Algorithms 12, 1–22 (1991)

108. McDiarmid, C., Reed, B.: Channel assignment on graphs of bounded treewidth.
Discrete Mathematics 273, 183–192 (2003)

109. Reed, B.: Finding approximate separators and computing tree-width quickly. In:
Proceedings of the 24th Annual Symposium on Theory of Computing, STOC
1992, pp. 221–228. ACM Press, New York (1992)

110. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. Journal of
Combinatorial Theory, Series B 35, 39–61 (1983)

111. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. Journal of
Combinatorial Theory, Series B 36, 49–64 (1984)

112. Robertson, N., Seymour, P.D.: Graph minors — a survey. In: Anderson, I. (ed.)
Surveys in Combinatorics, pp. 153–171. Cambridge Univ. Press (1985)

113. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-
width. Journal of Algorithms 7, 309–322 (1986)

114. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. Jour-
nal of Combinatorial Theory, Series B 41, 92–114 (1986)

115. Robertson, N., Seymour, P.D.: Graph minors. VI. Disjoint paths across a disc.
Journal of Combinatorial Theory, Series B 41, 115–138 (1986)

116. Robertson, N., Seymour, P.D.: Graph minors. VII. Disjoint paths on a surface.
Journal of Combinatorial Theory, Series B 45, 212–254 (1988)

226 H.L. Bodlaender

117. Robertson, N., Seymour, P.D.: Graph minors. IV. Tree-width and well-quasi-
ordering. Journal of Combinatorial Theory, Series B 48, 227–254 (1990)

118. Robertson, N., Seymour, P.D.: Graph minors. IX. Disjoint crossed paths. Journal
of Combinatorial Theory, Series B 49, 40–77 (1990)

119. Robertson, N., Seymour, P.D.: Graph minors. VIII. A Kuratowski theorem for
general surfaces. Journal of Combinatorial Theory, Series B 48, 255–288 (1990)

120. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-
decomposition. Journal of Combinatorial Theory, Series B 52, 153–190 (1991)

121. Robertson, N., Seymour, P.D.: Graph minors. XXII. Irrelevant vertices in linkage
problems (1992) (manuscript)

122. Robertson, N., Seymour, P.D.: Graph minors. XI. Distance on a surface. Journal
of Combinatorial Theory, Series B 60, 72–106 (1994)

123. Robertson, N., Seymour, P.D.: Graph minors. XII. Excluding a non-planar graph.
Journal of Combinatorial Theory, Series B 64, 240–272 (1995)

124. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B 63, 65–110 (1995)

125. Robertson, N., Seymour, P.D.: Graph minors. XIV. Extending an embedding.
Journal of Combinatorial Theory, Series B 65, 23–50 (1995)

126. Robertson, N., Seymour, P.D.: Graph minors. XV. Giant steps. Journal of Com-
binatorial Theory, Series B 68, 112–148 (1996)

127. Robertson, N., Seymour, P.D.: Graph minors. XVII. Taming a vortex. Journal of
Combinatorial Theory, Series B 77, 162–210 (1999)

128. Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph.
Journal of Combinatorial Theory, Series B 89, 43–76 (2003)

129. Robertson, N., Seymour, P.D.: Graph minors. XVIII. Tree-decompositions and
well-quasi ordering. Journal of Combinatorial Theory, Series B 89, 77–108 (2003)

130. Robertson, N., Seymour, P.D.: Graph minors. XIX. Well-quasi-ordering on a sur-
face. Journal of Combinatorial Theory, Series B 90, 325–385 (2004)

131. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. Journal
of Combinatorial Theory, Series B 92, 325–357 (2004)

132. Robertson, N., Seymour, P.D.: Graph minors. XXI. Graphs with unique linkages.
Journal of Combinatorial Theory, Series B 99, 583–616 (2009)

133. Robertson, N., Seymour, P.D.: Graph minors XXIII. Nash-Williams’ immersion
conjecture. Journal of Combinatorial Theory, Series B 100, 181–205 (2010)

134. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph.
Journal of Combinatorial Theory, Series B 62, 323–348 (1994)

135. Sanders, D.P.: On linear recognition of tree-width at most four. SIAM Journal on
Discrete Mathematics 9(1), 101–117 (1996)

136. Sau, I., Thilikos, D.M.: Subexponential parameterized algorithms for degree-
constrained subgraph problems on planar graphs. Journal of Discrete Algo-
rithms 8, 330–338 (2010)

137. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),
217–241 (1994)

138. Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on
partial k-trees. SIAM Journal on Discrete Mathematics 10, 529–550 (1997)

139. Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth I: A linear time fixed
parameter algorithm. Journal of Algorithms 56, 1–24 (2005)

140. Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth II: Algorithms for partial
w-trees of bounded degree. Journal of Algorithms 56, 25–49 (2005)

141. van Rooij, J.M.M.: Exact exponential-time algorithms for domination problems in
graphs. PhD thesis, Department of Computer Science, Utrecht University (2011)

Fixed-Parameter Tractability of Treewidth and Pathwidth 227

142. van Rooij, J.M.M., Bodlaender, H.L., Rossmanith, P.: Dynamic Programming on
Tree Decompositions Using Generalised Fast Subset Convolution. In: Fiat, A.,
Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 566–577. Springer, Heidelberg
(2009)

143. Wimer, T.V.: Linear Algorithms on k-Terminal Graphs. PhD thesis, Dept. of
Computer Science, Clemson University (1987)

144. Wimer, T.V., Hedetniemi, S.T., Laskar, R.: A methodology for constructing linear
graph algorithms. Congressus Numerantium 50, 43–60 (1985)

145. Zhou, X., Fuse, K., Nishizeki, T.: A linear algorithm for finding [g, f]-colorings of
partial k-trees. Algorithmica 27, 227–243 (2000)

Graph Minors and Parameterized

Algorithm Design�

Dimitrios M. Thilikos

Department of Mathematics, National and Kapodistrian University of Athens,
Panepistimioupolis, GR-15784, Athens, Greece

sedthilk@math.uoa.gr

Abstract. The Graph Minors Theory, developed by Robertson and Sey-
mour, has been one of the most influential mathematical theories in pa-
rameterized algorithm design. We present some of the basic algorithmic
techniques and methods that emerged from this theory. We discuss its
direct meta-algorithmic consequences, we present the algorithmic appli-
cations of core theorems such as the grid-exclusion theorem, and we give
a brief description of the irrelevant vertex technique.

Keywords: graph minors, parameterized algorithms, treewidth, bidi-
mensionality, irrelevant vertex technique, linkages.

1 Introduction

Graph Minors Theory (GMT) was developed by Robertson and Seymour in a
series of 23 papers, between 1984 and 2009. Among them, the second paper of
the series was published in the Journal of Algorithms while all the rest were pub-
lished in the Journal of Combinatorial Theory Series B. The main theoretical
achievement of this project was the proof of Wagner’s conjecture, now known as
the Robertson & Seymour Theorem, stating that graphs are well-quasi-ordered
under the minor containment relation. Besides its purely mathematical impor-
tance, GMT induced a series of powerful algorithmic results and techniques that
had a deep influence on theoretical computer science. More particularly, GMT
has been one of the most powerful “mathematical engines” in the theory and
design of parameterized algorithms. In particular, a considerable part of the ba-
sic techniques in parameterized algorithm design is directly or indirectly linked
to results from GMT. Moreover, GMT offered the theoretical base for the un-
derstanding and resolution of some of the most prominent graph-algorithmic
problems in parameterized complexity. In what follows, we give a brief presen-
tation of the main results and techniques in this area.

� This research has been co-financed by the European Union (European Social Fund
– ESF) and Greek national funds through the Operational Program “Education
and Lifelong Learning” of the National Strategic Reference Framework (NSRF) -
Research Funding Program: “Thalis. Investing in knowledge society through the
European Social Fund”.

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 228–256, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Graph Minors and Parameterized Algorithm Design 229

Our presentation is organized as follows. In Section 2 we give the definitions
of some basic combinatorial and algorithmic concepts. In Section 3.1 we present
the main algorithmic consequences of the GMT, mainly from the parameterized
complexity viewpoint. Section 4 is devoted to the celebrated grid-exclusion theo-
rem and its applications to bidimensionality theory. Finally, Section 5, attempts
a short presentation of the irrelevant vertex technique and its applications.

2 Basic Definitions

All graphs we consider are finite, undirected and simple, i.e., they do not have
multiple edges or loops. Given a graph G we denote by V (G) and E(G) its
vertex and edge set respectively. The size (reps. magnetite) of a graph G is the
number of its vertices (reps. edges) and is denoted by n(G) (reps. m(G)), i.e.,
n(G) = |V (G)| (m(G) = |E(G)|). We denote by G \ v the graph obtained by
removing v (along with its incident edges) from G. The neighborhood of a vertex
v ∈ V (G), denoted by NG(v), is the set of edges in G that are adjacent to v.
The degree of a vertex v ∈ V (G) is the cardinality of its neighborhood in G.
We denote by Kr the complete graph on r vertices and by Kr,q the complete
bipartite graph with r vertices in its one part and q in the other. Finally, we
denote by Gk the (k× k)-grid, i.e., the Cartesian product of two paths of length
k − 1 (see Figure 1).

Fig. 1. The (11, 11)-grid G11

2.1 Relations on Graphs and Obstructions

We say that a graph H is a subgraph of a graph G if H can be obtained by G by
removing edges or vertices. The contraction of an edge e = {x, y} from G is the
removal from G of all edges incident to x or y and the insertion of a new vertex
ve that is made adjacent to all the vertices of (NG(x) \ {y}) ∪ (NG(y) \ {x}).
Given two graphs H and G, we say that H is a contraction of G, denoted by
H ≤c G, if H can be obtained from G by a (possibly empty) series of edge
contractions.

230 D.M. Thilikos

G H

v

Fig. 2. The graph H is the result of the contractions of the bold edges in G to the
vertex v

H is a minor of G if H is a contraction of some subgraph of G. A graph H is
a topological minor of G (denoted by H ≤t G) if G contains as a subgraph some
subdivision of H (a subdivision of a graph H is any graph obtained by replacing
some of its edges by paths between the same endpoints). Given a partial ordering
relation ≤ on graphs, we say that a graph class G is closed under ≤ if for every
G ∈ G, H ≤ G implies that H ∈ G. Let G be a graph class that is closed under
the minor relation. An ≤-anti-chain is a set of graphs that are pairwise non-
comparable with respect to ≤. For example the set of graphs A = {K2,r | r ≥ 2}
is a ≤c-antichain but not an ≤m-antichain or a ≤t-antichain.

We define the ≤-obstruction set of a graph class G, denoted by obs≤(G), as
the set of all ≤-minimal graphs that do not belong to G. Clearly, by definition,
the ≤-obstruction set of a graph class is an ≤-anti-chain. Obstruction sets can be
seen as alternative characterizations of graph classes and, in many cases, reveal a
good deal from their structural characteristics. For example, it easy to verify that
obs≤m(T) = obs≤t(T) = {K3}, obs≤m(O) = obs≤t(O) = {K4, K2,3}, where
T and O are the classes of all acyclic and all outerplanar graphs respectively,
and obs≤c(O∗) = {K4, K2,3, K

+
2,3} where O∗ are the connected outerplanar

graphs and K+
2,3 is the graph obtained from K5 by removing a triangle. The

most classic theorems on obstruction characterization of graph classes are the
Kuratowski-Pontryagin’s theorem [87] and Wagner’s theorem [121], stating that
obs≤m(P) = {K5, K3,3} and obs≤t(P) = {K5, K3,3} respectively, where P is
the class of all planar graphs.

2.2 Parameterized Problems and Algorithms

The idea of problem parameterization is to treat algorithmic problems as param-
eterized entities and to evaluate the complexity of the corresponding algorithms
by considering the way parameters appear in their running times. As here we
deal with problems on graphs, we adapt the classic definitions of parameterized
complexity to the case where problem inputs represent graphs.

Formally, a parameterized problem on graphs is a subset Π of Σ∗ × N, where
Σ is some alphabet and, in each (I, k) ∈ Σ∗ × N, I encodes a combinatorial
structure related to one, or more, graphs. For this, we agree that n (resp. m) is
the maximum size (resp. magnitude) of the graphs encoded in I and we insist
that |(I, k)| = O(m). We call I the main part of the input and we say that
k is the parameter of the problem. Two instances (I, k), (I ′, k′) ∈ Σ∗ × N are
equivalent with respect to Π if (I, k) ∈ Π ⇐⇒ (I ′, k′) ∈ Π .

Graph Minors and Parameterized Algorithm Design 231

We say that Π is fixed parameter tractable if there exists a function1 f : N→ N

and an algorithm deciding whether (I, k) ∈ Π in O(f(k) · nc) steps, where c is
a constant not depending on the parameter k of the problem. We call such an
algorithm FPT-algorithm or, to express concretely the choice of f and c, we
say that Π ∈ O(f(k) · nc)-FPT. A parameterized problem on graphs belongs to
the parameterized class FPT if it can be solved by an FPT-algorithm. In fact,
not all parameterized problems belong to the class FPT. There is a hierarchy of
parameterized complexity classes, namely

FPT ⊆W[1] ⊆W[2] ⊆W[3] ⊆ . . . ⊆W[SAT] ⊆W[P] ⊆ XP,

and appropriate parameter-preserving reductions such that, when a problem is
hard for some of them (other than FPT), it is not expected to have an FPT-
algorithm (all inclusions in this hierarchy are believed to be strict). See the
monographs [39, 44, 97] for more details on parameterized complexity.

Time bounds for parameterized algorithms have two parts. The term f(k) is
called parameter dependence and, is typically a super-polynomial function. On
the other hand, the term nc is a polynomial function and we call it polynomial
part. In most of the problems that we examine here, I will encode a simple graph.
To simplify notation, we frequently write “Ok(nc)” instead of “f(k) · (nc)” for
some recursive function f : N→ N” and, in this case, we refer to the function f
hidden in the Ok notation as the parameter dependence.

3 Algorithmic Consequences of the GMT

3.1 Well-Quasi-Ordering

The main combinatorial result of the GMT fits in the more general framework of
the theory of Well-Quasi-Orderings, first developed by Graham Higman2 under
the name “finite basis property” [65]. Given a set X and a partial ordering ≤
on X we say that X is well-quasi-ordered under ≤ if none of its subsets is an
infinite ≤-antichain.

Theorem 1 (Robertson & Seymour Theorem [110]). The set of all graphs
is well-quasi-ordered under minors.

In other words, Theorem 1 says that If G is an infinite set of graphs then there ex-
ist two graphs H, G ∈ G such that H is a minor of G. The proof of theorem 1 was
concluded in paper XX of the Graph Minors Series. Before its proof, the state-
ment of Theorem 1 was known as Wagner’s conjecture. However, as mentioned
by Diestel in [32], Wagner said that he had never made such a conjecture. A sim-
ilar conjecture, on the well-quasi-ordering of trees under the topological minor
1 Notice that in the definition of FPT f is not necessarily a recursive function.
2 As mentioned in [86], the same theory was also developed in some unpublished

manuscript of Erdős and Rado, while its first hints can be traced back to B. H. Neu-
mann [96]

232 D.M. Thilikos

relation was made by Vázsonyi and was proved in 1960 independently3 by Joseph
Kruskal and S. Tarkowski [91]. Interesting results on the meta-mathematics of
Kruskal’s tree theorem as well as Roberson & Seymour’s theorem can be found
in [55] and [54] respectively.

Consider the following parameterized problem:

H-Minor Checking
Instance: Two graphs G and H .
Parameter: k = |V (H)|.
Question: Is H a minor of G?

The main algorithmic contribution of the GMT is the following result.

Theorem 2 (Robertson and Seymour[108]). One can construct an algo-
rithm that, given a n-vertex graph G and a k-vertex graph H, checks whether H
is a minor of a graph G in Ok(n3) steps. In other words, H-Minor Checking ∈
Ok(n3)-FPT.

Actually, Robertson and Seymour in [108] describe an Ok(n3)-step algorithm
that solves a generalization of the H-Minor Checking and another celebrated
problem, namely the k-Disjoint Paths problem. In Section 5, we give a rough
description of the main ingredients of the algorithm in Theorem 2 especially for
the k-Disjoint Paths problem. Recently, this running time was improved to a
quadratic one for the k-Disjoint Paths problem in [74].

The good news about Theorem 2 is that it is constructive (contrary to The-
orem 1) and there is a recursive function hidden in the Ok notation. The bad
news is that, according to the algorithm in [108] and the proof of its correctness
in [111] and [107], the values of this function are immense4, even for small values
of k. David Johnson mentioned in [67]:

“for any instance G = (V, E) that one could fit into the known universe,
one would easily prefer |V |70 to even constant time, if that constant had
to be one of Robertson and Seymour’s”.

Moreover, in [67], David Johnson estimates that just one constant in the param-
eter dependence of Theorem 2 is roughly

2↑2
22

2↑2↑Θ(r)

where 2↑r denotes a tower 222. . .

involving r 2’s. Clearly, such type of constants
may create reasonable doubts to computer scientists on whether such an algo-
rithm may be considered to be an “algorithm” of some practical meaning. In fact,
to investigate until which point these constants can be improved is an open and
challenging problem in parameterized complexity and algorithms (see e.g. [3]).

3 A shorter and quite elegant proof of Vázsonyi’s conjecture was given by Nash-
Williams in 1963 [95].

4 Perhaps the word “immense” is somehow moderate here. Instead, Fellows and
Langston used the expression “mind-boggling” in [43].

Graph Minors and Parameterized Algorithm Design 233

3.2 Minor-Closed Graph Parameters

A parameter on graphs (or a graph parameter) is any function that maps graphs
to integers and with the property that it is invariant under graph isomorphism.
Let ≤ be a relation on graphs. We say that a graph parameter p is closed under
≤ (or, simply, ≤-closed) if for every two graph H and G, H ≤ G implies that
p(H) ≤ p(G). We define the ≤-obstruction family of p as the parameterized
graph class

O≤
p,k = obs≤({G | p(G) ≤ k}).

Consider the following parameterized meta-problem.

k-Parameter Checking for p
Instance: a graph G and an integer k ≥ 0.
Parameter: k
Question: p(G)≤ k?

Theorems 1 and 2 together have the following dramatic consequence.

Theorem 3. For every parameter p that is closed under minors there exists an
algorithm that solves the problem k-Parameter Checking for p in f(k) · n3

steps for some function f .

Proof. Recall that, by definition, no two graphs in O≤m

p,k can be comparable
graphs under the minor relation. It follows, from Theorem 1, that O≤m

p,k is a
finite set. Let g(k) = |O≤m

p,k |. As p is closed under minors, it holds that

p(G) ≤ k ⇐⇒ ∀H ∈ O≤m

p,k H �≤m G.

Therefore, to check whether p(G) ≤ k it is enough to apply g(k) times the
Ok(n3) step algorithm of Theorem 2 and check whether some member of O≤m

p,k

is contained as a minor in G.

Theorem 3 had a great impact in parameterized complexity as it implied a
massive classification of problems in the class FPT. In that sense, Theorem 3
is an algorithmic meta-theorem because it provides a generic condition (minor-
closedness) for a parameterized problem that automatically implies the existence
of an FPT-algorithm for it. Unfortunately, the proof of Theorem 1 does not
provide any general “meta-algorithm” to compute the set O≤m

p,k and, that way,
construct the claimed algorithm for each p. In fact, due to the meta-mathematics
of Theorem 1 [54], such an meta-algorithm does not exist. As observed in [43],
there is no algorithm that, given a Turing machine accepting precisely the graphs
of a minor-closed graph class F , outputs obs≤m(F) (see also [119]). However,
Theorem 3 gave important (mathematical) energy to Parameterized Algorithms
as it acted as an “encouraging factor”. The knowledge that an algorithm exists
for a specific problem, induces the challenge to construct one and, in a sense,
provides the courage to try to accomplish such a task.

234 D.M. Thilikos

In order to cope with the inherent non-constructivity of Theorem 3 one may
study specific parameters where the computation of the set O≤m

p,k (or, at least, of
some upper bound to the function g(k)) in the proof of Theorem 3 is possible.
However, this is not an easy task, even for simple parameters. According to [34],
if the problem of checking whether p(G) ≤ k is NP-complete, then |O≤m

p,k | is a
super-polynomial function of k, unless the polynomial hierarchy collapses to ΣP

3 .
Characterizations of p(G) ≤ k (yielding better lower bounds for |O≤m

p,k |) have
been provided for several parameters [10, 20, 40, 58, 84, 98, 99, 115, 117, 118].
However, to our knowledge, there is not yet a natural parameter p for which a
complete characterization of O≤m

p,k is known. A more promising strategy towards
detecting constructive fragments of Theorem 3, is to detect parameters – or
families of parameters – where O≤m

p,k is recursive. For this one may either prove
upper bounds for |O≤m

p,k |, as done in [57] for the case of branchwidth5, or provide
partial characterizations of O≤m

p,k , as done in [2, 19, 21, 89, 94], that permit its
recursive computation.

At this point, we should mention that all theorems of this section have their
counterparts in another partial relation on graphs, the one of immersion. The
lift of two incident edges is the operation of removing two edges e1 = {x, y}
and e2 = {x, z} (incident to a common vertex x) and adding the edge {y, z}.
We say that a graph H can be immersed in a graph G, denoted by H ≤im G,
if H can be obtained from a subgraph of G by a (possibly empty) sequence of
edge lifts. According to the last paper of the Graph Minor series [112], graphs
are well-quasi-ordered under immersions, i.e., Theorem 1 holds also if we replace
minors by immersions. Therefore, in order to prove a counterpart of Theorem 3
for the case of immersion-closed parameters, we need an algorithm that given an
n-vertex graph G and a k-vertex graph H , checks where H ≤im G in Ok ·(n(G))3

steps. Recently, a construction of such an algorithm was given in [61]. This makes
it possible to derive the following meta-algorthmic result.

Theorem 4. If p is a parameter that is closed under immersions, then there
exists an algorithm that solves the problem k-Parameter Checking for p in
f ′(k) · n3 steps for some function f ′.

In fact, the main result of [61] proves the FPT membership of topological minor
testing, i.e., given two graphs H and G, check whether H ≤t G (the parameter
is the size of H). This means that there is a counterpart of Theorem 2 for the
topological minor relation as well. This might create some hope that Theorem 3
holds for topological minors as well. Unfortunately, this requires an analogue of
the combinatorial Theorem 1 which does not exist as it is possible to construct
an infinite class of graphs that are pairwise non-comparable with respect to
the topological minor relation: just take all cycles with their edges duplicated.

5 Branchwidth was introduced in the paper X of the Graph Minor Series [106] and,
from that point and then, was used as an alternative for treewidth (defined formally
in Section 4). Treewidth and branchwidth can be seen as twin parameters, as the
one is a constant factor approximation of the other.

Graph Minors and Parameterized Algorithm Design 235

An other argument for the non-existence of analogues of Theorems 1 and 3 for
topological minors is given by the Topological Bandwidth problem asking
whether the topological bandwidth of a graph is at most k. The topological
bandwidth of a graph G is denoted by tbw(G) and is defined as

tbw(G) = min{k | ∃q ≥ 1: G ≤t P k
q }

(P k
q is obtained by a path Pq of length q if we make adjacent any two vertices of

distance ≤ k in Pq). It is easy to observe that tbw is closed under topological
minors. In [42] it is mentioned that Topological Bandwidth is W[t]-hard for
all t ≥ 1 – the proof is a modification of the proof for the case of Bandwidth
in [15]. This implies that, under reasonable assumptions in parameterized com-
plexity theory, the anti-chain corresponding to the ≤t-obstruction family O≤t

tbw,k

is infinite for an infinite set of values of k.

4 Grid-Exclusion and Bidimensionality

4.1 Treewidth

Treewidth has been one of the main contributions of GMT to algorithmic graph
theory. While, as a concept, its indices can be traced back to the work of Gavril
in [56], its formal birth as a graph parameter occurred in the second paper of the
Graph Minors series [104]. Currently, there are at least six equivalent definitions
of tree-width. We present the original one from [104].

A tree decomposition of a graph G is a pair (X , T) where T is a tree and
X = {Xi | i ∈ V (T)} is a collection of subsets of V (G) such that:

1.
⋃

i∈V (T) Xi = V (G);
2. for each edge {x, y} ∈ E(G), {x, y} ⊆ Xi for some i ∈ V (T), and
3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T)}, T) is maxi∈V (T) {|Xi| − 1}.
The treewidth of a graph G, denoted by tw(G), is the minimum width over all
tree decompositions of G.

If, in the above definitions, we restrict the tree T to be a path then we define
the notions of path decomposition and pathwidth. We write pw(G) to denote the
pathwidth of a graph G. Pathwidth was defined earlier than treewidth in the
first paper is the Graph Minors Series [102].

Treewidth can intuitively be seen as a measure of the topological resemblance
of a graph to a tree or, alternatively, as a measure of the “global connectivity”
of a graph. Similarly, pathwidth can be seen as a measure of the topological
resemblance of a graph to a path.

Counting Monadic Second Order Logic (CMSOL) is a logic on graphs6 where
the domain is the set of vertices and edges, there are predicates for vertex-vertex
6 We should stress that CMSOL is not only a logic on graphs but also on more general

combinatorial objects called strucures.

236 D.M. Thilikos

adjacency and edge-vertex incidence, there is quantification over edges, vertices,
edge sets and vertex sets, and there is a predicate Cardr,p(S) which expresses
whether the size of a set S is r modulo p.

The importance of treewidth for algorithmic graph theory is illustrated by the
celebrated Courcelle’s theorem stating that if Πk is a parameterized property
of graphs expressible by a CMSOL formula φk, then there is an algorithm that,
given as input a graph G, can check whether G satisfies property Πk (i.e., whether
G ∈ Πk) in O|φk|+tw(G)(n) steps. Moreover, there exists a meta-algorithm that,
given φk, outputs such an algorithm. A proof of Courcelle’s theorem can be
found in [39, Chapter 6.5] and [44, Chapter 10] and similar results appeared by
Arnborg, Lagergren, and Seese in [8] and Borie, Parker, and Tovey in [17]. An
alternative game-theoretic proof has appeared recently in [81, 82].

Courcelle’s theorem had a deep influence in parameterized algorithms as it
automatically yields FPT-algoriths for a wide family of problems, provided that
the treewidth of their instances is bounded by a function of the parameter k. The
natural challenge is whether and when a parameterized problem can be reduced
to its bounded treewidth variant. For this, an important step is to detect what
kind of combinatorial structures are contained in a graph with big treewidth.
The most prominent structure of this type is the grid Gk. Let gm(G) be the
maximum k for which G contains Gk as a minor. A valuable theoretical tool in
this direction was given by the following result of the GMT.

Theorem 5 ([105]). There exists a recursive function f : N → N such that
tw(G) ≤ f(gm(G)).

While the above result appeared in the fifth paper of the series, a preliminary
variant of it, where G is planar, appeared earlier in [103]. As every graph con-
taining Gk as a minor has treewidth at least k, Theorem 5 implies that tw and
gm are parametrically equivalent: a bound to the one of them implies a bound
to the other. The initial estimation of the parameter dependence in Theorem 5
was huge. However, a better one appeared in [113] where it was proven that
tw(G) = 202·(gm(G))5 . An alternative, and relatively simpler, proof of Theo-
rem 5 was given in [33]. To see the use of Theorem 5 in parameterized algorithm
design, consider a parameter p that satisfies the following properties:

i. p is closed under taking of minors.
ii. there exists a recursive function t : N→ N such that p(Gt(k)) > k for every

non-negative integer k.
iii. One can construct an algorithm that, given a tree-decomposition of G of

width at most q and an integer k, checks whether p(G) ≤ k in l(k, q) · nO(1)

steps for some recursive function l : N× N→ N.

Clearly, the first two conditions are easy to check for most instantiations of p.
Moreover, the third one follows directly from Courcelle’s theorem if for each
k, Πk = {G | p(G) ≤ k} is expressible by a CMSOL formula φk. There are
many examples of such parameters. Typical examples are the vertex cover of a
graph, i.e., the minimum number of vertices that meets all vertices of G and the

Graph Minors and Parameterized Algorithm Design 237

feedback vertex set of a graph, i.e., the minimum number of vertices meeting all
cycles of G. A direct consequence of Theorem 5 is the following (constructive)
special case of Theorem 3:

Lemma 1. Let p be a parameter satisfying conditions i–iii above for some t and
l. Then it is possible to construct an algorithm that, given as input a graph G
and an integer k, checks whether p(G) ≤ k in (2O(f(t(k)) + l(k, 4 ·f(t(k)))) ·nO(1)

steps where f is the function in Theorem 5.

Proof. The algorithm in Lemma 1 works as follows: First of all, it uses an FPT-
approximation algorithm for treewidth, i.e., an algorithm that given a graph G
and an integer q, either outputs a tree decomposition of G of width at most α · q
or reports that tw(G) > q in z(q) · nβ steps. Various algorithms of this type
have been proposed in [7, 14, 88, 100, 108] for different trade-offs between z,
α, and β. Among them, we pick the one form [7] where z(q) = 24.38·q, α = 4,
and β = 2. We run this algorithm for G and q = f(t(k)). If it outputs a tree
decomposition of width ≤ 4 · f(t(k)) then we use the algorithm of Property iii
and solve the problem in l(k, 4·f(t(k)))·nO(1) steps. If the algorithm reports that
the treewidth of G is more than f(t(k)), then from Theorem 5, G contains Gt(k)

as a minor. In such a case, the algorithm directly outputs a negative answer as,
from Properties i and ii, p(G) ≥ p(Gt(k)) > k.

The idea of the above proof is also known as the Win/win approach: we either
have an answer to the problems directly because the treewidth is big enough
or we solve the problems use dynamic programming on a tree-decomposition of
bounded width.

Clearly, the running time of the algorithm in Lemma 1 depends on the func-
tions f, t, and l. In what follows, we comment on the current bounds on each
one of them.

l: As we have already mentioned, the (constructive) existence of l, follows from
Courcelle’s theorem for the wide family of problems that are expressible in
CMSOL. However, the bounds on l, derived from the proof, are huge and this
may dismiss any hope for a good parameter dependence (see [53]). However,
for many problems it is possible to directly apply dynamic programing on
the tree decomposition and derive moderate bounds on l such as l(k, q) =
2O(q2)·kO(1), or l(k, q) = 2O(q log q)·kO(1) or, even better, l(k, q) = 2O(q)·kO(1).
Clearly, time bounds of the third type are more attractive. For this reason,
we say that a parameter p is single exponentially solvable with respect to
treewidth if there exists an algorithm that, given G and k, checks whether
p(G) ≤ k in 2O(tw(G)) · nO(1) steps. There is a quite extended bibliography
on how to do fast dynamic programming on graphs of bounded treewidth;
as a sample of this, we just mention [5, 6, 9, 11, 13, 16, 22, 35, 35, 36, 37,
37, 38, 114, 120, 120].

t: Bounds are much better for the function t. For most natural graph param-
eters, it holds that t(k) = O(k) while for some of them, including tw and
pw, it holds that t(k) = Θ(k). However, there is a wide family of parameters

238 D.M. Thilikos

where t(k) = O(
√

k). This intuitively says that a certificate for the value
of such a parameter spreads “bidimensionally” inside a (k × k)-grid. For in-
stance any vertex cover of Gk should have size at least k ·�k

2 � = Ω(k2) as the
vertices of such a set should cover edges all over the “area” of the grid. Sim-
ilarly, a feedback vertex set of Gk should have size at least (�k

2 �)2 = Ω(k2)
as the vertices of such a set should cover all (�k

2 �)2 members of a packing of
“squares” in Gk.
If such a parameter is also closed under taking of minors then we call it
minor bidimensional.

f : To improve the function f , i.e., the parameter dependence in Theorem 5,
is an important challenge as, even for the parameters with most moderate
instantiations of l and t, k-Parameter Checking for p could be only clas-

sified in 22kO(1) · nO(1)-FPT. Robertson, Seymour, and Thomas conjectured
in [113] that f can be a polynomial function. This would directly imply that
k-Parameter Checking for p belongs to 2kO(1) · nO(1)-FPT for a wide
family of parameters (see [30] for more discussions and conjectures on this
issue).
Another interesting problem is to lower bound the contribution of f in The-
orem 5. As mentioned by Robertson, Seymour, and Thomas in [113] there
are graphs excluding Gk as a minor that have treewidth Ω(k2 · log k). To
see this, one may use the result in [23] (see also [41, 122]) to construct an
O(1)-regular Ramanujan graph G on n vertices that has girth Ω(log n). One
can easily verify that gm(G) = O(

√
n

log n). The claimed bound follows because
Ramanujan graphs are expanders and thus tw(G) = Ω(n). It is a challenging
question whether any bound better than this one can be proven.
Towards achieving a polynomial dependance between treewidth and the size
of an excluded grid, Reed and Wood defined in [101] the notion of a grid-
like-minor. A grid-like-minor of order k in a graph G is a set of paths in G
whose intersection graph is bipartite and contains a Kk as a minor. Clearly,
the rows and columns of the (k×k)-grid are a grid-like-minor of order k +1.
In [101] it is proved that every graph with treewidth Ω(k4

√
log k) contains

a grid-like minor of order k. Meta-algorithmic implications of the results
in [101], analogous to those of Theorem 1, can be found in [85].

4.2 Bidimensionality

Theorem 5 has several refinements that are important for improving the
parameter dependence of the algorithm in Lemma 1. The first variant of
Theorem 5 for special graph classes appeared in [113] (proved for the twin pa-
rameter of branchwidth) from which it follows that if G is a planar graph, then
tw(G) ≤ 6 · gm(G). Actually, with some more careful application of the results
of [113] it can also be proven that tw(G) ≤ 5 · gm(G), which can be improved
further to tw(G) ≤ 9

2 · gm(G) using the results of [62]. An analogous upper
bound holds also for graphs embedded in surfaces. From the results in [27], it
follows that tw(G) ≤ 6 · (eg(G) + 1) · gm(G) where eg(G) is the Euler genus

Graph Minors and Parameterized Algorithm Design 239

of G. Also in [30], it was proven that if G is a K3,r-minor free graph, then
tw(G) ≤ 204r · gm(G). At this point, the natural question is whether this lin-
ear dependence holds for every non-trivial minor-closed graph class. This was
resolved in [29], where the following theorem has been proved.

Theorem 6. Let r be a positive integer. If G is a Kr-minor free graph, then
tw(G) = Or(gm(G)).

The proof of Theorem 6 is heavily based on GMT. More specifically, it depends
on the Structure Theorem of the GMT [109] which implies immense bounds for
the parameter dependence of the bound in Theorem 6. The improvement of the
parameter dependance of Theorem 6 is an interesting problem and this might
be possible without making use of the structural results of [109].

As mentioned in the previous Section, a parameter p is minor-bidimensional
if it is closed under taking of minors and for every non-negative integer k it holds
that p(G	√k
) = Ω(k). A major consequence of Lemma 1, Theorem 6, and the
discussion above is the following meta-algorithmic result.

Theorem 7. Let H be an r-vertex graph and let p be a graph parameter that is
minor-bidimensional and single exponentially solvable with respect to treewidth.
Then k-Parameter Checking for p restricted to H-minor free graphs belongs
(constructively) to 2Or(

√
k) ·nO(1)-FPT, i.e., one can construct a sub-exponential

FPT-algorithm that solves it.

Notice that the above result is, in a sense, optimal, as, due to the complexity
bounds in [18], a 2O(

√
k) ·nO(1)-step parameterized algorithm is the best we may

expect for several bidimensional parameters, even on planar graphs. The meta-
algorithmic machinery that we employed above in order to prove Theorem 7 is
known as Bidimensionality Theory and was introduced for the first time in [27],
while some preliminary ideas had already appeared in [4, 52].

Theorem 7 concerns only minor-closed parameters. A typical parameter that
does not fit in the framework of minor-bidimensionality is the dominating set
number, denoted by ds(G) and defined as the minimum size of a dominating set
in G, i.e., a set S of vertices such that every vertex not in S has some neighbor
in S.

The dominating set number is not minor-closed as it may increase by removing
edges. However this is not the case when we do only contractions. To develop
the contraction counterpart of bidimensionality, one has to find a counterpart
of Theorem 6 for contractions, i.e., to detect what types of graphs appear as
contractions in graphs with big treewidth. This line of research was developed
in [26, 31] and concluded in [46]. Before we present the the results in [46], we
need first some definitions.

Let Γk (k ≥ 2) be the graph obtained from the (k × k)-grid by triangulating
internal faces of the (k× k)-grid such that all internal vertices become of degree
6, all non-corner external vertices are of degree 4, and then one corner of degree
two is joined by edges with all vertices of the external face (the corners are
the vertices that in the underlying grid have degree two). Graph Γ6 is shown

240 D.M. Thilikos

Fig. 3. The graph Γ6

in Fig. 3. Let also Πk be the graph obtained from Γk by adding a new vertex
adjacent to all vertices of Γk.

A consequence of the results in [46] is the following.

Theorem 8. There exists a function α : N → N such that every connected
graph of treewidth at least α(k) contains some of the graphs in {Kk, Γk, Πk} as
a contraction.

Theorem 8 has several refinements. One of them is the following counterpart of
Theorem 6.

Theorem 9. There exists a function β : N→ N such that every connected Kr-
minor-free graph of treewidth at least β(r) · k2 contains either Γk or Πk as a
contraction.

Notice that in the above theorem, the quadratic dependence (on k) is optimal.
Indeed, let Zk2 be the graph obtained by adding to Gk2 a new vertex adjacent
to all the k2 vertices with both coordinates in the underlying grid divisible by k.
Then Zk2 excludes K6, Gk+2, and Πk+2 as contractions and is of treewidth at
least k2. This means that, in order to have a “linear counterpart” of Theorem 6,
we should restrict further the graphs that we exclude. An apex graph is a graph
that can become planar by the removal of one vertex. It appears that the linear
dependence in the bound of Theorem 6 is also possible for contractions when
we consider graphs excluding some apex graph as a minor. For this, we define
tgm(G) as the maximum k for which G contains Γk as a contraction.

Theorem 10. Let H be an apex graph with r vertices. If G is a connected H-
minor-free graph, then tw(G) = Or(tgm(G)).

We say that a parameter p is contraction bidimensional if it is closed under
taking of contractions and if p(Γ	√k
) = Ω(k) for every non-negative integer

Graph Minors and Parameterized Algorithm Design 241

k. Using now Theorem 10 one can derive the following contraction counterpart
of Theorem 7.

Theorem 11. Let H be an r-vertex apex graph and let p be graph parameter
that is contraction-bidimensional and single exponentially solvable with respect
to treewidth. Then k-Parameter Checking for p restricted to H-minor free
graphs belongs (constructively) to 2Or(

√
k) · nO(1)-FPT, i.e., one can construct a

sub-exponential FPT-algorithm that solves it.

The algorithmic consequence of Theorems 6 and 10 are not restricted in the
design of sub-exponential parameterized algorithms (i.e., Theorems 7 and 11).
Bidimensionality theory had meta-algorthmic applications in the automatic
derivation of linear-time kernels for wide families of parameterized problems [12,
51]. Apart from its applications to parameterized complexity, Bidimensionality
Theory was also used for the automated design of Fast Polynomial Time Ap-
proximation Schemes (FPTAS) in [28] and [48].

Proving extensions of Theorems 7 and 11 for wider families of graph classes
(possibly with worse – but still moderate – time bounds) is a open challenge in
parameterized algorithm design. For this, one may either need to find extensions
of Theorems 6 and 10 for graph classes that are wider than H-minor free and
apex-minor free graphs respectively (see [50] for an important step in this direc-
tion) or to invent alternative notions of grid-like structures whose presence in a
graph is still able to certify a big enough value for the parameter p (see [85, 101]
and the end of Subsection 4.1).

5 The Irrelevant Vertex Technique

One of the most powerful tools in parameterized algorithm design is the irrel-
evant vertex technique, introduced in [108] in order to derive (among others)
FPT-algorithms for the H-Minor Checking (Theorem 2) and the k-Disjoint
Paths Problem. The formal definition of the latter is the following.

k-Disjoint Paths
Instance: A graph G and a sequence of pairs

terminals T = (s1, t1), . . . , (sk, tk) ∈ (V (G)× V (G))k.
Parameter: k.
Question: Are there k pairwise vertex disjoint paths

P1, . . . , Pk in G such that for every i ∈ {1, . . . , k},
Pi has endpoints si and ti?

We stress that, in [108], both H-Minor Checking and k-Disjoint Paths
where treated simultaneously and the methodology that we present below is
similar for both of them. In this section we give an outline of the Ok(n3) algo-
rithm in [108] for the k-Disjoint Paths problem and we present some of the
most important combinatorial results that supported the proof of its correctness.

242 D.M. Thilikos

5.1 The General Framework

Given an instance (G, T, k) of the k-Disjoint Paths problem, we say that a
vertex v ∈ V (G) is an irrelevant vertex of G if (G, T, k) and (G \ v, T, k) are
equivalent instances of the problem.

The general scheme of the algorithm in [108] is the following:

Irrelevant Vertex for the class Gk

Input: An instance (G, T, k) of k-Disjoint Paths
Output: A (reduced) equivalent instance of k-Disjoint Paths
1. while G �∈ Gk,
2. find an irrelevant vertex v in G
3. set G← G \ v
4. output (G, T, k)

Clearly, each variant of the above scheme depends on the parameterized class
Gk and creates an equivalent instance that belongs to Gk. The algorithm in [108]
applies the above scheme in two phases: the first phase considers

Gk = {G | G is a Kh(k)-minor free graph}

for some recursive function h and produces equivalent instances where the input
graph does not contain a “big clique” as a minor. The second phase assumes
that the input graph excludes such a clique and considers

Gk = {G | G is a Gg(k)-minor free graph},

for some recursive function g : N→ N. This produces an equivalent instance that,
from Theorem 5, has treewidth bounded by Ok(1) and, in this case, the problem
can by solved in Ok(n) steps, using dynamic programming or, alternatively, by
just using Courcelle’s theorem.

It now remains to explain how Step 2 of the above scheme (i.e., finding an
irrelevant vertex) is implemented in each of these two phases.

We omit the description of the first phase. Instead, we restrict ourselves to
the second phase, as it encompasses the most combinatorially rich part of [108].
We just mention that the function h is determined from the results in [108] on
the correctness of the first phase. The function g will be defined in the course of
the description of the second phase below.

Assume now that we have an instance (G, T, k) of k-Disjoint Paths where
G excludes a clique Kh(k) as a minor but, however, it still contains a the grid
Gg(k) as a minor which means that tw(G) ≥ g(k). A big part of [108] is devoted
to the characterization of such graphs, i.e., of H-minor free graphs with “big”
treewidth. In particular, a major achievement of [108] was to show the Weak
Structure Theorem of GMT, stating that such graphs contain some portion
that is, in a sense, “almost flat”. At this point we postpone the description of
the irrelevant vertex technique to Subsection 5.3 in order to give the precise
statement of this theorem.

Graph Minors and Parameterized Algorithm Design 243

5.2 The Weak Structure Graph Minors Theorem

Walls. A wall of height k, k ≥ 1, is the graph obtained from a ((k+1)×(2·k+2))-
grid with vertices (x, y), x ∈ {1, . . . , 2 ·k +2}, y ∈ {1, . . . , k +1}, by the removal
of the “vertical” edges {(x, y), (x, y + 1)} for odd x + y, and then the removal
of all vertices of degree 1. We denote such a wall by Wk. The corners of the
wall Wk are the vertices c1 = (1, 1), c2 = (2 · k + 1, 0), c3 = (2 · k + 1 + (k + 1
mod 2), k+1) and c4 = (1+(k +1 mod 2), k +1). We let C = {c1, c2, c3, c4}. A
subdivided wall W of height k is a graph obtained from Wk by replacing some of
its edges by paths without common internal vertices. We call the resulting graph
W a subdivision of Wk. The perimeter P of a subdivided wall is the cycle defined
by its boundary. The layers of a subdivided wall W of height k are recursively
defined as follows. The first layer of W is its perimeter. For i = 2, · · · , �k

2 �,
the i-th layer of W is the (i − 1)-th layer of the subwall W ′ obtained from W
by removing from W its perimeter and all occurring vertices of degree 1 (see
Figure 4).

Fig. 4. A subdivided wall of height 5 and its two first layers. The first layer is its
boundary

Compasses and Rural Divisions. Let W be a subdivided wall in G. Let K ′ be
the connected component of G \ P that contains W \ P . The compass K of W
in G is the graph G[V (K ′) ∪ V (P)]. Observe that W is a subgraph of K and K
is connected. We say that a path of K is perimetric if its endpoints lie in the
perimeter P of W . Let P1 and P2 be two perimetric paths of K with endpoints
a1, b1 and a2, b2 respectively. We say that P1 and P2 cross in K if (a1, a2, b1, b2)
is the cyclic ordering of their endpoints in P . We say that a wall is flat in G if
K does not contain any pair of crossing and vertex-disjoint perimetric paths.

If J is a subgraph of K, we denote by ∂KJ the set of all vertices v ∈ V (J)
such that either v ∈ C or v is incident with an edge of K that is not in J . A
rural division D of the compass K is a collection (D1, D2, . . . , Dm) of subgraphs
of K with the following properties:

1. {E(D1), E(D2), . . . , E(Dm)} is a partition of non-empty subsets of E(K),
2. for i, j ∈ [m], if i �= j then ∂KDi �= ∂KDj and V (Di) ∩ V (Dj) = ∂KDi ∩

∂KDj ,

244 D.M. Thilikos

3. for each i ∈ [m] and all x, y ∈ ∂KDi there exists a (x, y)-path in Di with no
internal vertex in ∂KDi,

4. for each i ∈ [m], |∂KDi| ≤ 3, and
5. the hypergraph HK = (

⋃
i∈[m]

∂KDi, {∂KDi | i ∈ [m]}) can be embedded in a

closed disk Δ such that c1, c2, c3 and c4 appear in this order on the boundary
of Δ and for each hyperedge e of HK there exist |e| mutually vertex-disjoint
paths between e and C in K.

We call the elements of D flaps. A flap D ∈ D is internal if V (D) ∩ V (P) = ∅.
We can now state one of the main results in [108], known as the Weak Structure
Graph Minors theorem.

Theorem 12 ([108]). There exist recursive functions g1 : N × N → N and
g2 : N → N, such that for every two graphs H and G and every q ∈ N, one of
the following holds:

1. H is a minor of G,
2. tw(G) ≤ g1(q, r), where r = |V (H)|
3. ∃X ⊆ V (G) with |X | ≤ g2(r) such that G \X contains as a subgraph a flat

subdivided wall W where W has height q and the compass of W has a rural
division D such that each internal flap of D has treewidth at most g1(r, q).

While the statement of Theorem 12 above is somehow complicated, the intuition
behind it is simpler. It says that when a graph excludes some “small” graph H as
a minor and has “big enough” treewidth, it is enough to remove a “few” vertices
from it, i.e., the vertices in X , and take a graph G \ X where it is possible
to detect a subdivided wall W that is situated in a “flat” territory inside its
perimeter P . The part of G that is inside P is the compass K of W which can
be seen as the union of a collection of graphs (flaps) that are tree-like (have
bounded treewidth) and are “planted” in that territory. Theorem 12 was used
also in [2, 24] with the name “the Trinity Lemma”. However, a more depictive
alternative nomenclature might be the “Sunny Forest Lemma”, in the sense that
the compass K is a forest, whose trees are the flaps, and X is the sun throwing
its rays at it!

In [59], an optimized version of the above result was proved where g1(r, q) =
Or(q) and g2(r) is equal to the apex number of H , i.e., the minimum number
of vertices that, when removed from H , leave a planar graph. This improved
version can easily yield both Theorems 6 and 10. In case H is an apex graph,
i.e., it can become planar with the removal of a single vertex, the result in [59]
implies that X = ∅ which gives an analogue of Theorem 12 for apex minor-free
graphs. As, in this case, the “sun” X does not exist, we are tempted to call this
“apex”-variant of Theorem 12 the “Dark Forest Lemma”.

5.3 Irrelevant Vertices and Linkages

We now go back to the task of detecting an irrelevant vertex in a graph G that
excludes Kh(k) and has treewidth bigger than g(k). Recall that, at this point, h

Graph Minors and Parameterized Algorithm Design 245

has already been determined so that the previous phase of the algorithm runs
correctly. In what follows, we set g(k) = g1(f0(k) ·f1(λ(k)), h(k)) where g1 is the
function in Theorem 12, f0(k) = �√2k� + 1, and f1 and λ will be determined
later.

According to [108], it is possible, in Ok(n2) steps, to detect in G a set X and a
subdivided wall W of height q = f0(k) · f1(λ(k)) of G \X where |X | ≤ g2(h(k)),
as indicated in Theorem 12. For simplicity, we restrict our presentation to the
case where X is an empty set, i.e., |X | = 0. Even if the ideas for the more general
case are of the same flavor, they are quite more complicated and we prefer to
omit them here.

Using a counting argument based on the definition of f0, it is easy to see that
W contains a subdivided wall W ′ of height q′ = f1(λ(k)) whose compass K ′

avoids all terminals of the pairs in T .
The next step of the algorithm in [108] is based on the claim that if we take

q′ to be “big enough”, then any vertex vmid of the inner layer Lin of W ′ is an
irrelevant vertex and therefore it can be safely removed from G. While such a
vertex is easy to detect, to proof that it is indeed irrelevant – for some suitable
choice of q′ – is not easy. We just mention that papers XXI [111] and XXII [107]
of the Graph Minor series where devoted to it. Below, we present only some
basic notions and ideas used in this proof. For this, we first need the definition
of a k-linkage, introduced in [111].

A k-linkage in a graph G is a set of k pairwise disjoint paths of it. The
endpoints of a linkage L are the endpoints of the paths in L. The pattern of L is
defined as

π(L) = {{s, t} | L contains a path from s to t}
Two k-linkages are equivalent if they have the same pattern.

W.l.o.g. we assume that all terminals involved in T are distinct. This implies
that every solution to the k-Disjoint Paths problem is a k-linkage, whose
pattern is determined by the pairs in T . To prove the irrelevance of the vertex
vmid, it is enough to show that any linkage L whose paths meet Lin can be
replaced with an equivalent one that avoids it. To obtain an idea of how paths
in L may reside inside K ′, we need to make some observations.

Let R be the linkage defined by the connected components of (
⋃

L∈L L)∩K ′,
i.e., the subpaths of the paths in L that are “cropped” by the compass K ′ (notice
that all paths in R are perimetric). By the flatness of W ′, it is not possible that
two paths in R cross in K ′. Moreover, by the definition of the the rural division
D′ of K ′, each layer of W ′, different than the inner one, is a separator of G.
Therefore, if a path in R meets layers Li and Lj for i ≤ j, then it should also
meet layer Lμ for every μ ∈ {i, . . . , j}. These observations argue that, intuitively,
paths in R cross K ′ as if K ′ where a graph embedded in a disk bounded by P –
see Figure 5 for a visualization of this. One may now claim that the infrastruc-
ture of a “big enough” subdivided wall W ′ should provide enough space inside K ′

246 D.M. Thilikos

Fig. 5. A subdivided wall W ′ and the way a 13-linkage L is traversing its compass K′.
The only vertices that are depicted are the endpoints of the paths in L (white vertices).
The only edges that are depicted are those of the paths in L and the edges of W ′. The
grey area contains the vertices and the edges of the graph G that do not belong to K′.

so that the paths of L could be rerouted to an equivalent linkage that does not
enter very deeply inside K ′. To formalize this claim Robertson and Seymour
defined the notion of a vital linkage in [111].

A linkage L in a graph G is called vital if its vertices meet all the vertices of
G and if there is no other linkage in G that is equivalent to L. An example of
a vital k-linkage in a graph is depicted in Figure 6. Clearly, if a solution of the
k-Disjoint Paths Problem corresponds to a vital linkage, then no irrelevant
vertex can be detected. The main result of [111] asserts that this possible “lack
of flexibility” of linkages vanishes when graphs have big enough treewidth.

Theorem 13. There exists a recursive function λ : N → N such that every
graph with a vital k-linkage has treewidth at most λ(k).

Actually, it was also proved in [111] that treewidth can be replaced by pathwidth
in Theorem 13. As the proof of 13 uses the Structure Theorem of the GMT [109],
the upper bound for λ that follows from [111] is immense. However it was proved
in [3] that in the case of planar graphs it holds that λ(k) = 2O(k). Moreover, this
bound is, in a sense, tight: as argued in [3], for each k it is possible to construct
a planar graph that contains a vital k-linkage and has treewidth 2Ω(k) (the 5-
linkage in the graph of Figure 6 already gives the flavor of such a construction).

Let now G′ be the subgraph of G defined by the union of the paths in L, and
the compass K ′ of W ′. At this point, a naive idea might be to directly apply
Theorem 13 and set q′ = λ(k) so that the linkage L of G′, corresponding to a
solution of the k-Disjoint Paths problem, cannot be vital. However, from this
alone, we cannot expect nothing better than avoiding some vertices that will not

Graph Minors and Parameterized Algorithm Design 247

Fig. 6. A graph of treewidth 17 and a vital 5-linkage in it

necessarily be the vertices in Lin. Therefore, a non-vital linkage alone does not
provide the flexibility we need in order to reroute in G′ the paths of L in a way
that Lin is avoided.

Curiously, it appears that the importance of non-vital linkages is rather qual-
itative than quantitative. Based on their “elementary” flexibility, it is possible
to prove that none of the paths in R “bounces” much. In particular, L can be
chosen in a way that if a path in R meets some layer Li in two different vertices
x and y, then its subpath between x and y will not meet any layer Lj where
|i − j| ≥ f1(λ(k)), for some recursive function f1. This directly implies that
paths in R do not go deeper than layer Lf1(λ(k)) and thus they avoid Lin when
q′ = f1(λ(k)). That way, it is possible to prove what we need: if the height of
W ′ is f1(λ(k)), then another linkage, equivalent to L exists in G′ (and therefore
in G as well) that avoids Lin.

We should stress that even if the above sketch might be “convincing” for a
good-tempered reader, it is far from being a formal proof. In the more realistic
case where X is non-empty, a more complicated criterion for the choice of the
subdivided wall W ′ should be devised and a bigger lower bound for the height
of W ′ is necessary so that it contains an irrelevant vertex. In fact, this requires
bigger lower bounds for both f0 and f1. The whole proof is quite technical and
has been the main purpose of [107].

According to the above discussion, the second phase of the algorithm runs
in Ok(n3) steps and outputs a graph of treewidth at most g(k). As proved
in [116], the k-Disjoint Paths problem can be solved by a f2(k)·n step dynamic
programming algorithm where f2(k) = 2O(k log k) (see [1, 90] for results related
to this problem). As the parameter dependence of the running time of this last
step is dominant in the running time of the algorithm, we conclude that the
overall parameter dependence is:

O(f2(g1(f0(k) · f1(λ(k)), h(k)))).

Clearly, an improvement on the existing bounds for any of the functions
g1, h, f0, f1, f2, and λ would be an important step towards reducing the

248 D.M. Thilikos

parameter dependence of the algorithm for the k-Disjoint Paths problem.
In fact, the only function that is “really immense” is λ, because the proof of its
existence was based on the Structure Theorem of the GMT [109]. In this direc-
tion an alternative, relatively simpler, proof was given in [80] that avoids the
core results of [109]. Using a rough estimation, the proof in [80] should give that

that λ(k) = 222O(k)

which changes the status of the parameter dependence in
Roberson and Seymour’s algorithm from “immense” to “huge”. Clearly, any fur-
ther improvements, even for special cases or variants of the problem, are highly
welcome (see [3]).

5.4 Applications

The above description already outlines a powerful algorithmic framework that
could not be of use for just one problem. Below, we mention a series of results in
parameterized algorithms where the irrelevant vertex technique (or extensions
of it) has been applied. We sort them in chronological order of their appearance.

[24] A proof of the following meta-agorithmic result: Let C be a class of graphs
excluding and h-vertex graph H as a minor. Then any first-order defin-
able decision problem can be solved in time Oh+|φ|(nO(1)), where f is a
computable function and φ is the sentence defining the decision problem.

[77] A 2O(g) ·n step algorithm that, given a graph G and a non-negative integer
g either outputs an embedding of G in a surface of genus g or a minor of
G that belongs to obs≤m(Gg) where Gg contains all graphs embeddible in
a surface of Euler genus g. A previous result of this type, but not with
single-exponential parameter dependence appeared previously in [94].

[2] A proof that it is possible to construct an algorithm that, given the ob-
struction sets of two minor-closed graph classes G1 and G2, outputs the
obstruction set of the class G = G1 ∪ G2. Also, in the same paper, it was
proved that it is possible to construct an algorithm that given the ob-
struction set of a minor-closed graph class G and a non-negative integer
k, outputs the obstruction set of the class k-almost(G) = {G | ∃S ⊆
V (G) : |S| ≤ k and G \ S ∈ G} (see also [19, 71, 93] for related results).

[83] An Ok(nO(1)) time algorithm for solving the Induced Cycle Through
Terminals problem: Given a graph G, embedded in some surface, and a
set S ⊆ V (G) of terminals, does G contain an induced cycle that meets
all vertices in S?

[60] An 2O(k3/2) ·nO(1) time algorithm for the Odd Induced Cycle Packing
on planar graphs: Given a graph G and an integer k, does G contains k
induced odd cycles?

[79] An Ok(nO(1)) time algorithm for the Odd Cycle Packing problem:
Given a graph G and an integer k, does G contains k vertex-disjoint odd
cycles?

Graph Minors and Parameterized Algorithm Design 249

[64] An Ok(n) time algorithm for the Bipartite Contraction problem:
Given a graph G and an integer k, can we obtain a bipartite graph from
G by a sequence of at most k edge contractions in G?

[49] Subexponential 2O(
√

k)·n time algorithms for the PartialVertex Cover
and PartialDominatingSet problems for apex minor-free graphs:Given
a graph G and integers k, t, can we cover (resp. dominate) at least t edges
(resp. vertices) with at most k vertices?

[61] An Ok(n3) algorithm for the Topological Minor Containment and
the Immersion Containment problems: Given two graphs G and H ,
where n(H) = k, does G contain H as a topological minor (resp. immer-
sion). The results in [61] can be seen as a major extension of the algorithm
in [108].

[45] A proof of the following result on kernelization: Let Gr be the class of
all Kr-minor free graphs. Then the Dominating Set Problem and the
Connected Dominating Set problem, asking whether a graph G has a
(connected) dominating set of size k, has a linear Or(k)-size kernel when
restricted in graphs in Gr.

[69] An Ok+g(n3) algorithm for the Contraction Containment problem
restricted to graphs of Euler genus g. The Contraction Containment
problem asks, with input two graphs G and H , where n(H) = k, whether
H is a contraction of G.

Clearly, the above list is just indicative and is expected to grow more. Further
algorithmic applications of the weak structure theorem and/or the irrelevant
vertex technique can be found in [66, 68, 70, 72, 73, 75, 76, 78]. Also results
where the irrelevant vertex idea is applied an a more general sense, without
using directly results of the GMT, can be found in [25, 47, 63, 92].

6 Conclusions

Covering the whole range of the contributions of the GMT to the design of
parameterized algorithms is a task that cannot fit in the space of this short
presentation. The progress over the last years towards building an Algorithmic
Graph Minors Theory has been noticeable and we believe that there is much more
“algorithmic material” to be extracted from this deep and fascinating theory.
As we expect more results to emerge from GMT, not only in parameterized
algorithms by also in other fields of algorithm design, we hope that this small
portion of the material covered will be of use as in invitation to this direction.

Acknowledgements. We wish to thank Isolde Adler, Marcin Kamiński and
Stavros G. Kolliopoulos for their detailed comments, remarks, and suggestions
on this text. We also wish to personally thank Michael R. Fellows for his support
and encouragement while investigating this “minor” corner of parameterized
algorithms.

250 D.M. Thilikos

References

1. Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Fast Minor Testing in
Planar Graphs. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346,
pp. 97–109. Springer, Heidelberg (2010)

2. Adler, I., Grohe, M., Kreutzer, S.: Computing excluded minors. In: Nineteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 641–650.
Society for Industrial and Applied Mathematics, Philadelphia (2008)

3. Adler, I., Kolliopoulos, S.G., Krause, P.K., Lokshtanov, D., Saurabh, S., Thilikos,
D.: Tight Bounds for Linkages in Planar Graphs. In: Aceto, L., Henzinger, M.,
Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 110–121. Springer,
Heidelberg (2011)

4. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed pa-
rameter algorithms for dominating set and related problems on planar graphs.
Algorithmica 33(4), 461–493 (2002)

5. Alber, J., Dorn, F., Niedermeier, R.: Experimental evaluation of a tree
decomposition-based algorithm for vertex cover on planar graphs. Discrete Ap-
plied Mathematics 145(2), 219–231 (2005); Structural Decompositions, Width
Parameters, and Graph Labelings

6. Alber, J., Niedermeier, R.: Improved Tree Decomposition Based Algorithms for
Domination-like Problems. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286,
pp. 613–627. Springer, Heidelberg (2002)

7. Amir, E.: Approximation algorithms for treewidth. Algorithmica 56, 448–479
(2010)

8. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable
graphs. Journal of Algorithms 12, 308–340 (1991)

9. Betzler, N., Niedermeier, R., Uhlmann, J.: Tree decompositions of graphs: Saving
memory in dynamic programming. Discrete Optimization 3(3), 220–229 (2006);
Graphs and Combinatorial Optimization

10. Bienstock, D., Dean, N.: On obstructions to small face covers in planar graphs.
J. Combin. Theory Ser. B 55(2), 163–189 (1992)

11. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast
subset convolution. In: STOC, pp. 67–74. ACM (2007)

12. Bodlaender, H., Fomin, F., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos,
D.: (Meta) kernelization. In: 50th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2009). ACM (2009)

13. Bodlaender, H.L.: Dynamic Programming on Graphs with Bounded Treewidth.
In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118.
Springer, Heidelberg (1988)

14. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

15. Bodlaender, H.L., Fellows, M.R., Hallett, M.T.: Beyond NP-completeness for
problems of bounded width: hardness for the W hierarchy. In: Twenty-sixth
Annual ACM Symposium on Theory of Computing (STOC 1994), pp. 449–458.
ACM, New York (1994)

16. Bodlaender, H.L., Telle, J.A.: Space-efficient construction variants of dynamic
programming. Nordic J. Comput. 11(4), 374–385 (2004)

17. Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algo-
rithms from predicate calculus descriptions of problems on recursively constructed
graph families. Algorithmica 7, 555–581 (1992)

Graph Minors and Parameterized Algorithm Design 251

18. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms.
J. Comput. System Sci. 67(4), 789–807 (2003)

19. Cattell, K., Dinneen, M.J., Downey, R.G., Fellows, M.R., Langston, M.A.: On
computing graph minor obstruction sets. Theor. Comput. Sci. 233, 107–127 (2000)

20. Chleb́ıková, J.: The structure of obstructions to treewidth and pathwidth. Discrete
Applied Mathematics 120(1-3), 61–71 (2002)

21. Courcelle, B., Downey, R.G., Fellows, M.R.: A note on the computability of graph
minor obstruction sets formonadic second order ideals. In:First Japan-NewZealand
Workshop on Logic in Computer Science, Auckland, vol. 3, pp. 1194–1198 (1997)
(electronic)

22. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wo-
jtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in
single exponential time. In: IEEE 52nd Annual Symposium on Foundations of
Computer Science (FOCS 2011), pp. 150–159. IEEE Computer Society (2011)

23. Dahan, X., Tillich, J.-P.: Ramanujan graphs of very large girth based on octo-
nions. CoRR, arXiv:1011.2642 (November 2010-2011)

24. Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: 21st IEEE
Symposium on Logic in Computer Science (LICS 2007), pp. 270–279. IEEE, New
York (2007)

25. Dawar, A., Kreutzer, S.: Domination problems in nowhere-dense classes. In:
IARCS Annual Conference on Foundations of Software Technology and Theo-
retical Computer Science (FST-TCS 2009), pp. 157–168 (2009)

26. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Bidimensional pa-
rameters and local treewidth. SIAM J. Discrete Math. 18(3), 501–511 (2004)
(electronic)

27. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential pa-
rameterized algorithms on graphs of bounded genus and H-minor-free graphs.
Journal of the ACM 52(6), 866–893 (2005)

28. Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connections between FPT
algorithms and PTASs. In: Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 590–601. ACM, New York (2005) (electronic)

29. Demaine, E.D., Hajiaghayi, M.: Linearity of grid minors in treewidth with appli-
cations through bidimensionality. Combinatorica 28(1), 19–36 (2008)

30. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.: Algorithmic graph minor the-
ory: Improved grid minor bounds and Wagner’s contraction. Algorithmica 54(2),
142–180 (2009)

31. Demaine, E.D., Hajiaghayi, M., Thilikos, D.M.: The bidimensional theory of
bounded-genus graphs. SIAM J. Discrete Math. 20(2), 357–371 (2006)

32. Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173.
Springer (2005)

33. Diestel, R., Jensen, T.R., Gorbunov, K.Y., Thomassen, C.: Highly connected sets
and the excluded grid theorem. J. Combin. Theory Ser. B 75(1), 61–73 (1999)

34. Dinneen, M.J.: Too many minor order obstructions (for parameterized lower ide-
als). In: First Japan-New Zealand Workshop on Logic in Computer Science, Auck-
land, vol. 3(11), pp. 1199–1206 (1997) (electronic)

35. Dorn, F.: Dynamic Programming and Fast Matrix Multiplication. In: Azar, Y.,
Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg
(2006)

36. Dorn, F., Fomin, F.V., Thilikos, D.M.: Fast Subexponential Algorithm for Non-
local Problems on Graphs of Bounded Genus. In: Arge, L., Freivalds, R. (eds.)
SWAT 2006. LNCS, vol. 4059, pp. 172–183. Springer, Heidelberg (2006)

252 D.M. Thilikos

37. Dorn, F., Fomin, F.V., Thilikos, D.M.: Catalan structures and dynamic program-
ming in H-minor-free graphs. In: ACM-SIAM Symposium on Discrete Algorithms
(SODA 2008), pp. 631–640. SIAM (2008)

38. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms
on planar graphs: Exploiting sphere cut decompositions. Algorithmica 58(3), 790–
810 (2010)

39. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Com-
puter Science. Springer, New York (1999)

40. Ellis, J.A., Sudborough, I.H., Turner, J.S.: The vertex separation and search num-
ber of a graph. Information and Computation 113(1), 50–79 (1994)

41. Erdős, P., Sachs, H.: Reguläre graphen gegebener tailenweite mit minimaler knol-
lenzahh. Wiss. Z. Univ. Halle-Willenberg Math. Nat. 12, 251–258 (1063)

42. Fellows, M.: Towards Fully Multivariate Algorithmics: Some New Results and
Directions in Parameter Ecology. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.)
IWOCA 2009. LNCS, vol. 5874, pp. 2–10. Springer, Heidelberg (2009)

43. Fellows, M.R., Langston, M.A.: On search, decision, and the efficiency of
polynomial-time algorithms. J. Comput. System Sci. 49(3), 769–779 (1994)

44. Flum, J., Grohe, M.: Parameterized Complexity theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Berlin (2006)

45. Fomin, F.V., Daniel Lokshtanov, S.S., Thilikos, D.M.: Linear kernels for (con-
nected) dominating set on h-minor-free graphs. In: 23st ACM–SIAM Symposium
on Discrete Algorithms (SODA 2012). ACM-SIAM, San Francisco (2012)

46. Fomin, F.V., Golovach, P.A., Thilikos, D.M.: Contraction obstructions for
treewidth. J. Comb. Theory, Ser. B 101(5), 302–314 (2011)

47. Fomin, F.V., Lokshtanov, D., Misra, N., Philip, G., Saurabh, S.: Hitting forbidden
minors: Approximation and kernelization. In: STACS, pp. 189–200 (2011)

48. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Bidimensionality and EP-
TAS. In: 22st ACM–SIAM Symposium on Discrete Algorithms (SODA 2011),
pp. 748–759. ACM-SIAM, San Francisco (2011)

49. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms
for partial cover problems. Inf. Process. Lett. 111(16), 814–818 (2011)

50. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Bidimensionality and geometric graphs.
In: 23st ACM–SIAM Symposium on Discrete Algorithms (SODA 2012). ACM-
SIAM, San Francisco (2012)

51. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and
kernels. In: 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2010), Austin, Texas, pp. 503–510. ACM-SIAM (2010)

52. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: branch-width and
exponential speed-up. SIAM J. Comput. 36(2), 281–309 (2006) (electronic)

53. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order
logic revisited. Ann. Pure Appl. Logic 130(1-3), 3–31 (2004)

54. Friedman, H., Robertson, N., Seymour, P.D.: The metamathematics of the graph
minor theorem. In: Logic and Combinatorics (Arcata, Calif., 1985). Contemp.
Math., vol. 65, pp. 229–261. Amer. Math. Soc., Providence (1987)

55. Friedman, H.M.: Internal finite tree embeddings. In: Reflections on the founda-
tions of mathematics (Stanford, CA, 1998). Lect. Notes Log., vol. 15, pp. 60–91.
Assoc. Symbol. Logic, Urbana (2002)

56. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. J. Combin. Theory, Ser. B 16(1), 47–56 (1974)

Graph Minors and Parameterized Algorithm Design 253

57. Geelen, J.F., Gerards, A.M.H., Robertson, N., Whittle, G.P.: On the excluded mi-
nors for the matroids of branch-width k. J. Combin. Theory Ser. B 88(2), 261–265
(2003)

58. Giannopoulou, A.C., Thilikos, D.M.: Obstructions for tree-depth. Electronic
Notes in Discrete Mathematics 34, 249–253 (2009)

59. Giannopoulou, A.C., Thilikos, D.M.: Optimizing the graph minors weak structure
theorem. CoRR, arXiv:1102.5762 (February 2011)

60. Golovach, P.A., Kamiński, M., Paulusma, D., Thilikos, D.M.: Induced Packing of
Odd Cycles in a Planar Graph. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC
2009. LNCS, vol. 5878, pp. 514–523. Springer, Heidelberg (2009)

61. Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological sub-
graphs is fixed-parameter tractable. In: Proceedings of the 43rd ACM Symposium
on Theory of Computing (STOC 2011), pp. 479–488 (2011)

62. Gu, Q.-P., Tamaki, H.: Improved Bounds on the Planar Branchwidth with Respect
to the Largest Grid Minor Size. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.)
ISAAC 2010, Part II. LNCS, vol. 6507, pp. 85–96. Springer, Heidelberg (2010)

63. Heggernes, P., van’t Hof, P., Jansen, B.M.P., Kratsch, S., Villanger, Y.: Param-
eterized Complexity of Vertex Deletion into Perfect Graph Classes. In: Owe, O.,
Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 240–251. Springer,
Heidelberg (2011)

64. Heggernes, P., van’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a bipartite
graph by contracting few edges. In: IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS 2011),
pp. 217–228 (2011)

65. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math.
Soc. 2(3), 326–336 (1952)

66. Ito, T., Kamiński, M., Paulusma, D., Thilikos, D.M.: Parameterizing cut sets in a
graph by the number of their components. Theor. Comput. Sci. 412(45), 6340–6350
(2011)

67. Johnson, D.S.: The NP-completeness column: An ongoing guide. Journal of Al-
gorithms 8(2), 285–303 (1987)

68. Kamiński, M., Nishimura, N.: Finding an induced path of given parity in planar
graphs in polynomial time. In: Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2011), pp. 656–670. ACM
(2012)

69. Kamiński, M., Thilikos, D.M.: Contraction checking in graphs on surfaces. In: 29th
International Symposium on Theoretical Aspects of Computer Science (STACS
2012), pp. 182–193 (2012)

70. Kawarabayashi, K.: Half integral packing, Erdős-Pósa-property and graph mi-
nors. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2007, pp. 1187–1196. Society for Industrial and Applied
Mathematics, Philadelphia (2007)

71. Kawarabayashi, K.: Planarity allowing few error vertices in linear time. In: 50th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009,
pp. 639–648 (2009)

72. Kawarabayashi, K., Kobayashi, Y.: The edge disjoint paths problem in eulerian
graphs and 4-edge-connected graphs. In: Proceedings of the Twenty-First An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 345–353.
Society for Industrial and Applied Mathematics, Philadelphia (2010)

73. Kawarabayashi, K., Kobayashi, Y.: An improved algorithm for the half-disjoint
paths problem. SIAM J. Discrete Math. 25(3), 1322–1330 (2011)

254 D.M. Thilikos

74. Kawarabayashi, K., Kobayashi, Y., Reed, B.: The disjoint paths problem in
quadratic time. Journal of Combinatorial Theory, Series B (2011)

75. Kawarabayashi, K., Kreutzer, S., Mohar, B.: Linkless and flat embeddings in 3-
space and the unknot problem. In: Proceedings of the 2010 Annual Symposium
on Computational Geometry, SoCG 2010, pp. 97–106. ACM, New York (2010)

76. Kawarabayashi, K., Li, Z., Reed, B.A.: Recognizing a totally odd K4-subdivision,
parity 2-disjoint rooted paths and a parity cycle through specified elements. In:
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, pp. 318–328 (2010)

77. Kawarabayashi, K., Mohar, B., Reed, B.A.: A simpler linear time algorithm for
embedding graphs into an arbitrary surface and the genus of graphs of bounded
tree-width. In: 49th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2008, pp. 771–780 (2008)

78. Kawarabayashi, K., Reed, B.A.: Hadwiger’s conjecture is decidable. In: 41st An-
nual ACM Symposium on Theory of Computing (STOC 2009), pp. 445–454 (2009)

79. Kawarabayashi, K., Reed, B.A.: Odd cycle packing. In: Proceedings of the 42nd
ACM Symposium on Theory of Computing, STOC 2010, pp. 695–704 (2010)

80. Kawarabayashi, K., Wollan, P.: A shorter proof of the graph minor algorithm:
the unique linkage theorem. In: 49th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2008, pp. 771–780 (2008)

81. Kneis, J., Langer, A.: A practical approach to courcelle’s theorem. Electron. Notes
Theor. Comput. Sci. 251, 65–81 (2009)

82. Kneis, J., Langer, A., Rossmanith, P.: Courcelle’s theorem - a game-theoretic
approach. CoRR, arXiv:1104.3905 (April 2011)

83. Kobayashi, Y., Kawarabayashi, K.: Algorithms for finding an induced cycle in pla-
nar graphs and bounded genus graphs. In: 20th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2009), pp. 1146–1155. ACM-SIAM (2009)

84. Koutsonas, A., Thilikos, D.M., Yamazaki, K.: Outerplanar obstructions for ma-
troid pathwidth. In: EuroComb 2011: European Conference on Combinatorics,
Graph Theory and Applications (2011)

85. Kreutzer, S., Tazari, S.: On brambles, grid-like minors, and parameterized in-
tractability of monadic second-order logic. In: Proceedings of the Twenty-First An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 354–364.
Society for Industrial and Applied Mathematics, Philadelphia (2010)

86. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Trans. Amer. Math. Soc. 95, 210–225 (1960)

87. Kuratowski, K.: Sur le problème des courbes gauches en topologie. Fund.
Math. 15, 271–283 (1930)

88. Lagergren, J.: Efficient parallel algorithms for graphs of bounded tree-width. Jour-
nal of Algorithms 20(1), 20–44 (1996)

89. Lagergren, J.: Upper bounds on the size of obstructions and intertwines. J. Com-
bin. Theory, Ser. B 73, 7–40 (1998)

90. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized
problems. In: 22st ACM–SIAM Symposium on Discrete Algorithms (SODA 2011),
pp. 760–776 (2011)

91. Lovász, L.: Graph minor theory. Bull. Amer. Math. Soc. (N.S.) 43(1), 75–86 (2006)
(electronic)

92. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4),
747–768 (2010)

93. Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. Algorith-
mica 62(3-4), 807–822 (2012)

Graph Minors and Parameterized Algorithm Design 255

94. Mohar, B.: A linear time algorithm for embedding graphs in an arbitrary surface.
SIAM J. Discrete Math. 12(1), 6–26 (1999)

95. Nash-Williams, C.S.J.A.: On well-quasi-ordering finite trees. Proc. Cambridge
Philos. Soc. 59, 833–835 (1963)

96. Neumann, B.H.: On ordered division rings. Trans. Amer. Math. Soc. 66, 202–252
(1949)

97. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series
in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford
(2006)

98. Parsons, T.D.: Pursuit-evasion in a graph. In: Proceedings Internat. Conf., West-
ern Mich. Univ., Kalamazoo, Mich., 1976, Theory and Applications of Graphs.
Lecture Notes in Math., vol. 642, pp. 426–441. Springer, Berlin (1978)

99. Ramachandramurthi, S.: The structure and number of obstructions to treewidth.
SIAM J. Discrete Math. 10(1), 146–157 (1997)

100. Reed, B.A.: Finding approximate separators and computing tree width quickly.
In: Twenty-Fourth Annual ACM Symposium on Theory of Computing (STOC
1992), pp. 221–228. ACM Press (1992)

101. Reed, B.A., Wood, D.R.: Polynomial treewidth forces a large grid-like-minor. Eur.
J. Comb. 33(3), 374–379 (2012)

102. Robertson, N., Seymour, P.D.: Graph minors. I. excluding a forest. J. Combin.
Theory, Ser. B 35, 39–61 (1983)

103. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Combin.
Theory, Ser. B 36(1), 49–64 (1984)

104. Robertson, N., Seymour, P.D.: Graph minors. II. algorithmic aspects of tree-
width. Journal of Algorithms 7, 309–322 (1986)

105. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J.
Combin. Theory Ser. B 41(1), 92–114 (1986)

106. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-
decomposition. J. Combin. Theory Ser. B 52(2), 153–190 (1991)

107. Robertson, N., Seymour, P.D.: Graph minors. XXII. Irrelevant vertices in linkage
problems (1992) (preprint)

108. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem.
J. Combin. Theory, Ser. B 63(1), 65–110 (1995)

109. Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph.
J. Combin. Theory Series B 77, 1–27 (1999)

110. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Com-
bin. Theory Ser. B 92(2), 325–357 (2004)

111. Robertson, N., Seymour, P.D.: Graph minors. XXI. Graphs with unique linkages.
J. Combin. Theory Ser. B 99(3), 583–616 (2009)

112. Robertson, N., Seymour, P.D.: Graph minors XXIII. Nash-Williams’ immersion
conjecture. J. Combin. Theory Ser. B 100(2), 181–205 (2010)

113. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J.
Combin. Theory Ser. B 62(2), 323–348 (1994)

114. Rué, J., Sau, I., Thilikos, D.M.: Dynamic Programming for Graphs on Surfaces.
In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis,
P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 372–383. Springer, Heidel-
berg (2010)

115. Rué, J., Stavropoulos, K.S., Thilikos, D.M.: Outerplanar obstructions for the
feedback vertex set. Electronic Notes in Discrete Mathematics 34, 167–171 (2009)

256 D.M. Thilikos

116. Scheffler, P.: A practical linear time algorithm for disjoint paths in graphs with
bounded tree-width. Technical Report 396/1994, FU Berlin, Fachbereich 3 Math-
ematik (1994)

117. Takahashi, A., Ueno, S., Kajitani, Y.: Minimal acyclic forbidden minors for the
family of graphs with bounded path-width. Disc. Math. 127(1-3), 293–304 (1994);
Graph theory and applications, Hakone (1990)

118. Thilikos, D.M.: Algorithms and obstructions for linear-width and related search
parameters. Discrete Applied Mathematics 105, 239–271 (2000)

119. van Leeuwen, J.: Graph algorithms. In: Handbook of Theoretical Computer Sci-
ence, Volume A: Algorithms and Complexity (A), pp. 525–631. Elsevier Science
(1990)

120. van Rooij, J.M.M., Bodlaender, H.L., Rossmanith, P.: Dynamic Programming on
Tree Decompositions Using Generalised Fast Subset Convolution. In: Fiat, A.,
Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 566–577. Springer, Heidelberg
(2009)

121. Wagner, K.: Über eine eigenschaft der ebenen komplexe. Mathematische An-
nalen 114, 570–590 (1937), 10.1007/BF01594196

122. Weiss, A.: Girths of bipartite sextet graphs. Combinatorica 4(2-3), 241–245 (1984)

Constraint Satisfaction Problems Parameterized

above or below Tight Bounds: A Survey

Gregory Gutin1 and Anders Yeo2

1 Royal Holloway, University of London
Egham, Surrey, TW20 0EX, UK

gutin@cs.rhul.ac.uk
2 University of Johannesburg

Auckland Park, 2006 South Africa
anders.yeo.work@gmail.com

This paper is dedicated to the 60th Birthday of Michael R. Fellows

Abstract. We consider constraint satisfaction problems parameterized
above or below tight bounds. One example is MaxSat parameterized
above m/2: given a CNF formula F with m clauses, decide whether there
is a truth assignment that satisfies at least m/2+k clauses, where k is the
parameter. Among other problems we deal with are MaxLin2-AA (given
a system of linear equations over F2 in which each equation has a positive
integral weight, decide whether there is an assignment to the variables
that satisfies equations of total weight at least W/2 + k, where W is the
total weight of all equations), Max-r-Lin2-AA (the same as MaxLin2-
AA, but each equation has at most r variables, where r is a constant)
and Max-r-Sat-AA (given a CNF formula F with m clauses in which each
clause has at most r literals, decide whether there is a truth assignment
satisfying at least

∑m
i=1(1−2ri)+k clauses, where k is the parameter, ri is

the number of literals in Clause i, and r is a constant). We also consider
Max-r-CSP-AA, a natural generalization of both Max-r-Lin2-AA and
Max-r-Sat-AA, order (or, permutation) constraint satisfaction problems
of arities 2 and 3 parameterized above the average value and some other
problems related to MaxSat. We discuss results, both polynomial kernels
and parameterized algorithms, obtained for the problems mainly in the
last few years as well as some open questions.

1 Introduction

This paper surveys mainly recent results in a subarea of parameterized algo-
rithms and complexity that was launched quite early in the short history of
parameterized algorithms and complexity, namely, in the Year 2 BDF1.

1 BDF stands for Before Downey-Fellows, i.e., before 1999 when the first monograph
describing foundations of parameterized algorithms and complexity was published
[18].

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 257–286, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

258 G. Gutin and A. Yeo

Consider the well-known problem MaxSat, where for a given CNF formula
F with m clauses, we are asked to determine the maximum number of clauses
of F that can be satisfied by a truth assignment. It is well-known (and shown
below, in Section 4) that there exists a truth assignment to the variables of F
which satisfies at least m/2 clauses.

The standard parametrization k-MaxSat of MaxSat is as follows: decide
whether there is a truth assignment which satisfies at least k clauses of F , where
k is the parameter. (We provide basic terminology and notation on parameterized
algorithms and complexity in Section 2.) It is very easy to see that k-MaxSat
has a kernel with a linear number of clauses. Indeed, consider an instance I of
k-MaxSat. If k ≤ m/2 then I is a Yes-instance. Otherwise, we have k > m/2
and m ≤ 2k−1. Suppose that we managed somehow to obtain a better result, a
kernel with at most pk clauses, where 1 ≤ p < 2. Is such a kernel of any interest?
Such a kernel would be of interest only for k > m/2, i.e., when the size of the
kernel would be bounded by pk > pm/2. Thus, such a kernel should be viewed
as huge rather than small as the bound pk might suggest at the first glance.

The bound m/2 is tight as we can satisfy only half clauses in the instances
consisting of pairs (x), (x̄) of clauses. This suggest the following parameterization
of MaxSat above tight bound introduced by Mahajan and Raman [44]: decide
whether there is a truth assignment which satisfies at least m/2 + k clauses of
F , where k is the parameter.

To the best our knowledge, [44] was the first paper on problems parameterized
above or below tight bounds and remained the only one for several years, at least
for constraint satisfaction problems (CSPs). However, in the last few years the
study of CSPs parameterized above or below tight bounds has finally picked up.
This is, in large part, due to emergence of new probabilistic and linear-algebraic
methods and approaches in the area.

In this survey paper, we will overview several results on CSPs parameterized
above or below tight bounds, as well as some methods used to obtain these
results. While not going into details of the proofs, we will discuss some ideas
behind the proofs. We will also consider several open problems in the area.

In the remainder of this section we give a brief overview of the paper and its
organization.

In the next section we provide basics on parameterized algorithms and com-
plexity. The notions mentioned there are all well-known apart from a recent
notion of a bikernel introduced by Alon et al. [2]. In Section 3, we describe some
probabilistic and Harmonic Analysis tools. These tools are, in particular, used
in the recently introduced Strictly-Above-Below-Expectation method [30].

Results on MaxSat parameterized above or below tight bounds are discussed
in Section 4. We will consider the above-mentioned parameterization of MaxSat
above tight bound, some “stronger” parameterizations of MaxSat introduced
or inspired by Mahajan and Raman [44]. The stronger parameterizations are
based on the notion of a t-satisfiable CNF formula (a formula in which each
set of t clauses can be satisfied by a truth assignment) and asymptotically tight
lower bounds on the maximum number of clauses of a t-satisfiable CNF formula

Constraint Satisfaction Problems Parameterized 259

satisfied by a truth assignment for t = 2 and 3. We will describe linear-variable
kernels obtained for both t = 2 and 3.

We will also consider the parameterization of 2-Sat below the upper bound m,
the number of clauses. This problem was proved to be fixed-parameter tractable
by Razgon and O’Sullivan [52]. Raman et al. [51] and Cygan et al. [17] designed
faster parameterized algorithms for the problem. The problem has several appli-
cation, which we will briefly overview.

Boolean Maximum r-CSPs parameterized above the average value are con-
sidered in Section 5, where r is a positive integral constant. In general, the
Maximum r-CSP is given by a set V of n variables and a set of m Boolean
formulas; each formula is assigned an integral positive weight and contains at
most r variables from V . The aim is to find a truth assignment which maximizes
the weight of satisfied formulas. Averaging over all truth assignments, we can
find the average value A of the weight of satisfied formulas. It is easy to show
that we can always find a truth assignment to the variables of V which satisfied
formulas of total weight at least A. Thus, a natural parameterized problem is
whether there exists a truth assignment that satisfies formulas of total weight
at least A+ k, where k is the parameter (k is a nonnegative integer). We denote
such a problem by Max-r-CSP-AA.

The problem Max-r-Lin2-AA is a special case of Max-r-CSP-AA when
every formula is a linear equation over F2 with at most r variables. For Max-r-
Lin2-AA, we have A = W/2, where W is the total weight of all equations. It is
well-known that, in polynomial time, we can find an assignment to the variables
that satisfies equations of total weight at least W/2, but, for any ε > 0 it is
NP-hard to decide whether there is an assignment satisfying equations of total
weight at least W (1 + ε)/2 [33]. We give proof schemes of a result by Gutin
et al. [30] that Max-r-Lin2-AA has a kernel of quadratic size and a result of
Crowston, et al. [12] that Max-r-Lin2-AA has a kernel with at most (2k − 1)r
variables. The latest result improves that of Kim and Williams [39] that Max-
r-Lin2-AA has a kernel with at most r(r + 1)k variables. Papers [12,39] imply
an algorithm of runtime 2O(k) + mO(1) for Max-r-Lin2-AA.

We give a proof scheme of a result by Alon et al. [2] that Max-r-CSP-AA
has a a kernel of polynomial size. The main idea of the proof is to reduce Max-r-
CSP-AA to Max-r-Lin2-AA and use results on Max-r-Lin2-AA and a lemma
on bikernels given in the next section. The result of Alon et al. [2] solves an open
question of Mahajan, Raman and Sikdar [45] not only for Max-r-Sat-AA but
for the more general problem Max-r-CSP-AA. The problem Max-r-Sat-AA
is a special case of Max-r-CSP-AA when every formula is a clause with at
most r variables. For Max-r-Sat-AA, the reduction to Max-r-Lin2-AA can
be complemented by a reduction from Max-r-Lin2-AA back to Max-r-Sat-
AA, which yields a kernel of quadratic size. (Note that while the size of the
kernel for Max-r-CSP-AA is polynomial we are unable to bound the degree of
the polynomial.)

