
A Decomposition Approach for Solving Critical

Clique Detection Problems�

Jose L. Walteros and Panos M. Pardalos

Center for Applied Optimization,
Department of Industrial and Systems Engineering, University of Florida,

303 Weil Hall, Gainesville, FL, USA
jwalteros@ufl.edu, pardalos@ise.ufl.edu

http://www.ise.ufl.edu/cao

Abstract. The problem of detecting critical elements in a network in-
volves the identification of a subset of elements (nodes, arcs, paths,
cliques, etc.) whose deletion minimizes a connectivity measure over the
induced network. This problem has attracted significant attention in re-
cent years because of its applications in several fields such as telecom-
munications, social network analysis, and epidemic control. In this paper
we examine the problem of detecting critical cliques (CCP). We first in-
troduce a mathematical formulation for the CCP as an integer linear
program. Additionally, we propose a two-stage decomposition strategy
that first identifies a candidate clique partition and then uses this parti-
tion to reformulate and solve the problem as a generalized critical node
problem (GCNP). To generate candidate clique partitions we test two
heuristic approaches and solve the resulting (GCNP) using a commer-
cial optimizer. We test our approach in a testbed of 13 instances ranging
from 25 to 100 nodes.

Keywords: Critical element detection, critical clique detection, clique
partitioning.

1 Introduction

The problem of detecting critical elements (nodes, arcs, paths, clusters, cliques,
etc.) in a network has recently become a major endeavor. Identifying these ele-
ments can be crucial for studying many structural characteristics of a network
such as connectivity, centrality, robustness, and vulnerability, as well as for iden-
tifying dominant clusters and/or partitions.

There is a wide variety of applications for which the detection of critical
elements may be of great value. For example, analyzing beforehand how well a
network would perform under certain disruptive events plays a vital role in the
design and the operation such network. In order to detect vulnerability issues, it
is particularly important to analyze how well connected a network remains after
a disruptive event takes place destroying or impairing a set of elements in the
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network. The main strategy is to identify which is the set of critical elements that
must be protected or reinforced in order to mitigate the negative impact that the
absence of such elements may produce in the network. Applications of this kind
arise in many different contexts and fields such as in social networks analysis [4],
homeland security [12], evacuation planning [16], immunization strategies [21],
transportation [15], and power grid construction [19], among others.

In general, most of the critical element detection problems fall into the fol-
lowing definition. Given a connected undirected network G = (V , E), where V
and E are the set of nodes and edges, respectively, the critical element detection
problem involves finding a subset of elements A = {1, . . . , k} (k < |V|) such that
its deletion minimizes a given connectivity measure over G.

Several measures have been used to assess the level of disconnection of the resid-
ual network. There are mainly two classes in which these measures can be catego-
rized. Themeasures from the first class can be associatedmostly with network flow
problems (e.g., shortest path problems and maximum flow problems) [5,10,16,22].
For these cases, the critical elements are the ones whose deletion results in the
maximum increase of the shortest path, or consequently, the maximum decrease
of the flow capacity between two predefined nodes s and t. This kind of measures
are commonly used in the context of network interdiction, and are generally de-
signed to tackle arc interdiction problems (detecting critical arcs).

On the other hand, the measures of the second class are associated with
topological characteristics of the network. For example, one can account for
the total number of pairwise connections (i.e., the total number of node pairs
that are connected in the network by at least one path) [2,7], the total cost of
pairwise connectivity (i.e., a weighted sum of the pairwise connections) [2,7], the
size of the largest connected component (i.e., the number of nodes that belong
to the largest maximal connected subgraph of G) [17,20], and the total number
of connected components [1,20]. The measures of this class are the ones that we
will consider in this work.

Among all the critical element detection problems, the one of detecting critical
nodes (CNP) is the one that has attracted more attention. From the complex-
ity point of view, the CNP is proven to be NP-hard on general networks for
most of the connectivity measures described above [2,7,8]. There are few cases,
though, for which the CNP is solvable in polynomial time (see, [7,20]). Exist-
ing methodologies for solving the CNP include heuristics (and metaheuristics)
[1,2,4], mathematical programing [2,5,10,16,17,22], dynamic programing [7,20],
approximated algorithms [8], and simulation approaches [14].

