
Candidate Sets for Alternative Routes

in Road Networks�

Dennis Luxen and Dennis Schieferdecker

Karlsruhe Institute of Technology,
Karlsruhe, Germany

{luxen,schieferdecker}@kit.edu

Abstract. We present a fast algorithm with preprocessing for comput-
ing multiple good alternative routes in road networks. Our approach is
based on single via node routing on top of Contraction Hierarchies and
achieves superior quality and efficiency compared to previous methods.
The algorithm has neglectable memory overhead.

1 Introduction and Related Work

Today’s requirements for routing services, be it in-car or as a web-service, ask
for more than just computing the shortest or quickest paths. Thus it is desirable
to not only present a single path to a user, but instead a set of paths which are
perceived as reasonable alternatives.

We show how to engineer previous algorithms to provide reasonable alterna-
tive paths with better efficiency. Then, we build on the results and introduce
the notion of candidate via nodes to further speed up the computation by an
order of magnitude. We show how to perform query variants and how to conduct
the preprocessing efficiently. Finally, we conduct an experimental study on the
performance and quality of our method.

The shortest path problem can be solved by Dijkstra’s seminal algorithm [1].
Unfortunately, it does not scale to large-scale instances. Heuristics to prune the
search space like that provide goal direction [2,3] ease the problem. An early op-
timal and perfomant technique that provides substantial speedups is arc flags ;
originally conceived by Lauther [4,5]; later by Möhring et al. [6] and Köhler et
al. [7]. The road network is partitioned into regions and each edge stores a flag
to indicate if there is a shortest path into a region. Techniques exploiting the
hierarchy of a road network follow the notion that sufficiently long routes will
enter the arterial network at some point, e.g. enter a highway or national road.
Contraction Hierarchies (CH) [8] have a convenient trade-off between prepro-
cessing and query time. Road networks of continental size can be preprocessed
within minutes and queries run in the order of about one hundred microseconds.
CH heuristically order the nodes by some measure of importance and shortcut

� Partially supported by the German Research Foundation (DFG) within the Research
Training Group GRK 1194 ”Self-organizing Sensor-Actuator-Networks“ and by DFG
grant SA 933/5-1.

R. Klasing (Ed.): SEA 2012, LNCS 7276, pp. 260–270, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Candidate Sets for Alternative Routes in Road Networks 261

them in this order. This means that a node is removed from the graph and as few
edges as possible are inserted to preserve shortest path distances. The original
edges are augmented by the shortcut edges to build the search data structure.
A query (a bidirected Dijkstra) only needs to follow edges that lead to more
important nodes. Hence, the data structure forms a directed acyclic graph. Al-
beit the length of any shortest path is optimal, it may consist of shortcut edges
that need to be recursively unpacked. The fastest CH variant is CHASE [9] that
combines CH with arc flags. Its queries run in the order of ten microseconds.

Recently, Abraham et al. [10,11] give analyses of the performance of speedup
techniques to Dijkstra’s algorithm. Also, Abraham et al. [12] give an efficient
implementation of the theoretical algorithm, which achieves distance query times
below a single microsecond. Please note that we refer to various papers when
speaking of Abraham et al. [10,11,12,13].

Alternative paths that combine two shortest paths over a via node are used
by Choice Routing [14], also referred to as plateau method. The road network
is modelled as a graph G = (V,E) and shortest path trees are grown from
nodes s and t. Plateaus 〈u, . . . , v〉 running from node u to v are maximal paths
that appear in both trees. They give candidates for natural alternative paths,
i.e. follow the forward tree from s to u, then the plateau, and then the reverse
tree from v to t. Although not entirely published, the plateau method provides
alternatives of good quality in practice. Further discussion on this can be found
in [13].