MaxLin2-AA is the same problem as Max-r-Lin2-AA, but the number of
variables in an equation is not bounded. Thus, MaxLin2-AA is a generalization

260 G. Gutin and A. Yeo

of Max-r-Lin2-AA. Section 6 presents a scheme of a recent proof by Crowston,
Fellows et al. [12] that MaxLin2-AA is fixed-parameter tractable and has a
kernel with polynomial number of variables. This result finally solved an open
question of Mahajan, Raman and Sikdar [45]. Still, we do not know whether
MaxLin2-AA has a kernel of polynomial size and we present only partial results
on the topic. Max-Sat-AA is the same problem as Max-r-Sat-AA, but the
number of variables in a clause is not bounded. Crowston et al. [15] proved
that Max-Sat-AA is para-NP-complete and, thus, MaxSat-AA is not fixed-
parameter tractable unless P=NP. We give a short discussion of this result in
the end of Section 6.

In Section 7 we discuss parameterizations above average of Ordering CSPs
of arities 2 and 3. It turns out that for our parameterization the most impor-
tant Ordering CSP is the problem r-Linear Ordering (r ≥ 2). An instance of
r-Linear Ordering consists of a set V of variables and a multiset C of con-
straints, which are ordered r-tuples of distinct variables of V (note that the same
set of r variables may appear in several different constraints). The objective is to
find an ordering α of V that maximizes the number of constraints whose order
in α follows that of the constraint (such constraints are satisfied by α).

It is easy to see that |C|/r! is the average number of constraints satisfied by
an ordering of V and that it is a tight lower bound on the maximum number
of constraints satisfied by an ordering of V . The only nontrivial Ordering CSP
of arity 2 is 2-Linear Ordering. For this problem, Guruswami, Manokaran
and Raghavendra [26] proved that it is impossible to find, in polynomial time,
an ordering that satisfies at least |C|(1 + ε)/2 constraints for every ε > 0 pro-
vided the Unique Games Conjecture (UGC) of Khot [38] holds. Similar ap-
proximation resistant results were proved for all Ordering CSPs of arity 3 by
Charikar, Guruswami and Manokaran [8] and for Ordering CSPs of any arity by
Guruswami et al. [25].

In the problem r-Linear Ordering parameterized above average (r-Linear
Ordering-AA), given an instance of r-Linear Ordering with a multiset C
of constraints, we are to decide whether there is an ordering satisfying at least
|C|/r!+k constraints, where k is the parameter. Gutin et al. [30] proved that 2-
Linear Ordering-AA is fixed-parameter tractable and, moreover, has a kernel
of a quadratic size. Betweenness is an Ordering CSP of arity 3, which is
formulated in Section 7. Gutin et al. [29] solved an open question of Benny
Chor stated in Niedermeier’s monograph [48] by showing that Betweenness
parameterized above average is fixed-parameter tractable and, moreover, has a
kernel of a quadratic size.

A simple, yet important, observation is that all Ordering CSPs of arity 3
parameterized above average can be reduced, in polynomial time, to 3-Linear
Ordering parameterized above average (3-Linear Ordering-AA) and
that this reduction preserves the parameter. Thus, to prove that all Order-
ing CSPs of arity 3 parameterized above average are fixed-parameter tractable,
it suffices to show that 3-Linear Ordering-AA is fixed-parameter tractable.

Constraint Satisfaction Problems Parameterized 261

Gutin et al. [27] proved that 3-Linear Ordering-AA is fixed-parameter
tractable and, moreover, has a kernel with a quadratic number of constraints
and variables.

Kim and Williams [39] partially improved the results above by showing that 2-
Linear Ordering-AA and 3-Linear Ordering-AA have kernels with linear
number of variables. Parameterized complexity of Ordering CSPs of arities 4 and
higher is still unknown. It seems to be technically much more difficult to prove
that 4-Linear Ordering-AA is fixed-parameter tractable than that 3-Linear
Ordering-AA is fixed-parameter tractable.

2 Basics on Parameterized Algorithms and Complexity

A parameterized problem Π can be considered as a set of pairs (I, k) where I
is the problem instance and k (usually a nonnegative integer) is the parameter.
Π is called fixed-parameter tractable (fpt) if membership of (I, k) in Π can be
decided by an algorithm of runtime O(f(k)|I|c), where |I| is the size of I, f(k)
is an arbitrary function of the parameter k only, and c is a constant independent
from k and I. Such an algorithm is called an fpt algorithm. Let Π and Π ′ be
parameterized problems with parameters k and k′, respectively. An fpt-reduction
R from Π to Π ′ is a many-to-one transformation from Π to Π ′, such that (i)
(I, k) ∈ Π if and only if (I ′, k′) ∈ Π ′ with k′ ≤ g(k) for a fixed computable
function g, and (ii) R is of complexity O(f(k)|I|c).

If the nonparameterized version of Π (where k is just part of the input) is NP-
hard, then the function f(k) must be superpolynomial provided P �=NP. Often
f(k) is “moderately exponential,” which makes the problem practically tractable
for small values of k. Thus, it is important to parameterize a problem in such a
way that the instances with small values of k are of real interest.

When the decision time is replaced by the much more powerful |I|O(f(k)), we
obtain the class XP, where each problem is polynomial-time solvable for any
fixed value of k. There is an infinite number of parameterized complexity classes
between FPT and XP (for each integer t ≥ 1, there is a class W[t]) and they
form the following tower:

FPT ⊆W [1] ⊆W [2] ⊆ · · · ⊆W [P] ⊆ XP.

Here W[P] is the class of all parameterized problems (I, k) that can be de-
cided in f(k)|I|O(1) time by a nondeterministic Turing machine that makes at
most f(k) log |I| nondeterministic steps for some function f . For the definition of
classes W[t], see, e.g., [22] (we do not use these classes in the rest of the paper).

Π is in para-NP if membership of (I, k) in Π can be decided in nondetermin-
istic time O(f(k)|I|c), where |I| is the size of I, f(k) is an arbitrary function
of the parameter k only, and c is a constant independent from k and I. Here,
nondeterministic time means that we can use nondeterministic Turing machine.
A parameterized problem Π ′ is para-NP-complete if it is in para-NP and for any
parameterized problem Π in para-NP there is an fpt-reduction from Π to Π ′.

262 G. Gutin and A. Yeo

While several fpt algorithms were designed many years ago (e.g., pseudo-
polynomial algorithms with parameter being the binary length of the maximum
number, cf. [23]), Downey and Fellows were the first to systematically study
the theory of parameterized algorithms and complexity and they wrote the first
monograph [18] in the area2.

Given a pair Π, Π ′ of parameterized problems, a bikernelization from Π to Π ′

is a polynomial-time algorithm that maps an instance (I, k) to an instance (I ′, k′)
(the bikernel) such that (i) (I, k) ∈ Π if and only if (I ′, k′) ∈ Π ′, (ii) k′ ≤ f(k),
and (iii) |I ′| ≤ g(k) for some functions f and g. The function g(k) is called the
size of the bikernel. A kernelization of a parameterized problem Π is simply a
bikernelization from Π to itself. Then (I ′, k′) is a kernel. The term bikernel was
coined by Alon et al. [2]; in [5] a bikernel is called a generalized kernel.

It is well-known that a parameterized problem Π is fixed-parameter tractable
if and only if it is decidable and admits a kernelization [18,22,48]. This result can
be extended as follows: A decidable parameterized problem Π is fixed-parameter
tractable if and only if it admits a bikernelization from itself to a decidable
parameterized problem Π ′ [2].

Due to applications, low degree polynomial size kernels are of main interest.
Unfortunately, many fixed-parameter tractable problems do not have kernels
of polynomial size unless the polynomial hierarchy collapses to the third level
[5,6,20]. For further background and terminology on parameterized complexity
we refer the reader to the monographs [18,22,48].

The following lemma of Alon et al. [2] inspired by a lemma from [6] shows
that polynomial bikernels imply polynomial kernels.

Lemma 1. Let Π, Π ′ be a pair of decidable parameterized problems such that
the nonparameterized version of Π ′ is in NP, and the nonparameterized version
of Π is NP-complete. If there is a bikernelization from Π to Π ′ producing a
bikernel of polynomial size, then Π has a polynomial-size kernel.

Henceforth [n] stands for the set {1, 2, . . . , n}.

3 Probabilistic and Harmonic Analysis Tools

We start this section by outlining the very basic principles of the probabilistic
method which will be implicitly used in this paper. Given random variables
X1, . . . , Xn, the fundamental property known as linearity of expectation states
that E(X1+. . .+Xn) = E(X1)+. . .+E(Xn). The averaging argument utilizes the
fact that there is a point for which X ≥ E(X) and a point for which X ≤ E(X)
in the probability space. Also a positive probability P(A) > 0 for some event A
means that there is at least one point in the probability space which belongs to
A. For example, P(X ≥ k) > 0 tells us that there exists a point for which X ≥ k.

A random variable is discrete if its distribution function has a finite or count-
able number of positive increases. A random variable X is symmetric if −X has
2 Michael R. Fellows has worked tirelessly for many years to promote the area and so

can be affectionately called St. Paul of Parameterized Complexity.

Constraint Satisfaction Problems Parameterized 263

the same distribution function as X . If X is discrete, then X is symmetric if and
only if P(X = a) = P(X = −a) for each real a. Let X be a symmetric variable
for which the first moment E(X) exists. Then E(X) = E(−X) = −E(X) and,
thus, E(X) = 0. The following is easy to prove [30].

Lemma 2. If X is a symmetric random variable and E(X2) is finite, then

P(X ≥
√
E(X2)) > 0.

If X is not symmetric then the following lemma can be used instead (a similar
result was already proved in [3]).

Lemma 3 (Alon et al. [2]). Let X be a real random variable and suppose that
its first, second and fourth moments satisfy E[X] = 0, E[X2] = σ2 > 0 and
E[X4] ≤ cE[X2]2, respectively, for some constant c. Then P(X > σ

2
√

c
) > 0.

To check E[X4] ≤ cE[X2]2 we often can use the following well-known inequality.

Lemma 4 (Hypercontractive Inequality [7]). Let f = f(x1, . . . , xn) be a
polynomial of degree r in n variables x1, . . . , xn each with domain {−1, 1}. Define
a random variable X by choosing a vector (ε1, . . . , εn) ∈ {−1, 1}n uniformly at
random and setting X = f(ε1, . . . , εn). Then E[X4] ≤ 9rE[X2]2.

If f = f(x1, . . . , xn) is a polynomial in n variables x1, . . . , xn each with domain
{−1, 1}, then it can be written as f =

∑
I⊆[n] cI

∏
i∈S xi, where [n] = {1, . . . , n}

and cI is a real for each I ⊆ [n].
The following dual, in a sense, form of the Hypercontractive Inequality was

proved by Gutin and Yeo [31]; for a weaker result, see [30].

Lemma 5. Let f = f(x1, . . . , xn) be a polynomial in n variables x1, . . . , xn

each with domain {−1, 1} such that f =
∑

I⊆[n] cI

∏
i∈S xi. Suppose that no

variable xi appears in more than ρ monomials of f . Define a random variable
X by choosing a vector (ε1, . . . , εn) ∈ {−1, 1}n uniformly at random and setting
X = f(ε1, . . . , εn). Then E[X4] ≤ (2ρ + 1)E[X2]2.

The following lemma is easy to prove, cf. [30]. In fact, the equality there is a
special case of Parseval’s Identity in Harmonic Analysis, cf. [49].

Lemma 6. Let f = f(x1, . . . , xn) be a polynomial in n variables x1, . . . , xn each
with domain {−1, 1} such that f =

∑
I⊆[n] cI

∏
i∈I xi. Define a random variable

X by choosing a vector (ε1, . . . , εn) ∈ {−1, 1}n uniformly at random and setting
X = f(ε1, . . . , εn). Then E[X2] =

∑
i∈I c2

I .

4 Parameterizations of MaxSat

In the well-known problem MaxSat, we are given a CNF formula F with m
clauses and asked to determine the maximum number of clauses of F that can
be satisfied by a truth assignment. Let us assign True to each variable of F with

264 G. Gutin and A. Yeo

probability 1/2 and observe that the probability of a clause to be satisfied is at
least 1/2 and thus, by linearity of expectation, the expected number of satisfied
clauses in F is at least m/2. Thus, by the averaging argument, there exists a
truth assignment to the variables of F which satisfies at least m/2 clauses of F .

Let us denote by sat(F) the maximum number of clauses of F that can be
satisfied by a truth assignment. The lower bound sat(F) ≥ m/2 is tight as we
have sat(H) = m/2 if H = (x1) ∧ (x̄1) ∧ · · · ∧ (xm/2) ∧ (x̄m/2). Consider the
following parameterization of MaxSat above tight lower bound introduced by
Mahajan and Raman [44].

MaxSat-A(m/2)
Instance: A CNF formula F with m clauses (clauses may appear several
times in F) and a nonnegative integer k.
Parameter: k.
Question: sat(F) ≥ m/2 + k?

Mahajan and Raman [44] proved that MaxSat-A(m/2) admits a kernel with at
most 6k +3 variables and 10k clauses. Crowston et al. [16] improved this result,
by obtaining a kernel with at most 4k variables and (2

√
5 + 4)k clauses. The

improved result is a simple corollary of a new lower bound on sat(F) obtained
in [16], which is significantly stronger than the simple bound sat(F) ≥ m/2. We
give the new lower bound below, in Theorem 3.

For a variable x in F , let m(x) denote the number of pairs of unit clauses
(x), (x̄) that have to be deleted from F such that F has no pair (x), (x̄) any
longer. Let var(F) be the set of all variables in F and let m̈ =

∑
x∈var(F) m(x).

The following is a stronger lower bound on sat(F) than m/2.

Theorem 1. For a CNF formula F , we have sat(F) ≥ m̈/2+ φ̂(m− m̈), where
φ̂ = (

√
5− 1)/2 ≈ 0.618.

A CNF formula F is t-satisfiable if for any t clauses in F , there is a truth
assignment which satisfies all of them. It is easy to check that F is 2-satisfiable
if and only if m̈ = 0 and clearly Theorem 1 is equivalent to the assertion that if F
is 2-satisfiable then sat(F) ≥ φ̂m. The proof of this assertion by Lieberherr and
Specker [41] is quite long; Yannakakis [56] gave the following short probabilistic
proof. For x ∈ var(F), let the probability of x being assigned True be φ̂ if (x) is
in F , 1−φ̂ if (x̄) is in F , and 1/2, otherwise, independently of the other variables.
Let us bound the probability p(C) of a clause C to be satisfied. If C contains only
one literal, then, by the assignment above, p(C) = φ̂. If C contains two literals,
then, without loss of generality, C = (x ∨ y). Observe that the probability of
x assigned False is at most φ̂ (it is φ̂ if (x̄) is in F). Thus, p(C) ≥ 1 − φ̂2. It
remains to observe that 1 − φ̂2 = φ̂. Now to obtain the bound sat(F) ≥ φ̂m
apply linearity of expectation and the averaging argument.

Note that φ̂m is an asymptotically tight lower bound: for each ε > 0 there are
2-satisfiable CNF formulae F with sat(F) < m(φ̂ + ε) [41]. Thus, the following
problem stated by Mahajan and Raman [44] is natural.

Constraint Satisfaction Problems Parameterized 265

Max-2S-Sat-A(φ̂m)
Instance: A 2-satisfiable CNF formula F with m clauses (clauses may
appear several times in F) and a nonnegative integer k.
Parameter: k.
Question: sat(F) ≥ φ̂m + k?

Mahajan and Raman [44] conjectured that Max-2S-Sat-A(φ̂m) is fpt. Crow-
ston et al. [16] solved this conjecture in the affirmative; moreover, they obtained
a kernel with at most (7 + 3

√
5)k variables. This result is an easy corollary from

a lower bound on sat(F) given in Theorem 3, which, for 2-satisfiable CNF for-
mulas, is stronger than the one in Theorem 1. The main idea of [16] is to obtain
a lower bound on sat(F) that includes the number of variables as a factor. It is
clear that for general CNF formula F such a bound is impossible. For consider
a formula containing a single clause c containing a large number of variables.
We can arbitrarily increase the number of variables in the formula, and the
maximum number of satisfiable clauses will always be 1. We therefore need a
reduction rule that cuts out ‘excess’ variables. Our reduction rule is based on
the notion of an expanding formula given below. Lemma 7 and Theorem 2 show
the usefulness of this notion.

A CNF formula F is called expanding if for each X ⊆ var(F), the number
of clauses containing at least one variable from X is at least |X | [21,55]. The
following lemma and its parts were proved by many authors, see, e.g., Fleischner,
Kullmann and Szeider [21], Lokshtanov [43] and Szeider [55].

Lemma 7. Let F be a CNF formula and let V and C be its sets of variables
and clauses. There exists a subset C∗ ⊆ C that can be found in polynomial
time, such that the formula F ′ with clauses C \C∗ and variables V \ V ∗, where
V ∗ = var(C∗), is expanding. Moreover, sat(F) = sat(F ′) + |C∗|.

The following result was shown by Crowston et al. [16]. The proof is nontrivial
and consists of a deterministic algorithm for finding the corresponding truth
assignment and a detailed combinatorial analysis of the algorithm.

Theorem 2. Let F be an expending 2-satisfiable CNF formula with n variables
and m clauses. Then sat(F) ≥ φ̂m + n(2− 3φ̂)/2.

Lemma 7 and Theorem 2 imply the following:

Theorem 3. Let F be a 2-satisfiable CNF formula and let V and C be its sets
of variables and clauses. There exists a subset C∗ ⊆ C that can be found in
polynomial time, such that the formula F ′ with clauses C \ C∗ and variables
V \ V ∗, where V ∗ = var(C∗), is expanding. Moreover, we have

sat(F) ≥ φ̂m + (1− φ̂)m∗ + (n− n∗)(2 − 3φ̂)/2,

where m = |C|, m∗ = |C∗|, n = |V | and n∗ = |V ∗|.

266 G. Gutin and A. Yeo

Let us turn now to 3-satisfiable CNF formulas. If F is 3-satisfiable then it is not
hard to check that the forbidden sets of clauses are pairs of the form {x}, {x̄} and
triplets of the form {x}, {y}, {x̄, ȳ} or {x}, {x̄, y}, {x̄, ȳ}, as well as any triplets
that can be derived from these by switching positive literals with negative literals.

Lieberherr and Specker [42] and, later, Yannakakis [56] proved the following:
if F is 3-satisfiable then sat(F) ≥ 2

3w(C(F)). This bound is also asymptotically
tight. Yannakakis [56] gave a probabilistic proof which is similar to his proof for
2-satisfiable formulas, but requires consideration of several cases and, thus, not
as short as for 2-satisfiable formulas. For details of his proof, see, e.g., Gutin,
Jones and Yeo [28] and Jukna [36] (Theorem 20.6). Yannakakis’s approach was
extended by Gutin, Jones and Yeo [28] to prove the following theorem using a
quite complicated probabilistic distribution for a random truth assignment.

Theorem 4. Let F be an expanding 3-satisfiable CNF formula with n variables
and m clauses. Then sat(F) ≥ 2

3m + ρn, where ρ(> 0.0019) is a constant.

This theorem and Lemma 7 imply the following:

Theorem 5. Let F be a 3-satisfiable CNF formula and let V and C be its sets
of variables and clauses. There exists a subset C∗ ⊆ C that can be found in
polynomial time, such that the formula F ′ with clauses C \ C∗ and variables
V \ V ∗, where V ∗ = var(C∗), is expanding. Moreover, we have

sat(F) ≥ 2
3
m +

1
3
m∗ + ρ(n− n∗),

where ρ(> 0.0019) is a constant, m = |C|, m∗ = |C∗|, n = |V | and n∗ = |V ∗|.
Using this theorem it is easy to obtain a linear-in-number-of-variables kernel for
the following natural analog of Max-2S-Sat-A(φ̂m), see [28] for details.

Max-3S-Sat-A(2
3m)

Instance: A 3-satisfiable CNF formula F with m clauses and a nonneg-
ative integer k.
Parameter: k.
Question: sat(F) ≥ 2

3m + k?

Now let us consider the following important parameterization of r-Sat below
the tight upper bound m:

r-Sat-B(m)
Instance: An r-CNF formula F with m clauses (every clause has at most
r literals) and a nonnegative integer k.
Parameter: k.
Question: sat(F) ≥ m− k?

Constraint Satisfaction Problems Parameterized 267

Since Max-r-Sat is NP-hard for each fixed r ≥ 3, r-Sat-B(m) is not fpt unless
P=NP. However, the situation changes for r = 2: Razgon and O’Sullivan [52]
proved that 2-Sat-B(m) is fpt. The algorithm in [52] is of complexity O(15kkm3)
and, thus, Max-2-Sat-B(m) admits a kernel with at most 15kk clauses. It is
not known whether 2-Sat-B(m) admits a kernel with a polynomial number of
variables. Raman et al. [51] and Cygan et al. [17] designed algorithms for 2-
Sat-B(m) of runtime 9k(km)O(1) and 4k(km)O(1), respectively. In both papers,
the authors consider the following parameterized problem (VC-AMM): given
a graph G whose maximum matching is of cardinality μ, decide whether G
has a vertex cover with at most μ + k vertices, where k is the parameter. A
parameterized algorithm of the above-mentioned complexity actually is obtained
for VC-AMM, and 2-Sat-B(m) is polynomially transformed into VC-AMM
(the transformation is parameter-preserving). While Raman et al. [51] obtain
the parameterized algorithm for VC-AMM directly, Cygan et al. [17] derive it
via a reduction from a more general problem on graphs parameterized above a
tight bound.

2-Sat-B(m) has several application. 2-Sat-B(m) is, in fact, equivalent to
VC-AMM [46,51,17]. Mishra et al. [46] studied the following problem: given a
graph G, decide whether by deleting at most k vertices we can make G König, i.e.,
a graph in which the minimum size of a vertex cover equals the maximum number
of edges in a matching. They showed how to reduce the last problem to VC-
AMM. It is noted by Gottlob and Szeider [24] that fixed-parameter tractability
of VC-AMM implies the fixed-parameter tractability of the following problem.
Given a CNF formula F (not necessarily 2-CNF), decide whether there exists a
subset of at most k variables of F so that after removing all occurrences of these
variables from the clauses of F , the resulting CNF formula is Renamable Horn,
i.e., it can be transformed by renaming of the variables into a CNF formula with
at most one positive literal in each clause.

2-SAT-B(m) has also been used in order to obtain the best known bound
on the order of a kernel for Vertex Cover (given a graph G and an integer
k, decide whether G has a vertex cover with at most k vertices). The fact that
Vertex Cover has a kernel with at most 2k vertices was known for a long
time, see Chen, Kanj and Jia [9]. This was improved to 2k − 1 by Chleb́ık
and Cleb́ıková [10] and further to 2k − c for any constant c by Soleimanfallah
and Yeo [54]. Lampis [40] used the same approach as in [54], but instead of
reducing an instance of Vertex Cover to a large number of 2-SAT instances,
he reduced Vertex Cover to 2-SAT-B(m) via VC-AMM. As a result, Lampis
[40] obtained a kernel of order at most 2k − c log k for any constant c. We will
now briefly describe how this kernel was obtained.

For a graph G let β(G) denotes the minimum size of a vertex cover of G and
μ(G) the maximum size of a matching in G. In their classical work Nemhauser
and Trotter [47] proved the following:

Theorem 6. There is an O(|E|√|V |)-time algorithm which for a given graph
G = (V, E) computes two disjoint subsets of vertices of G, V ′, V ′′, such that
β(G) = β(G[V ′]) + |V ′′| and β(G[V ′]) ≥ |V ′|/2.

268 G. Gutin and A. Yeo

Soleimanfallah and Yeo [54] showed the following additional inequality:

β(G[V ′]) ≥ |V ′| − μ(G). (1)

Let k′ := k − |V ′′|. By Theorem 6, β(G) ≤ k if and only if β(G[V ′]) ≤ k′.
If |V ′| ≤ 2k′ − c log k′ ≤ 2k − c log k then we have a kernel and we are done.
Thus, it suffices to show that if |V ′| > 2k′ − c log k′ we can decide whether
β(G[V ′]) ≤ k′ in polynomial time. We assume that |V ′| > 2k′ − c log k′ and we
may also assume that |V ′| ≤ 2k′ as otherwise β(G[V ′]) > k′ by Theorem 6. By
(1) if μ(G[V ′]) ≤ (|V ′| − c log k′)/2 then β(G[V ′]) ≥ (|V ′| + c log k′)/2. Since
|V ′| > 2k′ − c log k′ this means that β(G[V ′]) > k′.

So, consider the case μ(G[V ′]) > (|V ′| − c log k′)/2. Since |V ′| > 2k′ − c log k′

and μ(G[V ′]) > (|V ′| − c log k′)/2, we have μ(G[V ′]) > k′ − c log k′ and so
k′ < μ(G[V ′]) + c log k′. Thus, to decide whether β(G[V ′]) ≤ k′ it suffices to
compute � such that β(G[V ′]) = μ(G[V ′])+�, where � < c log k′, and to compare
μ(G[V ′])+ � with k′. Using an fpt algorithm for VC-AMM (which is essentially
an fpt algorithm for Max-2-Sat-B(m) as the two problems are equivalent) we
can compute � in fpt time (provided we use an efficient algorithm such as in
[52,51,17]).

5 Boolean Max-r-CSPs above Average

Throughout this section, r is a positive integral constant. Recall that the problem
Max-r-CSP-AA is given by a set V of n variables and a set of m Boolean
formulas; each formula is assigned an integral positive weight and contains at
most r variables from V . Averaging over all truth assignments, we can find the
average value A of the weight of satisfied formulas. We wish to decide whether
there exists a truth assignment that satisfies formulas of total weight at least
A + k, where k is the parameter (k is a nonnegative integer).

Recall that the problem Max-r-Lin2-AA is a special case of Max-r-CSP-
AA when every formula is a linear equation over F2 with at most r variables
and that Max-Lin2-AA is the extension of Max-r-Lin2-AA when we do not
bound the number of variables in an equation. Research of both Max-r-Lin2-
AA and Max-Lin2-AA led to a number of basic notions and results of interest
for both problems, and we devote Subsection 5.1 to these notions and results.
In particular, we will show that A = W/2, where W is the total weight of all
equations, introduce a Gaussian-elimination-type algorithm for both problems,
and a notion and simple lemma of a sum-free subset of a set of vectors in F

n
2 .

This lemma is a key ingredient in proving some important results for Max-r-
Lin2-AA and Max-Lin2-AA.

Max-r-Lin2-AA is studied in Subsection 5.2, where we give proof schemes
of a result by Gutin et al. [30] that Max-r-Lin2-AA has a kernel of quadratic
size and a result of Crowston, Fellows et al. [12] that Max-r-Lin2-AA has a
kernel with at most (2k − 1)r variables. The latest result improves that of Kim
and Williams [39] that Max-r-Lin2-AA has a kernel with at most r(r + 1)k
variables.

Constraint Satisfaction Problems Parameterized 269

In Subsection 5.3, we give a proof scheme of a result by Alon et al. [2] that
Max-r-CSP-AA has a a kernel of polynomial size. The main idea of the proof
is to reduce Max-r-CSP-AA to Max-r-Lin2-AA and use the above results
on Max-r-Lin2-AA and Lemma 1. This shows the existence of a polynomial-
size kernel, but does not allow us to obtain a bound on the degree of the
polynomial. Nevertheless, this solves an open question of Mahajan, Raman
and Sikdar [45] not only for Max-r-Sat-AA but also for the more general
problem Max-r-CSP-AA. Recall that the problem Max-r-Sat-AA is a special
case of Max-r-CSP-AA when every formula is a clause with at most r variables.
For Max-r-Sat-AA, the reduction to Max-r-Lin2-AA can be complemented
by a reduction from Max-r-Lin2-AA back to Max-r-Sat-AA, which yields a
kernel of quadratic size.

5.1 Basic Results for Max-Lin2-AA and Max-r-Lin2-AA

Recall that in the problems MaxLin2-AA and Max-r-Lin2-AA, we are given
a system S consisting of m linear equations in n variables over F2 in which
each equation is assigned a positive integral weight. In Max-r-Lin2-AA, we
have an extra constraint that every equation has at most r variables. Let us
write the system S as

∑
i∈I zi = bI , I ∈ F , and let wI denote the weight of an

equation
∑

i∈I zi = bI . Clearly, m = |F|. Let W =
∑

I∈F wI and let sat(S) be
the maximum total weight of equations that can be satisfied simultaneously.

For each i ∈ [n], set zi = 1 with probability 1/2 independently of the rest
of the variables. Then each equation is satisfied with probability 1/2 and the
expected weight of satisfied equations is W/2 (as our probability distribution is
uniform, W/2 is also the average weight of satisfied equations). Hence W/2 is a
lower bound; to see its tightness consider a system of pairs of equations of the
form

∑
i∈I zi = 0,

∑
i∈I zi = 1 of weight 1. The aim in both Max-Lin2-AA and

Max-r-Lin2-AA is to decide whether for the given system S, sat(S) ≥W/2+k,
where k is the parameter. It is well-known that, in polynomial time, we can find
an assignment to the variables that satisfies equations of total weight at least
W/2, but, for any ε > 0 it is NP-hard to decide whether there is an assignment
satisfying equations of total weight at least W (1 + ε)/2 [33].

Henceforth, it will often be convenient for us to consider linear equations
in their multiplicative form, i.e., instead of an equation

∑
i∈I zi = bI with

zi ∈ {0, 1}, we will consider the equation
∏

i∈I xi = (−1)bI with xi ∈ {−1, 1}.
Clearly, an assignment z0 = (z0

1 , . . . , z0
n) satisfies

∑
i∈I zi = bI if and only if the

assignment x0 = (x0
1, . . . , x

0
n) satisfies

∏
i∈I xi = (−1)bI , where x0

i = (−1)z0
i for

each i ∈ [n].
Let ε(x) =

∑
I∈F wI(−1)bI

∏
i∈I xi (each xi ∈ {−1, 1}) and note that ε(x0)

is the difference between the total weight of satisfied and falsified equations
when xi = x0

i for each i ∈ [n]. Crowston et al. [14] call ε(x) the excess and the
maximum possible value of ε(x) the maximum excess.

Remark 1. Observe that the answer to Max-Lin2-AA and Max-r-Lin2-AA is
Yes if and only if the maximum excess is at least 2k.

270 G. Gutin and A. Yeo

Let A be the matrix over F2 corresponding to the set of equations in S, such
that aji = 1 if i ∈ Ij and 0, otherwise.

Consider two reduction rules for Max-Lin2-AA introduced by Gutin et al.
[30]. Rule 1 was studied before in [34].

Reduction Rule 1. If we have, for a subset I of [n], an equation
∏

i∈I xi = b′I
with weight w′

I , and an equation
∏

i∈I xi = b′′I with weight w′′
I , then we replace

this pair by one of these equations with weight w′
I + w′′

I if b′I = b′′I and, other-
wise, by the equation whose weight is bigger, modifying its new weight to be the
difference of the two old ones. If the resulting weight is 0, we delete the equation
from the system.

Reduction Rule 2. Let t = rankA and suppose columns ai1 , . . . , ait of A are
linearly independent. Then delete all variables not in {xi1 , . . . , xit} from the
equations of S.

Lemma 8. [30] Let S′ be obtained from S by Rule 1 or 2. Then the maximum
excess of S′ is equal to the maximum excess of S. Moreover, S′ can be obtained
from S in time polynomial in n and m.

If we cannot change a weighted system S using Rules 1 and 2, we call it irre-
ducible.

Let S be an irreducible system of Max-Lin2-AA. Consider the following
algorithm introduced in [14]. We assume that, in the beginning, no equation or
variable in S is marked.

Algorithm H
While the system S is nonempty do the following:
1. Choose an equation

∏
i∈I xi = b and mark a variable xl such that l ∈ I.

2. Mark this equation and delete it from the system.
3. Replace every equation

∏
i∈I′ xi = b′ in the system containing xl by∏

i∈IΔI′ xi = bb′, where IΔI ′ is the symmetric difference of I and I ′ (the
weight of the equation is unchanged).
4. Apply Reduction Rule 1 to the system.

The maximum H-excess of S is the maximum possible total weight of equations
marked by H for S taken over all possible choices in Step 1 of H. The following
lemma indicates the potential power of H.

Lemma 9. [14] Let S be an irreducible system. Then the maximum excess of S
equals its maximum H-excess.

This lemma gives no indication on how to choose equations in Step 1 of Algorithm
H. As the problem Max-Lin2-AA is NP-hard, we cannot hope to obtain an
polynomial-time procedure for optimal choice of equations in Step 1 and, thus,
have to settle for a good heuristic. For the heuristic we need the following notion

Constraint Satisfaction Problems Parameterized 271

first used in [14]. Let K and M be sets of vectors in Fn
2 such that K ⊆ M . We

say K is M -sum-free if no sum of two or more distinct vectors in K is equal
to a vector in M . Observe that K is M -sum-free if and only if K is linearly
independent and no sum of vectors in K is equal to a vector in M\K.

The following lemma was proved implicitly in [14] and, thus, we provide a
short proof of this result.

Lemma 10. Let S be an irreducible system of Max-Lin2-AA and let A be the
matrix corresponding to S. Let M be the set of rows of A (viewed as vectors
in Fn

2) and let K be an M -sum-free set of k vectors. Let wmin be the minimum
weight of an equation in S. Then, in time in (nm)O(1), we can find an assignment
to the variables of S that achieves excess of at least wmin · k.

Proof. Let {ej1 , . . . , ejk
} be the set of equations corresponding to the vectors in

K. Run Algorithm H, choosing at Step 1 an equation of S from {ej1 , . . . , ejk
}

each time, and let S′ be the resulting system. Algorithm H will run for k itera-
tions of the while loop as no equation from {ej1 , . . . , ejk

} will be deleted before
it has been marked.

Indeed, suppose that this is not true. Then for some ejl
and some other

equation e in S, after applying Algorithm H for at most l−1 iterations ejl
and e

contain the same variables. Thus, there are vectors vj ∈ K and v ∈M and a pair
of nonintersecting subsets K ′ and K ′′ of K \ {v, vj} such that vj +

∑
u∈K′ u =

v +
∑

u∈K′′ u. Thus, v = vj +
∑

u∈K′∪K′′ u, a contradiction to the definition of
K. ��

5.2 Max-r-Lin2-AA

The following result was proved by Gutin et al. [30].

Theorem 7. The problem Max-r-Lin2-AA admits a kernel with at most O(k2)
variables and equations.

Proof. Let the system S be irreducible. Consider the excess

ε(x) =
∑
I∈F

wI(−1)bI

∏
i∈I

xi. (2)

Let us assign value −1 or 1 to each xi with probability 1/2 independently of the
other variables. Then X = ε(x) becomes a random variable. By Lemma 6, we
have E(X2) =

∑
I∈F w2

I . Therefore, by Lemmas 3 and 4,

P[X ≥ √m/(2 · 3r)] ≥ P

⎡⎣ X ≥
√∑

I∈F
w2

I/(2 · 3r)

⎤⎦ > 0.

Hence by Remark 1, if
√

m/(2 · 3r) ≥ 2k, then the answer to Max-r-Lin2-AA
is Yes. Otherwise, m = O(k2) and, by Rule 2, we have n ≤ m = O(k2). ��

272 G. Gutin and A. Yeo

The bound on the number of variables can be improved and it was done by
Crowston et al. [14] and Kim and Williams [39]. The best known improvement
is by Crowston, Fellows et al. [12]:

Theorem 8. The problem Max-r-Lin2-AA admits a kernel with at most (2k−
1)r variables.

This theorem can be easily proved using Formula (2), Lemma 10 and the follow-
ing result by Crowston, Fellows et al. [12].

Lemma 11. Let M be a set of vectors in Fn
2 such that M contains a basis of

Fn
2 . Suppose that each vector of M contains at most r non-zero coordinates. If

k ≥ 1 is an integer and n ≥ r(k − 1) + 1, then in time |M |O(1), we can find a
subset K of M of k vectors such that K is M -sum-free.

Both Theorem 8 and a slightly weaker analogous result of [39] imply the
following:

Corollary 1. There is an algorithm of runtime 2O(k) +mO(1) for Max-r-Lin2-
AA.

Kim and Williams [39] proved that the last result is best possible, in a sense, if
the Exponential Time Hypothesis holds.

Theorem 9. [39] If Max-3-Lin2-AA can be solved in O(2εk2εm) time for every
ε > 0, then 3-SAT can be solved in O(2δn) time for every δ > 0, where n is the
number of variables.

5.3 Max-r-CSPs AA

Consider first a detailed formulation of Max-r-CSP-AA. Let V = {v1, . . . , vn}
be a set of variables, each taking values −1 (True) and 1 (False). We are
given a set Φ of Boolean functions, each involving at most r variables, and a
collection F of m Boolean functions, each f ∈ F being a member of Φ, each
with a positive integral weight and each acting on some subset of V . We are to
decide whether there is a truth assignment to the n variables such that the total
weight of satisfied functions is at least A+k, where A is the average weight (over
all truth assignments) of satisfied functions and k is the parameter.

Note that A is a tight lower bound for the problem, whenever the family
Φ is closed under replacing each variable by its complement, since if we apply
any Boolean function to all 2r choices of literals whose underlying variables are
any fixed set of r variables, then any truth assignment to the variables satisfies
exactly the same number of these 2r functions.

Note that if Φ consists of clauses, we get Max-r-Sat-AA. In Max-r-Sat-
AA, A =

∑m
j=1 wj(1 − 2−rj), where wj and rj are the weight and the num-

ber of variables of Clause j, respectively. Clearly, A is a tight lower bound for
Max-r-Sat.

Constraint Satisfaction Problems Parameterized 273

Following [3], for a Boolean function f of weight w(f) and on r(f) ≤ r Boolean
variables xi1 , . . . , xir(f) , we introduce a polynomial hf (x), x = (x1, . . . , xn) as
follows. Let Sf ⊂ {−1, 1}r(f) denote the set of all satisfying assignments of f .
Then

hf (x) = w(f)2r−r(f)
∑

(v1,...,vr(f))∈Sf

[
r(f)∏
j=1

(1 + xij vj)− 1].

Let h(x) =
∑

f∈F hf(x). It is easy to see (cf. [2]) that the value of h(x) at some
x0 is precisely 2r(U − A), where U is the total weight of the functions satisfied
by the truth assignment x0. Thus, the answer to Max-r-CSP-AA is Yes if and
only if there is a truth assignment x0 such that h(x0) ≥ k2r.

Algebraic simplification of h(x) will lead us the following (Fourier expansion
of h(x), cf. [49]):

h(x) =
∑
S∈F

cS

∏
i∈S

xi, (3)

where F = {∅ �= S ⊆ [n] : cS �= 0, |S| ≤ r}. Thus, |F| ≤ nr. The sum∑
S∈F cS

∏
i∈S xi can be viewed as the excess of an instance of Max-r-Lin2-AA

and, thus, we can reduce Max-r-CSP-AA into Max-r-Lin2-AA in polynomial
time (since r is fixed, the algebraic simplification can be done in polynomial
time and it does not matter whether the parameter of Max-r-Lin2-AA is k or
k′ = k2r). By Theorem 18, Max-r-Lin2-AA has a kernel with O(k2) variables
and equations. This kernel is a bikernel from Max-r-CSP-AA to Max-r-Lin2-
AA. Thus, by Lemma 1, we obtain the following theorem of Alon et al. [2].

Theorem 10. Max-r-CSP-AA admits a polynomial-size kernel.

Applying a reduction from Max-r-Lin2-AA to Max-r-Sat-AA in which each
monomial in (3) is replaced by 2r−1 clauses, Alon et al. [2] obtained the following:

Theorem 11. Max-r-Sat-AA admits a kernel with O(k2) clauses and
variables.

Using also Theorem 8, it is easy to improve this theorem with respect to the
number of variables in the kernel. This result was first obtained by Kim and
Williams [39].

Theorem 12. Max-r-Sat-AA admits a kernel with O(k) variables.

6 MaxLin2-AA and MaxSat-AA

Recall that MaxLin2-AA is the same problem as Max-r-Lin2-AA, but the
number of variables in an equation is not bounded. Thus, MaxLin2-AA is a
generalization of Max-r-Lin2-AA. In this section we present a scheme of a
recent proof by Crowston, et al. [12] that MaxLin2-AA is fpt and has a kernel
with polynomial number of variables. This result finally solved an open question

274 G. Gutin and A. Yeo

of Mahajan, Raman and Sikdar [45]. Still, we do not know whether MaxLin2-
AA has a kernel of polynomial size and we are able to give only partial results
on the topic.

Theorem 13. [12] The problem MaxLin2-AA has a kernel with at most
O(k2 log k) variables.

The proof of this theorem in [12] which we give later is based on Theorems 14
and 15.

Theorem 14. [14] Let S be an irreducible system of MaxLin2-AA and let
k ≥ 2. If k ≤ m ≤ 2n/(k−1) − 2, then the maximum excess of S is at least k.
Moreover, we can find an assignment with excess of at least k in time mO(1).

This theorem can easily be proved using Lemma 10 and the following lemma.

Lemma 12. [14] Let M be a set in F
n
2 such that M contains a basis of Fn

2 , the
zero vector is in M and |M | < 2n. If k is a positive integer and k + 1 ≤ |M | ≤
2n/k then, in time |M |O(1), we can find an M -sum-free subset K of M with at
least k + 1 vectors.

Theorem 15. [12] There exists an n2k(nm)O(1)-time algorithm for MaxLin2-
AA that returns an assignment of excess of at least 2k if one exists, and returns
No otherwise.

The proof of this theorem in [12] is based on constructing a special depth-
bounded search tree.

Now we will present the proof of Theorem 14 from [12].
Proof of Theorem 14: Let L be an instance of MaxLin2-AA and let S be
the system of L with m equations and n variables. We may assume that S is
irreducible. Let the parameter k be an arbitrary positive integer.

If m < 2k then n < 2k = O(k2 log k). If 2k ≤ m ≤ 2n/(2k−1) − 2 then, by The-
orem 14 and Remark 1, the answer to L is Yes and the corresponding assignment
can be found in polynomial time. If m ≥ n2k−1 then, by Theorem 15, we can solve
L in polynomial time.

Finally we consider the case 2n/(2k−1) − 2 ≤ m ≤ n2k − 2. Hence, n2k ≥
2n/(2k−1). Therefore, 4k2 ≥ 2k + n/ logn ≥ √n and n ≤ (2k)4. Hence, n ≤
4k2 log n ≤ 4k2 log(16k4) = O(k2 log k).

Since S is irreducible, m < 2n and thus we have obtained the desired kernel.
��

Now let us consider some cases where we can prove that MaxLin2-AA has a
polynomial-size kernel. Consider first the case when each equation in S has odd
number of variables. Then we have the following theorem proved by
Gutin et al. [30].

Theorem 16. The special case of MaxLin2-AA when each equation in S has
odd number of variables, admits a kernel with at most 4k2 variables and
equations.

Constraint Satisfaction Problems Parameterized 275

Proof. Let the system S be irreducible by Rule 1. Consider the excess ε(x) =∑
I∈F wI(−1)bI

∏
i∈I xi. Let us assign value −1 or 1 to each xi with probability

1/2 independently of the other variables. Then ε(x) becomes a random variable.
Since ε(−x) = −ε(x), ε(x) is a symmetric random variable. Let X = ε(x). By
Lemma 6, we have E(X2) =

∑
i∈I w2

I . Therefore, by Lemma 2, P(X ≥ √m) ≥
P(X ≥

√∑m
j=1 w2

j) > 0. Hence, if
√

m ≥ 2k, the answer to MaxLin2-AA is

Yes. Otherwise, m < 4k2 and, after applying Rule 2, we have n ≤ m ≤ 4k2. ��

In fact, Gutin et al. [30] proved the following more general result.

Theorem 17. The following special case of MaxLin2-AA admits a kernel with
at most 4k2 variables and equations: there exists a subset U of variables such
that each equation in Ax = b has odd number of variables from U .

Let us turn to results on MaxLin2-AA that do not require any parity conditions.
One such result is Theorem 7. Gutin et al. [30] also proved the following ‘dual’
theorem.

Theorem 18. Let ρ ≥ 1 be a fixed integer. Then MaxLin2-AA restricted to
instances where no variable appears in more than ρ equations, admits a kernel
with O(k2) variables and equations.

The proof is similar to that of Theorem 7, but Lemma 5 (in fact, its weaker
version obtained in [30]) is used instead of Lemma 4.

Recall that MaxSat-AA is the same problem as Max-r-Sat-AA, but the
number of variables in a clause is not bounded. Crowston et al. [15] proved that
MaxSat-AA is para-NP-complete and, thus, MaxSat-AA is not fpt unless
P=NP. This is in sharp contrast to MaxLin2-AA. This result is a corollary of
the following:

Theorem 19. [15] Max-r(n)-Sat-AA is para-NP-complete for r(n) = �log n�.

The Exponential Time Hypothesis (ETH) claims that 3-SAT cannot be solved
in time 2o(n), where n is the number of variables (see, e.g., [22,48]). Using ETH,
we can improve Theorem 19.

Theorem 20. [15] Assuming ETH, Max-r(n)-Sat-AA is not fpt for any
r(n) ≥ log log n+φ(n), where φ(n) is any unbounded strictly increasing function
of n.

The following theorem shows that Theorem 20 provides a bound on r(n) which
is not far from optimal.

Theorem 21. [15] Max-r(n)-Sat-AA is fpt for r(n) ≤ log log n−log log log n−
φ(n), for any unbounded strictly increasing function φ(n).

276 G. Gutin and A. Yeo

7 Ordering CSPs

In this section we will discuss recent results in the area of Ordering Constraint
Satisfaction Problems (Ordering CSPs) parameterized above average. Ordering
CSPs include several well-known problems such as Betweenness, Circular
Ordering and Acyclic Subdigraph (which is equivalent to 2-Linear Or-
dering). These three problems have applications in circuit design and compu-
tational biology [11,50], in qualitative spatial reasoning [35], and in economics
[53], respectively.

Let us define Ordering CSPs of arity 3. The reader can easily generalize it to
any arity r ≥ 2 and we will do it below for Linear Ordering of arity r. Let V
be a set of n variables and let

Π ⊆ S3 = {(123), (132), (213), (231), (312), (321)}
be arbitrary. A constraint set over V is a multiset C of constraints, which are
permutations of three distinct elements of V . A bijection α : V → [n] is called
an ordering of V. For an ordering α : V → [n], a constraint (v1, v2, v3) ∈ C is
Π-satisfied by α if there is a permutation π ∈ Π such that α(vπ(1)) < α(vπ(2)) <
α(vπ(3)). Thus, given Π the problem Π-CSP, is the problem of deciding if there
exists an ordering of V that Π-satisfies all the constraints. Every such problem
is called an Ordering CSP of arity 3. We will consider the maximization version
of these problems, denoted by Max-Π-CSP, parameterized above the average
number of constraints satisfied by a random ordering of V (which can be shown
to be a tight bound).

Guttmann and Maucher [32] showed that there are in fact only 13 distinct
Π-CSP’s of arity 3 up to symmetry, of which 11 are nontrivial. They are listed in
Table 1 together with their complexity. Note that if Π = {(123), (321)} then we
obtain the Betweenness problem and if Π = {(123)} then we obtain 3-Linear
Ordering.

Gutin et al. [27] proved that all 11 nontrivial Max-Π-CSP problems are
NP-hard (even though four of the Π-CSP are polynomial).

Now observe that given a variable set V and a constraint multiset C over V ,
for a random ordering α of V , the probability of a constraint in C being Π-
satisfied by α equals |Π|

6 . Hence, the expected number of satisfied constraints
from C is |Π|

6 |C|, and thus there is an ordering α of V satisfying at least |Π|
6 |C|

constraints (and this bound is tight). A derandomization argument leads to |Πi|
6 -

approximation algorithms for the problems Max-Πi-CSP [8]. No better constant
factor approximation is possible assuming the Unique Games Conjecture [8].

We will study the parameterization of Max-Πi-CSP above tight lower bound:

Π-Above Average (Π-AA)
Input: A finite set V of variables, a multiset C of ordered triples of distinct

variables from V and an integer κ ≥ 0.
Parameter: κ.
Question: Is there an ordering α of V such that at least |Π|

6 |C|+ κ constraints
of C are Π-satisfied by α?

Constraint Satisfaction Problems Parameterized 277

Table 1. Ordering CSPs of arity 3 (after symmetry considerations)

Π ⊆ S3 Name Complexity

Π0 = {(123)} Linear Ordering-3 polynomial

Π1 = {(123), (132)} polynomial

Π2 = {(123), (213), (231)} polynomial

Π3 = {(132), (231), (312), (321)} polynomial

Π4 = {(123), (231)} NP-comp.

Π5 = {(123), (321)} Betweenness NP-comp.

Π6 = {(123), (132), (231)} NP-comp.

Π7 = {(123), (231), (312)} Circular Ordering NP-comp.

Π8 = S3 \ {(123), (231)} NP-comp.

Π9 = S3 \ {(123), (321)} Non-Betweenness NP-comp.

Π10 = S3 \ {(123)} NP-comp.

In [27] it is shown that all 11 nontrivial Π-CSP-AA problems admit ker-
nels with O(κ2) variables. This is shown by first reducing them to 3-Linear
Ordering-AA (or 2-Linear Ordering-AA), and then finding a kernel for
this problem, which is transformed back to the original problem. The first trans-
formation is easy due to the following:

Proposition 1. [27] Let Π be a subset of S3 such that Π /∈ {∅,S3}. There
is a polynomial time transformation f from Π-AA to 3-Linear Ordering-
AA such that an instance (V, C, k) of Π-AA is a Yes-instance if and only if
(V, C0, k) = f(V, C, k) is a Yes-instance of 3-Linear Ordering-AA.

Proof. From an instance (V, C, k) of Π-AA, construct an instance (V, C0, k) of
3-Linear Ordering-AA as follows. For each triple (v1, v2, v3) ∈ C, add |Π |
triples (vπ(1), vπ(2), vπ(3)), π ∈ Π , to C0.

Observe that a triple (v1, v2, v3) ∈ C is Π-satisfied if and only if exactly one of
the triples (vπ(1), vπ(2), vπ(3)), π ∈ Π , is satisfied by 3-Linear Ordering. Thus,
|Π|
6 |C|+ k constraints from C are Π-satisfied if and only if the same number of

constraints from C0 are satisfied by 3-Linear Ordering. It remains to observe
that |Π|

6 |C|+ k = 1
6 |C0|+ k as |C0| = |Π | · |C|. ��

Recall that the maximization version of r-Linear Ordering (r ≥ 2) can be
defined as follows. An instance of such a problem consists of a set of variables
V and a multiset of constraints, which are ordered r-tuples of distinct variables
of V (note that the same set of r variables may appear in several different
constraints). The objective is to find an ordering α of V that maximizes the
number of constraints whose order in α follows that of the constraint (we say
that these constraints are satisfied). It is well-known that 2-Linear Ordering
is NP-hard (it follows immediately from the fact proved by Karp [37] that the
feedback arc set problem is NP-hard). It is easy to extend this hardness result to

278 G. Gutin and A. Yeo

all r-Linear Ordering problems (for each fixed r ≥ 2). Note that in r-Linear
Ordering Above Average (r-Linear Ordering-AA), given a multiset C
of constraints over V we are to decide whether there is an ordering of V that
satisfies at least |C|/r! + κ constraints.

(2,3)-Linear Ordering is a mixture of 2-Linear Ordering and 3-Linear
Ordering, where constraints can be of both arity 2 and 3.

We proceed by first considering 2-Linear Ordering (Subsection 7.1), Be-
tweenness (Subsection 7.2), and 3-Linear Ordering (Subsection 7.3) sepa-
rately and proving the existence of a kernel with a quadratic number of variables
and constraints for their parameterizations above average. We will conclude the
section by briefly overviewing the result of Kim and Williams [39] that (2,3)-
Linear Ordering has a kernel with a linear number of variables (Subsection
7.4). By considering (2,3)-Linear Ordering rather than just 3-Linear Or-
dering separately, Kim and Williams managed to obtain a finite set of reduction
rules which appear to be impossible to obtain for 3-Linear Ordering only (see
Subsection 7.3).

7.1 2-Linear Ordering

Let D = (V, A) be a digraph on n vertices with no loops or parallel arcs in which
every arc ij has a positive integral weight wij . Consider an ordering α : V → [n]
and the subdigraph Dα = (V, {ij ∈ A : α(i) < α(j)}) of D. Note that Dα is
acyclic. The problem of finding a subdigraph Dα of D of maximum weight is
equivalent to 2-Linear Ordering (where the arcs correspond to constraints
and weights correspond to the number of occurrences of each constraint).

It is easy to see that, in the language of digraphs, 2-Linear Ordering-AA
can be formulated as follows.

2-Linear Ordering Above Average (2-Linear Ordering-AA)
Instance: A digraph D = (V, A), each arc ij has an integral positive
weight wij , and a positive integer κ.
Parameter: The integer κ.
Question: Is there a subdigraph Dα of D of weight at least W/2 + κ,
where W =

∑
ij∈A wij ?

Mahajan, Raman, and Sikdar [45] asked whether 2-Linear Ordering-AA is
fpt for the special case when all arcs are of weight 1. Gutin et al. [30] solved the
problem by obtaining a quadratic kernel for the problem. In fact, the problem
can be solved using the following result of Alon [1]: there exists an ordering α
such that Dα has weight at least (1

2 + 1
16|V |)W. However, the proof in [1] uses a

probabilistic approach for which a derandomization is not known yet and, thus,
we cannot find the appropriate α deterministically. Moreover, the probabilistic
approach in [1] is quite specialized. Thus, we briefly describe a solution from
Gutin et al. [30] based on Strictly-Above-Below-Expectation Method (introduced
in [30]).

Constraint Satisfaction Problems Parameterized 279

Consider the following reduction rule:

Reduction Rule 3. Assume D has a directed 2-cycle iji; if wij = wji delete
the cycle, if wij > wji delete the arc ji and replace wij by wij − wji, and if
wji > wij delete the arc ij and replace wji by wji − wij .

It is easy to check that the answer to 2-Linear Ordering-AA for a digraph D
is Yes if and only if the answer to 2-Linear Ordering-AA is Yes for a digraph
obtained from D using the reduction rule as long as possible. A digraph is called
an oriented graph if it has no directed 2-cycle. Note that applying Rule 3 as long
as possible results in an oriented graph.

Consider a random ordering: α : V → [n] and a random variable X(α) =
1
2

∑
ij∈A xij(α), where xij(α) = wij if α(i) < α(j) and xij(α) = −wij , otherwise.

It is easy to see that X(α) =
∑{wij : ij ∈ A, α(i) < α(j)} − W/2. Thus,

the answer to 2-Linear Ordering-AA is Yes if and only if there is an ordering
α : V → [n] such that X(α) ≥ κ. Since E(xij) = 0, we have E(X) = 0.

Let W (2) =
∑

ij∈A w2
ij . Gutin et al. [30] proved the following:

Lemma 13. If D is an oriented graph, then E(X2) ≥W (2)/12.

Since X(−α) = −X(α), where −α(i) = n + 1− α(i), X is a symmetric random
variable and, thus, we use a proof similar to that of Theorem 16 (but applying
Lemma 13 instead of Lemma 6) to show the following:

Theorem 22. [30] 2-Linear Ordering-AA has a kernel with O(κ2) arcs.

By deleting isolated vertices (if any), we can obtain a kernel with O(κ2) arcs and
vertices. Kim and Williams [39] proved that 2-Linear Ordering has a kernel
with a linear number of variables.

7.2 Betweenness

Let V = {v1, . . . , vn} be a set of variables and let C be a multiset of m betweenness
constraints of the form (vi, {vj, vk}). For an ordering α : V → [n], a constraint
(vi, {vj , vk}) is satisfied if either α(vj) < α(vi) < α(vk) or α(vk) < α(vi) < α(vj).
In the Betweenness problem, we are asked to find an ordering α satisfying the
maximum number of constraints in C. Betweenness is NP-hard as even the
problem of deciding whether all betweenness constraints in C can be satisfied by
an ordering α is NP-complete [50].

Let α : V → [n] be a random ordering and observe that the probabil-
ity of a constraint in C to be satisfied is 1/3. Thus, the expected number of
satisfied constraints is m/3. A triple of betweenness constraints of the form
(v, {u, w}), (u, {v, w}), (w, {v, u}) is called a complete triple. Instances of Be-
tweenness consisting of complete triples demonstrate that m/3 is a tight lower
bound on the maximum number of constraints satisfied by an ordering α. Thus,
the following parameterization is of interest:

280 G. Gutin and A. Yeo

Betweenness Above Average (Betweenness-AA)
Instance: A multiset C of m betweenness constraints over variables V
and an integer κ ≥ 0.
Parameter: The integer κ.
Question: Is there an ordering α : V → [n] that satisfies at least m/3+κ
constraints from C?

In order to simplify instances of Betweenness-AA we introduce the following
reduction rule.

Reduction Rule 4. If C has a complete triple, delete it from C. Delete from V
all variables that appear only in the deleted triple.

Benny Chor’s question (see [48, p. 43]) to determine the parameterized com-
plexity of Betweenness-AA was solved by Gutin et al. [29] who proved that
Betweenness-AA admits a kernel with O(κ2) variables and constraints (in
fact, [29] considers only the case when C is a set, not a multiset, but the proof
for the general case is the same [27]). Below we briefly describe the proof in [29].

Suppose we define a random variable X(α) just as we did for 2-Linear Or-
dering. However such a variable is not symmetric and therefore we would need
to use Lemma 6 on X(α). The problem is that α is a permutation and in Lemma
6 we are looking at polynomials, f = f(x1, x2 . . . , xn), over variables x1, . . . , xn

each with domain {−1, 1}. In order to get around this problem the authors of
[29] considered a different random variable g(Z), which they defined as follows.

Let Z = (z1, z2, . . . , z2n) be a set of 2n variables with domain {−1, 1}. These
2n variables correspond to n variables z∗1 , z∗2 , . . . , z∗n such that z2i−1 and z2i form
the binary representation of z∗i . That is, z∗i is 0, 1, 2 or 3 depending on the value
of (z2i−1, z2i) ∈ {(−1,−1), (−1, 1), (1,−1), (1, 1)}. An ordering: α : V → [n]
complies with Z if for every α(i) < α(j) we have z∗i ≤ z∗j . We now define the
value of g(Z) as the average number of constraints satisfied over all orderings
which comply with Z. Let f(Z) = g(Z)−m/3, and by Lemma 14 we can now use
Lemma 6 on f(Z) as it is a polynomial over variables whose domain is {−1, 1}.
We consider variables zi as independent uniformly distributed random variables
and then f(Z) is also a random variable. In [29] it is shown that the following
holds if Reduction Rule 4 has been exhaustively applied.

Lemma 14. The random variable f(Z) can be expressed as a polynomial of
degree 6. We have E[f(Z)] = 0. Finally, if f(Z) ≥ κ for some Z ∈ {−1, 1}2n

then the corresponding instance of Betweenness-AA is a Yes-instance.

Lemma 15. [27] For an irreducible (by Reduction Rule 4) instance we have
E[f(Z)2] ≥ 11

768m.

Theorem 23. [27] Betweenness-AA has a kernel of size O(κ2).

Proof. Let (V, C) be an instance of Betweenness-AA. We can obtain an irre-
ducible instance (V ′, C′) such that (V, C) is a Yes-instance if and only if (V ′, C′)

Constraint Satisfaction Problems Parameterized 281

is a Yes-instance in polynomial time. Let m′ = |C′| and let f(Z) be the ran-
dom variable defined above. Then f(Z) is expressible as a polynomial of degree
6 by Lemma 14; hence it follows from Lemma 4 that E[f(Z)4] ≤ 236E[f(Z)2]2.
Consequently, f(Z) satisfies the conditions of Lemma 3, from which we conclude

that P

(
f(Z) > 1

4·218

√
11
768m′

)
> 0, by Lemma 15. Therefore, by Lemma 14, if

1
4·218

√
11
768m′ ≥ κ then (V ′, C′) is a Yes-instance for Betweenness-AA. Oth-

erwise, we have m′ = O(κ2). This concludes the proof of the theorem. ��
By deleting variables not appearing in any constraint, we obtain a kernel with
O(κ2) constraints and variables.

7.3 3-Linear Ordering

In this subsection, we will give a short overview of the proof in [27] that 3-Linear
Ordering has a kernel with at most O(κ2) variables and constraints.

Unfortunately, approaches which we used for 2-Linear Ordering-AA and
Betweenness-AA do not work for this problem. In fact, if we wanted to re-
move subsets of constraints where only the average number of constraints can be
satisfied such that after these removals we are guaranteed to have more than the
average number of constraints satisfied, then, in general case, an infinite number
of reduction rules would be needed. The proof of this is quite long and therefore
omitted from this survey, see [27] for more information.

However, we can reduce an instance of 3-Linear Ordering-AA to in-
stances of Betweenness-AA and 2-Linear Ordering-AA as follows. With
an instance (V, C) of 3-Linear Ordering-AA, we associate an instance (V,B)
of Betweenness-AA and two instances (V, A′) and (V, A′′) of 2-Linear
Ordering-AA such that if Cp = (u, v, w) ∈ C, then add Bp = (v, {u, w})
to B, a′

p = (u, v) to A′, and a′′
p = (v, w) to A′′.

Let α be an ordering of V and let dev(V, C, α) denote the number of constraints
satisfied by α minus the average number of satisfied constraints in (V, C), where
(V, C) is an instance of 3-Linear Ordering-AA, Betweenness-AA or 2-
Linear Ordering-AA.

Lemma 16. [27] Let (V, C, κ) be an instance of 3-Linear Ordering-AA and
let α be an ordering of V . Then

dev(V, C, α) =
1
2

[dev(V, A′, α) + dev(V, A′′, α) + dev(V,B, α)] .

Therefore, we want to find an ordering satisfying as many constraints as possible
from both of our new type of instances (note that we need to use the same
ordering for all the problems).

Suppose we have a No-instance of 3-Linear Ordering-AA. As above, we
replace it by three instances of Betweenness-AA and 2-Linear Ordering-
AA. Now we apply the reduction rules for Betweenness-AA and 2-Linear
Ordering-AA introduced above as well as the proof techniques described in

282 G. Gutin and A. Yeo

the previous sections in order to show that the total number of variables and
constraints left in any of our instances is bounded by O(κ2). We then trans-
form these reduced instances back into an instance of 3-Linear Ordering-
AA as follows. If {v, {u, w}} is a Betweenness constraint then we add the
3-Linear Ordering-AA constraints (u, v, w) and (w, v, u) and if (u, v) is an
2-Linear Ordering-AA constraint then we add the 3-Linear Ordering-
AA constraints (u, v, w), (u, w, v) and (w, u, v) (for any w ∈ V). As a result, we
obtain a kernel of 3-Linear Ordering-AA with at most O(κ2) variables and
constraints.

7.4 (2,3)-Linear Ordering-AA

In the previous subsection, we overviewed a result that 3-Linear Ordering-
AA has a kernel with at most O(κ2) variables and constraints. This result has
been partially improved by Kim and Williams [39] who showed that 3-Linear
Ordering-AA has a kernel with at most O(κ) variables. We will now outline
their approach, where they considered (2,3)-Linear Ordering-AA. That is,
we allow constraints to contain 2 or 3 variables. Thus, we can apply the following
reduction rules, where w(e) denotes the weight of constraint e (i.e., the number
of times e appears in the constraint multiset) and if e = (u, v, w) is a constraint
then we denote u by e(1), v by e(2) and w by e(3), and var(e) denotes the
variables in e.

Redundancy Rule: Remove a variable v from V if it does not appear in any
constraint. Remove a constraint e from C if its weight is zero.

Merging Rule: If e1 and e2 are identical, then replace them by a single con-
straint of weight w(e1) + w(e2).

Cancellation Rule: If there are two constraints e1, e2 with |e1| = |e2| = 2 and
e2 = (e1(2), e1(1)), let wmin = min{w(e1), w(e2)} and replace the weights by
w(e1) = w(e1)− wmin and w(e2) = w(e2)− wmin.

Edge Replacement Rule: If e1, e2, e3 are three constraints in C with
var(e1) = var(e2) = var(e3) and such that e2 = (e1(2), e1(1), e1(3)) and
e3 = (e1(1), e1(3), e1(2)), then:
– replace the weight of a constraint by w(ei) = w(ei) − wmin for each

i = 1, 2, 3, where wmin = min{w(e1), w(e2), w(e3)}.
– add the binary ordering constraint (e1(1), e1(3)) of weight wmin.

Cycle Replacement Rule: If e1, e2, e3 are three constraints in C with
var(e1) = var(e2) = var(e3) and such that e2 = (e1(2), e1(3), e1(1)) and
e3 = (e1(3), e1(1), e1(2)), then:
– replace the weight of a constraint by w(ei) = w(ei) − wmin for each

i = 1, 2, 3, where wmin = min{w(e1), w(e2), w(e3)}.
– add the three binary ordering constraints (e1(1), e1(2)), (e1(2), e1(3))

and (e1(3), e1(1)), each of weight wmin.

In [39] it is shown that these reduction rules produce equivalent instances. In
[39] the following theorem is then proved.

Constraint Satisfaction Problems Parameterized 283

Theorem 24. [39] Let I = (V, C, κ) be an irreducible (under the above reduction
rules) instance of (2,3)-Linear Ordering-AA. If I is a No-instance (that is,
less than ρW + κ constraints in I can be simultaneously satisfied, where ρW is
the average weight of clauses satisfied by a random ordering), then the number
of variables in I is O(κ).

In order to prove this theorem some above-mentioned techniques were used. Let
n = |V |. As for Betweenness-AA (see Subsection 7.2), Kim and Williams [39]
introduced a random variable f(y1, . . . , y2n), which is a polynomial of degree 6 with
2n random uniformly distributed and independent variables yi, each taking value
1 or−1. The key property of f(y1, . . . , y2n) is that for every No-instance I we have
f(y1, . . . , y2n) < κ for each (y1, . . . , y2n) ∈ {−1, 1}2n. In Subsection 7.2, a similar
inequality was used to bound the number of constraints in I using a probabilistic
approach. Kim and Williams [39] use a different approach to bound the number
of variables in I: they algebraically simplify f(y1, . . . , y2n) and obtain its Fourier
expansion (see (3)). As in Subsection 5.3, the Fourier expansion can be viewed as
the excess of the corresponding instance of Max-6-Lin2-AA. Thus, to bound the
number of variables in the Fourier expansion, we can use Theorem 8 (or, its weaker
version obtained in [39]) which implies that the number is O(κ).

However, there was a major obstacle that Kim and Williams [39] had to
overcome. In general case, as a result of the algebraic simplification, the number
of variables in the Fourier expansion may be significantly smaller than 2n and,
thus, the bound on the number of variables in the Fourier expansion may not be
used to bound n. To overcome the obstacle, Kim and Williams carefully analyzed
the coefficients in the Fourier expansion and established that every variable of
V is “represented” in the Fourier expansion. As a result, they concluded I can
have only O(κ) variables.

Acknowledgments. Research of Gutin was supported in part by the IST
Programme of the European Community, under the PASCAL 2 Network of
Excellence.

References

1. Alon, N.: Voting paradoxes and digraphs realizations. Advances in Applied
Math. 29, 126–135 (2002)

2. Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a
tight lower bound. Algorithmica 61(3), 638–655 (2011)

3. Alon, N., Gutin, G., Krivelevich, M.: Algorithms with large domination ratio. J.
Algorithms 50, 118–131 (2004)

4. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd
edn. Springer, London (2009)

5. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

6. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and
disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)

7. Bonami, A.: Étude des coefficients de Fourier des fonctions de Lp(G). Ann. Inst.
Fourier 20(2), 335–402 (1970)

284 G. Gutin and A. Yeo

8. Charikar, M., Guruswami, V., Manokaran, R.: Every permutation CSP of arity 3
is approximation resistant. In: Proc. Computational Complexity, pp. 62–73 (2009)

9. Chen, C., Kanj, I., Jia, W.: Vertex Cover: Further observations and further im-
provements. J. Algorithms 41, 280–301 (2001)

10. Chleb́ık, M., Cleb́ıková, J.: Crown reductions for the Minimum Weighted Vertex
Cover problem. Discrete Appl. Math. 156, 292–312 (2008)

11. Chor, B., Sudan, M.: A geometric approach to betweenness. SIAM J. Discrete
Math. 11(4), 511–523 (1998)

12. Crowston, R., Fellows, M., Gutin, G., Jones, M., Rosamond, F., Thomassé, S., Yeo,
A.: Simultaneously satisfying linear equations over F2: MaxLin2 and Max-r-Lin2
parameterized above average. In: Chakraborty, S., Kumar, A. (eds.) FSTTCS 2011.
LIPICS, vol. 13, pp. 229–240 (2011)

13. Crowston, R., Gutin, G., Jones, M.: Note on Max Lin-2 above average. Inform.
Proc. Lett. 110, 451–454 (2010)

14. Crowston, R., Gutin, G., Jones, M., Kim, E.J., Ruzsa, I.Z.: Systems of Linear
Equations over F2 and Problems Parameterized above Average. In: Kaplan, H.
(ed.) SWAT 2010. LNCS, vol. 6139, pp. 164–175. Springer, Heidelberg (2010)

15. Crowston, R., Gutin, G., Jones, M., Raman, V., Saurabh, S.: Parameterized Com-
plexity of MaxSat above Average. In: Fernández-Baca, D. (ed.) LATIN 2012.
LNCS, vol. 7256, pp. 184–194. Springer, Heidelberg (2012)

16. Crowston, R., Gutin, G., Jones, M., Yeo, A.: A New Lower Bound on the Maximum
Number of Satisfied Clauses in Max-SAT and Its Algorithmic Application. In:
Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 84–94. Springer,
Heidelberg (2010); Algorithmica, doi: 10.1007/s00453-011-9550-1

17. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On the
Hardness of Losing Width. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS,
vol. 7112, pp. 159–168. Springer, Heidelberg (2012)

18. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
19. Fernau, H.: Parameterized Algorithmics: A Graph-theoretic Approach. Habilita-

tion thesis, U. Tübingen (2005)
20. Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.:

Kernel(s) for problems with no kernel: On out-trees with many leaves. In: Proc.
STACS 2009, pp. 421–432 (2009)

21. Fleischner, H., Kullmann, O., Szeider, S.: Polynomial-time recognition of mini-
mal unsatisfiable formulas with fixed clause-variable difference. Theoret. Comput.
Sci. 289(1), 503–516 (2002)

22. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
23. Garey, M.R., Johnson, D.R.: Computers and Intractability. W.H. Freeman &

Comp., New York (1979)
24. Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artificial intelligence, con-

straint satisfaction, and database problems. Comput. J. 51(3), 303–325 (2008)
25. Guruswami, V., H̊astad, J., Manokaran, R., Raghavendra, P., Charikar, M.: Beat-

ing the random ordering is hard: Every ordering CSP is approximation resistant.
SIAM J. Comput. 40(3), 878–914 (2011)

26. Guruswami, V., Manokaran, R., Raghavendra, P.: Beating the random ordering is
hard: Inapproximability of maximum acyclic subgraph. In: Proc. FOCS 2008, pp.
573–582 (2008)

27. Gutin, G., van Iersel, L., Mnich, M., Yeo, A.: Every ternary permutation constraint
satisfaction problem parameterized above average has a kernel with a quadratic
number of variables, J. Comput. System Sci. (in press),
doi:10.1016/j.jcss.2011.01.004

Constraint Satisfaction Problems Parameterized 285

28. Gutin, G., Jones, M., Yeo, A.: A New Bound for 3-Satisfiable Maxsat and Its
Algorithmic Application. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011.
LNCS, vol. 6914, pp. 138–147. Springer, Heidelberg (2011)

29. Gutin, G., Kim, E.J., Mnich, M., Yeo, A.: Betweenness parameterized above tight
lower bound. J. Comput. Syst. Sci. 76, 872–878 (2010)

30. Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: A probabilistic approach to problems
parameterized above tight lower bound. J. Comput. Syst. Sci. 77, 422–429 (2011)

31. Gutin, G., Yeo, A.: Hypercontractive inequality for pseudo-Boolean functions of
bounded Fourier width. Discr. Appl. Math. (to appear)

32. Guttmann, W., Maucher, M.: Variations on an ordering theme with constraints.
In: Navarro, G., Bertossi, L., Kohayakawa, Y. (eds.) TCS 2006. IFIP, pp. 77–90.
Springer, Boston (2006)

33. H̊astad, J.: Some optimal inapproximability results. J. ACM 48, 798–859 (2001)

34. H̊astad, J., Venkatesh, S.: On the advantage over a random assignment. Random
Structures & Algorithms 25(2), 117–149 (2004)

35. Isli, A., Cohn, A.G.: A new approach to cyclic ordering of 2D orientations using
ternary relation algebras. Artif. Intelligence 122(1-2), 137–187 (2000)

36. Jukna, S.: Extremal Combinatorics With Applications in Computer Science.
Springer (2001)

37. Karp, R.M.: Reducibility among combinatorial problems. In: Proc. Complexity of
Computer Computations. Plenum Press (1972)

38. Khot, S.: On the power of unique 2-prover 1-round games. In: Proc. STOC 2002,
pp. 767–775 (2002)

39. Kim, E.J., Williams, R.: Improved Parameterized Algorithms for above Average
Constraint Satisfaction. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS,
vol. 7112, pp. 118–131. Springer, Heidelberg (2012)

40. Lampis, M.: A kernel of order 2k − c log k for Vertex Cover. Inf. Process.
Lett. 111(23-24), 1089–1091 (2011)

41. Lieberherr, K.J., Specker, E.: Complexity of partial satisfaction. J. ACM 28(2),
411–421 (1981)

42. Lieberherr, K.J., Specker, E.: Complexity of partial satisfaction, II. Tech. Report
293, Dept. of EECS. Princeton Univ. (1982)

43. Lokshtanov, D.: New Methods in Parameterized Algorithms and Complexity. PhD
thesis, Bergen (2009)

44. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and
MaxCut. J. Algorithms 31(2), 335–354 (1999); Preliminary version in Electr. Col-
loq. Comput. Complex (ECCC), TR-97-033 (1997)

45. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed
values. J. Computer System Sciences 75(2), 137–153 (2009); Mahajan, M., Raman,
V., Sikdar, S.: Parameterizing MAX SNP Problems Above Guaranteed Values.
In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp.
38–49. Springer, Heidelberg (2006)

46. Mishra, S., Raman, V., Saurabh, S., Sikdar, S., Subramanian, C.R.: The com-
plexity of König subgraph problems and above-guarantee Vertex Cover. Algorith-
mica 61(4), 857–881 (2011)

47. Nemhauser, G.L., Trotter, L.E.: Vertex packings: structural properties and algo-
rithms. Math. Programming 8(1), 232–248 (1975)

48. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

286 G. Gutin and A. Yeo

49. O’Donnell, R.: Some topics in analysis of Boolean functions. Technical report,
ECCC Report TR08-055, Paper for an invited talk at STOC 2008 (2008), http://
www.eccc.uni-trier.de/eccc-reports/2008/TR08-055/

50. Opatrný, J.: Total ordering problem. SIAM J. Comput. 8, 111–114 (1979)
51. Raman, V., Ramanujan, M.S., Saurabh, S.: Paths, Flowers and Vertex Cover. In:

Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 382–393.
Springer, Heidelberg (2011)

52. Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed-parameter tractable. J. Comput.
Syst. Sci. 75(8), 435–450 (2009)

53. Reinelt, G.: The linear ordering problem: Algorithms and applications. Heldermann
Verlag (1985)

54. Soleimanfallah, A., Yeo, A.: A kernel of order 2k − c for Vertex Cover. Discrete
Math. 311(10-11), 892–895 (2011)

55. Szeider, S.: Minimal unsatisfiable formulas with bounded clause-variable difference
are fixed-parameter tractable. J. Comput. Syst. Sci. 69(4), 656–674 (2004)

56. Yannakakis, M.: On the approximation of maximum satisfiability. J. Algorithms 17,
475–502 (1994)

http://www.eccc.uni-trier.de/eccc-reports/2008/TR08-055/
http://www.eccc.uni-trier.de/eccc-reports/2008/TR08-055/

Backdoors to Satisfaction�

Serge Gaspers and Stefan Szeider

Institute of Information Systems, Vienna University of Technology,
A-1040 Vienna, Austria

gaspers@kr.tuwien.ac.at, stefan@szeider.net

Dedicated to Mike Fellows on the occasion of his 60th birthday.

Abstract. A backdoor set is a set of variables of a propositional formula
such that fixing the truth values of the variables in the backdoor set
moves the formula into some polynomial-time decidable class. If we know
a small backdoor set we can reduce the question of whether the given
formula is satisfiable to the same question for one or several easy formulas
that belong to the tractable class under consideration. In this survey we
review parameterized complexity results for problems that arise in the
context of backdoor sets, such as the problem of finding a backdoor set
of size at most k, parameterized by k. We also discuss recent results on
backdoor sets for problems that are beyond NP.

1 Introduction

Satisfiability (SAT) is the classical problem of determining whether a
propositional formula in conjunctive normal form (CNF) has a satisfying truth
assignment. The famous Cook-Levin Theorem [22,61], stating that SAT is NP-
complete, placed satisfiability as the cornerstone of complexity theory. Despite
its seemingly specialised nature, satisfiability has proved to be extremely useful
in a wide range of different disciplines, both from the practical as well as from
the theoretical point of view. Satisfiability provides a powerful and general for-
malism for solving various important problems including hardware and software
verification and planning [8,64,99,56]. Satisfiability is the core of many reasoning
problems in automated deduction; for instance, the package dependency man-
agement for the OpenSuSE Linux distribution and the autonomous controller
for NASA’s Deep Space One spacecraft are both based on satisfiability [6,100].
Over the last two decades, SAT-solvers have become amazingly successful in
solving formulas with hundreds of thousands of variables that encode problems
arising from various application areas, see, e.g., [50]. Theoretical performance
guarantees, however, are far from explaining this empirically observed efficiency.
In fact, there is an enormous gap between theory and practice. To illustrate it
with numbers, take the exponential factor 1.308n of the currently fastest known

� Research supported by the European Research Council (ERC), project COMPLEX
REASON 239962.

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 287–317, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

288 S. Gaspers and S. Szeider

exact 3SAT algorithm [53]. Already for n = 250 variables this number exceeds
by far the expected lifetime of the sun in nanoseconds.

Hidden Structure and Parameterized Complexity The discrepancy between the-
ory and practice can be explained by the presence of a certain “hidden structure”
in real-world problem instances. It is a widely accepted view that the structure
of real-world problem instances makes the problems easy for heuristic solvers.
However, classic worst-case analysis is not particularly well-suited to take this
hidden structure into account. The classical model is one-dimensional, where
only one aspect of the input (its size in bits, or the number of variables for a
SAT formula) is taken into account, and it does not differentiate whether or not
the instance is otherwise well-structured.

Parameterized Complexity, introduced by Mike Fellows together with Rod
Downey offers a two-dimensional theoretical setting. The first dimension is the
input size as usual, the second dimension (the parameter) allows to take struc-
tural properties of the problem instance into account. The result is a more fine-
grained complexity analysis that has the potential of being more relevant to
real-world computation while still admitting a rigorous theoretical treatment
and firm algorithmic performance guarantees.

There are various ways of defining the “hidden structure” in a problem in-
stance, yielding various ways to parameterize a problem.

Islands of Tractability. One way of coping with the high complexity of impor-
tant problems within the framework of classical complexity is the identification of
tractable sub-problems, i.e., of classes of instances for which the problem can be
solved in polynomial time. Each class represents an “island of tractability” within
an ocean of intractable problems. For the satisfiability problem, researchers
have identified dozens of such islands – one could speak of an archipelago of
tractability.

Usually it is quite unlikely that a real-world instance belongs to a known
island of tractability, but it may be close to one. A very natural and humble
way of parameterizing a problem is hence to take the distance to an island of
tractability as a parameter. Guo et al. [52] called this approach “distance to
triviality”. For SAT, the distance is most naturally measured in terms of the
smallest number variables that need to be instantiated or deleted such that
the instance gets moved to an island of tractability. Such sets of variables are
called backdoor sets because once we know a small backdoor set we can solve the
instance efficiently. Thus backdoor sets provide a “clever reasoning shortcut”
through the search space and can be used as an indicator for the presence of
a hidden structure in a problem instance. Backdoor sets where independently
introduced by Crama et al. [27] and by Williams et al. [101], the latter authors
coined the term “backdoor”.

The backdoor set approach to a problem consists of two steps: first a small
backdoor set is computed (backdoor detection), second the backdoor set is used to
solve the problem at hand (backdoor evaluation). It is hence natural to consider

Backdoors to Satisfaction 289

an upper bound on the size of a smallest backdoor set as a parameter for both
backdoor detection and backdoor evaluation.

2 Satisfiability

The propositional satisfiability problem (SAT) was the first problem shown to be
NP-hard [22,61]. Despite its hardness, SAT solvers are increasingly leaving their
mark as a general-purpose tool in areas as diverse as software and hardware
verification, automatic test pattern generation, planning, scheduling, and even
challenging problems from algebra [50].

A literal is a propositional variable x or a negated variable ¬x. We also use
the notation x = x1 and ¬x = x0. A clause is a finite set literals that does not
contain a complementary pair x and ¬x. A propositional formula in conjunctive
normal form, or CNF formula for short, is a set of clauses. An rCNF formula
is a CNF formula where each clause contains at most r literals. For a clause C
we write var(C) = { x : x ∈ C or ¬x ∈ C }, and for a CNF formula F we write
var(F) =

⋃
C∈F var(C). An r-CNF formula is a CNF formula where each clause

contains at most r literals. For a set S of literals we write S = { x1−ε : xε ∈ S }.
We call a clause C positive if C = var(C) and negative if C = var(C).

For a set X of propositional variables we denote by 2X the set of all mappings
τ : X → {0, 1}, the truth assignments on X . For τ ∈ 2X we let true(τ) =
{ xτ(x) : x ∈ X } and false(τ) = { x1−τ(x) : x ∈ X } be the sets of literals set
by τ to 1 and 0, respectively. Given a CNF formula F and a truth assignment
τ ∈ 2X we define F [τ] = {C \ false(τ) : C ∈ F, C ∩ true(τ) = ∅ }. If τ ∈ 2{x}

and ε = τ(x), we simple write F [x = ε] instead of F [τ].
A CNF formula F is satisfiable if there is some τ ∈ 2var(F) with F [τ] = ∅,

otherwise F is unsatisfiable. Two CNF formulas are equisatisfiable if either both
are satisfiable, or both are unsatisfiable. SAT is the NP-complete problem of
deciding whether a given CNF formula is satisfiable [22,61].

Islands of Tractability and Backdoors. Backdoors are defined with respect to
a fixed class C of CNF formulas, the base class (or target class, or more more
figuratively, island of tractability). From a base class we require the following
properties: (i) C can be recognized in polynomial time, (ii) the satisfiability of
formulas in C can be decided in polynomial time, and (iii) C is closed under
isomorphisms (i.e., if two formulas differ only in the names of their variables,
then either both or none belong to C).

Several base classes considered in this survey also satisfy additional properties.
Consider a class C of CNF formulas. C is clause-induced if it is closed under
subsets, i.e., if F ∈ C implies F ′ ∈ C for each F ′ ⊆ F . C is clause-defined if for
each CNF formula F we have F ∈ C if and only if {C} ∈ C for all clauses C ∈ F .
C is closed under variable-disjoint union if for any two CNF formulas F1, F2 ∈ C
with var(F1) ∩ var(F2) = ∅, also F1 ∪ F2 ∈ C. C is self-reducible if for any F ∈ C
and any partial truth assignment τ , also F [τ] ∈ C.

A strong C-backdoor set of a CNF formula F is a set B of variables such
that F [τ] ∈ C for each τ ∈ 2B. A weak C-backdoor set of F is a set B of

290 S. Gaspers and S. Szeider

variables such that F [τ] is satisfiable and F [τ] ∈ C holds for some τ ∈ 2B. A
deletion C-backdoor set of F is a set B of variables such that F −B ∈ C, where
F −B =

{
C \
{
x0, x1 : x ∈ B

}
: C ∈ F

}
.

If we know a strong C-backdoor set of F of size k, we can reduce the satisfiability
of F to the satisfiability of 2k formulas in C. Thus SAT becomes fixed-parameter
tractable in k. If we know a weak C-backdoor set of F , then F is clearly satisfiable,
and we can verify it by trying for each τ ∈ 2X whether F [τ] is in C and satisfiable.
If C is clause-induced, any deletion C-backdoor set of F is a strong C-backdoor set
of F . For several base classes, deletion backdoor sets are of interest because they
are easier to detect than strong backdoor sets. The challenging problem is to find
a strong, weak, or deletion C-backdoor set of size at most k if it exists. For each
class C of CNF formulas we consider the following decision problems.

Strong C-Backdoor Set Detection

Instance: A CNF formula F and an integer k ≥ 0.
Parameter : The integer k.
Question: Does F have a strong C-backdoor set of size at most k?

TheproblemsWeakC-BackdoorSetDetectionandDeletionC-Backdoor

Set Detection are defined similarly.
In fact, for the backdoor approach we actually need the functional variants

of these problems, where if a backdoor set of size at most k exists, such a set
is computed. However, for all cases considered in this survey, where backdoor
detection is fixed-parameter tractable, the respective algorithms also compute a
backdoor set.

We also consider these problems for formulas with bounded clause lengths. All
such results are stated for 3CNF formulas, but hold, more generally, for rCNF
formulas, where r ≥ 3 is a fixed integer.

3 Base Classes

In this section we define the base classes for the SAT problem that we will
consider in this survey.

3.1 Schaefer’s Base Classes

In his seminal paper, Schaefer [93] classified the complexity of generalized sat-
isfiability problems in terms of the relations that are allowed to appear in con-
straints. For CNF satisfiability, this yields the following five base classes1.

1. Horn formulas: CNF formulas where each clause contains at most one posi-
tive literal.

2. Anti-Horn formulas: CNF formulas where each clause contains at most one
negative literal.

1 Affine Boolean formulas considered by Schaefer do not correspond naturally to a
class of CNF formulas, hence we do not consider them here.

Backdoors to Satisfaction 291

3. 2CNF formulas: CNF formulas where each clause contains at most two lit-
erals.

4. 0-valid formulas: CNF formulas where each clause contains at least one neg-
ative literal.

5. 1-valid formulas: CNF formulas where each clause contains at least one pos-
itive literal.

We denote the respective classes of CNF formulas by Horn,
Horn

−, 2CNF, 0-Val, and 1-Val, and we write Schaefer ={
Horn,Horn

−, 2CNF, 0-Val, 1-Val
}
. We note that all these classes are

clause-defined, and by Schaefer’s Theorem, these are the only maximal clause-
defined base classes. We also note that 0-Val and 1-Val are the only two base
classes considered in this survey that are not self-reducible.

3.2 Base Classes Based on Subsolvers

State-of-the-art SAT-solvers are based on variants of the so-called
Davis-Logemann-Loveland (DPLL) procedure [29,30] (see also [23]). The DPLL
procedure searches systematically for a satisfying assignment, applying first
unit propagation and pure literal elimination as often as possible. Then, DPLL
branches on the truth value of a variable, and recurses. The algorithms stops if
either there are no clauses left (the original formula is satisfiable) or all branches
of the search lead to an empty clause (the original formula is unsatisfiable). Unit
propagation takes as input a CNF formula F that contains a “unit clause” {xε}
and outputs F [x = ε]. Pure literal elimination takes as input a CNF formula
F that has a “pure literal” xε, where x ∈ var(F) and x1−ε /∈

⋃
C∈F C, and

outputs F [x = ε]. In both cases F and F [x = ε] are equisatisfiable. If we omit
the branching, we get an incomplete algorithm which decides satisfiability for a
subclass of CNF formulas. Whenever the algorithm reaches the branching step,
it halts and outputs “give up”. This incomplete algorithm is an example of a
“subsolver” as considered by Williams et al. [101]. The DPLL procedure gives
rise to three non-trivial subsolvers: UP+PL (unit propagation and pure literal
elimination are available), UP (only unit propagation is available), PL (only
pure literal elimination is available). We associate each subsolver with the class
of CNF formulas for which it determines the satisfiability (this is well-defined,
since unit propagation and pure literal elimination are confluent operations).
Since the subsolvers clearly run in polynomial time, UP + PL, UP, and PL

form base classes. We write Subsolver = {UP+ PL,UP,PL}.