A simple heuristic approach regarding the CNP was explored by Albert et al.
[1]. This work aims at analyzing the tolerance of complex networks with respect
to strategic node deletions. Instead of finding the collection of nodes that must
be removed to impair the connectivity of the network, the authors analyze the
resulting consequences over the network when (i) a set of randomly chosen nodes
is removed and (ii) when the nodes with large degree are removed.

Recent endeavors using mathematical programing techniques can be found in
[2] and [17]. In their work, Aurslevan et al. [2] provide a prove of theNP-hardness
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of the CNP for the pairwise connectivity measure. They also introduce a linear
integer formulation and a fast constructive heuristic. An alternative formulation
was presented in [17]. In this paper, the authors provide a detailed polyhedral
analysis for different valid inequalities as well as a branch-and-cut framework.

The use of dynamic programming has been studied by Shen and Smith [20] and
Di Summa et al. [7]. In both studies, the authors provide a detailed complexity
analysis of the CNP over trees and other structures. They also prove that the
cardinality version of some CNP variations over trees are polynomially solvable
via dynamic programing.

From the approximation algorithms perspective, a variation of the CNP prob-
lem is presented in [8]. In this work, the authors propose a reformulation for the
CNP where the objective function is set to minimize the number of nodes (or
edges) that must be removed in order to achieve a certain degradation (disrup-
tion) in the connectivity of the network. In addition to these reformulations, a
thorough complexity and inapproximability analysis is presented as well as a
pseudo-approximation scheme.

The main purpose of this paper is to extend the scope of previous works re-
lated with the CNP, and analyze the problem of detecting critical cliques on
networks. We organize this paper as follows. In Section 2, we introduce the crit-
ical clique detection problem (CCP) including a complexity analysis regarding
the NP-completeness of the CCP. We also introduce a integer linear formula-
tion and its respective variations for two of the connectivity measures described
above. In Section 3, we present a decomposition approach for solving the CCP.
The proposed approach is based on a reduction from the CCP to a generalized
critical node problem (GCNP) by means of a clique partitioning problem. We
also present two algorithms that can be used to obtain candidate clique parti-
tions, as well as a formulation for the GCNP that is used to solve the resulting
problem. In Section 4, we present our computational results, and finally, in Sec-
tion 5 we provide conclusions an further directions for subsequent projects.

2 The Critical Clique Detection Problem (CCP)

Given a connected undirected network G = (V , E) where V and E are the set of
nodes and edges, respectively, and an integer k, the CCP involves finding a set of
k disjoint cliques such that its deletion results in the maximum network discon-
nection. Additional constraints regarding the structure of the cliques can also be
imposed, for instance, an upper bound on the size of the critical cliques. Notice
that the CCP can be seen as a generalization of the CNP, where the objective is
to find cliques instead of nodes. The CNP is then the case where the size of the
cliques is limited to be one. Figure 1 presents an example of the CCP over a 9-node
graph, where k = 2. Figure 1(a) displays the original network, and Figure 1(b) the
optimal solution where the cliques selected are colored in gray and white.

Among the different connectivity measures described above which can be used
as objective functions we discuss two: the total number of pairwise connections
and the size of the largest component. A description of these objectives follows:
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(a) Original graph (b) Optimal solution

Fig. 1. Example for a 9-node graph

2.1 Objective Functions

Before presenting the objectives, we need to introduce the following definitions.
For any subset V ′ ⊆ V we define E(V ′) ⊆ E as the set of edges such that, for each
edge e ∈ E(V ′), both endpoints of e belong to V ′. We also define the induced
graph G(V ′) as the graph comprised by the set of nodes V ′, and the set of edges
E(V ′). We assume that two nodes i, j ∈ V are connected over G if there exist at
least one path that connects i with j in G. Let Q be the set of maximal connected
components of G. We define a maximal connected component Cq ∈ Q as a subset
Cq ⊆ V of nodes such that every pair of nodes i, j ∈ Cq is connected over G(Cq),
and such that, for every node l ∈ V \ Cq, there is no edge connecting l with any
node i ∈ Cq. From now on we will refer to the maximal connected components
only as components unless otherwise stated. Let σq = |Cq| be the number of
nodes of component Cq ∈ Q. We define the number of pairwise connections of
component Cq ∈ Q as