2 The Baseline Algorithm

Abraham et al. [13] define a class of admissible alternative paths. For a given
s–t-pair and via node v the (via) path Pv is a concatenation of the two shortest
paths s–v and v–t. The shortest path between s and t is called Popt and the
length of a path Pv is denoted by l(Pv). Via path Pv has to be reasonable to
be considered as a viable alternative and thus must obey three heuristic, but
natural properties:

First, Pv has to be significantly different from Popt. This states that the total
length of the edges both paths share must only be a fraction of the length
of the optimal path. Second, Pv has to be T -locally optimal (T-LO), which
means that every sufficiently short subpath P ′ of Pv must be a shortest path. In
other words, every local decision along the alternative path must be reasonable.
This is formalized by two properties. Every sufficiently short subpath P ′ ⊆ Pv

with l(P ′) ≤ T has to be a shortest path. If P ′ is a subpath of Pv and P ′′ is
obtained by removing endpoints of P ′ then P ′ must also be a shortest path if
l(P ′) > T ∧ l(P ′′) < T holds. Third, the alternative path needs to have limited
stretch. A path Pv is said to have (1+ε) uniformly bound stretch (UBS) if every
subpath P ′ ⊆ Pv has stretch of at most (1+ε). As such, every alternative should
only be a fraction longer than a shortest path.

Given parameters 0 < α < 1, 0 ≤ γ ≤ 1, and ε ≥ 0 as well as the above
properties, we formalize

262 D. Luxen and D. Schieferdecker

Definition 1 (Admissible path). A path Pv between s and t is an admissible
alternative if

a) l(Popt ∩ Pv) ≤ γ · l(Popt) (limited sharing),
b) Pv is T -locally optimal for T = α · l(Popt) (local optimality), and
c) Pv has (1 + ε)-UBS (uniformly bounded stretch).

These measures require a quadratic number of shortest path queries to be veri-
fied, which is not feasible for a real-time setting. Thus, more practical algorithms
are needed that have a narrower focus on easy computability. There exists a quick
2-approximation (T -test) for T -local optimality. Given a via path Pv and a pa-
rameter T , let x be the closest node on s–v that is at least T away from v or s.
Likewise, y is the closest node on v–t that is also at least T away or s. A path
Pv is said to pass the T -test if the portion of Pv between x and y is a shortest
path.

Abraham et al. [13] give a practical solution based on a bidirectional Dijkstra
(BD), called X-BDV, to compute single via paths that are reasonable and good
alternatives. The algorithm incorporates ideas from the plateau method. An
Exploration Dijkstra identifies potential alternative paths: A (forward) shortest
path tree is grown from s, and another (backward) tree from t, until all nodes
are settled that are not farther than (1 + ε) · l(Popt) away from the root of
their respective tree. Note that no admissible path can be any longer. Each
node v that is settled in both search trees becomes a via node candidate and
three measurements are computed in linear time: l(Pv), the length of via path
Pv, σ(Pv), the amount of sharing of Pv with the optimal route, and pl(Pv),
the length of a longest plateau containing v. Note that if pl(Pv) > T , the T -
test is always successful. These more practical measures are used to sort all
candidates in non-decreasing order according to the priority function f(Pv) =
2 · l(Pv) + σ(Pv) − pl(Pv). The first path Pv is returned that is approximately
admissable as described below.

Definition 2 (Approximately Admissible). A path Pv between s and t is
approximately admissible if the following three conditions hold

1. σ(Pv) < γ · l(Popt) (limited sharing),
2. successful T -test for T = α · l(Pv\Popt) (local optimality), and
3. l(Pv\Popt) < (1 + ε) · l(Popt\Pv) (small stretch).

Local optimality and stretch are defined with respect to the detour of the al-
ternative. The above method yields the algorithm X-CHV [13] when combined
with Contraction Hierarchies. The forward and backward (CH) search spaces of
nodes s and t are explored. Nodes v in the forward search space are reached
with a forward distance l↑(Psv) and nodes in the backward search space with
a backward distance l↓(Pvt). For nodes v that occur in both search spaces
a preselection is run. Nodes are discarded, if the sum of forward and back-
ward distance is longer than a certain fraction of the length of the shortest
path: l↑(Psv) + l↓((Pvt) < (1 + ε) · l(Popt). Note that these distances are not
necessarily correct but upper bounds. It is tested if the approximated overlap

Candidate Sets for Alternative Routes in Road Networks 263

σapx(Pv) is no longer than a certain fraction of the length of the shortest path:
σapx(Pv) < (1+ ε) · l(Popt). Additionally, the following condition concerning the
stretch must hold: l↑(Psv) + l↓(Pvt)− σapx(Pv) < (1 + ε) · (l(Popt)− σapx(Pv)).
Remaining candidates are ranked according to the priority function of X-BDV.
The exact path 〈s..v..t〉 is computed for nodes v in that order. The first node
for which the properties of Definition 2 hold is selected as via node.