3.3 Miscellaneous Base Classes

Renamable Horn Let X be a set of variables and F a CNF formula. We let
rX(F) denote the CNF formula obtained from F by replacing for every variable
x ∈ X , all occurrences of xε in F with x1−ε, for ε ∈ {0, 1}. We call rX(F)
a renaming of F . Clearly F and rX(F) are equisatisfiable. A CNF formula is
called renamable Horn if it has a renaming which is Horn, and we denote the

292 S. Gaspers and S. Szeider

Table 1. The parameterized complexity of Weak, Strong, and Deletion C-Back-

door Set Detection for various base classes C

Base Class Weak Strong Deletion

C ∈ Schaefer W[2]-h [70] (FPT) FPT [70] FPT [70]

C ∈ Subsolver W[P]-c [96] W[P]-c [96] n/a

Forest W[2]-h [46] (FPT [46]) ?† (?) FPT

RHorn W[2]-h W[2]-h (?) FPT [82]

Clu W[2]-h [71] (FPT) W[2]-h [71] (FPT [71]) FPT [71]

() It is indicated in parentheses if the complexity of the problem for 3CNF formulas
is different from general CNF or unknown.

? It is open whether the problem is fixed-parameter tractable.
† Theorem 5 gives an fpt approximation for this problem.
n/a Deletion backdoor sets are undefined for base classes that are not clause-induced.

class of renamable Horn formulas as RHorn. It is easy to see that Horn is a
strict subset of RHorn. One can find in polynomial time a Horn renaming of
a given CNF formula, if it exists [62]. Hence RHorn is a further base class. In
contrast to Horn, RHorn is not clause-defined.

Forests. Many NP-hard problems can be solved in polynomial time for problem
instances that are in a certain sense acyclic. The satisfiability problem is no
exception. There are various ways of defining a CNF formula to be acyclic. Here
we consider acyclicity based on (undirected) incidence graphs: the incidence
graph of a CNF formula F is the bipartite graph whose vertices are the variables
and the clauses of F ; a variable x and a clause C are joined by an edge if
and only if x ∈ var(C). Let Forest denote the class of CNF formulas whose
undirected incidence graphs are forests. It is well known that Forest forms
islands of tractability: the satisfiability of CNF formulas whose incidence graphs
have bounded treewidth can be decided in linear time [43,91]. Forest is the
special case of formulas with treewidth at most 1.

Clusters. A CNF formula F is called a hitting if any two distinct clauses clash.
Two clauses C,C′ ∈ F clash if they contain a complimentary pair of literals,
i.e., C ∩C′ �= ∅. A CNF formula is called a clustering formula if it is a variable
disjoint union of hitting formulas. We denote by Clu the class of clustering
formulas. Clustering formulas not only allow polynomial-time SAT decision, one
can even count the number of satisfying truth assignments in polynomial time.
This is due to the fact that each truth assignment invalidates at most one clause
of a hitting formula [54,71].

4 Detecting Weak Backdoor Sets

It turns out that for all base classes C considered in this survey, Weak C-
Backdoor Set Detection is W[2]-hard. In several cases, restricting the input

Backdoors to Satisfaction 293

formula to 3CNF helps, and makesWeak C-Backdoor Set Detection fixed-
parameter tractable.

In the proof of the following proposition we use a general approach that entails
previously published proofs (such as in [46,70,71]) as special cases.

Proposition 1. Weak C-Backdoor Set Detection is W[2]-hard for all
base classes C ∈ Schaefer ∪ {RHorn,Forest,Clu}.

Proof. We showW[2]-hardness for C ∈ {2CNF,Horn, 0-Val,RHorn, Forest,
Clu}. The hardness proofs for the remaining two classes 1-Val and Horn

− are
symmetric to the proofs for 0-Val and Horn, respectively.

Let G be a CNF formula with a set X ⊆ var(G) of its variables marked as
external, all other variables of G are called internal. We call G an or-gadget for
a base class C if G has the following properties:

1. G /∈ C.
2. G ∈ 1-Val.
3. G[x = 1] ∈ C holds for all x ∈ X .
4. For each clause C ∈ G either X ⊆ C or var(C) ∩X = ∅.
5. var(G) \X �= ∅.
6. G can be constructed in time polynomial in |X |.

First, we show the following meta-result, and then we define or-gadgets for the
different base-classes.

Claim 1: If C is clause-induced, closed under variable-disjoint union, and has an
or-gadget for any number ≥ 1 of external variables, then Weak C-Backdoor

Set Detection is W[2]-hard.
We prove the claim by giving a parameterized reduction from the W[2]-com-

plete problem Hitting Set (HS) [33]. Let (S, k), S = {S1, . . . , Sm}, be an
instance of HS. Let I = {1, . . . ,m} × {1, . . . , k + 1}. For each Si we construct
k+1 or-gadgets G1

i , . . . , G
k+1
i whose external variables are exactly the elements

of Si, and whose internal variables do not appear in any of the other gadgets

Gj′
i′ for (i′, j′) ∈ I \{(i, j)}. Let F =

⋃
(i,j)∈I G

j
i . From Property 6 it follows that

F can be constructed from S in polynomial time. We show that S has a hitting
set of size k if and only if F has a weak C-backdoor set of size k.

Assume B ⊆
⋃m

i=1 Si is a hitting set of S of size k. Let τ ∈ 2B the truth

assignment that sets all variables from B to 1. By Properties 2 and 3, Gj
i [τ]

is satisfiable and belongs to C for each (i, j) ∈ I. By Property 4, var(Gj
i [τ]) ∩

var(Gj′
i′ [τ]) = ∅ for any two distinct pairs (i, j), (i′, j′) ∈ I. Consequently F [τ] is

satisfiable, and since C is closed under variable-disjoint union, F [τ] belongs to C.
Thus B is a weak C-backdoor set of F of size k.

Conversely, assume that B ⊆ var(F) is a weak C-backdoor set of F of size k.
Hence, there exists a truth assignment τ ∈ 2B such that F [τ] is satisfiable and
belongs to C. Clearly for each (i, j) ∈ I, Gj

i [τ] is satisfiable (since Gj
i [τ] ⊆ F),

and Gj
i [τ] ∈ C (since C is clause-induced). However, since Gj

i /∈ C by Property 1,

B ∩ var(Gj
i) �= ∅ for each (i, j) ∈ I. Let 1 ≤ i ≤ m. By construction, F contains

294 S. Gaspers and S. Szeider

k + 1 copies G1
i . . . , G

k+1
i of the same gadget. From Property 5 it follows that

all the k+1 copies are different. Since |B| ≤ k, there must be some xi ∈ B such

that there are 1 ≤ j′ < j′′ ≤ k+1 with xi ∈ var(Gj′
i)∩ var(Gj′′

i). It follows that

xi is an external variable of Gj′
i , hence xi ∈ B ∩Si. Consequently, B is a hitting

set of S.
Hence we have indeed a parameterized reduction from HS to Weak C-

Backdoor Set Detection, and Claim 1 is shown true. We define for each
class C ∈ {2CNF, Horn, 0-Val, RHorn, Forest, Clu} an or-gadget F (C)
where X = {x1, . . . , xs} is the set of external variables; internal variables are
denoted zi.

– G(2CNF) = {X ∪ {z1, z2}}.
– G(Horn) = G(0-Val) = {X ∪ {z1}}.
– G(RHorn) = {X ∪ {¬z1,¬z2}, {z1,¬z2}, {¬z1, z2}, {z1, z2}}.
– G(Forest) = {X ∪ {¬z1,¬z2}, {z1, z2}}.
– G(Clu) = {X ∪ {z1}, {z1}}.

Since the considered classes C are clearly clause-induced and closed under
variable-disjoint union, the proposition now follows from Claim 1. �
For base classes based on subsolvers, weak backdoor set detection is even W[P]-
hard. This is not surprising, since the subsolvers allow a propagation through
the formula which is similar to the propagation in problems like Minimum Ax-

iom Set or Degree 3 Subgraph Annihilator [33]. The proof of the follow-
ing theorem is based on a reduction from the W[P]-complete problem Cyclic

Monotone Circuit Activation.

Theorem 1 ([96]). Weak C-Backdoor Set Detection is W[P]-complete
for all base classes C ∈ Subsolver. This even holds if the input formula is in
3CNF.

In summary, we conclude that Weak C-Backdoor Set Detection is at least
W[2]-hard for all considered base classes. If we restrict our scope to 3CNF for-
mulas, we obtain mixed results.

Proposition 2. For every clause-defined class C, Weak C-Backdoor Set

Detection is fixed-parameter tractable for input formulas in 3CNF.

Proof. The result follows by a standard bounded search tree argument, sketched
as follows. Assume we are given a CNF formula F /∈ C and an integer k. We
want to decide whether F has a weak C-backdoor set of size ≤ k. Since C is
clause-defined, F contains a clause C such that {C} /∈ C. Hence some variable
of var(C) must belong to any weak C-backdoor set of F . There are at most 3
such variables, each of which can be set to true or to false. Hence we branch
in at most 6 cases. By iterating this case distinction we build a search tree T ,
where each node t of T corresponds to a partial truth assignment τt. We can
stop building the tree at nodes of depth k and at nodes t where F [τt] ∈ C. It is
now easy to see that F has a weak C-backdoor set of size at most k if and only

Backdoors to Satisfaction 295

if T has a leaf t such that F [τt] ∈ C and F [τt] is satisfiable. For each leaf we can
check in polynomial time whether these properties hold. �
In particular, Weak C-Backdoor Set Detection is fixed-parameter
tractable for C ∈ Schaefer if the input formula is in 3CNF.

The proof of Proposition 2 can be extended to the class Clu of clustering
formulas. Nishimura et al. [71] have shown that a CNF formula is a clustering
formula if and only if it does not contain (i) two clauses C1, C2 that overlap
(C1 ∩ C2 �= ∅) but do not clash (C1 ∩ C2 = ∅), or (ii) three clauses D1, D2, D3

where D1 and D2 clash, D2 and D3 clash, but D1 and D3 do not clash. {C1, C2}
is called an overlap obstruction, {D1, D2, D2} is called a clash obstruction. Each
weak Clu-backdoor set of a CNF formula F must contain at least one variable
from each overlap and each clash obstruction. However, if F is a 3CNF formula,
the number of variables of an overlap obstruction is at most 5, and the num-
ber of variables of a clash obstruction is at most 7. Hence we can find a weak
Clu-backdoor set of size at most k with a bounded search tree, which gives the
following result.

Proposition 3. Weak Clu-Backdoor Set Detection is fixed-parameter
tractable for 3CNF formulas.

Proposition 4. Weak RHorn-Backdoor Set Detection is W[2]-hard,
even for 3CNF formulas.

Proof. Similarly to the proof of Proposition 1 we reduce from HS. As gadgets we
use formulas of the formG = {{z1,¬x1,¬z2}, {z2,¬x2,¬z3}, . . . , {zs,¬xs,¬zs+1},
{¬z1, zs+1}, {¬z1,¬zs+1}, {z1, zs+1}}, where x1, . . . , xs are external variables
and z1, . . . , zs+1 are internal variables. G can be considered as being obtained
form the complete formula { {zε1, zδs+1} : ε, δ ∈ {0, 1} } by “subdividing” the
clause {z1,¬zs+1}. G /∈ RHorn but G[xi = 0] ∈ RHorn. In fact, rX(G[xi =
0]) ∈ Horn for X = {zi+1, . . . , zs+1}, hence no external variable needs to be
renamed. Moreover, we can satisfy G[xi = 0] by setting all external variables
and z1 to 0, and by setting zs+1 to 1.

Let (S, k), S = {S1, . . . , Sm}, be an instance of HS. For each Si we construct
k + 1 gadgets G1

i , . . . , G
k+1
i , each having Si as the set of its external variables,

and the internal variables are new variables only used inside a gadget. We let F
to be the union of all such gadgets Gj

i for 1 ≤ i ≤ m and 1 ≤ j ≤ k + 1.
Similar to the proof of Proposition 1 we can easily show that S has a hitting

set of size k if and only if F has a weak RHorn-backdoor set of size k. The
proposition follows. �
According to Propositions 2 and 3, Weak C-Backdoor Set Detection is
fixed-parameter tractable for certain base classes C and input formulas in 3CNF.
For the classes C covered by Propositions 2 and 3 it holds that for every 3CNF
formula F /∈ C we can find a set of variables of bounded size, an “obstruction”,
from which at least one variable must be in any weak C-backdoor set of F . Hence
a weak C backdoor set of size at most k can be found by means of a bounded
search tree algorithm. The next result shows that fixed-parameter tractability

296 S. Gaspers and S. Szeider

also prevails for the base class Forest. However, the algorithm is considerably
more complicated, as in this case we do not have obstructions of bounded size.

Theorem 2 ([46]). Weak Forest-Backdoor Set Detection is
fixed-parameter tractable for 3CNF formulas.

Proof (Sketch). We sketch the fpt algorithm from [46] deciding whether a 3CNF
formula has a weak Forest-backdoor set of size k. We refer to [46] for the
full details and the correctness proof. Let G denote the incidence graph of F .
The first step of the algorithm runs an fpt algorithm (with parameter k′) by
Bodlaender [9] that either finds k′ = 2k + 1 vertex-disjoint cycles in G or a
feedback vertex set of G of size at most 12k′2 − 27k′ + 15.

In case a feedback vertex set X is returned, a tree decomposition of G \ X
of width 1 is computed and X is added to each bag of this tree decomposition.
As the Weak Forest-Backdoor Set Detection problem can be defined in
Monadic Second Order Logic, a meta-theorem by Courcelle [26] can use this tree
decomposition to conclude.

In case Bodlaender’s algorithm returns k′ vertex-disjoint cycles, the algorithm
finds a set S∗ of O(4kk6) variables such that any weak Forest-backdoor set of
size k contains at least one variable from S∗. In this case, the algorithm recurses
by considering all possibilities of assigning a value to a variable from S∗.

Let C1, . . . , Ck′ denote the variable-disjoint cycles returned by Bodlaender’s
algorithm. Consider a variable x ∈ var(F) and a cycle C. We say that x kills C
internally if x ∈ C. We say that x kills C externally if x /∈ C and C contains a
clause u ∈ F such that x ∈ var(u).

As our k′ cycles are all vertex-disjoint, at most k cycles may be killed in-
ternally. The algorithm goes through all choices of k cycles among C1, . . . , Ck′

that may be killed internally. All other cycles, say C1, . . . , Ck+1, are not killed
internally and need to be killed externally. The algorithm now computes a set
S ⊆ var(F) of size O(k6) such that any weak Forest-backdoor set of size k,

which is a subset of var(F)\
⋃k+1

i=1 var(Ci), contains at least one variable from S.
The union of all such S, taken over all choices of cycles to be killed internally,
forms then the set S∗ that was to be computed.

For each cycle from C1, . . . , Ck+1, compute its set of external killers in var(F)\⋃k+1
i=1 var(Ci). Only these external killers are considered from now on. If one

such cycle has no such external killer, then there is no solution with the current
specifications and the algorithm backtracks. For each i, 1 ≤ i ≤ k + 1, let xi

denote an external killer of Ci with a maximum number of neighbors in Ci. The
algorithm executes the first applicable from the following rules.

Multi-Killer Unsupported. If there is an index i, 1 ≤ i ≤ k + 1 such that xi

has � ≥ 4k neighbors in Ci and at most 4k2 + k external killers of Ci have
at least �/(2k) neighbors in Ci, then include all these external killers in S.

Multi-Killer Supported. If there is an index i, 1 ≤ i ≤ k+1 such that xi has
� ≥ 4k neighbors in Ci and more than 4k2 + k external killers of Ci have at
least �/(2k) neighbors in Ci, then set S = {xi}.

Backdoors to Satisfaction 297

Large Overlap. If there are two cycles Ci, Cj , 1 ≤ i �= j ≤ k + 1, with at least
16k4 + k common external killers, then set S = ∅.

Small Overlap. Otherwise, include in S all vertices that are common external
killers of at least two cycles from C1, . . . , Ck+1.

The algorithm recursively checks for each s ∈ S∗ whether the formulas F [s = 0]
and F [s = 1] have a weak Forest-backdoor set of size k− 1 and returns Yes if
any such recursive call was successful and No otherwise. �

5 Detecting Strong Backdoor Sets

Proposition 5 ([70]). Strong C-Backdoor Set Detection is fixed-
parameter tractable for every base class C ∈ Schaefer. For C ∈ {0-Val, 1-Val},
the problem is even solvable in polynomial time.

Proof. Consider a CNF formula F . Strong Horn-backdoor sets of F are ex-
actly the vertex covers of the positive primal graph of F , whose vertex set is
var(F), two variables are joined by an edge if they appear together positively
in a clause. Strong Horn

−-backdoor sets can be characterized symmetrically.
Strong 2CNF-backdoor sets of F are exactly the hitting sets of the hypergraph
whose vertex set is var(F) and whose hyperedges are all the subsets e ⊆ var(F) of
size three such that e ⊆ var(C) for a clause C ∈ F . Thus Strong C-Backdoor

Set Detection for C ∈ {Horn, Horn
−, 2CNF} can be accomplished by

fpt algorithms for Vertex Cover [19] and 3-Hitting Set [40]. The smallest
strong 1-Val-backdoor set of F is exactly the union of var(C) for all negative
clauses C ∈ F , the smallest strong 0-Val-backdoor set of F is exactly the union
of var(C) for all positive clauses C ∈ F . �

Proposition 6. Strong RHorn-Backdoor Set Detection is W[2]-hard.

Proof. The proof uses a reduction from HS similar to the proof of Proposition 1.
An instance (S, k), S = {S1, . . . , Sm}, of HS is reduced to a formula F which is
the union of certain gadgetsGj

i for 1 ≤ i ≤ m and 1 ≤ j ≤ k+1. Let V =
⋃m

i=1 Si.

A gadget Gj
i contains the four clauses Si ∪ {z1, z2}, {z1,¬z2}, {¬z1, z2}, and

V ∪ {¬z1,¬z2}, where z1, z2 are internal variables that do not occur outside the
gadget. Let B ⊆ V be a hitting set of S and let τ ∈ 2B. If τ sets at least one
variable to 0, then τ removes from each gadget the only negative clause, hence
rvar(F)(F [τ]) ∈ Horn. On the other hand, if τ sets all variables from B to 1,
then it removes from each gadget the only positive clause (B is a hitting set).
Hence, F [τ] ∈ Horn in this case. Consequently B is a strong RHorn-backdoor
set of F . Conversely, assume B is a strong RHorn-backdoor set of F . Let τ ∈ 2B

be the all-1-assignment. For the sake of contradiction, assume there is a set Si

such that B∩Si = ∅. Since |B| = k, B∩var(Gj
i) = ∅ for some 1 ≤ j ≤ k+1. Now

F [τ] contains the subset Gj
i [τ] = {Si ∪ {z1, z2}, {z1,¬z2}, {¬z1, z2}, {¬z1,¬z2}}

which is not renamable Horn, hence B is not a strong RHorn-backdoor set of
F , a contradiction. Hence B is a hitting set of S. �

298 S. Gaspers and S. Szeider

It is not known whether Strong Forest-Backdoor Set Detection is
fixed-parameter tractable nor whether Strong RHorn-Backdoor Set De-

tection is fixed-parameter tractable for 3CNF formulas. For the former prob-
lem, however, we know at least an fpt approximation [46]; see Theorem 5 below.

The following result is shown by a reduction from Cyclic Monotone Cir-

cuit Activation, similarly to Theorem 1.

Theorem 3 ([96]). Strong C-Backdoor Set Detection is W[P]-complete
for every base class C ∈ Subsolver, even for formulas in 3CNF.

The bounded search tree method outlined above for Weak Clu-Backdoor

Set Detection for 3CNF formulas can clearly be adapted for strong backdoors.
Hence we get the following result.

Proposition 7. Strong Clu-Backdoor Set Detection is fixed-parameter
tractable for 3CNF formulas.

5.1 Empty Clause Detection

Dilkina et al. [31] suggested to strengthen the concept of strong backdoor sets
by means of empty clause detection. Let E denote the class of all CNF formulas
that contain the empty clause. For a base class C we put C{} = C ∪E ; we call C{}
the base class obtained from C by adding empty clause detection. Formulas often
have much smaller strong C{}-backdoor sets than strong C-backdoor sets [31].
Dilkina et al. show that, given a CNF formula F and an integer k, determining
whether F has a strong Horn

{}-backdoor set of size k, is both NP-hard and
co-NP-hard (here k is considered just as part of the input and not as a param-
eter). Thus, the non-parameterized search problem for strong Horn-backdoor
sets gets harder when empty clause detection is added. It turns out that also the
parameterized problem gets harder when empty clause detection is added.

Theorem 4 ([97]). For every clause-induced base class C such that at least one
satisfiable CNF formula does not belong to C the problem strong C{}-back-
door set is W[1]-hard.

The theorem clearly applies to all base classes in Schaefer∪{RHorn,Forest}.
The proof from [97] relies on a reduction from [39], where a reduction to 3CNF
formulas is also given. Thus, Theorem 4 also holds for 3CNF formulas.

6 Detecting Deletion Backdoor Sets

In this section we consider the parameterized complexity of Deletion C-Back-

door Set Detection for the various base classes C from above. For most of
the classes the complexity is easily established as follows. For Schaefer classes,
strong and deletion backdoor sets coincide, hence the FPT results carry over.
The subsolver classes are not clause-induced, hence it does not make sense to

Backdoors to Satisfaction 299

consider deletion backdoor sets. Deletion Forest-Backdoor Set Detec-

tion can be solved by algorithms for a slight variation of the feedback vertex
set problem, and is therefore FPT. One has only to make sure that the feedback
vertex set contains only variables and no clauses. This, however, can be achieved
by using algorithms for Weighted Feedback Vertex Set [81,17].

It is tempting to use Chen et al.’s FPT algorithm for directed feedback ver-
tex set [20] for the detection of deletion backdoor sets. The corresponding base
class would contain all CNF formulas with acyclic directed incidence graphs (the
orientation of edges indicate whether a variable occurs positively or negatively).
Unfortunately this class is not suited as a base class since it contains formulas
where each clause contains either only positive literals or only negative literals,
and SAT is well known to be NP-hard for such formulas [45].

Hence we are left with the classes Clu and RHorn.
For the detection of deletion Clu-backdoor sets we can use overlap obstruc-

tions and clash obstructions, as defined before Proposition 3. With each obstruc-
tion, we associate a deletion pair which is a pair of sets of variables. With an
overlap obstruction {C1, C2}, we associate the deletion pair

{var(C1 ∩C2), var((C1 \ C2) ∪ (C2 \ C1))},

and with a clash obstruction {D1, D2, D3}, we associate the deletion pair

{var((D1 \D3) ∩D2), var((D3 \D1) ∩D2)}.

For a formula F , let GF denote the graph with vertex set var(F) that has an edge
xy if and only if there is a deletion pair {X,Y } of F with x ∈ X and y ∈ Y .
Nishimura et al. [71] have shown that a set X ⊆ var(F) is a deletion Clu-
backdoor set of F if and only if X is a vertex cover of GF . Thus, the detection of
a deletion Clu-backdoor set of size k can be reduced to the problem of checking
whether GF has a vertex cover of size k, for which there exist very fast algorithms
(see for example [19]).

Proposition 8 ([71]). Deletion Clu-Backdoor Set Detection is fixed-
parameter tractable.

The remaining case is the class RHorn. As noted by Gottlob and Szeider [51]
without proof (see also [82]), one can show fixed-parameter tractability of Dele-

tion RHorn-Backdoor Set Detection by reducing it to the problem 2SAT

Deletion. The latter problem takes as input a 2CNF formula and an integer k
(the parameter), and asks whether one can make the formula satisfiable by delet-
ing at most k clauses. 2SAT Deletion was shown fixed-parameter tractable by
Razgon and O’Sullivan [82]. Here we give the above mentioned reduction.

Lemma 1. There is a parameterized reduction from Deletion RHorn-

Backdoor Set Detection to 2SAT Deletion.

Proof. Let (F, k) be a given instance of Deletion RHorn-Backdoor Set

Detection. We construct a graph G = (V,E) by taking as vertices all literals

300 S. Gaspers and S. Szeider

xε, for x ∈ var(F) and ε ∈ {0, 1}, and by adding two groups of edges. The first
group consists of all edges x0, x1 for x ∈ var(F), the second group consists of
all edges xεyδ for x, y ∈ var(F), ε, δ ∈ {0, 1}, such that xε, yδ ∈ C for some
C ∈ F . Observe that the edges of the first group form a perfect matching M of
the graph G.

Claim 1. F has a deletion RHorn-backdoor set of size at most k if and only
if G has a vertex cover with at most |M |+ k vertices.

(⇒) Let B be a deletion RHorn-backdoor set of F of size at most k and
X ⊆ var(F)\B such that rX(F −B) ∈ Horn. Let N = { x0 : x ∈ var(F)\X }∪
{ x1 : x ∈ X }. Let K = { x0, x1 : x ∈ B } ∪N . By definition, |K| = |M |+ |B| ≤
|M |+k. We show that K is a vertex cover of G. Consider an edge e = x0x1 ∈M
of the first group. If x ∈ X , then x1 ∈ N ⊆ K and if x /∈ X , then x0 ∈ N ⊆ K.
Hence e is covered by K. It remains to consider an edge f = xεyδ of the second
group. If x ∈ B or y ∈ B, then this edge is covered by K. Hence assume x, y /∈ B.
By construction of G, there is a clause C ∈ F with xε, yδ ∈ C. Since x, y /∈ B,
there is also a clause C′ ∈ F − B with xε, yδ ∈ C. Since C′ corresponds to a
Horn clause C′′ ∈ rX(F − B), at least one of the literals xε, yδ belongs to N ,
and hence K covers the edge f . Hence the first direction of Claim 1 follows.

(⇐) LetK be a vertex cover ofG with at most |M |+k vertices. LetB ⊆ var(F)
be the set of all variables x such that both x0, x1 ∈ K. Clearly |B| ≤ k. Let
X ⊆ var(F) \B such that x1 ∈ K. We show that rX(F −B) ∈ Horn. Let xδ, yε

be two literals that belong to a clause C′′ of rX(F −B). We show that ε = 0 or
δ = 0. Let C′ ∈ F −B the clause that corresponds to C′′, and let xε′ , yδ

′ ∈ C′. It
follows that xε′yδ

′ ∈ E, and since K is a vertex cover of G, xε′ ∈ K or yδ
′ ∈ K.

If xε′ ∈ K then ε = 0, if yδ
′ ∈ K then δ = 0. Since xδ, yε ∈ C′′ ∈ rX(F − B)

were chosen arbitrarily, we conclude that rX(F −B) ∈ Horn. Hence Claim 1 is
shown.

Mishra et al. [68] already observed that a reduction from [16] can be adapted
to show that this above-guarantee vertex cover problem can be reduced to 2SAT

Deletion. For completeness, we give a reduction here as well.
We construct a 2CNF formula F2 from G. For each vertex xε of G we take a

variable xε. For each edge x0x1 ∈ M we add a negative clause {¬x0,¬x1}, and
for each edge xεyδ ∈ E \M we add a positive clause {xε, yδ}.

Claim 2. G has a vertex cover with at most |M |+ k vertices if and only if we
can delete at most k negative clauses from F2 to obtain a satisfiable formula.

(⇒) Let K be a vertex cover of G. We delete from F2 all negative clauses
{¬x0,¬x1} where both x0, x1 ∈ K (there are at most k such clauses) and obtain
a 2CNF formula F ′

2. We define a truth assignment τ ∈ 2var(F
′
2) by setting a

variable to 1 if and only if it belongs to K. It remains to show that τ satisfies F ′
2.

The negative clauses are satisfied since τ sets exactly one literal of a negative
clause {¬x0,¬x1} ∈ F ′

2 to 1 and exactly one to 0. The positive clauses are
satisfied since each positive clause {xε, yδ} corresponds to an edge xεyδ ∈ E,
and since K is a vertex cover, τ sets at least one of the variables xε, yδ to 1.

(⇐) Let F ′
2 be a satisfiable formula obtained from F2 by deleting at most

k negative clauses. Let D = { x ∈ var(F) : {¬x0,¬x1} ∈ F2 \ F ′
2 }. Let τ

Backdoors to Satisfaction 301

be a satisfying truth assignment of F ′
2. We define a set K of vertices of G by

setting K = { x0, x1 : x ∈ D } ∪ { xτ(x) : x ∈ var(F) \D }, and we observe that
|K| ≤ |M | + k. It remains to show that K is a vertex cover of G. Consider an
edge e = x0x1 ∈ M of the first group. If x ∈ D then x0, x1 ∈ K; if x /∈ D then
xτ(x) ∈ K, hence e is covered by K. Now consider an edge f = xεyδ ∈ E \M
of the second group. If x ∈ D or y ∈ D then f is clearly covered by K. Hence
assume x, y /∈ D. By definition, there is a positive clause {xε, yδ} ∈ F ′

2 ⊆ F2.
Since τ satisfies F ′

2, it follows that τ(xε) = 1 or τ(yδ) = 1. Consequently xε ∈ K
or yδ ∈ K, thus K covers f . Hence Claim 2 is shown.

Next we modify F2 by replacing each positive clause C = {xε, yδ} with 2k+2
“mixed” clauses {xε, z

i
C}, {¬ziC , yδ}, for 1 ≤ i ≤ k + 1, where the ziC are new

variables. Let F ∗
2 denote the 2CNF formula obtained this way from F2.

Claim 3. We can delete at most k negative clauses from F2 to obtain a satis-
fiable formula if and only if we can delete at most k clauses from F ∗

2 to obtain
a satisfiable formula.

The claim follows easily from the following considerations. We observe that
each pair of mixed clauses {xε, z

i
C}, {¬ziC , yδ} is semantically equivalent with

C = {xε, yδ}. Hence, if F2 can be made satisfiable by deleting some of the
negative clauses, we can also make F ∗

2 satisfiable by deleting the same clauses.
However, deleting some of the mixed clauses does only help if we delete at least
one from each of the k + 1 pairs that correspond to the same clause C. Hence
also Claim 3 is shown true. Claims 1–3 together establish the lemma. �
Razgon and O’Sullivan’s result [82] together with Lemma 1 immediately give
the following.

Proposition 9. Deletion RHorn-Backdoor Set Detection is fixed-
parameter tractable.

7 Permissive Problems

We consider any function p that assigns nonnegative integers to CNF formulas
as a satisfiability parameter. In particular we are interested in such satisfiability
parameters p for which the following parameterized problem is fixed-parameter
tractable:

SAT(p)
Instance: A CNF formula F and an integer k ≥ 0.
Parameter : The integer k.
Task : Determine whether F is satisfiable or determine that p(F) > k.

Note that an algorithm that solves the problem has the freedom of deciding the
satisfiability of some formulas F with p(F) > k, hence the exact recognition of
formulas F with p(F) ≤ k can be avoided. Thus SAT(p) is not a usual decision
problem, as there are three different outputs, not just two. If SAT(p) is fixed-
parameter tractable then we call p an fpt satisfiability parameter, and we say that
“the satisfiability of CNF formulas of bounded p is fixed-parameter tractable”
(cf. [95]). We write 3SAT(p) if the input is restricted to 3CNF formulas.

302 S. Gaspers and S. Szeider

Backdoor sets provide a generic way to define satisfiability parameters. Let C
be a base class and F a CNF formula. We define wbC(F), sbC(F) and dbC(F) as
the size of a smallest weak, strong, and deletion C-backdoor set of F , respectively.

Of course, if the detection of the respective C-backdoor set is fixed-parameter
tractable, then wbC , sbC , and dbC are fpt satisfiability parameters. However,
it is possible that wbC , sbC , or dbC are fpt satisfiability parameters but the
corresponding C-backdoor set detection problem is W[1]-hard. The problems
SAT(wbC), SAT(sbC), and SAT(dbC) can therefore be considered as more
“permissive” versions of the “strict” problems Weak, Strong, and Deletion

C-Backdoor Set Detection, the latter require to find a backdoor set even if
the given formula is trivially seen to be satisfiable or unsatisfiable. The distinc-
tion between permissive and strict versions of problems have been considered in a
related context by Marx and Schlotter [66,67] for parameterized k-neighborhood
local search. Showing hardness for permissive problems SAT(p) seems to be a
much more difficult task than for the strict problems. So far we could establish
only few such hardness results.

Proposition 10. SAT(wbC) is W[1]-hard for all C ∈ Schaefer ∪ {RHorn}.

Proof. We will show a more general result, that W[1]-hardness holds for all base
classes that contain all anti-monotone 2CNF formulas. A CNF formula is anti-
monotone if all its clauses are negative. Let C be a base class that contains all
anti-monotone 2CNF formulas.

We show that SAT(wbC) is W[1]-hard by reducing from Partitioned

Clique, also known as Multicolored Clique. This problem takes as input
a k-partite graph and asks whether the graph has a clique on k vertices. The
integer k is the parameter. The problem is well-known to be W[1]-complete [78].

LetH = (V,E) with V =
⋃k

i=1 Vi be an instance of this problem.We construct
a CNF formula F as follows. We consider the vertices of H as variables and
add clauses {¬u,¬v} for any two distinct vertices such that uv /∈ E. For each
1 ≤ i ≤ k, we add the clause Vi. This completes the construction of F .
We show that the following statements are equivalent:

(1) F is satisfiable
(2) H contains a k-clique.
(3) F has a weak C-backdoor set of size at most k.

(1)⇒(2). Let τ be a satisfying assignment of F . Because of the clause Vi, τ sets
at least one variable of Vi to 1, for each 1 ≤ i ≤ k. As each Vi is an independent
set, F contains a clause {¬u,¬v} for every two distinct vertices in Vi. Thus, τ
sets exactly one variable of Vi to 1, for each 1 ≤ i ≤ k. The clauses of F also
imply that vivj ∈ E for each 1 ≤ i < j ≤ k, since otherwise τ would falsify the
clause {¬vi,¬vj}. Hence v1, . . . , vk induce a clique in H .

(2)⇒(3). Assume v1, . . . , vk induce a clique in H , with vi ∈ Vi. We show
that B = {v1, . . . , vk} is a weak C-backdoor set of F . Let τ ∈ 2B be the truth
assignment that sets all variables of B to 1. This satisfies all the clauses Vi, 1 ≤
i ≤ k. Thus, F [τ] is an anti-monotone 2CNF formula. Therefore it is in C and it
is satisfiable as it is 0-valid. Hence B is a weak C-backdoor set of F .

Backdoors to Satisfaction 303

(3)⇒(1). Any formula that has a weak backdoor set is satisfiable.
Since all three statements are equivalent, we conclude that SAT(wbC) is W[1]-

hard. This shows the proposition for the base classes Horn, 2CNF, 0-Val, and
RHorn, as they contain all anti-monotone 2CNF formulas. The hardness for
Horn

− and 1-Val follows by symmetric arguments from the hardness of Horn

and 0-Val, respectively. �

In general, if we have an fpt approximation algorithm [14,21,34] for a strict back-
door set detection problem, then the corresponding permissive problem SAT(p)
is fixed-parameter tractable. For instance, if we have an fpt algorithm that, for a
given pair (F, k) either outputs a weak, strong, or deletion C-backdoor set of F
of size at most f(k) or decides that F has no such backdoor set of size at most
k, then clearly wbC , sbC , and dbC , respectively, is an fpt satisfiability parameter.

This line of reasoning is used in the next theorem to show that sbForest is an
fpt satisfiability parameter. This result labels Forest as the first nontrivial base
class C for which sbC is an fpt satisfiability parameter and sbC �= dbC . Hence the
additional power of strong Forest-backdoor sets over deletion Forest-back-
door sets is accessible.

Theorem 5 ([46]). Strong Forest-Backdoor Set Detection admits a
2k fpt-approximation. Hence SAT(sbForest) is fixed-parameter tractable.

Proof (Sketch). We sketch the fpt-approximation algorithm from [46] which ei-
ther concludes that a CNF formula F has no strong Forest-backdoor set of size
k or returns one of size at most 2k. We refer to [46] for the full details and the
correctness proof. Let G denote the incidence graph of F . The first step of the
algorithm runs, similarly to the proof of Theorem 2, the fpt algorithm (with pa-
rameter k′) by Bodlaender [9] that either finds k′ = k22k−1+k+1 vertex-disjoint
cycles in G or a feedback vertex set of G of size at most 12k′2 − 27k′ + 15.

In case a feedback vertex set X is returned, a tree decomposition of G \X of
width 1 is computed and X is added to each bag of this tree decomposition. As
the Strong Forest-Backdoor Set Detection problem can be defined in
Monadic Second Order Logic, a meta-theorem by Courcelle [26] can be used to
decide the problem in linear time using this tree decomposition.

In case Bodlaender’s algorithm returns k′ vertex-disjoint cycles, the algorithm
finds a set S∗ of O(k2k2k

2−k) variables such that every strong Forest-backdoor
set of size k contains at least one variable from S∗. In this case, the algorithm
recurses by considering all possibilities of including a variable from S∗ in the
backdoor set.

Let C1, . . . , Ck′ denote the variable-disjoint cycles returned by Bodlaender’s
algorithm. Consider a variable x ∈ var(F) and a cycle C. We say that x kills C
internally if x ∈ C. We say that x kills C externally if x /∈ C and C contains
two clause u, v ∈ F such that x ∈ u and ¬x ∈ v. We say in this case that x kills
C externally in u and v.

The algorithm goes through all
(
k′

k

)
ways to choose k cycles among C1, . . . , Ck′

that may be killed internally. All other cycles, say C1, . . . , Ck′′ with k′′ = k′− k,

304 S. Gaspers and S. Szeider

are not killed internally. We refer to these cycles as C′′-cycles. The algorithm
now computes a set S ⊆ var(F) of size at most 2 such that any strong Forest-

backdoor set of size k, which is a subset of var(F) \
⋃k′′

i=1 var(Ci), contains at
least one variable from S. The union of all such S, taken over all choices of cycles
to be killed internally, forms then the set S∗ that was to be computed.

From now on, consider only killers in var(F) \
⋃k′′

i=1 var(Ci). For each C′′-
cycle Ci, consider vertices xi, ui, vi such that xi kills Ci externally in ui and
vi and there is a path Pi from ui to vi along the cycle Ci such that if any
variable kills Ci externally in two clauses u′

i and v′i such that u′
i, v

′
i ∈ Pi, then

{ui, vi} = {u′
i, v

′
i}. Note that any variable that does not kill Ci internally, but

kills the cycle Cxi = Pi ∪ {xi} also kills the cycle Ci externally in ui and vi. We
refer to such external killers as interesting.

The algorithm executes the first applicable from the following rules.

No External Killer. If there is an index i, 1 ≤ i ≤ k′′, such that Cxi has no
external killer, then set S := {xi}.

Killing Same Cycles. If there are variables y and z and at least 2k−1 +1 C′′-
cycles such that both y and z are interesting external killers of each of these
C′′-cycles, then set S := {y, z}.

Killing Many Cycles. If there is a variable y that is an interesting external
killer of at least k · 2k−1 + 1 C′′-cycles, then set S := {y}.

Too Many Cycles Otherwise, set S = ∅.

For each s ∈ S∗ the algorithm calls itself recursively to compute a strong
Forest-backdoor set for F [s = 0] and for F [s = 1] with parameter k − 1.
If both recursive calls return backdoor sets, the union of these two backdoor
sets and {s} is a strong Forest-backdoor set for F . It returns the smallest such
backdoor set obtained for all choices of s, or No if for each s ∈ S∗ at least one
recursive call returned No. �
Very recently, Theorem 5 has been extended to the base classes Nested [47] and
W≤t, for every fixed t ≥ 0 [48]. The class Nested was introduced by Knuth [59].
It is the class of all CNF formulas whose variables can be linearly ordered such
that no pair of clauses straddle each other; a clause c straddles a clause c′ if
there are variables x, y ∈ var(c) and z ∈ var(c′) such that x < z < y in the linear
ordering under consideration. The class W≤t contains all CNF formulas whose
incidence graph has treewidth at most t. These results generalize Theorem 5
since W≤1 = Forest ⊆ Nested ⊆ W≤3. The overall outline of the algorithms
from [47,48] resembles the algorithm presented in the proof of Theorem 5, but
the case where the incidence graph has large treewidth requires significantly
more involved arguments.

8 Comparison of Parameters

Satisfiability parameters can be compared with respect to their generality. Let
p, q be satisfiability parameters. We say that p is at least as general as q, in

Backdoors to Satisfaction 305

symbols p # q, if there exists a function f such that for every CNF formula F
we have p(F) ≤ f(q(F)). Clearly, if p # q and SAT(p) is fpt, then so is SAT(q).
If p # q but not q # p, then p is more general than q. If neither p # q nor q # p
then p and q are incomparable.

As discussed above, each base class C gives rise to three satisfiability param-
eters wbC(F), sbC(F) and dbC(F). If C is clause-induced, then sbC # dbC ; and
if C ⊆ C′, then sbC′ # sbC and dbC′ # dbC .

By associating certain graphs with CNF formulas one can use graph parame-
ters to define satisfiability parameters. The most commonly used graphs are the
primal, dual, and incidence graphs. The primal graph of a CNF formula F has as
vertices the variables of F , and two variables are adjacent if they appear together
in a clause. The dual graph has as vertices the clauses of F , and two clauses C,C′

are adjacent if they have a variable in common (i.e., if var(C)∩var(C′) �= ∅). The
incidence graph, as already defined above, is a bipartite graph, having as vertices
the variables and the clauses of F ; a variable x and a clause C are adjacent if
x ∈ var(C). The directed incidence graph is obtained from the incidence graph
by directing an edge xC from x to C if x ∈ C and from C to x if ¬x ∈ C.

The treewidth of the primal, dual, and incidence graph gives fpt satisfiability
parameters, respectively. The treewidth of the incidence graph is more general
than the other two satisfiability parameters [60]. The clique-width of the three
graphs provides three more general satisfiability parameters. However, these sat-
isfiability parameters are unlikely fpt: It is easy to see that SAT remains NP-hard
for CNF formulas whose primal graphs are cliques, and for CNF formulas whose
dual graphs are cliques. Moreover, SAT, parameterized by the clique-width of the
incidence graph is W[1]-hard, even if a decomposition is provided [72]. However,
the clique-width of directed incidence graphs is an fpt satisfiability parameter
which is more general than the treewidth of incidence graphs [25,43].

How do fpt satisfiability parameters based on decompositions and fpt satisfi-
ability parameters based on backdoor sets compare to each other?

Each base class C considered above, except for the class Forest, contains
CNF formulas whose directed incidence graphs have arbitrarily large clique-
width. Hence none of the decomposition based parameters is at least as general
as the parameters sbC and dbC . On the other hand, taking the disjoint union of
n copies of a CNF formula multiplies the size of backdoor sets by n but does not
increase the width. Hence no backdoor based parameter is more general than
decomposition based parameters.

Thus, almost all considered backdoor based fpt satisfiability parameters are
incomparable with almost all considered decomposition based fpt satisfiability
parameters. A notable exception is the satisfiability parameter dbForest. It is
easy to see that the treewidth of the incidence graph of a CNF formula is no
greater than the size of a smallest deletion Forest-backdoor set plus one, as the
latter forms a feedback vertex set of the incidence graph. Thus the treewidth
of incidence graphs is a more general satisfiability parameter than the size of
a smallest deletion Forest-backdoor sets. However, one can construct CNF
formulas F with sbForest(F) = 1 whose directed incidence graph has arbitrarily

306 S. Gaspers and S. Szeider

large clique-width. Just take a formula whose incidence graph is a subdivision
of a large square grid, and add a further variable x such that on each path
which is a subdivision of one edge of the grid there is a clause containing x
and a clause containing ¬x. Thus, the satisfiability parameter sbForest, which is
fpt by Theorem 5, is incomparable to all the decomposition based satisfiability
parameters considered above.

Figure 1 shows the relationship between some of the discussed fpt satisfiability
parameters.

treewidth of incidence graphstreewidth of primal graphs

treewidth of dual graphs

deletion Forest-backdoor sets strong Forest-backdoor sets

Fig. 1. Relationship between some fpt satisfiability parameters. An arrow from A to
B means that B is more general than A. If there is now arrow between A and B then
A and B are incomparable.

9 Kernels

The use of strong or deletion backdoor sets for SAT decision, with respect to a
base class C, involves two tasks:

1. backdoor detection, to find a strong (or deletion) backdoor set of size at most
k, or to report that such a backdoor set does not exist,

2. backdoor evaluation, to use a given strong (or deletion) backdoor set of size
at most k to determine whether the CNF formula under consideration is
satisfiable.

In each case where backdoor detection is fixed-parameter tractable, one can now
ask whether the detection problem admits a polynomial kernel. For instance, for
the classes Horn and 2CNF, backdoor detection can be rephrased as Vertex

Cover or as 3-Hitting Set problems, as discussed above, and therefore admits
polynomial kernels [18,1].

Backdoor evaluation is trivially fixed-parameter tractable for any base class,
but it is unlikely that it admits a polynomial kernel.

Proposition 11 ([98]). C-Backdoor Set Evaluation does not admit a
polynomial kernel for any self-reducible base class C unless NP ⊆ co-NP/poly.

This proposition is a trivial consequence of the well-known result that SAT

parameterized by the number of variables has no polynomial kernel unless NP ⊆
co-NP/poly [10,44], and the fact that var(F) is always a strong C-backdoor set
of F if C is self-reducible.

Backdoors to Satisfaction 307

Less immediate is the question whether C-Backdoor Set Evaluation ad-
mits a polynomial kernel if the inputs are restricted to 3CNF formulas, as 3SAT
parameterized by the number of variables has a cubic kernel by trivial reasons.
However, for Horn and 2CNF this question can be answered negatively.

Proposition 12 ([98]). C-Backdoor Set Evaluation does not admit a
polynomial kernel for C ∈ {Horn, 2CNF} unless NP ⊆ co-NP/poly, even if
the input formula is in 3CNF.

10 Backdoor Trees

Backdoor trees are binary decision trees on backdoor variables whose leaves
correspond to instances of the base class. Every strong backdoor set of size k
gives rise to a backdoor tree with at least k + 1 and at most 2k leaves. It is
reasonable to rank the hardness of instances in terms of the number of leaves
of backdoor trees, thus gaining a more refined view than by just comparing the
size of backdoor sets.

Consider the CNF formula F with variables x1, . . . , x2n and y1, . . . , yn con-
sisting of all clauses of the form

{yi,¬x1, . . . ,¬x2i−2, x2i−1,¬x2i, . . . ,¬x2n},
{yi,¬x1, . . . ,¬x2i−1, x2i,¬x2i+1, . . . ,¬x2n},

for 1 ≤ i ≤ n. The set B = {y1, . . . , yn} is a strong Horn-backdoor set
(in fact, B is the smallest possible). However, every Horn-backdoor tree T
with var(T) = {y1, . . . , yn} has 2n leaves. On the other hand, the formula F has
a Horn-backdoor tree T ′ with only 2n+1 leaves where var(T ′) = {x1, . . . , x2n}.
Thus, when we want to minimize the number of leaves of backdoor trees, we
must not restrict ourselves to variables of a smallest strong backdoor set.

The problem C-Backdoor Tree Detection now takes as input a CNF
formula F , a parameter k, and asks whether F has a C-backdoor tree with at
most k leaves.

A base class C is said to admit a loss-free kernelization if there exists a
polynomial-time algorithm that, given a CNF formula F and an integer k, either
correctly decides that F has no strong C-backdoor set of size at most k, or com-
putes a set X ⊆ var(F) such that the following conditions hold: (i) X contains
all minimal strong C-backdoor sets of F of size at most k; and (ii) the size of X
is bounded by a computable function that depends on k only.

Samer and Szeider [88] have shown that C-Backdoor Tree Detection

is fixed-parameter tractable for every base class C that admits a loss-free ker-
nelization. Since Buss-type kernelization is loss-free, the two classes Horn and
2CNF admit a loss-free kernelization. Hence C-Backdoor Tree Detection

is fixed-parameter tractable for C ∈ {2CNF,Horn}.

11 Backdoors for Problems beyond NP

The backdoor approach has been successfully applied to obtain fixed-parameter
tractability for problems whose unparameterized worst-case complexity lies

308 S. Gaspers and S. Szeider

beyond NP. In particular, FPT results have been obtained for the #P -complete
problem Propositional Model Counting, the PSPACE-complete QBF-SAT prob-
lem, and problems of nonmonotonic reasoning and abstract argumentation that
are located on the second level of the Polynomial Hierarchy. In this section we
briefly survey these results.

11.1 Propositional Model Counting

The #SAT problem asks to compute for a given CNF formula F the number of
assignments τ ∈ 2var(F) that satisfy F . This problem arises in several areas of Ar-
tificial Intelligence, in particular in the context of probabilistic reasoning [3,86].
The problem is #P-complete and remains #P-hard even for monotone 2CNF
formulas and Horn 2CNF formulas. It is NP-hard to approximate the number of
satisfying assignments of a CNF formula with n variables within 2n

1−ε

for any
ε > 0. This approximation hardness holds also for monotone 2CNF formulas and
Horn 2CNF formulas [86]. However, if #SAT can be solved in polynomial time
O(nc) for the formulas of a base class C, and if we know a strong C-backdoor
set of a formula F of size k, then we can compute the number of satisfying as-
signments of F in time O(2knc) [71,90]. For some applications in probabilistic
reasoning one is interested in the weighted model counting (WMC) problem,
which is more general than #SAT (see, e.g., [92,15]). Since the backdoor set ap-
proach applies also to the more general problem, we will use it for the following
discussions.

A weighting w of a CNF formula F is a mapping w that assigns each variable
x ∈ var(F) a rational number 0 ≤ w(x) ≤ 1; this generalizes to literals by
w(x) = 1 − w(x) and to truth assignments τ ∈ 2X by w(τ) =

∏
x∈X w(xτ(x)).

We define #w(F) as the sum of the weights of all assignments τ ∈ 2var(F) that
satisfy F . The WMC problem asks to compute #w(F) for a given CNF formula
F and weighting w. WMC is clearly at least as hard as computing #(F) as
we can reduce #SAT to WMC by using the weight 1/2 for all n variables and
multiplying the result by 2n. A strong C-backdoor set X of a CNF formula F
can be used to compute #w(F) via the equation

#w(F) =
∑
τ∈2X

w(τ) ·#w(F [τ]).

It is easy to see that WMC is polynomial for the base classes Clu and
Forest as the corresponding algorithms for deciding satisfiability for these
classes as discussed above allow a straightforward generalization to WMC. From
Theorem 5 and Proposition 8 we conclude that WMC is fixed-parameter
tractable parameterized by sbForest and dbClu.

11.2 Quantified Boolean Formulas

Many important computational tasks like planning, verification, and sev-
eral questions of knowledge representation and automated reasoning can be

Backdoors to Satisfaction 309

naturally encoded as the evaluation problem of quantified Boolean formulas
(QBF) [74,84,87]. A QBF consists of a propositional CNF formula F (the
“matrix”) and a quantifier prefix. For instance F = ∀y ∀z ∃x∃wF with F =
{{¬x, y,¬w}, {x,¬y, w}, {¬y, z}, {y,¬z}} is a QBF. The evaluation of quanti-
fied Boolean formulas constitutes a PSPACE-complete problem and is therefore
believed to be computationally harder than the NP-complete propositional sat-
isfiability problem [58,76,94]. Only a few tractable classes of quantified Boolean
formulas are known where the number of quantifier alternations is unbounded.
For example, the time needed to solve QBF formulas whose primal graph has
bounded treewidth grows non-elementarily in the number of quantifier alterna-
tions [75]. Two prominent tractable classes with unbounded quantifier alterna-
tions are QHorn and Q2CNF which are QBFs where the matrix is a Horn
or 2CNF formula, respectively. QHorn formulas and Q2CNF formulas can be
evaluated in polynomial time due to well-known results of Kleine Büning et al.
[13] and of Aspvall et al. [2], respectively.

In order to evaluate a QBF formula with a small strong Horn- or 2CNF-
backdoor set X efficiently, we require that X is closed under variable dependen-
cies. That is, if x depends on y and x ∈ X , then also y ∈ X , where we say that
x depends on y if the quantifier for y appears to the left of the quantifier for x,
and one cannot move the quantifier for y to the right of x without changing the
validity of the QBF. In general deciding whether a variable depends on the other
is PSPACE complete, but there are “over-approximations” of dependencies that
can be computed in polynomial time. Such over-approximations can be formal-
ized in terms of dependency schemes. Indeed, it is fixed-parameter tractable to
detect strong Horn or 2CNF-backdoor sets of size at most k that are closed
with respect to any fixed polynomial-time decidable dependency scheme [89].
This fpt result allows an unbounded number of quantifier alternations for each
value of the parameter, in contrast to the results for parameter treewidth.

11.3 Nonmonotonic Reasoning

Answer-Set Programming (ASP) is an increasingly popular framework for declar-
ative programming [65,69]. ASP allows to describe a problem by means of rules
and constraints that form a disjunctive logic program P over a finite universe U
of atoms. A rule r is of the form (x1 ∨ · · · ∨ xl ← y1, . . . , yn,¬z1, . . . ,¬zm). We
write {x1, . . . , xl} = H(r) (the head of r) and {y1, . . . , yn, z1, . . . , zm} = B(r)
(the body of r), B+(r) = {y1, . . . , yn} and B−(r) = {z1, . . . , zn}. A set M of
atoms satisfies a rule r if B+(r) ⊆M and M ∩B−(r) = ∅ implies M ∩H(r) �= ∅.
M is a model of P if it satisfies all rules of P . The GL reduct of a program P
under a set M of atoms is the program PM obtained from P by first removing
all rules r with B−(r) ∩M �= ∅ and second removing all ¬z where z ∈ B−(r)
from all remaining rules r [49]. M is an answer set of a program P if M it is a
minimal model of PM .

For instance, from the program P = {(tweety-flies ← tweety-is-a-bird,
¬tweety-is-a-penguin), (tweety-is-a-bird←)} we may conclude that tweety-flies,
since this fact is contained in the only answer set {tweety-is-a-bird, tweety-flies}

310 S. Gaspers and S. Szeider

of P . If we add the fact tweety-is-a-penguin to the program and obtain P ′ =
P ∪ {(tweety-is-a-penguin ←)}, then we have to retract our conclusion tweety-
flies since this fact is not contained in any answer set of P ′ (the only answer set
of P ′ is {tweety-is-a-bird, tweety-is-a-penguin}). This nonmonotonic behaviour
that adding a fact may allow fewer conclusions is typical for many applications
in Artificial Intelligence. The main computational problems for ASP (such as
deciding whether a program has a solution, or if a certain atom is contained
in at least one or in all answer sets) are of high worst-case complexity and are
located at the second level of the Polynomial Hierarchy [38].

Also for ASP several islands of tractability are known, and it is possible to
develop a backdoor approach [42]. Similar to SAT one can define partial truth
assignments τ on a set of atoms and solve a disjunctive logic program P by
solving all the reduced programs P [τ]. However, the situation is trickier than for
satisfiability. Although every answer set of P corresponds to an answer set of
P [τ] for some truth assignment τ , the reverse direction is not true. Therefore,
one needs to run a check for each answer set of P [τ] whether it gives rise to an
answer set of P . Although this correctness check is polynomial, we must ensure
that we do not need to carry it out too often. A sufficient condition for bounding
the number of checks is that we can compute all answer sets of a program P ∈ C
in polynomial time (“C is enumerable”). In particular, this means that P ∈ C has
only a polynomial number of answer sets, and so we need to run the correctness
check only a polynomial number of times.

Several enumerable islands of tractability have been identified and studied
regarding the parameterized complexity of backdoor set detection [42]. For in-
stance, programs where each rule head contains exactly one atom and each rule
body is negation-free are well-known to have exactly one answer set. Such pro-
grams are called Horn programs, and similar to satisfiability, one can use vertex
covers to compute backdoor sets with respect to Horn. Further enumerable is-
lands of tractability can be defined by forbidding cycles in graphs, digraphs,
and mixed graphs associated with disjunctive logic programs. Now, one can use
feedback vertex set (fvs) algorithms for the considered graphs to compute back-
door sets: undirected fvs [33], directed fvs [20], and mixed fvs [12]. One can get
even larger enumerable islands of tractability by labeling some of the vertices or
edges and by only forbidding “bad” cycles, namely cycles that contain at least
one labeled edge or vertex. For the undirected case one can use subset feedback
vertex set algorithms to compute backdoor sets [28,57]. Currently it is open
whether this problem is fixed-parameter tractable for directed or mixed graphs.
Even larger islands can be obtained by only forbidding bad cycles with an even
number of labeled vertices or edges [41]. This gives rise to further challenging
feedback vertex set problems.

11.4 Abstract Argumentation

The study of arguments as abstract entities and their interaction in form of at-
tacks as introduced by Dung [35] has become one of the most active research
branches within Artificial Intelligence, Logic and Reasoning [5,7,80]. Abstract

Backdoors to Satisfaction 311

argumentation provides suitable concepts and formalisms to study, represent,
and process various reasoning problems most prominently in defeasible reasoning
(see, e.g., [79,11]) and agent interaction (see, e.g., [77]). An abstract argumenta-
tion system can be considered as a directed graph, where the vertices are called
“arguments” and a directed edge from a to b means that argument a “attacks”
argument b.

A main issue for any argumentation system is the selection of acceptable sets
of arguments, called extensions. Whether or not a set of arguments is accepted
is considered with respect to certain properties of sets of arguments, called se-
mantics [4]. For instance, the preferred semantics requires that an extension is
a maximal set of arguments with the properties that (i) the set is independent,
and (ii) each argument outside the set which attacks some argument in the set
is itself attacked by some argument in the set. Property (i) ensures that the set
is conflict-free, property (ii) ensures that the set defends itself against attacks.

Important computational problems are to determine whether an argument
belongs to some extension (credulous acceptance) or whether it belongs to all
extensions (skeptical acceptance) [32,37]. For most semantics, including the pre-
ferred semantics, the problems are located on the second level of the Polynomial
Hierarchy [36].

It is known that the acceptance problems can be solved in polynomial time if
the directed graph of the argumentation framework is acyclic, noeven (contains
no even cycles), symmetric, or bipartite [35,4,24,36]. Thus, these four properties
give rise to islands of tractability for abstract argumentation, and one can ask
whether a backdoor approach can be developed to solve the acceptance problems
for instances that are close to an island. Here it is natural to consider deletion
backdoor sets, i.e., we delete arguments to obtain an instance that belongs to the
considered class. For the islands of acyclic, symmetric, and bipartite argumen-
tation frameworks we can find a backdoor using the fixed-parameter algorithms
for directed feedback vertex set [20], vertex cover [33] and for graph bipartiza-
tion [83], respectively. For finding a vertex set of size k that kills all directed
cycles of even length we only know an XP algorithm which is based on a deep
result [85].

However, it turns out that using the backdoor set is tricky and quite different
from satisfiability and answer set programming [73]. The acceptance problems
remain (co-)NP-hard for instances that can be made symmetric or bipartite by
deleting one single argument. On the other hand, if an instance can be made
acyclic or noeven by deleting k arguments, then the acceptance problems can
be solved in time 3knc. The base 3 of the running time comes from the fact
that the evaluation algorithm considers three different cases for the arguments
in the backdoor set: (1) the argument is in the acceptable set, (2) the argument
is not in the set and is attacked by at least one argument from the set, and
(3) the argument is not in the set but is not attacked by any argument from
the set.

312 S. Gaspers and S. Szeider

12 Conclusion

Backdoor sets aim at exploiting hidden structures in real-world problem in-
stances. The effectiveness of this approach has been investigated empirically in
[31,42,63,88] and in many cases, small backdoor sets were found for large indus-
trial instances.

As several backdoor set problems reduce to well-investigated core problems
from parameterized complexity, such asVertex Cover, 3-Hitting Set, Feed-
back Vertex Set, and their variants, a few decades of focused research efforts
can be used to detect backdoor sets efficiently. Nevertheless, several questions re-
main open. In particular, the parameterized complexity classification of several
permissive problems seems challenging.As discussed at the end of Subsection 11.3,
the classification of variants of the Feedback Vertex Set problem would also
shed some light on backdoor set detection problems in nonmonotonic reasoning.

We believe that more research in this direction is necessary if we want to
explain the good practical performance of heuristic SAT solvers. Directions for
future research could involve multivariate parameterizations of backdoor prob-
lems and the consideration of backdoors to combinations of different base classes.

Acknowledgment. We thank Ryan Williams for his comments on an earlier
version of this survey.

References

1. Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. of Computer
and System Sciences 76(7), 524–531 (2010)

2. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the
truth of certain quantified Boolean formulas. Information Processing Letters 8(3),
121–123 (1979)

3. Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for #SAT
and Bayesian inference. In: 44th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2003), pp. 340–351 (2003)

4. Baroni, P., Giacomin, M.: Semantics of abstract argument systems. In: Rahwan,
I., Simari, G. (eds.) Argumentation in Artificial Intelligence, pp. 25–44. Springer
(2009)

5. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Ar-
tificial Intelligence 171(10-15), 619–641 (2007)

6. Berre, D.L., Parrain, A.: On SAT technologies for dependency management and
beyond. In: Thiel, S., Pohl, K. (eds.) Proceedings of 12th International Conference
Software Product Lines Workshops, SPLC 2008, Limerick, Ireland, September 8-
12, vol. 2, pp. 197–200. Lero Int. Science Centre, University of Limerick, Ireland
(2008)

7. Besnard, P., Hunter, A.: Elements of Argumentation. The MIT Press (2008)
8. Bjesse, P., Leonard, T., Mokkedem, A.: Finding Bugs in an Alpha Microprocessor

Using Satisfiability Solvers. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001.
LNCS, vol. 2102, pp. 454–464. Springer, Heidelberg (2001)

9. Bodlaender, H.L.: On disjoint cycles. International Journal of Foundations of
Computer Science 5(1), 59–68 (1994)

Backdoors to Satisfaction 313

10. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. of Computer and System Sciences 75(8), 423–434 (2009)

11. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelli-
gence 93(1-2), 63–101 (1997)

12. Bonsma, P., Lokshtanov, D.: Feedback Vertex Set in Mixed Graphs. In: Dehne, F.,
Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 122–133. Springer,
Heidelberg (2011)

13. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean
formulas. Information and Computation 117(1), 12–18 (1995)

14. Cai, L., Huang, X.: Fixed-parameter approximation: Conceptual framework and
approximability results. Algorithmica 57(2), 398–412 (2010)

15. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
Artificial Intelligence 172(6-7), 772–799 (2008)

16. Chen, J., Kanj, I.A.: On approximating minimum vertex cover for graphs with
perfect matching. Theoretical Computer Science 337(1-3), 305–318 (2005)

17. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for
feedback vertex set problems. J. of Computer and System Sciences 74(7), 1188–
1198 (2008)

18. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further im-
provements. J. Algorithms 41(2), 280–301 (2001)

19. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoretical
Computer Science 411(40–42), 3736–3756 (2010)

20. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. J. of the ACM 55(5), Art. 21, 19
(2008)

21. Chen, Y.-J., Grohe, M., Grüber, M.: On Parameterized Approximability. In: Bod-
laender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 109–120.
Springer, Heidelberg (2006)

22. Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. 3rd Annual
Symp. on Theory of Computing, pp. 151–158. Shaker Heights, Ohio (1971)

23. Cook, S.A., Mitchell, D.G.: Finding hard instances of the satisfiability problem: a
survey. In: Satisfiability problem: theory and applications, Piscataway, NJ. Amer-
ican Mathematical Society, pp. 1–17 (1997)

24. Coste-Marquis, S., Devred, C., Marquis, P.: Symmetric Argumentation Frame-
works. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 317–328.
Springer, Heidelberg (2005)

25. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic. Discr.
Appl. Math. 108(1-2), 23–52 (2001)

26. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of
Theoretical Computer Science, vol. B, pp. 193–242. Elsevier Science Publishers,
North-Holland (1990)

27. Crama, Y., Ekin, O., Hammer, P.L.: Variable and term removal from Boolean
formulae. Discr. Appl. Math. 75(3), 217–230 (1997)

28. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset Feedback
Vertex Set Is Fixed-Parameter Tractable. In: Aceto, L., Henzinger, M., Sgall, J.
(eds.) ICALP 2011. LNCS, vol. 6755, pp. 449–461. Springer, Heidelberg (2011)

29. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. of
the ACM 7(3), 201–215 (1960)

314 S. Gaspers and S. Szeider

30. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5, 394–397 (1962)

31. Dilkina, B.N., Gomes, C.P., Sabharwal, A.: Tradeoffs in the Complexity of Back-
door Detection. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 256–270.
Springer, Heidelberg (2007)

32. Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and
default theories. Theoretical Computer Science 170(1-2), 209–244 (1996)

33. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, New York (1999)

34. Downey, R.G., Fellows, M.R., McCartin, C.: Parameterized Approximation Prob-
lems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169,
pp. 121–129. Springer, Heidelberg (2006)

35. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77(2), 321–357 (1995)

36. Dunne, P.E.: Computational properties of argument systems satisfying graph-
theoretic constraints. Artificial Intelligence 171(10-15), 701–729 (2007)

37. Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Arti-
ficial Intelligence 141(1-2), 187–203 (2002)

38. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic program-
ming: propositional case. Ann. Math. Artif. Intell. 15(3-4), 289–323 (1995)

39. Fellows, M.R., Szeider, S., Wrightson, G.: On finding short resolution refutations
and small unsatisfiable subsets. Theoretical Computer Science 351(3), 351–359
(2006)

40. Fernau, H.: A top-down approach to search-trees: Improved algorithmics for 3-
hitting set. Algorithmica 57(1), 97–118 (2010)

41. Fichte, J.K.: The good, the bad, and the odd: Cycles in answer-set programs. In:
ESSLII 2011 (2011)

42. Fichte, J.K., Szeider, S.: Backdoors to tractable answer-set programming. Tech-
nical Report 1104.2788, Arxiv.org (2012), Extended and updated version of a
paper that appeared in the proceedings of IJCAI 2011. The 22nd International
Joint Conference on Artificial Intelligence (2012)

43. Fischer, E., Makowsky, J.A., Ravve, E.R.: Counting truth assignments of formulas
of bounded tree-width or clique-width. Discr. Appl. Math. 156(4), 511–529 (2008)

44. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. In: Dwork, C. (ed.) Proceedings of the 40th Annual ACM Sympo-
sium on Theory of Computing, Victoria, British Columbia, Canada, May 17-20,
pp. 133–142. ACM (2008)

45. Garey, M.R., Johnson, D.R.: Computers and Intractability. W. H. Freeman and
Company, New York (1979)

46. Gaspers, S., Szeider, S.: Backdoors to acyclic SAT. In: Proceedings of ICALP
2012 (Track A: Algorithms, Complexity and Games), the 39th International Col-
loquium on Automata, Languages and Programming, University of Warwick, UK,
July 9-13. LNCS. Springer (to appear, 2012)

47. Gaspers, S., Szeider, S.: Strong backdoors to nested satisfiabiliy. In: Proceedings
of SAT 2012, the 15th International Conference on Theory and Applications of
Satisfiability Testing, Trento, Italy, June 17-20, 2012. LNCS. Springer (to appear,
2012)

48. Gaspers, S., Szeider, S.: Strong backdoors to bounded treewidth SAT. Technical
report 1204.6233, Arxiv.org (2012)

Backdoors to Satisfaction 315

49. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9(3/4), 365–386 (1991)

50. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In:
Handbook of Knowledge Representation. Foundations of Artificial Intelligence,
vol. 3, pp. 89–134. Elsevier (2008)

51. Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artificial intelligence,
constraint satisfaction, and database problems. The Computer Journal 51(3), 303–
325 (2006); survey paper

52. Guo, J., Hüffner, F., Niedermeier, R.: A Structural View on Parameterizing Prob-
lems: Distance from Triviality. In: Downey, R., Fellows, M., Dehne, F. (eds.) IW-
PEC 2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004)

53. Hertli, T.: 3-SAT faster and simpler - unique-SAT bounds for PPSZ hold in gen-
eral. In: Ostrovsky, R. (ed.) Proceedings of the 52nd Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2011). IEEE (2011)

54. Iwama, K.: CNF-satisfiability test by counting and polynomial average time.
SIAM J. Comput. 18(2), 385–391 (1989)

55. Kakimura, N., Kawarabayashi, K., Kobayashi, Y.: Erdös-Pósa property and its
algorithmic applications: parity constraints, subset feedback set, and subset pack-
ing. In: Rabani, Y. (ed.) Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19,
pp. 1726–1736. SIAM (2012)

56. Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings ECAI 1992,
pp. 359–363 (1992)

57. Kawarabayashi, K., Kobayashi, Y.: Fixed-parameter tractability for the subset
feedback set problem and the s-cycle packing problem. Technical report, Univer-
sity of Tokyo, Japan (2010); see also [55]

58. Büning, H.K., Lettman, T.: Propositional logic: deduction and algorithms. Cam-
bridge University Press, Cambridge (1999)

59. Knuth, D.E.: Nested satisfiability. Acta Informatica 28(1), 1–6 (1990)

60. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satis-
faction. J. of Computer and System Sciences 61(2), 302–332 (2000); Special issue
on the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, Seattle, WA (1998)

61. Levin, L.: Universal sequential search problems. Problems of Information Trans-
mission 9(3), 265–266 (1973)

62. Lewis, H.R.: Renaming a set of clauses as a Horn set. J. of the ACM 25(1), 134–135
(1978)

63. Li, Z., van Beek, P.: Finding Small Backdoors in SAT Instances. In: Butz, C.,
Lingras, P. (eds.) Canadian AI 2011. LNCS, vol. 6657, pp. 269–280. Springer,
Heidelberg (2011)

64. Gupta, A., Prasad, M., Biere, A.: A survey of recent advances in SAT-based
formal verification. Software Tools for Technology Transfer 7(2), 156–173 (2005)

65. Marek, V.W., Truszczynski, M.: Stable models and an alternative logic program-
ming paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective,
pp. 169–181. Springer (1999)

66. Marx, D., Schlotter, I.: Parameterized complexity and local search approaches for
the stable marriage problem with ties. Algorithmica 58(1), 170–187 (2010)

67. Marx, D., Schlotter, I.: Stable assignment with couples: parameterized complexity
and local search. Discrete Optim. 8(1), 25–40 (2011)

316 S. Gaspers and S. Szeider

68. Mishra, S., Raman, V., Saurabh, S., Sikdar, S., Subramanian, C.R.: The Com-
plexity of Finding Subgraphs Whose Matching Number Equals the Vertex Cover
Number. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 268–279.
Springer, Heidelberg (2007)

69. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25(3-4), 241–273 (1999); Logic program-
ming with non-monotonic semantics: representing knowledge and its computation

70. Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to
Horn and binary clauses. In: Proceedings of SAT 2004 Seventh International
Conference on Theory and Applications of Satisfiability Testing, Vancouver, BC,
Canada, May 10-13, pp. 96–103 (2004)

71. Nishimura, N., Ragde, P., Szeider, S.: Solving #SAT using vertex covers. Acta
Informatica 44(7-8), 509–523 (2007)

72. Ordyniak, S., Paulusma, D., Szeider, S.: Satisfiability of acyclic and almost acyclic
CNF formulas. In: Lodaya, K., Mahajan, M. (eds.) IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2010, Chennai, India, December 15-18. LIPIcs, vol. 8, pp. 84–95. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2010)

73. Ordyniak, S., Szeider, S.: Augmenting tractable fragments of abstract argumen-
tation. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, IJCAI 2011, pp. 1033–1038. AAAI Press (2011)

74. Otwell, C., Remshagen, A., Truemper, K.: An effective QBF solver for planning
problems. In: Proceedings of MSV/AMCS, pp. 311–316. CSREA Press (2004)

75. Pan, G., Vardi, M.Y.: Fixed-parameter hierarchies inside PSPACE. In: Proceed-
ings of 21th IEEE Symposium on Logic in Computer Science (LICS 2006), Seattle,
WA, USA, August 12-15, pp. 27–36. IEEE Computer Society Press (2006)

76. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
77. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some

formal inter-agent dialogues. J. Logic Comput. 13(3), 347–376 (2003)
78. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest com-

mon supersequence and longest common subsequence problems. J. of Computer
and System Sciences 67(4), 757–771 (2003)

79. Pollock, J.L.: How to reason defeasibly. Artificial Intelligence 57(1), 1–42 (1992)
80. Rahwan, I., Simari, G.R. (eds.): Argumentation in Artificial Intelligence. Springer

(2009)
81. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable al-

gorithms for finding feedback vertex sets. ACM Transactions on Algorithms 2(3),
403–415 (2006)

82. Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed parameter tractable. J. of Com-
puter and System Sciences 75(8), 435–450 (2009)

83. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res.
Lett. 32(4), 299–301 (2004)

84. Rintanen, J.: Constructing conditional plans by a theorem-prover. J. Artif. Intell.
Res. 10, 323–352 (1999)

85. Robertson, N., Seymour, P.D., Thomas, R.: Permanents, Pfaffian orientations,
and even directed circuits. Ann. of Math (2) 150(3), 929–975 (1999)

86. Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence 82(1-
2), 273–302 (1996)

Backdoors to Satisfaction 317

87. Sabharwal, A., Ansotegui, C., Gomes, C.P., Hart, J.W., Selman, B.: QBF Mod-
eling: Exploiting Player Symmetry for Simplicity and Efficiency. In: Biere, A.,
Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 382–395. Springer, Heidel-
berg (2006)

88. Samer, M., Szeider, S.: Backdoor trees. In: Twenty-Third Conference on Artificial
Intelligence, AAAI 2008, Chicago, Illinois, July 13–17, pp. 363–368. AAAI Press
(2008)

89. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. Journal of
Automated Reasoning 42(1), 77–97 (2009)

90. Samer, M., Szeider, S.: Fixed-parameter tractability. In: Biere, A., Heule, M., van
Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, vol. ch. 13, pp. 425–454.
IOS Press (2009)

91. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete
Algorithms 8(1), 50–64 (2010)

92. Sang, T., Beame, P., Kautz, H.A.: Performing bayesian inference by weighted
model counting. In: Proceedings, The Twentieth National Conference on Artificial
Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence
Conference, Pittsburgh, Pennsylvania, USA, July 9-13, pp. 475–482. AAAI Press
/ The MIT Press (2005)

93. Schaefer, T.J.: The complexity of satisfiability problems. In: Conference Record of
the Tenth Annual ACM Symposium on Theory of Computing, San Diego, Calif.,
pp. 216–226. ACM (1978)

94. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In:
Proc. Theory of Computing, pp. 1–9. ACM (1973)

95. Szeider, S.: On Fixed-Parameter Tractable Parameterizations of SAT. In:
Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202.
Springer, Heidelberg (2004)

96. Szeider, S.: Backdoor sets for DLL subsolvers. Journal of Automated Reason-
ing 35(1-3), 73–88 (2005); Reprinted as Giunchiglia, E., Walsh, T.(eds.): SAT
2005 - Satisfiability Research in the Year 2005, ch. 4. Springer Verlag (2006)

97. Szeider, S.: Matched formulas and backdoor sets. J. on Satisfiability, Boolean
Modeling and Computation 6, 1–12 (2008)

98. Szeider, S.: Limits of preprocessing. In: Proceedings of the Twenty-Fifth Confer-
ence on Artificial Intelligence, AAAI 2011, pp. 93–98. AAAI Press, Menlo Park
(2011)

99. Velev, M.N., Bryant, R.E.: Effective use of Boolean satisfiability procedures in
the formal verification of superscalar and VLIW microprocessors. J. Symbolic
Comput. 35(2), 73–106 (2003)

100. Weld, D.S.: Recent advances in AI planning. AI Magazine 20(2), 93–123 (1999)
101. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In:

Gottlob, G., Walsh, T. (eds.) Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, IJCAI 2003, pp. 1173–1178. Morgan Kauf-
mann (2003)

Studies in Computational Aspects of Voting
A Parameterized Complexity Perspective�

Dedicated to Michael R. Fellows on the occasion of his 60th birthday

Nadja Betzler, Robert Bredereck, Jiehua Chen, and Rolf Niedermeier

Institut für Softwaretechnik und Theoretische Informatik,
TU Berlin, Germany

{robert.bredereck,jiehua.chen,rolf.niedermeier}@tu-berlin.de

Abstract. We review NP-hard voting problems together with their sta-
tus in terms of parameterized complexity results. In addition, we survey
standard techniques for achieving fixed-parameter (in)tractability results
in voting.

1 Introduction

Once there is more than one alternative for a community to choose from, voting
comes into play. Different voters usually have conflicting preferences over the
alternatives, hence some voting protocol has to be used to reach a joint deci-
sion or, in other words, to aggregate preferences. Voting is part of the fields of
preference handling, decision making, and social choice. There are many voting
protocols whose pros and cons have been studied for centuries in such diverse
fields as philosophy, mathematics, political science, and economy. Recently, com-
puter science has entered the stage for several reasons. With the omnipresence
of the Internet and modern communication tools, applications such as auctions,
bids, ratings, and rankings have become an everyday business. All these are
related to voting scenarios. Moreover, the advent of intelligent multi-agent sys-
tems leads to numerous cases of preference aggregation. Inside computer science,
voting occurs in quite diverse areas, including planning problems in multi-agent
systems [ER91, ER97], spam detection [DKNS01a], databases [FKS03], bioin-
formatics [JSA08], and graph drawing [BBD09]. We refer interested readers to a
couple of surveys [BCE12, BEH+10, CELM07, Con10, FHH10, FHHR09a] and a
book [RBLR11, in German] for a general overview on voting in computer science.

Voting problems (winner determination being just the most basic one) come
in many different guises, often making the corresponding tasks computationally
challenging to solve. First of all, there are numerous different voting protocols
including Plurality, k-Approval, and Kemeny, to name just a few. Then, it may
happen that there are only incomplete voter preferences available, making the
determination of a possible or necessary winner hard. Moreover, questions such
as manipulation, control, or bribery often lead to NP-hard problems. The study
� Supported by the DFG, research project PAWS, NI 369/10.

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 318–363, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Studies in Computational Aspects of Voting 319

of the computational complexity of voting problems was initiated by a seminal
series of papers of Bartholdi, Orlin, Tovey, and Trick [BO91, BTT89a, BTT89b].
Many voting problems turned out to be NP-hard. Actually, Bartholdi et al.
pointed out that in the context of voting, computational intractability may
sometimes be a desirable property. For instance, it is desirable to have a voting
protocol that is “resistant” against attacks such as manipulation or bribery.

Voting problems carry many natural parameters, obviously including the num-
ber of candidates and the number of votes. There are real-world scenarios for
each of them having small values. Hence, the analysis of parameterized compu-
tational complexity comes into play. To the best of our knowledge, this fruit-
ful line of research was explicitly initiated Christian, Fellows, Rosamond, and
Slinko [CFRS07] in a work concerned with lobbying. Moreover, a complexity
analysis for manipulating voting systems when the parameter “number of candi-
dates” is small was addressed by Conitzer, Sandholm, and Lang [CSL07]. In this
survey, we try to review the state of the art and motivate the rapidly developing
field of parameterized complexity analysis for voting problems. See Lindner and
Rothe [LR08] for an early survey in this direction.

Our work is organized as follows. Section 2 introduces some basic concepts
and definitions related to both voting problems and parameterized complexity
analysis. In Section 3, we briefly review a number of prominent voting protocols
and some of their respective pros and cons. In Section 4, we survey in some
detail the state of the art concerning the multivariate complexity analysis for
Kemeny voting. This exhibits how many different parameters naturally occur
in a practically relevant voting problem, and how the tools of parameterized
complexity analysis can help to better understand the computational complex-
ity of an NP-hard voting problem. In Section 5, we present several NP-hard
voting problems and describe their status in terms of parameterized complex-
ity analysis. In Section 6, we describe applications of tools from parameterized
algorithmics that have been applied to gain fixed-parameter tractability results
for voting problems. Finally, in Section 7, we discuss the relevance and benefits
of parameterized (and multivariate) complexity analysis in voting scenarios and
conclude with numerous challenges for future research.

2 Preliminaries

Since we are talking about voting problems and their computational complexity,
we start with basic definitions from the context of voting. We assume familiarity
with classical computational complexity theory [Pap94, AB09], and we provide
some basic definitions concerning parameterized computational complexity the-
ory [DF99, FG06, Nie06].

Formally, an election (C, V) consists of a set C of m candidates (or, synony-
mously, alternatives) and a multiset V of n votes. If not stated otherwise, a vote
is a linear order (that is, a transitive, antisymmetric, and total relation) on C.
Sometimes we also call this a ranking over C. For example, for C = {a, b, c}, the
vote a �v b �v c expresses that a is the best-liked and c the least-liked candidate

320 N. Betzler et al.

in the vote v. We use ‘�’ instead of ‘�v’ if it is clear from the context which vote
we mean. For any two candidates a �= b, let #(a, b) be the number of votes that
rank candidate a higher than candidate b in the considered election. A voting
protocol1 is a function that maps an election to a subset of candidates, the set of
winners. When one is interested in finding a uniquely determined winner (that
is, a one-element winner set), one refers to such a candidate as unique winner.
When allowing for a set of winners, the corresponding candidates are denoted
as co-winners.

Sometimes we also consider a more general definition of votes. There are sce-
narios where (complete) linear orders are not available. That is, some candidates
are not comparable in some votes, leading to incomplete votes. In such cases, our
votes are partial orders on the candidate set. A linear order v extends a partial
order w if w ⊆ v, that is, for any c1, c2 ∈ C one has c1 �w c2 ⇒ c1 �v c2. Con-
sider two candidates a, b ∈ C and an incomplete vote v ∈ V . If neither a �v b
nor b �v a, then we say the candidate pair {a, b} is undetermined in vote v.

Parameterized Complexity. The concept of parameterized complexity was pio-
neered by Downey and Fellows [DF99] (see also [FG06, Nie06] for more recent
textbooks). The fundamental goal is to find out whether the seemingly unavoid-
able combinatorial explosion occurring in algorithms to decide NP-hard problems
can be confined to certain problem-specific parameters. The idea is the follow-
ing: When such a parameter assumes only small values in applications, then
an algorithm with a running time that is exponential exclusively with respect
to the parameter may be efficient and practical. We now provide some formal
definitions.

Definition 1 (Parameterized Problem). A parameterized problem is a lan-
guage L ⊆ Σ∗×Σ∗, where Σ is an alphabet. The second component is called the
parameter of the problem.

We typically consider the special case of parameters which are non-negative
integers or “combined” parameters which are tuples of non-negative integers. For
instance, an obvious parameter in voting is the number of candidates. Thus,
typically L ⊆ Σ∗ × N, where a combined parameter can be interpreted as the
maximum of its integer components.

Definition 2 (Fixed-Parameter Tractability). A parameterized problem L
is fixed-parameter tractable if there is an algorithm that decides in f(k) · |x|O(1)

time whether (x, k) ∈ L, where f is an arbitrary computable function depend-
ing only on k. Correspondingly, FPT denotes the class of all fixed-parameter
tractable parameterized problems.
1 In this survey, we do not discuss the more general concepts of social choice func-

tions or social welfare functions. Note that by our definition of voting protocols,
every voting protocol is anonymous, that is, the voting protocol does not discrim-
inate among voters. We will only exemplarily discuss some other properties of the
considered voting protocols when necessary. For an overview about general concepts
and properties of voting protocols, we refer to the two handbooks on social choice
and welfare [ASS02, ASS10].

Studies in Computational Aspects of Voting 321

We stress that the concept of fixed-parameter tractability is different from the
notion of “polynomial-time solvability for constant k” since an algorithm running
in O(|x|k) time does not show fixed-parameter tractability. All problems which
can be solved in running time |x|f(k) for a computable function f form the
complexity class XP, where f : N → N is a function depending only on k.
Clearly, FPT ⊆ XP.

For many parameterized problems, fixed-parameter tractability could not be
shown. Downey and Fellows [DF99] developed a theory of (presumable) param-
eterized intractability. It comprises of a hierarchy of complexity classes coming
along with complete problems. This so-called W-hierarchy consists of the follow-
ing classes and interrelations:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[Sat]⊆ W[P] ⊆ XP.

In this survey, we only provide intractability results regarding the first two levels
of (presumable) parameterized intractability captured by the complexity classes
W[1] and W[2]. The containment W[1] ⊆ FPT would not imply P = NP but the
failure of the Exponential Time Hypothesis [IP01, IPZ01].2 It is commonly be-
lieved that W[1]-hard problems are not fixed-parameter tractable. To show W[t]-
hardness for any non-negative integer t, we introduce the following reducibility
concept.

Definition 3 (Parameterized Reduction). Let L, L′ ⊆ Σ∗ × N be two pa-
rameterized problems. A parameterized reduction from L to L′ consists of two
mappings φ : Σ∗ × N → Σ∗ and g : N → N, where for every x ∈ Σ∗ and k ∈ N

it holds that

– (x, k) �→ φ(x, k) is computable in time h(k) · |x|O(1) with h : N→ N, and
– (x, k) ∈ L⇔ (φ(x, k), g(k)) ∈ L′.

Analogously to the case of NP-hardness, for any non-negative integer t, it suffices
to give a parameterized reduction from one W[t]-hard parameterized problem X
to a parameterized problem Y to show W[t]-hardness of Y . Containment of Y
in W[t] can be shown by giving a reduction from Y to a problem contained in
W[t]. If there are parameterized reductions for two problems such that each of
them can be reduced to the other problem, we say that they are FPT-equivalent.

Kernelization [Bod09, GN07] is an alternative way of showing fixed-parameter
tractability [CCDF97]. In a nutshell, it is a polynomial-time algorithm that trans-
forms an instance of a parameterized problem into an equivalent instance whose
size is bounded by a function of the parameter. This resulting instance is called
a problem kernel. Typically, kernelizations are based on several polynomial-time
executable data-reduction rules that help shrinking the instance size.

For more details about parameterized complexity theory we refer to the text-
books [DF99, FG06, Nie06] and a recent survey by Downey and Thilikos [DT11].
2 In a nutshell, the Exponential Time Hypothesis says that, for k ≥ 3, the NP-

complete k-SAT problem cannot be solved in time subexponential in the number
of variables.

322 N. Betzler et al.

Table 1. Hypothetical student rankings of TU Berlin (B), MIT (M), Oxford
University (O), Tsinghua University (T) and ETH Zurich (Z) according to re-
search in parameterized complexity, salary, practicing English, and cultural activities,
respectively

Criterion Institutions

Parameterized complexity B � O � M � T � Z
Salary Z � O � M � T � B
Practicing English M � O � B � Z � T
Cultural activities B � T � Z � M � O

3 Types of Voting Protocols

Suppose that a student decides to pursue his PhD in parameterized complexity
analysis. He gets five offers: From TU Berlin (B), MIT (M), Oxford Univer-
sity (O), Tsinghua University (T), and ETH Zurich (Z). He decides to select one
that is not only good in research but also offers a manifold of cultural activities,
as well as a good opportunity to polish his English. Last but not least, he needs
a decent income.

Depending on these different criteria, the five universities are ranked3. In the
field of parameterized complexity, TU Berlin is ranked first, followed by Oxford
University, MIT, and Tsinghua University. ETH Zurich is ranked last. As for
salaries, ETH Zurich makes the best offer, followed by Oxford University, MIT,
and Tsinghua University. TU Berlin offers the least. For practicing English, MIT
ranks first, followed by Oxford University, and then by TU Berlin. ETH Zurich is
ranked fourth and Tsinghua University last. With respect to cultural activities,
TU Berlin is ranked the best, followed by Tsinghua University, and then by
ETH Zurich. Oxford University is ranked last, just behind MIT. These rankings
are listed in Table 1.