(
σq

2

)
= σq(σq − 1)/2. Let T = {K1, . . . ,Kk} be the set of

k critical cliques of G, V(Kt) ⊆ V be the subset of nodes that comprise clique
Kt ∈ T , and V(T ) ⊆ V be the set of all the nodes that belong to the critical
cliques. Finally, let GT = (V \V(T ), E(V \V(T ))) be the resulting network after
the deletion of the critical cliques, and QT the corresponding set of remaining
components. The definitions of the two objectives used follow:

Minimize the Total Pairwise Connectivity (TPW): Given a network G =
(V , E) and an integer k, we try to find a collection of cliques T , of size |T | ≤ k,
such that the sum of the pairwise connections of all the components left is
minimized:

min
∑

q∈QT

σq(σq − 1)/2 (1)

Minimize the Size of the Largest Component (MinMS): Given a network
G = (V , E) and an integer k, we try to find a collection of cliques T , of size
|T | ≤ k, such that the size of the largest component is minimized:

min max
q∈QT

{σq} (2)

2.2 NP-Completeness of the CCP

We now prove that the decision version of the CCP problem is NP-complete.
The decision version of the CCP, defined as the α–CCP can be stated as follows.
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Given a graph G = (V , E) and a positive integer k, is there a set of disjoint cliques
T = {K1,K2, . . . ,Kt}, t ≤ k such that the size of the largest component of GT

is at most α? Note that in this case we use expression (2) as the connectivity
measure, although, we could easily adapt this result for (1) as well.

Clearly, the α–CCP belongs to the class NP for any given G = (V , E). Notice
that given a collection of cliques T in G, identifying the size of each compo-
nent of GT can be done in polynomial time by means of a breadth first search
algorithm [13].

To prove that the α–CCP belongs to the NP–complete class, we propose
the following reduction from the clique partitioning problem known to be NP–
complete [9]. The clique partitioning problem is defined as follows: Given a graph
G = (V , E) and a positive integer k, is it possible to partition set V into t ≤ k
disjoint cliques K1,K2, . . . ,Kt?

It can be easily argued that the α–CCP generalizes the partition into cliques
problem. Note that for α = 0, there is a collection of at most k cliques K1, . . . ,Kk

such that every component left in the network has size zero (i.e., |QT | = 0) if and
only if, every vertex in V belongs to one of the following subsets induced by the
critical cliques V(K1),V(K2), . . . ,V(Kk). Thereby, the α–CCP is NP-complete.

2.3 CCP formulations

When studying combinatorial problems, using a linear integer formulation is in
general a natural starting point. Despite the inherent difficulty of these problems,
techniques such as branch and bound, branch and cut, and others are proven
to be very efficient approaches to obtain solutions for instances of manageable
size. We now present an integer linear formulation for the CCP as well as the
respective modifications to tackle the two objectives proposed above.

Let V(e) be the set of endpoints of edge e ∈ E and T be the set of critical cliques
such that |T | = k. Let xt

i be a binary variable that takes the value of one if node
i is assigned to clique Kt ∈ T , and zero otherwise. Let yij be a binary variable
that takes the value of one if nodes i and j, belong to the same component in the
residual graph, and zero otherwise. Let zi be an auxiliary binary variable that takes
the value of one if node i does not belong to a critical clique, and zero otherwise.
The formulation for the CCP for the TPW objective is as follows:

min
∑

i,j∈V
yij (3)

s.t. xt
i + xt

j ≤ 1 e ∈ V × V \ E , i, j ∈ V(e), t ∈ T (4)

zi +
∑

t∈T
xt
i = 1 i ∈ V (5)

yij ≥ zi + zj − 1 e ∈ E , i, j ∈ V(e) (6)

yij + yjl − yil ≤ 1 i, j, l ∈ V (7)

yij − yjl + yil ≤ 1 i, j, l ∈ V (8)

