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Abstract. We present a method to discharge proof obligations from
Atelier B using multiple SMT solvers. It is based on a faithful model-
ing of B’s set theory into polymorphic first-order logic. We report on
two case studies demonstrating a significant improvement in the ratio of
obligations that are automatically discharged.

1 Introduction

The B Method [1] is a formal approach to develop safety critical embedded
systems. It is mainly used in the European railway industry [2,5]. This method
allows the design of correct-by-construction programs, thanks to refinement tech-
niques. The soundness of refinement steps is expressed by logic formulas, called
proof obligations (PO for short), that must be proved valid. The system Atelier
B implements the B Method and provides a dedicated theorem prover. It is
mostly an automated prover for B’s set theory. To discharge POs that are not
proved automatically, a user interface allows interactive proof steps.

In recent years, there has been tremendous progress in the domain of Satisfia-
bility Modulo Theories (SMT for short). Some SMT solvers have proved powerful
in the context of extended static checking, e.g. Simplify for ESC/Java, Z3 for
Boogie, Spec#, and VCC. A natural question is whether we would gain automa-
tion by using SMT solvers on POs generated by Atelier B. This is the question
we address in this paper. We propose a technique to translate B POs into the
input language of Why3 [6], an environment providing a common front-end to
various external provers. Why3 implements a polymorphic first-order logic, in
which we axiomatize B’s set theory. A main difficulty is to make sure that this
axiomatization is in a suitable form for the SMT provers to solve the generated
goals.

This paper is organized as follows. Sect 2 presents the necessary background
regarding B and Why3. Sect 3 exposes our technique to perform the translation
from B to Why3. Sect 4 reports on experiments made with our implementation.
We compare with related work in Sect 5.
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MACHINE Timer(initial_timer_value_ms)

SEES Configuration

CONSTRAINTS initial_timer_value_ms ∈ NAT1

VARIABLES active, remaining_time

INVARIANT active ∈ B ∧ remaining_time ∈ NAT ∧
(active = FALSE ⇒ remaining_time = 0) ∧
(active = TRUE ⇒ remaining_time ≤ initial_timer_value_ms)

INITIALISATION active := FALSE ‖ remaining_time := 0

OPERATIONS
start_timer = PRE active = FALSE THEN

active := TRUE ‖ remaining_time := initial_timer_value_ms
END;

decrement_timer = PRE active = TRUE THEN
remaining_time : ( remaining_time ∈ NAT ∧

(remaining_time$0 ≥ cycle_duration
⇒ remaining_time = remaining_time$0 − cycle_duration) ∧

(remaining_time$0 < cycle_duration ⇒ remaining_time = 0) )
END;

END

Fig. 1. Abstract State Machine defining a timer using B Method

2 Background

2.1 The B Environment

The B Method is organized around Abstract State Machines. Each Abstract
State Machine contains a state defined through variables as well as operations
allowing to modify this state. One can use Booleans, integers, and set theory to
express the state of an abstract machine. For example, in Fig. 1 showing a timer
defined using B Method, the state is defined through Boolean variable active
and natural integer variable remaining_time. The two operations start_timer
and decrement_timer allow the use of this timer by updating those variables.

Correctness properties that should be fulfilled by a machine are defined in
an invariant of each machine as well as in the definition of each operation. One
can use first-order logic to express those properties. In Fig. 1, the INVARIANT
clause states that if the timer is not active, the remaining_time should be zero
otherwise the remaining time should be less or equal the initial timer value. In a
similar way, the specification of the decrement_timer operation states that this
operation recomputes the remaining_time variable. If the value of the variable at
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cycle_duration = 100 ∧
(active = TRUE ⇒ remaining_time ≤ initial_timer_value_ms) ∧
active = TRUE ∧ 1 ≤ initial_timer_value_ms ∧
remaining_time$1 ∈ Z ∧ 0 ≤ remaining_time$1 ∧ remaining_time$1 ≤ 2147483647 ∧
(cycle_duration ≤ remaining_time

