
Refinement Plans for Informed Formal Design�

Gudmund Grov1, Andrew Ireland2, and Maria Teresa Llano2

1 University of Edinburgh, School of Informatics, Edinburgh, UK
2 Heriot-Watt University, MACS, Edinburgh, UK

Abstract. Refinement is a powerful technique for tackling the com-
plexities that arise when formally modelling systems. Here we focus on
a posit-and-prove style of refinement, and specifically where a user re-
quires guidance in order to overcome a failed refinement step. We take
an integrated approach – combining the complementary strengths of top-
down planning and bottom-up theory formation. In this paper we focus
mainly on the planning perspective. Specifically, we propose a new tech-
nique called refinement plans which combines both modelling and reason-
ing perspectives. When a refinement step fails, refinement plans provide
a basis for automatically generating modelling guidance by abstracting
away from the details of low-level proof failures. The refinement plans de-
scribed here are currently being implemented for the Event-B modelling
formalism, and have been assessed on paper using case studies drawn
from the literature. Longer-term, our aim is to identify refinement plans
that are applicable to a range of modelling formalisms.

1 Introduction

We focus here on a layered style of formal modelling, where a design is developed
as a series of abstract models – level by level concrete details are progressively in-
troduced via provably correct refinement steps. There are two major approaches
in achieving this style of formal modelling: the rule-based approach and the
posit-and-prove approach; examples can be found in [25] and [21,1], respectively.

The work reported here aims to enhance the posit-and-prove approach. Specif-
ically, we have developed a technique called refinement plans which automatically
generates guidance for users within posit-and-prove formal modelling. Like many
approaches to design, whether informal [13] or formal [2], our technique relies
upon patterns. While we focus here on relatively small patterns, we believe this
will provide a foundation upon which to explore larger refinement patterns in
the future.

The novelty of our refinement plans is that they combine modelling and rea-
soning patterns, enabling us to computationally exploit the subtle interplay that
exists between modelling and reasoning – what we call reasoned modelling. Our
refinement plans are heuristic in nature, and can be applied flexibly during a de-
velopment. This flexibility is achieved through partial matching and proof-failure

� An earlier version of this paper appears in the informal proceedings of AFM’10 [23].

J. Derrick et al. (Eds.): ABZ 2012, LNCS 7316, pp. 208–222, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Refinement Plans for Informed Formal Design 209

analysis. While we focus here on Event-B, we believe the ideas that underpin
reasoned modelling are generic with respect to posit-and-prove.

The paper is structured as follows: §2 provides background on Event-B along
with our previous work on automated theory formation and reasoned modelling
critics. Our refinement plans mechanism is described in §3 and an example of a
refinement plan is presented in §4. The current implementation of the mechanism
is outlined in §5, while §6 describes related and future work.

2 Background

2.1 Event-B Refinement by Example

An Event-B development is structured into models and contexts. A context de-
scribes the static part of a system, e.g. constants and their axioms, while a
model describes the dynamic part. Models are themselves composed of three
components: variables, events and invariants. Variables represent the state of
the system, events are guarded actions that update the variables and invari-
ants are constraints on the variables. By way of illustration we now consider the
Event-B model shown in Figure 1. This model is a fragment of a flash-based file
system developed in [9]. The fragment shown in Figure 1 deals with the function
of writing the content of a file. In the abstract model, the event writefile is re-
sponsible for writing the content of file f, wbuffer(f), into fcontent in an atomic
step. In the concrete model the content is written one page at a time into a
temporary storage fcont tmp (event w step) before being written to the actual
storage fcontent (event w end ok). The new events w start and w step are said
to refine skip, while event w end ok refines the abstract event writefile.

In order to prove that the refinement is indeed correct, invariants must be
provided. In the example three invariants are specified in the concrete model,
the two first invariants specify the type of the new variables fcont tmp and
writing, while the last invariant specifies a property of the refinement step, that
is, that when the writing process starts for a given file, the content of fcont tmp
is a subset or is equal to the content of wbuffer.

