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Preface to iFM & ABZ 2012

iFM 2012, the 9th International Conference on Integrated Formal Methods, and
ABZ 2012, the Third International Conference on Abstract State Machines,
Alloy, B, VDM, and Z, joined together in a single event, iFM&ABZ 2012, to
celebrate Egon Börger’s 65th birthday and his contribution to state-based for-
mal methods.

This co-location of iFM&ABZ 2012 was hosted by the Institute of Scienza e
Tecnologie dell’Informazione A. Faedo of the National Research Council (ISTI-
CNR) of Italy and took place at the Area della Ricerca del CNR in Pisa during
June 18–21, 2012.

We would like to thank everyone in Pisa for making us feel very welcome
during our time there. It was a pleasure to run an event to honor Egon.

Professor Egon Börger was born in Bad Laer, Lower Saxony, Germany. Be-
tween 1965 and 1971 he studied at the Sorbonne, Paris (France), Université
Catholique de Louvain and Institut Supérieur de Philosophie de Louvain (in
Louvain-la-Neuve, Belgium), and the University of Münster (Germany). Since
1985 he has held a Chair in Computer Science at the University of Pisa, Italy.
In September 2010 he was elected a member of the Academia Europaea.

Throughout his work he has been a pioneer of applying logical methods in
computer science. Particularly notable is his contribution as one of the founders
of the Abstract State Machine (ASM) method. Egon Börger has been cofounder
and Managing Director of the Abstract State Machines Research Center (see
www.asmcenter.org).

Building on his work on ASM, he was a cofounder of the series of international
ASM workshops, which was part of this year’s conference held under the ABZ
banner. He contributed to the theoretical foundations of the method and initi-
ated its industrial applications in a variety of fields, in particular programming
languages, system architecture, requirements and software (re-)engineering, con-
trol systems, protocols, and Web services. In 2007, he received the Humboldt
Research Award.

He has been coauthor of several books and over 150 research papers, and
organizer of over 30 international conferences, workshops, and schools in logic
and computer science.

As one can see, his influence has been broad as well as deep. It is an influence
that one sees in all of the notations covered in the ABZ conference, as well as in
the iFM event and the various integrations and combinations of formal methods
seen there. Neither iFM nor ABZ have been here before, and it is thus especially
fitting that we hold such an event in Pisa, where Egon has held a chair for many
years.

In addition to contributed papers, the conference program included two tuto-
rials and three keynote speakers. The tutorials were offered by: Eric C.R. Hehner
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on Practical Predicative Programming Primer; Joost-Pieter Katoen, Thomas
Noll, and Alessandro Cimatti on Safety, Dependability, and Performance Analy-
sis of Extended AADL Models. We are grateful to Egon Böerger, Muffy Calder,
and Ian J. Hayes, for accepting our invitations to address the conference.

Each conference, ABZ and iFM, had its own Program Committee Chairs
and Program Committees, and we leave it to them to describe their particular
conference. We shared invited speakers, so all conference attendees had the op-
portunity to hear Egon, Muffy, and Ian. We also shared some technical sessions
so that all participants could see some of the best technical work from each
conference.

We would like to thank the Program Committee Chairs, Diego Latella, CNR/-
ISTI, Italy, Helen Treharne, University of Surrey, UK, for IFM 2012; Steve
Reeves, University of Waikato, New Zealand, and Elvinia Riccobene, Univer-
sity of Milan, Italy, for ABZ 2012 for their efforts in setting up two high-quality
conferences.

We also would like to thank the members of the Organizing Committee as
well as several other people whose efforts contributed to making the conference
a success and particular thanks go to the Organizing Committee Chair Maurice
ter Beek.

April 2012 John Derrick
Stefania Gnesi



Preface to the Volume

The Third International ABZ 2012 Conference was held in Pisa (Italy), during
June 18–21, 2012, in conjunction with iFM 2012, the 9th International Confer-
ence on Integrated Formal Methods, as a joint event in honor of Egon Börger’s
65th birthday. The iFM proceedings appear as a separate LNCS volume, number
7321.

The ABZ conference series is dedicated to the cross-fertilization of five re-
lated state-based and machine-based formal methods: Abstract State Machines
(ASM), Alloy, B, VDM and Z. They share a common conceptual foundation
and are widely used in both academia and industry for the design and analysis
of hardware and software systems. The main goal of this conference series is to
contribute to the integration of these formal methods, clarifying their common-
alities and differences to better understand how to combine different approaches
for accomplishing the various tasks in modeling, experimental validation, and
mathematical verification of reliable high-quality hardware/software systems.

The edition of ABZ to which this volume is dedicated follows the success of
the first ABZ conference held in London (UK) in 2008, where the ASM, B, and Z
conference series merged into a single event, and the success of the second ABZ
2010 conference held in Orford (Canada) where the Alloy community joined the
event. The novelty of this third international event is the inclusion of the VDM
community in the ABZ conference series.

ABZ 2012 received 59 submissions from all five research communities. Al-
though organized as a single event, editorial control of the conference was vested
in five separate Program Committees, one for each group: ASM, Alloy, B, VDM,
and Z. Each submission was reviewed by at least three Program Committee mem-
bers, and 33 papers were accepted for publication in this volume and presentation
at the conference: 20 long papers covering a broad spectrum of research, from
fundamental to applied work, and 13 short papers of work in progress, industrial
experience reports, and tool demonstrations.

The ABZ program included two invited talks: one was given by Egon Börger,
to whom this event is dedicated and whose paper also appears in the iFM pro-
ceedings, and one by Ian J. Hayes from the University of Queensland, Australia.

Organizing and running this event required a lot of effort from several people.
We wish to thank all the Program Chairs, all members of the Program Com-
mittee, and all the external reviewers for their precise, careful evaluation of the
papers and for their availability during the discussion period which considered
each paper’s acceptance. We wish to express our deepest gratitude to the CNR
Institute in Pisa, which supported the event and provided all the necessary orga-
nizational support, and we also thank all the sponsors for their financial support.
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The conference was managed with EasyChair, which was a valuable support
for the submission and review process, and for the preparation of this volume.

A particular special thanks to Egon Börger, master of science and life.

April 2012 Steve Reeves
Elvinia Riccobene

INTECS Formal Methods Banca Nazionale del Lavoro EATCS

S.p.A. Europe S.p.A. Italian Chapter
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Contribution to a Rigorous Analysis

of Web Application Frameworks

Egon Börger, Antonio Cisternino, and Vincenzo Gervasi

Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
{gervasi,cisterni,boerger}@di.unipi.it

Abstract. We suggest an approach for accurate modeling and analysis
of web application frameworks.

1 Introduction

In software engineering the term ‘application’ traditionally refers to a specific
program or process users can invoke on a computer. The emergence of dis-
tributed systems and in particular of web applications has significantly changed
this meaning of the term. Here functionality is provided by a set of indipendent
cooperating modules with a distributed state, in web applications all offering a
unified interface to their user—to the point that the user may have no way to
distinguish whether a single application or a set of distributed web applications
is used. Also recent non-web systems, like mobile apps, follow the same paradigm
allowing the state of an application to be persistent and distributed, no longer
tied to the traditional notion of operating system process and memory.

There is still no precise general definition or model of what a web application
is. What is there is a variety of (often vague and partly incompatible) standards,
web service description languages at different levels of abstraction (like BPEL,
BPMN, workflow patterns, see [9] for a critical evaluation of the latter two)
and difficult to compare techniques, architectures and frameworks offered for
implementations of web applications, ranging from CGI (Common Gateway In-
terface [23]) scripts to PHP (Personal Home Page) and ASP (Application Server
Page) applications and to frameworks such as ASP.NET [19] and Java Server
Faces (JSF [1]). All of them seem to share that a web application consists of a dy-
namically changing network of systems that send and receive through the HTTP
protocol data to and from other components and provide services of all kinds
which are subject to continuous change (as services may become temporarily or
permanently unavailable), to dynamic interference with other services (compet-
ing for resources, suffering from overload, etc.) and to all sorts of failures and
attacks.

The challenge we see is to discover and formulate the pattern underlying
such client-server architectures for (programming and executing concurrent dis-
tributed) web applications. We want to make their common structural aspects

J. Derrick et al. (Eds.): ABZ 2012, LNCS 7316, pp. 1–20, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 E. Börger, A. Cisternino, and V. Gervasi

explicit by defining precise high-level (read: code, platform and framework in-
dependent) models for the main components of current web application systems
such that the major currently existing implementations can be described as re-
finements of the abstract models. The goal of such a rational reconstruction is
to make a rigorous mathematical analysis of web applications possible, includ-
ing to precisely state and analyze the similarities and differences among existing
frameworks, e.g. the similarities between PHP and ASP and the differences be-
tween PHP/ASP and JSP/ASP.NET. This has three beneficial consequences:
a) it helps web application analysts to better understand different technologies
before integrating them to make them cooperate; b) it builds a foundation for
content-based certifiability of properties one would like to guarantee for web
applications; c) it supports teachers and book authors to provide an accurate
organic birds’ perspective of a significant area of current computer technology.

For the present state of the art, given the lack of rigorous abstract models of
(at least the core components of) web application frameworks, it is still a theo-
retical challenge to analyze, evaluate and classify web application systems along
the lines of fundamental behavioral model properties which can be accurately
stated and verified and be instantiated and checked for implementations.

The modeling concepts one needs to work on the challenge become clear if
we consider the above mentioned feature all web applications have in common,
namely to be an application whose interface is presented to the user via a web
browser, whose state is split between a client and a server and where the only
interaction between client and server is through the HTTP protocol. This implies
that an attempt to abstractly model web application frameworks must define at
least the following two major client-server architecture components with their
subcomponents and the communication network supporting their interaction:

the browser with all its subcomponents: launcher, netreader, (html, script,
image) parsers, script interpreter, renderer, etc.
the server with its modules providing runtimes of various programming lan-
guages (e.g. PHP, Python [2], ASP, ASP.NET, JSF),
the asynchronous network which supports the interaction (in particular the
communication) between the components.

This calls for a modeling framework with the following features:

A notion of agents which execute each their (possibly dynamically changing)
program concurrently, possibly at different sites.
A notion of abstract state covering design and analysis at different levels
of abstraction (to cope with heterogeneous data structures of the involved
components) and the distributed character of the state of a web application.
A sufficiently general refinement method to controllably link (using valida-
tion and/or verification) the different levels of abstraction, specifically to
formulate different existing systems as instances of one general model.
A flexible mechanism to express forms of non-determinism which can be
restricted by a variety of constraints, e.g. by different degrees of transmission
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reliability ranging from completely unreliable (over the internet) to safe and
secure (like for components running on one isolated single machine).
A flexible environment adaptation mechanism to uniformly describe web
application executions modulo their dependence on run-time contexts.
A smooth support for traceable model change and refinement changes due to
changing requirements in the underlying (often de facto) standards.

1.1 Concrete Goals and Results So Far

As a first step towards the goal outlined above we started to model the client-
server architecture of a browser interacting with a web server. In [17] the trans-
port and stream levels of an abstract web browser model are defined. To this
we add here models for the main components of the context level layer (Sect. 2)
which together with the web server model defined in Sect. 3 allow one to de-
scribe one complete round of the Request-Reply pattern [18,8] that character-
izes browser/server interactions (see Fig. 1).1 In Sect. 3.1 a high-level functional
Request-Reply web server view is defined which is then detailed (by refinement
steps) for the two main approaches to module execution:

the CGI-approach where the server delegates the execution of an external
process to another agent (Sect. 3.3),
the script-approach where the server itself executes script code (Sect. 3.4).

We explain how one can view existing implementations as instantiations of these
models.

We use the ASM (Abstract State Machines) method [12] as modeling frame-
work because it offers all the features listed above which are needed for our
endeavor2 and because various ASM models in the literature contribute specifi-
cally to the work undertaken here. For example both the browser and the server
model use a third group of basic components, namely ScriptInterpreters for
various Script languages, which can be specified by an ASM model adopting the
method used in [22] to define an interpreter for Java (and reused in [11,15,16]
to rigorously define the semantics of C# and the CLR). These models provide a
significant part of the infrastructure web applications typically use. For example
applets which run inside a browser, or the Tomcat application server [3], are
written in Java. Furthermore, the method developed for modeling Java/JVM
can be reused to define a model for the JavaScript interpreter (see [14] for some
details) corresponding to the ECMAScript standard ECMA-262 [4], a standard
that serves as glue to link various technologies together.

In Sect. 4 we list some verification goals we suggest to pursue on the basis of
(appropriately completed) precise abstract models of web application framework
components, i.e. to rigorously formulate and check (verify or falsify) properties
of interest for the models and/or their implementations.

1 In the Request-Reply pattern of two-way conversations the requestor (one applica-
tion) sends a request to the provider (another application) and the provider returns
a reply to the requestor.

2 See [10] for the recent definition of a simple flexible ambient ASM concept.
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The models we define and their properties we discuss come without any com-
pleteness claim and are intended to suggest an approach we consider to be
promising for future FM research in a core area of computer technology.

2 Modeling Browser Components

Our browser models focus on those parts of the browser behaviour that are most
relevant for the deployement and execution of web applications. The models are
developed at four layers. The main components of the transport layer (express-
ing the TCP/IP communication via HTTP) and the stream layer (describing
how information coming from the network is received and interpreted) are de-
fined in [17]. In this section we add models for characteristic components of the
context layer, which deals with the user interaction with the document repre-
sented by the Document Object Model (DOM). Without loss of generality we
omit in this paper the browser layer where the behaviour of a web browser seen
as an application of the host operating system is described. In practice, most
web applications are entirely contained in a single browsing context; in fact an
important issue in the development of web standards is how to ensure for secu-
rity reasons that multiple browsing contexts in the same browser are sufficiently
isolated from each other (a security property that we leave to future work).

2.1 Browsing Context

A browsing context is an environment in which documents are shown to the
user, and where interaction with the user occurs. In web browsers, browsing
contexts are usually associated with windows or tabs, but certain deprecated
HTML structures (namely, frames) also introduce separate browsing contexts.

In our model, a browsing context is characterized primarily by five elements:

a document (i.e. a DOM as described in [17]), which is the currently active
document presented to the user;
a session history, which is a navigable stack of documents the user has visited
in this browsing context;
a window, which is a designated operating system-dependent area where the
Document is presented and where any user interaction takes place;
a renderer, which is a component that produces a user-visible graphical ren-
dering of the current Document (Section 2.2);
an event loop, which is a component that receives and processes in an ordered
way the various operating system-supplied events (such as user interaction
or timer expiration) that serve as local input to the browser (Section 2.3).

We keep the window abstract, as its behaviour can be conveniently hidden by
keeping the actual rendering abstract and by assuming that user interaction with
the window is handled by the operating system. Thus we deal with events that
have been already pre-processed by a window manager. We also omit the rather
straightforward modeling of the session history.
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When STARTing a newly created BrowsingContext k , DOM (k) is initialized
by a pre-defined implementation-dependent initial document initialDOM ; it is
usually referred to through the URL about:blank and may represent an empty
page or a “welcome page” of some sort. Two agents are equipped with programs
to execute the Renderer and the EventLoop for k .

StartBC(k) =
let a =new Agent , b =new Agent in
program(a) := Renderer(k)
program(b) := EventLoop(k)
DOM (k) := initialDOM

The Renderer and EventLoop macros are specified below.

2.2 Renderer

The Renderer produces the user interface of the current DOM in the (implicit)
given window. It is kept abstract by specifying only that it works when it is (a)
supposed to perform (at system dependent RenderingTime) and (b) allowed to
perform because no other agent has a lock on the DOM (e.g., while adding new
nodes to the DOM during the stream-level loading of an HTML page).

Renderer(k) =
if renderingTime(k) and ¬locked(DOM (k)) then
GenerateUi(DOM (k), k)

2.3 Event Loop

We assume that events are communicated by the host environment (i.e., the
specific operating system and UI toolkit of the client machine where the browser
is executed) to the browser by means of an event queue. These UI events are
merged and put in sequential order with other events that are generated in the
course of the computation, e.g. DOM manipulation events (fired whenever an
operation on the DOM, caused by user actions or by Javascript operations, leads
to the execution of a Javascript handler or similar processing) or History traversal
events (fired whenever a user operates on the Back and Forward buttons offered
by most browsers to navigate through the page stack).

Here we detail the basic mechanism used in (the simplest form of) web appli-
cations to prepare a Request to be sent to the server (with the understanding
that when a Response is received, it will replace the current page in the same
browsing context). HTML forms are used to collect related data items, usually
entered by the user, and to package them in a single Request. Figure 1 shows
when the macros defined below and in [17] are invoked; lifelines represent agents
executing a rule. Remember that ASM agents can change their program dynam-
ically (e.g., when Receive becomes HTMLProc) and that operations by an
agent in the same activation, albeit shown in sequence, happen in parallel.
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Fig. 1. A diagram depicting the behaviour of our browser model for a user who opens a
new window in a browser, manually loads the first page of a web application, interacts
locally with a form, and then sends the data back to the server, receiving a new or
updated page in response
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An HTML form is introduced by a <FORM> element in the page. All the input
elements3 that appear in the subtree of the DOM rooted at the <FORM> are said
to belong to that form. Among the various input elements, there is normally
a designated one (whose UI representation is often an appropriately labeled
button) tasked with the function of submitting a form. This involves collecting
all the data elements in the form, encoding them in an appropriate format,
and sending them to a destination server through various means. This may
include sending the data by email or initiating an FTP transfer, although these
possibilities are seldom, if ever, used in contemporary web applications.

It is also of interest to note that submission of a form may be initiated from a
script, by invoking the submit() method of the form object, and hence happen
indipendently from user behaviour. In the following, we will not concern ourselves
with the details of how a submit operation has been initiated, but only with the
emergence of the submit event in the event queue, whatever its origin.

We model the existence of a separate event queue for each browsing context,
which is processed by a dedicated agent created in the StartBC macro above.
When an event is extracted from the event queue that indicates that the user has
provided a new URL to load (e.g., by typing it in a browser’s address bar, or by
selecting an entry from a bookmarks list, etc.), the browsing context is navigated
to the provided URL by starting an asynchronous transfer (in the normal case,
the HTTP Request will be sent to the host mentioned in the URL, and later
processing of the Response will replace the DOM displayed in the page).

When an event is extracted from the event queue that indicates a form submis-
sion, the form and related parameters are extracted from the event, appropriate
encoding of the data is performed based on the action and method attributes as
specified in the <FORM> node, and finally either the data is sent out (e.g., in the
case of a mailto: action) or the browsing context is populated with the results
returned from a web server identified by the form’s action. In normal usage, that
will be the same web server hosting the web application that originally sent out
the page with the form, thus completing the loop between server and client and
realizing the well-known page-navigation paradigm of web applications4.

As for Renderer, the event loop receives a parameter, k , which identifies the
particular instance. The macro PageLoad is defined below.

EventLoop(k) =
if eventAvailable(eventQueue(k)) then
let e = headEvent(eventQueue(k)) in
dequeue e from eventQueue(k)
if isNewUrlFromUser(e) then
PageLoad(GET , url(e), 〈〉, k)

elseif isFormSubmit(e) then

3 These include elements such as <INPUT>, <SELECT>, <OPTION> etc.
4 Notice that we are not considering here AJAX applications, where a Request is sent
out directly from Javascript code, and the results are returned as raw data to the
same script, instead of being used to replace the contents of the page. The general
processing for this case is, however, similar to the one we describe here.
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let f = formElement(e), data = encodeFormData(f ),
a = action(f ),m = method(f ), u = resolveUrl(f , a) in
match (schema(u),m) :
case (http, GET) : MutateUrl(u, data, k)
case (http, POST) : SubmitBody(u, data, k)
case (ftp, GET) : GetAction(u, data, k)
case (ftp, POST) : GetAction(u, data, k)
case (javascript, GET) : GetAction(u, data, k)
case (javascript, POST) : GetAction(u, data, k)
case (data, GET) : GetAction(u, data, k)
case (data, POST) : PostAction(u, data, k)
case (mailto, GET) : MailHead(a, data)
case (mailto, POST) : MailBody(a, data)

else
handle other events

We do not further specify here the mail-related variants MailHead and
MailBody (although it is interesting to remark that they do not need fur-
ther access to the browsing context, contrary to most other methods, since no
reply is expected from them – and thus their applicability in web applications is
close to nil). We also glide over the possibility of using a https schema, which
however implies the same processing as http, with the only additional step of
properly encrypting the communication. Given the purposes of this paper we
omit a definition of GetAction and PostAction, since they involve URL
schemas (namely: ftp, javascript and data) that have not been addressed in
the transport layer model in [17]. Thus, below we only refine MutateUrl and
SubmitBody together with PageLoad.

The macro MutateUrl consists in synthesizing a new URL from the action
and the form data (which are encoded as query parameters in the URL) and in
causing the browsing context to navigate to the new URL:

MutateUrl(u, data, k) =
let u ′ = u · ? · data in PageLoad(GET , u ′, 〈〉, k)

The macro SubmitBody differs only in the way the data is encoded in the
request, namely not as part of the URL, as above, but as body of the request:

SubmitBody(u, data, k) = PageLoad(POST , u, data, k)

The macro PageLoad starts an asynchronous Transfer—which is defined
in [17]—and (re-)initializes the browsing context and the HTMLProcessor; the
latter is also defined in [17] and will handle the Response:

PageLoad(m, u, data, k) =
Transfer(m, u, data,HTMLProc, k)
htmlParserMode(k) := Parsing
let d =new Dom in
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DOM (k) := d
curNode(k) := root(d)

Notice that while for the sake of brevity we have modeled navigation to the
response provided by the server as a direct Transfer here, in reality it would
require a few additional steps, including: storing the previous document and as-
sociated data in the session history, releasing resources used in the original page
(e.g., freeing images or stopping plug-ins that were running), etc. While resource
management can be conveniently abstracted, handling of history navigation (i.e.,
the Back, Forward and Reload commands available in most browsers) is a crit-
ical component in proving robustness, safety and correctness properties of web
applications, and will be addressed in future work.

3 A High-Level WebServer Model

We define here a companion model to the browser model: a high-level model
WebServer (Sect. 3.1) with typical refinements for the underlying handler
modules, namely for file transfer (Sect. 3.2), CGI (Sect. 3.3) and scripting mod-
ules (Sect. 3.4).

To concentrate on the core issues we abstract in this section from the trans-
mission protocol phase during which the connection between client and server
is established and rely upon an abstract Send mechanism; the missing elements
to incorporate this phase can be defined as shown in detail for the browser
component models in [17].

3.1 Functional Request-Reply Web Server View

In the high-level view the server appears as dispatcher which to handle a request
finds and triggers the code (a ‘module’) the execution of which will provide a
response to the request.5 Thus a high-level web server model can be formulated
as an ASM WebServer which in a reactive manner, upon any request in its
requestQueue, will delegate to a new agent (read: a thread we call request han-
dler) to handle the Execution of the request—if the request passes the Security
check and the requestedModule is Available in and can be loaded by the server.

We succinctly describe checking various kinds of Property (here access se-
curity, module availability and loadability) by functions (here checkSecurity,
findModule loadModule) whose values are

either three-digit-values v in an interval [n00, n99], for some n ∈ [0, 9] as
defined for each Property of interest in [5, Sect.4.1] to indicate that the
Property holds or fails to hold (in the latter case of PropertyFailure(v) the
value v also indicates the reason for the failure), or

5 The ASM model for the Virtual Provider (VP) defined in [7] has a similar structure:
it receives requests, forwards them to appropriate providers and collects the replies
from the providers to return them to the original requestor.
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some different value, like a found requested module, which implicitly also
indicates that the checked Property holds, e.g. that the requested module is
available or could be successfully loaded.

Since in case PropertyFailure(v) is true the function value v is assumed to in-
dicate the reason for the failure, the value appears in the failureReport the
WebServer will Send to the client. The function failureReport abstracts from
the details of formatting the response message out of the parameters.

The requestedModule depends on the server env ironment, the resourceName
that appears as part of the request and the header(request). For a loaded module
StartHandler creates a new thread and puts it into its init ial state from where
the thread will start its program, namely to Execute the module. A loaded
module is of one of finitely many kinds. For the fundamental CGI and scripting
module types we will detail in Sect. 3.3,3.4 what it means to Execute such a
module.

To reflect the functional client/server request/reply view StartHandler ap-
pears as atomic action of the WebServer which goes together with deleting the
request from the requestQueue. At the transmission protocol level the latter ac-
tion becomes closing the connection. The atomicity reflects the fact that once a
request has been handled, the server is ready to handle the next request.6

WebServer =
let request = head(requestQueue)
if request �= undef then // react if there is some request
let env = env(server , request)
let s = checkSecurity(request , env)
if SecurityFailure(s)
then Send(failureReport(request , s))
else
let requestedModule =
findModule(env , resourceName(request), header(request))

if ResourceAvailabilityFailure(requestedModule) then
Send(failureReport(request , requestedModule))

else
let module = loadModule(requestedModule, env)
if ModuleLoadabilityFailure(module)
then Send(failureReport(request ,module))
else StartHandler(module, request , env)

Close(request)
where
SecurityFailure(s) iff s = 403
ResourceAvailabilityFailure(m) iff m = 503
ModuleLoadabilityFailure(module) iff module = 500
StartHandler(module, request , env) =
let a = new (Agent) // launch a request handler thread

6 The ASM model supports this view due to the reactive character of ASMs.
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program(a) := Exec(module)(request , env)
mode(a) := init

Close(request) = Delete(request , requestQueue)

3.2 Refinement for File Transfer Execution

To start with a simple case we illustrate how the machine Exec(module) can be
detailed to a machine ExecFileTransfer(module) which handles file transfer
modules, the earliest form of server module. Such a module simply buffers the
requested file in an output buffer if the file is present at the location determined
by the path from the root(env) to the resourceName(request). We use a machine
TransferDataFromTo which abstracts from the details of the (not at all
atomic, but durative) transfer action of the requested file data to the output.
The function requestOutput(request) abstractly represents the appropriate socket
through which the response data are sent from the server to the requesting
browser.7

We leave it open what the scheduler does with the request handler when
the latter is Deactivated once the file transfer isFinished , i.e. when it has
been detected (here via TransferDataFromTo) that no more data are to be
expected for the transfer.

ExecFileTransfer(module)(request , env) =
let file = makePath(root(env), resourceName(request))
if mode(self ) = init then
if UndefinedFile(file) then
Send(failureReport(request ,ErrorCode(UndefinedFile)))
Deactivate(self) // request handler termination

else
Send(successReport(request ,OkResponseCode))
mode(self ) := transferData // Start to transfer the file

if mode(self ) = transferData then
TransferDataFromTo(file, requestOutput(request))

if isFinished(file) then Deactivate(self)
where
ErrorCode(UndefinedFile) = 404
OkResponseCode = 200
Deactivate(self) = (mode(self) := final)

3.3 Refinement for Common Gateway Module Execution

A Common Gateway Interface (CGI) [23] module allows the request handler
to pass requests from a client web browser to an (agent which executes an)
external application and to return application output to the web browser. There
are two main forms of CGI modules, the historically first one (called CGI) and

7 Again this can be made precise as shown in detail for the browser model in [17].
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an optimized one called FastCGI [13]. They differ in the way they introduce
agents for external process execution: CGI creates one agent for each request,
whereas FastCGI creates one agent and re-uses it for subsequent requests to the
same application (though with different parameters).

CGI Module. A CGI module sends an error message if the executable for
the requested process is not defined at the indicated location. Otherwise the
requested process execution (by an independent newly created agent a, not by
the request handler)8 is triggered for the appropriate requestVariables (also called
environment variables containing the request data), like Auth(entication)-Type,
Query-String, Path-Info, RemoteAddr (of the requesting browser) and Remote-
Host (of the browser’s machine), etc.(see [23, Sect.5]) and a positive response is
sent to the requesting client. Once the new agent a has been Connected the
request handler

accepts any further requestInput stream (read: data stream coming from the
browser) as input for the execution of the process by a, namely via the stdin
stream of the module, and
transmits any output which (via a’s processing the executable) becomes avail-
able on the module’s stdout stream to the requestOutput stream (from where
it will be sent to the requesting browser)—as long as there are data on the
requestInput resp. on the stdout stream.

Thus to Connect a to (the agent self executing) the CGI module a channel
is established between the inputStream(a) and the module’s stdin stream resp.
between the outputStream(a) and the module’s stdout stream9.

It is usually assumed that the executable program(a) agent a gets equipped
with eventually disconnects a (from the request handler self) so that the predi-
cate Connected(a, self) becomes false. Then Exec(module) terminates wherefor
the request handler is Deactivated. Nevertheless the agent a even after having
been disconnected may continue the execution of the associated executable and
may not terminate at all, but such a further execution would be unrelated to the
computation of the request handler and from the WebServer’s point of view
yields a garbage process. Even more, no guarantee is given that program(a) does
disconnect a. In these cases the operating system has to close the connection
and/or to kill the process by descheduling its executing agent (e.g. via a time-
out). The CGI standard [23] leaves this issue open, but is has to be investigated
if one wants to provide some behavioral guarantees for the execution of CGI
modules.

8 Therefore each request triggers a fresh instance of the associated external application
program to be executed. This is a possible source for exceeding the workload capacity
of the machine where the server runs.

9 In ASM terms inputStream(a) is a monitored and outputStream(a) an output loca-
tion for the executable, whereas for the module stdin is an output location (whereby
the request handler self passes input to a for the processing of the executable) and
stdout a monitored location (whereby the request handler self receives from a output
produced through processing the executable.)
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Exec(module)(request , env) =
let executable = makePath(root(env), resourceName(request), env)
if mode(self ) = init then
if UndefinedProcess(executable) then
Send(failureReport(request ,ErrorCode(UndefinedProcess)))
Deactivate(self)

else
let a = new (Agent) // launch a new process instance
program(a) := executable(processEnv(env , requestVariables(request))))
Connect(a, self)
Send(request ,OkResponseCode)
mode(self ) := transferData

if mode(self ) = transferData then
if DataAvailable(stdout)
TransferDataFromTo(stdout , requestOutput(request))

if verb(request) = POST and DataAvailable(requestInput(request))
then TransferDataFromTo(requestInput(request), stdin)

if isDisconnected(a) then Deactivate(self)
where
ErrorCode(UndefinedProcess) = 404
OkResponseCode = 200
isDisconnected(a) = not Connected(a, self)

Remark. The server env ironment is needed as argument to compute the path in-
formation inmakePath. This is particularly important for the optimized FastCGI
version we describe now.

FastCGI Module. Concerning the execution of external processes a FastCGI
module has the same function as a CGI module. There are two behavioral dif-
ferences:

A FastCGI module creates a new agent for the execution of a process only
upon the first invocation of the latter by the request handler. An agent a
which has been created to process an executable is kept alive once this pro-
cessing isFinished so that the agent can become active again for the next
invocation of that executable—with the new values for the requestVariables .
To Connect(a, self) now means to link its (local variables for) input resp.
output locations, denoted below by in(a), out(a), to corresponding locations
of the (request handler self executing the) module from where resp. to which
the data transfer from requestInput resp. to requestOutput is operated. In
particular in(a) is used to pass the parameters requestVariables(request) of
the process to initialize the executable.
It is assumed that the program program(a) agent a gets equipped with even-
tually sets a location EndOfRequest for the current request to false, namely
by updating this location during the TransferDataFromCgi action. This
makes the request handler terminate.
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Thus the CGI structure is refined to the FastCGI module structure as follows:

Exec(module)(request , env) =
let executable = makePath(root(env), resourceName(request), env)
if mode(self ) = init then
if UndefinedProcess(executable) then
Send(failureReport(request ,ErrorCode(UndefinedProcess)))
Deactivate(self)

else
if thereisno a ∈ Agent with

program(a) = executable(processEnv(env))
then
let a = new (Agent)
program(a) := executable(processEnv(env))

mode(self ) := connect
if mode(self ) = connect then
let a = ιx (x ∈ Agent and
program(a) = executable(processEnv(env)))

Connect(a, self)
Initialize(program(a))
mode(self ) := transferData

if mode(self ) = transferData then
let reqin = requestInput(request), reqout = requestOutput(request)
if DataAvailable(out(a))
TransferDataFromCgi(out(a), reqout ,EndOfRequest(request))

if verb(request) = POST and DataAvailable(reqin) then
TransferDataToCgi(reqin, in(a))

if EndOfRequest(request) then Deactivate(self)
where
ErrorCode(UndefinedProcess) = 404
Initialize(program(a)) =
PassParams(requestVariables(request), in(a))
EndOfRequest(request) := false

TransferDataToCgi implies an encapsulation of the to be transmitted con-
tent into messages which carry either data or control information; inversely
TransferDataFromCgi implies a decoding of this encapsulation.

3.4 Refinement for Scripting Module Execution

Scripting modules like ASP, PHP, JSP all provide dynamic web page facilities
by allowing the server to run (directly through its request handler) dynamically
provided code. We define here a scheme which makes the common structure of
such scripting modules explicit.

As for CGI modules first the file for the to be executed code is searched at the
place indicated by the resourceName of the request , starting at the root of the
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server env ironment. If the file is defined, the code is executed not by an indepen-
dent agent as for CGI modules, but directly by the request handler which uses
as program the ScriptInterpreter. For the state management accross differ-
ent server invocations by a series of requests from the same client the uniquely
determined sessionID (associated to the request under the given env ironment)
and the corresponding session and application (if any) have to be computed.
The computation of session and application comprises that a new session resp.
application is created in case none is defined yet in the server env ironment for
the sessionID resp. applicationName of the request .10 Furthermore the syntax
conversion of the script file from quotation to full script code (denoted here by a
machine QuoteToScript which is refined below for ASP, PHP and JSP) has
to be performed and the corresponding host objects have to be created to be
passed as parameters to the ScriptInterpreter call.

The functions involved to ComputeSession and to ComputeApplication,
which allow the server to track state information between different requests of a
same client, depend on the module, namely sessionID , makeSession (and there-
fore session), applicationName, makeApplication (and therefore application).
Similarly for the functions involved to ComputeInterpreterObjects. We
express this using the amb notation as defined in [10].

Exec(module)(request , env) =
let script = makePath(root(env), resourceName(request))
amb module in // NB: use of module sensitive functions
if mode(self ) = init then
if script = ErrorCode(UndefinedScript) then
Send(failureReport(request ,ErrorCode(UndefinedScript)))
Deactivate(self)

else
let id = sessionID(request , env)
ComputeSession(id , request , env)

let applName = applicationName(resourceName(request))
ComputeApplication(applName, request , env)

scriptCode(request) ← QuoteToScript(script , env)11

mode(self ) := compInterprObjs
if mode(self ) = compInterprObjs then
ComputeInterpreterObjects(request , id , applName)
program(self ) :=
ScriptInterpreter(scriptCode(request), InterpreterObjects))

where
ErrorCode(UndefinedScript) = 404
ComputeSession(id , request , env) =
if session(id) = undef then

10 Typical refinements of the sessionID function also contain specific security policies
we necessarily have to abstract from in this high-level description.

11 The definition of ASMs with return value supporting the notation l ← M (x) is taken
from [12, Def.4.1.7.].
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session(id) := makeSession(request , env , id)
ComputeApplication(applName, request , env) =
if application(applName) = undef then
application(applName) := makeApplication(request , env , applName)

ComputeInterpreterObjects(request , id , applName) =
reqObj (request) := makeRequestHostObj (request)
responseObj (request) := makeResponseHostObj (request)
sessionObj (request) := makeSessionHostObj (session(id))
applObj (request) := makeApplicationHostObj (application(applName))
serverObj (request) := makeServerHostObj (request , env)

InterpreterObjects =
[reqObj (request), responseObj (request),
sessionObj (request), applObj (request), serverObj (request)]

ASP/PHP/JSP Module. ASP, PHP and JSP modules are instances of the
scripting module scheme described above. In fact their Exec(module) is defined
as for the scripting scheme but each with a specific way to produce dynamic
webpages, in particular with a specific computation of QuoteToScript, as we
are going to describe below.

Also the following auxiliary functions and the called ScriptInterpreter

are specific (as indicated by an index ASP, PHP, JSP) though not furthermore
detailed here:

Themake . . .HostObj functions are specialized tomake . . .HostObjindex func-
tions for each index ∈ {ASP ,PHP , JSP}.
ScriptInterpreter becomes ScriptInterpreterindex for any index out
of ASP, PHP, JSP.

See [14] for explanations how to construct an ASM model of the JavaScript
interpreter as described in [4].

A PHP module acts as a filter: it takes input from a file or stream contain-
ing text or special PHP instructions and via their ScriptInterpreterPHP

interpretation outputs another data stream for display.
ASP modules choose the appropriate interpreter for the computed scriptCode

(so-called active scripting). Examples of the type of script code are JavaScript,
Visual Basic and Perl.

Thus for ASP the definition of ScriptInterpreterASP has the following
form:

ScriptInterpreterASP (scriptCode, InterprObjs) =
let scriptType = type(scriptCode)
ScriptInterpreterscriptType(scriptCode, InterprObjs)

The value of scriptCode(request) is defined as the result computed by a ma-
chine QuoteToScript for a script argument. For the original version of PHP,
to mention one early example, this machine simply computed a syntax transfor-
mation transform(script). Later versions introduced some optimization. At the
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first invocation of QuoteToScript(script)—i.e. when the syntactical transfor-
mation of (the code text recorded at) script has not yet been compiled—or upon
later invocations for a script (with code text) changed since the last compila-
tion of transform(script), due to some code text replacement stored at script
that is out of the control of the web werver, the target bytecode is compiled
and timeStamped, using a compiler which can be specified using the techniques
explained for Java2JVM compilation in [22]. At later invocations of the same
script the already available compiled(transform(script)) bytecode is taken as
scriptCode instead of recompiling again. Since the value of the code text located
at script is not controlled by the web server, the function timeStamp(script)
appears in this model as a monitored function.

scriptCode(request) ← QuoteToScript(script , env)
where
QuoteToScript(script) =
let s = transform(script)
if compiled(s) = undef or
timeStamp(lastCompiled(script)) ≤ timeStamp(script)

then
compiled(s) := compile(s)
result:= compile(s)
timeStamp(lastCompiled(script)) := now
type(compile(s)) := typeOf (script , env)

else result:= compiled(s)

For ASP and PHP the QuoteToScript machine describes an optional opti-
mization12 that cannot be observed from outside. For ASP the machine has the
additional update for the type of the computed result (namely the scriptCode)
that uses a syntax function typeOf which typically yields a directive, e.g.

< %@Language = “JScript ′′% >

or a default value.
The type of the scriptCode depends on the script and on the env ironment;

for example the env ironment typically defines a default type for the case that
nothing else is specified.

For JSP no syntax translation is required (formally the transform function
is the identity function) because scriptCode is a class file (Servlet which comes
with a certain number of fixed interfaces like doPost(), doGet(), etc.) so that
the operations are performed by a JVM. This permits to embed predefined
actions (implemented by Java code which can also be included from some pre-
defined file via appropriate JSP directives) into static content. Here the ma-
chine QuoteToScript is mandatory because different invocations of the same
scriptCode can communicate with each other via the values of static class
variables.
12 It is an ASM refinement of the non-optimized original PHP version.
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JSF/ASP.NET Modules. It seems that a detailed high-level description of
Exec(module) for the modules as offered by the Java Server Faces (JSF [1]) and
Active Server Pages (ASP.NET [19]) frameworks can be obtained as a refinement
of the ASM defined above for the execution of scripting modules. As mentioned
above PHP, ASP and JSP use a character based approach in which the script
outputs characters (either explicitly through the Response object or implicitly
by using the special notation converted by QuoteToScript). The JSF and
ASP.NET frameworks use their virtual-machine based environment (JVM resp.
CLR) to provide more flexible ways for the ScriptInterpreter to write on
the response stream (e.g. in ASP.NET based on the Windows environment)
and to define a server-side event and state management model that relieves the
programmer from having to explicitly deal with the state of a web page made up
by several components. The programming model offered by these environments
provides a sort of DOM tree where each node upon being visited is asked for the
data to be sent as part of the response so that the programmer has the impression
of manipulating objects rather than generating text of a Web page. For example,
a request handled by the ASP.NET module triggers a complex lifecycle13 which
allows the programmer to manipulate a tree of components each of which has its
own state, in part stored inside the web page (in the form of a hidden field) and
in part put by the application into the session state. We are currently working on
modeling these features as refinements of the ASM model for scripting module
execution.

4 The Challenge of Accurate Analysis

Once sufficiently rich rigorous abstract web application models have been de-
fined they can be used to accurately define properties of interest one would like
to prove or falsify for the models via proofs or counterexamples which are pre-
served by correct refinements for existing implementations. This is by no means
an easy task. For an illustrative example we can refer to [22] where in terms of
rigorous models for Java, the JVM and a compiler Java2JVM the mere math-
ematically precise formulation of the compiler correctness property stated in
Theorem 14.1.1. (p.177-178) needs 10 pages, the entire section 14.1.14 A for-
mulation in terms of some logic language understood by a theorem prover (e.g.
in the language of KIV which has been used for various mechanical verifica-
tions of properties of ASMs [20,21] or in Event-B [6]) is still harder and will be
considerably longer, as characteristic for formalizations.

We list here some properties of web applications we suggest to precisely for-
mulate and prove or disprove in terms of abstract web application models.

A first group consists of correctness properties for the crucial session and state
management:

13 See http://msdn.microsoft.com/en-us/library/ms178472.aspx
14 In comparison the proof occupies 24 pages, the rest of chapter 14.

http://msdn.microsoft.com/en-us/library/ms178472.aspx
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Session management refers to the ability of an application to maintain the
status of the interaction with a particular browser. A typical property is that
session state is not corrupted by user actions like hitting the Back/Forward
buttons or navigating away from the page and then coming back.
State management is about the virtual state of the application, which is usu-
ally distributed among multiple components on both client and server side,
with parts of the state ‘embedded’ into the local state of several programs,
and often also replicated entirely or partially. Typical desirable properties
are that at significant time instants replicated parts of the state

• are consistent, that is they are allowed to be out-of-sync at times and
consistence is considered up to appropriate abstraction functions,

• are equivalent between the client-side and the server-side of the state,
• can be reconstructed, e.g. when the client can change and its state must
be persisted to another client (for example from desktop to mobile).

A second group concerns robustness e.g. upon loss of a session or client and
server state going out-of-sync, security and liveness.

A third group consists of what we consider to be the most challenging prop-
erties which are also of greatest interest to the users, namely application cor-
rectness properties. These properties are about the dependence of the intended
application-focussed behavior of web applications on the programming and exe-
cution infrastructure—on the used browser, web server, net infrastructure (e.g.
firewall, router, DNS), connection, plug-ins, etc. Such components are based on
their own (not necessarily compatible) standards and therefore may influence
the desired application behavior in unexpected ways. This makes their rigorous
high-level description mandatory for a precise analysis. An outstanding class of
such application-group-specific properties is about application integration where
common services are offered on an application-independent basis (e.g. authenti-
cation or electronic payment services). We see such investigations as a first step
towards defining objective content-based criteria for the reliability of web appli-
cation software and for building reliable web applications, read: web applications
whose properties of interest can be certifiably guaranteed—by theorem proving
or model checking or testing or combinations of these activities—to hold under
precisely formulated boundary conditions.

Acknowledgement. This paper is published in the two Proceedings volumes
of the joint iFM2012 and ABZ2012 Conference held in Pisa (Springer LNCS
7321 and 7316).
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Abstract. Plotkin’s structural operational semantics provides a tried
and tested method for defining the semantics of a programming language
via sets of rules that define valid transitions between program configura-
tions. Mosses’ modular structural operational semantics (MSOS) recasts
the approach by making use of rules consisting of labelled transitions, al-
lowing a more modular approach to defining language semantics. MSOS
can be adapted by using “syntactic” labels that allow local variables
and aliasing to be defined without augmenting the semantics with en-
vironments and locations. The syntactic labels allow both state-based
constructs of imperative languages and event-based constructs of pro-
cess algebras to the specified in an integrated manner.
To illustrate the integrated approach we compare its rules with

Plotkin’s original rules for both small-step and big-step operational se-
mantics. One issue that arises is that defining concurrency requires the
use of a small-step approach to handle interleaving, while defining a
specification command requires a big-step approach. The integrated ap-
proach can be generalised to use a sequence of (small) steps as a label; we
call this a multi-step operational semantics. This approach allows both
concurrency and non-atomic specification commands to be defined.

1 Introduction

Operational semantics for programming languages is presented in a number of
ways:

– Plotkin gives a structural operational semantics of imperative language con-
structs using rules defining relations between configurations [13], and

– process algebras, like CCS [8] and CSP [6], use labelled transition systems.

In order to specify a language, CSPσ [3], with both process algebra constructs
(concurrency, events, ...) and imperative programming constructs (state, assign-
ment, ...), we made use of an integrated approach involving the use of labelled
transitions to handle both aspects [5]. The process algebra constructs use stan-
dard event-labelled transitions (like those used for CCS or CSP), while the state-
based constructs are handled using transitions labelled with simple state tests
and updates (described in detail below). In his Modular Structural Operational
Semantics (MSOS) Mosses [11] also uses labels on transitions to handle state,
however the form of the labels differs from that used here.
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Plotkin also gives both

– a big-step semantics in which, for example, the semantics of an expression is
given in terms of a relation between a configuration consisting of an (expres-
sion, state)-pair representing the expression to be evaluated and the state
in which it is to be evaluated, and a configuration consisting of a (value,
state)-pair representing the final value of the expression and the final state
after evaluation (to allow for side-effects), and

– a small-step semantics in which, for example, the semantics of an expres-
sion is given in terms of a relation between configurations consisting of
(expression-state)-pairs, which define (atomic) steps in its evaluation.

In Plotkin’s approach the small-step semantics is needed to define concurrency
because a big-step semantics cannot handle the interleaving of the individual
atomic steps of two concurrent processes.

When dealing with end-to-end specifications, like Back’s nondeterministic as-
signment [2] orMorgan’s specification statement [9], one onlyhas anoverall relation
between the initial andfinal states. If the specification statement is atomic, it canbe
handled straightforwardly by a big-step semantics but not a small-step semantics.
However, neither approach handles non-atomic specification statements. In order
to allow both concurrency and non-atomic specifications in the one framework, the
integrated style canbe adapted to amulti-step operational semantics that supports
both. Themulti-step operational semantics is a generalisation of the small-step se-
mantics that makes use of transitions labelled with a sequence of small-step labels.

In this paper we first overview the integrated approach to small-step opera-
tional semantics focusing on how state-based constructs can be handled using
labeled transitions. Comparisons are made between the small-step, big-step and
multi-step approaches; this shows how the latter is a generalisation of both
small-step and big-step, in that it handles concurrency (where small steps are
traditionally needed) and non-atomic specification commands (which neither the
small-step or big-step approaches handle).

Sections 2 and 3 compare the operational semantics of expressions and com-
mands, respectively, in the Plotkin and integrated styles. Section 4 compares
local state (local variables) in the two styles. Sections 5 and 6 consider con-
trol structures and concurrency in the integrated style. The semantics used
in Sections 2–6 is a small-step operational semantics. Section 7 compares the
approaches for the big-step semantics and Section 8 introduces and compares
multi-step semantics. The syntactic form of the labels greatly simplifies the se-
mantics of aliasing (e.g., for call-by-reference parameters to procedures); aliasing
is treated in Section 9.

2 Expressions

The following naming conventions are used: variables are denoted by x, y, z; con-
stants by κ; expressions by e; states by σ; and labels by �. The abstract syntax
of expressions follows.

e ::= κ | x | e0 ≤ e1 | e0 + e1 | ...
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The semantics of expressions is given in both the Plotkin style and in the inte-
grated style in order to allow comparison of the styles. The initial focus is on
small-step semantics. In the Plotkin style a state, σ, is represented by a total
function mapping identifiers, Ident , to values, Val .

Plotkin-style operational semantics defines a relation over configurations con-
sisting of pairs of expression and state (e, σ) in terms of transitions repre-
senting a (small) step of computation.

(e, σ) −→ (e′, σ′)

Integrated-style operational semantics defines a labelled transition system

e
�−→ e′

in which the labels are either
– x = κ representing a state test, e.g., x = 2 or y = 3,
– x := κ representing a state update, e.g., x := 3 or y := 2, or
– τ representing a hidden (or internal) action.

Labels are restricted so that the left side is an identifier and the right side is a
constant (not an expression). For expressions we do not make use of the state
update label because the expressions considered here do not have side effects.

Figure 1 gives the expression evaluation rules in both Plotkin’s original style
and in the integrated style of operational semantics. The Plotkin-style Rule 2.1
(P-Variable) can be applied to variables x and y in state {x 	→ 2, y 	→ 3} as follows.

(x, {x 	→ 2, y 	→ 3}) −→ (2, {x 	→ 2, y 	→ 3})
(y, {x 	→ 2, y 	→ 3}) −→ (3, {x 	→ 2, y 	→ 3})

In the integrated style the equivalent rule is Rule 2.2 (I-Variable) and the equiv-
alent applications to x and y are the following two transitions.

x
x=2−−→ 2 y

y=3−−→ 3

The first of these two transitions can be read as expression x evaluates to 2 in
any context in which x is 2. In the integrated style, the role of the (contextual)
state is deferred to a separate set of rules covered in Section 4.

The rules for evaluating a binary expression cover the cases of evaluating its
left and right operands, plus the case if both operands have been fully evaluated
to values. The following is an instance of the Plotkin-style Rule 2.3 (P-Binary-
Left) for the expression x ≤ y in state {x 	→ 2, y 	→ 3},

(x, {x 	→ 2, y 	→ 3}) −→ (2, {x 	→ 2, y 	→ 3})
(x ≤ y, {x 	→ 2, y 	→ 3}) −→ (2 ≤ y, {x 	→ 2, y 	→ 3})

(1)

and the following is an instance of Rule 2.5 (P-Binary-Right).
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Plotkin-style semantics Integrated-style semantics

Rule 2.1 P-Variable Rule 2.2 I-Variable
σ(x) = κ

(x, σ) −→ (κ, σ)
x

x=κ−−→ κ

Rule 2.3 P-Binary-Left Rule 2.4 I-Binary-Left

(e0, σ) −→ (e′0, σ
′)

(e0 ≤ e1, σ) −→ (e′0 ≤ e1, σ
′)

e0
�−→ e′0

e0 ≤ e1
�−→ e′0 ≤ e1

Rule 2.5 P-Binary-Right Rule 2.6 I-Binary-Right

(e1, σ) −→ (e′1, σ
′)

(κ0 ≤ e1, σ) −→ (κ0 ≤ e′1, σ
′)

e1
�−→ e′1

κ0 ≤ e1
�−→ κ0 ≤ e′1

Rule 2.7 P-Binary-Final Rule 2.8 I-Binary-Final
κ = (κ0 ≤ κ1)

(κ0 ≤ κ1, σ) −→ (κ, σ)

κ = (κ0 ≤ κ1)

κ0 ≤ κ1
τ−→ κ

Fig. 1. Expression evaluation rules

(y, {x 	→ 2, y 	→ 3}) −→ (3, {x 	→ 2, y 	→ 3})
(2 ≤ y, {x 	→ 2, y 	→ 3}) −→ (2 ≤ 3, {x 	→ 2, y 	→ 3})

(2)

The corresponding instances of the rules in the integrated style, i.e., Rule 2.4
(I-Binary-Left) and Rule 2.6 (I-Binary-Right), follow; again state is treated sep-
arately using the rules from Section 4.

x
x=2−−→ 2

x ≤ y
x=2−−→ 2 ≤ y

y
y=3−−→ 3

2 ≤ y
y=3−−→ 2 ≤ 3

(3)

When both operands of a binary operator have been evaluated to a value, the
Plotkin-style rule Rule 2.7 (P-Binary-Final) can be applied, for example,

true = (2 ≤ 3)

(2 ≤ 3, {x 	→ 2, y 	→ 3}) −→ (true, {x 	→ 2, y 	→ 3})
(4)

and the equivalent integrated rule Rule 2.8 (I-Binary-Final) is applied as follows;
in this case there is no dependence upon the state.

true = (2 ≤ 3)

2 ≤ 3
τ−→ true

(5)

The combination of instances (1), (2) and (4) gives the evaluation of x ≤ y in
Plotkin’s style and the two steps in (3) plus step (5) give the corresponding
evaluation in the integrated style.



Integrated Operational Semantics 25

Plotkin-style semantics Integrated-style semantics

Rule 3.1 P-Assign-Step Rule 3.2 I-Assign-Step

(e, σ) −→ (e′, σ′)

(x := e, σ) −→ (x := e′, σ′)

e
�−→ e′

x := e
�−→ x := e′

Rule 3.3 P-Assign-Final Rule 3.4 I-Assign-Final

(x := κ, σ) −→ (nil, σ[x �→ κ]) x := κ
x :=κ−−−→ nil

Rule 3.5 P-Sequential-Step Rule 3.6 I-Sequential-Step

(c0, σ) −→ (c′0, σ
′)

(c0 ; c1, σ) −→ (c′0 ; c1, σ
′)

c0
�−→ c′0

c0 ; c1
�−→ c′0 ; c1

Rule 3.7 P-Sequential-Final Rule 3.8 I-Sequential-Final

(nil ; c1, σ) −→ (c1, σ) nil ; c1
τ−→ c1

Fig. 2. Semantics of basic commands

Relating the Plotkin and Integrated Styles

To show how the two styles of operational semantics are related, we first show
how the labels in the integrated style can be interpreted as total binary relations
on states. We define semantics brackets [[ ]] which transform a label into a binary
relation on states as follows.

(σ, σ′) ∈ [[x = κ]] ⇔ σ(x) = κ ∧ σ = σ′ (6)

(σ, σ′) ∈ [[x := κ]] ⇔ σ′ = σ[x 	→ κ] (7)

(σ, σ′) ∈ [[τ ]] ⇔ σ = σ′ (8)

A transition in the integrated style of the form e
�−→ e′ corresponds to the

following rule in the Plotkin style.

(σ, σ′) ∈ [[�]]

(e, σ) −→ (e′, σ′)

For example, the transition x
x=κ−−→ κ corresponds to

σ(x) = κ ∧ σ = σ′

(x, σ) −→ (κ, σ′)

which is equivalent to Rule 2.1 (P-Variable).

3 Commands

The following additional naming conventions are used: c denotes a command
(statement), and b denotes a boolean expression. The abstract syntax of
commands follows.
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(t := x ; x := y ; y := t, {x �→ 2, y �→ 3, t �→ 0})
−→ (t := 2 ; x := y ; y := t, {x �→ 2, y �→ 3, t �→ 0})
−→ (nil ; x := y ; y := t, {x �→ 2, y �→ 3, t �→ 2})
−→ (x := y ; y := t, {x �→ 2, y �→ 3, t �→ 2})
−→ (x := 3 ; y := t, {x �→ 2, y �→ 3, t �→ 2})
−→ (nil ; y := t, {x �→ 3, y �→ 3, t �→ 2})
−→ (y := t, {x �→ 3, y �→ 3, t �→ 2})
−→ (y := 2, {x �→ 3, y �→ 3, t �→ 2})
−→ (nil, {x �→ 3, y �→ 2, t �→ 2})

(a) Plotkin style

t := x ; x := y ; y := t
x=2−−→ t := 2 ; x := y ; y := t
t:=2−−−→ nil ; x := y ; y := t
τ−→ x := y ; y := t
y=3−−→ x := 3 ; y := t
x:=3−−−→ nil ; y := t
τ−→ y := t
t=2−−→ y := 2
y:=2−−−→ nil

(b) Integrated style

Fig. 3. Swapping x and y via t

c ::= nil | x := e | (c0 ; c1) | (state σ • c) | if b then c0 else c1 |
while b do c | (c0 ‖ c1) | (x == y • c)

Plotkin-style defines a relation over configurations consisting of pairs of com-
mand and state (c, σ), with transitions representing steps of computation.

(c, σ) −→ (c′, σ′)

Integrated-style defines a labelled transition system

c
�−→ c′

where the labels are as defined earlier.

The semantics of basic commands is given in Figure 2. An assignment x := e is
defined by rules that evaluate its expression e (Rules 3.1 and 3.2) and final rules
that update the variable x (Rules 3.3 and 3.4). In the Plotkin style, Rule 3.3 (P-
Assign-Final) updates the state so that the variable x has the value κ, while in
the integrated style Rule 3.4 (I-Assign-Final) has a label x := κ to indicate that
the variable x in the (implicit) context is to be updated to be the constant κ. The
rules for sequential composition are similarly split into rules for executing steps
of the first command and rules that handle the case when the first command has
terminated (is nil).

Figure 3 gives an application of the rules when swapping x and y (via t) in both
styles. In the Plotkin style, expressions are explicitly evaluated using the state
and assignments explicitly update the state. The transitions for the integrated
style do not explicitly refer to the state but are intended to be embedded in a
state in which x is initially two and y is three; the initial value of t does not
matter.



Integrated Operational Semantics 27

Rule 4.1 I-Test-Local

c
x=κ−−→ c′ x ∈ dom(σ) σ(x) = κ

(state σ • c) τ−→ (state σ • c′)

Rule 4.2 I-Test-Global

c
x=κ−−→ c′ x �∈ dom(σ)

(state σ • c) x=κ−−→ (state σ • c′)

Rule 4.3 I-State-Hidden

c
τ−→ c′

(state σ • c) τ−→ (state σ • c′)

Rule 4.4 I-Update-Local

c
x:=κ−−−→ c′ x ∈ dom(σ)

(state σ • c) τ−→ (state σ[x �→ κ] • c′)

Rule 4.5 I-Update-Global

c
x:=κ−−−→ c′ x �∈ dom(σ)

(state σ • c) x:=κ−−−→ (state σ • c′)

Rule 4.6 I-State-Final

(state σ • nil) τ−→ nil

Fig. 4. Rules for local state

Relating the Plotkin and Integrated Styles

An integrated transition of the form c
�−→ c′ corresponds to the Plotkin style rule

(σ, σ′) ∈ [[�]]

(c, σ) −→ (c′, σ′)

For example, the integrated transition x := κ
x :=κ−−−→ nil corresponds to the rule

σ′ = σ[x 	→ κ]

(x := κ, σ) −→ (nil, σ′)

which is equivalent to Rule 3.3 (P-Assign-Final).

4 Local State

In the integrated style, local state is treated by a separate set of rules given in
Figure 4. In each rule, the transition above the line is encapsulated in a local
state σ below the line. Here, the state σ is a partial function from identifiers to
values, the domain of σ, i.e., dom(σ), gives the names of the local variables, and
for each variable x within dom(σ), σ(x) gives the value of x in σ.

There are two rules each for state tests and updates, a rule to handle hidden
transitions, and a rule to handle a terminated command. The choice between
the two rules for state tests depends on whether the variable x being tested is in
the local state σ. If it is (Rule 4.1) then the transition can only be encapsulated
in the local state provided that the value of x in σ is the constant κ; in this case
the transition becomes a hidden (τ) transition. If x is not local (Rule 4.2) the
test label above the line is maintained as the label of the transition below the
line. Similarly, the choice between the state update rules depends on whether x
is local to σ. If it is (Rule 4.4) the local state σ is updated so that x takes on the
value κ and the transition is hidden (has τ as a label). If x is not local (Rule 4.5)
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Rules Transitions Old label

(state {t �→ 0} • t := x ; x := y ; y := t)

4.2
x=2−−→ (state {t �→ 0} • t := 2 ; x := y ; y := t)

4.4
τ−→ (state {t �→ 2} • nil ; x := y ; y := t) was t := 2

3.8, 4.3
τ−→ (state {t �→ 2} • x := y ; y := t)

4.2
y=3−−→ (state {t �→ 2} • x := 3 ; y := t)

4.5
x:=3−−−→ (state {t �→ 2} • nil ; y := t)

3.8, 4.3
τ−→ (state {t �→ 2} • y := t)

4.1
τ−→ (state {t �→ 2} • y := 2) was t = 2

4.5
y:=2−−−→ (state {t �→ 2} • nil)

4.6
τ−→ nil

Fig. 5. Swapping x and y (via local t) in the integrated style

the update label above the line is maintained as the label of the transition below
the line. A hidden (τ) transition (Rule 4.3) remains hidden. When its body has
terminated, a local state command can terminate (Rule 4.6).

Figure 5 gives an example of swapping non-local variables x and y via a local
variable t. The transitions in this sequence are based on those given in Figure 3(b)
by applying one of the local state rules at each stage and adding a final step that
removes the local state froma terminated command using Rule 4.6 (I-State-Final).
Two of the transitions from Figure 3(b) have labels that refer to the (now) local
variable tandhence those transitionsbecomehidden; thesearemarked in thefigure.

Rules 4.1–4.5 may be combined into a single rule by the use of auxiliary
operators that define the effect of a state on a label (�[σ]), the effect of a label
on a state (σ[�]), and whether a label is consistent with a state (consistent(�, σ)).
Each of Rules 4.1–4.5 becomes a special case of the following [5].

Rule 4.7 I-State-Step

c
�−→ c′ consistent(�, σ)

(state σ • c) �[σ]−−→ (state σ[�] • c′)

where

�[σ] =

⎧⎨⎩
τ if � is x = κ and x ∈ dom(σ)
τ if � is x := κ and x ∈ dom(σ)
� otherwise

σ[�] =

{
σ[x 	→ κ] if � is x := κ and x ∈ dom(σ)
σ otherwise

consistent(�, σ) =

{
σ(x) = κ if � is x = κ and x ∈ dom(σ)
true otherwise

The effect of �[σ] is to hide any label � that either tests or updates a variable
local to σ. If � is a state update x := κ and x is local to σ, the state σ[�] is the
state σ with x updated to κ, otherwise σ[�] is σ. A test label x = κ where x is
local to σ is consistent with σ if σ(x) = κ; all other labels are consistent with σ.
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Plotkin-style rules explicitly merge state information into all the other rules
and hence only one additional rule is required to handle the local state construct.

Rule 4.8 P-State-Step

(c, σ[x 	→ κ]) −→ (c′, σ′)
((state {x 	→ κ} • c), σ) −→ ((state {x 	→ σ′(x)} • c′), σ′[x 	→ σ(x)])

The main problem with the local-state rule in the Plotkin style is that the
variable x is in the domains1 of both σ and {x 	→ κ}. Because c is executed in
the context of local state, above the line the state σ is updated so that x has
the value κ. Below the line, the value of x in the local state after the transition
is its value in σ′, while the value of x in the global state σ is unchanged from
its initial value, although other state variables within σ may have been updated
within σ′ by the execution step.

5 Control Structures

The rules for control structures in the integrated style are given below. Rule 5.1
(I-If-Step) handles evaluating the boolean condition in an “if” command, Rule 5.2
(I-If-True) handles the case when the expression evaluates to true and Rule 5.3
(I-If-False) when it evaluates to false. The rule for a “while” command simply
unrolls the loop once to an “if” command so that the rules for the “if” command
can then be used.

Rule 5.1 I-If-Step

b
�−→ b′

if b then c0 else c1
�−→ if b′ then c0 else c1

Rule 5.2 I-If-True

if true then c0 else c1
τ−→ c0

Rule 5.3 I-If-False

if false then c0 else c1
τ−→ c1

Rule 5.4 I-While-Unroll

while b do c
τ−→ if b then (c ; while b do c) else nil

6 Concurrency

The rules for interleaving concurrency are similar to those for process algebras.

Rule 6.1 I-Parallel-Step-Left Rule 6.2 I-Parallel-Step-Right

c0
�−→ c′0

c0 ‖ c1 �−→ c′0 ‖ c1
c1

�−→ c′1
c0 ‖ c1 �−→ c0 ‖ c′1

Rule 6.3 I-Parallel-Final-Left Rule 6.4 I-Parallel-Final-Right

nil ‖ c τ−→ c c ‖ nil τ−→ c

1 Recall that states used within configurations in the Plotkin rules are total functions.
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In the standard operational semantics for process algebras, like CSP [6], transi-
tions are labelled by events and there is a rule to handle the case where two pro-
cesses synchronise on an event. Such rules can be incorporated directly into the
integrated style of operational semantics by extending labels to include events.
An integrated operational semantics for a language extending CSP with state-
based constructs is given in [3].

7 Big-Step Operational Semantics

As well as small-step semantics, Plotkin also makes use of big-step operational
semantics. The big-step rules for expressions consider their complete evaluation
to a value, and those for commands their complete execution until termination.
Rule 2.1 (P-Variable) is used unchanged. Rule 7.1 (P-Binary-Big-Step) below
gives the big-step rule for a binary expression. Above the line e0 evaluates to κ0

and then e1 evaluates to κ1, and hence below the line e0 ≤ e1 evaluates to the
value of κ0 ≤ κ1. For commands the big-step transitions are of the form (c, σ) −→
(nil, σ′), i.e., from a command c and initial state σ to command nil, indicating a
terminated command, and final state σ′. Rule 7.2 (P-Sequential-Big-Step) gives
the big-step rule for a sequential composition. Rule 7.3 (P-Specification) gives
the rule for an atomic specification command, [R], consisting of a relation R
between states.

Rule 7.1 P-Binary-Big-Step

(e0, σ) −→ (κ0, σ
′) (e1, σ

′) −→ (κ1, σ
′′) κ = (κ0 ≤ κ1)

(e0 ≤ e1, σ) −→ (κ, σ′′)

Rule 7.2 P-Sequential-Big-Step

(c0, σ) −→ (nil, σ′) (c1, σ
′) −→ (nil, σ′′)

(c0 ; c1, σ) −→ (nil, σ′′)

Rule 7.3 P-Specification
(σ, σ′) ∈ R

([R], σ) −→ (nil, σ′)

Big-step semantics can be expressed in the integrated style by allowing the labels
of transitions to be relations. Figure 6 gives the equivalents of the above rules.
Rule 7.4 (I-Variable-Big-Step) labels the transition with a relation [[x = κ]],
which denotes the identity relation on states restricted to those states in which
x is κ (see (6)). For a binary expression, the relations R0 and R1 corresponding
to the evaluations of e0 and e1 are composed to give the overall evaluation
relation R0

o
9R1, provided that this relation is non-empty. The rules for sequential

composition are similar. The rule for a specification with relation R applies only
if R is nonempty and simply labels the transition with R. The big-step rules
only handle terminating constructs and cannot express interleaving.
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Rule 7.4 I-Variable-Big-Step

x
[[x=κ]]−−−−→ κ

Rule 7.5 I-Binary-Big-Step

e0
R0−−→ κ0 e1

R1−−→ κ1 R0
o
9 R1 �= ∅ κ = (κ0 ≤ κ1)

e0 ≤ e1
R0

o
9R1−−−−→ κ

Rule 7.6 I-Sequential-Big-Step

c0
R0−−→ nil c1

R1−−→ nil R0
o
9 R1 �= ∅

c0 ; c1
R0

o
9R1−−−−→ nil

Rule 7.7 I-Specification
R �= ∅

[R]
R−→ nil

Fig. 6. Big-step operational semantics in the integrated style

Relation between the Big-Step Plotkin and Integrated Styles

The integrated big-step transitions e
R−→ κ and c

R−→ nil correspond to the
following Plotkin rules, respectively.

(σ, σ′) ∈ R

(e, σ) −→ (κ, σ′)
(σ, σ′) ∈ R

(c, σ) −→ (nil, σ′)

8 Multi-step Operational Semantics

Fewer rules are required for the big-step semantics than the corresponding small-
step rules (in both styles). However, the small-step rules allow concurrency to be
specified by interleaving (small) steps from the two parallel commands. This is
not possible in the big-step rules because the small steps required for interleaving
are not available.

On the other hand, in the big-step semantics one can express the behaviour of
an atomic specification command [R] as a single big step, however, defining such
a command in a small-step style becomes problematic if one needs to ensure the
specification terminates. To support both concurrency and non-atomic specifica-
tion commands, the integrated style allows one to define a multi-step semantics
in which transitions are labelled with a sequence of small-step labels. Because the
small steps are retained, one can express concurrency as an interleaving of the
small steps, and one can also express the behaviour of a non-atomic specification
command, [R], as allowing any sequence of small steps which when composed
together satisfy R.
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Rule 8.1 M-Sequential-Steps Rule 8.2 M-Sequential-Join

c0
�s−→ c′0

c0 ; c1
�s−→ c′0 ; c1

c
�s0−−→ c′ c′

�s1−−→ c′′

c
�s0

�
�s1−−−−−→ c′′

Rule 8.3 M-Parallel-Steps Rule 8.4 M-Null

c0
�s0−−→ c′0 c1

�s1−−→ c′1 �s ∈ �s0‖|�s1
c0 ‖ c1 �s−→ c′0 ‖ c′1

c
〈〉−→ c

Rule 8.5 M-Specification
o
9/[[�s]] ⊆ R o

9 /[[�s]] �= ∅

[R]
�s−→ nil

Fig. 7. Multi-step operational semantics

A collection of interesting multi-step rules is given in Figure 7. The operator
“‖|” forms the set of all possible interleavings of the two sequences of labels given
as its operands. The semantic brackets around a sequence of labels, �s , convert
it into a sequence of the corresponding relations, and the operator “o

9/[[�s ]]”
composes the sequence of relations to form a relation.

Rule 8.1 generalises Rule 3.6 (I-Sequential-Step) to allow c0 to take any se-
quence of steps rather than just a single step, and Rule 8.2 allows two consecutive
sequences of steps to be combined into a single sequence of steps. Rule 8.3 allows
the parallel combination of two commands to evolve via a sequence of steps that
is some interleaving of sequences of steps taken by the two commands. Rule 6.3
(I-Parallel-Final-Left) and Rule 6.4 (I-Parallel-Final-Right) can be reused to
handle termination of either process. Rule 8.4 ensures the empty sequence of
steps makes no progress. To handle a specification command, Rule 8.5 allows
any finite sequence of steps whose composition is both non-empty and satisfies
R. In the context of rely-guarantee reasoning about concurrent programs [7] this
rule can be adapted to express a guarantee constraint, a relation g, on each
step of the execution by requiring each label in the sequence �s to satisfy the
relation g.2

Note that the small step rules can be viewed as special (single step) cases of
the multi-step rules. For example, instantiating Rule 8.1 (M-Sequential-Steps)
with �s as the singleton sequence 〈�〉 gives the following rule which is effectively
the same as Rule 3.6 (I-Sequential-Step).

c0
〈�〉−−→ c′0

c0 ; c1
〈�〉−−→ c′0 ; c1

2 Handling the semantics of rely-guarantee was our initial motivation for exploring the
multi-step approach for specifications.
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Similarly, instantiating Rule 8.3 (M-Parallel-Steps) with �s0 as 〈�〉 and �s1 as
the empty sequence 〈〉 gives a rule equivalent to Rule 6.1 (I-Parallel-Step-Left).

c0
〈�〉−−→ c′0 c1

〈〉−→ c1 〈�〉 ∈ 〈�〉‖|〈〉
c0 ‖ c1

〈�〉−−→ c′0 ‖ c1

9 Aliasing

The syntax (x == y • c) introduces a new name x as an alias for y for the ex-
ecution of c. In the integrated style the semantics of aliasing is easily handled
by replacing any occurrences of x in a label with y, thus any tests or updates
of x become tests or updates of y. Note that occurrences of y in a label are not
renamed, so any occurrence of either x or y becomes an occurrence of y.

Rule 9.1 I-Alias-Step

c
�−→ c′

(x == y • c) �[x �→y]−−−−→ (x == y • c′)

The simplicity of this rule relies on the fact that labels are syntactic rather than
semantic and hence renaming can be applied to the labels. This is a small but
significant difference from the labels used in MSOS [11], which contain environ-
ments and states, and hence do not allow this simple form of renaming.

To handle aliasing in the Plotkin style, locations are introduced with

– a store, σ ∈ Loc 	 	→ Val , that maps locations to values, and
– an environment, ρ ∈ Id 	 	→ Loc, that maps variable names to locations.

The rules always ensure that ran(ρ) ⊆ dom(σ).
Unfortunately, all the previous rules need to be rewritten, e.g.,

σ(x) = κ

(x, σ) −→ (κ, σ)
becomes

σ(ρ(x)) = κ

ρ � (x, σ) −→ (κ, σ)

(x := κ, σ) −→ (nil, σ[x 	→ κ]) becomes ρ � (x := κ, σ) −→ (nil, σ[ρ(x) 	→ κ])

The Plotkin-style rule makes use of locations by mapping x to the same location
as y.

Rule 9.2 P-Alias-Step

ρ[x 	→ ρ(y)] � (c, σ) −→ (c′, σ′)
ρ � ((x == y • c), σ) −→ ((x == y • c′), σ′)

As an example of aliasing in the integrated style, we extend the swap example
given in Figure 5. That example generated a sequence of labels

〈x = 2, τ, τ, y = 3, x := 3, τ, τ, y := 2, τ〉.
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Because finite sequences of τ steps have no effect,3 we can abbreviate the effect
of that execution trace via the following multi-step transition, which is labelled
with the above sequence minus the τ steps.

(state {t 	→ 0} • t := x ; x := y ; y := t)
〈x=2,y=3,x:=3,y:=2〉−−−−−−−−−−−−−→ nil

The execution of the same command but aliasing x to v and y to w gives the
following multi-step transition, in which x and y have been renamed to v and w,
respectively.

(x, y == v,w • (state {t 	→ 0} • t := x ; x := y ; y := t))
〈v=2,w=3,v:=3,w:=2〉−−−−−−−−−−−−−−→ nil

The aliasing command can be used to define call-by-reference parameters for
procedures [5].

10 Conclusions and Related Work

Mosses’ Modular Stuctural Operational Semantics (MSOS) [10,11] defines a gen-
eral framework supporting label-based transition rules. Mosses shows that, in
general, relocating information from the configurations (typically the state, or
store and environment) results in more concise rules, and in particular supports
modularity, which in this context means that as the complexity of a language
increases (reflected in an increasing configuration size), the number of rules that
need to be rewritten is minimal. This is of special benefit for incrementally de-
veloping a formal operational description of complex languages. The labels are
tuples of relevant information, and can be used to seamlessly manage both state
information as well as events such as exceptions or CSP event synchronisation.

In a sense, the semantics we present here is an instance of MSOS, except that
instead of using environments and states as labels, syntactic labels representing
(mini-)relations between states are used. Because we use labels, we obtain the
benefit of modularity, and also have single-place configurations, which serves to
keep the rules relatively concise.

The idea of using syntactic labels in operational semantics has appeared in at
least two other independent pieces of work by Owens [12] and Abadi & Harris
[1]. In both cases the labels were used to reduce the size of configurations and
separate concerns. Neither work considers the local state command, nor exten-
sions to simplify the semantics of aliasing and hence call-by-reference parameters
to procedures.

Although not explored in detail here, the integrated style of operational se-
mantics can support both event-based and state-based constructs. An integrated
semantics has been given for a language CSPσ, which extends CSP with state-
based constructs [3]. In addition, an integrated semantics has been given for
the more complex language of Behavior Trees, which as well as event-based and
state-based constructs also includes a message passing facility similar to that
used in publish/subscribe protocols [4].

3 An infinite sequence of τ steps corresponds to (internal) divergence of the program.
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Mosses recognises the possibility of using a sequence as a label but to quote
[11, page 216] “The possibility of specifying interleaving in a big-step MSOS is
a technical curiosity, but of little practical relevance for applications of MSOS,
which generally stick to the small-step style.” Our desire to combine both con-
currency (which is not accommodated in the big-step style) and non-atomic
specification commands (which are not handled by either approach) led us to
more fully explore a multi-step semantics.

Overall the integrated style of operational semantics using “syntactic” labels,
combined with a multi-step semantics using sequences of steps as labels, allows
one to express a wider range of constructs more simply.
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Abstract. Test generation techniques based on model checking suffer
from the state space explosion problem. However, for a family of systems
that can be easily decomposed in sub-systems, we devise a technique to
cope with this problem. To model such systems, we introduce the notion
of sequential net of Abstract State Machines (ASMs), which represents a
system constituted by a set of ASMs such that only one ASM is active at
every time. Given a net of ASMs, we first generate a test suite for every
ASM in the net, then we combine the tests in order to obtain a test
suite for the entire system. We prove that, under some assumptions, the
technique preserves coverage of the entire system. We test our approach
on a benchmark and we report a web application example for which we
are able to generate complete test suites.

1 Introduction

Model-based testing (MBT) aims to (re)use models and specifications for soft-
ware testing. One of the main applications of MBT consists in test generation
where tests are automatically generated from possibly partial and abstract mod-
els of the system under test. We here assume that MBT is performed in a typical
black-box way: test suites are derived from models and not from source code.

Although MBT and test generation from models are rather mature topics in
software testing and several approaches and tools exist [15], MBT for complex
software systems is still an evolving field and its scalability is still questionable.

In a recent and still ongoing MBT project, we have tried to model web appli-
cations with Abstract State Machines (ASMs) and use a tool for test generation.
Since the used technique is based on model checking [9], one of the main obsta-
cles has been the scalability of the approach and soon we encountered the well
known state space explosion problem. Indeed, the problem of the model check-
ing method is that the computational complexity increases in an exponential
mode together with the size of the model. Several techniques exist to overcome
this limitation, like symbolic representation of states, compact storing of states,
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and efficient state space exploration. However, these techniques may still fail or
weaken the coverage of the state space.

On the other hand, the system under test may have some peculiarities that can
be exploited to limit the state explosion. We focus on systems that are composed
of independent sub-systems that pass the control to each other such that only
one sub-system is active at any time. In a web application, for instance, only
one page is active at any time.

Such systems can bemodeled as sequential nets of ASMs, defined in Sect. 3, that
are sets of ASMs having some features including that only one ASM is active at
every time.

In Sect. 4 we present a technique that is able to generate tests for a net of
ASMs, reducing the state explosion. A test suite that covers every single machine
is generated. These test suites are combined in order to obtain a test suite for
the whole system. Under some assumptions, this technique preserves coverage
of the entire system and reduces considerably the effort required to generate the
whole test suite, as reported in the experiments using a benchmark example (in
Sect. 5) and a simple web application (in Sect. 6).

2 Background

Software testing is a costly and time-consuming activity; specification-based (or
model-based) testing [10] permits to considerably reduce the testing costs. In
specification based testing, a specification describes the expected behavior of
the system, and can be used as a test oracle to assess the correctness of the
implementation. Moreover, specifications are also usually used to define test
adequacy criteria, that determine if a test suite is adequate to test a software;
various techniques exist to generate test sequences from formal specifications.

We assume that the reader is familiar with the ASMs [3]. In the following we
give some basic definitions about test generation from ASMs.

Definition 1. A test sequence (or test) is a finite sequence of states s1, . . . , sn
whose first element s1 is an initial state, and each state si (with i �= 1) follows
the previous one si−1 by applying the transition rules. The final state sn is the
state where the test goal is achieved.

Definition 2. A test suite (or test set) is a finite set of test sequences.

Definition 3. A test predicate is a formula over the state and determines if a
particular testing goal is reached. A coverage criterion C is a function that, given
a formal specification, produces a set of test predicates. A test suite TS satisfies
a coverage criterion C if each test predicate generated with C is satisfied in at
least one state of a test sequence.

Several coveragecriteria have been defined in [9] forASMs. One of the basic criteria
for ASMs is the rule coverage. A test suite satisfies the rule coverage criterion if, for
every rule ri, there exists at least one state in a test sequence in which ri fires and
there exists at least a state in a test sequence in which ri does not fire.
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2.1 Test Generation for ASMs by Model Checking

In order to build test suites satisfying some coverage criteria, several approaches
have been defined. In this paper we use a technique based on the capability of the
model checkers to produce counterexamples [7]. The method consists of steps:

1. The test predicates set {tpi} is derived from the specification according to
the desired coverage criteria;

2. The specification is translated into the language of the model checker;
3. For each test predicate tpi the trap property �¬tpi is proved, where �

means always. If the model checker finds a state s where tpi is true, it stops and
returns as counterexample a state sequence leading to s: such sequence is the
test covering tpi. If the model checker explores the whole state space without
finding any state where the trap property is false, then the test predicate is
said infeasible and it is ignored. In the worst case, the model checker terminates
without exploring the whole state space and without finding a violation of the
trap property (i.e., without producing any counterexample), usually because of
the state explosion problem. In this case, the user does not know if either the
trap property is true (i.e., the test is infeasible), or it is false (i.e., there exists a
sequence that reaches the goal).

In this paper we use the Asmeta framework1 and its ATGT tool [8], based on
the model checker SPIN [11].

3 Sequential Nets of Abstract State Machines

We focus our attention on those systems that are composed of independent sub-
systems that pass the control to each other, so that only one sub-system is active
at any time. Usually, in order to describe such kind of systems, a model of each
sub-system is developed. A model of coordination is needed for representing the
execution of the entire system, i.e., the activation/deactivation of sub-system
models according to their local decisions.

A typical example is that of web applications. In a web application just one
web page is active at any time, and the active page decides which is the next
page to be displayed. The coordination is performed by the web browser and the
web server that are responsible of closing the current page and visualizing the
next one (passing the control among pages).

3.1 Description of the Web Application Case Study

We describe a web application case study taken from [12] we used in our exper-
iments. There are six php pages in the web application under test and each of
them, as well as their corresponding ASM, is described below.

– index.php – It serves as the login interface for the website. A user is re-
quired to enter a username and a password in order to access the other three
pages of the site. The Reset button clears all text entries, while the Submit

1 http://asmeta.sourceforge.net/

http://asmeta.sourceforge.net/
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button opens up main.php, as long as the identification credentials are correct.
If any information is missing, an error message page is displayed.

– error b.php – It is activated from index.php if any information is missing,
or username or password are wrong.

– main.php – It permits users to execute different actions. Specifically, users
can click on a link (at top left corner of page), upload a file by clicking on
the Browse button, enter text into a textbox, select a checkbox, and click on a
Submit button which loads random.php.

– error a.php – It is displayed if any information is missing in main.php.
– random.php – It permits users to execute actions not available in main.php.

Two links bring the user back to index.php and main.php. There are also drop-
down lists, radio buttons, and a Submit button which loads end.php.

– end.php – It serves as the end of the web application. The user has the
option of closing the web browser, or clicking on a link to return to index.php.

3.2 Definition of Sequential Net of ASMs

We assume that each component of the system is modeled with an ASM and we
introduce the notion of sequential net of ASMs as follows.

Definition 4. A sequential net of machines is a set of Abstract State Machines
M1, . . . ,Mn such that:

1. each machine has only one initial state,
2. the machine M1 is the initial machine,
3. only one machine is active at any time,
4. the active machine decides when and to which machine the control is passed,
5. the net is connected, i.e., each machine is reachable from the initial machine.

A sequential net of ASMs allows one to model a set of machines that do not run in
parallel, pass the control to each other, anddo not share information, although they
share the same environment. We call the net sequential because only one machine
is running at any time, so the machines are not concurrent; however, there may not
be an unique sequence among the machines, since every machine can decide the
next machine depending on local decisions. A sequential net is a graph, where each
node is a machine and an arc is a transfer of control between two machines.

A possible way to model every single machine Mi of the net, so that it can
signal the transfer of control, is the following:

1. add a domain AsmDomain = {M1, . . . ,Mn} to its signature;
2. add a 0-ary function currAsm of type AsmDomain to its signature; currAsm,

in the initial state, must assume the value Mi;
3. write the main rule as follows: if currAsm = Mi then r mi[] endif where

r mi[] is a macro rule that contains the actions of the machine.

Every machine Mi can be independently executed. It executes some useful ac-
tions until it changes the value of currAsm; after that any other step of execution
does not produce any change in the controlled part of the machine.
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asm M1
signature:
enum domain
AsmDomain = {M1, M2, M3}
monitored a: Integer
controlled currAsm: AsmDomain
definitions:
rule r m1 =
if a = 2 then
currAsm := M2

else if a = 5 then
currAsm := M3

else // do machine M1 actions
endif endif

main rule r main1 =
if currAsm = M1 then r m1[]
endif

default init s0:
function currAsm = M1

Code 1. Machine M1.

asm M2
signature:
enum domain
AsmDomain = {M1, M2, M3}

monitored b: Integer
controlled currAsm: AsmDomain

definitions:
rule r m2 =
if b = 2 or b = 30 then
currAsm := M1

else if b = 5 or b = 100 then
currAsm := M3

else // do machine M2 actions
endif endif

main rule r main2 =
if currAsm = M2 then r m2[]
endif

default init s0:
function currAsm = M2

Code 2. Machine M2.

asm M3
signature:
enum domain
AsmDomain = {M1, M2, M3}

monitored c: Integer
controlled currAsm: AsmDomain

definitions:
rule r m3 =
if c = 2 then
currAsm := M2

else if c = 5 then
currAsm := M1

else // do machine M3 actions
endif endif

main rule r main3 =
if currAsm = M3 then r m3[]
endif

default init s0:
function currAsm = M3

Code 3. Machine M3.
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Fig. 1. Three ASMs constituting a sequential net

Example 1. Consider, for instance, the three ASMs shown in Codes 1, 2 and 3.
They constitute a sequential net of ASMs (see Fig. 1). For the sake of brevity,
we do not specify the internal actions of the machines.

3.3 Product Machine

Several validation and verification activities can be performed directly on the
single machines. However, if we want to do a more general evaluation of the
system (e.g., simulation of the transitions among machines, or test generation
for the whole system), we must also provide a model of the coordination.

One possible simple way is to merge all the machines in an unique product
ASM as follows:

– the signatures of the machines are merged in a single signature; there is just
one copy of the AsmDomain domain and of the currAsm function in the
product machine;

– all macro rules (except the main rules) of the single machines are included;
– in the main rule r main , rules r m i[] are individually called according to the

value of the function currAsm;
– the initial states are merged; the function currAsm is initialized to the value

M1 (the first sub-system is active in the initial state).

Given the sequential net shown in Fig. 1, the product machine is the one shown
in Code 4.



Test Generation for Sequential Nets of Abstract State Machines 41

asm ProductM
signature:

enum domain AsmDomain = {M1, M2, M3}
monitored a: Integer
monitored b: Integer
monitored c: Integer
controlled currAsm: AsmDomain

definitions:
rule r m1 = if a = 2 then currAsm := M2

else if a = 5 then currAsm := M3 else // do machine M1 actions
endif endif

rule r m2 = ...
rule r m3 = ...
main rule r main = if currAsm = M1 then r m1[]

else if currAsm = M2 then r m2[] else r m3[] endif endif
default init s0:

function currAsm = M1

Code 4. Product machine of the sequential net in Fig. 1.

4 Test Generation for Sequential Nets of ASMs

In order to efficiently test a system modeled as a sequential net of ASMs, it
is not enough to test the single sub-systems, since also the interaction among
them must be tested. So, we must generate test sequences that cover the whole
application and not just the single sub-systems.

The first idea is to derive the test sequences directly from the product machine
that already contains all the interactions among sub-systems. However, since test
generation algorithms based on model checking may need to visit the whole state
space of the model, the generation of test sequences from the productmachinemay
suffer from the state explosion problem. It would be desirable to have a method in
which the model checking must be executed just on the single machines and not
on the product machine; indeed, it is computationally easier to execute the model
checker several times over smallmodels, rather than executing it one time over a big
model. The method should also provide a mechanism for combining the test suites
produced for the singlemachines in an unique test suite to use for testing the whole
system: the time taken by the combination of the test suites should be negligible.

4.1 Generating the Test Suites for Every Machine

We use model checking as in [9] to generate a test suite for every ASM. Given
the test sequences of a machine Mi, we define inner those sequences that ter-
minate in a state in which currAsm is Mi, and exiting those sequences that
terminate in a state in which currAsm is Mj (with j �= i). Inner test sequences
keep the control of the net in the current machine, whereas exiting sequences
pass the control to another machine.

4.2 Building the Test Sequence Graph

The generated test sequences constitute a graph, called test sequence graph,
where every node is a machine and every arc is a test sequence. Test sequences
that do not change the current machine are self loops of a node; test sequences
that change the current machine, instead, are arcs between different nodes.
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4.3 Combining the Tests by Visiting the Test Sequence Graph

The algorithm used to visit the graph and build the combined test sequences is
shown in Alg. 1.

Algorithm 1.Visiting the test sequence graph. Procedure visitGraph.

Require: the node n to visit
Require: a test sequence prefix that permits to reach the node
1: visitedNodes← visitedNodes ∪ n
2: testSet← testSet ∪ prefix
3: for arc ∈ outArcs(n) do
4: prefixToFn← prefix+ testSeq(arc)
5: if finalNode(arc) �∈ visitedNodes then
6: visitGraph(finalNode(arc), prefixToFn)
7: else
8: testSet← testSet ∪ prefixToFn
9: end if
10: end for

The procedure executes a depth-first search of the graph. It takes as argument
a node n to visit and a test sequence prefix that permits to reach n; n is marked
as visited (line 1) in order to not be visited again and prefix is added to the test
suite testSet we are building (line 2). Then, for each exiting arc of n

– the new prefix prefixToFn is built concatenating the current prefix with the
test sequence that brings to the final node fn of the arc (line 4);

– if fn has not already been visited, fn is visited using as prefix prefixToFn
(line 6); otherwise, prefixToFn is added to the test suite (line 8).

The procedure visitGraph is invoked using as argument the initial machine M1
of the net and the empty test sequence ε.

Note that the visit of the test sequence graph has linear complexity with the
number of arcs and nodes and it requires a negligible amount of time with respect
to the generation of the test suites.

It is straightforward to prove that the test sequences obtained with the pre-
sented algorithm are valid sequences for the product machine.

4.4 Coverage

We are interested in investigating the relationship between the coverage provided
by a test suite obtained from the single machines and the coverage provided by
using the product machine instead.

Definition 5. A coverage criterion C is preservable if any test suite TS, ob-
tained by the combination of tests suites TS1, . . . , TSn that satisfy C over the
single machines M1, . . . , Mn, satisfies C over the product machine.

If a criterion is preservable, we can satisfy it on the product machine deriving
the test sequences from the single machines and combining them later. The rule
coverage criterion, for example, is preservable because of the following reasons:
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1. by definition of sequential net, every machine is reachable starting from the
initial machine; in each single machine Mi, every transition from Mi to
another machine is specified with the update of the currAsm function;

2. if the rule coverage criterion is satisfied in every machine, it means that every
rule is executed, including all the updates of the function currAsm. So, for
each transition, there is a test sequence that contains it;

3. by construction, the visitGraph algorithm assures that, if a node of the test
sequence graph is reachable, a test sequence that reaches that node is built;

4. in the main rule, the product machine describes the sequential net without
adding or removing any transition: at each step it simply executes the rule
of the machine specified by currAsm.

4.5 Limits of the Approach

The major limit of the proposed approach is that not all criteria are preservable.
A criterion, in order to be preservable, must satisfy a necessary (but not sufficient)
condition: it must require that, for each machine Mi (with i �= 1), there exists
a test sequence of another machine that reaches Mi. The rule coverage criterion
satisfies such condition, since it covers all the transitions to other machines. Let’s
see a criterion that, since it does not satisfy such condition, is not preservable:

Cnp: A test suite satisfies the criterion Cnp if every macro rule ri is fired
in at least one test sequence.

Let’s see the test generation process using Cnp. Let Ma and Mb be two ASMs,
shown, respectively, in Code 5 and 6, that constitute a net. The product machine
is shown in Code 7.

asm Ma
signature:

enum domain AsmDomain = {Ma, Mb}
monitored gA: Integer
controlled currAsm: AsmDomain

definitions:
rule r mA = if gA > 0 then

currAsm := Mb endif
main rule r mainA =

if currAsm = Ma then r mA[] endif
default init s0:

function currAsm = Ma

Code 5. Machine Ma.

asm Mb
signature:

enum domain AsmDomain = {Ma, Mb}
monitored gB: Integer
controlled currAsm: AsmDomain

definitions:
rule r mB = if gB = 0 then

currAsm := Ma endif
main rule r mainB =

if currAsm = Mb then r mB[] endif
default init s0:

function currAsm = Mb

Code 6. Machine Mb.
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��
Mb
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asm ProductMaMb
signature:

enum domain AsmDomain = {Ma, Mb}
monitored gA: Integer
monitored gB: Integer
controlled currAsm: AsmDomain

definitions:
rule r mA = if gA > 0 then currAsm := Mb endif
rule r mB = if gB = 0 then currAsm := Ma endif
main rule r main = if currAsm = Ma then r mA[] else r mB[] endif

default init s0:
function currAsm = Ma

Code 7. Product machine of the machines Ma and Mb.



44 P. Arcaini, F. Bolis, and A. Gargantini

In the machine Ma, the criterion Cnp is satisfied if there exists a test sequence
in which the macro rule r mA fires; Cnp is satisfied, for example, by the test suite
TSA = {tsA} = {[(gA = 0, currAsm = Ma), (gA = 0, currAsm = Ma)]}. In
the machine Mb, Cnp can be satisfied if there exists a test sequence in which
the macro rule r mB fires; it is satisfied, for example, by the test suite TSB =
{tsB} = {[(gB = 0, currAsm = Mb), (gB = 1, currAsm = Ma)]}2. The test
sequence graph obtained from test suites TSA and TSB is shown in Fig. 2.

Fig. 2. Test sequence graph obtained with the criterion Cnp over Ma and Mb

The test suite obtained from the visit of the test sequence graph is TSAB =
{tsA} = {[(gA = 0, gB = 345, currAsm = Ma), (gA = 0, gB = 7, currAsm =
Ma)]}, where the values of gB are randomly chosen. In the product machine
ProductMaMb, shown in Code 7, Cnp is not satisfied using the test suite TSAB,
since macro rule r mB never fires.

Nevertheless, it is possible to build a test suite that satisfies the criterion Cnp

in ProductMaMb, such as TSP = {[(gA = 1, gB = 235, currAsm = Ma), (gA =
456, gB = 1, currAsm = Mb), (gA = 73, gB = 3, currAsm = Mb)]}.

Another limit of our approach is that the model checker may fail to find any
test sequence that reaches onemachine, although such sequence would be required
by the (preservable) criterion. This may happen, for instance, because of the state
explosion problem in a single machine. Of course, if this case occurs, it would be
even more likely that the model checker would fail on the product machine as well.

The assumption that the machines do not share information limits the ap-
plicability of our technique. It can be applied only if the different sub-systems
modeled by different ASMs either do not share any information or share infor-
mation that does not influence the behavior of the machines. For instance, in
the case study application of Sect. 3.1, all the pages share the username (which
is shown in the web pages) and the session information, which, however, do not
appear in the ASMs since they do not influence the behavior. If the web pages
shared behavioral information, then our approach would not be applicable. We
plan in the future to introduce in sequential nets of ASMs also a way for the
machines to share information.

2 Any not empty test suite (with any value for monitored functions gA and gB)
satisfies the criterion over machines Ma and Mb because the execution of macro
rules r mA and r mB does not depend on the evaluation of any guard.
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Fig. 3. The sequential net of ASMs for the combination lock problem

5 Initial Experiment

In order to evaluate our approach, we have experimented it with a small system.
It resembles the combination lock finite state machine [13], for which generating
a transition covering test suite becomes exponentially expensive. The problem
is that of discovering the key of an electronic combination lock made of n digits
having values from 1 to x. We have modeled the system as a sequential net of
ASMs (see Fig. 3). The net is composed of n machines; every machine Mi has
a monitored function ai in the range [1, x]. If ai (with i = 1, . . . , n − 1) takes
the specific value 1 then the next machine Mi+1 becomes active; if aj (with
j = 2, . . . , n) becomes greater than x/2 then the system goes back to machine
M1, otherwise the machine Mj remains active.