⇒ remaining_time$1 = remaining_time − cycle_duration) ∧
(remaining_time + 1 ≤ cycle_duration ⇒ remaining_time$1 = 0)

⇒ remaining_time$1 ≤ initial_timer_value_ms

Fig. 2. Example of Proof Obligation

operation entry ($0 notation) is bigger than the cycle duration, then it should be
decreased by the amount of cycle duration, otherwise it should be zero. Moreover,
those operations are constrained by a precondition that ensures the start_timer
operation is only used when the timer is inactive while the decrement_timer
operation is only used when the timer is active.

Abstract State Machines are similar to formal specifications. They are trans-
formed into an actual implementation through the use of manual refinements
that lead in one or more steps to an implementation. An implementation might
import one or more other machines in order to use their operations.

The B Method ensures that correctness properties defined in the invariant or
the operations are kept through the refinements and up to the final implementa-
tion. This is done through the generation of POs, following patterns defined in the
B-Book [1], that must be proved valid. For example, the PO shown in Fig. 2 checks
that the invariant active = TRUE ⇒ remaining_time ≤ initial_timer_value_ms
is preserved by the decrement_timer operation. The upper part of this PO de-
scribes the effect of the operation specification (here used as an assumption for
this PO), while the lower part being the property to prove under active = TRUE
assumption. The $1 notation denotes the state of the variable after execution of
the operation.

Tools are available to use the B Method in an industrial context, like Atelier B
made by ClearSy company. This tool contains an editor as well as automatic and
interactive provers. When developing software using the B Method, the code
corresponding to specifications, refinements and implementations is entered into
Atelier B. Then proof obligations are automatically generated and in a second
step are proved, either automatically or under user’s guidance. The amount of
interactive proofs is a direct cost for a project and usually corresponds to 5%
to 40% of the total amount of proof obligations for industrial projects. The PO
shown in Fig. 2 is not proved by the automatic prover of Atelier B.

2.2 The Why3 System

Why3 [6] is a set of tools for program verification. Basically, it is composed of
two parts, which are depicted in Fig. 3: a logical language called Why with an
infrastructure to translate it to existing theorem provers; and a programming
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Fig. 3. Overview of Why3

goal g: forall active:bool,
remaining_time remaining_time_1 initial_timer_value_ms cycle_duration : int.
cycle_duration = 100 ∧ active = True ∧
(active = True → remaining_time ≤ initial_timer_value_ms) ∧
1 ≤ initial_timer_value_ms ∧
0 ≤ remaining_time_1 ∧ remaining_time_1 ≤ 2147483647 ∧
(cycle_duration ≤ remaining_time

→ remaining_time_1 = remaining_time − cycle_duration) ∧
(remaining_time + 1 ≤ cycle_duration → remaining_time_1 = 0)

→ remaining_time_1 ≤ initial_timer_value_ms

Fig. 4. The same Proof Obligation as Fig. 2, in Why3

language called WhyML with a verification condition generator. In this paper,
we are not using the programming facilities of Why3; we are only concerned with
its logic, that is the right part of Fig. 3.

The logic of Why3 is a polymorphic first-order logic with recursive definitions,
algebraic data types, and inductive predicates [7]. Logical declarations are orga-
nized in small units called theories. The purpose of Why3 is, among other things,
to extract goals from theories and to translate them to the native language of
external theorem provers. Such provers range from interactive proof assistants,
such as Coq, to general-purpose automated theorem provers, such as Alt-Ergo,
Z3, or CVC3, and even to dedicated theorem provers, such as Gappa.

Fig. 4 shows a Why3 file containing one goal, equivalent to the PO of Fig 2.
Using Why3, this goal is proved valid with any of Alt-Ergo [12], Z3 [13], or
CVC3 [4].