The universities B, M, O, T, and Z can be seen as the candidates for an
election and the rankings in Table 1 as the votes on these candidates. Deciding
on an institution means aggregating the different rankings and deciding on the
winner of this election.

Applying different voting protocols to the same multiset of votes may lead to
different winners. Many of the most widely used voting protocols can be assigned
to one of the following two classes: scoring protocols and voting protocols based on
pairwise comparisons between candidates. In the following, we will look into these
two classes in some detail (Sections 3.1 and 3.2). In Section 3.3, we will take a look
at some additional voting protocols which fall into neither class. We illustrate
some common and popular voting protocols with the help of our PhD place
example. We emphasize that it would be beyond the scope of our survey to name

3 Clearly, these rankings are influenced by marketing and political pressure. In this
example, also a certain degree of bribery comes into play.

Studies in Computational Aspects of Voting 323

and discuss the properties (desirable and undesirable ones) of the various voting
protocols. For further information on this topic, or voting protocols in general,
we refer to the expositions of Arrow et al. [ASS02, ASS10], Gaertner [Gae09],
Nurmi [Nur87], Rothe et al. [RBLR11, in German], and Taylor [Tay05].

3.1 Scoring Protocols

In a (positional) scoring protocol, each candidate is assigned a certain number
of points from each vote depending on her position in this vote. A candidate is
called a winner if no other candidate gets a higher total sum of points.

Plurality. Plurality is perhaps the most widely used voting protocol. It is a
scoring protocol which assigns one point to the top-ranked candidate in each
vote, and zero points to all others. A candidate with the highest total score
belongs to the winner set. There may be multiple winners. In our PhD place
example, it is easily seen that the winning university is TU Berlin (2 points) if
we use the Plurality protocol to make the decision.

Plurality is very simple. However, it has some shortcomings. For example, it
is often criticized for considering only the topmost candidate of each vote and
completely disregarding the information about other candidates. For this reason
voters sometimes do not submit their true preferences if they know that their
most preferred candidate has only a small chance to win. Suppose that there is
an election on three candidates, a, b, and c, with

two votes a � b � c,
four votes c � b � a, and
three vote b � a � c.

According to the Plurality voting protocol, candidate c wins with four points.
However, if the first two voters exchange the positions of candidates a and b
in their votes such that they submit b � a � c instead of a � b � c, then
candidate b wins with five points. This is a better outcome for them, since they
prefer candidate b to candidate c.

k-Approval. Occasionally, a voter has more than one favorite candidate. The
k-Approval voting protocol gives the possibility to “approve” k candidates: The
first k candidates in a vote get one point each. Thus, Plurality is the same as
1-Approval. In our example, using 2-Approval, one would select Oxford Univer-
sity (3 points) for a PhD position, which intuitively seems to be a good com-
promise, since three of four criteria are ranking Oxford University in the second
position.

Veto. Another simple scoring protocol is Veto. It assigns zero points to the last
candidate and one point to each of the other candidates in each vote. Once
again, every candidate with the highest sum of points wins. Using Veto, the
PhD place example will result in selecting MIT (4 points). Veto is the same as
(m− 1)-Approval, where m is the total number of candidates.

324 N. Betzler et al.

Borda. A prominent voting protocol is Borda voting.4 Borda voting directly
translates the position of each candidate in a vote into the number of points she
gets. For each vote, Borda voting assigns zero points to the candidate ranked
last, one point to the candidate ranked last but one, etc., and the highest-ranked
candidate in each vote is assigned m−1 points. Once again, every candidate with
the highest total score wins. According to Borda voting, TU Berlin (10 points)
is the winner in the PhD place example.

Determining the set of winners using any of the scoring protocols described above
can be easily done in time polynomial in the input size.

3.2 Voting Protocols Based on Pairwise Comparisons

Comparison-based voting protocols date back to the 13th century. Ramon Lull,
who first came up with Borda voting, devised a voting protocol which takes into
account pairwise comparisons between any two candidates. Today, this is known
as the Condorcet method [dC85].5

Definition 4 (Condorcet Winner). A candidate is the Condorcet winner if
she is preferred to any other candidate in more than half of the votes.

Obviously, deciding whether a candidate is the Condorcet winner can be done ef-
ficiently, that is, in polynomial time. However, not every election has a Condorcet
winner. For instance, in the PhD place example, there is no Condorcet winner
since no institution has an absolute majority of votes which prefer it to any
other institution: TU Berlin beats both, Tsinghua University and ETH Zurich
by 3-to-1; TU Berlin and Oxford University, TU Berlin and MIT as well as Ox-
ford University and MIT are tied 2-to-2. The pairwise comparisons of every two
candidates are shown in Table 2.

There is a close relation between directed graphs and voting protocols based
on pairwise comparisons. More precisely, for each election there is a majority
graph which is defined as follows:

Definition 5 (Majority Graph). The majority graph of an election E =
(C, V) is a directed graph whose vertices are the candidates and there is an
arc from vertex v to vertex w if and only if more than half of the votes prefer
candidate v to candidate w. An arc from v to w is labeled with “x : y” which
means that x votes prefer v to w, and y votes prefer w to v.

Many voting problems (especially when comparison-based voting protocols are
involved) can be considered as directed (weighted) graph problems. For example,
if there is a vertex with exactly m− 1 outgoing arcs with m being the number
4 The Borda voting protocol was invented independently several times. It was first

described by Ramon Llull, a 13th century Majorcan writer and philosopher. It is
now named after Jean-Charles de Borda, a French mathematician, physicist, political
scientist of the 18th century [dB81].

5 Named after the 18th-century French philosopher Marie Jean Antonie Nicolas de
Caritat, Marquis de Condorcet.

Studies in Computational Aspects of Voting 325

Table 2. Pairwise comparisons in the PhD place example

Candidate pairs (x, y)
votes with # votes with

x � y y � x

(B, O) 2 2
(B, M) 2 2
(B, T) 3 1
(B, Z) 3 1
(O, M) 2 2
(O, T) 3 1
(O, Z) 2 2
(M, T) 3 1
(M, Z) 2 2
(T, Z) 2 2

B O M

TZ

3 : 1
3 : 1

3 : 1
3 : 1

Fig. 1. The majority graph of our PhD place example

of candidates, then the corresponding candidate is the Condorcet winner. As we
can easily see from the majority graph of our example in Figure 1, no vertex
with out-degree four exists. This meets with the fact that there is no Condorcet
winner in our PhD place example.

Although the existence of a Condorcet winner cannot be guaranteed, the
Condorcet winner for an election is always unique if it does exist. Many voting
protocols are designed to choose a candidate as the winner who is “closest” to the
Condorcet winner. In the following, we will take a closer look at five well-known
comparison-based voting protocols (Dodgson, Kemeny, Young, Copelandα, and
Maximin [Dod76, Kem59, You77, Cop51, Wal49, Fis77]) which all fulfill the
Condorcet principle, that is, the Condorcet winner for an election will be selected
as the winner if she exists. The winner determination problems for the first three
voting protocols are NP-hard, while the last two can be solved efficiently, that
is, in time polynomial in the input size.

Dodgson Voting. In his work “A Method of Taking Votes on More than Two Is-
sues” [Dod76], the English writer, mathematician, and logician Charles Lutwidge
Dodgson (better known as Lewis Carroll) proposed selecting the winner set as
follows: Any candidate requiring the minimum number of swaps between two

326 N. Betzler et al.

neighboring candidates to become a Condorcet winner is considered as a win-
ner. Given an election and a non-negative integer k ∈ N, determining whether
a candidate can become a Condorcet winner with at most k swaps in the given
votes is NP-complete [BTT89b]. This problem is called Dodgson Score. In
the PhD place example, the Dodgson score of TU Berlin is 2: By exchanging
the positions of TU Berlin and Oxford University, and then the positions of
TU Berlin and MIT, the ranking with respect to “Practicing English” turns into
B � M � O � Z � T and TU Berlin becomes the Condorcet winner. In fact,
this is the fewest number of swaps needed to let the PhD place example have
a Condorcet winner. Finally, we remark that generalized winner determination
for Dodgson is complete for parallel access to NP (PNP

|| -complete) [HHR97].

Kemeny Voting. This voting protocol goes back to Kemeny [Kem59] and Con-
dorcet [dC85] and was specified by Levenglick [Lev75] (see also our case study
for Kemeny voting in Section 4). Consider an election consisting of a multiset
of rankings of the candidates. The Kendall-Tau distance between rankings r1

and r2 is the number of swaps of two neighboring candidates in order to trans-
form r1 into r2. The score of a ranking r is the sum of Kendall-Tau distances
between r and each input ranking. A “consensus ranking” with respect to Ke-
meny voting is a ranking with minimum score. Correspondingly, we call such
a ranking a Kemeny consensus. The first candidate in a Kemeny consensus is
considered as a winner. TU Berlin as well as Oxford University are winners in
our PhD place example. See Section 4 for more details.

Kemeny voting has many desirable properties. For example, it is the only
voting protocol which is neutral and consistent6, and satisfies the Condorcet
principle [YL78]. Thus, Kemeny voting is used in various applications such as
meta-search engines, spam detection [DKNS01a], databases [FKS03, Scu07], or
the construction of genetic maps in bioinformatics [JSA08]. However, to deter-
mine a Kemeny consensus is computationally intractable. More precisely, the
Kemeny Score problem, that is, given an election and a non-negative integer
k ∈ N, determining whether the score of a Kemeny consensus is at most k is
NP-complete [BTT89b]. Some more general Kemeny voting related problems
(including winner determination) are even PNP

|| -complete [HSV05].

Young Voting. H. Peyton Young [You77] took a different approach to finding
a candidate “closest” to the Condorcet winner. His main idea was to delete the
fewest number of votes to let the remaining votes have a Condorcet winner. The
Young Score problem asks whether a candidate can become the Condorcet
winner in a “sub-election” consisting of at least k′ (k′ ∈ N) of the input votes,

6 A voting protocol is neutral if the candidates are treated equally, that is, if the
candidates of an election are renamed, the winner of the election with renamed
candidates is the renamed winner of the original election. Consistency requires that
if a candidate wins in two multisets of votes, then she should also win in the union
multiset of these two multisets.

Studies in Computational Aspects of Voting 327

while the Dual Young Score problem asks whether deleting at most k (k ∈ N)
votes can make a distinguished candidate the Condorcet winner. Both problems
are NP-complete [RSV03]. For the PhD place example, removing only one vote
(the ranking for practicing English) can make the remaining votes have a Con-
dorcet winner (TU Berlin). Finally, we remark that the Young winner prob-
lem, that is, deciding whether a distinguished candidate can become a Condorcet
winner by the deleting minimum number of votes, is PNP

|| -complete [RSV03]. As
one can easily verify, in our PhD place example, TU Berlin is a Young winner.

The NP-hardness results for the winner determination problems described above
make such voting protocols usually infeasible for practical use. However, in some
restricted scenarios winner determination becomes efficiently solvable. For exam-
ple, Dodgson Score is fixed-parameter tractable with respect to the number
of candidates. Table 4 in Section 5.1 gives some parameterized complexity re-
sults for Dodgson Score, Dual Young Score, and Young Score, while
the corresponding analysis of Kemeny voting is discussed in more detail in our
case study (Section 4).

Copeland α Voting. This voting protocol considers each pair of candidates: The
candidate that beats the other one in more than half of the votes is rewarded
one point, while the loser gets zero points. If the two candidates are tied, then
each gets α points. The candidate with highest total score wins. The origi-
nal Copeland voting [Cop51, BF02, Goo54] uses a slightly different way for
awarding points to the loser in a pairwise comparison. However, it is equivalent
to Copeland0.5 [FHHR09b]. In our PhD place example, TU Berlin wins with
(2 + 2 · α) points under Copelandα voting (see Figure 1). For α = 1, there are
also two more co-winners (Oxford University and MIT).

Maximin Voting. Let #min(x) = min{#(x, y) : y ∈ C \ {x}} for x ∈ C (recall
that #(c, c′) is the number of votes ranking candidate c higher than candi-
date c′). According to Maximin voting, a candidate c wins if she has the maxi-
mum value #min(c). In our PhD place example, TU Berlin, Oxford University,
and MIT are all winners under Maximin voting. Clearly, winner determina-
tion using Maximin voting can be done in time polynomial in the input size.
The Maximin concept originates from decision theory [Wal49, Sni08]. There are
many other names for this voting protocol. For instance, Fishburn [Fis77] called
it Condorcet procedure and Young [You77] used the name Minimax function.

We conclude this section with a remark on the relation between scoring proto-
cols and Condorcet-related protocols. Condorcet [dC85] argued that there are
elections whose Condorcet winner is not elected by any scoring protocol that
awards more points to the first ranked candidate than to the second ranked one,
and so forth; for example, this holds true for Borda voting [BF02]. The following
example is due to Brams and Fishburn [BF02, Section 9.3] and shall illustrate
this phenomenon. Suppose that there is an election on three candidates, a, b,
and c, with seven votes cast as follows:

328 N. Betzler et al.

three votes a � b � c,
two votes b � c � a,
one vote b � a � c, and
one vote c � a � b.

The Condorcet winner of this election is a. She beats both b and c by 4-to-
3. However, any scoring protocol assigning strictly more points to a candidate
placed 2nd than to a candidate placed 3rd makes b win. Indeed, Moulin [Mou91]
showed that no positional scoring protocol fulfills the Condorcet principle.

3.3 Further Voting Protocols

In this section, we introduce two more commonly used voting protocols which
require several stages to aggregate votes. We also discuss one additional issue
concerning the election of multiple winners.

Plurality with Runoff. This voting protocol consists of two rounds. In the first
round, it orders the candidates according to the number of votes in which they
rank first; all candidates but the first two in this new order are eliminated from
the original votes. In case that two or more candidates are tied to pass the first
round, Conitzer et al. [CRX09] argued that a candidate c is a winner if and only
if there exists a way to break ties in all steps such that c wins. In this survey, we
adopt a specific tie-breaking rule: Let C1 be the set of candidates that have the
highest number of first positions, and let C2 be the set of candidates that have
the second-highest number of first positions.

– If |C1| = 1 and |C2| = 1, or |C1| = 2, then go to the second round.
– If |C1| = 1 and |C2| ≥ 2, then the candidate c ∈ C2 who has the high-

est number of second positions stays. If |C1| ≥ 3, then the two candidates
among C1 with the highest numbers of second positions pass the first round.
For both cases (|C1| = 1 ∧ |C2| ≥ 2 or |C1| ≥ 3): If there are more than two
candidates to pass the first round, then for tie-breaking the number of third
positions is used, and so on. If, however, after m − 1 steps, still more than
two candidates are tied, then all these candidates pass the first round.

In the second round, Plurality voting is applied to the input votes restricted to
the candidates that pass the first round to elect a winner.

The second round can be omitted if in the first round there is a candidate
who ranks first in more than half of the votes.

In our PhD place example, TU Berlin safely passes to the second round.
However, ETH Zurich and MIT each rank first in one vote, and second in no
votes, so we have to consider the votes where they rank third. MIT ranks third
in two votes but ETH Zurich in only one vote, so MIT can stay for the second
round. After eliminating the other candidates, TU Berlin and MIT are tied 2-to-2
in the second round, so they both are co-winners.

Variations of Plurality With Runoff voting are widely used in the presidential
elections of many countries (such as Austria, Brazil, and France). It is criticized

Studies in Computational Aspects of Voting 329

for its so-called no-show paradox [Mou91], which means that sometimes it may
be advantageous not to submit your vote. Let us see an example to better un-
derstand this paradox. Suppose that there are 100 votes on the candidates, a, b,
and c, with

30 votes a � c � b,
41 votes b � a � c, and
29 votes c � b � a .

The winner according to Plurality with Runoff is b. However, if two of the voters
who favor a abstain, then in the first round a will be eliminated and c beats b by
59-to-41 in the second round. While this does not make candidate a win, these
votes do prefer candidate c to candidate b.

Single Transferable Voting (STV). To select a single winner, STV deletes the
candidates ranked first in the fewest votes. This procedure is repeated until a
candidate ranks first in more than half of the restricted votes–the votes without
deleted candidates. By deleting some candidates, some originally lower ranked
candidates can be transferred to a higher position. STV can take up to m − 1
stages with m being the total number of candidates. This happens if in each
stage no candidate ranks first in more than half of the restricted votes. Note
that if there are only three candidates, then STV for the single winner case is
equivalent to Plurality with Runoff voting, and, hence, suffers from the same
“no-show paradox”.

When using STV in our PhD place example, Oxford University and Tsinghua
University will be first deleted from the votes: No vote ranks Oxford University
or Tsinghua University as the first candidate. Then every candidate ranking
behind Oxford University or Tsinghua University in the original votes will be
transferred to a higher position:

Parameterized complexity: B � M � Z
Salary: Z � M � B
English usage: M � B � Z
Cultural activities: B � Z �M

In the next stage, we delete MIT and ETH Zurich from the remaining votes.
Finally, the only candidate remaining, that is, TU Berlin, is the winner according
to STV.

STV with some modifications is often used in political elections, for instance
in Australia, Ireland, and New Zealand.

Obviously, the winner determination problem for Plurality with Runoff or
STV can be solved in time polynomial in the input size.

Multi-Winner Protocols. Multi-winner elections come into play whenever one
has to elect an assembly whose members need to be authorized to take decisions
on behalf of the society. Hence, for a multi-winner voting protocol, it is impor-
tant to elect an assembly (winner set) that represents the society adequately.

330 N. Betzler et al.

Although the protocols stated above can be easily modified to return a set of
winners, for all of them except for STV this does arguably not lead to an ap-
propriate choice of winners [BF02, LB11]. An alternative way is based on the
concept of “misrepresentation”. Basically, in this model, each vote can assign a
misrepresentation value to every candidate. The set of winners is selected from
the candidates such that the total misrepresentation is minimized.

Borda voting is a natural example for a misrepresentation function: Every
vote assigns a misrepresentation value of zero to his favorite candidate, a value
of one to his second choice, a value of two to the third choice, and so on.

One natural approach for selecting winners is to choose a set of, say, k winning
candidates such that the sum of misrepresentation values is minimized (mini-
mum sum); another way is to minimize the maximum misrepresentation (mini-
max) [BEH+10, BF02]. In both cases, in the model suggested by Chamberlin
and Courant [CC83] every candidate can represent an unlimited number of votes,
that is, within a selected assembly a vote is always represented by an assembly
member for whom its misrepresentation value is minimal. Since this may lead
to the situation that different assembly members represent different numbers
of votes, Chamberlin and Courant suggested to use weights as a way out. In
contrast, the model suggested by Monroe [Mon95] requires that every assembly
member represents about the same number of votes, that is, at most �n/k� and
at least �n/k� for n votes and k winners.

Unfortunately, all four problem variants resulting from combining Chamber-
lin and Courant’s as well as Monroe’s approach with “minimax” or “minimum
sum” optimization are already NP-hard for the basic Borda misrepresentation
function [BSU11, LB11, PRZ08].

Parameterized complexity analysis with respect to the parameters “number
of winners”, “total misrepresentation value”, “number of voters”, and “number of
candidates” has been started only recently [BSU11].

4 Kemeny Voting

In this section, we provide a case study on different parameterizations of the
voting problem Kemeny Score (which was mentioned in Section 3.2). The op-
timization problem behind Kemeny Score can also be seen as a natural com-
binatorial median finding problem: Given a multiset of rankings, find a ranking
that is “closest” to the given rankings. Here, the distance measure is the so-called
Kendall-Tau distance. Let (C,V) be an election and let l be a ranking over C.
Then, the score of l is defined as∑

v∈V

KT-dist(v, l),

where KT-dist(v, l) denotes the Kendall-Tau distance. The Kendall-Tau distance
between v ∈ V and l is defined as

KT-dist(v, l) :=
∑

{a,b}⊆C

dv,l(a, b),

Studies in Computational Aspects of Voting 331

where dv,l(a, b) is 0 when v and l rank a and b in the same relative order, and 1,
otherwise. Formally, the corresponding decision problem is defined as follows:

Kemeny Score

Input: An election (C, V) and a non-negative integer k.
Question: Is there a ranking with score at most k?

A Kemeny consensus l∗ is a ranking with minimum score. The Kemeny score of
a given election is the score of l∗.

The Kemeny score of our PhD place example (see Section 3) is sixteen. For
instance, the ranking B � O � M � Z � T and the ranking O � M � B �
T � Z each forms a Kemeny consensus. There are altogether eighteen different
Kemeny consensuses. The reason is that most candidate pairs are tied 2-to-2
and both relative orderings of these two candidates contribute the same to the
score. Every Kemeny consensus for our PhD place example realizes the cheaper
relative ordering for all four non-tied candidate pairs (see Table 2 or Figure 1 in
Section 3.2).

For small examples like this, a Kemeny consensus is easy to find. However, in
practice one often has to deal with larger and more complicated instances. Ke-

meny Score is NP-hard, but in some applications exact solutions are required.
Here, parameterized algorithmics comes into play. In the remainder of this sec-
tion, we overview recent research concerning the parameterized complexity of
Kemeny Score (see also Table 3).

4.1 Input and Output Parameterizations

Three parameters directly appear in the problem definition of Kemeny Score.
The parameters “number n of votes” and “number m of candidates” are given
by the input. The parameter “Kemeny score k” is given by the solution of the
problem.

Number n of Votes. Kemeny Score is NP-hard even for elections with only
four votes [DKNS01a, DKNS01b]. This means that there is no hope for fixed-
parameter tractability with respect to the parameter “number of votes”. To
the best of our knowledge, NP-hardness for Kemeny Score with a constant
odd number of votes is still open. On the contrary, NP-hardness for Kemeny

Score with an unbounded odd number of votes has been shown by Bartholdi
et al. [BTT89b].

Number m of Candidates. Kemeny Score becomes fixed-parameter tractable
for the parameter “number of candidates”. This is easy to see: Try all possible m!
rankings over C, compute the corresponding scores, and check whether the min-
imum score is at most k. Note that, given an election with n votes and m candi-
dates, one can compute the score of any ranking in O(n ·m logm) time [KT06].

By a dynamic programming approach, one can improve the exponential part
of the running time from m! to 2m [BFG+09, RS07]. The basic idea behind

332 N. Betzler et al.

Table 3. Parameterized complexity of Kemeny Score and two of its generalizations.
In case of fixed-parameter tractability results, we only state the exponential parts
of the corresponding running times if provided in the corresponding papers. “NP-h”
means NP-hard. Results marked by (♣) follow from [DKNS01a, DKNS01b], (♦) follow
from [KS10], (♠) follow from [MRS09], and (♥) follow from [BGKN11]. The remaining
results are provided in [BFG+09]. Note that “?” means that the corresponding case
remains open whereas “—” means that the corresponding parameter does not apply to
the problem.

Kemeny Score with ties incomplete votes

votes n NP-h for n = 4 (♣) NP-h for n = 4 (♣) NP-h for n = 4 (♣)
candidates m 2m 2m 2m

Kemeny score k 2O(
√

k) (♦) 1.76k k! · 4k

max. range rm 32rm (3rm + 1)! · 23rm+1 —
avg. range ra NP-h for ra ≥ 2 NP-h for ra ≥ 2 —
max. KT-dist dm 2O(

√
dm) (♦) (6dm + 2)! · 26dm+2 NP-h for dm = 0

avg. KT-dist da 2O(
√

da) (♦) 2O(d2
a) (♥) NP-h for da = 0

d := k/n 2O(
√

d) (♦) 2O(d
2
) (♥) NP-h for d = 0

above guarantee FPT (♠) ? ?

the dynamic programming is to compute a Kemeny consensus for the elections
restricted to subsets of candidates: The dynamic programming table contains
a Kemeny consensus for each subset of candidates. We compute the entries for
all subsets of size s beginning with s = 1. Then, we increase s until we get
the entire candidate set. The initialization of the table is easy, because elections
with only one candidate induce exactly one ranking. The recurrence behind the
dynamic programming is as follows. Consider the computation of an entry for
a subset C′ ⊆ C. For each c ∈ C′, compute the score of the ranking begin-
ning with c and concatenated with the Kemeny consensus for C′ \ {c} obtained
from the dynamic programming table. Now, the entry for C′ is a ranking with
minimum score.

Kemeny Score k. The Kemeny score measures the “distance of the solution from
the input votes”. The following two simple data reduction rules lead to a problem
kernel with at most 2k votes and at most 2k candidates [BFG+09]. Herein, we
call a pair of candidates {a, b} conflict pair if there is one vote with “a � b” and
another vote with “b � a” in the election.

Rule 1. Delete every candidate that is not involved in any conflict pair.

Rule 2. If there are more than k identical votes, then return “yes” if the score
of one of them is at most k; otherwise, return “no”.

Studies in Computational Aspects of Voting 333

The problem kernel obtained through Rules 1 and 2 already shows fixed-
parameter tractability of Kemeny Score with respect to the parameter k.
This can be improved by considering the conflict pairs. In this way, one obtains
bounded search-tree algorithms which are much faster than an O∗((2k)!)-time7

brute-force strategy or an O∗(22k)-time dynamic programming algorithm oper-
ating on the problem kernel. First, observe that the number of conflict pairs
is at most k for every yes-instance [BFG+09]. A search-tree which decides for
each conflict pair which of both orderings appears in a Kemeny consensus has
size O(2k). Considering “conflict triples” one obtains an improved algorithm with
running time O(1.53k +m2 ·n) [BFG+09]. Further refined search-tree algorithms
lead to search-tree sizes of O∗(1.403k) [Sim09]. Besides search tree algorithms,
further approaches were considered in the literature to solve Kemeny Score—
yielding sub-exponential time fixed-parameter algorithms with respect to the
parameter k [ALS09, FFL+10, KS10].

4.2 Structural Parameterizations

Depending on the voting protocols used, voting problems provide a large amount
of interesting structural parameters. For Kemeny Score, we discuss the param-
eters “maximum range rm of candidate positions”, “average range ra of candidate
positions”, “maximum KT-distance dm between the input votes”, and “average
KT-distance da between the input votes”. All four parameters are illustrated
with the help of our PhD place example (see Table 1) in Figure 2. This section
will be concluded by a brief discussion of an “above average parameterization”
for Kemeny Score.

The parameters “maximum range rm of candidate positions” and “average
range ra of candidate positions” both use a common concept called the range
of a candidate. The range of a candidate c is defined as one plus the difference
between her best and worst position.

Maximum Range rm of Candidate Positions. The maximum range of candidate
positions is the range of the candidate who has the maximum range. It seems
plausible that instances with a bounded range of candidate positions are easier
to solve. Indeed, using dynamic programming, one can solve Kemeny Score

in O(32rm · (r2
m ·m + rm ·m2)) time [BFG+09].

Average Range ra of Candidate Positions. Analogously to the maximum range,
the average range ra of candidate positions is the average range of all candidates.
A small maximum range indicates instances which are easy to solve, while in-
stances with a small average range of candidate positions remain hard. Even
for instances with ra = 2 Kemeny Score remains NP-hard [BFG+09]: Given
a Kemeny Score instance (C, V, k), one can construct an equivalent instance
with average range 2 by adding |C|2 many new candidates and putting them at

7 The notation O∗(.) is similar to O(.), but only states the superpolynomial part of
the running time.

334 N. Betzler et al.

B � O � M � T � ZZ

Z � O � M � T � B

M � O � B � Z � TT

B � T � Z � M � O

range of B and Z is 5, respectively

range of O and T is 4, respectively

range of M is 4

maximum range rm = 5

average range ra = 4.4

B � O � M � T � Z

Z � O � M � T � B

M � O � B � Z � T

B � T � Z � M � O

Kendall-Tau distances

7

6

7

5

4

8

maximum KT-distance dm = 8

average KT-distance da = 6.1667

Fig. 2. Illustration of structural parameters for Kemeny Score. On the left we have
our four votes from the PhD place example where the range of each candidate, that is,
the difference between the worst and the best position is highlighted. The first vote is
also one possible Kemeny consensus. On the right, we depict the KT-distances between
every pair of input votes (written as labels on the arcs).

the end of every vote (for each vote in the same order). Each new candidate has
a range of one and hence the average range is at most

|C| · |C|+ |C|2
|C|2 + |C| ≤ 2.

Based on the Kendall-Tau distance, we discuss three further parameterizations.

Average KT-Distance da. The average KT-distance is formally defined as

da :=
∑

v,w∈V

KT-dist(v, w)
n(n− 1)

.

It measures “the average amount of variety in the votes”. In the first fixed-
parameter algorithm with respect to parameter da [BFG+09], the authors basi-
cally observed that in every Kemeny consensus each candidate may only occur
in a fixed range of positions whose size is bounded by da. Based on this obser-
vation, there is a dynamic programming algorithm that solves Kemeny Score

in O(16da · (d2
a · m + da · m logm · n) + n2 ·m log m) time. This was improved

by Simjour [Sim09] who developed a search tree algorithm with running time
O∗(5.833da). Furthermore, Karpinski and Schudy [KS10] developed a subexpo-
nential fixed-parameter algorithm with running time 2O(

√
da) + nO(1).

Besides fixed-parameter algorithms with respect to the parameter average
KT-distance, data reduction rules were developed whose performance guaran-
tee depends on the average KT-distance. Although no problem kernel in the

Studies in Computational Aspects of Voting 335

classical sense is known, the currently best upper bound on the number m of
candidates is linear in the average KT-distance [BBN10]. This is achieved by
applying polynomial-time data reduction. Note that the non-existing bound on
the number n of votes does not harm too much, since Kemeny Score is fixed-
parameter tractable with respect to m. More precisely, it was shown that ex-
haustive application of the following simple rule already yields a “partial problem
kernel” [BBN10, BGKN11].

Rule 3. If there is a candidate c such that there is no other candidate c′ with
1/4 · |V | ≤ #(c, c′) ≤ 3/4 · |V |, then remove c (and adjust the allowed score
accordingly8).

Exhaustive application of Rule 3 yields an equivalent instance of Kemeny

Score with at most 16/3 · da candidates [BBN10].

Maximum KT-Distance dm. Clearly, fixed-parameter tractability for da also im-
plies fixed-parameter tractability for the parameter “maximum KT-distance dm

between two input votes”. However its potentially larger values (compared to
average KT-distance) allow for improvements in the algorithm. With slight mod-
ifications in the search tree algorithm for Kemeny Score parameterized by da,
one can solve Kemeny Score inO∗(4.829dm) time [Sim09]. Note that the subex-
ponential fixed-parameter algorithm due to Karpinski and Schudy [KS10] for da

also works for dm.

Parameterizations Above Average kmin. Mahajan and Raman [MR99] introduced
“parameterization above guaranteed values” as a general form of parameteriza-
tion. For Kemeny Score, a guaranteed value is a lower bound on the Kemeny
score k, for instance

kmin :=
∑

{a,b}⊆C

min{#(a, b), #(b, a)}.

This is an obvious lower bound for k, because it is simply the sum of the minimum
contributions for each candidate pair. A natural question is to parameterize
above this guaranteed lower bound, that is, by the parameter “k− kmin”. Fixed-
parameter tractability with respect to (k− kmin) for Kemeny Score is implied
by a parameter-preserving reduction from Kemeny Score to a weighted variant
of Directed Feedback Vertex Set [MRS09].

4.3 Ties and Incomplete Votes

In this section, we briefly discuss results obtained for two generalizations of
Kemeny Score. In the first generalization, we modify our election model such
that candidates may also be ranked equally, that is, we allow for ties. The second
8 For each candidate c′ with #(c′, c) > 3/4·|V |, decrease the score by #(c, c′); otherwise,

decrease the score by #(c′, c).

336 N. Betzler et al.

generalization is to allow for incomplete votes, that is, considering partial orders
instead of linear orders (see Section 2 for a formal definition of incomplete votes).
In contrast to the parameterization by “number of candidates”, which can also
be used for both generalizations more or less without any modification (compare
with Section 4.1), for most other parameterizations the situation changes when
we consider the more general models.

Kemeny Score with Ties. In the Kemeny Score generalization Kemeny Score

with Ties [Ail10, HSV05] one additionally allows that two candidates in a
vote are ranked equally. Now, the term dv,w(a, b) expressing the contribution
of the candidate pair {a, b} to the KT-distance between two votes v and w is
defined as

dv,w(a, b) =

⎧⎪⎨⎪⎩
2 if (a � b in v and b � a in w) or (b � a in v and a � b in w),
0 if a and b are ordered in the same way in v and w, and
1 otherwise.

There are slightly different models for the consensus of an election with ties in
the literature: Hemaspaandra et al. [HSV05] allowed that the consensus can also
have ties, while Ailon [Ail10] defined the consensus as permutation of candidates
(without ties).

Betzler et al. [BFG+09] analyzed the parameterized complexity of Kemeny

Score with Ties for the setting of Hemaspaandra et al. [HSV05]. With similar
approaches as described in Section 4.1, one obtains a search tree of size O(1.76k)
as well as a polynomial-size problem kernel with respect to the parameter “Ke-
meny score k” [BFG+09].

Concerning structural parameters such as maximum range rm or average
range ra, one has to be careful when ties are allowed. Betzler et al. [BFG+09]
used an intuitive concept where, similarly to the classical Kemeny Score, the
range is defined as the difference between the best and the worst position. How-
ever, to make these positions in a vote with ties uniquely determined, the best
position of a candidate is defined as the minimum number of candidates that
are better than her and her worst position is defined as the maximum number
of candidates that are better or equally ranked.

It is not obvious how to transfer the results for structural parameterizations
with classical Kemeny Score to Kemeny Score with Ties. However, fixed-
parameter tractability with respect to the parameter maximum range rm of
candidate positions can be obtained by an approach similar to the dynamic pro-
gramming algorithm for classical Kemeny Score with respect to rm [BFG+09].
Furthermore, when extending the problem by additionally assigning weights to
candidates, the dynamic programming approach also covers the parameteriza-
tion with maximum KT-distance dm. The maximum range of candidate positions
is bounded by 2 · dm for instances with candidate weights [BFG+09]. Finally, a
partial kernelization with respect to the parameter average KT-distance can be
transferred to Kemeny Score with Ties [BGKN11].

Studies in Computational Aspects of Voting 337

Kemeny Score with Incomplete Votes. In the Kemeny Score generalization
Kemeny Score with Incomplete Votes [DKNS01a], the given votes are
not required to be permutations of the entire candidate set, but of candidate
subsets.9 In contrast to the votes, the Kemeny consensus is a permutation of
all candidates. As a consequence, the term dv,w(a, b) expressing the contribution
of the candidate pair {a, b} to the KT-distance between two votes v and w is
adjusted to

dv,w(a, b) :=

{
0 if {a, b} �⊆ Cv or {a, b} �⊆ Cw or v and w agree on a and b,

1 otherwise,

where Cv contains the candidates occurring in vote v.
Since one can have non-trivial instances without “conflict pairs”, the branching

approach for classical Kemeny Score does not apply to the parameterization
with the Kemeny score k when we allow for incomplete votes. However, by
a parameterized reduction to Weighted Feedback Arc Set, one obtains
fixed-parameter tractability [BFG+09].

As to structural parameterizations, defining the range of candidate posi-
tions does not make sense. Furthermore, Kemeny Score with Incomplete

Votes remains NP-hard even if the maximum KT-distance dm between two
input votes is zero, that is, there is no hope for fixed-parameter tractability
with respect to the parameters average KT-distance da and maximum KT-
distance dm [BFG+09].

5 Types of Voting Problems

In this section, we review a number of voting problems and account for their
computational complexity, both standard and parameterized. We start with the
most immediate question in Section 5.1: Can a candidate win an election under
a given voting protocol? In later sections we deal with more subtle voting prob-
lems, often rendering the considered problems already hard for scoring protocols.
In Section 5.2, we consider possible winner determination in case of incomplete
votes (partial orders instead of linear orders), then move on to the related prob-
lem of manipulating elections (Section 5.3), and eventually study questions of
bribery, control, and optimal lobbying in Sections 5.4, 5.5, and 5.6.

5.1 Winner Determination

The most basic computational task in voting is the determination of a win-
ner using a given voting protocol E . Alternatively, we can ask whether a given
candidate is a winner of an election under voting protocol E :
E Winner Determination

Input: An election (C, V) and a distinguished candidate p ∈ C.
Question: Does p win the election under voting protocol E?
9 This only yields a subset of all possible partial orders.

338 N. Betzler et al.

Table 4. Parameterized complexity results for computationally hard winner determi-
nation problems. Considered parameters are the number m of candidates, the number n
of votes, and the number k of modifications. For Dodgson Score, k denotes the num-
ber of swaps; for Young Score, k denotes the number of remaining votes, while for
Dual Young Score k denotes the number of deleted votes. The fixed-parameter
tractability results for parameter m follow from integer linear programming formu-
lations [BTT89b, You77] and Lenstra’s result on integer linear programming with a
fixed number of variables [Len83]. Results marked by (
) follow from [BTT89b, You77],
by (♣) from [FJL+10], by (♥) from [BGN10], and by (♠) from [RSV03].

Parameter Dodgson Score Dual Young Score Young Score

m FPT (
) FPT (
)
n W[1]-hard (♣) FPT (O∗(2n)) (
)
k FPT (O∗(2k)) (♥) W[2]-complete (♥) W[2]-complete (♥, ♠)

A voting protocol having nice properties but for which one cannot compute a
winner in reasonable time is not useful in practice. While for some voting pro-
tocols such as positional scoring protocols, the computation of a winner can be
easily achieved in polynomial time, for other voting protocols the computation
of a winner is NP-hard. Famous voting protocols with NP-hard winner determi-
nation are listed in the survey by Chevaleyre et al. [CELM07]. This includes the
voting protocols proposed by Banks, Dodgson, Kemeny, Slater, and Young.10

InTable 4,we list parameterized complexity results forDodgsonScore,Dual

Young Score, and Young Score with respect to several parameterizations.

5.2 Possible and Necessary Winner

Possible Winner. In standard voting scenarios, one typically assumes that voters
provide their preferences as linear orders. To determine a winner, the given linear
orders are aggregated according to a voting protocol. However, in many realistic
settings, the voters may provide partial orders only [KL05]. This directly leads
to the Possible Winner problem which, given a set of incomplete votes, asks
whether a specific candidate can still become a winner if one extends the votes to
linear orders (see Section 2 for detailed information on partial orders and their
extensions).

Let us go back to the student from Section 3 who decides to do his PhD
research at the TU Berlin. At the enrollment, it happens that there is a My Fa-

vorite Professor evaluation among four candidate professors: Prof. Bosch (B),

10 Banks [Ban85] and Slater [Sla61] are two comparison-based voting protocols. They
both work on the majority graph of a given election (see Definition 5) and are closely
related to graph problems restricted to tournaments [CH00, Woe03]. A tournament
is a directed graph with exactly one arc between any two vertices. See Woegin-
ger [Woe03] and Hudry [Hud04] for the computation of Banks winners, and Charon
and Hudry [CH00] and Conitzer [Con06] for the computation of Slater winners.

Studies in Computational Aspects of Voting 339

Prof. Geiger (G), Prof. Hertz (H), and Prof. Zuse (Z). 11 Until now, only sixteen
students have participated in the evaluation. Five of them like Prof. Bosch as
much as Prof. Geiger (in the subsequent example expressed by {B, G}), followed
by Prof. Hertz and then by Prof. Zuse. Another five students favor Prof. Hertz
over Prof. Zuse, followed by Prof. Bosch, while ranking Prof. Geiger as the least-
liked candidate. The remaining six students prefer Prof. Geiger and Prof. Zuse
to Prof. Hertz. Their least favorite professor is Prof. Bosch. The current state of
the evaluation is as follows:

Five students with {B, G} � H � Z,
five students with H � Z � B � G, and
six students with {G, Z} � H � B.

Obviously, the preferences of the students are not all linear orders. Hence, in-
stead of determining the best ranked professor, we are interested in determining
the possible winners of the election. For instance, to ask whether Prof. Hertz is
a possible winner under Borda voting in the above evaluation is to determine
whether there are extensions of students’ preferences such that Prof. Hertz be-
comes a winner. In our example, such extensions exist: If the first five students
submit the linear oder B � G � H � Z, three of the last six students submit
G � Z � H � B and the other three students submit Z � G � H � B, then
Prof. Hertz (26 points) becomes a winner under Borda voting. However, to de-
termine whether a distinguished candidate is a possible winner in an election
using Borda voting is NP-complete [XC11] (also see Table 5).

Formally, Possible Winner for a given voting protocol E is defined as
follows:

E Possible Winner

Input: An election (C, V) with the multiset V = {v1, . . . , vn} of incom-
plete votes represented as partial orders on C, and a distinguished
candidate p ∈ C.

Question: Is there a multiset V ′ = {v′1, . . . , v′n} of votes over C, such that
each vote v′i extends vi and p wins the election (C, V ′) under
voting protocol E?

The motivation behind Possible Winner is that it might be impossible for the
voters to provide a complete ranking because, for instance, the set of candidates
is too large. Another reason can be that not all voters might have given their
rankings yet during the aggregation process, or new candidates might be intro-
duced after some voters already have given their rankings (see also [CLM+11]).
Moreover, one often has to deal with incomplete votes due to two or more can-
didates not being comparable, because of lack of information or other reasons.
Hence, the study of incomplete voting profiles is natural and essential.

11 Historical note: Only Hans Geiger and Gustav Hertz were professors at TU Berlin
whereas Carl Bosch and Konrad Zuse were students at TU Berlin.

340 N. Betzler et al.

Table 5. Summary of (parameterized) complexity results for the NP-complete [XC11]
Possible Winner using several common voting protocols. Parameters considered are
“the number m of candidates”, “the number n of votes”, “the total number s of undeter-
mined candidate pairs”, and “the maximal number u of undetermined candidate pairs
in a vote”. Note that the fixed-parameter tractability results for parameter s hold for
all voting protocols whose Winner Determination problem can be solved in time
polynomial in the input size. Fixed-parameter tractability results for parameter m are
again due to Lenstra’s result on integer linear programming with a fixed number of
variables [Len83]. Results marked with (♣) come from [XC11], those with (♥) come
from [BHN09]. Note that “?” means that the corresponding case remains open and
para-NP-c means that the problem remains NP-complete even for constant parameter
values.

Parameter Borda k-Approval Copelandα

m FPT FPT FPT
n (♥) para-NP-c para-NP-c ?
s (♥) O∗(1.82s) O∗(2s) O∗(2s)

u (♣) para-NP-c para-NP-c para-NP-c

Again, we survey standard and parameterized computational complexity re-
sults for Possible Winner under various voting protocols. Notably, although
Winner Determination problems are straightforward for (most) scoring pro-
tocols, Possible Winner is already computationally hard for simple scoring
protocols such as k-Approval. Table 5 lists the results together with references
to the literature.

Due to the way how k-Approval assigns points to candidates, two further
structural parameters immediately pop up in the study of k-Approval Possi-

ble Winner: The “number k of approvals in each vote” and the “number k′ =
m − k of disapprovals in each vote” with m being the total number of candi-
dates. However, k-Approval Possible Winner is already NP-complete for any
constant number k ≥ 2 [XC11]. This motivates a multivariate complexity anal-
ysis [Fel09, Nie10] with respect to the combined parameter number n of votes
and number k (k′) of candidates to whom a voter gives one (zero) point. Param-
eterized complexity results for k-Approval Possible Winner are summarized
in Table 6.

There are many interesting open questions concerning E Possible Winner.
In the following we just mention a few:

– Until now, existing studies [BD10, BHN09, Wal07, XC11] on Possible

Winner consider only scoring protocols as well as some comparison-based
protocols that are computationally efficient (polynomial time solvable) for

Studies in Computational Aspects of Voting 341

Table 6. Parameterized complexity results of k-Approval Possible Winner, where
t denotes the number of incomplete votes in an election, k denotes the number of ones
assigned in the k-Approval voting, while k′ denotes the number of zeros assigned in
the k-Approval voting. Results marked with (♣) come from [XC11], while (♥) marks
results from [Bet10b].

Parameter Results Remarks

k (♣) NP-complete For any fixed k ≥ 2

(t, k′) (♥) FPT O∗(min{2t2k′
, 2tk′ · (tk′)k′})

(t, k) (♥) FPT Super-exponential kernel

Winner Determination, since if the E Winner Determination is com-
putationally hard, then E Possible Winner is also computationally hard.
It would be interesting to see whether the fixed-parameter tractability results
for Kemeny Score, Dodgson Score, Young Score, or Dual Young

Score still hold for Possible Winner where incomplete votes are given.
– As we have seen in Table 5, the parameter “total number s of undetermined

candidate pairs” leads to fixed-parameter tractability; however, s may be
very large for some scenarios. On the contrary, Possible Winner is already
NP-complete for Borda, k-Approval, and Copelandα voting even if the maxi-
mal number u of undetermined candidate pairs in a vote is a constant [XC11].
This motivates further parameterizations concerning incomplete votes of an
election. For example, it would be interesting to know whether Possible

Winner is fixed-parameter tractable with respect to the parameter “aver-
age/maximum number of undetermined candidate pairs in which a candidate
is involved”.

Necessary Winner. Finally, we mention in passing that, in addition to the Pos-

sible Winner problem, there is also the Necessary Winner problem, which
asks whether a given distinguished candidate is a winner in all extensions of
the given votes. As a rule of thumb, it appears that the Necessary Winner

problem is computationally easier than the Possible Winner problem. For
example, Necessary Winner can be solved in polynomial time for scoring
protocols as well as some other protocols such as Plurality with Runoff, Max-
imin voting, and Bucklin12, while Possible Winner is NP-complete for these
voting protocols [XC11]. We refer to the literature [KL05, PRVW11, XC11] for
more details.

12 Bucklin voting is a hybrid voting protocol. In a nutshell, it combines k-Approval with
Majority voting. Majority voting is similar to Plurality with the additional constraint
that the candidate who has a score of more than half of the number of votes wins.
See Xia and Conitzer [XC11] for a definition and more in-depth explanation.

342 N. Betzler et al.

5.3 Manipulation

Manipulation is a voting scenario where a coalition of voters casts their votes in
an insincere way such that they end up better off than voting honestly. We illus-
trate such a situation with the help of the My Favorite Professor example.
Suppose that the election has

five students with B � G � H � Z,
five students with H � Z � B � G,
three students with G � Z � H � B, and
three students with Z � G � H � B.

Under Borda voting, Prof. Hertz (26 points) wins the election. Suppose that the
last three students in the above election know the votes of all other thirteen
students.13 They want to make their favorite candidate, Prof. Zuse, win the
election. Hence they form a coalition and try to manipulate the election result
by casting their own votes contrary to their actual preferences. Although they
all prefer Prof. Geiger and Prof. Hertz to Prof. Bosch, by submitting

two votes Z � G � B � H and
one vote Z � B � G � H,

together with the other thirteen votes, Prof. Zuse will indeed become the Borda
winner with 25 points instead of Prof. Hertz with 23 points.

For manipulation, we assume that the voters of the coalition know about all
the votes of the sincere voters. The coalition uses strategic voting to achieve
their goal of letting their favorite candidate win. Formally, the decision problem
Manipulation for any voting protocol E is defined as follows:

E Manipulation

Input: An election (C, V), a coalition size k ∈ N encoded in unary alpha-
bet, and a distinguished candidate p ∈ C.

Question: Is there a multiset V ′ of at most k votes on C such that p is the
winner according to E in (C, V ∪ V ′)?

The E Manipulation problem can be considered as a special case of the E Pos-

sible Winner problem: The non-manipulative votes are linear orders and the
manipulative votes are totally empty. Hence, any hardness result on E Manip-

ulation is also valid for E Possible Winner.
A voting protocol is strategy-proof if manipulation is never beneficial for

any voter or coalition of voters. A famous result of Gibbard and Satterth-
waite [Gib73, Sat75] states that a resolute14, surjective15, and strategy-proof

13 This is rarely the case in practice. However, it allows for a worst-case analysis.
14 A voting protocol is resolute if there is always exactly one winner for an election.
15 A voting protocol is surjective if every candidate has a chance of winning.

Studies in Computational Aspects of Voting 343

voting protocol is dictatorial16. Bartholdi et al. [BTT89a] suggested using com-
putational hardness to “resist” manipulations in an election: The idea is that
if a voting protocol can be manipulated in principle, but it is computation-
ally intractable to decide whether it is possible to cast the votes to achieve a
desired result, then this voting protocol is unlikely to be manipulated in prac-
tice. In particular, Bartholdi et al. [BO91, BTT89a] focused on the special case
of having a coalition of size one: After obtaining polynomial-time solvability
results for manipulation under a set of common voting protocols including Plu-
rality, Borda, Maximin and Copeland [BTT89a], Bartholdi and Orlin [BO91]
showed that STV Manipulation is NP-hard even for a single manipulator.
However, Conitzer et al. [CSL07] showed fixed-parameter tractability with re-
spect to “the number m of candidates” for STV Manipulation with a coali-
tion of size one. The corresponding algorithm runs in O∗(1.62m) time. Recent
studies [BNW11, DKNW11] show that Borda Manipulation is already NP-
complete for a coalition of size two. When parameterized by “the number of
candidates”, Borda Manipulation is fixed-parameter tractable [BHN09]. A
further parameter is derived from so-called “instance tightness”, again yielding
fixed-parameter tractability [BNW11].

Since E Manipulation is a special case of E Possible Winner, some open
computational hardness questions stated in Section 5.2 can also be transformed
to the context of E Manipulation.

For STV Manipulation with one manipulator, there is a fixed-parameter al-
gorithm with respect to “the number of candidates” [CSL07]. Naturally, it would
be interesting to know whether this also holds for two or more manipulators.

5.4 Bribery

As the name suggests, bribery is another attack on elections, where the briber
“pays” some voters to have them change their votes in order to reach a desired
outcome [FHH09]. Typically, the briber has a budget. The basic question with
respect to bribery is whether the briber can achieve his goal without exceeding
his budget.

There are different settings of bribery: Besides varying prices for different
voters, one relaxes the notion of votes by allowing arbitrary relations instead of
linear orders [Fal08, FHHR09b]. In addition, there are more fine-grained models
such as paying for specific operations. For instance, in Swap Bribery [EFS09],
one is only allowed to perform swaps of two neighboring candidates in a vote.
Formally, a swap in some vote v ∈ V is a triple (v, c1, c2) where {c1, c2} ⊆
C, c1 �= c2. Applying a swap (v, c1, c2), that is, exchanging the positions of c1

and c2 in the vote v, is admissible when c1 and c2 are neighbors in v. A se-
quence of swaps is called admissible when the application of the swaps in the
given ordering is admissible in each case. The decision problem is defined as
follows:

16 Dictatorial means that there exists a voter who always decides what the outcome of
an election shall be.

344 N. Betzler et al.

E Swap Bribery

Input: An election (C, V), a distinguished candidate p ∈ C, a budget
β ∈ N, and a cost function c : V × C × C → N.

Question: Is there an admissible sequence Γ of swaps with
∑

s∈Γ c(s) ≤ β
such that p wins the election under voting protocol E after having
applied the swaps as given by Γ ?

For our My Favorite Professor example (see Section 5.3 for the complete
list of student votes), we already know that Prof. Hertz wins under Borda vot-
ing. Suppose that a fan of Prof. Bosch knows all the votes of the students. His
goal is to make Prof. Bosch win the election via swap bribery. A single swap
costs one Euro. However, he is only willing to pay at most four Euros. Now the
question is whether, without exceeding his budget, the fan of Prof. Bosch can
bribe some students and let them swap neighboring candidates in their votes
such that Prof. Bosch wins the election. If he bribes the three students with
identical original vote G � Z � H � B and one student whose original vote
is Z � G � H � B, and lets them each swap the two neighboring candidates
H and B in their votes, then he can make B (Prof. Bosch with 26 points) win
the election. Each of the four swaps has a cost of one Euro, so the budget (four
Euros) is not exceeded.

Table 7 shows some computational complexity results for k-Approval Swap

Bribery. Classical complexity results are given by Elkind et al. [EFS09], while
the parameterized results are provided by Dorn and Schlotter [DS12]. It should
be mentioned that E Possible Winner can be seen as a special case of E Swap

Bribery, where the price of any determined candidate pair is one, swapping two
undetermined neighboring candidates17 has cost zero, and the budget is zero. So
hardness results on E Possible Winner are also valid for E Swap Bribery for
some restricted scenarios.

Restricting the allowed operations such that each swap must involve the dis-
tinguished candidate leads to Shift Bribery [EFS09]. As for the parameterized
complexity analysis of this scenario, we refer to a recent study by Schlotter et
al. [SEF11].

In microbribery [FHHR09b], a briber can invert the relative order of any two
candidates in a vote for a given price. Typically, this leads to votes which are
no longer linear orders. For example, inverting the relative order of a and c in a
vote a � b � c results in three pairwise comparisons: a � b, b � c, and c � a.

Elkind and Faliszewski [EF10a] initiated research on another aspect of bribery
which concerns campaign management. There, bribing voters means, for instance,
investing in advertisement for a specific candidate. They argued that such kind of
campaign can strongly influence the outcome of an election. This has applications
in political elections or product marketing. Schlotter et al. [SEF11] studied both
classical and parameterized complexity regarding two specific cases of campaign
management, shift bribery and support bribery, for several voting protocols.

17 Recall that two neighboring candidates are called undetermined if they are not com-
parable in the incomplete vote.

Studies in Computational Aspects of Voting 345

Table 7. Parameterized complexity results of k-Approval Swap Bribery [DS12]. The
parameters are “the budget β”, “the number n of votes”, “the number m of candidates”,
and “the number k of approved candidates in a vote”. Note that k-Approval Swap

Bribery is already NP-complete for k = 2 due to its close relationship to Possible

Winner [BD10, DS12, EFS09]. With respect to the parameter m, the fixed-parameter
tractability result holds not only for k-Approval but indeed for a wide range of voting
protocols including Copelandα and Maximin [DS12].

Parameter Results Remarks

β W[1]-hard for n = 1 Reduction from Multi-Colored Clique

k W[1]-hard Reduction from Clique

m FPT for constant k Integer linear programming
n FPT for constant k Color-coding
(β, n) FPT Kernel with n2β2 candidates and n2β votes
(β, n, k) FPT Kernel with (n + k)β candidates and n2β votes

Destructive bribery, that is, using bribery to prevent one candidate from win-
ning, is NP-hard for Copelandα and Maximin voting [FHH09, FHH11, FHHR09b].
Until now, parameterized complexity aspects in this context seem to be unex-
plored, presenting good opportunities for new research.

5.5 Control

To control an election, an external agent, somewhat misleadingly called the chair
in the literature, can change the election structure to reach certain goals. For
example, a typical question is whether the chair can make his favorite candi-
date a winner by deleting some candidates. Going back to our My Favorite

Professor example, using Copeland0.5 also results in selecting Prof. Hertz as
the most favorite professor (2 points). If a fan of Prof. Bosch who wants to
influence the election is in the election committee and somehow manages to dis-
qualify Prof. Zuse from the election, then all three remaining candidates become
(co)-winners (1 point) according to Copeland0.5.

Actually, there are many different types of control including adding or deleting
candidates or votes [BTT92]. Furthermore, one distinguishes between construc-
tive control (CC), where the chair aims at making a distinguished candidate
a winner, and destructive control (DC), where the chair wants to prevent a
distinguished candidate from winning [HHR07]. In the following, we define the
E Constructive Control Via Adding Candidates (E CC-AC).

E CC-AC

Input: Two disjoint sets C, D of candidates, a multiset V of votes over C∪
D, a distinguished candidate p ∈ C, and a non-negative integer k.

Question: Is there a subset D′ ⊆ D of candidates with |D′| ≤ k such that
p is the winner in the election (C ∪ D′, V) according to voting
protocol E?

346 N. Betzler et al.

Three more types of constructive control problems, that is, via deleting candi-
dates, via adding votes, and via deleting votes, can be defined analogously: For
the case of adding votes, we are given a multiset of votes from which we can se-
lect additional votes in order to change the outcome of an election. The decision
problems of destructive control via adding or deleting candidates or votes can
be defined accordingly: Instead of making the distinguished candidate a winner,
destructive control aims at precluding the distinguished candidate from winning.

The investigation of the computational complexity of control problems goes
back to Bartholdi et al. [BTT92]. Since then, there has been a series of publi-
cations [BTT92, FHHR09b, HHR07] which provides a complete picture of the
classical computational complexity for 22 basic types of control. These papers
cover standard voting systems such as Plurality, Condorcet, and Copelandα for
all rational values of α in the range of [0, 1]. For example, one of the voting proto-
cols that can be used to determine the winner of an election in time polynomial
in the input size and is NP-hard for all standard types of constructive control is
Copeland0.5 [FHHR09b].

Hemaspaandra et al. [HHR09] showed that so-called hybrid elections can lead
to stronger resistance results for electoral control. Further work looks into control
for two specific hybrid systems combining Approval voting and systems based
on linear preferences [EF10b, ENR09, EPR10, ER10].

A closely related problem introduced by Elkind et al. [EFS10a] is cloning,
where one only allows for adding candidates that are “similar”18 to one of the
existing candidates. Moreover, Chevaleyre et al. [CLM+11] investigated the ques-
tion whether a candidate can become a winner by adding “arbitrary” candidates.

Recently, Faliszewski et al. [FHH11] introduced the extended scenario of
“multi-mode control attacks”, that is, the chair is allowed to use various kinds of
attacks like deleting candidates and adding votes simultaneously.

Table 8 lists some parameterized complexity results for eight different kinds
of control: Constructive Control via Adding Candidates (CC-AC),
Constructive Control via Deleting Candidates (CC-DC), Construc-

tive Control via Adding Votes (CC-AV), Constructive Control via

Deleting Votes (CC-DV), and their destructive control (DC) versions.
Table 9 shows some results on control of elections employing Copelandα.

Considered parameters are the number m of candidates and the number n of
votes. Furthermore, there are also results concerning parameterized complexity
for Copelandα, α = 1, with respect to non-standard parameters like “feedback
arc set size of the majority graph” [BBNU11].

We conclude this section with a few interesting research directions. The pa-
rameterized complexity of many scoring protocols, such as Borda, seems to be
unexplored. Multi-mode control as proposed by Faliszewski et al. [FHH11] seems
a natural candidate for a multivariate complexity study. For instance, the prob-
lem whether a distinguished candidate can win by deleting k candidates and

18 Here, a candidate c1 is called similar to another candidate c2 if for each vote, candi-
dates c1 and c2 have the same relative position to any other candidate.

Studies in Computational Aspects of Voting 347

Table 8. Control-related (parameterized) complexity results. All W-hardness re-
sults are with respect to the output parameter. For example, Plurality CC-AC
is W[2]-hard with respect to the number of added candidates. Results marked with
(♠) come from [BTT92], those with (♦) come from [HHR07], those with (♣) come
from [LFZL09], those with (�) come from [LZ10], results marked with (♥) come
from [BU09], those marked with (
) come from [FHHR09b], those marked with (©)
come from [EF10b, EFPR11, ER10], and those marked with (�) come from [BGN10].
The W[2]-completeness result of Dual Young Score holds for Condorcet CC-DV

because they are equivalent. Any entry labeled “P” means polynomial-time solvability.
“/” means either that we are not aware of any meaningful parameterized complexity
results or that it is irrelevant. For example, in Condorcet CC-AC, the chair can
never make a non-winning candidate win the election by adding some additional can-
didates [BTT92]. W[t]-h stands for W[t]-hard with t = 1 or t = 2; W[2]-c stands for
W[2]-complete. Recall that Bucklin voting is a hybrid voting protocol which combines k-
Approval with Majority voting [EF10b, XC11]. Fallback [BS09] voting combines Buck-
lin with Approval voting. Here, Approval voting, slightly different from k-Approval,
allows each voter to approve of an arbitrary number of candidates.

Plurality Condorcet Maximin Copelandα Bucklin/Fallback

CC-AC W[2]-h (♠) / W[2]-h (�) W[2]-c (♥) W[2]-h (©)
CC-DC W[2]-h (♥) P (♠) / W[2]-c (♥) W[2]-h (©)
CC-AV P (♠) W[1]-h (♣) W[1]-h (�) / W[2]-h (©)
CC-DV P (♠) W[2]-c (�) W[1]-h (�) / W[2]-h (©)
DC-AC W[2]-h (♦) P (♦) / P (
) W[2]-h (©)
DC-DC W[1]-h (♥) / / P (
) W[2]-h (©)
DC-AV P (♦) P (♦) W[1]-h (�) / P (©)
DC-DV P (♦) P (♦) W[1]-h (�) / P (©)

adding k′ votes under Copeland1 is NP-hard [FHH11]; it is an open question
whether this NP-hard problem is fixed-parameter tractable with respect to the
combined parameter (k, k′).

Table 9. Parameterized complexity results on control of elections using Copelandα.
We use (♣) to denote the results from [FHHR09b] and (♥) to denote the results
from [BU09]. Results on control by adding (deleting) candidates with a bounded num-
ber of added (deleted) candidates as well as on control by adding (deleting) votes with
a bounded number of added (deleted) votes follow from brute-force enumeration of all
possible subsets of candidates of votes. For the case of candidate control with a bounded
number of votes, the fixed-parameter algorithms are based on Lenstra’s integer linear
programming result [Len83].

AC DC AV DV

candidates m FPT (♣) FPT (♣) FPT (♣) FPT (♣)
votes n NP-c (♥) NP-c (♥) FPT (♣) FPT (♣)

348 N. Betzler et al.

5.6 Lobbying

Sometimes we do not only vote on one but on multiple issues at the same time.
A corresponding voting procedure can be very simple: Approve or disapprove
of each issue. Formally, a multi-issue election for m issues and n voters is an
n×m binary matrix

W =

⎛⎜⎜⎝
w1,1 w1,2 · · · w1,m

...
...

. . .
...

w
n,1 w

n,2 · · · w
n,m

⎞⎟⎟⎠ ∈ {0, 1}n×m.

An entry wi,j of W represents voter i’s opinion on issue j: 0 stands for disap-
proval; 1 stands for approval.

Given a multi-issue election and desired outcomes for each issue, Christian et
al. [CFRS07] studied how hard it is to “lobby” some voters optimally, that is, to
persuade the minimum number of voters to change their votes such that each
issue has a majority of voters with values equal to the desired outcome. The
formal definition of Optimal Lobbying is as follows:

Optimal Lobbying

Input: A multi-issue election W ∈ {0, 1}n×m, a non-negative integer k,
and a size m target vector x ∈ {0, 1}m.

Question: Can W be transformed into a new matrix W ′ ∈ {0, 1}n×m by edit-
ing entries in at most k different rows such that for each column j
there is a strict majority of rows with value xj?

If Optimal Lobbying can be shown to be computationally intractable, then
potential attackers may not succeed in influencing the outcome of a multi-issue
election via lobbying in reasonable time. This is what Bartholdi et al. [BTT89b]
and Faliszewski et al. [FHH10] meant by using complexity to protect elections.
But what about more restricted scenarios, that is, what about parameterized
complexity analysis? To the best of our knowledge, Christian et al. [CFRS07]
started the parameterized complexity analysis of voting problems concerning lob-
bying in multi-issue elections. They showed that Optimal Lobbying is W[2]-
complete with respect to the number of votes to be changed. The idea of the proof
of this result is shown in Section 6.6. Erdély et al. [EFG+09] further extended
Optimal Lobbying to a probabilistic setting and, in particular, provided sev-
eral results on fixed-parameter tractability and W[2]-completeness. Finally, we
remark that Optimal Lobbying is fixed-parameter tractable with respect to
the number of issues, since it can be easily transformed into an integer linear
program with a fixed number of variables. See also Section 6.4 for more details.

6 Parameterized Techniques

In this section, we overview different techniques for investigating fixed-parameter
tractability which already have been successfully applied in the area of voting. We

Studies in Computational Aspects of Voting 349

start with some techniques for designing fixed-parameter algorithms and close
with a general technique to obtain intractability results. Each technique will be
accompanied by an example. Although these standard techniques “cover” most
results so far, there are further approaches to obtain fixed-parameter tractability
results in the context of voting [ALS09, FFL+10, KS10].

6.1 Search Trees

A search tree algorithm identifies a “small subset” of the input instance such that
at least one part of the subset is part of a solution. Then, it branches over all
possible parts of this small subset to fix it as part of the solution. This procedure
is repeated in a recursive manner until the whole solution has been found. In the
context of fixed-parameter algorithms, the identification of the subset is done
in polynomial time and the search tree size is bounded by some function only
depending on the parameter.

For instance, in the case of Kemeny Score (see Section 4.1) a simple search
tree algorithm identifies as small subset the two possible orderings a candidate
pair can have in the solution. Since one can show that for at most k many
candidate pairs, where k denotes the Kemeny score of the election, the ordering
is not yet clear, the search tree size is bounded by O(2k).

Next, we briefly discuss a search tree approach that applies to Possible Win-

ner for arbitrary voting protocols [BHN09]. For every undetermined candidate
pair, say {a, b} from incomplete vote v, branch into the following two possible
cases: Either add a � b to v or add b � a to v. If an option violates the transi-
tivity of v, then discard the corresponding branch in the search tree. The search
tree size is at most O(2s), where s is the total number of undetermined candi-
date pairs, implying that for every voting protocol with polynomial-time winner
determination, Possible Winner is fixed-parameter tractable with respect to
the parameter s.

Similarly to the improved search tree for Kemeny Score (see Section 4.1),
one gains a refined fixed-parameter algorithm for Possible Winner through
considering undetermined triples instead of pairs combined with a network flow
construction [BHN09].19 As a consequence, for a specific class of scoring pro-
tocols, including k-Approval and Borda, Possible Winner can be decided in
O(1.82s · (nm2 + s2)) time, where s is the total number of undetermined pairs.

6.2 Kernelization

Problem Kernels. Recall from Section 2 that a problem kernel can be seen as
an equivalent instance whose size is bounded by a function in the parameter
and which can be computed by polynomial-time preprocessing (so-called data
reduction rules) [Bod09, GN07].

19 Indeed, techniques based on network flows are used in several other voting contexts
to derive polynomial-time solvability for special cases or as part of a fixed-parameter
algorithm (see, for example, [BD10, BHN09, DS12, FHHR09b]).

350 N. Betzler et al.

For instance, by exhaustive application of Rules 1 and 2 from Section 4.1
one gets a problem kernel with at most 2k votes and at most 2k candidates for
Kemeny Score.

Dorn and Schlotter [DS12] developed a kernelization algorithm that con-
structs a problem kernel with O(n2 · β) votes and O(n2 · β2) candidates for k-
Approval Swap Bribery, where n denotes the number of votes and β denotes
the budget. Kernelization algorithms have also been developed for k-Approval

Possible Winner: Problem kernels for Possible Winner with respect to the
combined parameters (t, k) as well as (t, k′) have been obtained by data reduc-
tion rules [Bet10a, Bet10b], where t denotes the number of incomplete votes,
k denotes the number of one-point positions, and k′ denotes the number of
zero-point positions. For (t, k′) there is a kernel with O(t · k′2) candidates and
O(t2 ·k′2) votes, while for (t, k) there is a superexponential-size kernel that shows
fixed-parameter tractability.

No Polynomial Kernel. A natural question for a fixed-parameter tractable prob-
lem is: How small can a corresponding problem kernel be? In particular, can we
expect to derive a polynomial-size kernel for every fixed-parameter tractable
problem? To answer this, Bodlaender et al. [BDFH09] and Fortnow and San-
thanam [FS11] introduced a general framework; also see the surveys by
Bodlaender [Bod09] and Misra et al. [MRS11]. The basic idea is that if a pa-
rameterized version of an NP-complete problem has a so-called “composition al-
gorithm”, then it does not admit a polynomial-size problem kernel, under some
widely believed complexity assumptions. Furthermore, such lower-bound results
can be transferred to other problems by so-called “polynomial parameter trans-
formations” [BTY11].

For instance, Fellows et al. [FJL+10] showed that Dodgson Score with
respect to the parameter number of swaps (see also Section 3.2 for the corre-
sponding definition) is unlikely to admit a polynomial-size kernel. This result
is obtained by a polynomial parameter transformation from Small Universe

Hitting Set which is known to be unlikely to have a polynomial-size problem
kernel [DLS09].

Partial and Turing Kernels. There are cases where it seems hard to bound the
whole size of the instance by a polynomial function in the parameter, but it
is possible to bound only one dimension20 of the input by such function. Here,
the concept of partial kernelization [BGKN11] comes into play. For instance,
for Kemeny Score one has a partial kernel with respect to the average KT-
distance da, that is, one can construct equivalent instances with at most 16/3 ·da

candidates, but the number of votes is unbounded [BBN10].
Furthermore, it could also be possible that one cannot find a problem kernel,

but one is able to compute polynomially many instances whose sizes are bounded
by some function in the parameter and the original instance is a yes-instance if

20 In case of voting, for example the number of candidates or the number of votes are
two natural dimensions.

Studies in Computational Aspects of Voting 351

and only if one of the new instances is a yes-instance. This leads to the concept
of Turing kernelization, or to be more specific, disjunction truth-table kernel-
ization [FFL+09, Lok09]. We are not aware of Turing kernelization results in
voting.

Both, partial kernels and Turing kernels provide (similarly to the classical
kernel concept) the possibility of obtaining fixed-parameter algorithms.

6.3 Dynamic Programming

The key idea of dynamic programming is to solve a problem by solving subprob-
lems and to combine overlapping solutions to find an overall solution. Dynamic
programming tries to avoid multiple computation of the same subsolution by
storing it in a so-called dynamic programming table. It is a standard technique
in mathematics and computer science and in the design of fixed-parameter al-
gorithms [Nie06]. Often leading to very efficient algorithms, a typical bottleneck
of dynamic programming is its memory consumption which may also be expo-
nential in the parameter.

For instance, with dynamic programming one can solve Kemeny Score

in O∗(2m) time (see Section 4.1). However, also the space requirement is O∗(2m).
A further example is Dodgson Score. Using dynamic programming it can

be solved in O(2k ·nk ·nm) time [BGN10], where k denotes the number of swaps.

6.4 Integer Linear Programming

As one of the most popular techniques for problem solving, (integer) linear pro-
gramming21 is also useful for classification and algorithm design in the context of
parameterized algorithmics [Nie06]. A famous result of Lenstra [Len83] implies
that a problem is fixed-parameter tractable when it can be solved by an integer
linear program where the number of variables is upper-bounded by a function
solely depending on the parameter.

Bartholdi et al. [BTT89b] developed an integer linear program to solve Dodg-

son Score and gave a running time bound based on Lenstra’s result. They did
not explicitly state this, but this shows fixed-parameter tractability for Dodg-

son Score with respect to the parameter number m of candidates. The corre-
sponding integer linear program is shown in Figure 3. Note that it computes the
Dodgson score of a specific candidate.

Although solvability by an integer linear program with a bounded number of
variables implies fixed-parameter tractability, there is by far no guarantee for
practically efficient algorithms. Indeed, due to a huge exponential function in
the number of variables being part of the running time bound, Lenstra’s [Len83]
result is basically for classification only.

There are several similar fixed-parameter tractability results with respect to
the parameter number of candidates for control problems [FHHR09b], Possi-

ble Winner [BHN09], and Swap Bribery [DS12] for various voting protocols.
21 See, for example, Matoušek and Gärtner [MG06] for a general introduction to linear

programming.

352 N. Betzler et al.

min
∑
i,j

j · xi,j subject to

∀i ∈ Ṽ :
∑

j

xi,j = Ni

∀y ∈ C :
∑
i,j

ei,j,y · xi,j ≥ dy

xi,j ≥ 0

Fig. 3. Integer linear program determining the Dodgson score of candidate c. Here,
C denotes the set of candidates, Ṽ denotes the set of ranking types (that is, the set
of votes where identical votes appear only once), Ni denotes the number of votes of
type i, xi,j denotes the number of votes with rankings of type i for which candidate c
will be moved upwards by j positions, ei,j,y is 1 if the result of moving candidate c by j
positions upward in a ranking of type i is that c gains an additional vote against can-
didate y, and 0 otherwise. Furthermore, dy is the deficit of c with respect to candidate
y, that is, the minimum number of votes that c must gain against y to defeat her in a
pairwise comparison. If c already defeats y, then dy = 0. For more details see Bartholdi
et al. [BTT89b]. Altogether, the integer linear program contains at most m · m! vari-
ables xi,j and at most m! + m non-trivial constraints, where m denotes the number of
candidates.

Furthermore, Dorn and Schlotter [DS12] convey without details that their re-
sult concerning Swap Bribery can be transferred to problems like Optimal

Lobbying and Manipulation under some specific voting protocols as well.

6.5 Color-Coding

Alon et al. [AYZ95] introduced color-coding as a randomized algorithm for solv-
ing some types of graph problems. Recently, Dorn and Schlotter [DS12] used it
to show the fixed-parameter tractability of k-Approval Swap Bribery with
respect to the number of votes for constant k (see Section 5.4). Here we sketch
the idea behind their randomized fixed-parameter algorithm and how it employs
color-coding.

Let I be an instance of k-Approval Swap Bribery consisting of an elec-
tion (C, V) with |C| = m and |V | = n, a distinguished candidate d ∈ C, a budget
β ∈ N, and a cost function c : V ×C×C → N. Instance I is a yes-instance if and
only if there is a sequence Γ of swaps with

∑
s∈Γ c(s) ≤ β, and d wins after the

swaps in Γ have been performed. We denote the votes after having performed Γ
as V Γ =

⋃
v∈V vΓ .

A candidate is relevant with respect to Γ if it receives at least one point in V Γ .
Let Crel(Γ) be the set of candidates relevant with respect to Γ . Since each of the
first k candidates of a vote receives one point according to k-Approval, and since
there are at most nk relevant candidates, we can identify each vote through a
vote pattern which is a size-k subset of {1, . . . , nk}. It should represent the set of
the first k candidates. An election pattern P = (p1, . . . , pn) is an n-tuple of vote

Studies in Computational Aspects of Voting 353

patterns. There are
(
nk
k

)n
< (nk)nk such election patterns. If the distinguished

candidate d wins the bribed election, then we can assume that d ∈ Crel(Γ). We
also require that d represents the number 1. Thus, an election pattern P is called
successful if 1 appears at least as frequently as any other number between 2 and
nk in P .

The basic idea of the algorithm is as follows: For each successful election
pattern P = (p1, . . . , pn), we color each candidate (except for candidate d) ran-
domly with one of the colors of

⋃
p∈P p\ {1}; d has color 1. If I is a yes-instance,

then with probability of at least (nk − 1)1−nk we can find in (nk)nk · O(mk+1)
randomized time a sequence Γ of swaps22 with the following properties: each
relevant candidate in Crel has a different color (while p has color 1), the colors
of relevant candidates of vote vi

Γ ∈ V Γ form the vote pattern pi ∈ P , and
the budget is not exceeded. Trying all possible successful election patterns, the
algorithm takes a total of (nk)2nkO(mk+1) randomized time. Note that using
nk-perfect hash functions [AYZ95], one gains a deterministic fixed-parameter
algorithm with respect to the parameter n for constant k.

6.6 Parameterized Intractability

There are several voting problems where computational intractability can be
desirable for a protocol. Intractability in terms of parameterized complexity
means W[t]-hardness for some integer t ≥ 1 (see Section 2). Without going
into the details of the theory, the main message is that W[t]-hard problems
are not fixed-parameter tractable under several widely believed complexity as-
sumptions (including the Exponential Time Hypothesis [IPZ01]). We present a
simple parameterized reduction showing W[2]-hardness in what follows; refer to
the textbooks [DF99, FG06, Nie06] for general accounts.

To the best of our knowledge, the first W-hardness result result for a computa-
tional social choice problem is due to Christian et al. [CFRS07]. They considered
the problem Optimal Lobbying as defined in Section 5.6.

Parameterized Reduction for Optimal Lobbying. The idea behind the proof of
parameterized intractability for Optimal Lobbying is to describe a parame-
terized reduction (see Section 2) from the W[2]-complete problem Dominating

Set to Optimal Lobbying [CFRS07] (see Section 5.6). Dominating Set asks,
given an undirected graph G = (V, E), whether there exists a size-k subset of
vertices V ′ ⊆ V such that every vertex is either from V ′ or has a neighbor in
V ′. Such a vertex subset is called dominating set.

The construction of the Optimal Lobbying instance works as follows.23 The
matrix W is an extension of the adjacency matrix of G. First take the adjacency
matrix of G and add one additional selection column filled with 1s. Then, add

22 See Dorn and Schlotter [DS12] for the detailed algorithm to find the swap sequence Γ
when a successful election pattern and a feasible coloring are given.

23 Note that the original construction works with interchanged roles for 1 and 0. This
slight modification allows for a compact way of only presenting the idea.

354 N. Betzler et al.

|V |−2k+1 dummy rows filled with 0s. We call the original |V | rows vertex rows
and the original |V | columns vertex columns. Finally, for each vertex column i,
flip |V |−k−N [i]+1 entries in the dummy rows from 0 to 1, where N [i] denotes
the number of neighbors of the vertex corresponding to column i. The target
vector x (see Section 5.6) has a 0 in each of the |V |+ 1 positions.

Now, we have the following situation. First, consider the selection column. The
number of 1s exceeds the number of 0s by 2k−1, that is, k of the graph rows must
be chosen in the solution. Now, consider the vertex columns. For each column
the number of 1s exceeds the number of 0s only by 1. Hence, there is a majority
for 0s if and only if the chosen vertex rows correspond to vertices forming a
dominating set. In analogy, every dominating set implies such a solution.

Roughly speaking, this means that Optimal Lobbying remains intractable
even if the number of voters to influence is small.

7 Discussion and Future Challenges

So far, the consideration of problems from algorithmic graph theory prevails in
parameterized complexity studies. The impact of parameterized complexity anal-
ysis, however, strongly hinges on its high potential to explain, to predict, and to
engineer computational complexity. The “computational complexity landscape”
of problems arising in real-world applications needs a more fine-grained consid-
eration than classical (one-dimensional) complexity analysis delivers. Thus, in
2008, two issues of The Computer Journal (Volume 51, Numbers 1 and 3 edited
by Rod G. Downey, Michael R. Fellows, and Michael A. Langston) cover appli-
cations of parameterized complexity analysis in bioinformatics, computational
geometry, artificial intelligence, constraint satisfaction, data bases, and cogni-
tive modelling. Clearly, this list is far from being complete and deserves further
additions. With this survey, we try to overview and promote the research on pa-
rameterized (and multivariate) complexity of voting problems, a subfield of the
strongly growing area of computational social choice. Indeed, voting problems
seem to be a particularly fruitful ground of (future) parameterized complexity
analysis for at least three reasons:

– many NP-hard voting problems have simple and clear combinatorial defini-
tions;

– many voting problems carry very natural structural parameters such as the
number of candidates or the number of votes, with application scenarios
where these parameter values are anticipated to be small;

– it is very natural and sometimes forcing to search for exact solutions.

The parameterized complexity analysis of voting problems leaves numerous chal-
lenges for future research. Some of these have been indicated in the preceding
sections. Moreover, there are many NP-hard voting problems that have not yet
been studied from a parameterized complexity perspective.

We conclude with a few more specific research questions and directions con-
cerning the parameterized computational complexity of NP-hard voting prob-
lems (refer to a recent PhD thesis [Bet10a] for additional material).

Studies in Computational Aspects of Voting 355

– A central parameter in voting problems is the number of candidates (equiva-
lently, alternatives). There is a number of fixed-parameter tractability results
for this parameter [Bet10a, BHN09, DS12, EFS10b, FHHR09b] relying on
integer linear programming and exploiting Lenstra’s result [Len83] for a fixed
number of variables. It would be highly desirable to replace these results by
direct combinatorial algorithms with more efficient running times.

– There are numerous results in the theory of voting [ASS02, ASS10] provid-
ing structural properties of specific voting systems. These might be exploited
for spotting interesting parameters in voting problems. For instance, Elkind
et al. [EFS10b] explored and exploited “distance rationalizability” to show
fixed-parameter tractability results. Pini et al. [PRVW11] used “indepen-
dence of irrelevant alternatives” to even gain polynomial-time solvability for
a restricted Possible Winner voting problem.

– From an algorithmic point of view, the established parameterized technique
iterative compression [RSV04, GMN09] seems widely unexplored. Moreover,
there are only few kernelization results in voting (see Section 6.2). Notably,
it seems difficult to come up with kernelizations for the parameter “number
of votes”. Hence, this calls for combined parameters in the spirit of multi-
variate algorithmics [Fel09, Nie10] or the development of partial kerneliza-
tions [BBN10, BGKN11] where only one input dimension is reduced.

– Many fixed-parameter tractability results in voting (as in algorithmic graph
theory) are of theoretical nature only. It remains a general task to improve
the efficiency of these results and to finally arrive at implementations and ex-
periments in the spirit of algorithm engineering. For instance, algorithm engi-
neering for computing Kemeny scores revealed that data reduction (based on
partial kernelization results) combined with (integer) linear program solvers
leads to practically relevant results [BBN10].

– Voting is an ideal playground for multivariate algorithmics [Fel09, Nie10]. In
particular, for identifying (structural) parameters to exploit, it seems worth-
while to explore many of the NP-hardness proofs for voting problems. For
instance, a proof showing NP-hardness for Kemeny Score with only four
votes [DKNS01a, DKNS01b] reveals that in order to work, it requires a high
average KT-distance between the votes, making this a plausible parameter.
Hence, “deconstructing intractability” [KNU11, Nie10] appears particularly
beneficial in case of voting problems.

– Voting provides numerous challenging combinatorial problems which are
not about graphs.24 However, directed graph problems pop up in many
voting problems. For instance, there are close connections (also employed
for proving NP-hardness results) between voting and problems on tourna-
ments [BBS11, KS10, Woe03] or control in voting and vertex deletion prob-
lems on directed graphs [BBNU12, BU09, FHHR09b].

24 In August 2011, Michael R. Fellows and Frances A. Rosamond organized at Charles
Darwin University, Australia, the Workshop–Parameterized Complexity: Not About
Graphs (NAG) in order to stimulate more parameterized complexity research beyond
graph problems.

356 N. Betzler et al.

Voting problems are highly attractive from a parameterized complexity analysis
perspective; this survey hopefully helps to attract more parameterized research
in this fruitful and important area. Be invited!

Acknowledgements. We are grateful to Britta Dorn, Piotr Faliszewski, Jiong
Guo, Matthias Mnich, Jörg Rothe, Ildikó Schlotter, and an anonymous referee
for their numerous insightful remarks and their constructive advice.