2.2 Reasoned Modelling Critics

The notion of reasoned modelling (REMO) was first introduced in [19], where we
described REMO critics. These critics are motivated by the way in which proof-
failure analysis typically informs the activity of modelling – and is achieved by
combining common patterns of proof failure with generic modelling guidance.
The mechanism builds upon the notion of proof critics [18], a proof patching
technique developed within the context of proof planning [4]. The key difference
is that our REMO critics exploit failure at the level of modelling and proof.
As a result, we reduce the burden that users experience in manually analysing
low-level proof failures, presenting them instead with high-level modelling alter-
natives. These ideas were further developed in [20] where an implementation via



210 G. Grov, A. Ireland, and M.T. Llano

ABSTRACT MODEL:

Variables
fcontent, w opened files, wbuffer, file size,
power on, dateLastModified

Invariants
w opened files ⊆ files
file size ∈ files → N

power on ∈ BOOL
fcontent ∈ files → CONTENT
dateLastModified ∈ (files ∪ directories) → DATE
wbuffer ∈ w opened files → CONTENT

Event writefile =̂
any f
where
f ∈ w opened files
power on = TRUE
then
fcontent(f) := wbuffer(f)
dateLastModified(f) := nowdate
file size(f) := card(wbuffer(f))

end

CONCRETE MODEL:

Variables
fcontent, w opened files, wbuffer, file size, power on, dateLastModified, writing, fcont tmp

Invariants
writing ⊆ w opened files
fcont tmp ∈ writing → CONTENT
∀ f· f∈ writing ⇒ fcont tmp(f) ⊆ wbuffer(f)

Event w start =̂
any f
where
f ∈ w opened files
f /∈ writing
power on = TRUE
then
writing := writing ∪ { f}
fcont tmp(f) := ∅

end

Event w step =̂
any f i data
where
power on = TRUE
f ∈ writing
i ∈ N

data ∈ DATA
i 	→ data ∈ wbuffer(f)
i /∈ dom(fcont tmp(f))
then
fcont tmp(f) :=
fcont tmp(f) ∪ { i 	→data}

end

Event w end ok =̂
refines writefile
any f
where
f ∈ writing
dom(fcont tmp(f)) = dom(wbuffer(f))
power on = TRUE
then
fcontent(f) := fcont tmp(f)
dateLastModified(f) := nowdate
file size(f) := card(fcont tmp(f))
writing := writing \ { f}
fcont tmp := { f} �− fcont tmp

end

Fig. 1. Event-B model of a flash file system [9]

the Remo tool, a prototype plug-in for the Eclipse-based Rodin toolset imple-
mented in OCaml, is described. The work presented here aims to extend the
REMO critics so as to generate modelling guidance at the level of refinement.

2.3 HRemo

HREMO [24] is an automatic approach to invariant discovery that builds upon
HR [8], a machine learning system that performs descriptive induction to form
a theory about a set of objects of interest which are described by a set of core
concepts. Theories are constructed in HR via theory formation steps which at-
tempt to construct new concepts, i.e. non-core concepts, through the use of a set
of production rules and, if empirical relationships are found between concepts,
formulate conjectures and evaluate the results. Thus, the theories HR produces
contain concepts which relate the objects of interest, conjectures which relate
the concepts; and proofs which explain the conjectures.

HREMO builds upon HR, animation and proof-failure analysis to automat-
ically suggest candidate invariants of Event-B models. In particular, a set of



Refinement Plans for Informed Formal Design 211

heuristics are used to guide the search for invariants in HR. These heuristics ex-
ploit the strong interplay between modelling and reasoning in Event-B by using
the feedback provided by failed POs to make decisions about how to configure
HR. Specifically, the approach consists of analysing the structure of failed POs
to automate the:

1. Prioritisation in the development of conjectures about specific concepts.
2. Selection of appropriate production rules that increase the possibilities of

producing the missing invariants.
3. Filtering of the final set of conjectures to be analysed as candidate invariants.

HREMO uses two classes of heuristics to constrain the search for invariants: those
used in configuring HR, i.e. configuration heuristics, and those used in select-
ing conjectures from HR’s output, i.e. selection heuristics. Using proof-failure
analysis to prune the wealth of conjectures HR discovers, these heuristics have
proven highly effective at identifying missing invariants. Further information
about HREMO and examples of its application can be found in [24].

3 Refinement Plans

Before providing details on the structure of refinement plans, we first sketch how
we envisage they will be used within a development environment such as Rodin.
Given a development, our approach provides a basis for classifying refinement
steps against known patterns of refinement, i.e. syntactic features of abstract
and concrete models.