We have evaluated our method depending on the number of digits (machines)
n and/or the base x (the cardinality of the codomain of functions ai).

For each combination of n and x we have built n single machines, where each
machine has nx states since the signature of each machine Mi is composed of
two 0-ary functions, ai and currAsm, whose codomain sizes are, respectively,
x and n. Then we have built the unique product machine that has nxn states,
since there are n 0-ary functions whose codomain size is x, and a 0-ary function
whose codomain size is n.

Then we have generated the test sequences both for the product machine and
for the sequential net of machines by the method introduced in this paper. As
expected, we discovered that it is easier to execute n times the model checker
over the single machines rather than executing the model checker one time over
the product machine. The results of the experiment are shown in Fig. 4; the
dependence between the execution time and the number of single machines n is
reported. If the single machines are used, the execution time grows linearly with
the number of machines; if the product machine is used, instead, the execution
time grows exponentially with the number of machines. We made several exper-
iments with different values for x (the cardinality of the codomain of functions
ai); as expected, in the product machine the value of x influences the execution
time (even for small changes of x), whereas in the single machines it is irrelevant.
We report the experiments made with the product machine with x equal to 10,
20 and 50, and the experiment made with the single machines with x equal to
50. We set a time limit of 1 hour for each experiment setting. All the experiments
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Fig. 4. Model checker executions times (sec.)

were executed on a Linux PC with 8 Intel(R) Xeon(R) CPUs E5430 @ 2.66GHz
and 8 GB of RAM.

Test Suite Sizes. In Table 1 we report the sizes of the test suites obtained
using the sequential net method and the product machine method. We report
the sizes obtained with different number of machines; we do not report the value
of x because it does not influence the test suite size.

Table 1. Test suite size

# ASMs 1 2 3 4 5 6

Sequential net 3 5 7 9 11 13

Product machine 3 7 11 15 19 n/a

From our experiments it seems that the test suites derived from the test se-
quence graph are smaller than those obtained directly from the product machine.
However, we must notice that this can not be taken as a general law; we plan
to do additional experiments to define more clearly the relationship between the
sizes of the test suites obtained with the two methods.

Code Coverage. As sanity check, we measured also the code coverage obtained
by using the two methods. We implemented the system, previously specified in
ASM, into Java and translated the test suites in JUnit. We obtained the same
code (statement and branch) coverage by using both the test sequences generated
from the product ASM and from the sequential net.

6 Model-Based Testing of Web-Based Applications

We have studied the test generation for sequential nets of ASMs in the context of
MBT of web-based applications [6]. In this context, every machine represents a
single page of the application. The main purpose is to automatically generate test
cases for web applications using a model-based approach. This is accomplished by
first creating an ASM for each web page of the web application; in this scenario
the AsmDomain can be interpreted as the set of web pages and the currAsm
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Fig. 5. Web-based application case study - Sequential net

function as the current active page. The methodology introduced in Sect. 4 is
applied to obtain a test suite for the whole web application; finally, each test
sequence can be mapped to a SAHI script [1] to exercise the tests directly on
the web application. In the following we report the experiment made with the
case study described in Sect. 3.1.

Modeling Every Page with an ASM. The first idea was modeling the com-
plete web application with a single ASM. The model construction was feasible
but the model checking was not able to complete the test generation. So, we
modeled the web application using a sequential net of ASMs where every page
is represented by an ASM and the domain AsmDomain is composed by the web
pages. The obtained sequential net is shown in Fig. 5.

For translating a web page behavior into an ASM, we have put on a table the
inputs of the web page (e.g., the values of the text fields) and identified, for every
combination of inputs, a transition to another page or a set of state updates. In
this way we have built an ASM for each web page.

Test Generation. For the test generation we have used, as described in Sect.
4.1, the ATGT tool over each ASM, using as coverage criteria all those described
in [9].

Test Sequence Graph Construction. Then we have built the test sequence
graph (see Fig. 6) as described in Sect. 4.2. Each transition of the sequential net
has been covered in the test sequence graph.

Table 2 reports, for each ASM, the number of test sequences, divided between
inner and exiting.

Table 2. Test sequences number

index error b main error a random end

# tests 24 3 36 3 45 2

# inner - # exiting 18 - 6 1 - 2 26 - 10 1 - 2 32 -13 1 - 1

Test Sequence Combination. Then, we have applied the technique presented
in Sect. 4.3 in order to obtain a single test suite for the whole web application.
The obtained test suite contains 212 test sequences and it satisfies all the cov-
erage criteria used to generate the test suites over the single machines.
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Fig. 6. Web-based application case study - Test sequence graph

navigateTo(”index.php”);
setValue( textbox(”username”),”admin”);
setValue( textbox(”password”),”pwd”);
click( submit(”submit”));
click( checkbox(”agree”));
setValue( textarea(”text”),”someText”);

Code 8. SAHI script example.

Test of the Web Application. Fi-
nally, each test sequence of the test
suite has been automatically mapped
to a SAHI script; the execution of all
the scripts has permitted us to test
all the aspects of the web application.
Code 8 shows one of the produced SAHI
scripts.

7 Related Work

Our approach tries to mitigate the state space explosion problem during model
checking for test generation. Traditionally several techniques attempt to solve
the same problem for the verification of properties. They share the concept of
building an abstract version of the original system that preserves properties.

The cone of influence (coi) technique [5] reduces the size of the transition
graph by removing from the model the variables that do not influence the vari-
ables in the property one wants to check. In [14] the cone of influence technique is
used to reduce the state space of fFSM models, a variant of Harel’s Statecharts;
models that could not be verified before, have been verified successfully after its
application. The data abstraction technique [5], instead, consists of creating a
mapping between the data values and a small set of abstract data values; the
mapping, extended to states and transitions, usually reduces the state space,
but it may not preserve properties. In [4] a technique to iteratively refine an
abstract model is presented. The technique assures that, if a property is true in
the abstract model, so it is in the initial model; if it is false in the abstract model,
instead, the spurious counterexample may be the result of some behavior in the
abstract model not present in the original model. The counterexample itself is
used to refine the abstraction so that the wrong behavior is eliminated.

For test generation, these techniques may need to be modified, since they do
not have to preserve properties but counterexamples to be used as tests. The coi
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technique can be used as it is also for test generation, but it may not simplify
our models, since the currentAsm function, which is used in the test goals, may
be influenced by all the functions.

In [2] a web application is modeled by means of FSMs. They also face the state
explosion problem; they try to overcome it by partitioning a web application into
clusters that can contain web pages and other clusters. For each cluster an FSM
is built; an Application FSM represents the entire application. Test sequences
are derived from single FSMs. They share with us the need of decomposing the
model into smaller models in order to keep the state space size tractable. As
we do, they provide a technique for combining test sequences obtained from the
single FSMs into a test suite to be used for testing the whole web application. The
technique they propose also permits to propagate inputs among FSMs, while, in
our approach, we currently do not allow the ASMs to exchange any information.

8 Future Work and Conclusion

We have tried to address the state explosion problem in test generation by model
checking. For sequential nets of ASMs, our approach makes the test generation
more scalable, without reducing the coverage obtained by the tests. Initial ex-
periments show that our approach provides excellent benefits. We plan to extend
the model of ASM nets by considering cases in which a single machine has sev-
eral initial states and the machines share some locations. In such case, we believe
that the test generation can not be done in advance for all the machines, but
the construction and the visit of the graph must be done together.

We assume that the designer keeps the models separated from the beginning;
as future work, we plan to study a methodology able, if possible, to split an
existing complex ASM in a sequential net of ASMs.

Although our method shows its great usefulness when used in combination with
(explicit state) model checking for test generation, we believe that any test gen-
eration technique can benefit from dividing the model in sub-models, even those
techniques which do not suffer so much from the size of the model under test.
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Abstract. While many systems are naturally viewed as the interaction between
a controller subsystem and a controlled, or plant subsystem, they are often most
easily understood and designed monolithically. A practical implementation needs
to separate controller from plant. We study the problem of when a monolithic
ASM system can be split into controller and plant subsystems along syntactic
lines derived from variables’ natural affiliations. We give restrictions that enable
the split to be carried out cleanly, and we give conditions that ensure that the
resulting pair of controller and plant subsystems have the same behaviours as
the original design. We illustrate the theory with a case study concerning eating
with chopsticks. This leads to an extension of controller synthesis for continuous
ASM systems, which are briefly covered. The case study is then extended into
the continuous sphere.

1 Introduction

Today, when one considers the ubiquity of embedded controllers, which take on the dig-
ital role in the interaction of a digital and an external system, it becomes clear that many
systems are naturally viewed as the interaction between a controller subsystem and a
controlled, or plant subsystem. Such systems are often most easily and conveniently
understood and designed monolithically — this allows the bulk of the design activity
to focus on the overall system goals rather than lower level detail. However, a practical
implementation needs to separate the controller from the plant, since it is the controller
which behaves according to a human-created digital design, and the plant behaves ac-
cording to patterns determined by the laws of nature. In this paper we study the problem
of when a monolithic ASM system design, embodying this dual controller/plant nature,
can be split into separate controller and plant subsystems along generic syntactic lines
derived from the most natural associations of the system variables to one or other sub-
system. This requires that the monolithic design satisfies some simple criteria ab initio.
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The rest of the paper is as follows. Section 2 describes the controller synthesis prob-
lem in abstract terms, focusing on the specific way that controller and plant are to be
separated. A sufficient condition for the desired controller/plant separation is formu-
lated and proved. The undecidability of controller synthesis is also briefly discussed by
reduction to the Halting Problem in Section 2.1. In Section 3 we consider a computable
subset of the controller synthesis problem and argue that it is adequate for practical
purposes. Section 4 discusses an example based on the idea of picking up food with
chopsticks, viewed as a control problem. Section 5 extrapolates the preceding ideas to
the case of continuous ASM, in which smoothly changing (as well as discretely chang-
ing) behaviours are admitted. Section 6 extends the discussion of the chopsticks case
study by taking on board the continuous notions. Section 7 concludes.

2 The Controller Synthesis Problem

We consider a generic ASM system consisting of basic ASM rules using straightforward
single variable locations and a simple element of nondeterminism. Following [2], for
our purposes, such a rule can be written as:

OP(pars) =
if guard(xs, pars) then choose xs′ with rel(xs′, xs, params)

do xs := xs′

(1)

In (1), pars are the input parameters (as needed) and xs are the variables modified by
the rule. The rule’s guard is guard, and rel represents the relationship that is to hold
between the parameters, the before-values of the variables xs, and their after-values
referred to as xs′, when the rule fires. As usual, in a single step of a run of the system,
all rules which are enabled (i.e. their guards are true) fire simultaneously, provided that
the totality of updates defined thereby is consistent, else the run aborts.

In this paper we are interested in control applications, and we envisage the design
done in a monolithic way at the outset, addressing system-wide design goals before
plunging into the details of subsystem design. Thus the design may start by being ex-
pressed using system-wide variables. However, by a process of gradual refinement, the
collection of variables will eventually end up such that each variable can be identified as
belonging to either the controller-subsystem-to-be, or the plant-subsystem-to-be. Nev-
ertheless, a legacy of the top-down design process is that many, or even all of the rules
will still involve variables of both kinds.

The controller synthesis problem is the problem of taking such a collection of rules
(call it Sys), and separating it into one set of rules for the controller (call it Con) and
another set for the plant (call it Pla), each reading only the variables accessible to it,
and each modifying only its own variables, such that the combination of the rules in
Con and Pla generates the same behaviour (i.e. the same set of runs) as the original
ruleset Sys.1

1 In [2], the importance of distinguishing controlled functions from monitored ones is stressed,
in a sense solving the controller synthesis problem right at the outset since the distinction
already separates the controller from the plant. Our perspective is slightly different however,
since it permits this aspect to be ignored for a portion of the development, and asks under what
conditions the separation can be done later in a systematic way.
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We perform the separation in a systematic manner. We assume that the variables
V ar of Sys can be partitioned into xsC ⊆ V arC , the variables for which the con-
troller has write access, and xsP ⊆ V arP , the variables for which the plant has write
access, with V arC ∩ V arP = ∅. We assume that for each rule OP(params) ∈ Sys,
the guard can be written in the form guard(xs, pars) ≡ guardC(xsC , xs

c
P , parsC) ∧

guardP (xsP , xs
p
C , parsP ), where xscP are the plant variables to which the controller

has read access, and xspC are the controller variables to which the plant has read ac-
cess. We also assume that for each rule, rel(xs′, xs, pars) can be written in the form
rel(xs′, xs, pars) ≡ relC(xsC , xs

c
P , parsC)∧ relP (xsP , xs

p
C , parsP ). We say that a

system is admissible iff the above hold.
Under the above assumptions, the desired construction is relatively clear. For each

rule like (1) in Sys, we generate two fresh rules:

OPC(pars) =
if guardC(xsC , xs

c
P , parsC) then choose xs′C

with relC(xs
′
C , xsC , xs

c
P , parsC) do xsC := xs′C

(2)

OPP (pars) =
if guardP (xsP , xs

p
C , parsP ) then choose xs′P

with relP (xs
′
P , xsP , xs

p
C , parsP ) do xsP := xs′P

(3)

Of these, (2) goes into Con and (3) goes into Pla.
With Con and Pla thus constructed, and with initial states correspondingly con-

structed by restricting the initial states of Sys to the variables in V arC and V arP
respectively (by existentially quantifying out V ar − V arP in Con, and V ar − V arC
in Pla, provided there are no non-trivial joint initial properties), it is evident that when-
ever a rule OP of Sys is enabled, the corresponding rules OPC and OPP of SysC and
SysP will also be enabled (since their guards are just weakenings of OP’s guard). If we
thus consider the system SysC+P , which consists of the variables and initial states of
Sys,2 and whose rules are the union of the OPC and OPP rules, then whenever a rule
OP of Sys is enabled, it follows that in SysC+P , OPC and OPP will be enabled and
both will be scheduled simultaneously by the ASM scheduling policy, replicating the
update performed by OP in Sys. So the runs of Sys are a subset of the runs of SysC+P .

On the other hand, they may be a proper subset since the guards of the individual
OPC and OPP rules are weaker than the guard of OP, and so may enable one or other
of OPC and OPP without the other being enabled. This is highly undesirable from a
requirements point of view since the overall objective was to achieve the behaviour of
Sys, and not to introduce some spurious additional behaviours.

Definition 1. A system Sys, with V ar = V arC ∪+V arP which is admissible, has a
resolvable controller synthesis problem iff, after the construction above, the runs of
SysC+P are exactly the runs of Sys.

2 The initial states are recovered by conjoining initial states of SysC and SysP .
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Theorem 1. Suppose a system Sys is admissible. Then Sys has a resolvable controller
synthesis problem if:

For all rules OP, their derived rules OPC and OPP , and reachable states xs •
[ Domain(xs) ∧ guardC(xsC , xs

c
P , parsC)⇒ guard(xs, pars) ] ∧

[ Domain(xs) ∧ guardP (xsP , xs
p
C , parsP )⇒ guard(xs, pars) ] (4)

where Domain(xs) is the domain theory for the development of Sys.

Proof : To get the result, it is sufficient to show that when (4) holds, every run of
SysC+P is a run of Sys, since we argued above that all Sys runs are SysC+P runs
anyway. We proceed by induction on the length of the run. The base case is trivial since
the initial states of Sys and of SysC+P are identical. Suppose then that we have the
result for all SysC+P runs of length n or less. Choose a run rr of length n which is
extendable. This means that there is some rule, OPC say, that is enabled in the final state
xs reached by rr (the argument is symmetrical if it is OPP that is enabled). Since OPC
is enabled in xs, guardC holds, whence guard holds by (4). Since guardP weakens
guard, guardP holds, whence OPP is enabled. Since both OPC and OPP are enabled,
the update of Sys is emulated by SysC+P in the next step of the run. The same argu-
ment applies for all rules of SysC+P enabled in xs, so that the next SysC+P step from
rr exactly mirrors a corresponding step of Sys. Doing the same for all possible ways
of extending all extendable runs of length n completes the inductive step. ��

2.1 Undecidability of Controller Synthesis

The presence of reachability in (4) makes the undecidability of the controller synthesis
problem relatively unsurprising, so we just briefly sketch a reduction of the Halting
Problem. Let TM be an arbitrary Turing Machine. Let TM0

C be an emulation of TM
by an ASM constructed in a rather obvious way: i.e. there is an alphabet of states,
another of tape symbols, a variable for the current state, a data structure for the tape,
and a separate rule for each transition in the transition relation of TM . Let TM0

P be
another such ASM emulation, isomorphic to TM0

C , but with all alphabets and variables
completely disjoint from those of TM0

C . Consider the ASM TM0
C+P constructed as

in the previous section. It has twice as many rules as TM has transitions, but they are
enabled pairwise at exactly the same moments, so TM0

C+P just emulates two disjoint
copies of TM running in lockstep. Consider the ASM TM0

C∧P constructed by fusing
each corresponding pair of rules of TM0

C+P into a single rule by conjoining the guards,
and combining the updates. It has exactly as many rules as TM has transitions. TM0

C∧P

and TM0
C+P are bisimilar to each other and to TM . Now we modifyTM0

C , and modify
TM0

P , as follows.
Since TM is arbitrary, it may contain halting before-configs —i.e. pairs (t, s) where

t is a tape symbol and s is a state— from which no transition issues. If TM has a
halting before-config (t, s), we do the following. Let (tC , sC) be the counterpart of
(t, s) in TM0

C . To TM0
C we add a rule that implements a self-loop guarded on (tC , sC)

(without moving the tape head), getting TMC . Let (tP , sP ) be the counterpart of (t, s)
in TM0

P . To TM0
P we add a rule that implements a self-loop guarded on sP alone

(i.e. ignoring the tape symbol, and without moving the tape head), getting TMP .
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Now consider the two ASM systems TMC∧P and TMC+P . In TMC∧P (which
plays the role of Sys above), the stronger guard of the TMC rule in effect subsumes
the weaker one of the TMP rule, and the fused rule is only enabled exactly when the
TMC rule is enabled. However in TMC+P (which plays the role of SysC+P above),
this is not the case. There, the TMP rule exists independently, and if the computation
of TM reaches a machine configuration in which the tape symbol and state are (t, s),
then the TMP rule is also enabled when the tape symbol and state are (t̃, s), for some
t̃ �= t, giving rise to behaviours not reflected in TMC∧P .

3 Computable Controller Synthesis

Restricting to a safe approximation to reachability, we get a computable version of (4),
which we argue will be adequate for all practical purposes.

Theorem 2. Suppose a system Sys is admissible and XS is a set of states that includes
all reachable states. Then Sys has a resolvable controller synthesis problem if:

For all rules OP, their derived rules OPC and OPP , and all xs ∈ XS •
[ Domain(xs) ∧ guardC(xsC , xs

c
P , parsC) � guard(xs, pars) ] ∧

[ Domain(xs) ∧ guardP (xsP , xs
p
C , parsP ) � guard(xs, pars) ] (5)

where Domain(xs) is the domain theory for Sys and � is provability in a suitable
system.

4 An Example: Eating with Chopsticks

We now look at a simple example of the preceding theory: eating food with chopsticks.
Fig. 1 shows the forces involved in grasping a morsel of food with chopsticks.

4.1 Food and Chopsticks

In a statically stable situation, the chopsticks extert forces on the food, and the food
exerts equal and opposite forces on the chopsticks. The forces exerted by the food are
fffFU on the upper chopstick and fffFL on the lower chopstick. For simplicity we assume
that these forces sum to zero (else the food would accelerate) and colinear.3 Reacting
to fffFU and fffFL, the chopsticks exert their forces fffHCU and fffHCL, equal and opposite to
fffFU and fffFL. So we have:

fffFU + fffFL = 000 (6)

fffHCU + fffHCL = 000 (7)

fffFU + fffHCU = 000 (8)

3 In reality, slight deviations from colinearity are compensated for by forces of friction and
deformation arising from the food, aided where appropriate, by surface tension forces coming
from any sauce that the food might be prepared in.
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• •

fHCU

fHL1

fHU1

fHU2

fHU3

fHU4

fHU5

fHCL

fHL2

fHL3
fHL4

fHL5

fFU

fFL

Fig. 1. Forces involved in grasping a piece of food with chopsticks

fffFL + fffHCL = 000 (9)

|fffFU| = |fffFL| = |fffHCU| = |fffHCL| ≥ D (10)

The last of these (10), expresses a constraint that the forces mentioned have to be large
enough (D) that they generate additional frictional forces (which can be taken to be
proportional to them), sufficient to counteract gravity (which we have not taken into
account), thereby to stop the food from dislodging from the chopsticks when lifted.

We can write this as an ASM model, with a rule:

GRASPFOOD =
choose fff ′

FU, fff ′
FL, fff ′

HCU, fff ′
HCL

with fff ′
FU + fff ′

FL = fff ′
HCU + fff ′

HCL = fff ′
FU + fff ′

HCU = fff ′
FL + fff ′

HCL = 000 ∧
|fff ′

FU| = |fff ′
FL| = |fff ′

HCU| = |fff ′
HCL| ≥ D

do fffFU := fff ′
FU, fffFL := fff ′

FL, fffHCU := fff ′
HCU, fffHCL := fff ′

HCL,
grasped := TRUE

(11)

There will be another rule DISLODGEFOOD, differing from (11) in the replacement of
‘≥ D’ by ‘< D’ and of TRUE by FALSE, regarding dislodgement of food as being due
to inadequate force, and disregarding any other maladroitness on the part of the user.
Given the similarity of the two rules, we will not mention DISLODGEFOOD further,
unless it is unavoidable.

We can regard GRASPFOOD (and DISLODGEFOOD) as a simple design for a con-
trol system — the chopsticks are intended to control the food by grasping it. Thus
we can pursue our earlier strategy by separating the system into plant (food) and con-
troller (chopsticks) subsystems. The GRASPFOOD rule separates into GRASPFOODC

and GRASPFOODP :

GRASPFOODC =
choose fff ′

HCU, fff ′
HCL

with fff ′
HCU + fff ′

HCL = 000 ∧ |fff ′
HCU| = |fff ′

HCL| ≥ D
do fffHCU := fff ′

HCU, fffHCL := fff ′
HCL,

grasped := TRUE

(12)
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GRASPFOODP =
choose fff ′

FU, fff ′
FL

with fff ′
FU + fff ′

FL = 000
do fffFU := fff ′

FU, fffFL := fff ′
FL

(13)

In (12) and (13) we see that GRASPFOODC only ‘owns’ fffHCU and fffHCL, so only as-
signs to those variables, and GRASPFOODP only ‘owns’ fffFU and fffFL, so only assigns
to them. We also observe that some pieces of GRASPFOOD are not present in either
GRASPFOODC or GRASPFOODP , namely the terms that relate the food forces to the
chopstick forces. This is explained by the observation that the relevant equations are
part of the domain theory of statics: action and reaction are always equal statically, by
Newton’s Law. Additionally, that successful grasping needs adequate force is also part
of the domain, so we can write:

DomainFHC ≡ fffFU + fffHCU = 000 ∧ fffFL + fffHCL = 000 ∧
(grasped = TRUE ⇔ |fffHCL| ≥ D) (14)

Now, in the context of (14), it is easy to see that:

DomainFHC ∧ guardGRASPFOODC
� guardGRASPFOOD (15)

DomainFHC ∧ guardGRASPFOODP
� guardGRASPFOOD (16)

4.2 Chopsticks and Hand

The preceding was rather elementary. In particular, it presumed that chopsticks some-
how grasp food by themselves, which is silly. In reality, chopsticks are held in the right
hand, which causes them to exert the forces spoken of previously. We now enrich our
model by considering the hand-chopstick system as a further control system, and de-
composing it further into a plant subsystem (the chopsticks themselves) and a controller
subsystem (the hand).

We refer to Fig. 1 again. For a solid object to remain stable in 3D space, it needs to
have four non-colinear forces summing to zero acting on it. If gravity is acting (as it
normally is) then it supplies one force, and we derive the well-known fact that an object
needs to be supported from underneath by three or more forces for stability.

This applies to the hand-chopstick system, where for simplicity, we can ignore grav-
ity. Given how chopstick are disposed with respect to the hand, it is in fact convenient
to view the hand as exerting five forces per chopstick. Fig. 1 shows the forces involved.

The middle of the lower chopstick is held steady on the ring finger. Typically it is
gently wedged in the angle between the edge of the fingernail and the side of the fleshy
pad of the fingertip, which we model by the forces fffHL1 and fffHL2 in Fig. 1. These are
predominantly directed in the plane of the diagram, with a small component at right
angles, out of the plane of the diagram, towards the reader. The back end of the lower
chopstick is held on the fleshy part between the thumb and palm, and the forces are
modeled by fffHL4 and fffHL5. Again these are mostly in the plane of the diagram, with a
small component outwards, towards the reader. Opposing all the outwards components
is fffHL3 (the force drawn with the blob at its tail in Fig. 1), which is exerted by the lower
end of the thumb, predominantly inwards into the diagram.
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If the chopstick is merely being held steady, then these forces sum to zero. However,
if food is being held, then the user adjusts the individual forces so that they sum to
fffHCL:

fffHL1 + fffHL2 + fffHL3 + fffHL4 + fffHL5 = fffHCL (17)

The story for the upper chopstick is similar. The forces fffHU1 and fffHU2, formed by the
more pronounced wedge between first and second fingers, serves to firmly hold and
direct the middle of the chopstick in order to open and close the chopsticks for grasping
food. Forces fffHU4 and fffHU5, exerted by the dip between the palm knuckle and first
knuckle of the index finger, support the back of the chopstick. And vertical movement
is restrained by fffHU3, once more indicated with a blob at its tail in Fig. 1, exerted by
the upper part of the thumb. Again, if the chopstick is just being held steady, then these
forces sum to zero. However, if food is being grasped, then they sum to fffHCU:

fffHU1 + fffHU2 + fffHU3 + fffHU4 + fffHU5 = fffHCU (18)

(N.B. In reality, many guides to eating with chopsticks recommend all sorts of alterna-
tive configurations for holding chopsticks (see eg. [3]), but the configuration described
here is the only one that the first author has found to permit both adequate chopstick
maneuvrability and sufficient deployable resultant force, especially when it comes to
bigger pieces of food.)

With these observation, we can decompose the GRASPFOODC function into its plant
and controller subsystems, rules CHOPSTICKP and HANDC .

In those rules, we have singled out fffCU and fffCL as output parameters in the sig-
nature of HANDC for emphasis. They are quantities derived from the underlying hand
forces, which the chopsticks react to by setting their forces appropriately. The equalities
fffHCU = fffCU and fffHCL = fffCL again become part of the domain theory of statics.

CHOPSTICKP =
choose fff ′

HCU, fff ′
HCL

with fff ′
HCU + fff ′

HCL = 000
do fffHCU := fff ′

HCU, fffHCL := fff ′
HCL

(19)

HANDC(out fffCU, fffCL) =
choose fff ′

HU1, fff ′
HU2, fff ′

HU3, fff ′
HU4, fff ′

HU5, fff ′
HL1, fff ′

HL2, fff ′
HL3, fff ′

HL4, fff ′
HL5

with fff ′
HU1 + fff ′

HU2 + fff ′
HU3 + fff ′

HU4 + fff ′
HU5 +

fff ′
HL1 + fff ′

HL2 + fff ′
HL3 + fff ′

HL4 + fff ′
HL5 = 000

|fff ′
HU1 + fff ′

HU2 + fff ′
HU3 + fff ′

HU4 + fff ′
HU5| =

|fff ′
HL1 + fff ′

HL2 + fff ′
HL3 + fff ′

HL4 + fff ′
HL5| ≥ D

do fffHU1 := fff ′
HU1 . . . fffHU5 := fff ′

HU5, fffHL1 := fff ′
HL1 . . . fffHL5 := fff ′

HL5,
fffCU := fff ′

HU1 + fff ′
HU2 + fff ′

HU3 + fff ′
HU4 + fff ′

HU5,
fffCL := fff ′

HL1 + fff ′
HL2 + fff ′

HL3 + fff ′
HL4 + fff ′

HL5,
grasped := TRUE

(20)

5 Continuous Controller Synthesis

The reader may well have noticed that there are some slightly unnatural aspects of the
account of chopstick use that we gave. The ASM rules in the preceding section were
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the usual kind of discrete ASM rules. However, grasping via chopsticks is not the usual
kind of discrete event control system. In particular, both the chopsticks and the food
react instantaneously to the force exerted by the other, and not to the previous value
maintained by the other, as one would expect in a normal discrete event control system.
We handled this via the domain theory, which demanded that the opposed forces exactly
matched, without giving any inkling as to how this might be accomplished.

In a more realistic account, the force applied by the chopsticks to the food moves
smoothly from zero to a value sufficient to ensure grasping, and the food senses this
and smoothly reacts by offering a matching resistive force. The sudden assignment to
equal and opposite values in the discrete picture is replaced by a pair of differential
equations which state that the derivatives of the chopstick and food forces are equal
and opposite over time, which together with initial conditions stating that both are zero,
guarantees that the forces themselves remain equal and opposite.

Incorporating these insights into the ASM framework requires an extension of ASM
to include continuously varying behaviours as well as discrete changes. In [1] the au-
thors give such an extension which we briefly recapitulate now.

5.1 Continuous ASM

We partition the variables into two subsets: the mode variables, whose types are dis-
crete sets, and the pliant variables, whose types include topologically dense sets, and
which are permitted to evolve both continuously and via discrete changes. By restricting
to mode variables alone, we recover the conventional discrete ASM framework.

Time is modelled as an interval T of the real numbers R, with a finite left endpoint
for the initial state, and with a right endpoint which is finite or infinite, as needed. T par-
titions into a sequence of left-closed right-open intervals, 〈[t0 . . . t1), [t1 . . . t2), . . .〉, the
coarsest partition such that all discontinuous changes take place at some boundary point
ti. Mode variables are constant on each of these intervals, while pliant variables evolve
continuously. Otherwise arbitrary continuous evolution is constrained within reasonable
bounds by three main restrictions:

I Zeno: there is a constant δZeno, such that for all i needed, ti+1 − ti ≥ δZeno.

II Limits: for every variable x, for every time t ∈ T , and with δ > 0, the left limit

limδ→0 x(t − δ) written
−−→
x(t) and right limit limδ→0 x(t + δ), written

←−−
x(t) exist,

and for every t, x(t) =
←−−
x(t).

III Differentiability: The behaviour of every pliant variablex in the interval [ti . . . ti+1)
is given by the solution of a well posed initial value problem Dxs = φ(xs, t)
(where D is the time derivative).

The two kinds of variable (mode and pliant) are reflected in two kinds of transitions:
mode and pliant. Mode transitions, given by rules of the form (21), just record discrete
transitions from before-values to after-values of variables, with the use of the left limit
for before-values and right limit for after-values making the semantics of these transi-
tions instantaneous. Both kinds of variable can be subject to a mode transition, and in
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(21), where we decorate the variables with this limit information, we single out inputs
is and outputs os in the signature of OP.

OP(in
−→
is, out ←−os) =

if guard(−→xs,−→is) then choose ←−xs,←−os with rel(←−xs,−→xs,−→is,←−os)
do xs, os := ←−xs,←−os

(21)

Pliant transitions describe continuous changes for pliant variables. While a mode
transition captures a single before-/after-value pair, a pliant transition is a family of
before-/after-value pairs parameterized by the relevant time interval [ti . . . ti+1). The
before-value is, in each case, the value at ti, while the after-value refers to an arbitrary
time in the interval, so the two values are separated in time. A rule for a pliant transi-
tion can be written as in (22), where the symbol

c
= syntactically distinguishes a pliant

transition from a mode transition.

PLIOP(in is(t ∈ (tL(t) . . . tR(t))), out os(t ∈ (tL(t) . . . tR(t))))
c
=

if IV (xs(tL(t))) and guard(xs(tL(t))) then with rel(xs, is, os, t)
do xs(t), os(t) := solve DE(xs(t), is(t), os(t), t)

(22)

In (22), L(t) = max{i | ti ≤ t} and R(t) = min{i | ti > t} so that we do not have
to statically know the index i for the interval [ti . . . ti+1), thus making the notation
generic. Furthermore, IV and guard refer to the initial value and any additional guard
restriction that apply for the initial value problem in [ti . . . ti+1). DE is the differential
equation of the initial value problem, while rel expresses any additional constraints
that must hold beyond DE. Inputs is and outputs os (shown as depending on the whole
interval (tL(t) . . . tR(t))) again appear in the signature. If, as can often happen, we know
the form of the continuous behaviour that we want (in contrast to merely knowing a
differential equation for it), then we can replace the solve clause with a straightforward
assignment using a do.

A continuous ASM ruleset, consisting of rules as we have described, is well formed
iff the initial transition is a mode transition, every mode transition enables a pliant
transition (but no mode transition), and every pliant transition (except perhaps for a
final one) enables a mode transition (which, during runtime, preempts it).

Given a conventional discrete ASM system, we can rather trivially turn it into a
continuous ASM system, as follows:

– consider the original discrete ASM rules as mode rules,
– decide on a fixed duration δt,
– determine that each state of the discrete event ASM system will persist for δt,
– add continuous ASM rules setting time derivatives of all ASM state variables to 0,
– add a time variable, and enable all mode transitions after integral multiples of δt.

5.2 Continuous Controller Synthesis

We can ask how the process of separating a set of rules into controller and plant rules
goes, when we have pliant as well as mode transitions. In fact, the process is very similar
to what went before. Since mode rules are identical to the rules we considered earlier,
there is nothing new for them. For pliant rules, they also have a guard and a rel, and for
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these we demand the same conditions as previously. But there is also the solve clause.
We need to stipulate that it separates cleanly into controller and plant in the same way
that guard and rel do so that the rule as a whole splits neatly.

The tuple of differential equations Dxs = φ(xs, t) contained in the solve clause
naturally splits into two: DxsC = φC(xs, t) and DxsP = φP (xs, t). But there is no
a priori guarantee that φC(xs, t) contains only the variables xsC , xscP , and φP (xs, t)
contains only the variables xsP , xs

p
C . So this is what we must additionally demand for

admissibility.
It is clear that the embedding of discrete ASMs into continuous ASMs at the end of

the last section is admissible in the extended sense just discussed, provided the orig-
inal discrete ASM system is admissible, so that the properties derived for controller
synthesis in Sections 2 and 3 carry through essentially unchanged.

6 Continuous Grasping

Let us revisit the chopsticks case study in the continuous ASM framework to see how
the latter can lend it a more persuasive air.

As before, we restrict the modeling to that of forces only (albeit now allowing them
to vary continuously). This avoids complications arising from having to consider move-
ment of either the food or the chopsticks, or distortions of the shape of either the food
or chopsticks consequent on them experiencing the forces that we model, and keeps the
model within a relatively limited space.

We concentrate on elaborating the simpler model in Section 4.1. Time t = 0 triggers
the intial mode rule:

START =
if t = 0 then

do mode := grasping, grasped := undef ,
fffFU := 000, fffFL := 000, fffHCU := 000, fffHCL := 000

(23)

The grasping mode enables the following pliant rule:

GRASPING
c
=

if mode = grasping then
do fffFU, fffFL, fffHCU, fffHCL :=

solve [ DfffFU,DfffFL,DfffHCU,DfffHCL ] = [ eeez,−eeez,−eeez,eeez ]

(24)

This rule causes the forces fffFU, fffFL, fffHCU, fffHCL to acquire suitable pairwise equal and
opposite rates of change, of magnitude 1, oriented along the unit vector of the z axis.
This causes these forces to change continuously (although in fact non-smoothly4) away
from zero at a uniform rate. The continuous grasping persists until a time tSTOP , when it
is determined whether enough force has been applied to hold the food:

STOPGRASPED = if t = tSTOP ∧ fffHCU ≥ D then
do mode := stop, grasped := TRUE

(25)

4 Since the derivatives of the forces jump discontinuously at t = 0, the forces themselves,
though continuous, experience a kink at t = 0.
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STOPDISLODGED = if t = tSTOP ∧ fffHCU < D then
do mode := stop, grasped := FALSE

(26)

The stopped mode just enters a pliant final state:

F-IDLE
c
= if mode = stop then do skip (27)

The above is all consistent with the domain theory (14), although the theory would
have to be augmented by various facts concerning time and the additional variables
introduced above, in order that the natural continuous counterparts of the statements in
(5) could hold.5

6.1 Decomposing Continuous Grasping

We now look at applying the decomposition strategy discussed earlier to the above
integrated model. We asssume that the chopsticks, as controller, are in charge, and own
variables like mode and grasped. We decompose the rules above one by one, starting
with START:

STARTC =
if t = 0 then

do mode := grasping, grasped := undef , fffHCU := 0, fffHCL := 0

(28)

STARTP =
if t = 0 then do fffFU := 0, fffFL := 0

(29)

Next, the decomposition of the GRASPING rule. This yields:

GRASPINGC(out ofofofHCU, ofofofHCL)
c
=

if mode = grasping then
do fffHCU, fffHCL := solve [ DfffHCU,DfffHCL ] = [ − eeez,eeez ],

ofofofHCU := fffHCU, ofofofHCL := fffHCL

(30)

GRASPINGP (in ifififHCU, ifififHCL)
c
=

if mode = grasping then do fffFU := −ifififHCU, fffFL := −ifififHCL

(31)

The above rules display a slightly more complex manner of decomposition than we have
considered hitherto. Instead of merely partitioning the variables and determining that
subsystem B has read access to some of the variables owned by subsystem A, we have
introduced input and output variables that do this job explicitly. So the chopsticks have
output variables ofofofHCU and ofofofHCL, which are just copies of variables fffHCU and fffHCL,
and the food has input variables ifififHCU and ifififHCL, which are used to read the relevant
values in. Thus, the modeling is a now little different in that the food explicitly reacts
to the forces it senses (by generating equal and opposite forces of its own) — we have
substituted equals for equals, but have gone beyond the simple syntactic transformation
described earlier in the paper. It is a natural temptation to do this at the more realistic and

5 The domain theory would also have to be supplemented with a background theory of facts
about calculus, continuous mathematics etc., as needed.
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practical level of modeling that we have reached. Since the new variables are just copies
of existing ones, only trivial modifications are needed to the earlier formal results.

Next are the STOP rules:

STOPGRASPEDC = if t = tSTOP ∧ fffHCU ≥ D then
do mode := stop, grasped := TRUE

(32)

STOPDISLODGEDC = if t = tSTOP ∧ fffHCU < D then
do mode := stop, grasped := FALSE

(33)

STOPGRASPEDP = if t = tSTOP then do skip (34)

STOPDISLODGEDP = if t = tSTOP then do skip (35)

And lastly the final idle rules:

F-IDLEC
c
= if mode = stop then do skip (36)

F-IDLEP
c
= if mode = stop then do skip (37)

The preceding shows that the controller synthesis procedure that we have described is as
applicable to the continuous extension of ASM as it is to the discrete version. We could
now go on to apply the same approach to create a continuous version of the decomposed
hand+chopsticks model, but lack of space prevents us from doing this.

7 Conclusion

In this paper we have introduced the controller synthesis problem for ASM systems.
The motivation was that from a goal oriented point of view, it is often more convenient
to focus on overall system objectives at the outset, and to postpone detailed implemen-
tation issues, such as the specific assignment of functionality to controller or to plant,
till later.

We showed briefly that controller synthesis, as we have defined it, is undecidable,
and we gave a safe approximation. We then illustrated the problem with a case study
based on holding food with chopsticks.

We note that the conditions demanded of the controller and of the plant in our con-
ditions for safe controller synthesis in (4), each relate the subsystem in question to
the originating system (and only to the originating system). Thus they are completely
symmetrical between the controller and plant and do not depend either on there be-
ing exactly two subsystems in play. Therefore, the result generalizes to a partition of
the originating system into an arbitrary number of subsystems, each built in the same
fashion, with some variables to which it has exclusive write access, and a larger set of
variables to which it has read access.

The preceding remark is well illustrated by the chopstick case study, since after the
initial decomposition into food (plant) and hand plus chopsticks (controller), we were
able to repeat the decomposition of the hand plus chopsticks subsystem yielding a fur-
ther separation into chopsticks (plant) and hand (controller), resulting in a three way
partition of the original system.

In practice, the successful satisfaction of the conditions in (4) often demands that a
nontrivial domain theory plays a significant role. In effect, this captures the fact that
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control of a system can be achieved by applying certain signals to it, only because natu-
ral laws connect these signals to the behaviour of other system attributes in a predictable
way. Our simple chopstick case study illustrated this admirably.

We then considered continuous ASMs, and briefly discussed how the controller syn-
thesis problem could be extended to that formalism, illustrating it with a further elabo-
ration of the chopsticks case study.

Although we have focused on a very simple scenario, the ideas that we have explored
have an applicability that is much wider than we have mentioned hitherto, especially in
the context of today’s hybrid and cyber-physical systems [6,4,5,7]. In these, there is
nowadays a strong tendency towards distributed solutions to problems decribable in a
global manner. So the initial global conception of the problem needs to be decomposed
into a number of subsystems that co-operate to form the global solution. Not only are
many of these problems intrinsically control problems anyway, making our approach
directly applicable, but the abstract version of the decomposition technique that we
have explored, tailored as it is to the details of ASM rule scheduling, acts as a surrogate
for a much wider gamut of problems and their solutions.
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Abstract. The ASM framework is extended to include continuously varying
quantities as well as conventional discretely changing ones. This opens the door
to the more faithful modeling of many scenarios where digital systems have to in-
teract with the continuously varying physical world. Transitions in the extended
framework are thus either moded (for discontinuous changing quantities), or pli-
ant (for smoothly changing quantities). Refinement and retrenchment are defined
in the extended context. The framework is used to develop a fragment of a sim-
ple system for the sensing problem for cardiac pacemakers, in the context of the
pacemaker verification challenge.

1 Introduction

Conventional model based formal refinement technologies (see for example [1,26,2,9])
are based on discrete mathematical and logical concepts. These are typically ill suited
to modeling and developing applications whose models are expressed in continuous
mathematics. Nevertheless, many such applications are these days implemented using
digital techniques. So there is a mismatch between the ideal of continuous modeling at
the abstract level, and the discrete techniques used close to implementation.

In this paper we present an extension of the ASM formalism that enables us to treat
continuously changing quantities fluently, and we develop the accompanying extension
of ASM refinement and retrenchment to cope with it. The ASM extension is based on
restricting the continuous behaviours to solutions of well posed initial value problems.
The resulting framework includes all the behaviours needed for the kind of engineering
problems that arise in practice.

We apply this framework to a simple version of the sensing problem for heart pace-
makers. Pacemakers have been proposed as a study problem for the Verification Grand
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Challenge [13,24,25]. Pacemakers are interesting from this viewpoint since the his-
torical approach to their evolution and development is so deeply ingrained in clinical
practice and experimentation [7,11]. From the formal point of view, the most pressing
question that this prompts is: “what exactly are the requirements?”

The rest of this paper is as follows. In Section 2 we briefly introduce pacemakers,
the pacemaker challenge and work done to date, and our own focus: pacemaker sensing.
In Section 3 we review ASM modeling, we give the extension to continuous phenom-
ena, and we develop the relevant refinement and retrenchment machinery. Section 4
explores the sensing problem in more detail. Section 5 presents some ASM models for
the sensing problem, starting with a simple reference model. Section 6 concludes.

2 Heart Pacemakers, the Pacemaker Challenge, and Sensing

The heart has two atria and two ventricles. Blood collects in the atria, and is decanted
into the ventricles by a wave of muscular contraction stimulated by the sinoatrial node.
A short time later, another powerful wave of contraction in the ventricles pumps the
blood round the body.

The heart beats when it is told to do so (via an electrical pulse) by its environ-
ment, in this case the sinoatrial node which initiates atrial depolarization. In normal
working, the atrial pulse has to be of the right characteristics to cause depolariza-
tion. Similarly, the ventricular pulse causes the ventricular depolarization to happen.
Inevitably, various things can go wrong with the nervous mechanisms that cause all
this to happen. Problems of different kinds can arise with atrial depolarization, with
ventricular depolarization, with both, and with the relationship between them. Such de-
ficiencies are collectively referred to as heart block. Heart block can be addressed by
the implantation and configuring of pacemakers, which supply electrical pulses that
substitute for ones that the body is unable to generate properly itself.

Over the years, pacemakers have evolved into very sophisticated devices. To facili-
tate research into the computing dimension of pacemaker technology, a public domain
specification of a pacemaker system has been produced by Boston Scientific [10] for
use in the Verification Grand Challenge [13,24,25].

A perusal of this document reveals that the reader has to rely on a very large amount
of additional knowledge. The most self-contained and relatively complete part of [10]
deals with the different “modes” of pacemaker working. The wide range of possible
electrical stimulation defects gives rise to a corresponding range of modes of pacemaker
operation, each designed to address a specific defect. Each of these modes is assembled
out of a number of available pacemaker features, where each relevant feature of a mode
is tunable by the physician within a given range. Aided by a moderate amount of sup-
plementary information, this aspect of pacemaker operation becomes tractable, and has
attracted some interest from the verification community [16,12,17].

Normally, the pacemaker listens to the heart’s activity. When it detects that the heart
has generated a depolarization, it suppresses the artificial pulse — this is sensing. The
heart’s electrical activity can be detected on the patient’s skin (via an electrocardiogram,
(ECG)), and inside the heart itself (via a cardiac electrogram (EG)). Fig. 1 illustrates.
Since the pacemaker is implanted inside the patient, it is the EG that it must sense.



Continuous ASM, and a Pacemaker Sensing Fragment 67

(a)

P

Q

R

S

T

(b)

Fig. 1. (a) A surface electrocardiogram (ECG). (b) An internal cardiac electrogram (EG).

In the clinical view of sensing, e.g. in [21,3,15], it is assumed that sensing is done by
a filter circuit. This works in the frequency domain, registering electrical activity in the
relevant frequency range, suppressing other frequencies. The circuit outputs a discrete
“Yes” or “No” according to the power spectrum of the filtered input.

The majority of the literatures in this area simply assume that the pacemaker knows
whether or not a pulse has occured. Nevertheless, the clinical literature always cautions
that there is a significant risk of sensing circuits confusing a true depolarization with
other electrical activity. The source of this problem is the following.

The circuit senses only the power spectrum, so the phase information in the signal
is discarded. Consequently, signals having the right power spectrum, but with a shape
very different from Fig. 1.(b) can be erroneously identified with a depolarization.

In this paper, we illustrate our continuous extension of the ASM formalism by sup-
plementing frequency domain sensing with a time domain tracking of the EG. This
seeks to distinguish genuine depolarizations from spurious other signals sharing a sim-
ilar power spectrum. Since pacemakers are capable of measuring the internal EG ([10]
explicitly demands such a capability), this is an entirely credible strategy.

3 ASM, Discrete and Continuous

In this section we review the essentials of ASM [9,8], and extend the formalism to cope
with continuously varying quantities, extending its reach to address many problems not
treatable using the purely discrete theory alone.

3.1 Continuous ASM Models

To keep things simple, we assume that the states of an ASM model are given by val-
uations of the tuple of variables relevant to the model, i.e. functions from the tuple of
variables to the tuple of the variables’ types. To extend such models to include con-
tinuously varying phenomena, we partition the variables into two subsets: the mode
variables, whose types are discrete sets, and which are therefore only permitted to
change discontinuously and discretely, and the pliant variables, whose types include
topologically dense sets, and which are permitted to evolve both continuously and via
discrete changes. By restricting to mode variables alone, we recover the conventional
discrete ASM framework.

We model time as an interval T of the real numbers R, with a finite left endpoint
representing the time at which the initial state of the model is created, and with a right
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endpoint which is either finite or infinite, depending on whether the dynamics is finite or
infinite. Now, the values of all variables become functions of T . For the mode variables,
this function is a piecewise constant function, constant on each element of a sequence
of left-closed right-open intervals. Thus T itself also partitions into a sequence of left-
closed right-open intervals, 〈[t0 . . . t1), [t1 . . . t2), . . .〉, the coarsest partition of T such
that all discontinuous changes take place at some boundary point ti.

In a typical interval [ti . . . ti+1), the mode variables will be constant, but the pliant
variables will change continuously. However, merely insisting on continuity still allows
for a wide range of mathematically pathological behaviours. To eliminate these, we
make the following restrictions:

I Zeno: there is a constant δZeno, such that for all i needed, ti+1 − ti ≥ δZeno.1

II Limits: for every variable x, and for every time t ∈ T , the left limit limδ→0 x(t−δ)

written
−−→
x(t) and right limit limδ→0 x(t+δ), written

←−−
x(t) (with δ > 0) exist, and for

every t, x(t) =
←−−
x(t). [N. B. At the endpoint(s) of T , any missing limit is defined to

equal its counterpart.]

III Differentiability: The behaviour of every pliant variablex in the interval [ti . . . ti+1)
is given by the solution of a well posed initial value problem Dxs = φ(xs, t)
(where xs is a relevant tuple of pliant variables and D is the time derivative). “Well
posed” means that φ(xs, t) has Lipschitz constants which are uniformly bounded
over [ti . . . ti+1) bounding its variation with respect to xs, and that φ(xs, t) is mea-
surable in t.

It is recognised that ASM types can be mathematically complex entities. Therefore it is
intended that I-III above apply to variables with as general a type as might be needed,
provided that the concepts required in I-III (left/right limits, initial value problem, Lip-
schitz constants, uniform boundedness, measurability) make sense for them.

With I-III in place, the behaviour of every pliant variable is piecewise absolutely
continuous, with the variation being described by a suitable differential equation (DE).

Accompanying the distinction between mode and pliant variables, is a distinction
between mode and pliant transitions. Mode transitions are just like conventional ASM
transitions in that they record a discrete transition from before-values to after-values of
the mode variables, albeit that these are the values of piecewise constant functions of
time. A rule for a mode transition OP can be written using familiar ASM notation:

OP(in
−→
is, out ←−os) =

if guard(−→xs,−→is) then choose ←−xs,←−os
with rel(←−xs,−→xs,−→is,←−os) do xs, os := ←−xs,←−os (1)

In (1) we single out is and os, the inputs and outputs (read-only and write-only respec-
tively), while xs are the state variables (accessed in read/write manner). Note that the

1 Our approach to the Zeno problem contrasts with many others, which demand that any finite
time interval contains only a finite number of transitions, or that the sequence of transition
times contains no accumulation points. But this permits the sequence ti+1 − ti = 1/i, which
satisfies the mentioned restrictions, yet allows transitions to get arbitrarily close together.



Continuous ASM, and a Pacemaker Sensing Fragment 69

choice of left limit for before-values and right limit for after-values makes (1) into the
kind of instantaneous transition that we would expect. Also, if the after-values for xs
and os are available explicitly, the relevant expression can be assigned in the do clause,
and the choose and with clauses can be omitted.

Pliant transitions do the corresponding job for pliant variables. While a mode tran-
sition is a single before-/after-value pair, a pliant transition is a family of before-/after-
value pairs parameterized by the relevant time interval [ti . . . ti+1). Moreover, instead of
the change from before-values to after-values taking place instantaneously, the before-
value refers to the initial value at ti while the after-value refers to an arbitrary time
in the interval, so the before-value and after-value are separated in time. To reflect the
constraints that apply to pliant transitions, we write rules for them thus:

PLIOP(in is(t ∈ (tL(t) . . . tR(t))), out os(t ∈ (tL(t) . . . tR(t))))
c
=

if IV (xs(tL(t))) ∧ guard(xs(tL(t))) then with rel(xs, is, os, t)
do xs(t), os(t) := solve DE(xs(t), is(t), os(t), t) (2)

In (2), the symbol
c
= signals the presence of a pliant transition, distinguishing it from

the instantaneous kind. The inputs is and outputs os are continuously absorbed from
and emitted to the environment, as indicated in the signature. For an arbitrary t, we let
L(t) = max{i | ti ≤ t} and R(t) = min{i | ti > t} so that: (a) we do not have to know
the index i explicitly in [ti . . . ti+1); (b) we can refer to the beginning and end of the
interval during which the pliant event runs in a generic manner in the syntactic description
of the event. Note that the initial values IV and guard guard depend only on the before-
value of the state, and not on the input, whereas rel, which expresses any additional
constraints that must hold beyond the differential equation DE itself, can depend on all
state and input values from the start of the interval tL(t) up to the current time t. The
assignment in (2) says that the after-state and output at t should satisfy the differential
equation DE (as well as rel). As for the instantaneous case, if the continuous functions
of t to be assigned to xs, os are known explicitly, we can omit the with and/or solve
clauses as approporiate, and just assign xs, os to the relevant expression.

As mentioned earlier, pliant variables can undergo instantaneous discontinuous tran-
sitions as well as continuous ones. For such transitions, the structure in (1) is sufficient.
We continue to call instantaneous transitions involving both kinds of variable mode
transitions, introducing the term pure mode transitions for the former kind.

We say that a continuous ASM ruleset is well formed iff:

• Every enabled mode transition is feasible, i.e. has an after-state, and on
its completion enables a pliant transition (but does not enable any mode
transition).

(3)

• Every enabled pliant transition is feasible, i.e. has a time-indexed family of
after-states, and EITHER:

(i) During the run of the pliant transition a mode transition becomes en-
abled. It preempts the pliant transition, defining its end. ORELSE

(ii) During the run of the pliant transition it becomes infeasible: finite ter-
mination. ORELSE

(iii) The pliant transition continues indefinitely: nontermination.

(4)
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A run of a continuous ASM system starts with a mode transition which creates the ini-
tial state, and then, pliant transitions alternate with mode transitions. The last transition
(if there is one) is a pliant transition (whose duration may be finite or infinite).

3.2 Continuous ASM Refinement and Retrenchment

Now we develop our continuous ASM framework to encompass refinement and re-
trenchment of continuous ASM models. We start by describing the usual formulation,
appropriate to pure mode transitions, and then show how to extend this to encompass
the new kinds of transition.

In general, to prove a conventional ASM refinement or retrenchment, we verify so-
called (m,n) diagrams, in which m abstract steps simulate n concrete ones in an ap-
propriate way. This means that there is nothing that the n concrete steps can do that is
not suitably reflected in m appropriately chosen abstract steps, where both m and n can
be freely chosen to suit the application, and the meaning of “suitably reflected” depends
on whether we are dealing with refinement or retrenchment. For this paper, it will be
sufficient to focus on the refinement and retrenchment proof obligations (POs) which
are the embodiment of this policy. The situation for refinement is illustrated in Fig. 2,
in which we suppress input and output for clarity.

In Fig. 2 the retrieve relation RA,C, between abstract and concrete states, holds at the
beginning and end of the (m,n) pair. This permits us to “glue together” such (m,n)
diagrams to create relationships between abstract and concrete runs in which RA,C

is periodically re-established. [N. B. In much of the ASM literature, the main focus
is on an equivalence, usually written ≡, between abstract and concrete states. This is
normally deemed to contain a “practically useful” subrelation RA,C, chosen to be easier
to work with. The approach via RA,C will be the focus of our treatment, and is also
focus of the KIV [14] formalization in [19,20].]

The first PO is the initialization PO, common to both refinement and retrenchment:

∀ y′ • CInit(y′)⇒ (∃x′ •AInit(x′) ∧RA,C(x
′, y′)) (5)

In (5), it is demanded that for each concrete initial state y′, there is an abstract initial
state x′ such that the retrieve relation RA,C(x

′, y′) holds.
The second PO is correctness. The PO is concerned with the verification of (m,n)

diagrams. For this, we have to have some way of deciding which (m,n) diagrams are
sufficient for the application. Let us assume that we have done this. Let CFrags be
the set of fragments of concrete runs that we have previously determined will permit a
covering of all the concrete runs of interest for the application. We write y :: ys :: y′ ∈
CFrags to denote an element of CFrags starting with concrete state y, ending with
concrete state y′, and with intervening concrete state sequence ys. Likewise we write
x ::xs ::x′ ∈ AFrags for abstract fragments. Let is, js, os, ps denote the sequences of
abstract inputs, concrete inputs, abstract outputs, concrete outputs, respectively, belong-
ing to x ::xs ::x′ and y :: ys :: y′ and let InAOPS,COPS(is, js) and OutAOPS,COPS(os, ps)
denote suitable input and output relations. The specific form of the correctness PO now
differs in form depending on whether we are dealing with refinement or retrenchment.
We start with refinement. Then the correctness PO reads:
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• •

• •

••

• • ••

. . .

. . . . .

m steps

n steps

x x′

y′y

RA,C(x, y) RA,C(x′, y′)

Fig. 2. An ASM (m,n) diagram, showing how m abstract steps, going from state x to state x′

simulate n concrete steps, going from y to y′. The simulation is embodied in the retrieve relation
RA,C, which holds for the before-states of the series of steps RA,C(x, y), and is re-establshed for
the after-states of the series RA,C(x

′, y′).

∀x, is, y, ys, y′, js, ps • y ::ys ::y′ ∈ CFrags ∧
RA,C(x, y) ∧ InAOPS,COPS(is, js) ∧ COPS(y :: ys :: y′, js, ps) ⇒
(∃xs, x′, os • x ::xs ::x′ ∈ AFrags ∧ AOPS(x ::xs ::x′, is, os) ∧
RA,C(x

′, y′) ∧OutAOPS,COPS(os, ps)) (6)

In (6), it is demanded that whenever there is a concrete run fragment of the form
COPS(y :: ys :: y′, js, ps), carried out by a sequence of concrete operations2 COPS,
with state sequence y :: ys :: y′, input sequence js and output sequence ps, such that
the retrieve and input relations RA,C(x, y)∧ InAOPS,COPS(is, js) hold between concrete
and abstract before-states and inputs, then an abstract run fragment AOPS(x :: xs ::
x′, is, os) can be found to re-establish the retrieve and output relations RA,C(x

′, y′) ∧
OutAOPS,COPS(os, ps).

The ASM refinement policy also demands that non-termination be preserved from
concrete to abstract, but we will not need that in this paper.

Assuming that (5) holds, and that we can prove enough instances of (6) to cater for
the application of interest, then the concrete model is a correct refinement of the ab-
stract model. In a correct refinement, all the properties of the concrete model (that are
visible through the retrieve and other relations), are suitably reflected in properties of
the abstract model (because of the direction of the implication in (6)). If in addition,
the abstract model is also a correct refinement of the concrete model (using the con-
verses of the same relations), then the concrete model is a complete refinement of the
abstract model. In a complete refinement, all relevant properties of the abstract model
are also present in the concrete model (because of the direction of the implication in
the modified version of (6)). Therefore, to ensure that the complete set of requirements
of an intended system is faithfully preserved through a series of refinement steps, it is
enough to express them all in a single abstract model, and then to ensure that each re-
finement step is a complete refinement. We now turn to the retrenchment version of the
correctness PO.

2 We define an operation as a maximal enabled set of rules — provided its updates are consistent.
Enabled inconsistent updates cause abortion of the run.
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For retrenchment, [6,5] give definitive accounts; latest developments are found in
[18]. See also [4] for formulations of retrenchment adapted to several specific model
based refinement formalisms including ASM. The retrenchment correctness PO weak-
ens (6) by inserting within, output and concedes relations, WAOPS,COPS , OAOPS,COPS ,
CAOPS,COPS respectively into (6), to give extra flexibility and expressivity. In particular,
the concession CAOPS,COPS weakens the conclusions of (6) disjunctively, giving room
for many kinds of “exceptional” behaviour. The result is:

∀x, is, y, ys, y′, js, ps • y ::ys ::y′ ∈ CFrags ∧
RA,C(x, y) ∧WAOPS,COPS(is, js, x, y) ∧ COPS(y ::ys ::y′, js, ps) ⇒
(∃xs, x′, os • x ::xs ::x′ ∈ AFrags ∧ AOPS(x ::xs ::x′, is, os) ∧
((RA,C(x

′, y′) ∧OAOPS,COPS(x, x
′, is, os, y, y′, js, ps)) ∨

CAOPS,COPS(x, x
′, is, os, y, y′, js, ps))) (7)

To ensure that retrenchment only deals with well defined transitions, and to ensure
smooth retrenchment/refinement interworking, in retrenchment we also insist that
RA,C ∧WAOPS,COPS always falls in the domain of the requisite operations, though this
is another thing not needed here.

All of the preceding was still formulated for the exclusively discrete world. However,
to extend it to the continuous world too, is simplicity itself. We just have to reinterpret
the paths, x ::xs ::x′ and y :: ys :: y′ appearing in (6) and (7) appropriately, and we are
done.

More precisely, a path like x ::xs ::x′ say, can consist of interleavings of pliant and
mode transitions. If x ::xs ::x′ starts with a pliant transition, then the value x used in the
POs (6) and (7) is the right limit at its initial point x. Similarly, if x ::xs ::x′ ends with
a pliant transition, then the value x′ used in the POs is the left limit at its endpoint x′.
Similar remarks apply to the concrete path y ::ys ::y′. The fact that the POs are largely
insensitive to what goes on in the interior of the paths, makes them equally applicable
to paths that interleave pliant and mode transitions, as to paths that just have a sequence
of discrete states in their interior.

4 Pacemaker Sensing

Our objective for the rest of this paper is to design an ASM system to track a signal that
represents the continuous internal electrical activity of the heart. A theoretical treatment
of the expected shape of the signal detected by an electrode inside the heart as a wave
of depolarization passes over it has been carried out some time ago, based on the idea
of a dipole of charge passing a detector [22,23]. This is the basic shape in Fig. 1.(b).

Thus, our abstract model focuses on Fig. 1.(b), allowing for an acceptable margin of
error. This is shown in Fig. 3. There, the basic shape pulse(t) (solid curve in Fig. 3)
is given by (8), while the dashed error curves surrounding it are given by adding (or
subtracting) err(t), which is a small positive constant augmented by a strongly peaked
Gaussian centred at the point of maximum variability of pulse(t):

pulse(t) = −K

(
1√

(t+ a)2 + b2
− 1√

(t− a)2 + b2

)
(8)
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Fig. 3. Schematic of the EG of a single depolarization, with a margin of error to allow for noise

err(t) = c+ r exp(−p t2) (9)

In real pacemakers, the completion of the previous heartbeat initiates the start of a fresh
cycle. Let us assume that this is at time t = 0. The new cycle begins with a so called
refractory period, in which the heart signal is ignored, allowing the transients of the
previous heartbeat to die off, and for myocardial polarization to be re-established. Say
this refractory period lasts till T0. Then, from T0 to TMAX , the heart signal is monitored
for the presence of a shape similar to pulse. Assuming the heart is working normally, if
the patient is being physically active, then the patient’s heartrate will be higher and the
pulse occurs sooner; whereas if the patient is being inactive then the heartrate will be
lower and the pulse will occur later. Thus, we can specify a typical function egmA(t)
that constitutes an acceptable electrogram shape as follows:

(∃R • T0 < R0 ≤ R ≤ RMAX < TMAX ∧
(∀ t • T0 < t < TMAX ⇒ egmA(t) ∈ egmWinR(t))) (10)

where

egmWinR(t) = [egmWin−
R(t) . . . egmWin+

R(t)] (11)

where

egmWin−
R(t) = pulse(t−R)− err(t −R) (12)

and

egmWin+
R(t) = pulse(t−R) + err(t −R) (13)

In (10), egmWinR(t) is set valued, and at each relevant time t, it specifies the allowable
cardiac electrogram window within which a normally operating heart’s electrogram be-
haviour is expected to fall. A minor complication is that the precise moment within
the allowed timeframe at which the electrogram undergoes the pulse is not known ex-
actly, but is merely constrained by R0 ≤ R ≤ RMAX , where, like T0 and TMAX , the
constants R0 and RMAX are statically determined.

5 Sensing Models

5.1 The Reference Model

At the abstract level, we can view egmWinR(t) as as static function, depending on
two parameters: time and the chosen value of R. With this, we can specify a reference
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model for cardiac behaviour using a pliant rule that generates acceptable electrograms
as follows, where any call of EGMA produces an electrogram egmA which stays within
the acceptable window egmWinR during the period of interest, T0 < t < TMAX :

EGMA(out ego(t)) c
=

choose eg′(t)
with (∃R • T0 < R0 ≤ R ≤ RMAX < TMAX ∧ T0 < t < TMAX ∧

eg′(t) ∈ egmWinR(t))
do egm(t) := eg′(t), ego(t) := eg′(t) (14)

5.2 Heartrate-Aware ASM Sensing

We now present the continuous variable heartrate sensing model, the CVH model. Ini-
tialisation (assumed to be at time 0), resets the “verdict” variables pulseGOOD and
pulseBAD, and initialises the pliant variables dev, egirise and egifall which will
measure the quality of the electrogram. Then it models the refractory period.

INITCVH =
if t = 0 then

do mode := refrac, pulseGOOD := false, pulseBAD := false,
winR := ∅, dev := 0, egirise := 0, egifall := 0 (15)

REFRACTORYCVH
c
= if mode = refrac then do skip (16)

A mode transition signals the start of sensing:

STARTSENSINGCVH =
if mode = refrac ∧ t = T0 then

do mode := sensing, pulseGOOD := false, pulseBAD := false,
winR := ∅, dev := 0, egirise := 0, egifall := 0 (17)

The switch to sensing mode activates the sensing process.

EGMCVH (in egi(t))
c
=

let wR(s̄) = if s̄ �∈ dom egi then ∅ else {R | R0 ≤ R ≤ RMAX ∧
∀s̃ • tL(t) < s̃ ≤ s̄⇒ egi(s̃) ∈ egmWinR(s̃)} fi in

let s = max {s̃ | tL(t) < s̃ ≤ t ∧ wR(s̃) �= ∅} in
if mode = sensing then

do winR(t) := wR(s),
dev(t) := solve D dev(t) =

min {dist(egi(t), egmWinR(t)) | R ∈ winR(t)},
egirise(t) := solve D egirise(t) = D egi(t)Θ(D egi(t)),
egifall(t) := solve D egifall(t) = D egi(t)Θ(−D egi(t)) (18)

In (18), Θ returns 1 if its parameter is positive, else 0. Sensing continues until a signal
conforming to the region of high variation in pulse has been detected (indicating a
spontaneous heartbeat), or the timeout expires (indicating abnormal cardiac function).

Consider a normal heartbeat. If egi(t) is close to zero near t = T0, then a large
range of R values will satisfy egi(t) ∈ egmWinR(t). As time progresses, the normal
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heartbeat reaches the point at which the double spike occurs. As the electrogram follows
the shape of pulse, very soon the range of allowable R values is reduced to around 2t0
(where t0 is the solution nearest to 0 to the equation pulse(t0)+err(t0) = 0), which is
the width of the time window around the central point of pulse in Fig. 3. Setting δth (the
width of the window of allowable R values such that egmWinR contains the whole of
the observed electrogram (which must be more than zero)) to slightly more than 2t0,
gives us a feature to test for when confirming the presence of a normal heartbeat.

Also, since the whole of the observed electrogram is inside egmWinR, D dev(t)
remains at zero, and so dev stays at zero too, giving another feature to test for when
confirming a normal heartbeat. And since egirise and egifall track the overall positive
and negative change in the electrogram value, a normal heartbeat will also be charac-
terised by |egirise + egifall| < δrf and egirise > Δth, with δrf and Δth suitable
constants (one small, one big). Observing also that the time for confirming a normal
heartbeat will be less than TMAX , a normal heartbeat enables the following mode tran-
sition:

PULSEGOODCVH =
if mode = sensing∧dev = 0∧0 < |max winR−min winR| < δth ∧
|egirise+ egifall| < δrf ∧ egirise > Δth ∧ T0 < t < TMAX then
do mode := refrac, pulseGOOD := true (19)

Consider an abnormal heartbeat. By definition, an abnormal heartbeat does not conform
to the envelope of permitted deviation around pulse. Thus winR(t) will diminish over
time, but instead of eventually remaining at a little less than δth, it will shrink to a single
value, the last value R̄ at the last time t̄ for which the “electrogram-so-far remains in
egmWinR” property still holds.

After this moment, the distance between egi(t) and egmWinR̄(t̄) will become posi-
tive, leading to a positive D dev(t) and thus positive dev, which remains until the dead-
line TMAX expires, giving a feature to test for when confirming an abnormal heartbeat.
This enables the following mode transition:

PULSEBADCVH =
if mode = sensing ∧ dev > 0 ∧ t = TMAX then

do mode := refrac, pulseBAD := true (20)

To deal with successive heartbeats, we need to slightly alter the way we deal with time.
There are two relatively straightforward approaches. In the first, we continue with the
perspective that t refers to real time (measured from some arbitrary starting point).
In this view, we would need PULSEGOODCVH and PULSEBADCVH to re-assign the
values of T0 and TMAX to appropriate future values (by adding to them the duration
of the heartbeat that has just elapsed), ready for the next heartbeat. In the second, we
would regard t as a clock — which is reset at the beginning of every heartbeat (via
assignments t := 0 in PULSEGOODCVH and PULSEBADCVH ) instead of referring to
real time. In this view, we would need to re-interpret the notations tL(t) and tR(t) so
that they referred to the clock time at the beginning and end of the current invocation
of the current pliant transition, rather than to real time. Both of these approaches are
quite straightforward, allowing REFRACTORYCVH to be re-enabled for a repetition of
the sensing behaviour in the next heartbeat.



76 R. Banach et al.

5.3 On EGMA and EGMCVH

In a full-blown formal development, the relationship between EGMA and the more con-
crete EGMCVH would be of interest in monitoring how the pacemaker sensing require-
ments were being met through the development. Here, for lack of space, we just sketch
an aspect of it as an illustration of the flexibility of our techniques.

The main use of pacemakers is in situations where cardiac behaviour is expected
to not conform to the normal for a significant proportion of the time. This makes the
prospects for a conventional kind of refinement futile. On the other hand, if we take
advantage of the additional flexibility of retrenchment, then the prospects for setting up
a formal relationship between EGMA and EGMCVH are improved. We now give one
possible such retrenchment from EGMA to EGMCVH .

The first concern in a retrenchment is the retrieve relation from the A model state
space to the CVH model state space, RA,CVH . Given that the two models operate
on different timeframes, that the size of the allowed window of R values egmWinR,
varies over time, and recognising that the other relations of a retrenchment permit more
finegrained control over states, it is acceptable to trivialise RA,CVH :

RA,CVH (egm, 〈winR, dev〉) ≡ true (21)

The within relation controls what is demanded of before-states and inputs in the hy-
potheses of the correctness PO (7):

WEGMA,EGMCVH (egi(t ∈ (T0 . . . T
′)), egm(T0), 〈winR, dev〉(T0)) ≡

dev(T0) = 0 ∧ egirise = 0 ∧ egifall = 0 ∧ |egi(T0)| < δsmall (22)

In (22), T ′ refers to the time at which the after-state of the heartbeat is reached. We see
that dev(T0) = 0 and egirise = 0 and egifall = 0 are all recorded in (22), consistent
with (17), and with the fact that these initial values are not mentioned in (18). We
also record that the right limit of the sensed electrogram, egi(T0), is small enough to
substantiate our earlier assumptions that egi is near zero at the start of sensing.

Now, either EGMCVH conforms to EGMA and we have a normal heartbeat, or not. In
the former case, it is appropriate to describe the properties of the two executions using
the output relation:

OEGMA,EGMCVH (egm(T0, T
′), ego(t ∈ (T0 . . . T

′)),
〈winR, dev〉(T0, T

′), egi(t ∈ (T0 . . . T
′))) ≡

dev(T ′) = 0 ∧ 0 < |max winR−min winR| < δth∧
|egirise+ egifall| < δrf ∧ egirise > Δth ∧
(∀ t • T0 < t < T ′ ⇒ EGMA(ego(t)) ∧ ego(t) = egi(t)) (23)

The gist of (23) is that the variables dev, egirise and egifall behaved as expected,
and also that, since we had a normal heartbeat, the input electrogram egi(t) always
remained within the permitted envelope, egmWinR(t) for some R, and therefore that
there is a possible abstract electrogram ego(t) that followed it exactly.
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If though, we are dealing with the case of an abnormal heartbeat, we can describe
the properties of the two executions using the concession:

CEGMA,EGMCVH (egm(T0, T
′), ego(t ∈ (T0 . . . T

′)),
〈winR, dev〉(T0, T

′), egi(t ∈ (T0 . . . T
′))) ≡

T ′ = TMAX ∧ dev(T ′) > 0 ∧ (∀R •R0 ≤ R ≤ RMAX ⇒
(∃ t • T0 < t < T ′ ∧ egi(t) �∈ egmWinR(t))) (24)

In (24), the first clause states that the deadline has expired, while the second states that
the accumulated deviation from (even the best possible) permitted electrogram win-
dows is positive. The third clause makes the preceding more explicit by asserting the
existence of a value t at which the observed electrogram falls outside the permitted
window egmWinR(t) (for even the best possible R).

This completes the relationship bewtween EGMA and EGMCVH . As hinted above,
the step from EGMA to EGMCVH constitutes but the first step of a formal development
of the time domain sensing application. The remainder of the development throws up
some fascinating technical challenges for our formal framework, which, unfortunately,
we do not have the space to explore in the present paper.

6 Conclusion

In the preceding sections, we introduced the pacemaker sensing problem as a case study
that was not only connected with the Verification Grand Challenge [13,24,25], but was
also one that required continuous machinery to attain reasonably faithful modeling.
We then gave an extension of the ASM framework to enable it to deal with continu-
ous behaviours. These behaviours were not arbitrary, but were constrained by a Zeno
condition, and the need to be describable using differential equations with right hand
sides that are Lipschitz in the dependent variables and measurable in time. This class
is flexible enough to include naturally occurring engineering discontinuities, without
admitting unnecessarily pathological behaviours.

We then applied this framework to our case study. For lack of space, we were not able
to pursue this beyond the first stage, giving merely a taste of both the richness of the
case study, and of our framework’s capabilities. A more extensive treatment, pursuing
the development of the case study to near-implementation, will appear elsewhere.
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Abstract. We define an abstract standards-compliant web browser
model. The model focuses on those parts of the browser behaviour which
are most relevant for the deployment and execution of web applications,
such as interaction with a scripting language (here, ECMAScript), cook-
ies, and asynchronous behaviour of the network layer, while hiding other
aspects, such as page navigation and presentational issues.

We use a multi-agent Abstract State Machine as our formal model,
showing how the browser behaviour can be partitioned into a number
of distinct components, and specifying precisely their interactions. The
specification can also be used as basis to prove consistency properties of
common frameworks for web applications.

1 Introduction

A basic web browser could be modeled as a function mapping uniform resource
locators (URLs, i.e. web addresses) into an on-screen presentation of contents.
User interaction with the page results in another URL being requested, iterating
the process. The semantics of a web application would then be seen as a fix-point
computation of this function. However, such a purely functional specification
would miss a number of important (in practice, fundamental) details.

One of the defining characteristics of web applications is, in fact, their reliance
on unreliable, asynchronous networks to retrieve all the various components of
an application: visual (i.e., text and graphics on a web page), logic (i.e., source
code to be executed on the browser) and services (i.e., sending data to a server
for processing). In this paper, we will mostly illustrate these points.

The purpose of our effort is not to provide a full formal specification of
HTML 5 [5], nor of any specific web browser (in existence or conceptual), but
rather to highlight certain aspects of how a browser, seen as a thin client for web
applications, behaves. As such, we will often skip the more contrived details, ig-
nore the issues with graphics and layout entirely, and at times describe a specific
implementation where the specification would allow several possibilities1.
1 In particular, several aspects of HTML 5 are unneedingly complicated by the need

to ensure that the quirks of several different implementations in widespread use are
deemed conformant.
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c© Springer-Verlag Berlin Heidelberg 2012



80 V. Gervasi

Our model consists of several layers. At the basis, we have a transport-level
layer, where we describe (rather abstractly) the TCP/IP communication accord-
ing to the HTTP protocol which relates a web server and a web browser.

On top of the transport layer, we have a stream-level layer, with individual
agents in charge of receiving and interpreting information coming from the net-
work. These agents are instantiated dynamically, and roughly correspond to the
multiple threads that are often found in real browsers.

Above the stream level, a context-level layer defines the behaviour of a brows-
ing context. A browsing context typically corresponds to a single Document
(which in turn has a DOM or Document Object Model) and regulates the user
interaction with the same. Most typically, each window, tab, or frame in a web
browser is a different browsing context.

Finally, on top of all this we have a browser-level layer, where we specify (in
part) the behaviour of a web browser, seen as an application of the host operating
system. At this level we describe initialization of new browsing contexts and
interaction with the host operating system.

Due to space considerations, we only describe here the first two layers, up to
the construction of a Document in the context layer. These layers are where most
of the asynchronicity and non-determinism lay, and are thus more interesting
from our point of view. In contrast, in the top two layers, the security model of
the browser and of the OS tend to isolate (“sandbox”) various components, and
the event manager of the UI tend to sequentialize user events, thus leading to a
more traditional view oriented towards sequential programming. The interested
reader can find more details about the context-level layer and event processing
in [2].

2 Notation

Providing a complete specification of all the different technologies involved, from
the basics of point-to-point networking to the various protocols, languages, and
frameworks employed by contemporary realistic web applications would be an
herculean task, and moreover would hide in an unnecessary amount of details the
interesting points that we want to highlight. Hence, in the following we will make
somewhat liberal use of descriptions in natural language for clerical operations,
and of text in this style to indicate non-trivial operations that, however, have
found no place in our effort, as being out of scope for the present work. One
could think of such fragments as of undefined macros of which we even omit the
name and signature, relying on the text to describe their purpose.

We will also use at times meta-variables, denoted in this style, to indicate a
family of proper syntactic elements whose identifier is built by replacing the
meta-variable with a value from a given set. So, for example, a family of predi-
cates hasAttrib : Element → Boolean would stand for the whole set of predicates
hasName, hasId , hasStyle, hasSrc etc. Other notation is as popularized by stan-
dard ASM practice, e.g. as used in [1].
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3 Transport Layer

3.1 Channels and Buffers

At the basis of the transport layer we have the concept of Channels. A Channel
consists of a pair of queues called Buffers, each Buffer serving as a send-queue
for the sending machine, and as a receive-queue for the receiving machine. There
is an underlying expectation that what is written in the send-queue on one end
of a channel, will appear, in order, in the receive-queue on the other end of the
channel, and vice versa. However, this is not specified in our model, and in fact
which data is read from a channel is, formally, totally non-deterministic. This
allows us to reason on fringe cases, including communication errors, dropped
connections, man-in-the-middle attacks, transparent and filtering proxies along
the route, browser plug-ins to remove advertisement, antivirus and anti-scam
software, parental filters, etc.

It is interesting to notice that the existence of all those potential intermediaries
in practice makes TCP/IP’s guarantee of “a data packet will arrive either intact
and in order, or not arrive at all” [3] inapplicable in our case. In allowing for non-
determinism in data transfer, we explicitly model our renounce to that guarantee.

Buffers transfer data as sequences of octets (bytes), but to simplify our models,
we will assume that our background contains functions to turn these sequences
of octets into the corresponding abstract types. So, for example, we will assume
the ability to recognize a whole HTML element such as <FONT size=1> without
going into the details of how the character sequence is transformed into an HTML
element. Similarly for other data types (images, scripts, etc.).

On Buffers, we assume (as part of our background) the following operations:

The macro
TCPSend(host , data, buffer)

will initiate a network transfer of the given data to the host (which includes
address and port), preparing to receive a reply, if any, through the buffer .
It models the act of creating a socket, binding it to an address and writing
a data packet to the socket, and eventually reading the reply in a given
memory buffer.
xAvailable : Buffer → Boolean a family of predicates that return true if a
full data element of type x is available for reading from the head of a buffer,
or false otherwise.
headX : Buffer → X a family of functions that return the data element of
type X that is available for reading at the head of a buffer, or undef if no
data is available.
The command

dequeue e from buffer
is used to remove data element e from the head of the buffer (thus updating
the buffer).
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isFinished : Buffer → Boolean a predicate that is true if the transfer asso-
ciated to a buffer is finished and no more data have to be expected. This
situation corresponds in actual implementation to a close operation on a
TCP socket.

Notice that our transport-level background is fit to describe full TCP or UDP
exchange, whereas the macros and functions defined above are sufficient to de-
scribe typical HTTP interactions (from the browser’s perspective).

3.2 HTTP Request/Response

The HTTP protocol specifies that Requests should be sent to compatible servers
in a specific format. First is a compulsory request line including a method (one of
GET, POST, PUT, HEAD, and a handful of others), a resource (most typically, a
pathname with optional query parameters), and protocol versioning information.
The request line is followed by a (possibly empty) sequence of headers each of
which is a pair (key, value), and by an optional body (which is relevant only
for the PUT method), containing arbitrary data to be processed by the server.
Headers and body are separated by an empty line.

In the following we associate a unique identifier k to each request/response
pair; we will see later how k can also serve to associate a request/response pair
to higher-level operations and data. Moreover, since network transfers happen
asynchronously, we use a callback pattern, where the response to a given request
will be processed at some future time by a machine proc which is provided with
the request.

The syntactical details of how a Request is structured need not concern us
here; the actual sending of a request is modeled through the following macro,
where host represent the (abstract) network identity of the machine that will
receive the request, head includes the request line and headers, and data is as
defined above:

Send(host , head , data, proc, k) =
let buffer =new Buffer , a =new Agent in

ag(k) := a
buf (k) := buffer
TCPSend(host , head · EMPTYLINE · data, buffer)
mode(k) := ExpectStatus
program(a) := Receive(proc, k)

The macro above creates a new buffer to hold the server response, constructs an
HTTP Request by joining head and body, and more importantly creates a new
agent whose task is to (eventually) process the response through the callback
proc (once completed, the agent will terminate):

Receive(proc, k) =
if mode(k) = ExpectStatus then

if lineAvailable(buf (k)) then
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let l = headLine(buf (k)) in
dequeue l from buf (k)
mode(k) := ExpectHeader
status(k) := l

if mode(k) = ExpectHeader then
if lineAvailable(buf (k)) then

let l = headLine(buf (k)) in
dequeue l from buf (k)
if isEmptyLine(l) then mode(k) := ExpectData
if isSetCookie(l) then ∀cookie ∈ l , StoreCookie(cookie, rurl(k))
else manage other headers, e.g. for cache control

if mode(k) = ExpectData then
proc(k)

The program for processing the data portion of the response is provided by the
caller of the macro (and hence, eventually, by the initiator of the transfer). All
elements are bound together through the unique key k , that serves as the unique
identifier for this particular HTTP interaction. Notice how Receive stores any
cookie sent by the server in a global (undescribed here) storage, whence they
will be retrieved by the cookiesFor() function used in the next macro.

A full HTTP transfer is initiated by invoking the Transfer macro below:

Transfer(method , url , data, proc, k) =
rmethod(k) := method
rurl(k) := url
rdata(k) := data
if protocol(url) = http then

let cookies = cookiesFor(url),
hheader = makeHeader(method , url , cookies),
hdata = makeData(data),
host = addressFor(url) in

Send(host , hheader , hdata, proc, k)
else

other forms of transfer, e.g. file, ftp, etc.

The macro first saves the parameters that characterize the request into state
location indexed by the unique key k (for possible later reference, e.g. in error
messages), then obtains the set of stored cookies that match the given URL
(we will see later how these cookies are established); finally it builds the HTTP
header by combining the method, the URL, and the cookies via the makeHeader
function, and analogously builds the body of the request via the makeData
function (which in real implementations performs, among other processing, the
base-64 encoding of the binary data provided with the request). The destination
host is identified by parsing the provided URL via the addressFor function, then
the full HTTP request is sent to the network as described above.

Notice that our Transfer is a simplified version of the fetching algorithm
described in full in [5, §2.7].
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We hide here the details of how cookies are stored and retrieved by the browser
(e.g., in a file on the user’s home directory) into abstract functions and macros,
yet it might be noticed that we are assuming a locking mechanism for the cookie
storage, provided by the underlying file system or operating system, since mul-
tiple transfers can be occurring at the same time. In practice, most browsers in
widespread use would rely on file system locks to ensure that multiple threads
concurrently trying to write and retrieve cookies from a common storage would
not interfere with each other in unexpected ways.

4 Stream Layer

The transport layer described how HTTP requests are sent out, and how re-
sponses are streamed into a Buffer. Here we describe how these streams are in-
terpreted upon reception by showing a number of stream processor sub-machines.
These machines receive incoming data in a buffer, in a streaming fashion (that is,
the data is made available piecemeal, as soon as it is obtained from the network),
and they incrementally process it in a variety of ways.

We split each stream processor in two layers: the first discriminates between
the various return codes returned in the response, and – depending on whether
the request was successful, or an error was returned, or other special actions
need to be taken – executes the appropriate rule. In case of a successful request,
the actual processing of the data returned is delegated to a specialized parser.

4.1 HTML Streams

The most important of these processors is the HTML one, whose main task is
to parse an HTML document and build the corresponding DOM (Document
Object Model).

HTML Processor. The HTML processor dispatches the handling of successful
transfers to an HTML parser (described in the next section), whereas error codes
are handled by an abstract macro that we will not further detail (typically, a
synthetic “error page” is presented to the user; this would be simply modeled
by replacing the current Document with a prepared one), and redirections are
processed by restarting the transfer with a new URL (which is provided as part
of the response itself).

HTMLProc(k) =
if isSuccessCode(status(k)) then

HTMLParser(k)
elseif isErrorCode(status(k)) then

HandleHTMLError(k)
elseif isRedirectCode(status(k)) then

RestartTransfer(k)
else

handling of other return codes
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HTML Parser. In the following, we will assume the existence of a DOM Tree,
whose elements are Nodes. An exact specification of the contents of this tree, and
of how the various nodes are build, is outside the scope of this document; the
interested reader can however refer to [5, §1.8] and [5, §2.1.3] for a quick intro-
duction. Here, we assume that navigation functions (dynamic functions such as
parent(), firstChild(), nextSibling(); derived functions such as root(), lastChild(),
etc.) are always available and describe the intended structure of the tree. We also
assume that there is a current tree and a current node while the tree is being
built; the abstract macros AddText, AddChild etc. modify the node data and
navigation functions of the current tree as expected (these macros are detailed
later).

Finally, we assume a range of functions over nodes to access their attributes
and embedded content (e.g., the text contained in a CTEXT node); their usage
in the following will be clear from context.

The machine below highlights three aspects of the HTML parsing process
(which are among the most relevant ones for web applications): building the
DOM tree, loading further resources, and executing scripts. These aspects will
be illustrated in the following subsections. We will instead glide over other issues
such as handling of malformed content, converting different character encodings,
and applying style sheets, since these do not normally2 affect the execution of
well-behaved web applications.

The parser for HTML contents will thus be:

HTMLParser(k) =
if ¬paused(k) then
if textAvailable(buf (k)) then
let t = headText(buf (k)) in
dequeue t from buf (k)
AddText(t , curNode(k))

if tagAvailable(buf (k)) then
let e = headTag(buf (k)) in
dequeue e from buf (k)
if isOpeningTag(e) then

let n = newNodeFor(e) in
AddChild(n, curNode(k))
if ¬isClosingTag(e) then curNode(k) := n
match e
case <SCRIPT src=url> :
Transfer(GET , url , 〈〉,ScriptProc, n)

case <IMG src=url> :
Transfer(GET , url , 〈〉, ImageProc, n)

2 Notice that techniques such as using a style sheet to hide a certain UI component,
thus preventing the normal user from issuing certain UI commands to the applica-
tion, are not to be considered among the best practices. In fact, user agents (such
as web browsers) can ignore or allow the user to override such style specifications,
regaining control of the hidden elements, to unforeseen effects.
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case <LINK rel=rel src=url> :
if "stylesheet" ∈ rel then
Transfer(GET , url , 〈〉,StylesheetProc, n)

case similar nodes that require a background transfer

if isClosingTag(e) then
if ¬isOpeningTag(e) then curNode(k) := parent(curNode(k))
match e

case </SCRIPT> :
if isAsync(curNode(k)) then StartAsync(curNode(k), k)
elseif isDeferred(curNode(k)) then AddDeferred(curNode(k), k)
else RunImmediate(curNode(k), k)

case similar nodes which require post-processing

if isFinished(buf (k)) then
if hasDeferred(k) then
RunDeferred(k)

else
FinalizeLoading(k)
program(self ) :=undef

Building the DOM Tree. In building the DOM tree, the HTMLParser
assumes that, at every instant, there is a current node curNode(k) (where k is
the unique instance token of the parser) which is the parent of the content that
is currently being parsed. For example, in the following stream of HTML code,
we have marked below each element the corresponding curNode at the time of
parsing the element:

<DIV><FONT size=1>︸ ︷︷ ︸
<DIV>

Sample <B>︸ ︷︷ ︸
<FONT size=1>

text</B>︸ ︷︷ ︸
<B>

here</FONT>︸ ︷︷ ︸
<FONT size=1>

</DIV>︸ ︷︷ ︸
<DIV>

For a new transfer, curNode(k) is initialized at the root element of an empty
DOM (this is performed by the browser when, for example, opening a new tab).

The HTML parser uses a number of predicates and functions which are infor-
mally defined in the following.

AddText(text ,node) appends a section of text to the contents of a node.
AddText(text ,node) =

if ctext(node) =undef then
ctext(node) := text

else
ctext(node) := ctext(node) · text

This is most commonly the case for the content text of web pages. Notice
that the text will be appended, in order, in chunks as it arrives from the
network. Also, we assume that headText takes care of converting named
entities (such as &eacute;) into the corresponding symbol (é) and of other
encoding conventions, including tokenization as documented in [5, §8.2.4].



An ASM Model of Concurrency in a Web Browser 87

isOpeningTag : Element → Boolean and isClosingTag : Element → Boolean
are two predicates that indicate if a given tag is an opening tag (e.g., <FONT>)
or a closing tag (e.g., </FONT>); notice that both could be true of the same
tag (e.g., <IMG ... /> or empty elements such as <BR>), whereas at least
one of the two must be true for any given tag.
newNodeFor : Element → DOMNode builds a fresh node, setting appropri-
ate dynamic functions based on the supplied element, so that later it will be
possible to retrieve the tag name, the value of its attributes, etc.
AddChild(child , parent) add the child node to the DOM tree, as the last
child of parent .

AddChild(c, p) =
if firstChild(p) =undef then firstChild(p) := c
else let last = lastChild(p) in

nextSibling(last) := c
parent(c) := p

The match construct we use is intended as a short-hand for compare & bind
sequences. For example,

match e
case <SCRIPT src=url> : . . .

is a shorthand for

if tagName(e) = SCRIPT∧ hasAttribute(e, src) then
let url = valueOfAttribute(e, src) in . . .

The process we described in HTMLParser suffices for our purposes, but the
reader should keep in mind that the full specification for building the DOM tree
in [5, §8.2.5] includes a large number of other special cases (which, however, do
not influence the execution of web applications, and hence are out of scope for
the present work).

Loading of External Resources. While most HTML elements include ref-
erences to external resources, only a few of the latter are automatically loaded
at the same time as the page itself is. This is in particular the case of images,
scripts, and style sheets, and also of less-used resources such as audio, video,
embedded objects, etc.

These cases are handled by the match construct in HTMLParser. When
a tag that requires background loading of further resources is encountered, the
Transfer macro is invoked, retrieving the given URL and processing the re-
trieved contents through the appropriate parser.

It is important to stress that these transfers happen “in the background”,
without pausing or interrupting the transfer of the main HTML page that is
being performed. In fact, after the HTTP request to retrieve them has been sent
out, the processing of the results is delegated to a new agent, different from the
one that is processing the page. These agents receive as their context (through
the unique transfer key) the DOM node that caused the transfer, n. Based on our
model, n is not yet added to the DOM tree when the Transfer macro is called
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(since its execution happens in the same step as the execution of AddChild),
but it will be properly installed by the time the response for the transfer is
parsed, since that will happen in subsequent steps3.

Script Execution. The last element in the HTML parser concerns the execu-
tion of scripts encountered in the page, either as embedded scripts, or referenced
through an external URL.

Traditionally, script execution in HTML pages was strictly serialized, and
neither the Javascript language, nor any interpreter in common use, supported
any form of multi-threading. Moreover, execution was blocking: since a script
could generate parts of the document on-the-fly, which were to be textually
inserted immediately after the script itself, and before any other contexts, or
even cause a redirection – thus halting the loading of the page entirely –, it was
not possible to overlap execution and page loading.

The current HTML standards however, allows three different modes of script
execution: synchronous, asynchronous and deferred. While the details of the dif-
ferent modes will be illustrated later, [5, §1.5.1] notes the following in a non-
normative section:

To avoid exposing Web authors to the complexities of multithreading, the HTML
and DOM APIs are designed such that no script can ever detect the simultaneous
execution of other scripts. Even with workers, the intent is that the behaviour of
implementations can be thought of as completely serializing the execution of all
scripts in all browsing contexts.
The navigator.yieldForStorageUpdates() method, in this model, is equiva-
lent to allowing other scripts to run while the calling script is blocked.

Immediate execution. The first mode of execution (and the default one, absent
the async or deferred attributes of the <SCRIPT> tag) is the synchronous or
immediate execution.

RunImmediate(node, k) =
paused(k) := true
match type(node)

case text/javascript :
ECMAScriptInterpret(contents(node),node,RunCompleted, k)

case specific versions and other languages handled similarly

There is a need to pause the HTML parser while executing a script in immediate
mode. In fact, due mostly to historical legacy from the initial implementations
of Javascript, it is possible to write from a script parts of the document to
be parsed, i.e. generate dynamically the page itself (including, possibly, further
<SCRIPT> tags that would then be executed in turn). While this technique offers
significant flexibility, at the same time it clearly impedes continuing the parsing

3 In particular, it cannot happen in the current step since the agent having the parser
as its program will not exist yet.
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of the page till the execution of the script is complete. This is obtained in our
model by pausing the parser via the paused(k) function.

Along the same lines, there is a need to restart the parser once the execution
is complete. This is obtained by passing to the interpreter a callback macro and
a token parameter k (this is the same technique that we used in Receive). In
this case, the callback will be

RunCompleted(k) =
buf (k) := documentWriteBuffer(k) · buf (k)
paused(k) := false

The typical method for generating HTML contents to be injected into the
page from a script is through the document.write() method (see [5, §3.5.3]).
While the specification more accurately describes the processing to be performed
in this case, we will be satisfied by postulating that all output generated by
document.write() and document.writeln() during the executing of a given
script is collected, in order, in documentWriteBuffer(k) and prepended to buf (k)
at the end of the execution of the script, but prior to resuming parsing the HTML
source.

It is worth remarking that the ECMAScriptInterpret might have to wait
till the script has finished loading prior to actually starting the execution, in
case its source text is obtained by a Transfer (this will be better illustrated
in 4.2).

Deferred execution. Deferred execution consists in postponing the execution of
a script until the page is fully loaded. This is accomplished by storing in a set
of pending scripts the information needed for later execution:

AddDeferred(node, k) =
enqueue node to deferred(k)

The predicate hasDeferred() tells whether a certain document has pending scripts:

hasDeferred(k) = deferred(k) �= ∅

In that case, the scripts are executed, sequentially and in-order, at the end of
page loading and parsing:

RunDeferred(k) =
let node = head(deferred(k)) in

dequeue node from deferred(k)
RunImmediate(node, k)

Given our previous definitions, this is sufficient to pause the parser (and, with it,
the initiation of further executions from the deferred set), and properly serialize
the execution of all pending scripts until the deferred(k) queue is empty.