3 A Translator from B to Why3

This section details the core of our contribution: a method to translate B proof
obligations into the Why3 form, so as to call the various provers available as
Why3 back-end. The method is based on two components: first a modeling in
Why3 of the set theory used in B (Sect. 3.1 below), second a standalone tool
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theory Set
type set α (∗ abstract type for polymorphic sets ∗)

predicate mem α (set α) (∗ membership ∗)

predicate (==) (s1 s2: set α) = forall x : α. mem x s1 ↔ mem x s2 (∗ equality ∗)
axiom extensionality: forall s1 s2: set α. s1 == s2 → s1 = s2

predicate subset (s1 s2: set α) = forall x : α. mem x s1 → mem x s2 (∗ inclusion ∗)

function empty : set α (∗ empty set ∗)
axiom empty_def: forall x: α. ¬ (mem x empty)

function union (set α) (set α) : set α (∗ union ∗)
axiom union_def: forall s1 s2: set α, x: α.

mem x (union s1 s2) ↔ mem x s1 ∨ mem x s2
[...]
end

Fig. 5. Why3 theory of sets (excerpt)

that reads a B file containing proof obligations and translates it into a set of
equivalent Why3 goals (Sect. 3.2). Then in Sect. 3.3 we discuss the soundness of
this method.

3.1 Modeling B Set Operators as Why3 Theories

The first theory we pose is a theory of sets. An excerpt of it is shown on Fig. 5.
To model the different possible types of elements, we make use of the type poly-
morphism of Why3, and thus declare a polymorphic type set α where the type
parameter α denotes the type of elements. The type set is not defined in Why3
but only axiomatized. The first and essential ingredient of this axiomatization
is the predicate mem which is intended to denote membership of an element
in a set. Indeed, most of the other operators that we introduce afterwards are
axiomatized with respect to mem, as exemplified in Fig. 5 for the (polymorphic)
empty set, the union operator and the predicate subset.

In the POs generated by B, it is very common to test equality of two sets. In
Why3, the built-in symbol = denotes a polymorphic equality, which is assumed
to be a congruence relation on any type it is used on. However, for sets, the
intended equality is not arbitrary: we want to model the fact that two sets are
equal if and only if they contain the same elements (Axiom SET 4 of the B-
Book [1, p. 61]). This is done by defining the predicate == of Fig. 5 just as
said above, and posing an axiom of extensionality which states that sets that
are equivalent for == are equal.

Both to exemplify our model of sets, and to define commonly used sets of
integers in B, let’s show how we model intervals of integers. This is done in
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theory Interval
use export int.Int
use export Set

function mk int int : set int
axiom mem_interval: forall x a b : int. mem x (mk a b) ↔ a ≤ x ≤ b

function integer : set int
axiom mem_integer: forall x:int.mem x integer

function natural : set int
axiom mem_natural: forall x:int. mem x natural ↔ x ≥ 0

[...]
end

Fig. 6. Why3 theory of intervals

a new Why3 theory, importing those of sets, as shown in Fig. 6. We declare
a logic function mk such that mk a b denotes the interval [a, b]. We also pose
definitions of the B built-in sets Z and N as two constants integer and natural
with appropriate axioms. We reuse Why3 computer arithmetic operators which
are the same as B-Book’s ones. Other set constructs are axiomatized in a similar
way: relations, power sets, sequences, finite sets, etc.

We detail our model of B relations, as shown in Fig. 7. A relation between
two sets S and T is just a set of pairs of elements of S × T . Domain and range
of such a relation are axiomatized with natural axioms. Partial functions in B
are just particular cases of relations. The set of partial functions on some sets s
and t is axiomatized in the Function theory of Fig. 7. Our axioms are designed
as transcriptions of those of the B-Book [1, p. 86], independently of the case
studies. We also provide a few lemmas about functions. These were added while
working on the case studies. They provide a form of hint to the SMT solvers.
Unlike axioms, these are logical consequences of the axiomatization. They are
proved, using Why3, either automatically with SMT solvers or interactively with
Coq.