However, we are interested in situations where a refinement step is flawed,
and thus the proof tools fail to discharge some of the POs. In such situations
our approach attempts to automatically generate guidance, i.e. modelling alter-
natives that overcome the failure. This is achieved by firstly identifying which
of the known patterns are closely aligned to the given failed refinement. As well
as a refinement pattern, each refinement plan is associated with a set of critics
– where a critic represents a common pattern of failure at the level of POs and
models. Moreover, associated with each critic is generic modelling guidance as
to how to overcome the failure, e.g. invariant speculation, event speculation, etc.

Table 1. Refinement pattern analysis of Event-B case studies

control refinement data refinement

Model RP 1 RP 2 RP 3 RP 4 RP 5 RP 6 RP 7 RP 8

Cars on a bridge [1] ✔✔ ✔✔ ✔

Mondex [6] ✔ ✔ ✔✔✔✔ ✔ ✔ ✔✔

Flash file system [9] ✔✔✔ ✔✔ ✔

Location access ctrl. [1] ✔ ✔ ✔✔✔

PLC∗ ✔ ✔✔ ✔

Network topology [15] ✔ ✔ ✔✔ ✔✔

∗Available at http://homepages.inf.ed.ac.uk/ggrov/

http://homepages.inf.ed.ac.uk/ggrov/


212 G. Grov, A. Ireland, and M.T. Llano

Fig. 2. A hierarchical classification of common refinement patterns

When a common pattern of failure is instantiated by a particular refinement
step, the associated guidance will typically only be partially instantiated. To
fully instantiate the guidance for a given flawed refinement requires in general
additional search and reasoning – this is where we exploit HRemo.

Currently we have identified 8 basic refinement patterns by analysing a range
of Event-B case studies from the literature. These patterns form a hierarchy
as shown on Figure 2. Each leaf node denotes a distinct pattern of refinement,
while the internal nodes reflect the sharing of properties between patterns. This
classification provides us with a better understanding of what a user is trying
to achieve in a refinement step as well as facilitates the matching process. The
8 basic patterns in Figure 2 are described briefly below:

case split: refers to refinement steps in which an abstract event is refined in
the concrete model by two or more events.

control elaboration: relates to models that constrain the application of ex-
isting events based on extensions of the state and independently from the
operation of new events at the concrete level.

accumulator: deals with models in which actions of an abstract atomic event
are performed in the concrete model via iteration.

plain decomposition: makes reference to models in which an abstract event
is refined by a sequence of new and refined events. New events are used to
pre-process data used in the abstract event.

set to partition: refers to models in which an abstract variable is refined by
partitioning it through a set of new variables in the concrete model.

partition to function: involves refinement steps in which an abstract partition
of variables is refined into a function in the concrete model.

data extension: refers to models in which an abstract variable is refined into
a concrete variable that extends the abstract data type in order to control
membership of data in the variable.

redundant data removal: involves the elimination of data from the abstract
level that is not being used to control the operation of any event.



Refinement Plans for Informed Formal Design 213

ABSTRACT MODEL:

Variables: V1, V2 Event A =̂
where
...

then
V1 := V2

end

CONCRETE MODEL:

Variables: V1, V2, W

Invariants: H1 ⇒ F�(W , V2)

Event Ci =̂
where
H0

then
Wai

:= Iai
end

Event Ca =̂
where
H1

then
Wai

:= Wai
⊕ α

end

Event Cr =̂
refines A
where
H1

G=(Wj , V2)
then
V1 := Wai

end

Side conditions:
• H0 ⇔ ¬H1

Fig. 3. Accumulator plan – Modelling pattern

The relation between this hierarchy and the case studies is given in Table 1.
Currently we have explored in detail four refinement plans, i.e. case split, accu-
mulator, set to partition and partition to function. Below in §4 we focus on the
accumulator refinement plan and two of its associated critics.

4 The Accumulator Refinement Plan

A technique for breaking up an atomic event has been proposed by Butler and
Yadav in [6] and further developed in [5,10,11]. The accumulator refinement plan
has been inspired by this work. The key difference with our work is that as well
as the modelling patterns, we are also interested in the deductive patterns and
in providing guidance when a pattern breaks in a development.