The success rate of X-CHV is inferior to X-BDV since search spaces are much
narrower. To cope with the smaller success rate, Abraham et al. [13] introduce
a relaxed exploration phase: The exploration query is allowed to search more
nodes than the plain CH query. Let pi(u) be the i-th ancestor of u in the search
tree. The x-relaxed X-CHV query prunes an edge (u, v) if and only if v precedes
all vertices u, p1(u), . . . , px(u) in the order of the CH. Note, the x-relaxed variant
of X-CHV, with x ∈ {0, 3}, is the baseline of our work. This section ends the
recap of previous work.

3 Engineering the Baseline Algorithm

Recall that the baseline is a two step approach. A bidirectional Exploration (CH)
Dijkstra searches for via node candidates that are then tested for admissibility
using a number of point-to-point (p2p) shortest path queries, which we call
Target (CH) Dijkstras. The obvious approach to apply engineering is to handle
the Target Dijkstras by faster methods than the normal Contraction Hierarchies
query algorithm. For instance, we apply CHASE that computes these queries by
exploiting additional arc flags [9]. This does not apply to Exploration Dijkstras,
because search spaces would be too narrow. Storing all shortcuts pre-unpacked
speeds up path computation as well. Both optimization have equal impact and
result in an algorithm with query times of less than half of plain X-CHV. We
refer to this straight-forward engineered baseline algorithm by X-CHASEV.

The analyses of Abraham et al. [10] show that speedup-techniques to Dijk-
stra’s algorithm work especially well on certain classes of graphs in which all
shortest paths out of a region are covered by a small node set. This theoretical
analysis leads to the following assumption:

Assumption 1 (limited number of alternative paths). If the number of
shortest paths between any two sufficiently far away regions of a road network
is small [10], so is the number of plateaus for Choice Routing [14]. Likewise the
number of admissible paths of the algorithm of Abraham et al. [13] is small and
can be covered by a small number of nodes.

4 Single-Level via Node Candidates

We partition the graph and apply bootstrapping to generate via node candidate
sets for pairs of partitions. Here, bootstrapping means that the query algorithm
which is used later on to actually compute an alternative path is used during
preprocessing as well.

264 D. Luxen and D. Schieferdecker

Assume that for each pair of non-neighboring partitions, we have computed a
set of via node candidates. Note that since candidates are already present, we do
not need to identify them during an exploration step. Computing an alternative
path for a given s–t-query now becomes straight-forward. We loop over all nodes
v in the via node candidate set of the pair of partitions of s and t. For each v we
check whether Pv is approximately admissible using the properties of Definition
2. The first approximately admissible path found is returned as the result. If no
candidate is viable or if the size of the candidate set is zero, no alternative path
is returned.

In a s–t query between neighboring partitions or within a single partition we
perform X-CHASEV as fallback instead. The reason for this is that the number
of candidates between those pairs of partitions and within a single one can be
numerous. It is faster to use the fallback algorithm than to check pregenerated
node sets in most of these cases.

Precomputating via node candidates starts with a partitioning of the underly-
ing road network. A number of such schemes have been proposed before. We do
not focus on that subproblem but refer to [15,16] instead. A set of via node can-
didates is generated greedily for each pair of partitions. A tentative via node set
that keeps track of the candidates identified so far during preprocessing for each
pair. We use the above algorithm with the tentative node set. If no alternative
is found, we run X-CHASEV as bootstrapping to identify one. Whenever such
a fallback run results in a new via node, it is inserted into the set of tentative
via nodes.