− yij + yjl + yil ≤ 1 i, j, l ∈ V (9)



398 J.L. Walteros and P.M. Pardalos

xt
i ∈ {0, 1} i ∈ V , t ∈ T (10)

zi ∈ {0, 1} i ∈ V (11)

yij ∈ {0, 1} i, j ∈ V (12)

where the objective function (3) minimizes the sum of pairwise connections.
Note that since yij is equal to 1 if nodes i and j belong to the same component,∑

i,j∈V yij is equivalent to
∑

q∈QT σq(σq−1). Constraint (4) ensures that if there
is no edge e ∈ E between nodes i and j (i.e., e ∈ V×V\E), both nodes cannot be
assigned to the same clique. Constraint (5) ensures that if node i is not assigned
to a clique, its corresponding variable zi must be equal to one. Constraints (6)
define the relationship between y variables and z variables. Constraints (7–9)
define the triangular relationship of y variables (i.e., if in the residual network
node i is connected to node j and node j is connected to node k, then node i
must also be connected to node k). And finally constraints (10–12) define the
domain of the variables used. We will refer to this problem as CCP–TPW.

To use the MinMS as the objective, we can adapt the proposed model by
introducing a new variable β defined as the size of the largest component. Then
the model can be formulated as follows:

min β (13)

s.t. (4− 12)
∑

i∈V

yij ≤ β i ∈ V (14)

where objective function (13) combined with constraints (14) enforces the min-
imization of the size of the largest component. We will refer to this problem as
CCP–MinMS.

Formulations CCP–TPW and CCP–MinMS are relatively large in size with
respect to the size of the network (they require O(|V|2) variables and O(|V|3)
constraints). To solve these formulations, it is common to use a cutting plane
generation scheme that sequentially includes constraints (7–9) as needed. More-
over, it is easy to see that we can strengthen these formulations using some valid
inequalities originally designed for similar problems [11,17], as well as symmetry
breaking constraints.

As an alternative solution approach, we also provide a decomposition strategy
for the CCP.

3 Decomposition Approach for Solving the CCP

The decomposition strategy proposed in this paper is based on the following
theorem:

Theorem 1. The set of critical cliques of any feasible solution (x,y, z) belongs
to at least one clique partition of the original network G.
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Proof. Let T be the set of critical cliques of solution (x,y, z), and V(T ) be the
set of nodes comprising the cliques. Let R̄ be any clique partition of the residual
network G(V \ T ). Note that R = T ∪ R̄ is a clique partition of G as T and R̄
are two disjoint sets of cliques that cover all the nodes in G. �

Since every set of critical cliques can be associated with a clique partition, we
propose to solve the CCP by: (i) generating a clique partition, (ii) collapsing
each clique of the given partition into a single node forming a network H, and
(iii) using an exact or heuristic method, for solving a generalized CNP over H
(see Algorithm 1). We now analyze each of the steps of this approach.

Algorithm 1. CCPCollapseAlgorithm(G)
R← generate a clique partition
H ← collapse(R)
T ∗ ← SolveGeneralizedCNP(H)
return T ∗

3.1 Constructing Clique Partitions

The main component of this approach is the way in which the clique partition
is generated. This is because, in order to obtain a good solution, we would
like to generate a clique partition containing the optimal set of critical cliques
(or at least a good proxy). We propose to heuristically generate candidate clique
partitions. The idea behind our approach is that if we want to greedily reduce the
number of pairwise connections, we can either aim at eliminating a large clique,
or a clique with a large degree (i.e., a clique with many edges emanating from
it), we propose two different algorithms for partitioning the network following
this analysis.

The first approach approach is to use as a clique partition the solution of
a maximum edge clique partition problem (Max-ECP). The Max-ECP prob-
lem looks for a clique partition that maximizes the number of edges within
the cliques. Even though the Max-ECP is proven to be NP–hard, there are
several approximation algorithms to solve this problem. We decided to use the
2-approximation algorithm proposed by [6] that we called MaxECP (see Algorithm
2). Since Algorithm 2 requires solving sequentially a maximum clique problem,
we used the approximation algorithm proposed in [3]. Note that it is also possi-
ble to get both, the clique partitioning or/and the maximum clique, by solving
the corresponding mathematical problems, or by means of any other technique
(exact or heuristic).