The set of total functions is defined similarly. A non-trivial construct of B
is function application f(x). In B, this construct is subject to the condition
x ∈ dom(f) [1, p. 89]. We model this construct in Why3 using an explicit op-
erator apply. It is axiomatized for total functions only (see the last two axioms
in Fig. 7) and unspecified otherwise.

3.2 The Translation Process

Addition of the Why3 proof tool chain inside Atelier B is made after generation
of proof obligations. For each B machine (specification, refinement, or implemen-
tation), Atelier B generates an internal PO file (with suffix .po). We read and
translate this PO file into Why3.
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theory Relation "Relations between two sets"
use export Set

type rel α β = set (α,β)

function dom (rel α β) : set α
axiom dom_def: forall r : rel α β, x : α. mem x (dom r) ↔ exists y : β. mem (x,y) r

function ran (rel α β) : set β
axiom ran_def: forall r : rel α β, y : β. mem y (ran r) ↔ exists x : α. mem (x,y) r

[...]
end

theory Function "Partial functions as relations"
use export Relation

function (+->) (s:set α) (t:set β) : set (rel α β)
axiom mem_function: forall f:rel α β, s:set α, t:set β.

mem f (s +-> t) ↔
(forall x:α, y:β. mem (x,y) f → mem x s ∧ mem y t) ∧
(forall x:α, y1 y2:β. mem (x,y1) f ∧ mem (x,y2) f → y1=y2)

lemma range_function: forall f:rel α β, s:set α, t:set β, x:α, y:β.
mem f (s +-> t) → mem (x,y) f → mem y t

lemma function_extend_range: forall f:rel α β, s:set α, t u:set β.
subset t u → mem f (s +-> t) → mem f (s +-> u)

function (-->) (s:set α) (t:set β) : set (rel α β)
axiom mem_total_functions: forall f:rel α β, s:set α, t:set β.

mem f (s --> t) ↔ mem f (s +-> t) ∧ dom f == s

lemma total_function_is_function: forall f:rel α β, s:set α, t:set β.
mem f (s --> t) → mem f (s +-> t)

function apply (rel α β) α : β
axiom apply_def1: forall f:rel α β, s:set α, t:set β, a:α.

mem a s ∧ mem f (s --> t) → mem (a, apply f a) f
axiom apply_def2: forall f:rel α β, s:set α, t:set β, a:α, b:β.

mem f (s --> t) ∧ mem (a,b) f → b = apply f a
[...]
end

Fig. 7. Why3 theory of relations and functions (excerpt)

Our bpo2why translator is made of three steps: the parsing of Atelier B’s PO
file into an abstract syntax tree, the application of a type inference algorithm
on the read tree, and finally the translation of the typed tree into Why3.
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THEORY ProofList IS
_f(1) ∧ _f(2) ∧ _f(6) ∧ decrement_timer.2,(_f(10) ⇒ _f(11));

[...]
END
∧
THEORY Formulas IS
1 ("‘Component constraints’" ∧ initial_timer_value_ms ∈ Z ∧

0 ≤ initial_timer_value_ms ∧ initial_timer_value_ms ≤ 2147483647 ∧
¬(initial_timer_value_ms = 0) ∧ cycle_duration = 100;

2 ("‘Component invariant’" ∧ active ∈ B ∧ remaining_time ∈ Z ∧
0 ≤ remaining_time ∧ remaining_time ≤ 2147483647 ∧
(active = FALSE ⇒ remaining_time = 0) ∧
(active = TRUE ⇒ remaining_time ≤ initial_timer_value_ms));