The accumulator pattern deals with models in which actions of an abstract
atomic event are performed in the concrete model via iteration. This is achieved
through the use of new events that iteratively accumulate the value from the
abstract action. The modelling and PO patterns of the accumulator plan are
shown in Figures 3 and 4, respectively. Note that we use the Vs and Ws to
denote meta-variables, and specifically we use Iai to represent the initial value
assigned to meta-variable Wai. Note also that we use F, G and H to denote
meta-predicates, where subscripts are used to restrict their instantiation, e.g.
G= restricts G to be an equality. The key elements in the refinement are:

• The abstract model has an atomic event that is refined in the concrete model.
• A set of new variables W = {W1, ..., Wn} are introduced.
• A subset of W , Wa, which denotes accumulator variables. That is, for each
Wai ∈ Wa (where, 1 ≤ i ≤ n) there is an accumulator event, i.e. the action
pattern Wai := Wai ⊕ α occurs, an initialisation event and a refined event.
• An initialisation event (Ci), accumulator event (Ca), and refined event (Cr).



214 G. Grov, A. Ireland, and M.T. Llano

H1 ⇒ F�(W,V2)

H0

�
[Wai

:= Iai
](H1 ⇒ F�(W,V2))

(a) Init event (Inv. Preservation)

H1 ⇒ F�(W,V2)

H1

�
[Wai

:= Wai
⊕ α](H1 ⇒ F�(W,V2))

(b) Accumulator event (Inv. Preservation)

H1 ⇒ F�(W,V2)

H1

G=(Wj , V2)

�
[V 1 := Wai

](H1 ⇒ F�(W,V2))

(c) Refined event (Inv. Preservation)

H1 ⇒ F�(W,V2)

H1

G=(Wj , V2)

�
[V1 := Wai

](V1 = V2)

(d) Refined event (Simulation)

[x := e]F denotes the substitution of x for e in F – and is a result of the before-after
predicate [1] associated to an event.

Fig. 4. Accumulator plan – PO patterns

• An invariant, H1 ⇒ F
(W , V2), that explains the refinement; i.e. that the
content of the accumulator variable(s) is contained within the value assigned in
the abstract model – the � symbol generalises the containment relationship.
• The initialisation, accumulator(s) and refined events must preserve the invari-
ant, Figures 4(a), 4(b) and 4(c), respectively.
• The refined event must simulate the abstract action, Figure 4(d).
An instance of the accumulator pattern occurs in the model presented in Figure 1,
in which the action:

fcontent(f) := wbuffer(f)

within the abstract event writefile is achieved within the concrete model via
iteration. Below we present the fragments of the events that match the modelling
pattern at the concrete level:

Event w start =̂
any f
where ...
f /∈ writing
then ...
fcont tmp(f):= ∅

writing:=writing∪{f}
end

Event w step =̂
any f i data
where ...
f ∈ writing
then
fcont tmp(f) :=
fcont tmp(f)∪{i 	→data}

end

Event w end ok =̂
refines writefile
any f
where ...
f ∈ writing
dom(fcont tmp(f))=dom(wbuffer(f))
then ...
fcontent(f) := fcont tmp(f)

end

Note that variable fcont tmp acts as the accumulator variable. Event w start
initialises the process by assigning the empty set to fcont tmp and adding file f
to the writing state, event w step iteratively adds the content of each page to
the accumulator variable, and event w end ok assigns the content of fcont tmp
to fcontent after all the pages have been written. Finally, the invariant:

∀f ·f ∈ writing⇒ fcont tmp(f) ⊆ wbuffer(f)



Refinement Plans for Informed Formal Design 215

ABSTRACT MODEL:

Variables
x y

Invariants
x ∈ N

y ∈ N

Event incr =̂
then
x := x + y

end

CONCRETE MODEL:

Variables
y x n x tmp flag

Invariants
n ∈ N

x tmp ∈ N

flag ∈ BOOL

Event start =̂
when
flag = TRUE
then
n := 0
x tmp := x
flag := FALSE

end

Event step =̂
when
n < y
flag = FALSE
then
x tmp := x tmp + 1
n := n + 1

end

Event end ok =̂
refines incr
when
flag = FALSE
then
x := x tmp
flag := TRUE

end

Fig. 5. Flawed accumulator plan instance – Addition example

specifies that while file f is in the writing state, the value of wbuffer(f) is accu-
mulated in fcont tmp(f).

4.1 Accumulator Refinement Plan Critics

We now focus on the critics aspect of refinement plans, and how partial matching,
with respect to the modelling pattern, and failure analysis are used to automat-
ically generate modelling guidance.