We realize here what is prescribed in [5, §4.3.1], point 13 (with the minor
simplification of not considering the parser-inserted flag):



90 V. Gervasi

If the element has a src attribute, and the element has a defer attribute, and
the element has been flagged as “parser-inserted”, and the element does not have
an async attribute: The element must be added to the end of the list of scripts
that will execute when the document has finished parsing associated with the
Document of the parser that created the element.

and then by [5, §8.2.6], point 3, (again, with the minor simplification of not
considering here the event loop spinning, since we do not describe the dispatching
of user input in this paper — but see [2] for the structure of EventLoop in our
model):

If the list of scripts that will execute when the document has finished parsing is
not empty, run these substeps:

1. Spin the event loop until the first script in the list of scripts that will execute
when the document has finished parsing has its ”ready to be parser-executed”
flag set and there is no style sheet that is blocking scripts.

2. Execute the first script in the list of scripts that will execute when the docu-
ment has finished parsing.

3. Remove the first script element from the list of scripts that will execute when
the document has finished parsing (i.e. shift out the first entry in the list).

4. If the list of scripts that will execute when the document has finished parsing
is still not empty, repeat these substeps again from substep 1.

Asynchronous execution. For asynchronous scripts, we need not pause the HTML
parser; script execution and further parsing of the HTML document can proceed
concurrently, subject to proper mutual exclusion when accessing shared data
(mostly, the DOM tree itself). In our model, the locking protocol is abstracted
into the AddText and AddChild macros used by the parser.

As a result, starting an asynchronous script execution is remarkably similar
to the immediate execution, with the provisio that the parser is not paused.
Notice that, since ECMAScriptInterpret provides its own agent to execute
the interpreter, no agent creation is needed here.

StartAsync(node, k) =
match type(node)

case text/javascript :
ECMAScriptInterpret(contents(node),node, skip, k)

case specific versions and other languages handled similarly

Final Processing. When the entire DOM tree has been created and all deferred
scripts have finished execution, the parser fires a number of events, namely:
DOMContentLoaded, load, pageshow4.

This processing is abstracted in the FinalizeLoading macro that we do not
describe here (again, these events are enqueued at the main event loop of the
browser). Full details are in [5, §8.2.6].
4 For malformed documents, that we do not consider here, further processing is per-

formed to close all unclosed tags, firing corresponding popstate events.
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4.2 Script Streams

Script streams are used whenever the browser needs to load the source code for
a script from a remote URL, which typically happens when a <SCRIPT src=url>
element is processed while parsing HTML data.

Script Processor. Processing scripts is similar to other forms of stream pro-
cessing, in that the data is accumulated in case of a successful transfer, whereas
errors (e.g., attempts to load a script from a non-existing URL) will simply re-
sult in an empty content. This is different from the behaviour of the HTML
processor, which would notify the user in case of a failure in loading a page.

ScriptProc(k) =
if isSuccessCode(status(k)) then

ScriptParser(k)
elseif isErrorCode(status(k)) then

programText(k) := ””
elseif isRedirectCode(status(k)) then

RestartTransfer(k)
else

handling of other return codes

Script Parser. The script parser is invoked to process the source text of a
script, while it is being received from the network following an occurrence of a
<SCRIPT src=url> tag in the page.

Although the precise rules for the encoding of script source text are a little
different than those for general text, as specified in [5, §4.3.1.2], we will simplify
the matter here5 and use the same functions we already use for general text, as
follows:

ScriptParser(k) =
if textAvailable(buf (k)) then

let t = headText(buf (k)) in
dequeue t from buf (k)
programText(k) := programText(k) · t

if isFinished(buf (k)) then
complete(k) := true
program(self ) :=undef

Notice that in our model the execution of a script can be started while the script
is still loading, but will not progress until complete() signals that loading has
finished, and the full text of the program is available. The specification allows
for varied behaviour in this respect (e.g., an implementation could start building
the parse tree incrementally while the loading is still in progress, or postpone
any processing to after the full program has been received).
5 Notice that we already applied the same principle in loading in-line script source as

text for <SCRIPT> nodes without the src attribute.
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4.3 Image Streams

Image streams are used when receiving images from the server, as part of a web
page, or via instantiation of the corresponding classes in the Javascript library.

Image Processor. The behaviour in case of a successful transfer is analogous
to that of previous stream processors (i.e., the Image parser is run). Erroneous
cases are handled differently, i.e. by substituting a pre-defined error image (e.g.,
a large red X or an icon depicting a broken link) for the missing image.

ImageProc(k) =
if isSuccessCode(status(k)) then

ImageParser(k)
elseif isErrorCode(status(k)) then

imgData(k) := errorImgData
elseif isRedirectCode(status(k)) then

RestartTransfer(k)
else

handling of other return codes

Image Parser. The parsing of image data is often done incrementally, in order
to properly implement so-called progressive image formats (i.e., when data are
arranged in such a way that it is possible to construct a low-quality version of
an image early in the loading stage, and then refine that to better resolution or
colour depth as more data arrives) or to show load progress (i.e., by updating
the rendered image on a scan-line basis as soon as data is available). We ab-
stract from all the details of various image formats, and from how the browser
distinguishes them based on their MIME types. The only aspect that we want
to highlight is the progressive nature of the loading, since it expresses the fact
that the graphical user interface of the web application may be not fully loaded
when the application code starts executing.

The general process of loading an image is thus described as follows:

ImageParser(k) =
if dataAvailable(buf (k)) then

let d = headData(buf (k)) in
dequeue d from buf (k)
imgData(k) := imgData(k) · data

if isFinished(buf (k)) then
program(self ) :=undef

UpdateImage(k)

Here, we assume that UpdateImage(k) will perform any needed update to the
internal data structures holding the actual image, based on imgData(k). Notice
that the macro is invoked at each step even if no new data has been received; this
allows the implementation to perform any timed decoding or animation (e.g., a
hourglass or spinning circle or progress bar) to indicate loading progress.
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5 Conclusions

We have presented in this paper two main contributions.
On one hand, we have leveraged the solid semantics foundation of ASMs

to provide a precise model of certain aspects of concurrency in contemporary
web browsers, namely how the construction of the DOM and the execution of
scripts happen in a streaming, concurrent and asynchronous manner while a
page is loading. In particular, we have shown how the various parts of the DOM
are retrieved concurrently by multiple agents from multiple servers, and how
the DOM itself is progressively constructed (including running asynchronous
script code). This model has, in itself, an explicatory and teaching value, and
could also be used to support the discussion of those facets of the HTML 5
specification which are left somewhat vague (i.e., as non-normative sections).
Moreover, as illustrated in the companion paper [2], it can be used together
with a corresponding model of a web server as a basis to prove properties of web
application frameworks.

On the other hand, we have shown the usefulness of a little used technique for
controlling the execution of multiple agents in distributed ASMs, namely that
of spawning a new agent while passing to it, as argument, a callback macro to
be executed on completion. We have used this technique thoroughly in Send,
Receive, Transfer and, as a consequence, in all the parsers and processors for
various streams. This proof of usefulness supports the importance of considering
ASM rules (or submachines) as proper values in the ASM universe, especially in
executable versions of the language. This, in turn, questions the expediency of
the traditional view of rules-as-macros whereas the name of the macro is replaced
by an expansion of its body. Our usage of rule names is instead closer to that
of CoreASM [4], whereas a Rules universe, populated by each and every rule
defined in an ASM, is assumed to exist in the background.
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Abstract. Scientific literature reveals that symbolic representation techniques
behind some formal methods are attractive to synthesize parts or verify prop-
erties of large discrete event systems. They involve, however, complex encoding
schemata and fine tuning heuristic parameters in order to translate specific prob-
lems into efficient BDD or SAT-based representations. This approach may be too
costly when the main goal is to explore a theory, understand by simulation its
underlying concepts and computation procedures, and conduct experiments by
applying them to small problems. Based on previous work with Alloy on the
synthesis of observers and nonblocking supervisors of a system organized hier-
archically with a flat state space estimated to 1031 states, this paper investigates
more deeply issues raised with its use in the modeling and prototyping of the
supervisory control theory, including the application of models to practical prob-
lems. This study was conducted in a broader context than just hierarchical control
since it embraces various variants of this theory.

Keywords: Alloy, Kodkod, bounded model checking, SAT-solver, supervisory
control theory, controllability, normality, N-inference observability, observational
equivalence.

1 Introduction

Novice researchers face numerous challenges in learning a new theory for the first
time, particularly if their mental representations of knowledge acquired in their pre-
vious learning do not correspond to those required to grasp astonishing concepts. De-
veloping an abstract model of a theory in a declarative manner with Alloy [8] provides
an interactive simulation platform that can be used to explore various instances of the
model. As far as people become familiar with concepts and acquire a deep intuition of
the theory, they can explore the abstract model with their own instances, even adding
new relationships between concepts, in order to get solutions to practical problems, and
ultimately extend the theory. Indeed, prototyping and applying a theory in this way con-
stitutes a source of motivation and creativity to identify new problems and solve them,
especially when the Alloy specification has roughly the same size as the mathemati-
cal formulation. This paradigm shift contrasts with the usual approach that consists in
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codification of synthesis or verification procedures in a conventional programming lan-
guage or modification of open-source tools. In fact, these actions require manipulation
of complex data structures and efforts to understand more than ten thousands of lines of
code (versus hundreds written in the Alloy declarative language).

This paper investigates the aforementioned approach throughout a control theory
for discrete event systems (DES), called the supervisory control theory (SCT), which
was formulated by Ramadge and Wonham in the last decades of the 20th century [14].
In this theory, a control problem is stated w.r.t. a given system architecture. Its con-
stituent units and underlying attributes are represented by mathematical objects (e.g.,
formal languages over an event alphabet), which are used to define properties (e.g.,
controllability, normality) to be satisfied by the desired behavior. Then, based on these
properties, necessary and sufficient conditions are formulated for the existence of su-
pervisors. When these conditions are not fulfilled, the infimal or supremal element of
a family of languages satisfying these conditions (if such an element exists) is consid-
ered to solve the problem. Then, synthesis algorithms allow for the automatic derivation
of supervisors from mathematical models of DES often expressed using automata for
practical reasons [9]. Finally, translation procedures specific to code generation for soft-
ware controllers from supervisors can be exploited to obtain executable solutions that
are correct by construction. After many years of effort, several system architectures
(e.g., distributed, horizontal and vertical, conditional) and control patterns (e.g., decen-
tralized, hierarchical, multi-decision) along these lines have been explored with success
(e.g., [15,7,3]).

Compared to BDD-based techniques, which have gained widespread use in the SCT
community, little effort seems to have been invested in bounded model checking with
SAT-solvers to verify properties formulated in the context of SCT or generate automati-
cally nonblocking supervisors. This idea has been mentioned by Ma and Wonham [12],
but Claessen et al. [4] were the first to show how to encode controllability property
and deadlock freedom, together with the transition functions of automata modeling the
plant and control specification, as propositional formulas with the aim of checking their
satisfiability w.r.t. the plant and control specification. They did not, however, provide
experimental data on systems with significant size. They also proposed a synthesis pro-
cess via an iterative specification refinement without giving any concrete implementa-
tion. To avoid complex encoding schemata, Côté et al. [5] used Alloy to verify several
properties defined in the hierarchical control architecture framework of SCT [17] in or-
der to generate observers and supervisors associated with small reusable components.
Indeed, among 44 components of a modular production system, 75 % of those compo-
nents have been successfully checked by the Alloy analyzer, the other 25 % could not
because their state space was too large. Without exploiting this hierarchical framework,
it would have been impossible to achieve such a level of scalability with Alloy. In this
paper, we provide, among other things, solutions for some open issues raised in [5].

Based on these two studies [4,5], we drew the following conclusions. Firstly, proper-
ties to be satisfied are often expressed on languages, more often, infinite sets of words
over an event alphabet. Since this form is not convenient for the SAT-based solving ap-
proach, they must be expressed on finite mathematical objects (e.g., automata, bounded-
length words). There are properties for which such equivalent formulations over finite
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sets can be found in the literature. When this is not the case, a manual proof is necessary
to show that the new formulation is correct w.r.t. the given property (e.g., the observer
property for which such a proof, missing in [5], is given in Section 3.4). Secondly,
attempts to automatically generate supervisors were unsatisfactory because such pro-
cessing includes the computation of a supremal element and there is no guarantee that
the SAT-solver will find the optimal solution unless it is called inside an iterative pro-
cedure that checks if optimality has been reached (such a procedure is only mentioned
in [5], but now described in Section 4). Thirdly, sometimes an iterative process has to
take place when human intervention is required in order to obtain, for instance, a useful
interface for a software component while satisfying specific properties prescribed by
the theory. Such interventions arise between successive calls to the SAT-solver. Finally,
SAT-solvers and Alloy impose limitations that impact on the way to conceive an ab-
stract model (e.g., the maximum number of atoms allocated when quaternary relations
are used instead of ternary relations), size of instances of control problems that can be
processed (due, for example, to bit-width for integers) and CPU resources consumed
to produce a solution (due to state space explosion). How to bypass these restrictions
represents, yet again, a genuine challenge w.r.t. the current state of the art in the domain.

Besides being the first to model a fertile control theory with Alloy, this paper goes
a step further. Based on a subset of SCT that is sufficiently representative to illustrate
the aforementioned issues, it details solutions for them and suggests potential modifica-
tions to Alloy. It is organized as follows. Section 2 introduces typical control problems
formulated within the framework of SCT with the aid of an example. It is useful for
readers unfamiliar with this theory. Section 3 presents Alloy models of SCT, paying
special attention on controllability, normality, N-inference observability and observa-
tional equivalence. Section 4 shows how to take advantage of Kodkod when Alloy is
not powerful enough in itself to entirely solve a given control problem. Section 5 ends
with a discussion about future work in regards to the advantages and limitations of
Alloy as a tool for solving real problems in the context of SCT.

2 Typical Control Problems within the Framework of SCT

A typical problem in SCT consists in keeping the behavior of a given system within
the limits imposed by operational constraints with the aid of a nonblocking supervi-
sor, which is calculated from a model of system behavior and a control specification.
Consider the injector of a modular production system from FESTO available in our lab-
oratory. An injector consists of a jack strongly coupled with a cylinder barrel located
in the basis of a gravity-feed magazine, which is monitored by a sensor to detect the
arrival of a workpiece. The jack pushes the bottom workpiece out of the magazine and
holds it on a plate until it is rearmed by the control logic.

Figure 1 depicts a Mealy machine that models the behavior of the injector under
control. In this model, Xi (i = 0, 1, 2) and Y0 denote sensor inputs and an actuator
command, respectively. The sensors, that detect the presence of a workpiece and end
travel positions of the jack, are represented by the state variable X0 and two state vari-
ables X1 and X2, respectively, where X0 is the state value of the first sensor when an
object obstructs the beam of light (i.e., X0 = 0) and X1 ∧ X2 holds when the jack is
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Fig. 1. The behavior of the injector under control

neither completely retracted nor fully extended. The state value Y0 indicates that the
jack is armed and in its unique stable position when X1 = 1 (i.e., completely retracted).
Finally, the symbols �Xi and �Xi denote a signal rising edge and a signal falling edge,
respectively. They represent uncontrollable events and belong to the input alphabet.
Symbols �Y0 and �Y0 also belong to the input alphabet, but they stand for controllable
events. The event �Y0 is enabled only when X0 ∧ Y0 ∧ X1 holds (i.e., presence of a
workpiece in the barrel and the jack retracted in its stable position) and �Y0 is enabled
when Y0∧X2 holds (i.e., the jack is fully extended at the end travel position outside the
magazine). It should be noted that the transition from state 2 (labeled 〈X0,Y0,X1,X2〉)
to state 1 (labeled 〈X0,Y0,X1,X2〉) on event �X0 (indicated by a dashed arrow) cannot
be disabled since the event �X0 is uncontrollable. Nonetheless, such transitions have
been experimentally identified as highly unlikely to occur, otherwise the specification
(the injector is activated only when there is a workpiece in the barrel) represented by
a formal language would be uncontrollable w.r.t. the exhaustive behavior of the injec-
tor and set of controllable events. Also the supremal controllable sublanguage would
be empty in this specific case. The transition from state 3 (labeled 〈X0,Y0,X1,X2〉 to
state 2 on �Y0 (indicated by a dashed arrow) can be inhibited since this event is con-
trollable. Apart from these two dashed transitions, all nonessential transitions have been
omitted in the graph for clarity. Verifying the controllability property and synthesizing
the supremal controllable sublanguage of a given language are essential tasks to achieve
an optimal control.

Sometimes some events are unobservable by the supervisor because of lack of sen-
sors. Partial observation is captured by defining a mask which associates each event
with an observed event or ε when the event is unobservable. Additional properties must
then be considered during the calculation of supervisors: observability and normality,
which is stronger than observability to ensure the existence of a supremal element. An-
other type of mask, called a causal map, is used to abstract the controlled behavior
with the aim of providing an interface when the system is considered as a component.
Such a causal map must satisfy the observer property if components must be integrated
into a nonblocking hierarchical system. The controlled behavior of a component (i.e.,
the agent under control) and the causal map are represented by a Mealy machine like
the one of Figure 1, where the symbols push, eoi, rearm and wa belong to the output
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Fig. 2. The interface of the injector

alphabet. Applying this map yields the interface of Figure 2, which is the only visible
part outside the component. In this interface, the events push and rearm are commands
(or controllable events). Thus, the interface makes it possible to push a workpiece on
a plate for an eventual transfer to the testing station with the aid of a crane and retract
the injector in its stable position when the workpiece has been grabbed by the crane.
The Mealy machine and the automaton modeling the interface are defined as follows in
Alloy:

1 open Theta [State, In, Out, agent, interface] as TT
2 enum State {S1, S2, S3, S4, S5, S6, S7, S8, I, R, W, H}
3 enum In {rX0, fX0, rX1, fX1, rX2, fX2, rY0, fY0}
4 enum Out {wa, push, eoi, rearm, epsilon}
5 one sig lrX0, lfX0, lrX1, lfX1, lrX2, lfX2, lrY0, lfY0 extends TT/Label {}
6 fact -- Causal nap
7 {
8 inL = lrX0 -> rX0 + lfX0 -> fX0 + lrX1 -> rX1 + lfX1 -> fX1
9 + lrX2 -> rX2 + lfX2 -> fX2 + lrY0 -> rY0 + lfY0 -> fY0

10 outL = lrX0 -> epsilon + lfX0 -> wa + lrX1 -> epsilon + lfX1 -> epsilon
11 + lfX2 -> epsilon + lrX2 -> eoi + lrY0 -> push + lfY0 -> rearm
12 }
13 one sig agent extends TT/IO/CAutomaton {} -- Agent under control
14 {
15 states = S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8
16 labels = lrX0 + lfX0 + lrX1 + lfX1 + lrX2 + lfX2 + lrY0 + lfY0
17 initialState = S1
18 finalStates = S1
19 transition = S1 -> lfX0 -> S2 + S2 -> lrY0 -> S3 + S3 -> lfX1 -> S4
20 + S4 -> lrX2 -> S5 + S5 -> lfY0 -> S6 + S6 -> lfX2 -> S7
21 + S7 -> lrX0 -> S8 + S8 -> lrX1 -> S1
22 controllable = lrY0 + lfY0
23 }
24 one sig interface extends TT/O/CAutomaton {} -- Interface
25 {
26 states = I + R + W + H
27 labels = wa + push + eoi + rearm
28 initialState = I
29 finalStates = I
30 transition = I -> wa -> R + R -> push -> W
31 + W -> eoi -> H + H -> rearm -> I
32 controllable = push + rearm
33 }

This specification uses the module Theta (line 1) suitable for handling the constituent
elements of a component (e.g., the state space, input/output alphabets, automata for the
agent under control and interface). The input/output alphabets are defined at lines 3
and 4, respectively. Line 5 contains the transition labels of the Mealy machine, which
is defined at lines 13–23. The causal map defined at lines 6–12 associates an input
symbol and an output symbol with each label. Finally, the deterministic automaton of
the interface is at lines 24–33.
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3 State-Based Formulation of Properties

For purposes of generality, the behavior of a DES is represented by the set of all its
execution traces. This set defines a language L over an event alphabet Σ and L = pr(L),
where pr(L) is the prefix closure of L. The traces in L that symbolize complete tasks
are represented by the language Lm ⊆ L. Thus (L, Lm) is a language model of the DES.
Furthermore, Σ is partitioned into two subsets: Σc, the set of controllable events, and
Σu, the set of uncontrollable events.

3.1 Controllability Property

The controllability property appears in almost all control problems [14]. Given (Lm, L)
the language model of a plant, a language K ⊆ Σ∗ is controllable w.r.t. L and Σu iff

(∀s, σ | s ∈ Σ∗, σ ∈ Σu : s ∈ pr(K) ∧ sσ ∈ L⇒ sσ ∈ pr(K)). (1)

Intuitively, a language K, which represents the control specification, is controllable
if any subtask of K followed by an uncontrollable event that is physically possible
in L is also a subtask of K. If all the languages are regular, then two automata G =
(Q, Σ, δ, q0,Qm) and H = (X, Σ, ξ, x0, Xm) can be used to represent the system behav-
ior and control specification, respectively. Generally, H refines G. Therefore, there ex-
ists a correspondence function f between the states of H and states of G such that
f (ξ(x0, s)) = δ(q0, s) with s ∈ pr(K) [19]. Using this representation, is is easy to check
the controllability property with Alloy:

1 pred controllability
2 {
3 all x1:H.states, q1,q2:G.states, e1:G.labels | let delta = q1->e1->q2 |
4 (e1 not in G.controllable && delta in G.transition && x1->q1 in f)
5 implies
6 (some x2:H.states, e2:H.labels | e1 = e2 &&
7 e2 not in H.controllable && let xi = x1->e2->x2 | xi in H.transition)
8 }

The state-based formulation of Property (1) imposes that for any state x1 ∈ X (all
states are accessible by hypothesis) and uncontrollable transition in G from q1 such that
f (x1) = q1 (lines 3–4), the corresponding transition must be in H (lines 6–7). Otherwise
K in uncontrollable because the transition from q1 on e1 cannot be disabled by control
to achieve K.

Even though a counterexample (a bad uncontrollable transition) is found by the
Alloy analyzer, which can be easily shown to the user with an appropriate layout
theme, it could be cumbersome to iterate on bad transitions and remove them to ob-
tain the supremal controllable sublanguage of K. A better solution consists in adopting
a dual approach, called state-based control, in which the language K is replaced by a set
of forbidden or bad states, and taking advantage of the reflexive transitive closure op-
erator to recognize the good states (those of the supervisor). This solution also ensures
that the supervisor is nonblocking (i.e., it can always complete any subtask):

1 pred goodStates[G:Automaton, unc:set Label, bad,good:set State]
2 {
3 let gT = good <: (G.transitionsOn[Label]) :> good,
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4 uT = (G.transitionsOn[unc]) |
5 {
6 good in (G.initialState).*gT
7 no (*uT.bad & good)
8 all q : good | some (q.*gT & G.finalStates)
9 good.uT in good

10 }
11 }

The term gT defined at line 3 by using the domain restriction (<:) and range restriction
(:>) operators represents the set of transitions between good states. The term uT defined
at line 4 denotes the set of uncontrollable transitions. The good states are reachable from
the initial state (line 6), coreachable to the set of final states (line 8) and closed under
uncontrollable transitions (line 9). Furthermore, no walk of uncontrollable transitions
leads to a forbidden state from a good state (line 7). It should be noted that Q − bad is
generally larger than the set of good states.

An important question remains open with respect to this solution. Does the instance
found by Alloy (i.e., the set of good states) always correspond to the supremal solution?
In theory, one must determine the exact number of atoms for each signature involved
in the solution. On the one hand, if one guesses a higher number, no instance is found
by Alloy. On the other hand, if one guesses a lower number, the particular instance,
which corresponds to the supremal solution, may be not considered by Alloy. Even
if the exact number of atoms is known, this method does not really work in practice
because of the combinatorial explosion. The following method avoids these obstacles.
Let S be the supervisor found by Alloy following the generation of a set of good states.
Then S corresponds to the supremal controllable sublanguage of K if the analyzer does
not find a counterexample that violates the following predicate (i.e., there exists another
supervisor s with a larger set of states):

1 pred IsOptimalSupervisor[S:Supervisor, G:Automaton,
2 unc:set Label, bad:set State]
3 {
4 S.isSupervisor[G, unc, bad]
5 all s : Supervisor | s.isSupervisor[G, unc, bad]
6 implies s.states in S.states
7 }

3.2 Normality Property

The normality property is useful when a supervisor partially observes the events gener-
ated by a plant due to the presence of faulty sensors or lack of sensors [9]. Given (Lm, L)
the language model of a plant and an observation mask M : Σ → Λ ∪ {ε}, a language
K ⊆ Σ∗ is normal w.r.t. L and M iff

(∀s, t | s, t ∈ L : s ∈ pr(K) ∧ M(s) = M(t)⇒ t ∈ pr(K)). (2)

The language K is normal if pr(K) is the union of some subsets of L, the largest sets of
words that are indistinguishable from each other under M. This property is equivalent to
M−1 M(pr(K))∩L ⊆ pr(K). In addition to G, H and f that represent the system behavior,
control specification and correspondence function (again H refines G), a deterministic
automaton C, such that L(C) = M(K)1, is necessary to identify the transitions that do

1 Recall that L(C) is the language generated by the automaton C. Formally, L(C) = {s ∈ Λ∗ |
ζ(z0, s) is defined}.
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not have the following normal property. A transition of C, from a state z1 to a state z2,
labeled with an event λ ∈ Λ ∪ {ε}, is normal if there is no state x ∈ z1 (each state of C
is a set of states of H) and event σ ∈ Σ such that δ( f (x), σ) is defined, M(σ) = λ and
ξ(x, σ) is undefined [1]. The translation of this property in Alloy is straightforward, but
it requires a relation r (used at line 4) that associates to every state of C its corresponding
subset of states that belongs to 2X:

1 pred normality
2 {
3 all x1:H.states, z1,z2:C.states, e1:C.labels, e2:G.labels |
4 let zeta = z1->e1->z2 | (zeta in C.transition && z1->x1 in r
5 && e2->e1 in M) &&
6 (some q1,q2:G.states | x1->q1 in f &&
7 let delta = q1->e2->q2 | delta in G.transition)
8 implies
9 (some x2:H.states | let xi = x1->e2->x2 | xi in H.transition)

10 }

Finding an Alloymodel that allows for the efficient retrieval of a deterministic automa-
ton that generates M(K) and the association between its states and those of H in order
to remove nondeterminism in M(H) is the key of a complete automatic verification
procedure for normality. This remains an open issue because Alloy provides no native
mechanism to handle the powerset of a set. It must be encoded in some way, which
further makes complex the modeling of this aspect. To circumvent this problem, it is
assumed that the specifiers explicitly provide C and r.

The normality property can be considered in addition to the controllability property
in the derivation of a nonblocking supervisor. As in the case described in the previous
subsection, this is done in the context of the state-based control paradigm. Therefore,
the language K is replaced by a predicate P on the state space of G and the supremal
controllable and normal predicate stronger than P is obtained from an iterative com-
putational procedure [11]. This requires an extension of the predicate goodStates,
including the predicate that checks optimality.

3.3 N-Inference Observability Property

The N-inference observability property plays a central role in decentralized control,
where a global decision results from independent, local control decisions. In this frame-
work, each inference-based local supervisor S i (i ∈ I := {1, 2, . . . , n}) has its own sets of
controllable events Σic ⊆ Σ and observable events Σio ⊆ Σ, and S i : Pi(L)×Σic → C×N,
where Pi : Σ∗ → Σio is the natural projection that hides the event of Σ −Σio (a particular
case of observation mask) and S i(Pi(s), σ) = (ci(Pi(s), σ), ni(Pi(s), σ)). More precisely,
ci(Pi(s), σ) ∈ {0, 1, φ} is the control decision of S i for a locally controllable event σ
following an observation Pi(s) ∈ Pi(L) and ni(Pi(s), σ) ∈ N is the ambiguity level of
the control decision of S i [10]. Let In(σ) := {i ∈ I | σ ∈ Σic}. The global decision of the
decentralized supervisor {S i}i∈I is

{S i}i∈I(s, σ) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, (∀i : i ∈ In(σ) | ni(Pi(s), σ) = n(s, σ)⇒ ci(Pi(s), σ) = 1)
0, (∀i : i ∈ In(σ) | ni(Pi(s), σ) = n(s, σ)⇒ ci(Pi(s), σ) = 0)
φ, otherwise

(3)

where n(s, σ) := (min i : i ∈ In(σ) | ni(Pi(s), σ)) is the minimum ambiguity level of
local decisions. Intuitively, a global control decision is the same as the one taken by the
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local supervisors, for which the ambiguity level of the decision is the minimum, as far
as everyone agrees on the decision. A nonblocking N-inferring decentralized supervisor
{S i}i∈I that acts on the system to achieve the control specification K exists if K is at least
N-inference observable (i.e., DN+1(σ) = ∅ or EN+1(σ) = ∅ for all σ ∈ Σc). For instance,
E0(σ) := {s ∈ pr(K) | sσ ∈ pr(K)} and Ek+1(σ) := Ek(σ) ∩ (∩i∈In(σ)P−1

i Pi(Dk(σ))).
These expressions define the set of words where σ must be enabled and a sublanguage
of Ek(σ) having words for which there exists a Pi-indistinguishable word in Dk(σ) for
each i ∈ In(σ), respectively. In a first attempt to model this decentralized decision-
making process, an Alloy model has been developed for exactly two local supervisors
(i.e., n = 2). So the model is not parameterized for an arbitrary number of local supervi-
sors. Such a reduced model has been elaborated very quickly (w.r.t. a program written
in a conventional programming language) and used to explore with success a complex
part of the theory. Using a state-based formulation, E0(σ) and E1(σ) become in Alloy:

1 fun getE0[event:one Label] : set State
2 {
3 { x1:G.states | some x2:G.states-Bad, e:event |
4 let delta = x1->e->x2 | delta in G.transition }
5 }
6 fun getE1[event:one Label] : set State
7 {
8 getE0[event]
9 & { x1:G.states | some x2:getD0[event], y:H1.states |

10 y->x2 in r1 && y->x1 in r1}
11 & { x1:G.states | some x2:getD0[event], y:H2.states |
12 y->x2 in r2 && y->x1 in r2}
13 }

The main reason why the inductive definition has been unwound is related to the compu-
tation of functions ci and ni, which explicitly use E0, E1, . . . , EN+1 and D0,D1, . . . ,DN+1.
The details are omitted due to space limitation.

For the case in which n = 2, the Alloy specification includes 19 functions (i.e., fun)
for a total about 200 LOC (without the definition of automata). For instance {S i}i∈I has
been written as follows:

1 fun getSi_States[event:one Label, d:one Decision] : G.states
2 {
3 { x:G.states | some k:Int | x->k in getn[event] &&
4 (let y1 = r1.x | y1->k in getn1[event] implies y1->d in getc1[event]) &&
5 (let y2 = r2.x | y2->k in getn2[event] implies y2->d in getc2[event]) }
6 }
7 fun getSi[event:one Label] : G.states -> Decision
8 {
9 let enabled_states = getSi_States[event, enabled] |

10 let disabled_states = getSi_States[event, disabled] |
11 let unsure_states = G.states - (enabled_states + disabled_states) |
12 enabled_states -> enabled + disabled_states -> disabled
13 + unsure_states -> unsure
14 }

It should be noted that the functions (e.g., ci, ni) returned by some fun have not been
reified in the Alloy specification due to excessive execution time.

3.4 Observational Equivalence Property (Observer)

A causal map θ, as the one defined in Figure 1, involves information hiding and relabel-
ing. It must satisfy the observer property, which is crucial for an effective refinement and
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θ(s) τ

s u

θ

Fig. 3. The observer property

aggregation to achieve hierarchical consistency while preserving nonblockingness [17].
This property is closely related to the concept of observation equivalence defined by
Milner [13]. Generally, θ is guessed based on a target abstraction of the system behav-
ior or interface requirements. If it violates the observer property (i.e., it is not an ob-
server), further vocalized transitions must be added, until the coarsest observer which
is finer than the given causal map is obtained, thanks to the algorithm of Wong and
Wonham [18] based on an efficient procedure for bisimulation equivalence [6]. It can
then be used as is, but it usually serves as a heuristic concerning the modifications that
should be made to the original causal map in order to make it into an observer. The
observer property is illustrated in Figure 3 and formally defined as follows. The causal
map θ is an observer iff

(∀s, τ | s ∈ L ∧ τ ∈ T : θ(s)τ ∈ θ(L) =⇒ (∃u | u ∈ Σ+ : su ∈ L ∧ θ(su) = θ(s)τ)). (4)

Intuitively, if a given behavior of the abstraction can be extended to an admissible word,
no matter in which state the system is, as long as its image is θ(s), its behavior can be
extended to a word that belongs to L with θ(su) = θ(s)τ.

Again, this property needs to be reformulated in terms of automata to get it into a
suitable form for bounded model checking. To the best of our knowledge such a for-
mulation does not exist in the literature. To illustrate the versatility of Alloy, both
languages L over Σ and θ(L) over T are represented by automata and walks in the tran-
sition graphs are considered. This contrasts with the encoding of the controllability and
normality properties, in which the language K, that stands for the control specification,
has been replaced by an equivalent set of forbidden states or a predicate. Thus, a word
is defined as follows:

1 abstract sig Word
2 {
3 sequence : seq Label, -- sequence of symbols
4 visitedStates : seq State, -- sequence of states
5 wrtAutomaton : one Automaton -- automaton in which the walk takes place
6 }

Several functions and predicates have been defined to state the observer property as
concisely as possible. Due to space limitation, only a few of them are given here:

1 fun wordsize[w:Word] : Int { #inds[w.sequence] }
2 fun walksize[w:Word] : Int { #inds[w.visitedStates] }
3 fun lastVisitedState[w:Word] : State { last[w.visitedStates] }
4 fun eClosure[s:State] : IOAutomaton.states
5 { IOAutomaton.IO/getReachableStatesFrom[s, outL.SilentLabels] }
6 fun outputFrom[s:State] : Out
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7 { s.(IOAutomaton.transition).State.outL }
8 fun followedBy[w1:Word, w2:Word] : Word
9 { { w:Word | w.wrtAutomaton = w1.wrtAutomaton &&

10 w.wrtAutomaton = w2.wrtAutomaton &&
11 w.sequence = w1.sequence.append[w2.sequence] } }
12 pred isPrefix[w:Word] { walksize[w] = wordsize[w] + 1 }
13 pred isSilent[l:Label] { l in SilentLabels }
14 pred isSymbol[w:Word, l:one Label]
15 { w.sequence.first = l and wordsize[w] = 1 }

For instance, the functions eClosure, outputFrom and followedBy return the ε-
closure of a state, the set of output symbols of all the transitions from a given state
of a Mealy Machine and the concatenation of two words, respectively. Based on these
definitions the observer property is written as follows:

1 pred thetaIsAnObserver
2 {
3 all s:IO/Word, t:O/Word, tau:Out |
4 ((s.isPrefix and wordsize[s] <= #IOAutomaton.transition) &&
5 not tau.isSilent && t.isSymbol[tau] &&
6 (theta[s]).followedBy[t].isPrefix)
7 implies
8 (some q1:IOAutomaton.states | let q2 = lastVisitedState[s] |
9 q1 in eClosure[q2] and tau in outputFrom[q1])

10 }

The terms s.isPrefix (line 4) and not tau.isSilent (line 5) mean that s ∈ L and
τ ∈ T , respectively. The term t.isSymbol[tau] (line 5) is similar to a cast operation
because of the distinction between a symbol of T and a word of length one over T in the
Alloy model. The formula at lines 8–9 corresponds to the conclusion of Property (4),
but in terms of the automaton representation of u. It should be noted that the term
wordsize[s] <= #IOAutomaton.transition (line 4) restricts the number of words
that must be examined by Alloy because the language L may be infinite. The following
lemmas and proposition show that checking the satisfaction of the observer property
for words of bounded length is sufficient for the satisfaction of Property (4) under the
following assumption.

Assumption 1. Cycles are closed trails with the same vertex for entry and exit.

Lemma 3.1. Let G be the transition graph of the automaton that generates L while
satisfying Assumption 1. Let s be a walk in which the trail s′ appears more than once.
If (4) does not hold for s then it does not hold for s′ either.

Proof. Only the basic argument is given. A cycle is split into two parts s′ and s′′. Sup-
pose that (4) holds for s′ but not for s = s′s′′s′. This is impossible, since θ(s′s′′s′u) =
θ(s′s′′)θ(s′u) = θ(s′s′′)θ(s′)τ = θ(s′s′′s′)τ.

Lemma 3.2. Let G be the transition graph of the automaton that generates L while
satisfying Assumption 1. If (4) holds for all trails, then it holds for all walks.

Proof. Let s be a walk for which (4) does not hold for a given τ ∈ T . Lemma 3.1 ensures
that there is a trail for which (4) does not hold either. By hypothesis, this is impossible.

Proposition 3.3. Let G be the transition graph of the automaton that generates L while
satisfying Assumption 1. If (4) holds for all walks s, with |s| ≤ |E(G)|, and τ ∈ T, then it
holds for all walks (i.e., all words in L).
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The transition graph of Figure 1 verifies Assumption 1. Otherwise, it would be un-
wound in order to fulfill it. Furthermore, the causal map included in the specification of
the injector satisfies the predicate thetaIsAnObserver. By Proposition 3.3, it can be
concluded that it is an observer.

4 Implementation of Iterative Specification Refinement Processes

The synthesis of an optimal supervisor is used as an example to detail an iterative spec-
ification refinement process and its implementation with Kodkod [16]. The initial step
of the process consists in running S.IsSupervisor[G, unc, bad], where G is the
automaton of the plant, unc the set of uncontrollable events and bad the control specifi-
cation (i.e., the set of bad states). Furthermore, S refers to the instance generated by the
SAT-solver after running the predicate. At the end of this step, nothing guarantees that
S is optimal (i.e., maximally permissive), but it is nonblocking and prevents the system
to reach a bad state. For that reason, the predicate

S.IsOptimalSupervisor[G, unc, bad]

introduced at the end of Section 3.1 must be checked. This is the body of the iterative
process. If this predicate does not hold for S , then there exists a nonblocking supervi-
sor s more permissive than S that forces the system to be only in good states. In fact,
the instance that witnesses the consistency of the predicate isSupervisor is not the
supremal element and s is a counterexample that violates IsOptimalSupervisor. In
that case both the solution S and counterexample s are merged to obtain a new su-
pervisor that is more permissive than s and S . The latter can be considered as a local
optimal supervisor. Its set of states is S.states + s.states and its set of transitions
is S.transition + s.transition. Only the union of sets of states (denoted Q) can
be considered, if the local optimal supervisor is derived from the restriction of G to Q
in order to handle only one set in the Kodkod program. This step is repeated until no
counterexample is found by the SAT-solver, which means that the global optimal solu-
tion has been reached. In summary, this process produces a sequence of local optimal
supervisors (w.r.t. narrow spaces of supervisors) until the global optimal supervisor is
found. Therefore, at each iteration, a new space of supervisors is then constructed and
it can be kept small enough to avoid combinatorial explosion by setting appropriately
the number of atoms in the for clause of the command check.

Implementing this process with Kodkodentails several difficulties that must be treated
with caution. After recovering the Kodkod program recorded by Alloy, the sequential
program is reorganized w.r.t. the aforementioned iterative specification refinement pro-
cess, including the main loop. To manipulate objects according to the name used in the
Alloy specification, a map (nameMap) is defined to associate atoms with these names.
Also, a method (findCE) that iterates on the relations of the solution returned by the
method solver.solve is useful in order to get the one that corresponds to the coun-
terexample. Finally, few statements are added to make the union of two sets to states:

Solution sol = solver.solve(x10, bounds);
TupleSet ts = findCE(sol);
Iterator<Tuple> itts = ts.iterator();
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while (itts.hasNext())
{
Tuple tp = itts.next();
x29 = x29.union(nameMap.get(tp.atom(0).toString()));
}

5 Conclusion

The starting point of this work was to translate typical control problems encountered
in SCT into corresponding propositional satisfiability problems. This work, which is
a complement to [5], shows that Alloy is attractive for the verification of properties,
but not sufficiently expressive for solving synthesis problems without coding iterative
procedures in Kodkod. The main idea proposed in this paper is to use counterexamples
and progressively alter the initial model in order to converge to an acceptable solution.
This suggests a possible extension to Alloy, which could include a metalanguage to
describe procedural processing based on instances generated by the Alloy analyzer in
order to avoid atoms recovery w.r.t. the underlying control problem. This hybrid Alloy
would combine symbolic and algorithmic computation. It would be also interesting that
the metalanguage supports parameterized models. This feature would be useful in the
modeling of distributed control as described in Section 3.3. Crocopat [2], which manip-
ulates relations of any arity, could be a potential candidate for this purpose, but to the
detriment of a greater encoding effort, compared to the aforementioned metalanguage,
because it does not provide automatic solving facilities.

Nevertheless, the application of this approach is limited by the inherent characteris-
tics of the SAT-based paradigm. To get round these limitations we must be aware of pit-
falls and handle them carefully. Firstly, dealing with large systems involves combining
smaller systems by using the synchronous product. Even if it is relatively easy to con-
ceive an Alloy model for a product of two automata, the generalization to n automata
is beyond reason. Indeed, it takes 328 772 ms to generate the clauses for a product of
two automata, each of them having five states (the cat and mouse problem in [14]), and
70 299 ms to find an instance (i.e., the solution). Likewise, dealing with partial obser-
vation implies nondeterminism, and so the construction of a deterministic automaton
that simulates a nondeterministic automaton. Such objects must be precalculated by
another tool and integrated into the model before its analysis by Alloy for efficiency
reasons. Secondly, since the number of atoms is limited in Alloy, the transition relation
of an automaton defined initially as a quaternary relation should be expressed by using
only relations of smaller arity. This could make it possible to cope with larger state
spaces, even though we considered equivalence classes of states to reduce the number
of transitions in order to solve real control problems. Thirdly, unwinding the transition
relation of an automaton a finite number of times is a common technique in bounded
model checking. It has been demonstrated that for all the properties that we considered,
it suffices to unwind the transition relation only once to be sure that they hold for all
the words of an infinite language when Alloy does not find a counterexample. Finally,
reification must be avoided in order to achieve better execution time.
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Abstract. In a bounded analysis, arithmetic operators become partial,
and a different semantics becomes necessary. One approach, mimick-
ing programming languages, is for overflow to result in wrap-around.
Although easy to implement, wrap-around produces unexpected coun-
terexamples that do not correspond to cases that would arise in the
unbounded setting. This paper describes a new approach, implemented
in the latest version of the Alloy Analyzer, in which instances that would
involve overflow are suppressed, and consequently, spurious counterex-
amples are eliminated. The key idea is to interpret quantifiers so that
bound variables range only over values that do not cause overflow.

1 Introduction

A popular approach to the analysis of undecidable logics artificially bounds
the universe, making a finite search possible. In model checking, the bounds
may be imposed by setting parameters at analysis time, or even hardcoded into
the system description. The Alloy Analyzer [1] is a model finder for the Alloy
language that follows this approach, with the user providing a ‘scope’ for an
analysis command that sets the number of elements for each basic type.

Such an analysis is not sound with respect to proof; just because a counterex-
ample is not found (in a given scope) does not mean that no counterexample
exists (in a larger scope). But it is generally sound with respect to counterex-
amples: if a counterexample is found, the putative theorem does not hold.

The soundness of Alloy’s counterexamples is a consequence of the fact that the
interpretation of a formula in a particular scope is always a valid interpretation
for the unbounded model. There is no special semantics for interpreting formulas
in the bounded case. This is possible because the relational operators are closed,
in the sense that if two relations draw their elements from a given universe of
atoms, then any relation formed from them (for example, by union, intersection,
composition, and so on) can be expressed with the same universe.

Arithmetic operators, in contrast, are not closed. For example, the sum of two
integers drawn from a given range may fall outside that range. So the arithmetic
operators, when interpreted in a bounded context, appear to be partial and
not total functions, and call for special treatment. One might therefore consider
applying the standard strategies that have been developed for handling logics of
partial functions.

J. Derrick et al. (Eds.): ABZ 2012, LNCS 7316, pp. 108–121, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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A common strategy is to make the operators total functions by selecting ap-
propriate values when the function is applied out of domain. In some logics (e.g.
[9]) the value is left undetermined, but this approach is not easily implemented
in a search-based model finder. Alternatively, the value can be determined. In
the previous version of the Alloy Analyzer, arithmetic operators were totalized
in this way by giving them wrap-around semantics, so that the smallest negative
integer is regarded as the successor of the largest positive integer. This matches
the semantics in some programming languages (e.g., Java), and is relatively easy
to implement. Unfortunately, however, it results in counterexamples that would
not arise in the unbounded context, so the soundness of counterexamples is
violated. This approach leads to considerable confusion amongst users[2], and
imposes the burden of having to filter out the spurious cases.

Another common strategy is to introduce a notion of undefinedness — at the
value, term or formula level — and extend the semantics of the operators ac-
cordingly. However this is done, its consequence will be that formulas expressing
standard properties will not hold. The associativity of addition, for example, will
be violated, because the definedness of the entire expression may depend on the
order of summation. In logics that take this approach, the user is expected to in-
sert explicit guards that ensure that desired properties do not rely on undefined
values. In our setting, however, where the partiality arises not from any feature
of the system being described, but from an artifact of the analysis, demanding
that such guards be written would be unreasonable, and would violate Alloy’s
principle of separating description from analysis bounds.

This paper provides a different solution to the dilemma. Roughly speaking,
counterexamples that would result in arithmetic overflow are excluded from the
analysis, so that any counterexample that is presented to the user is guaranteed
not to be spurious. This is achieved by redefining the semantics of quantifiers
in the bounded setting so that the models of a formula are always models of
the formula in the unbounded setting. This solution has been implemented in
Alloy4.2 and can be activated via the “Forbid Overflows” option.

The rest of the paper is organized as follows. Section 2 illustrates some of the
anomalies that arise from treating overflow as wraparound. Section 3 shows the
problem in a more realistic context, by presenting an Alloy model of a minimum
spanning tree algorithm that combines arithmetic and relational operators, and
shows how a valid theorem can produce spurious counterexamples. Section 4
gives our new semantics, and Section 5 explains its implementation in boolean
circuits. Finally, Section 7 presents related work on the topic of partial functions
in logic, compares our approach with the existing ones, and discusses alternatives
for solving the issue of overflows in Alloy.

2 Prototypical Overflow Anomalies

While a wraparound semantics for integer overflow is consistent and easily ex-
plained, its lack of correspondence to unbounded arithmetic produces a variety of
anomalies. Most obviously, the expected properties of arithmetic do not necessar-
ily hold: for example, that the sum of two positive integers is positive (Fig. 1.a).
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check {

all a, b: Int |

a > 0 && b > 0 => a.plus[b] > 0

} for 3 Int

counterexample

Int = {-4, -3, ..., 2, 3}

a = 3; b = 1;

a.plus[b] = - 4

(a) Sum of two positive integers is not necessarily positive.

check {

all s: set univ |

some s iff #s > 0

} for 4 but 3 Int

counterexamples

Int = {-4, -3, ..., 2, 3}

s = {S0, S1, S2, S3}

#s = -4

(b) Overflow anomaly involving cardinality of sets.

Fig. 1. Prototypical overflow anomalies in the previous version of Alloy

More surprisingly, expected properties of the cardinality operator may not hold.
For example, the Alloy formula some s is defined to be true when the set s con-
tains some elements. One would expect this to be equivalent to stating that the
set has a non-zero cardinality (Fig. 1.b). And yet this property will not hold if
the cardinality expression #s overflows, since it may wrap around, so that a set
with enough elements is assigned a negative cardinality.

Of course, in practice, Alloy is more often used for analyzing software designs
than for exploring mathematical theorems, and so properties of this kind are
rarely stated explicitly. But such properties are often relied upon implicitly, and
consequently, when they fail to hold, the spurious counterexamples that are
produced are even harder to comprehend. Such a case arises in the the example
discussed in the next section, where a test for an undirected graph being treelike
is expressed by saying that there should be one fewer edge than nodes. Clearly,
when using such a formulation, the user would rather not consider the effects of
wraparound in counting nodes or edges.

3 Motivating Example

Consider checking Prim’s algorithm [7, §23.2], a greedy algorithm that finds
a minimum spanning tree (MST) for a connected graph with positive integral
weights. Alloy is for the most part well-suited to this task, since it makes good
use of Alloy’s quantifiers and relational operators, including transitive closure.
The need to sum integer weights, however, is potentially problematic, due to
Alloy’s bounded treatment of integers.1

1 An alternative approach would be to use an analysis that includes arithmetic without
imposing bounds. It is not clear, however, whether such an approach could be fully
automated, since the logics that are sufficiently expressive to include both arithmetic
and relational operators do not have decision procedures, and those (such as SMT)
that do offer decision procedures for arithmetic are not expressive enough. In this
paper, we are not arguing that such an approach cannot work. But, either way,
exploring ways to mitigate the effects of bounding arithmetic has immediate benefit
for users of Alloy, and may prove useful for other tools that impose ad hoc bounds.
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1 open util/ordering[Time]

2

3 sig Time {}

4

5 sig Node {covered: set Time}

6

7 sig Edge {

8 weight: Int,

9 nodes: set Node,

10 chosen: set Time

11 } {

12 weight >= 0 and #nodes = 2

13 }

14

15 pred cutting (e: Edge, t: Time) {

16 (some e.nodes & covered.t) and (some e.nodes & (Node - covered.t))

17 }

18

19 pred step (t, t’: Time) {

20 -- stutter if done, else choose a minimal edge from a covered to an uncovered node

21 covered.t = Node =>

22 chosen.t’ = chosen.t and covered.t’ = covered.t

23 else some e: Edge {

24 cutting[e,t] and (no e2: Edge | cutting[e2,t] and e2.weight < e.weight)

25 chosen.t’ = chosen.t + e

26 covered.t’ = covered.t + e.nodes}

27 }

28

29 fact prim {

30 -- initially just one node marked

31 one covered.first and no chosen.first

32 -- steps according to algorithm

33 all t: Time - last | step[t, t.next]

34 -- run is complete

35 covered.last = Node

36 }

37

38 pred spanningTree (edges: set Edge) {

39 -- empty if only 1 node and 0 edges, otherwise covers set of nodes

40 (one Node and no Edge) => no edges else edges.nodes = Node

41 -- connected and a tree

42 #edges = (#Node).minus[1]

43 let adj = {a, b: Node | some e: edges | a + b in e.nodes} |

44 Node -> Node in *adj

45 }

46

47 correct: check { spanningTree [chosen.last] } for 5 but 10 Edge, 5 Int

48

49 smallest: check {

50 no edges: set Edge {

51 spanningTree[edges]

52 (sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}

53 } for 5 but 10 Edge, 5 Int

Fig. 2. Alloy model for bounded verification of Prim’s algorithm that finds a minimum
spanning tree for a weighted connected graph
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Figure 2 shows an Alloy representation of the problem. The sets (signatures
in Alloy) Node and Edge (lines 5–5 and 7–13) represent the nodes and edges of
a graph. Each edge has a weight (line 8) and connects a set of nodes (line 9);
weights are non-negative and edges connect exactly two nodes (line 12).

This model uses the event-based idiom [10, §6.2.4] to model sequential execu-
tion. The Time signature (line 3) is introduced to model discrete time instants,
and fields covered (line 5) and chosen (line 10) track which nodes and edges
have been covered and selected respectively at each time. Initially (line 31) an
arbitrary node is covered and no edges have been chosen. In each subsequent
time step (line 33), the state changes according to the algorithm. The algorithm
terminates (line 35) when the set of all nodes has been covered.

At each step, a ‘cutting edge’ (that is, one that connects a covered and a
non-covered node) is selected such that there is no other cutting edge with a
smaller weight (line 24). The edge is marked as chosen (line 25), and its nodes
as covered (line 26)2. If the node set has already been covered (line 21), instead
no change is made (line 22), and the algorithm stutters.3

Correctness entails two properties, namely that: (1) at the end, the set of
covered edges forms a spanning tree (line 47), and (2) there is no other spanning
tree with lower total weight (lines 49–53). The auxiliary predicate (spanningTree,
lines 38–45) defines whether a given set of edges forms a spanning tree, and
states that, unless the graph has no edges and only one node, the edges cover
all nodes of the graph (line 40), the number of given edges is one less than the
number of nodes (line 42), and that all nodes are connected by the given set of
edges (lines 43–44).

If we run the previous version of the Alloy Analyzer to check these two prop-
erties, the smallest check fails. In each of the reported counterexamples, the
expression sum e: edges | e.weight (representing the sum of weights in the alter-
native tree, line 52) overflows and wraps around, and thus appears (incorrectly)
to have a lower total weight than the tree constructed.4 In the latest version of
the Alloy Analyzer that incorporates the approach described in this paper, the
check, as expected, yields no counterexamples for a scope of up to 5 nodes, up
to 10 edges and integers ranging from -16 to 15.

4 Approach

Our goal is to give a semantics to formulas whose arithmetic expressions might
involve out-of-domain applications, such as the addition of two integers that ide-
ally would require a value that cannot be represented. In contrast to traditional
2 For a field f modeling a time-dependent state component, the expression f.t repre-

sents the value of f at time t.
3 An implementation would, of course, terminate rather than stuttering. Ensuring

that traces can be extended to a fixed length allows better symmetry breaking to be
employed, dramatically improving performance.

4 One might think that this overflow could be avoided by adding guards, for example
that the total computed weight in the alternative tree is not negative. This does not
work, since the sum can wrap around all the way back into positive territory.
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approaches to the treatment of partial functions, the out-of-domain applications
arise here not from any intrinsic property of the system being modeled, but rather
from a limitation of the analysis.5 Consequently, whereas it would be appropriate
in more traditional settings to produce a counterexample when an out-of-bounds
application occurs, in this setting, we aim to mask such counterexamples, since
they do not indicate problems with the model per se.

First, a standard three-valued logic [13] is adopted, in which elementary for-
mulas involving out-of-bounds arithmetic applications are given the third logical
value of ‘undefined’ (�), and undefinedness is propagated through the logical
connectives in the expected way (so that, for example, ‘false and undefined’
evaluates to false). But the semantics of quantifiers diverges from the standard
treatment: the meaning of a quantified formula is adjusted so that the bound
variable ranges only over values that would yield a body that evaluates to true or
false. Thus bindings that would result in an undefined quantification are masked,
and quantified formulas are never undefined. Since every top level formula in an
Alloy model is quantified6 this means that counterexamples (and, in the case of
simulation, instances) never involve undefined terms.

This semantics cannot be implemented directly, since the analysis does not
explicitly enumerate values of bound variables, but instead uses a translation to
boolean satisfiability (SAT) [21]. A scheme is therefore needed in which the for-
mula is translated compositionally to a SAT formula. To achieve this, a boolean
formula is created to represent whether or not an arithmetic expression is unde-
fined. This is then propagated to elementary subformulas in an unconventional
way which ensures the high-level semantics of quantifiers given above.

To understand this intuitively, it may help to think of all the quantifiers being
eliminated by explicit unrolling, and the entire formula being put in disjunctive
normal form, as a collection of clauses, each consisting of a conjunction of el-
ementary subformulas. The goal is to ensure that when an arithmetic term is
undefined, the clause containing it evaluates to false and is effectively dropped.

We therefore have given two semantics: the high level semantics that the user
needs to understand, and the low level semantics that justifies the analysis. This
lower level semantics is then implemented by a translation to boolean circuits.

4.1 User-Level Semantics

As explained above, the key idea of our approach is to change the semantics
of quantifiers so that the quantification domain is restricted to those values for
which the body of the quantifier is defined (determined by the def function):

�all x: Int | p(x)� = ∀x � Int • def�p(x)� �� p(x)
�some x: Int | p(x)� = �x � Int • def�p(x)� � p(x)

5 Note that this discussions concern only the partial function applications arising from
arithmetic operators; partial functions over uninterpreted types are treated differ-
ently in Alloy, and counterexamples involving their application are never masked.

6 The fields and signatures of an Alloy model are always implicitly bound in an out-
ermost existential quantifier, which is eliminated in analysis by skolemization.
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Integer expressions (i.e. those employing Alloy’s arithmetic operators) are unde-
fined if any argument is undefined or the evaluation results in overflow:

def�α(i1, . . . , in)� = (i1 	�) � ċ ċ ċ � (in 	�) � �(�α(i1, . . . , in)� overflows)

Integer predicates are boolean formulas that relate one or more integer expres-
sions. In Alloy, the only integer predicates are the integer comparison operators.
They are also undefined if any argument is undefined:

def�ρ(i1, . . . , in)� = (i1 	�) � ċ ċ ċ � (in 	�)

A formula is defined if it evaluates to either true or false when three-valued logic
truth tables of propositional operators are used (e.g. [13, Table A.1]):

def�and(p, q)� = (p �3 q) 	� def�implies(p, q)� = (p�3 q) 	�
def�or(p, q)� = (p �3 q) 	� def�not(p)� = (�3p) 	�

Finally, quantifiers are always defined:

def�all x  p(x)� = true def�some x  p(x)� = true

Note that the semantics of the rest of the Alloy logic (in particular, of the
relational operators) remains unchanged.

4.2 Implementation-Level Semantics

A direct implementation of the user-level semantics in Alloy would entail a three-
valued logic, and the translation to SAT would thus require 2 bits for a single
boolean variable (to represent the 3 possible values), a substantial change to
the existing Alloy engine. Furthermore, such a change would likely adversely
affect the analysis performance of models that do not use integer arithmetic. In
this section, we show how the same semantics can be achieved using the existing
Alloy engine, merely by adjusting the translation of elementary integer functions
and integer predicates.

To make all formulas denote (and thus to avoid the need for a third boolean
value), a truth value must be assigned to an integer predicate even when some
of its arguments are undefined. A common approach [8,17] is to assign the value
false. For example, the sentence e1< e2 will be true iff both e1 and e2 are defined
and e1 is less than e2 (and similarly for e1>= e2):

� lt(e1,e2) � = e1 < e2 � e1� � e2� � gte(e1,e2) � = e1 � e2 � e1� � e2�

(using the syntactic shortcuts e� � e 	�, and e� � e =�).
Negation presents a challenge. Following the high-level semantics, negation

of an integer predicate (e.g., !(e1< e2)) is still undefined if any argument is
undefined. Therefore, under the low-level semantics, !(e1< e2) must also, despite
the negation, evaluate to false if either e1 or e2 is undefined (and thus have
exactly the same semantics as e1 � e2). To achieve this behavior, the polarity [11]
of each expression must be known. Polarity is easily determined by the structure
of the enclosing negations. Evaluation of a binary integer predicate can be then
formulated as (ignoring the stack of enclosing quantifiers for the moment):
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(a) Semantic Domains
Formula = BoolConst | IntPred(IntExpr, ..., IntExpr) |

BoolPred(Formula, ..., Formula) |

QuantFormula(VarDecl, Formula)

IntExpr = IntConst | IntVar | IntFunc(IntExpr, ..., IntExpr)

BoolConst = true | false

IntConst = � | 0 | -1 | 1 | -2 | 2 | ...

QuantFormula = all | some

BoolPred = not1 | and2 | or2 | implies2 | iff2

IntPred = eq2 | neq2 | gt2 | gte2 | lt2 | lte2

IntFunc = neg1 | plus2 | minus2 | times2 | div2 | mod2 |

shl2 | shr2 | sha2 | bitand2 | bitor2 | bitxor2

Store = {var: IntVar; val: IntConst; quant: QuantFormula;

polarity: BoolConst; parent: Store}

(b) Symbols
� � IntConst (undefined integer) bi � BoolConst (boolean constants)
ii � IntConst (integer constants) pi � Formula (boolean formulas)
ei � IntExpr (integer expressions) βi � BoolPred (boolean predicates)
ρi � IntPred (integer predicates) xi � IntVar (integer variables)
αi � IntFunc (arithmetic functions) qi � QuantFormula (quantified formula)

(c) Stores
σ : Store (environment of nested quantifiers and variable bindings)

Fig. 3. Overview of semantic domains, symbols, and stores to be used. Subscripts in
function and predicate names indicate their arities.

aeval : IntExpr � Store � IntConst

aeval�i�σ = i
aeval�x�{xσ, iσ, q, b, σp} = if xσ = x then iσ else aeval�x�σp

aeval�α(i1, . . . , in)�σ =
�
���
�
���
�

� if ii =� or ... or in =�
� if α(i1, . . . , in) overflows
α(i1, . . . , in) otherwise

aeval�α(e1, . . . , en)�σ = aeval�α(aeval�e1�σ, . . . , aeval�en�σ)�σ

Fig. 4. Evaluation of arithmetic operations (aeval). If any operand of an arithmetic
operation is undefined, the result is undefined too.

beval : Formula � Store � BoolConst

beval�b�σ = b
beval�ρ(e1, e2)�σ = ieval�ρ(e1, e2)�σ
beval�not(p)�{x, i, q, b, σp} = 	 beval�p�{x, i, q, 	b, σp}
beval�β(p1, . . . , p2)�σ = β(beval�p1�σ, . . . , beval�p2�σ)
beval�all x: Int | p�σ = 


i� Int
beval�p��x, i,all,true, σ�

beval�some x: Int | p�σ = 

i� Int
beval�p��x, i,some,true, σ�

Fig. 5. Evaluation of boolean formulas. The new semantics (together with the ieval

function, Fig. 6) ensures that quantifiers quantify over only those values that do not
cause any overflows.
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ieval : IntPred � Store � BoolConst

ieval�ρ(e1, e2)�σ = let b = ρ(aeval�e1�σ,aeval�e2�σ)in
ensureDef�b,�e1, e2��σ

ensureDef : BoolConst � {IntExpr} � Store � BoolConst

ensureDef�b, ein�{x, i, q, bpol, σp} = let euniv = �e � e � ein � isUnivQuant�e�σ� in

let eext = ein � euniv in

let bdef = (eext = �) � 

e�eext

(aeval�e�σ ��) in

let bundef = (euniv � �) � 
e�euniv

(aeval�e�σ =�) in

if bpol then (b � bundef) � bdef
else (b � 	bdef) � 	bundef

isUnivQuant : IntExpr � Store � BoolConst

isUnivQuant�e�{} = false

isUnivQuant�e�{x, i, q, b, σp} = if x � vars�e� then q = all
else isUnivQuant�e�σp

vars : IntExpr � {IntVar}

vars�i� = �
vars�x� = �x�
vars�α(e1, . . . , en)� = vars�e1� � . . .� vars�en�

Fig. 6. Evaluation of integer predicates. If any argument of an integer predicate is
undefined, the result is true if the expression is in a universally quantified context,
otherwise it is false.

�ρ(e1, e2)� = if polarity is positive then ρ(�e1�, �e2�) � �e1�� � �e2��
else ρ(�e1�, �e2�) � �(�e1�� � �e2��)

The polarity approach is not compositional, since the meaning of the negation
of a formula is not simply the logical negation of the meaning of that formula.
For that reason, this approach violates the law of the excluded middle, which,
fortunately, will not be problematic, since the violation would only be observable
for variable bindings that result in overflow and such bindings are excluded by
the semantics (see Sec. 4.4).

The semantics are formally defined in Figs. 3–6. Expressions and formulas are
interpreted in the context of a store that holds, for each variable bound in an
enclosing quantifier: (a) the value of the variable in the particular binding, (b)
whether the quantifier is universal or existential, and (c) its current polarity.

Evaluation of integer expressions (aeval) and boolean formulas (beval) has
the same effect as evaluation in the user-level semantics; it is elaborated dif-
ferently here simply to account for the need to pass the store. Every time a
negation is seen, the inner formula is interpreted in a store in which the polarity
is negated. Quantifiers are unfolded, with the body interpreted in a new nested
store with polarity set to true. For the evaluation of top-level formulas, an empty
existential environment is presented.

Evaluation of integer predicates (ieval) is where the crucial differences lie.
Whereas in the user-level semantics predicates evaluate to true, false and unde-
fined, in this implementation semantics predicates evaluate only to true or false.
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When a predicate would have been undefined in the user-level semantics, its
meaning will be either true or false, chosen in such a way as to ensure that the
associated binding becomes irrelevant. This choice is represented by the auxil-
iary function ensureDef, which determines the truth value based on the current
polarity and the stack of enclosing quantifiers.

For the existential case, the goal is to ensure that a predicate evaluates to
false when any argument is undefined. However, when such a predicate contains
a universally quantified variable, to achieve the desired semantics of the universal
quantifier (which is to ignore cases where the body is undefined), it is enough
to simply make the predicate evaluate to true instead. Therefore, all expressions
with universally quantified variables are identified first (euniv) and a definedness
condition for them (bundef) is computed as a disjunction of either being undefined.
For all other arguments (eext) the definedness condition (bdef) is a conjunction
of all being defined (as before). Finally, based on the value of the polarity flag
(bpol), the two conditions are attached to the base result (b).

4.3 Correspondence between the Two Semantics

To show that our low-level semantics correctly implements the high-level user
semantics, it is enough to establish a correspondence between the two definitions
of quantifiers (the low-level semantics only introduced a change to the semantics
of quantifiers). Following directly from the two definitions, this is equivalent to
proving that whenever an expression p(x) is undefined by the laws of three-valued
logic (i.e., def�p(x)� is false), if x is universally quantified then beval�p(x)�
evaluates to true, else it evaluates to false.

This hypothesis would traditionally be proved by a structural induction on
expressions. Instead of giving a complete proof (which would exceed the scope
of this paper), we explain several interesting base cases instead.

As said earlier, the low-level evaluation of integer predicates is where the
crucial differences lie. Let us therefore consider the case when p(x) is an integer
predicate, ρ(e1(x), e2(x)). Furthermore, let us assume that e1(x) is undefined,
which makes p(x) undefined as well. In this context, polarity is positive, and the
value of beval�ρ(e1(x), e2(x))� becomes the value of ensureDef. There are two
cases to consider: (1) if x is universally quantified, euniv contains both e1 and e2,
bundef becomes true, bdef is true by default, so the result is also true regardless of
the base value b; (2) if x is existentially quantified, eext contains both e1 and e2,
bdef becomes false, bundef is false by default, so the result is also false, as expected.

Let us now assume that p(x) is a negation of an integer predicate, p(x) =
�ρ(e1(x), e2(x)), and that e1(x) is again undefined. Despite the negation, p(x)
is still undefined, so the low-level evaluation should behave exactly as in the
previous case. The result of beval�p(x)� now becomes a negation of the value
returned by ensureDef, which, in contrast, now evaluates in a context where
the polarity is negative. Following exactly the same derivation as before, it can
be shown that ensureDef now returns false for the universal case, and true
for the existential case (because of the negative polarity), so the end result of
beval�p(x)� remains the same, as expected.



118 A. Milicevic and D. Jackson

4.4 The Law of the Excluded Middle

We mentioned earlier that our non-compositional rule for negation breaks the
law of the excluded middle. Usually, this is not a problem.

Consider checking the theorem that all integers when multiplied by two are
either less than zero or not less than zero:

check { all x: Int | x.mul[2] < 0 or !(x.mul[2] < 0) } for 3 Int

If we run the Alloy Analyzer with overflow prevention turned on, this sentence
is interpreted as “for all integers x s.t. x times two does not overflow, x times
two is either less than zero or not less than zero”, and thus no counterexample
is found, which is consistent with classical logic.

In a sense, however, the violation of the law is visible if truth is associated
with whether or not a check yields a counterexample at all. For example, a check
of whether 4 plus 5 is equal to 6 plus 3 for the bitwidth of 4 (Int = {-8, ..., 7})
does not return a counterexample, but neither does a check of whether 4 plus 5
is different from 6 plus 3.

check { 4.plus[5] = 6.plus[3] } for 4 Int -- no counterexample found

check { 4.plus[5] != 6.plus[3] } for 4 Int -- no counterexample found

Though this might at first appear confusing, it is consistent with our design goal:
indeed, for a bitwidth of 4, there is no non-overflowing instance in which 4 plus
5 is either equal to or different from 6 plus 3.

5 Implementation in Circuits

The core task of finding satisfying models for a relational formula is delegated
to Kodkod [20]. Kodkod is a bounded constraint solver for relational first-order
logic. It works by translating a given relational formula (together with bounds)
into an equivalent propositional formula and using an of-the-shelf SAT solver to
check its satisfiability.

Detecting arithmetic overflows at the level of relational logic would be difficult,
and probably inefficient. We therefore implemented our approach at the level of
the translation to propositional logic, as an extension to Kodkod. Even though
the goal is now to translate the input formula into a digital circuit (instead of
evaluating it to a boolean constant), we only had to modify Kodkod’s translation
of appropriate terms directly following the denotational semantics presented in
this paper. In summary, we changed:
– the translation of arithmetic operations to generate an additional one-bit

overflow circuit which is set iff the operation overflows. We used textbook
overflow circuits for all arithmetic operations supported by Kodkod;

– the way the environment gets updated so that it additionally keeps track of
the polarity and the quantification stack;

– the translation of integer comparison predicates so that the original circuit
representing the comparison result is extended to include the definedness
conditions, exactly as defined above.
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6 Evaluation

Finding suitable models for evaluating the new approach is difficult, because
most Alloy models do not involve arithmetic, in part because of the problem of
overflow that motivated this work.

To evaluate the approach of this paper, we took a previously published model
of a flash filesystem [15] which uses arithmetic operations and whose analysis
is non-trivial, and compared its execution under the old (Alloy4) and new (Al-
loy4.2) analysis schemes. This model involves both assertions (that certain prop-
erties hold) and simulations (that produce sample scenarios). First, we checked
that there are no new spurious counterexamples, and that none of the expected
valid scenarios are lost. This was not the focus of our evaluation, however, since
the design of the analysis ensures it. Rather, our concern was that the addition
of new clauses to the SAT formula generated by the Analyzer might increase
translation and solving time.

The new translation always results in a larger SAT formula, because extra
clauses are needed to rule out models that overflow. One might imagine that
adding clauses would cause the solving time to increase. On the other hand, the
additional clauses might result in a smaller search space, and thus potentially
reduce the search time.

We ran all checks that were present in the “concrete” module of the model. The
first 10 (run1 through run10) are simulations (which all find an instance), and
the remaining 6 (check1 through check6) are checks, which, with the exception
of check5, produce no counterexamples. For each check, we measured both the
translation and solving time, as shown in Table 1. As expected, in some cases the
analysis runs faster, and sometimes it takes longer. In total, with the overflow
prevention turned on, the entire analysis finished in about 8 hours, as opposed
to almost 12 hours that the same analysis took otherwise.

Table 1. Analysis times of all checks found in the “concrete” module of a flash filesystem
from [15]. All values are in seconds, except the values in the “speedup” row which are
in percents. “old” stands for the previous version of Alloy, whereas “new” stands for the
new version with overflow prevention turned on.

run1 run2 run3 run4 run5 run6 run7 run8 run9
old 1.2 0.9 2.1 0.4 0.8 0.2 12.9 2.3 5.9 0.5 12.7 1.0 11.9 1.1 9.0 1.0 12.5 1.0
new 1.2 0.8 1.6 0.4 0.8 0.3 13.4 8.7 6.2 0.5 12.6 0.8 12.1 1.5 9.1 1.0 12.7 2.6
abs diff 0 0.1 0.5 0 0 -0.1 -0.5 -6.4 -0.3 0 0.1 0.2 -0.2 -0.4 -0.1 0 -0.2 -1.6
speedup 0 11.1 23.8 0 0 -50.0 -3.9 -278.3 -5.1 0 0.8 20.0 -1.7 -36.4 -1.1 0 -1.6 -160.0

run10 check1 check2 check3 check4 check5 check6 total
old 25.7 14.8 20.0 39.6 12.1 2190.7 12.0 30673.3 12.5 3713.2 12.3 3.0 74.3 5782.6 42663.5
new 25.9 12.5 20.2 12.6 12.2 1670.4 12.2 16741.9 12.7 3526.9 12.5 1.3 73.9 7083.5 29304.5
abs diff -0.2 2.3 -0.2 27 -0.1 520.3 -0.2 13931.4 -0.2 186.3 -0.2 1.7 0.4 -1300.9 13359.0
speedup -0.8 15.5 -1.0 68.2 -0.8 23.8 -1.7 45.4 -1.6 5.0 -1.6 56.7 0.5 -22.5 31.3
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7 Related Work

The problem addressed in this paper is an instance of the more general problem
of handling partial functions in logic. The most important difference, however, is
that, in our case, the out-of-bound function applications arise due to deficiencies
in the analysis, rather than from the inherent semantics of the logic. Requiring
the user to introduce guards in the formal description itself to mitigate the effects
of undefinedness is therefore not acceptable.

Despite this fundamental difference, our approach shares some features of
several previously explored approaches.

The Logic of Partial Functions (LPF) was proposed for reasoning about the
development of programs [13,14], and was adopted in VDM [12]. In this approach,
not only integer predicates but also boolean formulas may be non-denoting, so
truth tables extended to a three-valued logic are needed. This allows guards
for definedness to be treated intuitively; thus, for example, even when “x” is
equal to zero, formula x!=0 => x/x=1, evaluates to true in spite of x/x=1 being
undefined. Our approach uses this three-valued logic for determining whether
the body of a quantified formula is undefined, but the meaning of the formula as
a whole is treated differently – masking the binding that produces undefinedness
rather than interpreting the quantification in the same three-valued logic.

Our implementation-level semantics adopts the traditional approach to partial
functions (a term coined by Farmer [8]), in which all formulas must be denoting
but functions may be partial. Farmer’s approach, however, leaves open whether,
given an undefined a, !(a=a) and a!=a have different meanings — an issue that
in the standard setting is hard to resolve because of the competing concerns of
compositionality and preserving complementarity of predicates. In our case, the
non-compositional choice fits nicely with the user-level semantics.

Like the Alloy Analyzer, SMT [6] solvers can also be used for model finding.
They all support unbounded integer arithmetic, so the problem of overflows does
not arise. However, using Alloy over SMT-based tools has certain benefits, most
notably the expressiveness of the Alloy relational language. There are higher-
level languages that build on SMT technologies (e.g. Dafny [16]), but for a task
similar to verifying Prim’s algorithm, such tools are typically not fully automatic,
and demand that the user provide intermediate lemmas.

Model-based languages such as B [3] and Z [18], being designed for specifying
programs, make extensive use of partial functions. Both are based on set theory,
and model functions as relations. Whereas in Alloy out-of-bounds applications
of partial functions over uninterpreted types result in the empty set, in B such
an application results in an unknown (but determined) value [19]. The initial
specification of the Z notation [18] left the handling of partial functions open.

Several different approaches have been proposed (see [5] for a survey); in the
end, it appears that the same approach as in B has evolved to be the norm [19].
In both Z and B, integers are unbounded, and so the problems of integer overflow
do not arise. On the other side, the tools for discharging proof obligations (e.g.
Rodin [4]) are typically less automated than the Alloy Analyzer.
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Abstract. Kodkod, the backend of Alloy4, incorporates new features
for solving models where part of the solution, that is, a partial instance,
is already known. Although Kodkod has had this functionality for some
time, it is not explicitly available to the modeller through the Alloy lan-
guage syntax. We propose an extension to the Alloy language to make
partial instances explicitly available to the Alloy user. Explicit partial
instances are helpful for the Alloy user in a number of capacities, includ-
ing test-driven development, regression testing, modelling by example,
and combined modelling and meta-modelling. The proposed syntax also
gives the modeller explicit access to the performance benefits of Kodkod’s
partial instance features.

1 Introduction

Five years ago, while introducing Kodkod [10,9], Torlak & Jackson wrote that
Alloy’s main deficiency as a general-purpose problem description language is its
lack of support for partial instances [10]. (Kodkod is the backend of Alloy4.) This
statement is still true for the majority of Alloy users today: despite Kodkod’s
support for partial instances, the Alloy language has not yet been extended
to explicitly support them. In this paper, we propose a syntactic extension to
the Alloy language that exposes this functionality of Kodkod. We also discuss
several reasons why Alloy users might find this functionality useful. While Torlak
& Jackson [10] demonstrate that Kodkod performs well on problems with partial
instances, they do not describe the software engineering benefits of integrating
partial instances with Alloy models.

Figure 1 introduces our syntax extension by describing three instances of a
linked list: simple, single, and cyclic. In the simple instance, the line Node = head +
middle + tail says that there are exactly three node atoms and their names are
head, middle, and tail. The next two lines give exact bounds for the next and val
relations in terms of these atoms and the integers. The single and cyclic instances
are defined in a similar manner.

The inst block gives the Alloy user direct access to Kodkod’s partial instance
feature. Previously, if the specifier wished to specify an instance, then she would
have had to do it implicitly either by constraint or by a constant function. Con-
sider the phrase val = n→0 which gives an exact bound for the val relation in the
single instance of Figure 1. In Alloy4, the specifier could have achieved a similar
semantic result with the constraint fact {val = n→0} or by commenting out the
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val relation declaration and introducing a constant function of the same name:
fun val[] : Node→Int {n→0}. As we describe below, our new syntax extension
affords the specifier greater clarity and modularity, and corresponds to a more
consistently efficient translation.

1 sig Node { next : lone Node, val : one Int }
2 inst simple { Node = head + middle + tail, −− introduce three atoms
3 next = head→middle + middle→tail, −− exact bound for next relation
4 val = head→0 + middle→1 + tail→2 } −− exact bound for val relation
5 inst single { Node = n, no next, val = n→0 }
6 inst cyclic { Node = a + b, next = a→b + b→a, val = a→0 + b→1}

Fig. 1. Alloy model of a linked list with instances expressed in proposed syntax

Paper organization. Section 2 describes four ways in which partial instances
benefit the Alloy user: test-driven development, regression testing, modelling by
example, and combined modelling and meta-modelling. Section 3 describes our
proposed extension to Alloy. Section 4 presents two experiments that demon-
strate the increased computational efficiency of directly exposing Kodkod’s par-
tial instance feature when compared to adoption of traditional Alloy syntax.
Section 5 considers two other possible ways to make Kodkod’s partial instance
feature available to Alloy users, and argues that our main proposal is preferable.
Section 6 concludes.

2 Using Alloy with Partial Instances

We explore four use cases that demonstrate the utility of adding partial in-
stances to the Alloy surface syntax: test-driven development, regression testing,
modelling by example, and combined modelling and meta-modelling.

2.1 Test-Driven Development

Partial instances enables modellers to apply the test-driven development [2]
methodology to their Alloy models. Consider the following example scenario.
When we teach Alloy to senior undergraduates, the first in-class exercise is to
write invariants for a binary tree. The lecturer, who has a computer running
Alloy, displays the skeletal Alloy model listed in Figure 2.

The lecturer runs the simulation, the class looks at the result and tells the
lecturer in plain language what is wrong with the displayed instance, and then
the lecturer translates that plain language into formal constraints within the
wellFormedTree predicate.

During this initial exercise, it is common for students to identify an instance of
the model where some node y is both the left and right child of some node x. When
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1 sig Node { left, right : lone Node, val : one Int}
2 pred wellFormedTree[] { } −− to be filled in by students
3 run wellFormedTree for 3

Fig. 2. A skeletal Alloy model of a binary tree

this occurs, the students usually give a constraint such as ‘the left and right chil-
dren cannot be equal,’ which the lecturer translates as all n : Node | n.left !=n.right.
The students tend to be satisfied with this translation, but the astute reader will
notice that this formalization prevents leaf nodes, forcing the tree to be cyclic
(i.e., a leaf node has no left child and no right child, and clearly the empty set is
equal to the empty set). The students typically do not realize this overconstraint
for fifteen or twenty minutes.

Had the students been following test-driven development with partial in-
stances, they may have realized the folly of the proposed formalization sooner.
Suppose that the students had first written the two simple partial instances in
Figure 3. Figure 3a lists a tree of a single node that the students expect to be
legal. Figure 3b lists a tree with self-loops that the students expect to be illegal.
When the wellFormedTree predicate is empty at the beginning of the lecture the
illegal self-loops test fails. When the bogus constraint n.left != n.right is added
then the singleton tree test fails. Having concrete tests (partial instances) to
detect errors in the program (model) is the essence of test-driven development.

(a)
1 inst SingletonTree { Node = n, no left, no right, val = n→0 }
2 run wellFormedTree for SingletonTree expect 1

(b)
1 inst IllegalSelfLoops { Node = n, left = n→n, right = n→n }
2 run wellFormedTree for IllegalSelfLoops expect 0

Fig. 3. Two partial instances of a binary tree: (a) a legal singleton tree, and (b)
a tree with illegal self-loops

A difference between test-driven development for imperative code versus that
for declarative logic models is the role of positive and negative examples. With
imperative code, the programmer writes positive test cases for empty procedures
(or code stubs) that initially fails. With declarative logic models, a positive ex-
ample (such as a singleton tree) will succeeds with an empty wellFormedTree
predicate. Only once the predicate becomes overconstrained will the positive ex-
ample fail. In contrast, negative examples will fail with the empty predicate, and
will only pass with a properly constrained predicate. Consider, for example, the
negative example of a node that is its own child in Figure 3b. If wellFormedTree
is underconstrained (e.g., empty) then this test will fail. Thus, the programmer
builds up a procedure to construct positive examples, the modeller builds up a
predicate to rule out negative examples.
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2.2 Regression Testing of Alloy Models

Like programs, specifications evolve: requirements change, extra properties need
to be checked, refactoring for readability, and so on. As with programs, some form
of regression testing can provide assurance that the specification (or program)
still corresponds to programmer intent.

For an Alloy specification with associated safety properties, partial instances
can be used in regression testing to detect over-constrained models. When a
model becomes over-constrained, the safety properties will still hold; however,
the modeller might be unaware of over-constraints. Regression testing of Alloy
instances can be effective in detecting these occurrences.

The user following a TDD approach can have their initial tests do double duty
as regression tests.

2.3 Modelling by Example

The idea of modelling by example [7] is that the system induces logical con-
straints through a dialogue of examples with the user. The user begins by pro-
viding some prototypical instances to the system, and then the system responds
with other instances that the user classifies as either valid or invalid. As the di-
alogue continues the system refines a general formula that includes the positive
examples and excludes the negative examples.

A modelling by example system would be substantially facilitated by having
explicit syntactic support for partial instances in Alloy.

2.4 Combined Modelling and Meta-modelling

Alloy is sometimes used to define new modelling languages. We will refer to such
activity as ‘meta-modelling.’ Let L name the Alloy model that describes the new
language, and let M name an Alloy model that describes a model written in the
new language. At present, there is often no mechanical connection between L
and M . Our facility for adding partial instances to Alloy makes it easier to have
L and M tightly integrated. We examine the work of Cai & Sullivan et alia as
a case study to illustrate these points.

In a series of papers over the last ten years Cai & Sullivan et alia have been
exploring formal techniques for assessing modularity in software design [8,3,5,4].
This is a serious, high-quality research effort that (we claim) illustrates some
of the shortcomings of the current Alloy surface syntax that our proposal for
integrating partial instances addresses.

Cai & Sullivan have written their meta-model (L) in Z [3]. This meta-model
is then implicitly encoded in the Java source of their tool Simon. Given a
model of a software design in their language, Simon produces a specialized Alloy
model (M) that is used to check modularity properties of the proposed software
design. There is no mechanically analyzed connection between L and M .

We have translated the Cai & Sullivan meta-model from Z to Alloy and used
our partial instance feature to write some of Cai & Sullivan’s specific models
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1 inst IrwinMatrixDesignSpace {
2 AugmentedConstraintNetwork = ACN,
3 Variable = Density + Struct + Alg,
4 Value = dense+sparse + links+array + traverse+lookup + other,
5 domain = Density→(dense+sparse) + Struct→(links+array+other) +
6 Alg→(lookup+traverse+other),
7 dominates = ACN →((Struct→Density)+(Alg→Density)),
8 solutions = ACN →Solution,
9 }{−−Appended facts have access to atom names introduced in inst block

10 all s : Solution | {
11 let x = {p : Variable, q : Value | some b : s.bindings | p=b.var and q=b.val} |{
12 (Struct→links) in x ⇒ (Density→sparse) in x
13 (Struct→array) in x ⇒ (Density→dense) in x
14 (Alg→lookup) in x ⇒ (Struct→array) in x
15 (Alg→traverse) in x ⇒ (Struct→links) in x
16 }}
17 }
18 run createMatrixACN for IrwinMatrixDesignSpace

Fig. 4. Partial instance encoding of Irwin et alia’s description [6] of the design
space for a matrix manipulation program

as partial instances of this meta-model. Figure 4 lists our encoding of Cai &
Sullivan’s study of Irwin et alia’s example of designing a program to store and
manipulate a matrix [6]. There are three variables (decisions) in this design
space (line 3): the density of the matrix, the underlying data structure used to
encode the matrix, and the algorithm used to manipulate that structure. More
specifically, the matrix may be dense or sparse, the structure may be a linked list
or an array (or other), and the algorithm may be either ‘lookup’ or ‘traversal’
(or other) (lines 4–6). In the vocabulary of Cai & Sullivan, the density decision
dominates the data structure and algorithm decisions (line 7). The intuition
here is that one selects the data structure and algorithm depending on whether
the density is expected to be dense or sparse. Additionally, the partial instance
block is followed by a list of facts (lines 9–17) that constrain valid solutions of
the design space to those where the algorithm and data structure are natural
matches for the matrix density and each other. A fact appended to a partial
instance block can make use of the atom names introduced in that block.

We now have a mechanically analyzed connection between the Cai & Sullivan
meta-model and the specific model of the design space of a matrix manipulation
program. We have greater certainty that the properties we have checked on the
meta-model also hold of the model (partial instance).

Clafer [1] is a language that is designed to support combined modelling and
meta-modelling.
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3 Language Extension

We propose to add an inst block to the Alloy language, allowing the user to
specify a partial instance, as illustrated above in Figures 1, 2, 3, and 4. The
partial instances in those examples only use exact bounds; Kodkod and our
syntax also support lower and upper bounds as well, using the in and includes
keywords, respectively. Lower bound is a set of tuples that a relation must have,
and upper bound is the one that realation might have [9].

These inst blocks are given names and used in Alloy commands. Whereas now
a user might write run p for 3, they will now write run p for i, indicating that
predicate p is to be simulated in the context of partial instance i.

An inst block, like a sig block, may have an appended fact. For inst blocks, the
appended fact is only expected to be true when that inst block is part of the com-
mand being executed. The purpose of this appended fact is to give the specifier
an opportunity to write constraints that mention the atom names introduced in
the inst block — these names are not available elsewhere in the model.

(a) Grammar

〈iBlk〉 := ‘inst’ id (‘extends’ id)? ‘{’ 〈iSt〉[,〈iSt〉]* ‘}’
(‘{’ 〈frml〉 ‘}’)?

〈iSt〉 := 〈n〉
| ‘exactly’ 〈n〉 〈var〉
| 〈var〉 ‘=’ 〈iXpr〉
| 〈var〉 ‘in’ 〈iXpr〉
| 〈var〉 ‘include’ 〈iXpr〉
| 〈var〉 ‘include’ 〈iXpr〉 ‘moreover’ 〈iXpr〉
| ‘no’ 〈var〉

〈iXpr〉 := 〈iXpr〉 ‘->’ 〈iXpr〉
| 〈iXpr〉 ‘+’ 〈iXpr〉
| ‘(’ 〈iXpr〉 ‘)’
| 〈atm〉

(b) Preliminary type definitions

〈prb〉 := 〈univ〉 〈iSt〉* 〈frml〉*
〈univ〉 := {〈atm〉[,〈atm〉]*}
〈tpl〉 := 〈atm[,atm]* 〉
〈cnst〉 := {tpl[,tpl]*} | {} [×{}]*
〈var〉 := id

〈atm〉 := id

〈sig〉 := 〈var〉
〈sigs〉 := 〈sig〉*
〈n〉 := int

Fig. 5. Grammar and preliminary type definitions

Figure 5a lists the grammar for our proposed extension to the Alloy language
to support partial instances. An iBk has a name, a list of iSts and optionally an
appended fact. Each iSt alternative that contains a var bounds either a signature
or a field (whichever is named by the var). The one iSt alternative that does not
name a var provides the default number of atoms for each signature. A relation
(signature or field) name can only appear on the left-hand side of at most one
iSt in each iBk.

An iSt that names a signature on its left-hand side introduces atom names on
its right-hand side. These atom names can then be used to describe the bounds
on fields. An iXpr is an expression that describes a set of tuples using the normal
Alloy union (+) and cross-product (→) operators along with the names of the
atoms. If the user wishes to specify both an upper and lower bound for relation r,
they can write an iSt like r include x + y moreover p + q, which specifies a lower
bound of x + y and an upper bound of x + y + p + q.
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One partial instance block may extend another. For example, the partial in-
stance in Figure 10 extends the partial instance in Figure 4. The semantics of
partial instance extension are simply concatenation and conjunction. Let p name
the base partial instance block; let q name the extending partial instance block;
and let r name the result of applying the extension to q. The text of r is the
concatenation of the text of p with the text of q. The appended fact of r is the
conjunction of p’s appended fact with q’s appended fact. The result r must follow
the same well-formedness guidelines as p and q: no relation can be named on the
left-hand side of more than one statement. This restriction keeps both regular
semantics and extension semantics simple, as it prevents statements from inter-
fering with each other (notwithstanding quantitative statements that interact
with named statements in a well-defined manner as formalized below).

evr : sig → univ
U : iBlk → sigs → evr
G : iSt∗ → sigs → evr → univ G′ : iSt → sigs → evr
X : iSt∗ → sigs → evr → evr X′ : iSt → sigs → evr → evr
N : iSt∗ → sigs → evr N ′ : iSt → sigs → evr
K : sig → int → univ
Q : iXpr → univ

U [[iBlk, sigs]] := G[[iSt1 . . . iStn, sigs, X[[iSt∗, sigs, N [[iSt∗, sigs, ∅]]]]]]
G[[iSt∗, sig, evr]] := G[[iSt1 . . . iStn, sigs, evr]]
G[[iSt1 . . . iStn, sigs, evr]] := G[[iSt2 . . . iStn, sigs, evr + + G′[[iSt1, sigs]]]]
G[[[], sigs, evr]] := evr
G′[[v [=|in|include] p, sigs]] := {(a, b)|a ∈ sigs ∧ a = v ∧ b ∈ Q[[p]]}
G′[[v include p moreover q, sigs]] := {(a, b)|a ∈ sigs ∧ a = v ∧ b ∈ Q[[p]] ∪Q[[q]]}
X[[iSt∗, sigs, evr]] := X[[iSt1 . . . iStn, sigs, evr]]
X[[iSt1 . . . iStn, sigs, evr]] := X[[iSt2 . . . iStn, sigs, evr + + X′[[iSt1, sigs]]]]
X[[[], sigs, evr]] := evr
X′[[exactly n v, sigs]] := {(a, b)|a ∈ sigs ∧ a = v ∧ b ∈ K[[v, n]]}
N [[iSt∗, sigs, evr]] := N [[iSt1 . . . iStn, sigs, evr]]
N [[iSt1 . . . iStn, sigs, evr]] := N [[iSt2 . . . iStn, sigs, evr + + N ′[[iSt1, sigs]]]]
N [[[], sigs, evr]] := evr
N ′[[n, sigs]] := {(a, b)|a ∈ sigs ∧ b ∈ K[[a, n]]}
K[[v, n]] := {〈ToString(v) +′ $′ + ToString(n − 1)〉} ∪ K[[v, n − 1]]
K[[v, 0]] := 〈〉
Q[[p]] := {〈ToString(p)〉}
Q[[p + q]] := Q[[p]] ∪ Q[[q]]
Q[[p → q]] := 〈〉

Fig. 6. Universe construction

3.1 Semantics

We define the semantics of the partial instance block as an extension of the Kod-
kod semantics [9]. The Kodkod semantics take a universe and relation bounds
as inputs. The purpose of the partial instance block is for the user to specify the
universe and relation bounds.

Figure 6 describes how the universe is constructed from a partial instance
block by the U function, which in turn makes use of the N, X, and G functions.
Preliminary type definitions are given above in Figure 5b. First the N function
constructs a universe in which each sig has the default number of atoms. The
X function takes this default universe and returns a universe that complies with
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the exactly statements in the partial instance block. Finally, the G function adds
atoms named in upper and lower bound statements. All of these functions take
as input a set of the sigs declared in the model. This set of sig names is used
to distinguish statements that might introduce atoms (which name a sig on the
left-hand side) from statements that bound relations (which name a field on the
left-hand side).

Once the universe is constructed (Figure 6), then the bounds can be con-
structed (Figure 7). Figure 7 starts by redefining the top-level function P from
the Kodkod semantics [9] to indicate that the universe and the relation bounds
are generated from the partial instance block.

P : problem → binding → boolean — top-level function, re-defined from [9]
F : formula → binding → boolean — formulas, definition given in [9]
S : iSt∗ → sigs → evr → binding → boolean — list of inst statements
S′ : iSt → sigs → evr → binding → boolean — individual inst statement
C : iXpr → univ → cnst — expressions
W : var → sigs → evr → univ —

P [[sigs.U [[iBk, sigs]] iSt1 . . . iStn frml∗]]b := S[[iSt1 . . . iStn, sigs, U [[iBk, sigs]]]]b ∧ F [[frml∗]]b
S[[iSt1 . . . iStn, sigs, evr]]b := S[[iSt2 . . . iStn, evr, sigs]]b ∧ S′[[iSt1, evr, sigs]]b
S[[[], evr, sigs]]b := true
S′[[exactly n v, evr, sigs]]b := W [[v, sigs, evr]] ⊆ b(v) ⊆ W [[v, sigs, evr]]
S′[[v=p, evr, sigs]]b := C[[p, sigs.evr]] ⊆ b(v) ⊆ C[[p, sigs.evr]]
S′[[v in p, evr, sigs]]b := C[[∅, sigs.evr]] ⊆ b(v) ⊆ C[[p, sigs.evr]]
S′[[v include p, evr, sigs]]b := C[[p, sigs.evr]] ⊆ b(v) ⊆ W [[v, sigs, evr]]
S′[[v include p moreover q, evr, sigs]]b := C[[p, sigs.evr]] ⊆ b(v) ⊆ C[[p+ q, sigs.evr]]
S′[[no v]]b := b(v) = ∅
C[[p + q, univ]] := C[[p, univ]] ∪ C[[q, univ]]
C[[p → q, univ]] := {〈p1, . . . , pn, q1, . . . , qm〉|〈p1, . . . , pn〉 ∈ C[[p, univ]] ∧ 〈q1, . . . , qm〉 ∈ C[[q, univ]]}
C[[p, univ]] := {p′|p′ ∈ univ ∧ ToString(p′) = p}
W [[v, sigs, evr]] := {〈p1, . . . , pn〉|(v ∈ sigs =⇒ p1 ∈ v.evr) ∧ (v /∈ sigs =⇒ pi ∈ vi.evr)}

Fig. 7. Bounds construction (building on formalization of [9])

4 Experiments

We performed two experiments to evaluate the computational efficiency of the
proposed partial instance block: a micro-benchmark to characterize the maxi-
mum possible improvement, and our combined modelling and meta-modelling
case-study based on Cai & Sullivan’s work (§2.4). All tests are done on Intel
i7-2600K CPU at 3.40GHz with 16GB memory. The performance results are
essentially the same with both Minisat and Sat4J, although we report only the
Sat4J results here.