[...]
6 ("‘decrement_timer preconditions in this component’" ∧ active = TRUE);
[...]
10 ("‘Local hypotheses’" ∧ remaining_time$1 ∈ Z ∧ 0 ≤ remaining_time$1 ∧

remaining_time$1 ≤ 2147483647 ∧
(cycle_duration ≤ remaining_time ⇒

remaining_time$1 = remaining_time − cycle_duration) ∧
(remaining_time + 1 ≤ cycle_duration ⇒ remaining_time$1 = 0));

11 (remaining_time$1 ≤ initial_timer_value_ms)
END
∧
THEORY EnumerateX IS

t_BOOM_MOVEMENT_ORDER = {go_up, go_down}
END

Fig. 8. Part of proof obligation file generated for Timer machine

The parsing step is quite usual. The format of the PO file is not publicly
documented but it is generated as a text file and we have reverse-engineered it.
Fig. 8 shows part of the generated PO file for the Timer machine of Fig. 1. This
file contains three parts: a set of logic expressions to prove (ProofList part), a set
of formulas identified by their sequence number (Formulas part) and referred as
_f(n) in previous logic expressions, and a set of enumerated sets (EnumerateX
part). We build an abstract syntax tree from the content of this file, using the
same priority and associativity as B’s operators [9]. As the B syntax is quite big
(about 200 keywords and operators), we currently do not parse all of it but a
significant subset1 needed for our tests.

The type inference step decorates the abstract syntax tree with the B type
of all operators and identifiers. It is necessary for a precise translation in the

1 This subset includes ∃ and ∀ quantifiers, Boolean expressions (with ⇒, ⇔, ∧, ∨, ¬
connectors and bool operator), usual integer arithmetic expressions (+, −, ∗, / and
mod operators, <, ≤, ≥, > comparison operators, 32 bits constants), set expressions
(with P, a..b, ∈, ∗, ∩, ∪ and − set operators), Z, N and ∅ sets, operators on functions
and relations (including seq, f−1, ↔, �→, →, f[s], f(x), dom, ran, size).
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theory B_translation
use import bool.Bool
use import int.Int
use import bpo2why_prelude.Interval

[...]
type enum_t_BOOM_MOVEMENT_ORDER = E_go_up | E_go_down

[...]
predicate f1 (v_remaining_time_1: int) (v_remaining_time: int)

(v_initial_timer_value_ms: int) (v_cycle_duration: int) (v_active: bool) =
((((mem v_initial_timer_value_ms integer)) ∧ (0 ≤ v_initial_timer_value_ms))
∧ (v_initial_timer_value_ms ≤ 2147483647))
∧ ¬(v_initial_timer_value_ms = 0)) ∧ (v_cycle_duration = 100))

predicate f2 [...] = ((((((mem v_remaining_time integer)) ∧ (0 ≤ v_remaining_time))
∧ (v_remaining_time ≤ 2147483647))
∧ ((v_active = False) → (v_remaining_time = 0)))
∧ ((v_active = True) → (v_remaining_time ≤ v_initial_timer_value_ms)))

[...]
predicate f6 [...] = (v_active = True)

[...]
predicate f10 [...] = ((((mem v_remaining_time_1 integer))
∧ (0 ≤ v_remaining_time_1)) ∧ (v_remaining_time_1 ≤ 2147483647))
∧ ((v_cycle_duration ≤ v_remaining_time)

→ (v_remaining_time_1 = (v_remaining_time − v_cycle_duration))))
∧ (((v_remaining_time + 1) ≤ v_cycle_duration) → (v_remaining_time_1 = 0)))

predicate f11 [...] = (v_remaining_time_1 ≤ v_initial_timer_value_ms)

goal decrement_timer_2 :
forall v_remaining_time_1: int, v_remaining_time: int,

v_initial_timer_value_ms: int, v_cycle_duration: int, v_active: bool.
((f1 v_remaining_time_1 v_remaining_time v_initial_timer_value_ms v_cycle_duration v_active)
∧ (f2 [...]) ∧ (f6 [...]) ∧ (f10 [...]))
→
(f11 [...])