References

[AB09] Arora, S., Barak, B.: Computational Complexity: A Modern Approach.
Cambridge University Press (2009)

[Ail10] Ailon, N.: Aggregation of Partial Rankings, p-Ratings, and Top-m Lists.
Algorithmica 57(2), 284–300 (2010)

[ALS09] Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Albers, S.,
Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009, Part I. LNCS, vol. 5555, pp. 49–58. Springer, Heidelberg
(2009)

[ASS02] Arrow, K.J., Sen, A.K., Suzumura, K. (eds.): Handbook of Social Choice
and Welfare, vol. 1. North-Holland (2002)

[ASS10] Arrow, K.J., Sen, A.K., Suzumura, K. (eds.): Handbook of Social Choice
and Welfare, vol. 2. North-Holland (2010)

[AYZ95] Alon, N., Yuster, R., Zwick, U.: Color-Coding. Journal of the ACM 42(4),
844–856 (1995)

[Ban85] Banks, J.S.: Sophisticated Voting Outcomes and Agenda Control. Social
Choice and Welfare 1(4), 295–306 (1985)

[BBD09] Biedl, T.C., Brandenburg, F.-J., Deng, X.: On the Complexity of Crossings
in Permutations. Discrete Mathematics 309(7), 1813–1823 (2009)

[BBN10] Betzler, N., Bredereck, R., Niedermeier, R.: Partial Kernelization for Rank
Aggregation: Theory and Experiments. In: Raman, V., Saurabh, S. (eds.)
IPEC 2010. LNCS, vol. 6478, pp. 26–37. Springer, Heidelberg (2010)

[BBNU11] Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On Making a
Distinguished Vertex Minimum Degree by Vertex Deletion. In: Černá, I.,
Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf,
S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 123–134. Springer, Heidel-
berg (2011)

[BBNU12] Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On Bounded-
Degree Vertex Deletion Parameterized by Treewidth. Discrete Applied
Mathematics 160(1–2), 53–60 (2012)

[BBS11] Brandt, F., Brill, M., Seedig, H.G.: On the Fixed-Parameter Tractability
of Composition-Consistent Tournament Solutions. In: Proceedings of the
22nd International Joint Conference on Artificial Intelligence, pp. 85–90.
AAAI Press (2011)

[BCE12] Brandt, F., Conitzer, V., Endriss, U.: Computational Social Choice. In:
Weiss, G. (ed.) Multiagent Systems. MIT Press (2012)

[BD10] Betzler, N., Dorn, B.: Towards a Dichotomy of Finding Possible Winners
in Elections Based on Scoring Rules. Journal of Computer and System
Sciences 76(8), 812–836 (2010)

Studies in Computational Aspects of Voting 357

[BDFH09] Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On Prob-
lems Without Polynomial Kernels. Journal of Computer and System Sci-
ences 75(8), 423–434 (2009)

[BEH+10] Baumeister, D., Erdélyi, G., Hemaspaandra, E., Hemaspaandra, L.A.,
Rothe, J.: Computational Aspects of Approval Voting. In: Laslier, J.-F.,
Remzi Sanver, M. (eds.) Handbook on Approval Voting, ch. 10, pp. 199–
251. Springer (2010)

[Bet10a] Betzler, N.: A Multivariate Complexity Analysis of Voting Problems. PhD
thesis, Friedrich-Schiller-Universität Jena (2010)

[Bet10b] Betzler, N.: On Problem Kernels for Possible Winner Determination under
the k-Approval Protocol. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010.
LNCS, vol. 6281, pp. 114–125. Springer, Heidelberg (2010)

[BF02] Brams, S., Fishburn, P.C.: Voting Procedures. In: Arrow, K.J., Sen, A.K.,
Suzumura, K. (eds.) Handbook of Social Choice and Welfare, vol. 1, pp.
173–236. Elsevier (2002)

[BFG+09] Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.:
Fixed-Parameter Algorithms for Kemeny Rankings. Theoretical Computer
Science 410, 4554–4570 (2009)

[BGKN11] Betzler, N., Guo, J., Komusiewicz, C., Niedermeier, R.: Average Param-
eterization and Partial Kernelization for Computing Medians. Journal of
Computer and System Sciences 77, 774–789 (2011)

[BGN10] Betzler, N., Guo, J., Niedermeier, R.: Parameterized Computational Com-
plexity of Dodgson and Young Elections. Information and Computa-
tion 208(2), 165–177 (2010)

[BHN09] Betzler, N., Hemmann, S., Niedermeier, R.: A Multivariate Complexity
Analysis of Determining Possible Winners Given Incomplete Votes. In:
Proceedings of the 21st International Joint Conference on Artificial Intel-
ligence, pp. 53–58 (2009)

[BNW11] Betzler, N., Niedermeier, R., Woeginger, G.J.: Unweighted Coalitional Ma-
nipulation Under the Borda Rule is NP-hard. In: Proceedings of 22nd In-
ternational Joint Conference of Artificial Intelligence, pp. 55–60 (2011)

[BO91] Bartholdi III, J.J., Orlin, J.B.: Single Transferable Vote Resists Strategic
Voting. Social Choice and Welfare 8, 341–354 (1991)

[Bod09] Bodlaender, H.L.: Kernelization: New Upper and Lower Bound Techniques.
In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37.
Springer, Heidelberg (2009)

[BS09] Brams, S., Remzi Sanver, M.: Voting Systems that Combine Approval
and Preference. In: Brams, S., Gehrlein, W.V., Roberts, F.S. (eds.) The
Mathematics of Preference, Choice, and Order: Essays in Honor of Peter
C. Fishburn, pp. 215–237. Springer (2009)

[BSU11] Betzler, N., Slinko, A., Uhlmann, J.: On the Computation of Fully Pro-
portional Representation (2011) (available at Social Science Research Net-
work)

[BTT89a] Bartholdi III, J.J., Tovey, C.A., Trick, M.A.: The Computational Diffi-
culty of Manipulating an Election. Social Choice and Welfare 6(3), 227–241
(1989)

[BTT89b] Bartholdi III, J.J., Tovey, C.A., Trick, M.A.: Voting Schemes for Which
It Can Be Difficult to Tell Who Won the Election. Social Choice and
Welfare 6(2), 157–165 (1989)

[BTT92] Bartholdi III, J.J., Tovey, C.A., Trick, M.A.: How Hard Is It to Control an
Election? Mathematical and Computer Modeling 16(8-9), 27–40 (1992)

358 N. Betzler et al.

[BTY11] Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel Bounds for Disjoint Cy-
cles and Disjoint Paths. Theoretical Computer Science 412(35), 4570–4578
(2011)

[BU09] Betzler, N., Uhlmann, J.: Parameterized Complexity of Candidate Con-
trol in Elections and Related Digraph Problems. Theoretical Computer
Science 410(52), 5425–5442 (2009)

[CC83] Chamberlin, J.R., Courant, P.N.: Representative Deliberations and Rep-
resentative Decisions: Proportional Representation and the Borda Rule.
American Political Science Review 77(3), 718–733 (1983)

[CCDF97] Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: Advice Classes of Parame-
terized Tractability. Annals of Pure and Applied Logic 84, 119–138 (1997)

[CELM07] Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: A Short Introduction
to Computational Social Choice. In: van Leeuwen, J., Italiano, G.F., van
der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS,
vol. 4362, pp. 51–69. Springer, Heidelberg (2007)

[CFRS07] Christian, R., Fellows, M., Rosamond, F., Slinko, A.: On Complexity of
Lobbying in Multiple Referenda. Review of Economic Design 11(3), 217–
224 (2007)

[CH00] Charon, I., Hudry, O.: Slater Orders and Hamiltonian Paths of Tourna-
ments. Electronic Notes in Discrete Mathematics 5, 60–63 (2000)

[CLM+11] Chevaleyre, Y., Lang, J., Maudet, N., Monnot, J., Xia, L.: New Candi-
dates Welcome! Possible Winners with Respect to the Addition of New
Candidates. In: CoRR, abs/1111.3690 (2011)

[Con06] Conitzer, V.: Computing Slater Rankings Using Similarities among Can-
didates. In: Proceedings of the 21st AAAI Conference on Artificial Intelli-
gence, pp. 613–619. AAAI Press (2006)

[Con10] Conitzer, V.: Making Decisions Based on the Preferences of Multiple
Agents. Communications of the ACM 53, 84–94 (2010)

[Cop51] Copeland, A.H.: A ‘Resonable’ Social Welfare Function. Mimeographed
(University of Michigan Seminar on Application of Mathematics in Social
Science) (1951)

[CRX09] Conitzer, V., Rognlie, M., Xia, L.: Preference Functions That Score Rank-
ings and Maximum Likelihood Estimation. In: Proceedings of the 20th In-
ternational Joint Conference on Artificial Intelligence, pp. 109–115 (2009)

[CSL07] Conitzer, V., Sandholm, T., Lang, J.: When Are Elections with Few Can-
didates Hard to Manipulate? Journal of the ACM 54, 1–33 (2007)

[dB81] de Borda, J.-C.: Mémoire sur les élections au scrutin. Histoire de
l’Académie Royale des Sciences (1781)

[dC85] Caritat, M.J.A.N., de Condorcet: Essai sur l’application de l’analyse à
la probabilité des décisions rendues à la pluralité des voix. L’Imprimerie
Royale, Paris (1785)

[DF99] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
[DKNS01a] Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank Aggregation Meth-

ods for the Web. In: Proceedings of the 10th International Conference on
World Wide Web, pp. 613–622. ACM (2001)

[DKNS01b] Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank Aggregation Re-
visited (2001) (manuscript)

[DKNW11] Davies, J., Katsirelos, G., Narodytska, N., Walsh, T.: Complexity of and
Algorithms for Borda Manipulation. In: Proceedings of the 25th AAAI
Conference on Artificial Intelligence, pp. 657–662. AAAI Press (2011)

Studies in Computational Aspects of Voting 359

[DLS09] Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through Colors
and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 378–389.
Springer, Heidelberg (2009)

[Dod76] Dodgson, C.: A Method of Taking Votes on More Than Two Issues. Pam-
phlet printed by the Clarendon Press, Oxford, and headed (1876) (not yet
published)

[DS12] Dorn, B., Schlotter, I.: Multivariate Complexity Analysis of Swap Bribery.
Algorithmica (2012) (available electronically)

[DT11] Downey, R.G., Thilikos, D.M.: Confronting Intractability via Parameters.
Computer Science Review 5(4), 279–317 (2011)

[EF10a] Elkind, E., Faliszewski, P.: Approximation Algorithms for Campaign Man-
agement. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 473–482.
Springer, Heidelberg (2010)

[EF10b] Erdélyi, G., Fellows, M.R.: Parameterized Control Complexity in Bucklin
Voting and in Fallback Voting. In: Proceedings of the 3rd International
Workshop on Computational Social Choice, pp. 163–174 (2010)

[EFG+09] Erdélyi, G., Fernau, H., Goldsmith, J., Mattei, N., Raible, D., Rothe, J.:
The Complexity of Probabilistic Lobbying. In: Rossi, F., Tsoukias, A. (eds.)
ADT 2009. LNCS, vol. 5783, pp. 86–97. Springer, Heidelberg (2009)

[EFPR11] Erdélyi, G., Fellows, M.R., Piras, L., Rothe, J.: Control Complexity in
Bucklin and Fallback Voting. Technical report, arXiv:1103.2230 (2011)

[EFS09] Elkind, E., Faliszewski, P., Slinko, A.: Swap Bribery. In: Mavronicolas, M.,
Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 299–310.
Springer, Heidelberg (2009)

[EFS10a] Elkind, E., Faliszewski, P., Slinko, A.: Cloning in Elections. In: Proceedings
of the 24th AAAI Conference on Artificial Intelligence, pp. 768–773. AAAI
Press (2010)

[EFS10b] Elkind, E., Faliszewski, P., Slinko, A.: On the Role of Distances in Defin-
ing Voting Rules. In: Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems, pp. 375–382 (2010)

[ENR09] Erdélyi, G., Nowak, M., Rothe, J.: Sincere-Strategy Preference-Based Ap-
proval Voting Fully Resists Constructive Control and Broadly Resists De-
structive Control. Mathematical Logic Quaterly 55, 425–443 (2009)

[EPR10] Erdélyi, G., Piras, L., Rothe, J.: Control Complexity in Fallback Voting.
Technical report, arXiv:1004.3398v1 (2010)

[ER91] Ephrati, E., Rosenschein, J.S.: The Clarke Tax as a Consensus Mechanism
Among Automated Agents. In: Proceedings of the 9th AAAI Conference
on Artificial Intelligence, pp. 173–178. AAAI Press (1991)

[ER97] Ephrati, E., Rosenschein, J.S.: A Heuristic Technique for Multi-Agent
Planning. Annals of Mathematics and Artificial Intelligence 20(1–4), 13–67
(1997)

[ER10] Erdélyi, G., Rothe, J.: Control Complexity in Fallback Voting. In: Proceed-
ings of Computing: the 16th Australasian Theory Symposium. Australian
Computer Society Conferences in Research and Practice in Information
Technology Series, pp. 39–48 (2010)

[Fal08] Faliszewski, P.: Nonuniform Bribery. In: Proceedings of the 7th Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems.
International Foundation for Autonomous Agents and Multiagent Systems,
pp. 1569–1572 (2008)

360 N. Betzler et al.

[Fel09] Fellows, M.: Towards Fully Multivariate Algorithmics: Some New Results
and Directions in Parameter Ecology. In: Fiala, J., Kratochvíl, J., Miller,
M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 2–10. Springer, Heidelberg
(2009)

[FFL+09] Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S., Vil-
langer, Y.: Kernel(s) for Problems with No Kernel: On Out-Trees with
Many Leaves. In: Proceedings of the 26th International Symposium on
Theoretical Aspects of Computer Science. LIPIcs, vol. 3, pp. 421–432.
Schloss Dagstuhl (2009)

[FFL+10] Fernau, H., Fomin, F.V., Lokshtanov, D., Mnich, M., Philip, G., Saurabh,
S.: Ranking and Drawing in Subexponential Time. In: Iliopoulos, C.S.,
Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460, pp. 337–348. Springer,
Heidelberg (2011)

[FG06] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
[FHH09] Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: How Hard Is

Bribery in Elections? Journal of Artificial Intelligence Research 35, 485–
532 (2009)

[FHH10] Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: Using Complex-
ity to Protect Elections. Communications of the ACM 53(11), 74–82 (2010)

[FHH11] Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: Multimode Con-
trol Attacks on Elections. Journal of Artificial Intelligence Research 40,
305–351 (2011)

[FHHR09a] Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: A
Richer Understanding of the Complexity of Election Systems. In: Fun-
damental Problems in Computing: Essays in Honor of Professor Daniel J.
Rosenkrantz, pp. 375–406 (2009)

[FHHR09b] Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Llull
and Copeland Voting Computationally Resist Bribery and Constructive
Control. Journal of Artificial Intelligence Research 35, 275–341 (2009)

[Fis77] Fishburn, P.C.: Condorcet Social Choice Functions. SIAM Journal on Ap-
plied Mathematics 33(3), 469–489 (1977)

[FJL+10] Fellows, M.R., Jansen, B., Lokshtanov, D., Rosamond, F.A., Saurabh, S.:
Determining the Winner of a Dodgson Election is Hard. In: Proceedings of
the 29th Conference on Foundations of Software Technology and Theoret-
ical Computer Science, pp. 459–469. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2010)

[FKS03] Fagin, R., Kumar, R., Sivakumar, D.: Efficient Similarity Search and Clas-
sification via Rank Aggregation. In: Proceedings of the 22nd ACM SIG-
MOD International Conference on Management of Data, pp. 301–312.
ACM (2003)

[FS11] Fortnow, L., Santhanam, R.: Infeasibility of Instance Compression and
Succinct PCPs for NP. Journal of Computer and System Sciences 77(1),
91–106 (2011)

[Gae09] Gaertner, W.: A Primer in Social Choice Theory–LSE Perspectives in Eco-
nomic Analysis, revised edition. Oxford University Press (2009)

[Gib73] Gibbard, A.: Manipulation of Voting Schemes: A General Result. Econo-
metrica 41(4), 587–601 (1973)

[GMN09] Guo, J., Moser, H., Niedermeier, R.: Iterative Compression for Exactly
Solving NP-Hard Minimization Problems. In: Lerner, J., Wagner, D.,
Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS,
vol. 5515, pp. 65–80. Springer, Heidelberg (2009)

Studies in Computational Aspects of Voting 361

[GN07] Guo, J., Niedermeier, R.: Invitation to Data Reduction and Problem Ker-
nelization. ACM SIGACT News 38(1), 31–45 (2007)

[Goo54] Goodman, L.A.: On Methods of Amalgamation. In: Thrall, R.M., Coombs,
C.H., Davis, R.L. (eds.) Decision Processes, pp. 39–48. John Wiley and
Sons, Inc. (1954)

[HHR97] Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Exact Analysis of
Dodgson Elections: Lewis Caroll’s 1876 Voting System is Complete for
Parallel Access to NP. Journal of the ACM 44(6), 806–825 (1997)

[HHR07] Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Anyone but Him: The
Complexity of Precluding an Alternative. Artificial Intelligence 171(5-6),
255–285 (2007)

[HHR09] Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Hybrid Elections
Broaden Complexity-Theoretic Resistance to Control. Mathematical Logic
Quarterly 55(4), 397–424 (2009)

[HSV05] Hemaspaandra, E., Spakowski, H., Vogel, J.: The Complexity of Kemeny
Elections. Theoretical Computer Science 349(3), 382–391 (2005)

[Hud04] Hudry, O.: A Note On “Banks Winners in Tournaments Are Difficult to
Recognize” by G. J. Woeginger. Social Choice and Welfare 23(1), 113–114
(2004)

[IP01] Impagliazzo, R., Paturi, R.: On the Complexity of k-SAT. Journal of Com-
puter and System Sciences 62, 367–375 (2001)

[IPZ01] Impagliazzo, R., Paturi, R., Zane, F.: Which Problems Have Strongly Ex-
ponential Complexity? Journal of Computer and System Sciences 63(4),
512–530 (2001)

[JSA08] Jackson, B.N., Schnable, P.S., Aluru, S.: Consensus Genetic Maps as Me-
dian Orders from Inconsistent Sources. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics 5(2), 161–171 (2008)

[Kem59] Kemeny, J.G.: Mathematics Without Numbers. Daedalus 88, 571–591
(1959)

[KL05] Konczak, K., Lang, J.: Voting Procedures with Incomplete Preferences.
In: Proceedings of IJCAI 2005 Multidisciplinary Workshop on Advances
in Preference Handling, pp. 124–129 (2005)

[KNU11] Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Deconstructing
Intractability—A Multivariate Complexity Analysis of Interval Con-
strained Coloring. Journal of Discrete Algorithms 9, 137–151 (2011)

[KS10] Karpinski, M., Schudy, W.: Faster Algorithms for Feedback Arc Set Tour-
nament, Kemeny Rank Aggregation and Betweenness Tournament. In:
Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506,
pp. 3–14. Springer, Heidelberg (2010)

[KT06] Kleinberg, J., Tardos, É.: Algorithm Design. Addison-Wesley (2006)
[LB11] Lu, T., Boutilier, C.: Budgeted Social Choice: From Consensus to Person-

alized Decision Making. In: Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, pp. 280–286 (2011)

[Len83] Lenstra, H.W.: Integer Programming with a Fixed Number of Variables.
Mathematics of Operations Research 8(4), 538–548 (1983)

[Lev75] Levenglick, A.: Fair and Reasonable Election Systems. Behavioral Sci-
ence 20(1), 34–46 (1975)

[LFZL09] Liu, H., Feng, H., Zhu, D., Luan, J.: Parameterized Computational Com-
plexity of Control Problems in Voting Systems. Theoretical Computer Sci-
ence 410, 2746–2753 (2009)

362 N. Betzler et al.

[Lok09] Lokshtanov, D.: New Methods in Parameterized Algorithms and Complex-
ity. PhD thesis, University of Bergen (2009)

[LR08] Lindner, C., Rothe, J.: Fixed-Parameter Tractability and Parameterized
Complexity Applied to Problems From Computational Social Choice. In:
Supplement in the Mathematical Programming Glossary (October 2008)

[LZ10] Liu, H., Zhu, D.: Parameterized Complexity of Control Problems in Max-
imin Election. Information Processing Letters 110(10), 383–388 (2010)

[MG06] Matoušek, J., Gärtner, B.: Understanding and Using Linear Programming
(Universitext). Springer (2006)

[Mon95] Monroe, B.L.: Fully Proportional Representation. American Political Sci-
ence Review 89(4), 925–940 (1995)

[Mou91] Moulin, H.: Axioms of Cooperative Decision Making. Cambridge Univer-
sity Press (1991)

[MR99] Mahajan, M., Raman, V.: Parameterizing Above Guaranteed Values:
MaxSat and MaxCut. Journal of Algorithms 31(2), 335–354 (1999)

[MRS09] Mahajan, M., Raman, V., Sikdar, S.: Parameterizing Above or Below
Guaranteed Values. Journal of Computer and System Sciences 75, 137–
153 (2009)

[MRS11] Misra, N., Raman, V., Saurabh, S.: Lower Bounds on Kernelization. Dis-
crete Optimization 8(1), 110–128 (2011)

[Nie06] Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Uni-
versity Press (February 2006)

[Nie10] Niedermeier, R.: Reflections on Multivariate Algorithmics and Problem
Parameterization. In: Proceedings of the 27th International Symposium
on Theoretical Aspects of Computer Science. LIPIcs, vol. 5, pp. 17–32
(2010)

[Nur87] Nurmi, H.: Comparing Voting Systems. Kluwer Academic Publishers
(1987)

[Pap94] Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
[PRVW11] Pini, M.S., Rossi, F., Brent Venable, K., Walsh, T.: Incompleteness and

Incomparability in Preference Aggregation: Complexity Results. Artificial
Intelligence 175, 1272–1289 (2011)

[PRZ08] Procaccia, A.D., Rosenschein, J.S., Zohar, A.: On the Complexity of
Achieving Proportional Representation. Social Choice and Welfare 30, 353–
362 (2008)

[RBLR11] Rothe, J., Baumeister, D., Lindner, C., Rothe, I.: Einführung in Computa-
tional Social Choice: Individuelle Strategien und kollektive Entscheidungen
beim Spielen. Spektrum Akademischer Verlag, Wählen und Teilen (2011)

[RS07] Raman, V., Saurabh, S.: Improved Fixed Parameter Tractable Algorithms
for Two “Edge” Problems: MAXCUT and MAXDAG. Information Pro-
cessing Letters 104(2), 65–72 (2007)

[RSV03] Rothe, J., Spakowski, H., Vogel, J.: Exact Complexity of the Winner Prob-
lem for Young Elections. Theory of Computing Systems 36(4), 375–386
(2003)

[RSV04] Reed, B.A., Smith, K., Vetta, A.: Finding Odd Cycle Transversals. Oper-
ations Research Letters 32, 299–301 (2004)

[Sat75] Satterthwaite, M.A.: Strategy-Proofness and Arrow’s Conditions: Exis-
tence and Correspondence Theorems for Voting Procedures and Social
Welfare Functions. Journal of Economic Theory, 187–217 (1975)

[Scu07] Sculley, D.W.: Rank Aggregation for Similar Items. In: Proceedings of the
7th SIAM International Conference on Data Mining, pp. 587–592 (2007)

Studies in Computational Aspects of Voting 363

[SEF11] Schlotter, I., Elkind, E., Faliszewski, P.: Campaign Management under
Approval-Driven Voting Rules. In: Proceedings of the 25th AAAI Confer-
ence on Artificial Intelligence, pp. 726–731. AAAI Press (2011)

[Sim09] Simjour, N.: Improved Parameterized Algorithms for the Kemeny Aggre-
gation Problem. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS,
vol. 5917, pp. 312–323. Springer, Heidelberg (2009)

[Sla61] Slater, P.: Inconsistencies in a Schedule of Paired Comparisons.
Biometrika 48(3-4), 303–312 (1961)

[Sni08] Sniedovich, M.: Wald’s Maximin Model: A Treasure in Disguise! Journal
of Risk Finance 9(3), 287–291 (2008)

[Tay05] Taylor, A.D.: Social Choice and the Mathematics of Manipulation. Cam-
bridge University Press (2005)

[Wal49] Wald, A.: Statistical Decision Functions. The Annals of Mathematical
Statistics 20(2) (1949)

[Wal07] Walsh, T.: Uncertainty in Preference Elicitation and Aggregation. In: Pro-
ceedings of the 22nd AAAI Conference on Artificial Intelligence, pp. 3–8.
AAAI Press (2007)

[Woe03] Woeginger, G.J.: Banks Winners in Tournaments are Difficult to Recog-
nize. Social Choice and Welfare 20(3), 523–528 (2003)

[XC11] Xia, L., Conitzer, V.: Determining Possible and Necessary Winners under
Common Voting Rules Given Partial Orders. Journal of Artificial Intelli-
gence Research 41, 25–67 (2011)

[YL78] Young, H.P., Levenglick, A.: A Consistent Extension of Condorcet’s Elec-
tion Principle. SIAM Journal on Applied Mathematics 35(2), 285–300
(1978)

[You77] Young, H.P.: Extending Condorcet’s Rule. Journal of Economic Theory 16,
335–353 (1977)

A Parameterized Halting Problem

Yijia Chen1 and Jörg Flum2

1 Shanghai Jiaotong University, China
yijia.chen@cs.sjtu.edu.cn

2 Albert-Ludwigs-Universität Freiburg, Germany
joerg.flum@math.uni-freiburg.de

Abstract. The parameterized problem p-Halt takes as input a nonde-
terministic Turing machine M and a natural number n, the size of M

being the parameter. It asks whether every accepting run of M on empty
input tape takes more than n steps. This problem is in the class XPuni,
the class “uniform XP,” if there is an algorithm deciding it, which for
fixed machine M runs in time polynomial in n. It turns out that various
open problems of different areas of theoretical computer science are re-
lated or even equivalent to p-Halt ∈ XPuni. Thus this statement forms a
bridge which allows to derive equivalences between statements of differ-
ent areas (proof theory, complexity theory, descriptive complexity, . . .)
which at first glance seem to be unrelated. As our presentation shows,
various of these equivalences may be obtained by the same method.

1 Introduction

Halting problems played a central role in computability theory right up from the
beginning. In fact, in his seminal paper [33] Turing made precise the notion of
algorithm by introducing the type of machine known as Turing machine and
proved the first undecidability result: the undecidability of the halting problem
for Turing machines:

Instance: A Turing machine M.
Problem: Does M accept the empty input tape?

In complexity theory Cook [13] and Levin [28] showed that the halting problem

NTM-Halt
Instance: A nondeterministic Turing machine M and a

string 1n with n ∈ N.
Problem: Does M accept the empty input tape in ≤ n

steps?

is NP-complete (under polynomial time reductions). Comparing this problem with
other NP-complete problems, Downey and Fellows remark in [16, page 236]:

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 364–397, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Parameterized Halting Problem 365

. . . the point is that a nondeterministic Turing machine is such an opaque
and generic object that it simply does not seem reasonable that we should
be able to decide in polynomial time whether a given Turing machine has
some accepting path. The Cook-Levin theorem therefore gives powerful
evidence that P �= NP.

Later on Chandra, Kozen, and Stockmeyer [7] introduced the notion of alter-
nating Turing machine and showed that all levels of the Polynomial Hierarchy
have natural complete problems that are halting problems for alternating Turing
machines.

Also in parameterized complexity most complexity classes of parameterized
intractable problems considered so far contain a more or less natural complete
halting problem (complete under fpt-reductions). Depending on the class the
machines are deterministic, nondeterministic, or alternating and they are single
or multitape machines. The reader will find the completeness results, for exam-
ple, in the textbook [20] on parameterized complexity. In this introduction we
mention some of these results, however, otherwise not used in this paper.

The classes W[1], W[2], and W[P] are (among) the most important classes
of parameterized intractable problems. In particular, for each of them there
is a halting problem for nondeterministic Turing machines complete for it. In
fact, the short halting problem for nondeterministic single-tape Turing machines
p-Short-NSTM-Halt, the short halting problem for nondeterministic (multi-
tape) Turing machines p-Short-NTM-Halt, and the bounded halting problem
for nondeterministic Turing machines p-Bounded-NTM-Halt are complete
for W[1], W[2], and W[P], respectively, where:

p-Short-NSTM-Halt
Instance: A nondeterministic single tape Turing machine M

and k ∈ N.
Parameter: k.

Problem: Does M accept the empty input tape in≤ k steps?

p-Short-NTM-Halt
Instance: A nondeterministic multitape Turing machine M

and k ∈ N.
Parameter: k.

Problem: Does M accept the empty input tape in≤ k steps?

p-Bounded-NTM-Halt
Instance: A nondeterministic Turing machine M, k ∈ N,

and 1n with n ∈ N.
Parameter: k.

Problem: Does M accepts the empty input tape in≤ n steps
and using at most k nondeterministic steps?

366 Y. Chen and J. Flum

These completeness results for W[1], W[2], and W[P] are due to Cai et al. [4],
Cesati et al. [6], and Cesati [5], respectively. Concerning the W[1]-completeness
of p-Short-NSTM-Halt, Downey and Fellows write in [16, page 236]:

It seems to us that if one accepts the philosophical argument that TUR-

ING MACHINE ACCEPTANCE [that is, NTM-Halt] is intractable,
then the same reasoning would suggest that SHORT TURING MA-

CHINE ACCEPTANCE [that is, p-Short-NSTM-Halt] is fixed pa-
rameter intractable.

In the problem p-Bounded-NTM-Halt the parameter bounds the number of
nondeterministic steps that are allowed in a run of length n, so small parameter
means limited nondeterminism. However in the first two parameterized halting
problems the parameter is the total number of steps considered in the given
instance. Having in mind the original investigations which led to the introduction
of the halting problem for (deterministic) Turing machines one hardly would
argue that the parameter is small compared with the total size of an instance.
In this context it is more natural to expect that the size of the Turing machine
is small compared with the number of steps considered in a run of the machine
on empty input tape.

If in p-Short-NSTM-Halt we replace the nondeterministic machines by
alternating ones with the appropriate number of alternations we obtain com-
plete parameterized halting problems for the different levels of the so-called A-
hierarchy [19]. Finally, in this short report on known results concerning halting
problems in parameterized complexity, let us mention at least one parameterized
class with a halting problem for deterministic machines as complete problem.
The problem

p-Exp-DTM-Halt
Instance: A Turing machine M, k ∈ N and 1n with n ∈ N.

Parameter: k.
Problem: Does M accept the empty input tape in at most

nk steps?

is complete for the class XP.
We already mentioned that in halting problems the size of the machine is a

reasonable parameter (reasonable in the sense of parameterized complexity). In
this paper we consider the parameterized halting problem:

p-Halt
Instance: A nondeterministic Turing machine M and 1n

with n ∈ N.
Parameter: |M|, the size of M.

Problem: Does every accepting run of M on empty input
tape take more than n steps?

We introduced this parameterization of the halting problem in [9]; indepen-
dently, it was introduced by Aumann and Domb [1]. Later on the complexity

A Parameterized Halting Problem 367

of this problem has also been studied by Monroe [30]. Note that the classical
problem Halt underlying p-Halt essentially is the complement of the problem
NTM-Halt considered above. In fact, 〈M, 1n〉 ∈ p-Halt means that there is
no accepting run of M on empty input tape at all or if there is one, then all such
runs take more than n steps.

We have seen above that (apparently) it makes a difference whether we con-
sider single tape or multitape machines. Moreover, if we restrict the inputs of
p-Short-NSTM-Halt to nondeterministic Turing machines with the cardinal-
ity of its alphabet bounded by some constant, then the problem becomes fixed-
parameter tractable. As in p-Halt the size of the machine is the parameter,
its complexity is robust against such changes (fixed alphabet versus arbitrary
alphabet, single tape versus multitape, binary branching versus finite branching,
. . .); in fact, one easily verifies that any two such variants are fpt-equivalent.

It is easily seen that Halt (the classical problem underlying p-Halt) is coNP-
complete. The algorithm that for every instance 〈M, 1n〉 of p-Halt systemat-
ically checks all possible runs of length ≤ n of M on empty input tape takes
|M|n steps approximately. The “small” parameter |M| is the base of the term
|M|n and the “big” n its exponent. The question arises whether we can reverse
the roles of |M| and n, more precisely, whether there is an algorithm solving
〈M, 1n〉 ∈ p-Halt in time nf(|M|) for some function f : N→ N, that is, whether

p-Halt ∈ XPuni.

This problem is widely open. We conjecture that p-Halt /∈ XPuni; in fact,
encouraged by the remarks of Downey and Fellows mentioned above, we are
tempted to add:

The point is that a nondeterministic Turing machine is such an opaque
and generic object that it simply does not seem reasonable that we should
be able to decide whether every accepting run on empty input tape of a
given nondeterministic Turing machine M takes more than n steps in
time nf(|M|) for some function f .

In this paper first we report on what is known about the complexity of p-Halt
(Section 3). Then we will see that the statement p-Halt ∈ XPuni is equivalent to
other prominent open problems from different areas of theoretical computer sci-
ence. More precisely, in Section 4 we show that it is equivalent to the existence of
polynomially optimal proof systems. In Section 5 we show that p-Halt ∈ XPuni

implies the existence of complete problems, first for the classical complexity
class UP and then for the class of polynomial time equivalence relations under
so-called equivalence reductions. We get a logic capturing the complexity class
P (= PTIME) under the assumption p-Halt ∈ XPuni in Section 6. Even though
we originally obtained these results using distinct arguments, in the meantime
we realized that they can be obtained all by the same method: first we translate
the consequences of p-Halt ∈ XPuni mentioned so far into statements on list-
ings (that is, on effective enumerations) and then, based on p-Halt ∈ XPuni, we
apply a technique we call the invariantization of listings ; this technique plays

368 Y. Chen and J. Flum

a central role in the present exposition. One could formulate the principle un-
derlying this technique in an abstract way, and obtain our results as instances
of a general theorem. however, we do not do so. Nevertheless, in Section 7 we
introduce the notion of slicewise downward monotone parameterized problem
and take a closer look on its role in the preceding results. In Section 8 we relate
the assumption p-Halt ∈ XPuni to the complexity of deciding whether a hard
valid first-order sentence has a proof of a given length. Finally, in Section 9 we
show that p-Halt /∈ XPuni is equivalent to the existence of hard sequences for
algorithms deciding Taut.

2 Some Preliminaries

In this section we fix some notations and recall some basic definitions.
We let N[X] be the set of polynomials with natural numbers as coefficients.

We denote the alphabet {0, 1} by Σ and the length of a string x ∈ Σ∗ by
|x|. Let 1n be the string consisting of n many 1s and let λ denote the empty
string. We identify problems with subsets Q of Σ∗. We already remarked that
the restriction to the alphabet Σ does not affect the complexity of the problem
p-Halt. Sometimes statements containing a formulation like “there is a d ∈ N

such that for all x ∈ Σ∗: . . . ≤ |x|d” can be wrong for x ∈ Σ∗ with |x| ≤ 1. We
trust the reader’s common sense to interpret such statements reasonably.

A problem Q ⊆ Σ∗ has padding if there is a function pad : Σ∗ × Σ∗ → Σ∗

computable in logarithmic space having the following properties:

(i) For any x, y ∈ Σ∗, |pad(x, y)| > |x|+ |y| and
(
pad(x, y) ∈ Q ⇐⇒ x ∈ Q

)
.

(ii) There is a logspace algorithm which, given pad(x, y) recovers y.

By 〈. . .〉 we denote some standard logspace and linear time computable tupling
function with logspace and linear time computable inverses.

If A is a (deterministic or nondeterministic) algorithm and A accepts x ∈ Σ∗,
then we denote by tA(x) the number of steps of a shortest accepting run of A
on x; if A does not accept x, then tA(x) :=∞. By convention,∞ > n for n ∈ N.
So we can state p-Halt in a more succinct way:

p-Halt
Instance: A nondeterministic Turing machine M and 1n

with n ∈ N.
Parameter: |M|.

Problem: Is tM(λ) > n?

By default, algorithms are deterministic. If an algorithm A on input x eventually
halts and outputs a value, we denote it by A(x). We use deterministic and
nondeterministic Turing machines with Σ as alphabet as our basic computational
model for algorithms (and we often use the notions “algorithm” and “Turing
machine” synonymously). If necessary, we will not distinguish between a Turing
machine and its code, a string in Σ∗. If M is a deterministic or nondeterministic

A Parameterized Halting Problem 369

Turing machine, then L(M) is the language accepted by M. We use Turing
machines as acceptors and transducers. Even though we use formulations like
“let M1,M2, . . . be an enumeration of all polynomial time Turing machines,”
from the context it will be clear that we only refer to acceptors (or that we
only refer to transducers). We assume that a run of a nondeterministic Turing
machine is determined by the sequence of its states.

A polynomial time deterministic or nondeterministic Turing machine M is
clocked if (the code of) M contains a natural number time(M) such that ntime(M)

is a bound for the running time of M on inputs of length n. Of course, the function
M �→ time(M) should be computable in logspace.

2.1 Parameterized Complexity

Formally, we view parameterized problems as pairs (Q, κ) consisting of a classical
problem Q ⊆ Σ∗ and a parameterization κ : Σ∗ → N, which is required to be
polynomial time computable. However, we will present parameterized problems
in the form we did it for p-Halt and further parameterized problems in the
Introduction.

We mainly consider the classes FPTuni and XPuni of uniform parameterized
complexity and sometimes the classes FPT and XP of strongly uniform parame-
terized complexity. A parameterized problem (Q, κ) is in the class FPTuni (or is
uniformly fixed-parameter tractable) if x ∈ Q is solvable by an algorithm running
in time ≤ f(κ(x)) · |x|O(1) for some f : N → N. The problem (Q, κ) is in the
class XPuni if x ∈ Q is solvable by an algorithm running in time ≤ |x|f(κ(x)) for
some f : N→ N.

If in the definition of FPTuni and XPuni we require the function f to be
computable, then we get the corresponding classes FPT and XP.

The following inclusions hold between the four complexity classes of parame-
terized problems just introduced:

FPTuni

⊂ ⊂

FPT XPuni

⊂ ⊂
XP

(1)

While the corresponding ⊆-inclusions are trivial, the strict inclusions FPT ⊂
FPTuni and XP ⊂ XPuni are due to Downey and Fellows [15] and to Downey [17].
The strict inclusions FPT ⊂ XP and FPTuni ⊂ XPuni are easily obtained by
showing that p-Exp-DTM-Halt ∈ XP \ FPTuni (cf. [20, Corollary 2.26]).

3 The Complexity of p-Halt

In this section we report what we know on the complexity of p-Halt. We start
with a simple observation. The problem Halt is in coNE even if the natural
number n is given in binary. From that one easily obtains:

370 Y. Chen and J. Flum

Theorem 1 ([9]). If E = NE (and hence if P = NP), then p-Halt ∈ FPT.

(Assuming E �= NE), by (1) the most ambitious task is to show that p-Halt /∈
XPuni and p-Halt /∈ FPT should be the easiest one. We know:

Theorem 2 ([8]). If NP[tc] �= P[tc], then p-Halt /∈ FPT.

Here NP[tc] �= P[tc] means that DTIME(hO(1)) �= NTIME(hO(1)) for all time
constructible and increasing functions h : N → N. If NP[tc] �= P[tc], then
P �= NP, even E �= NE, as seen by taking as h the identity function and the
function 2n, respectively. On the other hand, it is not hard to see (cf. [8]) that
the assumption “NP contains a P-bi-immune problem” and hence the so-called
Measure Hypothesis imply NP[tc] �= P[tc].

The following idea underlies a proof of Theorem 2. Assume that p-Halt ∈
FPT. Then, we have a deterministic algorithm deciding p-Halt, the parameter-
ized halting problem for nondeterministic Turing machines. This yields a way
(different from brute force) to translate nondeterministic algorithms into deter-
ministic ones; a careful analysis of this translation shows that NTIME(hO(1)) ⊆
DTIME(hO(1)) for a suitable time constructible and increasing function h. For
a detailed proof we refer the reader to [8].

One can refine the previous argument to get p-Halt /∈ XP; however one needs
a complexity-theoretic assumption (apparently) stronger than NP[tc] �= P[tc],
namely the assumption NP[tc] �⊆ P[tclog tc]; it claims that NTIME(hO(1)) �⊆
DTIME(hO(log h)) for every time constructible and increasing function h : N →
N. That is:

Theorem 3. If NP[tc] �⊆ P[tclog tc], then p-Halt /∈ XP.

The assumption “NP contains an E-bi-immune problem” implies the statement
NP[tc] �⊆ P[tclog tc].

As mentioned, we do not know whether p-Halt ∈ XPuni or whether even
p-Halt ∈ FPTuni. However, from the point of view of nonuniform parameter-
ized complexity the problem p-Halt is fixed-parameter tractable. Recall that a
parameterized problem (Q, κ) is in the class FPTnu (or is nonuniformly fixed-
parameter tractable) if there is a constant c ∈ N, an arbitrary function f : N→ N,
and for every k ∈ N an algorithm solving the (classical) problem

(Q, κ)k :=
{
x ∈ Q

∣∣ κ(x) = k
}

in time f(k) · |x|c. The problem (Q, κ)k is called the kth slice of (Q, κ).

Proposition 4. The problem p-Halt is in the class FPTnu.

Proof. Fix k ∈ N; then there are only finitely many nondeterministic Turing
machines M with |M| = k, say, M1, . . . ,Ms. Hence the algorithm Ak that on any
instance 〈M, 1n〉 of p-Halt with |M| = k determines the i with M = Mi, and
then accepts if and only if tMi(λ) > n, decides the kth slice of p-Halt. It has
running time O(|M| + n); thus it witnesses that p-Halt ∈ FPTnu. �

A Parameterized Halting Problem 371

The following lemma shows that p-Halt ∈ XPuni if there is an algorithm
that accepts p-Halt and that runs in the time required by XPuni for instances
〈M, 1n〉, where M is a nondeterministic Turing machine which does not halt on
the empty input tape.

Lemma 5. If there is an algorithm A accepting p-Halt such that for all in-
stances 〈M, 1n〉 with tM(λ) = ∞ we have tA(〈M, 1n〉) = nf(|M|) for some func-
tion f , then p-Halt ∈ XPuni.

Proof. Let A be as in the statement of the lemma. Let B be an algorithm that
on input M computes tM(λ) by systematically checking for r = 0, 1, . . . whether
there is a run of length r accepting λ. Note that B does not stop on inputs M

with tM(λ) =∞.
Now we consider the algorithm A∗ that on input 〈M, 1n〉 in parallel simulates

A on input 〈M, 1n〉 and B on input M. If A accepts, then A∗ accepts. If B outputs
tM(λ), then A

∗ checks whether tM(λ) > n and answers accordingly.
Clearly, A∗ decides p-Halt. We still have to show that it runs in time poly-

nomial in n for fixed nondeterministic Turing machine M. By our assumption
on A, this is clear if tM(λ) = ∞; if tM(λ) < ∞, then eventually B will halt on
input M and output tM(λ). As the check tM(λ) > n can be done in linear time,
in this case the running time of A∗ can be bounded by O(n) (where the constant
hidden in the Oh-notation depends on M). �

Using the previous argument we show that the answer to the question “p-Halt
∈ XPuni?” would be the same if we only would require for an instance 〈M, 1n〉
of p-Halt that we get the correct answer if tM(λ) is not near to n. Let us
give a precise version of what we mean. Let ρ : N → N be a nondecreasing
and polynomial time computable function when inputs and outputs are given
in unary notation. We say that the approximation problem p-App-Halt is in
XPuni if there is a function f : N → N and an algorithm A that on every tuple
〈M, n〉, where M is a nondeterministic Turing machine and n ∈ N, runs in time
nf(|M|) and has the properties:

(i) if tM(λ) =∞, then A accepts;
(ii) if tM(λ) <∞ and n ≤ tM(λ)

ρ(tM(λ)) , then A accepts;
(iii) if tM(λ) <∞ and tM(λ) · ρ(tM(λ)) ≤ n, then A rejects.

Thus, if tM(λ) <∞, then the answer of A can be arbitrary for n with

tM(λ)
ρ(tM(λ))

< n < tM(λ) · ρ(tM(λ)).

Then:

Proposition 6. p-Halt ∈ XPuni if and only if p-App-Halt ∈ XPuni.

Proof. Clearly, every algorithm witnessing that p-Halt ∈ XPuni shows that
p-App-Halt ∈ XPuni. Conversely, let A witness that p-App-Halt ∈ XPuni

372 Y. Chen and J. Flum

and let 〈M, 1n〉 be an instance of p-Halt. We simulate A on
〈
M, 1n·ρ(n)

〉
. If A

accepts, then, by (iii),
tM(λ) > n.

and hence, 〈M, 1n〉 ∈ p-Halt. Otherwise, we know that tM(λ) < ∞, and we
compute tM(λ) by brute force and check whether tM(λ) > n or not. �

4 Polynomially Optimal Propositional Proof Systems
and p-Halt

By Taut we denote the set of formulas of propositional logic that are tautologies.
A propositional proof system in the sense of [14] is a polynomial time computable
surjective function p : Σ∗ → Taut. If p(w) = α, we say that w is a p-proof of α.

Let p and p′ be propositional proof systems. A simulation from p′ to p is a
polynomial time computable function f : Σ∗ → Σ∗ such that p(f(w′)) = p′(w′)
for all w′ ∈ Σ∗. A propositional proof system p is polynomially optimal if for
every propositional proof system p′ there is a simulation from p′ to p.

The quest for a polynomially optimal propositional proof system is an impor-
tant open problem of proof theory. In [27] Kraj́ıc̆ek and Pudlák conjectured that
there is no polynomially optimal propositional proof system. It turns out that
this conjecture is equivalent to p-Halt /∈ XPuni:

Theorem 7 ([10]). There is a polynomially optimal propositional proof system
if and only if p-Halt ∈ XPuni.

In the proof of the implication from right to left, we will use the following simple
result. By definition a listing is an effective enumeration. We denote by PF(Σ∗)
and PF(Taut) the set of all polynomial time computable functions from Σ∗ to
Σ∗ and the set of all polynomial time computable functions from Σ∗ to Taut,
respectively.

Proposition 8. The following are equivalent:
(a) There is a polynomially optimal propositional proof system.
(b) There is a listing of PF(Taut) by means of polynomial time Turing ma-

chines. By this we mean that there is a listing M1,M2, . . . of polynomial time
Turing machines computing functions h1, h2, . . . from Σ∗ to Taut such that
PF(Taut) = {hi | i ≥ 1}.

Proof. (b) ⇒ (a): Let M1,M2, . . . and h1, h2, . . . be as in (b). By repeating
machines Mi if necessary, we may assume that the function i �→Mi is polynomial
time computable. We fix a tautology α0 and show that then the function p :
Σ∗ → Taut is a polynomially optimal propositional proof system where

p(x) :=

{
hi(w), if x = 〈i, w, c〉 and c is the computation of Mi on input w

α0, otherwise.

A Parameterized Halting Problem 373

Then p is a propositional proof system: Our assumption on the function i �→Mi

and the presence of the computation c in the first case of the definition of p
guarantee its polynomial time computability. Moreover, every α ∈ Taut is in
the range of p, as one of the his will be the constant function with value α.
Furthermore, p is polynomially optimal: If p′ is a further propositional proof
system, then there is an i ≥ 1 such that p′ = hi. Therefore, w �→ 〈i, w, c〉, where
c is the computation of Mi on input w, is a simulation from p′ to p.

(a) ⇒ (b): Let p be a polynomially optimal propositional proof system com-
puted by the polynomial time Turing machine M and let M1,M2, . . . be a listing
of PF(Σ∗) by means of polynomial time Turing machines. If hi denotes the func-
tion computed by Mi, it is easy to verify that PF(Taut) = {p◦hi | i ≥ 1} (here
p◦hi is the function x �→ p(hi(x))

)
. Then M◦M1,M◦M2, . . . is the required list-

ing, where M◦Mi denotes a natural polynomial time Turing machine computing
p ◦ hi. �

We first turn to a proof of the implication from right to left of Theorem 7.
Thereby we use a technique, the invariantization of listings, that we shall use
again and again in this paper; therefore, we give a detailed exposition here.

Lemma 9. If p-Halt ∈ XPuni, then there is a polynomially optimal proposi-
tional proof system.

Proof. By the previous result it suffices to show that there exists a listing of
PF(Taut) by means of polynomial time Turing machines. However, it is unde-
cidable whether a Turing machine computes a function from Σ∗ to Taut. So we
start with a listing of PF(Σ∗) by clocked polynomial time Turing machines, say

M1,M2, . . . (2)

We denote by hi the function computed by Mi. Thus, PF(Σ∗) = {hi | i ≥ 1}.
Using the hypothesis p-Halt ∈ XPuni we invariantize this listing in order to get
a listing of PF(Taut). For this purpose, for h : Σ∗ → Σ∗ and n ≥ 1 we say that
h is n-tautological if

h(w) ∈ Taut for all w with |w| ≤ n

and define htaut : Σ∗ → Σ∗ by

htaut(w) :=

{
h(w), if h is |w|-tautological
α0, otherwise.

Then

(i) htaut : Σ∗ → Taut;
(ii) htaut = h if h : Σ∗ → Taut;
(iii) if h is not n-tautological, then htaut(w) = α0 for all |w| ≥ n;
(iv) if h is polynomial time computable, then so is htaut.

374 Y. Chen and J. Flum

Note that (iv) is an immediate consequence of (ii) and (iii). Hence,

htaut
1 , htaut

2 , . . . (3)

is an enumeration of the elements of PF(Taut). In fact, by (iv) all htaut
i are poly-

nomial time computable, by (i) their range is contained in Taut, and by (ii) the
enumeration contains all elements of PF(Taut). But instead of the enumeration
(3) of PF(Taut) we aim at a listing of PF(Taut) by means of polynomial time
Turing machines. We show that there is an effective procedure assigning to ev-
ery clocked polynomial time Turing machine M computing some h ∈ PF(Σ∗) a
polynomial time Turing machine Mtaut computing htaut. Then Mtaut

1 ,Mtaut
2 , . . .

is the desired listing of PF(Taut). For this purpose we need:

Claim: Assume that p-Halt ∈ XPuni, then there is an algorithm B that on
input 〈M, 1n〉, where M is a clocked polynomial time Turing machine computing
a function h : Σ∗ → Σ∗, and n ∈ N decides whether h is an n-tautological in
time ng(|M|) for some g : N→ N.

With this Claim it is straightforward to present the program of a polynomial
time Turing machine Mtaut computing htaut, where M and h are as in the Claim.
In fact, let Mtaut be the Turing machine that on input w ∈ Σ∗

using the algorithm B of the Claim checks whether h is |w|-tautological; if
so, it computes and outputs M(w) by simulating M; otherwise, it outputs
α0.

So it only remains to show the Claim.

Proof of the Claim: Let M be a clocked polynomial time Turing machine com-
puting a function h : Σ∗ → Σ∗. We show that we can decide whether h is
n-tautological in the desired time by a reduction to the problem p-Halt. For
this we assign to M a polynomial time nondeterministic Turing machine M+

such that (as a first approximation) we have

h : Σ∗ → Taut ⇐⇒ M
+ does not accept λ. (4)

To achieve this we take as M+ the machine that first guesses a string w, computes
M(w) by simulating M, and then checks if M(w) is a propositional formula; if
not, it accepts, otherwise it guesses an assignment for M(w) and accepts if it
does not satisfy M(w); otherwise it rejects. As M runs in ≤ |w|time(M) steps on
input w, by standard means we can arrange M+ in such a way that for some
polynomial q ∈ N[X] the machine M+ runs exactly q(n) steps if in its first phase
it guesses a string w of length n. As q(n) < q(n + 1), we get

(
the fine-tuned

version of (4)
)

M is n-tautological (more precisely, h is n-tautological)

⇐⇒
〈
M

+, 1q(n)
〉
∈ p-Halt(

note that we need the assumption that M is clocked to get M+ and the bound
q(n) in the desired effective way

)
. As we assume that p-Halt ∈ XPuni, we know

A Parameterized Halting Problem 375

that whether (M+, 1q(n)) ∈ p-Halt may be checked in time q(n)f(|M+|) for some
function f : N → N. As q(n)f(|M+|) = ng(|M|) for suitable g : N → N, we are
done. �
If Q ⊆ Σ∗, we write List(Q) if there is a listing of all subsets in P of Q by means
of polynomial time Turing machines. We use this listing property to prove the
implication from left to right of Theorem 7. It is known that:

Theorem 10 ([32]). There is a polynomially optimal propositional proof sys-
tem if and only if List(Taut).

In a first step we will show:

Lemma 11. If List(Halt), then p-Halt ∈ XPuni.

Proof. Let L be a listing of the subsets in P of Halt by polynomial time Turing
machines. As for every 〈M, 1n〉 ∈ p-Halt, the set

{ 〈M, 1n〉} is a subset in P of
Halt, the following algorithm A accepts p-Halt:

A // a nondeterministic Turing machine M and 1n with n ∈ N

1. �← 1
2. compute the �th machine listed by L

3. simulate it on input 〈M, 1n〉
4. if it accepts then accept
5. �← � + 1
6. goto 2.

We want to show that A runs in time polynomial in n for fixed M with tM(λ) =
∞. Then our claim follows from Lemma 5.

If M does not halt on λ, then
{ 〈M, 1n〉 ∣∣ n ∈ N

}
is a subset in P of Halt.

Hence, there is a machine listed by L, say the �0th one, that decides this set.
Then Lines 2–4 (for � = �0) show that the running time of A is polynomially
bounded in n. �
Proof of Theorem 7: It remains to show the implication from left to right (the
other one has already been proved by Lemma 9). As the problem Halt, the
problem Taut is coNP-complete and both problems have padding; hence, they
are polynomially isomorphic. Thus,

List(Taut) ⇐⇒ List(Halt). (5)

If there is a polynomially optimal propositional proof system, then List(Taut)
by Theorem 10. Thus, List(Halt) by (5), hence p-Halt ∈ XPuni by the previ-
ous result. �

Corollary 12. List(Halt) ⇐⇒ p-Halt ∈ XPuni.

Proof. Immediate by (5), Theorem 10, and Theorem 7. �
Later we will use the following simple observation.

376 Y. Chen and J. Flum

Lemma 13. If List(Halt), then List(Q) for every Q ∈ coNP.

Proof. More generally, we show:

Assume Q′ has padding and List(Q′). If Q ≤pol Q′, then List(Q).

Here, Q ≤pol Q′ means that Q is polynomial time reducible to Q′. By the padding
property we may assume that the polynomial time reduction x �→ x′ from Q to
Q′ is one-to-one and has a polynomial time computable inverse. Then, for every
X ′ ⊆ Q′ in P, the set X := {x | x′ ∈ X ′} is a subset in P of Q and every subset
in P of Q is obtained in this way. Thus from a listing of the subsets in P of Q′,
we get a listing of the subsets in P of Q. �

5 Complete Problems and p-Halt

In this section for some “semantically defined” complexity classes of classical
problems we will see that to show that they contain no complete problem is at
least as hard as it is to show that p-Halt �∈ XPuni. We first deal with complete
problems for the class of polynomial time decidable equivalence relations under
so-called equivalence reductions (Section 5.1) and then with complete problems
for the class UP under polynomial time reductions (Section 5.2).

5.1 Complete P-Equivalence Relations

Problems concerning the algorithmic properties of equivalence relations arise
throughout mathematics and theoretical computer science. Examples are to de-
cide whether two finite graphs are isomorphic or to decide whether two lists of
numbers are equivalent in the sense that they represent the same set.

If E and E′ are equivalence relations on Σ∗, a polynomial time reduction
from E to E′ (in the usual sense of complexity theory) is a polynomial time
computable function f such that

(x, y) ∈ E ⇐⇒ f(x, y) ∈ E′

for all x, y ∈ Σ∗. Often, in the context of equivalence relations the notion of
equivalence reducibility is more natural than that of polynomial time reducibility.
We say that E is equivalence reducible to E′ and write E ≤eq E′ if there is a
polynomial time computable function f : Σ∗ → Σ∗ such that

(x, y) ∈ E ⇐⇒ (
f(x), f(y)

) ∈ E′

for all x, y ∈ Σ∗, that is, writing xEy for (x, y) ∈ E and similarly for E′,

xEy ⇐⇒ f(x)E′f(y).

For example, compare the meaning of both notions of reductions if E is the rela-
tion of isomorphism between finite groups and E′ that of isomorphism between
finite graphs.

A Parameterized Halting Problem 377

In [21] Fortnow and Grochow asked whether the class P(eq) of all polynomial
time equivalence relations contain a complete problem under equivalence reduc-
tions, that is, whether there is an equivalence relation E0 ∈ P(eq) such that
E ≤eq E0 for all E ∈ P(eq). We show:

Theorem 14. If p-Halt ∈ XPuni, then P(eq) contains a complete problem
under equivalence reductions.

To obtain this result we again want to use the technique of invariantization of
listings. Hence, the first step yielding a proof of this theorem is a reformulation
of its conclusion in terms of a listing. The bridge to listings is provided by the
following result. The reader will find a proof in [3].

Proposition 15. The following are equivalent:
(a) P(eq) contains a complete problem under equivalence reductions.
(b) There is a listing of equivalence relations ≤eq-cofinal in P(eq); more pre-

cisely, there is a listing E1, E2, . . . of elements of P(eq) by means of clocked
polynomial time Turing machines such that for every E ∈ P(eq) there is an
i ≥ 1 such that E ≤eq Ei.

In contrast to Proposition 8, here a listing in terms of clocked machines is re-
quired; in the following proof of Theorem 14 an additional argument is needed to
get such machines; otherwise the proof runs along the lines of that of Lemma 9.
We say that a Turing machine M is a Turing machine for tuples if M first checks
whether a given input is a tuple (that is, has the form 〈x, y〉 with x, y ∈ Σ∗) and
immediately rejects in the negative case.

Proof of Theorem 14: As it is undecidable whether a Turing machine for tuples
accepts an equivalence relation we start with a listing

M1,M2, . . . (6)

of all clocked polynomial time Turing machines for tuples. Hence, in general,
the set L(Mi) of tuples accepted by Mi, will not be an equivalence relation. We
invariantize this listing. If T is a set of tuples and n ∈ N, we say that T is an
n-equivalence relation if the set of tuples of strings of length at most n, that is,
if the set {〈x, y〉 ∈ T

∣∣ x, y ∈ Σ≤n
}

is an equivalence relation on Σ≤n. Furthermore, we set

T eq :=
{ 〈x, y〉 ∈ T | T is a max{|x|, |y|}-equivalence relation

}
∪ { 〈x, x〉 | x ∈ Σ∗}.

Then

(i) T eq is an equivalence relation on Σ∗;
(ii) T eq = T if T is an equivalence relation;

378 Y. Chen and J. Flum

(iii) if T is not an n-equivalence relation, then T eq has only finitely many equiv-
alence classes with more than one element;

(iv) if T ∈ P, then T eq ∈ P.

Recall the listing (6) of all clocked polynomial time Turing machines for tuples.
By (i)–(iv)

L(M1)eq, L(M2)eq, . . .

is an enumeration of P(eq). But we aim at a listing of (a ≤eq-cofinal subset
of) P(eq) by means of clocked polynomial time Turing machines. We show that
there is an effective procedure assigning to every clocked polynomial time Turing
machine M for tuples a clocked polynomial time Turing machine Meq such that

L(M)eq ≤eq L(Meq).

Then M
eq
1 ,Meq

2 , . . . is the desired listing. We will show:

Claim: Assume that p-Halt ∈ XPuni, then there is an algorithm B that on input
〈M, 1n〉, where M is a clocked polynomial time Turing machine for tuples and
n ∈ N, decides whether L(M) is an n-equivalence relation in time ng(|M|) for
some g : N→ N.

Then it is straightforward to present the program of a clocked polynomial
time Turing machine Meq (where M is as in the Claim) with

L(Meq) :=
{ 〈x, x〉 | x ∈ Σ∗} ∪ { 〈〈x, 1s〉 , 〈y, 1s〉〉 ∣∣ 〈x, y〉 ∈ L(M), s ∈ N,

B accepts
〈
M, 1|x|

〉
in ≤ s steps and

〈
M, 1|y|

〉
in ≤ s steps

}
.

For s ≥ g(|M|), then the function x �→ 〈x, 1|x|
s〉

is an equivalence reduction from
L(M)eq to L(Meq). So it only remains to show the Claim.

Proof of the Claim: The proof parallels that of the claim in the proof of Lemma 9
in Section 4. Let M be a clocked polynomial time machine for tuples. We assign
to M a polynomial time nondeterministic Turing machine M+ such that (as a
first approximation) we have

L(M) is an equivalence relation ⇐⇒ M
+ does not accept λ. (7)

For this we take as M
+ a machine that on empty input first guesses a string

of the form 〈r, x〉, 〈s, x, y〉, or 〈t, x, y, z〉. Here r (“reflexivity”), s (“symmetry”),
and t (“transitivity”) are, say, the strings 00, 01, 10, respectively. If the string
has the form 〈r, x〉, then M+ simulates M on input 〈x, x〉 and accepts if and only
if M rejects; similarly, for strings 〈s, x, y〉 the machine M+ simulates M on input
〈x, y〉 and on input 〈y, x〉 and accepts if and only if M accepts 〈x, y〉 and rejects
〈y, x〉; it should be clear how M+ behaves on strings of the form 〈t, x, y, z〉.

As M runs in ≤ |w|time(M) steps on input w, by standard means we can
arrange M

+ in such a way that for some polynomial q ∈ N[X] the machine M
+

A Parameterized Halting Problem 379

runs exactly q(n) steps if in its first phase it guesses a string w of length n. As
q(n) < q(n + 1), we get (the fine-tuned version of (7))

L(M) is an n-equivalence relation ⇐⇒
〈
M

+, 1q(n)
〉
∈ p-Halt.

As we assume that p-Halt ∈ XPuni, we know that
〈
M+, 1q(n)

〉 ∈ p-Halt may
be checked in time q(n)f(|M+|) for some function f : N → N. As q(n)f(|M+|) =
ng(|M|)) for suitable g : N→ N, we are done. �

5.2 UP-Complete Problems

Recall that a nondeterministic Turing machine M is unambiguous if for every
x ∈ Σ∗ there is at most one accepting run of M on input x. UP is the class of
problems accepted by an UP-machine, that is, by an unambiguous polynomial
time nondeterministic Turing machine.

In this section we derive the following result showing that apparently it will
be hard to show that UP contains no problem complete under polynomial time
reductions. The result is due to Meßner and Torán [29] who have shown that
UP contains a problem complete under polynomial time reductions if there is a
polynomially optimal proof system. In virtue of Theorem 7 this is equivalent to:

Theorem 16. If p-Halt ∈ XPuni, then UP contains a problem complete under
polynomial time reductions.

In [29], the corresponding result is shown for the class of sparse sets in NP and
further results of this type are given in [26,24,25]. We encourage the interested
reader to apply our proof method to get these results. Therefore, we give again a
quite detailed proof for UP, even though the proof just adapts the method used
for equivalence relations to the present case.

Again, first we reformulate the conclusion of Theorem 16 in terms of listings.
The reformulation is provided by:

Proposition 17 ([22,26]). The following are equivalent:
(a) UP contains a problem complete under polynomial time reductions.
(b) There is a listing of problems ≤pol-cofinal in UP, that is, there is a listing

M1,M2, . . . of clocked UP-Turing machines such that for every Q ∈ UP there
is an i ≥ 1 such that Q ≤pol L(Mi).

Proof of Theorem 16: If M is a nondeterministic Turing machine and n ∈ N we
say that M is n-unambiguous if for every x ∈ Σ≤n there is at most one accepting
run of M on input x. We set

L(M)unamb :=
{
x ∈ L(M)

∣∣M is |x|-unambiguous
}
.

380 Y. Chen and J. Flum

Then

(i) L(M)unamb = L(M) if M is unambiguous;
(ii) if M is not n-unambiguous, then L(M)unamb contains only strings of length

less than n;
(iii) ifM is a polynomial timenondeterministicTuringmachine, thenL(M)unamb

is accepted by a UP-machine.

Let M1,M2, . . . be a listing of all clocked polynomial time nondeterministic Tur-
ing machines. Then, by (i)–(iii),

L(M1)unamb, L(M2)unamb, . . . (8)

is an enumeration of UP. But we aim at a listing of (a ≤pol-cofinal subset of) UP
by means of clocked UP-machines. We show that there is an effective procedure
assigning to every clocked polynomial time nondeterministic Turing machine M

a clocked UP-machine Munamb such that

L(M)unamb ≤pol L(Munamb).

Then Munamb
1 ,Munamb

2 , . . . is the desired listing. We will show:

Claim: Assume that p-Halt ∈ XPuni, then there is an algorithm B that on input
〈M, 1n〉, where M is a clocked polynomial time nondeterministic Turing machine
and n ∈ N, decides whether L(M) is n-unambiguous in time ng(|M|) for some
g : N→ N.

With this Claim it is straightforward to present the program of a clocked
UP-machine Munamb (where M is as in the Claim) with

L(Munamb) :=
{
〈x, 1s〉

∣∣∣ x ∈ L(M) and B accepts
〈
M, 1|x|

〉
in ≤ s steps

}
.

Then, for s ≥ g(|M|), the function x �→ 〈x, 1|x|
s〉

is a polynomial time reduction
from L(M)unamb to L(Munamb). So it only remains to show the Claim.

Proof of the Claim: Let M be a clocked polynomial time nondeterministic Turing
machine. We assign to M a polynomial time nondeterministic Turing machine
M

+ such that (as a first approximation) we have

M is unambiguous ⇐⇒ M
+ does not accept λ. (9)

For this we take as M+ a machine that on empty input first guesses strings y, c1,
and c2, then it checks whether c1 and c2 are distinct runs of M accepting y; if so
M+ accepts, else it rejects. “Fine-tuning” as in the proof of the corresponding
claim in the proof of Theorem 14 yields the statement. �

A Parameterized Halting Problem 381

6 Logics Capturing P and p-Halt

We start by recalling the concepts from logic we need.

Structures. A vocabulary τ is a finite set of relation symbols. Each relation symbol
has an arity. A structure A of vocabulary τ , or τ-structure (or, simply structure),
consists of a nonempty set A called the universe, and an interpretation RA ⊆ Ar

of each r-ary relation symbol R ∈ τ . All structures are assumed to have a finite
universe. To avoid technicalities we assume in this section that all structures have
as universe, for some n ∈ N, the set [n] := {1, 2, . . . , n}. Then, in a canonical
way, we can identify structures with nonempty strings over Σ; in particular, |A|
for a structure A is the length of the string A. Moreover, then every structure
A has a natural ordering <A on it.

In this section we deal with classes of structures. Thereby we always assume
that all structures of a fixed class have the same vocabulary. But distinct vocab-
ularies may correspond to distinct classes.

Logics and logics capturing P. For our purposes a logic L consists

– for every vocabulary τ of a set L[τ] of strings, the set of L-sentences of
vocabulary τ , and of an algorithm that for every τ and every string ξ decides
whether ξ ∈ L[τ] (in particular, L[τ] is decidable for every τ);

– of a satisfaction relation |=L; if (A, ϕ) ∈ |=L

(
written: A |=L ϕ

)
, then A

is a τ -structure and ϕ ∈ L[τ] for some vocabulary τ ; furthermore, for each
ϕ ∈ L[τ] the class

ModL(ϕ) :=
{A ∣∣ A |=L ϕ

}
of models of ϕ is closed under isomorphism.

From now on, if we say “let ϕ be an L-sentence,” we mean that, in addition to
ϕ, a vocabulary τ with ϕ ∈ L[τ] is given.

Definition 18. Let L be a logic.
(a) L is a logic for P if for all classes S of structures closed under isomorphism

(with respect to structures with universe of the form [n] for some n ∈ N) we
have

S ∈ P ⇐⇒ S = ModL(ϕ) for some L-sentence ϕ.

(b) L captures P if (a) holds and if there is an algorithm A deciding |=L (that
is, for every structure A and L-sentence ϕ the algorithm A decides whether
A |=L ϕ) and if moreover, A for every fixed ϕ runs in time polynomial in
|A|.

Hence, if L captures P, then for every L-sentence ϕ the algorithm A witnesses
that ModL(ϕ) ∈ P. However, we do not necessarily know ahead of time the
bounding polynomial.

(c) L is an effectively captures P if L captures P and if in addition to the
algorithm A as in (b) there is a computable function that assigns to every
L-sentence ϕ a polynomial q ∈ N[X] such that A decides whether A |=L ϕ
in ≤ q(|A|) steps.

382 Y. Chen and J. Flum

If there is no logic capturing P, then P �= NP (as Fagin [18] showed that there is a
logic capturing NP). We prove that then even p-Halt /∈ XPuni (cf. Theorem 1):

Theorem 19. If p-Halt ∈ XPuni, then there is a logic capturing P.

In addition, we want to show that under the assumption p-Halt ∈ XPuni the
so-called invariant least fixpoint logic captures P.

The following well-known result yields the desired reformulation in terms of
a listing. We include a proof as we shall make use of the logic associated with a
listing. Here we say that a Turing machine M is a Turing machine for structures
if (the code of) M contains a vocabulary τ and M first checks whether a given
input is a τ -structure and immediately rejects in the negative case. We then also
say that M is a τ -machine.

Proposition 20. The following are equivalent:
(a) There is a logic (effectively) capturing P.
(b) There is a listing of all classes in P of structures closed under isomorphism

by means of (clocked) polynomial time Turing machines for structures.

Proof. (b) ⇒ (a): Let the listing L with the enumeration

M1,M2, . . .

be as in (b). We may assume that |M1| < |M2| < . . . by adding dummy lines to
the programs of the machines if necessary. Then the logic L(L) given by

L(L)[τ] :=
{
Mi

∣∣ i ≥ 1 and Mi is a τ -machine
}

and
A |=L(L) M ⇐⇒ M accepts A

is a logic capturing P. If all the machines of the listing are clocked, then L(L)
effectively captures P.

Conversely, if L is a logic (effectively) capturing P and A is the algorithm
deciding A |=L ϕ in time |A|f(|ϕ|) for some (computable) f : N→ N, denote by
Mϕ the (clocked) polynomial time Turing machine obtained by restricting A to
inputs of the form 〈. . . , ϕ〉. Then for any effective enumeration ϕ1, ϕ2, . . . of the
sentences of L, the listing

Mϕ1 ,Mϕ2 , . . .

is the desired listing of all classes in P of structures closed under isomorphism.�

Proof of Theorem 19: Again we face the problem that it is undecidable whether a
Turing machine for structures accepts a class closed under isomorphism. There-
fore we start with a listing

M1,M2, . . . (10)

of all clocked polynomial time Turing machines for structures. In general, the
class L(Mi) = {A | Mi accepts A} of structures accepted by Mi will not be

A Parameterized Halting Problem 383

closed under isomorphism. We apply the invariantization technique to get a
listing as required by part (b) of Proposition 20.

If S is a class of structures and n ∈ N, then we say that S is n ∼=-invariant if
for all isomorphic structures A and B whose universes have at most n elements
we have

A ∈ S ⇐⇒ B ∈ S.

We set
Sinv :=

{A ∈ S
∣∣ S is |A| ∼=-invariant

}
. (11)

We have

(i) Sinv is closed under isomorphism;
(ii) Sinv = S if S is closed under isomorphism;
(iii) if S is not n ∼=-invariant, then all structures in Sinv have less than n ele-

ments;
(iv) if S ∈ P, then Sinv ∈ P.

Thus,
L(M1)inv, L(M2)inv, . . .

is an enumeration of all classes in P of structures closed under isomorphism
(
in

fact, the classes are in P by (iv), they are closed under isomorphism by (i), and
all such classes occur by (ii)

)
.

We show that there is an effective procedure assigning to every clocked poly-
nomial time Turing machine M for structures a (clocked) polynomial time Turing
machine Minv for structures such that

L(Minv) = L(M)inv. (12)

Then Minv
1 ,Minv

2 , . . . is the desired listing.

Claim: Assume that p-Halt ∈ XPuni (p-Halt ∈ XP), then there is an algorithm
B that on input 〈M, 1n〉, where M is a clocked polynomial time Turing machine
for structures and n ∈ N, decides whether L(M) is n ∼=-invariant in time ng(|M|)

for some (computable) g : N→ N.
With this claim and the definition (11) of Sinv it is straightforward to present

the program of a (clocked) polynomial time Turing machine Minv for structures
satisfying (12).

Proof of the Claim: As in preceding proofs we reduce our problem to p-Halt.
Let M be a clocked polynomial time Turing machine for structures. We assign to
M a nondeterministic Turing machine M

+ such that (as a first approximation)
we have

L(M) is closed under isomorphism ⇐⇒ M
+ does not accept λ. (13)

For this we take as M+ a machine that on empty input first guesses strings A,
B, and f , and accepts if A and B are structures, f is an isomorphism between
A and B, and M accepts A but rejects B.

384 Y. Chen and J. Flum

As M runs in ≤ |w|time(M) steps on input w, by standard means we can
arrange M+ in such a way that for some polynomial q ∈ N[X] the machine
M+ runs exactly q(n) steps if in its first phase it guesses a structure A with n
elements. As q(n) < q(n + 1), we get (the fine-tuned version of (13))

L(M) is n ∼=-invariant ⇐⇒
〈
M

+, 1q(n)
〉
∈ p-Halt.

As we assume that p-Halt ∈ XPuni (p-Halt ∈ XP), we know that (M+, 1q(n)) ∈
p-Halt may be checked in time q(n)f(|M+|) for some (computable) function
f : N → N. As q(n)f(|M+|) = ng(|M|) for a suitable (computable) g : N → N, we
are done. �
In the previous proof we have shown the implication “(a) ⇒ (b)” of:

Proposition 21. The following are equivalent:
(a) p-Halt ∈ XPuni (p-Halt ∈ XP);
(b) There is an effective procedure assigning to every clocked polynomial time

Turing machine M for structures a (clocked) polynomial time Turing ma-
chine Minv for structures such that

L(Minv) = L(M)inv.

Proof. In the following we leave the proofs of the effective versions of our claims
to the reader. It remains to prove the implication (b) ⇒ (a). For k ≥ 1 let τk be
the vocabulary

{
P1, . . . , Pk

}
with unary relation symbols P1, . . . , Pk.

Let M be a nondeterministic Turing machine. We can assume that [k] for
some k ≥ 1 is the set of states of M. By our convention on nondeterministic
machines every two distinct successor configurations of a given configuration of
M have distinct states. Furthermore, here we assume that the starting state is
not an accepting state. We let S(M) be the class of τk-structures B satisfying (i)
and (ii).

(i) The Pi’s with i ∈ [k] form a partition of the universe B of B and there is an
n ∈ N such that |Pi| = n for all i ∈ [k].

(ii) If i1, . . . , in
(
where n is according to (i)

)
are such that the jth element of

B in the natural ordering <B of B is in Pij , then we require that neither
i1, . . . , in nor any initial segment of it are the states of a run accepting the
empty input.

Clearly, S(M) ∈ P and from M we get a clocked polynomial time machine M0

for τk-structures deciding S(M), that is,

L(M0) = S(M).

Furthermore, let A(M, n) be the τk-structure with universe [n · k] and with
Pi := {n · (i− 1) + 1, . . . , n · (i− 1) + n} for all i ∈ [k]. Then A(M, n) ∈ S(M) as
the starting state is not an accepting one. Furthermore,

A(M, n) ∈ S(M)inv (= L(M0)inv) ⇐⇒ 〈M, 1n〉 ∈ p-Halt,

A Parameterized Halting Problem 385

as we obtain all possible sequences of states of length n by considering the
isomorphic copies of A(M, n). Thus, by our assumption (b), we have for the
machine Minv

0 ,

M
inv
0 accepts A(M, n) ⇐⇒ 〈M, 1n〉 ∈ p-Halt.

Therefore, the following algorithm A shows that p-Halt ∈ XPuni: On input M,
a nondeterministic Turing machine, and 1n with n ∈ N, it first computes the
structure A(M, n) and the clocked polynomial time machine M0; then applying
the effective procedure of (b), it gets the machine Minv

0 ; finally, it checks whether
Minv

0 accepts A(M, n). �

6.1 The Invariant Least Fixpoint Logic

Recall that in the proof of Theorem 19 we started with a listing M1,M2, . . . of all
clocked polynomial time Turing machine for structures and obtained under the
hypothesis p-Halt ∈ XPuni (p-Halt ∈ XP) a listing Minv

1 ,Minv
2 , . . . of all classes

in P of structures closed under isomorphism by means of (clocked) polynomial
time Turing machines for structures. We denote this listing Minv

1 ,Minv
2 , . . . by L.

Then the logic L(L), the logic assigned to L in the proof of the direction “(b)
⇒ (a)” of Proposition 20, (effectively) captures polynomial time. In this section
we present a more “logic-friendly” version of this logic.

For every vocabulary τ we let τ< := τ ∪ {<}, where < is a binary relation
symbol not in τ chosen in some canonical way. A logic L captures P on ordered
structures if (a) and (b) of Definition 18 hold for ordered structures and classes
of ordered structures. In Definition 18 (b), for fixed ϕ ∈ L[τ<] the algorithm A

must witness that the class of ordered models of ϕ is in P. It should be clear
what we mean by a logic effectively capturing P on ordered structures.

Least fixpoint logic LFP is an extension of first-order logic obtained by adding
an operator which allows to speak about the least fixpoint of monotone opera-
tions definable in the logic. We only need the following property of LFP.

Theorem 22. [23,34] LFP effectively captures P on ordered structures.

If S is a class of τ<-structures and n ∈ N, then S is n <-invariant if for all
τ -structures A with |A| ≤ n and every orderings <1 and <2 of A we have

(A, <1) ∈ S ⇐⇒ (A, <2) ∈ S.

We define the invariant least fixpoint logic LFPinv by: For every vocabulary τ
we set

LFPinv[τ] := LFP[τ<],

and we define the satisfaction relation by

A |=LFPinv ϕ ⇐⇒(
ModLFP(ϕ) is |A| <-invariant and (A, <A) |=LFP ϕ

)
; (14)

recall that <A denotes the natural ordering on A.

386 Y. Chen and J. Flum

If ModLFP(ϕ) is not n <-invariant, then ModLFPinv(ϕ) only contains struc-
tures with universe of cardinality less than n and hence is in P. Together with
the fact that LFP captures P on ordered structures, this shows that LFPinv is a
logic for P.

In the proof of Theorem 19 we started with a listing L0 of all clocked poly-
nomial time Turing machines for structures. As LFP captures P on ordered
structures, in a certain sense the listing L0 corresponds to the sentences of LFP
in the enlarged vocabularies τ<. We invariantized the listing L0 by using the
concept of n ∼=-invariance. As orderings correspond to permutations and hence
to isomorphisms, in LFPinv this invariantization is taken care by the definition
of its semantics in (14). Hence the following result is not surprising:

Theorem 23 ([31]). (a) p-Halt ∈ XPuni if and only if LFPinv captures P.
(b) p-Halt ∈ XP if and only if LFPinv effectively captures P.

Proof. For (a) it suffices to show that LFPinv captures P if and only if there is
an effective procedure as stated in Proposition 21 (b).

Assume first that such a procedure exists. As LFP effectively captures P on
ordered structures, for ϕ ∈ LFPinv[τ] = LFP[τ<], we obtain a clocked polynomial
time machine Mϕ for τ -structures with

L(Mϕ) :=
{A ∣∣ (A, <A) |=LFP ϕ

}
.

Then, one easily verifies that

L(Mϕ)inv = ModLFPinv(ϕ),

that is, L(Minv
ϕ) = ModLFPinv(ϕ). Hence, the algorithm that on input 〈A, ϕ〉,

first computes Mϕ, then Minv
ϕ and finally simulates Minv

ϕ on input A, decides the
satisfaction relation of LFPinv in the desired time.

Conversely, assume that LFPinv captures P. Let M be a clocked polynomial
time Turing machine for τ -structures. Then

C :=
{
(B, <)

∣∣∣ for some A we have:
(
(B, <) ∼= (A, <A) and M accepts A

)}
is a class in P of ordered τ -structures closed under isomorphism (clearly,
from (B, <) one can determine the unique structure A with (B, <) ∼= (A, <A)
in polynomial time). Hence, from M we effectively get a clocked polynomial
time Turing machine M∗ with L(M∗) = C. Furthermore, it is well-known that
from a clocked polynomial time Turing machine accepting a class in P of or-
dered τ -structures closed under isomorphism one effectively gets an LFP[τ<]-
sentence ϕ with C = ModLFP(ϕ). Now, again it is routine to verify that
L(M)inv = ModLFPinv(ϕ). Thus, from the algorithm deciding the satisfaction
relation and witnessing that LFPinv captures P, we can extract the algorithm
assigning to a clocked polynomial time Turing machine M a polynomial time
Turing machine Minv with L(Minv) = L(M)inv. �

A Parameterized Halting Problem 387

7 Slicewise Downward Monotone Parameterized
Problems

We already mentioned in the Introduction that we do not want to present an
abstract version of the invariantization technique available if p-Halt ∈ XPuni

and underlying the previous proofs. However, in this section we want to point
out that hidden at the core of each of these proofs is a parameterized problem
which (as we show here) is in XPuni if and only if p-Halt is in XPuni.

The problem p-Halt is slicewise downward monotone. A parameterized prob-
lem (Q, κ) is slicewise downward monotone if Q is decidable, all elements of Q
have the form 〈x, 1n〉 with x ∈ Σ∗ and n ∈ N, if κ(〈x, 1n〉) = |x|, and finally if
the slices are downward monotone, that is, for all x ∈ Σ∗ and n, n′ ∈ N

〈x, 1n〉 ∈ Q and n′ < n imply
〈
x, 1n′〉 ∈ Q.

The following slicewise downward monotone problems

p-Taut, p-Equiv, p-Unamb, and p-∼=-Inv

are hidden in our considerations on polynomially optimal proof systems, P(eq)-
complete problems, UP-complete problems, and logics capturing P, respectively.
Here

p-Taut
Instance: A clocked polynomial time Turing machine M and

1n with n ∈ N.
Parameter: |M|.

Problem: Is M n-tautological?

p-Equiv
Instance: A clocked polynomial time Turing machine M for

tuples and 1n with n ∈ N.
Parameter: |M|.

Problem: Is L(M) an n-equivalence relation?

p-Unamb
Instance: A clocked polynomial time nondeterministic Tur-

ing machine M and 1n with n ∈ N.
Parameter: |M|.

Problem: Is M n-unambiguous?

p-∼=-Inv
Instance: A clocked polynomial time Turing machine M for

structures and 1n with n ∈ N.
Parameter: |M|.

Problem: Is L(M) n ∼=-invariant?

388 Y. Chen and J. Flum

The Claims in the proofs of Lemma 9, Theorem 14, Theorem 16, and Theorem 19
show that all these problem are in XPuni if p-Halt ∈ XPuni. We show:

Theorem 24. If one of the problems

p-Taut, p-Equiv, p-Unamb, p-∼=-Inv, and p-Halt

is in XPuni, then all are.

To compare the complexity of parameterized problems we use standard notions
of reductions of parameterized complexity theory that we recall first. Let (Q, κ)
and (Q′, κ′) be parameterized problems. We write (Q, κ) ≤fpt (Q′, κ′) if there is
an fpt-reduction from (Q, κ) to (Q′, κ′), that is, a mapping R : Σ∗ → Σ∗ with:

(1) For all x ∈ Σ∗ we have (x ∈ Q ⇐⇒ R(x) ∈ Q′).
(2) R(x) is computable in time f(κ(x)) · |x|O(1) for some computable f : N→ N.
(3) There is a computable function g : N→ N such that κ′(R(x)) ≤ g(κ(x)) for

all x ∈ Σ∗.

We write (Q, κ) ≤xp (Q′, κ′) if there is an xp-reduction from (Q, κ) to (Q′, κ′),
which is defined as (Q, κ) ≤fpt (Q′, κ′) except that instead of (2) it is only
required that R(x) is computable in time |x|f(κ(x)) for some computable f : N→
N. These are notions of reductions of the usual (strongly uniform) parameterized
complexity theory. We shall use the following simple observation.

Lemma 25. If (Q, κ) ≤xp (Q′, κ′) and (Q′, κ′) ∈ XPuni, then (Q, κ) ∈ XPuni.

Proof of Theorem 24. By the lemma and by the remark preceding the theorem
it suffices to show that

p-Halt ≤fpt p-Taut ≤xp p-Equiv ≤xp p-Unamb ≤xp p-∼=-Inv.

p-Halt ≤fpt p-Taut: Let M be a nondeterministic Turing machine. We choose
s(M) ∈ N such that all states of M are (coded by) strings of length s(M). We
fix a tautology α0 and define f : Σ∗ → Σ∗ by

f(w) :=

{
λ, if w is the sequence of states of a run of M accepting λ;
α0, otherwise.

Of course, there is a polynomial time procedure assigning to M a clocked poly-
nomial time Turing machine M

′ computing f . Then

〈M, 1n〉 ∈ p-Halt ⇐⇒
〈
M

′, 1n·s(M)
〉
∈ p-Taut,

so that 〈M, 1n〉 �→ 〈M′, 1n·s(M)
〉

is an fpt-reduction from p-Halt to p-Taut.

p-Taut ≤xp p-Equiv: For a clocked polynomial time Turing machine M let
M′ be the Turing machine for tuples that accepts 〈x, y〉 if either x = y or(
x = λ and y = 〈w, v〉, where M(w) is no propositional formula or (M(w) is a

A Parameterized Halting Problem 389

propositional formula and v a valuation which does not satisfy M(w))
)
. Again

we can assume that from M we get a clocked polynomial time such M′ and that
for some polynomial q ∈ N[X]

〈M, 1n〉 ∈ p-Taut ⇐⇒
〈
M

′, 1q(n)
〉
∈ p-Equiv.

This yields the reduction 〈M, 1n〉 �→ 〈M′, 1q(n)
〉

from p-Taut to p-Equiv, which
is an xp-reduction and not an fpt-reduction as the degree of the polynomial q
depends on time(M).

p-Equiv ≤xp p-Unamb: Let M be a clocked polynomial time machine for
tuples. We consider the following clocked nondeterministic polynomial time ma-
chine M′: It has an initial state which is left in the first step and cannot be visited
again during any run on any input. From the initial state a direct transition to
an accepting state is possible (independent of the symbol scanned by the head).
Hence, L(M′) = Σ∗. Furthermore, all other runs on inputs which do not have
the form 〈r, x〉, 〈s, x, y〉, or 〈t, x, y, z〉 will be rejecting. Here r (“reflexivity”), s
(“symmetry”), and t (“transitivity”) are the strings 00, 01, 10, respectively. On
input 〈r, x〉 there is a run of M′ which simulates M on input 〈x, x〉 and accepts
if and only if M rejects; similarly, there is an additional accepting run of M′ on
input 〈s, x, y〉 if and only if

(
M accepts 〈x, y〉 and rejects 〈y, x〉); finally, there is

an additional accepting run of M′ on input 〈t, x, y, z〉 if and only if
(
M accepts

〈x, y〉 and 〈y, x〉 but not 〈x, z〉). In particular, we see that

L(M) is an equivalence relation on Σ∗ ⇐⇒ M
′ is a UP-machine.

Moreover, one can arrange matters in such a way that for some polynomial
q ∈ N[X] we have

〈M, 1n〉 ∈ p-Equiv ⇐⇒
〈
M

′, 1q(n)
〉
∈ p-Unamb.

p-Unamb ≤fpt p-∼= -Inv: We assign to a string w ∈ Σ∗ a structure A(w) of
vocabulary τ := {<, P0}, where

– the universe of A(w) is [|w|];
– the binary < is interpreted by the natural ordering on [|w|];
– the unary P0 is interpreted by the set of positions in w carrying a 0.

For k ≥ 1 we introduce the vocabulary τk = {U, V, P1, . . . , Pk, R} with unary
relation symbols U, V, P1, . . . , Pk and a binary R. Let M be a clocked polynomial
time nondeterministic Turing machine. We assume that M runs exactly ntime(M)

steps on inputs of length n. We set q(n) := ntime(M). We let M′ be a clocked
polynomial time Turing machine for τ ∪ τk-structures that accepts a structure
B if for some w ∈ Σ∗ and n := |w|:

(i) (the interpretation of) U and V form a partition of B;
(ii) the τ -reduct on U is isomorphic to A(w);
(iii) the Pi’s with i ∈ [k] form a partition of the V -part and |Pi| = q(n) for all

i ∈ [k];

390 Y. Chen and J. Flum

(iv) R is an ordering of its field, this field is contained in the V -part and it has
exactly exactly q(n) elements;

(v) if i1, . . . , iq(n) are such that the mth element of the ordering R is in Pim ,
then i1, . . . , iq(n) is the sequence of states of a run of M accepting w;

(vi) if j1, . . . , jq(n) are such that the mth element of V in the natural ordering
on B is in Pim , then either (i1, . . . , iq(n)) = (j1, . . . , jq(n)) or j1, . . . , jq(n) is
not the sequence of states of a run of M accepting w.

It is easy to see that M is an unambiguous machine if and only if the class of
structures accepted by M′ is closed under isomorphism. We leave the rest of the
argument to the reader. �
We close this section by showing that some results we proved for p-Halt hold
for all slicewise downward monotone parameterized problems. The proof of the
first result is obtained by the obvious modifications in that of Proposition 4.

Proposition 26. Every slicewise downward monotone parameterized problem is
in the class FPTnu.

If (Q, κ) is slicewise downward monotone and x ∈ Σ∗, we set

s(x) := min
{
n
∣∣ n ∈ N and 〈x, 1n〉 /∈ Q

}
.

If 〈x, 1n〉 ∈ Q for all n ∈ N, then we set s(x) :=∞. Note that for (Q, κ) = p-Halt
and every nondeterministic Turing machine we have s(M) = tM(λ). Hence, the
following lemma generalizes Lemma 5. As its proof runs along the same lines we
omit it here.

Lemma 27. Let (Q, κ) be slicewise downward monotone. If there is an algo-
rithm A accepting (Q, κ) such that for all instances 〈x, 1n〉 with s(x) = ∞ we
have tA(〈x, 1n〉) = nf(|M|) for some function f , then (Q, κ) ∈ XPuni.

With this lemma we show the following generalization of Lemma 11, which will
be used in the next section.

Lemma 28. Let (Q, κ) be slicewise downward monotone. If List(Q), then (Q, κ)
∈ XPuni.

Proof. Let L be a listing of the subsets in P of Q by polynomial time Turing
machines. As for every 〈x, 1n〉 ∈ Q, the set {〈x, 1n〉} is a subset in P of Q, the
following algorithm A accepts Q:

A // x ∈ Σ∗ and 1n with n ∈ N

1. �← 1
2. compute the �th machine listed by L

3. simulate it on input 〈x, 1n〉
4. if it accepts then accept
5. �← � + 1
6. goto 2.

A Parameterized Halting Problem 391

We want to show that A runs in time polynomial in n for fixed x with s(x) =∞.
Then our claim follows from Lemma 27.

If s(x) =∞, then {〈x, 1n〉 | n ∈ N} is a subset in P of Halt. Hence, there is
a machine listed by L, say the �0th one, that decides this set. Then Lines 2–4
(for � = �0) show that the running time of A is polynomially bounded in n. �

8 The Length of First-Order Proofs and p-Halt

By the undecidability of first-order logic we know that there is no computable
bound on the length of shortest proofs of valid sentences of first-order logic.1

Mathematicians’ experience seems to indicate that various valid sentences ϕ of
first-order logic only have quite long proofs, say, proofs superpolynomial in |ϕ|.
How hard is it to decide whether such a hard valid sentence has a proof of a
length less than a given bound? Corollary 32 will show that this problem is not
decidable in polynomial time if p-Halt /∈ XPuni. First we have to make precise
the preceding question. By “hard valid sentences” we mean valid sentences like
the Four Color Theorem or Fermat’s Last Theorem, but also statements like
P �= NP or the Riemann Hypothesis. Of course, we do not know whether these
last two statements are valid sentences; hence the following promise problem
could be viewed as the appropriate precise version of our question (note that its
promise is equivalent to assuming that either ϕ is not valid or that ϕ is valid
and has no short proof). Let ι : N → N be a nondecreasing, unbounded, and
computable function.

Promise-Exp-Gödelι

Instance: A first-order sentence ϕ having no proof of length
< |ϕ|ι(|ϕ|) and 1n with n ≥ |ϕ|ι(|ϕ|).

Problem: Does every proof of ϕ have length > n?

One could also consider the following (plain) problem.

Exp-Gödelι

Instance: A first-order sentence ϕ and 1n with n ≥ |ϕ|ι(|ϕ|).
Problem: Does every proof of ϕ have length > n?

Clearly, Exp-Gödelι is in coNP; Buhrman and Hitchcock [2] have shown that
sparse problems are not coNP-hard unless the polynomial hierarchy collapses.
This implies (cf. [8]):

1 Here we refer to any reasonable sound and complete proof calculus for first-order
logic. However, we do not allow proof calculi, which admit all first-order instances of
propositional tautologies as axioms (as then it would be difficult to recognize correct
proofs if P �= NP).

392 Y. Chen and J. Flum

Lemma 29. Assume that the polynomial hierarchy does not collapse. Then the
problems Promise-Exp-Gödelι and Exp-Gödelι are not coNP-hard (for the
problem Promise-Exp-Gödelι this means that the set of instances of the prob-
lem that satisfy the promise and are positive instances is not coNP-hard).

If the two problems are not coNP-hard, how do we convince ourselves that the
two problems are intractable? For this purpose we consider a further slicewise
downward monotone parameterized problem, namely

p-Gödel
Instance: A first-order sentence ϕ and 1n with n ∈ N.