We compared using the partial instance block to two alternative specification
styles in two different versions of Alloy 4.2. The two different styles were con-
straining relations with facts and using constant functions instead of relations.
Constant functions are just expressions that are inlined at their point of use.
They add clauses but not variables to the generated SAT formula. Alloy 4.x in-
cludes some inference capability to translate constraints on relations as bounds.
In response to a draft of this paper the Alloy development team improved this



130 V. Montaghami and D. Rayside

inference capability. We refer to this enhanced version as A4.2′, and to the version
of Alloy 4.2 from January 2012 as A4.2. We refer to our version of Alloy with
the partial instance block as A4.2i.

4.1 Micro Benchmark

We devised a micro-benchmark to illustrate the upper bound on the poten-
tial performance improvements of exposing Kodkod’s partial instance features
through our new syntax. Our micro-benchmark has a single signature S and a
single binary relation r that maps S to S. For our partial instance, we want to
introduce some named atoms of sig S, and then define relation r to be a fully
connected graph (i.e., map every S atom to every other S atom).

Figure 8 lists examples of these partial instancemodels in the three different syn-
taxes: (a) constraining relation rwith a fact; (b) replacing relation rwith a constant
function named r; and (c) using our new partial instance syntax. The example list-
ings in Figure 8 show these models where signature S has two atoms (S0 and S1).
For the plots in Figure 9, we generated these models with signature S having up to
seventy-five atoms. The cardinality of relation r is proportional to the square of the
cardinality of signature S (as one would expect from a fully connected graph).

(a) By Fact (b) By Constant-Function (c) By Inst-Block

one sig S0,S1 extends S{}
fact {r=S0→S1 + S1→S0}
pred f[]{all s:S | S in s.ˆr}
run f

one sig S0,S1 extends S{}
fun r[]:S→S{S0→S1 + S1→S0}
pred f[]{all s:S | S in s.ˆr}
run f

inst b { S=S0 + S1,
r=S0→S1 + S1→S0}

pred f[]{all s:S | S in s.ˆr}
run f for b

Fig. 8. Example models for micro-benchmark experiment

Figure 9 shows graphs characterizing how the translations of the three syntac-
tic approaches shown in Figure 8 scale on different measures: (a) total number
of variables in the resulting boolean (SAT) formula; (b) number of primary vari-
ables in the resulting boolean (SAT) formula; (c) time taken by Kodkod to
translate the Alloy model to SAT; and (d) time taken by the SAT solver to find
a solution. We make a number of observations from the data in Figure 9:

1. The inference capability of A4.2 is incomplete: it is unable to deduce that
the constraints on r can be translated as bounds rather than as variables and
clauses. Therefore the number of variables and the translation and solving
times grow exponentially.

2. All other strategies show very little growth as the number of atoms increases.
3. The improved inference in A4.2′ is effective (A4.2′ Fact column).
4. The number of SAT variables produced by the constant function encoding,

the improved inference, and the partial instance strategies is the same (low).
5. The partial instance encoding has the fastest translation and solving times

(by a narrow margin).
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The main conclusion of Figure 9 is that if the specifier chooses to use constant
functions instead of relations or writes their facts in a manner that Alloy can
infer bounds from, then there is little performance gain from the partial instance
block. However, the partial instance block does provide the best performance,
and does so without the specifier having to worry about whether their writing
style is comprehensible to Alloy’s bounds inference facility.

A4.2 A4.2′
A4.2i

Fact Fun Fact Fun
(a) SAT Total Varaibles
0 ≤ y < 3M variables

(b) SAT Primary Varaibles
0 ≤ y < 6K variables

(c) Kodkod Translation Time
0 ≤ y < 12 seconds

(d) SAT Solving Time
0 ≤ y < 12 seconds

x axis ranges from 2 atoms to 75 atoms

Fig. 9. Results of micro-benchmarks

4.2 Staged Evaluation

The proposed partial instance feature offers Alloy users the opportunity to stage
evaluation of their models, which might potentially save time when certain parts
of the model are not changing and other parts are. Consider, for example, the
model in Figure 4 that describes the design space of a program to manipulate
matrices. The partial instance of Figure 4 is written in terms of Cai & Sullivan’s
meta-model, which has (design) variables, values, bindings of variables to values,
and ‘states’. (The ‘states’ are of a design automaton, which is a concept they
use to analyze design spaces that we do not explain here.)

Suppose that the user wishes to experiment with the constraints written in
the appended fact of Figure 4. These constraints do not affect the space of valid
binding atoms. Therefore, the user could stage the evaluation of the model by
saving the legal bindings in a partial instance, such as in Figure 10. Subsequent
simulations would not have to re-solve this part of the model.
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1 inst IrwinMatrixDesignSpace WithBindings extends IrwinMatrixDesignSpace {
2 Binding = B0+B1+B2+B3+B4+B5+B6+B7,
3 var = (B0+B1)→Struct + (B2+B3+B4)→Density + (B5+B6+B7)→Alg,
4 val = B0→dense + B1→sparse + B2→links + B3→array + B4→other +
5 B5→traverse + B6→lookup + B7→other }
6 run createMatrixACN for IrwinMatrixDesignSpace WithBindings

Fig. 10. Iwrin matrix design space partial instance (Figure 4) extended with
binding atoms generated by a previous simulation

Figure 11 characterizes the potential performance improvements from staged
evaluation using the Irwin matrix design space example of Cai & Sullivan. The
translation time for the model from Figure 10 is over ten times faster than the
translation time for the model from Figure 4, and the solving time is three
times faster, for an overall improvement of seven times. Obviously the speedup
to be gained from staged evaluation depends on the particulars of the model in
question; other models will likely produce different results than this one.

Figure 11 also shows performance results for A4.2 and A4.2′ simulating a
model equivalent to Figure 4 (i.e., not staged). In this particular case there is
no significant difference between A4.2 and A4.2′. We suspect that this is the
case because the domain relation is constrained piecewise across a number of
appended facts. All of these piecewise constraints add up to an exact bound
on domain, but a fairly sophisticated whole-model analysis would be needed to
deduce that. A4.2i results in four times faster solving time than A4.2′ for the
model in Figure 4, at the expense of a 10% slowdown in translation time.

Total Vars Pri. Vars Clauses Translation Solving
time (ms) time (ms)

A4.2i (Fig. 4) 59,694 773 162,642 12,742 6,744
A4.2i (Fig. 10 — staged) 20,060 503 37,148 986 2,174

A4.2 59,953 768 162,417 11,976 27,415
A4.2′ 59,953 768 162,417 11,188 27,730

Fig. 11. Performance improvements from staged evaluation

5 Alternatives Considered

In this section we consider some alternative approaches for specifying partial
instances in Alloy and argue for the approach proposed in this paper.

5.1 Static Analysis

Alloy 4.x already includes the capability to infer when constraints might be
encoded as Kodkod bounds rather than as SAT clauses. Although it is not yet
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perfect, this capability will continue to improve. Given this capability, no extra
syntax is needed to realize the main performance benefits of Kodkod’s partial
instance feature.

We argue that there are software engineering benefits to our new syntax be-
yond the performance gains that it affords. The proposed syntax makes it easy
for the specifier to run different commands with different instances, or to run
commands with no partial instance (the norm in Alloy now). Writing a partial
instance implicitly via constraints in the traditional Alloy syntax makes it dif-
ficult to switch from running a command with a partial instance to running a
command without a partial instance. For example, to run the fragment in Fig-
ure 8a without a partial instance, we would want to remove the keyword abstract
from the signature S and remove the sub-signatures S1, S2, S3. With the partial
instance block syntax, one does not have to edit the text of the model to run it
in these different ways. A number of our use cases described above depend on
this affordance of the new syntax.

5.2 Syntactic Alternatives for the Partial Instance Block

There are a variety of different ways in which one could specify the body of a par-
tial instance block. We consider the proposal described above to be a ‘relational’
style because each statement specifies a different relation.

Alternatively, one could imagine an ‘object-oriented’ syntax in which relations
are defined piecewise with respect to individual atoms. Figure 12a lists a small
example of this syntax. The same example is listed in the relational style in
Figure 12c. The object-oriented style syntax is intuitively appealing for some
examples; however, its piecewise nature makes the bound being defined unclear:
does Figure 12a define a lower bound or an exact bound for relation r?

Another alternative syntax is ‘set-oriented’ style, shown in Figure 12b. This
style is concise and consistent with common mathematical notation, but it does
not conform to the existing Alloy expression grammar.

Our proposed relational style syntax (Figure 12c) conforms to the existing
Alloy expression grammar and has a clear and uniform way to specify lower,
exact, and upper bounds.

(a) object-oriented style

sig S{r: S}
inst i{S=S1+S2+S3,

S1.r=S2, S2.r=S3}

(b) set-oriented style

sig S{r: S}
inst i{S={S1,S2,S3},

r={S1→S2,S2→S3}}

(c) relational style

sig S{r: S}
inst i{S=S1+S2+S3,

r=S1→S2+S2→S3}

Fig. 12. Syntactic alternatives for the body of the partial instance block
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6 Conclusion

Explicit partial instances could be used in Alloy to efficiently specify constraints
on allowable solutions (their intended usage in Kodkod); for test-driven develop-
ment of Alloy models; for regression testing of Alloy models; to support new ideas
such as modelling by example; and for combined modelling and meta-modelling.
While Alloy currently has an inference mechanism that makes use of Kodkod’s
partial instance functionality behind the scenes, these engineering benefits are
substantially facilitated by explicit syntactic support for partial instances.

There is more than one possible way to expose Kodkod’s partial instance
feature to the Alloy user. We have explored a number of alternatives and rec-
ommend a new named block with statements written in a relational style. This
recommendation is backwards compatible with existing Alloy models and the
existing Alloy expression grammar; it affords the user a uniform way to express
exact, upper, and lower bounds; it combines with Alloy commands in a modular
fashion; and it has an easy and efficient translation to Kodkod.

Kodkod has supported partial instances for five years, and that is one of its
main improvements over the backend of Alloy3. It’s time that Alloy users had
the opportunity to take full advantage of this functionality.
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Abstract. Many model-finding tools, such as Alloy, charge users with
providing bounds on the sizes of models. It would be preferable to
automatically compute sufficient upper-bounds whenever possible. The
Bernays-Schönfinkel-Ramsey fragment of first-order logic can relieve
users of this burden in some cases: its sentences are satisfiable iff they
are satisfied in a finite model, whose size is computable from the input
problem.
Researchers have observed, however, that the class of sentences for

which such a theorem holds is richer in a many-sorted framework—
which Alloy inhabits—than in the one-sorted case. This paper studies
this phenomenon in the general setting of order-sorted logic supporting
overloading and empty sorts. We establish a syntactic condition
generalizing the Bernays-Schönfinkel-Ramsey form that ensures the
Finite Model Property. We give a linear-time algorithm for deciding this
condition and a polynomial-time algorithm for computing the bound
on model sizes. As a consequence, model-finding is a complete decision
procedure for sentences in this class. Our work has been incorporated into
Margrave, a tool for policy analysis, and applies in real-world situations.

1 Introduction

The undecidability of first-order logic poses a challenge to using Alloy for
verification: analysis performed under bounds may not be complete. While
incompleteness is unavoidable for some classes of formulas, there are also classes
for which analysis is complete under domains of finite size. Alloy asks users to
specify domain-size bounds, but does not help users determine whether their
bounds suffice for completeness. Ideally, tools such as Alloy would provide such
feedback or, better still, compute sufficient bounds automatically when possible.

Sufficient-bounds results are long-established for classical first-order logic.
Alloy’s logic, however, is different in ways that impact computing bounds. Alloy
signatures yield first-order logic with sorts : the class of many-sorted first-order
logic formulas with sufficient bounds properly includes that for the unsorted
case. Existing results on sufficient bounds for many-sorted logic, however, make
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assumptions that are not valid for many Alloy specifications: Alloy allows sorts to
be empty, and also allows sorts to overlap. These features, which are critical for
modeling realistic systems, require an extended theory of bounds-computation.
This paper presents the theory and algorithms for computing sufficient bounds
for a substantial class of Alloy formulas.

We actively use our results within our Margrave tool (www.margrave-tool.org)
for analyzing policies (such as access-control, firewall, and routing policies). One
of our standard policy examples—from a deployed conference-paper manager—
requires the results in this paper. Margrave uses the presented algorithms to
compute howmany papers are required for complete reasoning. In other examples,
Margrave computes sufficient bounds on some sorts (even when others cannot be
bounded). This can help a user decide how to allocate the computational resources
of model finding. Margrave is built upon Kodkod [20], the backend model-finder
for the Alloy Analyzer. For Alloy users, we provide an implementation online
(sortedtermcount.appspot.com) that takes a formula σ in Alloy notation, checks
whether σ lies in our class of decidable formulas, and computes sufficient sizes for
whichever Alloy signatures we can bound.

2 Overview of Results

The Bernays-Schönfinkel-Ramsey class, sometimes called “Effectively Proposi-
tional Logic” (EPL), comprises the set of first-order sentences of the form

∃x1 . . . ∃xn∀y1 . . .∀ym . ϕ

where ϕ is quantifier-free and has no function symbols. The satisfiability problem
for this class is decidable: Bernays and Schönfinkel [2] and Ramsey [19] showed
that such a sentence has a model if and only if it has a model of size bounded by
n plus the number of constants in ϕ. When such a finite model property holds,
satisfiability-testing reduces to exhaustive search for a model within bounded
domains. Furthermore, the search need only consider models whose elements
are constants. In effect, satisfiability for these formulas reduces to propositional
satisfiability.

The EPL results assume that all variables quantify over the same domain. Alloy
uses a sorted first-order logic, in which values come from several domains (Alloy
signatures) and each variable is associatedwith a particular domain. Sorts provide
additional information that model finders and theorem provers can exploit in
the search for models [10,11,13,16]. More strikingly, the class of sentences with the
finite model property is richer in a sorted framework [1,6,9]. The following simple
example illustrates the interplay between sorts and bounds for completeness.
Consider the class of unsorted sentences of the form

∀y1∃x∀y2 . ϕ.

Satisfiability is undecidable for this prefix class [3]. In contrast, this sorted verion

σ ≡ ∀yA1 ∃xB∀yA2 . ϕ (1)
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is better behaved. Suppose that ϕ contains constants, say nA constants of sort A
and nB of sort B, but no function symbols. If we were to postulate that sort A is
a subsort of sort B, then if σ has any models at all then it has a model whose size
at sort A is bounded by nA and whose size at sort B is bounded by (2nA+nB).
On the other hand, if our signature declared that B were a subsort of A, then
some σ would only have infinite models. In considering subsort relationships,
this example illustrates order-sorted logic, in which there is a partial order on
the sorts rather than an assumption that all sorts are disjoint. We give a formal
treatment of this example below, as Example 15.

Alloy’s use of order-sorted logic, as well as its allowance of empty sorts,
demand new methods for computing sufficient bounds. To illustrate why, we
first consider a standard approach to establishing the finite-model property. Let
σ be a sentence in unsorted first-order logic.

1. By Skolemization, there is a universal sentence σsk equi-satisfiable with σ.
The language of σsk is richer than that of σ, since constants and function
symbols have been introduced on behalf of existential quantifiers of σ.

2. Any potential model M for σsk has a Skolem hull [4] consisting of the
interpretation in the model of the ground terms of the language. The set
of ground terms is called the Herbrand universe. The Skolem hull forms a
submodel of M in which every element is named by a term in the language.

3. A fundamental classical theorem is that the truth of universal sentences is
preserved under submodel. Thus, if the signature of σsk has only finitely
many terms, that is, if the Herbrand universe is finite, then σ has the finite-
model property.

When the language has only a single sort, the only way to guarantee that the
Herbrand universe is finite is to have no function symbols (other than constants).
In that setting, the sentences whose Skolemization produces no function symbols
comprise the EPL class. The many-sorted setting is more lenient. Consider for
example a sentence σ whose Skolemization leads to a language with simply a
constant a of sort A, a function f of sort A → B. Then the only ground terms
that can be constructed are a and f(a) (terms such as f(f(a)) are not well-
sorted). This suggests—correctly—that a richer classes of finite-model results
are available.

But there are technical obstacles to generalizing the above argument. In
particular,

– When empty sorts are allowed, the Skolem form of σ is not equi-satisfiable
with σ. For example the sentence (∀yA.y = y)∨(∃xB .x �= x) is true in models
where the sort B is empty. Skolemization, with a new constant b of sort B,
yields the sentence (∀yA.y = y) ∨ (b �= b) which is is unsatisfiable. Section 5
addresses this issue formally.

– When sorts are not assumed to be disjoint (the order-sorted setting), not
every element in the Skolem hull of a model is named by a term. Indeed
the Skolem hull of M can be infinite even when a finite submodel of M does
exist. Example 9 in Section 5 illustrates this case.
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Contributions. This paper adapts the approaches in the standard argument
to accommodate ordered sorts and empty sorts. In doing so, it enables
automatic bounds computation for additional Alloy formulas through the
following contributions:

– We identify (Definition 11) a syntactically-determined class of sentences
extending EPL, comprising Order-Sorted Effectively Propositional Logic
(OS-EPL), for which the Finite Model Property holds (Theorem 10,
Section 6).

– We present a linear-time algorithm (Corollary 16) for membership in OS-
EPL. We present a cubic-time algorithm (Theorem 17) for computing an
upper bound on the size of models required for testing satisfiability. It is
interesting to note that the bound itself can be exponential in the size of the
sentence (Section 7), even though it can be computed in polynomial time.

We view identification of the OS-EPL class as a contribution to a taxonomy of
decidability classes in order-sorted logic. In the presence of possibly-empty sorts,
sentences do not always have equivalent prenex-normal forms, so we cannot
attempt a decidability classification in terms of quantifier prefix as in [3]. As
Section 6 shows, our decidability criterion is based entirely on the signature
of the Skolemization of the given formula. This signature can be viewed as a
generalization of the idea of quantifier prefix, as it implicitly records the pattern
of nesting between universal and existential quantification.

2.1 A Sample Application

The PLT Scheme application Continue [12] automates many conference-
management tasks. Margrave has been helpful in developing and analyzing
Continue; here we hint at some of the ways that the algorithms in this paper
have improved some of these analyses.

The access-control policy of a conference can be represented as a first-order
theory, over a language representing facts about the world and access-control
decisions such as permit and deny . A user will query the policy to verify or
falsify properties of the system; Margrave’s mode of interaction is to generate
models, or “scenarios” for situations being explored by the user. For example,
a certain policy rule might say “The conference administrator can advance the
conference out of the bidding phase if every reviewer has bid on some paper.”
This rule gives rise to the sentence

permit(s, advancePhase , conference)←− Admin(s) ∧ (phase = Bidding)∧
∀uUser∃pPaper . bidOn(u, p)).

The set of such policy rules, together with assumed facts about the application
domain, comprise a background theory for analysis. Now suppose one wants to
verify the property: “The conference chair can modify user passwords.” It suffices
to determine that there are no models of the negation of the formula
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∀rUser . permit(chair ,modifyPassword , r)

together with the background theory. The question, of course, is determining
an upper bound on the scope of the search. The fact that the formula being
explored by the user is purely existential is of little help by itself, since the
entire policy theory is part of the satisfiability query. Besides rules such as the
permit rule quoted above, the language also includes such function symbols as
paperPhase : Paper → PaperPhase and decision : Paper → Decision .

In the absence of sensitivity to sorts this theory would not submit to a finite-
model discipline. But in fact, for the Continue theory and the associated query
above Margrave automatically computes sufficient bounds:

Conference:7 PaperPhase:12 Object:14 ConferencePhase:10

Action:16 User:9 Resource:6 univ:59 Paper:6

Without the support of the finite-model algorithms of this paper the user
would—à la Alloy—have to instruct the tool to restrict attention to a finite
search space that was presumably arrived at in an ad-hoc manner.

3 Related Work

The decidability of the satisfiability problem for the ∃∀ class in pure logic is a
classical result of Bernays and Schönfinkel [2] in the absence of equality, extended
by Ramsey [19] to allow equality. The problem is known to be EXPTIME-
complete [14].

Goguen and Meseguer did seminal work [8] on order-sorted algebra; order
sorted predicate logic was first considered by Oberschelp [18]. Harrison was one
of the first to observe that many-sortedness can not only yield efficiencies in
deduction but can also support new decidability results. In unpublished notes [9]
he presents some examples of this phenomenon, and suggests searching for
typed analogs of classical decidability classes, as we have done here. Order-
sorted signatures (without relation symbols) can be viewed as tree automata, so
the question of whether the set of closed terms is finite can be answered using
standard automata techniques. We believe that the algorithm in this paper for
counting terms is new.

Fontaine and Gribomont [6], working in “flat” many-sorted logic (i.e., without
subsorting) prove that if there are no functions having result sort A and σ is
a universal sentence then σ has a model if and only if it has a model in which
the size of A is bounded by the number of constants of sort A. This result is
used to eliminate quantifiers in certain verification conditions. This theorem has
application even when not all sorts are finite and can be used in a setting where
some functions and predicates are interpreted.

Claessen and Sorensson [5] have integrated a sort inference algorithm into
the Paradox model-finder that deduces sort information for unsorted problems
and, under certain conditions, can bound the size of domains for certain sorts
and improve the performance of the instantiation procedure. Order-sorting is
not used, and there are restrictions on the use of equality.
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Momtahan [15] computes a refutationally-complete upper bound on the size
of a single sort (as a function of the user-provided bounds on the other sorts) for
a fragment of the Alloy kernel language. The conditions defining this fragment
are not directly comparable to ours, but in some respects constrain the sentences
rather severely. For example existential quantification in the scope of more than
one universal quantifier is usually not allowed.

Abadi et al. [1] identify, as we do, a decidable fragment of sorted logic that is
decidable by virtue of having a finite Herbrand universe. Although they target
Alloy in their examples they work in a many-sorted logic without subsorts or
empty sorts; their condition for decidability is the existence of a “stratification”
of the function vocabulary; they do not provide algorithms for checking the
stratification condition or computing size bounds on the models.

Ge and de Moura [7] present a powerful method for deciding satisfiability
modulo theories with an instantiation-based theorem prover. Given a universal
(Skolemized) sentence σ they construct a system of set constraints whose least
solution constitutes a set of ground terms sufficient for instantiation; satisfiability
is thus decidable for the set of sentences for which this solution-set is finite
(in the many-sorted setting this subsumes the Abadi et al. class). They do
not treat empty sorts nor subsorting. They can treat certain sentences that
fall outside our OS-EPL class; detection of whether a given sentence falls into
their decidable class seems to require solving the associated set-constraints, as
compared to our linear-time algorithm. Generally speaking they do detailed fine-
grained analysis of individual sentences; we have focused on an easily recognized
class of sentences.

The problem of efficiently deciding satisfiability in the EPL class is an active
area of research. Our work is complementary to these efforts in that it identifies
an extended class of sentences to which contemporary techniques can hopefully
be applied.

A preliminary version of this work was presented at the workshop on
Synthesis, Verification, and Analysis of Rich Models (SVARM), July 20-21, 2010.

4 Background: Order-Sorted Predicate Logic and Term
Models

We begin by formalizing several foundational concepts that underlie the high-
level argument in points 1–3 of Section 2. Naturally, we define signatures and
models for order-sorted first-order logic. Finite-model properties derive from
arguments that every model of a sentence has a truth-preserving submodel
with only finitely-many elements. Two concepts are key to such an argument:
homomorphisms between models (and hence submodels), and a term model,
which is a particular model over the ground-terms of a sentence. Establishing
that the term model is a submodel (under homomorphism) of every model of a
sentence is essential to proving completeness under finite bounds; a theorem in
this section captures this requirement.
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The definitions and results in this section are either directly from Goguen
and Meseguer’s work [8] or they are the obvious extensions required to handle
relations as well as functions.

Notation. We use 〈〉 for the empty sequence. If (S,≤) is an ordering we extend
≤ to words in S∗ and then to products, pointwise.

Signatures. An order-sorted signature is a triple L = (S,≤, Σ) where (S,≤) is
a finite poset of sorts and Σ is an indexed family of symbols, the vocabulary,
comprising

– {Σw | w ∈ S∗}, an S∗-sorted family of relation symbols, and
– {Σw,A | w ∈ S∗ , A ∈ S}, an (S∗ × S)-sorted family of function symbols.

We assume that the Σw and Σw,A are pairwise disjoint.
We stress that an order-sorted signature is not the same as an Alloy signature.

Such a signature denotes a language of discourse: available sorts, functions, etc.
along with an ordering on the sorts. In this way, an Alloy signature is a sort or
a predicate within an overall order-sorted signature.

Formalizing relations and functions through words—rather than through
tuples of sorts—simplifies certain definitions and eases capturing overloaded
function symbols (as [8] does). Our work assumes function symbols are not
overloaded (through the disjointness condition on the Σw,A); this is consistent
with Alloy. Most of the results of the paper generalize to handle overloading,
including our finite model theorem (Theorem 14). The one exception is our
term-counting algorithm (Theorem 17), which relies on the lack of overloading
to compute precise bounds; with overloading, our algorithm only promises upper
bounds on the sort-sizes.

When R ∈ Σw we say that w is the arity of R. When f ∈ Σw,A we say that w
is the arity of f and A is the result sort of f . If L = (S,≤, Σ) and L′ = (S,≤, Σ′)
are such that for each w and A, Σw ⊆ Σ′

w and Σw,A ⊆ Σ′
w,A we say that L′ is

an expansion of L, and that L is a reduct of L′.
Following standard usage, a function symbol a ∈ Σ〈〉,A, taking no arguments,

is referred to as a “constant” of sort A, and in concrete syntax we write simply
a instead of a().

The connected components of an ordering (S,≤) are the equivalence classes for
the equivalence relation generated by ≤. A signature L = (S,≤, Σ) is coherent
if each pair of sorts in the same connected component has an upper bound.
Henceforth we assume that our signatures are coherent. See [8] for an extended
discussion of the importance of coherence. Note: in [8] the notion of coherence
also requires that signatures be regular, a technical condition that is trivially
satisfied in the absence of overloading.

The set of formulas is defined inductively by closing the set of atomic formulas
under the propositional operators ∧, ∨, and ¬ and the quantifiers ∃ and ∀. We
will indicate quantification over a sorted variable x ∈ XA by ∃xA or ∀xA (where
XA is the set of variables of sort A). The notions of free and bound variable are
standard; let FV (ϕ) denote the set of free variables of formula ϕ. A sentence is
a formula with no free variable occurrences.
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Models. Fix a signature L = (S,≤, Σ). An L-model M comprises (i)
an S-sorted family {MA | A ∈ S} of sets, the universe of M, such that
A ≤ A′ implies MA ⊆ MA′ , (ii) for each R ∈ Σw a relation RMw ⊆ Mw,
and (iii) for each f ∈ Σw,A a function fMw,A : Mw →MA.

As described in the introduction, the first step in investigating the finite model
property for a sentence is Skolemization, the process of eliminating existential
quantifiers in favor of function symbols. As a consequence we need to be attentive
to the ways that the language over which our models are defined can shift. If M
is a model for L = (S,≤, Σ) and L′ is an expansion of L then an expansion of
M to L′ is a model of L′ with the same universe as M which agrees with M on
the symbols in Σ.

An environment η over a model M is an S-indexed family of finite functions
{ηA : XA →MA | A ∈ S} such that ηA = (ηA′)�XA (the restriction to XA)
whenever A ≤ A′. An environment η can be extended to terms in the usual
way. When M is a model, ϕ a formula, and η an environment such that
FV (ϕ) ⊆ dom(η) the relation M |=η ϕ is defined by the usual induction.

Homomorphism. A homomorphism h : M → N between models M and
N is an S-sorted family of functions {hA : MA → NA | A ∈ S} satisfying
the following conditions (suppressing sort information for readability): (i)
A ≤ A′ implies hA = (hA′) �MA (ii) h(fM(a1, . . . , an)) = fN(h(a1), . . . , h(an)),
and (iii) RM(h(a1, . . . , an)) implies RN(h(a1), . . . , h(an)).

The Term Model. When the set of relation symbols in L is empty then the set
of ground terms forms the universe of a model for L, the term algebra [8]. We
may view this as a model for an arbitrary order-sorted signature, as follows.

Fix L = (S,≤, Σ). The family {TL
A | A ∈ S} of ground terms over L is the

⊆-least family such that (i) TL
A ⊆ TL

A′ whenever A ≤ A′ and (ii) if f ∈ Σw,A

with w = A1 . . . An and for each i, ti ∈ TL
Ai

then f(t1, . . . , tn) ∈ TL
A . The

ground terms determine a model TL of L, the term model, by taking the
interpretation of each f ∈ Σ〈A1...An〉,A to be the function taking each tuple

(t1, . . . , tn) ∈ (TL
A1

× · · · × TL
An

) to the term f(t1, . . . , tn), and taking the
interpretation of each relation symbol to be the empty relation.

Theorem 1. Suppose L = (S,≤, Σ) is a signature such that Σ has no relation
symbols. Then for any model M of L there is a unique homomorphism from TL

to M (i.e., TL is initial).

Proof. Initiality of TL in the category of algebras was shown by Goguen and
Meseguer [8]. Now, given an L-model M, we let M′ be the reduct of M to
the language L′ obtained by removing the relation symbols. So M′ is a L′-
algebra so that Goguen and Meseguer’s theorem applies. But the unique algebra
homomorphism from TL toM′ is itself a L-homomorphism from TL toM, simply
because each TL-relation is empty, and the result follows.
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5 Skolemization

A formula is in negation-normal form if the negation sign is applied only to
atomic formulas. As for standard one-sorted logic, DeMorgan’s laws for pushing
negations below ∧ and ∨, and the equivalences between ¬∃xAα and ∀xA¬α all
hold, even in the presence of empty sorts. So every formula is logically equivalent
to a formula in negation normal form. But the fact that models can have empty
sorts changes the rules for how quantifiers may be moved within a formula. In
particular the passage between ((∃xAα) ∨ β) and ∃xA(α ∨ β) (when x is not
free in β) does not hold if A can be empty (and of course the dual equivalence
involving ∀ fails as well) and so we cannot in general percolate quantifiers to
the front of a formula. So we cannot restrict our attention to formulas in prenex
normal form, but we will always pass to negation-normal form.

Definition 2 (Skolemization). Let ϕ be a negation-normal form formula over
signature L = (S,≤, Σ); the result of a Skolemization-step of ϕ is any formula
ϕ′ that can be obtained as follows. If ∃xA.ψ(xA, xA1

1 , . . . , xAn
n ) is a subformula

occurrence of ϕ that is not in the scope of an existential quantifier, let f be a
function symbol not in Σ, and let ϕ′ be the result of replacing the occurrence of
∃xA.ψ(x, x1, . . . , xn) by ψ(f(x1, . . . , xn), x1, . . . , xn). Note that ϕ′ is a formula
in an expanded signature obtained by adding f to Σ〈A1,...,An〉,A.

A Skolemization of a formula ϕ is a sentence with no existential quantifiers,
obtained from ϕ by a sequence of such steps.

The following lemma is straightforward.

Lemma 3. For any σ we have σsk |= σ.

In contrast to the classical case we do not have the fact that “σ satisfiable implies
σsk satisfiable.” That holds in one-sorted logic because we can always expand a
model of σ to properly interpret the Skolem functions and make σsk true, but
this expansion is not always possible in the presence of empty sorts.

Example 4. Let σ be (∃xA . (x = x) ∨ ∃yB . (y = y) ) ∧ (∀zA . (z �= z)). Then σ
is satisfiable but its Skolemization ((a = a) ∨ (b = b)) ∧ (∀zA . (z �= z)) is not.

The phenomenon in Example 4 is essentially the only thing that can go wrong:
models can be expanded to interpret Skolem functions if we do not existentially
quantify over empty sorts. This points the way to recovering a weak version of
the classical equi-satisfiability result which will be good enough for our present
purposes.

Lemma 5. If σ is satisfiable then there exists a formula σ⊥ such that (i) σ⊥ |= σ
and (ii) σ⊥sk is satisfiable.

Proof. Suppose M |= σ. The sentence σ⊥ is obtained by replacing ∃xA . α by ⊥
precisely when MA = ∅. It is straightforward to see that σ⊥ |= σ. Since in σ⊥
there is no existential quantification over sorts empty in M one can show that
there is an expansion M∗ of M to the signature of σ⊥sk such that M∗ |= σ⊥sk.
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6 A Finite Model Theorem for Order-Sorted Logic

Model M is a submodel of model N if (i) for each sort A, MA ⊆ NA and (ii) each
fM and RM are obtained as the restrictions of fN and RN to M. Note that we
use “submodel” in this strong sense rather than just requiring each RM to be a
subset of RN (as is done by some authors).

If X = {XA | A ∈ S} is a family of sets with XA ⊆ MA for each A ∈ S then
we say that X is closed under a function g : MA1×· · ·×MAn →MA if whenever
(a1, . . . , an) ∈ XA1 × · · · ×XAn we have g(a1, . . . , an) ∈ XA. Note that this is a
stronger claim than saying that the single set

⋃
X is closed under g.

Lemma 6. Let h : P→M be a homomorphism between models of L = (S,≤, Σ).
There is a unique submodel of M with universe {hA(PA) | A ∈ S}.

Proof. It is easy to check that the family {hA(PA) | A ∈ S} is closed under the in-
terpretations inM of the function symbols inΣ. So if we define the interpretations
of the relation symbols in Σ to be the restriction of the interpretations in M the
result is a submodel. Since there is no choice in the interpretations of the symbols
in Σ once the universe {hA(PA) | A ∈ S} is determined, uniqueness follows.

Next we establish the fundamental fact about preservation of universal sentences
under submodel. The proof is a straightforward induction.

Theorem 7. Let σ be a sentence that is existential-free and in negation-normal
form and let M′ be a submodel of M. If M |= σ then M′ |= σ.

Definition 8 (The kernel of a model). Let M be a model for the signature
L = (S,≤, Σ). Let h be the unique homomorphism from TL to M (c.f.
Theorem 1). The image of h is a submodel of M by Lemma 6; this is the kernel
of M.

The crucially important fact for us is that for the kernel K of M we have, for
each sort A, the cardinality of KA is bounded by the cardinality of TL

A , simply
because KA is the image of TL

A under h.

The kernel and the Skolem hull Recall the classical treatment of Skolemization
(see e.g., [4]): given a model M, let M∗ be a model interpreting the Skolem
functions that satisfies the Skolem theory (the sentences saying that the Skolem
functions witness the truth of the associated existential formula). Then given a
subset X of the universe of M, the Skolem hull HM(X) is the smallest subset of
the universe containing X and closed under the functions and constants of the
enriched language; this determines an elementary submodel HM(X) of M∗. In
particular HM(∅) can be viewed as a “minimal” submodel of M.

But in the order-sorted setting, the kernel of a model is not in general the
same as the Skolem hull. The latter notion, although perfectly sensible in order-
sorted logic, does not play the same role of “minimal” submodel as it does in
the one-sorted setting. Indeed it is possible for the kernel of a model to be finite
while the Skolem hull is infinite.
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Example 9. Consider L = ({A,B}, ∅, Σ) with a ∈ Σ〈〉,A and f ∈ ΣB,B the only

vocabulary symbols. Let M have MA = {b0 = aM}, MB = {b0, b1, b2, . . .}, and
fM map bi to bi+1. Then the Skolem hull H(∅) of M is M itself. Yet the kernel
K of M is the model of size 1 with KA = {b0}, KB = ∅, fK = ∅.

Here we present our main theorem.

Theorem 10. Let σ be an L-sentence whose Skolemization σsk has signature
L∗. Then σ is satisfiable if and only if σ has a model H such that for each sort
A, the cardinality of HA is no greater than the cardinality of TL∗

A .

Proof. For the non-trivial direction, suppose σ is satisfiable. By Lemma 5 there is
an approximation σ⊥ of σ such that σ⊥sk is satisfiable. Let L∗∗ be the signature
for σ⊥sk; note that L∗∗ is a reduct of L∗ and the sentence (σ⊥)sk is existential-
free.

Let M be a model of (σ⊥)sk, and let H be the kernel of M. Since (σ⊥)sk is
existential-free, H |= (σ⊥)sk. Since H is a kernel we have that for each sort A,
the cardinality of HA is no greater than the cardinality of TL∗∗

A , and thus no
greater than the cardinality of TL∗

A . Since (σ⊥)sk |= σ⊥ and σ⊥ |= σ, the model
H is the desired model of σ.

Finally we can define precisely the key notion of the paper.

Definition 11. Order-Sorted Effectively Propositional Logic (OS-EPL) is the
class of sentences σ such that the signature of the Skolemization of σ has a finite
term model.

The next section shows how to decide whether a sentence is in OS-EPL and if
so, to compute the sizes of the sorts in the term model. Taken together with
Theorem 10, this establishes a decision procedure for satisfiability of OS-EPL
sentences.

7 Algorithms

Let L = (S,≤, Σ) be a signature. We say that sort A is finitary in L if TL
A is

finite. Our membership algorithm reduces the problem of counting terms to one
of asking whether a given context-free grammar yields only a finite number of
strings; well-known algorithms solve the latter problem. Intuitively, the grammar
captures the ground terms that can be generated from the signature.

Definition 12. Given a signature L = (S, Σ,≤) with multiple sorts, we define
a grammar GL as follows. The set of nonterminals is S ∪ {A0}, where A0 is a
fresh symbol not in S, the set of terminals is

⋃
{Σw,S | (w, s) ∈ S∗ × S}, and the

set of productions comprises:

A0 → A for each A ∈ S

B → fA1 . . . An whenever f ∈ Σ〈A1...An〉,B
B → A whenever A ≤ B
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A non-terminal X in a context-free grammar G is said to be useful if there exists
a derivation A0 ⇒∗ αXβ ⇒∗ u where u is a string of terminals, otherwise X is
useless. If A is a useful non-terminal and u is a string of terminals we say that
A generates u if there is a derivation A =⇒∗ u.

Lemma 13. Let A be a sort of L and let u be a string of terminals over⋃
{Σw.S | (w, s) ∈ S∗ × S}. Then u is a term in TL

A if and only if there is a
derivation A⇒∗ u in GL. A sort A is inhabited by a ground term if and only if
A is useful in the grammar GL. When A is useful as a sort in L(GL), the set
TL
A is finite if and only if A generates only finitely many terms in L(GL). In

particular the set TL is finite if and only if L(GL) is finite.

Proof. The first claim is easy to check: it holds essentially by the construction of
GL. The second claim follows from the first and the facts that the u in question
are strings of terminals of GL and we have A0 ⇒ A for each A ∈ S.

Theorem 14. There is an algorithm that, given an order-sorted signature L,
determines (uniformly) for each sort A, whether TL

A is finite. The algorithm
runs in time linear in the total size of L.

Proof. By Lemma 13, TL
A is finite if and only if A generates only finitely many

terms in in L(GL). There is a well-known algorithm for testing whether a non-
terminal in a context-free grammar generates infinitely many terminal strings:
after eliminating useless symbols from the grammar GL, form the graph whose
nodes are the inhabited sorts, with an edge from B to A if and only if there
is a production in GL of the form B → α A β, that is, if and only if the set
Σ〈A1...A...An〉,B is non-empty or if A ≤ B. Then a non-terminal A generates
infinitely many terminal strings if and only if there is a path from A to a cycle.
Since the size of GL is linear in the size of L, the overall complexity of our
algorithm is linear in L.

Example 15. Return to Equation 1 from Section 2.. After Skolemizing we have
the signature with b ∈ Σ〈〉,B and f ∈ ΣA,B in addition to those constants in
the original signature. It is easy to check that the graph constructed for this
signature has edges from the node A0 to A and to B, and an edge from B to A.
This graph is acyclic so we conclude that this class of sentences has the finite
model property. On the other hand, if we were to postulate that B ≤ A (instead
of A ≤ B) then we cannot deduce the finite model property, since our grammar
would have the production A→ B in addition to B → A and the resulting graph
would have a cycle.

Corollary 16. Membership in OS-EPL is decidable in linear time.

Proof. Let σ be given, over signature L. We can compute the skolemization σsk

of σ in linear time, and extract the signature L∗ of σsk. The size of this signature
is clearly linear in σ, so by Theorem 14, we can decide whether all sorts of L∗

are finitary in time linear in σ.
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Note that in the worst case, Σ may induce a number of terms exponential in
its size. Thus we would like to avoid actually generating the terms, and merely
count them if we can do so in polynomial time.

Theorem 17. There is an algorithm that, given a signature L, computes, in
time cubic in the size of L, the size of TL

A for each finitary sort A (returning
“∞” for the non-finitary sorts).

Space does not permit a full presentation of the algorithm: see [17] for the details.
Intuitively, if a sort is finitary, its terms can be of height no greater than the
number of functions in Σ. So we construct a table containing the number of
terms of each height of each sort, starting with constants and then applying
functions. The only complication is that when counting the ways to create a
new term of height h using function f , we need to make certain that each has at
least one subterm of height exactly h− 1. The algorithm is implemented using
dynamic programming, and the cubic bound is straightforward to establish.

Summarizing, we have the following sound and complete procedure for testing
satisfiability of OS-EPL sentences. Given sentence σ, compute its Skolemization
σsk; let L∗ be the signature of σsk. If the term model TL∗ is finite then we
know that if σ is satisfiable then σ has a model whose universe has cardinalities
as given in Theorem 10. Since these bounds are computable we can effectively
decide satisfiability for such sentences.

Remark 18. The results of the algorithm in Theorem 17 can be useful even
if not all sorts are finitary. Fontaine and Gribomont [6] have implemented
an instantiation-based algorithm that takes advantage of the information that
certain sorts are guaranteed to have finitely many ground terms. Their algorithm
does not do a sophisticated test for this condition, in fact it succeeds only if there
are no non-constant terms in the sort in question. Our algorithm here is simple
yet will allow their methods to be applicable to a wider class of sentences.

8 Future Work

This work suggests two major lines of further inquiry. The first is the exploration
of algorithms for working with OS-EPL sentences that are efficient in practice.
A natural approach is to leverage insights from existing tools for model-finding
and theorem-proving that are currently optimized for the traditional EPL class.
The other direction is to pursue a program of classifying fragments of order-
sorted logic according to decidability. Abadi et al. [1] suggest a taxonomy based
on quantifier prefix patterns but, as pointed out in the introduction, prenex-
normal form is not available when sorts are allowed to be empty. We propose
that a combinatorial analysis of the signature of Skolemizations of sentences is
the proper generalization of the analysis of classical quantifier prefix classes.
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Abstract. The declarative and relational aspects of Alloy make it a
desirable language to use for high-level modeling of transition systems.
However, currently, these models must be translated to another tool to
carry out full temporal logic model checking. In this article, we show how
a symbolic representation of the semantics of computational tree logic
with fairness constraints (CTLFC) can be written in first-order logic with
the transitive closure operator, and therefore described in Alloy. Using
this encoding, the question of whether a declarative model of a transition
system satisfies a temporal logic formula can be solved using the Alloy
Analyzer directly. Also, since a declarative description of a model may
actually represent a family of transition systems, we define two distinct
model checking questions on this family (existential and universal model
checking) and show how these properties can be evaluated in the Alloy
Analyzer.

1 Introduction

The process of model-driven engineering [1] promises many benefits for the use
of models early in the development process; in general, the earlier that quality
models are created, the fewer errors there will be to discover later in the process.
A modelling language used early in the design process must be able to handle the
lack of details available at this point in the project. Therefore, it must be able
to express concepts that are abstract. However, if we wish to provide analysis
support for these models to increase their quality and utility, we must be able
to express the models precisely. Languages such as Alloy [2], B [3], Z [4], and
ASMs [5] have many features to express abstract concepts (e.g., sets, relations,
and functions) without sacrificing precision. Abstract models are usually declar-
ative, meaning they are described as a set of constraints and do not necessarily
have an operational semantics.

We are interested in the problem of analyzing temporal properties of declar-
ative models. Chang and Jackson added finite relations and functions to a
traditional state-based specification of a transition system, and developed a
BDD-based model checker that analyzed these models against computational
tree logic (CTL) specifications [6]. Del Castillo and Winter provided model
checking support for a transition system specified as an Abstract State Ma-
chine (ASM) [5], via the translation of a class of ASMs to SMV by restricting
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the range of functions to finite sets [7]. ProB [8] is a tool for analyzing finite B
machines, in particular, simulation and model checking against linear temporal
logic (LTL) specifications. Within Alloy, it is fairly straightforward to specify
a transition relation and then iterate it to check bounded duration temporal
properties [9]. None of these approaches allow us to check a full set of temporal
properties against a fully declarative model of a transition system.

Describing the traditional representation of the semantics of a temporal logic
with respect to a single transition system and state in first order logic is not
possible because of the need for quantification over paths (a second order op-
erator). Thus, using constraint-based first-order solvers for model checking has
remained elusive. Immerman and Vardi encoded the semantics of CTL and CTL*
in first order logic with transitive closure FO(TC) [10]. Their semantics has the
important property that the use of transitive closure replaces the need for quan-
tification over the paths. Our first contribution in this paper is to show that a
variant of Immerman and Vardi’s encoding can be used to encode CTL with
fairness constraints (CTLFC) in the Alloy language. We use this symbolic en-
coding to create a CTLFC model checker for finite scope declarative models of
transition systems directly in the Alloy Analyzer. The model checking problem
is turned into a constraint solving problem. Compared to Immerman and Vardi,
our encoding is linear in the size of the model, whereas in theirs the encoding
requires an exponential increase in the size of the model with respect to the
size of the temporal logic formula. We validate the simplicity and utility of our
approach through several examples of model checking temporal logic properties
of declarative models in the Alloy Analyzer.

All related work described earlier on model checking declarative models has
focused on a specification of a single transition relation (possibly with non-
determinism) that uses declaratively constrained relations and functions to de-
scribe the system’s behavior. In our work, the transition systems are specified
in a fully declarative language, therefore, it may be the case that the model
describes a family of transition relations. For example, the declarative specifi-
cation “every state must reach a state that is reachable from itself” specifies
more than one transition system even with 2 states: It is therefore possible to

consider multiple questions about how a family of transition relations satisfies a
temporal property. In this paper, we consider two questions: 1) Universal model
checking: Do all the transition relations in the family defined by the declarative
model satisfy the temporal property? 2) Existential model checking: Is there a
transition relation in the family defined by the declarative model that satisfies
the temporal property?

These questions are important in different scenarios; e.g., the first question is
relevant for black-box verification: verifying a system by using the specifications
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of its subsystems rather than their implementation details. In this case, a user is
interested in checking whether the system satisfies certain properties no matter
how the subsystems are implemented. The second question is relevant when
details to be added in the future will constrain the transition relation of interest.
In this case, a user needs to know whether the abstract model can be extended
into a more detailed model that satisfies the property.

Our second contribution in this paper is to show that these two distinct ques-
tions can be described as consistency problems in the Alloy Analyzer for finite
scope declarative models. We show several examples that demonstrate the rele-
vance of these two questions for abstract modeling.

2 Background

In this section, we provide a brief overview on temporal logic model checking
and Alloy.

2.1 Temporal Logic Model Checking

Temporal logic model checking is a decision procedure for checking whether a
transition system satisfies a temporal logic specification [11]. A transition sys-
tem is a finite directed graph with a labeling function that associates a set of
propositional variables to each vertex. A vertex represents a state of a system,
and the propositional variables that it is labeled with represent the values of
the variables in that particular state. An edge between two vertexes represents
a transition from one state to another.

Definition 1. Transition System: The transition system TS is a five tuple,
TS = (S, S0, σ, P, l), where: S is a finite set of states; S0, the set of initial states,
is a non-empty subset of S; σ, the transition relation, is a total binary relation
over S; P is a finite set of atomic propositions; l, the labeling function, is a total
function from S to the power set of P .

A computation path starting at s where s ∈ S is a sequence of states, s0 → s1 →
. . . such that s0 = s and ∀i ≥ 0 : σ(si, si+1).

A specification is a set of temporal logic formulas. A temporal logic, such as
CTL or CTLFC [11], has logical connectives for specifying properties over the
computation paths of a transition system. Equation 1 represents the grammar
for a complete fragment of CTL:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ| EGϕ | ϕEUϕ , where p ∈ P (1)

The satisfiability relation for CTL, |=, is used to give meaning to formulas. The
notation TS, s |= ϕ denotes that the state s of the transition system TS satisfies
the property ϕ and TS, s �|= ϕ is used when TS, s |= ϕ does not hold. The
relation |= is defined by structural induction on ϕ:
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Definition 2. Semantics of CTL

TS, s |= p iff p ∈ l(s)
TS, s |= ¬ϕ iff TS, s �|= ϕ
TS, s |= ϕ ∨ ψ iff TS, s |= ϕ or TS, s |= ψ
TS, s |= EXϕ iff ∃s′ ∈ σ(s) : TS, s′ |= ϕ
TS, s |= EGϕ iff there exists a path starting at s, s0 → s1 → . . . , such

that for all i’s TS, si |= ϕ.
TS, s |= ϕEUψ iff there exist a j and a path, s0 → s1 → . . . , starting

at s such that TS, sj |= ψ and for all i less than j
TS, si |= ϕ.

The transition system TS satisfies the CTL formula ϕ, denoted by TS |= ϕ, if
and only if for all s0 ∈ S0 we have TS, s0 |= ϕ.

The syntax of a complete fragment of CTLFC is the same as Equation 1 with
the addition of one connective, ECG. In this connective, C is a finite set of
formulas, fairness constraints, which is used to define a fair computation path.
The computation path s0 → s1 → . . . is fair with respect to C = {ψ1, ..., ψn}
iff:

∀ψ ∈ C : {i | TS, si |= ψ} is infinite.

The semantics of CTLFC is same as Definition 2 along with the semantics of
ECG:

TS, s |= ECGϕ iff there exists a fair computation path starting at s,
s0 → s1 → . . . , such that for all i’s TS, si |= ϕ.

If X is a subset of S, then σX denotes the transition relation σ when its domain
is restricted to X :

σX(s1, s2) iff σ(s1, s2) ∧ s1 ∈ X

In this article, ^ denotes the transitive closure operator; for example, ^σX is the
transitive closure of the relation σX . Notice that ^σX is ^(σX) and not (^σ)X ;
in other words, the bounding operator has higher precedence over the transitive
closure operator. Similarly, ∗ denotes the reflexive transitive closure operator.

2.2 Alloy

Alloy is a lightweight declarative relational modeling language that has static
type checking [2]. The logic that Alloy provides for modeling is first-order logic
with the transitive closure operator. An Alloy model consists of a set of decla-
rations, which specify the sets, relations, and functions in a model, and a set of
constraints, which are logical formulas. In general, first-order logic is undecid-
able; as a result, automatic consistency checking of Alloy models is not possible.
The Alloy Analyzer, the main analysis tool for Alloy models, provides finite scope
analysis: a user is required to fix the size of the sets in the model to constant
numbers and then, the Alloy Analyzer translates the model to a propositional
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CNF formula, which is then handed to a SAT solver for consistency checking.
By fixing the sizes of the sets in an Alloy model, the Alloy Analyzer evaluates
a model for consistency using the run command and validity using the check

command. Figure 1 is a simple Alloy model of a transition system with tran-
sition relation sigma, and its only valid instance with four states is presented
in Figure 2, where the vertexes represent the states, edges represent the transi-
tions, and the labeling function is indicated by labeling the vertexes. In Figure 1,
Lines 3-4, S is a set, sigma and l are functions that map each element of S to a
subset of S, and to a subset of P respectively. Lines 1-2 are definitions of three
sets, P,p,q, where p and q are singleton subsets of P. The keyword abstract is
used to specify that every element of P belongs to one of its subsets. The result
of this declaration is P={p,q}. The fact block is used to specify the constraints
that need to be satisfied by the entities in this model.

1 abstract sig P {}

2 one sig p,q extends P {}

3 sig S { sigma: some S,

4 l: set P}

5 one sig S0 extends S {}

6 fact{ all s1,s2:S |

7 s1->s2 in sigma iff

8 (s1.l !in s2.l or s1=s2)

9 S0.l = P}

Fig. 1. A simple transition system in Alloy

{p}

{q}

{p,q} {}

Fig. 2. A valid instance of Figure 1

3 Translating CTLFC to FO(TC)

Immerman and Vardi show how CTL and CTL* can be encoded in FO(TC) [10].
Their encoding of CTL* requires the introduction of Boolean variables into the
model for every sub-formula, and as a result, the number of states of a transition
system increases exponentially with respect to the size of the formula. They
hypothesize that a symbolic model checking algorithm based on their encoding
may be faster than previous approaches [11], however, they do not provide any
implementation of their idea.

In this section, we present our translation of CTLFC to FO(TC) with a similar
approach to that of Immerman and Vardi. We chose CTLFC for three reasons:
1) unlike CTL*, the encoding of CTLFC in FO(TC) does not increase the size of
a transition system, 2) it is more expressive than CTL, 3) LTL model checking
can be reduced to CTLFC model checking1 [12].

Our general idea for temporal logic model checking in Alloy is to use the
(reflexive) transitive closure operator to specify the necessary and sufficient con-
ditions for the set of states that satisfy a property. The closure operator is used

1 This translation increases the size of a transition system.
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to specify the reachability relation, which is not expressible in first-order logic.
We define an operator, [ ], that takes a formula as input and outputs a symbolic
representation of the set of states that satisfy the input formula. This operator is
defined recursively in Definition 3. The key difference from the work of Immer-
man and Vardi is that each formula can be defined directly; support for CTL*
would require the introduction of a new Boolean variable into the transition
system for each sub-formula of the property.

Definition 3. Translation Operator: Let TS = (S, S0, σ, P, l) be a transition
system and C = {ψ1, ψ2 . . . , ψn} a set of fairness constraints. The operator [ ]
takes a CTLFC formula, and produces a subset of S:

1. [p] = {s ∈ S| p ∈ l(s)}
2. [¬ϕ] = {s ∈ S| s �∈ [ϕ]}
3. [ϕ ∨ ψ] = [ϕ] ∪ [ψ]
4. [EXϕ] = {s ∈ S| ∃t ∈ [ϕ] : σ(s, t)}
5. [ϕEUψ] = {s ∈ S| ∃t ∈ [ψ] : ∗(σ[ϕ])(s, t)}
6. [EGϕ] = {s ∈ S| ∃t ∈ [ϕ] : ∗(σ[ϕ])(s, t) ∧ ^(σ[ϕ])(t, t)}
7. [ECGϕ] = {s ∈ S| ∃t ∈ [ϕ], ∃u1 ∈ [ψ1], ∃u2 ∈ [ψ2], . . . , ∃un ∈ [ψn] :

∗(σ[ϕ])(s, t) ∧ ^(σ[ϕ])(t, t)∧
∗(σ[ϕ])(t, u1) ∧ ∗(σ[ϕ])(u1, u2) ∧ · · · ∧ ∗(σ[ϕ])(un−1, un) ∧ ∗(σ[ϕ])(un, t)}

Theorem 1. Let TS = (S, S0, σ, P, l) be a transition system, C a set of fairness
constraints, ϕ a CTLFC formula, and [.] the operator defined in Definition 3.
We have:

[ϕ] = {s ∈ S| TS, s |= ϕ}

Theorem 1 is proven by structural induction on ϕ. The proof is straightforward
for the first six cases. The definition of [ECGϕ] is based on the model checking
algorithm of ECG that finds the strongly connected components (SCCs) in a
transition system. The state t in the definition of [ECGϕ] is a state that belongs
to a SCC that includes a state satisfying each fairness constraint ψi. Due to
space restrictions, the details of the proof of this theorem are available on-line2.
A simple yet useful corollary of Theorem 1 is the following:

Corollary 1. Let TS = (S, S0, σ, P, l) be a transition system, C a set of fairness
constraints, ϕ a CTLFC formula, and [ ] the operator defined in Definition 3.
We have:

TS |= ϕ iff S0 ⊆ [ϕ]

4 Model Checking in Alloy

In this section, we write Definition 3 using Alloy’s syntax to create an operator
that takes a CTLFC formula, a transition system, a set of fairness constraints
and produces the set of states that satisfy the CTLFC formula. The operator,

2 http://www.cs.uwaterloo.ca/~avakili/projects/

http://www.cs.uwaterloo.ca/~avakili/projects/
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SET(ϕ,TS,C), takes a CTLFC formula, ϕ, a transition system, TS, and a
set of fairness constraints, C as input, and produces the subset of states that
satisfies the CTLFC formula. The algorithm implemented by this operator visits
each sub-formula only once, and as result, it is linear with respect to the size of
the CTLFC formula and the fairness constraints. This algorithm is presented in
Figure 4, and it uses three helper functions, bound, id, and loop. Each one is
described using the equivalence symbol, ≡, and their corresponding Alloy code
is given in Figure 3. Intuitively, bound[R,X] is a subset of R when its domain
is restricted to X; id[X] is the identity relation over X; loop[R] is a subset of
states that are reachable from themselves through R.

bound[R,X]≡
{(x, y) ∈ R| x ∈ X}
fun bound[R:S->S,X:S]

:S->S{ X <: R}

id[X]≡
{(x, x)| x ∈ X}
fun id[X:S]

:S->S{bound[iden,X]}

loop[R]≡
{s| (s, s) ∈ ^R}
fun loop[R: S->S]

:S{S.(^R & iden)}

Fig. 3. Helper functions

SET(ϕ,TS,C):

case ϕ of
1) p -> l.p
2) ¬ϕ -> S - SET(ϕ,TS,C)

3) ϕ ∨ ψ -> SET(ϕ,TS,C) + SET(ψ,TS,C)

4) EXϕ -> σ.SET(ϕ,TS,C)

5) ϕEUψ -> (*bound[σ,SET(ϕ,TS,C)]).SET(ψ,TS,C)

6) EGϕ -> let R=bound[σ,SET(ϕ,TS,C)] | (*R).loop[R]
7) ECGϕ -> let R=bound[σ,SET(ϕ,TS,C)],

ids1=id[SET(ψ1,TS,C)], . . . , idsn=id[SET(ψn,TS,C)] |
(*R).(loop[R]&loop[(*R).ids1.(*R).ids2.(*R). . . . .(*R).idsn.(*R)])

Fig. 4. Translation algorithm where C = {ψ1, . . . , ψn}

According to Corollary 1, in order to check if TS |= ϕ with respect to the
fairness constraints C in Alloy, we add the constraint in Equation 2 to the model
as an assertion and check its validity.

S0 in SET (ϕ, TS,C) (2)

Example 1. In order to check whether the Alloy model of Figure 1 satisfiesECGp,
where C = {q,¬q}, the Alloy code of Figure 5 is added to the model and the Alloy
Analyzer is used to check for the validity of the assertion. In Figure 1, the definition
of operator SET has been expanded to create the assertion. Since this property
is not satisfied, the Alloy Analyzer outputs Counterexample found. Assertion

is invalid; similarly, for model checking of the Alloy model of Figure 1 against
pEUq, the Alloy code of Figure 6 is used, and the Alloy Analyzer outputs No

counterexample found. Assertion may be valid.
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1 assert CTLFC_MC_1 {

2 let R=bound[sigma ,l.p], ids1=id[l.q], ids2=id[S-l.q]|

3 S0 in (*R).(loop[R]&loop [(*R).ids1 .(*R).ids2 .(*R)])}

4 check CTLFC_MC_1 for exactly 4 S

Fig. 5. Model checking ECGp where C = {q,¬q}

1 assert CTLFC_MC_2 {let R=bound[sigma ,l.p]| S0 in (*R).(l.q)}

2 check CTLFC_MC_2 for exactly 4 S

Fig. 6. Model checking pEUq

To make model checking in Alloy easy and accessible, we wrote parameterized
Alloy modules so that users can import the definitions of the temporal logic oper-
ators. The parameter of these modules is the set of states. We have two modules,
ctl for model checking CTL, and ctlfc for model checking CTLFC. Since the
number of fairness constraints is not fixed, a user needs to change some parts
of the ctlfc module, which can be done easily. The universal path quantifiers,
AX, AG, AU, ACG, have been defined in terms of the existential operators. The
following example uses the ctlfc module. These module are available on-line3.

Example 2. Figure 7 is an Alloy model of a binary counter. The State space
of this transition system is defined by 3 BINary variables, input, d1, and d2.
Lines 3-5 define the set BIN={ZERO,ONE} and the negation of a bit function,
comp. This model has two fairness constraints, C = {d1,¬d2}, which is modeled
in Line 7. Lines 8-9 state that if the variables of two states are equal, then
those states are equal. Line 10 defines the initial States of the system, and
Lines 11-14 define the transition relation, nextState. Since we are interested in
CTLFC model checking, the ctlfc module is imported having the set of States
as its parameter, Line 2. Suppose, we want to check that whenever d1 is zero, it
will eventually become one. By using the temporal connectives of CTLFC from
the ctlfc module, the property can be written as in Lines 15-16, and the Alloy
Analyzer concludes the model checking problem, CTLFC MC is valid.

5 Model Checking Classes of Transition Systems

A satisfiable Alloy model may have more than one valid instance. This is common
when constraints that are used to model a system are not strong enough to
uniquely identify the transition system; for example, Figure 8 is an Alloy model
of a transition system that has more than one valid instance, namely those in
Figures 9-10. Each valid interpretation represents a different transition system;
as a result, the Alloy model represents a class of transition systems rather than
a single system.

3 http://www.cs.uwaterloo.ca/~avakili/projects/

http://www.cs.uwaterloo.ca/~avakili/projects/
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1 module binary_counter

2 open temporal_logics /ctlfc[State]

3 abstract sig BIN{}

4 one sig ZERO , ONE extends BIN {}

5 fun comp[b:one BIN]:one BIN{ b=ZERO implies ONE else ZERO }

6 sig State{ input , d1, d2: BIN }

7 fact { fc1=d1.ONE and fc2=d2.ZERO

8 all s,s’:State|s.input=s’. input and s.d1=s’.d1 and

9 s.d2=s’.d2 implies s=s’

10 initialState = (d1.ZERO & d2.ZERO)

11 all s,s’:State| s’ in nextState [s] iff

12 s.input=ZERO implies (s’.d1=s.d1 and s’.d2=s.d2)

13 else(s’.d1=comp[s.d1] and

14 (s.d1=ZERO implies s’.d2=s.d2 else s’.d2=comp[s.d2]))}

15 assert

16 MC{CTLFC_MC [ACG[implies_ctlfc [d1.ZERO ,ACF[d1.ONE ]]]]}

17 check MC

Fig. 7. Model checking ACG(¬d1 = 0 → ACF d1 = 1), where C = {d1,¬d2}, for a
binary counter

This observation is formalized as follows: the model D represents a class of
transition systems, CTS(D):

CTS(D) = {TS | TS is a transition system satisfying the constraints in D}
(3)

In Equation 3, where the model D is considered as a set of transition systems,
two questions can be studied: 1) do all transition systems in CTS(D) satisfy
the specifications? 2) is there a transition system in CTS(D) that satisfies the
specifications? We define two model checking problems for a class of transition
systems that correspond to these questions:

Definition 4. Universal Model Checking: The universal model checking of
the declarative model D and the temporal property ϕ is defined as checking
whether all valid instances of D satisfy ϕ:

D universally satisfies ϕ iff ∀ TS ∈ CTS(D) : TS |= ϕ

We use D |=∀ ϕ to denote that the declarative model D universally satisfies ϕ.

Definition 5. Existential Model Checking: The existential model checking
of the declarative model D and the temporal property ϕ is defined as checking
whether there exists a valid instance of D that satisfies ϕ:

D existentially satisfies ϕ iff ∃ TS ∈ CTS(D) : TS |= ϕ

We use D |=∃ ϕ to denote that the declarative model D existentially satisfies ϕ.
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1 sig S { sigma: some S, l: set P}

2 abstract sig P {}

3 one sig p,q extends P {}

4 one sig S0 extends S {}

5 fact{ all s1,s2:S | s1.l !in s2.l implies s1->s2 in sigma

6 S0.l = P}

Fig. 8. A simple transition system in Alloy

{p}

{q}

{p,q} {}

Fig. 9. A valid instance of Figure 8
that does not satisfy EGp

{p}

{q}

{p,q} {}

Fig. 10. A valid instance of Figure 8
that satisfies pEUq

The model finding capability of the Alloy Analyzer can be exploited to solve
the universal and existential model checking. The model checking approach de-
scribed in Section 4 solves universal model checking: since we add the constraint
of Equation 2 as an assertion, the Alloy Analyzer checks whether all valid in-
stances of the model, which in this case are transition systems, satisfy the as-
sertion, which is the CTLFC property. If the model D universally satisfies ϕ
(D |=∀ ϕ), the Alloy Analyzer outputs valid; otherwise, a valid interpretation
of D such as TS (TS ∈ CTS(D)) that does not satisfy the constraint of Equa-
tion 2 (TS �|= ϕ) is given as a counterexample.

For existential model checking of model D against the CTLFC formula ϕ,
the constraint of Equation 2 is added to the model as a predicate and the
Alloy Analyzer is used to check for the consistency of the predicate with the
model. If the predicate is consistent with the model, the Alloy Analyzer outputs
a valid interpretation of D such as TS (TS ∈ CTS(D)) that satisfies the con-
straint of Equation 2 (TS |= ϕ); otherwise, the output of the Alloy Analyzer is
inconsistent predicate, which means D �|=∃ ϕ.

Example 3. In order to check whether the class of transition systems defined
by the Alloy model of Figure 8 universally satisfies EGp, the Alloy code of
Figure 11 is added to the model and the Alloy Analyzer is used to check for the
validity of the assertion. Since this property is not satisfied, the Alloy Analyzer
outputs the instance of Figure 9 as a counterexample; similarly, for existential
model checking of the Alloy model of Figure 8 against pEUq, the Alloy code
of Figure 12 is used, and the Alloy Analyzer outputs the transition system of
Figure 10 as a valid instance.
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1 assert MC1{

2 let R=bound[sigma ,l.p]|

3 S0 in (*R).(loop[R])}

4 check MC1 for exactly 4 S

Fig. 11. Universal model checking of
EGp

1 pred MC2[]{

2 let R=bound[sigma ,l.p]|

3 S0 in (*R).(l.q)}

4 run MC2 for exactly 4 S

Fig. 12. Existential model checking of
pEUq

6 Experimental Validation

We completed several examples to show that our method makes it possible to
check CTLFC temporal logic specifications of declarative models in the Alloy
Analyzer, thereby validating the simplicity and utility of our approach. We used
four examples from different domains: 1) the semantics of untyped lambda cal-
culus [13], 2) the address book from Jackson [9], 3) feature interaction (FI)
between call-waiting and call-forwarding, 4) model checking a traffic light con-
troller [14]. These models satisfy their temporal specifications. Our parameter-
ized Alloy modules for CTL and CTLFC hide the details of model checking in
Alloy for a user, so that temporal specifications can be added to models smoothly.
These models are available on-line. We used the Alloy Analyzer 4.2 along with
the MiniSat SAT-solver [15]. The experiments were run on an Intel Core 2 Due
2.40 GHz machine running Ubuntu 10.04 with up to 3G of user-space memory.

Table 1 presents data on the types of properties, type of model checking (uni-
versal/existential), scope size, number of signatures, number of relations, and
the Alloy Analyzer time to check the property. With respect to scalability, we
found that temporal specifications can be analyzed up to the size of the scopes
that non-temporal specifications are often analyzed in Alloy. Thus, our method
is immediately valuable to those who use Alloy for modelling and analysis now
relying on the Small Scope Hypothesis [9]. These models are not as large as
those that can be checked using a model checker such as SMV [14], however, the
declarative and relational aspects of Alloy have significant advantages for creat-
ing abstract, concise models, and we now provide the ability to check temporal
logic specifications directly on small scopes of these models.

Furthermore, the untyped λ-calculus example shows the value of the exis-
tential model checking question. We used existential model checking to gener-
ate a λ-term that does not have a normal form, (λx.xx)(λx.xx), and a term
that has a normal form but not necessarily every reduction path terminates,
(λx.(λx.xx))((λx.xx)(λx.xx)). Since, a result was found for the scope 7, there
was no need to do existential model checking for higher scopes. As this example
suggests, one way of using existential model checking is to generate interesting
instances. In general, existential model checking can help a user to have a better
understanding about a declarative model of a transition system by checking the
existence of specific instances; in other words, existential model checking can be
considered as an approach for “simulating” a declarative transition system.
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Table 1. Experimental results. MC: Model Checking, NS: Number of Signatures, NR:
Number of Relations, SS: Scope Size, min: minute, sec: seconds.

Untyped λ-calculus Address Book Feature Interaction Traffic Light Controller

NS:6, NR:10 NS:5, NR:3 NS:6, NR:10 NS:13, NR:4

SS Time SS Time SS Time SS Time

7 8.22 sec 14 1 min 14 sec 10 14.28 sec 7 4.71 sec
15 2 min 57 sec 11 2 min 7.6 sec 8 36.81 sec
16 9 min 15 sec 12 20 min 51 sec 9 12 min 42 sec
17 13 min 43 sec 13 > 1 hour 10 > 1 hour

Safety, Liveness Safety Safety Safety with fairness

Existential MC Universal MC Universal MC Universal MC

7 Related Work

The orderingmodule of Alloy can be used for bounded model checking of safety
properties. This approach does not support model checking liveness properties
or even safety with fairness constraints. Our approach, which is available as
ctlfc and ctl modules in Alloy, supports much more sophisticated temporal
properties.

A declarative relational modeling language for transition systems has been
proposed by Chang and Jackson [6]. They augment the traditional languages
of model checkers by sets and relations and declarative constructs to specify a
transition system. Their technique is not capable of model checking a class of
models, and suffers from the state-space explosion problem.

B [3] is a modeling language that has many similarities with Alloy. Models
developed in B are called B machines, and the variables used to define the state
space can be sets and relations. ProB [8] is a tool for analyzing finite B machines,
in particular, model checking and automatic refinement checking of B machines.
ProB provides LTL model checking. LTL properties are checked by explicit state-
space search. Since each single state in a B machine represents some sets and
relations, computing the set of the next states of a single state is computationally
very costly. ProB also does not provide model checking for a class of transition
systems.

The Abstract State Machine (ASM) method [5] is for high-level system design
and analysis. The ASM method is used to specify an infinite transition system.
Analysis techniques for the ASM method include theorem proving [16, 17], and
model checking [7], which consists of translating an ASM to SMV by fixing the
size of the scopes in the ASM.

DynAlloy is an extension to Alloy for describing the dynamic properties of
systems by using actions [18]. It provides partial correctness analysis of DynAlloy
models by using the Alloy Analyzer. Our work is concerned with transition
systems and temporal properties.
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Modal transition systems (MTSs) are generalized transition systems that are
mostly used for verification of complex systems by combining over- and under-
approximation for abstraction [19]. In an MTS, a user needs to specify the “must”
transitions, those that are part of a system, and the “may” transitions, the ones
that may become part of the transition system. Determining “must” transitions
requires some analysis of the specification, and discovering how the system must
work. Our approach does not need such an analysis and the systems can be
completely declarative.

8 Conclusion

We have shown that every CTLFC formula can be encoded in first-order logic
plus transitive closure using a similar approach to Immerman and Vardi [10]. Our
encoding does not increase the size of the model, and the translation algorithm
is linear with respect to the size of the CTLFC formula. We have used this
translation to model check transition systems in Alloy by using the constraint
solver of the Alloy Analyzer to similar scopes as are used to check non-temporal
properties.

When an Alloy model of a transition system has more than one valid instance,
it represents a class of transition systems. We have defined two model checking
problems concerning a class of transition systems: 1) universal model checking
(Definition 4) 2) existential model checking (Definition 5); further, we have used
our encoding of CTLFC in Alloy, and the capability of the Alloy Analyzer in
valid instance finding to solve the model checking problems that we have defined.
The scalability of our approach is dominated by the SAT-solver’s capability in
solving constraints.

The declarative aspects of Alloy make it a very suitable language for model-
ing structural aspects of product. We are interested in provided more language
support for specifying declarative models of transition systems to help with the
readability of these models.

The witness (or counterexample) that is produced for existential (universal)
model checking is a transition system; by adding labels for each sub-formula of
the specification to states, a user can see why a witness (or counter-example)
satisfies (does not satisfy) the specification. Developing a post-processor that
takes a transition system generates SMV style counterexamples, which are com-
putation paths, will make our approach more accessible to a non-expert user.

Even though, we do not restrict the length of computation paths in our ap-
proach as is done in bounded model checking [20], bounding the signatures of an
Alloy model results in bounding the states. Bounding the signatures differently
may result in discovering different errors. The relationship between the system
and how its signatures are bounded can be studied to make this approach more
effective for declarative models.
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Abstract. In this paper, we use Alloy Analyzer, a fully automatic
checker, to detect vulnerabilities in the multicast key management proto-
col proposed by Tanaka and Sato, and discover some previously unknown
attacks. We model an active intruder in Alloy, and use Alloy Analyzer
to test whether the active intruder can successfully attack the protocol.
In this analysis, we check four critical properties that should be satisfied
by any secure multicast protocol. However, none of these properties are
satisfied. The protocol cannot resist the active intruder. Two unknown
flaws caused by the active intruder are disclosed, and another two flaws
found by CORAL are identified.

Keywords: Alloy, Multicast Key Management, Active Intruder, Secu-
rity Protocol Analysis.

1 Introduction

In this paper, we describe an application of Alloy [5,6] to the analysis of a
multicast key management protocol proposed by Tanaka and Sato [2]. Our model
of the protocol is constructed in Alloy, which is a modeling method that includes
both a modeling language based on first-order logic, and a tool, called Alloy
Analyzer and based on model-finding through SAT-solving.

This protocol was first analyzed and improved by Taghdiri and Jackson [1].
However, their analysis omitted the active attack. In an active attack, the at-
tacker, called active intruder, can interfere the communication. An active in-
truder can create, forge, replay, block and reroute messages. This active attack
contrasts with a passive attack in which the attacker only eavesdrops, but it does
not tamper messages.

Steel and Bundy studied the improved protocol using CORAL [3]. They found
the active intruder only having the ability of replaying the network messages
between KDS and its members, can find new flaws. But they did not find all
active attacks caused by the active intruder.

However, there are three weak aspects of CORAL’s performance [3], which
debase the quality and time efficiency of the analysis. These disadvantages do
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not exist in Alloy. One is the difficulty of posing conjectures, i.e. CORAL is
hard to describe the property that would be checked. This difficulty may result
in the inappropriately described property, and CORAL may be prone to omit
flaws. This disadvantage debases the quality of analysis’s result. But Alloy can
overcome this problem. Alloy’s ability of expression is strong and is easy to
describe the property in detail.

Another weak aspect is the run time. For example, it is up to 3.5 hours to
find the second attack [3]. By comparison, Alloy only uses a few seconds to
find this attack, its fast speed should owe to SAT solver. The Alloy Analyzer is
bundled with SAT solver. In Alloy, every analysis involves solving a constraint.
The Alloy Analyzer is therefore a constraint solver for the Alloy model. In its
implementation, it translates the constraint into a boolean formula and solves
it using a SAT solver. In the last decade, SAT solver technology has advanced
dramatically, and a state-of-the-art SAT solver [8] can often solve a formula
containing thousands of boolean variables and millions of clauses.

The third weak aspect is that CORAL is unable to reason about the order
in which events took place, and who was in the group at the time [3]. This
disadvantage increases difficulty in analyzing counterexample. Alloy can define
a signature as the notion of time, so the sequence of events is clear.

Due to these disadvantages in CORAL, it is necessary to use another method
to analyze this protocol, and Alloy is preferred because Alloy can overcome these
disadvantages easily.

On the basis of Taghdiri and Jackson’s work, we propose a new model con-
sidering the behaviors of active intruder. We analyze the new model with Alloy
Analyzer, and checke four critical properties, which should be satisfied by any
secure multicast protocol. However, all the four properties are unsatisfied, the
studied protocol cannot resist the active intruder. Two unknown flaws caused
by the active intruder are disclosed, and another two flaws found by CORAL
are identified[3].

The organization of this paper is as follows: Section 2 gives an overview of
the improved version of the multicast key management protocol. In section 3, we
describe our model of the active intruder. In section 4, we present the analysis
of the model and counterexamples. Section 5 summarizes and concludes.

2 Overview of the Improved Tanaka-Sato Protocol

The protocol that Tanaka and Sato originally proposed [2], was improved by
Taghdiri and Jackson [1]. The improved version will be described in the following
paragraphs.

The group is partitioned into subgroups called domains. Each domain under
the management of a trusted key distribution server(KDS). KDS has infor-
mation about its domain membership, and KDS is responsible for processing the
requests of its domain’s members.

The communication between KDSs is assumed to be not only secure but
also conducted under a Reliable and Totally Ordered Multicast Protocol
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(RTOMP). Reliable multicast protocols provide retransmissions and ordering
of messages from a source. Totally ordered multicast protocols guarantee that
all members receive messages in the same order, ensuring consistency of shared
information.

Since there is no notion of delay for the RTOMP in the protocol, we assume
that there is no delay in communications via the RTOMP. Hence, if a KDS
generates a new group key, all other KDSs will receive it instantly. Videlicet, at
each time, all the KDSs know the same set of keys.

When a client wants to join the group, the client and KDS mutually authenti-
cate using an authentication protocol. Having been authenticated and accepted
into the group, each member shares with its KDS a key, to be called the mem-
ber’s individual key. This key is used when it is needed to send a message
that could not be decrypted by others. In general, messages between KDS and
a member are encrypted by the member’s individual key.

However, some redundancies are caused by Taghdiri and Jackson’s improve-
ments [3]. The KDS is unnecessary to send the new group key (we name it k0) to
the new member who joins its domain, because when the member wants to send
or accept messages, the member would request its KDS for the newest group key
(we name it kn), the member would use kn rather than k0 to encrypt or decrypt
messages. So the group key k0 is useless. Additionally, the key ID number sent in
the request for the newest group key is redundant, the key ID number is the iden-
tifier of the newest group key the member owned. If the ID of the member’s key is
older than the newest group key the KDS owned, the KDS will send back all the
newer keys. But after the improvements, the KDS only returns the newest group
key rather than a set of newer group keys, the newest group key the KDS returned
is independent of the ID of the newest key the member owned, so the ID number
in the request is useless. We revise the model to remove these redundancies.

The protocol consists of four sub-protocols, described as follows:

– Joining the group
1. Mi −→ KDS : {join,Mi}
2. KDS −→ Mi : {IkMi}
When a host Mi wants to join the group, it sends a join request (message
1) to one of the KDSs and waits for confirmation. Assume there has an
authentication protocol to mutually authenticate Mi and KDS, and both
message 1 and message 2 are securely transported under the protocol. If
the authentication is successful, Mi will join the corresponding domain, and
KDS will generate a fresh individual key, IkMi , and a new group key. KDS
sends IkMi to the new member, i.e. message 2. KDS distributes the new
group key to other KDSs via the RTOMP.

– Leaving the group
1. Mi −→ KDS : {leave,Mi}IkMi

2. KDS −→ Mi : {ack.leave}IkMi

When a member wants to leave the group, it sends a leave request (message
1) to its KDS. If the KDS approves the request, it will generate a new group
key and distribute the new key to other KDSs, then it sends the confirmation
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(message 2) to the member. Both message 1 and message 2 are encrypted
by the member’s individual key.

– Sending a message
1. Mi −→ KDS : {send}IkMi

2. KDS −→ Mi : {send,Gkn}IkMi

3. Mi −→ ALL : {message}Gkn

When a member decides to send a message, it sends a request (message 1) to
the KDS of its domain for the newest group key. If the member is inside the
KDS’s domain, the KDS will send back the newest key Gkn, which carries a
unique ID number n. The individual key of the member is used to encrypt
the request and the reply. Then, the member uses the newest key to encrypt
its message and multicasts the encrypted message.

– Receiving a message
1. Mi −→ KDS : {read}IkMi

2. KDS −→ Mi : {read,Gkn}IkMi

When a member receives a message, it sends a request (message 1) to the
KDS of its domain and asks for the newest key. The corresponding KDS
replies to this request with the newest key Gkn. Only if the message is
encrypted by the newest key returned by KDS, then the member can accept
the message.

3 Alloy Model of the Active Intruder

In this section, we will analyze the improved protocol using Alloy. As mentioned
in section 1, Taghdiri and Jackson analyzed the original protocol and proposed
an improved version of the multicast key management protocol in [1]. However,
their analysis overlooked the active intruder. Therefore, some flaws, which cannot
be revealed by their model, may still exist in their improved protocol. To analyze
their improved protocol, we construct a new model including an active intruder
using Alloy.

3.1 Basic Components of the Active Intruder

Asmentioned in section 2, eachmember shareswith itsKDS an individual key. The
signature Identitymodels all the individual keys, and we add field id to signature
Member, shown in Fig.1. id is regarded as the member’s individual key, which
uniquely identifies this member, and other members do not know this key.

Figure 1 shows the basic components of the active intruder.
When a member wants to send a message or read a received message, it will

request the newest group key from its KDS. If the member is legitimate, the KDS
will return the newest key which is encrypted by the member’s individual key.
The KDS’s responses for sending messages requests are defined as sig Respons-
eSend, and reading messages requests are defined as sig ResponseRead. The
two signatures are shown in Fig.1. Field requester gives the member who re-
quests the newest group key, field newestkey gives the newest group key that re-
turned by KDS. Field encryptingKey is the member’s individual key, and used
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sig ResponseSend {

requester:Member,

replaytime:set Tick,

newestkey:Key,

encryptingKey:Identity}

{encryptingKey=requester.id}

sig ResponseRead {

requester:Member,

replaytime:set Tick,

newestkey:Key,

encryptingKey:Identity}

{encryptingKey=requester.id}

one sig Oscar extends Member {

learnSend:Tick->ResponseSend,

learnRead:Tick->ResponseRead}

{The constraint of this signature...}

sig Identity {}

sig Member {

kds:KDS,

ownedKeys:Tick -> Key,

receivedMessages:Tick -> Message,

id:Identity,

responseSend:Tick -> ResponseSend,

responseRead:Tick -> ResponseRead}

{The constraint of this signature...}

Fig. 1. Basic components of the active intruder

to encrypt KDS’s response, so KDS’s response is {newestkey}encryptingKey.
Field replaytime gives the moments when the KDS’s response is replayed.

Signature Oscar is treated as an active intruder. Comparing with the nor-
mal members, it owns the ability to eavesdrop, intercept and replay messages.
Assume Oscar can distinguish the responses between signature ResponseSend
and signature ResponseRead, and Oscar knows which member the response
would be sent to. Fields learnSend and learnRead gives the set of responses
that Oscar has eavesdropped at a given time. Adding two fields responseSend
and responseRead to signature Member, the two fields give the responses
that sent to this member, and these responses have been eavesdropped by Oscar
at given time.

3.2 Main Operations of the Active Intruder

The main operations of the active intruder are shown in Fig.2.
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The function OscarNewestKey explains how Oscar intercepts the responses
from KDS to legitimate members and replays the previously captured responses.
Argument flag determines the type of m’s request. If flag=1 holds, m’s request
for the newest group key is to multicast a message. If flag’s value is 2, m’s
request for the newest group key is to read a received message. If OscarCan-
Replay holds, Oscar can carry out replay attack. Oscar replaces the KDS’s
response with the appropriate response, which misleads m into taking an old
group key as the newest key. In the rest of the cases, Oscar would not disturb
the communication between KDS and its members.

As mentioned in section 2, there are some redundancies in Taghdiri-Jackson
improved version model, one of these redundancies is the key ID number sent
in the request for the newest group key, because after the improvements, the
KDS only returns the newest group key rather than a set of newer group keys,
the newest group key the KDS returned is independent of the newest key the
member owned. In our model, these redundancies are removed.

The predicate replayAttack is used to record the replay time. If Oscar re-
plays the latest eavesdropped response at time t, t will be added to the field re-
playtime of the latest eavesdropped response. The latest eavesdropped response
is returned by function NewestResponseSend or NewestResponseRead.

The predicate GeneratedResponse is used to create a new eavesdropped
response which is added to the set of eavesdropped responses. Argument flag
determines the type of response is ResponseSend or ResponseRead. Taking
ResponseSend for example, the value of flag is 1. Member m cannot replay
old response at time t if !OscarCanReplay[m,t,1] holds, then m will receive
its KDS’s response msg, it is generated by GeneratedResponseSend[t] and
the assignments of its fields. Oscar eavesdropsmsg at time t, and msg is added
to Oscar’s set of eavesdropped responses for m’s requests, and it is added to
Oscar’s set of all eavesdropped responses, too.

In Taghdiri-Jackson model [1], predicate SendMessage constrains progress
of multicasting a message, and predicates ReceiveMessage and CanReceive
constrains the progress of reading a received message. In these three predicates,
function NewerKeys is used as KDS’s responses for its members’s requests
for the newest group key. In our model, function NewerKeys is replaced by
function OscarNewestKey, and the following expression (1), (2) and (3) in
Fig. 3 are respectively added to predicates SendMessage, ReceiveMessage
and CanReceive.

Taking predicate SendMessage for example, if m wants to multicast a mes-
sage, it will ask its KDS for the newest group key, either it receives its KDS’s
response, or Oscar’s replay response. If m receives the former, Oscar will eaves-
drop this response, explained by predicate GeneratedResponse[m,t,1]. If m
receives the latter, Oscar will carry out a replay attack, explained by predicate
replayAttack[m,t,1].
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fun OscarNewestKey(m:Member,t:Tick,flag:Int):Key{

(flag=1 && OscarCanReplay[m,t,1])=>

NewestResponseSend[m,t].newestkey&(m.kds).keys[t]

else (flag=2 && OscarCanReplay[m,t,2])=>

NewestResponseRead[m,t].newestkey&(m.kds).keys[t]

else NewerKeys[m,m.kds,t]

}

pred replayAttack(m:Member,t:Tick,flag:Int){

(flag=1 &&

OscarCanReplay[m,t,1] &&

t in NewestResponseSend[m,t].replaytime) ||

(flag=2 &&

OscarCanReplay[m,t,2] &&

t in NewestResponseRead[m,t].replaytime)

}

pred GeneratedResponse(m:Member,t:Tick,flag:Int){

(flag=1 &&

!OscarCanReplay[m,t,1] &&

let msg=GeneratedResponseSend[t]|{

msg.requester=m

msg.newestkey=OscarNewestKey[m,t,1]

msg.encryptingKey=m.id

m.responseSend[t]=

m.responseSend[ord/prev[t]]+ msg

Oscar.learnSend[t]=

Oscar.learnSend[ord/prev[t]]+msg})||

(flag=2 &&

!OscarCanReplay[m,t,2] &&

let msg1=GeneratedResponseRead[t]|{

msg1.requester=m

msg1.newestkey=OscarNewestKey[m,t,2]

msg1.encryptingKey=m.id

m.responseRead[t]=

m.responseRead[ord/prev[t]]+msg1

Oscar.learnRead[t]=

Oscar.learnRead[ord/prev[t]]+msg1})

}

Fig. 2. Main operations of the active intruder

GeneratedResponse[m,t,1]||replayAttack[m,t,1] (1)

GeneratedResponse[m,t,2]||replayAttack[m,t,2] (2)

OscarCanReplay[m,t,2]=> t in NewestResponseRead[m,t].replaytime (3)

Fig. 3. Eavesdrop or Replay
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4 Analysis of the Model

We implement the model in the Alloy Analyzer 4.1.10 [7]. The Alloy Analyzer is
used to automatically check some properties of the model, i.e. InsiderCanSend,
InsiderCanRead, OutsiderCantRead and OutsiderCantSend. Any one
of the four properties is unsatisfied, then either the basic ability of legitimate
members cannot be guaranteed, or the confidentiality of messages is violated.
For example, a group contain n legitimate members, m1,m2, · · · ,mn. If the
active intruder utilizes the attack in 4.1 to attack m1, other legitimate members
will cannot read the messages sent by m1. m1 can be treated as a ”mute”. If
m1 is under the attack in 4.2, m1 will cannot read the messages sent form other
legitimate members. m1 can be considered as a ”deaf person”. m1 is a legitimate
member, it should own the basic ability of sending and reading messages. But
the two attacks make m1 lose this basic ability. If the attack in 4.3 is carried
out, some legitimate members will read the counterfeit messages sent from the
attacker. If the active intruder carries out the attack in 4.4, the attacker will
read the confidential message which violates the confidentiality. Therefore, the
safety of the four properties are significant.

4.1 Counterexample of Assertion InsiderCanSend

InsiderCanSend: This assertion claims that messages sent by an insider of the
group can be accepted by other insiders of the group.

For this assertion, Oscar only eavesdrops and replays the responses for sending
message requests. The Alloy Analyzer finds one type of counterexample repre-
sented as a figure. There are many relation lines in this figure. To make the
figure concise, we delete some inessential lines and merge some lines, the ab-
breviated one is Fig. 4. For example, the abbreviated figure uses t1 and t2 to
replace Tick1 and Tick2, respectively. Additionally, the previous graph’s four
lines that members[t1], memb-ers[t2], members[t3] and members[t4] are merged

into one line members[t1− t4] in Fig. 4. In Fig. 4, all lines are the type: A
C−→ B,

it means C is a field of sig A, and B is C’s value.
In the counterexample, there is one KDS, four members respectively named

Member0, Member1, Member2 and Oscar, two messages that are Message0 and
Message1, seven ticks of time and their seriation is t0, t1, t2, t3, t4, t5 and t6,
two group keys Key0 and Key1, and one ResponseSend is significant. The KDS
of the four members are both KDS. We detailedly explain the Fig. 4 as follows:

– KDS
members[t1−t3]−−−−−−−−−−→ Oscar : it shows that Oscar is in the group from t1 to

t3, what it means is Oscar joins at t1 then leaves at t4.

Lines KDS
members[t1−t6]−−−−−−−−−−→ Member0, KDS

members[t1−t6]−−−−−−−−−−→ Member1 and

KDS
members[t4−t6]−−−−−−−−−−→Member2 can be explained in the same way.

– KDS
keys[t1−t6]−−−−−−−→ Key0 : KDS obtains Key0 from t1 to t6, and Key0 is

created at t1. Line KDS
keys[t4−t6]−−−−−−−→ Key1 can be explained in the same

way.
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Fig. 4. The abbreviated figure of InsiderCanSend’s counterexample

– Oscar
ownedKeys[t3−t6]−−−−−−−−−−−−→ Key0 : Oscar owns Key0 from t3 to t6. The con-

strains of signatureMember restricts that a member gets a new group key at
some time must because it wants to send or read a message, then asks its KDS
for the newest group key at that time. So Oscar sends or read a message at

t3. Lines Member0
ownedKeys[t2−t6]−−−−−−−−−−−−→ Key0 and Member1

ownedKeys[t3−t6]−−−−−−−−−−−−→
Key0 can be explained in the same way.

– Member0
id−→ Identity2 : Member0’s individual key is Identity2.

– Message0
sender−−−−→Member0 : Message0’s sender is Member0.

Line Message1
sender−−−−→Member0 has the similar meaning.

– Message0
sentT ime−−−−−−→ t2 : departure time of Message0 is t2.

Line Message1
sentT ime−−−−−−→ t5 has the similar meaning.
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– Message0
encryptingKey−−−−−−−−−−→ Key0 : encrypting key of Message0 is Key0. Line

Message1
encryptingKey−−−−−−−−−−→ Key0 has the similar meaning.

– Oscar
receivedMessages[t3−t6]−−−−−−−−−−−−−−−−→ Message0 : Oscar accepts Message0 at t3.

LinesOscar
receivedMessages[t6]−−−−−−−−−−−−−−→Message1,Member0

receivedMessages[t2−t6]−−−−−−−−−−−−−−−−→
Message0, Member0

receivedMessages[t5−t6]−−−−−−−−−−−−−−−−→Message1 and Member1
receivedMessages[t3−t6]−−−−−−−−−−−−−−−−→Message0 can be explained in the same way.

– Oscar
learnSend[t2−t6]−−−−−−−−−−−→ ResponseSend : Oscar eavesdrops ResponseSend at

t2.

– Member0
responseSend[t2−t6]−−−−−−−−−−−−−→ ResponseSend : Oscar eavesdrops Respons-

eSend at t2, and this response responds Member0’s request.

– ResponseSend
requester−−−−−−→ Member0 : ResponseSend is Member0’s KDS re-

sponds its request for the newest group key, and this response is encrypted
by Member0’s individual key.

– ResponseSend
replaytime−−−−−−−→ t5 : this response is replayed at t5.

– ResponseSend
newestkey−−−−−−−→ Key0 : Key0 is the newest group key in this re-

sponse returned by KDS.

– ResponseSend
encryptingKey−−−−−−−−−−→ Identity2 : encrypting key of ResponseSend

is Identity2.

From the graph of this counterexample and the above-mentioned interpretation
of Fig. 4, we can get the event sequence of this counterexample, shown in Fig. 5.

The interpretation of the event sequence shown in Fig. 5 is as follows. Oscar,
M0 and M1 joined the group at the same time t1, and KDS created only one
group key k0. At t2, M0 wanted to send message, then it asked KDS for the
newest group key k0, and it sent message0 encrypted by k0. At the same time,
Oscar eavesdropped KDS’s reply, i.e. message 8. Oscar and M1 read message0
at t3. M2 joined the group and Oscar left the group at t4, and another group
key k1 was created. At t5, M0 wanted to send message, again. After M0 sent
a request to KDS and waited for KDS’s reply, Oscar intercepted KDS’s reply
and replayed message 8 to M0, in message 21. The replay message misled M0

into believing the old key k0 was the newest group key, then M0 used k0 to
encrypted message1. M1 and M2 received message1 at t6, then they asked KDS
for the newest group key and received k1. However, message1 was encrypted by
k0, so k1 cannot be used to decrypt message1, then M1 and M2 cannot read
message1. But M1 and M2 were inside the group at t5 when message1 was sent
and they were still in the group after t5. This scenario violates the assertion
InsiderCanSend. Oscar had owned k0, therefore, even Oscar was outside of
the group, it can read message1.