For the second approach, we propose to use a clique partition based on the
degree of the cliques. We use a heuristic that greedily finds a clique with a
large degree in G (see Algorithm 3). Once we find this clique, we remove it from
the network and continue following the same process until all the nodes are
eliminated (see Algorithm 4).
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Algorithm 2. MaxECP(G) [6]

T ← ∅
repeat

Select the maximum clique K̄ in G(V \ V(T )).
T ← K̄ ∪ T
G ← G(V \ V(T ))

until G = ∅
return T

Algorithm 3. GreedyGetClique(G)
K ← ∅
repeat

Select vertex i with maximum degree in the subgraph induced by G.
K ← K ∪ {i}
N (i) ← neighbors of i
G ← G ∩ N (i)

until G = ∅
return K

Algorithm 4. MaxDegree(G = (V , E))
i← 1
while V �= ∅ do
Kt ← GreedyGetClique(V)
V ← V \ Kt

t← t+ 1
end while

3.2 Clique Collapsing

First, assume that we have a clique partition R = {K1,K2, . . . ,Kl}. We can
collapse each of the cliques in R into a single node. LetH be a network comprised
by these nodes. Let VR be the set of nodes representing the cliques and ER be
the edges connecting the nodes in VR. There exists an edge (i, j) in ER if there
exists at least one edge in E connecting a node in Ki with a node in Kj . Let
H = (VR, ER) be the network induced by the collapsed nodes. Finally, let s(Ki)
be the size of clique Ki. Figure 2 provides an example of the clique collapsing,
given a clique partition.

3.3 CNP Generalization for Solving the CCP

Assuming that we have a partition R, once we have the collapsed network H we
can obtain the solution of the CCP by solving a generalized CNP problem. We
will discuss only the reformulation for the CCP-TPW case, although, this result
can be trivially extended for the CCP-MinMS.

Notice that if we want to count the total number of pairwise connections in
H, we need to take into account the connections at the interior of each node in
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VR (recall that at the point, each clique is now represented by a node), as well as
the connection associated with each edge in ER. For the sake of clarity, we abuse
the notation in this formulation using i and j when referring to the collapsed
nodes in VR and by defining xi as a binary variable that takes the value of one
if collapsed node i is removed and zero otherwise. Within each clique Ki ∈ R,
the total number of connections is given by pi =

(
s(Ki)

2

)
= (s(Ki)(s(Ki)− 1)/2).

Moreover, note that if nodes i and j are connected in H, the number of pairwise
connections represented by edge (i, j) ∈ ER is given now by tij = s(Ki)s(Kj).
Thus, the generalized formulation for the CNP follows.

(a) Clique Partition (b) Clique Collapse

Fig. 2. Clique collapse

min
∑

i∈VR

pi(1− xi) +
∑

i,j∈VR

tijyij (15)

s.t. yij + xi + xj ≥ 1 ∀(i, j) ∈ ER (16)

yij + yjk − yki ≤ 1 ∀(i, j, k) ∈ VR (17)

yij − yjk + yki ≤ 1 ∀(i, j, k) ∈ VR (18)

− yij + yjk + yki ≤ 1 ∀(i, j, k) ∈ VR (19)
∑

i∈VR

xi ≤ k (20)

xi ∈ {0, 1} ∀i ∈ VR (21)

yij ∈ {0, 1} ∀(i, j) ∈ VR (22)

where objective (15) accounts for the minimization of the total pairwise con-
nections taking into account the connections at the interior of the cliques. Con-
straints (16–22) are defined exactly as in [2].