Parameter: |ϕ|.
Problem: Does every proof of ϕ have a length > n?

We establish the following relationship to the previous problems:

Proposition 30 ([8]). Let ι be a nondecreasing, unbounded, and computable
function. If Promise-Exp-Gödelι or Exp-Gödelι is decidable in polynomial
time, then p-Gödel ∈ FPT.

Proof. Assume that the algorithm A decides Promise-Exp-Gödelι in polyno-
mial time. Then the following algorithm G shows that p-Gödel ∈ FPT: Given
an arbitrary instance 〈ϕ, 1n〉 of p-Gödel, by brute force G checks whether a
shortest proof of ϕ has length s(ϕ) < |ϕ|ι(|ϕ|); if so, it checks whether s(ϕ) > n
or not and answers accordingly; otherwise, if n < |ϕ|ι(|ϕ|), it accepts and if
n ≥ |ϕ|ι(|ϕ|) (and hence the promise of Promise-Exp-Gödelι ∈ P is fulfilled),
it simulates A on 〈ϕ, 1n〉 and answers accordingly.

As the “brute force check” can be done in time ≤ f(|ϕ|) for a suitable com-
putable f , the algorithm G witnesses that p-Gödel ∈ FPT. �
We show:

Theorem 31. p-Gödel ∈ XPuni if and only if p-Halt ∈ XPuni.

From the two previous results we get:

Corollary 32. If p-Halt /∈ XPuni, then the problems Promise-Exp-Gödelι

and Exp-Gödelι are not polynomial time decidable.

Proof of Theorem 31. Assume first that p-Halt ∈ XPuni. Then List(Halt)
(by Corollary 12) and thus, by Lemma 13, List(Gödel), where Gödel denotes
the classical problem underlying p-Gödel. Therefore, p-Gödel ∈ XPuni by
Lemma 28.

Now assume that p-Gödel ∈ XPuni. By standard means one can show
(e.g., [8, Lemma 7]) that there exists a d ∈ N and a polynomial time algorithm
that assigns to every nondeterministic Turing machine M a first-order sentence
ϕM such that for n ∈ N〈

ϕM, 1nd
〉
∈ p-Gödel =⇒ 〈M, 1n〉 ∈ p-Halt. (15)

A Parameterized Halting Problem 393

Moreover,

ϕM has a proof =⇒M accepts the empty input tape. (16)

Now assume that G is an algorithm that witnesses p-Gödel ∈ XPuni. Let d ∈ N

be as above. We present an algorithm A showing that p-Halt ∈ XPuni. On an
instance 〈M, 1n〉 of p-Halt the algorithm A first computes ϕM and then runs
two algorithms in parallel:

– an algorithm that on input M, by brute force, computes tM(λ) (the least n
such that M on empty input tape has an accepting run of length n);

– the algorithm G on input
〈
ϕM, 1nd

〉
.

If the brute force algorithm halts outputting tM(λ), then A checks whether n <
tM(λ), answers accordingly, and halts. Assume now that G halts. If G accepts〈
ϕM, 1nd

〉 (
and hence 〈M, 1n〉 ∈ p-Halt by (15)

)
, then A accepts. If G rejects〈

ϕM, 1nd
〉
, then A continues the simulation of the “brute force algorithm.”

The algorithm A decides p-Halt: note that if G rejects
〈
ϕM, 1nd

〉
, then〈

ϕM, 1nd
〉

/∈ p-Gödel; in particular, ϕM has a proof, and therefore M accepts
the empty input tape by (16), so that in this case the computation of the brute
force algorithm eventually will output tM(λ), and A will answer correctly.

We still have to show that for fixed nondeterministic Turing machine M the
algorithm A runs in time polynomial in n on inputs of the form 〈M, 1n〉. We
consider two cases.

M halts on empty input tape: Then an upper bound for the running time is given
by the time that the brute force algorithm needs to compute tM(λ) (and the time
for the check whether n < tM(λ)); hence we have an upper bound of the form
ncM .

M does not halt on empty input tape: Then, by (16), we have
〈
ϕM, 1nd

〉
∈

p-Gödel; hence an upper bound is given by the running time of G on input〈
ϕM, 1nd

〉
. �

Similarly as we did for p-Halt at the end of Section 3, one can show that the
answer to the question “p-Gödel ∈ XPuni?” would be the same if we only would
require for an instance 〈ϕ, 1n〉 of p-Gödel that we get the correct answer if s(ϕ),
the length of a shortest proof of ϕ, is not near to n.

9 Hard Sequences for Algorithms and p-Halt

Recall that an algorithm O deciding a problem Q ⊆ Σ∗ is almost optimal if for
every algorithm A deciding Q there is a polynomial pA ∈ N[X] such that for
every x ∈ Q

tO(x) ≤ pA(tA(x) + |x|). (17)

394 Y. Chen and J. Flum

Note that nothing is required for x /∈ Q.
In [27] it was shown that

Taut has an almost optimal algorithm ⇐⇒
there is a polynomially optimal propositional proof system.

Hence, by Theorem 7,

Taut has an almost optimal algorithm ⇐⇒ p-Halt ∈ XPuni. (18)

Let A be an algorithm deciding a problem Q. A sequence (xs)s∈N of strings xs

in Q is hard for A if the function 1s �→ xs is computable in polynomial time
and the sequence

(
tA(xs)

)
s∈N

is not polynomially bounded in s. Clearly, if A is
polynomial time, then A has no hard sequences. Furthermore, an almost optimal
algorithm for Q has no hard sequences either. In fact, if (xs)s∈N is a hard sequence
for an algorithm, then one can polynomially speed up it on {xs | s ∈ N}, so it
cannot be almost optimal. We show:

Theorem 33. Every algorithm deciding Taut has a hard sequence if and only
if p-Halt /∈ XPuni.

Proof. If p-Halt ∈ XPuni, then Taut has an almost optimal algorithm
(
by (18)

)
;

we have just remarked that an almost optimal algorithm has no hard sequence.
It remains to show the implication from right to left. So assume that p-Halt /∈

XPuni. Then, by Lemma 5, for every algorithm A deciding p-Halt there is a
nondeterministic machine M(A) with tM(A)(λ) = ∞ such that A restricted to
instances of the form 〈M(A), 1n〉 is not polynomial time.

Now let C be any algorithm deciding Taut and let S be a polynomial time
reduction from Halt to Taut. Then the algorithm C ◦ S that on input x first
computes S(x) and then simulates C on input S(x), decides Halt. By the pre-
vious observation, C ◦ S restricted to instances of the form 〈M(C ◦ S), 1n〉 is not
polynomial time; hence, C restricted to instances of the form S

(〈M(C ◦ S), 1n〉)
is not polynomial time. As 1s �→ S

(〈M(C ◦ S), 1s〉) is computable in polynomial
time, the sequence

(
S
(〈M(C ◦ S), 1s〉))

s∈N
is a hard sequence for C. �

10 Summary, Generalizations and Extensions
of the Results

Summarizing we present a theorem which contains statements from different ar-
eas of theoretical computer science we have shown to be equivalent to p-Halt ∈
XPuni.

Theorem 34. The following are equivalent:
(1) p-Halt ∈ XPuni;
(2) There is a polynomially optimal propositional proof system;
(3) LFPinv captures P;

A Parameterized Halting Problem 395

(4) p-Gödel ∈ XPuni;
(5) There are algorithms deciding Taut without hard sequences.

In this expository article we only derived consequences of or statements equiv-
alent to “p-Halt ∈ XPuni.” There are various extensions of these equivalences,
which arise from questions like “what do p-Halt ∈ XP, p-Halt ∈ FPT, or
p-Halt ∈ FPTuni mean for these related problems?” Further complexity classes
have been considered in [12].

Here we report what the effect of changing membership of p-Halt in the class
XPuni by a different class means for the equivalence (18). By this equivalence,
p-Halt ∈ XPuni if and only if there is an algorithm O deciding Taut such that
for every further algorithm A deciding Taut there is a polynomial pA ∈ N[X]
such that for every tautology α

tO(α) ≤ pA(tA(α) + |α|). (19)

The statement p-Halt ∈ XP is equivalent to the existence of an effective pro-
cedure assigning to an algorithm A deciding Taut a polynomial pA satisfying
(19). And p-Halt ∈ FPTuni means that for some d the polynomials pA may be
chosen of degree ≤ d. If, in addition, they may be chosen effectively, this means
that p-Halt ∈ FPT.

References

1. Aumann, Y., Dombb, Y.: Fixed Structure Complexity. In: Grohe, M., Niedermeier,
R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 30–42. Springer, Heidelberg (2008)

2. Buhrman, H., Hitchcock, J.M.: NP-hard sets are exponentially dense unless coNP ⊆
NP/poly. In: Proceedings of the 23rd Annual IEEE Conference on Computational
Complexity (CCC 2008), Electronic Colloquium on Computational Complexity
(ECCC 2008), Report TR08 022, pp. 1–7 (2008),
http://eccc.hpi-web.de/eccc-local/Lists/TR-2008.html

3. Buss, S., Chen, Y., Flum, J., Friedman, S., Müller, M.: Strong isomorphism re-
ductions in complexity theory. The Journal of Symbolic Logic 76(4), 1381–1402
(2011)

4. Cai, L., Chen, J., Downey, R., Fellows, M.: the parameterized complexity of short
computation and factorization. Archive for Mathematical Logic 36, 321–337 (1997)

5. Cesati, M.: The Turing way to parameterized complexity. Journal of Computer
and System Sciences 67, 654–685 (2003)

6. Cesati, M., Di Ianni, M.: Computation models for parameterized complexity. Math-
ematicall Logical Quarterly 43, 179–202 (1997)

7. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. Journal of the ACM 28,
114–133 (1981); 77–90 (1977)

8. Chen, Y., Flum, J.: On the complexity of Gödel’s proof predicate. The Journal of
Symbolic Logic 75, 239–254 (2009)

9. Chen, Y., Flum, J.: A Logic for PTIME and a Parameterized Halting Problem. In:
Blass, A., Dershowitz, N., Reisig, W. (eds.) Gurevich Festschrift. LNCS, vol. 6300,
pp. 251–276. Springer, Heidelberg (2010)

http://eccc.hpi-web.de/eccc-local/Lists/TR-2008.html

396 Y. Chen and J. Flum

10. Chen, Y., Flum, J.: On p-Optimal Proof Systems and Logics for PTIME. In:
Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G.
(eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 321–332. Springer, Heidelberg
(2010)

11. Chen, Y., Flum, J.: On Slicewise Monotone Parameterized Problems and Opti-
mal Proof Systems for TAUT. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS,
vol. 6247, pp. 200–214. Springer, Heidelberg (2010)

12. Chen, Y., Flum, J.: Listings and logics. In: Proceedings of the 26th Annual IEEE
Symposium on Logic in Computer Science (LICS 2011), pp. 165–174 (2011)

13. Cook, S.: The complexity of theorem proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing, pp. 151–158 (1971)

14. Cook, S., Reckhow, R.: The relative efficiency of propositional proof systems. The
Journal of Symbolic Logic 44, 36–50 (1979)

15. Downey, R., Fellows, M.: Fixed-parameter tractability and commpleteness III:
Some structurl aspects of the W -hierarchy. In: Ambos-Spies, K., et al. (eds.) Com-
plexity Theory, pp. 166–191 (1993)

16. Downey, R., Fellows, M.: Parameterized Complexity. Springer (1999)
17. Downey, R.: Private communication
18. Fagin, R.: Generalized first–order spectra and polynomial–time recognizable sets.

In: Karp, R.M. (ed.) Complexity of Computation. SIAM-AMS Proceedings, vol. 7,
pp. 43–73 (1974)

19. Flum, J., Grohe, M.: Fixed-parameter tractability, definability, and model checking.
SIAM Journal on Computing 31, 113–145 (2001)

20. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
21. Fortnow, L., Grochow, J.: Complexity classes of equivalence problems revisited,

arXiv:0907.4775v1, [cs.CC] (2009)
22. Hartmanis, J., Hemachandra, L.: Complexity classes without machines: On com-

plete languages for UP. Theoretical Computer Science 58, 129–142 (1988)
23. Immerman, N.: Relational queries computable in polynomial time. Information and

Control 68, 86–104 (1986)
24. Köbler, J., Messner, J.: Complete problems for promise classes by optimal proof

systems for test sets. In: Proceedings of the 13th IEEE Conference on Computa-
tional Complexity (CCC 1998), pp. 132–140 (1998)

25. Köbler, J., Messner, J., Torán, J.: Optimal proof systems imply complete sets for
promise classes. Information and Computation 184, 71–92 (2003)

26. Kowalczyk, W.: Some Connections Between Presentability of Complexity Classes
and the Power of Formal Systems of Reasonning. In: Chytil, M.P., Koubek, V.
(eds.) MFCS 1984. LNCS, vol. 176, pp. 364–369. Springer, Heidelberg (1984)

27. Kraj́ıček, J., Pudlák, P.: Propositional proof systems, the consistency of first order
theories and the complexity of computations. The Journal of Symbolic Logic 54,
1063–1088 (1989)

28. Levin, L.: Universal search problems. Problems of Information Transmission 9(3),
265–266 (1973) (in Russian); (english translation) Trakhtenbrot, B.A.: A survey
of Russian approaches to perebor (brute-force search) algorithms. Annals of the
History of Computing 6(4), 384–400 (1984)

29. Messner, J., Torán, J.: Optimal Proof Systems for Propositional Logic and Com-
plete Sets. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp.
477–487. Springer, Heidelberg (1998)

A Parameterized Halting Problem 397

30. Monroe, H.: Speedup for natural problems and noncomputability. Theoretical Com-
puter Science 412(4-5), 478–481 (2011)

31. Nash, A., Remmel, J.B., Vianu, V.: PTIME Queries Revisited. In: Eiter, T., Libkin,
L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 274–288. Springer, Heidelberg (2005)

32. Sadowski, Z.: On an optimal propositional proof system and the structure of easy
subsets. Theoretical Computer Science 288(1), 181–193 (2002)

33. Turing, A.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Society 2, 230–265 (1936)

34. Vardi, M.Y.: The complexity of relational query languages. In: Proceedings of the
14th Annual ACM Symposium on Theory of Computing (STOC 1982), pp. 137–146
(1982)

Computer Science Unplugged

and Related Projects in Math
and Computer Science Popularization

Tim Bell1,�, Frances Rosamond2, and Nancy Casey3

1 Department of Computer Science and Software Engineering
University of Canterbury

Christchurch, NZ
tim.bell@canterbury.ac.nz

2 School of Engineering and Information Technology
Charles Darwin University

Darwin, Northern Territory 0909 Australia
Frances.Rosamond@CDU.edu.au

3 Logwood Stone
Moscow, Idaho

Nancy@logwoodstone.com

Abstract. Mathematics popularization is an important, creative kind of
research, entangled with many other research programs of basic interest
— Mike Fellows

This chapter is a history of the Computer Science Unplugged project,
and related work on math and computer science popularization that Mike
Fellows has been a driving force behind, including MEGA-Mathematics
and games design. Mike’s mission has been to open up the knowns and
unknowns of mathematical science to the public. We explore the gene-
sis of MEGA-Math and “Unplugged” in the early 1990s, and then the
sudden growth of interest in Unplugged after the year 2003, including
the contributions from many different cultures and its deployment in a
large variety of contexts. Woven through this history is the importance of
story: that presenting math and computing topics through story-telling
and drama can captivate children and adults alike, and provides a whole
new level of engagement with what can be perceived as a dry topic. It
is also about not paying attention to boundaries — whether teaching
advanced computer science concepts to elementary school children or
running a mathematics event in a park.

Dedicated to Mike Fellows
on the occasion of his 60th birthday.

1 Introduction

It is quite uncommon for a world class research scientist to also be heavily
involved in K-12 education. It is rarer still for such a scientist to be involved in
� Corresponding author.

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 398–456, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Computer Science Unplugged and Related Projects 399

developing new programs and methodologies for popularizing and teaching basic
principles in education.

Mike Fellows and some of his co-workers initiated just such a program begin-
ning in the 1980’s. They were deeply concerned with the trends in mathematics
and computer science education. The plan was to develop materials based around
modern research in computer science and mathematics and have these ideas used
to make early education more exciting and engaging.

As we will describe in later sections of this paper, these ideas involved things
like NP-completeness, parallel sorting networks, automata, and many other main-
stays of modern computing research. The early material evolved from various
projects and groups (including “Family math”, “Mathmania”) culminating in
the “MEGA-math” project, which ultimately led to the “Computer Science Un-
plugged” project that has become widely used internationally.

In this paper, we will describe the projects involved and look at how the
material evolved. A subtext of the paper is the difficulty of getting the material
accepted, necessitating a long and hard fought campaign for eventual adoption.
We also track the chance meetings and collaborations that brought about a rich
and diverse range of material and events under the “CS Unplugged” umbrella.

Acceptance of Mike’s efforts in mathematical outreach had a bit of a slow
start, somewhat similar to the slow acceptance by theory researchers of param-
eterized complexity. Mike has told about publishers in the 1990’s who rejected
Computer Science Unplugged saying, “It is not a math book, and since it is
‘unplugged,’ we cannot publish it as a computer science book either. But, my
wife loves it and so does her friend who is a teacher, so would you please send us
another copy.” It was quite a different scene at the 2007 ACM Special Interest
Group in Computer Science Education (SIGCSE) Conference. Carnegie Mellon
Computer Science Department Chair Jeannette Wing had just finished her in-
sightful description of “computational thinking” when Lenore Blum promptly
announced,“We are fortunate to have someone here who has written materials
that exemplify computational thinking. Would Michael Fellows please stand up.”
The SIGCSE workshop featuring Unplugged overflowed the venue, and had to
be repeated, with standing-room only.

The prehistory of Unplugged began with “Family Math” in the seventies,
which was part of the inspiration for the MEGA-Math program that started to
take shape in the late eighties. This happened in the United States, at a time
when many parents, often educated professionals, organized “free schools,” hiring
teachers and volunteering at the schools. Mike attributes his early popularizing
efforts to volunteering in the elementary classrooms of his children Hannah and
Max at Apple Blossom Family School in Moscow, Idaho. Mike recalls hurrying
from his job at the university to the primary school. He had just been teaching
a topic on sorting in a graduate class, and decided to teach the same topic to
the children. It was a huge success, and the beginning of many of the activities
that now are mainstays of MEGA-Math and Computer Science Unplugged.

400 T. Bell, F. Rosamond, and N. Casey

As Rod says in his chapter, Mike’s homes were always full of books from all
kinds of areas of human endeavor, and papers from many areas of science. Fur-
thermore, Mike loves to talk with people from all backgrounds, about almost
any subject. Rudolf Fleischer calls his thinking “top down,” in the sense that
he can see quickly right to the heart of an issue — and recall all the details, no
matter how many years have passed. These aptitudes coupled with vast imagina-
tion and an indignation that children were being given short-shrift by the school
curriculum, resulted in four Cowboy Melodramas — satires about mathematics
education, that were presented at the 1998 Fringe Theatre in Victoria. Each play
dramatizes the proof of a mathematical theorem, and Mike considered the plays
an experiment in presenting technical information to the public. He called them
“content-driven” theatre. These are discussed in more detail in the chapter on
“Passion Plays,” but they are closely related to the Unplugged project because
they make strong use of imaginative stories to illustrate a deep point; and they
directly address the issue that young students should be exposed to the exciting
parts of our discipline.

As computer games became increasingly popular, Mike thought about how
they could be used to convey mathematics to children, and he developed a sys-
tematic method of creating computer games harnessing the intractable compu-
tational problems in the compendium of Garey and Johnson [1].

These various experiences came together to produce Computer Science Un-
plugged, a collection of stories, games, puzzles, and tricks, presented as activities,
shows and videos, which have led to the Unplugged approach to pedagogy that
has become a meme in the world of computer science education.

This history of Unplugged is timely because the year 2012 marks the 20th
anniversary of the publication of the book This is MEGA-Mathematics!, which
was the seed that led to the collaboration that became known as “Computer Sci-
ence Unplugged.” The Unplugged project began out of an interest in providing
engaging and accessible ways of introducing children to big ideas from mathe-
matics and computer science, and has grown from a few chance collaborations
into an approach to outreach and teaching with direct contributions from dozens
of academics. It has been translated into about 16 languages, used in classrooms
in many countries, and found its way into creative endeavors tangential to math-
ematics and computer science.

In the spirit of the style of teaching described in this chapter, we begin in
Section 2 by diving headfirst into describing the sorting network as an example
of the type of activity that was used as a tool for engaging young children with
advanced ideas from math and computer science. The remainder of the chapter is
organized somewhat chronologically. Section 3 reviews some of the activism that
Mike engaged in to change attitudes amongst educators, one product of which
was the MEGA-Math workbook, which is described in Section 4. Section 5 de-
scribes how this led into Computer Science Unplugged, and Section 6 explains
how it suddenly gained momentum around 2003 to 2006. The general principles
that emerged through this work are captured in Section 7, and evaluations of
Unplugged are reviewed in Section 8. In parallel to the work on MEGA-Math

Computer Science Unplugged and Related Projects 401

and Unplugged, Mike was working on computer games and the mathematical
“passion plays”. Section 9 reflects on Mike’s insights into computer games; the
separate chapter on passion plays describes the Cowboy Melodramas of Mathe-
matics.

The information in this chapter has been gathered by personal recollection
of many of the people involved, and a survey of the large number of writings
that these projects generated. By chance, two natural disasters also provided
source material for us: Mike and Frances’ papers arrived in Darwin from New-
castle, delayed by the 2010–2011 Queensland floods, just in time to use in writ-
ing this chapter, and Tim Bell’s office had to be completely emptied after the
Christchurch earthquake of February 2011, bringing to the surface some early
documents relating to Unplugged. Writing this chapter involved something of an
archaeological dig through the resulting material, unearthing all sorts of relics
from the last 20 years!

We know that the ideas have had lasting influence. It is moving to Mike,
to receive on a fairly regular basis, an email from an unknown person saying
something like, “Dear Dr. Fellows, I have found your article about Unplugged or
MEGA-Math or . . . , and I just want you to know how much it means to me”
In fact, Elena Prieto, who subsequently became Mike’s Ph.D. student, knocked
on his University of Victoria (UVic) office door to say, “I just want to shake
the hand of one of the authors of Computer Science Unplugged.” Elena had
been teaching for an NGO as a mathematics lecturer at the National University
of El Salvador, and relied on Unplugged when the power went out, which was
not infrequent. This chapter reveals many more unexpected applications and
situations where Mike’s vision has changed the way math and computing is
taught!

2 The Sorting Network

The quintessential “Unplugged” activity that has been an instant hit with all
ages for the last two decades is the “Sorting Network”, where a layout like the one
in Figure 1(a) is drawn on the pavement in chalk (Figure 1(b)) or on an indoor
surface with painter’s tape. Six students holding numbers start in the six boxes
on the left, and move to the right following their respective arrow until they meet
another student at a circle (node). At the circle, two students compare numbers,
and the student with the smaller one follows the arrow to their left, while the
student with the larger number follows the arrow to their right. Each student
arrives in a new circle where they again compare numbers with the student they
meet there. This structure is called a parallel sorting network because there are
three comparisons happening at the same time.

Students and teachers alike are generally surprised when they come out the
end of the network with the numbers they are holding in ascending order, and
suddenly everyone is plunged into the kind of observation, questioning, critical
thinking and reflection that is at the core of mathematics and computer science.
Does it work backwards? Can you sort in descending order? Can you use it to

402 T. Bell, F. Rosamond, and N. Casey

(a) (b)

Fig. 1. (a) A 6-input parallel sorting network (b) Chalked in a school playground

sort 12 numbers? Or 7? Can you give it a set of numbers that will make it fail?
Can you find a shorter network that still sorts the numbers? How many per-
mutations would you have to test to check every possible input? Some students
might immediately insist on trying it again. Others might try drawing their own
networks, or begin inventing/drawing something that only they can understand.
Some students simply listen and watch. While the class as a whole mimics a
mathematical community whose members are grappling with different aspects
of an intriguing problem, it’s likely that neither the students nor teachers will
have a sense that they are “doing” math or computer science, because school
math tends to be directed towards finding right answers to known problems, and
computer science is understood to be some kind of drudgery one does in front
of a computer, like writing programs or fixing the system.

Mike tells a story of the first time he made a sorting network with children.
He showed the children the topic he had considered that day with his university
students. The parallel sorting network is a well-understood area of algorithms,
but is seldom taught before senior levels of university. Yet students as young as
5 years old can fairly easily understand how to use one, and more significantly,
because of the experience they can begin to understand the sort of ideas that
computer scientists work with. By “failing” to conceptualize a child’s mind as
miniature and mildly incompetent, activities like the sorting network invert the
notion of age-level hierarchies for mathematical topics, and instead give children
of any age and development a chance to engage with an idea in computer science
with whatever intellectual horsepower they have.

Since Mike’s first experiment with it in the late 1980s, the sorting network
activity has been used in many classes—spray painted on grass, chalked on pave-
ment, taped on carpet, glued onto portable tarpaulins, paved in a garden, drawn
as miniaturized Japanese board-game versions for schools where space is limited,
and crafted in a virtual world for use by students with mobility impairments. It
has been done with up to 50 people at once, by Girl Scouts, by senior citizens,
by music students, and by guests at birthday parties and a wedding. A number
of videos of groups doing it can be found on YouTube. Figure 2 shows some of
these variations around the world, and in a virtual world. Figure 2(d) shows the
difficulty of using it with students in wheelchairs, motivating the virtual version

Computer Science Unplugged and Related Projects 403

in Figure 2(e); Figure 2(f) shows a student who can’t walk, yet is “running”
around a virtual sorting network. Figure 2(g) shows the idea being implemented
in a popular introductory programming environment — in this case it has come
full circle, and school children are actually able to implement a kind of sort-
ing network in a program (as long as no-one tells them that it is supposed to
be difficult—to them it is just a simulation of something they have done phys-
ically). Recently the sorting network has been used regularly to teach music
theory, comparing things like note pitches (Figure 2(i)) and note lengths [2]. In
Lisa Whittle’s classroom, the sorting network was kept on the classroom floor
for use in many subjects: ordering distances from planets to the sun (science),
molecular weights or densities (chemistry), fractions (math), notes and scales
(music), eras or events (history), or priorities (social studies).

The parallel sorting network teaches much more than logic or algorithms. For
example, students often try to get to the end as quickly as possible, leaving
behind another student who is waiting on the outcome of a comparison. At this
point they realize that their haste has caused the whole team to fail, and this
is a salutary lesson for those who might be interested in computers but not so
good at team work. Eventually it is understood that nobody wins alone; all
win together as the sorting resolves the different values into a clear order. The
sorting network is a model of cooperative learning, more of a dance or a series of
conversations than a race. It is useful to ask people to greet their partner when
they arrive at a node, which has led to pleasant surprises as children in some
countries salute or charmingly bow in greeting. Another topic of discussion is
what sorts of activities can/cannot be done in parallel—digging a hole? digging
a trench? getting parcels from Darwin to Christchurch?

The nice thing about this demonstration, and many of the others that have
become part of the Unplugged canon, is that children don’t want to stop “play-
ing.” Tim recalls being asked by a girl for a copy of the network so she could
use it at her birthday party, and Frances reports having a class that refused to
stop, as they went on and on sorting everything they could, including replacing
library books on the shelves [3].

3 Early Activism on Computer Science and Math
Education

The sorting network is one of dozens of engaging, thought-provoking activities
that could be developed for young students, yet the education establishment
found little use for them beyond “enrichment,” or novelties offered as a break
from rote learning of the calcified topics one is sure to find on standardized
tests. Mike expressed his sense of injustice to children at this state of affairs in
his dissident 1991 paper about the way math and computing were approached in
schools: “Computer SCIENCE and Mathematics in the Elementary Schools” [4].
This paper is essentially a manifesto for the work that continues to this day, and
makes the following key points:

404 T. Bell, F. Rosamond, and N. Casey

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. The ubiquitous sorting network (a) a 12-way network at a kids’ event in Tokyo
(b) in India (c) on an “island” of the “seven bridges” garden at the University of
Canterbury (d) students in wheelchairs in Japan (e) in Second Life (f) using a Second
Life sorting network (g) an exercise in Greenfoot (h) in a music theory class, and (i)
at Mike and Fran’s wedding!

– Elementary school students deserve to experience profound and imaginative
mathematical ideas. Such ideas shouldn’t be reserved for graduate students.

– Open unsolved problems are the creative drivers for mathematical activity,
but children are “taught” a version of mathematics based almost entirely on
correct answers.

– Mathematics itself is an “interdisciplinary powerhouse.” The pursuit of math-
ematical ideas will open doorways and raise interesting questions in the sci-
ences and humanities.

– Mathematics popularization is a research area of basic interest. Exciting
mathematical ideas will not find their way to children and their teachers
without an effort on the part of mathematicians to communicate about them
in accessible ways.

Mike was undaunted by the education establishment’s lukewarm reception to his
manifesto and remained bent on drumming up enthusiasm for the work rather
than getting bogged down in the politics of curriculum development.

Computer Science Unplugged and Related Projects 405

For example, as chair of STOC in Victoria, he created an “Ad Hoc Committee
for SIGACTion on Elementary and Secondary Mathematics and Computer Sci-
ence Education Reform” to coordinate the potential contributions of SIGACT to
mathematics and computer science education reform (posted to theorynet, March
17, 1992). Members of the committee included: Mike Fellows, STOC 92 Chair;
Maria Klawe, Chair, CS Dept UBC; Joe Rosenstein, DIMACS Education Coor-
dinator; Jeff Vitter, Vice Chair SIGACT; Donna Baglio, ACM Headquarters; Avi
Wigderson, STOC 92 Program Chair; Vance Faber, Los Alamos; Bonnie Yantis,
Los Alamos; Eric Manning, Dean of Engineering, UVic; and Neal Koblitz, Math
Dept, Univ Washington. The committee set up a specific project to compile a
compendium of algorithmic topics and possible presentation strategies and sup-
porting discussions for the use of interested educators. Rather than issuing a
simple bureaucratic plea for material, Mike convinced the UVic Dean of Engi-
neering to contribute $250 to purchase a raffle prize so attendees at the STOC
93 banquet could earn a raffle ticket by contributing a topic or presentation idea.

The following year, Mike gave a public lecture organized by UVic professor Bill
Wadge entitled “Mathematics Education: The Paranoid Theory.” It grew out of
numerous rebuffs from academics in mathematics education that implied that
he was out of touch with what children needed to learn in school mathematics.
The abstract for that lecture reads: “Mathematics, the main engine of modern
science, and the widely despised arbiter of social opportunity, functions in many
ways like the medieval Church. The talk will focus on the culture of mathematics,
the hidden agendas served by mathematics education, and on various associated
amusing stories that serve to illuminate the issues, or perhaps only explain the
speaker’s evident paranoia. More of a performance than a lecture—whatever
happens is at least the work of a mathematician.”

The abstract is accompanied by a Calvin and Hobbs cartoon:

Calvin: You know, I don’t think math is a science. I think it’s a religion.
Hobbs: A religion?
Calvin: Yeah. All these equations are like miracles. You take two numbers and

when you add them, they magically become one new number! No one can
say how it happens. You either believe it or you don’t. This whole book is
full of things that have to be accepted on faith. It’s a religion.

Hobbs: And in the public schools no less. Call a lawyer.
Calvin: As a math atheist, I should be excused from this.

The paranoid theory proposed that mathematics (taught as only arithmetic)
was used by society as an arbiter of social opportunity, and was really about
power, authority and control. He wrote about the Paranoid Theory in “Computer
SCIENCE in the Elementary School” [4].

Mike says that he is not sure how much he actually believed in his theory.
Almost everyone he has told it to endorses it to some extent, sometimes en-
thusiastically (the public lecture drew an overflowing audience), yet there is an

406 T. Bell, F. Rosamond, and N. Casey

incredible resilience to the shopkeeper way of teaching. Perhaps this is because
most people have never seen anything else.

The Inaugural Lecture by University of Sydney anthropologist Linda Con-
nor in October 2011 gave us an anthropological perspective on the Paranoid
Theory. The core mythology being promulgated in the 18th century had to do
with profit and consumerism, and therefore numbers and operations on numbers
were of foremost importance. Mike suggested considering the modern “number”
to be “networks of relationships,” as in gene regularity networks. One can spec-
ulate on what society would be like if children’s math began with networks,
continued with patterns, dynamics, processing, and strings of symbols over a
two letter alphabet, and eventually came to counting. We plan to explore these
possibilities with First Peoples (Indigenous Aboriginal), for whom networks of
familial relationships form a precise, intricate and primal construct, at a future
workshop.

Mike made enormous efforts to engage people with this view of math teaching,
sharing his ideas with any students, teachers, academics or administrators who
would listen. He has sought funding and moral support, and worked passionately
to help anyone who is interested. Ideas in mathematics and computer science are
exciting, and Mike has never been picky about who he shares that excitement
with. It might be a researcher of his caliber, or it might be a 5-year-old. Rod
Downey recalls feeling pretty bruised by trying to push for improvements in
math education, and advised Mike that it was really not worth it as it sucked
all the energy out of you. Mike’s boundless energy was such that he persisted
despite setbacks, and it’s a testimony to his persistence that 20 years later some
of his work has found a foothold in formal curricula around the world.

We now look at the history of Computer Science Unplugged and associated
projects, how it began with the MEGA-Math project and steadily grew—because
exciting ideas won’t be squelched.

4 This Is MEGA-Mathematics! —The MEGA-Math
Project

The impact of Computer Science Unplugged is extraordinary, winning awards
worldwide, being translated into many languages, and having its own YouTube
channel with sound tracks and subtitles in multiple languages. This section de-
scribes the roots of Unplugged, which are found in the MEGA-Math project,
starting with Mike’s classroom visits to his children’s elementary school in
Moscow, Idaho.

The United States in the 1980s considered itself a “Nation at Risk” due to
dismal results from international assessments of mathematics education, and
to immense differences in achievement traced to race, ethnicity, poverty, and
gender, and to huge gaps between low- and high- achievers. One response was
to set national standards for school mathematics, an unprecedented venture
for the United States, and which resulted in classrooms largely being turned

Computer Science Unplugged and Related Projects 407

into test-preparation centers. Innovations tended towards (often artificial) “uses”
of mathematics. The result was a collective popular conception that mathematics
is incomprehensible, accessible only to a gifted elite, yet very important.

An early approach to putting excitement into math was “Family Math,” which
came out of the “Math for Girls” program (created by Diane Resek, Nancy
Kreinberg and Rita Liff Levinson) and the “Equals Teacher Training” program,
in which engaging, hands-on math activities were developed at the Lawrence
Hall of Science (LHS) in Berkeley in the early 1970s. These activities were also
a key element of the “Expanding Your Horizons” conferences created in those
early days by the Math/Science Network (co-directed then by Lenore Blum and
Nancy Kreinberg) and still going strong today. One of the developers of Family
Math was Virginia Thompson, and Mike had heard her speak at a meeting in
Los Angeles and was influenced by her1.

In this context, the chance collaboration that resulted in the MEGA-Math
project began when Mike and Nancy Casey met in 1989 while Mike was at the
University of Idaho. Their children were the same ages — 5 and 6. Mike had
already developed a few games and puzzles to expose his children and their
schoolmates to current research ideas. As a K-12 Language Arts teacher, Nancy
was interested in the way children learned reading and writing skills inside a
language-rich environment which situates those skills in a context that includes
storytelling, fact-collecting, art, music and movement. Although she knew many
teachers confident in their ability to organize a classroom in a way that brought
children’s active language-learning faculties to bear on the expansion of an array
of communication skills that included reading and writing, there didn’t seem to
be any teachers with a similar creative vision for mathematics learning. She
wanted to know what belonged in that vacuum [5]. At the same time, Mike saw
a disconnect between what he did as a research scientist, and what his children
did most school days in the name of math.

Mike and Nancy began exploring the possibility of teaching mathematics using
the “Whole Language” (also known as “Natural Learning”) philosophy. Children
were given large blocks of time to explore, discuss, and write their ideas in note-
books. They began to explore the possibilities of teaching modern mathematical
ideas through communication about games and puzzles, having students express
their mathematical thoughts in language, a curricular area where teachers felt
most secure.

Second grade teacher Prudy Heimsch joined the experiment. According to
Mike, every parent in Moscow wanted Prudy to be their child’s teacher. She had
the patience to allow the excitement of learning (which may look like chaos) to
follow its natural course (rather than provide overly strong guidance for stu-
dents), and this has become a hallmark of the MEGA-Math and Unplugged
projects.

1 Intriguingly, this inspiration ended up coming full circle, as Lenore ended up engaging
with CS Unplugged some two decades later after it had traveled from the US to New
Zealand and back again!

408 T. Bell, F. Rosamond, and N. Casey

Prudy’s class explored a Dominating Set problem2, described as “Where
should we place a minimum number of fire stations, so that every house is located
either on the same vertex as a station, or within one block of a station?”, given
a map such as the one in Figure 3. Nancy has described the ensuing frenetic
and alternately careful, quiet struggles of the children to invent vocabulary with
which to explain their thinking about this problem to each other, and write
about it [6].

The students were shocked to find out that a teacher wasn’t going to give
them a correct answer if they waited long enough, and were empowered as they
discovered that they didn’t need a teacher as they could evaluate one another’s
fire station maps. This was an inversion of the traditional mathematics lesson
where students are handed a series of problems to practice on after being led
through a series of strategies for solving them. Also in these sessions, it became
apparent that neither Nancy nor the classroom teacher grasped the full richness
of the children’s problems-solving engagement until afterward when they sat
down together to discuss what occurred and plan for the next day. Building
these debriefing sessions into the activities was essential to establishing why and
how such unbridled classroom enthusiasm was purposeful mathematical activity.

Allowing the students to explore problems in their own way is something that
doesn’t always come naturally to teachers and visiting university faculty [7]. Yet
it is remarkably effective. The students end up taking ownership of the problem
without realizing how “hard” it is, and they build confidence that they can cope
with novel mathematical situations.

In the workbook that grew out of these experiences, the introduction assures
the reader that “Good mathematics ultimately comes from and returns to good
stories” [8]. For example, in “Gertrude, Superperson and the Monster Recover
from a Disaster,” the stage is set for a discussion that may well end up with the
the 4-color map theorem, although the phrase “map coloring” never appears in
the story, which begins:

HORRORS! The Land of Many Ponds has been clearcut! Where there
were once tall, tall trees and flyways, there is nothing but stumps and
empty space.

Gertrude, Superperson and the Monster meet in one of the ponds to talk
over what they should do.

Gertrude swam round and round in furious circles. “Oh we are doomed,
just doomed!” she wailed. “As soon as it rains, WHOOSH! the soil will
begin washing away. . . The (pond) water will get silty and soon the ponds
will dry up. Oh it’s awful! We are doomed!”

2 A slight variation of the story uses the Vertex Cover problem, where every edge
in the graph is incident on a vertex in the solution set; in contrast, the Dominating

Set problem requires that every vertex in the graph is adjacent to a vertex in the
solution set. The difference in the story is whether the houses are on the roads or
on the intersections. Later versions of the story included choosing the placement of
ice cream stands and the location of wells.

Computer Science Unplugged and Related Projects 409

Fig. 3. A graph used as a map of the town that needs the location of fire stations to
be decided

The characters set off to make plantings to prevent erosion and decide to plant
colored flowers in a way that makes the old boundaries still clear. In the process
they are likely to encounter ideas relating to the four-color theorem, the expo-
nential complexity of exhaustive searches, and special cases of maps that require
fewer than four colours.

Examining a dots and lines network of relationships requires a “spatial” rea-
soning that seems quite different from that used in calculating addition or sub-
traction, with the result that some students who always were the “best” in math
no longer knew what to do, while those who normally did not do well became
leaders. Mike has described one little boy who had a reputation as the class
trouble-maker. He became so excited working on the network that he exclaimed,
“This is math? This is MEGA-mathematics!!” and thus was named the project.
They also found that teachers’ confidence levels with mathematics skyrocketed
when they were encouraged to consider how their students expressed and devel-
oped their mathematical thoughts in language, the area of the curriculum where
they were often most secure.

In his 1991 paper, Computer SCIENCE and Mathematics in the Elemen-
tary Schools (the most definitive description of the vision and innovation of
the project), Mike urged that children be respected as genuine (child-sized) re-
searchers (the paper was published in 1991 on the MEGA-Math site, and later
appeared as [4]). Mike states: “In the same way that children’s art is interesting
as art and children’s writing is interesting as writing, mathematics with children
can be interesting as mathematics.” Research problems sometimes “turned up”
during classroom visits. For example, Jan Kratochvil visited for several months
from Prague, and he and Mike noticed that if two children take turns coloring
in the regions of a map, the Four Color Theorem assures that four colors are
enough, provided you are coloring perfectly and strategically. But how many
colors will it take if one player is a child who plays legally but not strategically?

410 T. Bell, F. Rosamond, and N. Casey

Or, if they are trying to “force” the map to require more than four colors? (An
upper bound was established by Kierstead and Trotter in 1992; they show that
33 colours suffice for a planar graph, and they establish 8 as a lower bound [9].)
Children are always challenging the rules of the game, and they don’t know
which questions they shouldn’t ask.

In the 1991 paper, Mike describes (retrospectively, he says) the goals of his
classroom visits:

– To show that mathematics is fun and full of stories, activity, invention and
play.

– To show that mathematics, like dinosaurs and outer space, is a live science
with visible frontiers of knowledge.

– To present the essential unity of mathematics and computer science and
display the intellectual core of the latter.

These early experiences led to a lively discussion of how math should really be
taught in schools. In that discussion, juxtaposed to these experiences of very
young students having an exciting time exploring graph theory we have school
curricula that teach the ingredients of math — operators, fractions, probability
and so on. Yet if these ideas are the entire curriculum, students are merely
learning ancient techniques from what appears to them to be a dead discipline [5].

4.1 The MEGA-Math Book

The ideas that led to the MEGA-Math project were gradually collected, and
built up a grass-roots level of interest. In 1993, under the leadership of Vance
Faber and Bonnie Yantis of the Computer Applications and Research Group at
Los Alamos National Laboratory, Mike became principal investigator on a grant
entitled Research On Mega-Math: Discrete Mathematics And Computer Science
for Children, which resulted in the publication of the activities in a 134-page,
This is MEGA-Mathematics! workbook by Casey and Fellows [8].

The MEGA-Math workbook covers six topics: map coloring, knot theory,
graph theory, finite state machines, algorithms, and infinity. The introduction
states: “We hope that these materials will provide opportunities for children and
their teachers to experience mathematics in ways it is experienced by mathemati-
cians and scientists. Mathematics is lively and exciting; it is a field more akin to
art and poetry than many people think.” Written at a level an enterprising stu-
dent could grasp, it contains descriptions, explanations, games, stories, pictures,
problems and questions for discussion. It assumes that teachers are not familiar
with the topics. Detailed information describes how the activities can be used
to meet the curriculum goals outlined in the Standards of the National Council
of Teachers of Mathematics (NCTM) (standards.nctm.org). In their article, Im-
plementing the Standards: Let’s Focus on the First Four [10], Mike and Nancy
have argued that in order to properly address the NCTM elementary school
standards — reasoning, problem-solving, communications, and connections —
new content must be introduced into the K–4 curriculum. The authors show by

http://standards.nctm.org

Computer Science Unplugged and Related Projects 411

example how the goals of the standards can be achieved using material from
computer science and discrete mathematics, and they describe their approach to
teaching mathematics as parallel to the “Whole Language” approach to teaching
reading.

After the publication of This is MEGA-Mathematics!, a larger following de-
veloped. In 1994, with continued funding from Los Alamos, the materials were
expanded and put up on the then-new World Wide Web [11]. MEGA-Math ma-
terial was soon used for summer camps, and in 1994, a presentation of these ma-
terials won first prize for “New presentation ideas” in a Canadian summer camp
national organization. Activities from MEGA-Math were adapted by other orga-
nizations, including DIMACS (Rutgers University, NJ), Family Math (Lawrence
Hall of Science) and the Math Department, University of Illinois at Chicago.
It ultimately had some influence on curriculum design, especially in British
Columbia, Montana, California and New Jersey.

By the time MEGA-Math was taking off, Mike had moved from the Labo-
ratory of Applied Logic in the Department of Computer Science at the Uni-
versity of Idaho to the Department of Computer Science at the University of
Victoria, British Columbia. Mike continued to develop games and activities, try-
ing them out in elementary schools in Victoria while Nancy collaborated with
several teachers in Moscow, Idaho doing week-long sessions (including teacher-
debriefing) like those which had worked so well with the Minimum Dominat-

ing Set problem. By 1995, over 1200 copies of the free workbook had been
distributed to more than 400 individuals, including bulk orders to organizations
such as DIMACS and Family Math program at Lawrence Hall of Science. It was
used in departments pursuing mathematics education reform, demonstrated in
many classrooms, and parts had been translated into Spanish [11].

MEGA-Math took a radical approach to engaging very young students (in-
cluding pre-schoolers) with what is conventionally regarded as post-high school
topics, such as graph theory and finite state machines. New pedagogical notions
were introduced such as linking the concepts with playful stories about mon-
sters, animals and bakers, and representing a math problem physically, with
giant ropes for knot theory or large tarpaulins with networks constructed on
them made of colored tape. Significantly, it established that there is value in
the head-first, constructivist approach, where students are given a hard prob-
lem (such as finding a dominating set), and are left to explore it in their own
way. The innovative MEGA-Math approach set the scene for expressing com-
puter science so that elementary school students could engage with the deep
concepts that get computer scientists excited. Furthermore, due to Mike’s infec-
tious enthusiasm for the possibilities expressed in MEGA-Math and eventually
Computer Science Unplugged, many in the parameterized complexity commu-
nity have joined in presenting innovative activities in their children’s classrooms
and other public venues, opening up public understanding and participation in
mathematical science.

MEGA-Math continues to have a life of its own — in 2011 the web site
was getting fairly constant traffic at around 4,000 hits a month, and the ideas

412 T. Bell, F. Rosamond, and N. Casey

are referenced in popular lists of math and computing activities. But one of
its biggest impacts is that it laid the groundwork for the soon-to-be-created
Computer Science Unplugged project.

5 Computer Science Unplugged—Genesis

The Computer Science Unplugged project began through a chance online meet-
ing of Mike Fellows and Tim Bell in March 1992 via an Internet newsgroup.
From about 1989 Tim had developed computer science material for a “Science
Extravaganza” in Christchurch, NZ [12]. The extravaganza was a temporary
science exhibition set up annually in the late 1980s, reminiscent of the San Fran-
cisco Exploratorium, and in 1991 evolved into a permanent science center called
“Science Alive!” At the time computer exhibits in science centers didn’t demon-
strate “real” computer science, and Tim was interested in preparing engaging
material that communicated the great ideas of computer science, and not just
programming or using a computer. Amongst other things he had developed a
demonstration of tractability where you have to watch a program count down
while it solves the Travelling Salesperson Problem [13] — which can be dressed
up as the “birthday party problem,” dropping n kids home after a birthday
party. At the exhibit the child chooses n, and the program animates an evalu-
ation of all (n − 1)!/2 possible paths, one per second. For a few cities, this is
very fast, but for n = 27, the system brings up a timer that counts down from
6,394,144,170,576,570,000 years, one second at a time. The ensuing humor em-
phasizes the futility of exponential time algorithms, and provide opportunities
for follow-up questions (e.g. what if the computer was a million million times
faster? Then it would only need 6,394,144 years!)

During 1992 Mike and Tim exchanged ideas for communicating computer
science to young children. In August 1992 Tim was asked to give a talk to his
son Michael’s class at Shirley Primary School, Christchurch (just two months
after Michael started school). It was part of a series of talks by parents about
their jobs, and followed on from other parents such as policeman who brought a
police car for the kids to see and a nurse with real bandages for the kids to try.
Faced with the challenge of trying to communicate how one could make a living
working with algorithms, and inspired by discussions with Mike, Tim decided
not to bring a computer at all — after all, how convincing would it be to show
5-year-olds a computer running a slow and then a fast algorithm? This led to the
development of material such as the cards for teaching binary numbers, and the
parity card trick. The session turned out to be a resounding success, and armed
with these ideas and others gleaned from Mike, by October 1992 Tim was making
regular visits to Shirley Primary school, and had engaged illustrators (initially
Gail Williams and Malcolm Robinson) to design handouts that would appeal
to the students. Two senior computer science students (Gwenda Benseman and
Richard Lynders) also helped with the visits.

It turned out that being able to teach binary numbers using 5 cards drew a lot
of interest. Teachers and parents who observed it over the years often commented

Computer Science Unplugged and Related Projects 413

that they felt empowered because they understood this mysterious idea of binary
numbers, bits and bytes, which previously seemed to be a secret language of the
in-crowd. It has been popular as a demonstration to senior citizens for the same
reason, once again giving life to Mike’s approach of not paying attention to
boundaries and allowing anyone with curiosity to explore ideas from math and
computer science.

As the collaboration with Mike developed, Tim organised a one-month visit
to Victoria BC in March 1993, funded by a University of Canterbury Erskine
fellowship. This is MEGA-Mathematics! had been published by that time, Mike
had been working on “Kid Krypto” [14], and he had considerable experience in
schools using these ideas to communicate with elementary aged students.

During that time Tim gained experience observing events that Mike ran.
Mike’s somewhat organic approach provided a whole new perspective on commu-
nicating with students. Often ideas for presenting concepts would be developed
the night before, or in the car on the way to a school, or even in the classroom
as the students explored the concepts. Tim remembers driving up Vancouver
Island to Hans Helgeson school one morning, leaving town somewhat less than
45 minutes before the class started (the drive was about 45 minutes). As Tim
was busy calculating the expected time of arrival, Mike spotted a gas station
with a store, pulled in, and like a child in a candy store went around collecting
items like cans of spray paint, string, and coloured tape. They arrived at the
class a few minutes after the appointed time, but oblivious to any concern from
teachers, and with no lesson plan at all, Mike launched into a session with the
students and soon had them eating out of his hand as he spun stories about pi-
rates or lost animals, whose fictional problems could be solved using only a finite
state automaton or sorting network. Grass was spray painted, tangles of string
and tape emerged, and suddenly it became obvious that students were gaining
a deep understanding of advanced ideas from computer science and math.

Of course, at such sessions some teachers were probably unsuccessfully trying
to work out which curriculum boxes they could tick after the session— it couldn’t
be math because there was no arithmetic, and it couldn’t be computing because
there were no keyboards! Even the students may not be aware — on a different
occasion a student commented “I’m glad you’re here today, otherwise we’d have
to do math”! On that occasion, instead of “math” the student ended up doing
things like combinatorial problems and modulo 2 check sums.

An important observation about this “organic” approach to teaching is that
although it appeared to be chaotic as students threw themselves at problems with
some taking obviously sub-optimal approaches or exploring beyond the bound-
aries given, Mike’s infectious enthusiasm and gripping story telling had them
engaged and fully aware of the context he had given them. Later it became clear
that this student-driven exploration was an approximation to constructivism, a
well-known teaching philosophy that came to be a valuable approach to success-
ful outreach programs. Instead of telling students some information and leaving
them to digest it or be impressed that the speaker knows a lot, the students

414 T. Bell, F. Rosamond, and N. Casey

explore the problem for themselves, finding good or bad solutions, and enjoying
the journey rather than worrying about the destination (which after all is only
a meaningless solution to an artificial problem).

Tim’s 1993 visit to Victoria resulted in the drafting of what became the Com-
puter Science Unplugged “original” edition, although because of various delays
and distractions, it was a couple of years before the book became available.

5.1 Mathmania

Also in 1993, at Victoria BC, Mike began the “Mathmania Society”3. One of the
Mathmania group’s first events was a “Mathmania in the Park” day, which was
on Saturday 13 March 1993, during Tim’s visit to Victoria. Figure 4 shows the
poster advertising the event, and Figure 5 shows snapshots of the event, with
families doing serious math as part of a picnic in a park. The event included
a “finite state treasure hunt”, which was a pre-cursor of the Treasure Island
game: kids would go to a “station” in the treasure hunt (an adult with a sticky
label) and ask to take the “A-train” or “B-train”, which would result in them
being directed to run to another station. The knots made out of inch-thick rope
provided a tactile experience for even the youngest attendees to explore the basic
elements of knot theory!

The mission statement of the Mathmania Newsletter states that it is “intro-
ducing mathematics as it is done by professionals.” The first newsletter (dated
05/94, presumably May 1994) says “We hope we have given a hint of how this
can be done in a way that is engaging, accessible, and that does not require the
teacher to invest a great deal of time or funds. Hopefully, the activities allow for
the playful, open-ended, provoking and enjoyable style of mathematics enjoyed
by mathematics researchers everywhere.”

The newsletter quotes some key principles from a paper written by Mike:

– There is an essential unity of mathematics and computer science.
– The competencies required for the increasingly computerized world

are essentially mathematical. It is a serious (and common) mistake
to make a fetish of the machines.

– The intellectual core of computer science can be presented to chil-
dren even in situations where there are no computers (for example,
in countries or school systems that cannot afford them), laying a
foundation for later computer science education. Many of the core
ideas of computer science are best introduced without machines.

– Computer science represents a tremendous flowering of mathematics.
It is particularly good news for children because it is a treasury of
accessible, colourful and active mathematics.

3 Not to be confused with a group with the similar name of “MathmaniaCS” in
Urbana-Champaign, Illinois, who do excellent related work combining the MEGA-
Math and Unplugged material as well as other original material.

Computer Science Unplugged and Related Projects 415

Fig. 4. Poster advertising the “Mathmania in the park” event in 1993

(a) (b) (c)

Fig. 5. Mathmania in the park (a) A “station” in a Finite State Machine giving direc-
tions (b) a sorting network spray painted on the grass (c) knot theory for the whole
family

416 T. Bell, F. Rosamond, and N. Casey

– Most children in grades 1–4 are never exposed to mathematics. Arith-
metic is not mathematics!

– Most children in these grades are never exposed to computer science,
despite all the PCs in the classroom. Programming is not computer
science!

Later the Mathmania organization became more formal, and in 1995-1997, while
at UVic, Mike secured funding to found the “Mathmania Society for Public
Education and Appreciation of Mathematical Sciences,” incorporated under the
Society Act by the Victoria, BC Registrar of Companies. Mike was a Director
of the Society (along with Nancy Casey, Day Kirby, Gerald McLean, Kathy
Beveridge and David Vogt). A joint project of Mathmania and the Canadian
Mathematics Society was to create a website of kid-sized open mathematics
problems with prizes under a project called “Erdös for Kids.”

5.2 The “Original” Unplugged Book

In parallel to the development of the Mathmania society, the book by Mike and
Tim about doing computer science without computers was drafted. General prin-
ciples and an outline were drafted during Tim’s 1993 visit, and it was developed
over the next couple of years. Until 1995 its working title was “Junior Algorith-
mics”, basing the title on that of Harel’s 1987 book “Algorithmics: the spirit of
computing” [15], which was a popular account of computer science written for
an adult audience. The full working title was: “Junior Algorithmics: Computer
Science for kids (and grown-ups who don’t mind having fun)”. However, early
on it became apparent that the word “Algorithmics” was daunting or confusing
for many people.

The name “Computer Science Unplugged” was coined around 1996. The term
“Unplugged” came from a style of music that had become well-known around
that era. During the 1980s it had become popular for artists to perform versions
of their music “acoustically,” especially using acoustic guitars instead of electric
guitars with effects. The term “unplugged” for such music seems to have been
used first for the “MTV Unplugged” series that started in November 1989. The
Unplugged format became particularly popular with a 1991 Paul McCartney
recording, and then Eric Clapton’s 1992 “Unplugged” album, which received
many awards. Thus at the time the Computer Science Unplugged material was
being developed, the term “Unplugged” had just become well established as
being associated with avoiding having music cluttered by technology, returning
to the essence of the music. This resonated strongly with the work that Mike
and Tim were doing, trying to avoid the distraction of the technology so that
students could appreciate what is really happening.

The term “Unplugged” has come to have strong recognition in the computer
science education fraternity and is often used without definition to describe some
aspect of a teaching or outreach program. It is often associated with kinesthetic
activities, although when used properly it also has much visual and oral learning.
At least one independently written book, “Algorithms Unplugged”, has picked
up the term and the spirit of the approach [16].

Computer Science Unplugged and Related Projects 417

Unfortunately the word has posed considerable problems for translators, since
the translation in other languages generally has pejorative meanings that imply
that it is describing something that has no power, is not working, or is broken.
Taking the lead from the music industry, most translations either keep the En-
glish term “Unplugged”, or replace it with a more inspiring description of the
material. For example, the Korean subtitle means “Learning Computer Science
with Games”.

The idea of rejecting the use of computers has created some soul-searching
moments for the authors, particularly when it became clear that the material
needed to be made available online, and then supporting material such as videos
and online games started to appear. More recently “Unplugged” has even been
implemented in virtual worlds! However, an analogous situation occurs with
unplugged music—every “Unplugged” recording uses electronic devices, often
including guitar pickups and even electric organs. In fact, the cover of the best-
selling Unplugged album by Eric Clapton clearly shows a microphone that is
plugged in! Unplugged is really an attitude rather than a technique. The prag-
matics of making the material widely accessible mean that we don’t eschew
computers per se, but we do avoid the situation where the physical device be-
comes the object of attention and displaces the great ideas that will engage
students’ minds. Of course, right from the start computers were used to design
and communicate the Unplugged ideas, although it was tempting to make it a
hand-written book.

An ongoing debate about the title has also been the use of the term “Com-
puter Science”; this term is very well established and is reflected in the names of
many university departments that teach the subject, but it can create confusion
for those not familiar with the field (for example, is it about using computers for
science?) There are competing terms such as the European “Informatik,” and
the general term “computing”, but since the main international professional or-
ganization, the ACM, uses the term “computer science,” that phrase was chosen.
The abbreviation “CS” is almost more effective because it removes emphasis on
the two words that cause the confusion, and the project is now often referred to
as “CS Unplugged.” Another minor distraction with the term “unplugged” when
associated with computers is that it is also used to refer to wireless devices—
for example, computingunplugged.org is a magazine about mobile gadgets. The
use of the term “computer science” (rather than “computing” or “computers”)
generally avoids this confusion, or at least, it gives an opportunity to point out
that computer science has a very particular meaning.

Progress on the CS Unplugged book was slow for the first couple of years
as during this period the project was still a side interest for both Mike and
Tim—Mike’s early work in parameterized complexity was keeping him busy, and
Tim had become involved as an expert witness for several major compression
court cases (in fact, he was first approached to help Microsoft while in Victoria
on the March 1993 visit). Requests and encouragement from colleagues to see
the material completed gave a sense of urgency, and in 1995 Ian Witten was
invited to become involved to help massage the collection of disparate ideas

418 T. Bell, F. Rosamond, and N. Casey

into a coherent collection that would be useful for people involved in outreach.
Ian also proposed and added the sections on Artificial Intelligence and Human-
Computer Interaction, since these were areas he had an interest in.

The coverage of topics wasn’t entirely haphazard. There was an effort early on
to systematically list computer science topics so that fairly broad coverage would
be possible. Every one of the five dozen chapter titles in Dewdney’s book “The
Turing Omnibus” [17] was considered for a possible Unplugged topic, and the
ACM curriculum was checked to see if the coverage was representative. There
were some topics that weren’t covered initially because of the criterion that the
activities had to be engaging for children, and it wasn’t always possible to come
up with a relevant one. Also, given the authors’ interest, there is some bias
towards algorithms, compression and tractability!

The activity on text compression was invented by Michael Bell around 1994.
He was writing up a diary and had decided that instead of writing out every
word, he would just put arrows pointing back to where he had already used the
word before to save writing. Tim observed this, and was about to reprimand his
6-year-old son for being lazy when he realized that it was a form of Ziv-Lempel
coding. To add irony, at that time Tim was testifying in a US$339 million court
case that a patent for a similar form of Ziv-Lempel coding should be regarded
as invalid!

While the book was being written, the material was tested extensively in
schools, mainly those where Mike and Tim’s children attended (Shirley Pri-
mary School in Christchurch, and South Park School in Victoria BC); and also
schools close to the respective universities (Ilam School in Christchurch, and
Hobbes Elementary School in Victoria, BC). Often apparently interesting ideas
didn’t work as well as expected, and vice versa. An important principle was
not to publish something that hadn’t been successful, and the activities contain
advice on things that can go wrong and ways to avoid (or embrace!) such prob-
lems. Sometimes suggestions for improvements came directly from teachers and
children, such as using a balance scale for sorting. The trials were also run by
university students who did them as course projects or just out of interest; those
who helped included Gwenda Benseman, Richard Lynders, Sumant Murugesh
and Matt Powell.

A rough version was complete by 1996, and parts of it were distributed infor-
mally (including 100 copies in the Coquitlam BC school district) while a suitable
place to publish it was found. The authors were aware that teachers were more
likely to take a book seriously if it was published by a well-known educational
publisher rather than distributed as photocopied notes or on disk. Colleagues
had expressed great enthusiasm about the 1996 drafts, and so it came as quite
a surprise when it was rejected when sent to a publisher. In fact, between 1996
and 1997 it ended up being submitted to 27 publishers, and not one accepted it.
The general response from the publishers was very positive about the book con-
tents, but they couldn’t pigeon-hole it in their range of offerings! One publisher
wrote that they “will not pursue the idea of publishing the book” yet described
it as “your wonderful volume. . . ” and said it “would be a real pity not to have

Computer Science Unplugged and Related Projects 419

this book released.” The difficulty was that it was breaking new ground. A chil-
dren’s publisher said it “may be too academic for children”, while an academic
publisher referred us to a children’s publisher! An education department of a
publisher referred it to their computing department, but then the computing
department said that they couldn’t publish a book if it wasn’t about how to do
things on a computer!

While these frustrating conversations continued, the authors completed the
book, and when it became clear that no-one would publish it, the authors decided
to sell it as “shareware” online, from about March 1998. Samples were available
online at www.unplugged.canterbury.ac.nz, and interested people could email or
fax in a US$15 credit card order to get an electronic copy (download or CD-
ROM). For US$75 they could get an “institutional license” to make multiple
copies in a school or university. Some dozens of copies were sold this way, and
many more were given away. There were probably many bootleg copies around
too, which the authors were relaxed about since it created an even wider dis-
tribution (there was no copy protection on the PDF files distributed), and the
only goal of sales was to fund further work on the project.

Free copies were distributed any time funding could be found to make a print
run. For example, in October 1998 Tim received a contract through the Royal
Society of NZ Science and Technology Promotion Fund, and ran teacher training
days in April/May 1999 in Canterbury, Waikato and Auckland, in which teachers
got to participate in the activities, and were then given a copy of the book to
take away.

Around this time much of the material had also appeared in a slightly different
form through the “MathmaniaCS” project at the University of Illinois at Urbana-
Champaign (the name “MathmaniaCS” was defined as “persons exhibiting an
excessive passion for MATHematics and Computer Science”). The project was
run by Lenny Pitt, Cinda Heeren, and Tom Magliery; they had written a manual
for teachers, as well as providing on-line instructions and a lending library of
materials for running Unplugged sessions. They ran various outreach events,
including family math nights, camps and classroom visits. Their material is
available through www.mathmaniacs.org.

By 1999 the book authored by Mike, Tim and Ian settled into a final version
called “Computer Science Unplugged. . . offline activities and games for all ages”,
which contains 20 activities. This one is usually referred to as the “original
book” [18]. It had been intended to be useful for teachers (the preface says that
it is “principally for teachers who would like to give their classes something a
bit different from the standard fare, teachers at the elementary, junior high, and
high school levels”) but it became apparent that it was too advanced for teachers
with a weaker background in math and computer science, even though they found
the topics interesting. Teachers who had seen the activities demonstrated readily
adopted them, but in the end the book had been written by three academics and
didn’t suit the audience, given that almost no school teachers would have a formal
background in computer science, and few would even have taken advanced study
in math!

www.unplugged.canterbury.ac.nz
www.mathmaniacs.org

420 T. Bell, F. Rosamond, and N. Casey

5.3 The “Teachers’ Edition” of Unplugged

As it became apparent that a more teacher-friendly version was needed, the
authors decided that this would be best achieved by having some teachers re-
write the material. In 1999 Tim obtained funding for this from the local Brian
Mason Foundation, and hired two teachers, Robyn Adams and Jane McKenzie,
over their summer break (December 1999 to January 2000) to do this. Neither
had a strong computer science background, but both were experienced teachers
with a strong interest in science, and thus were able to write something that
would appeal to other teachers who hadn’t done computer science before. They
were co-teaching a class at a local primary (elementary) school, and Jane had
been using Unplugged material for some time; she had also been a writing tutor
in the Canterbury computer science department.

In addition to improving the writing, Matt Powell was engaged to add a lot
more cartoon images to make the material more attractive for students. Matt
was a computer science student and so was able to create relevant cartoons that
embodied a deeper understanding of computer science. The cartoon characters
and logos that he created for this remain the main visual “branding” of the
Unplugged project.

Because the time for writing the teachers’ book was limited to just the sum-
mer, only the first 12 of the 20 “original” activities were completed. It turned
out that this was more than enough to satisfy demand; we suspect that most
people only use a few activities from Unplugged, and it is more important to
have a few approachable ones, with more available in the original form for those
who are keen.

The teachers’ edition was released in 2000, again as “shareware”. Minor
changes were made over the following years, and the main version referenced is
from 2002 [19]. It has a different subtitle that distinguishes it from the “original”
version: “Computer Science Unplugged: An enrichment and extension
programme for primary-aged children”. The use of New Zealand terminology
(“programme” and “primary”) is an acknowledgement that the “translation”
was funded by a New Zealand organization even though the largest audience was
US-based. The funding also meant that copies were free to Canterbury/Westland
teachers, and discounted copies were distributed in New Zealand; at the time
the NZ dollar was quite weak, so the shareware fee was fairly nominal for people
overseas, and the book had a wide distribution. The on-demand printing service
lulu.com was also used to distribute the book, and a large number of copies were
sold (mainly in the US) through this service.

The funding for the teachers’ edition was focussed on the Canterbury and
Westland regions of New Zealand. As part of the followup to re-writing the
book, Tim ran workshops around Canterbury and Westland in 2002. Westland
is is one of the most isolated parts of New Zealand, and visits from computer
scientists were no doubt rare. In late 2002 Tim fulfilled the funding obligations
by doing a tour of schools in Westland, in the towns of Greymouth, Hari Hari
and Hokitika. One particularly memorable class was a “technology” class where

Computer Science Unplugged and Related Projects 421

Tim found himself speaking to a group of 15 year old girls who were studying a
particular form of technology — food technology. They had no interest in com-
puters or math, which became obvious very quickly. Fortunately the versatility
of Unplugged kicked in — several of the activities involve food (including paying
in candies to make comparisons when searching, the divide and conquer cake,
and transmitting a chocolate bar securely using an encryption protocol). These
generated some interest, but what suddenly got them all engaged was when Tim
mentioned that the “From:” field in an email isn’t guaranteed to be accurate,
and that emails in plain text can be intercepted and read. Suddenly they were
very interested in cryptography—apparently they wanted to be sure that their
communications were private and authenticated!

The focus on Unplugged in New Zealand increased because Mike lived in
Wellington, NZ, from 1999 to 2001, so by chance all three main authors were
living in New Zealand, albeit in three different cities. To add to the confusion,
the university that Mike moved to in NZ was Victoria University of Wellington
(VUW), not to be confused with Victoria BC! During the time in Wellington
Mike taught a summer class in introductory computing with Frances Rosamond,
and the Unplugged activities featured heavily in the class. They weren’t just used
on campus; the class (mainly adult students) was sometimes run downtown in
outdoor locations. The sorting network activity was done outdoors in a weekend
next to New Zealand’s national museum, Te Papa.

5.4 The Unplugged Shows

A new format of Unplugged began in 1998. Tim had the opportunity to present
Unplugged at the Edinburgh International Science festival in April 1998. The
presentation was mainly based on the Unplugged activities, and was originally
intended as a classroom style presentation. However, after seeing other shows
at the festival, Tim quickly adapted some of the activities to a more theatrical
version: the small desktop binary cards became large A4 cards with one held by
each child, coloring in small pixels with a pencil became a can of black spray
paint putting inch-high pixels on the wall, and the ubiquitous sorting network
was laid out as large as possible on the floor using colorful tape.

The goal was to develop something that was a cross between a pantomime,
magic show, and science demonstration, with plenty of audience participation
(inspired by Mike’s chaotic classes where learning and fun were apparent in
abundance). It was also intended to provide a computer science equivalent to
the science center demonstrations where a chemist would hammer in a nail with
a frozen banana, or explode a can containing custard powder dust (of course,
one wonders how much chemistry children learn from these demonstrations).

Observing other popular science shows at Edinburgh made it clear that adver-
tising was important; the most popular events had an attention grabbing photo,
used humor, and usually mentioned food; the educational value was assumed!
This led to the following advertisement for the shows:

422 T. Bell, F. Rosamond, and N. Casey

This wacky show takes kids (and the young at heart) through some of
the great ideas in computer science, using low-tech games, magic tricks
and stories. Come and see the giant fax machine, find out how to feed
a crowd and always have food left over, and learn new ways to keep
information secret.

Building on the experience at Edinburgh, the show was revised to make it as
engaging as possible for a large audience, and was presented in the middle of 1998
at the Christchurch “Kidsfest” mid-winter festival for 5 to 12 year old children,
and the Dunedin (NZ) International Science Festival. Matt Powell, who had
theatre/comedy experience, assisted with the shows, acting as an uninformed
assistant who assumed that a computer science show would need to be all about
computers. The story line was Tim demonstrating to him, with the help of
the audience, that you can explore great ideas in computer science without
any computers at all4. Extra ideas were added including the “binary birthday
cake” (celebrating an audience member’s birthday with candles coding their
age in binary), and ideas from Mike’s work with Neal Koblitz and others on
cryptography [20]. Figure 6(a) shows the inevitable sorting network race in a
show from 1998.

The Kidsfest shows went remarkably well, and were sold out year after year
as new generations of young children came through; it was also performed at the
1999 Australian Science Festival in Canberra. A survey of the show indicated
that it had a very positive impact on the audience [21]. Informally, the most
gratifying feedback was from parents and grandparents who had brought the
children along; they repeatedly reported how empowered they felt because they
left with a deep understanding of some key ideas from computing.

The show accidentally found a mascot for Unplugged. “Arnold the Wonder
Parrot”, a puppet that squawked when squeezed, was introduced by Matt Powell
in the 1998 Kidsfest show, originally as a pun on “Parity Error.” In the surveys
about the shows Arnold regularly featured as one of the most popular elements,
and so he remained a part of the show. He eventually became the Unplugged
mascot, appearing around the world in cameo photos at events. In Figure 6(b)
he appears with Jason Alexander, a postgraduate student who ran later Kidsfest
shows, and in Figure 6(c) he appears in a photo advertising a 2008 video of the
show run by Matt Powell and Javier Jarquin.

Ideas from the shows and Unplugged in general were provided as background
to Christopher Bishop (Chief Research Scientist at Microsoft Research Cam-
bridge) as he prepared the televised 2008 Royal Institution Christmas lecture.
This was the first “Faraday lecture” in 183 years on computer science.

By the year 2002, 10 years after the Unplugged collaboration began, the main
ideas had been published, a show had been developed, and it seemed that this
“hobby” could be put aside. Indeed, at that time computer science departments
were at what turned out to be the peak of an incredible growth in enrollment,

4 Almost exactly ten years later Matt played the role of the informed demonstrator in
a video of the show that went viral on YouTube
(www.youtube.com/watch?v=VpDDPWVn5-Q).

www.youtube.com/watch?v=VpDDPWVn5-Q

Computer Science Unplugged and Related Projects 423

(a) (b) (c)

Fig. 6. Computer Science Unplugged: The Show (a) Matt Powell timing a sorting
network race at one of the first CS Unplugged shows, 1998 (b) Jason Alexander with
Arnold the Wonder Parrot (c) Matt Powell and Javier Jarqin with Arnold, in a publicity
shot for the 2008 version of the show

and given dire shortages of teaching staff, it was hard to motivate faculty to
spend time using material like CS Unplugged to drum up more business when
those staff were needed to teach the overwhelming number of students that had
arrived.

However, in 2003 that was about to change.

6 Computer Science Unplugged—Maturity

Two important changes in 2003 triggered a significant increase in interest in the
“CS Unplugged” material. First, it was becoming clear that the overwhelming
interest in studying computer science at universities around the turn of the cen-
tury was dropping off sharply5; second, and more significantly for Unplugged,
the ACM released a proposed K-12 computer science curriculum [22] that gave
15 examples of ways to teach computer science in schools; five of those examples
were direct references to CS Unplugged activities, and another two were from
MEGA-math. This combination of events triggered increased interest in CS Un-
plugged from around the world over the next few years. As well as requests for
copies of the books and permission to use material, there was a sudden interest
in producing translations of the book.

By 2006 the first translation of the teachers’ edition had been produced in
Korean [23] by the Computer Education department of Korea University. Be-
cause South Korea already had a strong culture of teaching computer science in
schools, the book became well-known around the country, and later when Tim
visited the university they ran all-day Unplugged events, with a keynote pre-
sentation from Tim followed by reports from various educators about how they
were using Unplugged.

Meanwhile CS Unplugged was alive and well in Scandinavia. While working
with Jan Arne Telle on Parameterized Complexity, Mike had visited Bengt As-
pvall’s group at the University of Bergen, Norway, around 1997, which was the

5 This has been tracked by the CRA “Taulbee survey”
www.cra.org/resources/taulbee

www.cra.org/resources/taulbee

424 T. Bell, F. Rosamond, and N. Casey

starting point for Unplugged work in Scandinavia. Bengt has since been giving
workshops in Sweden and Norway, and produced a Swedish translation. In 2005
Bengt had just finished six years as pro-vice-chancellor at Blekinge Institute of
Technology, Sweden, and was able to visit Christchurch for a couple of weeks,
where he and Tim collaborated on developing more Unplugged material. One
particularly notable outcome is that they realized that teachers were more likely
to use Unplugged if they had seen activities in action, and that it would be good
to make some videos to demonstrate this. Because it was December and schools
were having a quiet period towards the end of the year, they were able to arrange
filming the very next day. The video production was done by Michael Bell, and
three videos were completed within a matter of days. YouTube had just been
created, so the timing was just right to make distribution easy.

From August to October 2006 Tim was on leave after a long stint as HOD, and
visited around 18 institutions in the US, China, Sweden and Canada. Although
much of the trip was intended to gather information for a course he was planning
on computers and music, it became clear that the universities were much more in-
terested in hearing about Unplugged, and the effect of the trip was to stir up even
more interest in the project. During the two months he gave about 16 workshops,
shows and seminars specifically on the Unplugged project with audiences from
elementary school pupils and teachers to university academics and Google engi-
neers. By visiting schools and enrichment programswhere the Unpluggedmaterial
was being used, and through discussions with computer science lecturers, school
teachers and education officials, he was able to come away with valuable feedback
and ideas that stimulated a new phase of the Unplugged project.

Another place that Unplugged had gained visibility was through the “Com-
puter Science for High Schools” (CS4HS) program (see www.cs4hs.com). This
event for high school teachers started as a pilot for 48 teachers in 2006 at Carnegie
Mellon University (CMU), where high school teachers were funded to spend a
full weekend on campus to learn about computer science and computational
thinking, and get ideas that they could take back to their schools [24]. The event
was sponsored by Google, and one of the invited speakers at the pilot event was
Craig Nevill-Manning from Google New York. Craig was an ex-student of both
Tim Bell and Ian Witten, and so when asked to speak to high school teach-
ers he chose to use some material from CS Unplugged. A survey of teachers at
the event reported that the Unplugged workshop was the second most popular
out of 11 workshops offered [24], which no doubt was a contributing factor to
it being adopted as a regular part of the CS4HS event. Tom Cortina reports
that in subsequent workshops Unplugged continued to come in as a highly rated
and relevant activity for the teachers — they liked it because they could use
it immediately in the classroom. Tom Cortina and Lenore Blum ended up run-
ning workshops elsewhere on Unplugged, further spreading interest (for example,
Tom ran workshops for several years at NECC). In 2007 the CS4HS program was
run at two additional US universities [25], and by 2011 had expanded to about
60 sites in the US and overseas; universities can apply to Google for funding
to run such programs, and they are given a list of suggested workshops topics,

www.cs4hs.com

Computer Science Unplugged and Related Projects 425

including Unplugged. In 2011 for the first time the University of Canterbury in
New Zealand was given a grant to run one locally, so the Unplugged material
has come full circle!

6.1 Sponsorship and the New Web Site

Because of the CS4HS connection, the Unplugged project itself managed to
get sponsorship from Google at the beginning of 2007. The funding was used
to greatly improve the web presence, with its own domain (csunplugged.org,
and also redirection from csunplugged.com and computingunplugged.org), new
graphics and web design, publicity, more videos, and workshops for educators.
Because of the funding there was no longer any need to charge for the books,
so the PDF files of the books were made available online for free download
under a Creative Commons Attribution-NonCommercial-NoDerivatives license
(the NoDerivatives clause was needed because of the existence of commercially
published translations.) Initially web hosting was provided by Carnegie Mellon
University, as it was better to have a server in the United States rather than
New Zealand. More recently this has been moved to a general hosting service.

One of the challenges was to publicize the new website; we were aware that
having exciting material wasn’t enough on its own to motivate a busy teacher
or academic to use it. A key target for publicity was the SIGCSE and ITiCSE
conferences, where hundreds of passionate computer science educators meet reg-
ularly. Figure 7 shows some of the material that was used for publicity at SIGCSE
and ITiCSE conferences around 2007–2010. These were giveaways for which the
main purpose was to have delegates take away the URL for the new Unplugged
site (csunplugged.org). The buttons proved very popular (hundreds were printed
and few were left). The “Choo Choo Route Plan” was one of two puzzles that
were given to the audience while they were waiting for the keynote session.
The main point was to illustrate that Unplugged puzzles could be adapted to a
theme—in this case the conference was in Chattanooga, and the puzzle was a
shortest-path problem based on elements of the song “Chattanooga Choo Choo.”
The postcard (Figure 7(c)) is still used as a give-away at workshops and events
so that visitors have something worth keeping that has the URL on the back.
The designs for this publicity material were done by Isaac Freeman.

Traffic to the new website (csunplugged.org) has been steady, with peaks
now and then as it gets attention on the Internet (for example, in 2008 someone
posted Unplugged on reddit.com, and the site had over 50,000 visits within about
24 hours). In 2011 the traffic on the sited averaged about 780 page views per
day from about 202 unique visitors. About 38% of the visits are from the USA,
with about 6% each from India and the UK, and about 4% each from Brazil,
Germany, Canada, New Zealand, Italy and Japan. People from 140 different
countries accessed the site during the year. The most frequently accessed pages
are the activities for binary numbers, image representation, sorting algorithms
and searching algorithms, although because the whole book can be downloaded,
this doesn’t necessarily represent which activities are used the most.

http://csunplugged.org
http://csunplugged.com
http://computingunplugged.org

426 T. Bell, F. Rosamond, and N. Casey

My other
computer is

csunplugged.org

Choo Choo Route Plan

Which route to Chattanooga is actually
the cheapest?

h d h h h

A passenger on a train from New York to Chattanooga
wants to work out the cheapest route. He’s heard in a song
that you should go through Baltimore and Carolina, but he
suspects that they only mention that
route to make the words rhyme –
besides, there must be something in
the world finer than “dinner in the
diner”! The map shows estimated
costs (in 1941 dollars) for
different parts of
the journey.

Richmond

Washington

Philadelphia

New York

Pittsburgh

Columbus

Cincinatti

Louisville

Clarkesville

Nashville

Chattanooga

Knoxville

Charleston

$6

$6

$5

$5

$4

$3

$3

$3

$3

$2

$2

$2

$2

$2

$2

$2

$10

$4$4
$6

(a) (b) (c)

Fig. 7. Publicity material used for CS Unplugged (a) buttons given away at SIGCSE
2008 (b) the Chattanooga Challenge from SIGCSE 2009 (c) the front of a postcard
explaining the parity trick

Experience has shown that the best way to get people switched on to Un-
plugged is through doing it, not reading about it. For this reason many work-
shops have been run over the years by the authors, as well as colleagues in many
countries, in places as diverse as Bergen, Wuhan, Seoul, Tokyo, Münster, Stock-
holm, Washington DC, Tacoma, Vancouver, Pittsburgh, Oregon, remote villages
in India, Vietnam, Australia, and of course Christchurch, Hamilton and Victo-
ria BC. Mike is especially proud that many in the parameterized community
have joined in his enthusiasm by presenting workshops on Unplugged with him
in their children’s classrooms, and by finding other innovative ways to open up
public understanding and participation in the mathematical sciences. Since the
year 2007 workshops on Unplugged have been run annually at SIGCSE, with
various people helping to run the workshops and other Unplugged events at
SIGCSE including Mike, Frances, Tim, Bengt Aspvall, Peter Henderson, Lynn
Lambert, Daniela Marghitu, Ben Tsutom Wada and Tom Cortina. At a “Birds
of a feather” session at SIGCSE in 2008 we were pleasantly surprised to hear how
widely Unplugged was being used, including for a one-week visit to an orphanage
in Haiti and on trips by float plane to First Nations communities.

Computer Science Unplugged and Related Projects 427

We have already mentioned the 2007 SIGCSE workshop which was so popular
it had to be repeated. Another memorable workshop was one that was part of the
2008 New Zealand Computer Science Research Students’ (NZCSRS) conference
in Christchurch. The postgraduate students participated in the workshop at the
end of a conference. It began with a demonstration with some local school classes
coming in to the university and participating in an Unplugged show. One of the
“aha!” moments was when an HCI topic came up—the postgrads were at the
back of the lecture theatre, and Tim asked for a show of hands of those who
were researching the topic, which greatly impressed the school children (they
probably imagined researchers as stuffy old professors rather than young PhD
students). The PhD students themselves were impressed that 12-year-old kids
could understand the essence of the topic that had been consuming them 24
hours a day for several years! That evening the postgrads had dinner at a science
center (Science Alive!, where Tim first started doing computer science outreach),
and they were encouraged to “play” on the equipment. Inspired by this, the next
morning they got into teams to develop new activities. Several clever ideas came
up (including “Harold the Robot”), and at this point we realized the importance
of giving people a lot of time in workshops to develop ideas.

Another memorable workshop was held in Seoul, Korea, run by the “PINY”
group, which is a mixture of artistic and scientific thinkers. The workshop began
with a visit to a stationery store, where all sorts of papers, card, tubes, balls,
wires and other props were purchased. The remainder of the day was spent in
the inspiring surrounds of a traditional Korean house, trying to make activities
using the materials purchased (Figure 8). Tim would suggest a topic (such as
Euler paths), and they would try to make as many activities as possible relating
to that from the props available. Photos and information about this event and
related ones are on the web at blog.piny.cc/8.

Fig. 8. A PINY CS Unplugged workshop in Seoul, South Korea

http://blog.piny.cc/8

428 T. Bell, F. Rosamond, and N. Casey

6.2 Professional Videos for CS Unplugged

The funding from Google meant that the project team was able to be a lot
more creative with video production. The original three videos were done on
a zero budget, and although they had proved very popular—for example, the
binary number video has had over 17,000 views on YouTube—the production
quality was low and a lot was learned about making them suitable for an in-
ternational YouTube audience. Even with funding from Google, the budgets for
the videos were nowhere near what video companies would normally expect for
short movies, but fortunately two Christchurch video companies (Shuriken and
Orange Studio) were found who were prepared to work on the projects. Between
them they produced about three videos per year, mainly using students from
Chisnallwood Intermediate School in Christchurch to demonstrate the activi-
ties. Some images from the videos are shown in Figure 9. Many of the videos
have had translated commentaries or subtitles added, and more recently full
high quality versions of the videos have been made available for download from
vimeo.com/user6351443. They have also been distributed with the Chinese ver-
sion of the book. Table 1 gives a full list of the currently available CS Unplugged
videos on the Unplugged channel on YouTube (www.youtube.com/csunplugged).

(a) (b)

(c) (d)

Fig. 9. Samples from Unplugged videos (a) the first video on binary numbers (b)
transmitting an image and decoding it on the side of a school building (c) the “Orange
Game” with a variety of fruit (d) “Reaching Out”, with hidden messages coded in
binary in the music

http://vimeo.com/user6351443
www.youtube.com/csunplugged

Computer Science Unplugged and Related Projects 429

Table 1. CS Unplugged videos

Video title Production team Comments

Count the dots
(Binary numbers)

Tim Bell, Michael Bell,
Bengt Aspvall

Commentary in English, Chinese, French,
Korean, Swedish

Beat the clock
(Sorting networks)

Tim Bell, Michael Bell,
Bengt Aspvall

Commentary in English, Chinese, French,
Korean, Swedish

Card flip magic
(Error detection and
correction)

Tim Bell, Michael Bell,
Bengt Aspvall

Parity trick, commentary in English,
Chinese, French, Korean, Swedish

Computer Science
Unplugged —
The Show

Orange Studio; Tim
Bell, Michael Bell

The one-hour show presented by Matt
Powell and Javier Jarquin in 2008, with a
commentary by Tim. Polish subtitles
available. Also presented on YouTube
broken into shorter parts.

Treasure Hunt Shuriken; Tim Bell,
Richard Bell

Finite State Automata, commentary in
English, Chinese, French, German,
Japanese, Korean, Swedish [26]

Orange Game Shuriken; Tim Bell,
Richard Bell

Routing and deadlock, commentary in
English, Chinese, French, German,
Japanese, Korean, Swedish [27]

Image
Compression
(Making Contact)

Shuriken; Tim Bell,
Richard Bell

Run length coding activity, commentary
in Chinese, French, Swedish [28]

Sorting
algorithms

Shuriken; Tim Bell,
Richard Bell

Selection sort and quicksort, commentary
in Chinese, French, Swedish; Polish
subtitles [29]

Computer Science
Buskers?

Orange Studio; Tim
Bell, Michael Bell,
Kristen Finnerty

Parity error correction codes, subtitles in
Chinese, French [30]

Santa’s dirty
socks (divide and
conquer)

Orange Studio; Tim
Bell, Michael Bell,
Victor Chicha,
illustrations by Tim
Powell

Story book reading, has an accompanying
book that can be downloaded; Polish
subtitles [31]

Reaching Out
(Binary Codes)

Orange Studio; Tim
Bell, Michael Bell

Modem activity with text coded as notes
in a song [32]

From 2009 to 2011 the SIGCSE conference accepted videos as submissions,
and so the Unplugged videos during that period were submitted and ended up
being played at the conference. Because the conference encouraged creativity in
the videos, they gradually moved from being a simple commentary on a standard
activity to some quite creative takes on communicating the ideas. They include
the parity trick being done by a street magician, an animated divide-and-conquer
story called “Santa’s dirty socks” (written with Victor Chicha, a visiting intern),
the run-length coded image painted on the side of a school building (Figure 9(b)),
and an MTV style video where the tune of the song encodes hidden messages in
binary using high and low notes (Figure 9(d)).

430 T. Bell, F. Rosamond, and N. Casey

Some of the videos were tailored to the theme of the SIGCSE conferences; the
2011 conference theme was “Reaching out”, which was also the title of the song
that coded the binary messages; and the 2010 theme was “Making contact”, for
which the video discussed coding pictures as numbers based on an idea in Carl
Sagan’s book “Contact” [33].

Two of the videos (the “Reaching out” song and “Santa’s dirty socks”) have
led to two new activities on csunplugged.org to support them. The song is sup-
ported by an activity that explains how binary can be transmitted using sound
(as on modems), and has a warm-up exercise with a recording of a jazz singer
singing short coded messages. The singer had first performed the songs as part
of an impromptu exercise at a music education conference; the theme of the
music conference was “Modulations,” so a modem exercise seemed appropriate!
The “socks” video is about divide and conquer, which now has its own activity,
including a picture book of the story that is provided as a PDF file.