This counterexample shows that Oscar’s replay attack can cause that messages
sent by a legitimate insider cannot be read by other insiders.
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1. t1: Oscar −→ KDS : {join, Oscar}
2. t1: KDS −→ Oscar : {IkOscar}
3. t1: M0 −→ KDS : {join,M0}
4. t1: KDS −→ M0 : {IkM0}
5. t1: M1 −→ KDS : {join,M1}
6. t1: KDS −→ M1 : {IkM1}
7. t2: M0 −→ KDS : {send}IkM0

8. t2: KDS −→ M0 : {send, k0}IkM0

9. t2: M0 −→ ALL : {message0}k0

10. t3: M1 −→ KDS : {read}IkM1

11. t3: KDS −→ M1 : {read, k0}IkM1

12. t3: M1 : {read message0}
13. t3: Oscar −→ KDS : {read}IkOscar

14. t3: KDS −→ Oscar : {read, k0}IkOscar

15. t3: Oscar : {read message0}
16. t4: M2 −→ KDS : {join,M2}
17. t4: KDS −→ M2 : {IkM2}
18. t4: Oscar −→ KDS : {leave,Oscar}IkOscar

19. t4: KDS −→ Oscar : {ack.leave}IkOscar

20. t5: M0 −→ KDS : {send}IkM0

8(21). t5: Oscar(KDS) −→ M0 : {send, k0}IkM0

22. t5: M0 −→ ALL : {message1}k0

23. t6: M1 −→ KDS : {read}IkM1

24. t6: KDS −→ M1 : {read, k1}IkM1

25. t6: M2 −→ KDS : {read}IkM2

26. t6: KDS −→ M2 : {read, k1}IkM2

27. t6: Oscar : {read message1}

Fig. 5. Event sequence of InsiderCanSend’s counterexample

4.2 Counterexample of Assertion InsiderCanRead

InsiderCanRead: This assertion claims that any current member of the group
is able to decrypt messages sent from an insider of the group.

As mentioned in section 1 that Taghdiri and Jackson proposed an improved
version of this protocol, but there still exits a flaw, late messages loss [1], violates
InsiderCanRead. Other than this flaw, the replay attack caused another new
drawback which also violates InsiderCanRead.

For this assertion, Oscar only eavesdrops and replays the responses for reading
message requests. The Alloy Analyzer finds one new type of counterexample.
From the figure of this counterexample, we can get the event sequence of this
counterexample, shown in Fig. 6. M2 was in the group at t5 when message1 was
sent, and still in the group at t6 when M2 received the encrypted message1, but
M2 cannot read message1, which violates the assertion InsiderCanRead.

In this counterexample, there did not have any members joined or left the
group from t5 to t6, so the newest group key was not changed during this period.
Therefore, there would not lose any late messages, and message1 unreadable to
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1. t1: M0 −→ KDS : {join,M0}
2. t1: KDS −→ M0 : {IkM0}
3. t1: M2 −→ KDS : {join,M2}
4. t1: KDS −→ M2 : {IkM2}
5. t2: M0 −→ KDS : {send}IkM0

6. t2: KDS −→ M0 : {send, k0}IkM0

7. t2: M0 −→ ALL : {message0}k0

8. t3: M2 −→ KDS : {read}IkM2

9. t3: KDS −→ M2 : {read, k0}IkM2

10. t3: M2 : {read message0}
11. t4: M1 −→ KDS : {join,M1}
12. t4: KDS −→ M1 : {IkM1}
13. t5: M0 −→ KDS : {send}IkM0

14. t5: KDS −→ M0 : {send, k1}IkM0

15. t5: M0 −→ ALL : {message1}k1

16. t6: M1 −→ KDS : {read}IkM1

17. t6: KDS −→ M1 : {read, k1}IkM1

18. t6: M1 : {read message1}
19. t6: M2 −→ KDS : {read}IkM2

9(20). t6: Oscar(KDS) −→ M2 : {read, k0}IkM2

Fig. 6. Event sequence of InsiderCanRead’s counterexample

M2 is not caused by the late message loss. In fact, M2 cannot read message1 is
because of the replay attack that Oscar replayed the old response (message 9)
at t6 when M2 asked for the newest group key. So, this counterexample is a new
vulnerability different from late message loss.

4.3 Counterexample of Assertion OutsiderCantSend

OutsiderCantSend: This assertion implies that insiders of the group cannot
read messages sent from an outsiders of the group.

A type of counterexamples is found by Alloy Analyzer. The event sequence of
this counterexample is in Fig. 7. At t5, Oscar sent message1 which was encrypted
by k0. At the next time, M received message1, then M asked KDS for the newest
key, and KDS would return k1, but Oscar intercepted KDS’s response (message
15) and replayed message 9. So, M treated k0 as the newest key, and accepted
message1 as a valid message.

4.4 Counterexample of Assertion OutsiderCantRead

OutsiderCantRead: This assertion implies that no outsider of the group is
able to read a message sent by an insider of the group.

From the counterexample analyzed in section 4.1, Oscar was outside of the
group at t5 when message1 was sent and still outside of the group at t6, but
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1. t1: M −→ KDS : {join,M}
2. t1: KDS −→ M : {IkM}
3. t1: Oscar −→ KDS : {join, Oscar}
4. t1: KDS −→ Oscar : {IkOscar}
5. t2: Oscar −→ KDS : {send}IkOscar

6. t2: KDS −→ Oscar : {send, k0}IkOscar

7. t2: Oscar −→ ALL : {message0}k0

8. t3: M −→ KDS : {read}IkM

9. t3: KDS −→ M : {read, k0}IkM

10. t3: M : {read message0}
11. t4: Oscar −→ KDS : {leave,Oscar}IkOscar

12. t4: KDS −→ Oscar : {ack.leave}IkOscar

13. t5: Oscar −→ ALL : {message1}k0

14. t6: M −→ KDS : {read}IkM

9(15). t6: Oscar(KDS) −→ M : {read, k0}IkM

16. t6: M : {read message1}

Fig. 7. Event sequence of OutsiderCantSend’s counterexample

it read message1 at t6. It violates the assertion OutsiderCantRead. So coun-
terexample in Fig. 4 is also a counterexample of assertion OutsiderCantRead.

4.5 Result

In Table 1 we sum up the results obtained by the different tools studying the
protocol.

We found active attacks on every properties. However, Steel and Bundy only
found attacks on the last two properties, and Taghdiri and Jackson did not find
these attacks. We are the only one who found the active attacks on the first two
properties.

Even though Steel and Bundy also found the last two attacks, but the running
times were too long, up to 3.5 hours to find the attack on property Outsider-
CantSend [3]. By comparison, our model’s time efficiency is very high. If the
scopes of check commands are appropriate, for example, ”for 7 but 1 KDS,3
Member,2 ResponseSend,2 ResponseRead”, our model will spend only 1 second
or 2 seconds to search for these counterexamples.

Table 1. The result of comparing the three models

Our model Steel-Bundy Taghdiri-Jackson
Attack time Attack time Attack time

InsiderCanSend yes less than 2s no - no -

InsiderCanRead yes less than 1s no - no -

OutsiderCantSend yes less than 1s yes 3.5h no -

OutsiderCantRead yes less than 2s yes unclear no -
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5 Conclusion

In this paper, we presented how we used Alloy to model an active intruder and
Alloy Analyzer to analyze the protocol’s new model. Even though the active
intruder in our model only had the capability of eavesdrop, intercept and replay
messages, it successfully attacked the protocol. We found four flaws on this pro-
tocol. Two flaws were previously unknown, another two were found by Steel and
Bundy, their checker is CORAL. But CORAL’s performance was weak as men-
tioned in section 1, these disadvantages debase the quality and time efficiency of
the analysis. However, CORAL’s disadvantages did not exist in Alloy. Especially
the time efficiency, we compared it in Table 1.

Even though Taghdiri and Jackson had analyzed this protocol using Alloy,
they omitted the active attack. They did not find the four flaws caused by the
active intruder. And there were some redundancies in their improved model, we
removed them to make our model more concise.

Acknowledgments. This research was funded by grant 90604010 from the
National Nature Science Foundation and grant 2007BC311202 of the National
Key Foundation Research Plan of China.
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Abstract. This paper1 contains the development of hybrid systems in
Event-B and the Rodin Platform2. It follows the seminal approach in-
troduced at the turn of the century in Action Systems. Many examples
illustrate our approach.

1 Introduction

Hybrid systems have been studied for many years ([6] and many more). They
are very important in the development of embedded systems where a piece of
software, the controller, is supposed to manage an external situation, the environ-
ment. The controller works in a discrete fashion in that it is triggered regularly by
detecting the status of the environment (using some sensors), and then reacts by
sending some information to the environment (using some actuators). Between
two successive controller detections and actions, the environment is evolving in
a continuous way.

The formal development of such embedded systems has then to take account
of two different frameworks: the discrete framework of the controller and the
continuous framework of the environment. The formal development of such closed
systems must be able to deal with these dual frameworks: this is the purpose of
hybrid system.

In this paper, we explain how such systems can be developed in Event-B
[7] and the Rodin Platform [8]. The paper is organized as follows: in the next
section we explain how our approach follows that developed in Action Systems
[1]. Section 3 contains many examples and then we conclude.

2 Approaches

2.1 The Approach of Action System to Hybrid Systems

Background. Action System [1] has been introduced in the eighties by R.J.
Back and R. Kurki-Suonio. It has been then further developed by the Finnish
1 This work is supported in part by National Basic Research Program of China (No.

2011CB302904), National High Technology Research and Development Program of
China (No. 2011AA010101 and No. 2012AA011205), National Natural Science Foun-
dation of China (No. 61061130541 and No. 61021004).

2 An extended version of this paper can be found in [9].
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School of Formal Methods. Event-B [7] [8] is a direct follower of Action System:
many concepts in Event-B have been borrowed from it. As a consequence, before
attempting to formalize hybrid systems in Event-B, it seems appropriate to
investigate what has been done concerning hybrid systems with Action System.

Continuous Action System. In 2000, R.J. Back and colleagues extended
Action System in order to support the definition and proofs of Hybrid Systems
[2] [3]. They called this extension continuous Action System. In this paper, for
the sake of clarity, we shall name the non-continuous Action System the classical
Action System. This extension is very simple and systematic: "a continuous
action system is just a non-deterministic way of defining a collection of time
dependent functions". In other words, rather than having the state of the Action
System being defined by a collection of time independent variables ranging over
some sets (as is the case in classical Action System), the state of a continuous
Action System is now defined as a collection of time dependent functions (where
time ranges over the set of non-negative reals R

+). A continuous Action System
can be related to a corresponding classical Action System as follows: if x ∈ S is a
variable in a classical Action System, then x_c ∈ R

+→ S is the "same" variable
in the continuous Action System.

Past, Present, and Future. A "technical" variable, named now, ranging over
R

+ stands for the "present" time. Initially, now is supposed to be equal to 0.
The time function x_c in a continuous Action System and its relationship to
the corresponding variable x in a classical Action System is to be understood as
follows:
1. The time function x_c restricted to the set {u |u ∈ R

+ ∧ u < now} denotes
the past of the variable x.

2. The value x_c(now) denotes the present value of x (at time t = now) .
3. The time function x_c restricted to the set {u |u ∈ R

+ ∧ u > now} denotes
the future of x. Of course, we are not sure about this future, it only denotes
what we can expect "now" about it.

Discrete Events. As for classical Action Systems, a continuous Action System
contains a finite number of guarded actions. In each of them, time functions such
as x_c can be modified. These modifications however must obey a systematic
constraint: the past cannot be modified, only the present and future can. Once
an action has been "executed", then the variable now is updated: this is done by
incrementing it to the smallest value making at least one action guard becoming
true3. In between the present now and the future one assigned to it, a time
function such as x_c is supposed to make progress following the expected future.

Continuous Action Systems as Hybrid Systems. As can be seen, a con-
tinuous Action System is indeed a genuine hybrid system: the events correspond
to discrete actions situated in the middle of continuous behaviors. Typically, the
continuous evolution corresponds to what happens in the external environment
3 If there is no such events then now is not updated meaning that the systems evolves

for ever as prescribed by the future of each time function.
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of a system, whereas discrete actions correspond to what a controller can do in
order to manage the environment. For example, the continuous evolution could
be that of a physical train running at a certain speed and a certain acceleration
(positive, equal to 0, or negative), whereas the discrete actions are those of the
driver (human or automatic) changing the acceleration of the train from time
to time depending on the actual speed, the actual acceleration and the actual
distance of the train to a necessary stop (at a station or because another train
is close to it).

Invariants. As for classical Action Systems, continuous ones must preserve a
number of invariants to be proved on the past of each time variable. For example,
in the train system mentioned above, we might prove that the past speed of a
train is never greater than a certain maximum speed. We might also prove that
no train can hit another one in front of it or not stop at a given station where
it should. Such invariants can be stated as follows:

∀ t · t < now ⇒ P(x_c(t))

where P is a predicate denoting the invariant property we want to prove. In
order to prove the maintenance of this invariant when now is updated to a new
value, say new_now (greater than now), what is to be proved is the following:

∀ t · t ≥ now ∧ t < new_now ⇒ P(x_c(t))

Notice that we do not have to prove the property for t < now since, by definition,
the past is not modified when updating a time function.

2.2 The Proposed Approach with Event-B

Background. The approach we shall follow with Event-B is very close to that
proposed by R.J. Back for continuous Action Systems. However, in studying ex-
amples described in [2] and [3], we found a number of difficulties: we had the
subjective feeling that some proofs of simple invariant properties are more com-
plicated than they should be. In what follows, we propose some simplifications
to the original proposals made in continuous Action Systems.

Discrete Variables together with Continuous Variables. In [2] and [3] all
variables (except now) are time functions. But sometimes these time functions
are always constant functions on all considered intervals (different constants
however for different intervals). An obvious simplification is to consider that such
variables can be better represented as discrete variables as in classical Action
Systems. By doing so, we could simplify some of the proofs.

Discrete Systems as an Abstraction of Continuous Ones. We also figured
out that the presented approaches for continuous Action System did not take
advantage of any refinement steps to be done during the development although
this was mentioned in the conclusion as future work in [2].

The main initial steps we propose here before introducing continuous variables
is based on our belief that a discrete system is an abstraction of a continuous



Formalizing Hybrid Systems with Event-B 181

one. This is a direct consequence of the observation of what is done traditionally
in mathematics since the Greeks (and probably before them): in order to mea-
sure the surface of a field you cut it into different rectangles (whose surface is
easily determined) and then you refine this process by introducing more rectan-
gles incorporating some parts of the field that has not been taken into account
previously. This operation is then repeated many times until the remaining part
of the field that has not been taken into account becomes very small.

In the seventeenth century Newton and Leibnitz formalized this by introduc-
ing the Calculus. Later, in the nineteenth century, a considerable effort (Cauchy,
Weierstrass) has been done to make this mathematical approach completely
rigorous.

Refining a Discrete Systems into a Continuous Ones. When formalizing
an hybrid system with Event-B, we can start the development by considering
time independent variables only, such as x, with the basic invariant x ∈ S. This is
done together with some events modifying such discrete variables. This process
can be done with different refinement steps, thus making the discrete system
more precise.

At some point (when the discrete system is rich enough) we can start intro-
ducing some continuous time dependent variables corresponding to some discrete
ones. We also introduce the variable now. For example, the variable x is refined
(and removed) to the variable x_c ∈ R

+ �→ S. The gluing invariant between x
and x_c is clearly the following: x = x_c(now). The modification of the variable
x_c in an event obeys the following pattern:

x_c := λ t · t ∈ now .. new_now |E(t)

where the value new_now corresponds to the modification of the variable now
which is updated together with x_c (that is, now := new_now). As can be
seen, we depart here from what was done in continuous Action System. More
precisely, we update the time dependent variable x_c to the new continuous
value it takes within the time interval now .. new_now where no discrete action
takes place. Notice that new_now is in fact equal to min({t | t ≥ now ∧ P(t)})
where P is a predicate corresponding to the disjunction of the guards of the
events within which now is replaced by t.

The transformation of the discrete system into a continuous one can be done
gradually: we can have intermediate steps where some discrete variables are
not yet transformed into continuous ones. Also, as stated above, some discrete
variables will so remain because they are constant in all intervals.

3 Examples

3.1 The Saw [2]

Our first example is extracted from [2]. It is a very simple introductory example.
The initial state is made of a single discrete variable x taking only two values: 0
and 1.
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variables: x inv0_1: x ∈ {0, 1}

The events UP and DN alternatively change the value of x, initialized to 0:

INIT
begin

x := 0
end

UP
when

x = 0
then

x := 1
end

DN
when

x = 1
then

x := 0
end

In the refinement, we replace the variable x by a time function x_c as follows
(notice the gluing invariant inv1_3).The variable x_c is initialized to the con-
stant function {0 �→ 0}, while the variable now is initialized to 0 (the beginning
of time):

variables: x_c
now

inv1_1: x_c ∈ R
+ �→ R

inv1_2: now ∈ dom(x_c)

inv1_3: x = x_c(now)

INIT
begin

x_c := {0 �→ 0}
now := 0

end

The events UP and DN are refined as follows (notice the updating of the variable
now):

UP
when

x_c(now) = 0
then

x_c :=
λ t · t ∈ now .. now + 1 | t − now
now := now + 1

end

DN
when

x_c(now) = 1
then

x_c :=
λ t · t ∈ now .. now + 1 | 1 − t + now
now := now + 1

end

The following figures show the evolution of the variable x_c initially and after
various executions of the events UP and DN:

We can add several other invariants. For example we might be interested to prove
that the range of the variable x_c is included in the real interval 0 .. 1:
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inv1_4: ran(x_c) ⊆ 0 .. 1

The global proof effort for the Rodin Platform [8] on this example is 17 proof
obligations, all proved automatically.

3.2 Nuclear Plant Cooling [3]

The nuclear plant cooling example is taken from [3]. Here is an informal descrip-
tion of the problem quoted from [3]:

"The hybrid system is a temperature control system for a heat producing
reactor, described by the temperature as a function of time θ(t). The reactor
starts from the initial temperature θ0 and heats up at a given rate vr. Whenever
it reaches the critical temperature θM , it is designed to be cooled down by
inserting into the core either of two rods (rod1 or rod2), modeled by the variables
x1(t) and x2(t), which are in fact clocks measuring the time elapsed between two
consecutive insertions of the same rod, respectively. The cooling proceeds at the
rate v1 and v2 depending on which rod is being used, and the cooling stops when
the reactor reaches a given minimum temperature θm, by releasing the respective
inserted rod. The rod used for cooling is then unavailable for a prescribed time
T , after which it is again available for cooling. The object of the modeling is to
ascertain that the reactor never reaches the critical temperature θM without at
least one of the rods available."

In the development done in [3] the main safety proof mentioned at the end
of the previous informal description (i.e. "the reactor never reaches the critical
temperature θM without at least one of the rods available") is done directly on
the time dependent variables and results in a rather heavy proof. As for the
previous example, we start the Event-B development with a discrete system.
We do the safety proof at this level: this results in a simple proof as expected.
We then refine the system in several steps to a genuine hybrid system. We first
start by defining a number of constants as introduced in the previous informal
explanation: θm, θM , v1, v2, vr, and T . We then define the heating time, a,
needed to raise the temperature from θm to θM in the reactor and also the
cooling times, b1 and b2, needed to decrease the temperature from θM to θm

with rod1 or rod2. We suppose the following constraints on a, b1, b2, and T :

constants: a
b1

b2

axm0_1: avr = θM − θm

axm0_2: b1v1 = θM − θm

axm0_3: b2v2 = θM − θm

axm0_4: 2a + b1 ≥ T
axm0_5: 2a + b2 ≥ T
axm0_6: a < T

Notice axiom axm0_6: should it be a ≥ T then the cooling with a rod would
always be possible because then the time, a, of temperature increasing in the
reactor would be greater than or equal to the the time, T , after which a rod would
be made available after being used. Axioms axm0_4 and axm0_5 seem a bit
strange: they can be discovered as sufficient conditions while doing the proofs.
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The initial model is a discrete one. We define some state variables: θ is the
temperature of the reactor, t1 and t2 denote the time elapsed since rod1 or rod2
have been released. The system works with a phase variable (with values 0, 1,
and 2). When phase is 0, it means that the reactor has reached the maximum
temperature θM (invariant inv0_5). When phase is 1 or 2, it means that the
reactor has reached the minimum temperature θm by being cooled either with
rod1 or with rod2 (invariant inv0_6):

variables: θ
t1
t2
phase

inv0_1: θ ∈ R
+

inv0_2: t1 ∈ R
+

inv0_3: t2 ∈ R
+

inv0_4: phase ∈ {0, 1, 2}
inv0_5: phase = 0 ⇒ θ = θM

inv0_6: phase ∈ {1, 2} ⇒ θ = θm

The main safety invariant is the following. It states that there is always one rod
available when the reactor’s temperature reaches the maximum temperature θM :

inv0_7: phase = 0 ⇒ t1 ≥ T ∨ t2 ≥ T

In this initial model, besides the initializing event, we have four events:
cool_rod1, cool_rod2, release_rod1, and release_rod2. In order to simplify, we
suppose that we start when the reactor has reached the maximum temperature
θM . Here are some events (the remaining ones for rod2 are similar):

INIT
begin

t1 := T
t2 := a
θ := θM

phase := 0
end

cool_rod1
when

phase = 0
t1 ≥ T

then
phase := 1
t2 := t2 + b1
θ := θm

end

release_rod1
when

phase = 1
then

phase := 0
t1 := a
t2 := t2 + a
θ := θM

end

Remember that t1 and t2 denote the time elapsed since rod1 or rod2 have been
released. In event cool_rod1, the temperature goes down from θM to θm with
time b1 by the use of rod1, so the time t2 related to rod2 is updated accord-
ingly. In event release_rod1, which happens just after the release of rod1, the
temperature is raised up to temperature θM with time a, thus both t1 and t2 are
updated accordingly. The proof of the invariants (in particular that of the safety
invariant inv0_7) are very simple (some additional "technical" invariants are
needed).

The refinement of this discrete system into a continuous one is simple routine.
In the sequel, we show how the two discrete variables t1 and t2 are refined to
time dependent variables t1_c and t2_c.
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variables: t1_c
t2_c
phase

inv1_1: t1_c ∈ R
+ �→ R

inv1_2: t2_c ∈ R
+ �→ R

inv1_3: now ∈ dom(t1_c) ∩ dom(t2_c)
inv1_4: t1 = t1_c(now)
inv1_5: t2 = t2_c(now)

Here are the corresponding refined events:

cool_rod1
when

phase = 0
t1_c(now) ≥ T

then
phase := 1
t2_c := λ t · t ∈ now .. now + b1 |

t2_c(now) + t − now
t1_c := λ t · t ∈ now .. now + b1 |

t1_c(now)
θ := θm

now := now + b1
end

release_rod1
when

phase = 1
then

phase := 0
t1_c := λ t · t ∈ now .. now + a |

t − now
t2_c := λ t · t ∈ now .. now + a |

t2_c(now) + t − now
θ := θM

now := now + a
end

Further refinements (not shown here) deal with making the variable θ continuous.
The global proof effort for the Rodin Platform on this example is 157 proof
obligations, all proved automatically.

3.3 Controlling Trains [4]

Our new example comes from the book of A. Platzer [4]. It involves one (or
several) trains evolving on a single line. The goal of this system is to provide
safe moves of the trains.

Preliminary Study. Each train is regularly made aware by a radio broadcast-
ing (RBC) of a certain point situated at position m, on the line, where it should
at the latest stop. In other words, the train shall never pass this point. Given
the position z of the train, our main invariant is clearly the following: m−z ≥ 0.
Every ε second, the train controller (a piece of software) examines the situation
concerning the position z, speed v, and acceleration a of the train. The controller
can change the acceleration as follows: it can order a constant positive acceler-
ation A (where A is positive), a constant negative acceleration −b (where b is
positive), or no acceleration. Notice that when the train has a negative accelera-
tion −b it should at last stop when v = 0 and thus never get a negative speed. If
the train is at position z with speed v at time 0, it will circulate with speed v+at

at time t and its position will then be z + vt + at2

2 . In order to guarantee that
the train will not pass the position m, one should be certain that the negative
acceleration −b will be sufficient to stop the train before the position m. Since
the train should stop, we have v + at = 0 (with a = -b), that is t = v

b .This gives
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us the following position at z+ v2

2b . This quantity should be smaller than or equal
to m, that is z + v2

2b ≤ m. Here is thus our final constraints:
2b(m − z) ≥ v2 (1)

It can also be said that breaking with deceleration −b is able to "absorb" the
kinetic energy of the train (this will give us the same result in a shorter way).
This is a necessary invariant of the system. We notice that it implies the previous
invariant m− z ≥ 0. At each control time (every other ε seconds), the controller
must ensure that the train will preserve this invariant in the next control position
(in ε second). The speed of the train will be v + aε and the position of the train
will be z + vε + aε2

2 . Therefore substituting these values for v and z in (1) yields
the following, 2b(m − z − vε − aε2

2 ) ≥ (v + aε)2, that is:

2b(m − z) ≥ v2 + (aε2 + 2vε)(a + b) (2)

For the controller to decide that the acceleration a could be A for the next ε
seconds, we must have: 2b(m − z) ≥ v2 + (Aε2 + 2vε)(A + b). If this is not the
case (i.e. if the previous predicate is false), the controller must decide that the
acceleration a must be −b. This decision is indeed safe since then a + b = 0
in (2) and we already have the following invariant, 2b(m − z) ≥ v2. At the
end of the process, when the speed v is equal to 0 and when the train cannot
proceed further, we have: m− z < Aε2(A+b)

2b . The final specification of this train
controlling process has now become very clear. It can be stated informally as
follows: move the train by accelerating or decelerating it until it reaches the
speed 0 and get to a position z such that m − z < Aε2(A+b)

2b holds. Notice that
it is quite possible for the train to reach a position where its speed is 0 but with
m−z ≥ Aε2(A+b)

2b : it means that the train stops and restart immediately because
it can move further.

Event-B Development. The previous preliminary elementary calculations dic-
tate the way things can be implemented with Event-B and the Rodin Platform.
We first define the four constants A, b, ε, and m: they are all positive real num-
bers. The dynamic state of the system introduces variables z, v, and a (position,
speed, and acceleration of the train). We also introduce a technical variable phase
that can be 1 or 2. In phase 1, the controller will decide what to do, whereas in
phase 2, the train will makes some progress or stop. The main invariants are the
following (inv1_1 to inv1_5).The first decision event decide_1, decelerates
the train as below:

inv1_1: z ∈ R
+

inv1_2: v ∈ R
+

inv1_3: a ∈ {0, A,−b}
inv1_4: phase ∈ {1, 2}
inv1_5: 2b(m − z) ≥ v2

decide_1
when

phase = 1
2b(m − z) < v2 + (Aε2 + 2vε)(A + b)

then
phase := 2
a := −b

end
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The second decision event, decide_2, accelerates the train. But at this point we
introduce another constraint, namely that there is an upper constant speed limit
vM . We have thus two more decision events:

decide_2
when

phase = 1
2b(m − z) ≥

v2 + (Aε2 + 2vε)(A + b)
v + εA ≤ vM

then
phase := 2
a := A

end

decide_3
when

phase = 1
2b(m − z) ≥

v2 + (Aε2 + 2vε)(A + b)
v + εA > vM

then
phase := 2
a := 0

end

The first driving event, drive_1, stops the train before the end of ε seconds since
otherwise the speed would become negative. The second driving event, drive_2,
continues the progression of the train.

drive_1
when

phase = 2
v + aε ≤ 0

then
phase := 1
v := 0

z := z + v2

2b

end

drive_2
when

phase = 2
v + aε > 0

then
phase := 1
v := v + aε

z := z + vε + aε2

2

end

We can now refine this model by adding a second train. Nothing changes for the
first train that still gets its limit point to be m. The second train with position
z2, speed v2, and acceleration a2 will now get its limit being z (the position of
the first train) rather than m. This refinement is very easily done with Event-B
and the Rodin Platform. After this second refinement, an interesting animation
can be performed with the AnimB animator of the Rodin Platform: one can see
the two trains accelerating and decelerating in an appropriate way. The global
proof effort for the Rodin Platform on this example is 103 proof obligations, all
proved automatically except two of them that are proved interactively (easy).
It would be simple to refine the time independent variables z and v to time
dependent variables as we have done in previous examples.

3.4 Aircraft Collision Avoidance [4] [5]

This example is taken from the book of A. Platzer [4]. It has also been developed
in an independent paper by Platzer and Clarke [5]. The problem is to study an
horizontal collision avoidance maneuver to be performed by two aircrafts flying
at the same altitude. This maneuver must be performed when the two aircrafts
have the possibility to "almost" collide, i.e. when the distance between them
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could become smaller than or equal to a predefined constant distance p. The
maneuver is said to be "horizontal" as both aircrafts continue to fly at the same
altitude before, during, and after executing the maneuver.

Simplified Case: Preliminary Study

Platzer and Clarke studied a simple case with the following constraints:

1. Both aircrafts have the same linear speed v which has to be maintained
during the maneuver.

2. Both aircrafts would exactly collide at some point o should they continue to
fly without performing the maneuver.

3. Both aircrafts are situated at the same distance of the colliding point o when
they decide to maneuver

The maneuver consists for both aircrafts to reach a certain circle centered in
o and with a radius r (to be made precise later). Once they have reached this
circle, both aircrafts follow it in the same direction until they both leave it at
the same time in order to eventually return to their original direction. All this
can be illustrated in the following figure:

Entering and leaving the circle as well as following the circle is always done at
the same original linear speed v. In order to ensure this, both aircrafts should
enter and leave the circle by using portions of external circles (called the entering
circles) that are tangent to the main one and with the same radius. As a conse-
quence, both aircrafts start following the entering circles when they are both at
a distance r

√
3 of the circle center o. Likewise, they enter the main circle when

the angle with their original trajectory is exactly π
6 . This can be illustrated in

the following figure:

During the maneuver the distance between the two aircrafts must always be
smaller than the predefined distance p. If the angle between the two trajectories
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is φ and the common distance of both aircrafts to the circle center o is ρ then
the distance d of both aircrafts is the following:

d = 2ρ sin
φ

2
This is illustrated in the right figure.
The main invariant of our system is thus the following:

2ρ sin
φ

2
≥ p

Notice that the angle φ between the two trajectories will not change during the
maneuver. As a consequence, the only quantity that counts in order to compute
the distance and thus check whether the safety condition holds is the common
distance ρ of both aircrafts to the center o. The smallest distance between the
aircrafts is reached when they are both flying on the main circle (this will be
formally proved below). We must have then 2r sin φ

2 ≥ p. This gives us a lower
value for r: r ≥ p

2 sin φ
2
. If both aircrafts decides to maneuver when they are at

a distance ρi from the point o, this distance must be greater than the distance
where they start turning (i.e. r

√
3). This gives us an upper value for r. We must

have r
√

3 ≤ ρi. We have thus the following constraint for r (that is, r can be
chosen non-deterministically between these two values): p

2 sin φ
2
≤ r ≤ ρi√

3
.

Notice that if ρi is too small, the maneuver is impossible: it is too late. In
fact, we must have the following relationship between the three constants ρi, p,
and φ: ρi ≥ p

√
3

2 sin φ
2

Simplified Case: Event-B Development. In this development, we model the
behavior of one aircraft only. We can do so since in this simplified framework
the behavior of the second aircraft can be deduced from that of the first one
by a simple rotation with constant angle φ. Here are first a number of constant
definitions: ρi, p and φ. They are all real numbers constrained as follows:

axm0_1: 2ρi sin φ
2

≥ p
√

3

The state of the first model is defined by means of the following variables: phase,
ρ, θ, and r. Variables ρ and θ are the polar coordinates of the first aircraft. But
as mentioned above, only the ρ polar cordinate is useful in order to compute the
distance d between both aircrafts. As a consequence, we can discard the θ polar
coordinate. The following invariants must hold between these variables. Mind
the invariant inv0_4 stating the main safety property, i.e. the distance between
aircrafts is always greater than or equal to the constant p. These variables are
initialized as follows and the initial agreement makes a non-deterministic choice
for r:
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inv0_1: phase ∈ {0, 1, 2, 3, 4, 5}
inv0_2: ρ ∈ R

+

inv0_3: r ∈ R
+

inv0_4: 2ρ sin φ
2
≥ p

INIT
begin

ρ := ρi

phase := 0
r :∈ R

+

end

agree
any c where

phase = 0

p ≤ 2c sin φ
2

c
√

3 ≤ ρi

then
phase := 1
r := c

end

The next phases are described in the following events:

start
when

phase = 1
then

phase := 2

ρ := r
√

3
end

enter
when

phase = 2
then

phase := 3
ρ := r

end

cycle
when

phase = 3
then

phase := 4
ρ := r

end

leave
when

phase = 4
then

phase := 5

ρ := r
√

3
end

We are now going to refine this initial model by introducing the continuous time
function for ρ, that is ρ_c. We also introduce the variable now. Our main invari-
ant is inv1_4 is to be compared to inv0_4 where the variable ρ corresponded
to a discrete transition.

inv1_1: ρ_c ∈ R
+ �→ R

inv1_2: now ∈ dom(ρ_c)
inv1_3: ρ = ρ_c(now)
inv1_4: ∀ t · t ∈ dom(ρ_c) ⇒

2ρ_c(t) sin φ
2
≥ p

INIT
begin

ρ_c := {0 �→ ρi}
phase := 0
r :∈ R

+

now := 0
end

agree
any c where

phase = 0

p ≤ 2c sin φ
2

c
√

3 ≤ ρi

then
phase := 1
r := c

end

The event INIT is refined in a simple way and the event agree is not modified.
In the event start, the time function ρ_c is decreased from ρi in a linear fashion
according to the constant speed v of the aircraft. The variable now is incremented
with a time corresponding to the linear movement of the aircraft from the initial
position at ρi to the position at r

√
3 where it starts turning.

start
when

phase = 1
then

phase := 2

ρ_c := λ t · t ∈ now .. now + (ρi−r
√

3)
v

| ρi − v(t − now)

now := now + (ρi−r
√

3)
v

end
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The aircraft travels on the external circle centered in o1 as shown in this figure:

ρ2 = a2 + b2

= r2(1 − cosα)2 + r2(
√

3 − sin α)2

= r2(5 − 4 cos(π
3 − α))

ρ = r
√

5 − 4 cos(π
3 − α)

The part of this circle that is used corresponds to an angle of π
3 . Since the air-

craft still flies at the same linear speed v, the time it takes to turn in this circle
is

π
3 r

v : this is therefore the quantity used to increment the variable now in the
event enter. The computation of the new function ρ_c is a little more compli-
cated. It is explained above (see the figure). We can notice that the quantity√

5 − 4 cos(π
3 − α) is well defined since 5− 4 cos(π

3 −α) is always positive. Also,
this quantity is greater than or equal to 1 (when α varies from 0 to π

3 ), so ρ is
greater than or equal to r. Now the angle α can be related to the time t− now,
which is the time elapsed on the circle to progress from the angle 0 to the angle
α at linear speed v, that is: α = v(t−now)

r

enter
when

phase = 2
then

phase := 3

ρ_c := λ t · t ∈ now .. now + πr
3v

| r
√

5 − 4 cos(π
3
− v(t−now)

r
)

now := now + πr
3v

end

The last two phases correspond to cycling on the main circle and then leaving the
circle: they are not shown here. The global proof effort for the Rodin Platform
on this example is 84 proof obligations, all proved automatically.

The General Case. The general case is not very different from the simpli-
fied one. In what follows, we give a short account on this generalization. We
still suppose that both aircrafts are flying at the same linear speed v. They are
converging to a point o as in the simplified case, but this time they are not
necessarily colliding at this point, but their distance might become smaller than
or equal to the predefined distance p. The first thing to do is to determine the
distance between both aircrafts and the way this distance evolves. The distance
δ can be calculated as follows:

δ2 = ρ2
2 sin2 φ + (ρ2 cosφ − ρ1)2 = ρ2

1 + ρ2
2 − 2ρ1ρ2 cosφ

As ρ1 and ρ2 are moving from their initial values ρi1 and ρi2 at the same speed
v, we have thus: ρ1 = ρi1 − vt and ρ2 = ρi2 − vt that is:

δ2 = (ρi1 − vt)2 + (ρi2 − vt)2 − 2(ρi1 − vt)(ρi2 − vt) cosφ
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Thus, the derivative dδ2

dt of δ2 relative to t is the following:

dδ2

dt = 2v(cosφ − 1)(ρi1 + ρi2 − 2vt)

When t is smaller than ρi1+ρi2
2v , the derivative is negative. A minimum is thus

reached when t is equal to ρi1+ρi2
2v , leading to the following minimum δm (in this

case, we have ρi1 − vt = ρi1−ρi2
2 and ρi2 − vt = ρi2−ρi1

2 ): δm = (ρi2 − ρi1) cos φ
2

(we suppose ρi2 > ρi1) In summary, both aircrafts "almost" collide when the
following holds: δm ≤ p. In order to avoid this "almost" collision, we are using the
same maneuver as in the simplified case, namely to have both aircrafts following
a trajectory using a circle centered in the point o as indicated in the following
figure:

This time however, we have to take account of both aircrafts in order to ensure
that their distance δ remains greater than or equal to p. We suppose ρi2 > ρi1.
First of all, when both aircrafts decide on the maneuver, their distance δi must
be greater than p, that is: δ2

i = ρ2
i1 + ρ2

i2 − 2ρi1ρi2 cosφ ≥ p2 .
We have to determine the radius r of the circle. The constraints are the

following. The first aircraft can reach the turn: r
√

3 ≤ ρi1. The distance between
both aircrafts is greater than or equal to p when they are both flying on the circle:
2r sin φ+ψ

2 ≥ p where ψ is the angular distance due to the difference of the initial
positions of the aircrafts. More precisely, we have: ψ = ρi2−ρi1

r .

4 Conclusion

In this paper, we presented a way of studying hybrid systems in Event-B [7] and
the Rodin Platform [8]. Our approach follows that of Action System [1] [2] [3]. It
is illustrated by means of many examples taken from the literature. All of them
have been developed and fully proved with the Rodin Platform. We have not
studied the possible definition of the continuous parts by means of differential
equations as is usually done in the hybrid system literature: this will be studied
in subsequent papers. As the Rodin Platform does not support (mathematical)
real numbers yet, our examples, implemented on Rodin, "cheated a bit". So
far, for most of the examples, the "cheating" consisted in giving in the Rodin
developments some specific integer values to the constants that are normally
assigned to some real values. As a consequence, various calculations ended in
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integer numbers: we have done so in the saw example (section 3.1), the nuclear
plant cooling example (section 3.2), and the train example (section 3.3). In the
aircraft collision avoidance example (section 3.4), this simplification could not
be done as we were dealing with trigonometric functions and the square root
function. So, in this case, we gave some explicit properties of these functions.
For instance,

√
3 is left as such. We have done the same for some trigonometric

values, and so on. We also sometimes added some real number "axioms" such as
∀x·x �= 0 ⇒ x ∗ (y/x) = y that is not true for integer numbers since "/" is the
integer division.
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Abstract. Formal development in Event-B generally requires the vali-
dation of a large number of proof obligations. Some automatic tools exist
to automatically discharge a significant part of them, thus augmenting
the efficiency of the formal development. We here investigate the use of
SMT (Satisfiability Modulo Theories) solvers in addition to the tradi-
tional tools, and detail the techniques used for the cooperation between
the Rodin platform and SMT solvers.

Our contribution is the definition of two approaches to use SMT
solvers, their implementation in a Rodin plug-in, and an experimental
evaluation on a large sample of industrial and academic projects. Adding
SMT solvers to Atelier B provers reduces to one fourth the number of
sequents that need to be proved interactively.

1 Introduction

The Rodin platform [7] is an integrated design environment for the formal mod-
eling notation Event-B [1]. Rodin is based on the Eclipse framework [18] and
has an extensible architecture, where new features, or new versions of existing
features, can be integrated by means of plug-ins. It supports the construction of
formal models of systems as well as their refinement using the notation of Event-
B, based on first-order logic, typed set theory and integer arithmetic. Event-B
models should be consistent; for this purpose, Rodin generates proof obligations
that need to be discharged (i.e., proved valid).

The proof obligations are represented internally as sequents, and a sequent
calculus forms the basis of the verification machinery. Proof rules are applied to
a sequent and produce zero, one or more new, usually simpler, sequents. A proof
rule producing no sequent is called a discharging rule. The goal of the verification
is to build a proof tree corresponding to the application of the proof rules, where
all the leaves are discharging rules. In practice, the proof rules are generated by
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so-called reasoners. A reasoner is a plug-in that can either be standalone or use
existing verification technologies through third-party tools.

The usability of the Rodin platform, and of formal methods in general, greatly
depends on several aspects of the verification activity:

Automation. Ideally, the proof obligations are validated automatically by rea-
soners. If human interaction is required for discharging proof obligations
(using an interactive theorem prover), productivity is negatively impacted.

Information. Validation of proof obligations should not be sensitive to irrele-
vant modifications of the model. When modifying the model, large parts of
the proof can be preserved if the precise facts used to validate each proof obli-
gation are recorded. Moreover, similar proof obligations can be discharged
without further need of the reasoner by noticing the same proof applies, even
if the proof obligations differ slightly (on irrelevant parts).

Finally, counter-examples of failed proof obligations can be very valuable
to the user as hints to improve the model and the invariants.

Trust. When a prover is used, either the tool itself or its results need to be
certified; otherwise the confidence in the formal development is jeopardized.

In this paper, we address the application of a verification approach that may
potentially fulfill these three requirements: Satisfiability Modulo Theory (SMT)
solvers. SMT solvers can automatically handle large formulas of first-order logic
with respect to some background theories, or a combination thereof, such as dif-
ferent fragments of arithmetic (linear and non-linear, integer and real), arrays,
bit vectors, etc. They have been employed successfully to handle proof obliga-
tions with tens of thousands of symbols stemming from software and hardware
verification. In this paper, we propose a translation of Event-B sequents to SMT
input, the difficulty lying essentially in the way sets are translated.

The SMT-LIB initiative provides a standard for the input language of SMT
solvers, and, in its last version [4], a command language defining a common in-
terface to interact with SMT solvers. We implemented a Rodin plug-in using this
interface. The plug-in also extracts from the SMT solvers some additional infor-
mation such as the relevant hypothesis. Some solvers (e.g. Z3 [9] and veriT [6])
are able to generate a comprehensive proof for validated formulas, which can be
verified by a trusted proof checker [2]. In the longer term, besides automation,
and information, trust may be obtained using a centralized proof manager.

Overview. Section 2 presents two approaches to translate Rodin sequents to
the SMT-LIB notation. Section 3 illustrates both approaches through a simple
example. Section 4 gives some insights on the techniques employed in SMT
solvers to handle Rodin sequents and section 5 presents experimental results,
based on the verification activities carried out for a variety of Event-B projects.
We conclude by discussing future work.

Throughout the paper, formulas are expressed using the Event- B syntax [14],
and sentences in SMT-LIB are typeset using a typewriter font.
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2 Translating Event-B to SMT

Figure 1 gives a schematic view of the cooperation framework between Rodin
and the SMT solver. For each Event-B sequent representing a proof obligation
to be validated in Rodin, an SMT formula is built. SMT solvers answer the
satisfiability question, so that it is necessary to take the negation of the sequent
(to be validated) in order to build a formula to be refuted by the SMT solver.
On success a proof and an unsatisfiable core — i.e., the set of facts necessary
to prove that the formula is unsatisfiable — may be supplied to Rodin, which
will extract a new Event-B proof rule out of it. If the SMT solver does not
implement unsatisfiable core generation, the proof rule will assert that the full
Event-B sequent is valid (and will only be useful for that specific sequent).

Fig. 1. Schematic view of the in-
teraction between Rodin and SMT
solvers

The SMT-LIB standard proposes several
“logics” that specify the interpreted symbols
that may be used in the formulas. Currently,
however, none of those logics fits exactly the
language of the proof obligations generated
by Rodin. There exists a proposal for such
a logic [13], but the existing SMT solvers
do not yet implement corresponding reason-
ing procedures. Our pragmatic approach is
thus to identify subsets of the Event-B logics
that may be handled by the current tools, ei-
ther directly or through some simple transfor-
mations. Translating Boolean and arithmetic
constructs is mostly straightforward, since a
direct syntactic translation may be under-
taken for some symbols: Boolean operators
and constants, relational operators, and most
of arithmetic (division and exponentiation op-
erators are currently translated as uninterpreted symbols). As an example of
transformation of an Event-B sequent to an SMT formula, consider the sequent
with goal 0 < n+1 under the hypothesis n ∈ N; the type environment is {n ◦◦ Z}
and the generated SMT-LIB formula is:

(set-logic AUFLIA)

(declare-fun n () Int)

(assert (>= n 0))

(assert (not (< 0 (+ n 1))))

(check-sat)

The main issue in the translation of proof obligations to SMT-LIB is the repre-
sentation of the set-theoretic constructs. We present successively two approaches.
The simplest one, presented shortly in the next section, is based on the representa-
tion of sets as characteristic predicates [10]. Since SMT solvers handle first-order
logic, this approach does not make it possible to reason about sets of sets. The
second approach removes this restriction. It uses the ppTrans translator, already
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available in the Rodin platform; this translator removes most set-theoretic con-
structs from proof obligations by systematically expanding their definitions.

2.1 The λ-Based Approach

This approach implements and extends the principles proposed in [10] to handle
simple sets. Essentially, a set is identified with its characteristic function. For
instance the singleton {1} is identified with (λx ◦◦ Z | x = 1) and the empty set
is identified with the polymorphic λ-expression (λx ◦◦ X | FALSE), where X is
a type variable. The union of (two) sets is a polymorphic higher-order function
(λ(S1

◦◦ X → BOOL) 	→ (S2
◦◦ X → BOOL) | (λx ◦◦ X | S1(x) ∨ S2(x))), etc.

SMT-LIB does not provide a facility for λ-expressions, and has limited support
for polymorphism. This approach requires several extensions to SMT-LIB: λ-
expressions, a polymorphic sort system, and macro-definitions. Those extensions
are actually implemented in the veriT parser. Consider the sequent A ◦◦ P(Z) �
A ∪ ∅ = A, the translator to this extended SMT-LIB language produces:

(declare-fun A (Int) Bool)

(define-fun (par (X) (union ((S1 (X Bool)) (S2 (X Bool))) (X Bool)

(lambda ((x X)) (or (S1 x) (S2 x))))))

(define-fun (par (X) (emptyset () (X Bool) (lambda ((x X)) false))))

(assert (not (= (union A emptyset) A)))

(check-sat)

where X denotes a sort variable. The function definitions union and emptyset

are inserted by the translator and are part of a corpus of definitions for most of
the set-theoretic constructs (see [10,11] for details). They are divided into a list
of sorted parameters, the sort of the result, and the body expressing the value
of the result. The macro processor implemented in veriT transforms the goal to

(not (forall ((x Int)) (iff (or (A x) false) (A x))))

i.e., a first-order formula that may then be handled using usual SMT solving
techniques. It is also possible to use veriT only as a pre-processor to produce
plain SMT-LIB formulas that are amenable to verification using any SMT-LIB
compliant solver.

As already mentioned, the main drawback of this approach is that sets of sets
cannot be handled. It is thus restricted to simple sets and relations. Furthermore
its reliance on extensions of the SMT-LIB format creates a dependence on veriT
as a macro processor. The next approach lifts these restrictions.

2.2 The ppTrans Approach

Our second approach uses the translator ppTrans provided by the Predicate
Prover available in Rodin in order to obtain first-order logic formulas which are
almost free of set-theoretic elements [12]. It also separates arithmetic, Boolean
and set-theoretic constructs from each other and performs simplifications. This
approach makes the plug-in independent from veriT, and is more robust with
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respect to the translation of relations and functions. On formulas suitable for
the previous approach, the translator would however produce very similar results
compared to this previous simple approach.

Besides the straightforward translations mentioned earlier, the translation
from the ppTrans output to SMT-LIB provides some specific rules for the trans-
lation of set-theoretic constructs such as the membership operator. For instance
assume the input has the following typing environment and formulas:

Typing environment Formulas
a ◦◦ S
b ◦◦ T
c ◦◦ U
A ◦◦ P(S)
r ◦◦ P(S × T )
s ◦◦ P(S × T × U)

a ∈ A
a 	→ b ∈ r

a 	→ b 	→ c ∈ s

First, for each basic set found in the proof obligation, the translation produces
a sort declaration in SMT-LIB. In addition, for each combination of basic sets
(either through powerset or Cartesian product), an additional sort declaration
is produced. Translating the typing environment produces a sort declaration for
each basic set, and combination thereof found in the input:

S � (declare-sort S 0)

T � (declare-sort T 0)

U � (declare-sort U 0)

P(S) � (declare-sort PS 0)

P(S × T ) � (declare-sort PST 0)

P(S × T × U) � (declare-sort PSTU 0)

Second, the translation produces a function declaration for each constant:

a ◦◦ S � (declare-fun a () S)

b ◦◦ T � (declare-fun b () T)

c ◦◦ U � (declare-fun c () U)

A ◦◦ P(S) � (declare-fun A () PS)

r ◦◦ P(S × T ) � (declare-fun r () PST)

s ◦◦ P(S × T × U) � (declare-fun s () PSTU)

Third, for each type occurring at the right-hand side of a membership predicate,
the translation produces fresh SMT function symbols:

(declare-fun (MS0 (S PS) Bool))

(declare-fun (MS1 (S T PST) Bool))

(declare-fun (MS2 (S T U PSTU)) Bool)

The Event-B atoms can then be translated as follows:

a ∈ A � (MS0 a A)

a 	→ b ∈ r � (MS1 a b r)

a 	→ b 	→ c ∈ s � (MS2 a b c s)
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Finally, the Event-B formula where all non-membership set operators have been
expanded to their definition is translated to SMT-LIB. For instance, the formula
A ∪∅ = A would be translated to ∀x·(x ∈ A ∨ x ∈ ∅)⇔ x ∈ A, which ppTrans
simplifies to ∀x·(x ∈ A ∨ ⊥)⇔ x ∈ A, would be translated to

(forall ((x S)) (= (or (MS0 A x) false) (MS0 A x)))

While the approach presented here covers the whole Event-B mathematical lan-
guage and does not require polymorphic types or specific extensions to the SMT-
LIB language, the semantics of some Event-B constructs is approximated because
some operators become uninterpreted in SMT-LIB (chiefly membership but also
some arithmetic operators such as division and exponentiation). However, we can
recover their interpretation by adding axioms to the SMT-LIB benchmark, at the
risk of decreasing the performance of the SMT-solvers. Some experimentation is
thus needed to find a good balance between efficiency and completeness.

Indeed, it appears experimentally that including some axioms of set theory
to constrain the possible interpretations of the membership predicate greatly
improves the number of proof obligations discharged. In particular, the axiom of
elementary set (singleton part) is necessary for many Rodin proof obligations.
The translator directly instantiates the axiom for all membership predicates.
Assuming MS is the membership predicate associated with sorts S and PS, the
translation introduces thus the following assertion:

(assert (forall ((x S))

(exists ((X PS)) (and (MS x X)

(forall ((y S)) (=> (MS y X) (= y x)))))))

More implementation and optimization details are available in [12]. It is note-
worthy that the plug-in based on ppTrans detects sequents with only simple sets
(i.e., no sets of sets) and uses a translation similar to the λ-based approach in
that case. Therefore, the ppTrans approach subsumes the λ-based approach.

3 A Small Event-B Example

As a concrete example of translation, this section presents the model of a simple
job processing system consisting of a queue and a processor. The basic sets are
JOBS (the jobs) and STATUS (the possible states of the processor), such that
axm1 : STATUS = {RUN, IDLE}, and axm2 : RUN �= IDLE. The state of the
model has three variables: proc (the current status of the processor) queue (the
jobs currently queued) and active (the job being processed, if any). This state
is constrained by the following invariants:

inv1 : proc ∈ STATUS (typing)
inv2 : active ∈ JOBS (typing)
inv3 : queue ∈ P(JOBS) (typing)
inv4 : proc = RUN ⇒ active /∈ queue

One of the events of the system describes that the processor takes on a new job.
It is specified as follows:
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Event SCHEDULE =̂ (the processor takes on a new job)
any

j
where

grd1 : proc = IDLE (the processor must be idle)
grd2 : j ∈ queue (the job j is in the queue)

then
act1 : queue := queue \ {j}
act2 : active := j
act3 : proc := RUN

end

To verify that the invariant labeled inv4 is preserved by the SCHEDULE event,
the following sequent must be proved valid:

axm1, axm2, inv1, inv2, inv3, inv4, grd1, grd2
� RUN︸ ︷︷ ︸

proc

= RUN⇒ j︸︷︷︸
active

/∈ queue \ {j}︸ ︷︷ ︸
queue

. (1)

The generated proof obligations thus aim to show that the following formula is
unsatisfiable:

STATUS = {RUN, IDLE} ∧RUN �= IDLE ∧
proc ∈ STATUS ∧ active ∈ JOBS ∧ queue ∈ P(JOBS ) ∧
proc = RUN⇒ active /∈ queue ∧
proc = IDLE ∧ j ∈ queue ∧
¬(RUN = RUN⇒ j /∈ queue \ {j}).

This proof obligation does not contain sets of sets and the approach described in
section 2.1 may be applied resulting in the SMT-LIB input presented in Figure 2.
Lines 2 and 3 contain the declarations of the sorts corresponding to the basic
sets introduced in the context. Lines 4–9 contain the declarations of the function
symbols corresponding to the free variables of the proof obligation, and are
produced using the typing environment. Note that set queue is represented by
a unary predicate symbol. Next, the definitions of the macros corresponding to
set operators ∈ and \ are included on lines 10–13. Line 14 is the definition of
a macro that represents the singleton set {j}. Lines 15–21 are the result of the
translation of the proof obligation itself.

Of course, this proof obligation is also amenable to translation using the
approach described in section 2.2, and the corresponding SMT-LIB input is given
in Figure 3. Since the proof obligation includes sets of JOBS, a corresponding
sort PJOBS and membership predicate MJOBS are declared in lines 4–5. Then,
the function symbols corresponding to free identifiers of the sequent are declared
at lines 6–11. Finally, the hypothesis and the goal of the sequent are translated
to named assertions (lines 12–18).

The sequent described in this section is very simple and is easily verified by
both Atelier-B provers and SMT-solvers. Section 5 reports experiments with a
large number of proof obligations and establishes a better basis to compare the
effectiveness of these different verification techniques.
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1 (set-logic AUFLIA)

2 (declare-sort STATUS 0)

3 (declare-sort JOBS 0)

4 (declare-fun RUN () STATUS)

5 (declare-fun IDLE () STATUS)

6 (declare-fun proc () STATUS)

7 (declare-fun active () JOBS)

8 (declare-fun j () JOBS)

9 (declare-fun queue (JOBS) Bool)

10 (define-fun (par (X) (in ((x X) (s (X Bool))) Bool (s x))))

11 (define-fun (par (X)

12 (setminus ((s1 (X Bool)) (s2 (X Bool))) (X Bool)

13 (lambda ((x X)) (and (s1 x) (not (s2 x)))))))

14 (define-fun set1 ((x JOBS)) Bool (= x j))

15 (assert (and (forall ((x STATUS)) (or (= x RUN) (= x IDLE)))

16 (not (= RUN IDLE))

17 (=> (= proc RUN) (not (in active queue)))

18 (= proc IDLE)

19 (in j queue)

20 (not (=> (= RUN RUN)

21 (not (in j (setminus queue set1)))))))

22 (check-sat)

Fig. 2. SMT-LIB input produced using the λ-based approach

4 Solving SMT Formulas

In this section, we provide some insight about the internals of SMT solvers, in
order to give to the reader an idea on the kind of formulas that can successfully
be handled by SMT solvers. A very schematic view of an SMT solver is presented
on Figure 4. Basically it is a decision procedure for quantifier-free formulas in a
rich language coupled with an instantiation module that handles the quantifiers
in the formulas by grounding the problem. For quantified logic, SMT solvers are
of course not decision procedures anymore, but they work well in practice if the
necessary instances are easy to find and not too numerous.

4.1 Unquantified Formulas

Historically, the first goal of SMT solvers was to provide efficient decision pro-
cedures for expressive languages, beyond pure propositional logic. Those solvers
have always been based on a cooperation of a Boolean engine, nowadays typi-
cally a SAT solver (See [5] for more information on SAT solver techniques and
tools), and a theory reasoner to check the satisfiability of a set of literals in
the considered language. The Boolean engine generates models for the Boolean
abstraction of the input formula, whereas the theory reasoner refutes the sets
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1 (set-logic AUFLIA)

2 (declare-sort STATUS 0)

3 (declare-sort JOBS 0)

4 (declare-sort PJOBS 0)

5 (declare-fun MJOBS (JOBS PJOBS) Bool)

6 (declare-fun RUN () STATUS)

7 (declare-fun IDLE () STATUS)

8 (declare-fun proc () STATUS)

9 (declare-fun active () JOBS)

10 (declare-fun queue () PJOBS)

11 (declare-fun j () JOBS)

12 (assert (! (forall ((x STATUS)) (or (= x RUN) (= x IDLE))) :named axm1))

13 (assert (! (not (= RUN IDLE)) :named axm2))

14 (assert (! (= proc IDLE) :named grd1))

15 (assert (! (MJOBS j queue) :named grd2))

16 (assert (! (not (=> (= RUN RUN)

17 (not (and (MJOBS j queue)

18 (not (= j j)))))) :named goal))

19 (check-sat)

Fig. 3. SMT-LIB input produced using the ppTrans approach

of literals corresponding to these abstract models by adding conjunctively con-
flict clauses to the propositional abstraction. This exchange runs until either
the Boolean abstraction is sufficiently refined for the Boolean reasoner to con-
clude that the formula is unsatisfiable, or the theory reasoner concludes that the
abstract model indeed corresponds to a model of the formula.

The theory reasoners are themselves based on a combination of decision pro-
cedures for various fragments. In our context, the relevant decision procedures
are congruence closure — to handle uninterpreted predicates and functions —
decision procedure for arrays (typically reduced to some kind of congruence clo-
sure), and linear arithmetic. It is possible, using the Nelson-Oppen combination
method [15,19], to build a decision procedure for the union of the languages. The
theory reasoner used in most SMT solvers is thus able to decide the satisfiabil-
ity of literals on a language containing a mix of uninterpreted symbols, linear
arithmetic symbols, and array operators.

For the theory reasoner and the SAT solver to cooperate successfully, some
techniques are necessary. Among these techniques, if a set of literals is found
unsatisfiable, it is most valuable to generate small conflict clauses, in order to
refine the Boolean abstraction as strongly as possible. Also, theory propagation,
that allows to control the decisions taken inside the SAT solver, has proved to
be very worthwhile in practice (more can be found about these techniques and
SMT solving in general in [3]).
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Fig. 4. Schematic view of an SMT solver

4.2 Instantiation Techniques

Automatically finding the right instances of quantified formulas is a key issue for
the verification of sequents (as well as proof obligations produced in the context
of a number of software verification tools). The quantifier instantiation module
is responsible for producing lemmas of the form ¬ϕ(t)∨∃xϕ(x). Generating too
many instances may overload the solver with useless information and exhaust
computing resources. Generating too few instances will result in an “unknown”,
and useless, verdict. We report here how veriT copes with such quantified formu-
las. Several instantiation techniques are applied in turn: trigger-based, sort-based
and superposition techniques.

In a quantified formulaQxϕ(x), a trigger is a set of terms T = {t1, · · · tn} such
that the free variables in T are the quantified variables x and each ti is a sub-
term of the matrix ϕ(x) of the quantified formula. Trigger-based instantiation
consists in finding, in the formula, sets of ground terms T ′ that match T , i.e.,
such that there is a substitution σ on x, where the homomorphic extension
of σ over T yields T ′. Each such substitution defines an instantiation of the
original quantified formula. Some verification systems allow the user to specify
instantiation triggers. This is not the case in Rodin, and veriT applies heuristics
to annotate quantified formulas with triggers.

If the trigger-based approach does not yield any new instance, veriT resorts
to sort-based instantiation. In that case, each quantified variable is instantiated
with the ground terms of the formula that have the same sort.

Finally, veriT also features a module to communicate with a superposition-
based first-order logic automated theorem prover, namely the E prover [17]. It
is built upon automated deduction techniques such as rewriting, subsumption,
and superposition and is capable of identifying the unsatisfiability of a set of
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quantified and non-quantified formulas. When such a set is found satisfiable,
lemmas are extracted from its output and communicated to the other reasoning
modules of veriT. The E prover, like many saturation-based first-order provers,
is complete for first-order logic with equality.

4.3 Unsat Core Extraction

Additionally to the satisfiability response, it is possible, in case the proof obli-
gation is validated (i.e., when the formula given to the SMT solver is unsatisfi-
able), to ask for an unsatisfiable core. For instance, the sequent (1) discussed in
Section 3 and translated into the SMT input on Figure 3 is valid independently
of any hypothesis. The SMT input associates labels to the hypotheses and goal,
using the reserved SMT-LIB annotation operator !. A solver implementing the
SMT-LIB unsatisfiable core feature could thus return the list of hypotheses used
to validate the goal. In the present case, it would only return the goal since
no named hypothesis was used. The plug-in transmits this information to the
platform through a rule stating that the goal is unsatisfiable by itself.

Once this rule has been produced, the Rodin platform uses it to discharge any
similar proof objective. In particular, if we modify the current sequent without
modifying any predicate of the rule (in this case for instance, by changing any
irrelevant invariant), the SMT solver rule will still be applicable and the SMT
solver will not need to be run again. This is very important for the end user
experience: when the user modifies his model, most proofs get reused and the
user does not have to wait for the solvers to run again.

The unsat core production for the veriT solver is related to the proof produc-
tion feature. The solver is indeed able to produce a proof, and it has moreover a
facility to prune the proof of unnecessary proof steps and hypotheses. It suffices
thus to check the pruned proof and collect all hypotheses in that proof to obtain
a superset of the unsat core. Although not minimal in theory, this superset often
corresponds to a minimal unsat core, and thus provides the plug-in with high
quality information.

5 Experimental Results

We collected a library of proof obligations from several academic (i.e., case stud-
ies from books, academic publications, tutorials,. . . ) and industrial projects. The
SMT solvers are used with a timeout of 3 seconds1, on a dual-core Intel Core 2
Duo, cadenced at 2.93GHz, with 4GB of RAM, and running Linux Ubuntu 10.04.
Figure 5 presents a summary of the results.2 The results are detailed separately
for academic and industrial projects. The second column gives the number of

1 This timeout is unusually small for SMT solvers. Larger timeouts would provide
better results, but also altering the responsiveness of the Rodin interactive platform.

2 Notice that the z3 solver was not used at its full power since its Model Based Quan-
tifier Instantiation feature (MBQI) was not fully functional on the latest currently
available version for our system.
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Fig. 5. Experimental results (number of proof obligation not discharged by the tools)

proof obligations, the next columns the number of them not validated by the
tool heading the column, i.e., the number of proof obligations requiring human
interaction after automatic application of only this tool.

The column “Atelier B” gives the number of proof obligations that were not
discharged by the prover from Atelier B. The five following columns give, for
several SMT solvers, the number of proof obligations that the solvers were not
able to validate. The “SMT Portfolio” column relates the number of proof obli-
gations unproved after trying all considered SMT solvers, whereas the “SMT
Portfolio (Open)” column only consider the solvers with a permissive license,
(i.e., distributed with the plug-in). The “Portfolio” column gives the remaining
sequents after running both the SMT solvers and the prover from Atelier B.

On Figure 6 only the proof obligations undischarged by the prover from Ate-
lier B are considered, and we detail for each solver (or group of solvers) the
number of validated formulas.

It is worth noticing that SMT solvers altogether validate more proof obliga-
tions than the Atelier B prover. But the important and strong conclusion that
can be deduced from these tables is that SMT solvers complement the Ate-
lierb B prover. From 600 proof obligations that are not validated by the prover
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from Atelier B — and that required human interaction — around 75% are dis-
charged automatically by SMT solvers. It thus divides by four the amount of
verification conditions requiring human interaction.

Besides this complementarity, the tools have different features that justify
having a portfolio of solvers: veriT has a permissive license and produces proofs,
from which it is easy to extract unsatisfiable cores; cvc3 is quite efficient, but
extracting unsatisfiable cores from its output is not trivial; z3 is certainly very
powerful, but has a restrictive license.

6 Conclusion

SMT solving is a formal verification technique successfully applied to various
domains including verification. SMT solvers do not have built-in support for
set-theoretic constructs found in Rodin sequents, but different translation ap-
proaches may be applied to map such constructs to a logic they handle. We
presented two such approaches: a basic one that tackles simple sets, and another
one that is furthermore able to handle more elaborate structures.

We evaluated experimentally the efficiency of SMT-solvers against proof obli-
gations resulting from the translation of Rodin sequents. In our sample of in-
dustrial and academic projects, the use of SMT solvers on top of Atelier B
provers reduces to one fourth the number of unverified sequents. This plug-in
is available through the integrated software updater of Rodin (instructions at
http://wiki.event-b.org/index.php/SMT_Plug-in).

The results are very encouraging and motivate us to progress further by imple-
menting and evaluating new translation approaches, such as representing func-
tions using arrays in the line of [8]. Also, as SMT solvers can provide models
when a formula is satisfiable, it would be possible, with additional engineering
effort, to use such models to report counter-examples in Rodin.

Cooperation of deduction tools is very error-prone, not only because it relies
on the correctness of many large and complex tools, but also because of the
translations. Certification of proofs in a centralized trusted proof manager would
be the answer to this problem. Preliminary works in this direction exist [16].

Acknowledgement. we would like to thank the anonymous reviewers for their
remarks.
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Security (2011)

17. Schulz, S.: E - A Brainiac Theorem Prover. AI Communications 15(2/3), 111–126
(2002)

18. The Eclipse Foundation. Eclipse SDK (2009)
19. Tinelli, C., Harandi, M.T.: A new correctness proof of the Nelson–Oppen combina-

tion procedure. In: Baader, F., Schulz, K.U. (eds.) Frontiers of Combining Systems
(FroCoS), Applied Logic, pp. 103–120. Kluwer Academic Publishers (March 1996)

http://deploy-eprints.ecs.soton.ac.uk/11/4/kernel_lang.pdf


Refinement Plans for Informed Formal Design�

Gudmund Grov1, Andrew Ireland2, and Maria Teresa Llano2

1 University of Edinburgh, School of Informatics, Edinburgh, UK
2 Heriot-Watt University, MACS, Edinburgh, UK

Abstract. Refinement is a powerful technique for tackling the com-
plexities that arise when formally modelling systems. Here we focus on
a posit-and-prove style of refinement, and specifically where a user re-
quires guidance in order to overcome a failed refinement step. We take
an integrated approach – combining the complementary strengths of top-
down planning and bottom-up theory formation. In this paper we focus
mainly on the planning perspective. Specifically, we propose a new tech-
nique called refinement plans which combines both modelling and reason-
ing perspectives. When a refinement step fails, refinement plans provide
a basis for automatically generating modelling guidance by abstracting
away from the details of low-level proof failures. The refinement plans de-
scribed here are currently being implemented for the Event-B modelling
formalism, and have been assessed on paper using case studies drawn
from the literature. Longer-term, our aim is to identify refinement plans
that are applicable to a range of modelling formalisms.

1 Introduction

We focus here on a layered style of formal modelling, where a design is developed
as a series of abstract models – level by level concrete details are progressively in-
troduced via provably correct refinement steps. There are two major approaches
in achieving this style of formal modelling: the rule-based approach and the
posit-and-prove approach; examples can be found in [25] and [21,1], respectively.

The work reported here aims to enhance the posit-and-prove approach. Specif-
ically, we have developed a technique called refinement plans which automatically
generates guidance for users within posit-and-prove formal modelling. Like many
approaches to design, whether informal [13] or formal [2], our technique relies
upon patterns. While we focus here on relatively small patterns, we believe this
will provide a foundation upon which to explore larger refinement patterns in
the future.

The novelty of our refinement plans is that they combine modelling and rea-
soning patterns, enabling us to computationally exploit the subtle interplay that
exists between modelling and reasoning – what we call reasoned modelling. Our
refinement plans are heuristic in nature, and can be applied flexibly during a de-
velopment. This flexibility is achieved through partial matching and proof-failure
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analysis. While we focus here on Event-B, we believe the ideas that underpin
reasoned modelling are generic with respect to posit-and-prove.

The paper is structured as follows: §2 provides background on Event-B along
with our previous work on automated theory formation and reasoned modelling
critics. Our refinement plans mechanism is described in §3 and an example of a
refinement plan is presented in §4. The current implementation of the mechanism
is outlined in §5, while §6 describes related and future work.

2 Background

2.1 Event-B Refinement by Example

An Event-B development is structured into models and contexts. A context de-
scribes the static part of a system, e.g. constants and their axioms, while a
model describes the dynamic part. Models are themselves composed of three
components: variables, events and invariants. Variables represent the state of
the system, events are guarded actions that update the variables and invari-
ants are constraints on the variables. By way of illustration we now consider the
Event-B model shown in Figure 1. This model is a fragment of a flash-based file
system developed in [9]. The fragment shown in Figure 1 deals with the function
of writing the content of a file. In the abstract model, the event writefile is re-
sponsible for writing the content of file f, wbuffer(f), into fcontent in an atomic
step. In the concrete model the content is written one page at a time into a
temporary storage fcont tmp (event w step) before being written to the actual
storage fcontent (event w end ok). The new events w start and w step are said
to refine skip, while event w end ok refines the abstract event writefile.

In order to prove that the refinement is indeed correct, invariants must be
provided. In the example three invariants are specified in the concrete model,
the two first invariants specify the type of the new variables fcont tmp and
writing, while the last invariant specifies a property of the refinement step, that
is, that when the writing process starts for a given file, the content of fcont tmp
is a subset or is equal to the content of wbuffer.

2.2 Reasoned Modelling Critics

The notion of reasoned modelling (REMO) was first introduced in [19], where we
described REMO critics. These critics are motivated by the way in which proof-
failure analysis typically informs the activity of modelling – and is achieved by
combining common patterns of proof failure with generic modelling guidance.
The mechanism builds upon the notion of proof critics [18], a proof patching
technique developed within the context of proof planning [4]. The key difference
is that our REMO critics exploit failure at the level of modelling and proof.
As a result, we reduce the burden that users experience in manually analysing
low-level proof failures, presenting them instead with high-level modelling alter-
natives. These ideas were further developed in [20] where an implementation via
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ABSTRACT MODEL:

Variables
fcontent, w opened files, wbuffer, file size,
power on, dateLastModified

Invariants
w opened files ⊆ files
file size ∈ files → N

power on ∈ BOOL
fcontent ∈ files → CONTENT
dateLastModified ∈ (files ∪ directories) → DATE
wbuffer ∈ w opened files → CONTENT

Event writefile =̂
any f
where
f ∈ w opened files
power on = TRUE
then
fcontent(f) := wbuffer(f)
dateLastModified(f) := nowdate
file size(f) := card(wbuffer(f))

end

CONCRETE MODEL:

Variables
fcontent, w opened files, wbuffer, file size, power on, dateLastModified, writing, fcont tmp

Invariants
writing ⊆ w opened files
fcont tmp ∈ writing → CONTENT
∀ f· f∈ writing ⇒ fcont tmp(f) ⊆ wbuffer(f)

Event w start =̂
any f
where
f ∈ w opened files
f /∈ writing
power on = TRUE
then
writing := writing ∪ { f}
fcont tmp(f) := ∅

end

Event w step =̂
any f i data
where
power on = TRUE
f ∈ writing
i ∈ N

data ∈ DATA
i �→ data ∈ wbuffer(f)
i /∈ dom(fcont tmp(f))
then
fcont tmp(f) :=
fcont tmp(f) ∪ { i �→data}

end

Event w end ok =̂
refines writefile
any f
where
f ∈ writing
dom(fcont tmp(f)) = dom(wbuffer(f))
power on = TRUE
then
fcontent(f) := fcont tmp(f)
dateLastModified(f) := nowdate
file size(f) := card(fcont tmp(f))
writing := writing \ { f}
fcont tmp := { f} �− fcont tmp

end

Fig. 1. Event-B model of a flash file system [9]

the Remo tool, a prototype plug-in for the Eclipse-based Rodin toolset imple-
mented in OCaml, is described. The work presented here aims to extend the
REMO critics so as to generate modelling guidance at the level of refinement.

2.3 HRemo

HREMO [24] is an automatic approach to invariant discovery that builds upon
HR [8], a machine learning system that performs descriptive induction to form
a theory about a set of objects of interest which are described by a set of core
concepts. Theories are constructed in HR via theory formation steps which at-
tempt to construct new concepts, i.e. non-core concepts, through the use of a set
of production rules and, if empirical relationships are found between concepts,
formulate conjectures and evaluate the results. Thus, the theories HR produces
contain concepts which relate the objects of interest, conjectures which relate
the concepts; and proofs which explain the conjectures.

HREMO builds upon HR, animation and proof-failure analysis to automat-
ically suggest candidate invariants of Event-B models. In particular, a set of
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heuristics are used to guide the search for invariants in HR. These heuristics ex-
ploit the strong interplay between modelling and reasoning in Event-B by using
the feedback provided by failed POs to make decisions about how to configure
HR. Specifically, the approach consists of analysing the structure of failed POs
to automate the:

1. Prioritisation in the development of conjectures about specific concepts.
2. Selection of appropriate production rules that increase the possibilities of

producing the missing invariants.
3. Filtering of the final set of conjectures to be analysed as candidate invariants.

HREMO uses two classes of heuristics to constrain the search for invariants: those
used in configuring HR, i.e. configuration heuristics, and those used in select-
ing conjectures from HR’s output, i.e. selection heuristics. Using proof-failure
analysis to prune the wealth of conjectures HR discovers, these heuristics have
proven highly effective at identifying missing invariants. Further information
about HREMO and examples of its application can be found in [24].

3 Refinement Plans

Before providing details on the structure of refinement plans, we first sketch how
we envisage they will be used within a development environment such as Rodin.
Given a development, our approach provides a basis for classifying refinement
steps against known patterns of refinement, i.e. syntactic features of abstract
and concrete models.

However, we are interested in situations where a refinement step is flawed,
and thus the proof tools fail to discharge some of the POs. In such situations
our approach attempts to automatically generate guidance, i.e. modelling alter-
natives that overcome the failure. This is achieved by firstly identifying which
of the known patterns are closely aligned to the given failed refinement. As well
as a refinement pattern, each refinement plan is associated with a set of critics
– where a critic represents a common pattern of failure at the level of POs and
models. Moreover, associated with each critic is generic modelling guidance as
to how to overcome the failure, e.g. invariant speculation, event speculation, etc.

Table 1. Refinement pattern analysis of Event-B case studies

control refinement data refinement

Model RP 1 RP 2 RP 3 RP 4 RP 5 RP 6 RP 7 RP 8

Cars on a bridge [1] ✔✔ ✔✔ ✔

Mondex [6] ✔ ✔ ✔✔✔✔ ✔ ✔ ✔✔

Flash file system [9] ✔✔✔ ✔✔ ✔

Location access ctrl. [1] ✔ ✔ ✔✔✔

PLC∗ ✔ ✔✔ ✔

Network topology [15] ✔ ✔ ✔✔ ✔✔

∗Available at http://homepages.inf.ed.ac.uk/ggrov/

http://homepages.inf.ed.ac.uk/ggrov/
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Fig. 2. A hierarchical classification of common refinement patterns

When a common pattern of failure is instantiated by a particular refinement
step, the associated guidance will typically only be partially instantiated. To
fully instantiate the guidance for a given flawed refinement requires in general
additional search and reasoning – this is where we exploit HRemo.

Currently we have identified 8 basic refinement patterns by analysing a range
of Event-B case studies from the literature. These patterns form a hierarchy
as shown on Figure 2. Each leaf node denotes a distinct pattern of refinement,
while the internal nodes reflect the sharing of properties between patterns. This
classification provides us with a better understanding of what a user is trying
to achieve in a refinement step as well as facilitates the matching process. The
8 basic patterns in Figure 2 are described briefly below:

case split: refers to refinement steps in which an abstract event is refined in
the concrete model by two or more events.

control elaboration: relates to models that constrain the application of ex-
isting events based on extensions of the state and independently from the
operation of new events at the concrete level.

accumulator: deals with models in which actions of an abstract atomic event
are performed in the concrete model via iteration.

plain decomposition: makes reference to models in which an abstract event
is refined by a sequence of new and refined events. New events are used to
pre-process data used in the abstract event.

set to partition: refers to models in which an abstract variable is refined by
partitioning it through a set of new variables in the concrete model.

partition to function: involves refinement steps in which an abstract partition
of variables is refined into a function in the concrete model.

data extension: refers to models in which an abstract variable is refined into
a concrete variable that extends the abstract data type in order to control
membership of data in the variable.

redundant data removal: involves the elimination of data from the abstract
level that is not being used to control the operation of any event.
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ABSTRACT MODEL:

Variables: V1, V2 Event A =̂
where
...

then
V1 := V2

end

CONCRETE MODEL:

Variables: V1, V2, W

Invariants: H1 ⇒ F�(W , V2)

Event Ci =̂
where
H0

then
Wai

:= Iai
end

Event Ca =̂
where
H1

then
Wai

:= Wai
⊕ α

end

Event Cr =̂
refines A
where
H1

G=(Wj , V2)
then
V1 := Wai

end

Side conditions:
• H0 ⇔ ¬H1

Fig. 3. Accumulator plan – Modelling pattern

The relation between this hierarchy and the case studies is given in Table 1.
Currently we have explored in detail four refinement plans, i.e. case split, accu-
mulator, set to partition and partition to function. Below in §4 we focus on the
accumulator refinement plan and two of its associated critics.

4 The Accumulator Refinement Plan

A technique for breaking up an atomic event has been proposed by Butler and
Yadav in [6] and further developed in [5,10,11]. The accumulator refinement plan
has been inspired by this work. The key difference with our work is that as well
as the modelling patterns, we are also interested in the deductive patterns and
in providing guidance when a pattern breaks in a development.

The accumulator pattern deals with models in which actions of an abstract
atomic event are performed in the concrete model via iteration. This is achieved
through the use of new events that iteratively accumulate the value from the
abstract action. The modelling and PO patterns of the accumulator plan are
shown in Figures 3 and 4, respectively. Note that we use the Vs and Ws to
denote meta-variables, and specifically we use Iai to represent the initial value
assigned to meta-variable Wai. Note also that we use F, G and H to denote
meta-predicates, where subscripts are used to restrict their instantiation, e.g.
G= restricts G to be an equality. The key elements in the refinement are:

• The abstract model has an atomic event that is refined in the concrete model.
• A set of new variables W = {W1, ..., Wn} are introduced.
• A subset of W , Wa, which denotes accumulator variables. That is, for each
Wai ∈ Wa (where, 1 ≤ i ≤ n) there is an accumulator event, i.e. the action
pattern Wai := Wai ⊕ α occurs, an initialisation event and a refined event.
• An initialisation event (Ci), accumulator event (Ca), and refined event (Cr).
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H1 ⇒ F�(W,V2)

H0

�
[Wai

:= Iai
](H1 ⇒ F�(W,V2))

(a) Init event (Inv. Preservation)

H1 ⇒ F�(W,V2)

H1

�
[Wai

:= Wai
⊕ α](H1 ⇒ F�(W,V2))

(b) Accumulator event (Inv. Preservation)

H1 ⇒ F�(W,V2)

H1

G=(Wj , V2)

�
[V 1 := Wai

](H1 ⇒ F�(W,V2))

(c) Refined event (Inv. Preservation)

H1 ⇒ F�(W,V2)

H1

G=(Wj , V2)

�
[V1 := Wai

](V1 = V2)

(d) Refined event (Simulation)

[x := e]F denotes the substitution of x for e in F – and is a result of the before-after
predicate [1] associated to an event.

Fig. 4. Accumulator plan – PO patterns

• An invariant, H1 ⇒ F�(W , V2), that explains the refinement; i.e. that the
content of the accumulator variable(s) is contained within the value assigned in
the abstract model – the � symbol generalises the containment relationship.
• The initialisation, accumulator(s) and refined events must preserve the invari-
ant, Figures 4(a), 4(b) and 4(c), respectively.
• The refined event must simulate the abstract action, Figure 4(d).
An instance of the accumulator pattern occurs in the model presented in Figure 1,
in which the action:

fcontent(f) := wbuffer(f)

within the abstract event writefile is achieved within the concrete model via
iteration. Below we present the fragments of the events that match the modelling
pattern at the concrete level:

Event w start =̂
any f
where ...
f /∈ writing
then ...
fcont tmp(f):= ∅

writing:=writing∪{f}
end

Event w step =̂
any f i data
where ...
f ∈ writing
then
fcont tmp(f) :=
fcont tmp(f)∪{i �→data}

end

Event w end ok =̂
refines writefile
any f
where ...
f ∈ writing
dom(fcont tmp(f))=dom(wbuffer(f))
then ...
fcontent(f) := fcont tmp(f)

end

Note that variable fcont tmp acts as the accumulator variable. Event w start
initialises the process by assigning the empty set to fcont tmp and adding file f
to the writing state, event w step iteratively adds the content of each page to
the accumulator variable, and event w end ok assigns the content of fcont tmp
to fcontent after all the pages have been written. Finally, the invariant:

∀f ·f ∈ writing⇒ fcont tmp(f) ⊆ wbuffer(f)
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ABSTRACT MODEL:

Variables
x y

Invariants
x ∈ N

y ∈ N

Event incr =̂
then
x := x + y

end

CONCRETE MODEL:

Variables
y x n x tmp flag

Invariants
n ∈ N

x tmp ∈ N

flag ∈ BOOL

Event start =̂
when
flag = TRUE
then
n := 0
x tmp := x
flag := FALSE

end

Event step =̂
when
n < y
flag = FALSE
then
x tmp := x tmp + 1
n := n + 1

end

Event end ok =̂
refines incr
when
flag = FALSE
then
x := x tmp
flag := TRUE

end

Fig. 5. Flawed accumulator plan instance – Addition example

specifies that while file f is in the writing state, the value of wbuffer(f) is accu-
mulated in fcont tmp(f).

4.1 Accumulator Refinement Plan Critics

We now focus on the critics aspect of refinement plans, and how partial matching,
with respect to the modelling pattern, and failure analysis are used to automat-
ically generate modelling guidance.

We have identified a number of critics for the accumulator plan:

postGuard speculation critic: considers the case when the guard of the re-
fined event that ensures the accumulation process is complete is either flawed
or missing.

invariant speculation critic: handles the case when the accumulator invari-
ant is wrong or missing.

accumulator speculation critic: handles the case when an accumulator event
refines an abstract event whose actions are performed in an atomic step.

initialisation speculation critic: considers the case when the accumulation
process does not have an initialisation phase.

loopGuard speculation critic: deals with the case when the guard(s) that
deal with the loop in the accumulator event is wrong or missing.

guard relocation critic: deals with guards from the abstract event that need
to be moved to a new event in the accumulation sequence.

Due to space constraints we only present two critics: postGuard speculation and
invariant speculation. In order to illustrate the application of these critics we will
use a simple model that adds a value to a variable. The model, taken from [9], is
shown in Figure 5. The running example of the flash file system, Figure 1, is not
used because it is not possible to perform the simulation of this model through
the ProB animator and animation is a key component of the critics presented.
We give more information about these limitations in §6.
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The abstract model in Figure 5 shows an atomic event incr that increments
the value of x by the value of y. In the concrete model the value of y is iteratively
assigned in event step to an accumulator variable x tmp, while in the event end ok
the value of x tmp is assigned to the abstract variable x after the accumulation
has finished. Event start initialises the accumulation. Note that variable n is
a new variable used to control the accumulation process. Note also that the
accumulator invariant as well as the post-guard are missing from the model; this
gives rise to the following failed SIM PO associated to event end ok :

end ok/SIM PO: flag = FALSE � x tmp = x + y

At this point the postGuard speculation and invariant speculation critics are trig-
gered. First the critic that deals with the guard is applied because in order to
reason about the invariant, the events in the model need to be correct.

Preconditions for the Postguard speculation Critic

P1. An accumulator pattern is identified.
This precondition holds for the addition model since a partial match of the
accumulator pattern is detected. That is, apart from the invariant and the
guard, the other key elements of the pattern are identified in the model.

P2. The simulation PO pattern associated to the refined event fails.
This precondition holds since the end ok/SIM PO fails.

P3. The post-accumulator guard is missing or it is not compatible with the guard
pattern, i.e. G=(Wj, V2).
As mentioned above, the post-accumulator guard is missing from the model
in Figure 5; therefore this precondition holds.

Guidance
A guard with the shape G=(Wj, V2) must be added to the refined event.
As preconditions P1, P2 and P3 succeeded, the guard pattern is instantiated.
The guidance is then to add a guard to event end ok with the form:

G=(x tmp, n, x, y)

We will revisit this guard schema below, and describe how it is instantiated.
For now assume that the correct instantiation is available, i.e. y = n. Because
the invariant is also missing, the failure persists, this triggers the invariant critic.

Preconditions for the Invariant speculation Critic

P1. An accumulator pattern is identified.
This precondition succeeds as explained for the guard critic.

P2. The SIM PO pattern associated to the refined event fails.
This precondition holds since the end ok/SIM PO fails. The new form of the
failed PO is:

flag = FALSE, y = n � x tmp = x + y
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P3. The post-accumulator guard is not missing and it is compatible with the
guard pattern, i.e. G=(Wj, V2).
The post-accumulator guard y = n is present in the refined event and is
compatible with the pattern.

P4. The accumulator invariant is missing or it is not compatible with the in-
variant pattern, i.e. H1 ⇒ F�(W , V2).
As mentioned above, the accumulator invariant is missing from the model;
therefore, this precondition holds.

Guidance
An invariant of the shape H1 ⇒ F�(W , V2) must be added to the concrete model.
As with the guard critic, preconditions P1 to P4 succeeded; therefore the invari-
ant pattern is instantiated as follows (where due to use of natural numbers � is
instantiated to ≤):

(flag = FALSE)⇒ F≤(x tmp, n, x, y)

As can be observed the guidance currently provided is in the form of partial
instantiations of the schemas. At this point, there are three options to find the
correct instantiation: i) through interaction with the user, ii) through the use of
proof patterns, or iii) through the use of automated theory formation (ATF).

Here we use ATF, and in particular the HREMO system to search for the miss-
ing invariants and guards. However, currently HREMO cannot be used to analyse
models where the events are incorrect. This prevents us from using HREMO

directly to discover missing guards. On the contrary, HREMO can be used to
discover missing invariants. However, with regards to the invariant schema given
above, HREMO on its own fails to find the missing invariant after 1000 theory
formation steps, which give rise to 7959 conjectures. This does not imply that
the invariant cannot be found, rather it means that additional search is required.
In the next section we show that by combining refinement plans and event error
traces with HREMO these negative issues can be effectively addressed.

4.2 Combining Modelling Patterns with HRemo

The process of finding a “correct” refinement typically involves exploring many
incorrect models. Refinement plans aim at providing guidance when a failed re-
finement is closely aligned with a known pattern. However, as shown through the
guidance obtained by the critics presented in §4.1, refinement plans are limited
by the patterns observed. On the other hand, as mentioned above, HREMO also
exhibits some limitations. In order to overcome these limitations we combine
both approaches, in particular we extend the work presented in [24] by:

– using the ProB animator [22] to generate traces that contain undesirable
states which can be used by HREMO to find missing guards, and

– using the patterns of invariants and guards available in the refinement plans
to automatically tailor the search in HREMO.
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As mentioned in §2.3, two type of heuristics are used by HREMO, configuration
heuristics (CH) and selection heuristics (SH), when a pattern of an invariant or
a guard is available then the following heuristics are applied:

Configuration Heuristics

CH1. Prioritise core and non-core concepts expected in the invariant or guard.
CH2. Follow with core and non-core concepts that occur within failed POs.
CH3. Generate conjectures that are compatible with the type of the expected

invariant or, if looking for a guard, generate only equivalence conjectures.
CH4. Select only production rules which will give rise to conjectures relating to

the type of the expected invariant or guard.

Equivalence conjectures are always generated since this optimises the theory for-
mation process [8].

The selection heuristics for the search of invariants based on patterns are the
same than those applied in [24]. This requires selecting conjectures where the
sets of variables occurring on the left- and right-hand sides are disjoint, selecting
the most general conjectures, and selecting the conjectures that discharge the
failed POs and that minimise the number of additional proof failures. Note that
here the selection of conjectures is focused in the core and non-core concepts
that relate to the invariant pattern, as opposed to [24] which focused on core
and non-core concepts from the failed POs.

In the case of missing guards the selection process differs. Through the use
of the ProB animator it is possible to detect event errors which result in traces
that contain undesirable states. That is, ProB can animate various refinement
levels concurrently, allowing the detection of errors associated with refinement; in
particular, ProB can detect violation of guard strengthening in a refined event,
we exploit this animation analysis provided by ProB to tailor HREMO in the
search of guards. When a trace of this type is generated we provide HREMO

with the concept of good states, which are the steps of the trace with no guard
strengthening errors associated. The selection is then focused on conjectures that
express equivalences with the concept of good, i.e. conjectures of the form:

good⇔ φ

where φ represents the potential missing guard.
Regarding the postGuard speculation and invariant speculation critics, pre-

sented in §4.1, the guidance is achieved by using the partially instantiated guard
and invariant schemas to tailor HREMO in the search. To illustrate, lets revisit
the instantiated guard schema obtained by the postGuard speculation critic:

G=(xtmp, n, x, y)

based on this, we instantiate the configuration heuristics as follows:

CH1: Prioritised concepts from the guard schema: x tmp, n, x and y .
CH2: Concepts from the failed POs: flag, x+y, x tmp=x+y and flag=FALSE.
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CH3: Searching for a guard; thus, only equivalence conjectures are generated.
CH4: As the top-level symbol in the guard is = and the involved variables are

natural numbers, the numrelation and arithmetic PRs are selected.

After 65 seconds and 1000 theory formation steps HREMO returns 1 conjecture:

good⇔ y = n

which means that the missing guard is y = n. A similar approach is followed in
the search for the missing invariant. After 45 seconds and 1000 theory formation
steps HREMO returns 1 conjecture:

flag = FALSE ⇒ x tmp = x+ n

which represents the missing invariant.

5 Implementation and Results

We have implemented and tested the set to partition and partition to function
refinement plans. Moreover we have conducted the experiments described above
with the accumulator plan. This implementation effort was partially integrated
into the Remo toolset, which we mentioned in §2.2. An architectural view of the
implementation is given in Figure 6. The prototype is partial in that the inte-
gration of the guidance from Remo back into Rodin is still under development.
Note that in terms of results, our implementation is still at the experimental
stage, and we are now looking to undertake more extensive testing (see §6).

6 Related and Future Work

The motivation behind the work described here is to correct a refinement which
almost matches an existing pattern. Similar tools and techniques we are familiar
with – such as the BART tool for classical B [26]; the ZRC refinement calculus
for Z [7]; and more relevant, Event-B based tools and techniques as described in
[16,17,2,12] – instead focus on automating the refinement from a given step to
a more concrete step. None of the tools can handle the failure-analysis we have
described here.

Our implementation of the refinement plans highlighted in this paper is on-
going. We plan to automate the link with HRemo and the external theorem
prover(s) as well as to automate the communication of the results from Remo

back to the user1. We also plan to further test and develop our existing plans,
drawing upon industrial case studies arising from the DEPLOY project2. We are
also interested in exploring the potential for using machine learning techniques
to automate the discovery of new plans.

1 One possible route is via Lopatkin’s transformation patterns plug-in. For details see
http://wiki.event-b.org/index.php/Transformation_patterns

2 See http://www.deploy-project.eu/

http://wiki.event-b.org/index.php/Transformation_patterns
http://www.deploy-project.eu/
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The Rodin Remo plug-in provides the interface between the Rodin toolset and the
Remo tool. The plug-in generates two files, i) and Event-B model, and ii) the associ-
ated POs. The refinement plans are also given as an input to the tool. The Refinement
Patterns Classifier uses the refinement plans to classify the patterns of refinement used
in a development. The role of the Critics Analyser is to find ways of overcoming fail-
ures. This is achieved via the critics mechanism which analyses the instances given
by the classifier together with the POs. The classifier and the analyser interact with
CVC3 when a precondition requires proof. The analyser also interacts with HREMO

in order to search for missing/wrong invariants or guards. The results of this analysis
are passed to the Guidance Generator which takes the raw results from the analyser
and produces a formatted, ranked (ordered) list of alternative guidance suggestions,
which will then be sent to the Rodin Remo plug-in and presented to the user. Note
that the stippled lines indicate work in progress.

Fig. 6. The Remo tool architecture

Animation traces from ProB are used in the analysis phase of our work-flow.
Such information about how the events relate to each other should naturally be
part of the pre-conditions of plans and critics, and we will extend them with
such information. Bendisposto and Leuschel [3], have developed a tool which
turn ProB traces into a more abstract flow graphs which shows the order events
may be executed3. We plan to add support for such “event flow” information in
the preconditions, either as described in [3], or ideally extended with support for
infinite systems ([3] only supports finite models), which undoubtedly will require
theorem proving support.

Finally, animation is key to our approach, where the quality of the invariants
produced by HREMO strongly depends on the quality of the animation traces.
We believe that increasing the randomness in the production of the traces is an
area where the ProB animator requires improvement. Specifically, this limitation
arose during our analysis of the Mondex [6] case study.

3 Hallerstede [14] suggests an approach achieving a similar goal, but here the user has
to add more structure to the model.
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7 Conclusions

We have described refinement plans, a technique which provides automatic mod-
elling guidance for users of posit-and-prove style formal refinement. Building
upon common patterns of refinement, the technique uses an automated analy-
sis of refinement failure at the level of models and POs in order to focus the
search for modelling guidance. To provide flexibility in terms of the guidance
that can be generated, we have experimented with the HREMO theory formation
tool. Through these experiments we have shown that combining refinement plans
with HREMO improves the search for invariants and has suggested how missing
guards can be discovered automatically.
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Abstract. Decomposition is a technique to separate the design of a
complex system into smaller sub-models, which improves scalability and
team development. In the shared-variable decomposition approach for
Event-B sub-models share external variables and communicate through
external events which cannot be easily refined.
Our first contribution hence is a proposal for a new construct called

interface that encapsulates the external variables, along with a mecha-
nism for interface instantiation. Using the new construct and mechanism,
external variables can be refined consistently. Our second contribution
is an approach for verifying the correctness of Event-B extensions using
the supporting Rodin tool. We illustrate our approach by proving the
correctness of interface instantiation.

Keywords: Event-B, Decomposition, Refinement, External variables.

1 Introduction

Decomposition of a model into sub-models allows one to continue refining the
sub-models independently of each other while preserving the properties of the
full model. The decomposition method for Event-B proposed by Abrial [1] splits
events between the sub-models. Variables are split correspondingly into external
variables shared by the sub-models and internal variables private to each model.
For all external variables, external events that mimic the effect of corresponding
(internal) events of other sub-models have to be added. If we want to refine
external variables, we have to provide a gluing invariant that is functional, say,
v = h(w) where v are the abstract variables and w the concrete variables. Abrial
[1] also proposes to rewrite the external events with v := h(w) so that concrete
and abstract events are equivalent. Internal variables and internal events are
refined as usual in Event-B [2].

We call a collection of external variables with the external invariant an in-
terface. Modelling interfaces by marking the corresponding variables as being
external and refining them by specifying functional invariants makes it difficult
to decompose and refine a model repeatedly. Fig.1 illustrates the problem where
a model M is decomposed three times and the resulting sub-models are refined.
We are interested in the two sub-models M1 and M2 at the bottom. How do we
find the shared external invariant?
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v1 = h1(w1) v2 = h2(w2)

M1 M2

decomposes

refines
M

Fig. 1. Maintaining the external invariant of several sub-
models

The lists of variables
w1, w2, v1 and v2 are
not necessarily disjoint.
Let w be the list of vari-
ables occurring in w1 or
w2 and v be the list of
variables occurring in v1
or v2. We need to find
one suitable external in-
variant v = h(w) to be
used in the sub-models

M1 and M2. What is the shape of h? Furthermore, when refining M2 we have
to think about the necessary changes to M1. As a consequence of the current
situation, interfaces are refined to implementation level before decomposition.
This complicates the use of decomposition on higher levels of abstraction. We
would prefer a method where the necessary reasoning can be restricted to one
place. The functional invariant h should be evident and easily maintainable also
in the face of potential changes to the sub-models and the interfaces.