We have identified a number of critics for the accumulator plan:

postGuard speculation critic: considers the case when the guard of the re-
fined event that ensures the accumulation process is complete is either flawed
or missing.

invariant speculation critic: handles the case when the accumulator invari-
ant is wrong or missing.

accumulator speculation critic: handles the case when an accumulator event
refines an abstract event whose actions are performed in an atomic step.

initialisation speculation critic: considers the case when the accumulation
process does not have an initialisation phase.

loopGuard speculation critic: deals with the case when the guard(s) that
deal with the loop in the accumulator event is wrong or missing.

guard relocation critic: deals with guards from the abstract event that need
to be moved to a new event in the accumulation sequence.

Due to space constraints we only present two critics: postGuard speculation and
invariant speculation. In order to illustrate the application of these critics we will
use a simple model that adds a value to a variable. The model, taken from [9], is
shown in Figure 5. The running example of the flash file system, Figure 1, is not
used because it is not possible to perform the simulation of this model through
the ProB animator and animation is a key component of the critics presented.
We give more information about these limitations in §6.



216 G. Grov, A. Ireland, and M.T. Llano

The abstract model in Figure 5 shows an atomic event incr that increments
the value of x by the value of y. In the concrete model the value of y is iteratively
assigned in event step to an accumulator variable x tmp, while in the event end ok
the value of x tmp is assigned to the abstract variable x after the accumulation
has finished. Event start initialises the accumulation. Note that variable n is
a new variable used to control the accumulation process. Note also that the
accumulator invariant as well as the post-guard are missing from the model; this
gives rise to the following failed SIM PO associated to event end ok :

end ok/SIM PO: flag = FALSE 	 x tmp = x + y

At this point the postGuard speculation and invariant speculation critics are trig-
gered. First the critic that deals with the guard is applied because in order to
reason about the invariant, the events in the model need to be correct.

Preconditions for the Postguard speculation Critic

P1. An accumulator pattern is identified.
This precondition holds for the addition model since a partial match of the
accumulator pattern is detected. That is, apart from the invariant and the
guard, the other key elements of the pattern are identified in the model.

P2. The simulation PO pattern associated to the refined event fails.
This precondition holds since the end ok/SIM PO fails.

P3. The post-accumulator guard is missing or it is not compatible with the guard
pattern, i.e. G=(Wj, V2).
As mentioned above, the post-accumulator guard is missing from the model
in Figure 5; therefore this precondition holds.

Guidance
A guard with the shape G=(Wj, V2) must be added to the refined event.
As preconditions P1, P2 and P3 succeeded, the guard pattern is instantiated.
The guidance is then to add a guard to event end ok with the form:

G=(x tmp, n, x, y)

We will revisit this guard schema below, and describe how it is instantiated.
For now assume that the correct instantiation is available, i.e. y = n. Because
the invariant is also missing, the failure persists, this triggers the invariant critic.

Preconditions for the Invariant speculation Critic

P1. An accumulator pattern is identified.
This precondition succeeds as explained for the guard critic.

P2. The SIM PO pattern associated to the refined event fails.
This precondition holds since the end ok/SIM PO fails. The new form of the
failed PO is:

flag = FALSE, y = n 	 x tmp = x + y



Refinement Plans for Informed Formal Design 217

P3. The post-accumulator guard is not missing and it is compatible with the
guard pattern, i.e. G=(Wj, V2).
The post-accumulator guard y = n is present in the refined event and is
compatible with the pattern.

P4. The accumulator invariant is missing or it is not compatible with the in-
variant pattern, i.e. H1 ⇒ F
(W , V2).
As mentioned above, the accumulator invariant is missing from the model;
therefore, this precondition holds.

Guidance
An invariant of the shape H1 ⇒ F
(W , V2) must be added to the concrete model.
As with the guard critic, preconditions P1 to P4 succeeded; therefore the invari-
ant pattern is instantiated as follows (where due to use of natural numbers � is
instantiated to ≤):

(flag = FALSE) ⇒ F≤(x tmp, n, x, y)

As can be observed the guidance currently provided is in the form of partial
instantiations of the schemas. At this point, there are three options to find the
correct instantiation: i) through interaction with the user, ii) through the use of
proof patterns, or iii) through the use of automated theory formation (ATF).