4.1 Multi-level via Node Candidates

We propose a multi-level partitioning to compute via node candidates for neigh-
boring pairs of partitions or within a single partition. The graph is further parti-
tioned into an order of magnitude more partitions. The finer partitioning respects
the coarser one in the sense that the nodes of a fine partition belong to one and
only one of the coarse partitions. We do not run full preprocessing for all pairs of
fine partitions. This would induce an amount of additional preprocessing steps
(quadratic in the number of partitions). Our algorithm runs fine for most coarse
partition pairs and we run the same preprocessing algorithm as before only on a
subset of all fine partition pairs. These are the pairs for which origin an destina-
tion were too close together, i.e. in the same coarse partition or in neighboring
ones. Note, we preprocess each non-neighboring fine partition pair that either
belongs to the same or to a pair of neighboring coarse partitions. This implies
only a linear amount of additional preprocessing work.

A query recurses to the multi-level partitioning for nodes of two neighboring
coarse partitions or between nodes within the same coarse partition. When ori-
gin and destination are within the same or in neighboring fine partitions, plain
X-CHASEV is run as fallback. Fine partitions are much smaller, and origin and
destination are generally close to each other.

128 partitions are used for the arc flags of X-CHASEV. The number of ex-
plored nodes during a CHASE query with 128 partitions that do not belong to

Candidate Sets for Alternative Routes in Road Networks 265

the shortest path is tiny [9]. Hence, we do not see any benefit of investing time
into the generation of arc flags for 1 024 partitions.

4.2 Further Engineering

The preprocessing is easily adaptable to shared-memoryparallelismby preprocess-
ing all pairs of partitions independently. This parallelization scales almost linearly
with the number of processors until the memory bandwidth is reached. Most pre-
processing runs verify the existence of a via node, but do not result in a new one.
Sampling effectively decreases the preprocessing timewhen the sample is of reason-
able size. E.g. running such a preprocessing on 1/16 of all of the pairs of boundary
nodes for each partition pair results in only slightly inferior query performance.

Much effort during preprocessing is spent in search space exploration. The
search space of each boundary node is required repeatedly. This can be hastened
by about a factor of three by storing the search spaces of boundary nodes. An-
other tuning parameter is the order in which the nodes are stored in the tentative
sets. We order by the number of how often a node occurs as a via node during
preprocessing. This order is not necessarily the best of all orders. It depends on
the order in which the pairs of boundary nodes are visited. Computing a best
among all possible sorting orders, independent of the visiting order, is feasible
and leads to slightly superior query times, but is computationally expensive.
Note that selecting a via node greedily is of course faster since the first viable
node is used, while selecting the via node that yields a best quality alternative
is more expensive. Queries can be further accelerated by storing (forward and
backward) search spaces of the via node candidate sets and also by storing the
shortcuts pre-unpacked, as mentioned before.

5 Experiments

We implement the above algorithms in C++ using GCC’s compiler with full opti-
mizations. A binary heap is used as priority queue data structure. The experiments
are conducted on two separate machines. Queries run on one core of an Intel Core
i7-920 CPU (4 cores), clocked at 2.66 GHz with 12 GiB main memory. It is run-
ning Linux (kernel 2.6.34, gcc version 4.5.0). Parallel preprocessing is done on 4
AMDOpteron 6168 CPUs (12 cores each), clocked at 1.90 Ghz with 256 GiB main
memory. Thismachine is running Linux (kernel 2.6.38,GCC version 4.5.2) and has
roughly half the single-core performance compared to theCore i7machine.Timings
are done using the clock cycle counter available in 64 bit x86 CPUs.

5.1 Methodology

We test our approach on a road network of Western Europe provided by PTV
AG for the 9th Dimacs Challenge [17]. It consists of 18 million nodes and 42
million edges and uses the travel time metric as edge weights. We partition the
graph into 128 partitions using the algorithm of Sanders and Schulz [16], yielding

266 D. Luxen and D. Schieferdecker

an average edge cut of 6 360 and 91.8 boundary nodes per partition. Note that
their partitioner does not necessarily yield connected partitions. On average each
partition is adjacent to 5.2 neighboring ones. Our finer partioning into 1 024
partitions has an edge cut of 25 715 with an average of 46.5 boundary nodes and
5.3 neighbors. All figures are based on 10 000 random but fixed queries, unless
otherwise stated. To compare against the results of [13], we use the same quality
parameter values. Minimum (detour based) local-optimality is set to α = 0.25,
maximum sharing to γ = 0.8, and maximum stretch to ε = 0.25.