Most of the videos are short demonstrations, but the 2008 video of the Un-
plugged show was intended to help future presenters, with a live recording of the
one-hour event, interspersed with a commentary that explained the purpose of
the show (and the Unplugged philosophy in general), and hints on presenting it.
On 9 January 2011 the YouTube video about the show was picked up on the Red-
dit recommendation site, and in 24 hours about 20,000 people watched the video,
making it the largest audience for an Unplugged event yet! To date the show video
has had over 47,000 views, and has drawn a lot of positive comments.

6.3 Translations to Other Languages and Cultures

The English-language Unplugged material has been used internationally since
it was first written. The first enquiry about a translation came from Korea
University, which had been actively involved in seeking ways to teach “real”
computer science in the South Korean school curriculum, as reflected in the title
of a 2006 paper they had published called “Informatics Education — The Bridge
between Using and Understanding Computers” [34]. The translation was headed
by Prof Won Gyu Lee, and the liaison with the Unplugged team was done by
Sook Kyoung Choi, one of his postgraduate students who was researching how
to adapt such activities to the Korean education system [35].

The Korea University initiative resulted in the first translated version, pub-
lished in 2006 [23]. Because it was done through a publisher, it also became
the first commercially published version of the Unplugged material. Susumu
Kanemune, who was a Japanese colleague of Prof Lee, took an interest in the
book, and by 2007 had published the Japanese version, with an appendix by
Yasushi Kuno providing additional ideas and discussion. Many other transla-
tions followed, some prepared for formal publication, but most done by volun-
teers who were enthusiastic about the material and wanted to make it available
to colleagues in their native language; these translations are available through
the CS Unplugged web site. Table 2 lists the translations that have been made.

http://csunplugged.org

Computer Science Unplugged and Related Projects 431

In addition, translations in Bahasa Indonesia, Bengali, Dutch, Hungarian, Maori,
Tamil and Welsh have been proposed or started, although because such projects
are done by volunteers, often it can take some time until they are completed!
A translation into Uzbek was also started at one stage, but unfortunately the
NGO doing the translation was asked to leave the country, and the project was
cancelled.

Using Unplugged material in other cultures brought both challenges and fresh
ideas. Mike had already observed that the “stories” might not make sense in
other cultures — for example minimizing the number of ice-cream stands didn’t
make sense in Peru if there was high unemployment [37]. When the Unplugged
activities were used in Asia some of the examples dependent on language needed
to be revised; for example, the 5-bit binary number code for the alphabet doesn’t
work so easily for some languages, and some cultural assumptions needed to be
adapted [38]. Interestingly, one of the first exercises in the teachers’ edition of the
book involves Christmas trees, and Tim checked with each translator whether
they felt this symbol from a Christian tradition would be a sensitive example
in their country. Most translators (including those from Asia and the Middle
East) felt that Christmas trees were generally acceptable and even enjoyed in
their country, and intriguingly the only pushback came from a country with an
English heritage. . . the USA!

As mentioned earlier, the title in translations usually keeps the word “Un-
plugged” in English to avoid pejorative meanings in the local language. Choosing
a suitable subtitle has needed local input. Usually it contains the word “games”
as this would be considered an attractive feature, but in Asian countries, we
were advised to avoid the word because parents concerned about their children
getting a serious education might shun a book that purported to be fun! Of
course, the books still contain games, and fun is an important part of learning,
so it’s almost as if the fun had to be smuggled in to the students between covers
that parents would approve of.

Most cultural problems were easily overcome once recognized, and in general
translations and internationalization also brought cultural richness and fresh
ways to present the activities [38]. For example, Chinese colleagues suggested
strings of lanterns for binary numbers, and Japanese colleagues introduced us to
double-sided magnetic sheets for doing the parity trick on a whiteboard.

An example of a culturally adapted Unplugged activity is shown in Figure 10,
where the binary number activity involving Christmas trees has been used for
a “Fujitsu Kids Event”; as well as translating the instructions, the Christmas
trees are now lanterns on a string, the alphabet has been changed to hiragana,
and the cartoon characters are Manga style, which is appealing for Japanese
students. The code table used is limited to 32 characters, which are sufficient for
the particular message being coded, but a 6-bit code would be needed to code
all hiragana characters to allow any message to be represented.

The Chinese edition, published by HUST press in 2010 [39], was a heavily
re-written version aimed at students rather than teachers.

432 T. Bell, F. Rosamond, and N. Casey

Table 2. Translations of CS Unplugged

Language Translator(s) Status

Arabic Mohammed Obaid All activities translated, seeking
publisher, two activities available on
csunplugged.org

Chinese
(Simplified)

Muzhou Xiong, Zhensong Liao,
Su Yu, Wang Shenglan, Han
Ying Chun, Xie Xia, Dong
Rongsheng

Student edition with 15 topics available
for purchase from HUST press
www.hustp.com, original edition
translated, most videos translated,
csunplugged.org site translated

Chinese
(Traditional)

Long-Yuan Ya Several activities translated

French Francois Rechenmann, Paul
Gibson, Anne Berry, Isabelle
Souveton, Victor Chicha

Teachers’ edition available with preface
by Roberto di Cosmo through Interstices
site interstices.info, and csunplugged.org,
most videos translated

German Maexl Stege, Katrina
Kranzdorf

Five activities available on
csunplugged.org, two activities used for
www.informatikjahr.de

Greek Constantine Mousafiris,
Theophanis Hatz

Teachers’ edition available through
activities at csunplugged.org

Hebrew Benny Chor, Simon Schocken Being published as a blog at
csu-il.blogspot.com

Italian Giovanni Michele Bianco,
Renzo Davoli

Teachers’ edition available on
csunplugged.org

Japanese Susumu Kanemune, Yasushi
Kuno

Teachers’ edition available for purchase
from Etext publishers,
www.etext.jp/unplugged.html [36]

Korean Won Gyu Lee, Sook Kyoung
Choi, Hyeoncheol Kim

Teachers’ edition available for purchase
from www.yes24.com [23]; most videos
translated

Polish Pawel Perekietka, Lukasz
Nitschke

Teachers’ edition available through
activities at csunplugged.org, subtitles
available for Unplugged show and some
other videos

Portugese
(Brazil)

Luciano Porto Barreto Teachers’ edition available through
activities at csunplugged.org

Russian Irina Derevianko Teachers’ edition available on
csunplugged.org

Spanish Alfonso Rodŕıguez, Lorena
Mendoza, Clara Eugenia Garza

Teachers’ edition available from
csunplugged.org

Swedish Stefan Hellberg, Bengt Aspvall Teachers’ edition available from
www.ide.bth.se/˜bia/unplugged/
UnpluggedTeachersSwedish.doc, web site
at www.bth.se/csunplugged, most videos
translated

Turkish Sertan Girgin Seven activities available through
csunplugged.org

http://csunplugged.org
www.hustp.com
http://interstices.info
http://csunplugged.org
http://csunplugged.org
www.informatikjahr.de
http://csunplugged.org
http://csu-il.blogspot.com
http://csunplugged.org
www.etext.jp/unplugged.html
www.yes24.com
http://csunplugged.org
http://csunplugged.org
http://csunplugged.org
http://csunplugged.org
www.ide.bth.se/~bia/unplugged/UnpluggedTeachersSwedish.doc
www.ide.bth.se/~bia/unplugged/UnpluggedTeachersSwedish.doc
www.bth.se/csunplugged
http://csunplugged.org

Computer Science Unplugged and Related Projects 433

6.4 Adaptations and Variations of Activities

In the early days of Unplugged we had expected that the number of activities
would continue to grow. Although new ideas did come up, the real growth has
been in variations of activities and taking them into different contexts.

For example, Figure 11 shows some of the examples that followed from the
binary number card activity, which was the first activity in the two main Un-
plugged books. Over the years several follow-up strands of thought developed.
The first is a discussion of how birthday cakes actually use base one (unary), and
that a binary system for candles would be more efficient and safer (Figure 11(a)
and (b)). This can lead on to discussions relating to the logarithmic/exponential
relationships that permeate computer science and both excite and frustrate al-
gorithm designers. Dividing the cake itself can illustrate the power of binary
divide and conquer approaches: give half the cake to the first person, half of the
remainder to the next, and so on. People down the line soon realize how efficient
logarithmic complexity is, even though the word “logarithm” isn’t mentioned!
Another practical application of binary numbers for children is coding names
and words into jewelry using binary (Figure 11(c)).

A variation of the orange game that was created in two places independently
was the idea of using different colored fruit instead of labeling the oranges, and
having students wearing t-shirts corresponding the fruit. This was proposed by
both Richard Bell (making a video of the activity) and Gottfried Vossen (running
a “children’s university” in Germany).

These kinds of variations have gradually arisen as the Unplugged material
was used over the years and others contribute ideas.

Another significant change has been the adaptation of Unplugged for different
contexts. In some places it has been used with little adaptation, such as having
activities catalogued in the CSTA repository of teaching materials. Other times
some local expertise has been added to improve the suitability of the activities.
For example, the CS4FN (Computer Science for Fun, cs4fn.org) has a book of
magic tricks, and the parity trick appears in their book in a more flamboyant
version: the demonstrator is blindfolded right from the start, so they never get
to see the original cards that the volunteer puts down, making the trick even
more impressive. The National Center for Women and Information Technology
(NCWIT) promotes “promising practices” to people wishing to communicate
ideas from IT to attract and retain female students, and one of their promising
practice handouts features the sorting network activity, and promotes Unplugged
in general. They also have a “programs-in-a-box” series, and 7 of the Unplugged
activities have been adapted and turned into NCWIT’s “Computer Science in
a box: Unplug your curriculum” (www.ncwit.org/unplugged). These activities
are very similar to the teachers’ edition, but are mapped better to the US cur-
riculum. In 2006 some of the Unplugged activities were translated into German
and packaged with other material for their “Informatikjar” (Computer Science
Year). Andrea Arpaci-Dusseau has been working on a parent-child version of

www.ncwit.org/unplugged

434 T. Bell, F. Rosamond, and N. Casey

Fig. 10. A page from activities for the Fujitsu Kids Event, 2008

Unplugged, intended as a workbook for a non-specialist parent to work through
with their child. This requires more hints for the parent, and also requires some
of the group games to provide versions that can be played by two people (for
example, turning the sorting network into a board game).

Computer Science Unplugged and Related Projects 435

(a) (b) (c)

Fig. 11. Binary numbers in everyday life for kids: (a) the dangers of using unary (base
1) instead of binary (b) the binary birthday cake (c) a bracelet coding a name using
beads

Unplugged activities have found their way into formal curricula. The “Com-
puting Science Inside” program hosted at the University of Glasgow provides
activities that are ready for classroom teachers to use, and is particularly aimed
at the Scottish curriculum; it contains several Unplugged activities that have
been repurposed for this use. The resources include Powerpoint slides and hand-
outs (see csi.dcs.gla.ac.uk). The “Exploring Computer Science” (ECS) program
in Los Angeles (www.exploringcs.org) is a successful initiative that uses several
Unplugged activities as part of its curriculum [40,41]. Another initiative that
is likely to draw heavily on Unplugged activities is Peter Denning’s “Computer
Science Field Guide” (www.csfieldguide.org), which is planned to be a merit
badge system where participants can earn “badges” for achieving competency
in a selection of areas, and at different levels [42].

Around 2006 the idea of Computational Thinking (CT) became prominent in
discussions about computer science education, championed by JeanetteWing [43].
It turns out that CS Unplugged is a good example of an approach that emphasizes
CT, and was already in widespread use when CT became a hot topic. Unplugged
has been explored in a 2010 workshop on Computational Thinking [44].

A more significant adaptation that is now underway is to make the material
more suitable for direct use in the classroom. The teachers’ edition was written
as extension exercises, but for everyday use teachers need background reading for
the students (currently the books are written for the teacher, not the students),
and assessment material (the nice thing about outreach is that you don’t usually
have a test at the end!) A version intended for students has been written for the
Chinese market [39], but is yet to be adapted for English speaking countries. This
version has a teacher guide, and the main text is addressed to the student, being
careful to cover basic information that would be expected in the classroom (such
as defining kilobytes and megabytes) as well as the more open-ended material

http://csi.dcs.gla.ac.uk
www.exploringcs.org
www.csfieldguide.org

436 T. Bell, F. Rosamond, and N. Casey

like the muddy city puzzle. As the Unplugged material gets wider adoption and
is used in the formal school setting, it is becoming apparent that the original
open-endedness and sense of adventure will take some creativity to retain, as
schools around the world feel an obligation to standardize and assess, and there
is no guarantee that the teacher will have the passion or experience of math that
someone running an outreach program would.

Although the Unplugged philosophy generally eschews using digital devices,
there has been value gained by integrating it in some situations. For example,
Daniela Marghitu has had students design and program robots to carry out
Unplugged activities, so they need to understand the activity first, and then
program the robot to simulate the actions of a child who would have been
doing the activity, which requires an even higher order understanding of the
concept. These activities have been done as part of “Robo camp”, a robotics
program for advanced students ages ten to eighteen [45]. Moti Ben-Ari has also
demonstrated how Unplugged activities can be followed up with Scratch pro-
gramming exercises by implementing many of the activities in Scratch (available
from code.google.com/p/scratch-unplugged), and Ward et al. also give hints for
using Unplugged with Scratch [46].

In 2008 the “New Media Consortium” (NMC) awarded a prize of US$5000 to
the Unplugged project to develop activities in the Second Life virtual world. A
sorting network was implemented (it can be seen in Figure 2(e)) and was used
for a period by students, including some with disabilities who couldn’t walk in
the real world. Although this might appear to be cheaper and simpler than a
physical sorting network, the ongoing cost of virtual land to put the sorting
network on, and a lack of ongoing funding and support, prevented it becoming
a public facility. Work is still continuing on the possibility of virtual worlds for
implementing and evaluating Unplugged activities, although it has moved to
private areas that can be hosted within a school, which avoids the many issues
that surround school children using a public virtual space [47].

Yet another adaptation of the material is for a programming competition
environment [48]. By using Unplugged stories as scenarios to be solved in a
competition the programmers end up having to grapple with deep issues from
computer science, but also there is the potential to use the physical activities as
a break from working intensely at the keyboard, where the break itself provides
the next programming challenge!

At the University of Canterbury some of the Unplugged activities have been
landscaped into a “Bridges of Friendship Math/Computer Science garden”, which
includes the seven bridges problem (Eulerian path), an 8-queens puzzle, and of
course, a 6-way sorting network (shown in Figure 2(c)). Running around the
seven bridges trying to find an Eulerian path provides a valuable break from
lecture theatre activities for school visits, and even regular student classes.

A new development with Unplugged has resulted from abstracting the prin-
ciples of this approach to teaching computer science, and thinking about how it
could be applied to other subjects. If the meaning of “Unplugged” is to remove
traditional gateways to the subject, and enable young children to grapple with

http://code.google.com/p/scratch-unplugged

Computer Science Unplugged and Related Projects 437

advanced ideas before learning the “basics,” what would the equivalent be in a
different subject, such as music? The first task is to identify the gateways —
perhaps having to learn a musical instrument, or read music notation, before
one is allowed to become a performer or composer? Such ideas are being ex-
plored in workshops, including the transdisciplinary environment of the SDPS
conference [2], and a workshop under development called “It is Really About
Thinking.” This kind of approach can be found in the book “Statistics Without
Math” [49], which provides a gentle explanation of statistics based on diagrams,
which in turn might provide motivation for a student to tackle the mathemat-
ics behind the concepts. It will be valuable to explore these principles in other
disciplines; who knows how many educational opportunities could be opened up
this way!

7 CS Unplugged—Emerging Principles

With 20 years’ experience, much has been learned about delivering computer
science using the Unplugged approach, although Mike’s original writings about
computer science and math education still emerge as the key principles that have
stood the test of time.

There were several motivators for Unplugged, which was initially mainly done
as a labour of love. The philosophy that drove the project was largely cap-
tured in Mike’s paper “Computer SCIENCE and Mathematics in the Elemen-
tary Schools” [4], which made the radical proposition that elementary school
students could enjoy learning about algorithms, and that computer science was
a “treasury of accessible, colorful and active mathematics”. The paper points
out that grade 1–4 students mainly get to do arithmetic, and arithmetic is not
mathematics. It then demonstrates how such students could easily work with
concepts from graph theory, sorting networks (of course), and knot theory. The
paper discusses why such inspiring math might not be welcomed in the education
system, and also demonstrates some examples of young children contributing to
or inspiring serious avenues of research in math and computer science, includ-
ing an example of a paper that was published as a result of a classroom visit.
There are many inspiring quotes and analogies that challenge traditional think-
ing about math and computers in schools, and it is just as relevant now as it was
20 years ago. It should be compulsory reading for everyone involved in computer
science and math education.

Another motivation of Unplugged and related projects has always been to
make the ideas from computer science available to those who can’t afford a
computer, or might not even have a reliable power supply to run one. Mike
was active in working with teachers and students in such situations, particularly
through the Kovalevskaia Fund, which Neal Koblitz discusses elsewhere in this
book.

Both motivations speak of wanting children to be empowered to understand
and reason about the world they find themselves in, and not be mere users of
technologies that are imposed on them or are inaccessible to them. It has been

438 T. Bell, F. Rosamond, and N. Casey

said that “Only two industries refer to their customers as ‘users’: computer design
and drug dealing.6” The MEGA-Math and Unplugged initiatives can largely be
seen as a desire to rescue children from becoming only users, that is, becoming
addicted to whatever technologies are inflicted on them, rather than being given
the wherewithal to create systems that work for them; to choose between what
is good and what is harmful; and to discern what will improve their quality of
life, and what will improve someone else’s quality of life at their expense.

Neal Koblitz shares these sentiments in his article “The case against com-
puters” [50], in which he quotes Mike as saying “Most schools would probably
be better off if they threw their computers into the dumpster” (a phrase which
many people would have heard Mike say!) Neal also mentions Mike’s use of the
term “Cargo Cult” to refer to the “fetishization of computers by the media and
educational establishment.”

Mike wrote and spoke frequently about these issues. It was worded particu-
larly eloquently in an article with Ian Parberry in 1993: “SIGACT trying to get
children excited about CS” [51], which said:

We need to do away with the myth that computer science is about com-
puters. Computer science is no more about computers than astronomy
is about telescopes, biology is about microscopes or chemistry is about
beakers and test tubes. Science is not about tools, it is about how we
use them and what we find out when we do.

The analogy between computers and telescopes is a particularly powerful one
that has served well to make the point quickly to laypeople about the dif-
ference between computer science and simply learning to use computers. As
an interesting side note, it appears that the telescope analogy originated with
Mike (for example, he used it in a 1991 online pre-publication of his “mani-
festo” document [4]), but searching the Internet shows people widely attributing
it to Dijkstra, without any reference to where Dijkstra first said or wrote it
(and it doesn’t appear in his collected writings). Mike and Dijkstra had spent
time together around the time that Mike was writing this material, so it is
quite likely that it was discussed and possibly even originated from those con-
versations. It would be an interesting research project to settle the history of
what has become such a definitive quote. Some initial research is reported via
en.wikiquote.org/wiki/Edsger W. Dijkstra, which concludes that the quote is
misattributed to Dijkstra, and is actually from Mike. Establishing this without
doubt would provide an extreme example of the spread of misinformation by
copy-and-paste reporting on the Internet!

Another quote from Mike that left an impression on Tim during the 1993
visit was “Computer science is the rock and roll of mathematics.” This inspires
all sorts of imagery — is computer science the part of mathematics that people
actually use every day? Is it the part that causes things to happen? Is a com-
puter scientist looked down on by a “pure” mathematician because they make
compromises to make things work for everyday people? Like so many of Mike’s

6 This is usually attributed to Edward R. Tufte.

en.wikiquote.org/wiki/Edsger_W._Dijkstra

Computer Science Unplugged and Related Projects 439

epigrams, it’s a concise statement that gives people pause for thought, and en-
ables someone speaking to laypeople to communicate a lot of meaning in a very
short time.

As Unplugged became popular, the following features emerged that defined
its value as an approach to education and outreach:

– Teaching a student to program takes many hours, if not months. If you
only have one hour to spend with students (e.g. an outreach visit), then
the Unplugged approach enables the presenter to launch into a range of
computer science topics, rather than just scratch the surface of programming.
Extending Mike’s analogy, if an astronomer had one hour to spend with a
class, it wouldn’t be inspiring if it was simply some preliminary information
about how to set up a telescope.

– Programming is usually put up as a gateway to getting into computer sci-
ence. Some students may not particularly enjoy programming, but would be
prepared to use it if they knew what they could do with it. The way com-
puter science is often taught, students get the impression that it is primarily
about programming; Unplugged reverses this view.

– It is often assumed that the first thing you need to do computer science is
a computer, but often a large amount of effort can be spent setting up a
computer lab, installing appropriate software that will soon need updating,
creating accounts for students, and so on, making the computer a distraction
that preoccupies both students and administrators. And of course, in some
countries there might only be a few computers in the whole school, or maybe
none at all. Unplugged activities enable learning about the discipline to
occur in the first minute the lesson starts, and only inexpensive equipment
is needed — typically paper and pencil, and maybe some string!

– There are many misconceptions about what computer science is, and the
way it is often approached in schools can reinforce them. We encounter many
students who had assumed that computer science could not possibly be an
interesting career for them, yet somehow got into it by accident, and find it
thoroughly fulfilling. It would be a tragedy if students decided not to follow
a path that they would have loved based on misconceptions; Unplugged
provides a means to sweep away many of these preconceptions.

– Information systems have a huge influence on everyday life, whether or not
people are interested in computers. People who don’t understand even sim-
ple computer science concepts have to make important decisions relating to
the security of their computers, the way they do financial transactions, or
whether a technology is reliable, based mainly on the opinions of others. It
would be equivalent to supporting the invasion of a foreign country based on
friends’ opinions, rather than understanding the culture and politics of that
country and making an informed decision.

A key theme in MEGA-Math and Unplugged is the sense of story—there are
pirates, monsters, ice cream vendors and football teams who are at the centre
of some story that invokes a problem that must be solved.

440 T. Bell, F. Rosamond, and N. Casey

In Mike’s “advice to students” at mrfellows.net he write:

Story is central. Story is a bigger force than science. Everybody lives
by stories. They are a primal force. In mathematics, we add formalism.
We have equations that lead to solutions but story has its own logic.
Find the story in what you are telling and presenting. This will help the
listener meet you more than half-way.

Some might think that fictional, even preposterous, stories have no place in
teaching science and mathematics. But stories engage children and adults, they
provide a compelling description of a situation, they remove boundaries, and
they give the message that it’s time to start using your imagination. Mike is a
consummate story teller, and has been able to use story to great effect, as well
as providing stories that others can use, if only they are prepared to suspend
reality for the sake of science.

A more prosaic analysis of the Unplugged approach can be found in a paper
initiated by some Japanese Unplugged enthusiasts, who analysed Unplugged
activities and came up with a design pattern for the activities [52]. The paper
explores mapping everyday objects (such as cups and stickers) to concepts in
computer science (such as variables and states), and gives ideas for creating new
activities.

S

a
b

a b
a

b

b

a

b

a

(a) (b) (c)

(d) (e) (f)

Fig. 12. Illustrations for CS Unplugged (a) early material from MEGA-Math (b) from
the “original” 1999 book, by Gail Williams (c) from the teachers’ edition, by Matt
Powell (d) the logo designed by Matt Powell (e) from the web site by Isaac Freeman
(f) theme image from recent books and web site

Having good illustrations has been an important aspect of the Unplugged
project. The MEGA-Math workbook [8] used line drawings of diagrams with-
out any people shown in the images (Figure 12(a)), although the MEGA-Math
website includes low-resolution images including some characters. Early illus-
trations for CS Unplugged were done by various computer scientists involved

Computer Science Unplugged and Related Projects 441

in the project, with some help from Malcolm Robinson (a Christchurch-based
graphic artist), but for the book published in 1999 most of the illustrations were
done by Gail Williams, who introduced illustrations of children doing the ac-
tivities (Figure 12(b)). The teachers’ edition was illustrated by Matt Powell, a
CS graduate who captured ideas from CS in the illustrations, and also created
the characters that have become the familiar face of Unplugged (Figure 12(c)).
He also designed the logo (originally for the KidsFest show in 1998), which is
still used (Figure 12(d)). More recently the illustrations have been taken over
by Isaac Freeman, who has continued developing new illustrations in the style
established by Matt Powell (Figure 12(e)).

8 Evaluations of CS Unplugged

The ideas in CSUnplugged have clearly had a wide impact around the world, and a
search of the computer science education literature reveals that it is cited in dozens
of papers. In October 2011 the website was getting nearly 12,000 unique visitors
each week, and the various videos on the YouTube channel have had over 80,000
views in the few years they have been available. The widespread adoption of the
ideas in many countries is an endorsement of the material, but formal evaluations
are important to understand more carefully how well the approach works, and in
what contexts it doesn’t work. Although many evaluations of Unplugged exist,
they either use very small groups, or mix Unplugged with other material, which
means that it is difficult to draw general conclusions from them. More often than
not, teachers have quickly recognized the effectiveness and value of Unplugged and
adopted it, proving its worth in practice for themselves. However, there are many
factors that can affect how well it works, including the time of day (children seem
to have a better attention span in the morning), the enthusiasm of the presenter
and especially their patience to let students explore ideas.

There are two research projects that report on using Unplugged in its raw form
with older school students. Taub et al. [53] report on a group of thirteen 7th and
8th grade students who did 18 of the 20 activities from the “original” book as a
series of after-school meetings. Six of them were then interviewed; the sample is
too small to draw firm conclusions, and it’s unfortunate that the original edition
was used because some of the problems encountered were addressed in the revised
teachers’ edition, but the paper does make the following useful observations:

– Activities should build on students’ prior knowledge (Unplugged was de-
signed for elementary age children who would have a much less sophisticated
prior experience of math and computing, and the teacher should adapt ac-
tivities to suit the students’ background),

– There should be an explicit link to central concepts in computer science
(some of the activities were intended to be exploratory, to follow the students’
interest, but if Unplugged is to be used as a high school text book then more
formal links to curriculum would be needed), and

– students should be informed about careers in computer science (this was
seen as an important motivator, although is clearly complementary to the
material presented in Unplugged).

442 T. Bell, F. Rosamond, and N. Casey

Another study by Feaster et al. [54] describes an outreach to a high school
where they ran 10 lessons from Unplugged activities for two groups of 14 and
15 students respectively. The paper reports that those who started with low
interest increased their level of interest, but those with a high level didn’t; that
is, Unplugged seemed more suitable for getting students interested than for those
who were already interested. After the sessions the students seemed to have a
better idea of what university CS would be (for example, they decreased their
belief that web design would be important preparation for studying CS, and
saw math as more important for CS). The authors observed that high school
students didn’t seem as excited about these kinds of activities as more junior
students; this reflects our experience, where for senior classes Unplugged is best
used as a short demonstration followed by a more technical discussion, whereas
younger children are content to spend more time exploring ideas for the sake
of it.

A more positive picture emerges when the material is used to add interest
to camps and outreach programs. Carmichael [55] reports using Unplugged in-
terspersed with teaching video game programming for a summer camp, and
achieving an overall increase in interest in taking CS further as a subject. In
this case the Unplugged activities apparently helped students see the connection
between theory and practice.

Hart et al. used Unplugged to link CS to the math curriculum in a 3-day
workshop for math teachers [56]. A survey showed that 100% of teachers agreed
or strongly agreed with the statements “Sessions stimulated my interest”, “Con-
tent is useful to me”, and “Program will improve some aspect of my teaching.”
One teacher commented: “I loved getting a little ‘taste’ of many different aspects
of the CS field. I now have some first-hand information about the CS field to
pepper my lessons with throughout the year.”

A computer science outreach program for fourth graders based on Unplugged
activities reported success in increasing interest in computer science [57]. They
noted that it is hard to get public schools schools interested in such events
because of the lack of computer science state standard tests. From pre- and
post-intervention surveys they reported that “students were more interested in
computer science, had significantly higher cognitive competence, and were sig-
nificantly more confident about math (p < 0.05 for all), but not significantly
more interested in math.”

Groover reports success from activities with girls in a middle schools “confer-
ence” which included Unplugged activities [58]; the conclusion says that “post
activity discussions showed that the students seemed to understand the connec-
tion of each activity to computer science.” Interestingly, the “Marching Orders”
activity was more popular than the Parity Magic trick; our experience is that the
parity trick usually generates a lot of interest, which illustrates how experience
can vary a lot in different contexts.

The Parity trick has also been used as part of a successful program based
on magic tricks [59]. Feedback from this magic-based program indicated that
a significant number of students indicated that they learned something about

Computer Science Unplugged and Related Projects 443

computer science. Having the presentation as a “show” rather than a “lecture”
was seen as positive, and the authors report that it “clearly worked for girls.”

One of the main points of Unplugged is to change attitudes, and a research
project that measured this was reported by Cottam, Foley andMenzel in 2010 [60].
They organised a roadshow that talked to students about topics like stereotypes
and careers in computing, and the main computing activity was the Parity trick.
The evaluation was for 613 freshman students (59% female), and the results were
generally positive. The question asked of students that relates most to under-
standing the field was “Computing is mostly about writing programs”; 24% of
students agreed before the intervention, and 17% agreed afterwards. In response
to the statement “Computing is full of exciting opportunities”, 55% of students
agreed before the intervention, and 81% agreed afterwards. A larger change was
seen for female students: 49% of females agreed before the intervention, and 79%
agreed afterwards.

Another report on a workshop for teachers that uses Unplugged as a major
component found that the attendees “felt much more comfortable advancing
the use of computing and computational thinking in their classes” after the
workshop [61]. In a survey 4 to 6 months after the workshop, one of the three
most widely adopted materials from the workshop were the Unplugged activities
(particularly the binary numbers activity).

A program that combines parents and students in a series of workshops is
reported by Hart [62]. The target audience is fourth through sixth grade fe-
male students. In the workshops they covered a variety of topics including pro-
gramming in Alice. Unplugged was used for for an introductory session, during
lunches, and with the students while parents had sessions on topics of less in-
terest to the students. It is difficult to draw conclusions about Unplugged from
this report because it was an adjunct activity to the main program.

A comprehensive study of the Unplugged approach can be found in a thesis by
Sarah Carruthers [63]. The thesis reports on a series of lessons with sixth grade
students relating to graph theory. A key conclusion is that the students “appear
capable of not only learning graph theory, but applying it to solve problems. The
use of relational graphs appears to positively impact student performance on at
least some types of problem solving activity.” In a related paper, Carruthers et
al. [64] conclude that “Graph theory instruction can support existing mathe-
matics curriculum and provide novel problem solving strategies for students at
the grade six level. Student and teacher willingness to participate actively dur-
ing the graph theory lessons in this study indicates that graph theory may be
a suitable computer science topic to integrate in classrooms at this level.” This
matches with the anecdotal experiences reported early in this chapter—as long
as you don’t tell students that it is difficult, they are able to work with concepts
that are generally regarded as very advanced.

A survey of Unplugged and several other approaches to outreach and teaching
that avoid programming was published in 2011 [65]. One issue that was identi-
fied was the importance of a suitable motivation for students. For classroom work

444 T. Bell, F. Rosamond, and N. Casey

the extrinsic motivation of grades is usually available, but for other programs
motivators include “contest prizes, the challenge of solving a problem, curiosity,
humour, and ideally, appealing to the intrinsic interest of the student in this
kind of thinking and reasoning.” The challenge to any presenter, whether using
Unplugged or something else, is to create those motivators so that children want
to explore the concepts, rather than complete the work out of necessity.

Based on the evaluations mentioned above, Unplugged has a positive role
to play for adding seasoning to classes and outreach programs, and has been
well received in workshops for teachers. It works well in combination with other
topics, including programming or exploring social issues or careers. Problems
have been reported using it directly as a curriculum, which is not surprising
since it was developed in the context of outreach and open-ended exploration,
rather than a specified set of standards. Its genesis was from an inversion of
the normal classroom format of “teach an algorithm and test if the students
understand it” approach, and the research reported above seems to confirm
that the way in which material is approached in the classroom is as important
as what the material is. In terms of the astronomy metaphor, simply taking
the Unplugged activities into a classroom and using them to teach a whole
course on computer science would be analogous to teaching a course on on
astronomy without using a telescope at all. An inspired teacher could pull it
off, but in a conventional setting, students are bound to want to look at the
night sky for themselves, and for a teacher to insist on not using a telescope
could be demotivating, particularly for those who want to be an astronomer
one day!

There are two main challenges with introducing Unplugged to a formal
curriculum:

– poorly prepared teachers can make the most exciting material become dull
because the topics are taught under compulsion, and students who come up
with interesting ideas might be squashed either because it doesn’t match the
curriculum, or because the teacher doesn’t have a broad enough background
to recognize creative answers. For example, Tim once observed some science
demonstrators doing a binary number activity, and an enthusiastic child
hypothesized that there might be a card with 256 dots for the 9th bit; the
demonstrators essentially told the child that you can only have 8 bits. On
another occasion while doing the first step of selection sort with a class using
a balance scale, the students had just found the heaviest of 10 weights, and
were asked them how many comparisons were made. Normally students work
out that it is 9, sometimes incorrectly suggesting 10 as a possibility. On this
occasion, one girl said “it’s going to be 45”. One worries that if they had
a teacher not familiar with the problem then their answer would simply be
dismissed as being way out of range, instead of recognizing that the student
had thought ahead and calculated the number of comparisons for a complete
selection sort.

Computer Science Unplugged and Related Projects 445

– the school system (administrators, teachers, students and parents!) expect
teaching to be followed by assessment. The organic and exploratory nature of
Unplugged makes this difficult because one doesn’t know what the students
are going to learn, and if teachers are required to straight-jacket the material
into a strict curriculum, it can squeeze the life out of it. This is not to say
that assessment isn’t possible, but inspired teaching and creative assessment
is required to keep students excited.

9 The Heart of Puzzling: Mathematics and Computer
Games

Mike wanted to bring an appreciation for mathematical foundations and fron-
tiers to as many people as possible, and computer games were part of his vision
early on. Mike ran his MEGA-math theory awareness activities in his classrooms
and at Family Night events, and talked about them at the professional meetings
he attended, wherever he went. Computer games were galvanizing attention.
In 1992, when Mike chaired Local Arrangements for STOC in Victoria and or-
ganized an education action committee (see Section 3 on Activism), he met
Ernie Brickell, now Chief Security Architect for Intel Corporation. This led to
an invitation to speak at Sandia National Labs. Afterwards, Mike visited Vance
Faber, Chief Scientist and Director of Research at Los Alamos National Labs.
Vance asked Mike what he had been doing in Albuquerque. Mike showed him the
manuscript that he and Nancy Casey were writing about teaching mathematics
with game style activities, and Vance shouted, “That’s great! I’ve got to show
Bonnie Yantis. We’ve got to turn this into a project.” “Research On Mega-Math:
Discrete Mathematics And Computer Science for Children” became Vance’s fa-
vorite project. One of the nine objectives of the project was “The development
of connections to the computer games industry.”

9.1 A Systematic Mathematical Theory of Game Design

In 1992, Mike offered a course at the University of Victoria (BC) called “The-
oretical Computer Science With Applications to Computer Games.” By 1993,
he had developed a premise that the heart of every good game held both a
puzzle and an interactive structure, both inherently mathematical in nature.
He proposed that if properly exploited, the addictive fascination of computer
game-play would reveal itself to have a fundamental similarity to the mental
experiences of mathematical research. The joy of an activity akin to research
(carefully constructed gaming) could be a catalyst to popularize mathematics
for children.

Mike heard about the Games Development Conference, the largest and pri-
mary forum for those involved in the development of interactive games. Insiders
gather here to exchange ideas and shape the future of the industry. Mike phoned
the organizers and described some of his ideas about math games for children.
They said that was very interesting, and they organized Mike to speak in 1994.

446 T. Bell, F. Rosamond, and N. Casey

This led to consulting with the big game company Broderbund (producer of
Myst), and Mike was recruited to a contract with them. That was before they
closed their education division.

In his unpublished 1996 article, “Fifteen MEGA-Math Puzzles,” Mike de-
scribed a systematic mathematical theory of game design, and a method of pro-
ducing an almost endless stream of computer games. His method merged what
he termed vanilla puzzles (an all-purpose, general ingredient) with game han-
dles (that is, a crank, as on an old-fashioned coffee grinder.) The vanilla puzzles
came from computational problems such as Graph Coloring, Dominating

Set, Independent Set, Hamilton Circuit, and others from the Garey and
Johnson compendium [1]. Each of these vanilla puzzles would form the math-
ematical backbone of a successful game. Importantly, Graph Coloring and
all the other computational problems come from significant and interesting ap-
plications in the real world. The game’s storyline could be built around these
relevant applications. The storyline could be another attraction for players to
form an interest in mathematical science.

The game handles came from the underlying information-action puzzle struc-
ture thatMike identified in many popular games. He grouped popular, well-known
games into families according to their structure, that is, their handles. As an ex-
ample, there was a Family of Discrete Repairs Puzzles (such as “Minesweeper”),
and a Family of On-Line Puzzles (such as “Tetris”). Mike’s insight was that in or-
der to design a collection of computer games (as he described it): “one had only
to attach the game handle to a vanilla problem from the NP-catalogue, and turn
the crank.”

As an illustrating example, consider the popular game of Tetris. From a math-
ematical point of view, Mike considered the Tetris-handle as an on-line two-
dimensional packing problem. Attaching the Tetris-handle to the vanilla problem
Dominating Set or the vanilla problem Graph Coloring would produce the
game “Tetris of Dominating Set” or “Tetris of Graph Coloring”. The “on-line”
meant that as the graph scrolled downward, a player would use a limited but
replenished supply of tokens to indicate a dominating set or a proper graph col-
oring. If an un-dominated vertex, or improperly colored vertex, hit the bottom
of the screen, the player loses.

The game story might vary from the unadorned scrolling graph of dots and
lines, to a story about the practical importance or history of the underlying
computational problem (the vanilla puzzle), or it might simply be a fanciful story
where the vertices represent goldfish, which must be properly colored before
the water in their tank drains away. Mike’s vision of computational puzzling
and educational game design is summarized in his 1999 article, “The Heart of
Puzzling: Mathematics and Computer Games” [66].

9.2 Designing Games with Jim Andrews

In 1995, Mike met Canadian poet-programmer Jim Andrews at the Mocambo
Coffee Shop in Victoria, British Columbia, where Mike was trying his hand at
stand-up comedy. Mike says:

Computer Science Unplugged and Related Projects 447

I have ambient literary impulses from time to time. About when I was
moving to UVic, I was having a bit of an existential crisis and decided not
to do computer science anymore. I was going to do poetry and stand-up
comedy. I didn’t get very far.

Mike and Jim (who have become a lifelong friends) began designing a game
that was part educational and part entertainment, generally termed “edutain-
ment.” Their game, “Wordstones,” was based on genetics, in which the player
creates creatures, machines, and activities (using finite automata) that mimic
the behavior of how ribosomes process strands of DNA.

Although Wordstones takes place in an imaginative realm, one of the re-
wards of the game is that the biological science is eventually revealed to
the player. Mike and Jim also designed CoLoRaTiOn, about graph color-
ing (see vispo.com/software/coloration/CoLoRaTiOn1.0.exe; Jim also designed
vispo.com/arteroids).

Jim recalls those times as follows:

We would get together at my apartment, mainly. This was in 1995 to
1997. If we sat down for a two or three hour session, Mike could come up
with at least a half-dozen new ideas. It was a matter, for him, of simply
turning his attention to any part of the mathematics of computer science
and contemplating the challenges of research, the goals and, often, real-
world situations from which the algorithms and problems/theory arose.
It was a mark of his work to invariably involve some sort of unsolved
problem in the games/puzzles. This is very Mike. It wasn’t sufficient
to simply create fun puzzles and games. They should also encourage
research into productively mysterious, unsolved mathematical problems
and issues. The unknown, for Mike, is where the real fun is.

It all needed more work, to be frank. But what fun it was. For me and,
I hope, for Mike. I was continually amazed by his dynamic insight and
powerful ability to discover games and puzzles in the math of computer
science where others saw none. It was a Pythagorean experience for me,
as it were. A bit mathematikoi, a little accusmatici, in awe as I was, of
his mathematical insight and sweeping vision of the field.

I also saw Mike’s genius at work in his creation of materials for kids to
explore and play on during evenings where he and his volunteer graduate
students and also other math teachers put on entertaining evenings in
grade school gymnasiums where kids would play on big tarps illustrated
with data structures. How cool is that? The kids loved it. I hope some
of them were inspired as I was by this deeply educational involvement
very concretely in very abstract work.

Mike Fellows shows the way to the popularization of computer science.
And, Lord knows, it needs it. As an artist, I am continually struck by the
near complete ignorance in the general culture of all matters pertaining
to the theory of computation. And this goes very deeply into the fears
people have of the role of machines in our lives. Mike blows all that fear
away with his ability to engage curiosity and thought in play. Kids and

http://vispo.com/software/coloration/CoLoRaTiOn1.0.exe
http://vispo.com/arteroids

448 T. Bell, F. Rosamond, and N. Casey

adults look at mathematics and computers very differently after one of
these evenings. It is presented as something they can think about and
deal with in a very playful way. Brilliant. Just brilliant, really.

Mike had a big influence on my vision of many things, such as the
role of the theory of computation in digital art and poetics. Many artists
think of computers as glorified televisions, or stereos, or typewriters. The
radical flexibility of computers is invisible to them, so that they conceive
of the vistas of digital art as, fundamentally, more of the same. But
computing not only dissolves the borders between media, given that it is
all coded in zeroes and ones, but it posits whole new media. Continually.
Mike helped me see that the theory of computation is one of the philo-
sophical underpinnings of any interesting philosophy of computer art. He
has that sort of effect on people. He teaches very deeply. Not simply at
the level of puzzle, but that of enigma and life-long involvement. Thank
you, Mike. You are a cosmos and contain multitudes.

9.3 Educational Game Design

Mike and Frances met in September, 1998 (when Mike was presenting mathe-
matical plays at the Victoria Fringe Festival, described in the chapter on Passion
Plays). They quickly learned that they worked well together; sometimes Mike
calls them the “Mike and Fran Team.” They became consultants for a start-up
company in Texas that was designing a game to teach basic chemistry. They
realized that there are key questions that must be addressed by the chemistry
game or any game trying to be both educational and entertaining. Below are
a few of the issues in their (unpublished) Catalogue of Educational Computer
Game Design Philosophy.

1. Chocolate-Covered Broccoli (CCB) — sweet coating over bitter substance —
is unpalatable to us. To produce a game with curriculum content that is not
disguised as unpalatable CCB, a first plan is to analyze the overall structure
of the mathematical curriculum, and the architecture of the games approach.

2. Missed Magic means throwing out the chocolate just because the recipe also
needs a tie-in spice like nutmeg, a format that catalyzes a relationship be-
tween the bitter and the sweet elements. The real chocolate is wonder and
curiosity. How does the game pay systematic attention to these fundamen-
tal resources, including the catalytic format that keeps the wonder going
along with the learning? Mike recalled a period when his small child had a
chemistry set with galvanizing images that kept her wonder going on a day-
to-day basis. “The elements were her personal little friends,” Mike said, “the
sprites of the world to which she had secret access through her knowledge
of Chemistry and atoms.”

3. Ageless Chocolate versus Perishable Broccoli. Edutainment inherently has
conflicting timescales: eternal chocolate versus perishable broccoli. How does
one combine an authentic expression of the universal ageless intrinsic appeal
of the subject, and the grade-specific curriculum agenda?

Computer Science Unplugged and Related Projects 449

Mike and Frances posited that an educational game must possess self-awareness.
A game just for entertainment has a simple position: pure fun. A game for educa-
tion has a simple, authoritarian position: eat this broccoli. It is good for you. In
contrast, an edutainment game must express some awareness of its predicament
in trying to convey a majestic quest while also being a server of broccoli.

They used the insights they had gained from working on the chemistry game
when they moved to New Zealand in 1999. There, they designed a multi-player,
auction-type game for children that could be played on a mobile-phone. Mobile
phones had become so ubiquitous, even among children, that they believed they
now had a global catalyst for introducing mathematics. Mike and Frances were
well coached by the Wellington Innovation Council, and eventually presented
their business plan to a prominent Sydney venture capitalist. “Mr. B.” under-
stood science (he had a Ph.D. in Chemical Engineering) and his heartstrings
were sympathetic to their project. He thought he would buy their game for his
daughter and that she would like it.

There were two ways that children could interact with the game. They could
play by identifying a minimum vertex cover on a graph of dots and lines that was
presented on their mobile. The second way children could join the game was to
compete in creating graphs (on a given number of vertices) for which it was very
hard to find a minimum vertex cover. Mike and Frances would collect and analyze
these children-designed graphs, and award prizes for those judged the hardest. In
this way, the children would be participating in cutting-edge scientific research.
The children would be helping scientists come to understand what makes some
graph problems hard. As Jim has said above, bringing children along on the
grand venture into the unknown is Mike’s hallmark. Mike and Frances thought
the scientific participation aspect of the game would increase its attractiveness
to parents, as well as to the children.

Mike is emphatic that people understand that working with children is not
just a good deed.

Mathematical scientists explaining science to kids is not some sort of no-
ble, but career-nonsensical worthy cause, karma points, like volunteering
for an NGO, or Scientists Without Borders. In reality, the effort to ex-
plain science to kids is a vital source of new mathematical insights for
adults [in this volume, see Koblitz’ chapter about Kid Crypto yielding
advances in the research area of Grobner Bases cryptosystems — Google
on “Poly Cracker cryptosystems”.] The effort to communicate math to
children is a real win-win.

Major fields do not often undergo major paradigm shifts, yet that is what must
happen in education in order that classrooms communicate real mathematics.
The issue of assessment and student evaluation has been a major impediment.
While at VUW, Mike and Frances proposed a game-like assessment environment.
Mike is cautiously confident that assessment along the lines of citation analy-
sis engines (such as Harzing’s “Publish or Perish”) will speed the (inevitable)
mathematical sciences education revolution.

450 T. Bell, F. Rosamond, and N. Casey

Mike has created or supported many venues for children. The Erdös for Kids
website, with child-sized open problems and prizes, MEGA-Math!, Unplugged,
Family Nights, computer games, plays — all these and more are manifestations
of Mike’s quest to bring open, unsolved problems in mathematics to the children
— a sense of mathematics as a live, dynamic and wondrous enterprise.

Table 3. Overview of key events in the history of the Computer Science Unplugged
project

1989 Mike Fellows and Nancy Casey meet in Idaho and develop activities that become
MEGA-Math

1989 Tim Bell starts developing computer science exhibits for children for science center
displays

1991 Mike writes his “manifesto”: Computer SCIENCE and Mathematics in the Elemen-
tary Schools [4]

1992 Mike and Nancy publish This is MEGA-Mathematics!
1992 Tim develops games and magic trick for classroom use
1993 Tim visits Mike in Victoria, BC for one month, and they plan the book that becomes

CS Unplugged
1994 Mike speaks at the Games Development Conference
1995 Ian Witten joins the project to create a broader range of activities and help with

writing
1997 Development of Mike’s “Cowboy Melodramas”
1998 Unplugged book has been rejected by 27 publishers, so is released as “shareware” on

the Internet
2000 Revised version for teachers is released
2003 ACM K-12 curriculum released, recommending several Unplugged activities
2005 First Unplugged video is made when Bengt Aspvall visits Tim in NZ
2006 First translated book (Korean) is released
2006 Google supports the Unplugged project so the entire book can be released at no cost
2010 Chinese version (re-written for students) is released

10 Conclusion

Some of the key dates in the history of CS Unplugged and related work are
summarized in Table 3. It is permeated with collaborations that appear to be
initiated by chance meetings (e.g. Mike and Nancy met through their children
being in the same class, Mike and Tim met through an internet discussion, and
Mike and Fran met through the “Passion Plays”), although given Mike’s pas-
sion for this work, it was inevitable that he would attract collaborators who
shared the vision and would work hard to see it bear fruit. These collaborations
have each resulted in long-term productive relationships that have had a signif-
icant impact on computing education all around the world. CS Unplugged and
related projects have engaged students, inspired teachers and empowered presen-
ters to communicate the heart of mathematics and computer science without the

Computer Science Unplugged and Related Projects 451

distraction of computers. They were driven by the authors’ passion for commu-
nicating what math and computer science is all about to a public who mis-
understood both fields, not by preaching to them about what it is, but by
having them do math and computer science. They have grown thanks to in-
put from open-minded students and educators who have embraced the ideas,
and enthusiastic principals and leaders in education who have supported and
promoted it.

Right from the start the broad vision forMEGA-Math, Unplugged and related
projects has come from Mike, initially through his writings and advocacy in the
early 1990s, and his continued creativity and demonstration of the ideas in many
countries in the two decades since. A common thread that comes out in Mike’s
creative problem-solving style in everything he’s done, from parameterized com-
plexity to working with kids, is that it isn’t about trying to prove his own ability,
but the way he has cultivated excitement amongst those around him. He had been
captivated by ideas, had come up with wonderfully creative ways to communicate
them, and passed his passion on to anyone who would listen, whether colleagues,
teachers or young children. It seems that the children were the quickest to embrace
the ideas! He just didn’t pay any attention to boundaries—for example, working
with kids it never occurred to him that there should be any barriers to teaching
mathematics as something fun and wonderful. Math as stand-up comedy? Why
not! Computer science without computers? Of course! This attitude applies to his
research—he seems to break new ground because it doesn’t occur to him not to
go there. He is just as passionate talking about math and computer science to 6-
year-old children or experienced professors.

Who knows what the future holds for Unplugged; computer science as a sub-
ject is starting to appear in schools around the world, and Unplugged may find
its way into school text books. If virtual worlds become popular in teaching,
Unplugged already has entered that culture. New activities may well appear,
although it seems that there is more interest in adaptation of existing activi-
ties, including translations, videos, followup ideas, and providing more detailed
background information.

Some time around 2010 someone on a newsgroup commented on how quickly
computing books go out of date, asking “What 14 year old computing book would
you ever want to use?” It was refreshing to realize at the time that the Unplugged
book was written about 14 years earlier, and many of the activities were virtually
unchanged from the version created in the early 1990s. Even now there’s no ur-
gency to update the ideas as they reflect timeless fundamentals of the subject, and
are still enjoyed by young and old in many cultures. A recurring theme of Mike’s
work is a sense of story and drama, and these won’t date; in the last 20 years we
have seen software companies come and go, and hardware become obsolete many
times over, but children—and adults— remain captivated by the stories that bring
math and computer science to life.

In the end, this reminds us that computing is about people and not computers.
We give the last word to a computing teacher in Japan, who commented on her
experience using Unplugged:

452 T. Bell, F. Rosamond, and N. Casey

“Now the teacher sees the children’s faces instead of the back of the com-
puters” (Yayoi Hofuku, teacher at Shouyou High School, Tokyo, Japan).

Acknowledgements. We are grateful to the following people who have con-
tributed their ideas and checked details for this article: Jim Andrews, Bengt
Aspvall, Judith Bell, Lenore Blum, Neal Koblitz, Rita Liff Levinson, Geri Lor-
way, Sumant Murugesh, Heidi Newton, Lenny Pitt, Matt Powell, Ulrike Stege,
Geoff and Lisa Whittle, and Ian Witten.

The Unplugged project has benefited from the work of countless people over
the years, many of whom are named in this chapter, but others whose great ideas
were picked up in passing and the source has been lost. To all those people who
embraced the vision we express our gratitude.

The main advisors for the Unplugged project after it received formal funding
in 2006 have been Bengt Aspvall, Lenore Blum, Anna Charny, Sam Chung, Tom
Cortina, Robb Cutler, Peter J Denning, Rick Dipaolo, Paul Gibson, Pam Hagen,
Mindy Hart, Peter Henderson, Susumu Kanemune, Rachel Kestenbaum, Lynn
Lambert, Lee Won Gyu, Geri Lorway, Craig Nevill-Manning, Andy and Todd
Seymour, Harold Thimbleby, Alfred Thompson, Allen Tucker, David Vogt, Len
Wanger, Xia Xie, and Ben Tsutom Wada. Significant support for Unplugged has
been provided by Jeff Walz, the University relations contact at Google.

The MEGA-Math and Unplugged books acknowledge many teachers and col-
leagues who supported these projects over the years, but a key role was played by
the authors’ children, Andrew, Anna, Elizabeth, Hannah, Max, Michael, Nikki
and Patrick who “inspired much of this work, and were often the first children
to test an activity.” They have been involved for around 20 years, and our chil-
dren have now grown up, but Unplugged and the associated work will no doubt
continue to benefit from real research being done by young children all over the
world!

References

1. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory
of NP-completeness. W. H. Freeman, San Francisco (1979)

2. Bell, T., Marghitu, D., Bell, J.: Workshop: CS Unplugged — computational think-
ing without computers. In: Pirkul, H., Spong, M.W., Shah, R., Suh, S. (eds.) Pro-
ceedings of SDPS 2011. Society for Design and Process Science, Jeju Island (2011)

3. Rosamond, F.: On-line and off-line computer games and mathematical sciences
popularization. In: Rosamond, F., Copes, L. (eds.) Educational Transformations:
The Influences of Stephen I. Brown, pp. 407–426. Authorhouse, Bloomington
(2006)

4. Fellows, M.: Computer SCIENCE in the elementary schools. In: Fisher, N., Keynes,
H., Wagreich, P. (eds.) Proceedings of the Mathematicians and Education Reform
Workshop of Issues in Mathematics Education. Conference Board of the Mathe-
matical Sciences, Seattle, vol. 3, pp. 143–163 (1991)

5. Casey, N.: Megamath: Expanding and connecting the mathematics community.
In: INET 1995, Internet Society’s 1995 International Networking Conference, Hon-
olulu, Hawaii (1995)

Computer Science Unplugged and Related Projects 453

6. Casey, N.: Whole language: lessons for math teachers (1990),
http://www.ccs3.lanl.gov/mega-math/papers/firest.ps

7. Casey, N.: Three for the money: an hour in the classroom. In: Rosenstein, J.G.,
Franzblau, D.S., Roberts, F.S. (eds.) Discrete Mathematics in the Schools. DI-
MACS: Series in Discrete Mathematics and Theoretical Computer Science, A co-
publication of the AMS, DIMACS, and National Council of Teachers of Mathe-
matics (1997)

8. Casey, N., Fellows, M.R.: This is Mega-Mathematics! Los Alamos National Labs
(1992), http://www.ccs3.lanl.gov/mega-math/write.html

9. Kierstead, H.A., Trotter, W.T.: Planar graph coloring with an uncooperative part-
ner. J. Graph Theory 18, 569–584 (1994)

10. Casey, N., Fellows, M.: Implementing the standards: Let’s focus on the first four.
In: How Can We Have an Impact? DIMACS Series: Discrete Mathematics in the
Schools (1997)

11. Fellows, M.: Research on mega-math: Discrete mathematics and computer science
for children, final report (1995),
http://www.osti.gov/bridge/purl.cover.jsp?purl=/106599-70WLSu/

webviewable/
12. Hodder, P.: Science as theatre: a New Zealand history of performances and exhi-

bitions. Journal of Science Communication 10, 1–10 (2011)
13. Bell, T.C.: Computer science for the uninterested: designing displays for a science

centre. Computers in New Zealand Schools 4, 40–46 (1992)
14. Fellows, M.R., Koblitz, N.: Kid Krypto. In: Brickell, E.F. (ed.) CRYPTO 1992.

LNCS, vol. 740, pp. 371–389. Springer, Heidelberg (1993)
15. Harel, D.: Algorithmics: The Spirit of Computing, 1st edn. Addison-Wesley, Read-

ing (1987)
16. Vöcking, B., Alt, H., Dietzfelbinger, M., Reischuk, R., Scheideler, C., Vollmer, H.,

Wagner, D. (eds.): Algorithms Unplugged. Springer (2011)
17. Dewdney, A.K.: The Turing omnibus: 61 excursions in computer science. Computer

Science Press, Rockville (1989)
18. Bell, T., Witten, I., Fellows, M.: Computer Science Unplugged: Off-line activities

and games for all ages (original book) (1999), http://csunplugged.org
19. Bell, T., Witten, I., Fellows, M., McKenzie, J., Adams, R.: Computer Science

Unplugged: An enrichment and extension programme for primary-aged children
(2002), http://csunplugged.org

20. Bell, T., Thimbleby, H., Fellows, M., Witten, I., Koblitz, N., Powell, M.: Explaining
cryptographic systems to the general public. Computers and Education 40, 199–215
(2003)

21. Bell, T.: A low-cost high-impact computer science show for family audiences. In:
Australasian Computer Science Conference 2000 (ACSC 2000), Canberra, Aus-
tralia, January 31- February 3, pp. 10–16 (2000)

22. Tucker, A., Deek, F., Jones, J., McCowan, D., Stephenson, C., Verno, A.: A Model
Curriculum for K-12 Computer Science: Final Report of the ACM K-12 Task Force
Curriculum Committee. ACM, New York (2003)

23. Bell, T., Witten, I., Fellows, M., Lee, W., McKenzie, J., Adams, R.: Computer
Science Unplugged: Off-line activities and games for all ages. Hongreung Science
Publishing, Seoul (2006) (in Korean)

24. Blum, L., Cortina, T.J.: CS4HS: an outreach program for high school CS teachers.
In: Russell, I., Haller, S.M., Dougherty, J.D., Rodger, S.H. (eds.) Proceedings of
the 38th SIGCSE Technical Symposium on Computer Science Education, SIGCSE
2007, Covington, Kentucky, USA, pp. 19–23. ACM (2007)

http://www.ccs3.lanl.gov/mega-math/papers/firest.ps
http://www.ccs3.lanl.gov/mega-math/write.html
http://www.osti.gov/bridge/purl.cover.jsp?purl=/106599-70WLSu/webviewable/
http://www.osti.gov/bridge/purl.cover.jsp?purl=/106599-70WLSu/webviewable/
http://csunplugged.org
http://csunplugged.org

454 T. Bell, F. Rosamond, and N. Casey

25. Blum, L., Cortina, T.J., Lazowska, E.D., Wise, J.: The expansion of CS4HS: an out-
reach program for high school teachers. In: Dougherty, J.D., Rodger, S.H., Fitzger-
ald, S., Guzdial, M. (eds.) Proceedings of the 39th SIGCSE Technical Symposium
on Computer Science Education, SIGCSE 2008, Portland, OR, USA, pp. 377–378.
ACM (2008)

26. Bell, T., Bell, R.: The Treasure Hunt. In: Fitzgerald, S., Guzdial, M., Lewandowski,
G., Wolfman, S.A. (eds.) Proceedings of the 40th ACM Technical Symposium on
Computer Science Education. ACM, New York (2009)

27. Bell, T., Bell, R.: The Orange Game. In: Fitzgerald, S., Guzdial, M., Lewandowski,
G., Wolfman, S.A. (eds.) Proceedings of the 40th ACM Technical Symposium on
Computer Science Education, SIGCSE 2009. ACM, New York (2009)

28. Bell, T., Bell, R.: Image Compression - Making Contact. In: Lewandowski, G.,
Wolfman, S.A., Cortina, T., Walker, E. (eds.) SIGCSE, Milwaukee, WI. ACM
(2010)

29. Bell, T., Bell, R.: Sorting Algorithms (Unplugged). In: Lewandowski, G., Wolfman,
S.A., Cortina, T., Walker, E. (eds.) SIGCSE, Milwaukee, WI. ACM (2010)

30. Bell, T., Bell, M., Finnerty, K.: Computer Science Buskers (Error Correction). In:
Lewandowski, G., Wolfman, S.A., Cortina, T., Walker, E. (eds.) SIGCSE, Milwau-
kee, WI. ACM (2010)

31. Bell, T., Bell, M., Chicha, V.: Santa’s dirty socks (divide and conquer). In: Cortina,
T.J., Walker, E.L., King, L.S., Musicant, D.R. (eds.) Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education, SIGCSE 2011. ACM, New
York (2011)

32. Bell, T., Bell, M.: Reaching out (binary codes). In: Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education, SIGCSE 2011. ACM, New
York (2011)

33. Sagan, C.: Contact. Simon and Schuster, New York (1985)
34. Yoo, S., Yeum, Y., Kim, Y., Cha, S., Kim, J., Jang, H., Choi, S., Lee, H., Kwon,

D., Han, H., Shin, E., Song, J., Park, J., Lee, W.: Development of an Integrated
Informatics Curriculum for K-12 in Korea. In: Mittermeir, R.T. (ed.) ISSEP 2006.
LNCS, vol. 4226, pp. 199–208. Springer, Heidelberg (2006)

35. Choi, S.K., Bell, T., Jun, S.J., Lee, W.G.: Designing offline computer science activ-
ities for the Korean elementary school curriculum. In: ITiCSE 2008: Proceedings
of the 13th annual conference on Innovation and Technology in Computer Science
Education, p. 338. ACM, New York (2008)

36. Bell, T.C., Witten, I.H., Fellows, M.R.F., Kanemune, S., Kuno, Y.: Computer
Science Unplugged: Off-line activities and games for all ages, Etext, Tokyo, Japan
(2007) (in Japanese)

37. Fellows, M., Hibner, A., Koblitz, N.: Cultural aspects of mathematics education
reform. Notices of the American Mathematics Society 41, 5–9 (1994)

38. Bell, T., Wada, B.T., Kanemune, S., Xie, X., Lee, W., SookKyoung, C., Aspvall, B.,
Wingkvist, A.: Making computer science activities accessible for the languages and
cultures of Japan, Korea, China and Sweden. In: Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science Education, SIGCSE 2008, Portland,
OR, USA (2008)

39. Bell, T., Arpaci-Dusseau, A., Witten, I., Fellows, M.: Computer Science Unplugged:
understanding computing through games and puzzles. HUST Press, Wuhan (2010)

Computer Science Unplugged and Related Projects 455

40. Goode, J.: Connecting K-16 curriculum and policy: making computer science en-
gaging, accessible, and hospitable for underrepresented students. In: Lewandowski,
G., Wolfman, S.A., Cortina, T.J., Walker, E.L. (eds.) Proceedings of the 41st ACM
Technical Symposium on Computer Science Education, SIGCSE 2010, Milwaukee,
Wisconsin, USA, March 10-13, pp. 22–26. ACM (2010)

41. Goode, J., Margolis, J.: Exploring computer science: A case study of school reform.
Trans. Comput. Educ. 11, 12:1–12:16 (2011)

42. Denning, P.J.: Computing is a natural science. Commun. ACM 50, 13–18 (2007)
43. Wing, J.M.: Computational thinking. Commun. ACM 49, 33–35 (2006)
44. National Research Council: Report of a Workshop on the Scope and Nature of Com-

putational Thinking (2010), http://www.nap.edu/catalog.php?record_id=12840
45. Marghitu, D., Fuller, M., Brahim, T.B., Banu, E.: Auburn university robotics and

computer literacy K-12 engineering camps: A success story. In: Bernal, B. (ed.)
ASEE-SE 2009, GA USA, April 5-7. Southern Polytechnic State University, Mari-
etta (2009)

46. Ward, B., Bell, T., Marghitu, D., Lambert, L.: Teaching computer science concepts
in Scratch and Alice. The Journal of Computing Sciences in Colleges 26, 173–180
(2010)

47. Thompson, D., Bell, T.: Virtual worlds: Evaluating CS education activities through
automated monitoring. In: Pirkul, H., Spong, M.W., Shah, R., Suh, S. (eds.) Society
for Design and Process Science, SDPS 2010, Dallas, Texas, pp. 1–7 (2010)

48. Voigt, J., Bell, T., Aspvall, B.: Competition-style programming problems for
computer science unplugged activities. In: Verdu, E., Lorenzo, R., Revilla, M.,
Regueras, L. (eds.) A New Learning Paradigm: Competition Supported by Tech-
nology, CEDETEL, Boecillo, Spain, pp. 207–234 (2009)

49. Magnusson, W.E., Mourão, G.: Statistics without Math. Sinauer Associates (2004)
50. Koblitz, N.: The case against computers in K-13 math education (kindergarten

through calculus). The Mathematical Intelligencer 18, 9–16 (1996)
51. Fellows, M., Parberry, I.: SIGACT trying to get children excited about CS. Com-

puting Research News 7 (1993)
52. Nishida, T., Kanemune, S., Idosaka, Y., Namiki, M., Bell, T., Kuno, Y.: A CS

Unplugged design pattern. In: Proceedings of the 40th SIGCSE Technical Sympo-
sium on Computer Science Education, SIGCSE 2009, Chattanooga, TN, USA, pp.
231–235. ACM, New York (2009)

53. Taub, R., Ben-Ari, M., Armoni, M.: The effect of CS unplugged on middle-school
students’ views of CS. In: Brézillon, P., Russell, I., Labat, J.M. (eds.) Proceedings of
the 14th Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education, ITiCSE 2009, Paris, France, July 6-9, pp. 99–103. ACM (2009)

54. Feaster, Y., Segars, L., Wahba, S.K., Hallstrom, J.O.: Teaching CS unplugged in
the high school (with limited success). In: Rößling, G., Naps, T.L., Spannagel,
C. (eds.) Proceedings of the 16th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, ITiCSE 2011, Darmstadt, Germany,
June 27-29, pp. 248–252. ACM (2011)

55. Carmichael, G.: Girls, computer science, and games. SIGCSE Bull 40, 107–110
(2008)

56. Hart, M., Early, J.P., Brylow, D.: A novel approach to K-12 CS education: linking
mathematics and computer science. In: Dougherty, J.D., Rodger, S.H., Fitzgerald,
S., Guzdial, M. (eds.) Proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education, SIGCSE 2008, Portland, OR, USA, pp. 286–290.
ACM (2008)

http://www.nap.edu/catalog.php?record_id=12840

456 T. Bell, F. Rosamond, and N. Casey

57. Lambert, L., Guiffre, H.: Computer science outreach in an elementary school. J.
Comput. Small Coll. 24, 118–124 (2009)

58. Groover, T.R.: Using games to introduce middle school girls to computer science.
J. Comput. Small Coll. 24, 132–138 (2009)

59. Curzon, P., McOwan, P.W.: Engaging with computer science through magic shows.
In: Proceedings of the 13th Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE 2008, pp. 179–183. ACM, New York (2008)

60. Cottam, J.A., Foley, S.S., Menzel, S.: Do roadshows work?: examining the effective-
ness of just be. In: Lewandowski, G., Wolfman, S.A., Cortina, T.J., Walker, E.L.
(eds.) Proceedings of the 41st ACM Technical Symposium on Computer Science
Education, SIGCSE 2010, Milwaukee, Wisconsin, USA, March 10-13, pp. 17–21.
ACM (2010)

61. Morreale, P., Joiner, D.: Reaching future computer scientists. Commun. ACM 54,
121–124 (2011)

62. Hart, M.L.: Making contact with the forgotten K-12 influence: are you smarter
than your 5th grader? In: Proceedings of the 41st ACM Technical Symposium on
Computer Science Education, SIGCSE 2010, pp. 254–258. ACM, New York (2010)

63. Carruthers, S.: Grasping graphs. Master of Science thesis, University of Victoria,
Victoria, BC (2010), http://hdl.handle.net/1828/3193

64. Carruthers, S., Milford, T., Pelton, T., Stege, U.: Draw a social network. In: Pro-
ceedings of the 16th Annual Joint Conference on Innovation and Technology in
Computer Science Education, ITiCSE 2011, pp. 178–182. ACM, New York (2011)

65. Bell, T., Curzon, P., Cutts, Q., Dagiene, V., Haberman, B.: Overcoming Obstacles
to CS Education by Using Non-programming Outreach Programmes. In: Kalaš,
I., Mittermeir, R.T. (eds.) ISSEP 2011. LNCS, vol. 7013, pp. 71–81. Springer,
Heidelberg (2011)

66. Fellows, M.: The heart of puzzling: Mathematics and computer games. In: Pro-
ceedings of the 1996 Computer Games Developers Conference, pp. 109–120. Miller
Freeman (1996)

http://hdl.handle.net/1828/3193

FPT Suspects and Tough Customers:

Open Problems of Downey and Fellows

Fedor V. Fomin1 and Dániel Marx2

1 Department of Informatics
University of Bergen, Norway

2 Computer and Automation Research Institute
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

Abstract. We give an update on the status of open problems from the
book “Parameterized Complexity” by Downey and Fellows.

1 Introduction

Downey and Fellows’ 1999 monograph [14] contains a list of open problems
which strongly influenced the development of Parameterized Complexity in the
following decade. Here we survey the current status of these problems.

Downey and Fellows partitioned their list of problems into two parts: “A
Lineup of FPT Suspects” and “A Lineup of Tough Customers.” While within
the time some of the FPT suspects appeared to be tough customers and, vice
versa, some of the tough customers turned to be not that tough, in our survey
we decided to keep the original order and partition.

We do not provide definitions of classes FPT, XP, and W-hierarchy, referring
to the book of Downey and Fellows [14], as well to more recent monographs of
Flum and Grohe [18], and Niedermeier [37].

It is worthwhile to look back on this list now, more than 10 years later of its
publication, and to try to see what we can learn from its history. An immediate
and somewhat surprising observation is that with the exception of two problems,
all the questions were resolved in the positive by fixed-parameter tractability re-
sults, even many of those which were classified as “tough customers” by Downey
and Fellows. One can say that the algorithmic side of fixed-parameter tractabil-
ity developed much more dramatically since 1999 than the complexity side. In
the past 10 years, several fundamental and powerful techniques were introduced
into the positive toolkit of fixed-parameter tractability (e.g., bidimensionality,
iterative compression, algebraic techniques, inclusion-exclusion, various forms of
randomization, etc.). On the other hand, while W[1]-hardness proofs got more
streamlined over the years and we have now a better understanding of how to
obtain hardness results for certain types of problems (e.g., for planar or bounded-
treewidth problems), we do not have such a richness of standard techniques as
in the case of algorithmic results. For most W[1]-hardness proofs, we still have
to roll up our sleeves and reduce from Maximum Clique by constructing ap-
propriate gadgets. If this trend continues, then we can expect to see further

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 457–468, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

458 F.V. Fomin and D. Marx

exciting developments in parameterized algorithmic techniques for several years.
Apparently, the tools and theory of fixed-parameter tractability are even more
deep and diverse than what Downey and Fellows expected in 1999 (and possi-
bly what we see now). It is conceivable that it many cases, the main roadblock
to understanding the complexity of a problem is not our limited ability to do
W[1]-hardness proofs, but the fact that the right algorithmic technique for the
problem is still waiting to be discovered.

2 A Lineup of FPT Suspects

Topological Containment FPT
Instance: An undirected graph G
Parameter: A graph H
Question: Is H topologically contained in G?

Graph H is topologically contained in G if a subdivision of H is a subgraph
of G. The problem is in XP because one can guess all possible mapping of
vertices of H into G and then for each guess apply the disjoint path algorithm of
Robertson and Seymour [39]. The problem was shown to be in FPT by Grohe,
Kawarabayashi, Marx, and Wollan in 2011 [23]. For every fixed undirected graph
H , they gave anO(|V (G)|3) time algorithm for testing if a given graphG contains
H topologically.

Immersion Order Test FPT
Instance: An undirected graph G
Parameter: A graph H
Question: Does H has an immersion in G?

An immersion of graphH into graphG is a mapping of vertices ofH into vertices
of G such that edges of H correspond to edge-disjoint paths of G. The prob-
lem is in FPT and solvable in O(|V (G)|3) time by reduction to Topological

Containment [23].

Directed Feedback Vertex Set FPT
Instance: A directed graph G
Parameter: A positive integer k
Question: Is there a set S of k vertices such that each directed cycle of G
contains a member of S?

FPT Suspects and Tough Customers: Open Problems of Downey and Fellows 459

The problem was shown to be in FPT by Chen, Liu, Lu, O’Sullivan, and Razgon
in 2008 [6,7]. The running time of the algorithm is 4kk!nO(1). It remains open
if there exist a single exponential algorithm for Directed Feedback Vertex

Set even on planar graphs. The existence of polynomial kernel is also open.
The undirected variant of the problem, Feedback Vertex Set, received much
more attention: the problem was proved to be in FPT by a simple combinatorial
algorithm already in [13], it is known to be solvable in single exponential time
[10,25], and admits a polynomial kernel [43].

Planar Directed Disjoint Paths Open
Instance: A directed planar graph G and k pairs 〈r1, s1〉, . . . , 〈rk, sk〉 of
vertices of G
Parameter: k
Question: Does G have k vertex-disjoint paths P1, . . . , Pk with Pi running
from ri to si?

The problem is open. Problem is in XP: Schrijver [41] showed that the problem is
polynomial-time solvable for every fixed k. We remark that the paper of Schrijver
is self-contained and in particular it does not use results from Graph Minors
theory. The NP-hardness of the problem follows from the fact that even the
undirected problem is NP-hard on planar graphs. For general graphs, the directed
problem is NP-hard already for k = 2 [19].

Planar t-Normalized Weighted Satisfiability FPT
Instance: A planar t-normalized formula X
Parameter: A positive integer k
Question: Does X have a satisfying assignment of weight k?

A Boolean formula is t-normalized if it is of the form
∧∨∧

. . . of literals with
t−1 alternations of the

∧
and

∨
quantifiers. For example, a 2-normalized formula

is a CNF formula.
A CNF formula is planar if the bipartite graph of the formula (where one class

is the set of clauses, the other class is the set of variables) is planar. However, it
is not clear what the definition of a planar t-normalized formula should be and
it is not defined in [14]. One obvious definition could be that the Boolean circuit
describing the formula is planar. The problem with this definition is that “planar
CNF formula” and “planar 2-normalized formula” are two different notions: the
latter variant is more restrictive, as the Boolean circuit contains an output gate
that is connected to all clauses. This suggests another, less restrictive, definition:
a t-normalized formula is planar if the Boolean circuit describing the formula
with the output gate removed is planar.

460 F.V. Fomin and D. Marx

The problem is FPT even with the less restrictive definition of planarity. This
follows from the fact that, for every fixed k and t, there is a first-order formula
(over an appropriate planar structure) that expresses the existence of a weight-k
satisfying assignment. Therefore, a powerful general result of Frick and Grohe
[20] implies a linear-time algorithm for every fixed k and t. To construct this
formula, one needs to express that there exists k variables such that the output
gate (or more precisely, every input of the output

∧
gate) is satisfied. As the

formula is t-normalized, at most t quantifiers are needed to express that a gate
is satisfied.

We sketch how a direct solution can be obtained by the standard layering and
bounded-treewidth techniques on planar graphs (“Baker’s shifting strategy”).
The all-zero assignment determines a “standard” value vg for every gate g. The
key observation is that the only way g can have the opposite of vg in some
assignment if g is at distance at most t from a variable with value 1. This means
that if we partition the graph into layers, then in every assignment of weight k,
all but at most (2t+1)k layers have the property that every gate has the standard
value. By starting at some layer i ≤ (2t + 1)k and forcing every (2t + 1)k + 1-
st layer to take the standard value, the problem falls apart into independent
subproblems, each having at most (2t+1)k layers. Graphs with bounded number
of layers are known to have bounded treewidth, hence the subproblems can be
solved using standard techniques. Finally, our observation above implies that if
there is a solution, then at least one choice of starting layer i is consistent with
this solution, hence our algorithm finds a solution when considering this choice
of i.

Planar Multiway Cut W[1]-hard
Instance: A weighted undirected planar graph G with terminals
{x1, . . . , xk} and a positive integer M
Parameter: k
Question: Is there a set of edges of total weight ≤ M whose removal
disconnects each terminal from all others?

The problem is known to be in XP: it can be solved in time nO(k) [27,9] and more

recently in time 2O(k) · nO(
√
k) [31]. The problem was shown to be W[1]-hard in

2011 [34]. Furthermore, assuming the Exponential Time Hypothesis [28], there

is no f(k)no(
√
k) time algorithm for the problem.

For general graphs, the problem is NP-hard already for k = 3 [9]. When
parameterized by the total weight of the solution, the problem is FPT on gen-
eral graphs [35,5,24,8] (the number of terminals can be arbitrary). The vertex-
removal variant where the parameter is the total weight of the vertices to be
deleted is also in FPT: the most recent algorithm of Cygan et al. [8] achieves
the same running time for both versions.

FPT Suspects and Tough Customers: Open Problems of Downey and Fellows 461

3 A Lineup of Tough Customers

Fixed Alphabet Longest Common Subsequence (LCS) W[1]-hard
Instance: k sequences Xi over an alphabet Σ of fixed size and a positive
integer m
Parameter: k
Question: Is there a string X ∈ Σ∗ of length m that is a subsequence of
each of the Xi?

Note that the characters in the subsequence X need not be consecutive in Xi. A
simple O(nk+1) time dynamic programming algorithm shows that the problem is
in XP. When the size of the alphabet Σ is not bounded or when the parameter is
k+ |Σ|, the problem was known to be W[t]-hard for every t ≥ 1 already in 1995
[3,4]. Pietrzak in 2003 [38] showed that the problem is W[1]-hard parameterized
by k, even if the alphabet is binary.

Bounded Hamming Weight Discrete Logarithm Open
Instance: An n-bit prime p, a generator g of F ∗

p , an element a ∈ F ∗
p

Parameter: A positive integer k
Question: Is there a positive integer x whose binary representation has at
most k 1’s (that is, x has a Hamming weight of k) such that a = gx?

Here F ∗
p is the multiplicative group of non-zero integers modulo p. Element

g ∈ F ∗
p is a generator of group F ∗

p if for every element a, there exists an integer
x with a = gx. Note that there is a unique 1 ≤ x ≤ p − 1 with a = gx, but the
problem definition does not insist that x should be less than p. To show that the
problem is in XP, we need to argue that the representation of x is at most kn
bits long (hence there are at most (kn)k different possibilities for x to try). See
[17] for discussion and related problems.

The famous Discrete Logarithm problem is to find the unique 1 ≤ x ≤
p−1 with a = gx; the hardness of some cryptosystems are based on the assumed
hardness of this problem. Because the problem definition does not require x ≤ p,
it is not completely obvious how the two problems relate to each other.

Crossing Number FPT
Instance: An undirected graph G
Parameter: A positive integer k
Question: Is the crossing number of G is at most k?

The crossing number of a graph is the minimum number of edge crossings in a
planar drawing of the graph (with the usual technical assumptions, such as no

462 F.V. Fomin and D. Marx

three edges cross at the same point). A graph is a planar graph if and only if
its crossing number is 0. The problem asks if G can be drawn with at most k
edge crossings. The problem was solved by Grohe in 2001 [22,21], who showed
that the problem is solvable in time O(|V (G)|)2 for every fixed k. A linear-time
algorithm is claimed in [30].

Downey and Fellows formulate the Crossing Number problem as “Can G be
embedded in the plane with at most k edges crossing?”, which can be interpreted
as finding an embedding in which at most k edges participate in crossings. This
is different from the classical definition of crossing number, but could be an
interesting problem on its own right. A related problem is deciding if a graph
is in the class “Planar+ke”, meaning that it can be made planar by removing
at most k edges. A linear-time algorithm is claimed also for this problem by
Kawarabayashi and Reed [30]. Note that having at most k edges participating
in crossings and removing k edges to make the graph planar are two different
problems: if a graph has an embedding where k edges participate in crossings,
then the graph can be made planar by removing less than k edges (as there is
no need to remove all the edges participating in crossings).

Minimum Degree Graph Partition FPT
Instance: An undirected graph G
Parameter: Positive integers k and d
Question: Can V (G) be partitioned into disjoint subsets V1, . . . , Vm so
that for 1 ≤ i ≤ m, |Vi| ≤ k and at most d edges have exactly one endpoint
in Vi?

Langston and Plaut [32] observed in 1998 that the graphs having such partitions
for a fixed k and d are closed under taking immersions. Robertson and Seymour
[40] proved that immersion is a well-quasi-ordering, which means that classes of
graphs closed under immersion can be characterized by a finite number of forbid-
den immersed graphs. Together with the fact that the disjoint path algorithm
of Robertson and Seymour [39] implies, for every fixed H , a polynomial-time
algorithm for testing if H is immersed in G, it follows that the problem is in XP
jointly parameterized by k and d. The result in 2011 that immersion testing is
FPT [23] immediately implies that Minimum Degree Graph Partition is in
(nonuniform) FPT.

Lokshtanov and Marx [33] showed in 2011 that the problem is in FPT pa-
rameterized by k or by d by establishing a more general result. In the (μ, p, q)-
Partition problem, the task is to find a partition of the vertices where each
cluster C satisfies the requirements that at most q edges leave C and μ(C) ≤ p.
It was shown in [33] that when μ is one of the following functions—number of
nonedges in the cluster, maximum degree of nonedges in the cluster, number of
vertices in the cluster—(μ, p, q)-Partition can be solved in time 2O(p)nO(1) and
in time 2O(q)nO(1), i.e., the problem is fixed-parameter tractable parameterized
by p or by q.

FPT Suspects and Tough Customers: Open Problems of Downey and Fellows 463

Short Cheap Tour FPT
Instance: A graph G, integer S, and edge weighting w:E(G) → Z

Parameter: A positive integer k
Question: Is there a tour through at least k nodes of G of cost at most
S?

As observed by Fellows [16] in 2001, the problem is FPT by a simple reduction
to finding a minimum weight cycle of length exactly k, which can be solved by
color coding [2]. We sketch the reduction. Let G′ be a complete graph on the
same set of vertices as G, and let the weight of edge uv be the length of the
shortest path between u and v in G. It is easy to see that G has a tour visiting
at least k nodes of cost at most S if and only if G′ has a cycle of length exactly
k of cost at most S.

The variant of the problem where we ask that the cost of the tour is exactly
S is W[1]-hard [12].

Polymatroid Recognition Open
Instance: A k-polymatroid M
Parameter: A positive integer k
Question: Is M hypergraphic?

Let E be a finite set. A polymatroid is a function ρ : 2E → Z with the following
properties:

1. ρ(∅) = 0,

2. ρ(A) ≤ ρ(B) for every A ⊆ B ⊆ E, and

3. ρ(A) + ρ(B) ≥ ρ(A ∩B) + ρ(A ∪B).

A k-polymatroid is a polymatroid with ρ(e) ≤ k for every e ∈ E. Given a
hypergraph H with vertex set V and edge set E, the hypergraphic polymatroid
of H is a function χH : 2E → Z defined by

χH(A) = |A| − κ(H |A),

where A is the set of vertices contained in the edge set A, and κ(H |A) is the
number of components of the hypergraph H restricted to A (see [45] for more
details). A polymatroid is hypergraphic, if it is the hypergraphic polymatroid of
a hypergraph.

A word of caution should be said on how the polymatroid is given in the input.
One possibility is that it is given by an oracle, but then the problem does not
fit the framework of complexity theory defined by problems as languages (but
it is still an interesting question if f(k) · nO(1) oracle calls are sufficient for the
problem).

464 F.V. Fomin and D. Marx

Chain Minor Ordering Open
Instance: A finite poset Q
Parameter: A finite poset P
Question: Is P a chain minor of Q?

Let P = (V,<) be a poset. A chain is a sequence of elements x1 < x2 < . . . < xn.
We say that P = (V,<) is a chain minor P ′ = (V ′, <) if there is a partial mapping
ρ : V ′ → V with the following property: for every chain C of P , there is a chain
C′ of P ′ such that ρ restricted to C′ is an isomorphism of chains from C′ to C.
Gustedt [26] showed that the problem is in XP and that the chain minor relation
is a well-quasi-ordering. The problem remains open.

Short Generalized Hex Open
Instance: An undirected graph G with two distinguished vertices v1 and
v2
Parameter: A positive integer k
Question: Does player one have a winning strategy of at most k moves in
Generalized Hex?

In Generalized Hex two players play on a graph with white and black pebbles.
Player one plays with white and player two with black pebbles. Player one starts
by placing a white pebble on a vertex of G. Then alternately players make moves,
at each move a pebble is placed on an occupied vertex. Player one wins if he can
construct a path of white vertices from v1 to v2.

To the best of our knowledge, the problem remains open. Downey and Fellows
[14] proposed that the problem is a good candidate for AW[*]-completeness.
Towards this goal, Allan [42] showed that the problem is in AW[*].

Jump Number FPT
Instance: A poset P
Parameter: A positive integer k
Question: Is the jump number of P at most k?

Given a finite partially ordered set (or poset) P = (V,<P), let L = (V,<L) be
a linear extension of P , that is a total order on the same ground set V of P ,
such that each couple of elements u, v ∈ V for which u <P v implies u <L v. A
consecutive pair (vi, vi+1) of elements in L is a jump or setup of L if vi �<P vi+1.
The jump number of P is the minimum number of jumps in L, where minimum
is taken over all the linear extensions L of P .

The problem was shown to be in XP by El-Zahar and Schmerl [15] in 1984.
McCartin showed in 2001 [36] that the problem is in FPT.

FPT Suspects and Tough Customers: Open Problems of Downey and Fellows 465

Polynomial Product Identity Open
Instance: Two sets of k multivariate polynomials pi and qi for i = 1, . . . , k
Parameter: k
Question: Does the following identity hold?

k∏
i=1

pi =

k∏
i=1

qi?

The polynomials in the input are given by listing the monomials with nonzero
coefficients. Note that there is no bound on the number of variables or on the
degree of the polynomials. By multiplying out each product, we get at most nk

monomials and we can compare the two sides to test for equality. Therefore the
problem is in XP.

As discussed in [29, Section 4.3], the Schwartz-Zippel Lemma provides a way
of solving the problem in randomized polynomial time and therefore it is in ran-
domized FPT. Thus the problem is unlikely to be W[1]-hard. It could still be a
nontrivial question if the problem is in deterministic FPT. Answering this ques-
tion may tell us something interesting about the tradeoff between randomness
and running time.

Shortest Vector Open
Instance: A basis X = {x1, x2, . . . , xn} ⊂ Zn for a lattice L
Parameter: A positive integer k
Question: Is there a non-zero vector x ∈ L, such that ‖x‖2 ≤ k?

Here‖x‖denotes theEuclidean (�2) normofx = (a1, . . . , ab), definedas
√∑n

i=1 a
2
i .

The problem was shown to be NP-hard hard under randomized reduction by Ajtai
in 1998 [1], settling a longstanding open problem. The problem is in XP: every vec-
tor xwith ‖x‖2 ≤ k contains at most k nonzero coordinates. It could be interesting
to investigate the problem for other �p norms as well.

Even Set Open
Instance: An undirected red/blue bipartite graph G = (R,B, E)
Parameter: A positive integer k
Question: Is there a non-empty set of at most k vertices R ⊆ R, such that
each member of B has an even number of neighbors in R?

Open. The exact version of the problem, where |R| = k, is W[1]-hard [11]. Vardy
[44] proved the NP-completeness of the problem in 1997, settling a longstanding

466 F.V. Fomin and D. Marx

open problem. There are other equivalent ways of stating the problem, showing
that this problem appears naturally in many contexts:

– Given a hypergraph H , is there a nonempty set S of at most k vertices, such
that |e ∩ S| is even for every hyperedge e?

– Given a matrix A over the two-element field GF [2], is there a nonzero vector
x having at most k nonzero coordinates and satisfying Ax = 0?

– Given a binary linear code defined by a matrix A over GF [2], are there two
codewords with Hamming-distance at most k?

– Given a binary matroid represented by a matrix A over GF [2], does it have
a cycle of length at most k?

Acknowledgement. Research of the authors was supported by the European
Research Council (ERC) grants “Rigorous Theory of Preprocessing,” reference
267959, and “PARAMTIGHT: Parameterized complexity and the search for
tight complexity results,” reference 280152.We are also grateful to Saket Saurabh
for helpful comments on this manuscript.