Here we use ATF, and in particular the HREMO system to search for the miss-
ing invariants and guards. However, currently HREMO cannot be used to analyse
models where the events are incorrect. This prevents us from using HREMO

directly to discover missing guards. On the contrary, HREMO can be used to
discover missing invariants. However, with regards to the invariant schema given
above, HREMO on its own fails to find the missing invariant after 1000 theory
formation steps, which give rise to 7959 conjectures. This does not imply that
the invariant cannot be found, rather it means that additional search is required.
In the next section we show that by combining refinement plans and event error
traces with HREMO these negative issues can be effectively addressed.

4.2 Combining Modelling Patterns with HRemo

The process of finding a “correct” refinement typically involves exploring many
incorrect models. Refinement plans aim at providing guidance when a failed re-
finement is closely aligned with a known pattern. However, as shown through the
guidance obtained by the critics presented in §4.1, refinement plans are limited
by the patterns observed. On the other hand, as mentioned above, HREMO also
exhibits some limitations. In order to overcome these limitations we combine
both approaches, in particular we extend the work presented in [24] by:

– using the ProB animator [22] to generate traces that contain undesirable
states which can be used by HREMO to find missing guards, and

– using the patterns of invariants and guards available in the refinement plans
to automatically tailor the search in HREMO.



218 G. Grov, A. Ireland, and M.T. Llano

As mentioned in §2.3, two type of heuristics are used by HREMO, configuration
heuristics (CH) and selection heuristics (SH), when a pattern of an invariant or
a guard is available then the following heuristics are applied:

Configuration Heuristics

CH1. Prioritise core and non-core concepts expected in the invariant or guard.
CH2. Follow with core and non-core concepts that occur within failed POs.
CH3. Generate conjectures that are compatible with the type of the expected

invariant or, if looking for a guard, generate only equivalence conjectures.
CH4. Select only production rules which will give rise to conjectures relating to

the type of the expected invariant or guard.

Equivalence conjectures are always generated since this optimises the theory for-
mation process [8].

The selection heuristics for the search of invariants based on patterns are the
same than those applied in [24]. This requires selecting conjectures where the
sets of variables occurring on the left- and right-hand sides are disjoint, selecting
the most general conjectures, and selecting the conjectures that discharge the
failed POs and that minimise the number of additional proof failures. Note that
here the selection of conjectures is focused in the core and non-core concepts
that relate to the invariant pattern, as opposed to [24] which focused on core
and non-core concepts from the failed POs.

In the case of missing guards the selection process differs. Through the use
of the ProB animator it is possible to detect event errors which result in traces
that contain undesirable states. That is, ProB can animate various refinement
levels concurrently, allowing the detection of errors associated with refinement; in
particular, ProB can detect violation of guard strengthening in a refined event,
we exploit this animation analysis provided by ProB to tailor HREMO in the
search of guards. When a trace of this type is generated we provide HREMO

with the concept of good states, which are the steps of the trace with no guard
strengthening errors associated. The selection is then focused on conjectures that
express equivalences with the concept of good, i.e. conjectures of the form:

good ⇔ φ

where φ represents the potential missing guard.
Regarding the postGuard speculation and invariant speculation critics, pre-

sented in §4.1, the guidance is achieved by using the partially instantiated guard
and invariant schemas to tailor HREMO in the search. To illustrate, lets revisit
the instantiated guard schema obtained by the postGuard speculation critic:

G=(xtmp, n, x, y)

based on this, we instantiate the configuration heuristics as follows:

CH1: Prioritised concepts from the guard schema: x tmp, n, x and y .
CH2: Concepts from the failed POs: flag, x+y, x tmp=x+y and flag=FALSE.



Refinement Plans for Informed Formal Design 219

CH3: Searching for a guard; thus, only equivalence conjectures are generated.
CH4: As the top-level symbol in the guard is = and the involved variables are

natural numbers, the numrelation and arithmetic PRs are selected.

After 65 seconds and 1000 theory formation steps HREMO returns 1 conjecture:

good ⇔ y = n

which means that the missing guard is y = n. A similar approach is followed in
the search for the missing invariant. After 45 seconds and 1000 theory formation
steps HREMO returns 1 conjecture:

flag = FALSE ⇒ x tmp = x+ n

which represents the missing invariant.