We test the performance of our algorithm in terms of both efficiency and
quality according to Definition 1.

5.2 Engineered Baseline Algorithm

We compare our engineered baseline algorithm, X-CHASEV, against X-BDV
and X-CHV. The results of Table 1 report on the query performance and path
quality of the engineered baseline algorithm. As described in Section 3 the engi-
neered baseline algorithm is faster by a factor of two than the other algorithms.
We reimplemented both X-BDV and X-CHV algorithms. A direct comparison
against the numbers of Abraham et al. [13] is unfair, since the heuristics of the
underlying CH are different. X-BDV has the highest success rate and, of course,
the highest query times by several orders of magnitude. This makes X-BDV un-
suitable for any practical setting in which speed is a factor. The success rates
of all three algorithms drop with the number of alternatives. The average path
quality measures are very similar for all algorithms and identical for X-CHV and
X-CHASEV by design. This is expected behavior.

5.3 Preprocessed Candidate Sets

Table 2 reports on the performance of the preprocessing required for the single-
and multi-level algorithms. Preprocessing is run in parallel for up to three al-
ternatives with relaxation either off (x = 0) or set to x = 3. Row multi-level

Table 1. Query performance of algorithms for alternatives p = 1, 2, 3

performance path quality
time success UBS[%] sharing[%] locality[%]

p algorithm [ms] rate[%] avg max avg max avg min

1 X-BDV 11 451.5 94.5 9.4 52.5 42.7 79.9 77.0 26.2
X-CHV 1.2 75.5 9.2 48.1 44.7 80.0 74.8 26.3
X-CHASEV 0.5 75.5 9.2 48.1 44.7 80.0 74.8 26.3

2 X-BDV 12225.8 80.6 11.5 43.0 60.0 80.0 78.6 27.0
X-CHV 1.7 40.2 10.1 39.7 59.1 80.0 79.7 27.0
X-CHASEV 0.7 40.2 10.1 39.7 59.1 80.0 79.7 27.0

3 X-BDV 13330.9 59.5 13.2 52.9 68.1 80.0 76.2 25.9
X-CHV 2.3 14.2 10.0 33.4 65.0 79.9 84.3 30.9
X-CHASEV 1.0 14.2 10.0 33.4 65.0 79.9 84.3 30.9

Candidate Sets for Alternative Routes in Road Networks 267

Table 2. Preprocessing results for normal (x = 0) and 3-relaxed (x = 3) algorithms

candidate sets
p=1 p=2 p=3

time size empty avg. empty avg. empty avg.
x preprocessing [h] [kiB] [%] size [%] size [%] size

0 single-level 1.1 859 2.6 4.4 12.7 5.1 30.5 4.4
multi-level 1.7 3 669 6.2 6.1 17.4 5.9 36.9 4.2

3 single-level 2.3 1 742 1.4 6.7 3.0 10.2 10.8 11.5
multi-level 4.3 8 909 1.1 12.2 4.9 15.0 11.6 14.2

denotes the results of adding a finer partitioning compared to just the single-
level approach. Numbers are listed for alternative p = 1, 2, 3 and only pertain to
candidate sets of non-neighboring, non-equal pairs of partitions.

We note that preprocessing can be done on server hardware in a few hours
for all of the experiments. The relative speedup on 48 cores is only about 28 due
to the memory-bandwidth bottleneck, which is about 60% of the perfect linear
speedup. The space overhead is more or less neglectable. Even for relaxation with
x = 3 and multi-level partitioning the amount of additionally data is less than
9 MiB. Multi-level preprocessing shows a higher average number of candidates
per partition pair as only partition pairs close to each other are processed. Fewer
candidate sets remain empty using the relaxed algorithm.

X-CHASEVwithout candidate sets is compared to single- andmulti-level candi-
date sets. Table 3 gives basic performance numbers. Algorithms with preprocessed
candidate sets have query times well below 0.5 ms on average even for the third
alternative, which is more than practical. We see that the multi-level optimization
even improves the success rate, while the path quality remains at high level. Fall-
back rates to the baseline are generally low, 95% of the queries are covered by pre-
processed via node candidates. We tested on omitting the fallback entirely for this
setting and observe that results do not degrade noticeably. A third partitioning
level would not give any further improvements to the performance of the query.