[...]
end

Fig. 9. Why3 translation of Timer proof obligation

next step. We use a classical Hindley-Milner type inference algorithm [16]. An
additional issue is to support operator overloading, e.g. “∗” which is both the
arithmetic multiplication and the Cartesian product of two sets.

In a third step, we translate the typed abstract syntax tree into a Why3 file.
This is done through a top-down traversal of the tree, translating each node into
Why3 syntax and then recursively translating sub-trees of this node. This trans-
lation step uses the Why3 theories of B operators defined in Section 3.1. In case
operators would have several possible translations, we use the inferred type in
previous step to determine the kind of Why3 operator to use. For example, the
“=” B’s operator is translated into Why3’s “=” if it is an integer equality or into
Why3’s “==” operator if it is a set equality. Enumerated sets are translated into
Why3’s sum types. All B’s expressions in a PO file are translated, except two
kinds related to enumerated sets (an enumerated set is not empty and an enu-
merated set is finite) as those assumptions are implicitly guaranteed by Why3’s
sum types. Fig. 9 shows the PO file of Fig.8 translated into Why3. We have kept
the same structure as the input file, with the definition of “ fn” predicates and
their use in a Why3’s “goal”. All predicates are quantified over all variables used
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in the PO file. The t_BOOM_MOVEMENT_ORDER enumerated set is trans-
lated into a sum type. We have used an explicit parenthesizing of expressions
to avoid any priority issue. We keep the PO comments produced by Atelierb B
as Why3 labels. Thanks to our modeling of B operators, we are able to trans-
late set related expressions. For example in predicate f2 of Fig. 9, we translate
the PO expression “remaining_time ∈ Z” into “mem v_remaining_time integer”,
using the mem set operator defined in Sect. 3.1. In the same way, the symbol
“ integer” is the one of Fig. 6.

By default, we generate a Why3 file for each original PO file. However, when
a PO file contains more than 200 proof obligations, we split the generated Why3
file into several files, each one containing at most 200 goals. We also include
in those files only the “fn” predicates needed by goals of a given Why3 file.
This approach reduces the processing time and proof context of Why3 under
acceptable limits, as well as the time needed to call provers. Otherwise a single
Why3 file with 1,600 goals and 1,400 predicates would take several minutes to
simply load the file.

3.3 Soundness of the Translation

We claim that our translation process is sound in the sense that if the translation
of a B proof obligation is a valid formula then the original one is also valid. That
soundness property relies upon two things: first the modeling of B operators as
presented in Sect. 3.1 must be faithful to the B-Book, second the translation
mechanism given in Sect. 3.2 must be sound. Both of these ingredients are small
and natural, so we are confident on their soundness. The modeling contains 3
type declarations, 35 function symbols, 5 predicate symbols, 25 axioms, and 21
lemmas2. The bpo2why translator is made of 2,057 lines of OCaml: 701 lines for
parsing, 957 lines for type inference, and 399 lines for the translation.

However, in such a process it is easy to make a mistake when writing down
axioms, which could result in an inconsistent theory in which we could prove
anything. To prevent from such an inconsistency, we designed Coq realizations
of the Why3 theories in use. Realizing theories in Coq is a feature provided
by Why3. It automatically translates a given Why3 theory into a Coq module,
where each abstract definition or axiom is respectively written as a concrete
definition or a lemma. The latter must then be filled in by the user.

The first step is to provide a Coq definition of the type of polymorphic sets.
We use the higher-order features of Coq, and define set α as a function α → bool,
that is a set S of elements of type α is identified with its characteristic function.
The membership function is thus defined trivially as (mem x s) := (s x). From
such a definition, it is straightforward to define the basic set operators empty
set, union, etc. and prove that the axioms we pose are valid. However, realizing
our set equality and our extensionality axiom is not an easy task. It is indeed
not provable in Coq that s1==s2 implies s1=s2: pointwise equality of functions

2 We modeled only the B constructs needed for our case studies.
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does not imply equality of these functions, it is the so-called extensionality of
function equality.