Using our approach of interface instantiation this can be done. Because we are
treating instantiation like a special form of refinement, we can combine interface
instantiation steps with refinement steps. This gives us some liberty in arranging
complex refinements. We also encourage a decomposition style where a separate
theory of interface instantiation is maintained. We think, that this contributes
substantially to obtain models that are easier to understand and to modify.
Interface instantiation supports a more incremental approach to decomposition
because modifications that concern several components can be confined to only
one place: the interface.

We call the very specific form of interface refinement that we use interface
instantiation. To be useful, it should
(i) ease the proof effort compared to [1],
(ii) help to structure complex mixtures of decomposition and refinement,
(iii) work seamlessly with Event-B as it is. (It should not depend on transla-

tions.)
We argue by means of a case study that we have achieved this. The case study
addresses a difficulty of relating Event-B refinement to Problem Frames elab-
oration [9] discussed in [5]. It has been composed from [11] and [5]. We have
down-sized it in order to focus on the problem of the refinement of external vari-
ables, that is, the interfaces. We have a tool for decomposition [14] but we do
not have implemented a software tool for interface instantiation. Instantiation of
carrier sets has been implemented similarly internally in the ProB tool, in order
to achieve better performance when model checking and constraint checking [5].
The case study as presented in [11] uses Problem Frames to achieve traceability
of requirements. We have not used Problem Frames in this article because they
are not required to explain interface instantiation. This also permits us to cast
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the problem entirely in Event-B terminology. However, the proposed method of
instantiation could be used with Problem Frames as employed in [5,11].

In the modularisation approach for Event-B presented in [8], the notion of
interface has been used to capture software specifications using some interface
variables and operations acting on these variables. The intention behind the use
of interfaces is to separate specifications from their implementations. Our notion
of interface is intended to provide efficient support for refining external variables
following Abrial’s decomposition method for system models. There was an ear-
lier attempt at external variable refinement that is hinted at in the specification
of the proof obligation generator for the Rodin tool [6]. This was considered
too complicated and not feasible for large systems that are decomposed and
refined repeatedly. We think, that our approach solves the problem. Poppleton
[12] discusses external refinement based on Abrial’s approach but also does not
provide a practicable technique for doing so. The approach of modelling extensi-
ble records [4] also permits a form interface instantiation. A difficulty with using
this approach is caused by the explicit mathematical model used for record rep-
resentations and the need to specify always successor values for all fields of a
record. However, extensible records could be used with our approach where it
would appear useful. Behavioural interface refinement such as discussed in [13]
addresses changing traces sub-models can exhibit, usually adding new events. It
does not consider refinement of shared variables.

2 Event-B

Event-B models are described in terms of the two basic constructs: contexts and
machines. Contexts contain the static part of a model whereas machines con-
tain the dynamic part. Contexts may contain carrier sets, constants, axioms,
and theorems, where carrier sets are similar to types [2]. Machines provide be-
havioural properties of Event-B models. Machines may contain variables, invari-
ants, theorems, and events. Variables v describe the state of a machine. They
are constrained by invariants I(v). Theorems L(v) describe consequences of the
invariants, i.e., we have to prove I(v)⇒ L(v).

Events. Possible state changes are described by means of events. Each event
is composed of a guard G(t, v) and an action A(t, v), where t are parameters the
event may contain. We denote an event e by any t when G(t, v) then A(t, v) end
in its most general form, or when G(v) then A(v) end if event e does not have
parameters, or begin A(v) end if in addition the guard equals true. A dedicated
event of the third form is used for initialisation.

Assignments. The action of an event is composed of several assignments :
x :| Q(t, v, x′), where x are some variables and Q(t, v, x′) a predicate. Variable x
is assigned a value satisfying a predicate. Two variants of assignments are defined
as follows: x := B(t, v) =̂ x :| x′ = B(t, v) and x :∈ B(t, v) =̂ x :| x′ ∈ B(t, v),
where B(t, v) are expressions.

Refinement. A machine N can refine another machine M . We call M the
abstract machine and N a concrete machine. The state of the abstract machine
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is related to the state of the concrete machine by a gluing invariant J(v, w)
associated with the concrete machine N , where v are the variables of the abstract
machine and w the variables of the concrete machine. Each event e of the abstract
machine is refined by one or more concrete events f.

Decomposition. A machine M can be decomposed into several machines
[1,7]. We limit the discussion here to the decomposition into two machines for
the purpose of this article. Let M be a machine with variables x1, x3, x5 and
invariants I (x1, x3, x5), I1(x1, x3), I3(x3) and I5(x3, x5). Furthermore, let e1, e2,
e4 and e5 be events of M, accessing different sets of variables as follows.

e1 =̂ any t1 where G1(t1, x1) then x1 :| S1(t1, x1, x
′
1) end

e2 =̂ any t2 where G2(t2, x1, x3) then x1, x3 :| S2(t2, x1, x3, x
′
1, x

′
3) end

e4 =̂ any t4 where G4(t4, x3, x5) then x3, x5 :| S4(t4, x3, x5, x
′
3, x

′
5) end

e5 =̂ any t5 where G5(t5, x5) then x5 :| S (t5, x5, x ′
5) end

Machine M can be decomposed into two separate machines: M1 with events e1
and e2; and M5 with events e4 and e5. This is illustrated in Fig.2. As a result

M1 M5

e1

e2

e4

e5

a4

a2

x1, x3 x3, x5

refines

refines

Fig. 2. Maintaining the external
invariant of several sub-models

of the decomposition, M1 has private vari-
ables x1 and shared variables x3. Invari-
ants I1(x1, x3) and I3(x3) can be distributed
to M1. The resulting sub-machine M1 has
two internal events e1 and e2 and one ex-
ternal event a4 which abstracts1 e4 pro-
jected on the state containing only x3:
a4 =̂ any t4, x5 where G4(t4, x3, x5) then x3 :|
∃x ′

5 ·S4(t4, x3, x5, x
′
3, x

′
5) end . Machine M5 is

similar to M1, with two internal events e4 and
e5; and an external event a2 that abstracts e2.
It has the private variables x5 and the shared

variables x3. Machines M1 and M5 can be developed independently with the
constraints that the shared variables cannot be removed and the external events
cannot be made more non-deterministic or less non-deterministic.

Note that invariant I (x1, x3, x5) are not copied to either M1 or M5. A possi-
bility is to project also this invariant onto the corresponding state using existen-
tial quantifier. For example, the following can be added to M1 as an invariant
∃x5 ·I (x1, x3, x5).

3 Instantiation

Carrier Set and Constant Instantiation. Contexts can be extended as
usual in Event-B but we allow additionally to specify expressions to instantiate
constants and carriers sets. Carriers sets must be instantiated by type expressions
e(t) and constants can be instantiated by any expression f(d).

1 “a abstracts e” is the same as “e refines a”.
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context C
sets s
constants c
axioms A(s, c)

context D
extends C with s = e(t) , c = f(d)
sets t
constants d
axioms B(t, d)

The equalities specifying the instantiation are treated similarly to axioms. The
abstract constants and carriers sets that are instantiated remain visible. By con-
trast, the instantiation proposed in [2] replaces constants and carrier sets in the
instantiating context. Still, they are similar to [2]: The equations of the extends-
clause are used to rewrite the abstract axioms. If this changes an axiom, that
axiom must be proved to hold in the instantiating context. Otherwise, nothing
needs to be proved. This ensures that instantiation itself does not introduce new
facts. The instantiation proof obligation is B(t, d)⇒A(e(t), f(d)). In summary,
conventional Event-B context extension is instantiation with identity. Only ab-
stract axioms of C with instantiated constants need to be proved as theorems
in D. The other axioms are preserved by extension.

Connecting Machines to Interfaces. Interfaces are declared in contexts
and used in machines by connecting a machine to the interface. The machines
must see the corresponding context:

context C
interface ii
fields m
constraints P (m)

machine M
sees C
connects ii

The constraints of an interface can refer to all constants and carrier sets of the
surrounding context. In machine M the fields m are treated like variables and
the constraints P (m) like external invariants.

Interface Instantiation. Interfaces can be instantiated by specifying equali-
tiesm = h(n) for replacing fields of an abstract interfacem by fields of a concrete
interface n. The names on the right-hand side of the equation must not occur in
the abstract interface.

context C
interface ii
fields m
constraints P (m)

context D
extends C
interface jj instantiates ii with m = h(n)
fields n
constraints Q(n)

The expression h is often composed of pair-expressions “ · 	→ · ”. Interfaces are
not associated with proof obligations. The constraints P (m) of ii are contained
in interface jj as specified by the instantiation m = h(n), that is, they become
P (h(n)). Similarly to machine variables, field names of interfaces cannot be
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reintroduced. Similarly to machine invariants, constraints are accumulated in by
instantiation: the constraints of interface jj are Q(n) ∧ P (h(n)).

External Event Refinement. Using interface instantiation we permit refine-
ment of external events. Consider the following external event e operating on
the external variables x and its refinement f operating on the external variables
y. The refinement of external variables is captured by the following relationship
x = h(y). Note that external events does not refer to any internal variables: it
can only refer to external variables of the corresponding model.

e =̂ any t when G(t , x) then x :| S(t , x , x ′) end
f =̂ any u when H (u, y) with W (t , u, x , y , y ′) ∧ x ′ = h(y ′) then y :| R(u, y , y ′) end

where W (t , u, x , y, y ′) ∧ x ′ = h(y ′) is the witness for the refinement of e by f. It
incorporates the refinement of external variables with function h.

Beside the proof obligations to prove that f is a refinement of e, we also need
to prove that f is refined by e. The idea here is to prove the latter using the
same given witnesses. The proof obligations are as follows (for clarity, we omit
reference to possible abstract invariant I (x ) and other concrete invariant J (x , y),
which should be in the assumption of the proof obligations).

Witness Feasibility

x = h(y) ∧G(t , x ) ∧ S (t , x , x ′)⇒ (∃u, y ′ ·W (t , u, x , y, y ′) ∧ x ′ = h(y ′))

In the case that h is a bijective function, the existence of y ′ is hence trivial, and
the proof obligation can be rewritten as follows.

x = h(y) ∧G(t , x ) ∧ S (t , x , x ′) ∧ x ′ = h(y ′)⇒ (∃u ·W (t , u, x , y, y ′))

Guard Weakening

x = h(y) ∧G(t , x ) ∧ S (t , x , x ′) ∧W (t , u, x , y, y ′) ∧ x ′ = h(y ′)⇒H (u, y)

(Co-)Simulation

x = h(y) ∧G(t , x ) ∧ S (t , x , x ′) ∧W (t , u, x , y, y ′) ∧ x ′ = h(y ′)⇒R(u, y, y ′)

Note that invariant preservation for the refinement of f by e can be derived from
the invariant preservation for the refinement of e by f and the fact that we use
the same witnesses.

4 Case Study: Modelling of a Cruise Control System

We present interface instantiation by means of a model of a cruise control system.
A cruise control systems permits the driver of a car to select a target speed that
the vehicle should attain. The system will try to maintain a vehicle speed as
close as possible to the target speed. Note, that our main interest is to discuss
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interface instantiation. So we will only discuss the function of the cruise control
system as far as necessary for that discussion. We have modeled the system
using the Rodin tool [3], emulating instantiation similarly to the approach of [5]:
interfaces are represented syntactically by a lexical convention and carrier set
instantiation is modelled by suitable bijections.

We want to implement a cruise control system sy0 by the three components:
the controller sy4cr, the engine sy4even and the exterior sy1evsi. Fig. 3 shows the
components and their interfaces.

sy4crsy4even csa, psisy1evsi aes

sy0

Fig. 3. Architecture of the system in terms of components and interfaces

: extends : sees : refines

: instantiates : decomposes : connects

: context : machine : interface

Fig. 4. Legend of used symbols

The symbols used
in this figure and later
figures are listed in
Fig. 4. The implemen-
tations of the con-
troller and the engine

are connected by means of two interfaces: concrete speed and acceleration, csa,
and internal pedal signals passed on from the exterior, psi . The interface to the
exterior, aes , is kept abstract in the implementation.

sy0crsy0ev asa, asi

Fig. 5. Abstract components and their ab-
stract interfaces

More abstract system models should
not be forced to use the interfaces
csa and psi but permit abstractions
thereof (Fig. 5). The details of the in-
terfaces should be introduced step by
step, introducing the abstract inter-

faces asa and asi first. We prefer to refine the controller and the engine but
keep the exterior abstract at first. We do not want to decide on all interfaces
before decomposing system sy0: we have not decided yet on the shape of the im-
plementation of component sy1evsi and of interface aes . Interface aes could be
used to implement an interface to the exterior or it could be used for animation
and visualisation [10], for instance. The problem we face is to fit the abstract
components of Fig. 5 between sy0 and the implementation in Fig. 3.

4.1 The Full Model: Refinement, Decomposition and Instantiation

We present an overview of the full model and discuss specific issues in subsequent
sections. Fig. 6 shows the details of the development outlined in Fig. 3. We do
not discuss all aspects of the development but focus on the following three:



230 S. Hallerstede and T.S. Hoang

Section 4.2: Decomposition: introducing interfaces
Section 4.3: Mixing instantiation and refinement
Section 4.4: Repeated instantiation

sy0

sy0crsy0ev

sy1ev sy1cr

sy1even sy1evsi

sy2cr

sy3cr

sy4cr

sy2even

sy3even

sy4even

csa, asi

csa, csi

csa, psi

ctx0

ctx12

ctx23

ctx4

asa, asi

csa, csi

contexts engine interfaces controller

aes

asa := csa

asa := csa

asi := csi

asi := csi

csi := psi csi := psi

Fig. 6. Overview of system model

The separate contexts ctx0, ctx12, ctx23 and ctx4 correspond to the accompany-
ing instantiations of carrier sets and constants.

4.2 Decomposition: Introducing Interfaces

Abstract Model. The model sy0 from which we start the development declares
variables sig , cs , vs , md , ts, acc modelling external signals, internal control sig-
nals, vehicle speed, control mode, target speed and acceleration. It does not
contain any interfaces. This means we can refine this model in the usual way.
Context ctx0 declares constants ES , CS , VS , VA, VRA, etc, modelling exter-
nal signals, control signals, vehicle speed, vehicle acceleration, restricted vehicle
acceleration. It postulates the axiom

VRA ⊆ VA (1)

We have invented constant VRA to make the invariant more interesting. The
constants determine the possible values of the variables by means of the invariant
of sy0:

sig ∈ ES ∧ cs ∈ CS ∧ . . . ∧md ∈ {C ,AC ,NC} ∧ (md = C ⇒ acc ∈ VRA)

The constant C models “cruise control active”; AC models “change of target
speed”; NC models “cruise control not active”. The carrier sets, e.g., K of CS
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or S of VS , are not used in the machine. The reason for this is that they can
only be instantiated by type expressions. However, the more common case is
that we need to instantiate by some more constrained set. See, for example, the
instantiations of C , AC and NC in Section 4.3.

Events of the Abstract Model. We discuss three of the events of sy0: event
chm (“change mode”) models an internal state change of the controller,

event chm =̂
begin md :| md ′ ∈ {C ,AC ,NC} ∧ (md ′ = C ⇒ acc ∈ VRA) end ;

event chaac (“change acceleration in mode AC”) models output to the engine,

event chaac =̂ when md = AC then acc :∈ VA end ;

event chcs (“change control signals”) models input from the engine,

event chcs =̂ begin cs := fcs(sig) end .

It would be tempting to specify in the abstract event chcs the assignment
cs := sig . However, this asserts that cs and sig have the same type. Once
the system is decomposed, we would have to refine them in the same way. To
avoid this, we have introduced function fcs mapping from the type of sig to the
type of cs . Models always need to be prepared for decomposition. Our method
of instantiation does not change this.

Decomposition of the Abstract Model. Decomposing sy0 into sy0ev and
sy0cr we have to introduce interfaces asa and asi :

interface asa
fields cs
constraints cs ∈ CS

interface asi
fields vs , va
constraints vs ∈ VS ∧ va ∈ VA

Machine sy0ev has one internal variable sig and connects to the two interfaces
asa and asi . Machine sy0cr connects to the same interfaces and has two internal
variables ts and md . We split the events in the usual way depending on which
variables and fields the events refer to. Except for the use of interfaces the
decomposition method of [1] works as before.

4.3 Mixing Instantiation and Refinement

Instantiation. We refine sy0cr by sy1cr by instantiating interface asa by csa
while refining variable md by variable nd . The constraints and instantiation
equalities of csa become part of the gluing invariant of sy1cr. The abstract con-
stants VS , VA and VRA are instantiated by integer ranges: VS = mS .. MS ,
VA = mA ..MA and VRA = mRA ..MRA constrained by axioms

. . . ∧mA ≤ mRA ∧mRA ≤ MRA ∧MRA ≤ MA ∧ . . . (2)
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To satisfy the instantiation proof obligation we have to verify that (2) implies (1).
For clarity we introduce a new name for the interface containing the instantiated
constants:

interface csa instantiates asa

Machine sy1cr and sy1ev now both need to be connected to interface csa replacing
asa. The machine also need to see the extended context ctx12.

Refinement. Variable md is itself refined by instantiating the constants C ,
AC and NC , using the gluing invariant nd ∈ md , and constant instantiations
C = {CRS ,RES}, AC = {ACC ,DEC}, NC = {OFF ,ERR,REC }. Note, how
closely constant instantiation and refinement are linked in the refinement of md .
The type of the abstract variable md has been instantiated such that the gluing
invariant becomes simply nd ∈ md .

4.4 Repeated Instantiation

First Instantiation. Continuing the development from sy1cr and sy1ev, we
first instantiate interface asi by csi

interface csi instantiates asi with cs = (ps 	→ cis 	→ is)
fields ps , cis , is
constraints ps ∈ PS ∧ cis ∈ CIS ∧ is ∈ IS

where PS is a constant of context ctx32. The context also declares two constants
PSE and PSS such that PSE ⊆ PS ∧PSS ⊆ PS ∧PSE ∩PSS = ∅. This is used
for a first refinement of event chm into two events chme and chmn :

event chme refines chm =̂
when ps ∈ PSS ∪ PSE then nd :∈ {ERR,REC} end

event chmn refines chm =̂
when ps �∈ PSS ∪ PSE
then nd :| nd ′ ∈ {CRS ,RES}⇒ acc ∈ mRA ..MRA end

Second Instantiation. Subsequently we instantiate csi by psi

interface psi instantiates csi with ps = (pbp 	→ pbe 	→ pcp 	→ pce 	→ pae)
fields pbp, pbe, pcp, pce, pae, cis , is
constraints pbp ∈ B ∧ pbe ∈ B ∧ pcp ∈ B ∧ pce ∈ B ∧ pae ∈ B

We instantiate the constants PSE and PSS

PSE = {bp 	→ be 	→ cp 	→ ce 	→ ae|T ∈ {be, ce, ae}}
PSS = {bp 	→ be 	→ cp 	→ ce 	→ ae|T �∈ {be, ce, ae} ∧T ∈ {bp, cp}}

and prove PSE ∩ PSS = ∅ as postulated above.
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event chmrb refines chme =̂
when T �∈ {pbe, pce, pae} ∧T = pbp then nd := REC end

event chmrc refines chme =̂
when T �∈ pbe, pce, pae ∧T = pcp then nd := REC end

event chmbe refines chme =̂ when T = pbe then nd := ERR end
event chmce refines chme =̂ when T = pce then nd := ERR end
event chmae refines chme =̂ when T = pae then nd := ERR end

This last instantiation is much more concise than the refinement suggested in
[5]. We can avoid a lot of the overhead that is usually incurred by using re-
finement emulating instantiation. Not having dedicated tool support yet, the
most elaborate proof of this development occurred when instantiating VA and
VRA by integer intervals. With instantiation support in place this would have
been trivial using the fact that VRA = mRA ..MRA. The difficulty in the proof
of refinement emulating instantiation is caused by the need to use a bijection
ι ∈ mRA .. MRA �� VRA so that the equation for the instantiation becomes
VRA = ι[mRA ..MRA].

5 Correctness

We have used the Rodin tool for verifying the correctness of interface refinement.
First we present a technique for verifying extensions of Event-B. We believe that
it is useful beyond the use in this article for verifying the correctness of interface
instantiation.

A Technique for Proving Event-B Extensions Correct. The general idea
is to encode a generic model using the Rodin tool, and illustrating the extended
method using the generic model. Typically, the correctness of an extension can
be stated as follows: assume the consistency of some input model, then prove
the consistency of some resulting model. Using the models generated by the
tool, consistency of the input model are represented by the proof obligations
associated with the model. To turn them into assumptions for our reasoning,
we add these proof obligations as axioms to the context. Using the axioms, we
prove the consistency of the resulting model.

An example of our approach is as follows. Let M be a machine with variables
x , invariant I (x ), and an event e as follows.

e =̂ any t where G(t , x) then x :| S(t , x , x ′) end .

First, we model the type of variables x and parameters t using some carrier
sets X and T . Subsequently, I , G and S can be declared as constants with
appropriate type, i.e. I ∈ P(X ), G ∈ P(T × X ), and S ∈ P(T × X × X ). The
machine M is encoded accordingly using the above context, where predicates are
translated using membership (∈) operator2. For example, the invariant I (x ) is
translated as x ∈ I . Event e hence becomes

2 This is a well-known technique to model predicate constants or variables in Event-B
using first-order logic.
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e =̂ any t where t �→ x ∈ G then x :| t �→ x �→ x ′ ∈ S end

The proof obligation stating that e maintains invariant I (x ), i.e., I (x )∧G(t , x )∧
S (t , x , x ′)⇒ I (x ′) is encoded as an axiom in the context as follows ∀t , x , x ′·x ∈
I ∧ t 	→ x ∈ G ∧ t 	→ x 	→ x ′ ∈ S ⇒ x ′ ∈ I .

Assume that N is a correct refinement of M, retaining the abstract variables
x . In N, abstract event e is refined by concrete event f where parameter t is also
retained.

f =̂ any t where H (t , x) then x :| S(t , x , x ′) end

The fact that f is a correct refinement of e is captured by the guard strengthening
and simulation proof obligations which are encoded as the following axioms:
∀t , x ·x ∈ I ∧ t 	→ x ∈ H ⇒ x ∈ G and ∀t , x , x ′ ·x ∈ I ∧ t 	→ x ∈ G ∧ t 	→ x 	→
x ′ ∈ R⇒ t 	→ x 	→ x ′ ∈ S .

A property of refinement is the preservation of invariance properties, i.e. I
should be also an invariant of the concrete model, in particular maintain by the
concrete event f. This can be stated and proved as a theorem in the context
∀t , x , x ′·x ∈ I ∧ t 	→ x ∈ H ∧ t 	→ x 	→ x ′ ∈ R⇒ x ′ ∈ I .

Correctness of Interface Instantiation. Using the proof method, we prove
the correctness of interface instantiation as follows. Our initial machine is M as
described at the end of Section 2. We decompose M into M1 and M5, sharing
the interface U . The abstract interface U encapsulates the shared variable x3
with invariant I3(x ), and subsequently instantiated by some concrete interface
V containing concrete variable y3 as follows.

interface U
fields x3
constraints I3(x3)

interface V instantiates U with x3 = h3(y3)
fields y3
constraints J3(y3)

a2a4

e1 e2 e4 e5

f1 f2 f4 f5b4 b2

M1 M5

N1 N5

Fig. 7. Decomposition and events refinement

At the same time, M1 and M5

are refined into N1 and N5, rely-
ing on the interface instantiation.
To be more precise, in N1, inter-
nal event e1 and e2 are refined
by f1 and f2, respectively. Further-
more, external event a4 is refined
equivalently (see Section 3) to b4.
Similarly, in N5, f4 and f5 are the
refinement of internal events e4
and e5, respectively, and b2 is the

refinement of external event a2. The refinement relationships between the events
can be depicted in Figure 7.
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M

M1 M5U

V N5N1

N

decomposition

recomposition

instantiation

Fig. 8. Decomposition, interface instanti-
ation, and refinement

The composition machine N com-
prises of internal events f1, f2 from N1,
and f4 and f5 from N5. The summary
of decomposition and interface instan-
tiation approach is shown in Figure 8.

The correctness of our technique is
guaranteed by proving that the com-
position N of N1 and N5 is indeed a re-
finement of the original modelM, using
the assumption that N1 and N5 refines
M1 and M5, respectively, as described
earlier. The key important aspect for
the correctness of our approach is that

external events are refined equivalently. This fact guarantees that the refine-
ment relationship between a pair of internal/external events is maintained. For
example, we have that the internal event f4 is a refinement of the corresponding
external event b4.

3

6 Conclusion

We propose in this paper the notion of interface and interface instantiation
for shared-variable decomposition in Event-B. An interface is a collection of
external variables and their properties which can be shared between different
sub-model after a decomposition. Interface instantiation combines instantiation
of carrier sets and constants with functional refinement of external variables.
The encapsulation of external variables using interface offers us some flexibility
in structuring the development using complex refinement and decomposition. In
particular, we provide a practical method for refining external variables which
is currently quite cumbersome [1].

The novelty of our approach is in the refinement of external events: we define
additional proof obligations to ensure that the external events are refined equiv-
alently. By contrast, in [1] equivalence is achieved by syntactical means replacing
occurrences of abstract variables v by concrete terms h(w). The proof obliga-
tions of our approach are similar to the standard proof obligations, even using
the same refinement witnesses for proving the equivalence. We have presented
a general technique for proving correctness of Event-B extensions, and showed
how this is used to demonstrate the soundness of our approach. We illustrated
the method by an industrial case study modelling a cruise control system.

For future work, we want to develop a theory of interface instantiation. In par-
ticular we intend to investigate the idea of having different instantiation branches
of interfaces that are joined ultimately so that all machines of a model agree
on their interfaces. The idea is illustrated in Fig. 9. In the figure, an abstract

3 The development is available at http://deploy-eprints.ecs.soton.ac.uk/364/

http://deploy-eprints.ecs.soton.ac.uk/364/
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M1 M2U(x1, x2)

V (y1, x2) N2N1

O1 O2

V (x1, y2)

V (y1, y2)

x1 = h1(y1) x2 = h2(y2)

x2 = h2(y2) x1 = h1(y1)

Fig. 9. A lattice of interfaces

interface U containing
two abstract fields x1
and x2 is used by M1 and
M2. Subsequently, U is
instantiated by V1 where
x1 is replaced by y1 and
x2 is retained. At the
same time, M1 is refined
into N1 using V1. Simi-
larly, M2 is refined by N2

using V2. Finally, V , an
instantiation of both V1

and V2 can be use to refine N1 and N2 into O1 and O2, respectively. What this
lattice of interfaces allows us to do is to have different order of instantiating the
fields of an abstract interface in an individual sub-model. In particular, we ac-
tually abandon the compositionality of the intermediate machines (here N1 and
N2), only to re-establish it later for the final machines O1 and O2, by connecting
them to the same interface V .

Finally, we are looking at extending the Rodin tool [3] to support the notion
of interface and interface instantiation.
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Abstract. We present a method to discharge proof obligations from
Atelier B using multiple SMT solvers. It is based on a faithful model-
ing of B’s set theory into polymorphic first-order logic. We report on
two case studies demonstrating a significant improvement in the ratio of
obligations that are automatically discharged.

1 Introduction

The B Method [1] is a formal approach to develop safety critical embedded
systems. It is mainly used in the European railway industry [2,5]. This method
allows the design of correct-by-construction programs, thanks to refinement tech-
niques. The soundness of refinement steps is expressed by logic formulas, called
proof obligations (PO for short), that must be proved valid. The system Atelier
B implements the B Method and provides a dedicated theorem prover. It is
mostly an automated prover for B’s set theory. To discharge POs that are not
proved automatically, a user interface allows interactive proof steps.

In recent years, there has been tremendous progress in the domain of Satisfia-
bility Modulo Theories (SMT for short). Some SMT solvers have proved powerful
in the context of extended static checking, e.g. Simplify for ESC/Java, Z3 for
Boogie, Spec#, and VCC. A natural question is whether we would gain automa-
tion by using SMT solvers on POs generated by Atelier B. This is the question
we address in this paper. We propose a technique to translate B POs into the
input language of Why3 [6], an environment providing a common front-end to
various external provers. Why3 implements a polymorphic first-order logic, in
which we axiomatize B’s set theory. A main difficulty is to make sure that this
axiomatization is in a suitable form for the SMT provers to solve the generated
goals.

This paper is organized as follows. Sect 2 presents the necessary background
regarding B and Why3. Sect 3 exposes our technique to perform the translation
from B to Why3. Sect 4 reports on experiments made with our implementation.
We compare with related work in Sect 5.
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MACHINE Timer(initial_timer_value_ms)

SEES Configuration

CONSTRAINTS initial_timer_value_ms ∈ NAT1

VARIABLES active, remaining_time

INVARIANT active ∈ B ∧ remaining_time ∈ NAT ∧
(active = FALSE ⇒ remaining_time = 0) ∧
(active = TRUE ⇒ remaining_time ≤ initial_timer_value_ms)

INITIALISATION active := FALSE ‖ remaining_time := 0

OPERATIONS
start_timer = PRE active = FALSE THEN

active := TRUE ‖ remaining_time := initial_timer_value_ms
END;

decrement_timer = PRE active = TRUE THEN
remaining_time : ( remaining_time ∈ NAT ∧

(remaining_time$0 ≥ cycle_duration
⇒ remaining_time = remaining_time$0 − cycle_duration) ∧

(remaining_time$0 < cycle_duration ⇒ remaining_time = 0) )
END;

END

Fig. 1. Abstract State Machine defining a timer using B Method

2 Background

2.1 The B Environment

The B Method is organized around Abstract State Machines. Each Abstract
State Machine contains a state defined through variables as well as operations
allowing to modify this state. One can use Booleans, integers, and set theory to
express the state of an abstract machine. For example, in Fig. 1 showing a timer
defined using B Method, the state is defined through Boolean variable active
and natural integer variable remaining_time. The two operations start_timer
and decrement_timer allow the use of this timer by updating those variables.

Correctness properties that should be fulfilled by a machine are defined in
an invariant of each machine as well as in the definition of each operation. One
can use first-order logic to express those properties. In Fig. 1, the INVARIANT
clause states that if the timer is not active, the remaining_time should be zero
otherwise the remaining time should be less or equal the initial timer value. In a
similar way, the specification of the decrement_timer operation states that this
operation recomputes the remaining_time variable. If the value of the variable at
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cycle_duration = 100 ∧
(active = TRUE ⇒ remaining_time ≤ initial_timer_value_ms) ∧
active = TRUE ∧ 1 ≤ initial_timer_value_ms ∧
remaining_time$1 ∈ Z ∧ 0 ≤ remaining_time$1 ∧ remaining_time$1 ≤ 2147483647 ∧
(cycle_duration ≤ remaining_time

⇒ remaining_time$1 = remaining_time − cycle_duration) ∧
(remaining_time + 1 ≤ cycle_duration ⇒ remaining_time$1 = 0)

⇒ remaining_time$1 ≤ initial_timer_value_ms

Fig. 2. Example of Proof Obligation

operation entry ($0 notation) is bigger than the cycle duration, then it should be
decreased by the amount of cycle duration, otherwise it should be zero. Moreover,
those operations are constrained by a precondition that ensures the start_timer
operation is only used when the timer is inactive while the decrement_timer
operation is only used when the timer is active.

Abstract State Machines are similar to formal specifications. They are trans-
formed into an actual implementation through the use of manual refinements
that lead in one or more steps to an implementation. An implementation might
import one or more other machines in order to use their operations.

The B Method ensures that correctness properties defined in the invariant or
the operations are kept through the refinements and up to the final implementa-
tion. This is done through the generation of POs, following patterns defined in the
B-Book [1], that must be proved valid. For example, the PO shown in Fig. 2 checks
that the invariant active = TRUE ⇒ remaining_time ≤ initial_timer_value_ms
is preserved by the decrement_timer operation. The upper part of this PO de-
scribes the effect of the operation specification (here used as an assumption for
this PO), while the lower part being the property to prove under active = TRUE
assumption. The $1 notation denotes the state of the variable after execution of
the operation.

Tools are available to use the B Method in an industrial context, like Atelier B
made by ClearSy company. This tool contains an editor as well as automatic and
interactive provers. When developing software using the B Method, the code
corresponding to specifications, refinements and implementations is entered into
Atelier B. Then proof obligations are automatically generated and in a second
step are proved, either automatically or under user’s guidance. The amount of
interactive proofs is a direct cost for a project and usually corresponds to 5%
to 40% of the total amount of proof obligations for industrial projects. The PO
shown in Fig. 2 is not proved by the automatic prover of Atelier B.

2.2 The Why3 System

Why3 [6] is a set of tools for program verification. Basically, it is composed of
two parts, which are depicted in Fig. 3: a logical language called Why with an
infrastructure to translate it to existing theorem provers; and a programming
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file.mlw

WhyML

VCgen

file.why

Why

transform
&

translate

print
&

run

Coq

Alt-Ergo

Z3

CVC3

etc.

Fig. 3. Overview of Why3

goal g: forall active:bool,
remaining_time remaining_time_1 initial_timer_value_ms cycle_duration : int.
cycle_duration = 100 ∧ active = True ∧
(active = True → remaining_time ≤ initial_timer_value_ms) ∧
1 ≤ initial_timer_value_ms ∧
0 ≤ remaining_time_1 ∧ remaining_time_1 ≤ 2147483647 ∧
(cycle_duration ≤ remaining_time

→ remaining_time_1 = remaining_time − cycle_duration) ∧
(remaining_time + 1 ≤ cycle_duration → remaining_time_1 = 0)

→ remaining_time_1 ≤ initial_timer_value_ms

Fig. 4. The same Proof Obligation as Fig. 2, in Why3

language called WhyML with a verification condition generator. In this paper,
we are not using the programming facilities of Why3; we are only concerned with
its logic, that is the right part of Fig. 3.

The logic of Why3 is a polymorphic first-order logic with recursive definitions,
algebraic data types, and inductive predicates [7]. Logical declarations are orga-
nized in small units called theories. The purpose of Why3 is, among other things,
to extract goals from theories and to translate them to the native language of
external theorem provers. Such provers range from interactive proof assistants,
such as Coq, to general-purpose automated theorem provers, such as Alt-Ergo,
Z3, or CVC3, and even to dedicated theorem provers, such as Gappa.

Fig. 4 shows a Why3 file containing one goal, equivalent to the PO of Fig 2.
Using Why3, this goal is proved valid with any of Alt-Ergo [12], Z3 [13], or
CVC3 [4].

3 A Translator from B to Why3

This section details the core of our contribution: a method to translate B proof
obligations into the Why3 form, so as to call the various provers available as
Why3 back-end. The method is based on two components: first a modeling in
Why3 of the set theory used in B (Sect. 3.1 below), second a standalone tool
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theory Set
type set α (∗ abstract type for polymorphic sets ∗)

predicate mem α (set α) (∗ membership ∗)

predicate (==) (s1 s2: set α) = forall x : α. mem x s1 ↔ mem x s2 (∗ equality ∗)
axiom extensionality: forall s1 s2: set α. s1 == s2 → s1 = s2

predicate subset (s1 s2: set α) = forall x : α. mem x s1 → mem x s2 (∗ inclusion ∗)

function empty : set α (∗ empty set ∗)
axiom empty_def: forall x: α. ¬ (mem x empty)

function union (set α) (set α) : set α (∗ union ∗)
axiom union_def: forall s1 s2: set α, x: α.

mem x (union s1 s2) ↔ mem x s1 ∨ mem x s2
[...]
end

Fig. 5. Why3 theory of sets (excerpt)

that reads a B file containing proof obligations and translates it into a set of
equivalent Why3 goals (Sect. 3.2). Then in Sect. 3.3 we discuss the soundness of
this method.

3.1 Modeling B Set Operators as Why3 Theories

The first theory we pose is a theory of sets. An excerpt of it is shown on Fig. 5.
To model the different possible types of elements, we make use of the type poly-
morphism of Why3, and thus declare a polymorphic type set α where the type
parameter α denotes the type of elements. The type set is not defined in Why3
but only axiomatized. The first and essential ingredient of this axiomatization
is the predicate mem which is intended to denote membership of an element
in a set. Indeed, most of the other operators that we introduce afterwards are
axiomatized with respect to mem, as exemplified in Fig. 5 for the (polymorphic)
empty set, the union operator and the predicate subset.

In the POs generated by B, it is very common to test equality of two sets. In
Why3, the built-in symbol = denotes a polymorphic equality, which is assumed
to be a congruence relation on any type it is used on. However, for sets, the
intended equality is not arbitrary: we want to model the fact that two sets are
equal if and only if they contain the same elements (Axiom SET 4 of the B-
Book [1, p. 61]). This is done by defining the predicate == of Fig. 5 just as
said above, and posing an axiom of extensionality which states that sets that
are equivalent for == are equal.

Both to exemplify our model of sets, and to define commonly used sets of
integers in B, let’s show how we model intervals of integers. This is done in
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theory Interval
use export int.Int
use export Set

function mk int int : set int
axiom mem_interval: forall x a b : int. mem x (mk a b) ↔ a ≤ x ≤ b

function integer : set int
axiom mem_integer: forall x:int.mem x integer

function natural : set int
axiom mem_natural: forall x:int. mem x natural ↔ x ≥ 0

[...]
end

Fig. 6. Why3 theory of intervals

a new Why3 theory, importing those of sets, as shown in Fig. 6. We declare
a logic function mk such that mk a b denotes the interval [a, b]. We also pose
definitions of the B built-in sets Z and N as two constants integer and natural
with appropriate axioms. We reuse Why3 computer arithmetic operators which
are the same as B-Book’s ones. Other set constructs are axiomatized in a similar
way: relations, power sets, sequences, finite sets, etc.

We detail our model of B relations, as shown in Fig. 7. A relation between
two sets S and T is just a set of pairs of elements of S × T . Domain and range
of such a relation are axiomatized with natural axioms. Partial functions in B
are just particular cases of relations. The set of partial functions on some sets s
and t is axiomatized in the Function theory of Fig. 7. Our axioms are designed
as transcriptions of those of the B-Book [1, p. 86], independently of the case
studies. We also provide a few lemmas about functions. These were added while
working on the case studies. They provide a form of hint to the SMT solvers.
Unlike axioms, these are logical consequences of the axiomatization. They are
proved, using Why3, either automatically with SMT solvers or interactively with
Coq.

The set of total functions is defined similarly. A non-trivial construct of B
is function application f(x). In B, this construct is subject to the condition
x ∈ dom(f) [1, p. 89]. We model this construct in Why3 using an explicit op-
erator apply. It is axiomatized for total functions only (see the last two axioms
in Fig. 7) and unspecified otherwise.

3.2 The Translation Process

Addition of the Why3 proof tool chain inside Atelier B is made after generation
of proof obligations. For each B machine (specification, refinement, or implemen-
tation), Atelier B generates an internal PO file (with suffix .po). We read and
translate this PO file into Why3.
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theory Relation "Relations between two sets"
use export Set

type rel α β = set (α,β)

function dom (rel α β) : set α
axiom dom_def: forall r : rel α β, x : α. mem x (dom r) ↔ exists y : β. mem (x,y) r

function ran (rel α β) : set β
axiom ran_def: forall r : rel α β, y : β. mem y (ran r) ↔ exists x : α. mem (x,y) r

[...]
end

theory Function "Partial functions as relations"
use export Relation

function (+->) (s:set α) (t:set β) : set (rel α β)
axiom mem_function: forall f:rel α β, s:set α, t:set β.

mem f (s +-> t) ↔
(forall x:α, y:β. mem (x,y) f → mem x s ∧ mem y t) ∧
(forall x:α, y1 y2:β. mem (x,y1) f ∧ mem (x,y2) f → y1=y2)

lemma range_function: forall f:rel α β, s:set α, t:set β, x:α, y:β.
mem f (s +-> t) → mem (x,y) f → mem y t

lemma function_extend_range: forall f:rel α β, s:set α, t u:set β.
subset t u → mem f (s +-> t) → mem f (s +-> u)

function (-->) (s:set α) (t:set β) : set (rel α β)
axiom mem_total_functions: forall f:rel α β, s:set α, t:set β.

mem f (s --> t) ↔ mem f (s +-> t) ∧ dom f == s

lemma total_function_is_function: forall f:rel α β, s:set α, t:set β.
mem f (s --> t) → mem f (s +-> t)

function apply (rel α β) α : β
axiom apply_def1: forall f:rel α β, s:set α, t:set β, a:α.

mem a s ∧ mem f (s --> t) → mem (a, apply f a) f
axiom apply_def2: forall f:rel α β, s:set α, t:set β, a:α, b:β.

mem f (s --> t) ∧ mem (a,b) f → b = apply f a
[...]
end

Fig. 7. Why3 theory of relations and functions (excerpt)

Our bpo2why translator is made of three steps: the parsing of Atelier B’s PO
file into an abstract syntax tree, the application of a type inference algorithm
on the read tree, and finally the translation of the typed tree into Why3.
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THEORY ProofList IS
_f(1) ∧ _f(2) ∧ _f(6) ∧ decrement_timer.2,(_f(10) ⇒ _f(11));

[...]
END
∧
THEORY Formulas IS
1 ("‘Component constraints’" ∧ initial_timer_value_ms ∈ Z ∧

0 ≤ initial_timer_value_ms ∧ initial_timer_value_ms ≤ 2147483647 ∧
¬(initial_timer_value_ms = 0) ∧ cycle_duration = 100;

2 ("‘Component invariant’" ∧ active ∈ B ∧ remaining_time ∈ Z ∧
0 ≤ remaining_time ∧ remaining_time ≤ 2147483647 ∧
(active = FALSE ⇒ remaining_time = 0) ∧
(active = TRUE ⇒ remaining_time ≤ initial_timer_value_ms));

[...]
6 ("‘decrement_timer preconditions in this component’" ∧ active = TRUE);
[...]
10 ("‘Local hypotheses’" ∧ remaining_time$1 ∈ Z ∧ 0 ≤ remaining_time$1 ∧

remaining_time$1 ≤ 2147483647 ∧
(cycle_duration ≤ remaining_time ⇒

remaining_time$1 = remaining_time − cycle_duration) ∧
(remaining_time + 1 ≤ cycle_duration ⇒ remaining_time$1 = 0));

11 (remaining_time$1 ≤ initial_timer_value_ms)
END
∧
THEORY EnumerateX IS

t_BOOM_MOVEMENT_ORDER = {go_up, go_down}
END

Fig. 8. Part of proof obligation file generated for Timer machine

The parsing step is quite usual. The format of the PO file is not publicly
documented but it is generated as a text file and we have reverse-engineered it.
Fig. 8 shows part of the generated PO file for the Timer machine of Fig. 1. This
file contains three parts: a set of logic expressions to prove (ProofList part), a set
of formulas identified by their sequence number (Formulas part) and referred as
_f(n) in previous logic expressions, and a set of enumerated sets (EnumerateX
part). We build an abstract syntax tree from the content of this file, using the
same priority and associativity as B’s operators [9]. As the B syntax is quite big
(about 200 keywords and operators), we currently do not parse all of it but a
significant subset1 needed for our tests.

The type inference step decorates the abstract syntax tree with the B type
of all operators and identifiers. It is necessary for a precise translation in the

1 This subset includes ∃ and ∀ quantifiers, Boolean expressions (with ⇒, ⇔, ∧, ∨, ¬
connectors and bool operator), usual integer arithmetic expressions (+, −, ∗, / and
mod operators, <, ≤, ≥, > comparison operators, 32 bits constants), set expressions
(with P, a..b, ∈, ∗, ∩, ∪ and − set operators), Z, N and ∅ sets, operators on functions
and relations (including seq, f−1, ↔, �→, →, f[s], f(x), dom, ran, size).
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theory B_translation
use import bool.Bool
use import int.Int
use import bpo2why_prelude.Interval

[...]
type enum_t_BOOM_MOVEMENT_ORDER = E_go_up | E_go_down

[...]
predicate f1 (v_remaining_time_1: int) (v_remaining_time: int)

(v_initial_timer_value_ms: int) (v_cycle_duration: int) (v_active: bool) =
((((mem v_initial_timer_value_ms integer)) ∧ (0 ≤ v_initial_timer_value_ms))
∧ (v_initial_timer_value_ms ≤ 2147483647))
∧ ¬(v_initial_timer_value_ms = 0)) ∧ (v_cycle_duration = 100))

predicate f2 [...] = ((((((mem v_remaining_time integer)) ∧ (0 ≤ v_remaining_time))
∧ (v_remaining_time ≤ 2147483647))
∧ ((v_active = False) → (v_remaining_time = 0)))
∧ ((v_active = True) → (v_remaining_time ≤ v_initial_timer_value_ms)))

[...]
predicate f6 [...] = (v_active = True)

[...]
predicate f10 [...] = ((((mem v_remaining_time_1 integer))
∧ (0 ≤ v_remaining_time_1)) ∧ (v_remaining_time_1 ≤ 2147483647))
∧ ((v_cycle_duration ≤ v_remaining_time)

→ (v_remaining_time_1 = (v_remaining_time − v_cycle_duration))))
∧ (((v_remaining_time + 1) ≤ v_cycle_duration) → (v_remaining_time_1 = 0)))

predicate f11 [...] = (v_remaining_time_1 ≤ v_initial_timer_value_ms)

goal decrement_timer_2 :
forall v_remaining_time_1: int, v_remaining_time: int,

v_initial_timer_value_ms: int, v_cycle_duration: int, v_active: bool.
((f1 v_remaining_time_1 v_remaining_time v_initial_timer_value_ms v_cycle_duration v_active)
∧ (f2 [...]) ∧ (f6 [...]) ∧ (f10 [...]))
→
(f11 [...])

[...]
end

Fig. 9. Why3 translation of Timer proof obligation

next step. We use a classical Hindley-Milner type inference algorithm [16]. An
additional issue is to support operator overloading, e.g. “∗” which is both the
arithmetic multiplication and the Cartesian product of two sets.

In a third step, we translate the typed abstract syntax tree into a Why3 file.
This is done through a top-down traversal of the tree, translating each node into
Why3 syntax and then recursively translating sub-trees of this node. This trans-
lation step uses the Why3 theories of B operators defined in Section 3.1. In case
operators would have several possible translations, we use the inferred type in
previous step to determine the kind of Why3 operator to use. For example, the
“=” B’s operator is translated into Why3’s “=” if it is an integer equality or into
Why3’s “==” operator if it is a set equality. Enumerated sets are translated into
Why3’s sum types. All B’s expressions in a PO file are translated, except two
kinds related to enumerated sets (an enumerated set is not empty and an enu-
merated set is finite) as those assumptions are implicitly guaranteed by Why3’s
sum types. Fig. 9 shows the PO file of Fig.8 translated into Why3. We have kept
the same structure as the input file, with the definition of “ fn” predicates and
their use in a Why3’s “goal”. All predicates are quantified over all variables used
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in the PO file. The t_BOOM_MOVEMENT_ORDER enumerated set is trans-
lated into a sum type. We have used an explicit parenthesizing of expressions
to avoid any priority issue. We keep the PO comments produced by Atelierb B
as Why3 labels. Thanks to our modeling of B operators, we are able to trans-
late set related expressions. For example in predicate f2 of Fig. 9, we translate
the PO expression “remaining_time ∈ Z” into “mem v_remaining_time integer”,
using the mem set operator defined in Sect. 3.1. In the same way, the symbol
“ integer” is the one of Fig. 6.

By default, we generate a Why3 file for each original PO file. However, when
a PO file contains more than 200 proof obligations, we split the generated Why3
file into several files, each one containing at most 200 goals. We also include
in those files only the “fn” predicates needed by goals of a given Why3 file.
This approach reduces the processing time and proof context of Why3 under
acceptable limits, as well as the time needed to call provers. Otherwise a single
Why3 file with 1,600 goals and 1,400 predicates would take several minutes to
simply load the file.

3.3 Soundness of the Translation

We claim that our translation process is sound in the sense that if the translation
of a B proof obligation is a valid formula then the original one is also valid. That
soundness property relies upon two things: first the modeling of B operators as
presented in Sect. 3.1 must be faithful to the B-Book, second the translation
mechanism given in Sect. 3.2 must be sound. Both of these ingredients are small
and natural, so we are confident on their soundness. The modeling contains 3
type declarations, 35 function symbols, 5 predicate symbols, 25 axioms, and 21
lemmas2. The bpo2why translator is made of 2,057 lines of OCaml: 701 lines for
parsing, 957 lines for type inference, and 399 lines for the translation.

However, in such a process it is easy to make a mistake when writing down
axioms, which could result in an inconsistent theory in which we could prove
anything. To prevent from such an inconsistency, we designed Coq realizations
of the Why3 theories in use. Realizing theories in Coq is a feature provided
by Why3. It automatically translates a given Why3 theory into a Coq module,
where each abstract definition or axiom is respectively written as a concrete
definition or a lemma. The latter must then be filled in by the user.

The first step is to provide a Coq definition of the type of polymorphic sets.
We use the higher-order features of Coq, and define set α as a function α → bool,
that is a set S of elements of type α is identified with its characteristic function.
The membership function is thus defined trivially as (mem x s) := (s x). From
such a definition, it is straightforward to define the basic set operators empty
set, union, etc. and prove that the axioms we pose are valid. However, realizing
our set equality and our extensionality axiom is not an easy task. It is indeed
not provable in Coq that s1==s2 implies s1=s2: pointwise equality of functions

2 We modeled only the B constructs needed for our case studies.
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does not imply equality of these functions, it is the so-called extensionality of
function equality.

Thus, we pose functional extensionality as an axiom in Coq. Actually func-
tional extensionality is not the only axiom we need. We also admit the excluded
middle, because we need to have decidability of membership in a set, and finally
we admit the axiom of choice to be able to realize the apply operator, which
allows to construct a function from a relation. It is commonly admitted that
adding these general-purpose axioms in the Coq calculus of inductive construc-
tions is consistent, indeed by interpretation into a standard set-theoretic boolean
model [3].

4 Experiments

We applied our technique on a proprietary use case called RCS3. This is a B
project modeling the software controlling a railway level crossing system. This
project has been entirely proved inside Atelier B, so all proof obligations are
valid. While being a small project (about 3,000 lines of generated C code), it is
representative of a B development with sets, sets of sets, relations, sequences,
and linear integer arithmetic. The project is made of 31 machines (specification,
refinement, or implementation), generating 2,247 proof obligations. Atelier B
4.0.2 automatic prover in F1 force proves 94% of them using a 10 seconds time
limit, leaving 129 unproved proof obligations.

Our bpo2why translator can be applied on all generated PO files. We can then
launch the Why3 tool chain on them using Alt-Ergo, CVC3, and Z3 provers. We
use the following strategy to run the provers: the three provers are launched in
parallel on all proof obligations, four at a time, with a 2 seconds time limit. For
remaining unproved goals, we run once again the three provers with a 60 seconds
time limit.

The comparison of the two proof chains is given in Fig. 10 (only machines gen-
erating proof obligations are shown). Overall, the Why3 proof tool chain proves
more proof obligations than Atelier B’s automatic prover (including the Timer
machine previously presented). Only 19 proof obligations are not proved, corre-
sponding to a 85% improvement. In only one machine, Automaton_context_i,
the Why3 tool chain proves less proof obligations than Atelier B. This machine
contains set expressions between enumerated sets. We do not know yet why
such expressions are difficult for our tool chain. The 10 proof obligations in
Warning_section_i machine are considered “difficult” ones. They need an elabo-
rated mathematical proof with exhibition of witnesses (for existential quantifiers)
based on properties of a bijection.

An interesting by-product of this experiment is that none of Alt-Ergo, CVC3,
and Z3 automatic provers proves all proof obligations, even with a 60s time limit.
For the three provers, there is at least one proof obligation which is proved by
this prover and by none of the others. This result confirms the usefulness of the
Why3 tool chain that targets several provers and thus allows to use them in a
complementary way.
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Machine # of PO Unproved by
Atelier B

Unproved by
Why3

Automaton 4 0 0
Automaton_context_i 10 8 9
Automaton_i 229 71 0
Automaton_transitions 189 7 0
Automaton_transitions_i 1678 25 0
Boom_detectors_i 16 0 0
Configuration_i 7 4 0
Indicators_i 12 0 0
Lamps_bells_i 4 0 0
Timer 3 1 0
Timer_i 10 0 0
Track_circuit 2 0 0
Track_circuit_i 1 0 0
Train_detector_i 4 0 0
Warning_section 2 0 0
Warning_section_i 59 11 10
Warning_section_r 17 2 0
Total 2247 129 19

Fig. 10. Comparison of Why3 tool chain with Atelier B on RCS3 use case (smaller is
better)

Regarding proving time, the Why3 tool chain takes 35 min 34 s to prove all
goals with the three provers using 4 cores, roughly 12 min per prover. Using F1
proving force, automatic prover of Atelier B 4.0 on one core3 proves its proof
obligations in 1 min 2 s. Using F3 force, we do not get any answer from Ate-
lier B in 30 minutes. Discarding machine Automaton_context_i, it completes in
7 min 5 s. There is net gain of 2 proof obligations in machine Warning_section_r.
Overall, Atelier B is much faster to prove the proof obligations, but Why3 pro-
duces a better result in an acceptable time. As the time needed by the user
to look at unproved proof obligation is very costly, we think that any gain in
automatic proofs is an effective development time gain.

Digital Watch Example. We have also applied our tool on a second example,
the model of a digital watch. This model is less complex. It generates 777 proof
obligations, of which 11 are not proved by Atelier B in F1 force. Using our
translator and then the Why3 tool chain with Alt-Ergo, CVC3 and Z3, we can
automatically prove all but one proof obligation, the remaining one being not
provable (a bug in the original model). This result confirms that the Why3 tool
chain improves the efficiency of proofs by exploiting the capabilities of modern
SMT provers (this model contains a lot of integer arithmetic expressions).

3 Latest Atelier B 4.0.2 is able to use all cores of a multi-core machine but we could
not use this version for our tests.
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5 Comparison with Related Work

Bodeveix, Filali, and Muñoz [8] formalized the semantics of B in both Coq and
PVS. They define a (mostly) shallow embedding of the B notions of generalized
substitutions and machines. B’s set theory is not formalized at all; the native
logics of Coq and PVS are used instead.

The BRILLANT [11] toolset made by Colin et al. generates B’s proof obliga-
tion that can be incorporated inside the Coq proof assistant thanks to the Bi-
Coax [10] libraries. (The BiCoax work is itself an extension of the B/PhoX [17]
work based on PhoX proof assistant.) The proof obligations can then be proved
manually or by Coq automatic tactics. Jacquel et al. [15] propose another deep
embedding of B’s set theory in Coq, whose purpose is to check using Coq that
the rewrite rules used in the B prover are valid. Our Coq realization is similar
to both Coq formalizations above. However our Coq model is only built for the
purpose of showing the consistency, not for the purpose of performing proofs
interactively with Coq.

Déharbe made a work [14] very similar to ours. Namely, Déharbe interfaces
SMT solvers having an SMT-LIB interface with the Rodin development tool for
Event-B. The proof obligations generated by Rodin are transformed into Boolean
formulas, sets being transformed into their characteristic predicate. Déharbe’s
approach is limited to basic sets (i.e. no set of sets) while ours is able to transform
all set-related expressions of the B Method. Moreover, Why3 is able to interface
itself to more automatic provers, not limited by the SMT-LIB interface. For his
tests, Déharbe used only one SMT solver, veriT. But even using one solver, he
obtained a significant improvement in proofs, as we did.

6 Conclusion and Perspectives

In this paper, we have presented an approach and a tool to transform Atelier B’s
proof obligations into the Why3 proof tool chain in order to prove them using
several automated provers. While being a shallow embedding of B logic into
Why3 logic, we have arguments to believe that this translation is sound: mainly
the translation is short and we can check axioms’ correctness through Coq real-
ization. We have applied this approach on a small but reasonably complex use
case and we found a significant improvement in the number of proof obligations
that are automatically proved.

This work could be improved in several ways. First of all, we could support
more B operators in order to handle more complex and industrial models. The
current subset of operators is the one needed to handle our use cases. Adding one
B operator amounts to incrementally complete the Why3 theories, complete its
Coq realization, and add a translation rule in the translator. Secondly we could
try to increase the number of automatically proved proof obligations by analyzing
in detail why some of them are not proved. This may amount to provide more
lemmas as hints, or annotate them with triggers. Thirdly, we could increase our
confidence level in the embedding of B into Why3 by proving B-Book’s lemmas



Discharging POs from Atelier B Using Multiple Automated Provers 251

into our Why3 framework. Fourthly we could better integrate our tool chain into
Atelier B tool, for example by applying it after Atelier B automatic prover and
then merging our results into Atelier B GUI. Last but not least, we could try
to improve the automated provers themselves in order to better handle proof
obligations generated by the B Method. E.g. an interesting theoretical question
is whether the rewriting techniques used by the B prover could be combined
with the satisfiability modulo theory approach.
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Abstract. Specifications of programs frequently involve operators and
functions that are not defined over all of their (syntactic) domains. Proofs
about specifications –and those to discharge proof obligations that arise
in justifying steps of design– must be based on formal rules. Since classi-
cal logic deals only with defined values, some extra thought is required.
There are several ways of handling terms that can fail to denote a value
— this paper provides a semantically based comparison of three of the
best known approaches. In addition, some pointers are given to further
alternatives.

1 Introduction

This paper provides a semantic basis for terms that can fail to denote values and
uses it to compare three approaches to logics for reasoning about such terms.
Terms such as the head of an empty sequence (hd [ ]), applying a mapping out-
side its actual domain ({1 	→ 1}(2)), or even the obvious 7/0 can be considered to
fail to denote values. Of course, it would be perverse to write such naked terms
deliberately but the fact is that they arise as sub-terms of quite innocent ex-
pressions. What some people call “undefined terms” are ubiquitous in reasoning
about realistic program specifications and designs.

In some uses, it is tempting to try to “guard” dangerous applications by
writing expressions such as:1

∀i :Z · i �= 0 ⇒ i/i = 1 (1)

But there are other expressions that cannot be rewritten with such guards;
consider:

∀i :Z · (i/i = 1) ∨ ((i − 1)/(i − 1) = 1) (2)

Although also verging on the contrived, disjunctions where either term can be
undefined –but only in the case where the other disjunct is true– arise quite
naturally in specifications. The same can be said of conditions under which
conjunctions and implications come into contact with “undefinedness”.

1 Assume that x/y represents integer division and that it does not yield a defined
result with a zero divisor.

J. Derrick et al. (Eds.): ABZ 2012, LNCS 7316, pp. 252–265, 2012.
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The issue of reasoning about such partial terms in program development has
long been recognised; certainly [1] discusses the problem and the issue has since
been tackled in a variety of approaches [2–19]. The topic is discussed by logicians
such as in [20–27].

The first author of the current paper has long advocated the use of a non-
classical “Logic of Partial Functions” (LPF) [28]. LPF is a first order predicate
logic designed to handle non-denoting values that can arise from terms that apply
partial functions and operators. LPF underlies the Vienna Development Method
(VDM ) [11,16,29]. A soundness proof of untyped LPF is given in [4] and of the
typed version in [30].

Recently, all three authors have been looking at the issue of providing (effi-
cient) mechanisations of LPF. One fruit of this is [31] that presents two semantic
models for LPF. Also a paper on the adaptation of (semi-)decision procedures
such as resolution and refutation to cope with LPF has been submitted for
publication and is available as a technical report [32]. The underpinning of that
research is a semantics that maps logical expressions to relations over interpreta-
tions and results. This nicely captures Blamey’s [33,34] view that non-denoting
terms correspond to “gaps”: so 7/0 or the head of an empty sequence map to an
empty relation but i/i maps to interpretations which have a gap for i = 0.

In spite of the fact that the “gap” view is key to the semantic models presented
later, it is convenient to first illustrate the three main approaches to handling
partial terms being considered in this paper by using a surrogate for the “unde-
fined” value (which, of course, can often not be computed). In these illustrations,
⊥Z is written to stand for a missing integer value and ⊥B for a missing Boolean
value; then B⊥ (Z⊥) is taken to mean B ∪ {⊥B} (Z ∪ {⊥Z}) respectively.

Essentially, the first two approaches below attempt to get by with classical
logic by “catching undefinedness” before it collides with the logical operators to
avoid them having any contact with non-denoting logical values. In other words
providing work-arounds so that a classical (total) framework can still be used.
The third approach considers using a non-classical (three-valued) logic.

The first approach (see Sect. 3) is to insist that all terms do in fact denote
something (perhaps 0/0 = 42) and is pictured in Fig. 1(a). Another approach
(see Sect. 4) is to accept that terms such as i/i can fail to denote but to make
any predicates (e.g. the relational operators) denote, even where their arguments
fail to denote; this approach is pictured in Fig. 1(b) — existential equality =∃
is defined in Sect. 4.

The third approach uses a non-classical logic, notably LPF (see Sect. 5), whose
attempt to “catch undefinedness” is pictured in Fig. 1(c). Here the gaps from
partial terms are allowed to propagate up so that the problem can be “resolved”
by the logical operators. Although the conditional operators of [1] do not retain
properties like the commutativity of disjunctions and conjunctions, they broadly
fit the picture depicted for LPF and this approach is discussed in Sect. 6.

A semantic model of the sort first presented in [31] for LPF is in fact quite
convenient for comparing different approaches to handling partial terms and this
is the focus of this paper. Using the definitions and ideas introduced in Sect. 2, a
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∀i :Z · (
∈Z

︷︸︸︷
i/i = 1) ∨ (

∈Z

︷ ︸︸ ︷
(i − 1)/(i − 1) = 1) (a)

∀i :Z ·
∈B

︷ ︸︸ ︷
( i/i
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∈Z⊥

=∃ 1) ∨
∈B

︷ ︸︸ ︷
((i − 1)/(i − 1)
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∈Z⊥

=∃ 1) (b)

∀i :Z ·
∈B

︷ ︸︸ ︷
( i/i
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∈Z⊥

= 1)

︸ ︷︷ ︸
∈B⊥

∨ ((i − 1)/(i − 1)
︸ ︷︷ ︸

∈Z⊥

= 1)

︸ ︷︷ ︸
∈B⊥

(c)

Fig. 1. An illustration of where “undefinedness” can be caught: (a) a classical approach
insisting that all terms denote; (b) a non-strict relational operator approach; and (c)
the LPF approach

semantic model is developed for each of the three approaches to handling partial
terms described above (see Sect. 3–5). These models are then used to compare
and contrast the three approaches in Sect. 6, where further approaches of interest
are also mentioned.

2 The Basis of the Semantics

An abstract syntax (using VDM notation [11]) is presented in Fig. 2. It is this
abstract syntax that is used in the semantic models presented in this paper
(although, when writing expressions in examples, concrete syntax is used for
readability).

As in most logic textbooks, only a few logical operators are considered since
further logical operators can be defined from this subset — and a logic is unlikely
to be usable unless its operators enjoy connections such as de Morgan’s laws.

Expr = Value | Id | Arith | Equality | Not | Or | Exists
Value = B | Z Not : : a :Expr

Id = Prop | Var Or : : a :Expr
b :Expr

Arith : : a :Expr Exists : : bind : Id
op :− | / body :Expr
b :Expr

Equality : : a :Expr
b :Expr

Fig. 2. The abstract syntax of the language
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One predicate –equality, defined only for integer operands– and two functions
–subtraction and division– suffice to illustrate the issues. Finally, quantification
is only considered to be over the set of integer values and the only constant
values are Booleans and integers.

Context conditions for such a language are outlined in [31] and spelt out
formally in [35]. The context conditions ensure that the semantics only need
be given for expressions that are well-formed thus removing the need to define
semantics for ill-formed expressions such as mk -Exists(x , 5), i.e. ∃x · 5.

Two sorts of identifiers can occur in expressions, those for propositions (Prop)
and those for integer variables (Var). The sets Prop and Var are assumed to
be disjoint. It is one of the functions of the context conditions to ensure that
identifiers are used appropriately. Furthermore, it is required that all integer
variables are explicitly bound by quantifiers.

States (σ ∈ Σ) provide a (possibly partial) interpretation for propositional
and integer variable symbols. Formally, Σ is defined as the union of two sets of
maps:

Σ = Prop
m−→ B | Var m−→ Z

where the map involving Prop is partial in the sense that a propositional iden-
tifier can be absent from the domain of a specific map (σ ∈ Σ) to allow for the
possibility of undefined propositional identifiers. However, the Var map must be
total since all Var are explicitly bound by quantifiers and in classical logic and
in LPF quantification is only over a set of defined values.

The semantics is given for each of the three approaches to handling partial
terms by defining a semantic function for each with the following form: E :Expr
→ P(Σ×Value).

3 Classical Logic: Making All Terms Denote

As indicated in Fig. 1(a), it is possible to get by with classical logical operators
by forcing an extension of functions and operators so that they are total. To make
division yield a result with a zero divisor is a challenge but it is possible to say
that 7/0 yields some arbitrary integer and that perhaps no harm is done by this
fiction providing that it is not possible to know which integer results. Figure 3
presents a formal semantics for this approach where division by zero is extended
to return an arbitrary integer. The rest of this definition is straightforward in
the sense that any feature of the language of Fig. 2 has the obvious classical
meaning.

To ensure that all propositional variables do denote, the set of variable state
mappings needs to be appropriately defined. Let ΣC be the set of mappings that
contain denotations for all used elements of Prop and Var :

ΣC = {σ | σ ∈ Σ ∧ dom σ = Id}

Relations are chosen as the space of denotations to facilitate comparison with
the semantics in the next two sections.
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EC :Expr → P(ΣC × Value)

EC (e) �
cases e of
e ∈ Value → {(σ, e) | σ ∈ ΣC }
e ∈ Prop → {(σ, σ(e)) | σ ∈ ΣC}
e ∈ Var → {(σ, σ(e)) | σ ∈ ΣC}
mk -Arith(a,−, b)→ {(σ, a ′ − b′) | (σ, a ′) ∈ E(a) ∧ (σ, b′) ∈ E(b)}
mk -Arith(a, /, b) → {(σ, a ′/b′) | (σ, a ′) ∈ EC (a) ∧

(σ, b′) ∈ EC (b) ∧ b′ �= 0} ∪
{(σ, n) | (σ, a ′) ∈ EC (a) ∧

(σ, b′) ∈ EC (b) ∧ b′ = 0 ∧ n ∈ Z}
mk -Equality(a, b)→ {(σ, a ′ = b′) | (σ, a ′) ∈ EC (a) ∧ (σ, b′) ∈ EC (b)}
mk -Not(p) → {(σ,¬ p′) | (σ, p′) ∈ EC (p)}
mk -Or(p, q) → {(σ, p′ ∨ q ′) | (σ, p′) ∈ EC (p) ∧ (σ, q ′) ∈ EC (q)}
mk -Exists(x , p) → {(σ, ∃i :Z · (σ † {x �→ i}, true) ∈ EC (p)) | σ ∈ ΣC}
end

Fig. 3. The semantic function EC — an approach to making all terms denote

Notice that this approach is total as the definition of EC avoids the possibility
of “gaps”. In other words, for every expression e and each σ ∈ ΣC there exists
a tuple (σ, v) ∈ EC (e). This is straightforward to prove by structural induction
over Expr . The relation, however, is not deterministic (or “functional”) since it
is not single-valued, i.e. 7/0 = 7/0 can yield both true and false.

What has been done in EC is to underspecify the partial division function
so that it returns an arbitrary value when applied outside of its actual defined
domain. An alternative approach is to overspecify the result, in other words, to
define that a partial function must return a default value when applied outside
of its actual defined domain, e.g. i/0 returns 42.2

The ED semantics presented in Fig. 4 documents the small change needed to
overspecify the partial division function. The rest of the expression cases follow
as in the EC semantics, if all other occurrences of EC are replaced with ED .

It is straightforward to show the semantic function ED is total and also de-
terministic (for any expression e it follows that (σ, v1) ∈ ED (e)∧ (σ, v2) ∈ ED (e)
⇒ v1 = v2).

4 Classical Logic: Variant Relational Operators

Figure 1(b) indicates that there is another way to preserve the classical logic
operators and that is by having non-strict relational operators denote even when
their arguments fail to denote. Non-strict notions of equality include existential
equality (=∃) and strong equality (==). Existential equality returns false when
either of its operands do not denote. Strong equality differs only in the case when

2 The answer to . . . everything: Hitchhiker’s guide to the Galaxy Douglas Adams.
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ED :Expr → P(ΣC ×Value)

ED(e) �
cases e of
...
mk -Arith(a, /, b)→ {(σ, a ′/b′) | (σ, a ′) ∈ ED(a) ∧

(σ, b′) ∈ ED(b) ∧ b′ �= 0} ∪
{(σ, 42) | (σ, a ′) ∈ ED(a) ∧

(σ, b′) ∈ ED(b) ∧ b′ = 0}
...
end

Fig. 4. The semantic function ED — another approach to making all terms denote

both of its operands do not denote, that is, ⊥Z =∃ ⊥Z is false but ⊥Z == ⊥Z is
true. Existential equality is the focus throughout this section.

The semantic function E∃ is defined in Fig. 5 using a similar approach to
EC but replacing the case for division by the normal partial division definition
and by replacing the case for equality by existential equality. Additionally any
further use of EC needs to be replaced with E∃. Note that the set of variable
state mappings remains as ΣC since propositional variables are not permitted
to be a source of non-denoting terms.

The E∃ semantics is total in the sense that for every Boolean expression e
and each σ ∈ ΣC there must be a tuple (σ, v) ∈ E∃(e). The E∃ semantics is also
deterministic.

E∃ :Expr → P(ΣC × Value)

E∃(e) �
cases e of
...
mk -Arith(a, /, b) → {(σ, a ′/b′) | (σ, a ′) ∈ E∃(a) ∧

(σ, b′) ∈ E∃(b) ∧ b′ �= 0}
mk -Equality(a, b)→ {(σ, a ′ = b′) | (σ, a ′) ∈ E∃(a) ∧ (σ, b′) ∈ E∃(b)} ∪

{(σ, false) | σ ∈ (ΣC \ dom E∃(a))} ∪
{(σ, false) | σ ∈ (ΣC \ dom E∃(b))}

...
end

Fig. 5. The semantic function E∃ for the approach of including a non-strict relational
operator
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5 Non-classical Logic: LPF

One way of thinking about partial functions and operators is that there are gaps
in the denotations where they fail to denote: 7/0 is not an integer; furthermore, if
discussion is limited to the one strict notion of equality, 7/0 = 42 fails to denote
a Boolean value. Briefly revisiting (2), it should be clear that its truth relies on
the truth of disjunctions such as (1/1 = 1) ∨ (0/0 = 1), which reduces to (1 =
1) ∨ (⊥Z = 1) and further to true ∨ ⊥B, since the equality is strict (i.e. undefined
if either operand is undefined) and ultimately to ⊥B. This unfortunately makes
no sense in classical logic since its truth tables only define the logical operators
for proper Boolean values.

As can be seen the LPF approach in Fig. 1(c) leaves the propositional opera-
tors to take the strain. The truth tables (disjunction, conjunction and negation)
in Fig. 6 (presented in [36, §64]) illustrate how the propositional operators in
LPF have been extended to handle logical values that may fail to denote. These
truth tables provide the strongest possible monotonic extension of the familiar
propositional operators with respect to the following ordering on the truth val-
ues: ⊥B � true and ⊥B � false. The truth tables can be viewed as describing
a parallel lazy evaluation of the operands, whereby a result is delivered as soon
as enough information is available and such a result cannot be contradicted if a
⊥B later evaluates to a proper Boolean value.

∨ true ⊥B false

true true true true
⊥B true ⊥B ⊥B

false true ⊥B false

∧ true ⊥B false

true true ⊥B false
⊥B ⊥B ⊥B false
false false false false

¬
true false
⊥B ⊥B

false true

Δ

true true
⊥B false
false true

Fig. 6. The LPF truth tables for disjunction, conjunction, negation and definedness
(Δ)

The quantifiers of LPF are a natural extension of the propositional operators
— viewing existential quantification as an infinite disjunction (in the worst case)
and universal quantification as an infinite conjunction. Thus, an existentially
quantified expression in LPF is true if a witness value exists even if the quantified
expression is undefined or false for some of the bound values. Such an expression
is false if no witness value can be shown. Similar comments apply for universally
quantified expressions.

For expressive completeness, LPF includes a definedness operator Δ whose
truth table is also presented in Fig. 6. Unlike all of the other operators presented,
the Δ operator is not monotone but is used only at the meta-level.

A semantics for the LPF version of the Predicate Calculus is detailed below.
The abstract syntax is extended to include Δ, thus ExprL = Expr | Delta and
where the abstract syntax for Delta is the same as for Not .

Since in LPF, the logical operators are extended to allow for the possibility
that non-denoting logical values can be “caught”, the standard definition of Σ



A Semantic Analysis of Logics That Cope with Partial Terms 259

(given in Sect. 2) can be used for LPF, thus allowing for undefined propositional
identifiers to occur in a specific σ.

The semantic function EL is defined as EC , but with the additional and mod-
ified cases presented in Fig. 7; also any use of EC needs to be replaced with
EL and any use of ΣC needs to be replaced with Σ. Note that the semantics
for quantifiers ensures that “gaps” are handled by non-denoting propositional
expressions being absent from the domain of EL.

EL :ExprL → P(Σ×Value)

EL(e) �
cases e of
...
e ∈ Prop → {(σ, σ(e)) | σ ∈ Σ ∧ e ∈ dom σ}
e ∈ Var → {(σ, σ(e)) | σ ∈ Σ}
mk -Arith(a, /, b)→ {(σ, a ′/b′) | (σ, a ′) ∈ EL(a) ∧

(σ, b′) ∈ EL(b) ∧ b′ �= 0}
...
mk -Delta(p) → {(σ, true) | σ ∈ dom EL(p)} ∪

{(σ, false) | σ ∈ (Σ \ dom EL(p))}
mk -Not(p) → {(σ, true) | (σ, false) ∈ EL(p)} ∪

{(σ, false) | (σ, true) ∈ EL(p)}
mk -Or(p, q) → {(σ, true) | (σ, true) ∈ EL(p)} ∪

{(σ, true) | (σ, true) ∈ EL(q)} ∪
{(σ, false) | (σ, false) ∈ EL(p) ∧ (σ, false) ∈ EL(q)}

mk -Exists(x , p) → {(σ, true) |
σ ∈ Σ ∧
true ∈ rng ({σ † {x �→ i} | i :Z}� EL(p))} ∪

{(σ, false) |
σ ∈ Σ ∧
rng ({σ † {x �→ i} | i :Z}� EL(p)) = {false}}

end

Fig. 7. The semantic function EL for LPF

The “gaps” that arise from partial terms and propositional expressions in
LPF are modelled by choosing relations as the space of denotations here. This is
in contrast to the use of partial functions as is classical in denotational seman-
tics [37]. The use of relations might suggest non-determinacy but all denotations
are in fact single valued, i.e. any relation EL(e) is deterministic (or “functional”),
that is, for any expression e it follows that (σ, v1) ∈ EL(e) ∧ (σ, v2) ∈ EL(e)
⇒ v1 = v2.
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6 Discussion

6.1 A Comparison of the Approaches Considered

The “proof of the pudding” for any logic is the ease of proof. Consider con-
structing a proof of (2) in classical logic; first, it is necessary to introduce some
knowledge about division and subtraction, since a proof is a game with symbols,
it cannot use the semantics of the arithmetic operators:

∀i :Z · i = 0 ⇒ ¬ ((i − 1) = 0); ∀i :Z · ¬ (i = 0) ⇒ i/i = 1 �
∀i :Z · (i/i = 1) ∨ ((i − 1)/(i − 1) = 1)

A proof of the above property in classical logic is presented in Fig. 8 and it is
pleasingly straightforward even though it hides the fact that the term 0/0 with
its undetermined denotation implicitly crops up in a number of places.

from ∀i :Z · i = 0 ⇒ ¬ (i − 1 = 0); ∀i :Z · ¬ (i = 0) ⇒ i/i = 1
1 from i :Z
1.1 i = 0 ∨ ¬ (i = 0) h1,Z
1.2 from i = 0
1.2.1 ¬ (i − 1 = 0) ⇒ -E -L(∀-E(h1, h), h1.2)
1.2.2 (i − 1)/(i − 1) = 1 ⇒ -E -L(∀-E(h1, h), 1.2.1)

infer (i/i = 1) ∨ ((i − 1)/(i − 1) = 1) ∨-I -L(1.2.2)
1.3 from ¬ (i = 0)
1.3.1 i/i = 1 ⇒ -E -L(∀-E(h1, h), h1.3)

infer (i/i = 1) ∨ ((i − 1)/(i − 1) = 1) ∨-I -R(1.3.1)
infer (i/i = 1) ∨ ((i − 1)/(i − 1) = 1) ∨-E(1.1, 1.2, 1.3)

infer ∀i :Z · (i/i = 1) ∨ ((i − 1)/(i − 1) = 1) ∀-I (1)

Fig. 8. A proof of (2)

This prompts the question of how a proof of the same property would look in
LPF. The answer is that it would be identical! The proof in Fig. 8 is a completely
correct proof in LPF but the point is that nowhere is it necessary in LPF to
make assumptions about the denotation of terms with zero divisors. It is also
important that LPF maintains basic algebraic properties like the commutativity
of conjunctions and disjunctions etc.

However, definedness does need to be established in some LPF proofs. There
are certain constraints on inference rules in LPF. One issue is that the, so called,
law of the excluded middle: p ∨ ¬ p, does not hold because the disjunction of
two undefined Boolean values is still undefined: thus (0/0 = 1) ∨ ¬ (0/0 = 1) is
not a tautology in LPF. The non-monotone Δ operator in LPF does, however,
give rise to an alternative property which is known as the law of the excluded
fourth: p ∨ ¬ p ∨ ¬Δp, that is, p is true, false or undefined. Futhermore, adding
definedness hypotheses for all terms in some logical expression p is sufficient to
make the validity of p in LPF and in classical logic coincide. One place where
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Δ arises is when one wants to use what is, in classical logic, the unrestricted
deduction theorem, which does not hold in LPF because knowing ⊥B � ⊥B is
not the same as ⊥B ⇒ ⊥B. The use of Δ can provide a sound ⇒ -I rule for
LPF:

⇒ -I
Δp; p � q
p ⇒ q

But, Δ is not used in normal assertions as it is an operator on the meta-level.
To claim definedness in a proof, the related δ operator is often used which is
monotone and is equivalent to the assertion p ∨ ¬ p (thus δ⊥B = ⊥B).

Interestingly, it can be argued that the law of the excluded middle doesn’t
necessarily hold in the EC semantics where the partial division function has
been underspecified! If division by zero yields a non-deterministic result then
7/0 = 0 ∨ ¬ (7/0 = 0) can be false. Since it is difficult in a logic to pin down
a characterisation of “giving the same value within a context”, the temptation
to fix on a result such as 7/0 = 42 becomes rather strong. Giving in to this
temptation, however, leads to questions such as whether 7/0 = 5/0 (see [38]
for further discussion). The law of the excluded middle does hold in the ED

approach.
The approaches that handle partial terms but that allow for the classical logic

operators to still be used can bring about “issues”. For instance, partial functions
no longer denote the obvious least fixed points [10,15] in the approach of making
all terms denote. Furthermore [38] points to an issue for the underspecification
approach if single element types are allowed and [14] and [10] point to another
problem with the underspecification approach in having to specify, in general,
the set of values where any used partial function is specified.

An obvious reservation about using multiple notions of equality is that anyone
reasoning in this way has to observe different properties of the two or more
notions. A strict (computational) notion of equality still needs to be written in
function definitions and a non-strict notion of equality is needed to cope with
partial terms. Note that in the E∃ semantics, existential equality has replaced the
strict equality. If the strict equality was to remain –in addition to the existential
equality– then the E∃ semantics would not be total for every Boolean expression,
as there is still then the issue of partial terms propagating. Furthermore, although
the focus here is on equality, the complications extend to include all of the other
relational operators/predicates. There are also surprises in that, for example,
existential inequality is not the negation of existential equality — they can both
be false. There is an interesting formal connection between what can be proved
in E∃ and EL which is explored in [39].

LPF is a candidate solution to the issue of handling partial terms. An ar-
gument that can be raised against LPF is that a large body of research and
engineering has gone into classical logic which has led to a range of proof sup-
port. It is hoped that the progress reported in [32] on efficient semi-decision
procedures such as resolution and refutation for LPF will lead to its wider use.
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6.2 Further Approaches

A longer discussion of other approaches to handling non-denoting terms can be
found in [12] but it is worth here making a few further points.

McCarthy’s Conditional Operators: The propositional operators are de-
fined by (non-strict) conditional expressions [1], for instance, the conditional
disjunction operator (p cor q) is defined as: if p then true else q. Such a se-
mantics is used in Raise [40, 41].

The conditional disjunction operator case of a semantic function (similar to
what has been defined above for the other approaches) for McCarthy’s approach
EM (that would use Σ in the function signature) would be defined as:

mk -Or(p, q)→ {(σ, true) | (σ, true) ∈ EM (p)} ∪
{(σ, true) | (σ, false) ∈ EM (p)∧(σ, true) ∈ EM (q)}∪
{(σ, false) | (σ, false) ∈ EM (p) ∧ (σ, false) ∈ EM (q)}

The first variable in the conditional expressions is usually referred to as the
“inevitable variable” because, if it is undefined, then the entire expression is
undefined since conditional expressions are strict in their first argument. This
means that disjunction and conjunction are no longer commutative and, ad-
ditionally, quantifiers are problematic with respect to undefined values. Thus,
∃i : {0, 1} · i/i = 1 may not have the same truth value as 1/1 = 1 ∨ 0/0 = 1. So
while, (1) with the conditional implication operator can be proved in McCarthy’s
approach, neither the contrapositive of (1) nor (2) follow for conditionally defined
operators.

The conditional form of the logical operators were used in the early IBM
Vienna operational semantics definitions known as VDL (see [42, §1.1.6.2]). It
was an unpreparedness to tolerate the loss of properties like commutativity of
disjunction and conjunction that drove the first author of the current paper to
experiment with using both the conditional and the classical operators in [43]
(an idea also tried in [44] and [45]). As can be seen from [45], the distribution
laws become problematic.

Avoiding Function Application: Several authors have tried to avoid writing
the expression f (x ) = y and instead write it as (x , y) ∈ f r , where f r is the
relation that is the “graph” of the function f . The key idea is that (x , y) ∈ f r

is false when x /∈ dom f r , for all y. This idea in not analysed in detail here
(see [12,15] for further detail), because the notation becomes rather heavy3 but
it is easy to see how it could be added to the semantics used above.

Restricting the Sets over Which Bounded Variables Range: Another
solution is to restrict quantification to sets that do not contain any values outside

3 Property 2 has to be rewritten as: ∀i :Z · ((i , i), 1) ∈ /r ∨ (((i − 1), (i − 1)), 1) ∈ /r

and rewriting g(f (x)) requires an extra existential quantifier.
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of the actual defined domains of any of the functions used. For example, (1)
could be written as: ∀i : {i | i :Z ∧ i �= 0} · i/i = 1. One could even force partial
functions to become total by encoding the actual defined domain in the domain
type; the application of a function with argument(s) outside of that domain could
be considered to be a type error. Unfortunately, in general, the type structure
becomes both clumsy and undecidable. Refer to [12,14] for further information.

Restricting the Expressions Written: It is possible to view the relation EL

as total by restricting the expressions e to those for which there exists, for all
σ ∈ Σ, a tuple (σ, v) ∈ EL(e). As seen in [19, 46] such well definedness (“WD”)
restrictions can be complicated and expand exponentially in size.

7 Conclusions

This paper provides a semantic model for the most common approaches to cop-
ing with partial terms: LPF; making all terms denote values; and using non-strict
relational operators. The model employs semantic functions which map logical
expressions to relations over interpretations and results — this leads naturally to
the view of non-denoting terms corresponding to “gaps”. Each of the approaches
attempts to catch “undefinedness” in a different place (see Fig. 1) and the se-
mantic models are used to compare and contrast the different approaches. It is
interesting to note that rather simple changes to the semantic models explain
the different possibilities.

Acknowledgements. The authors gratefully acknowledge the funding for their
research from an EPSRC grant for AI4FM and the Platform Grant TrAmS-2
as well as an EPSRC PhD Studentship. The authors also thank the referees for
their feedback which we hope has helped to clarify the explanation in the paper.

References

1. McCarthy, J.: A basis for a mathematical theory for computation. In: Braffort,
P., Hirschberg, D. (eds.) Computer Programming and Formal Systems, pp. 33–70.
North-Holland Publishing Company (1967)

2. Owe, O.: An approach to program reasoning based on a first order logic for par-
tial functions. Technical Report 89, Institute of Informatics, University of Oslo
(February 1985)

3. Owe, O.: Partial logics reconsidered: A conservative approach. Formal Aspects of
Computing 5, 208–223 (1993)

4. Cheng, J.H.: A Logic for Partial Functions. PhD thesis, University of Manchester
(1986)

5. Tennent, R.: A note on undefined expression values in programming logic. Infor-
mation Processing Letters 24(5) (March 1987)

6. Blikle, A.: Three-valued Predicates for Software Specification and Validation.
In: Bloomfield, R., Marshall, L., Jones, R. (eds.) VDM 1988. LNCS, vol. 328,
pp. 243–266. Springer, Heidelberg (1988)



264 C.B. Jones, M.J. Lovert, and L.J. Steggles

7. Konikowska, B., Tarlecki, A., Blikle, A.: A Three-valued Logic for Software Spec-
ification and Validation. In: Bloomfield, R., Marshall, L., Jones, R. (eds.) VDM
1988. LNCS, vol. 328, pp. 218–242. Springer, Heidelberg (1988)

8. Jervis, C.: A Theory of Program Correctness with Three Valued Logic. PhD thesis,
Leeds University (1988)

9. Spivey, J.: Understanding Z—A Specification Language and its Formal Semantics.
Cambridge Tracts in Computer Science, vol. 3. Cambridge University Press (1988)

10. Schieder, B., Broy, M.: Adapting calculational logic to the undefined. The Com-
puter Journal 42 (1999)

11. Jones, C.B.: Systematic Software Development using VDM, 2nd edn. Prentice Hall
International (1990)

12. Cheng, J.H., Jones, C.B.: On the usability of logics which handle partial functions.
In: Morgan, C., Woodcock, J.C.P. (eds.) 3rd Refinement Workshop, pp. 51–69.
Springer (1991)

13. Müller, O., Slind, K.: Treating partiality in a logic of total functions. The Computer
Journal 40(10), 640–652 (1997)

14. Gries, D., Schneider, F.B.: Avoiding the Undefined by Underspecification. In: van
Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 366–373. Springer,
Heidelberg (1995)

15. Jones, C.B.: Reasoning about partial functions in the formal development of pro-
grams. In: Proceedings of AVoCS 2005. Electronic Notes in Theoretical Computer
Science, vol. 145, pp. 3–25. Elsevier (2006)

16. Fitzgerald, J.S.: The Typed Logic of Partial Functions and the Vienna Development
Method. In: Bjørner, D., Henson, M.C. (eds.) Logics of Specification Languages.
EATCS Texts in Theoretical Computer Science, pp. 427–461. Springer (2007)

17. Darvas, Á., Mehta, F., Rudich, A.: Efficient Well-Definedness Checking. In: Ar-
mando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 100–115. Springer, Heidelberg (2008)

18. Woodcock, J., Freitas, L.: Linking VDM and Z. In: 13th IEEE International Con-
ference on Engineering of Complex Computer Systems, pp. 143–152 (April 2008)

19. Schmalz, M.: Term Rewriting in Logics of Partial Functions. In: Qin, S., Qiu, Z.
(eds.) ICFEM 2011. LNCS, vol. 6991, pp. 633–650. Springer, Heidelberg (2011),
doi:10.1007/978-3-642-24559-6-42
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Abstract. Formal methods have been used and successfully applied to
a wide range of industrial applications for many years. However formal
methods can be difficult to comprehend for outsiders and the link of
formal models and external subsystems which are not modelled can be
unclear. In this paper we present an approach which allows formal models
to be more easily shared with external stakeholders and enables integra-
tion with external code. We demonstrate how an existing interpreter
for an executable subset of VDM is extended enabling the combination
of formal models with executable code. This eases the way in which a
formal model can communicate with an external implementation or be
used in graphical prototyping. A small case study is used to demonstrate
how the approach can be utilized. In this paper the technique is used to
combine VDM and Java, but the principles presented can be seen as a
general approach for expanding the capabilities of formal modelling tools
with interpretation capabilities.

1 Introduction

In the development of IT-based systems it is often necessary to communicate
conceptual ideas to stakeholders with very little knowledge of IT. These stake-
holders are typically managers and/or domain experts and generally speaking
they may find it hard to understand the details of artifacts (including formal
models) used inside a software development process. Normally communication
between a development team and such external stakeholders is either carried out
by writing documents or presenting different types of diagrams. However, if it is
possible to demonstrate different kinds of aspects with a prototype, communica-
tion may be enhanced tremendously. Thus, it is helpful if some kind of graphical
user interface is used to drive the input for a formal model. However, to enable
this special tool support is required to combine the interpretation of a formal
model with a graphical user interface.

In the same way it may not be worthwhile to formally model all parts of a
system. This can either be because the formal modelling language is not capable
of expressing certain aspects (e.g. user interfaces) or because legacy code already
exists which may be trusted sufficiently (e.g. existing databases). Thus, for such
components it may be advantageous to provide some capability for enabling
interaction between the parts of the system that are formally modelled and the
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parts of the system that only exist in external code. Just like for the prototyping
purpose, mentioned above, special tool support is required to enable such a
heterogeneous combination of the different parts.

In this paper we give with a constructive solution for solving these challenges,
in an easy fashion, enabling reasonably fast support for communication with
stakeholders who do not understand a formal model at all, as well as for com-
bining a formal model with external code written in a programming language.
Our implementation relies on the Overture open source tool [10], using VDM
as the formal method and Java as the programming language. However, the
ideas presented here can be generalised to other formal methods as well as other
programming languages.

After this introduction this paper provides a brief introduction to VDM in
Section 2. This is followed by Section 3 which explains how the technical solution
is achieved in a fashion that should enable other tool builders to get inspiration
for adding similar capabilities. Section 4 will present a small case study with
a formal VDM model of a traffic infrastructure system with buses in a city,
where traffic planners need to decide upon optimal planning for their customers.
Section 5 provides an overview of related work and finally Section 6 presents
concluding remarks.

2 The Vienna Development Method

The Vienna Development Method (VDM) is one of the longest established
model-oriented formal methods for the development of computer-based sys-
tems and software [3]. The common core is based on the VDM Specification
Language (VDM-SL), standardised by ISO [12], which provides facilities for
the functional specification of sequential systems. The principal extensions of
VDM-SL are VDM++ [4], which adds features for object-oriented modelling
and thread-based concurrency, and VDM-RT for the development of real time
distributed systems [14]. VDM-SL uses a structuring mechanism called modules,
while VDM++ and VDM-RT use classes for encapsulating data and operations.

The type system in VDM has a number of basic types including several kinds
of numeric types, Booleans and special kinds of tokens. More complex types
can be defined using constructors for set, sequence and mapping types. Type
membership and state variables can be restricted by invariant predicates which
means that run-time type checking is required. In VDM referentially transparent
functions and operations that can access persistent state information can both
be defined explicitly as well as implicitly using pre- and post-condition predi-
cates [11]. It is also worth noting that it is possible to let the definition of a
function or operation be deferred to a later time by using the special is not

yet specified key-phrase in the body. This detail is important in the work
presented here. VDM is supported by an industry-strength tool set, VDMTools,
owned and developed further by SCSK Systems [5] and the open source tool
called Overture [10]. These tools offer syntax checking, type checking and proof
obligation generation capabilities, an interpreter with debugging functionality,
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code generators, a pretty printer and links to external tools for UML modelling
to support round-trip engineering. In this paper we focus on an extension of the
interpreter from the Overture tool [11].

3 Combining VDM Interpretation with External Code

Interpretation and debugging of an executable subset of VDM models is sup-
ported by the Overture interpreter called VDMJ. It includes a general debugging
feature and run-time checks for pre-/post-conditions, invariants and dynamic
type checking. The interpreter is Java-based and has its own internal Values
to hold the calculated value of all kinds of types during execution. The poten-
tial and value of VDM models can be improved greatly by a technique in the
interpreter which allows the functionality to be increased beyond the standard
provided by VDM, such that VDM models can be combined with external exe-
cutable code. The interpreter enables (a) VDM to call directly into external code
and conversely (b) Java code to control the VDMJ interpreter and execute VDM
expressions in an executing model. The former method is called the External Call
Interface (ECI), as it enables the interpreter to call external implementations,
and the latter the Remote Control Interface (RCI) as it allows the interpreter to
be controlled remotely. These two methods of integration allow VDM models to
be connected to legacy systems, and either use external libraries or use graphical
prototypes for presentation or interaction with the model. The Overture tool is
bundled with a number of libraries for IO, Math and other useful functional-
ity which are not worthwhile specifying in VDM itself; internally these libraries
actually make use of the ECI.

Fig. 1. Overview of the methods in relation to the specification

Fig. 1 illustrates how the ECI and the RCI can be seen in relation to Java
and the VDM interpreter. The Java JVM underpins the whole system, based
on this the VDM interpreter in the centre acts as the heart of the execution,
while the VDM model rests on top. The executing model is capable of initiating
the ECI which directly calls into Java. Please note that the ECI functionality
is handled within VDMJ, but as it is not, as such, interrelated with the regular
interpretation of the overlying VDM model, it has been separated in the illus-
tration. The RCI initiates the interpreter and enables commands to be passed
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directly to the interpreter from external Java code. Knowledge of the execut-
ing model is necessary in order to use the RCI effectively, therefore the VDM
Remote Control pillar raises from the Java based interpreter level to the VDM
model level in the illustration of Fig. 1.

An important part of using the interfaces is understanding how values of differ-
ent types are passed fromVDM to Java and vice versa. At run-time the interpreter
uses sub-type instances of an abstract Java class called Value to hold the results
of evaluated expressions. The basic typed VDM values, such as: BooleanValue,
CharacterValue and NumericalValue etc., contains fields with equivalent Java
type variables enabling easy conversion to basic Java types. The more complex
typed values such as SetValue, SeqValue, MapValue, RecordValue, TupleValue
are all composite values which have utility methods to extract the contained val-
ues, like the method values() used in SetValue to obtain the values of the set.
The VDM union type is a type that is not present at run-time, since int|set of
int allows either a NumericalValue or a SetValue of NumericalValues to be
returned. This is handled in the interpreter by using the abstract Value class as
return type from all evaluating code. However, to do the same in Java the only
class which allows both an Integer and List<Integer> is Object and therefore
poses a challenge when one needs to convert from the interpreter’s value system
to raw Java types. A value factory is supplied by the remote interpreter to assist
the creation of VDM values from Java code.