Table 3. Query performance with preprocessed candidate sets

performance path quality candidate sets
time success UBS[%] sharing[%] locality[%] v.cand. fallb. avg.

p algorithm [ms] rate [%] avg max avg max avg min [%] [%] tested

1 X-CHASEV 0.5 75.5 9.2 48.1 44.7 80.0 74.8 26.3 - - -
single-level 0.1 80.7 9.8 48.1 48.5 80.0 75.8 26.3 92.4 4.9 1.9
multi-level 0.1 81.2 9.9 48.1 48.6 80.0 75.8 26.3 96.5 0.6 2.0

2 X-CHASEV 0.7 40.2 10.1 39.7 59.1 80.0 79.7 27.0 - - -
single-level 0.3 50.8 10.7 40.4 57.1 80.0 80.3 26.3 91.6 2.6 2.8
multi-level 0.3 51.2 10.7 40.4 57.0 80.0 80.4 26.3 93.8 0.3 2.9

3 X-CHASEV 1.0 14.2 10.0 33.4 65.0 79.9 84.3 30.9 - - -
single-level 0.4 24.8 10.7 41.0 59.9 79.9 82.5 27.9 88.7 1.1 3.8
multi-level 0.4 25.0 10.7 41.0 59.8 79.9 82.6 27.9 89.7 0.1 3.8

268 D. Luxen and D. Schieferdecker

Table 4. Query performance of multiple algorithms with 3-relaxation

p=1 p=2 p=3
time success avg. time success avg. time success avg.

algorithm [ms] rate[%] tested [ms] rate[%] tested [ms] rate[%] tested

X-BDV 11 451.5 94.5 - 12 225.8 80.6 - 13 330.9 59.5 -

X-CHV 3.4 88.5 - 4.3 64.7 - 5.3 38.0 -
X-CHASEV 2.7 88.5 - 3.2 64.7 - 3.8 38.0 -

single-level 0.2 90.0 2.22 0.4 70.2 3.8 0.6 44.0 5.6
multi-level 0.1 90.0 2.3 0.3 70.4 4.0 0.5 44.2 5.8

Results of the 3-relaxed variant of the query are given in Table 4. Numbers
for X-BDV and X-CHV are shown for reference. We omit path quality since it
is virtually unaffected and remains high.

The success rate further improves especially for the second and third alterna-
tive. Using precomputed candidate sets is faster by an order of magnitude than
X-CHASEV and naturally much faster than the original method. We identify
two reasons. A) an expensive (relaxed) Exploration Dijkstra has to be done only
in the rare case when a fallback is needed. B) the average number of nodes to
be tested as via node candidates is small and always less than half a dozen. Our
single- and multi-level approaches deliver consistently higher success rates than
the (engineered) baseline with the more speedup the more relaxation is applied.

Figure 1 shows success rates with varying Dijkstra ranks to test performance
for local and long range queries alike. Success rates (left) are consistently equal
or better for our algorithms than for the baseline. With relaxation (right) the
numbers get even closer to the rates of X-BDV. The difference is less than
10%. Success rates are compared to X-BDV as the quality “gold standard” even
though its computation is prohibitively high.

●

●

●

●

●

●
●

●
● ●

●
●

●
●

●
●

●

Dijkstra Rank

S
uc

ce
ss

 R
at

e
[%

]

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

0
10

30
50

70
90

X−BDV
X−CHASEV
 single−level
 multi−level

●

●

●

●

●

●
●

●
● ●

●
●

●
●

●
●

●

Dijkstra Rank

S
uc

ce
ss

 R
at

e
[%

]

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

0
10

30
50

70
90

X−BDV
X−CHASEV
 single−level
 multi−level

Fig. 1. Success rates according to Dijkstra rank: normal (x = 0, left) and 3-relaxed
algorithm (x = 3, right). The Dijkstra rank of node v with respect to a node s is i if
v is the i-th node removed from the priority queue of a unidirectional Dijkstra started
at s. Each data point represents 1 000 queries.