Thus, we pose functional extensionality as an axiom in Coq. Actually func-
tional extensionality is not the only axiom we need. We also admit the excluded
middle, because we need to have decidability of membership in a set, and finally
we admit the axiom of choice to be able to realize the apply operator, which
allows to construct a function from a relation. It is commonly admitted that
adding these general-purpose axioms in the Coq calculus of inductive construc-
tions is consistent, indeed by interpretation into a standard set-theoretic boolean
model [3].

4 Experiments

We applied our technique on a proprietary use case called RCS3. This is a B
project modeling the software controlling a railway level crossing system. This
project has been entirely proved inside Atelier B, so all proof obligations are
valid. While being a small project (about 3,000 lines of generated C code), it is
representative of a B development with sets, sets of sets, relations, sequences,
and linear integer arithmetic. The project is made of 31 machines (specification,
refinement, or implementation), generating 2,247 proof obligations. Atelier B
4.0.2 automatic prover in F1 force proves 94% of them using a 10 seconds time
limit, leaving 129 unproved proof obligations.

Our bpo2why translator can be applied on all generated PO files. We can then
launch the Why3 tool chain on them using Alt-Ergo, CVC3, and Z3 provers. We
use the following strategy to run the provers: the three provers are launched in
parallel on all proof obligations, four at a time, with a 2 seconds time limit. For
remaining unproved goals, we run once again the three provers with a 60 seconds
time limit.

The comparison of the two proof chains is given in Fig. 10 (only machines gen-
erating proof obligations are shown). Overall, the Why3 proof tool chain proves
more proof obligations than Atelier B’s automatic prover (including the Timer
machine previously presented). Only 19 proof obligations are not proved, corre-
sponding to a 85% improvement. In only one machine, Automaton_context_i,
the Why3 tool chain proves less proof obligations than Atelier B. This machine
contains set expressions between enumerated sets. We do not know yet why
such expressions are difficult for our tool chain. The 10 proof obligations in
Warning_section_i machine are considered “difficult” ones. They need an elabo-
rated mathematical proof with exhibition of witnesses (for existential quantifiers)
based on properties of a bijection.

An interesting by-product of this experiment is that none of Alt-Ergo, CVC3,
and Z3 automatic provers proves all proof obligations, even with a 60s time limit.
For the three provers, there is at least one proof obligation which is proved by
this prover and by none of the others. This result confirms the usefulness of the
Why3 tool chain that targets several provers and thus allows to use them in a
complementary way.
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Machine # of PO Unproved by
Atelier B

Unproved by
Why3

Automaton 4 0 0
Automaton_context_i 10 8 9
Automaton_i 229 71 0
Automaton_transitions 189 7 0
Automaton_transitions_i 1678 25 0
Boom_detectors_i 16 0 0
Configuration_i 7 4 0
Indicators_i 12 0 0
Lamps_bells_i 4 0 0
Timer 3 1 0
Timer_i 10 0 0
Track_circuit 2 0 0
Track_circuit_i 1 0 0
Train_detector_i 4 0 0
Warning_section 2 0 0
Warning_section_i 59 11 10
Warning_section_r 17 2 0
Total 2247 129 19

Fig. 10. Comparison of Why3 tool chain with Atelier B on RCS3 use case (smaller is
better)

Regarding proving time, the Why3 tool chain takes 35 min 34 s to prove all
goals with the three provers using 4 cores, roughly 12 min per prover. Using F1
proving force, automatic prover of Atelier B 4.0 on one core3 proves its proof
obligations in 1 min 2 s. Using F3 force, we do not get any answer from Ate-
lier B in 30 minutes. Discarding machine Automaton_context_i, it completes in
7 min 5 s. There is net gain of 2 proof obligations in machine Warning_section_r.
Overall, Atelier B is much faster to prove the proof obligations, but Why3 pro-
duces a better result in an acceptable time. As the time needed by the user
to look at unproved proof obligation is very costly, we think that any gain in
automatic proofs is an effective development time gain.