The VDM Value hierarchy is provided by a VDMJ specific Java library (specif-
ically in org.overturetool.vdmj.values), which must be included in external
Java libraries that integrate with the Overture interpreter. When integrating
with an existing system this requirement might entail that an intermediate li-
brary is necessary, as a proxy, between the formal model and the existing legacy
implementation.

3.1 The External Call Interface

The ECI allows the VDM model to delegate operation invocations to external
implementations without any changes to the VDM syntax or any configuration
of communication channels. Calling functionality defined in an external Java li-
brary directly from VDM is made possible via the VDM is not yet specified

construct. This construct can be supplied as the body of an operation and nor-
mally implies that the definition of the operation has been deferred to a later
time; it however doubles as a way of marking delegation of the functionality.
The first time an operation with is not yet specified as its body is invoked
the interpreter will attempt to delegate the operation call to an external Java
method. The matching Java delegate method must have the same name and
number of parameters as the VDM operation, and it must reside within a class
with the same name as the VDM class or module. If the VDM operation is
invoked in a model and a corresponding delegate cannot be found in a Java
library a standard run-time error is issued. At run-time the interpreter searches
the standard VDM libraries default directory, a project subdirectory named lib,
for external libraries packaged as jar files. To make a VDM class name match
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a Java class, placed within an Java package, the dots separating each of the
package names have to be replaced with underscores. The interpreter will then
convert the VDM name into a fully qualified Java class name, e.g. a VDM class
named gui Road will match the Java class Road in package gui: (gui.Road) .

To illustrate how the ECI can be used, List. 1.1 and List. 1.2 show a VDM
class with an operation marked as is not yet specified, and the correspond-
ing Java implementation, respectively. Note that a VDM class can contain a
mixture of implicitly and explicitly operations as well as is not yet specified

operations. The example illustrates how an operation in a VDM model is used
for loading additional information about a road from an external data store.

List. 1.1 shows the VDM class containing the RoadInfo record type and the
getRoadInfo operation. This operation has an external implementation which
must return the RoadInfo record type. Since the body is not yet specified is
used, the interpreter knows that it has to search for an external implementation
at run-time.

�

class gui_Road

types

RoadInfo ::

number : RoadNumber

maxWaypoints : nat;

operations

public getRoadInfo : RoadNumber * int ==> RoadInfo

getRoadInfo (num , region) == is not yet specified ;

end gui_Road
�� �

List. 1.1. VDM++ Road class with externally specified operation

�

package gui;

import org.overturetool .vdmj.values.*;

public class Road {

public Value getRoadInfo (Value num , Value region)

throws ValueException {

String roadId= num.toString ();int regionId = region.intValue ();

return

interpreter .getFactory (). createRecord ("RoadInfo ",roadId ,

store.getMaxWaypoints (roadId ,regionId ));}}
�� �

List. 1.2. Road class Java implementation

List. 1.2 shows the Java implementation of the getRoadInfo operation. The
method accepts two arguments of the generic Value type; one for the num and
one for the region. In the method body the two arguments are converted into
Java types, num is converted to a string and the region to an integer, both
used to lookup information through the store object instance. The record type,
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which has to be returned, is created by using the Value factory from the remote
interpreter, (it could also be constructed by passing a string containing the
VDM record creation expression to the interpreter). The factory will make a
RecordValue object, which can then be returned to the model by the Java
method.

3.2 The Remote Control Interface

The RCI enables control of the VDM interpreter from an external Java applica-
tion. This can be utilized to control the execution of a VDM model, for instance
through a graphical user interface (GUI). The RCI consists of two parts; the
RemoteControl Java interface and the RemoteInterpreter Java class. An ex-
ternal Java implementation can interact with the interpreter by implementing
the interface RemoteControl (defined in org.overturetool.vdmj.debug.Remote-
Interpreter) which simply defines a Run method. Once the interpreter is started
with the Remote Control enabled, it will call the Run method and pass an in-
stance of the RemoteInterpreter object, which refers to the loaded VDMmodel.
An implementation of the interface is shown in List. 1.3.

�

public class BuslinesRemote implements RemoteControl {

import org.overturetool .vdmj.debug.RemoteControl ;

...

private RemoteInterpreter interpreter ;

@Override

public void run( RemoteInterpreter intptr) throws Exception {

interpreter = intptr; }

...
�� �

List. 1.3. Implementation of the RemoteControl interface

In the Overture tool the RCI is enabled through the Overture Launch Config-
uration, where the fully qualified name of the Java class implementing the RCI
can be supplied. The default VDM library directory will be searched for the
matching implementation. When initiating the RemoteInterpreter the Over-
ture tool will load the VDM model attached to the Launch Configuration into
the interpreter. The composition of the RCI is shown in the class diagram in
Fig. 2.

The functionality of the RemoteInterpreter can essentially be seen as having
a console-like access directly to the interpreter, where VDM expressions can be
given as strings to the execute and valueExecutemethods. The valueExecute
method will return a VDM Value instance containing the result of the execution,
while the execute method returns a string representation of the result. As the
interpreter maintains the model state between each call to the execute methods,
additional methods are defined for creating variables to hold instantiations and
results during continuous execution, and for stopping the interpreter. Once the
RemoteInterpreter has been passed via the Run method, the external code is
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Fig. 2. The Remote Control Interface composition

in control of the interpretation and it must drive the execution by calling into
the VDM model. While the RemoteInterpreter is in control it performs all
of the run-time checks on pre/post-conditions, invariants, run-time type check-
ing. Additionally the Overture tool debugger is still fully functional, meaning
breakpoints can be used in debug mode. In the interpreter internals the main
execution loop has been changed so that the control of the execution is delegated
to the external code when the RCI is used.

�

public void init () throws ValueException {

interpreter .create("w","new World()");

Value ret = interpreter .execute("w. RunVDMModel ()");

if(!ret.boolValue ()){

System.err.println("World initialization failed"); }}
�� �

List. 1.4. Example of usage of the RemoteInterpreter interface

List. 1.4 shows a call to the remote interpreter interpreter where an in-
stance of the class World is created, placed in the variable w, and the operation
RunVDMModel is executed. The return value from Run is declared in the model to
be a boolean type which is checked following the execution.

The VDM interpreter controls and executes VDM threads through a sched-
uler that controls the underlying Java threads. Each VDM thread is associated
with a Java thread to perform VDM executions and run debug sessions. The
scheduler controls the Java threads by the use of Java synchronization and VDM
thread identifiers associated with the Java threads. This poses a challenge for the
RemoteInterpreter since it will be used by threads unknown to the scheduler
and thus not associated with any VDM thread. To handle this all calls through
the RemoteInterpreter are handed to a VDM thread used specifically for ex-
ecuting remote commands. When a command is executed the calling thread is
blocked until the VDM thread has executed the command. The result is then
returned to the calling thread or, if the remote command results in an execution
exception, the exception is then re-thrown in the calling thread, allowing the
external code to react to it.
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4 Case Study

To illustrate how the presented techniques can be used in a formal model, a case
study of a simple traffic infrastructure system is used. The model is created for
a group of traffic planners who are attempting to analyse the optimal planning
of bus routes within a city. The various infrastructure maps of the city roads
and current bus routes are already stored in an operational database and the
traffic planners wish to use this existing data as input to the formal model of
their infrastructure. The planners have no knowledge of formal modelling, but
they want to be capable of changing the configuration of the model and to get
a clear understanding of how their changes affect the city infrastructure. The
model of the system describes an infrastructure with bus stops and connected
roads, along which buses move to service the bus stops. The system has a con-
stant inflow of new passengers which will board buses that are destined for their
particular bus stops. The purpose of the model is to determine the efficiency of
the transportation system by measuring the time passengers have to wait before
they can be transported to their desired destination. These measurements will
depend on the number and capacity of buses, the route of the buses and the
inflow of new passengers, all of which can be adjusted in the model. At any time
during execution new buses can be added and the inflow of passengers can be
varied.

The requirement and abstractions of the system can be summed up as:

– Passengers arrive at a steady inflow rate at a central station, their destination
is randomly chosen,

– a bus route is defined by roads, and the bus will stop at all stops it passes.
– roads are connected by waypoints, of which some are bus stops
– the roads in a bus route must be connected end to end,
– buses always drive in circles. i.e. the start and the stop of a route must be

the same.

An executable VDM++ model has been created which describes the system and
ensures that the modelled system conforms to the system requirements above.
The relations of roads and the validity of bus routes are checked to confirm that
the defined roads line up and that it is possible for the bus to follow the route.
During execution the model keeps track of passengers that get annoyed with
waiting, based on time passed; of the movements made by buses and passengers;
and that passengers get on the right bus and off at the right stop.

To make the model more comprehensible and interactive a graphical represen-
tation has been created in Java that displays a choice between different maps,
of which one can be selected and the movement of buses and passengers can be
animated based on the executing model. Fig. 3 shows a screen-shot of a running
animation, where a selected map is displayed with the buses indicated by squares
on the roads and the waiting passengers as the circles to the right. The graphical
representation is purely an overlay on top of the model, everything is continually
checked and validated by the executing VDM model, from bus movements to the
passenger count.
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Fig. 3. Screenshot of the models graphical representation

The case study uses both the ECI and the RCI, such that both the VDM++
model and Java implementation can affect each other. During simulation the
VDMmodel can notify the GUI of data changes which could affect the animation,
and a user can load maps from the database into the model by using the GUI
as well as adjusting the passenger inflow in the model. The ECI is used by the
model to update the graphical representation each time there is a visible change
in the executing model, e.g. buses moving or passenger arriving.

List. 1.5 contains selected operations from the interface Graphics, which is
the ECI defined between the VDM model and the Java implementation used
in the case study. The move operation is used for synchronization between the
model and the animation, and will be discussed in further detail below, while
the busPassengerCountChanged operation is used to updated the number of
passengers on a specific bus; a count which is displayed in the GUI beside each
bus.

�

class gui_Graphics

operations

public move : () ==> ()

move () == is not yet specified ;

public busPassengerCountChanged : nat * nat ==> ()

busPassengerCountChanged(busid ,count)== is not yet specified ;

...

end gui_Graphics
�� �

List. 1.5. Specification of the External Call Interface in the case study

List. 1.6 contains the Java implementation of busPassengerCountChanged

operation, showing how simple changes in the VDM model can be transferred
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to the Java implementation. In this code segment the model variable is part of
the Model-View-Control pattern [13] used for the GUI implementation.

�

public Value busPassengerCountChanged(Value busid ,Value count)

throws ValueException {

long id = busid.intValue (); long count = count.intValue ());

model. busPassengerCountChanged(id, count);

return new VoidValue ();}
�� �

List. 1.6. Java implementation of the busPassengerCountChanged operation in the
case study

The RCI is used for adding waypoints, bus stops, roads and buses to the
model, as well as for starting the simulation and increasing/decreasing the flow-
rate of new passengers.

To emulate the infrastructure database the Java implementation uses JDBC
to connect to a local database1 that contains the existing maps and bus routes.
Each of these maps can be loaded and graphically rendered prior to starting the
simulation. The maps’ conformity to the model rules, such as the connectivity
and layout of roads, is checked by passing the data to VDM model via the RCI.
If any invalid data that does not conform to the rules mentioned above is added
to the model a run-time error is issued by the interpreter. All data used by both
the VDM model and the graphics, such as the relations between waypoints, is
stored in Java entity objects before being passed to the VDM model.

For example List. 1.7 shows how a road is added to the VDM model by calling
an operation through the remote controlled interpreter. A string is built contain-
ing the operation and its parameters written in VDM syntax. The Waypoint class
is an entity object with an overridden toString() method that outputs the data
in VDM syntax.

�

public void AddRoad(Waypoint wp1 , Waypoint wp2 , String road ,

int length) {

String cmd = "w.addRoad (" + wp1 + "," + wp2 + "," + road +

"," + length + ")";

interpreter .valueExecute (cmd);}
�� �

List. 1.7. Adding a road section to the VDM model using the remote controlled
interpreter

The sequence diagram in Fig. 4 shows the communication and interfacing
between the model and the graphical implementation. The simulation of the se-
lected map is started by a click on the GUI, which starts the model by a call
through the Remote-Interpreter. When the Start operation is called in the
VDM model a clock is started in order to keep track of time. Once one time

1 Using the H2 Database Engine, see http://www.h2database.com

http://www.h2database.com
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step has passed, the VDM model calls the Move operation on the Graphics

class which allows GUI to be updated. Following the graphical update, the
RemoteInterpreter is used once again by the GUI to inform the VDM model
that the next time step can be taken. This scenario continues until the simu-
lation has completed. This advance in time, and toggling between invoking the
Move method and TimeStep operation is used to ensure synchronization between
the VDM model and the Java visualisation.

Fig. 4. Communication between model and external code via interfaces

What cannot be seen on the illustration in Fig. 4 is that, upon a time step,
the data that the graphical representation is based on is updated by the VDM
model through operations defined in the Graphics class. When a time step is
taken and time progresses in the model, all the representations of buses and
passengers move as well, meaning their data changes. The ECI allows the VDM
model to notify the GUI of these changes.

5 Related Work

Frohlich [6] reports work on enabling VDMTools to execute combined specifi-
cations consisting of both specification and externally specified C++ code from
Dynamic Link Libraries (DLLs). New syntax is introduced that defines a new im-
plementation module type in which an export section can define the function sig-
natures for external functions, and a uselib keyword refers to external libraries.
Type conversion functions are used to transform the value types, used by the in-
terpreter, to the values type of the C++ code, and vice versa. Our work is based
on this approach, with a similar dynamic semantics but no need to change the
VDM syntax. Similarly checks on invariants and pre-/post-conditions together
with exceptions, including the interpreter handling external code exceptions, is
supported; these are limitations of the work by Frohlich et al [6]. This approach
enables a model to be combined with externally specified components while the
interpreter itself stays in control during the execution. While this is good for



Combining VDM with Executable Code 277

accessing external code, it is not sufficient for interacting with the model, as
needed by an interactive GUI. Previous work has been carried out in this area
for VDMTools, where interaction with the model is enabled by a CORBA inter-
face [8]. The interface allows a CORBA client to communicate directly with the
VDMTools interpreter and pass VDM expressions to be evaluated. This allows
external code to interact with a running model. For type conversion between
the VDM interpreter and the external code a CORBA IDL is defined which de-
scribes the different VDM values, and the CORBA Narrow functionality is used
for the conversion. Using CORBA enables software components written in multi-
ple computer languages and running on multiple computers to interact with the
VDM model. However the broad heterogeneity comes at the price of increased
complexity compared to a plain Java integration, as the CORBA clients can be
troublesome to implement.

Comms/CPN [7] is a Standard ML library for the Coloured Petri tool package
Design/CPN, which enables communication between CPN models and external
processes. The Comms/CPN library enables two-way communication between
the CPN model and the external process using TCP/IP, by defining generic send
and receive-functions which accept a byte stream of data. Encoding/decoding
functions has to be implemented to marshal data for transmission. Comms/CPN
has the advantage of using TCP/IP which allows heterogeneous clients to inter-
act with the simulator, while the send/receive approach has the weakness of
potentially blocking the simulator while waiting for data transmission and it
requires the external process to implement some conveying and mapping of the
received data into concrete functionality e.g. an update of a graphical animation.

The successor of Design/CPN; CPN Tools, has a similar functionality called
Access/CPN [15] which enables the integration of CPN models with external
applications. Access/CPN has a Java interface offering an implementation of
the protocol used to communicate with the CPN simulator. Communication is
done via a TCP/IP stream using a custom packet format which marshals simple
data types and all communication can be wrapped in a high-level simulator
object, which contains methods for evaluating expressions and processing models
directly in the simulator. The presented RCI resembles this approach, while
it differs on the use of external Java libraries and class loaders for integration
instead of TCP/IP, where the latter requires some lower-level configuration with
address and ports.

In Event-B the tool B-Motion Studio [9] makes it possible to create visualisa-
tions via an visual editor and establish a link from it to the model using Event-B
expressions as gluing code. The tool’s key feature is that it allows for simpler
and faster creation of graphical representations without requiring knowledge of
graphical programming. Its focus on easy construction of visualisation comes
at the price of flexibility, as users who might want to do advanced features, in
particular parts of the visualisation, will lack the versatility provided by access
to lower-lever graphical programming. To our knowledge there is no possibility
of interacting with the model or visualisation through external executable code.
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6 Conclusion and Future Work

We have presented an approach for combining executable formal models with
external executable code to enable graphical prototyping of models and for eas-
ier integration between models and existing implementations. The aim of our
approach is twofold, the first objective is to advance the understanding of mod-
els by enabling the creation of graphical representations on top of the model.
The functionality and meaning of the model can then be easily conveyed to
stakeholders with limited knowledge of formal models through the use of ani-
mation and interaction. The second objective is to enable formal models to be
integrated with external executable code, such as external libraries or systems.
The presented approach enables the model to integrate with external libraries
which often have well-defined behaviour and therefore falls outside the modelling
effort.

Enabling formal models to use externally specified components, within the
context of VDM research, has previously been presented in work by Frohlich
et al. [6]. The ECI builds on this but has the added advantage of the inte-
gration process being significantly simplified as there is no need to learn new
syntax, wrestle C++ DLLs or implement CORBA clients. Seen from inside the
VDM model the approach does not require any new syntax or constructs as
everything relies on invoking operations. Only minor changes to the semantics
of is not yet specified body is needed to allow the delegation to external
libraries. This has been made possible while still keeping the run-time checks for
pre/post-conditions & invariants, run-time type checking and debugging. Just as
important the presented RCI allows external software to control the interpreter
and execute statements in a running model, thereby allowing e.g. interactive
GUIs to affect the model.

Our example has shown how the two presented methods can be used to create
an easy understandable interactive graphical representation of the modelled sys-
tem via Java GUI libraries, and how the model configuration can be built from
data stored in a database. The ECI was used to update the graphical represen-
tation with changes in the model, in order to produce the animations, and to
synchronize the time between the model and the animation. The RCI allowed
the Java application to load different routes, start the animation and change the
inflow through button presses on the GUI. It also enabled passing of data, from
the database to the model, for validation of road connections and bus routes, as
well as time synchronization. The Java side requires a bit more implementation
effort, depending on the task to be performed. Simple invocation of Java meth-
ods is easily reached, but creating intermediate proxies to a running system or
creating animated graphics might require more Java expertise. In order to pro-
vide better graphical prototyping capabilities an area of future development is
in improving the tool support for graphical representations. As the presented
approach requires a fair amount of Java programming to create the graphics
and glue code, it would be interesting to utilize the possibilities of the approach
to create visualisations easier, such as is seen in B-Motion Studio. Generation of
specific visualisations as shown in the case study might be difficult to archive,
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but generated GUI implementations which allow for input and output values to
specific operations in a model, could be used for simpler interactions.

We believe that the approach described in this paper can be used as inspiration
for tool builders of other formal methods that have implemented interpreters for
executable subsets [1,2], as the principles are not specific to VDM.
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Abstract. The Test Template Framework (TTF) is a method for model-
based testing (MBT) from Z specifications. Although the TTF covers
many features of the Z notation, it does not explain how to deal with
axiomatic descriptions, quantifiers and set comprehensions. In this pa-
per we extend the TTF so it can process specifications including these
features. The techniques presented here may be useful for other MBT
methods for the Z notation or for other notations such as Alloy and B,
since they use similar mathematical theories.

1 Introduction

The Test Template Framework (TTF) is a model-based testing (MBT) method
[1, 2], used mainly for unit testing. MBT is a well-known technique aimed at
testing software systems by analysing a formal model [3, 4]. MBT approaches
start with a formal model or specification of the software, from which test cases
are generated. These techniques have been developed and applied to models
written in different formal notations such as Z [1], finite state machines and
their extensions [5], B [6], algebraic specifications [7], and so on. The funda-
mental hypothesis behind MBT is that, as a program is correct if it satisfies its
specification, then the specification is an excellent source of test cases.

Our group was the first in providing tool support for the TTF by implementing
Fastest [8–10], and in extending the TTF beyond test case generation [11, 12].
Furthermore, we have applied Fastest and the TTF to several industrial-strength
case studies [8, 13, 14]. The tool greatly automates tactic application, testing
tree generation, testing tree simplification, and test case generation.

In 2008 we wrote a Z specification [14] of a significant portion of the ECSS-E-
70-41A aerospace standard [15]. This is a medium-sized specification comprising
74 pages and more than 2,000 lines of Z. It is the largest Z specification we
have written so far to test and validate Fastest. As a matter of comparison,
the Tokeneer specification has only 46 lines more, while it is recognized as a
full-fledged, industrial-strength formal specification [16]. The ECSS-E-70-41A
formal specification comprises the minimum capability sets of 6 of the 16 services
described in the standard. The model includes 25 state variables with 16 of
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a relational type, of which 6 are higher-order functions and 3 are defined by
referencing schema types. It also contains 28 axiomatic descriptions, some of
which define operators whose domain are higher-order functions and schema
types. To complicate things even more, this specification defines a number of
set comprehensions and lambda expressions that influence critical outputs—for
example, the report of housekeeping data of a satellite sent to ground upon
request. Finally, some operations include quantified formulas.

Axiomatic descriptions, quantified formulas and set comprehensions were not
considered in the original presentation of the TTF nor in Fastest. In this paper,
we propose some techniques within the philosophy of the TTF and preserving
a good deal of automation that extend the TTF so it can process specifications
including these features. Currently, Fastest provides limited tool support for
some classes of axiomatic descriptions—those referred as classes C, S and O in
Sect. 3—and it implements testing tactics for quantified formulas—those referred
as WEQ, SEQ and CARD in Sect. 4. Therefore, so far, we have only been able
to manually apply the techniques presented in this paper to the ECSS-E-70-41A
formal specification—and automatically to some toy examples. Given that these
techniques are aligned with the TTF, their full implementation will preserve the
degree of automation currently featured by Fastest.

The paper is structured as follows. Section 2 describes the motivations for ex-
tending the TTF. The solution we propose for axiomatic descriptions is based on
classifying them according to their intended meaning. Hence, in Sect. 3 we present
a taxonomy of axiomatic descriptions and how each category should be processed.
Section 4 focuses on the problem posed by quantifications, and Sect. 5 on set com-
prehensions and lambda expressions. Finally, in Sect. 6 we present our concluding
remarks.

2 Some Extensions to the Test Template Framework

The TTF and Fastest have been thoroughly presented in many papers [2, 1, 8, 9].
In this section we focus on some difficulties appearing in the TTF when the Z
specification being analysed includes axiomatic descriptions, quantifications or
set comprehensions. Here we treat the TTF and Fastest as synonyms.

Given a Z specification, users have to select those operation schemas for which
they want to generate test cases. As with other MBT methods, the TTF first
generates test cases at the specification level, that are later refined to test the
implementation corresponding to that specification [12]. In this paper we work
only at the specification level. For each selected schema users indicate a set of
testing tactics to be applied to it. The first testing tactic partitions the input
space of the operation into a set of test specifications—i.e. test conditions or
test objectives [3]. The second testing tactic partitions one or more of these test
specifications, into more test specifications. The other testing tactics continue
with this process. The net effect is a progressive partition of the input space of
the operation into test specifications that are more restrictive than the previous
ones. A test case is a witnesses satisfying the predicate of a leaf test specification.
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Test specifications are Z schemas like the following one:

VerifyCmdSP
4 == [VerifyCmdDNF

1 |
cmd? ∈ checksum ∧ proc1 �= ∅ ∧ proc2 �= ∅ ∧ proc1 ∩ proc2 = ∅]

whereVerifyCmd is the name of an operation selected by the user;VerifyCmdDNF
1

is the test specification that was partitioned by applying the Standard Partitions
(SP) testing tactic; cmd?, proc1 and proc2 are input and state variables declared
in VerifyCmd ; and checksum is the following axiomatic description:

checksum : PFRAME

where FRAME is a given type.
Fastest generates all the test specifications automatically once users have indi-

cated what testing tactics they want to apply to operations. Since testing tactic
application means, essentially, conjoining predicates, it is not unusual to find
unsatisfiable test specifications. These test specifications must be eliminated [9].
For the remaining ones, at least one test case must be generated. A test case
for a given test specification is a Z schema restricting all the free variables to
take one and only one value. In any MBT method, this process is intended to
be as automatic as possible as hundreds of test specifications may be generated
for a single specification. Fastest implements a sort of satisfiability algorithm
for a significant portion of the Z Mathematical Toolkit (ZMT), that, according
to our experiments, in average finds test cases for 80% of the satisfiable test
specifications [8].

2.1 Axiomatic Descriptions

At this point some questions arise. Given that the satisfiability of VerifyCmdSP
4

depends on the value of checksum, when should the algorithm to eliminate un-
satisfiable test specifications be run? Is it reasonable for Fastest to automatically
bind any value to checksum? What if users want an implementation for a par-
ticular value for it? Would Fastest generate test cases for that implementation
or for any of its family [17, pages 36–38 and 143]? Currently, test cases are
generated independently for each test specification—i.e. Fastest asks for an in-
stantiation for each and every test specification. Can it be still done in this way
in the presence of axiomatic descriptions like checksum? Clearly, two test cases
cannot bind different values to checksum because they would belong to different
members of the family of specifications. What if the specification includes an
axiomatic description like the following one?

root : USER

Is root intended to be a constant or a variable? And, what if the specification
includes the next one?

sum : seqZ→ Z

sum〈〉 = 0

∀ s : seqZ; n : Z | s �= 〈〉 • sum(s � 〈n〉) = n + sum s
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Should a value be generated for sum? Or should it be treated entirely different
from checksum and root? Should it be treated as an operation and, thus, test
cases have to be generated?

As it can be seen, the inclusion of axiomatic descriptions poses a number of
issues to be discussed in order to faithfully extend the TTF.

2.2 Quantified Formulas

Let us turn our attention to quantifications. Z provides a number of operators
in the ZMT to avoid explicitly writing quantified formulas. For instance, it is
convenient to replace (∀ x : dom f • f x �= 0) by 0 /∈ ran f , and (∀ x : dom f | x ∈
A • f x �= 0) by 0 /∈ f (| A |). Both implicit and explicit quantifications usually
lead to loops in the implementation. So it is worth to generate test cases to test
these loops by analysing these formulas. In the TTF, mathematical operators
are analysed by the Standard Partition (SP) testing tactic. That is, a standard
partition can be bound to, say, the (| |) operator such that it will generate
test specifications asking for different values of both arguments. For instance, a
possible standard partition for f (| A |) can be: f = ∅ ∧ A = ∅; f �= ∅ ∧ A = ∅;
f = ∅ ∧ A �= ∅; f �= ∅ ∧ A �= ∅ ∧ dom f ∩ A = ∅; and so forth. In other
words, each of these partitions will exercise the potential loop implementing the
operator in different ways. We would like to follow a similar approach for explicit
quantified formulas. That is, we would like to have one or more testing tactics
associated to quantifications that would yield test specifications that, in turn,
would exercise the corresponding potential loop in different ways. For example, a
quantification appearing in the ECSS-E-70-41A formalization is the following1:

∀ i : dom sa? •
sa? i + len? i ≤ sizes m? ∧ cs? i = check(dt? i) ∧ len? i ≤ #(dt? i)

where sa? is of type seqN, and check is an axiomatic description. Therefore, it
would be desirable to generate test specifications that would test the implemen-
tation with sa?’s of different lengths.

Quantified formulas over potentially infinite sets pose a problem for any sat-
isfiability algorithm. Hence, the approach we followed is to generate at least
some test specifications where the potentially infinite set is replaced by one or
more finite ones. In doing so the quantified formula is equivalent to either an
unquantified conjunction or disjunction. But this brings in another issue. The
first testing tactic applied by Fastest is Disjunctive Normal Form (DNF) [8]. All
the other testing tactics in Fastest conjoin more atomic predicates to a given
test specification. Hence, at the end, all test specifications are conjunctions of
atomic predicates. Some key algorithms of Fastest rely on all test specifications
having that property. Therefore, if we define testing tactics to deal with quanti-
fied formulas, they should also write the resulting predicates in DNF.

1 Some of the names used in the formalization of the ECSS-E-70-41A standard have
been changed with respect to the original specification due to space restrictions.
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2.3 Set Comprehensions and Lambda Expressions

In the ECSS-E-70-41A formalization we heavily used complex set comprehen-
sions and lambda expressions. For instance, we have the following schema:

PeriodicSampOnce
ΞHousekeeping; ΞTime
sOP : SID 	→ PGMODE 	→ PNAME 	→ PVAL
rS : P SID
pSO : SID 	→ PNAME 	→ PVAL

rS = {s : hES | (hRD s).m = p ∧ t = hCCI s + (hRD s).ci ∗ dMI }
pSO = (λ s : rS • (λ p : dom(hRD s).ns | (hRD s).ns p = 1 • hSV s p t))
sOP = (λ s : rS • (λm : {pm} • pSO s))

which is the simplest one in an operation defined by five others schemas like
PeriodicSampOnce. Note that rS and pSO are referenced in the definition of
sOP . sOP is later assembled with other similar variables declared in the other
schemas to produce a single output for the operation. Therefore, the definition
of the operation in which this schema participates is, essentially, an extremely
complex lambda expression that is bound to an output variable. In summary, the
operation has a trivial logical structure, while all its complexity lies inside the
lambda expressions and set comprehensions. None of the testing tactics defined
in the TTF would produce the desired results since none of them is prepared to
work with bound variables. Furthermore, the implementation of these complex
expressions will likely be very complex too, thus making it imperative to test it
thoroughly.

Therefore, we need one or more testing tactics that generate significant test
specifications for this kind of expressions. The approach we followed is to propa-
gate the complexity inside the expressions to the outside, and then apply existing
testing tactics. For example, if we have {x : X | P(x ) ∨ Q(x ) • expr(x )}, it can
be rewritten as {x : X | P(x ) • expr(x )} ∪ {x : X | Q(x ) • expr(x )}, making it
possible to apply SP to ∪.

3 A Taxonomy of Axiomatic Descriptions

In Z, axiomatic descriptions can serve many purposes [17, page 143]. For ex-
ample, an axiomatic description can be used just to give a name to an integer
constant, or it can be used to define a function summing all the components of
a sequence of integers. As we have said in Sect. 2.1, in our opinion not all the
axiomatic descriptions can be treated in the same way with respect to the TTF.
Therefore, we consider that a key step towards their inclusion in the TTF is to
define a taxonomy for axiomatic descriptions based on their syntax—aiming at
capturing their intended use and semantics. In a second step we define how each
category will be processed in the TTF. The ultimate goal is making test case
generation as automatic as possible in the presence of axiomatic descriptions.
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3.1 Given Type Constants (C)
If T is a given or basic type and we have:

x : T

then x is said to be a constant of type T . An example is root (Sect. 2.1).
Axiomatic descriptions of this kind are regarded as constants of their corre-

sponding types. Therefore, they will be used as values for variables appearing
in test specifications. Two members of C of the same type will be considered
as different constants. For example, if admin is an axiomatic description of
type USER, then admin �= root holds. However, at the same time, if an op-
eration declares usr? : USER, testers can generate test specifications asking for
usr? = root , usr? = admin and usr? /∈ {root , admin}. For C no user action is
required.

3.2 Synonyms (S)

A synonym is any axiomatic description matching any of the following:

x : T

x = expr

x : T

∀ y : U • x (y) = expr(y)

where T and U are any types and expr is any expression. x may depend on
some y only if T is a structured type, in which case U is part of T ’s definition.
expr may depend on y and, possibly, on other axiomatic descriptions. We call
expr the definition of x . An example of this kind is the following one taken from
the ECSS-E-70-41A formalization:

lastRepVal : (TIME 	→ PVAL)→ PVAL→ N→ seqPVAL

∀ h : TIME 	→ PVAL; v : PVAL; r : N •
lastRepVal h v r = ((#h − r + 2 . .#h) � squash h)� 〈v〉

Axiomatic descriptions in this category can be treated in two ways:

1. Simply replace the axiomatic descriptions by their definitions when they
appear in test specifications. If x is of the quantified form, replace it by its
definition substituting its formal parameter by the real one. No user action
is needed for S, in this case.

2. Users may want to generate test cases for expr as if it were an operation.
However, this is not always applicable. For example, it makes sense to do it
with lastRepVal but it makes no sense with the following one:

administrators : PUSER

administrators = {root , admin}
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In general, this decision must be left to users; Fastest should do as in 1
by default. If the user decides to generate test cases for x , then he/she
can use any of the available testing tactics. However, when these axiomatic
descriptions appear in a test specification they have to be processed as in 1.

3.3 Equivalences (E)
An equivalence is any axiomatic description matching the following:

x : T

∀ y : U • P(x , y)⇔ Q(y)

where T and U are any types and P and Q are predicates. Q may depend also
on other axiomatic descriptions. We say Q is the definition of x . falied is an
instance of this category borrowed from the ECSS-E-70-41A formalization:

failed : P((TIME 	→ PVAL)× PVAL× CheckDef )

∀ h : TIME 	→ PVAL; v : PVAL; d : CheckDef •
(h, v , d) ∈ failed ⇔ avrDelta(lastRepVal h v d .rep) < d .low

This class is treated as S, only considering that Q is the definition of x .
Note that if we would have defined failed as a set comprehension, then it

would have fallen in S thus replacing failed for its definition in test specifications.
Hence, later, the testing tactics defined in Sect. 5 can be applied. In either way,
the expression can be properly treated.

3.4 Inductive Definitions (ID)

We say that an axiomatic description is an inductive definition if it has the
following form:

x : T

∀ y1 : U1 • x (E1(y1)) = expr1
. . . . . . . . .
∀ yn : Un • x (En(yn)) = exprn

where T , U1, . . . ,Un are types for which an induction principle is defined—i.e.
free types, N, seqX [17, pages 83, 114 and 123], and finite sets [18, page 59]—,
E1, . . . ,En are n structurally different expressions of the same inductive type
W , and expr1, . . . , exprn are expressions. Any of the quantifiers might be absent
in which case the corresponding E expression will be constant. It is assumed
that there are no mutually recursive definitions and no definition is infinitely
recursive. An element in ID is sum in Sect. 2.1.

As with S, elements in this category can be processed in the same two ways.
The difference being that a symbolic evaluation of these axiomatic descriptions
is performed when test cases are generated.
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3.5 All Other Axiomatic Descriptions (O)

Any axiomatic description not falling within any of the previous categories,
belongs to this category. For instance, checksum in Sect. 2. An element in this
category can be processed in two ways:

1. Users can provide a constant value for it. This value will be used to gener-
ate test cases for all the test specification where the axiomatic description
appears. The value must help satisfy the predicate part of all axiomatic
descriptions in which it appears.

2. Alternatively, Fastest can choose any value for it. Although this way of treat-
ing these axiomatic descriptions may increase the degree of automation, it
can severely complicate the generation of test cases because some test spec-
ifications may become unsatisfiable, when they may not for other values.
Furthermore, without any further information Fastest may choose an odd
value with respect to the implementation that is going to be tested.

4 Testing Tactics for Quantifications

As we have said in Sect. 2.2, we have decided to approach the generation of
test cases when quantifications are used in operations, by defining some testing
tactics specially tailored to deal with such predicates. So far, the TTF had
treated quantifications as atomic predicates making it very difficult, or even
impossible, to generate test cases to exercise the corresponding implementation
sentences—usually loops. Hence, in the following sections we introduce these new
testing tactics for quantified formulas. These testing tactics can be applied only
when: (i) the quantified formula includes predicates depending only on input or
before-state variables, and (ii) the sets over which the bound variables ranges,
depend on the same kind of variables. These restrictions are reasonable since
the whole goal of the TTF is to produce a partition of the input space of the
operation, which is defined by all the input and before-state variables.

4.1 Weak Existential Quantifier (WEQ)

Conceptually, this testing tactic transforms a quantification over a potentially
infinite set into a quantification over a user-provided set extension. Since an ex-
istential quantification over a finite set is equivalent to a disjunction, then WEQ
first transforms the existential quantification into a disjunction. Then it writes
the disjunction into DNF and finally it generates as many test specifications as
terms the DNF has plus one more characterized by the negation of the other
predicates. Hence, in order to apply WEQ the user has to indicate the quanti-
fied predicate and a set extension for each bound variable—or a set extension
for each type of the bound variables.

The example depicted in Fig. 1 helps to understand how WEQ works. Assume
M : PN and H : seqZ are two input or before-state variables. WEQ1 and WEQ2

say that a test case must be generated when x = 4 and y = 〈4〉; WEQ3 and
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Original predicate ∃ x : M ; y : H • x > w ∧ (y �= 〈〉 ⇒ head y > x)

User-provided set extensions x ← {4, 6}, y ← {〈4〉}
First transformation

(4 > w ∧ (〈4〉 �= 〈〉 ⇒ head 〈4〉 > 4))
∨ (6 > w ∧ (〈4〉 �= 〈〉 ⇒ head 〈4〉 > 6))

Second transformation (DNF)

4 > w ∧ ¬ 〈4〉 �= 〈〉
∨ 4 > w ∧ head 〈4〉 > 4
∨ 6 > w ∧ ¬ 〈4〉 �= 〈〉
∨ 6 > w ∧ head 〈4〉 > 6

New test specifications

WEQ1 → 4 > w ∧ 〈4〉 = 〈〉
WEQ2 → 4 > w ∧ head 〈4〉 > 4

WEQ3 → 6 > w ∧ 〈4〉 = 〈〉
WEQ4 → 6 > w ∧ head 〈4〉 > 6

WEQ5 → (∃ x : M ; y : H | x /∈ {4, 6} ∧ y /∈ {〈4〉} •
x > w ∧ (y �= 〈〉 ⇒ head y > x))

Fig. 1. Generating test specifications by applying WEQ

WEQ4 say the same but with x = 6; and WEQ5 says there may be other test
cases to derive from the formula. Note that WEQ1 and WEQ3 will not produce
abstract test cases since they are unsatisfiable. Also note that, in general, no
satisfiability algorithm will be able to automatically generate an abstract test
case for all test specifications likeWEQ5, due to the presence of the quantification
over potentially infinite sets.

Likely, an existential quantification will be implemented as an iteration state-
ment that will be abandoned when the first value satisfying its condition is found.
Therefore, it is important to test this statement by making it execute zero, one
or more iterations. Furthermore, it is important to test the inner clause with dif-
ferent values. WEQ allows all of this by letting users restrict the quantification
over a suitable, finite set.

It should be noted that this tactic might not produce a partition of the test
specifications—if this is unacceptable, then see the next section.

4.2 Strong Existential Quantifier (SEQ)

This tactic is a stronger form of WEQ since it always generates a partition of
the test specifications where it is applied. SEQ conjoins the following predicate
to the i th test specification produced by WEQ, except the last one:

¬ (∃ x1 : T1, . . . , xn : Tn | x1 �= v1
i ∧ · · · ∧ xn �= vn

i • P(x1, . . . , xn , x ))

where x1 : T1, . . . , xn : Tn are the quantified variables and their types, v1
i , . . . , v

n
i

are the values making up the i th combination of values taken from the set ex-
tensions provided by the user for each quantified variable, and P is the quantified
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predicate. For instance, in the example shown in Fig. 1, SEQ would generate the
following test specifications:

SEQ1 → 4 > w ∧ 〈4〉 = 〈〉
∧ ¬ (∃ x : M ; y : H | x �= 4 ∧ y �= 〈4〉 • x > w ∧ y �= 〈〉 ⇒ head y > x )

SEQ2 → 4 > w ∧ head 〈4〉 > 4

∧ ¬ (∃ x : M ; y : H | x �= 4 ∧ y �= 〈4〉 • x > w ∧ y �= 〈〉 ⇒ head y > x )

SEQ3 → 6 > w ∧ 〈4〉 = 〈〉
∧ ¬ (∃ x : M ; y : H | x �= 6 ∧ y �= 〈4〉 • x > w ∧ y �= 〈〉 ⇒ head y > x )

SEQ4 → 6 > w ∧ head 〈4〉 > 6

∧ ¬ (∃ x : M ; y : H | x �= 6 ∧ y �= 〈4〉 • x > w ∧ y �= 〈〉 ⇒ head y > x )

SEQ5 → (∃ x : M ; y : H |
x /∈ {4, 6} ∧ y /∈ {〈4〉} • x > w ∧ y �= 〈〉 ⇒ head y > x )

However, in general, no satisfiability method will be able to automatically gen-
erate abstract test cases for any of these test specifications due to the presence
of the quantification over an infinite set. Therefore, in spite of WEQ not pro-
ducing a partition, and thus potentially generating the same test case more than
once, it will allow a satisfiability algorithm to find at least some test cases some
times. However, SEQ is still valuable since users may provide, manually, test
cases satisfying these test specifications, if WEQ is too weak for their needs.

4.3 Universal Quantifications

In order to produce a partition of a universal quantification, we propose a testing
tactic, called CARD, that considers different cardinalities for the sets over which
the bound variables range. Then, given a universal quantification such as:

∀ x1 : S1, . . . , xn : Sn • P(x1, . . . , xn , . . . ) (1)

where S1, . . . ,Sx are sets, users may apply CARD by indicating a limit to the
cardinality for each Si with i ∈ 1. .n. If these limits areM1, . . . ,Mn for S1, . . . ,Sn ,
respectively, then CARD generates (M1 +2)× · · · × (Mn +2) test specifications
characterized by a predicate of the following form:

C1 ∧ C2 ∧ · · · ∧ Cn

where each Ci is either #Si = ki with ki ∈ 0 . .Mi , or #Si > Mi . Given that #
can only be applied to finite sets, then Fastest understands the expression #Si

as: replace Si in the quantified formula with a set Ai : F Si whose cardinality
verifies the corresponding restriction. This interpretation is consistent with re-
spect to the way Fastest finds test cases, as it always proceeds by considering
a finite model for each test specification [8]. The example shown in Fig. 2 helps to
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Original predicate ∀ p : active; h : dom f • P(p,h, . . . )
User-provided cardinalities active ← 1,dom f ← 1

New test specifications

CARD1 → #active = 0 ∧ #dom f = 0

CARD2 → #active = 1 ∧ #dom f = 0

CARD3 → #active > 1 ∧ #dom f = 0

CARD4 → #active = 0 ∧ #dom f = 1

CARD5 → #active = 1 ∧ #dom f = 1

CARD6 → #active > 1 ∧ #dom f = 1

CARD7 → #active = 0 ∧ #dom f > 1

CARD8 → #active = 1 ∧ #dom f > 1

CARD9 → #active > 1 ∧ #dom f > 1

Fig. 2. Generating test specifications by applying CARD

understand this testing tactic. For instance, when Fastest tries to find a test
case for CARD8 it will replace the original predicate by (assuming: active :
PPROCESS and f : N 	→ Report):

∀ p : {p1}; h : {5, 9} • P(p, h, . . . )

yielding a quantification whose satisfiability is easier to determine.
In this way, CARD will produce test specifications which ultimately will exe-

cute the statement corresponding to the quantified formula, likely an iteration,
a different number of times.

5 Testing Tactics for Set Comprehensions

Any lambda expression can be written as a set comprehension [17, page 58]:

(λ x : X | P(x ) • f (x )) ≡ {x : X | P(x ) • x 	→ f (x )}

where f is an expression depending on x and possibly on other free variables.
Therefore, the ideas presented in this section can also be applied to lambda
expressions. In turn, the most general form of a set comprehension in Z is:

{x : X | P(x ) • expr(x )}

where P is a predicate and expr is an expression, both depending on the bound
variable and possibly on some free variables. The type of the set comprehension
is given by the type of expr [17, page 57].

Clearly, the complexity of a set comprehension lies on the complexity of both
P and expr . As we have said in Sect. 2.3, the idea is to move the complexity of
P to the outside of the set comprehension. More precisely:
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1. Write P in DNF: P1 ∨ · · · ∨ Pn , where each Pi is a conjunction of literals.
2. Rewrite the set comprehension as a set union:

{x : X | P(x ) • expr(x )} ≡
{x : X | P1(x ) • expr(x )} ∪ · · · ∪ {x : X | Pn(x ) • expr(x )}

3. Rewrite each term of the set union as a set intersection.
4. Apply SP to one or more ∪ or ∩.

Alternatively, apply SP inside the set comprehension rewriting it as:

{x : X | P(x ) ∧ (Q1(x ) ∨ · · · ∨ Qn(x )) • expr(x )}

where each Qi is the i th predicate stipulated by the corresponding standard
partition. Then write P(x ) ∧ (Q1(x ) ∨ · · · ∨ Qn(x )) in DNF and do as above.
Yet another alternative is to apply SP to operators appearing in expr instead
of or apart from P . All these can be combined as is customary in the TTF to
further partition previous test specifications. The net effect is a coverage similar
to the one delivered by the TTF for other constructions.

6 Concluding Remarks

There are some MBT methods, besides the TTF, for the Z notation [19–24]
but none of them approaches axiomatic descriptions, quantified formulas and
set comprehensions. Extending any MBT method for the Z notation to deal
with these concepts is important because large specifications will include them.
Then, all these MBT methods may benefit from our results. Furthermore, MBT
methods for other notations such as Alloy, B and VDM may also take advantage
of these results since these languages use similar mathematical theories.

Although the paper deals with three somewhat unrelated issues, there is a
common, underlying theme: automation. That is, the rules proposed here to pro-
cess axiomatic descriptions, quantifications and set comprehensions were devised
to preserve the degree of automation currently featured by Fastest. Variants of
these rules may be proposed but likely they will render the tool less automatic.

Regarding axiomatic descriptions, we conclude that they should be classified
according to their intended use before processing them to produce test cases.
Although the same language construct is used to define all of them, there are
key differences, for example, between declarations such as root (Sect. 2.1) and
failed (Sect. 3.3), making it dangerous to treat them in the same way. The
taxonomy presented here may be extended, refined or modified but axiomatic
descriptions cannot be treated all in the same way.

It may be argued that recent advances in decision procedures and SMT solving
should be used to approach quantified formulas. We have two counterarguments
to this point: (a) besides finding a witness satisfying a quantified formula, a par-
tition based on its analysis must be generated in order to get a good coverage
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of its implementation, and this cannot be done with SMT solvers; and (b) our
first results on applying SMT solvers to the TTF show that these tools are not
immediately or trivially useful for it [25].

Quantifiers are treated in [26] but for the VDM notation which is based on
three value logic and where all sets must be finite—key differences with respect
to Z. The rules proposed by Meudec: (i) take into consideration the fact that
predicates or expressions can be undefined according to the VDM semantics; (ii)
they lead to very long partitions even for basic quantified expressions; and (iii)
apparently, these partitions cannot be controlled by the user as ours can. For all
these reasons we decided to develop our own tactics to deal with quantifiers.

With regard to future work, we are working on the implementation of the
results for set comprehensions and we are further investigating if SMT solvers
can be used as a back-end to automate some of the results presented here.

Acknowledgements. This paper is a humble tribute to the memory of David
Carrington, one of the creators of the Test Template Framework, who passed
away in Australia on 7 January 2011 after a long battle with cancer.
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9. Cristiá, M., Albertengo, P., Rodŕıguez Monetti, P.: Pruning testing trees in the
Test Template Framework by detecting mathematical contradictions. In: Fiadeiro,
J.L., Gnesi, S. (eds.) SEFM, pp. 268–277. IEEE Computer Society (2010)
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Abstract. Previous work described how to translate Simulink control
law diagrams into Circus specifications to facilitate verification by re-
finement. This is not a trivial task; several tools have been developed
to automate parts of the translation. This paper introduces a new tool
chain that extends and integrates existing technology to cover the entire
translation and cater for a larger set of diagrams. Our contributions in-
clude the integration of data types, generic definitions, and extension of
the technique to model action and enabled subsystems. The tool chain
has been validated using an industrial case study.

Keywords: Z, CSP, ClawZ, control law diagrams, verification.

1 Introduction

Control systems are commonly modelled using control law diagrams: a graphical
notation with blocks and connecting wires. Each block represents a calculation
or function, and can have state; wires connect inputs and outputs of blocks.
Systems may be so complex that functionality is often defined in a number of
separate diagrams, known as subsystems; these introduce a hierarchy.

As regulations for certification of safety-critical systems are being tightened,
the use of formal methods is becoming increasingly encouraged. Various attempts
have been made to express control law diagrams in formal languages [6,3]. Par-
ticular attention has been given to diagrams in MATLABs Simulink [9], a de
facto standard, especially in the automotive and avionics industries.

Circus [11] is a formal language capable of expressing state-rich concurrent
systems based on Z [12], CSP [10], and a refinement calculus [5]. In [4], Cavalcanti
et al. describe a formalised translation from Simulink diagrams to Circus models;
it takes into account parallelism and independent flows of execution.

The main benefit of using Circus to encode Simulink diagrams is the ability to
prove correctness of implementations through refinement. The work presented
here extends the set of translatable diagrams, automates further the model gen-
eration technique of [4], and expands the set of programs we can prove correct.
Code generation and diagram validation techniques that extend the static anal-
ysis in Simulink exist to satisfy different objectives from those we address here.

Our work extends and integrates a number of tools and associated tech-
niques to support a single-click translation, and handle a larger set of diagrams.

J. Derrick et al. (Eds.): ABZ 2012, LNCS 7316, pp. 294–307, 2012.
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As a result, users can produce Circus specifications without the need for indepth
knowledge of multiple tools. We describe here the enhancements to existing tools
and new methods that make this possible. In particular, we address the integra-
tion of data types and type-sensitive translation, the use of generic definitions,
the use of a complex tool chain in the context of safety-critical systems, and
techniques to model enabled and action subsystems.

Previously, there were two tools that supported the conversion of Simulink
diagrams to Circus (namely ClawZ [2] and ClawCircus [13]). Each is driven in-
dividually with a significant amount of manual input. Expertise is required in
Simulink, Z, Circus, and methods to bring these components together. With our
tool chain, the amount of expert knowledge and manual input is reduced.

Additionally, the current technique does not cater for enabled and action
subsystems. These are just like other subsystems in Simulink, which are defined
by a sub-diagram, except they have enabling conditions that determine whether
they are executed or not. They are used to control the flow of execution in a
diagram and are commonly used in industrial applications. Here, we present a
technique to model enabled and action subsystems in Circus.

The remainder of this paper is structured as follows. Section 2 presents pre-
liminary material related to our work. Section 3 describes the translation from
Simulink to Circus. Section 4 introduces enabled and action subsystems and de-
scribes how they can be expressed in Circus. Finally, Section 5 explains how the
chain has been applied to a large industrial example not previously translatable,
along with our conclusions and possible further work.

2 Background

This section describes Simulink diagrams, Circus, and existing tools.

Control Law Diagrams. An example control law diagram written in Simulink
notation can be seen in Figure 1. It specifies a missile guidance subsystem used
in the aerospace industry [9]. Individual blocks are boxes on the diagram, and
perform their own unique function; arrows between blocks represent the commu-
nication of values. The small ovals are the inputs and outputs to the subsystem
(Rm,Vc,AZ d , ...). This example also contains an enabled subsystem (Fuze).

The example is used to locate an initial target position and then monitor
the flight of the missile using closed-loop tracking to ensure it is reached; these
calculations are performed within the custom Guidance Processor subsystem.
The Fuze subsystem is used to control the detonation of the missile; it monitors
the distance to the target and feeds back into another tracking subsystem.

Circus Language. Systems are specified through processes in Circus. Features
from Z and CSP are available, including schemas, communication, parallelism
and choice. Programming operators come from Morgan’s refinement calculus.

The main constructs are channels, processes and actions. Channels are used
to define communication events between processes. Processes contain state infor-
mation and have a behaviour defined by actions. State is local, so that interaction
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Fig. 1. Guidance Subsystem in Simulink [9]

can only occur through channels. A process can be defined explicitly, or by using
operators of CSP for composition of other processes, such as parallelism.

An action can be defined as either a schema, which performs operations on
the process state, a command in Dijkstra’s guarded command language, or a
CSP expression. Local actions are referenced by the main action, which specifies
the behaviour of the process. More details about Circus can be found in [11].

ClawZ is a tool suite for verification of implementations of Simulink diagrams [2].
It translates diagrams into Z encoded for ProofPower-Z [7], a mechanical theorem
prover. ClawZ has been used in industry and has reduced costs of verification [1].

In ClawZ models, schemas are used to define inputs, outputs, and state ele-
ments of blocks and subsystems. Only discrete-time blocks are translated because
software is discrete. Schemas produced by ClawZ are defined in a library; at-
tributes in diagrams are used to match blocks to corresponding library schemas.

Circus specifications use schemas defined by ClawZ to describe functionality;
CSP describes the communication and behavioural aspects of the control law.

3 Translating Simulink Diagrams into Circus Specifications

This section describes our tool chain to translate Simulink diagrams into
Circus specifications automatically. We describe all tools required and explain
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Fig. 2. Simulink to Circus Translation Process

how each was tailored or developed to achieve the integration in Figure 2; ovals
represent files and libraries, and squares represent processes and tools. The
dotted-borders indicate processes or tools adapted or developed to create the
chain; the two shaded ovals are the Simulink input and Circus output files.

3.1 Z Producer, Generics Converter, and PP2CZT

The three processes in the top path in Figure 2 are used to produce and modify
the necessary Z definitions for use in the Circus model. The Z Producer (part of
ClawZ), is used to specify schemas for blocks automatically.

The ClawZ output is encoded for ProofPower-Z and can be used for verifi-
cation once parsed. A problem arises, however, because the use of generics in
ProofPower is different from that in standard Z (and Circus). ProofPower-Z al-
lows partial instantiation of a generic definition: it is possible to use generic
definitions in ProofPower-Z without instantiating all formal generic parameters.

The ProofPower-Z notation includes the universal type U, which is the carrier
set of a generic type (U[X ] =̂ X ). The Z definitions produced by ClawZ use the
universal type because of the lack of type information in the Simulink file. Data
types are inferred automatically within ProofPower-Z and this remains true for
the majority of definitions when treated as part of a standard Z specification. In
some cases, however, inference of actual generic parameters is not possible; as
an example, we consider the definition below of a Selector block.
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Selector
In1? : U
Out1! : U

Out1! = In1? (1)

The Selector block takes a sequence of values (In1?) and selects a particular
element (Out1!); in this example it is the first element. In ProofPower-Z, this
schema is valid: it has an implicit formal generic parameter as there is not enough
information to fully instantiate the type of U. This parameter is not declared
explicitly and the schema is not well typed according to the rules of standard Z.

To overcome this, we rewrite the definitions from ClawZ in standard Z using
the new Generics Converter tool. The schema below has the same semantics as
the previous example; it is a standard Z definition that introduces the type X as
a formal generic parameter rather than using the universal type of ProofPower-
Z. The conversion automatically infers, from the schema in the ClawZ output,
that the type of the input (In1?) is a sequence of values. This is represented as
a relation from an integer to a value of the generic type parameter.

Selector [X ]
In1? : Z ↔ X
Out1! : X

Out1! = In1? (1)

The Generic Converter traverses all definitions stored in a ProofPower-Z file
and analyses their components to establish the type of definition and whether
any implicit generic parameters exist. If none are found, the definition remains
unchanged; however, upon finding generic parameters, the definition is re-const-
ructed. The new definition contains the formal generic parameters explicitly.

The modified ClawZ output in standard Z is converted into CZT markup (used
by the Circus parser) using the new PP2CZT tool within ProofPower-Z. It per-
forms a syntactic translation of all definitions and schemas in the ClawZ output
and automatically produces the CZT encoding. The translation relies on a set
of mappings from the internal representation in ProofPower-Z to the text-based
markup in CZT. All definitions in a ProofPower-Z document are considered in-
dividually; every component in the definition is then analysed, translated, and
re-assembled in a new file to form the corresponding CZT definition.

3.2 Type Extractor and Merge

Blocks in Simulink have a set of input and output ports, each with a specific
data type and dimension. Previously, the translation assumed that all compo-
nents were one-dimensional, and used the ProofPower-Z R data type to define
their types. This, however, is not a realistic assumption, and since data types in
Simulink are different to those of Circus, a mapping between data types is neces-
sary. Simulink uses data types such as double, int8 and uint8; we represent these
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in Circus as R, Z, and N. Simulink uses multi-dimensional data such as vectors
and matrices, these are represented as sequences: seq X for vectors and seq seq X
for matrices. Our extension also translates boolean and complex values, and is
easily extended to include custom data types.

A challenge in achieving this translation was the fact that data types and
dimensions are not recorded in the Simulink (mdl) file. We extract them using
the new Type Extractor tool. This takes the mdl file and produces a types file
containing data types and dimensions for all block inputs and outputs.

This is achieved by running a custom function within MATLAB; by executing
inside the MATLAB environment, we can extract attributes of diagrams not
stored in the mdl file. This tool iterates through all blocks in the diagram and
produces a new file with the same structure as the original mdl file.

The extracted type information is combined with the original file by our new
Merge tool. The purpose of Merge is to combine two mdl files into one mdlx file.
A new file is created to maintain traceability and ensure the original diagram
can still be used in Simulink. The Merge tool scans both input files for matching
elements in the tree structure of systems, blocks, and subsystems. Attributes
from matching pairs in both mdl and types files are merged in the new mdlx file.

3.3 ClawCircus

The majority of the translation is achieved using the ClawCircus tool, which
takes the extended Simulink file and ClawZ output and produces a Circus spec-
ification. A description of the tool and its implementation can be found in [13].

What we needed to do to incorporate ClawCircus in the tool chain (apart
from fixing a few bugs) was to provide a way of driving it without a graphical
interface. Our new ClawCircus uses a configuration file to determine its input
diagram and the required translation. This is useful in the safety-critical industry
to ensure traceability; all graphical interfaces are removed in our chain.

The configuration file describes which part of a Simulink diagram to translate;
the requested output could be a single block, a subsystem, or the entire system.
It also defines whether a subsystem is expanded or collapsed. When expanded,
the translation models all internal blocks as individual processes and combines
them in parallel. When collapsed, the translation does not combine the blocks
in parallel, but produces a centralised single process. It also defines whether
the model is simplified or not. Simplified specifications do not contain vacuous
definitions to ease readability, like empty schemas or actions without behaviour.
Unsimplified versions have a more uniform structure; this is useful for automation
of refinement where the shape of models is important.

Configuration files are simple and do not require additional expertise to pro-
duce. A parser to interpret the configuration file is now part of ClawCircus.

3.4 LATEX, and the Circus Parser and Type Checker

The Circus file produced is encoded in the Circus LATEX markup and can be
transformed into a viewable document; the type-set output makes it easier to
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read. The tool chain produces two outputs: one in Circus LATEX markup for the
parser and type checker (Complete Circus Model), and a dvi file with the correct
graphical notation for the specification (Circus Document).

The Circus Parser and Type Checker is invoked automatically to check the
validity of the Circus specification generated. This does not validate the dia-
gram per se, but provides some empirical evidence for the validity of the models
produced by the translation. Additional tool support to analyse and refine Cir-
cus specifications is under development; ease of model generation crucially paves
the way for those techniques to be applied effectively. Further validation of the
models themselves comes from the fact that they have been used as a basis for
a refinement technique formalise in [4] to verify control systems.

In summary, the tool chain eliminates the need for vast amounts of manual
input and specialised knowledge. By combining a Simulink file with the cor-
responding configuration file, all output files are produced automatically. The
specification is automatically passed through the parser and type checker with
a detailed account of the entire process stored in a log file. The tool chain is
automated using a script to invoke tools and manipulate files.

4 Enabled and Action Subsystems

This section describes translation enhancements to model enabled and action
subsystems. Outputs from these subsystems depend on an enabling condition,
which is determined by the value received on an enabling or action port. Enabled
subsystems check if a value is greater than zero before being enabled, whilst
action subsystems use a signal from a separate if-then-else or switch statement.

We consider, for example, the very simple diagram in Figure 3; it demonstrates
the use of action subsystems, but is not the limit of our approach. In the example,
an If Else block is used to control two action subsystems, which each have their
own output. The If Else block takes an input (In1) and compares the value against
some condition; in this example, the value must be greater than 4. If true, the If
Else block outputs a boolean true to the first subsystem, and false to the other.
If false, the boolean outputs to the subsystems are false and true respectively.
The values from both subsystems depend on the enabling conditions; these are
determined by the boolean value from the If Else block.

Both action subsystems output a constant value with a delay of one time unit.
They also contain a block labelled Action Port, which is the boolean input signal
from the If Else block and determines whether the subsystem is enabled.

Output blocks in enabled and action subsystems output a value, whether
the subsystem is enabled or disabled; this value depends on the behaviour of
the internal blocks. Typically, outputs from several subsystems are combined
using a Merge block to ensure that only the value from the currently enabled
subsystem is used. Subsystem outputs, however, may also be used individually,
in which case, the output when enabled and disabled needs to be considered.
Additionally, by considering subsystems separately, rather than their combined
use with other blocks, we obtain a compositional translation strategy.
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Fig. 3. Example If-Then-Else System

All blocks inside these subsystems are essentially paused when disabled. Cur-
rent values must be recorded along with the enabling condition for all blocks with
state inside the subsystem. It is not sufficient to use the existing behavioural def-
initions from ClawZ for blocks with state, as they do not include the additional
components required to capture the enabling/disabling behaviour. Also, output
blocks require an additional field to represent their initial value when inside an
enabled or action subsystem; this is the initial output value of the subsystem.

When subsystems are enabled, blocks behave as they would normally. When
disabled, blocks with state and output blocks have additional properties that
describe what to do with the output value: whether to hold the last value stored,
or reset the output to the initial value. Additionally, when the subsystem is re-
enabled, having been in a disabled state, both enabled and action subsystems
can be configured to preserve the states of all internal blocks, or reset them to
their initial state. This affects blocks that define an output sequence for example,
which can either pause at the last value, or reset to the first value in the sequence.
The configuration is static as the held and reset properties are defined within
the Simulink diagram. In summary, we have four configurations of subsystems
and their blocks that give rise to different behaviours as shown in Table 1.

The remainder of this section describes how we represent the subsystems and
their internal blocks in Circus, with the necessary Z definitions.

4.1 Z Definitions

The Z definitions used in the Circus model of a diagram have to be augmented
to support enabled and action subsystems. This applies to blocks with state,
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Table 1. Enabled/action subsystem state and output combinations

Subsystem Block Block output Subsystem state
config. config. when disabled when re-enabled

Held Held Retains previous value Retains previous state

Held Reset Set to initial value Retains previous state

Reset Held Retains previous value Internal block states are reset

Reset Reset Set to initial value Internal block states are reset

as it is the state that is updated in different ways; to capture this we include
three schemas for each block with state. These schemas describe the standard
behaviour of the block, the behaviour when held, and the behaviour when reset.

As an example, we consider the Unit Delay block (as seen in Figure 1), which
takes an input value, stores it in the current state, and outputs the value from
the previous state; it is a single one place buffer. ClawZ uses a generic definition
as it is applicable to many data types; the standard behaviour is as follows.

UnitDelay [X ]
In1? : X ; Out1! : X
initial state, state, state ′ : X

Out1! = state ∧ state ′ = In1?

Consider now the situation where the Unit Delay block is inside an action or
enabled subsystem and is disabled; the output is either held or reset. The ClawZ
schema to describe the behaviour when held is below. The difference between
this and the standard schema is in the value stored in the state ′ component.

UnitDelay h[X ]
In1? : X ; Out1! : X
initial state, state, state ′ : X

Out1! = state ∧ state ′ = state

The schema for the behaviour when reset, shown below, is different to the stan-
dard one as the components state ′ and initial state are defined to be the same.

UnitDelay r [X ]
In1? : X ; Out1! : X
initial state, state, state ′ : X

Out1! = state ∧ state ′ = initial value

These three schemas define the behaviours of the block when inside an en-
abled or action subsystem, however, they are not sufficient for the Circus model.
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We require additional schemas that capture the value of the current and previous
enabling condition. These additional components are crucial in order to define
the four scenarios in Table 1. Firstly, we define a state schema which contains a
single boolean value to record the enabling condition of the block.

Enabled State
enabled : B

This state component must be updated in accordance with the current enabling
condition of the subsystem. Firstly we define a frame schema for the update op-
eration that takes a boolean input and assigns it to the enabled state component.

Enabled Frame
ΔEnabled State;
Enabled? : B

enabled ′ = Enabled?

We define three further schemas to capture the scenarios where the subsystem
becomes enabled, remains enabled, and is disabled.

Enabling == [Enabled Frame | enabled = False ∧ enabled ′ = True]

RemainEnabled == [Enabled Frame | enabled = enabled ′ = True]

Disabled == [Enabled Frame | enabled ′ = False]

Using these three schemas to capture the enabling condition of a block in con-
junction with the existing ClawZ block library definitions, it is possible to define
block schemas for each of the four kinds of subsystem configuration in Table 1.
Firstly, in the scenario where both the block and subsystem are set to hold their
values when disabled and on re-enabling, we use a definition like that shown
below for our example Unit Delay block. Both the Enabling and RemainEnabled
schemas are combined with the UnitDelay schema that defines the normal be-
haviour. This is because when both enabled and upon re-enabling, the block
values remain the same and normal behaviour continues. When the block is
disabled, the UnitDelay h schema is used as this specifies the held behaviour.

UnitDelay Augmented == (Enabling ∧ UnitDelay) ∨
(RemainEnabled ∧ UnitDelay) ∨ (Disabled ∧ UnitDelay h)

The second scenario is when the subsystem is set to hold the internal states upon
re-enabling, and the block is set to reset to its initial value when disabled. The
difference here is the Disabled schema is combined with the reset schema.

UnitDelay Augmented == (Enabling ∧ UnitDelay) ∨
(RemainEnabled ∧ UnitDelay) ∨ (Disabled ∧ UnitDelay r)
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Fig. 4. Circus model for example action subsystem

The third behaviour is found when the subsystem resets the internal states upon
re-enabling and the block holds its value when disabled. The Enabling schema
is combined with the reset schema for the Unit Delay whilst the Disabled schema
is associated with the held schema. Finally, the scenario where the block and
subsystem reset their values. The UnitDelay r schema is combined with both
the Enabling and Disabled schemas.

The translation produces one of the four definitions above for each of the
blocks with state inside an enabled or action subsystem, based on the properties
of the subsystem and block.

4.2 Circus Model

This section describes Circus processes that model enabled and action subsystems
using the Z definitions presented above. As described previously, the translation
of subsystems can be done in two ways. Firstly, all blocks can be translated indi-
vidually and combined using parallel composition. Alternatively, the subsystem
can be defined in one centralised process. (Semantically the models are the same,
however, parallelism facilitates refinement to concurrent implementations).

With a centralised process, the Z definition from ClawZ that represents the
overall subsystem is lifted into a Circus process. This definition includes instances
of the schemas for each block in the subsystem and connects the inputs and
outputs together just like in the original approach. The Action? input to the
subsystem is connected to all of the Enabled? inputs of the blocks. The state and
enabled conditions for all blocks in the subsystem are defined as state components
in the Circus process to ensure information is not lost between invocations.

Translations that use parallel composition of Circus processes for blocks in the
subsystem are slightly different. To represent the Action? input to the subsystem,
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1. For all blocks inside an action or enabled subsystem (apart from output blocks),
check to see if the original ClawZ definition includes a state component. If no
state exists, complete the block translation as in the previous technique.

2. For output blocks, and blocks with state, the additional frame schema described
here must be combined with the original ClawZ schema according to the held
and reset values of both the subsystem and the individual block.

3. Once all internal blocks are translated, the subsystem process is created:
(a) If a centralised translation is required, instances of all internal blocks are

included in the subsystem definition and are connected as per the wires
in the diagram; the enabling condition is simply a component of the sub-
system and accessed directly by the block schemas - there is no channel
synchronisation. The state components of internal blocks are lifted to the
state of the subsystem. The main action of the subsystem is a parallel com-
position defining the functional behaviour and the state update procedure.

(b) A parallel translation creates individual processes for all blocks in the sub-
system including the enabling/action port; the communication between
processes is through channels as per the wires in the diagram. The overall
subsystem process is constructed as the parallel execution of all processes
that synchronise on the enabling condition and the end cycle channel. The
final step is to hide the internal workings of the subsystem process from the
rest of the system; this is achieved by hiding all of the internal channels,
leaving only the inputs and outputs of the subsystem visible.

Fig. 5. Algorithm to translate enabled and action subsystems

an additional Circus process is defined to pass on the enabling condition to the
other blocks in the subsystem via a broadcast channel.

As a simple example, Figure 4 depicts the structure of the corresponding Cir-
cus model for the first subsystem in Figure 3. There, arrows represent synchroni-
sation channels corresponding to wires in a diagram, whilst the two vertical bars
inbetween processes indicate parallel composition. If Action Subsystem 1 and If
Else are separate processes (which are composed in parallel to define the model
of the complete diagram). The process If Action Subsystem 1 is itself defined
by a parallel composition of four processes: Constant, Unit Delay, and Output
correspond to the blocks in the diagram, and Action Port is the extra process
defined below. The channels Constant out and UnitDelay out correspond to the
wires. The IfAction1 enabled channel broadcasts the enabling condition received
on IfAction1 action from the If Else block; all internal blocks in the subsystem
synchronise on this enabling signal.

The Circus process ActionPort is below; it operates in parallel with the other
processes. The end cycle channel is used as a synchronisation point for all paral-
lel processes; only once all processes have synchronised on the end cycle channel
can each individual process recurse or terminate accordingly.

processActionPort =̂ μX •
IfAction1 action?x −→ IfAction1 enabled !x −→ Skip ; end cycle −→X
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Processes that represent blocks inside enabled and action subsystems cannot
use the standard translation with our additional state components. Most signif-
icantly, processes have to synchronise on the channel that passes the enabling
condition of the enabled or action subsystem to the blocks. We extend the state
of blocks with the Enabled flag and relate this to the underlying ClawZ schema.
In our example, the Enabled? value is taken from the IfAction1 enabled channel.

The Circus model for enabled subsystems differs slightly to the action subsys-
tem example as the enabling input is not a boolean value, but either a scalar or
vector value. The EnablingPort process pushes the boolean value true onto the
enabled channel if any input value is greater than zero, and false otherwise.

Our approach extends the existing ClawZ and Circus model in a uniform and
structured way, and lends itself to automation. A text-based algorithm is shown
in Figure 5 to demonstrate the steps required to implement the translation.

5 Conclusions and Further Work

In this paper, we address several problems in translating Simulink diagrams to
Circus and discuss modifications and extensions to existing tools to provide an
automated solution via a tool chain. A more comprehensive description of all
the details discussed in Sections 2 and 3 can be found in [8].

The individual stages of the translation shown in Figure 2 have been adapted
and combined to automate the process. The only part of the translation not
successfully integrated in the process is ClawZ; this is due to the high level of
customisation required from the user to successfully produce a ClawZ output.

The tool chain has been applied to large industrial examples, in particular,
a previously non-translatable Non-linear Dynamic Inversion controller provided
by QinetiQ. This non-trivial example includes nested subsystems, generic def-
initions, and a range of data types. The translation equates to 38,000 lines of
Circus and completes automatically with no errors. The example presented minor
bugs in tools that had not been tested with such large examples previously.

Several other examples have been used throughout the development and test-
ing phase to ensure specific modifications and extensions are correct. These tests
are small in comparison to the larger example above, however, each is challenging
in its own right to test a particular part of the translation. The tool is available,
with an example, from https://svn.cs.york.ac.uk/anonsvn/clawcircus.

As an alternative to our approach, Caspi et al. use the formal language Lus-
tre to represent Simulink diagrams [3]. A tool automates their translation from
Simulink to Lustre, and from Lustre to source code using the Lustre C code
generator. This technique is focused on the generation of implementations with
a certified code generator and has proven popular in industry. Consider, how-
ever, the situation in which the code generation technique changes; the revised
generator must be re-certified. This is an expensive and time consuming process;
should our technique to generate implementations change, the effort required to
prove a modified refinement law is significantly less.

Chen et al. present a formal semantics and tool support to reason about
functional and timing aspects of Simulink diagrams [6]. Their work presents a

https://svn.cs.york.ac.uk/anonsvn/clawcircus
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comprehensive library of translatable blocks for both discrete and continuous
time. The work is focused on the validation of diagrams with the use of the PVS
theorem prover; it does not address our larger interest in program verification.

Our translation function, previously defined in [4], is specified in a compo-
sitional manner and allows us to produce an individual Circus process for each
block or subsystem in a Simulink diagram. As Circus has a semantics that sup-
ports compositional refinement, piecewise development is well supported.

Future work will mechanise the translation of enabled and action subsystems
based on the algorithm described. Automation of refinement techniques will
allow automatic generation of models of Ada programs for verification of imple-
mentations. Work is also ongoing to integrate time-specific Simulink diagrams
in Circus using Circus Time; this work will further increase the set of translatable
Simulink diagrams and make the tool chain applicable to more applications.
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Verification of Hardware Interaction
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Abstract. Many high-integrity software development processes prevent
any assumptions about the system hardware, but this makes it impossi-
ble to use these techniques on software that must interact with the hard-
ware, such as device drivers. This work takes the opposite approach: if
the analyst accepts that the analysis will only be valid for a particular
target system then the specification of the system can be used to infer
the behaviour of the software that interacts with it. An analysis process
is developed that operates on disassembled executable files and formal
specifications of the target platform to produce CSP-OZ formal models
of the software’s behaviour. This analysis process is implemented in a
prototype called Spurinna. This is demonstrated in conjunction with the
verification tools Z2SAL and the SAL suite to demonstrate the verifica-
tion of properties of an example program.

1 Introduction

Many projects make use of static analysis to give a measure of assurance for
the safe functioning of the code. To facilitate static analysis these projects are
often based on “safe” language subsets such as MISRA-C [13] and SPARK Ada
[1]. These use restricted versions of common programming languages to make
the code behaviour determinable without knowledge of the context. However, by
restricting the language they necessarily make themselves unusable for applica-
tions that rely on the features that have been removed or restricted, and prevent
analysis of requirements that are defined in terms of a particular context. Hard-
ware control applications are a significant instance of this, and so they are the
focus for the work presented here.

Hardware control and interaction is an area that is central to many safety-
critical systems as it is often the device control aspect that gives them the poten-
tial to cause harm. Many restricted languages remove any feature that interacts
with the hardware, since these features prevent deterministic reasoning about the
code without making assumptions about the behaviour of the hardware. How-
ever, in the case of device drivers it is reasonable to make assumptions about
the hardware — a specification of the hardware’s behaviour is always necessary
if software is to be written to control it.

Projects such as [12] and [3] have provided complete verification of system
stacks, but these have required considerable manual effort that would have to be
repeated for each application. The objective of this work is to provide a general

J. Derrick et al. (Eds.): ABZ 2012, LNCS 7316, pp. 308–322, 2012.
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process for verifying the behaviour of low level software that is independent of
the particular underlying system, and that is sufficiently automatic that it can
be easily and frequently repeated as part of a software development process.

The principal contribution of this work is a technique for inferring a formal
model of the behaviour of a hardware dependent system that has the following
properties:

– The ability to represent the interaction of software and hardware components
in the same model, and allow the verification of properties of hardware usage;

– a fully automatic implementation with no human input required after the
submission of the hardware specification and the software for analysis;

– produces models of a size and complexity that can be understood by humans
and is practical for the application of formal verification techniques;

– maintains traceability from the produced model back to the source program
to support fault localisation and repair.

The following example of a hardware usage scenario is used in this paper:

The device to be controlled has two ports: a control port and a data
port. The control port is accessible at IO port address 0. The data port
is accessed at IO port address 4. To request data the driver must write a
1 to the control port, then wait at least 10ms before the data on the data
port is valid. To facilitate the timing there is a clock device available at
IO port 8, which presents an integer representing time on a scale that
increments once per ms. The system has an Intel i386 based processor.

Fig. 1. The example device

A device driver that controls this device and presents the available data to
a software system must ensure that the device is used in the required fashion.
In this example that produces a set of specific behavioural properties that the
device control software must satisfy:

– A request value of 1 must be written to the control port at address 0, before
data is read from address 4.

– There must be a delay between the writing of this request and the reading
of the data.
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– The delay must be 10ms long. Specifically, the value present in the clock
port at address 8 must have incremented by at least 10 between the writing
of the request and the reading of the data

These properties make explicit statements about IO addresses, and about the
sequence and content of interactions with these hardware features. The design
of the formal model presented in Section 3 must support the specification of the
combined software/hardware system such these details are present and properties
of their use can be written easily.

1.1 Document Outline

Fig. 2. The analysis process outline

The analysis process described in this paper has been implemented in a prototype
tool named Spurinna1. The development of a formal system for interpreting
executable file formats and performing disassembly was beyond the scope of
this project, so GNU objdump2 is used to convert the executable into assembly
language and symbol information. Section 2 discusses the analysed programs
and their disassembly. Spurinna takes this, and a supplied formal specification
of the processor and target platform as inputs. Section 3 describes the model
of the system that is required as input, the model of software behaviour that is
produced by the analysis, and the design choices made to accommodate hardware
details and low-level software features into a manageable, formal representation.
From these inputs it is able to produce a formal model of the behaviour of the
software entirely automatically. The process of automatically inferring models
of this form from presented disassembly output is detailed in Section 4. This is
output in CSP-OZ in LATEX format, and can be used as input to any verification
tools or techniques applicable to Z or CSP. This paper demonstrates verification
of requirements using the Z2SAL tool [8] and the SAL model checking suite [7]
in Section 5. Conclusions are presented in Section 6.

1 http://staffwww.dcs.shef.ac.uk/people/R.Taylor/Spurinna/
2 http://www.gnu.org/software/binutils/

http://staffwww.dcs.shef.ac.uk/people/R.Taylor/Spurinna/
http://www.gnu.org/software/binutils/
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2 Disassembly

The four stages between high-level source code and execution are compilation
which produces assembly code, assembly which produces relocatable machine
code object files, linking which collects object files into executable files and
resolves the symbols in the function calls, and loading where the executable file
is loaded into a virtual address space ready for execution.

This analysis process needs to operate on the level closest to execution, but
capturing the image of the virtual address space after loading is impractical. Pro-
ducing a formally-verified simulation of the loader in the target system would be
ideal but the development of such a system is beyond the scope of this work. The
object code produced by the assembler but before linking are also not suitable,
since the linker makes a number of important decisions about the layout of the
program in memory and about the resolution of symbols to absolute addresses
and values. Consequently, it is the executable file that is as close as is practical
and that are the source material for this analysis.

To illustrate the analysis process a program was developed to interact with
the example device described in Section 1. The program was written in C and
is shown in Figure 3.

In order to access the IO ports of the processor this program must use inline
assembly code statements. This is a violation of the MISRA-C coding standards
and is a good example of the impossibility of writing device driver code that
stays within a safe language subset.

#define out(port, value) asm("out %1,%0" : : "dN" (port), "a" (value))

#define in(port, result) asm("in %1,%0" : "=a" (result) : "dN" (port))

#define CONTROL_REG 0

#define DATA_REG 4

#define CLOCK_REG 8

int exdev() {

int starttime;

int endtime;

int now;

int result;

out(CONTROL_REG, 1);

in(CLOCK_REG, starttime);

endtime = starttime + 10;

do {

in(CLOCK_REG, now);

} while(now < endtime);

in(DATA_REG, result);

return result;

}

Fig. 3. A C program that implements the device control behaviour

This program was compiled with gcc, the GNU C compiler. The resulting
executable file was then disassembled with GNU objdump to produce the output
show in Figure 4.
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This shows the format of assembly instructions that are presented to the fol-
lowing stages of analysis, as well as the symbol information that was extracted
from the executable. In this case the exdev function from the C program has re-
mained identifiable, beginning at address 08048094. If the file contained multiple
functions then these would be separated and identified by name. This example
contains only local branch instructions but where function call instructions are
present their target addresses are identified and the name of their target func-
tions included. For example, a trivial program to identify the largest integer in
a list using a helper function that compares two integers and returns the larger
might contain a call instruction of the form: call 8048180 <max>.

08048094 <exdev>:

8048094: 55 push %ebp

8048095: 89 e5 mov %esp,%ebp

8048097: 83 ec 10 sub $0x10,%esp

804809a: b8 25 00 00 00 mov $0x25,%eax

804809f: c7 00 01 00 00 00 movl $0x1,(%eax)

80480a5: b8 2b 00 00 00 mov $0x2b,%eax

80480aa: 8b 00 mov (%eax),%eax

80480ac: 89 45 f4 mov %eax,-0xc(%ebp)

80480af: 8b 45 f4 mov -0xc(%ebp),%eax

80480b2: 83 c0 64 add $0x64,%eax

80480b5: 89 45 f8 mov %eax,-0x8(%ebp)

80480b8: b8 2b 00 00 00 mov $0x2b,%eax

80480bd: 8b 00 mov (%eax),%eax

80480bf: 89 45 fc mov %eax,-0x4(%ebp)

80480c2: eb 0a jmp 80480ce <exdev+0x3a>

80480c4: b8 2b 00 00 00 mov $0x2b,%eax

80480c9: 8b 00 mov (%eax),%eax

80480cb: 89 45 fc mov %eax,-0x4(%ebp)

80480ce: 8b 45 fc mov -0x4(%ebp),%eax

80480d1: 3b 45 f8 cmp -0x8(%ebp),%eax

80480d4: 7c ee jl 80480c4 <exdev+0x30>

80480d6: b8 26 00 00 00 mov $0x26,%eax

80480db: 8b 00 mov (%eax),%eax

80480dd: c9 leave

80480de: c3 ret

Fig. 4. The C program after compilation, assembly, linking, and disassembly

3 Behaviour Model Structure

Many current approaches to low-level software verification, such as Separation
Logic [14] are able to verify properties about programs by creating suitable,
abstract models of pointers, memory addresses, and other hardware interaction
that are applicable across all contemporary computer systems. This allows these
approaches to explore subtleties of program construction, such as self-modifying
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programs [5], that are not possible with the model presented here. However, the
objective of this work is to create a model that deliberately does not abstract the
implementation details of the hardware in any way, since it is aimed at verifying
properties that make statements about specific hardware features.

The approach taken by this work is derived from the Z models of the state
and operation of processors that have been produced since the 1980s [4,11].
Using process calculi also has a long history [2]. This analysis process uses both
approaches and separate the control flow components of the program from the
state change instructions. CSP-OZ [10] combines Object-Z [6] with CSP such
that the Object-Z defines classes with state and operations on that state, while
the CSP defines the possible control flow paths through those operations.

CSP-OZ specifications contain four types of component: A system state spec-
ification, operation schema that describe the state altering behaviour of events,
CSP processes that define the allowed sequences of events in the system, and
Object-Z classes that collect these components into an Object-Oriented
framework.

Where adequate symbol information exists to identify functions in the code
these are modeled as separate classes in the CSP-OZ model. This creates a model
with a modularised structure that should aid comprehension.

The analysis process separates those instructions that alter control flow from
those that do not. The former are referred to as branch instructions, while the
latter are referred to as sequential instructions. Once the branch instructions
have been separated, the remaining blocks of sequential instructions represent
code that will all be executed if it is begun3.

Branch instructions are further separated into local branch instructions, that
alter control flow within a function, and function call and function return in-
structions that direct control flow to other identified functions. The distinction
between the two is specified by the analysis user as part of the branch instruc-
tion set specification. Section 4.1 describes the process of separating the branch
instructions from the sequential instructions to form a control flow graph. The
nodes of this graph are the branch instructions, while the edges are the sequential
blocks — the sequences of sequential instructions that contain neither a branch
instruction, nor the target of a branch instruction, so are executed in sequence
from start to finish. The behaviour of these sequential blocks is represented by
the Z operations of the function’s class in the CSP-OZ model. The local branch
instructions are represented in the CSP part of the function’s class definition,
specifying the possible sequences of sequential blocks that can be executed. A
conditional branch is encoded as an external choice between the two possible
sequential blocks. To encode the decision procedure of the branch instructions
two additional Z operation schema are added to the class that contain suitable

3 Interrupts could violate this assumption, but their behaviour is ignored here as many
device drivers will be operating as interrupt handlers, or with interrupts disabled.
Alternatively, the impact of interrupts could be represented by making sections
of the system state volatile, that is, its state becomes unspecified between atomic
operations.
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precondition invariants. These operations are prefixed to the two possible se-
quential blocks such that the preconditions of each choice model the decision
behaviour of the instruction.

The model represents the function call and return behaviour using a more ab-
stract, OO notation to make the inferred model more readable and more clearly
resemble the structure of the original code, insofar as this can be determined
from the information in the executable file. Function call and return behaviour
is modelled by running the called function’s class in parallel with the calling
class. The calling class passes the system state along a channel to the called
class, which performs its function on the system state, and then passes the state
back to the calling class. The calling class synchronises on these transactions,
so does not proceed until the called function has returned, and uses the Z theta
notation to replace its current state with that received from the called function.
Section 4.4 describes the process of combining the components together into
a complete CSP-OZ representation of both the control flow and state change
behaviours.

3.1 System State Specification

The formal model produced by this work must contain adequate detail of both
the software and hardware behaviour to allow the properties of interest to be
verified. Even a simple computer system has considerable detail that could be
included, but only parts of this are relevant to the verification of a particular set
of requirements. Consequently, the analysis process developed here is deliberately
independent of the system specification used.

A simple specification of an Intel i386 based platform could be presented thus:

BIT == {0, 1}
INT32 == {0..232}
REGNAMES == {eax , ebx , ecx , edx , esp, ebp}

System
memory : INT32 	→ INT32
registers : REGNAMES → INT32
ioports : INT32 	→ INT32
zf , cf , sf : BIT

For a particular Intel-based platform this schema could be augmented with in-
variants — perhaps identifying sections of ROM, or memory-mapped devices.
The register interellations of an Intel processor, where al , ah, ax , and eax all re-
fer to different components of the same 32bit value can be clearly represented by
invariants, for example. Only a subset of the processor status flags are included
here, and only a subset of the valid register names, but these are adequate for
the short example used.
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3.2 Sequential Instruction Templates

In addition to the system state specification, the user of this analysis process
must also provide two instruction set specifications. The anaylsis process is in-
dependent of the system specification used, and is independent of the effects of
the instruction set specifications but it does require a standardised format for
the instruction set descriptions. The sequential instructions must be specified
as template Z operation schemas. These are standard Z schema with a specific
naming convention: the name of the schema must be the mnemonic of the in-
struction it represents, with a subscript containing the type signature for which
this template defines behaviour.

Processor instructions are often defined with the same mnemonic having sub-
tly different behaviour for different types of parameter. The types of parame-
ter recognised by this analysis process are literal, register, and register indirect
(where the value in a register is used as an address into memory, possibly with an
offset). These three types are clearly identifiable in objdump’s output. The Intel
mov instruction, applied to load a literal value into a register, can be specified
with this template:

movLIT#SRC ,REG#TGT

Δ System

registers ′ = registers ⊕ TGT 	→ SRC
memory ′ = memory

The subscript notation contains the parameters separated by commas, with the
type and a placeholder name separated by the hash sign. The processing of the
placeholders is described in Section 4.2.

3.3 Branch Instruction Templates

For branch instructions the binst collection is paramaterised with a mnemonic,
and must contain a Z operation schema called OnBranch and, optionally, one
named NoBranch. The OnBranch and NoBranch operation schema are prefixed
to the sequential block at the target address, and the sequential block immedi-
ately following this instruction respectively. Unconditional branch instructions,
such as the i386 jmp instruction, do not require a NoBranch schema, but the
OnBranch schema may contain state change effects of the branch instruction,
such as updating the program counter, if this is required for the verification.

Function call and return instructions are presented in the same way but in
callinst and returninst collections, respectively. The process of converting
these templates into representations of particular instruction instances is de-
scribed in Section 4.4.

4 Analysis Process

The automatic analysis of a given executable to produce a model of the form
described in Section 3 is broken into discrete stages that allow for as much
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Fig. 5. The analysis workflow

parallel processing as possible. This allows problems of pure scale to be tackled
most efficiently by the available resources and allows for the greatest impact of
increased resources. The stages in the analysis work-flow and their inputs and
outputs are shown in Figure 5.

4.1 Branch Identification

The branch identification stage of the analysis separates the branch instructions
from the sequential instructions (as discussed in Section 3) using the supplied
formal specification. Each mnemonic in the assembly language is compared to
the provided branch instruction set. Where a mnemonic is identified as a branch
instruction it is removed from the list of instructions, partitioning the block
at that point. Additionally, if it is a local branch, the target of the branch is
interpreted. If the target address falls inside an otherwise contiguous block of
sequential instructions then that block is also partitioned at that address and a
null, unconditional branch to the next block is inserted. This identifies that the
second half can be reached by multiple routes.

This process produces a graph structure with the branch instructions forming
nodes, and the blocks of sequential instructions forming edges. The unbroken
lists of sequential instructions are referred to as sequential blocks and are named
after the address of the first instruction they contain. The Z subscript convention
is used, so the block starting at address 80480c4 is named Block80480c4. The
branch instructions are also named after their locations. This naming convention
retains tracability information throughout the analysis process. When a fault is
identified in the completed model it is possible to locate the cause of the fault to
a short block of instructions. Since these blocks represent state change with no
decision making they are likely to have a clear correspondence to a small section
of the original program.
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Fig. 6. Partitioning the exdev assembly code at the branch instructions

4.2 Formal Instantiation

The sequential blocks produced by the branch identification stage can be con-
verted into formal representations of their behaviour. The instructions can be
independently analysed and instantiated into Z operation schema representing
their behaviour. All branching behaviour has been removed so these operation
schema can be sequentially composed to produce a correct (but not minimal)
representation of the system interactions of the block.

The instantiation process makes use of the template specifications described
in Section 3.2. Each instruction is classified by mnemonic and by the type of the
parameters present in the assembly language. The matching instruction template
is identified from the mnemonic and the type signature present in the subscript
of the template name. The template is then instantiated to represent a particular
instruction but textually replacing the parameter placeholders with the values
present in the assembly language at this point. The subscript of the name is
replaced with the address of the instruction to maintain tracability.

For example the instruction: 0x80480d6: mov $0x26, %eax has the
mnemonic “mov” and a literal parameter, followed by a register parameter. This
matches the following template:

movLIT#SRC ,REG#TGT

ΔSystem

registers ′ = registers ⊕ {TGT 	→ SRC}
memory ′ = memory
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This is then instantiated to form:

mov80480d6
ΔSystem

registers ′ = registers ⊕ {eax 	→ 38}
memory ′ = memory

(Note: the Z convention represents integers in decimal, whilst the assembly lan-
guage is in hexadecimal, so hexadecimal 26 becomes decimal 38).

4.3 Simplification

The result of the formal instantiation process is a series of sequential blocks
that are modeled as long chains of sequentially composed Z operation schema
representing each instruction. The size of these chains can quickly become un-
manageable. The twelve line exdev function produced a 25 line assembly file with
only 3 branch instructions. Some technique is needed to simplify these sequential
blocks if the objective is readable formal models.

In principle, if program interruption is to be ignored, then the sequential
blocks could be resolved to single Z operation schema but to do this requires
some considerable formal analysis of the semantics of the operations which would
be prohibitively difficult as the program size increased. This could be engineered
if readability was the overriding objective. Some level of concatenation is possible
for limited computation expense using the techniques outlined in [16]. The pro-
cess operates by comparing two sequentially composed schemas and determining
whether their composed semantics is altered by simply textually concatenating
their invariants into one single operation. Since this process is text-based with
only minimal parsing of the Z semantics it can be performed very quickly on
large blocks of instructions.

There is a necessary choice between producing the most succinct model theo-
retically possible and producing a model entirely automatically. Since it is possi-
ble to apply automatic tools to the analysis of the model (for example Z2SAL, see
Section 5) it can be argued that the simplification does not need to be complete
if that would require excessive human effort.

4.4 Program Encapsulation

Having identified the branch instructions and sequential blocks, instantiated the
formal specifications of the sequential components, and simplified the sequential
blocks, the final element of the analysis process is to compose the sequential
blocks into a CSP-OZ class that represents the function. The branch instruc-
tions must be instantiated to form the CSP components. The OnBranch and
NoBranch schema from the conditional branch instructions are instantiated as
Z operation schema where necessary. Function calls and returns must be instan-
tiated with suitable models, as must the entry and exit of the functions.
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Similarly, the analysis process records the branch that follows each sequential
block as part of the internal model of the sequential block. With this infor-
mation is is simple to convert unconditional branches and their target blocks
into CSP statements. The branch instruction jmp 80480ce <exdev+0x3a> will
always cause execution to transfer to virtual address 0x80480ce. The control
flow graph shows that the block beginning at 0x80480ce ends with the branch
instruction at address 0x80480d4. The branch instructions are all represented
by CSP processes named Branch with a subscript containing the virtual address
of the instruction they represent.

Branch80480c2 = Block80480ce → Branch80480d4

The jl instruction at address 0x80480d4 is a conditional branch instruction. As
is discussed in Section 3, this is modeled by instantiating each possible target
sequential block as a CSP arrow as before, then prefixing this arrow with a Z
operation that serves to constrain the execution of the possible paths according
to the conditions of the branch instruction. Finally, the two paths are conjoined
with a CSP external choice operator.

exdev
[...]
Branch80480d4 = (OnBranch80480d4 → Block80480c4 → Branch80480c9)

� (NoBranch80480d4 → Block80480d6 → Branch80480db)
[...]

OnBranch80480d4
ΞSystem

sflag = 1

NoBranch80480d4
ΞSystem

sflag �= 1

[...]

As described in Section 3, function calls are modeled by executing the function
in parallel, passing the system state using schema promotion, and then syn-
chronising on the communication. All classes that use function call instructions
include the Call and Return operations, which model this synchronisation. The
sequence Call → Return is common to all function calls, from there the remain-
der of the process continues exactly as with unconditional branches: the next
block is executed, and the process evolves to the next branch instruction. From
the maxint example: call 80480d8 <max> becomes

Branch8048115 = (OnBranch8048115 → Call → Return

→ Block804811a → Branch804811d ) || max
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All functions contain an Entry operation and a Leave operation that synchronise
with the calling function and receive the system state, and then return then
modified system state to the calling function at the end. CSP-OZ classes require
a main process to begin execution. This begins with the Entry operation that
receive the System state schema from a parallel call operation. Then the process
continues with the first block and the first branch as any other branch.

All that remains is to collect these components into a CSP-OZ class, which
is named according to the function name extracted by the disassembler. This
produces a formal model where each function in the analysed system is contained
in a CSP-OZ class.

5 An Example Verification

To demonstrate the usefulness of the inferred models the model produced for the
example driver function was processed with the Z2SAL [8] tool. This produced
an input file for the SAL suite of model checking tools [7]. The requirements
specified in Section 1 were encoded as Linear Temporal Logic statements over
this model and were verified using the SAL bounded model checker.

The Z2SAL tool does not accept CSP-OZ so the CSP-OZ had to be “flat-
tened” to pure Z. The system state schema was augmented with a cspstate
variable, defined with a BNF type that contains an atom for each of the pro-
cesses in the CSP definition. The CSP control flow restrictions were converted to
preconditions on this variable such that any given Z operation could only execute
if the cspstate variable contained the name of a process that begins with this
operation. The post condition of the operation then sets the cspstate variable
to the name of the CSP process that follows this operation. This flattening is
performed automatically by Spurinna.