Candidate Sets for Alternative Routes in Road Networks 269

6 Conclusion and Future Work

We introduced via node candidate sets. We showed their compact size, their
efficient precomputation on large-scale networks and report one order of magni-
tude faster queries. We also show that success rates are higher than for previous
algorithms with neglectable memory overhead. As a result of our extensive exper-
imental evaluation, we conclude that Assumption 1 holds. There are a number
of interesting directions for future work. We would like to explore the amount of
preprocessing that is necessary to match the success rates of X-BDV. Also, we
would like to use our method to generate alternative graphs similar to [18]. A
challenging question is to extend alternative path computation to multiple via
nodes. Combining the idea of transit nodes with via node candidates may be
a great opportunity of future research. Instead of characterizing an alternative
by a single via node, via entrance nodes for source and target partitions may
provide access to an overlay network with fast lookups of alternatives.

Acknowledgments. The authors would like to thank Christian Schulz [16] for
providing the partitionings and Daniel Delling [19] for providing arc flags for the
partitioning with 128 cells, and Moritz Kobitzsch for great discussions.

References

1. Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik 1, 269–271 (1959)

2. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Transact. on Syst. Sci. and Cybernetics 4 (1968)

3. Goldberg, A.V., Harrelson, C.: Computing the Shortest Path: A* Search Meets
Graph Theory. In: Proceedings of the 16th Annual ACM–SIAM Symposium on
Discrete Algorithms (SODA 2005). SIAM (2005)

4. Lauther, U.: Slow preprocessing of graphs for extremely fast shortest path calcu-
lations. In: Workshop on Computational Integer Programming at ZIB (1997)

5. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static
networks with geographical background. Geoinformation und Mobilität—von der
Forschung zur praktischen Anwendung 22, 219–230 (2004)

6. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning
graphs to speedup dijkstra’s algorithm. J. Exp. Algorithmics 11 (2007)

7. Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of Shortest Path and Con-
strained Shortest Path Computation. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS,
vol. 3503, pp. 126–138. Springer, Heidelberg (2005)

8. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies:
Faster and Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C.
(ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

9. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.:
Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Al-
gorithm. ACM Journ. of Exp. Algorithmics 15, 1–31 (2010)

10. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway Dimension,
Shortest Paths, and Provably Efficient Algorithms. In: Proc. of the 21st Annual
ACM–SIAM Symposium on Discrete Algorithms, SODA 2010 (2010)

270 D. Luxen and D. Schieferdecker

11. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: VC-Dimension
and Shortest Path Algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6755, pp. 690–699. Springer, Heidelberg (2011)

12. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A Hub-Based Labeling
Algorithm for Shortest Paths in Road Networks. In: Pardalos, P.M., Rebennack,
S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)

13. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Alternative Routes in
Road Networks (2011),
http://88.198.59.15/~delling/tmp/alternativesJEA.pdf

14. Cambridge Vehicle Information Tech. Ltd: Choice Routing, http://camvit.com
15. Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph Partitioning

with Natural Cuts. In: 25th International Parallel and Distributed Processing Sym-
posium (IPDPS 2011). IEEE Computer Society (2011)

16. Sanders, P., Schulz, C.: Engineering Multilevel Graph Partitioning Algorithms. In:
Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 469–480.
Springer, Heidelberg (2011)

17. Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): The 9th DIMACS Imple-
mentation Challenge – Shortest Paths. American Mathematical Society (2006)

18. Bader, R., Dees, J., Geisberger, R., Sanders, P.: Alternative Route Graphs in Road
Networks. In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS,
vol. 6595, pp. 21–32. Springer, Heidelberg (2011)

19. Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: PHAST: Hardware-
Accelerated Shortest Path Trees. In: 25th International Parallel and Distributed
Processing Symposium (IPDPS 2011). IEEE (2011)

http://88.198.59.15/~delling/tmp/alternativesJEA.pdf
http://camvit.com

	Candidate Sets for Alternative Routes in Road Networks
	Introduction and Related Work
	The Baseline Algorithm
	Engineering the Baseline Algorithm
	Single-Level via Node Candidates
	Multi-level via Node Candidates
	Further Engineering

	Experiments
	Methodology
	Engineered Baseline Algorithm
	Preprocessed Candidate Sets

	Conclusion and Future Work
	References