5 Implementation and Results

We have implemented and tested the set to partition and partition to function
refinement plans. Moreover we have conducted the experiments described above
with the accumulator plan. This implementation effort was partially integrated
into the Remo toolset, which we mentioned in §2.2. An architectural view of the
implementation is given in Figure 6. The prototype is partial in that the inte-
gration of the guidance from Remo back into Rodin is still under development.
Note that in terms of results, our implementation is still at the experimental
stage, and we are now looking to undertake more extensive testing (see §6).

6 Related and Future Work

The motivation behind the work described here is to correct a refinement which
almost matches an existing pattern. Similar tools and techniques we are familiar
with – such as the BART tool for classical B [26]; the ZRC refinement calculus
for Z [7]; and more relevant, Event-B based tools and techniques as described in
[16,17,2,12] – instead focus on automating the refinement from a given step to
a more concrete step. None of the tools can handle the failure-analysis we have
described here.

Our implementation of the refinement plans highlighted in this paper is on-
going. We plan to automate the link with HRemo and the external theorem
prover(s) as well as to automate the communication of the results from Remo
back to the user1. We also plan to further test and develop our existing plans,
drawing upon industrial case studies arising from the DEPLOY project2. We are
also interested in exploring the potential for using machine learning techniques
to automate the discovery of new plans.

1 One possible route is via Lopatkin’s transformation patterns plug-in. For details see
http://wiki.event-b.org/index.php/Transformation_patterns

2 See http://www.deploy-project.eu/

http://wiki.event-b.org/index.php/Transformation_patterns
http://www.deploy-project.eu/


220 G. Grov, A. Ireland, and M.T. Llano

The Rodin Remo plug-in provides the interface between the Rodin toolset and the
Remo tool. The plug-in generates two files, i) and Event-B model, and ii) the associ-
ated POs. The refinement plans are also given as an input to the tool. The Refinement
Patterns Classifier uses the refinement plans to classify the patterns of refinement used
in a development. The role of the Critics Analyser is to find ways of overcoming fail-
ures. This is achieved via the critics mechanism which analyses the instances given
by the classifier together with the POs. The classifier and the analyser interact with
CVC3 when a precondition requires proof. The analyser also interacts with HREMO

in order to search for missing/wrong invariants or guards. The results of this analysis
are passed to the Guidance Generator which takes the raw results from the analyser
and produces a formatted, ranked (ordered) list of alternative guidance suggestions,
which will then be sent to the Rodin Remo plug-in and presented to the user. Note
that the stippled lines indicate work in progress.

Fig. 6. The Remo tool architecture

Animation traces from ProB are used in the analysis phase of our work-flow.
Such information about how the events relate to each other should naturally be
part of the pre-conditions of plans and critics, and we will extend them with
such information. Bendisposto and Leuschel [3], have developed a tool which
turn ProB traces into a more abstract flow graphs which shows the order events
may be executed3. We plan to add support for such “event flow” information in
the preconditions, either as described in [3], or ideally extended with support for
infinite systems ([3] only supports finite models), which undoubtedly will require
theorem proving support.

Finally, animation is key to our approach, where the quality of the invariants
produced by HREMO strongly depends on the quality of the animation traces.
We believe that increasing the randomness in the production of the traces is an
area where the ProB animator requires improvement. Specifically, this limitation
arose during our analysis of the Mondex [6] case study.

3 Hallerstede [14] suggests an approach achieving a similar goal, but here the user has
to add more structure to the model.



Refinement Plans for Informed Formal Design 221

7 Conclusions

We have described refinement plans, a technique which provides automatic mod-
elling guidance for users of posit-and-prove style formal refinement. Building
upon common patterns of refinement, the technique uses an automated analy-
sis of refinement failure at the level of models and POs in order to focus the
search for modelling guidance. To provide flexibility in terms of the guidance
that can be generated, we have experimented with the HREMO theory formation
tool. Through these experiments we have shown that combining refinement plans
with HREMO improves the search for invariants and has suggested how missing
guards can be discovered automatically.

Acknowledgements. Thanks to Alison Pease, Simon Colton, Julian Gutier-
rez, Alan Bundy and the Mathematical Reasoning Group at Edinburgh Uni-
versity. This work was supported by EPSRC grants EP/F037058, EP/H024204,
EP/E005713, EP/E035329, EP/J001058.Maria Teresa Llano was also supported
by a BAE systems studentship. Finally, we thank the anonymous ABZ reviewers
for their constructive feedback.