Digital Watch Example. We have also applied our tool on a second example,
the model of a digital watch. This model is less complex. It generates 777 proof
obligations, of which 11 are not proved by Atelier B in F1 force. Using our
translator and then the Why3 tool chain with Alt-Ergo, CVC3 and Z3, we can
automatically prove all but one proof obligation, the remaining one being not
provable (a bug in the original model). This result confirms that the Why3 tool
chain improves the efficiency of proofs by exploiting the capabilities of modern
SMT provers (this model contains a lot of integer arithmetic expressions).

3 Latest Atelier B 4.0.2 is able to use all cores of a multi-core machine but we could
not use this version for our tests.
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5 Comparison with Related Work

Bodeveix, Filali, and Muñoz [8] formalized the semantics of B in both Coq and
PVS. They define a (mostly) shallow embedding of the B notions of generalized
substitutions and machines. B’s set theory is not formalized at all; the native
logics of Coq and PVS are used instead.

The BRILLANT [11] toolset made by Colin et al. generates B’s proof obliga-
tion that can be incorporated inside the Coq proof assistant thanks to the Bi-
Coax [10] libraries. (The BiCoax work is itself an extension of the B/PhoX [17]
work based on PhoX proof assistant.) The proof obligations can then be proved
manually or by Coq automatic tactics. Jacquel et al. [15] propose another deep
embedding of B’s set theory in Coq, whose purpose is to check using Coq that
the rewrite rules used in the B prover are valid. Our Coq realization is similar
to both Coq formalizations above. However our Coq model is only built for the
purpose of showing the consistency, not for the purpose of performing proofs
interactively with Coq.

Déharbe made a work [14] very similar to ours. Namely, Déharbe interfaces
SMT solvers having an SMT-LIB interface with the Rodin development tool for
Event-B. The proof obligations generated by Rodin are transformed into Boolean
formulas, sets being transformed into their characteristic predicate. Déharbe’s
approach is limited to basic sets (i.e. no set of sets) while ours is able to transform
all set-related expressions of the B Method. Moreover, Why3 is able to interface
itself to more automatic provers, not limited by the SMT-LIB interface. For his
tests, Déharbe used only one SMT solver, veriT. But even using one solver, he
obtained a significant improvement in proofs, as we did.

6 Conclusion and Perspectives

In this paper, we have presented an approach and a tool to transform Atelier B’s
proof obligations into the Why3 proof tool chain in order to prove them using
several automated provers. While being a shallow embedding of B logic into
Why3 logic, we have arguments to believe that this translation is sound: mainly
the translation is short and we can check axioms’ correctness through Coq real-
ization. We have applied this approach on a small but reasonably complex use
case and we found a significant improvement in the number of proof obligations
that are automatically proved.

This work could be improved in several ways. First of all, we could support
more B operators in order to handle more complex and industrial models. The
current subset of operators is the one needed to handle our use cases. Adding one
B operator amounts to incrementally complete the Why3 theories, complete its
Coq realization, and add a translation rule in the translator. Secondly we could
try to increase the number of automatically proved proof obligations by analyzing
in detail why some of them are not proved. This may amount to provide more
lemmas as hints, or annotate them with triggers. Thirdly, we could increase our
confidence level in the embedding of B into Why3 by proving B-Book’s lemmas
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into our Why3 framework. Fourthly we could better integrate our tool chain into
Atelier B tool, for example by applying it after Atelier B automatic prover and
then merging our results into Atelier B GUI. Last but not least, we could try
to improve the automated provers themselves in order to better handle proof
obligations generated by the B Method. E.g. an interesting theoretical question
is whether the rewriting techniques used by the B prover could be combined
with the satisfiability modulo theory approach.
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