Although a verification in SAL was developed this was limited to the bounded
model checker, as even the small example state was too large for the symbolic
model checker. To complement this, the CSP-OZ elements have been converted
to a lightweight representation in Isabelle/HOL that allows properties to be
verified symbolically over universally quantified state representations. Further
details of this verification are presented in [17].

6 Conclusion

The principal difficulties that current techniques face when verifying hardware-
dependent software are that: they have no way to determine statically the be-
haviour of code that interacts directly with the hardware; current techniques
are necessarily detached from the hardware; and verification must fit into an
industrial work-flow and not be overly dependent on expert skills, and must be
applicable to large scale systems in reasonable time.

This work presents a technique that uses knowledge of the behaviour of spe-
cific hardware in order to allow the verification of its control software. This work
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attempts to avoid the difficulties of analysing high level language code by tak-
ing the opposite approach: analysing code at the executable file level. While
restricted languages attempt to make code sufficiently abstract that hardware
details are irrelevant, the objective here is to make use of known hardware de-
tails to make high level language concerns irrelevant. The analyses operates on
disassembled executables, and uses a formal specification of their target archi-
tecture as a guide to infer a model of the behaviour of the software. This should
produce an interpretation of the software based on the environment in which it
will run and should provide a better basis for understanding its interaction with
the hardware.

The verification of properties on the inferred model has been demonstrated
using Z2SAL and Isabelle/HOL. The conversion to Isabelle/HOL has not yet
been automated, and still requires manual identification of the elements of the
model that interact with variables of interest. A more complete and automatic
embedding of the inferred models into Isabelle/HOL is intended as the continu-
ation of this work.

The original decision to use CSP-OZ was influenced by the Syspect tool [15]
that allows slicing techniques to be applied to CSP-OZ specifications. Slicing
is intended specifically to highlight elements of a program that interact with
particular state components, so this would address the identification problem
in a larger system model. Syspect has since been expanded to model timing
behaviour [9], which could also be valuable in verifying hardware control systems.
It has not yet been possible to import the CSP-OZ specifications produced by
Spurinna into Syspect, but this is a potential target for future work.
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Abstract. This paper presents the idea of using the Arbitrator Pattern, a concept 
from the field of robotics, and applying it to the domain of business process 
model interpretation, using it as a mechanism to allow dynamic adaption and 
extension of process instances at runtime. The idea is discussed and a formal 
specification is given using ASMs to detail the concept that was derived in the 
process of exploring the problem so far. Furthermore the non-trivial questions 
and issues are raised that will need to be addressed for this just started work-in-
progress to advance.  

Keywords: S-BPM, PASS, arbitrator pattern, dynamic model extension. 

1 Basic Problem 

The basic principle behind model-driven process-execution-systems (work-flow 
management systems) is that they use a model (most often a graph/diagram) and load 
it into an interpreter machine, thus forming an instance of the model. This instance, 
model and interpreter together, can be considered as a state machine which can be 
executed, or run through, until it has finished.  

One such model language is the Parallel Activity Specification Schema (PASS) 
introduced by Albert Fleischmann in [1]. In [2] Egon Börger has presented an ASM 
specification for a PASS interpreter for single SBDs. The definition can also be found 
in [3] while [2] also gives further inside into S-BPM. 

A great challenge for model based process execution system is that the models may 
need to change in order to cope with change requirements in the real-life processes 
that they are representing and supporting. With short lived process instances that is no 
problem. There are cases, though, where the execution of a process instance can take 
weeks or months. During such duration there usually is a big chance for 
circumstances to arise that in turn require changing at least parts of the process model 
ad hoc in order to satisfy the new needs without restarting whole process instances. 

The problem is not new and described, e.g. in [4], and research into formal 
requirements for such mechanism dates at least back to [5]. An – admittedly brief – 
overview of the research has led to the impression that such mechanisms may 
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although not be explicitly be applicable to PASS models and their separated-graph 
nature.  

The basic idea to allow for an update mechanism would be to incorporate a model 
exchange-mechanism or -option into the model interpreter machine. It will be 
assumed that a mechanism exists that guaranties validity of an extended model in the 
current context and that supporting tools can be realized in a way that a diagram D* 
will be a valid extension of D in a given currently running process context or ambient. 
A function validInCurrentAmb(D*,D) will be the placeholder. This will be one of the 
next research steps. The question up to discussion is whether the arbitrator pattern 
could be used for such a task and if yes, how this could be realized? 

2 The Arbitrator Pattern 

The arbitrator pattern stems from the field of robotics and was introduced by R.C. 
Arkin in [6] to program LEGO Mindstorm robots to interact with their not predefined 
environment. It allows for fast and effective programming of independent robots, but 
was advised against for use anywhere else, but robotic. 

Its basic principle assumes a robot with input and output equipment. Instead of 
programming a single large complex program to control the machine there is one 
arbitrator deciding which of many smaller behavior programs (short “behaviors”) is 
currently to be executed. These behaviors may contain only simple instructions like 
“move forward”. Which behavior is currently controlling the robot is determined by a 
dynamically reevaluated priority that is defined based on the sensor inputs for each 
behavior. As soon as external events (e.g. the robot hitting a wall) require a change, 
the priority is shifted and the arbitrator executes a different behavior. Behaviors can 
be added as required given that priority-computing-functions are included.  

3 The Arbitrator Pattern in S-BPM – The Resulting 
Specification 

The idea now was to use that pattern as basis for a mechanism to allow dynamic 
adaption within an instance in work flow management system for PASS.  In the 
context of S-BPM the way for a unit or subject to interact with its environment is via 
the reception and sending of messages which can be directed to other subjects (the 
environment). Furthermore internal inputs (user choices or other computations that 
determine actions of a subject) can, or rather should affect the priorities of behaviors 
(i.e.: can determine which behavior is executed). 

The equivalent to the sensors of a robot here is a subject’s ‘message box’. And 
instead of controlling motors, here the arbitrator grants a subject-behavior the right to 
access the message facilities – to receive and send messages.  

So the core concept here is not to handle a subject as single SBD-interpreter-
machine, but as many interpreter machines encapsulated in an arbitrator-machine 
which can grant control rights for the unit/subject. Towards the outside a subject is in 
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principle a single unit with its messageBox and outgoing messages. The 
BEHAVIOR(subj,state) ASM defined by Börger in [3] probably needs to be adapted 
in order to really fit into the concept presented here. But for now it is assumed that the 
definition will work. Under normal circumstances there should be only one behavior 
container, containing a BEHAVIORD(subj, state. For the arbitrator pattern to work, it 
is assumed to be encapsulated in a container which has a priority and execution 
functionality:  

BEHAVIOR_INTERPRETER_CONTAINER(D, subj, state, containerID )= 
     seq 

if couldTakeControl(D, subj,state) then updatePriorityForArbitrator(subj, thisContainer) 
 if  hasControl(subj, containerID) then BEHAVIORD(subj,state) 
 

This definition should express that, when executed, the behavior container checks 
whether it couldTakeControl of the subject or not and updates the priorities. Based on 
that priority list the arbitrating machine will grant the access right via the takeControl 
command that should evaluate as true for the empowered 
BEHAVIOR_INTERPRETER_CONTAINER machine.  

Upon a special change request – e.g. a special message (or event) outside the 
process context containing a new model (behaviorExtensionArrived) – the 
ARBITRATOR(subj, context) can initialize and/or start a new interpreter machine 
based on the received model D to take control of the subject. The condition of course, 
and the need for further research, is that the new model data 
isValidForContext(newestBehaviorDiagram(subj), processContext) in order to fit 
logically into the current process context which is given by the model the original 
behavior-machine is based on. The initialized machines need to be traced/collected in 
a location of activeBehaviours(subj).The source of such a special message for now is 
assumed to be an administrator outside the process context. More elaborate or 
sophisticated mechanisms are imaginable.  By default a newer model simply has a 
higher priority for execution. Further rules to determine priority will be needed. 

An attempt to specify the described mechanism with the means of ASMs is given 
here: 

ARBITRATOR(subj, processContext) 

 if behaviorExtensionArrived(subj, processContext, D*) then 

  if isValidForContext(newestBehaviorDiagram(subj), processContext) then 

 initializeNewBehaviorInterpreterContainer(newestBehaviorDiagram(subj)) 

 else forall  i in activeBehaviours(subj) do  

                hasControl(subj, i) := false 

                                 BEHAVIOR_INTERPRETER_CONTAINER(D, subj, state) 

    choose j in activeBehaviours(subj) where priority(j) > priority(x){x != j} 

    hasControl(subj, j) := true 

 

This machine should execute with a certain frequency, repeating the cycle and being 
aware of new behaviors, reevaluating priorities and (re-)granting control to a behavior 
continuously. In the case of the original robotics concept, behavior changes can occur 
in the span of milliseconds. In a business process context, a behavior change may not 
need the strict real-time requirement since a change might occur only a few times. 
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4 Final Thoughts 

The mechanism is not complicated. In robotics this simple approach allows to 
construct complex behavior out of simple elements.  Future research will be aimed at 
investigating whether the application of this concept here can be useful and to find 
possible drawbacks (e.g. validation concerns) and challenges that would need to be 
addressed before actual applying this concept. Among those being the definition of 
valid model extensions mechanism/validator rules for PASS, followed by issues like 
the priority determination and the question about frequency of priority updates and 
actual behavior changes among other details needed to actually build a prototypical 
implementation as the high goal.  
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Abstract. For safety critical embedded systems the correctness of the
processor, toolchain and compiler is an important issue. Translation val-
idation is one approach for compiler verification. A common semantic
framework to represent source and target language is needed and Ab-
stract State Machines (ASMs) are a well suited and established method.
In this paper we present a method to show correctness of instruction
selection by performing fully automated simulation proofs over symbolic
execution traces of state transformations using an automated first-order
theorem prover. We applied this approach to an industrial-strength com-
piler and created the ASM models in such a way that we are able to reuse
them to create a cycle-accurate simulator. To achieve fast simulation we
compile the ASM models to C++ and present the compilation scheme
in this paper. Finally we present our preliminary results which indicate
that a unified ASM model is sufficient for proving correct instruction
selection and generating efficient cycle-accurate simulators.

1 Introduction

Todays safety critical systems often require application specific processors to
fulfill the demanding performance and efficiency requirements. Correct behav-
ior of the processor and the corresponding toolchain is an absolute requirement
making formal specification and verification necessary. We are interested in us-
ing the same formal methods for compiler verification and simulation. Abstract
State Machines are a well established method for specification and analysis of
programming languages and systems providing a simple practical framework
offering important features for industrial usage like decomposability and are
readily understood [1].

Section 2 describes the generation of (first-order logic) proof scripts using sym-
bolic execution of ASMmodels to perform translation validation [6] of instruction
selection [3]. Section 3 describes our approach to generate an high-performance
simulator using compilation to C++. Section 4 presents our preliminary results
and concludes the paper.
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2 Correctness of Instruction Selection

Zimmermann and Gaul [9] describe constructing correct compiler backends for
DEC Alpha using ASMs. DEC Alpha has some nice properties making it very
suitable for formal description [4]. The processor used in our project is a very
long instruction word (VLIW) architecture with digital signal processor fea-
tures and a non-interlocking pipeline. It supports wrap-around and saturation
arithmetics, single instruction multiple data instructions, predicated execution,
hardware loops and store/load with updates to the address register.

During instruction selection a (sub)tree of intermediate representation (IR)
nodes is matched with a sequence of machine instructions, IR variables and
temporaries (operand) are mapped to registers (regmap). We assume an infinite
number of registers at this stage and allocate real registers later.

Such a translation is correct if the transformation described by the IR tree
(resulttree) and the transformation induced by execution of the machine instruc-
tions (resultinstr) is semantically equivalent. Semiformal this can be stated in
first-order logic as: ∀ operand : regmap(operand) ≡ operand ⇒ regmap(resulttree)
≡ resultinstr. Some trees and instructions may however have side-effects (e.g. a
modified memory cell) which are modeled as updates to ASM functions. For
correctness the IR tree and the machine instructions must induce the same side-
effects, semiformal this can be stated as ∀ updatestree ⇒ ∃ updateinstr : updatetree
≡ updateinstr and vice versa.

To determine whether resulttree and resultinstr are equivalent, ASM models
(see next section for more details) using a common semantic vocabulary defining
IR tree operations and machine instructions have been developed. The common
semantic vocabulary is modeled as external functions in the ASM models. To
generate a proof script the ASM execution engine logs an invocation of the
external function f with arguments a returning result r as predicate f(a, r). As
concrete values for the operands are not known at instruction selection time the
ASM has to be evaluated symbolically. The ASM execution engine performs the
following steps when evaluation of a function f at location l results in undef.
First create a new symbolic value s for f at l, then directly modify the definition
of f(l) so each evaluation of f(l) returns s. The value undef is preserved when
set explicitly, so evaluating f(l) after a f(l) := undef will result in undef and
not in a new symbol s. Finally log the creation of the new symbol as predicate
f(l, s).

The resulting log is a sequence of predicates stating facts about (symbolic)
values of dynamic functions (e.g. contents of registers) and invoked external
functions (i.e. the common semantic vocabulary). Given a set of axioms describ-
ing relations of the semantic vocabulary and the a priori known mapping of IR
operands to registers a theorem prover can now show semantic equivalence of
the state transformation described by the IR tree and the machine instruction
induced state transformation.
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3 Fast Cycle-Accurate Simulation

Teich et al [8] have shown that ASM models can be used to generate a simu-
lator for a processor. What they call bit-true arithmetic functions is equivalent
to our common semantic vocabulary. Our simulator core is itself described in
ASM notation (approx. 200 LOC). In contrast to [8] we are interested in effi-
cient industrial-strength simulators. We initially tried the CoreASM execution
engine [2] but simulating 50 CPU cycles took around 13 seconds. We considered
compiling the CoreASM language to C++, but efficient compilation is difficult
due to the dynamic type system (i.e. its List background). By adding type an-
notations to lists and restricting ourselves to a statically typed subset of the
CoreASM language we were able to develop an efficient compiler.

Our compilation scheme preserves the static structure of the ASM model, and
we follow the formal definition of ASM very closely. Each evaluated rule produces
an update set, which is aggregated and composed as described in [2]. We support
a (static) subset of the following CoreASM language elements: seqblock, par, let,
ifthenelse, :=, debuginfo, push, pop, forall, call, case, enum, derived, static, cons,
nth, peek, tail, program, self and lists with the restriction of all elements being
of the same type (may be another list type). As we support the P seq Q rule
we may need a (local) copy of the state to apply P ’s updates before evaluating
Q. Such a copy however would be very expensive as the state contains huge
functions (e.g. system main memory). That is why we introduced a so called
PseudoState which only contains updates which should have been applied to
the state already. When querying the PseudoState for a function f at location
l a hashmap containing the pending updates is searched for f(l) and if such an
update is found its value is returned, if no such update can be found the global
state is queried for f(l).

It turned out that handling of the update sets is crucial to the performance
of the simulator. As updates can not be stack allocated, and dynamic memory
allocation using malloc/new would be too expensive a memory pool allocator
is used. Memory management overhead is minimal as just the pointer to the
next free memory cell needs to be incremented after each allocation. As soon as
evaluation of the top level rules terminates (called a step in [2]) the resulting
updates are applied to the global state and the memory pool is reset. This enables
efficient simulation but large update sets are still troublesome for the simulator
performance.

4 Preliminary Results and Conclusion

The proof generation system is capable of compiling the ANSI C Rijndael ref-
erence implementation v2.2 resulting in approx. 1650 proof scripts. About 700
scripts are successfully proven as correct. Most of the other scripts can’t be
proven due to missing semantic description of the involved IR nodes and ma-
chine instructions. We currently are able to handle basic copying and converting
instructions (e.g. register moves), basic arithmetic operations (e.g. addition),
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memory access (load and store), memory access with pointer increment, but
also conditional branches with symbolically evaluated conditions.

We are able to correctly simulate all fundamental features of the CPU like
instruction fetch, bundling decoding, predicated execution, hardware loops and
the pipeline. Due to missing ASM models of the instruction set only one test
program is executed correctly. For this case our simulator is slightly better than
the manually coded simulator provided by the hardware vendor. The compiled
models execute approx. 3000 times faster compared to interpretation by the
CoreASM execution engine.

We have presented an approach to translation validation using ASMs and
theorem proving targeting a processor architecture with many difficult to model
features. We then used the very same semantic models to generate a fast cycle-
accurate simulator with performance comparable to a manually coded vendor
provided simulator. To achieve efficient simulation we restrained ourselves to a
static subset of the CoreASM language but nonetheless found creation of the
models easy.

Ongoing work is creating the missing ASM models to show the verification
method is suited to prove industrial strength programs and increase the number
of applications which can be simulated.
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Abstract. This paper proposes the use of the Abstract State Machine
method for a rigorous foundation in modeling and validating Vision-
Based Robot Control applications. We show how to tailor control tasks
definitions and associated synchronization/communication patterns in
rigorous and abstract terms by using control state ASMs and an exten-
sion of the classical flowchart notation to allow the definition/instantia-
tion of recurring design solutions and to improve model traceability.

1 Introduction

Vision guided robotics is a challenging research field [4]. Open problems are the
need for exchange of experiences, best practices, and high-level models of ro-
bust and flexible robot control applications with visual servoing (VS) functions.
Recently, we considered the Abstract State Machine (ASM) method [3] for a sys-
tematic study and a rigorous foundation of modeling and validating Vision-Based
Robot Control applications. In this paper, we show how to exploit the notion of
control state ASMs [3], as a natural extension of Finite State Machines, to model
the behavioral view of task-level control of VS applications. To this purpose, an
extension of the classical flowchart notation is also proposed to denote explicitly
modeling elements to be further refined, to allow the definition/instantiation of
recurring design solutions (or patterns), and to improve traceability between the
flowcharts and their concrete (textual) ASM specifications.

As starting point, we extracted from the code high-level and recurring syn-
chronization/communication patterns of control tasks that could be used for the
specification and analysis in ASM. We then refined these ASM abstract models
to executable ASMETA/AsmetaL [2] models to validate them and run scenarios.

This paper is organized as follows. Sect. 2 summarizes the synchronization/-
communication patterns at control task-level investigated in our work. Sect. 3
presents the new notation for control state ASMs, and the ASM specification
of the swinging buffer communication mechanism, including its application to a
concrete VS application. Finally, Sect. 4 sketches some future directions.
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Communication 
Channel Camera DeviceCamera ControllerVisual Servoing

Raw dataImage dataImage data

Set-point

Set-point

Robot ControllerCommunication 
Channel

Fig. 1. A Visual Servoing Robot architecture

2 Application Domain and Background Concepts

The UML component diagram in Fig. 1 shows a possible architecture of a VS ap-
plication. The vision system provides input to the robot controller acquiring and
elaborating images; then, the robot controller uses joint feedback to internally
stabilize the robot. Optionally, set-point computation can require acquisition of
robot data, creating another communication channel.

Synchronization and Communication Issues. Basically, control tasks can
be classified in asynchronous and synchronous. Asynchronous tasks are data-
driven, because their elaboration starts when there are data to be consumed
and ends with data transfer. Synchronous tasks are, instead, time-driven, as
they are periodic and have deadlines to respect. Fig. 2 summarizes the possi-
ble communication types that we cover in our work, as collected from visual
servoing and robot control applications. The analyzed solutions involve the use
of swinging buffers for the communication between tasks operating at different
frequencies. A swinging buffer can be viewed as an advanced circular buffer us-
ing two or more shared memory arrays instead of the single array adopted by a
circular buffer. While the producer task fills up one of the buffers, the consumer
empties another one. When a task reaches the end of the buffer that it is using, it
starts operating from the beginning of another unused array. Since tasks works
on different memory locations, no lock for the mutual exclusion is needed to
access to the data on the buffer, but only for updating the read/write pointers
(indexes).

Producer
Consumer Asynchronous Synchronous

Asynchronous Asynchronous Message Passing
typical Producer-Consumer

Swinging Buffer Communication
Visual Servoing TO Robot Controller

Synchronous Swinging Buffer Communication
Robot Controller TO Visual Servoing

Swinging Buffer Communication
Sensor TO Robot Controller TO Motor

Fig. 2. Task communication types
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3 ASM Models of Tasks Synchronization/Communication

We use ASMs as precise mathematical form of ground models [3] for specifying
synchronization/communication patterns of robot control tasks. We, here, focus
on the swinging buffer mechanism.

As shown in Fig. 3, we extended the classical flowchart notation for control
state ASMs [3]. First, we use dashed lines for guards (or conditions) and actions
(or rules) to indicate that these elements require further refinement. The textual
notation {text} near a symbol is optional; it is useful to link the diagram to its
concrete ASM specification spec. Specifically: for a state symbol it denotes the
function name in the spec representing the underlying control state variable;
for a guard symbol it denotes the test predicate name in the spec; for an action
symbol it denotes the rule name in the spec implementing it.

Fig. 3. Control state notation

Fig. 4. Pattern notation

We also introduce two new symbols (see Fig. 4) to denote the concept of
pattern and of pattern instantiation blocks, respectively. These pattern symbols
are to be intended here as a placeholders for a piece of reusable ASM model, a
pattern machine (or pattern block), that can be validated and verified separately
and then re-used in other ASM specifications. Fig. 4 also shows the shape of
such a pattern machine that includes an entering arrow followed by (at least) an
action-state-condition block closed with a floating exit arrow. The circles repre-
sent the internal states of the pattern machine and it usually requires a (fresh)
control state variable ctl state. The entering arrow denotes always the evalu-
ation of the guard isUndef( ctl state) that is the mandatory condition that
enables the execution of the pattern machine. The floating exit arrow denotes
the exit point and implies always the mandatory update ctl state := undef.

Note that the most general form of composition of a complex ASM out of a
simpler one is by rule replacement, so a pattern machine is defined in terms of
a named rule1 and this rule will occur as subrule of the containing machine.

Swinging Buffer Reading/Writing Patterns. As an example, Fig. 5 shows
the pattern machine for an Asynchronous-Master-Writing operation. It implies

1 The rule name can be specified (see Fig. 4) near the pattern instantiation symbol.
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Fig. 5. Swinging Buffer - Asynchronous Master writing

first to write data on the shared memory directly (state Writing), without ac-
quiring the lock for the critical section. When the writing operation is terminated
(a certain period of time is passed), the swinging buffer indexes have to be up-
dated in order to signal to the consumer that new data are ready. In the next
state Managing Swinging Buffer, the asynchronous task try (by the iterative
flowchart part) to get the lock to the critical section for updating the indexes
by the action MANAGE SWINGING BUFFER. After the indexes are updated,
the control exits by releasing the lock (RELEASE SWINGING BUFFER).

Application Examples. Fig. 6 shows the ASM control state for the visual
servoing component in Fig. 1. The component’s task is asynchronous and it
is both consumer of images coming from the (synchronous) camera controller
component and a producer of commands for the (synchronous) robot controller.
It communicates with the two tasks through two swinging buffers and it is the
master. The complete AsmetaL specification is available in [1].

Trigger

Elaboration
Time Elapsed

READ 
NEW IMAGE

Elaborating

WRITE NEW 
SET-POINTS TO 

ROBOT 
CONTROLLER

{r_async_master_reading}

{r_async_master_writing}

Waiting_
Trigger ELABORATE

WAIT FOR TRIGGER

{trigger}

{tElapsed}

{action}

{action}

Fig. 6. Visual Servoing component

4 Future Directions

We want to collect in a library validated ASM models for recurring design solu-
tions of VS applications and use them as patterns for modeling and validating
typical control tasks of VS applications in a formal way, thus leading from the
abstract models to executable (C/C++) code by a series of refinement steps.
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Abstract. According to the vision of Design for Reliability, software
reliability has to be considered in all the activities within the software
development life cycle. In particular, writing formal specifications, like
other activities in software development, is error-prone, especially for
large-scale systems. This paper presents a reliability prediction method
for Abstract State Machines specifications. The method considers the
internal structure of an ASM by computing its reliability based on the
reliabilities calculated inductively along the call tree of the ASM rules
and the structure of the rule bodies.

Keywords: ASM-based specifications reliability, ASM and system
quality.

1 Introduction

Software risk comes mainly from its poor reliability, but how to effectively achieve
high reliability is still a challenge today [5]. The software reliability has to be
considered in all the activities within the software development life cycle.

Formal methods are more effective in achieving the completeness and accuracy
of the user’s requirements than informal specification methods. Formal specifica-
tion and analysis, model review, prototyping (simulation) and testing techniques
work together at different levels of software development to improve software re-
liability [6]. However, since writing formal specifications is error-prone, especially
for large-scale systems, techniques that improve software reliability also during
formal specification itself are required. Some methods for quality assurance of
formal specifications exist, mostly based on model review, testing and model-
checking (see, e.g., the work in [2]).

In this paper, we focus on reliability aspects and present a reliability prediction
method for Abstract State Machines (ASMs) [4] specifications. A few previous
works concerning quality assurance of ASM specifications exist (e.g., [2], and [8]).
The proposed method focuses on reliability and adopts a path-based approach
that considers the internal structure of an ASM and computes its reliability
inductively along the call tree of the ASM rules and the structure of the rule
bodies. This “predictive” analysis enables the solution of reliability problems at
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the specification level, when modifications are easier and cheaper to be imple-
mented. Our work contributes to the general goal of providing high confidence
reliability evidence for critical system’s parts formally specified through the use
of ASMs, thus achieving a quality specification-development process based on
the ASM formal method.

2 Modeling the Reliability of ASM Specifications

Inspired by the approach in [9], we here present a path-based reliability model of
an ASM. We consider only (single-agent) basic ASMs with no shared functions.
We include rule constructors for non-determinism (choose) and for unrestricted
synchronous parallelism (forall), and the sequential composition (seq) of Turbo
ASMs. We focus on crash failures, provoking the crash of the whole system,
and consider as ASM failures the violation of invariants or the yielding of an
inconsistent update set1. As in many existing approaches [5], we assume that
these failures are independent from each other.

ASM Rule Dependency Tree (RDT). Starting from the main rule of an
ASM M – except for the rules that are never used or are not reachable from the
main rule – it is convenient to represent its internal structure by means of a tree.
Indeed, the program of M is built up from basic rules (i.e. the skip rule, the
function update rule, and (macro) rule call) and by rule constructors (i.e., the
operators if, par, seq, choose, forall, and let). Thus, we define the RDT =
(V,E) of the ASM M , where the nodes V are labeled by the rules in the main
rule of M , and the edges E reflect the nesting relationship among these rules.
Basic rules are associated with leaf nodes, while rule constructors are associated
with internal nodes. We will say that a node j ∈ V is a direct descendant of
j′ ∈ V , if there is no node par rule in the path from j to j′.

Fig. 2 shows an example of ASM specification (using the AsmetaL notation
of the toolset ASMETA [3]) and its corresponding RDT. Unlabeled edges have
a probability value equal to 1. Note that an RDT can be defined for any named
rule, but we treat such trees as subtree of the “main RDT” by collapsing the
nodes corresponding to their invocations (i.e. rule call nodes).

Reliability Model Formulation. We define move a single computation step
of an ASM, which consists of firing the updates produced by the main rule, if
they do not clash. Since the main rule of an ASM has no parameters and there
are no free global variables in the rule declarations of an ASM, the notion of a
move does not depend on a variable assignment. A run of an ASM M is a finite
or infinite sequence s0, s1, ...si−1,si ... of states of the machine, where s0 is an
initial state and each si is obtained from si−1 by firing the main rule. As long as
the machine can make a move – from state si−1 to state si –, the run proceeds,
requiring the values of monitored functions from the environment for the next

1 Let us recall (see definition 2.4.5 in [4]) that consistency of updates guarantees that
the ASM locations are never simultaneously updated to different values. This fault
must be removed in order to have a correct ASM specification.
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machine move. If in a state the machine cannot produce a consistent update set
or no update set at all, then the state is the last state in the run. Because of the
non-determinism of the choose rule and of moves of the environment, an ASM
can have several different runs starting from the same initial state [4].

Since the reliability of a system depends on how it will be used (usage profile
or operational profile) [7], the ASM usage profile for the move movi depends on
the current state si−1. The reliability of the move movi of an ASM M , under
failures independence assumption, can be therefore defined as the product:

ReliM = ReliIe · ReliIM · ReliIIU (1)

where the reliability: 1) ReliIe (ReliIM ) is the probability that the functions mod-
ifiable by the environment (M) are correctly updated by the environment (M)
(read: they are updated by the environment (M) with values that do not violate
the invariants, if any, in which the functions appear); and, 2) ReliIIU is the prob-
ability that no inconsistent update is performed (i.e., the consistency of updates
is guaranteed).

Inconsistent Update Failures (IU). For the sake of space, below, we only
show how to compute ReliIIU . We describe the model formulation only in part
and provide, instead, an illustrative example.

Fig. 1. The IU Running Example

Model Formulation: Let I be the event “the input of the ASM is correct (i.e.,
the monitored functions are correctly updated by the env)”, and O the event
“no inconsistent update is ever performed”. Then the ReliIU reliability is:

ReliIU = P (I ∩O) = P (I)P (O|I) (2)
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where P (I) = 1 under failures independence assumption. P (O|I) is a function
(not shown here) of two main terms. The first term depends on the probability
that the child nodes of the root of the RDT perform an inconsistent update
among each other, and can be estimated, for example, using the formulas intro-
duced in [1] for the error propagation probability. The second term depends on
the probability P (Op|I) that the par rules (1 ≤ p ≤ |P|) do not perform incon-
sistent updates, where Op is the event “no inconsistent update is ever performed
by the par rule p”.

Similarly to the probability P (O|I), the probability P (Op|I) can be obtained
recursively visiting the RDT in postorder. P (Op|I) is a function (not shown
here) of two main terms. The first term is a function of the probability that the
child nodes of p perform an inconsistent update among each other. The second
term depends on the probabilities that its direct descendant nodes of type par

do not perform inconsistent update.

Example: Figures 2 shows an example of ASM module and its corresponding
RDT. By visiting the RDT in preorder, we have associated the labels to the
nodes, where the labels assume values i ∈ [1, 14] and p ∈ {1, 2, 3}. The prob-
ability P (Op|I) of the par rule p = 2 depends on: 1) the probability that its
child nodes (i.e., i = 8 and i = 14) perform an inconsistent update among
each other; and, 2) the probability that its direct descendant par node p = 3
does not perform inconsistent updates. �

3 Conclusions and Future Work

We presented a reliability model for ASMs. We intend to demonstrate the tool-
supportability of our method and experiment it on different ASM case studies.
We want also extend it by considering multi-agent ASMs and Turbo ASMs.
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Abstract. We present an idea how to simplify Gurevich’s parallel ASM
thesis. The key idea is to modify only the bounded exploration postu-
late from the sequential ASM thesis by allowing also non-ground com-
prehension terms. The idea arises from comparison with work on ASM
foundations of database transformations.

Keywords: Abstract State Machine, bounded exploration, synchronous
parallelism.

1 Parallel ASMs in the Light of the DB-ASM Thesis

The sequential ASM thesis refers to Gurevich’s seminal work on sequential al-
gorithms, which he defined by three simple, intuitive postulates [2]. The parallel
ASM thesis refers to the generalisation by Blass and Gurevich to (synchronous)
parallel algorithms [1]. In our own previous work we adapted the sequential ASM
thesis to characterise database transformations in general by a variant of ASMs
called DB-ASMs [3]. The core of the approach is similar to Gurevich’s seminal
work: provide a language-independent definition through a set of intuitive postu-
lates, define formally an abstract machine model, and prove that the postulates
are exactly captured by the machine model. On these grounds it was among
others possible to tailor the model to specific data model, e.g. XML [4].

In order to remove the restriction that only sequential algorithms are ex-
ploited in the DB-ASM thesis we generalised our previous work to the case of
synchronous parallel database transformations [5]. The key observations are the
following:

– In the DB-ASM thesis the sequential time postulate was modified to sup-
port non-determinism. An additional bounded non-determinism postulate
was added to restrict the non-determinism to choice among results of a
database query. If for the time being we concentrate on deterministic al-
gorithms, Gurevich’s sequential time postulate can be kept without change.
As a further consequence there would be no need for the bounded non-
determinism postulate.
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– In the DB-ASM thesis the abstract state postulate was modified to capture
the finiteness of databases by meta-finite structures. Furthermore, a back-
ground postulate as in the parallel ASM thesis was added. The use of meta-
finite states in the abstract state postulates is not more than a restriction
needed for databases, and the background postulates only makes the need for
certain values and operations obvious. Thus, if we want to remove the spe-
cific focus on database transformations, we have to keep Gurevich’s abstract
state postulate without change plus the background postulate.

– The key difference between the DB-ASM thesis and the sequential ASM
thesis lies in the extension of the bounded exploration witnesses, which in
the sequential ASM thesis could only consist of ground terms, whereas the
bounded exploration postulate in the DB-ASM thesis.

Thus, if we only modify the bounded exploration postulate as in the DB-ASM
thesis and add the background postulate, we obtain a different characterisation
of synchronous parallel algorithms.

2 A Modified Set of Postulates

Follwing our discussion in the previous section we can define (deterministic,
synchronous) parallel algorithms by four postulates: the sequential time postulate
1, the abstract state postulate 2, the background postulate 3, and a new bounded
exploration postulate 4, in which the notion of access term is generalised.

Postulate 1 (sequential time postulate). A parallel algorithm t is associ-
ated with a non-empty set of states St together with a non-empty subset It of
initial states, and a one-step transition function τt : St → St.

Postulate 2 (abstract state postulate). All states S ∈ St of a parallel
algorithm t are structures over the same signature Σt, and whenever (S, S′) ∈ τt
holds, the states S and S′ have the same base set B. The sets St and It are
closed under isomorphisms, and each isomorphism σ from S1 to S2 is also an
isomorphism from S′

1 = τt(S1) to S′
2 = τt(S2).

Postulate 3 (background postulate). Each state of a parallel algorithm t
must contain an infinite set of reserve values, truth values and their connectives,
the equality predicate, the undefinedness value ⊥, and a background class K
defined by a background signature VK that contains at least a binary tuple con-
structor (·), a multiset constructor 〈·〉, and function symbols for the following
operations: pairing and projection for pairs, empty multiset 〈〉, singleton 〈x〉, bi-
nary multiset union  , general multiset union

⊎
x, AsSet , and Ix (“the unique”)

on multisets.

For the bounded exploration postulate we only have to adapt the notion of access
term.
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Definition 1. An access term is either a ground term α or a triple (f, β, α) of
terms, the variables x1, . . . , xn in which refer to the arguments of f ∈ Σ. The
interpretation of (f, β, α) in a state S is the set of locations

{f(a1, . . . , an) | valS,ζ(β) = valS,ζ(α) with ζ = {x1 	→ a1, . . . , xn 	→ an}}.

Structures S1 and S2 coincide over a set T of access terms iff the interpretation
of each α ∈ T and each (β, α) ∈ T over S1 and S2 are equal.

Postulate 4 (bounded exploration postulate). For a parallel algorithm t
there exists a fixed, finite set T of access terms of t (called bounded exploration
witness) such that Δ(t, S1) = Δ(t, S2) holds whenever the states S1 and S2

coincide over T .

Example 1. Let us look at the example of graph inversion, which was also used
in [1] to motivate the postulates for parallel algorithms. Here we can assume two
relations in the signature Σ, the unary relation Node, and the binary relation
Edge. The algorithm can be simply expressed by the rule

forall x, y with Node(x) ∧Node(y)
do Edge(x, y) := ¬Edge(x, y) enddo

Here, T = {(Edge,Node(x)∧Node(y), true)} is a exploration boundary witness.

Example 2. Take the rather well known LCR algorithm for leader election in
a ring. Then we need a unary function UID, which maps node identifiers onto
numerical values, a unary function send, which does the same, an incoming
message function in that maps node identifiers to numerical values or unknown, a
unary function status that maps node identifiers the values unknown or leader ,
a static unary function val mapping node identifiers to numerical values, and a
constant N for the number of nodes in the ring.

In an initial state we have UID(i) = val(i), send(i) = val(i), in(i) =
unknown, and status(i) = unknown for all i.

Then the database transformation algorithm can be specified as follows:

forall i with 0 ≤ i ≤ N − 1
do par

in(i+ 1 mod N) := send(i) ‖
if in(i) �= unknown ∧ in(i) > UID(i)
then send(i) := in(i)
endif ‖
if in(i) �= unknown ∧ in(i) = UID(i)
then status(i) := leader

endif
endpar enddo

Here, the bounded exploration witness T contains three access terms (status,
α(i), true), (in, α(i), true) and (send, α(i), true), in which α(i) is defined as
i ≥ 0 ∧ i < N .
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3 An Expected Equivalence Result

As exemplified in [5] we expect that the proof of the DB-ASM thesis in [3] will
carry over the formalisation of parallel algorithms by the four postulates in the
previous section. That is, we expect to be able to prove the following:

Conjecture 1. Each ASM M defines a parallel algorithm t with the same
signature and background as M, and for every parallel algorithm t there exists
an equivalent ASM M with the same background.

Proof (idea). As in the corresponding proofs in [2,3,5] we expect that the key
will be to prove the following: For a parallel algorithm t and a state S ∈ St there
exists a rule rS such that Δ(t, S) = Δ(rS , S), and rS only uses critical terms.

It will be easy to see that for any update u = (f(a1, . . . , an), a0) ∈ Δ(t, S)
the values a0, . . . , an are critical and hence representable by terms involving
variables from access terms in T . The interesting case is that at least one of the
terms t0, . . . , tn is not a ground term. If none of terms t0, . . . , tn contain multiset
operators, then (�, a0) is represented by the assignment rule f(t1, . . . , tn) := t0.
Otherwise, without loss of generality, we can replace the terms t1, ..., tn of an
assignment rule f(t1, ..., tn) := t0 with the variables xt1 , ..., xtn , such that

seq par xt1 := t1 . . . xtn := tn endpar f(xt1 , ..., xtn) := t0 endseq

represents the update. If the outermost function symbol of term t0 is a multiset
operator ρ, , e.g. t0 = ρ(m) where m = 〈t′0| for all values a = (a1, ..., ap) in
y = (y1, ..., yp) such that valS,ζ[x1 �→b1,...,xk �→bk](ϕ(x, y)) = true〉, and x denotes a
tuple of variables among x1, ..., xk, then each assignment rule f(xt1 , ..., xtn) := t0
can be replaced by parallel assignments fi(xt1 , ..., xtn) := t

′
0 followed by an

application of the multiset operator to obtain f(xt1 , ..., xtn).
The rest of the proof should be almost the same as in [5].

As a consequence, the characterisation of (deterministic, synchronous) parallel
algorithms by the four postulates in the previous sections would be equivalent
to Blass’s and Gurevich’s set of postulates in [1] but simpler.
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Abstract. The Abstract State Machine (ASM) method proposes the
concept of ground models for analyzing a target system based on pseudo-
code-like descriptions for reasoning about system properties in terms of
state machine runs over abstract data structures. This highly iterative
process builds on stepwise refinement of ground models that evolve with
progressing understanding of functional system requirements. Usually, as
complexity increases, reorganization of a model’s internal structure helps
enhance its flexibility and robustness. While this approach is common
practice, the underlying principles are usually left implicit. In this paper,
we propose refactoring patterns to restructure abstract machine models
with the goal of improving their intelligibility and maintainability.

1 Introduction

Best engineering practice calls for a system to be modeled prior to construc-
tion, so one can rigorously inspect and reason about the key system properties,
making sure these are both well understood and properly established. This basic
principle applies to software systems as well. Software systems design builds on
abstract models that, implicitly or explicitly, reflect the underlying assumptions,
requirements, design decisions and conformance criteria, and serve as a reference
for implementation, integration, testing and beyond over the entire lifecycle of a
software system. Arguably, software models ought to be abstract, disregarding
any insignificant details as much as possible, but otherwise be precise and reliable
‘blueprints’ for construction, maintenance and further development. Precision is
an essential quality for resolving potential ambiguities and also to uncover design
flaws and weaknesses that may (and too often do) go unnoticed otherwise.

The Abstract State Machine (ASM) method [1] defines the concept of ground
model [2] for analyzing and reasoning about dynamic properties of a system based
on pseudocode-like descriptions in terms of state machine runs over abstract data
structures. A common characteristic of ground models is a direct correspondence
between the intuitive understanding of the system requirements to be modeled
and their abstract state machine representation, this way simplifying the task
of establishing correctness and completeness of a model through observation
and experimentation. With no way to prove, in a strict sense, correctness or
completeness of the requirements and/or the design, the transition from informal
and often ambiguous descriptions to mathematical representations in the initial
formalization step of a model poses a notorious problem.
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In practice, modeling is a highly non-linear process with feedback loops due to
progressing understanding of how to formalize abstract functional requirements.
A ground model evolves over time through stepwise refinement [2], and also as a
result of revisions aiming at enhancing its representation; once it has reached a
stable representation, additional changes and extensions notoriously occur due
to requirements creep over the course of the system development process, and
even beyond, due to future development activities. In light of model-driven sys-
tems engineering, a model keeps evolving over its entire lifecycle, all the way
from its inception to the retirement of the system it represents, thus, calling
for frequent reorganization. While reorganization of models is common practice,
the underlying principles are usually left implicit, albeit, there is a connection
to principles for reorganizing code. In software engineering, refactoring of soft-
ware is defined as “a disciplined technique for restructuring an existing body of
code, altering its internal structure without changing its external behaviour” [3]:

With refactoring the emphasis changes. You still do upfront design, but now
you don’t try to find the solution. Instead all you want is a reasonable solution.
You know that as you build the solution, as you understand more about the
problem, you realize that the best solution is different from the one you origi-
nally came up with. With refactoring this is not a problem, for it no longer is
expensive to make the changes.

In this paper we propose refactoring patterns to restructure ASM and CoreASM
[4] models with the goal of improving intelligibility and maintainability of formal
machine models in real-life system development. Building on established prin-
ciples for refactoring used in software development, we explore why and when
refactoring in formal modeling should occur, and also illustrate how to do it.

2 Pattern-Based Approach

This section describes a pattern-based approach to model-driven engineering
of software intensive systems using ASM ground modeling. Patterns possess a
rationale and tangibility that appeals to the human mind. They are practically
proven human-devised solutions to common problems. Researchers and engineers
do not invent patterns, but rather discover those already in use [5].

For proposing a set of patterns or a pattern language for a specific context, it
is necessary to study existing patterns and also to explore various successfully
solved examples in the given context. In this work, we have studied different
categories of software patterns such as Architectural [6], Design [7], Reengineer-
ing [8], and Refactoring [3] patterns so as to explore a set of appropriate patterns
that are more suitable for ASM models. In this ongoing research, we have iden-
tified a number of refactoring patterns (extract rule, inline rule, split rule, merge
rule, expand rule, rename rule, parameterize rule, and remove middle rule) for
ASM (or CoreASM) models. The following section provides a brief discussion of
two of the patterns, namely the extract rule and parameterize rule.
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2.1 Extract Rule Pattern

This pattern applies to a complex ASM rule with one or more coherent internal
fragments that each can be considered a separate ASM rule. Such a rule may
(and often does) diminish readability of the specification, introduce abstraction
level inconsistency, and lead to duplication of specification fragments.

Problems: More precisely, this pattern addresses the following problems.

1. Increased complexity: The rule is too long and contains too much information
which reduces its readability and increases the specification complexity.

2. Abstraction level inconsistency: The rule contains specification fragments
with different abstraction levels, or the specification as a whole has inconsis-
tent procedural abstraction with rules that mix different levels of abstraction.

3. Redundancy: The coherent specification fragments within this rule may have
already been repeated in other parts of the specification, which reduces main-
tainability of the specification and increases the possibility of errors.

Solution: The solution is to identify these coherent fragments within the ASM
rule and extract them as new ASM rules that are referred to in the original rule.
Figure 1(a) illustrates the main idea by means of an example of this pattern.

Extract 

Extract 

PhilosopherProgram ≡
if hungry(self) and not eating(self) then

if canPickBothChopsticks then
chopOwner(leftChop(self)) := self
chopOwner(rightChop(self)) := self
eating(self) := true
print self + “ starts eating.”

else
print self + “ is hungry but can′t eat.”

if not hungry(self) and eating(self) then
chopOwner(leftChop(self)) := undef
chopOwner(rightChop(self)) := undef
eating(self) := false
print self + “ stops eating.”

hungry(self) := flip

StartEating ≡
chopOwner(leftChop(self)) := self
chopOwner(rightChop(self)) := self
eating(self) := true
print self + “ starts eating.”

StopEating ≡
chopOwner(leftChop(self)) := undef
chopOwner(rightChop(self)) := undef
eating(self) := false
print self + “ stops eating.”

"Start Eating"

"Stop Eating"

StartEating ≡
chopOwner(leftChop(self)) := self
chopOwner(rightChop(self)) := self
eating(self) := true
print self + “ starts eating.”

StopEating ≡
chopOwner(leftChop(self)) := undef
chopOwner(rightChop(self)) := undef
eating(self) := false
print self + “ stops eating.”

Parameterize 

a

b

Eating(owner : Owner; isEating : Boolean) ≡
chopOwner(leftChop(self)) := owner
chopOwner(rightChop(self)) := owner
eating(self) := isEating
if isEating then

print self + “ starts eating.”
else

print self + “ stops eating.”

Fig. 1. a) Extract Rule Pattern, b) Parameterize Rule Pattern
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2.2 Parameterize Rule Pattern

This pattern applies to ASM rules that are basically identical but apply different
terms or constants that may be considered parameters of one and the same rule.

Problem: The pattern mainly addresses the problem of redundancy where the
core concept specified by the rules is repeated in the specification, which in turn
reduces maintainability and increases vulnerability to errors.

Solution: The solution is to 1) introduce a new rule Rp(...) that captures the
essential idea behind these rules into a parameterized ASM rule, and 2) replace
all calls to the these rules with calls to Rp with the specific terms and constant
values passed as arguments. Figure 1(b) illustrates the main idea by means of
an example of the Parameterize Rule pattern.

3 Concluding Remarks

Ground modeling is an effective instrument for turning abstract requirements
into precise formal models for requirements analysis and design. Building ground
models is a non-linear process. Examples of such models in the literature typically
present the final ‘product’ but virtually never show any intermediate models
produced on the way to the final one. The work presented here focuses on the
principles of restructuring models in a more systematic, pattern-based manner,
resembling the use of refactoring in software engineering. We are working on a
comprehensive description of a pattern language for refactoring ASM models, and
a framework for combining refinement and refactoring. Our goal is to integrate
such patterns as an advanced feature into the CoreASM tool environment.
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Abstract. Including provision for continuously varying behaviour as well as dis-
crete state change is considered for Event-B. An extension of Event-B is sketched
that accommodates continuous events (called pliant events) in between familiar
discrete events (called mode events).

1 Introduction

In this short paper, we briefly sketch an extension of Event-B that accommodates gen-
uinely continuous behaviour (as well as discrete state changes). The motivation for this
is to enable Event-B to engage better with problems exhibiting such behaviour in an
essential way, as is increasingly needed in applications. A fully worked out presenta-
tion, including more extensive discussion of semantics, proof obligations for machine
consistency and for refinement, and consideration of finegraining and coarsegraining
issues, will appear elsewhere. We assume familiarity with Event-B.

2 Extending Event-B with Continuous Behaviour

To adequately capture behaviour over real time, we model time as an interval T of the
real numbers R, with a finite left endpoint to represent the time at which the initial state
of the model is created, and with a right endpoint which is finite or infinite, depending
on whether the dynamics is finite or infinite. Now, the values of all variables become
functions of T . By convention, T partitions into a sequence of left-closed right-open
intervals, 〈[t0 . . . t1), [t1 . . . t2), . . .〉, the coarsest partition such that all discontinuous
changes take place at some boundary point ti. We have two kinds of variable. Mode
variables only change discontinuously between elements of a discrete type. These are
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just like traditional B variables, and restricting to these recovers traditional Event-B.
Pliant variables have types which include topologically dense sets, and which can
evolve both continuously and via discrete changes. In a typical interval [ti . . . ti+1), the
mode variables will be constant, but the pliant variables will change continuously. How-
ever, continuity alone still allows for a wide range of mathematically pathological be-
haviours, so we make the following restrictions:

I Zeno: there is a constant δZeno, such that for all i needed, ti+1 − ti ≥ δZeno.

II Limits: for every variable x, and for every time t ∈ T , the left limit limδ→0 x(t− δ)

written
−→
x(t) and right limit limδ→0 x(t + δ), written

←−
x(t) (with δ > 0) exist, and for

every t, x(t) =
←−
x(t). [N. B. At the endpoint(s) of T , any missing limit is defined to

equal its counterpart.]

III Differentiability: The behaviour of every pliant variable x in the interval [ti . . . ti+1)
is given by the solution of a well posed initial value problem D xs = φ(xs, t)
(where xs is a relevant tuple of pliant variables and D is the time derivative). “Well
posed” means that φ(xs, t) has Lipschitz constants which are uniformly bounded
over [ti . . . ti+1) bounding its variation with respect to xs, and that φ(xs, t) is mea-
surable in t.

With I-III in place, the behaviour of every pliant variable is piecewise smooth, with the
smooth variation being described by a suitable differential equation (DE).

As well as two kinds of variable, we have two kinds of event. Mode events are like
traditional Event-B events. They describe discontinuous changes, though they can in-
volve both mode and pliant variables. Their syntax is identical to traditional Event-B
events, except that before-values are to be interpreted as left limits (at the moment ti
that the event occurs), and after-values are to be interpreted as the corresponding right
limits. For example, a straightforward generic mode event, decorated with this limit
information, could be written in the usual notation as:

StdEv
WHEN grd(−→u ,

−→
i )

ANY ←−u
WHERE BApred(−→u ,

−→
i ,←−u )

THEN u := ←−u
END

We also have pliant events. These involve changes to pliant variables alone, and they
describe continuous change. While a mode event is a single before-/after-value pair,
a pliant event is a family of before-/after-value pairs, parameterized by points in time
falling within the relevant time interval [ti . . . ti+1). For every member of this family,
the before-value is always the value at ti, while the after-value is the value at t, for t in
the open interval (ti . . . ti+1). Thus the change from before- to after-value does not take
place instantaneously. Pliant events need new syntax, for which we give two variants:

PliEv
STATUS pliant
WHEN grd(u(tL(t)))
WHERE BDApred(u(t), i(t), t)
SOLVE DE(u(t), i(t), t)
END

PliEv
STATUS pliant
WHEN grd(u(tL(t)))
ANY u(t)
WHERE BDApred(u(t), i(t), t)
THEN u := u(t)
END
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In the left hand syntax, we specify a differential equation to be solved. In the right hand
syntax we just specify the continuous behaviour required directly, for those cases where
this is known (since differentiating the behaviour, only to have to solve the resulting DE
for it immediately afterwards is obviously wasteful).

Much of the structure of these two cases is similar, and we can discuss both of the
cases together to begin with, starting from the top. After the header line we have the
‘STATUS pliant’ line. This introduces a new event status, the pliant status, signaling to
any tool processing the syntax that a pliant event is being defined.

In the remainder of the structure we see the notation L(t) = max{i | ti ≤ t}, which
has a counterpart R(t) = min{i | ti > t}. These map any time t to the left and right ends
of the interval containing t during a run, and are used to refer generically to the initial
and final time values of the interval during which the continuous behavour is specified.

The next line is the ‘WHEN’ line, and contains any required facts about the initial
values of the relevant state variables when the pliant transition starts; it also contains
any additional guard information. Unlike the guard of a mode event, it cannot depend
on any input that the pliant event needs, since any such input will last throughout the
interval (tL(t) . . . tR(t)), and so its value at the time instant tL(t) has measure zero; this is
of insufficient weight to influence the start of a pliant event.

At this point, the two structures start to diverge. On the left, for the case governed by
a differential equation, we have a ‘WHERE’ line, which contains a before-during-and-
after predicate BDApred. Since this case is predominantly governed by the differential
equation, there is often little or nothing for the BDApred to specify, so it will often
be very simple, or can be omitted entirely. On the other hand, if there are additional
constraints that need to hold during the pliant event, such as facts concerning specific
values of time, deadlines, or anything else, such constraints can be placed here.

The next line is where the action is, since it includes the differential equation in
the ‘SOLVE’ clause. The differential equation specifies what the values of the state
variables are to be during the interval of interest, but it does so indirectly. In general,
the DE depends on the current values of the state variables and on the inputs which are
received through the course of the interval of interest. That completes the description of
the left hand case.

On the right, we pick up at the ‘ANY’ line. This works a lot like the ANY clause
of a mode event, but it (typically) names a family of after-values that is time depen-
dent, defined over the open interval (tL(t) . . . tR(t)). The named values are utilised in
the before-during-and-after predicate BDApred. Unlike the previous case, where the
BDApred predicate is typically simple or absent, this time, the BDApred predicate is the
entity that actually does the hard work of specifying the after-values, so, unlike previ-
ously, it will be nontrivial. The after-values are actually assigned in the ‘THEN’ clause
on the next line, just as for normal Event-B. As usual, if the expressions to be assigned
are known explicitly, then the ANY and WHERE clauses can be omitted, and the re-
quired values can be assigned directly. All this is therefore just like normal Event-B,
except that everything is parameterised by time. This completes the description of the
other case.

A continuous Event-B machine, with mode and pliant events as described, is said
to be well formed iff every mode transition enables a pliant transition (but no mode
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transition) on completion, every non-final pliant transition enables a mode transition
during its execution (which then fires, preempting the pliant transition), and a final
pliant transition either continues indefinitely (non-termination) or becomes undefined
at some point (finite termination).

A run of such a machine starts with an initial mode transition which sets up the
system initial system state, and then, pliant transitions alternate with mode transitions.
The last transition (if there is one) is a pliant transition (whose duration may be finite or
infinite).

Since time has a different character from other variables, if time is mentioned explic-
itly in a system model, then the name of the time variable has to be indicated to a tool
such as Rodin. A convenient way of doing this is to have a ‘TIME t’ declaration. The
value of time may be linked to the rest of the system model in the INITIALISATION
event which may then be given a guard such as ‘WHEN t = 0’.

An alternative approach to time utilises one or more clocks. The difference between
a time variable and a clock variable is that a clock may run fast or slow with respect
to (real) time, so its derivative must be specified during pliant events that use it. It can
also be reset by mode events (specifically during initialisation). Clock variables can be
declared as ‘CLOCK clk’.

3 Discussion, POs

Above, we sketched the essentials of an extension of Event-B intended to cope with
genuinely continuous behaviours, such as are increasingly needed in the hybrid and
cyber-physical applications being developed today. That so few of these are developed
using a refinement mindset is the main reason for considering Event-B here.

As with conventional Event-B, the semantics is expressed via proof obligations,
which we cover briefly now. Events have to be feasible; mode events via the usual
PO, pliant events via a PO that asserts a solution to the DE in some interval. Events
have to preserve the invariants; mode events as usual, pliant events continuously over
the course of the DE solution. Alternation between mode and pliant events is handled
by POs that demand the relevant disjunctions of guards under appropriate conditions.

Properly defined refinement between machines is crucial of course. Explicit POs
become much simpler if mode events must be refined by mode events (in the usual
way), and if pliant events must be refined by pliant events (in a way that preserves the
passage of time, and maintains the invariants during the course of the two pliant events).
Relative deadlock freedom may be demanded of the mode events, and separately, of the
pliant events.

One issue not present in conventional Event-B, is that relatively long lived pliant
events may need to get broken up into short lived ones, in particular, when modeling
the implementation of continuous behaviour by digital means utilising a high sampling
frequency. To deal with this we can introduce suitable skips that momentarily interrupt
the long lived pliant event. POs can be designed so that such skips do not alter the
dynamics of the system, while nevertheless breaking up a long transition into short
steps that can later be refined in the usual way.
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Abstract. In this paper we propose an approach to verify PLC pro-
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1 Introduction

In many industries, such as mass transport and energy, it is very common to
use PLCs in control applications. Those applications are mostly programmed
according to IEC 61131-3 [1], an international standard that specifies the five
standard PLC programming languages, namely: LD (Ladder Diagram) and FBD
(Function Block Diagram), graphical languages; IL (Instruction List) and ST
(Structured Text), textual languages; and SFC (Sequential Function Chart),
that shows the structure and internal organization of a PLC. It is not rare that
a variation of such languages is employed too.

As the complexity of the applications increases, and as various are safety
critical, it is important to ensure their reliability. Formal methods are a mean
to fulfill this requirement, as testing and simulation (the de-facto method in
many branches) can left flaws undiscovered. However, it is difficult to integrate
formal methods in the industrial process since most control engineers are not
familiarized with formal verification.

Some recent works have been trying to integrate formal methods and PLC ver-
ification, using different approaches. In [7], the authors created a new language
combining ST and Linear Temporal Logic, ST-LTL, to ease the use of formal
verification by control engineers. [6] presents a method to verify applications
using Safety Function Blocks with timed-automata through model-checking and

� Project supported by ANP. CNPq grants 560014/2010-4 and 573964/2008-4
(National Institute of Science and Technology for Software Engineering—INES,
www.ines.org.br).
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simulation. A model-driven engineering approach is used in [5] to generate mod-
els in a FIACRE language from LD programs. To this date, these approaches
are concerned only with parts of the IEC 61131-3 standard.

Our approach already handles two of the five languages of the standard,
namely SFC and ST, and we are working to extend it to be fully compliant.
To do so, we use the PLCopen [3] standard, which provides an interface repre-
senting all the IEC 61131-3 languages in an XML-based format. Another goal of
our approach is to be capable of verifying legacy programs in numerous different
PLCs. We have built an intermediary model based in the PLCopen interface that
is loaded from the PLC programs and then is used to automatically generate a
B model.

B [2] is a formal method that can be used to specify systems and through proof
obligations demonstrate its correctness according to the specification, avoiding
state-explosion problem. It is practical and competitive to develop safety-critical
systems, with the correct methodology and tools. Using the B method we can
verify safety constraints through the proof obligations and also to check struc-
tural issues, such as deadlock freedom, using animation tools such as ProB [4].
Thus, we increase the confidence in the PLC applications and facilitate the use
of formal methods in the industry.

Next section presents details on the different phases of our method as well as
an example. In the end we have some discussions and future work.

2 The Method

The method we are proposing consists of three main phases:

1. translate the information in the PLC programs into an intermediary model
(from now on called “PLC model”), either from a PLC program or from an
XML file in the PLCopen standard;

2. generate from it a B model that makes possible to check the structural and
safety properties of the project;

3. and at last complete the formal model with these safety properties, derived
from the project requirements (manually, for now).

2.1 Towards the PLC Model

The PLC model may be generated either directly from an XML in the PLCopen
standard or from the programs in some hybrid language, based on the IEC 61131-
3 standard. Such languages are common as adaptations to specific domain PLCs
may be necessary.

We projected a compiler to analyze the programs; it deals with the elements
of the standard languages and may be customized to any existing differences,
to accommodate any new language. This way we can deal with legacy programs
that are not strictly standard compliant. To deal with XML, we use a reader
module to load the PLC model along with the uncustomized compiler.

Once the PLC model is constructed we are able to work independently from
the PLC programs or the PLCopen to generate the B specification.
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2.2 Generation of the B Model

A good architecture is essencial to generate a good model, as well as to define
which information from which language will be responsible for which elements
of the B model, since it is common to have PLCs using more than one language.
As so far we are working only with SFC and ST, our architecture can handle
just the elements of these two languages. When we deal with the elements of the
other languages the architecture will be adapted to include them.

The architecture of the model is depicted in figure 1. This model represents
a PLC that process signals required by a control application, having them as
inputs. The PLC outputs are treated as local variables; it is no loss of generality to
deal with them like that since we are dealing with the PLCs only as independent
components. The safety requirements will concern mostly these outputs.

Fig. 1. Shows the architecture of the B model generated by a SFC + ST PLC

For the PLC component, the operations are derived from the SFC steps, as
whether or not they have preconditions is based in the SFC transitions. The
body of these operations and the content of their preconditions are the result
of the translation of ST statements. The operations of the Functions machine
are also constructed with the translated ST statements.

Figure 2 shows a little example of the generation of the B model. Due to space
limitations, we do not present the whole process.

The next step is to add safety requirements. Since the PLC programs
do not represent such constraints explicitly, they are manually extracted from
the project requirements and inserted into the model as invariants of the

Fig. 2. Example shows a SFC step, its transition and its action (in ST) as base for the
generation of a B operation
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refinement, conditions that must always hold as the PLC actions are per-
formed. For example, the requirement “a train must be stopped and in the plat-
form to open its doors” is inserted as the invariant: (ok opening = TRUE) ⇒
((train stopped = TRUE) & (train in platform = TRUE)). Tools like AtelierB
can perform automatic verification of their consistency and point out where lies
any problem, guiding its treatment.

The formal model can also be evaluated with an animation tool like ProB,
making possible to model check the model to verify structural properties (dead-
lock, liveness, LTL conditions...).

3 Discussions and Future Work

We have overviewed a method to carry out formal verification of the languages
of the IEC 61131-3 standard for PLC programming through the automatic gen-
eration of a B specification. There is still much work to be done, but the results
so far are quite satisfactory.

Future work lies most in expanding the generation of the B model to the
other language. The safety constraints are still manually derived from the re-
quirements, but we plan to automatize this process. We are about to start a
case study with the company ClearSy, strongly involved with the B method and
safety critical systems engineering, in a real project in the railway field to execute
problem diagnosis in high speed trains.
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Abstract. Event-B is a formal method that allows flexible modelling
and refinement of systems. However, it is hard to convince developers to
adopt it because they are not used to mathematical models and it doesn’t
provide any practical refinement method. On the other hand, UML has
become the de facto standard for software modelling since it provides an
easy graphical notation and nowadays it is supported by many practical
process such as ICONIX. In this paper we propose a method for Event-B
refinement based on a diffused UML-driven development process. So far,
we have defined the steps of the method and the translation of most of
the artifacts presented in ICONIX to Event-B.

Keywords: Event-B, refinement, UML, ICONIX.

1 Introduction

Event-B [1] is a state model-based formal method for modelling systems based
on predicate logic and set theory where the refinement mechanism and the con-
sistency checking are guaranteed by mathematical proof obligations. However,
its use is not a common practice because mathematics are not well understood
by regular systems analysts. Furthermore, Event-B doesn’t provide a practical
refinement method with a well defined set of steps. So, the developers get con-
fused about some questions like: how do they should start the model?, what is
the next step?, when should they add the invariants?, etc.

On the other hand, the majority of the developers works better with visual
languages. So, the Unified Modelling Language (UML) has become the lingua
franca of software development and has been supported by a lot of process and
tools around the world. One of the most known and practical UML-based process
is ICONIX [2], which has some important features, such as the use of only four
(Use Cases, Robustness, Sequence and Class) diagrams and a very simple step-
by-step to make the refinement, with regular verification checkpoints.
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In this work we present an approach for the integration of ICONIX with
Event-B in order to provide a practical, visual and formal refinement method.
More precisely, we show how the steps/stages of the ICONIX process can be
used as a refinement guide. In the next section we explain our approach (a work
in progress) in more details, showing the architecture overview and the main
tasks of each phase. In section 3, we show some related works, and finally we
reserve the last section for further discussions and the ongoing work.

2 From ICONIX to Event-B

As we can see in Figure 1, our proposal uses the first three phases of the ICONIX
process, with the incorporation of an artifact in each one to describe the invari-
ants, as a refinement method for Event-B.

Fig. 1. The overview of our proposal

The first phase (Requirements Analysis) starts with the design of the Domain
Model, which identifies the main concepts of the problem domain and their rela-
tions from extracting the nouns and noun phrases of the requirements document.
After that, the invariants for the associations of the Domain Model are defined.
The first stage ends with the development of informal interface prototypes (GUI
Storyboard) that are used as a starting point to identify and describe the use
cases textually, facilitating the design of the Use Cases Diagram. Finally, three of
these artifacts (Domain Model, Invariants and Use Cases Diagram) are formally
translated to Event-B (the former is mapped to sets and their relations and the
latter is mapped to events) in order to compose an Event-B Abstract Model.
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After the translation of all these three artifacts, the developer can use the
Rodin Platform [3] to make the automatic verification of consistency among
them. If there is a violation of any proof obligation that was generated during
the translation, the developer must perform a review of the requirements and
fix the artifacts issues. If no error is detected, the next stage can be started.

The second phase (Analysis and Preliminary Design) starts with the robust-
ness analysis. This activity requires the examination of the narrative of the tex-
tual description of a use case and the identification of a first set of objects that
participate in it, in order to ease the refinement of the abstract model and the
migration to the next stage. The output artifact of this task is the Robustness
Diagram, which is a hybrid between an Activity Diagram and a Class Diagram.
After the design of all Robustness Diagrams (one per use case), new classes and
attributes are discoveries, which are used to update the Domain Model. After
that, the invariants for the attributes and new class associations of the updated
Domain Model are described. Finally, these artifacts are formally translated to
Event-B in order to compose the first refinement of the Event-B Model.

After the translation of all these artifacts, the developer can follow the script
again and use the Rodin to check the consistency among these models as well as
the correctness of the refinement. If there is a violation of any proof obligation
or refinement rule that was generated during the translation, the developer must
provide a review of the preliminary design and adjust the artifacts problems. If
no error is identified, the next stage can be started.

The third phase (Detailed Design) starts with the design of the Sequence
Diagrams, which are derived from the Robustness Diagrams and used to refine
the behaviour of the Control classes, distributing methods to the Entity and
Boundary classes. After that, the Domain Model is updated and refined with the
methods that were allocated to each class, and transformed into a Class Model.
The invariants, as well as guards (pre-conditions) and actions (post-conditions)
for the methods of the Class Model, are defined. Finally, these artifacts are
formally translated to Event-B in order to compose the second refinement of the
Event-B Model.

After the translation of all these artifacts, the developer can use again the
Rodin tool to make the formal verification and check the consistency among
these artifacts and the correctness of the refinement. If there is a violation of
any proof obligation or refinement rule, the developer must provide a critical
review of the detailed design. If no error is detected, the next stage can be
started, which can be to start coding or to continue for next refinement.

It is important to emphasize that the translation of the Domain Model, the
updated Domain Model and the Class Model have the same mapping to Event-B
presented by the UML-B [4]. The invariants (which are included during the pro-
cess) are represented directly in the Event-B notation for now. The translation
of the Use Case and Robustness Diagrams have already been defined implicitly
via the equivalence of their meta-classes with elements of the Event-B language.
The translation of the Sequence Diagrams is still being developed. Due to the
limited space, we will not show the details of these translations.
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3 Related Work

There are some works that also propose the use of UML diagrams as front-end
for a formal notation and a UML-based process as a guideline to the refinement.
Runde et al [5] and Younes and Ayed [6] present formal methods based on
Sequence and Activity Diagrams, respectively. However, these approaches do
not show how to represent the system static part. Chen et al [7] and Ahrendt et
al [8] present sound and formal UML-based methods. However, these approaches
are not based on any known methodology, which does not encourage their use.

4 Discussions and Ongoing Work

In this paper we have proposed an approach for using the phases of the ICONIX
process as a guideline to an Event-B refinement in order to provide a practical
and visual method and convince the developers to adopt the formal modelling
approach. To achieve this goal completely, we need to finish the mapping from the
Sequence Diagram to Event-B and elaborate the proof obligations and refinement
rules that are needed. We are also cogitating the use of a visual language for the
invariants representation in order to have a full graphical method.
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Abstract. The Event-B method is a formal approach for reliable
systems specification and verification, being supported by the Rodin
platform, which includes mature plugins for theorem-proving, model-
checking, or model (de)composition features. In order to complement
these techniques with test generation and state model inference from
Event-B models, we developed a new feature as a Rodin plugin. Our
plugin implements a model-learning approach to iteratively construct
an approximate automaton model together with an associated test suite.
Test suite optimization is further applied according to different optimiza-
tion criteria.

1 Introduction

This short tool paper presents the implementation in the Rodin platform of the
general method ”learn-and-test” described in our previous paper [1]. For a given
Event-B model [2], the method constructs, in parallel, an approximate automa-
ton model and a test suite for the system. The approximate model construction
relies on a variant of Angluin’s automata learning algorithm [3,4], adapted to fi-
nite cover automata [5]. A finite cover automaton represents an approximation of
the system which only considers sequences of length up to an established upper
bound �. Crucially, the size of the cover automaton, which normally depends on
�, can be significantly lower than the size of the exact automaton model. In this
way, by appropriately setting the value of the upper bound �, the state explosion
problem normally associated with constructing and checking state based models
can be addressed. The proposed approach also allows for a gradual construc-
tion of the model and of the associated test suite (reusing information between
iterations), which fits well with the central notion of refinement in Event-B [2].

2 Tool Overview

A bird’s eye view of the tool is depicted in Fig. 1. The tool takes as input an
Event-B model M and a finite bound � and outputs a finite cover automaton
approximating the set of feasible sequences of events of M of length up to � and
a test suite, i.e. a set of sequences including test data that make the sequences
executable. The core procedure of ”Model Learning” generates a cover automa-
ton using a variant of automata learning from queries [3]. Simply put, a cover
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Fig. 1. Overview of the tool features

automaton for a finite set of words of length up to �, is an automaton accepting
all these words but also sequences that may be longer than �. The cover automa-
ton can be incrementally improved by providing more information according to
the three loops in the figure. Thus, one can: (a) use the ”next refinement” of
the Event-B model that contains more information; or (b) ”provide a counterex-
ample” by manually or automatically providing sequences that are feasible in
the Event-B model, but are not in the cover automaton or vice-versa (the coun-
terexamples are used in the learning procedure); or (c) increase the bound �
and implicitly feed the learning engine with longer sequences which again will
increase the precision of the finite state approximation. At any point in time, one
can use the constructed cover automaton to generate tests that exercise differ-
ent sequences through the Event-B model. There are many existing methods for
test generation from finite state models. In our case, we use internal information
from the learning procedure, which maintains a so-called ”observation table”
that keeps track of the learned feasible sequences. Sets of feasible sequences in
this table will provide the desired test suite. Note that during the feasibility
check of the sequences in Event-B, test data are also generated. The implemen-
tation of feasibility check uses a constraint-solver for Event-B available in ProB
[6]. The obtained test suite satisfies strong criteria for conformance testing (usu-
ally required in the embedded system domain) and may be large. If weaker test
coverage like state-, transition- or event-coverage are desired, optimization algo-
rithms can be applied on the test suite according to the rightmost loop in Fig.
1. We implemented different optimizations as proposed by one of the co-authors
in [7] using the jMetal framework which is based on genetic algorithms.

Our tool is a Rodin plugin implemented in Java (with 5,500 LOC)
and can be called on any Event-B model with several levels of re-
finements. Installation instructions and screenshots can be found at:
http://wiki.event-b.org/index.php/MBT_plugin. Ongoing extensions
of the tool tackle not only refinement, but also different types of Event-B
decompositions. Experiments with different Event-B models (publicly avail-
able on the DEPLOY repository - http://deploy-eprints.ecs.soton.ac.uk)

http://wiki.event-b.org/index.php/MBT_plugin
http://deploy-eprints.ecs.soton.ac.uk
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event ReceiveTC
any tc
where 

grd1: tc ϵ TC \ RecTC
then 

act1: RecTC := RecTC ᴜ {tc}
end

event TC_Valida�on_Ok
any tc
where 

grd1: tc ϵ RecTC \ (TC_Val_Ok ᴜ TC_Val_Fail)
then 

act1: TC_Val_Ok := TC_Val_Ok ᴜ {tc}
end

event TCValid_GenerateData
any tc
where 

grd1: tc ϵ TC_Val_Ok \ TCVal_GenData
grd2: TC_Type(tc) ϵ {HK_on_TC, SCI_on_TC}

then 
act1: TCVal_GenData := TCVal_GenData ᴜ {tc}

end

event TCValid_ReplyDataTM
any tc
where 

grd1: tc ϵ TCVal_GenData \ TCVal_ReplyDataTM
then 

act1: TCVal_ReplyDataTM := TCVal_ReplyDataTM ᴜ {tc}
end

event TC_Valida�on_Fail
any tc
where 

grd1: tc ϵ RecTC \ (TC_Val_Ok ᴜ TC_Val_Fail)
then 

act1: TC_Val_Fail := TC_Val_Fail ᴜ {tc}
end

event INITIALISATION
act1: RecTC := Ø
act2: TC_Val_Ok := Ø
act3: TCVal_GenData := Ø
act4: TCVal_ReplyDataTM := Ø
act5: TC_Val_Fail := Ø

end

Fig. 2. The events of the abstract machine M0 in BepiColombo Event-B model [8]

Fig. 3. The generated cover automaton for M0 and � = 4

produced good results even for large models like BepiColombo [8] (whose third
refinement exhibits 17 events and 18 variables that could induce a large explicit
state space for the model). This example is discussed below.

3 The Tool Applied to an Example

An Event-B model has a context providing the data types and an abstract state
machine providing the dynamic behavior. The machine has a set of events, which
are the first class citizens of Event-B, that operate on a set of global variables.
The modeling complexity is addressed using refinement as a mechanism to con-
struct a series of more abstract models before reaching a very specific one. For
instance, in a refinement step, new variables and new events can be introduced
and the existing events can be made more specific.

The BepiColombo aerospace mission is one of the case study used in the DE-
PLOY project (http://deploy-project.eu). In [8], a part of BepiColombo is
modeled in Event-B using several levels of refinements (combined with atomic
and model decompositions which we do not address here). The main goal of
the system is specified at a very abstract level, with a machine M0. The system
specification is concretized through three further refinement levels, M1, M2 and
M3. Fig. 2 presents the five events of M0, plus a special event called ’Initiali-
sation’. Each event has local parameters preceded by the keyword any, a guard
preceded by the keyword where, and an action code preceded by the keyword

http://deploy-project.eu
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then. There exist also global variables (like RecTC of type Set), that are initial-
ized in the event ’Initialisation’. Once the ’Initialisation’ event is executed, the
modeled system moves from one state to another by choosing one event with its
guard true and executing its action code.

Given the BepiColombo Event-B model and an upper bound �, we incremen-
tally construct finite cover automata that will eventually cover all executable
event sequences of length less than or equal to �. Fig. 3 (plotted by our tool)
illustrates the cover automaton for the first machine M0 and � = 4, minimal by
construction, having the initial state marked with q0, transitions labeled with
event names and final states marked with a double circle. Starting from the
state q0, the event sequences can be identified by following the transitions with
the purpose of reaching the automaton final states, representing a subset of the
communication scenarios the spacecraft system may encounter.

A conformance test suite heavily exercising the system would consist of 17
test cases. Conformance testing is a very powerful test type since it covers all
states and all transitions of the automaton and also checks each state and the
initial and destination states of each transition. However, for a lighter test cov-
erage like event coverage, a test suite consists of only 2 test cases (of length up
to 4): (a) ReceiveTC(tc1), TC Validation Ok(tc1), TCValid GenerateData(tc1),

TCValid ReplyDataTM(tc1) and (b) ReceiveTC(tc2), TC Validation Fail(tc2).
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Abstract. The Event-B method is a formal modelling approach; our
interest is the final step, of generating code for concurrent programs, from
Event-B. Our Tasking Event-B tool integrates Event-B to facilitate code
generation. The theory plug-in allows mathematical extensions to be
added to an Event-B development. When working at the implementation
level we need to consider how to translate the newly added types and
operators into code. In this paper, we augment the theory plug-in, by
adding a Translation Rules section to the tool. This enables us to define
translation rules that map Event-B formulas to code. We illustrate the
approach using a small case study, where we add a theory of arrays, and
specify translation rules for generating Ada code.

1 Introduction

Using Event-B [1] and Tasking Event-B, we have the ability to model and imple-
ment single and multi-tasking software systems, see [2]. It may be the case that
we need some new mathematical type, and in many cases, the type will need to
be implemented. In this paper we describe, using an example, how new types can
be added to an Event-B Theory. We then describe the tool’s new translation rule
feature, which we use to define translation rules for generating Ada code. The
rules describe the mapping from Event-B types, and mathematical notation, to
implementable code fragments. This work has been undertaken as part of the
EU DEPLOY [4] project.

The basic structural features of Event-B are contexts and machines. Contexts
describe the static features of a system using sets and constants. Machines are
used to describe the variable features of a system in the form of state variables and
guarded events; system properties are specified using the invariants clause. The-
ories for Rodin are described in [3] where we introduce mathematical extensions;
with this, we can add new types, operators, and rules. Rules, such as rewriting,
compare a source against patterns defined in the theory rule-base.When a pattern
matches with the source, the source is replaced by new elements, as determined
by the pattern. In the work described in the paper, we add the ability to specify
translation rules for code. This uses pattern matching, in a similar way; but, in-
stead of initiating a substitution of new elements in place of old, we generate text
for use in the main code generator. To facilitate the specification of new rules one

J. Derrick et al. (Eds.): ABZ 2012, LNCS 7316, pp. 365–368, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



366 A. Edmunds et al.

can introduce Type Parameters, and specify Datatypes. Users can also introduce
new operators and theorems. Proof obligations are generated to verify the sound-
ness of the rules, and the prover is augmented with the new rules, when the theory
is deployed. In our work, we extend the theory with translator rules.

1.1 An Array Theory

The first step is to create a new theory of arrays, we introduce an array of type
T. The array is a new operator, which takes a powerset of type T as an argument.
The array has the following definition, using set-notation, where n is the length
of the array.

array(s : P(T )) 	 {n, f ·n ∈ Z ∧ f ∈ 0 .. (n− 1)→ s|f}

Since we have a low-level specification we consider implementation issues: gener-
ally, arrays are fixed-length implementations. We introduce arrayN, parametrized
by n, which fixes the array length by stating card(s) = n.

arrayN(n : Z, s : P(T )) 	 {a|a ∈ array(s) ∧ card(s) = n}

The array constructor operator newArray has an integer parameter n, represent-
ing the array length; and, additionally a value x, of type T for initialising the
array elements. The array construction operator has the following definition,

newArray(n : Z, x : T ) 	 (0 .. (n− 1))× {x}

Additonally, newArray requires a well-definedness condition, n ∈ N. For the
array update, we have the definition,

update(a : array(T ), i : Z, x : T ) 	 a
− {i 	→ x}

update has the well-definedness condition i ∈ 0 .. (card(a)− 1). We can see that
array a is updated with value x at index i. The case study, which we use to
illustrate the extension mechanism and the link to code, omits irrelevant detail.

2 An Event-B Model

In the following model, we make use of the array operator that we have just
introduced. In the invariant, we type cbuf as an array of size maxbuf of integers.
maxbuf is a constant defined in a seen context. The second parameter defines
the element types, which in this case are integers. In the Initialisation event, we
specify the size, and initial value for the array elements in the clause act1. In
our model, we initially set maxbuf elements to be zero.

variables cbuf a b
invariants
@inv1 cbuf ∈ arrayN(maxbuf,Z)
@inv2 . . .
initialisation
@act1 cbuf := newArray(maxbuf, 0)
@act2 . . .
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An example of the update to the array can be seen in the following Put event,
which inserts an element into the array in action act2.

event Put 	
any x
where
@grd1 x ∈ Z

@grd2 b ≥ a⇒ b− a < maxbuf

then
@act1 b := (b+ 1) mod (maxbuf+ 1)
@act2 cbuf := update(cbuf, bmod maxbuf, x)
end

3 Adding Translation Rules

The next step is to add translation rules to the theory that defines arrays. We
add the Ada Translator Target section, shown below, and use this to define the
translation of the newly introduced operators. Metavariables (variable patterns)
are introduced to facilitate type inference, and pattern matching during trans-
lation. Using the rules defined in the Translator Rules section, we match the
patterns in the following way to determine which translation is applicable. We
specify the operator to be matched on the left side of the rule (left of the �⇒
operator), and the translated text, on the right side. Since there is no formal
link between the pattern on the left side and text output on the right side of the
rule, we use visual inspection to verify that the rule is correct.

Translator Target : Ada
Metavariables
s ∈ P(T), n ∈ Z, a ∈ Z↔ T, i ∈ Z, x ∈ T
Translator Rules
trns1: . . .
trns2: a = update(a, i, x) �⇒ a(i) := x
trns3: newArray(n, x) �⇒ (others => x)
Type Rules

typeTrns1: arrayN(n, s) �⇒array(0 .. n− 1) of s

In the example shown, the array update operator maps to the Ada array assign-
ment a(i) := x. The construction operator newArray provides the initial values
in parameter x, and maps to the Ada clause (others => x) which sets all ele-
ments (using others) of an array to x. In addition to translation rules, we can
add type rules; these are used to map the type, as defined in the theory, to an
implementable type for use in the generated code. In the type rule typetrans1
we specify that the type arrayN(n, s) should be mapped to the Ada type clause
array(0 .. (n− 1)) of s.
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Fig. 1. Generated Ada Code

4 Conclusion

We used the our tool [5] to generate the code shown in Fig. 1. The rules allow
translation of operators, and type definitions, to implementation constructs. We
can now see how the Event-B relates to the generated code. In line 3 of the code,
on the left hand side of the figure, we see an Ada type declaration statement.
This results from applying typeTrns1 to the invariant inv1. The translation of
the type s, i.e. the mapping of the Event-B Z, to the Ada Integer type, is handled
by the pre-defined Ada theory, and not shown here. In Ada, we must ’instanti-
ate’ the cbuf array type, so in line 9 we declare cbuf to be of type cbuf array,
and initialise the values. The translator makes use of the translation rule trns3,
matching the pattern arrayN(n, s) with the assignment of the initialisation ac-
tion act1. The update rule has also been translated in line 11 on the right side
of Fig. 1, which uses trns2 applied to act2 of the Put event.
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Abstract. The New York City Transit Authority has included formal proofs at 
system level as part of the safety assessment for its New York subway Line 7 
modernization project, based on the CBTC from Thales Toronto. ClearSy carries 
out these proofs. In this paper, we describe the expected results and benefits of 
such proofs. We also discuss the methodology, in particular the importance of 
obtaining a natural language precursor for proofs. This step is paramount to find 
the simplest reasons why the design ensures the wanted properties. 

1 Introduction 

The New York City subway Line 7 (Flushing) modernization project consists in in-
stalling a Communication Based Train Control (CBTC) system and updating the ex-
isting interlocking system. The CBTC system is designed and installed by THALES 
Toronto. The main benefits of this modernization will be: 

• Reduced headway; 
• Signal and track circuit simplification; 
• Extended routing possibilities, for instance in case of track failures. 

The New York City Transit authority (NYCT) decided to include formal proofs at 
system level as part of the safety assessment for this project. The French company 
ClearSy carries out these proofs, using the Event-B method and Atelier-B toolkit. 

In this paper, we discuss the methodology applied to obtain these formal proofs 
and the conclusions so far. The proof project is currently progressing (January 2012) 
and is estimated at 40% of total workload. 

2 Goals and Expected Benefits 

The main goal is to obtain a formal proof for the main safety properties of the  
system: no collision and no over-speeding. For instance, the first selected property 
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“no collision” is detailed as follows: a train will never encounter any obstacle or 
any switch not locked in correct position (so it is not only “no collision”, the name 
is a simplification). So we seek to formulate a set of well defined assumptions, such 
that this “no collision” property can be obtained from these assumptions by pure logi-
cal reasoning only. 

Those assumptions cover every relevant aspect of the system, from internal design 
(for example: what algorithm is used to calculate safe braking) to external conditions 
(for example the worst turns that motion determination can tolerate). How deep we go 
is decided when an assumption is considered as terminal; for instance the property 
“the motion determination algorithm always detects a wheel starting to slip” can be 
considered as a terminal assumption, or be the subject of a lower level proof relying 
on wheel and sensor physical properties. 

2.1 Expected Benefits 

The expected benefits of having such proofs are: 

• Revealing all assumptions needed; 
• Reaching a “proof level” confidence for the system properties. 

Revealing all assumptions needed is particularly useful:  

─ External and environment assumptions (for instance: train operator behavior), well 
defined assumptions are the unique opportunity to check if they really hold and to 
check if they still hold in case of any change (environmental change for instance). 

─ Design assumptions (for instance: sensor properties, algorithm details, etc.): well 
defined assumptions are obviously useful at system creation and in case of system 
evolution. 

In particular, assumptions regarding the software are intended to contribute to the 
elimination of errors, in spite of our not going inside the code. When we assume a 
well defined property for a precise piece of code, it is easier to check this property by 
code review or through dedicated testing (or even future proofs).  

3 Methodology 

We use two main steps to obtain the desired formal proofs: 

1. Write a document explaining how the system ensures the desired properties. We 
call this natural language “proof”, with quotes because it is not a formal proof. 

2. Write Event-B models such that the proof performed is the formal equivalent of the 
natural language “proof”. 

The first step is based on the fact that we do not use Event-B to understand why  
a property is ensured, but to validate that it is really ensured once the “why” is un-
derstood. We want to avoid mixing formal notation issues with domain issues. The 
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problem is that the available documents for a system usually describe how the system 
works, and not why it is designed so. This is all the difference between knowing an 
algorithm and knowing why it produces the wanted result. 

The natural language “proof” step is a way to stabilize this understanding before 
writing Event-B models. Otherwise, if the understanding of the why changes often a 
lot of time is lost by modifying the Event-B models. 

Natural language “proofs” are supposed to contain only well defined assumptions, 
only pure logical steps and resulting properties. Of course, at this stage there is not 
tool to check these qualities. The most difficult part is to formulate well defined as-
sumptions. We use the following criteria: 

 

The second step is normally more straightforward: we use Event-B to construct a 
proof that mimics the natural language “proof”. Through Event-B [1,3] and Atelier-B 
[2], we obtain a powerful validation of the forecasted proofs. The methodology for 
ensuring good correspondence between Event-B models and the natural language 
“proof” is not detailed here (yet to be done); it should rely on checking mathematical 
objects for each notion used in the proof precursor, and checking events for each 
possible evolution of these notions. 

3.1 Methodology for Natural Language “Proofs” 

Up to now, we have worked mainly on natural language “proofs”. So let’s detail the 
methodology for these natural language “proofs”. Two pitfalls must be avoided: 

1. Spending too much time. The system is complex; we must understand on-
ly the minimum needed to reach the desired proof in order to be efficient. 

2. Proving without the system designers. Otherwise it is very easy to intro-
duce subtle biases about how the system really works, leading to a proof 
irrelevant for the actual system.  

To find the simplest reasons why properties hold without falling into the above pit-
falls, we use the following steps: 

─ Play scenarios trying to violate the wanted property (for instance, at top level try to 
play a scenario leading to a collision), in a light and fast way, until the reasons why 
violating the property is impossible appear. 

─ Once the reasons why the property is ensured have appeared, explain those rea-
sons, at first informally then more and more rigorously, until we reach a text with 
only well defined assumptions and pure logical steps. 

4 Results So Far 

Using the above methodology, we successfully obtained a proof precursor for the first 
selected property “anti-collision” (that is detailed as: a train will never encounter an 

Well defined assumptions: in any possible scenario, it should be possible to 
state unambiguously if the assumption is true or false in that case.  
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obstacle or a switch not locked in correct position). Without going into too many de-
tails, the reasoning relies on the fact that the existing interlocking system is so that 
trains are always on “locked” routes (with all switches locked) and in the same direc-
tion (this is one of the proved sub-properties). Automated trains then calculate their 
positions so that their real positions are always inside what they determined (this is 
another one of the proved sub-properties), and a ground controller dispatches move-
ment limits for each train such the spacing of following trains is ensured. 

With this natural language “proof”, we discovered that the true reasons why the 
property (and its sub-properties) holds are quite easy to explain once formulated and 
communication with domain experts is quite straightforward. However, the number of 
assumptions required is surprisingly immense and some of them are usually untold, or 
even not really known, until their importance is made explicit by the proof. The prop-
erties that each sub-part must keep appear far more clearly, which should help the 
designers and the testers to eliminate all errors that could impair those properties. 

5 Conclusion 

In the development of its own railway products, ClearSy had experiences of system 
level properties proving that found many errors, even after the product was already 
coded and testing concluded 0 defects. In many cases, the tests are connected to de-
tailed specifications that already contain the concerned bugs; proving properties at 
higher level is then the only efficient solution. 

This is what we are doing for the line 7 project, at a very large scale. 
In industrial projects, the efforts to reach the required performance and to obtain 

the mandatory documents obviously come first. Extra efforts to reach higher levels of 
confidence (like actually proving properties, using formulated assumptions and log-
ics) are often not mandatory in today’s state of the art. 
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1 Introduction

Formal methods are used for the specification and verification of software and
hardware systems. One class of systems interacts with the outside world through
sensors and actuators, and may include nondeterminism from hardware faults
or environmental inputs, making modelling more complex.

Previous work [1] by Hayes, Jackson and Jones tried to tackle these issues by
primarily focusing on deriving the specification by considering the system in its
environment. The authors consider an open sluice gate system which interacts
with a non-deterministic environment. The sluice gate controls the flow of water
for irrigation purposes, the main requirement being to keep the gate open and
closed in a certain time ratio. The system consists of the controller, which actu-
ates the gate via a motor and senses the gate’s final positions (open and closed)
by two sensors, positioned at the top and the bottom of the gate.

The system requirements may be classified into 3 groups: main functional
requirements (e.g. the gate must move up and down), fault management re-
quirements (e.g. in case a fault is detected, the system must shut down) and
timing requirements (e.g. in case a fault is detected, the system must shut down
within certain amount of time). Derived requirements are specified formally.

The aim of this work is methodological - we sought patterns in our case study
development - based on [1] - that may be applicable within this class of systems.

2 A Development Pattern

Our pattern is concerned with three distinct areas: basic modelling, time and
fault handling (Fig. 1). The basic model deals with non-time requirements and
is based on Butler’s Cookbook [2] for control systems modelling. The time mod-
ule introduces a time infrastructure layer (clock, event delays and deadlines)
and time related requirements via further model refinements. The fault handler
(FH) is an extension of already modelled fault-free and time modules, meaning
that this is not a refinement but rather additional code in already existing re-
finements. This fault handling can be regarded as a requirements feature, being
composed onto the basic development: fault-handling behaviour and state added
to existing refinements (basic model and time). This extension inevitably alters
the fault-free model because of the need to modify/remove invariants which rely
on monitored variables and to add the FH mode’s variable checks to fault-free
event guards.

J. Derrick et al. (Eds.): ABZ 2012, LNCS 7316, pp. 373–376, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



374 G. Sulskus and M. Poppleton

Fig. 1. General pattern structure

2.1 Basic Model

A model of a real world system that may fail, should always include a Fault
Management System [3]. Introducing FMS hooks in a fault-free model does not
cause much overhead and in later stages this simplifies model extension with
fault tolerance by reducing the extent of possible perturbations. One of such
“hooks” is FMS event FMS pass, which checks for possible faults and if none is
found, allows the system to proceed normally. The FMS never detects any errors
in the fault- free model and lacks fault handling events. However, its presence is
recommended since the model should reflect the actual system configuration in
both hardware and software levels.

It is assumed that the fault-free model does not have any faults, and so we
assume that the environment behaves as expected. To fulfil such an assump-
tion, environment and directly related (e.g. sensing) events are constrained by
specifying strict untimed guards (in this case, direct monitored variable usage is
allowed) Gu .

2.2 Time

The Time area consists of two layers tackling different time-related problems
(Fig. 1, boxes in yellow). The Time Infrastructure Layer (TIL) provides general
time infrastructure over controller events to constrain the occurrence of events
depending on time. A second layer deals with development-specific timing re-
quirements; here, we discuss only TIL.

Our aim was to develop a generic pattern that could be used in different
projects with minimal adaptation effort. Although this layer uses event order
information from previous implementation layers, the focus is solely on event
time constraints, expressing time required for the event to happen by usage of
delays and deadlines [4]. Hence, event sequencing implementation along with
other non-time constraint related functionality is out of scope and is the basic
model’s responsibility.

Structure. TIL is an existing template with configurable slots (Fig. 2). This
template is identical regardless of the models in which it is used and does not
need to be changed on reuse apart from specific slots.

Invariants. Invariants scope TIL goals, enforcing delays and deadlines after each
executed event.
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Fig. 2. TIL configuration with configurable areas in yellow

TIL variables. Time is expressed as an integer sequence, activeEvents contains
timestamp entries of executed events, referring to which event types delay and
deadline constraints should be applied. Variables type is EVENT REL 	→ N.

Events. The event guard block allows event execution only if there are no active
delay constraints, or there exists at least one expired deadline. When the event is
executed, it removes entries from activeEvents , that allowed (if delay has expired)
or forced (if deadline was reached) this event to be executed. Additional entries
with the current timestamp are added for every succeeding event type.

Time progress. Event tick represents the clock for time progress [5].

Simplicity. Event guard event type is the only element that should be changed
in the Machine. The main configuration is done in the Context and relates only
to event sequence definitions. Set EVENT TYPES contains all possible event
types or event group types; EVENT REL determines which event type may
succeed a prior event type; sets EVENT DELAYS and EVENT DEADLINES
define delay and deadline values for each EVENT REL element. Hence, delays
and deadlines are specific to a type of event type transition, e.g. S 	→ FMS may
have different time constraints from S 	→ FLASH LIGHT .

As in the basic model, we assume that the environment with timing require-
ments behaves as expected. Thus we constrain environment related events with
Gt - timed requirements. The environment event guard space after timing re-
quirement implementation is Gu ∧Gt .

2.3 Fault Handling

Fault handling is based on 4 different system modes, controlled by the FMS
(Fig. 3). Under normal conditions, when no faults are detected the system oper-
ates in normal mode and performs intended operations. This is the only mode
present in the fault-free model. In case of a fault, the system enters suspicious
mode. This mode allows the system to tolerate faults to a certain extent. In case
the system manages to recover by itself, it re-enters normal mode, otherwise it
falls into faulty mode and waits for external intervention. The latter mode’s main
purpose is to perform necessary actions e.g. to shut down, in order to prevent
(further) system and environment damage and to inform the operator about
the malfunction. After faults are eliminated, the operator is expected to initiate
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Fig. 3. Fault tolerant system modes

recovery mode, in which the system tries to return into a state from which it
could start performing its normal operation.

The fault-free model with only normal FMS mode is easy to extend with
fault tolerance simply introducing FMS and related controller events for the
other three modes.

In the fault tolerant model, the environment becomes unrestricted, thus ad-
ditional events are introduced for each environment event and directly related
(sensing) events from the fault-tolerant model. These newly introduced events
are expected to cause system fault and a deviation from a normal operation. To
ensure this, events have guard block as ¬Gu ∨ ¬Gt .

For all such relevant events (Gu ∧Gt )fault−free , we have fault-handling events
covering (¬Gu ∨ ¬Gt )fault−tolerant , ensuring the system is always enabled.

3 Conclusions

The case study resulted in a fully modeled sluice gate model according to our
interpretation of the [1] requirements, and provided insights into possible general
guidelines for control systems modelling including the problematic areas of time
and fault tolerance. The described ideas and guidelines are meant for easier
integration of different approaches and prevention of possible hidden difficulties.
Further aim is to perform more case studies to prove pattern’s feasibility. Both
guards and (¬Gu ∨ ¬Gt ) and TIL are systematically defined, thus could be
generated by tools in future. The time layer needs to be improved to make it
less coupled as now it uses event sequence information from previous layers.
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