4 Computational Experiments

We tested efficacy of our approach on 13 randomly generated networks ranging
in size from 25 to 100 nodes. All the networks were generated using the algorithm
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proposed by Palmer and Steffan [18] such that the degree of the nodes follows a
power-law distribution. We solved the IP formulations and applied the decom-
position strategy for the CCP-TWP and the CCP-MinMS for different values of
k. We solved first the IP formulations using the commercial optimizer CPLEX
12.0, fixing a time limit of four hours (14,400 seconds). We also implemented
both the MaxDegree and the MaxECP algorithms to generate the clique partitions
and used CPLEX to solve the resulting GCNP formulations. The computational
results are listed in Table 1. For the cases in which the optimizer fails to obtain
an optimal solution within the time frame, we provide the best integer solution
found.

Table 1. Computational results. The optimal solutions are listed in bold and the time
is described in seconds. (*) indicates that the optimizer was not able to find an integer
solution within the time limit

CCP-TPW CCP-MinMS

IP Form. MaxDeg MaxECP IP Form. MaxDeg MaxECP
|V| |E| k Best Time Best Time Best Time Best Time Best Time Best Time

25 75 3 80 381.03 105 0.59 120 0.16 13 658.33 15 0.55 16 0.20
25 75 5 25 96.52 36 0.17 39 0.08 6 184.51 9 0.25 9 0.14
25 75 7 2 14,400 4 0.05 5 0.05 1 8.23 3 0.14 3 0.08
50 100 5 398 9,730.05 497 126.48 535 89.94 28 7,125.01 32 1,482.40 33 450.59
50 100 10 18 3,470.09 26 1.16 76 9.94 2 6,256.77 4 7.01 9 34.58
50 150 5 502 14,400 561 47.69 561 17.77 49 14,400 34 247.77 34 62.86
50 150 10 54 12,701.60 76 3.73 114 6.32 10 14,400 10 16.22 13 20.67
75 150 10 1,545 14,400 836 465.68 947 270.75 52 14,400 41 14,153.12 43 12,981.10
75 150 15 423 14,400 50 13.37 132 640.41 4 14,400 6 461.36 11 13,984.49
75 200 20 50 14,400 7 3.35 39 31.74 1 13,7028.50 3 63.72 5 306.00

100 200 15 1,152 14,400 295 6,385.16 412 9,685.28 * 14,400 28 4,295.45 39 6,458.30
100 200 30 * 14,400 6 9.79 17 19.90 * 14,400 2 59.49 3 3,647.48
100 300 30 * 14,400 17 18.23 18 13.49 * 14,400 3 718.34 3 443.96

We were able to obtain optimal solutions for 6 instances out of 13 for both,
the CCP-TPW and the CCP-MinMS. Furthermore, note that with the proposed
approach, we obtained good solutions for most of the instances. Notice that
for the CCP-TPW case, since the total number of pairwise connections grows
quadratically with respect to the size of the remaining components, a near opti-
mal solution having just a few additional nodes may have a significantly larger
number of pairwise connections compared to the optimal solution.

In terms of the running times, the decomposition approach ran significantly
faster than the IP formulation. Moreover, we found that the execution time for
finding clique partitions is negligible (less that a second) compared with the time
used by CPLEX to solve the GCNP. Note that the time required to solve the
GCNP can be significantly reduced by using a simple variation of the heuristic
proposed in [2]. Finally, we observe that the clique partitions obtained with
MaxDegree yield better results for both objectives.

5 Concluding Remarks

This study was motivated by the increasing interest of solving critical element
detection problems. We introduced the problem of identifying critical cliques



A Decomposition Approach for Solving Critical Clique Detection Problems 403

(CCP) over networks considering two connectivity measures: the total pairwise
connectivity and the size of the largest component. To address this problem, we
formulated it as an integer program. In addition, we proposed a decomposition
strategy for solving large-scale instances that first generates a clique partition
and then reformulates and solves the problem as a generalized critical node
problem (GCNP). We introduced two heuristics for obtaining clique partition
candidates. The resulting GCNP is then solved using a commercial optimizer.
We evaluated the performance of our approach by solving 13 randomly generated
instances ranging in size from 25 to 100 nodes.

Future research may involve testing additional methodologies for obtaining
clique partitions, as well as testing the performance of the proposed approach
when additional constraints over the cliques are included.
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