References

1. Ajtai, M.: The shortest vector problem in �2 is NP-hard for randomized reductions.
In: STOC, pp. 10–19 (1998)

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. Assoc. Comput. Mach. 42(4),
844–856 (1995)

3. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hallett, M.T., Wareham, H.T.:
Parameterized complexity analysis in computational biology. Computer Applica-
tions in the Biosciences 11(1), 49–57 (1995)

4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Wareham, H.T.: The parameter-
ized complexity of sequence alignment and consensus. Theor. Comput. Sci. 147(1,
2), 31–54 (1995)

5. Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum
node multiway cut problem. Algorithmica 55(1), 1–13 (2009)

6. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. J. ACM 55(5), Art. 21, 19 (2008)

7. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. In: STOC, pp. 177–186 (2008)

8. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On Multiway Cut
Parameterized above Lower Bounds. In: Marx, D., Rossmanith, P. (eds.) IPEC
2011. LNCS, vol. 7112, pp. 1–12. Springer, Heidelberg (2012)

9. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

10. Dehne, F., Fellows, M., Langston, M.A., Rosamond, F., Stevens, K.: An O(2O(k)n3)
FPT Algorithm for the Undirected Feedback Vertex Set Problem. In: Wang, L.
(ed.) COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Heidelberg (2005)

11. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I:
Basic results. SIAM J. Comput. 24(4), 873–921 (1995)

12. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II:
On completeness for W[1]. Theor. Comput. Sci. 141(1, 2), 109–131 (1995)

FPT Suspects and Tough Customers: Open Problems of Downey and Fellows 467

13. Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Feasible
Mathematics II, pp. 219–244. Birkhäuser, Boston (1995)

14. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, New York
(1999)

15. El-Zahar, M.H., Schmerl, J.H.: On the size of jump-critical ordered sets. Order 1(1),
3–5 (1984)

16. Fellows, M.R.: Parameterized Complexity: The Main Ideas and Some Research
Frontiers. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp.
291–307. Springer, Heidelberg (2001)

17. Fellows, M.R., Koblitz, N.: Fixed-Parameter Complexity and Cryptography. In:
Moreno, O., Cohen, G., Mora, T. (eds.) AAECC 1993. LNCS, vol. 673, pp. 121–
131. Springer, Heidelberg (1993)

18. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Berlin (2006)

19. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theoret. Comput. Sci. 10(2), 111–121 (1980)

20. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable
structures. J. ACM 48(6), 1184–1206 (2001)

21. Grohe, M.: Computing crossing numbers in quadratic time. In: STOC, pp. 231–236
(2001)

22. Grohe, M.: Computing crossing numbers in quadratic time. J. Comput. Syst.
Sci. 68(2), 285–302 (2004)

23. Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological sub-
graphs is fixed-parameter tractable. In: Proceedings of the 43nd ACM Symposium
on Theory of Computing, pp. 479–488 (2011)

24. Guillemot, S.: FPT algorithms for path-transversal and cycle-transversal problems.
Discrete Optimization 8(1), 61–71 (2011)

25. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based
fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Com-
put. Syst. Sci. 72(8), 1386–1396 (2006)

26. Gustedt, J.: Well quasi ordering finite posets and formal languages. J. Comb. The-
ory, Ser. B 65(1), 111–124 (1995)

27. Hartvigsen, D.: The planar multiterminal cut problem. Discrete Applied Mathe-
matics 85(3), 203–222 (1998)

28. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)

29. Johnson, D.S.: A catalog of complexity classes. In: Handbook of Theoretical Com-
puter Science. in Algorithms and Complexity, vol. (A), pp. 67–161 (1990)

30. Kawarabayashi, K., Reed, B.A.: Computing crossing number in linear time. In:
Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC
2007), pp. 382–390. ACM (2007)

31. Klein, P.N., Marx, D.: Solving planar k-terminal cut in O(nc
√

k) time. To appear
in ICALP 2012 (2012)

32. Langston, M.A., Plaut, B.C.: On algorithmic applications of the immersion or-
der: An overview of ongoing work presented at the Third Slovenian International
Conference on Graph Theory. Discrete Mathematics 182(1-3), 191–196 (1998)

33. Lokshtanov, D., Marx, D.: Clustering with Local Restrictions. In: Aceto, L., Hen-
zinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 785–797.
Springer, Heidelberg (2011)

468 F.V. Fomin and D. Marx

34. Marx, D.: A tight lower bound for planar multiway cut with fixed number of
terminals. To appear in ICALP 2012 (2012)

35. Marx, D.: Parameterized graph separation problems. Theoret. Comput. Sci. 351(3),
394–406 (2006)

36. McCartin, C.: An improved algorithm for the jump number problem. Inf. Process.
Lett. 79(2), 87–92 (2001)

37. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in
Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

38. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest com-
mon supersequence and longest common subsequence problems. J. Comput. Syst.
Sci. 67(4), 757–771 (2003)

39. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths proble. J.
Combin. Theory Ser. B 63(1), 65–110 (1995)

40. Robertson, N., Seymour, P.D.: Graph minors XXIII. Nash-Williams’ immersion
conjecture. J. Comb. Theory, Ser. B 100(2), 181–205 (2010)

41. Schrijver, A.: Finding k disjoint paths in a directed planar graph. SIAM J. Com-
put. 23(4), 780–788 (1994)

42. Scott, A.: On the parameterized complexity of finding short winning strategies in
combinatorial games. Ph.D. thesis, University of Victoria (2009)

43. Thomassé, S.: A quadratic kernel for feedback vertex set. ACM Trans. Algorithms
6(2) (2010)

44. Vardy, A.: Algorithmic complexity in coding theory and the minimum distance
problem. In: STOC, pp. 92–109 (1997)

45. Vertigan, D., Whittle, G.: Recognizing polymatroids associated with hypergraphs.
Combinatorics, Probability & Computing 2, 519–530 (1993)

What’s Next? Future Directions

in Parameterized Complexity

Dániel Marx�

Computer and Automation Research Institute
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary
dmarx@cs.bme.hu

Abstract. The progress in parameterized complexity has been very sig-
nificant in recent years, with new research questions and directions,
such as kernelization lower bounds, appearing and receiving consider-
able attention. This speculative article tries to identify new directions
that might become similar hot topics in the future. First, we point out
that the search for optimality in parameterized complexity already has
good foundations, but lots of interesting work can be still done in this
area. The systematic study of kernelization became a very successful re-
search direction in recent years. We look at what general conclusions one
can draw from these results and we argue that the systematic study of
other algorithmic techniques should be modeled after the study of ker-
nelization. In particular, we set up a framework for understanding which
problems can be solved by branching algorithms. Finally, we discuss that
the domain of directed graph problems is a challenging area which can
potentially see significant progress in the following years.

1 Introduction

There was a guy whose name was Mike.
Loved math, surf, wine, and the like.
Once he climbed up a graph,
Took a photograph
And said: what a wonderful hike!

Zsuzsa Mártonffy

The field of parameterized complexity progressed enormously since the publica-
tion of Downey and Fellows’ monograph [44] in 1999. New techniques and new
discoveries opened up new research directions and changed the field, sometimes
in unexpected ways. Kernelization, a basic algorithmic technique for obtaining
fixed-parameter tractability results, has evolved into a subfield of its own by
better understanding of its applicability and the possibility of proving strong

� Dedicated to Michael R. Fellows on the occasion of his 60th birthday. Research sup-
ported by the European Research Council (ERC) grant “PARAMTIGHT: Parame-
terized complexity and the search for tight complexity results,” reference 280152.

H.L. Bodlaender et al. (Eds.): Fellows Festschrift, LNCS 7370, pp. 469–496, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

470 D. Marx

upper and lower bounds. As explained by Langston elsewhere in this volume
[73], the fact that the Graph Minors Theory of Robertson and Seymour (culmi-
nating in papers [94, 93]) implies the existence of polynomial-time algorithms in
a nonconstructive way was one of the early motivations for parameterized com-
plexity. In the past decade, an entirely different aspect of Graph Minors Theory
has been developed, which allows us for example to generalize in many cases
fixed-parameter tractability results from planar graphs to H-minor free graphs
(see the survey of Thilikos in this volume [96]). A useful product of this devel-
opment is the concept of bidimensionality, which changed substantially the way
we look at planar graph problems [36–38]. Even simple techniques can move the
field into new directions: iterative compression, introduced by Reed et al. [92],
turned out to be a key step in proving the fixed-parameter tractability of im-
portant problems such as Bipartite Deletion [92], Almost 2SAT [91], and
Directed Feedback Vertex Set [25], and changed the way we look at prob-
lems involving deletions.

One could list several other aspects in which the field evolved and changed
in the past decade. However, the purpose of this article is not to review these
developments. Rather than that, the purpose of this article is to propose some
new directions for future research. Only time and further work can tell if these
directions are as fruitful as the ones listed above.

The first topic we discuss is the optimality program of parameterized com-
plexity: understanding quantitatively what is the best we can achieve for a par-
ticular problem. That is, instead of just establishing fixed-parameter tractability,
we eventually want to understand the best possible f(k) in the running time.
This is not really a new direction, as the literature contains several results of this
type. However, we feel that it is important to emphasize here that the search for
optimality is a viable and very timely research program which should be guiding
the development of the field in the following years.

Kernelization is perhaps the most practical technique in the arsenal of fixed-
parameter tractability, thus it is not surprising that its methods and applicability
have received particular attention in the literature. In the past few years, re-
search on kernelization has increased enormously after it had been realized that
the existence of polynomial kernels is a mathematically deep and very fruitful
research question, both from the algorithmic and complexity points of view. A
detailed overview of the results on kernelization is beyond the scope of this arti-
cle; the reader is referred to [84, 12, 76] for a survey of recent results. However,
we briefly review kernelization from the point of view of the optimality program.
What we would like to point out is that the study of kernelization should be
interpreted as a search for a tight understanding of the power of kernelization.
That is, the question guiding our research is not which problems can be solved
by kernelization, but rather which problems should be solved by kernelization.

Kernelization is just one technique in parameterized complexity and its sys-
tematic study opened up a whole new world of research questions. Could it be
that exploring other basic techniques turns out to be as fruitful as the study of
kernelization? Besides kernelization, branching is the most often used technique,

What’s Next? Future Directions in Parameterized Complexity 471

thus it could be the next natural target for rigorous analysis. We propose a
framework in which one can study whether a problem can be solved by branch-
ing or not. Based on what we have learned from the study of kernelization, one
should look at the study of branching also from the viewpoint of optimality: the
goal is to understand for which problems is branching the right way of solution.
The description and discussion of this framework is the only part of the paper
containing new technical ideas. The presentation of this framework is intention-
ally kept somewhat informal, as going into the details of irrelevant technical
issues would distract from the main message.

The last direction we discuss is the study of algorithmic problems on directed
graphs. Perhaps it is premature to call such a wide area with disconnected re-
sults as a research direction. However, we would like to point out the enormous
potential in pursuing questions in this direction. Problems on directed graphs
are much more challenging than their undirected counterparts, as we are in a
completely different world where many of the usual tools do not help at all. Still,
there are directed problems that have been tackled successfully in recent years,
for example, Directed Feedback Vertex Set [25] or Directed Multiway

Cut [26]. This suggests that it is not hopeless to expect further progress on
directed graphs, or even a general theory that is applicable for several problems.

2 The Optimality Program

Recall that a parameterized problem is fixed-parameter tractable (FPT) with a
given parameterization if there is an algorithm with running time f(k) · nO(1),
where n is the size of the instance, k is the value of the parameter associated with
the instance, and f is an arbitrary computable function depending only on the
parameter k (see the monographs [44, 50, 87] or the survey [41] in this volume
for more background). That is, the problem can be solved in polynomial time
for every fixed value of the parameter k and the exponent does not depend on
the parameter. Intuitively, we would like fixed-parameter tractability to express
that the problem has an “efficient” or “practical” algorithm for small values of
k. However, the definition only requires that f is computable and it can be any
fast growing, ugly function. And this is not only a hypothetical possibility: the
early motivation for parameterized complexity came from algorithmic results
based on the Graph Minors Theory of Robertson and Seymour, and the f(k) in
these algorithms are typically astronomical towers of exponentials, far beyond
any hope of practical use.

For most FPT problems, however, there are algorithms with “well-behaving”
f(k). In many cases, f(k) is ck for some reasonably small constant c > 0. For
example, Vertex Cover can be solved in time 1.2738k · nO(1) [23]. Sometimes

the function f(k) is even subexponential, e.g., c
√
k. It happens very often that by

understanding a problem better or by using more advanced techniques, better
and better FPT algorithms are developed for the same problem and a kind of
“race” is established to make f(k) as small as possible. Clearly, it would be very
useful to know if the current best algorithm can be improved further or it has

472 D. Marx

already hit some fundamental barrier. If a problem is NP-hard, then we cannot
expect f(k) to be polynomial. But is it possible that something very close to
polynomial, say klog log log k can be reached? Or are there problems for which the

best possible f(k) is very bad, say, of the form 22
2Ω(k)

? The optimality program
tries to understand and answer such questions.

In recent years, a lower bound technology was developed, which, in many
cases, is able to demonstrate the optimality of fixed-parameter tractability re-
sults. We sketch how such lower bounds can be proved using a complexity-
theoretic assumption called Exponential Time Hypothesis (ETH). (An alternate
way to discuss these results is via the complexity class M[1] and for some of the
results even the weaker FPT �= W[1] hypothesis is sufficient. However, to keep
our discussion focused, we describe only results based on ETH here.) For our
purposes, ETH can be stated as follows:

Conjecture 2.1 (Exponential Time Hypothesis [63]). 3-SAT cannot be
solved in time 2o(m), where m is the number of clauses.

This conjecture was first formulated by Impagliazzo, Paturi, and Zane [63].
More precisely, they stated a version of the conjecture saying that there is no
2o(n) ·mO(1) time algorithm, where n is the number of variables, and showed by
a reduction called the Sparsification Lemma that the two versions of the conjec-
ture are equivalent. Although there is no universal consensus in accepting ETH
(compared to more established conjectures such as P �= NP), it is consistent
with our current knowledge: after several rounds of improvement, the best algo-
rithm for n-variable m-clause 3-SAT has running time O(1.30704n) [60] and no
algorithm with subexponential running time in m seems to be in sight.

If we accept ETH, then we can obtain lower bounds for other problems through
reductions. Let us observe that standard NP-hardness reductions from 3-SAT
to, say, Independent Set are sensitive to the number of clauses in the input
instance. That is, there is a polynomial-time algorithm that, given an m-clause
3SAT instance φ, constructs a O(m)-vertex graph G and an integer k such that φ
is satisfiable if and only if G has an independent set of size k. Therefore, assuming
ETH, Independent Set cannot be solved in time 2o(n) on n-vertex graphs, as
this algorithm together with the reduction from 3SAT would give a 2o(m) time
algorithm for m-clause 3SAT. If we look at the literature on NP-hardness proofs,
then we can see that many other hardness proofs have this property. From these
hardness proofs, we can obtain results such as the following:

Corollary 2.2. Assuming ETH, there is no 2o(n) time algorithm for Inde-

pendent Set, Clique, Dominating Set, Hamiltonian Path on n-vertex
graphs.

This means that every algorithm for these problems has to run in time expo-
nential in the number of vertices or, in other words, there are no subexponential
FPT algorithms parameterized by the number of the vertices. A colloquial term
for algorithms that solve the problem in exponential time in the number of
vertices, possibly in a smart way, is “exact exponential-time algorithms” [52];

What’s Next? Future Directions in Parameterized Complexity 473

Corollary 2.2 can be interpreted as a lower bound on exact algorithms. However,
as the number of vertices is an upper bound on the size of the solution, it also
follows that there are no subexponential FPT algorithms parameterized by the
size of the solution:

Corollary 2.3. Assuming ETH, there is no 2o(k) ·nO(1) time algorithm for In-

dependent Set, Clique, Dominating Set, and k-Path, where k is the size
of the solution to be found.

There are FPT problems for which there are subexponential-time parameter-
ized algorithms. This is very common for planar problems: all the problems in

Corollary 2.3 are known to be solvable in time 2O(
√
k) · nO(1) on planar graphs.1

There are two main approaches for obtaining running time of this form on planar
graphs: using planar separator results [3] and bidimensionality theory [36]. On
the complexity side, if we look at the proofs showing the NP-hardness of these
problems in planar graphs, then all of them involve “crossover gadgets” to deal
with planarity. These gadgets induce a blowup in the size of the constructed in-
stance: it is no longer linear in the number of clauses, but quadratic. Therefore,
we get weaker lower bounds: we can only rule out the existence of algorithms

with running time 2O(
√
k) · nO(1).

Corollary 2.4. Assuming ETH, there is no 2o(
√
k) · nO(1) time algorithm for

Independent Set, Dominating Set, and k-Path on planar graphs, where k
is the size of the solution to be found.

Note that these lower bounds match the known 2O(
√
k) · nO(1) time algorithms

(up to the constant hidden by the big-O notation). These matching bounds can
be considered a major success of the optimality program so far. Initially looking
at planar problems, it is not obvious why square root is the function that should
appear in the running time, but we have learned that this is an inherent feature
of planarity and now we have a good understanding of both the upper bounds
and the lower bounds.

A planar problem which is not fully understood yet is Subgraph Isomor-

phism: given graphs H and G, does G has a subgraph isomorphic to H? On
planar graphs, the problem is known to be solvable in time 2O(k) · nO(1) [39],
where k is the number of vertices of H (improving an earlier kO(k) · nO(1) algo-
rithm [45]). Could it be that square root appears in this problem as well and

the running time can be improved further to 2O(
√
k) · nO(1)? There is no known

complexity result ruling out this possibility. Furthermore, significantly new tech-
niques would be required to rule out the existence of a 2o(k) · nO(1) algorithm
for the problem: as the problem is planar, typical reductions need to introduce
crossover gadgets, which would create a blowup in the size of the instance.

Subexponential-time FPT results are fairly standard for planar problems. It
is much more surprising if a problem on general graphs admits a subexponential-
time algorithm. Very recently, this turned out to be the case for the Chordal

1 Actually, Clique can be solved in polynomial time on planar graphs.

474 D. Marx

Completion problem (given a graph G and an integer k, decide if G can be
made chordal by adding at most k edges). Various 2O(k) · nO(1) time algorithms
are known for the problem [17, 65, 15]. Fomin and Villanger [54] gave a significant

improvement by presenting a 2O(
√
k log k)·nO(1) time algorithm. It is an interesting

question whether this running time can be further improved. As observed in [54],

the NP-hardness proofs imply that, assuming ETH, there is no 2o(k
1/6) · nO(1)

time algorithm. Therefore, currently there is a large gap between the best upper
and lower bounds.

Obtaining lower bounds of the form 2o(k)nO(1) or 2o(
√
k)nO(1) on parameter-

ized problems generally follows from the known NP-hardness reductions. How-
ever, there are some parameterized problems where f(k) is “slightly superexpo-
nential” in the best known running time: f(k) is of the form kO(k) = 2O(k log k).
Algorithms with this running time naturally occur when a search tree of height
at most k and branching factor at most k is explored, or when all possible per-
mutations, partitions, or matchings of a k element set are enumerated. In many
cases, the f(k) running time was later improved to 2O(k), often with significant
extra work or with the introduction of a new technique. We have seen an example
of this with the Subgraph Isomorphism problem on planar graphs. Another
example: Monien [85] in 1985 gave a k! ·nO(1) time algorithm for finding a cycle
of length k in a graph on n vertices. Alon, Yuster, and Zwick [6] introduced the
color coding technique in 1995 and used it to show that a cycle of length k can be
found in time 2O(k) ·nO(1). A very recent example is the case of the Hamiltonian

Cycle problem parameterized by treewidth. A wO(w) ·nO(1) time algorithm for
graphs of treewidth w follows from standard dynamic programming techniques
(see e.g., [50]). Very recently, Cygan et al. [30] introduced an elegant new tech-
nique called cut and count, and used it to design a (randomized) algorithm that,
given a tree decomposition of width w, solves the problem in time 4w · nO(1).

However, there are still a number of problems where the best running time
seems to be “stuck” at 2O(k log k) · nO(1). Recently, for some of these problems
matching lower bounds excluding running times of the form 2o(k log k) · nO(1)

were obtained under ETH [75] (see also [30] for further examples), showing the
optimality of these algorithms.

– The pattern matching problem Closest String (given k strings over an
alphabet Σ and an integer d, decide if there is a string whose Hamming-
distance is at most d from each of the k strings) is known to be solvable in
time 2O(d log d) ·nO(1) [57] or 2O(d log |Σ|) ·nO(1) [77]. Assuming ETH, there is
no 2o(d log d) · nO(1) and 2o(d log |Σ|) · nO(1) time algorithms [75].

– The graph embedding problem Distortion (decide whether a graph G has
a metric embedding into the integers with distortion at most d) can be solved
in time 2O(d log d) ·nO(1) [47]. Assuming ETH, there is no 2o(d log d) ·nO(1) time
algorithm [75].

– The Disjoint Paths problem can be solved in time in time 2O(w logw) ·nO(1)

on graphs of treewidth at most w [95]. Assuming ETH, there is no 2o(w logw) ·
nO(1) time algorithm [75].

What’s Next? Future Directions in Parameterized Complexity 475

We expect that many further results of this form can be obtained by using
the framework of [75]. Thus the existence of parameterized problems requiring
“slightly superexponential” time 2O(k log k) · |I|O(1) is not a shortcoming of al-
gorithm design or a pathological situation, but an unavoidable feature of the
landscape of parameterized complexity.

The results discussed so far show the optimality of some 2O(k) ·nO(1), 2O(
√
k) ·

nO(1), and 2O(k log k) ·nO(1) time algorithms. Are there natural problems for which

the optimum running time is of some other form, say, 2O(k2) · nO(1) or 22
O(k) ·

nO(1)? The curious problem Clique-or-Independent-Set (given a graph G
and an integer k, is there a set of k vertices that induce a clique or an independent
set?) can be solved in time 2O(k2) · nO(1) using a simple Ramsey argument ([69,
67]), thus it could be a candidate problem where this form of running time is
optimal. Planar Deletion (delete k vertices to make the graph planar) could
be a candidate for a natural problem where double-exponential dependence on k
is necessary. The fixed-parameter tractability results for Planar Deletion [83,
66] depend on solving the problem on bounded-treewidth graphs, and it seems
that the natural algorithm based on destroying all K5 and K3,3 subdivisions
have double-exponential dependence on treewidth.

A more ambitious project is to understand the exact constants in the function
f(k) for the problem: for example, what is the smallest c > 0 such that there is
a ck ·nO(1) time algorithm for the problem? Let us note first that obtaining such
results is very different and much more challenging than proving lower bounds of
the form, say, 2o(k) · nO(1). The problem is that determining the best possible c
is machine-model dependent in the sense that it is not robust under polynomial-
transformations of the running time. That is, a 4k ·nO(1) running time is just the
square of 2k · nO(1). ETH as formulated in Conjecture 2.1, however, is invariant
under polynomial transformations of the running time: any polynomial of 2o(m)

is still 2o(m). Therefore, it seems unlikely that such a coarse conjecture would
give an easy way of proving the fine distinctions between running times ck ·nO(1)

for different values of c. A more suitable conjecture is the Strong Exponential
Time Hypothesis (SETH); for the purposes of this paper, we can state it the
following way:

Conjecture 2.5 (Strong Exponential Time Hypothesis [63, 18]). There
is no (2− ε)n ·mO(1) time algorithm for n-variable m-clause SAT for any ε > 0.

Note that here SAT is the satisfiability problem with unbounded clause size.
For fixed clause size, there are better algorithms, see e.g., [60]. Lokshtanov et
al. [74] used SETH to prove tight lower bounds on algorithms working on tree
decompositions. Suppose that we want to solve a problem on a graph G and a
tree decomposition of width w of G is given in the input. Assuming SETH, for
every ε > 0

– Independent Set cannot be solved in (2− ε)w|V (G)|O(1) time,
– Dominating Set cannot be solved in (3− ε)w|V (G)|O(1) time,
– Max Cut cannot be solved in (2− ε)w|V (G)|O(1) time,
– Odd Cycle Transversal cannot be solved in (3− ε)w|V (G)|O(1) time,

476 D. Marx

– For any q ≥ 3, q-Coloring cannot be solved in (q − ε)w|V (G)|O(1) time,
– Partition Into Triangles cannot be solved in (2 − ε)w|V (G)|O(1) time.

These lower bounds match the best known algorithms for the problem (up to
the ε in the base of the exponent). Some further lower bounds of this form
can be found in [30]. It seems to be a very different and significantly more
challenging task to prove such tight results for problems parameterized by the
size of the solution (instead of treewidth). The natural targets for such lower
bounds are problems where the best known algorithms have running times of
the form ck · nO(1) for some integer c. Cygan et al. [30] gave such (randomized)
algorithms for a number of problems using the technique of cut and count.

The optimality results we have discussed so far make fixed-parameter tractabil-
ity quantitative: we not only know now that the problem is FPT, but we also
know what the best f(k) in the running time can be. Another aspect of the op-
timality program is to make W[1]-hardness results quantitative. That is, instead
of just knowing that the problem is not FPT and therefore the parameter has to
appear in the exponent of the running time, we would like to know how exactly
the exponent should depend on the parameter. A W[1]-hardness result by itself
does not rule out the possibility that the problem can be solved in, say, time
2k · nO(log log log log k), which would be “morally equivalent” to fixed-parameter
tractability.

The Exponential Time Hypothesis can be used to give a tight lower bound on
the exponent of the running time. Chen et al. [22] showed that for the Clique

problem the nO(k) brute force algorithm is already optimal in this respect:

Theorem 2.6. Assuming ETH, Clique cannot be solved in time f(k) · no(k)

for any computable function f .

Using parameterized reductions, we can transfer the lower bound of Theorem 2.6
to other problems. The exact form of the lower bound depends on how the
parameterized reduction changes the parameter. For the following problems, the
reductions increase the parameter at most by a constant factor, thus we get a
lower bound of the same form:

Theorem 2.7. Assuming ETH, Independent Set and Dominating Set can-
not be solved in time f(k) · no(k) for any computable function f .

On the other hand, if the reduction increases the parameter by more than a
constant factor, then the lower bound gets weaker. For example, a reduction
from Clique (on general graphs) to Dominating Set on unit disk graphs was
presented in [79], which increases the parameter from k to O(k2). Therefore, we
have the following lower bound:

Theorem 2.8. Assuming ETH, Dominating Set on unit disk graphs cannot

be solved in time f(k) · no(
√
k) for any computable function f .

As Dominating Set on unit disk graphs can be solved in time nO(
√
k) [4],

Theorem 2.8 is tight. Thus, similarly to many planar problems, the appearance

What’s Next? Future Directions in Parameterized Complexity 477

of the square root in the running time can be an inherent feature of geometric
problems.

Most W[1]-hardness results in the literature are from Clique (or Indepen-

dent Set, which is the same). Therefore, by analyzing how the parameter
changes in the reduction, we can extract lower bounds similar to the ones above
by transfering Theorem 2.6 to the problem at hand. One should examine it sep-
arately for each problem whether the lower bound obtained this way is tight or
not. Many of the more involved reductions from Clique use edge selection gad-
gets (see e.g., [48, 51, 79]). As a clique of size k has Θ(k2) edges, this means that
the reduction typically increases the parameter to Θ(k2) at least and, similarly

to Theorem 2.8, what we can conclude is that there is no f(k)no(
√
k) time algo-

rithm for the target problem (unless ETH fails). If we want to obtain stronger
bounds on the exponent, then we have to avoid the quadratic blow up of the pa-
rameter and do the reduction from a different problem. Many of the reductions
from Clique can be turned into a reduction from the more general Subgraph
Isomorphism (Given two graphs H and G, decide if H is a subgraph of G).
In a reduction from Subgraph Isomorphism, we need |E(H)| edge selection
gadgets, which usually implies that the new parameter is Θ(|E(H)|). Thus the
following lower bound on Subgraph Isomorphism, parameterized by the num-
ber of edges in H , could be used to obtain tighter lower bounds compared to
those coming from the reduction from Clique.

Theorem 2.9 ([81]). If Subgraph Isomorphism can be solved in time
f(k)no(k/ log k), where f is an arbitrary function and k is the number of edges
of the smaller graph H, then ETH fails.

We remark that it is an interesting open question if the factor log k in the
exponent can be removed, making this result tight (and also making the results
following from Theorem 2.9 tighter).

Closest Substring (a generalization of Closest String) is an extreme
example where reductions increase the parameter exponentially or even double
exponentially, and therefore we obtain very weak lower bounds. In this problem,
the input consists of strings s1, . . ., st over an alphabet Σ and integers L and
d. The task is to find a string s of length L such that every si has a consecutive
substring s′i of length L with Hamming-distance at most d from s.

Let us restrict our attention to the case where the alphabet is of constant size,
say binary. Marx [80] gave a reduction from Clique to Closest Substring

where d = 2O(k) and t = 22
O(k)

in the constructed instance (k is the size of the
clique we are looking for in the original instance). Therefore, we get weak lower
bounds with only o(log d) and o(log log k) in the exponent. Surprisingly, these
lower bounds are actually tight, as there are algorithms matching these bounds.

Theorem 2.10 ([80]). Closest Substring over an alphabet of constant size
can be solved in time f(d)nO(log d) or in f(d, k)nO(log log k). Furthermore, assuming
ETH, there are no algorithms for the problem with running time f(k, d)no(log d) of
f(k, d)no(log log k).

478 D. Marx

While the results in Theorems 2.6 and 2.8 are asymptotically tight, they do
not tell us the exact form of the exponent, that is, we do not know what the
smallest c is such that the problems can be solved in time nck. However, assuming
SETH, stronger bounds of this form can be obtained. Specifically, Pǎtraşcu and
Williams [88] obtained the following bound for Dominating Set under SETH.

Theorem 2.11 ([88]). Assuming SETH, there is no O(nk−ε) time algorithm
for Dominating Set for any ε > 0 and k ≥ 2.

3 Kernelization from the Viewpoint of Optimality

Kernelization is one of the most basic and most practical algorithmic techniques
in parameterized complexity. Recall that a kernelization for a parameterized
problem P is a polynomial-time algorithm that, given an instance I of P with
parameter k, produces another instance I ′ of P with parameter k′ such that (1)
I is a yes-instance if and only if I ′ is a yes-instance, (2) the size of I ′ is at most
f(k) for some computable function f , and (3) k′ is at most f(k). Intuitively, one
can think of a kernelization as a fast preprocessing algorithm producing a small
“hard core” of the problem that needs to be solved. We say that a kernelization
is an f(k)-kernel if the size of I ′ is at most f(k). For graph problems, we also
use the term f(k)-vertex-kernel to indicate that I ′ has at most f(k) vertices.

If a parameterized problem admits a kernel, then this immediately implies
that the problem is FPT. We can use the kernelization algorithm to produce an
equivalent instance I ′ of size at most f(k), and then we can use any brute force
algorithm to solve I ′ in time that can be bounded by a function of k (assuming
the problem is decidable). More surprisingly, a folklore result shows that the
reverse direction is also true:

Theorem 3.1. A decidable parameterized problem has a kernel if and only if it
is FPT.

Proof. We have seen the forward direction above. For the reverse direction, sup-
pose that a parameterized problem can be solved in time f(k) · nc for some
computable function f(k) and constant c. Given an instance I of the problem,
let us simulate this algorithm for nc+1 steps. If the algorithm terminates during
this simulation, then we can produce a kernel by outputing a trivial yes- or a
trivial no-instance. If the f(k) · nc time algorithm does not terminate in nc+1

steps, then n < f(k). This means that I itself is a kernel with size at most
f(k). �

What does Theorem 3.1 tell us? It suggests that every FPT result can be ex-
plained as a kernelization together with an exact algorithm. Thus the study of
fixed-parameter tractability can be reduced to the study of kernelization
algorithms and exact exponential-time algorithms (or in other words, parameter-
ization by the size of the instance). Given the breadth of techniques in param-
eterized complexity that does not seem to have anything to do with these two

What’s Next? Future Directions in Parameterized Complexity 479

concepts (e.g., color coding, iterative compression, and algebraic techniques), this
is a somewhat disheartening and suspicious claim.

Let us revisit this claim from the viewpoint of the optimality program. It is
true that every fixed-parameter tractability result can be obtained as a combina-
tion of kernelization and exact algorithms, but is it the right way of solving the
problem? That is, can we get the best possible (or at least a reasonable good)
f(k) in the running time this way? For some problems this seems to be the case.
For example, a classical result of Nemhauser and Trotter [86] shows that Ver-

tex Cover admits a 2k-vertex-kernel and can be solved trivially in time 2O(n)

on n-vertex graphs. This results in a 2O(k) · nO(1) time algorithm, which is the
optimal form of the running time by Corollary 2.3. For Dominating Set on
planar graphs, several O(k)-vertex-kernels are known and the problem can be
solved in time 2O(

√
n) on n-vertex planar graphs either by treewidth techniques

or by using planar separator theorems. This combination gives us 2O(
√
k) · nO(1)

time algorithms, which matches the lower bound of Corollary 2.4.
For other problems, however, we cannot reach the best possible running time

using this combination. In order to show this, we need a way of proving lower
bounds on the size of kernels that can be achieved. Bodlaender et al. [13], using
the work of Fortnow and Santhanam [55], developed a technique for showing
(modulo a complexity assumption) that certain problems do not admit kernels
of polynomial sizes. This result started a whole new line of research and the
technique has been subsequently used in several papers to prove similar lower
bounds. We state only one such result here:

Theorem 3.2 ([13]). Assuming coNP �⊆ NP/poly, there is no kO(1)-kernel for
k-Path.

The assumption coNP �⊆ NP/poly is a fairly standard complexity assumption,
for example, if it is false, then the polynomial hierarchy collapses [98].

The k-Path problem is known to be solvable in time 2O(k) · nO(1) by various
techniques [6, 10, 97]. Can we match this running time by a combination of
kernelization and exact algorithms? Clearly, we can solve k-Path by a brute
force exact algorithm in time nO(k). By Theorem 3.2, we cannot produce a kernel
with kc vertices for any constant c, thus this combination cannot even guarantee
a running time of kck · nO(1) for any constant c. In other words, even though
Theorem 3.1 shows that k-Path has a kernelization algorithm and therefore
in principle we could obtain FPT algorithms for the problem by kernelization
followed by an exact algorithm, this is not the right combination of techniques to
solve the problem, as it cannot reach the best possible running time 2O(k) ·nO(1).

We can argue similarly for other problems where the existence of a polynomial
kernel can be ruled out by a result analogous to Theorem 3.2. But what about
problems for which polynomial kernels do exist? Very recently, some results ap-
peared that give tight lower bounds for problems admitting polynomial kernels.
Recall that given a collection of sets of size d of a set of elements and an integer
k, the d-Set Cover asks for a set of at most k elements that intersects every
set in the input, while the d-Set Packing problem asks for k pairwise-disjoint
sets from the collection. For both problems, algorithms based on the Sunflower

480 D. Marx

Lemma give kernels containing at most kd sets (see e.g., [34]). The following
results show that this is essentially best possible:

Theorem 3.3 ([35]). Assuming coNP �⊆ NP/poly, there is no O(kd−ε)-kernel
for d-Set Cover for any d ≥ 3 and ε > 0.

Theorem 3.4 ([34]). Assuming coNP �⊆ NP/poly, there is no O(kd−ε)-kernel
for d-Set Packing for any d ≥ 3 and ε > 0.

The d-Set Cover problem can be solved in time dk ·nO(1) by simple branching
and d-Set Packing can be solved in time 2O(dk) · nO(1) for example by color
coding. Can we match these running times by a combination of kernelization
and exact algorithms? It is not clear at this point. Both problems can be solved
in time 2O(n) if n is the number of elements (this is obvious for d-Set Cover,
as we can try every subset of the elements; for d-Set Packing, this follows
from standard dynamic programming techniques). Therefore, the questions is
whether kernels with O(k) elements exist for these problems. Theorems 3.3–3.4
do not rule out this possibility, as they give a lower bound on the number sets
only. Note that the current best upper bounds on the number of elements in
the kernel are far from being O(k) [1, 2]. It is a very interesting and challenging
question for further research to understand what the best possible bound is in
terms of the number of elements. From the viewpoint of the optimality program,
one needs to answer this question in order to evaluate whether kernelization is
the right way of solving these problems, or other techniques such as branching
and color coding are inherently necessary to achieve the best possible running
time.

Finally, for problems that admit linear (vertex-)kernels, one would like to
know the best possible constant factor. For example, is there a (2− ε)k-vertex-
kernel for Vertex Cover? There is a simple 2-approximation for this problem
and there is no (2− ε)-approximation under the Unique Games Conjecture [68].
It seems to be too much of a coincidence that the same number appears both in
the best kernel and the best approximation. This could be the sign that there
are some deep connections that we are unaware of at the moment.

Chen et al. [20] proposed an elegant argument for proving lower bounds on
kernel size. The parametric dual of a parameterized problem with respect to a
size function s is the same problem, but now we consider s − k the parameter
instead of k. For example, the parametric dual of Vertex Cover with respect
to the number of vertices is Independent Set (since there is a vertex cover
of size k in an n-vertex graph if and only if there is an independent set of size
n−k). Chen et al. [20] showed that if a parameterized problem and its dual both
admit small kernels of linear size, then one can solve the instance by repeated
applications of the two kernelization algorithms. This technique is very useful
for planar or bounded-degree problems, as for these classes it is fairly natural
that both the problem and its parametric dual have linear kernels. Let us state
as an example a few lower bounds that follow from this technique:

What’s Next? Future Directions in Parameterized Complexity 481

Theorem 3.5. [20] Assuming P �= NP, for any ε > 0

– Vertex Cover on planar graphs does not have a (43 − ε)k-vertex-kernel.
– Vertex Cover on planar triangle-free graphs does not have a (32 − ε)k-

vertex-kernel.
– Independent Set on planar graphs does not have a (2− ε)k-vertex-kernel.
– Dominating Set on planar graphs does not have a (2− ε)k-vertex-kernel.

Note, however, that these result do not give lower bounds on kernelization for
general graphs: a kernelization algorithm for general graphs can transform a
planar instance into a nonplanar one, hence it is not necessarily a correct ker-
nelization algorithm for the planar problem as well.

We conclude this section by pointing out two technical issues that have arisen
in the study of kernelization. In the definition of kernelization, we want to bound
the size of the constructed instance. However, we might want to bound some
other measure instead, for example, the number of vertices in the graph. From
the practical point of view, for most graph-theoretical problems the time required
for the exact solution of the kernel is mainly influenced by the number of vertices,
thus it makes sense to focus on reducing the number of vertices. On the other
hand, bounding the size of the instance seems to be mathematically more robust
question, for example, the techniques of [13, 35] give primarily lower bounds on
the size of the instance. Both kind of bounds are worth studying, but we have to
make a clear distinction between the two types of results and realize the different
consequences.

Another technical issue is the bound on the parameter in the kernel. Origi-
nally, Downey and Fellows [44] required that the parameter of the kernel is at
most the parameter of the original instance. This makes sense: as we imagine
that the parameter measures the hardness of the instance, we do not want the
preprocessing to increase it. Later, e.g., in [14, 13] a more liberal definition is
given, where we only require that the new parameter is bounded by a function
of the old parameter (we used this definition in the beginning of the section). An
advantage of this definition is that it is robust with respect to polynomial trans-
formations of the kernel. For example, we can create a polynomial-size kernel
that is an instance of some other problem (this is sometimes called a bikernel)
and then use a polynomial-time reduction to transform it into an instance of the
original problem. This results in a polynomial-size kernel, but the parameter can
increase in the reduction. Allowing such arguments in proving the existence of
polynomial-size kernels makes the theory more robust and mathematically more
natural, although it weakens the connection with practical preprocessing. One
has to be aware of this difference and interpret the results accordingly.

4 Branching Algorithms

Besides kernelization, the technique of “bounded-depth search trees” is perhaps
the most basic method for showing that a problem is fixed-parameter tractable.
Let us recall how this technique works in the case of Vertex Cover. Let G

482 D. Marx

be a graph where a vertex cover of size k has to be found. Let e = uv be an
arbitrary edge of G. Clearly, every vertex cover contains either u or v (or both).
Therefore, we branch into two directions. In the first branch, we assume that
u is in the vertex cover, hence we try to find recursively a vertex cover of size
k − 1 in G \ u. In the second branch, we assume that v is in the vertex cover
and try to find recursively a vertex cover of size k − 1 in G \ v. Clearly, if there
is a solution, at least one of the two branches finds a solution. We repeat this
branching step until there is no edge in the graph or k becomes 0. Running this
recursive process creates a search tree where each node has at most two children.
The crucial property to observe is that the height of the search tree is at most
k: the parameter strictly decreases in each step. Therefore, the search tree has
at most 2k leaves and hence O(2k) nodes. Each recursion step can be done in
polynomial time, hence it follows that the total running time is 2k · nO(1). The
d-Set Cover problem is a generalization of Vertex Cover: given sets of size
d, we have to find k elements that hit every set. In a similar way, one can obtain
a dk · nO(1) algorithm for d-Set Cover by selecting a set and branching on
which element of the set is included in the solution.

In summary, the main idea of the bounded-depth search tree technique is to
reduce the instance into a bounded number of instances with strictly smaller
parameter values. If the reduction creates at most c instances, then the running
time is ck ·nO(1). In some cases, the number of directions we branch into depends
also on the parameter. For example, if we create at most k instances in each step,
then we can bound the running time by kk·nO(1). The dd·nO(1) time algorithm for
Closest String [57] mentioned in Section 2 is an example of such a branching
algorithm.

Seeing how fruitful the systematic analysis of kernelization turned out to be,
one wonders why there haven’t been any systematic analysis of the applicability
of branching algorithms. The purpose of this section is to propose a framework
in which this question can be studied. What we have learned in the study of
kernelization is that one should pay attention to optimality: the question is not
whether branching algorithms can be used to solve a problem, but whether it
is the right way of solving the problem. Therefore, here we stick to the study
of ck · nO(1) time algorithms that branch into a constant number of directions.
In particular, we are not interested in the question whether there is a kk · nO(1)

time branching algorithm for a problem that can be solved in time ck · nO(1) by
other techniques (because such a branching algorithm would be far from being
the optimal way of solving the problem).

Let us formalize first the notion of a branching rule.

Definition 4.1. Let (I, k) be an instance of a parameterized problem with k > 1.
A c-way branching rule for some constant c is a polynomial-time algorithm that,
given instance I, produces instances (I1, k1), . . ., (Ic, kc) such that

1. |Ii| ≤ |I| for every 1 ≤ i ≤ c,
2. ki < k for every 1 ≤ i ≤ c,
3. (I, k) is a yes-instance if and only if (Ii, ki) is a yes-instance for at least one

1 ≤ i ≤ c.

What’s Next? Future Directions in Parameterized Complexity 483

It is easy to see that if a parameterized problem has a c-way branching rule, then
we can solve the problem in time ck ·nO(1) (assuming the problem is polynomial-
time solvable for k = 1, which is the case for the problems we are interested in).
The algorithm described at the beginning of the section shows that Vertex

Cover has a 2-way branching rule. Thus it seems that we have a simple frame-
work for formally studying which problems can be solved by the technique of
bounded-depth search trees.

Unfortunately, there are parameterized problems that do not have branching
rules in the sense of Definition 4.1 for pathological reasons. For example, consider
the (artificial) problem Vertex Cover↑ defined as follows: given a graph G
and an integer k, the task is to decide of G has a vertex cover of size k and,
additionally, if k = 2i for some integer i (i.e., k is a power of 2). Clearly, this
problem is not more complicated than Vertex Cover: all we need is the trivial
extra check whether k is a power of 2. Still, this problem has no branching rule:

Proposition 4.2. Assuming P �= NP, Vertex Cover↑ does not have a branch-
ing rule.

Proof. A simple padding argument shows that Vertex Cover↑ is NP-hard.
Suppose that A is a branching algorithm for Vertex Cover↑ that produces a
constant number c of instances. We can assume that for every instance (Ii, ki)
created by A, parameter ki is a power of 2, since otherwise (Ii, ki) is trivially
a no-instance. Furthermore, we can assume that we run A only on instances
whose parameter is a power of 2. Therefore, if the parameter is 2i, algorithm
A creates c instances with parameter at most 2i−1. This means that the height
of the search tree is at most log2 k and therefore the size of the search tree is
O(clog2 k) = O(klog2 c), which is polynomial in k (as c is a fixed constant). Thus
we can solve Vertex Cover↑ in polynomial time, implying P = NP. �

To avoid situations like Proposition 4.2, we have to allow that a branching algo-
rithm solves a modified version of the problem (e.g., Vertex Cover instead of
Vertex Cover↑). We express this by saying that we are interested in problems
that can be reduced to a problem that has a branching rule. The right notion of
reduction for this purpose is a restriction of parameterized reduction that runs in
polynomial time and the parameter can be increased only by at most a constant
factor:

Definition 4.3. A linear-parameter polynomial-time parameterized transfor-
mation (LPPT) from a parameterized problem P1 to a parameterized problem
P2 is a polynomial-time algorithm that, given an instance (I1, k1) of P1, creates
an instance (I2, k2) of P2 such that

1. (I1, k1) is a yes-instance of P1 if and only if (I2, k2) is a yes-instance of P2,
and

2. k2 ≤ c · k1 for some constant c.

Now we can define the class BFPT (where B stands for “branching”), which
formalizes the notion of branching:

484 D. Marx

Definition 4.4. The class BFPT contains a parameterized problem P1 if there
is a parameterized problem P2 that has a branching rule and there is an LPPT
from P1 to P2.

Let us observe that Vertex Cover↑ is in BFPT as expected: there is a trivial
LPPT from this problem to Vertex Cover.

Before discussing further examples of problems in BFPT, let us show a simple
equivalent characterization of BFPT with linear-size witnesses. Recall that a
language P is in NP if there is a polynomial-time decidable language P ′ and a
polynomial p such that x ∈ P if and only if there is a string w (the witness) of
length at most p(|x|) such that (x,w) ∈ P ′. Informally, we can say that w is a
polynomial-size witness for x that can be verified in polynomial. The following
lemma shows that BFPT contains those NP languages where there is a witness
whose length is linear in the parameter.

Lemma 4.5. A parameterized problem is in BFPT if and only if there is a
polynomial-time decidable language P ′ and a constant c such that (x, k) ∈ P if
and only if there is a string w of length at most c|k| such that (x, k, w) ∈ P ′.

Proof. For the forward direction, suppose that parameterized problem P can
be LPPT-reduced to a parameterized problem Q that has a c-way branching
algorithm A. Given an instance (I, k) of P , let (I ′, k′) be the instance of Q
created by the LPPT reduction. If (I ′, k′) ∈ Q, then one of the branches of A
is successful, i.e., produced a yes-instance with parameter k = 1. As A branches
into c directions, we can describe with �log2 c�·k′ = O(k) bits a successful branch.
This description is a good witness for (I, k): one can verify it in polynomial-
time by computing the instance (I ′, k′) given by the LPPT-reduction and then
verifying that this branch of the search tree of A is indeed successful.

For the reverse direction, let us define the language P ′′ such that (x, k, w, �) ∈
P ′′ if there is a string q of length at most � such that (x, k, wq) ∈ P ′. In other
words, (x, k, w, �) ∈ P ′′ means that w can be extended with at most � bits to a
witness of (x, k). The problem P ′′ parameterized by � has a branching rule: we
try to append a 0 or a 1 to w. Formally, (x, k, w, �) ∈ P ′′ if and only if either
(x, k, w) ∈ P ′ (which can be checked in polynomial time), or (x, k, w0, � − 1) ∈
P ′′, or (x, k, w1, � − 1) ∈ P ′′. By assumption, (x, k) ∈ P if and only if there
is a string w of length at most c|k| such that (x, k, w) ∈ P ′, or equivalently,
(x, k, ε, c|k|) ∈ P ′′ (where ε is the empty word). This gives an LPPT-reduction
from P to P ′′, a problem that has a branching algorithm. �

Lemma 4.5 gives a more convenient way of showing that a problem is in BFPT.
There are many examples of branching algorithms where the parameter does not
necessarily decrease after each branching step, but we can show that some other
measure strictly decreases. In such a case, it would be awkward to use directly
the definition of BFPT, since we need to define an artificial problem where
the parameter is the measure bounding the height of the search tree. On the
other hand, with Lemma 4.5 all we need to do is to observe that we branch into

What’s Next? Future Directions in Parameterized Complexity 485

a constant number of directions in each step and the height of the search tree is
bounded by a linear function of the parameter. Therefore, a string describing the
successfully branch is a correct witness whose length is linear in the parameter.

As an example, let us use Lemma 4.5 to show that Node Multiway Cut

(Given a graph G, a set of terminals T ⊆ V (G), and an integer k, the task is
to find a set S of at most k vertices that separates the terminals, that is, every
component of G\T contains at most one vertex of T) is in BFPT. This problem
is known to be FPT [78, 24, 31, 58]. Observation of, say, the 4k ·nO(1) algorithm
of Chen et al. [24] shows that the search tree in the proof has height at most 2k
and branching factor 2, thus there is a witness of 2k bits.

Proposition 4.6. Node Multiway Cut is in BFPT.

A standard technique in the design of parameterized algorithms is to solve the
compression problem first. For example, let us consider the Feedback Vertex

Set problem (given a graph G and an integer k, the task is to find a feedback
vertex set of size k, that is, a set S of at most k vertices such that G \ S is a
forest). A randomized 4k · nO(1) time algorithm was given in [8] and determin-
istic 2O(k log k) · nO(1) time algorithms were given already in [42, 11]. However,
deterministic ck · nO(1) time algorithms appeared only much later and they all
use the technique of compression [33, 59, 21, 30].

In the compression version of Feedback Vertex Set, the input contains ad-
ditionally a feedback vertex set S0 of size k+1. Intuitively, we have to “compress”
a solution of size k + 1 into a solution of size k. The compression problem can
be easier than the original problem, as the initial solution S0 can give us useful
structural information about the graph. More generally, instead of starting with
a solution having the specific size k+1, we can formulate the compression prob-
lem as starting with a solution of an arbitrary size � > k, and we parameterize
by the problem by �, the size of the initial solution.

There are two ways of using the compression algorithm to solve the original
problem. The first method is to use the elegant technique of iterative compres-
sion, introduced by Reed et al. [92]. For a detailed explanation of this technique,
see for example the survey [61]. The second method is to use a polynomial-
time approximation algorithm to obtain a solution of size f(k) and then use the
compression algorithm to compress the initial solution of size f(k) to a solu-
tion of size k (if such a solution exists). Let us observe that if we start with a
constant-factor approximation and the compression is performed by a branching
algorithm, then this combination yields a branching algorithm for the original
problem. Therefore, we can state the following (somewhat informal) observation:

Proposition 4.7. If a parameterized problem P has a polynomial-time constant-
factor approximation and the compression version of P parameterized by the size
of the initial solution is in BFPT, then P is in BFPT.

Feedback Vertex Set has a 2-approximation and inspection of the proof,
e.g., in [21] shows that the compression problem is in BFPT.

486 D. Marx

Proposition 4.8. Feedback Vertex Set is in BFPT.

There is an interesting connection between branching and kernelization. Suppose
that a problem has a linear-vertex-kernel. Then the problem can be solved by
computing the kernel and doing a brute force search on it. If this brute force
search can be done by branching, then this gives a branching algorithm for the
problem. We can formalize this by the following statement:

Proposition 4.9. If a parameterized problem P admits a linear-vertex-kernel
and the version of the problem parameterized by the number of vertices is in
BFPT, then P is in BFPT.

For example, this gives an alternate way of seeing that Vertex Cover is in
BFPT: it has a 2k-vertex-kernel [86] and Vertex Cover parameterized by the
number n of vertices can be trivially solved by branching, as it has a witness of n
bits. Proposition 4.9 also applies to a wide range of planar problems. On planar
graphs, many of the standard NP-hard problems become FPT and in fact admit
linear-vertex-kernels; this follows for example from the powerful meta result of
Bodlaender et al. [14]. For problems where the solution is a subset of vertices,
it is usually trivial that the problem is FPT parameterized by the number of
vertices, as a branching algorithm can enumerate all possible subsets. Therefore,
we get for example the following results:

Proposition 4.10. Independent Set, Dominating Set, Connected Dom-

inating Set, Connected Vertex Cover, Induced Matching on planar
graphs are in BFPT.

However, let us note that Proposition 4.10 is somewhat unsatisfactory from the
viewpoint of the optimality program. As these planar problems can be solved in

time c
√
k · nO(1), it can be considered as irrelevant whether there are ck · nO(1)

time branching algorithms for them.
Max Internal Spanning Tree (given a graph G and an integer k, the

task is to find a spanning tree where at least k vertices are non-leaves, that is,
have degree more than one) admits a 3k-vertex-kernel, thus we might try to use
Proposition 4.9 for this problem. However, it is not obvious if Max Internal

Spanning Tree parameterized by the number of vertices has a branching algo-
rithm. A branching algorithm can guess the internal vertices, but then one has
to enforce somehow that the degrees of these vertices are more than one. It is
therefore an interesting open question whether the problem, parameterized by k
or by the number of vertices, is in BFPT.

The example of Max Internal Spanning Tree shows that the search for
branching algorithms parameterized by the number n of vertices is also an in-
teresting research question. This is particularly true for problems that can be
solved in cn time by dynamic programming techniques, for example, Hamil-

tonian Path, Chromatic Number, Partition into Triangles for graphs
having n vertices, Set Packing over a universe of n elements, Hitting Set

with n sets, etc. Paturi and Pudlák [89] raised a similar question: they ask if
Hamiltonian Path has a polynomial-time randomized algorithm with success

What’s Next? Future Directions in Parameterized Complexity 487

probability c−n on n-vertex graphs. Note that if k-Path parameterized by the
length k of the path is in BFPT, then this implies that k-Path parameterized
by the number n of vertices is in BFPT, which further implies that Hamilto-

nian Path has the required randomized algorithm: we can replace branching
by random choices. This means that a negative answer to the question of Paturi
and Pudlák would imply that k-Path is not in BFPT. Therefore, if one wants
to show that there is no such randomized algorithm, probably it makes sense
to concentrate on first showing that k-Path is not in BFPT, as this can be an
easier question.

Branching algorithms are sometimes able to solve the more general counting
version of the problem as well. This depends on the type of branching rule we
use. If we know that every solution contains at least one element of a set S and
we branch on the choice of exactly which subset of S is contained in the solution,
then such a branching rule is usually good for counting: each solution remains
a valid solution in exactly one of the branches, thus the number of solutions is
exactly the sum of the number of solutions in all the branches. On the other
hand, if we only know that whenever there is a solution, then there is also a
solution containing an element of S and we branch on a subset of S, then this is
typically not good for counting: we won’t be able to count those solutions that
are disjoint from S.

We could set up a framework for studying a stronger version of branching
that is capable of solving counting problems. The main difference is that we
want to require that the number of solutions is exactly the sum of the number of
solutions in the different branches. We omit the details, as we do not have any
interesting results at this point. The reason why we mention it, however, is the
surprising fact that even though k-Path is FPT, the counting version is known
to be #W[1]-hard [49]. Thus it is unlikely that it is fixed-parameter tractable and
hence unlikely that it has a branching rule suitable for counting. An interesting
possibility is that one might be able to transfer this negative result on counting
branching rules to ordinary branching rules solving the decision problem. It could
be that understanding counting problems is the key for understanding branching.

Let us briefly mention that there is another natural question about branching:
for a problem that can be solved by branching, what is the best branching
algorithm? One way to formulate this question is to ask what the smallest c is
such that there is a c-way branching algorithm for the problem. However, this
c is always an integer by definition, but most of the sophisticated branching
rules are assymmetric (i.e., different branches reduce the parameter by different
values) and the analyisis of such branching rules typically give a bound of ck on
the size of the search tree for some nonininteger c. Therefore, probably it is a
better and more relevant question to ask what the smallest c is such that the
search tree is guaranteed to have size at most ck. A different way to study the
question is to find the smallest c such that there is a witness of size c · k for
every instance. This question has been explored recenently for Sat by Dantsin
and Hirsch [32].

488 D. Marx

The aim of this section was to point out that the theoretical study of which
problems can be solved by branching algorithms has been neglected so far and it
is possible to study this question in a rigorous framework. We have formulated
meaningful and challenging questions for future work. Let us conclude this sec-
tion with a list of problems for which it would be interesting to decide if they
are in BFPT:

– k-Path parameterized by the length k of the path or by the number n of
vertices.

– Connected Vertex Cover parameterized by the size k of the solution.
– Steiner Tree parameterized by the number k of terminals.
– Hitting Set parameterized by the number of sets.
– Max Internal Spanning Tree parameterized by the number k of internal

nodes in the tree.
– Chromatic Number parameterized by the number n of vertices.

5 Problems on Directed Graphs

Finding algorithms for problems on directed graphs is typically more challeng-
ing than solving their undirected counterparts. Many of the tools for undirected
graphs become more complicated to use or even break down completely when
we move to the domain of directed graphs. This jump in complexity has been
observed also in the context of fixed-parameter tractability. For example, the
Graph Minors Theory of Robertson and Seymour was the early inspiration for
parameterized complexity and many powerful results followed from it almost
immediately. However, there is no directed analog of the theory and hence di-
rected graph problems have not received the same initial boost that undirected
problems have.

Despite the inherent difficulty of directed problems, there has been some
progress in this direction. The most celebrated such result is the fixed-parameter
tractability of the Directed Feedback Vertex Set problem. The undirected
Feedback Vertex Set problem was shown to be FPT already in 1992 [42]
and subsequently several different algorithms have been found [11, 21, 33, 59].
The directed version (delete k vertices to make the graph acyclic) turned out to
be much more challenging. It was not until 2008 that Chen et al. [25] proved the
fixed-parameter tractability of Directed Feedback Vertex Set via a clever
combination of iterative compression and solving directed cut problems. Look-
ing at the proof, one can observe that the algorithm is fairly elementary and in
particular it does not use any deep results of Graph Minors Theory. Perhaps the
reason why the resolution of this problem took so long was that people looked
for inspiration at the wrong place: it was expected that the solution is very com-
plex and would somehow follow from a generalization of graph structure theory
to directed graphs. For example, the fixed-parameter tractability of Feedback
Vertex Set follows immediately from standard treewidth techniques [11]. Di-
rected analogs of treewidth do exist [64, 7, 71, 62, 9], but apparently they do not
provide any help for this problem. In fact, there is some formal evidence that no

What’s Next? Future Directions in Parameterized Complexity 489

really useful directed width measure exists [56]. This means that when we are
encountering directed problems, treewidth-based techniques, which are among
the most useful theoretical tools in parameterized complexity, are missing from
our arsenal. Recently, however, there were some attempts to build a useful struc-
ture theory for directed graphs from a very different direction by generalizing
the undirected notion of nowhere dense graphs [72].

One of the most useful applications of treewidth is bidimensionality theory
[36]. This theory shows in a very easy way that subexponential-time parameter-
ized algorithms exists for problems on planar and, more generally, on H-minor
free graphs. It is a very interesting question whether subexponential-time algo-
rithms follow with the same ease for directed planar problems. Dorn et al. [40]

investigated this question, and gave 2O(
√
k log k) · nO(1) time algorithms for two

problems on directed planar graphs, k-Leaf Out Branching and k-Internal
Out Branching. For both problems, the key is to use treewidth techniques on
the underlying undirected graph: using problem specific arguments and reduc-
tions, large grids can be excluded or standard layering techniques can be made
to work. It is also observed in [40] that the directed version of k-Path for planar
graphs can be solved in time (1 + ε)k · nf(ε) for every ε > 0. That is, the base
of the exponent can be made arbitrary close to 1 at the cost of increasing the
exponent of n. Note that obtaining this running time is a weaker claim than
having a 2o(k) · nO(1) time algorithm. Therefore, it remains a very interesting
open question if Directed k-Path on planar graphs can be solved in time

2o(k) · nO(1), or perhaps even in time 2O(
√
k) · nO(1).

Due to the strong modeling power of graphs, sometimes graph problems ap-
pear in disguise. For example,Almost 2SAT is the problem of deciding whether
the given 2SAT formula has an assignment satisfying all but at most k clauses.
While graphs do not appear explicitly in the problem definition, the first FPT
algorithm by Razgon and O’Sullivan [91] considers a natural directed graph
formed by the implications and solves the problem by finding separators in this
directed graph. In general, whenever the problem involves chains of implications,
one can expect directed graphs to make an appearance.

Hard problems on undirected graphs are often studied on particular subclasses
of graphs: on planar graphs, interval graphs, bounded-treewidth graphs, etc. It is
natural to do the same when a problem turns out to be hard on general directed
graphs. First, one can restrict the problem to directed graphs whose underlying
undirected graph has special structure. For example, it is an important general
question whether the well-understood techniques for planar undirected graphs
(bidimensionality, Baker’s layering approach, etc.) work for problems on planar
directed graphs. Furthermore, there are interesting classes of directed graphs
that have no undirected counterparts. The class of directed acyclic graphs seems
to be an obvious choice to try: these graphs have useful properties (for example,
dynamic programming on a topological ordering can be a useful approach), but
still many problems are nontrivial on this class. Another well-studied class is
the class of tournaments: directed complete graphs, i.e., there is exactly one
directed edge between any two distinct vertices (one can also consider the more

490 D. Marx

general class of semicomplete directed graphs, where we allow bidirected edges
as well). A classical result of Downey and Fellows [43] shows that Dominating

Set is W[2]-complete for tournaments, that is, as hard as on general (directed)
graphs. This is somewhat surprising in light of the fact that Dominating Set

on tournaments can be solved in time nO(log n) and is not known to be NP-hard.
Directed Feedback Arc Set was known to be FPT on tournaments [90]
even before its fixed-parameter tractability in general graphs [25] was shown,
but recently it turned out that on tournaments there are subexponential-time

FPT algorithms for the problem: it can be solved in time 2O(
√
k) · nO(1) [5, 46].

Problems related to edge- or vertex-disjoint paths in tournaments have been
studied recently [53, 27, 28], but some interesting questions are still open: for
example, the k vertex-disjoint paths problem is polynomial-time solvable for
every fixed value of k, but it is not known to be fixed-parameter tractable.

A family of problems that received particular attention is formed by problems
related to cuts and separation. These problems usually have both edge deletion
and vertex deletion versions; for simplicity we discuss only the vertex deletion
version here. Given a graph G, a set T ⊆ V (G) of terminals, and an integer
k, the Node Multiway Cut problems asks for a set of at most k vertices
whose deletion separates the terminals from each other. The problem is known
to be FPT by various techniques [78, 24, 31, 58]. A more general problem is
Multicut, where the input contains a set of terminal pairs (s1, t1), . . ., (s
, t
)
and we have to disconnect si from ti for every i. The fixed-parameter tractability
of Node Multiway Cut implies in an easy way that there is an f(k, �) · nO(1)

time algorithm for the problem, i.e., it is FPT with combined parameters k and
�. Very recently, it was shown that Multicut is FPT even if parameterized by k
only [16, 82]. The directed versions of these problems are very different and less
understood. Unlike the undirected problem, Directed Multicut is W[1]-hard
parameterized by k [82]. However, the special case Directed Multiway Cut

is FPT parameterized by k [26]. Somewhat surprisingly, the random sampling
of important separators technique introduced in [82] for undirected Multicut

works for the Directed Multiway Cut problem (but apparently it does not
work for Directed Multicut, as it is W[1]-hard). It remains an interesting
open question whether Directed Multicut is FPT with combined parameters
k and �. Note that the case � = 2 can be reduced to Directed Multiway

Cut and hence is FPT by [26]. However, the case � = 3 is open. A possible
motivation for the study of directed cut problems is that the solution of the
Directed Feedback Vertex Set problem [25] relied in large part on the
fixed-parameter tractability of a variant of Directed Multicut called Skew

Multicut, where we have to disconnect si from every tj with i ≥ j. It could
be fruitful to investigate what other disconnection requirement patterns make
the problem tractable. Most of these questions are meaningful also on directed
acyclic graphs. Very recently, it has been proved that Directed Multicut on
directed acyclic graphs is fixed-parameter tractable with combined parameters
k and �, but W[1]-hard parameterized by k [70].

What’s Next? Future Directions in Parameterized Complexity 491

We conclude this section with two open questions that are easy to state but
their solution would generalize and unify important known results. The first
problem isDirected Eulerian Deletion (see [19, 29]): given a directed graph
G and an integer k, delete k vertices such that every strongly connected com-
ponent induces an Eulerian directed graph, that is, a graph where the indegree
equals the outdegree for every vertex. It is not difficult to see that Directed

Feedback Vertex Set can be reduced to this problem, thus its solution should
build on the arguments of [25]. The second problem is Directed Odd Cycle

Transversal: given a graph G and an integer k, delete k vertices such that
there is no directed odd cycle in the remaining graph. Easy reductions show
that this problem is more general than Directed Feedback Vertex Set,
Odd Cycle Transversal, and Directed Multiway Cut with � = 2. Thus
a fixed-parameter tractability result for this problem would have to unify and
generalize all the algorithmic ideas for these three problems.

References

1. Abu-Khzam, F.N.: An improved kernelization algorithm for r-set packing. Inf.
Process. Lett. 110(16), 621–624 (2010)

2. Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. Comput. Syst.
Sci. 76(7), 524–531 (2010)

3. Alber, J., Fernau, H., Niedermeier, R.: Parameterized complexity: exponential
speed-up for planar graph problems. J. Algorithms 52(1), 26–56 (2004)

4. Alber, J., Fiala, J.: Geometric separation and exact solutions for the parameterized
independent set problem on disk graphs. J. Algorithms 52(2), 134–151 (2004)

5. Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part
I. LNCS, vol. 5555, pp. 49–58. Springer, Heidelberg (2009)

6. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
7. Barát, J.: Directed path-width and monotonicity in digraph searching. Graphs and

Combinatorics 22(2), 161–172 (2006)
8. Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the loop cutset

problem. J. Artif. Intell. Res. (JAIR) 12, 219–234 (2000)
9. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-Width and Parity

Games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
524–536. Springer, Heidelberg (2006)

10. Björklund, A.: Determinant sums for undirected hamiltonicity. In: Proceedings of
the 51st Annual Symposium on Foundations of Computer Science, FOCS 2010,
pp. 173–182 (2010)

11. Bodlaender, H.L.: On disjoint cycles. Int. J. Found. Comput. Sci. 5(1), 59–68 (1994)
12. Bodlaender, H.L.: Kernelization: New Upper and Lower Bound Techniques. In:

Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer,
Heidelberg (2009)

13. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

14. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thi-
likos, D.M.: (Meta) kernelization. In: Proceedings of the 50th Annual Symposium
on Foundations of Computer Science, FOCS 2009, pp. 629–638 (2009)

492 D. Marx

15. Bodlaender, H.L., Heggernes, P., Villanger, Y.: Faster parameterized algorithms
for minimum fill-in. Algorithmica 61(4), 817–838 (2011)

16. Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Proceedings of
the 43rd Annual Symposium on Theory of Computing, STOC 2011, pp. 459–468
(2011)

17. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inform. Process. Lett. 58(4), 171–176 (1996)

18. Calabro, C., Impagliazzo, R., Paturi, R.: The Complexity of Satisfiability of Small
Depth Circuits. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917,
pp. 75–85. Springer, Heidelberg (2009)

19. Cechlárová, K., Schlotter, I.: Computing the Deficiency of Housing Markets with
Duplicate Houses. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478,
pp. 72–83. Springer, Heidelberg (2010)

20. Chen, J., Fernau,H.,Kanj, I.A., Xia,G.: Parametric duality and kernelization: Lower
bounds and upper bounds on kernel size. SIAM J. Comput. 37(4), 1077–1106 (2007)

21. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for
feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)

22. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Linear FPT reductions and computa-
tional lower bounds. In: Proceedings of the 36th Annual Symposium on Theory of
Computing, STOC 2004, pp. 212–221. ACM, New York (2004)

23. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(40-42), 3736–3756 (2010)

24. Chen, J., Liu, Y., Lu, S.: An Improved Parameterized Algorithm for the Minimum
Node Multiway Cut Problem. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS
2007. LNCS, vol. 4619, pp. 495–506. Springer, Heidelberg (2007)

25. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. J. ACM 55(5) (2008)

26. Chitnis, R., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed mul-
tiway cut parameterized by the size of the cutset. In: Proceedings of the 22nd Annual
ACM-SIAMSymposium on Discrete Algorithms, SODA 2012, pp. 1713–1725 (2012)

27. Chudnovsky, M., Fradkin, A.O., Seymour, P.D.: Tournament immersion and
cutwidth. J. Comb. Theory, Ser. B 102(1), 93–101 (2012)

28. Chudnovsky, M., Scott, A., Seymour, P.: Vertex disjoint paths in tournaments
(manuscript)

29. Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M., Schlotter, I.: Parameterized
Complexity of Eulerian Deletion Problems. In: Kolman, P., Kratochv́ıl, J. (eds.)
WG 2011. LNCS, vol. 6986, pp. 131–142. Springer, Heidelberg (2011)

30. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. In: Proceedings of the 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, pp. 150–159 (2011)

31. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On Multiway Cut
Parameterized above Lower Bounds. In: Marx, D., Rossmanith, P. (eds.) IPEC
2011. LNCS, vol. 7112, pp. 1–12. Springer, Heidelberg (2012)

32. Dantsin, E., Hirsch, E.A.: Satisfiability Certificates Verifiable in Subexponential
Time. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 19–32.
Springer, Heidelberg (2011)

33. Dehne, F., Fellows, M., Langston, M., Rosamond, F., Stevens, K.: An O(2O(k)n3)
FPT algorithm for the undirected feedback vertex set problem. Theory Comput.
Syst. 41(3), 479–492 (2007)

What’s Next? Future Directions in Parameterized Complexity 493

34. Dell, H., Marx, D.: Kernelization of packing problems. In: Proceedings of the 22nd
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 68–81
(2012)

35. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification un-
less the polynomial-time hierarchy collapses. In: Proceedings of the 42nd Annual
Symposium on Theory of Computing, STOC 2010, pp. 251–260 (2010)

36. Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic
applications. Comput. J. 51(3), 292–302 (2008)

37. Demaine, E.D., Hajiaghayi, M., Thilikos, D.M.: The bidimensional theory of
bounded-genus graphs. SIAM J. Discrete Math. 20(2), 357–371 (2006)

38. Demaine, E.D., Hajiaghayi, M.T.: Bidimensionality: new connections between FPT
algorithms and PTASs. In: Proceedings of the 16th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2005, pp. 590–601 (2005)

39. Dorn, F.: Planar subgraph isomorphism revisited. In: Proceedings 27th Interna-
tional Symposium on Theoretical Aspects of Computer Science, STACS 2010.
Dagstuhl Seminar Proceedings, vol. 5, pp. 263–274. Leibniz-Zentrum für Infor-
matik, Schloss Dagstuhl, Germany (2010)

40. Dorn, F., Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Beyond bidi-
mensionality: Parameterized subexponential algorithms on directed graphs. In:
Proceedings 27th International Symposium on Theoretical Aspects of Computer
Science, STACS 2010, Dagstuhl Seminar Proceedings, vol. 5, pp. 251–262. Leibniz-
Zentrum für Informatik, Schloss Dagstuhl, Germany (2010)

41. Downey, R.: A Basic Parameterized Complexity Primer. In: Bodlaender, H.L., et
al. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp. 91–128. Springer, Heidelberg
(2012)

42. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness. In:
Proceedings of the Twenty-first Manitoba Conference on Numerical Mathematics
and Computing, Winnipeg, MB, vol. 87, pp. 161–178 (1992)

43. Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Clote,
P., Remmel, J. (eds.) Proceedings of the Second Cornell Workshop on Feasible
Mathematics, Feasible Mathematics II, pp. 219–244. Birkhäuser, Boston (1995)

44. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, New York (1999)

45. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J.
Graph Algorithms Appl. 3(3) (1999)

46. Feige, U.: Faster FAST (feedback arc set in tournaments). CoRR, abs/0911.5094
(2009)

47. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Losievskaja, E., Rosamond, F.A.,
Saurabh, S.: Distortion Is Fixed Parameter Tractable. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part
I. LNCS, vol. 5555, pp. 463–474. Springer, Heidelberg (2009)

48. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F.A., Saurabh, S., Szeider,
S., Thomassen, C.: On the complexity of some colorful problems parameterized by
treewidth. Inf. Comput. 209(2), 143–153 (2011)

49. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM
J. Comput. 33(4), 892–922 (2004)

50. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
51. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Algorithmic lower

bounds for problems parameterized with clique-width. In: Proceedings of the 20th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 493–502
(2010)

494 D. Marx

52. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms, 1st edn. Springer (2010)
53. Fomin, F.V., Pilipzuk, M.: Jungles, bundles, and fixed parameter tractability.

CoRR, abs/1112. 1538 (2011)
54. Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum

fill-in. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, pp. 1737–1746 (2012)

55. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. In: Proceedings of the 40th Annual Symposium on Theory of Com-
puting, STOC 2008, pp. 133–142 (2008)

56. Ganian, R., Hliněný, P., Kneis, J., Meister, D., Obdržálek, J., Rossmanith, P., Sik-
dar, S.: Are There Any Good Digraph Width Measures? In: Raman, V., Saurabh,
S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 135–146. Springer, Heidelberg (2010)

57. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for clos-
est string and related problems. Algorithmica 37(1), 25–42 (2003)

58. Guillemot, S.: FPT algorithms for path-transversal and cycle-transversal problems.
Discrete Optimization 8(1), 61–71 (2011)

59. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-
based fixed-parameter algorithms for feedback vertex set and edge bipartization.
J. Comput. System Sci. 72(8), 1386–1396 (2006)

60. Hertli, T.: 3-SAT faster and simpler — Unique-SAT bounds for PPSZ hold in gen-
eral. In: Proceedings of the 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, pp. 277–284 (2011)

61. Hüffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-parameter
algorithms. Comput. J. 51(1), 7–25 (2008)

62. Hunter, P., Kreutzer, S.: Digraph measures: Kelly decompositions, games, and
orderings. Theor. Comput. Sci. 399(3), 206–219 (2008)

63. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. System Sci. 63(4), 512–530 (2001)

64. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. J.
Comb. Theory, Ser. B 82(1), 138–154 (2001)

65. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion
problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Com-
put. 28(5), 1906–1922 (1999)

66. Kawarabayashi, K.: Planarity allowing few error vertices in linear time. In: Pro-
ceedings of the 50th Annual Symposium on Foundations of Computer Science,
FOCS 2009, pp. 639–648 (2009)

67. Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with heredi-
tary properties. Theor. Comput. Sci. 289(2), 997–1008 (2002)

68. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
In: 18th Annual IEEE Conference on Computational Complexity (CCC 2003), pp.
371–378 (2003)

69. Kratsch, S.: Co-nondeterminism in compositions: A kernelization lower bound for
a Ramsey-type problem. In: Proceedings of the 22nd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2012, pp. 114–122 (2012)

70. Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M.: Fixed-parameter
tractability of multicut in directed acyclic graphs. CoRR, abs/1202.5749 (2012)

71. Kreutzer, S., Ordyniak, S.: Digraph decompositions and monotonicity in digraph
searching. Theor. Comput. Sci. 412(35), 4688–4703 (2011)

72. Kreutzer, S., Tazari, S.: Directed nowhere dense classes of graphs. In: Proceedings
of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012,
pp. 1552–1562 (2012)

What’s Next? Future Directions in Parameterized Complexity 495

73. Langston, M.A.: Fixed-Parameter Tractability, A Prehistory. In: Bodlaender, H.L.,
Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift. LNCS, vol. 7370, pp.
3–16. Springer, Heidelberg (2012)

74. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs of bounded
treewidth are probably optimal. In: Proceedings of the 21st Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011, pp. 777–789 (2011)

75. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized
problems. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2011, pp. 760–776 (2011)

76. Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization – Preprocessing with a Guar-
antee. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows
Festschrift. LNCS, vol. 7370, pp. 129–161. Springer, Heidelberg (2012)

77. Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems.
SIAM J. Comput. 39(4), 1432–1443 (2009)

78. Marx, D.: Parameterized graph separation problems. Theoret. Comput. Sci. 351(3),
394–406 (2006)

79. Marx, D.: On the optimality of planar and geometric approximation schemes. In:
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007),
pp. 338–348 (2007)

80. Marx, D.: Closest substring problems with small distances. SIAM Journal on Com-
puting 38(4), 1382–1410 (2008)

81. Marx, D.: Can you beat treewidth? Theory of Computing 6(1), 85–112 (2010)
82. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by

the size of the cutset. In: Proceedings of the 43rd Annual Symposium on Theory
of Computing, STOC 2011, pp. 469–478 (2011)

83. Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. Algorith-
mica 62, 807–822 (2012)

84. Misra, N., Raman, V., Saurabh, S.: Lower bounds on kernelization. Discrete Opti-
mization 8(1), 110–128 (2011)

85. Monien, B.: How to find long paths efficiently. In: Analysis and design of algorithms
for combinatorial problems (Udine, 1982). North-Holland Math. Stud, vol. 109,
pp. 239–254. North-Holland, Amsterdam (1985)

86. Nemhauser, G.L., Trotter Jr., L.E.: Vertex packings: structural properties and
algorithms. Math. Programming 8, 232–248 (1975)

87. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in
Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)

88. Patrascu, M., Williams, R.: On the possibility of faster SAT algorithms. In: Pro-
ceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, pp. 1065–1075 (2010)

89. Paturi, R., Pudlák, P.: On the complexity of circuit satisfiability. In: Proceedings of
the 42nd Annual Symposium on Theory of Computing, STOC 2010, pp. 241–250
(2010)

90. Raman, V., Saurabh, S.: Parameterized algorithms for feedback set problems and
their duals in tournaments. Theor. Comput. Sci. 351(3), 446–458 (2006)

91. Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed-parameter tractable. J. Comput.
Syst. Sci. 75(8), 435–450 (2009)

92. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research
Letters 32(4), 299–301 (2004)

496 D. Marx

93. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J.
Combin. Theory Ser. B 63(1), 65–110 (1995)

94. Robertson, N., Seymour, P.D.: Graph minors. XX.Wagner’s conjecture. J. Combin.
Theory Ser. B 92(2), 325–357 (2004)

95. Scheffler, P.: A practical linear time algorithm for disjoint paths in graphs with
bounded tree-width. Tech. Rep. 396/1994, Technical University of Berlin (1994)

96. Thilikos, D.M.: Graph Minors and Parameterized Algorithm Design. In: Bodlaen-
der, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift. LNCS,
vol. 7370, pp. 228–256. Springer, Heidelberg (2012)

97. Williams, R.: Finding paths of length k in O∗(2k) time. Inf. Process. Lett. 109(6),
315–318 (2009)

98. Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. Theor.
Comput. Sci. 26, 287–300 (1983)

Author Index

Bell, Tim 398
Betzler, Nadja 318
Bodlaender, Hans L. 196
Bredereck, Robert 318

Casey, Nancy 398
Chen, Jianer 162
Chen, Jiehua 318
Chen, Yijia 364

Downey, Rod 17, 91

Flum, Jörg 364
Fomin, Fedor V. 457

Gaspers, Serge 287
Gutin, Gregory 257

Kanj, Iyad A. 162
Koblitz, Neal 39

Langston, Michael A. 3
Lokshtanov, Daniel 129

Marx, Dániel 457, 469
Misra, Neeldhara 129

Niedermeier, Rolf 318

Raman, Venkatesh 69
Rosamond, Frances 80, 398

Saurabh, Saket 129
Stege, Ulrike 56
Szeider, Stefan 287

Telle, Jan Arne 74
Thilikos, Dimitrios M. 228

Wareham, Todd 51

Yeo, Anders 257

	Title
	Preface
	Organisation
	Table of Contents
	Part I: Memories
	Fixed-Parameter Tractability, A Prehistory
	Overview
	A Fortuitous Collaboration
	Research Atmosphere
	Changes Brewing
	Shoulders of Giants
	Armchair Polynomial Time
	Circuit Layout Applications
	What the Hell Is VLSI?
	Constructive Complexity
	Community Reactions
	Shifting Gears
	Retrospective
	References

	The Birth and Early Years of Parameterized Complexity
	Introduction
	Beginnings
	Precursors
	Figuring Out W[1] and the Great Kiwi Road Trip
	Getting Published and Promoting the Material
	Mr. Feasible
	1993 and Beyond
	Epilogue
	References

	Crypto Galore!
	Crypto and Parameterized Complexity
	Factorization and Discrete Logarithms
	The Bounded Retrieval Model

	Combinatorial Crypto Galore
	Knapsacks and Brassard's Theorem
	Polly Cracker

	Kid Krypto
	Crypto 1992 Invited Talk
	P=NP?

	Retrospective
	References

	Flyby: Life Before, During, and After Graduate Studies with Mike Fellows
	The Impact of Parameterized Complexity to Interdisciplinary Problem Solving
	Introduction
	Parameterized Complexity and Interdisciplinary Research
	Parameterized Complexity and Its Contributions to Computational Biology
	The Role of Parameterized Complexity in Cognitive Science
	Conclusions
	References

	Vertex Cover, Dominating Setand My Encounters with Parameterized Complexity and Mike Fellows
	Introduction (How It All Started for Me!)
	Early Meetings in Parameterized Complexity
	Conclusions
	Mike Fellows
	Recent Work on (above Matching Guarantee) Vertex Cover
	Recent Work on Dominating Set (in Graphs with Excluded Subgraphs)
	Open Problems

	References

	Mike Fellows: Weaving the Web of Mathematics and Adventure
	References

	Passion Plays: Melodramas about Mathematics
	Introduction
	The Four Melodramas
	The Helen Keller of Arithmetic Story
	Dragons
	Bob, Cowboy Mathematician of the Yukon
	Wagon Train to Infinity
	Diagonalization

	References

	Part II: Surveys
	A Basic Parameterized Complexity Primer
	Introduction
	The Idea
	Some Definitions

	Parametric Intractability
	Connection with PTAS's
	XP-Optimality

	Positive Techniques
	Bounded Search Trees
	Kernelization
	Iterative Compression

	Not-Quite-Practical FPT Algorithms
	Colour-Coding
	Bounded Integer Programming
	Bounded Width Metrics
	Algorithms for Graphs of Bounded Treewidth
	Logic

	Exotica, WQO Theory
	Protrusions
	Bidimensionality

	Limitations and Lower Bounds
	Left Out
	References

	Kernelization – Preprocessing with a Guarantee
	Introduction
	Basic Definitions
	Classical Techniques Explained via Simple Examples
	 Max-3-Sat
	Kernelization for FAST
	p-d-Hitting Set
	Kernels via Crown Decomposition
	Clique Cover

	Recent Upper Bound Machinery
	Protrusion Based Replacement
	Algebraic and Probabilistic Methods
	Randomized Kernels

	Lower Bound Machinery
	Recent Developments in Lower Bounds
	Cross Composition
	Finer Lower Bounds
	Co-nondeterminism in Compositions
	The AND Conjecture

	Conclusion and Discussion
	References

	Parameterized Complexity and Subexponential-Time Computability
	Introduction
	Preliminaries
	ETH, W[1], and CNF-SAT
	A General Framework
	The Miniaturization Classes
	Computational Lower Bounds
	Lower Bounds on Parameterized Complexity
	Refinements and Further Lower Bounds
	Lower Bounds on Approximation Algorithms

	Concluding Remarks and Open Problems
	References

	Fixed-Parameter Tractability of Treewidth and Pathwidth
	Introduction
	Definitions and Equivalent Notions
	Nice Tree and Path Decompositions
	k-Terminal Graphs
	Representing Nice Path Decompositions by Strings
	Notions Equivalent to Pathwidth
	Minors
	Cliques

	Algorithms on Tree and Path Decompositions
	Solving 3-Coloring on Nice Tree Decompositions
	Dynamic Programming and Finite State Automata
	Finite Index
	Courcelle's Theorem
	Courcelle's Conjecture
	Running Times as Function of Pathwidth and Treewidth
	Lower Bounds
	Special Classes of Graphs

	Graph Minors
	Deciding Treewidth and Pathwidth
	Membership in XP
	Nonconstructive Advances
	Fighting Non-constructiveness: Self-reduction
	Graph Reduction Techniques
	An Explicit Finite Congruence
	A Win-Win Theorem and a Linear-Time Algorithm

	Conclusions
	References

	Graph Minors and Parameterized Algorithm Design
	Introduction
	Basic Definitions
	Relations on Graphs and Obstructions
	Parameterized Problems and Algorithms

	Algorithmic Consequences of the GMT
	Well-Quasi-Ordering
	Minor-Closed Graph Parameters

	Grid-Exclusion and Bidimensionality
	Treewidth
	Bidimensionality

	The Irrelevant Vertex Technique
	The General Framework
	The Weak Structure Graph Minors Theorem
	Irrelevant Vertices and Linkages
	Applications

	Conclusions
	References

	Constraint Satisfaction Problems Parameterized above or below Tight Bounds: A Survey
	Introduction
	Basics on Parameterized Algorithms and Complexity
	Probabilistic and Harmonic Analysis Tools
	Parameterizations of MaxSat
	BooleanMax-r-CSPs above Average
	Basic Results for Max-Lin2-AA and Max-r-Lin2-AA
	Max-r-Lin2-AA
	Max-r-CSPs AA

	MaxLin2-AA and MaxSat-AA
	OrderingCSPs
	2-Linear Ordering
	Betweenness
	3-Linear Ordering
	(2,3)-Linear Ordering-AA

	References

	Backdoors to Satisfaction
	Introduction
	Satisfiability
	Base Classes
	Schaefer's Base Classes
	Base Classes Based on Subsolvers
	Miscellaneous Base Classes

	Detecting Weak Backdoor Sets
	Detecting Strong Backdoor Sets
	Empty Clause Detection

	Detecting Deletion Backdoor Sets
	Permissive Problems
	Comparison of Parameters
	Kernels
	Backdoor Trees
	Backdoors for Problems beyond NP
	Propositional Model Counting
	Quantified Boolean Formulas
	Nonmonotonic Reasoning
	Abstract Argumentation

	Conclusion
	References

	Studies in Computational Aspects of Voting
	Introduction
	Preliminaries
	Types of Voting Protocols
	Scoring Protocols
	Voting Protocols Based on Pairwise Comparisons
	Further Voting Protocols

	Kemeny Voting
	Input and Output Parameterizations
	Structural Parameterizations
	Ties and Incomplete Votes

	Types of Voting Problems
	Winner Determination
	Possible and Necessary Winner
	Manipulation
	Bribery
	Control
	Lobbying

	Parameterized Techniques
	Search Trees
	Kernelization
	Dynamic Programming
	Integer Linear Programming
	Color-Coding
	Parameterized Intractability

	Discussion and Future Challenges
	References

	A Parameterized Halting Problem
	Introduction
	Some Preliminaries
	Parameterized Complexity

	TheComplexityof p-Halt
	Polynomially Optimal Propositional Proof Systems and p-Halt
	Complete Problems and p-Halt
	Complete P-Equivalence Relations
	UP-Complete Problems

	Logics Capturing P and p-Halt
	The Invariant Least Fixpoint Logic

	Slicewise Downward Monotone Parameterized Problems
	The Length of First-Order Proofs and p-Halt
	Hard Sequences for Algorithms and p-Halt
	Summary, Generalizations and Extensions of the Results
	References

	Computer Science Unplugged and Related Projects in Math and Computer Science Popularization
	Introduction
	The Sorting Network
	Early Activism on Computer Science and Math Education
	This Is MEGA-Mathematics! —The MEGA-Math Project
	The MEGA-Math Book

	Computer Science Unplugged—Genesis
	Mathmania
	The ``Original'' Unplugged Book
	The ``Teachers' Edition'' of Unplugged
	The Unplugged Shows

	Computer Science Unplugged—Maturity
	Sponsorship and the New Web Site
	Professional Videos for CS Unplugged
	Translations to Other Languages and Cultures
	Adaptations and Variations of Activities

	CS Unplugged—Emerging Principles
	Evaluations of CS Unplugged
	The Heart of Puzzling: Mathematics and Computer Games
	A Systematic Mathematical Theory of Game Design
	Designing Games with Jim Andrews
	Educational Game Design

	Conclusion
	References

	FPT Suspects and Tough Customers: Open Problems of Downey and Fellows
	Introduction
	A Lineup of FPT Suspects
	A Lineup of Tough Customers
	References

	What’s Next? Future Directions in Parameterized Complexity
	Introduction
	The Optimality Program
	Kernelization from the Viewpoint of Optimality
	Branching Algorithms
	Problems on Directed Graphs
	References

	Author Index