References

1. Abrial, J.-R.: Modelling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

2. Abrial, J.-R., Hoang, T.S.: Using Design Patterns in Formal Methods: An Event-B
Approach. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008.
LNCS, vol. 5160, pp. 1–2. Springer, Heidelberg (2008)

3. Bendisposto, J., Leuschel, M.: Automatic Flow Analysis for Event-B. In: Gian-
nakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 50–64. Springer,
Heidelberg (2011)

4. Bundy, A.: A science of reasoning. In: Computational Logic: Essays in Honor of
Alan Robinson. MIT Press (1991)

5. Butler, M.: Decomposition Structures for Event-B. In: Leuschel, M., Wehrheim, H.
(eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009)

6. Butler, M., Yadav, D.: An incremental development of the mondex system in Event-
B. Formal Aspects of Computing 20(1) (2008)

7. Cavalcanti, A., Woodcock, J.: ZRC - A Refinement Calculus for Z. Formal Aspects
of Computing 10(3) (1998)

8. Colton, S.: Automated Theory Formation in Pure Mathematics. Springer (2002)
9. Damchoom, K.: An Incremental Refinement Approach to a Development of a Flash-

Based File System in Event-B. PhD thesis, University of Southampton (2010)
10. Salehi Fathabadi, A., Butler, M.: Applying Event-B Atomicity Decomposition to

a Multi Media Protocol. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S.,
Leuschel, M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 89–104. Springer, Heidelberg
(2010)

11. Salehi Fathabadi, A., Rezazadeh, A., Butler, M.: Applying Atomicity and Model
Decomposition to a Space Craft System in Event-B. In: Bobaru, M., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 328–342.
Springer, Heidelberg (2011)



222 G. Grov, A. Ireland, and M.T. Llano

12. Fürst, A.: Design Patterns in Event-B and Their Tool Support. Master’s thesis,
ETH Zürich (2009)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

14. Hallerstede, S.: Structured Event-B Models and Proofs. In: Frappier, M., Glässer,
U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp.
273–286. Springer, Heidelberg (2010)

15. Hoang, T.S., Basin, D., Kuruma, H., Abrial, J.-R.: Development of a network
topology discovery algorithm. DEPLOY project Repository,
http://deploy-eprints.ecs.soton.ac.uk/82/

16. Iliasov, A.: Refinement Patterns for Rapid Development of Dependable Systems.
In: EFTS. ACM Press (2007)

17. Iliasov, A.: Design Components. PhD thesis, University of Newcastle (2008)
18. Ireland, A.: The Use of Planning Critics in Mechanizing Inductive Proofs. In:

Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 178–189. Springer, Heidel-
berg (1992)

19. Ireland, A., Grov, G., Butler, M.: Reasoned Modelling Critics: Turning Failed
Proofs into Modelling Guidance. In: Frappier, M., Glässer, U., Khurshid, S., Laleau,
R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 189–202. Springer, Heidelberg
(2010)

20. Ireland, A., Grov, G., Llano, M., Butler, M.: Reasoned modelling critics: turn-
ing failed proofs into modelling guidance. In: Science of Computer Programming.
Elsevier (2011) (in Press)

21. Jones, C.B.: Systematic Software Development using VDM. Prentice Hall (1990)
22. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Araki, K., Gnesi, S.,

Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

23. Llano, M., Grov, G., Ireland, A.: Automatic guidance for refinement based formal
methods. In: AFM Workshop (2010)

24. Llano, M.T., Ireland, A., Pease, A.: Discovery of invariants through automated
theory formation. In: Refine Workshop. EPTCS, vol. 55 (2011)

25. Morgan, C.: Programming from Specifications. Prentice–Hall (1990)
26. Requet, A.: BART: A Tool for Automatic Refinement. In: Börger, E., Butler, M.,

Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 345–345. Springer,
Heidelberg (2008)

http://deploy-eprints.ecs.soton.ac.uk/82/

	Refinement Plans for Informed Formal Design

	Introduction
	Background
	Event-B Refinement by Example
	Reasoned Modelling Critics
	HRemo

	Refinement Plans
	The Accumulator Refinement Plan
	Accumulator Refinement Plan Critics
	Combining Modelling Patterns with HRemo

	Implementation and Results
	Related and Future Work
	Conclusions
	References





